
CP / M-68J(TM
Operating System

System Guide

CP/M-68KTM
Operating System

System Guide

Copyr ight © 1983

Digital Research
P.O. Box 579

167 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electron ic, mechan ical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Dig ital Research, Post Office Box 579,
Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
spec ifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to rev ise this publica tion and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M and CP/M- 86 are reg is te red trademarks of
Digital Research. CP/M-80, CP/M~68K, DDT, and MP/M
are trademarks of Digital Research. Motorola
MC68000 is a registered trademark of Motorola,
Incorporated. EXORmacs, EXORterm, and MACSbug are
trademarks of Motorola, Inc. VAX/VMS is a trademark
of Digital Equipment Corporation. UNIX is a
trademark of Bell Laboratories. TI Silent 700
Te r min a 1 is a reg is te red tradema rk of Texas
Instruments, Incorporated.

The CP/M-68K Operating System System Guide was
prepared using the Digital Research TEX Text
Formatter and printed in the United States of
America.

* First Edition: January 1983 *

Foreword

CP/M-68K™ is a single-user general purpose operating system.
It is designed for use with any disk-based computer using a Motorola®
MC68000 or compatible processor. CP/M-68K is modular in design, and
can be modified to suit the needs of a particular installation.

The hardware interface for a particular hardware environment is
supported by the OEM or CP/M-68K distributor. Digital Research
supports the user interface to CP/M-68K as documented in the CP/M-
68K Operating System User's Guide. Digital Research does not
support any additions or modifications made to CP/M-68K by the OEM
or distr ibu ter.

Purpose and Audience

This manual is intended to provide the information needed by a
systems programmer in adapting CP/M-68K to a particular hardware
env ir onmen t. A substantial degree of programming expertise is
assumed on the part of the reader, and it is not expected that
typical users of CP/M-68K will need or want to read this manual.

Prerequisites and Related Publications

In addition to this manual, the reader should be familiar with
the architecture of the Motorola MC68000 as described in the
Motorola l6-Bit Microprocessor User's Manual (third edition), the
CP/M-68K User's and Programmer's Gu ides, and, of course, the deta ils
of the hardware environment where CP/M-68K is to be implemented.

Bow This Book is Organized

Section 1 presents an overview of CP/M-68K and describes its
major components. Section 2 discusses the adaptation of CP/M-68K
for your specific hardware system. Section 3 discusses bootstrap
procedures and related information. Section 4 describes each BIOS
function including entry parameters and return values. Section 5
de sc r ibes the process of creating a BIOS for a custom hardware
interface. Section 6 discusses how to get CP/M® working for the
first time on a new hardware environment. Section 7 describes a
procedure for causing a command to be automatically executed on cold
boot. Section 8 describes the PUTBOOT utility, which is useful in
generating a bootable disk.

Appendix A descr ibes the conten ts of the CP/M-68K distr ibu tion
disks. Appendixes B, C, and D are listings of various BIOSes.
Appendix E contains a listing of the PUTBOOT utility program.
Appendix F describes the Motorola S-record representation for
programs.

iii

Table of Contents

1 System Overview

1.1 Introduction

1.2 CP/M-68K Organization •••

1.3 Memory Layout •

1.4 Console Command Processor

1.5 Basic Disk Operating System (BDOS)

1.6 Basic I/O System (BIOS)

1.7 I/O Devices • . . • • • •

1.7.1 Character Devices
1.7.2 Character Devices

1.8 System Generation and Cold Start Operation

2 System Generation

2.1 Overview

2.2 Creating CPM.SYS

2.3 Relocating utilities

3 Bootstrap Procedures

3.1 Bootstrapping Overview

3.2 Creating the Cold Boot Loader •.

3.2.1 Writing a Loader BIOS
3.2.2 Building CPMLDR.SYS

4 BIOS Functions

4.1 Introduction

v

1

3

3

4

5

5

5

5
5

6

7

7

8

9

10

10
11

13

Table of Contents
(continued)

5 Creating a BIOS

5.1 Overview

5.2 Disk Definition Tables

5.2.1
5.2.2
5.2.3

Disk Parameter Header
Sector Translate Table •
Disk Parameter Block

5.3 Disk Blocking Guide .•••

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

A Simple Approach
Some Refinements ••
Track Buffering
LRU Replacemen t
The New Block Flag • •

6 Insta11ing and Adapting the Distributed BIOS and CP/M-68K

6.1 Overview

6.2 Booting on an EXORmacs

6.3 Bringing up CP/M-68K Using S-record Files.

7 Co1d Boot Automatic Command Execution

7.1 Overview

39

39

40
41
42

45

46
46
47
47
48

49

49

50

51

7.2 Setting up Cold Boot Automatic Command Execution 51

8 The POTBOOT Oti1ity

8.1 PUTBOOT Operation.

8.2 Invoking PUT BOOT

vi

53

53

Appendixes

A Contents of Distribution Disks •••••

B Sample BIOS Written in Assembly Language

C Sample Loader BIOS Written in Assembly Language

D EXORrnac s BIOS Wr it ten in C • • • • • • •

E PUTBOOT Utility Assembly Language Source

F The Motorola S-record Format .

F.l S-record Format

F.2 S-record Types

G CP/M-68K Error Messages

vii

55

59

67

73

101

• • 107

107

• • 108

109

Tables and Figures

Tab1es

1-1. CP/M-68K Terms • • .

4-l.
4-2.
4-3.
4-4.

5-l.
5-2.
5-3.
5-4.

A-l.

BIOS Register Usage
BIOS Functions • • . • • • • • . . • • • • •
CP/M-68K Logical Device Characteristics
I/O Byte Field Definitions •. •..• ••

Disk Parameter Header Elements
Disk Parameter Block Fields . . • • • . • • • • .
BSH and BLM Va lues • • . . • . . • . . • • • • • .
EXM Values . . . • • • . • • • • . . • • • •

Distribution Disk Contents.

1

14
14
33
34

40
42
44
45

55

F-l. S-Record Field Contents
F-2. S-Record Types .••••

• • • • • • • • • • 107
• • • • • • • 109

G-l. CP/M-68K Error Messages

Figures

1-1. CP/M-68K Interfaces • • . • . • • • •
1-2. Typical CP/M-68K Memory Layout •

4-1. Memory Region Table Format •
4-2. I/O Byte Fields • • • • •

5-l.
5-2.
5-3.

Disk Parameter Header • . • .
Sample Sector Translate Table
Disk Parameter Block • • • • •

F-l. S-Reference Fields • • • • • . •

viii

• • • 109

3
4

32
34

40
42
42

• • 107

1.1 Introduction

Section 1
System Overview

CP/M-68K is a single-user, general purpose operating system
for microcomputers based on the Motorola MC68000 or equivalent
microprocessor chip. It is designed to be adaptable to almost any
hardware environment, and can be readily customized for particular
hardware systems.

CP/M-68K is equivalent to other CP/M systems with changes
dictated by the 68000 architecture. In particular, CP/M-68K
supports the very large address space of the 68000 family. The
CP/M-68K file system is upwardly compatible with CP/M-80 lM version
2.2 and CP/M-86@ Version 1.1. The CP/M-68K file structure allows
files of up to 32 megabytes per file. CP/M-68K supports from one
to sixteen disk drives with as many as 512 megabytes per drive.

The entire CP/M-68K operating system resides in memory at all
times, and is not reloaded at a warm start. CP/M-68K can be
configured to reside in any portion of memory above the 68000
exception vector area (OH to 3FFH). The remainder of the address
space is available for applications programs, and is called the
transient program area, TPA.

Several terms used throughout this manual are defined in
Table 1-1.

Term

nibble

byte

word

longword

address

offset

Table 1-1. CP/M-68K Terms

J Meaning

4-bi t half-byte

8-bit value

16-bit value

32-bit value

32-bit identifier of a storage
location

a value defining an address in
storage; a fixed displacemen t from
some other address

1

CP/M-68K System Guide 1.1 Introduction

Table 1-1. (continued)

Term

text segment

data segment

block storage
segment (bss)

absolute

relocatable

I Meaning

program section containing machine
instructions

program section containing
initialized data

program section containing
uninitialized data

describes a program which must reside
at a fixed memory address.

descr ibes a program wh ich includes
relocation information so it can be
loaded into memory at any address

The CP/M-68K programming model is described in detail in the
CP/M-68K Operating System Programmer's Guide. To summarize that
model briefly, CP/M-68K supports four segments within a program:
text, data, block storage segment (bss), and stack. When a program
is loaded, CP/M-68K allocates space for all four segments in the
TPA, and loads the text and data segments. A transient program may
manage free memory using values stored by CP/M-68K in its base page.

2

CP/M-68K System Guide

User Interface

(CCP)

programming
Interface

(BOOS)

Hardware
Interface

(BIOS)

HARDWARE ENVIRONMENT

1.1 Introduction

Figure 1-1. CP/M-68K Interfaces

1.2 CP/M-68K Organization

CP/M-68K comprises three system modules: the Console Command
Processor (CCP) the Basic Disk Operating System (BOOS) and the Basic
Input/Output System (BIOS). These modules are linked together to
form the operating system. They are discussed individually in this
section.

1.3 Memory Layout

The CP/M-68K operating system can reside anywhere in memory
except in the interrupt'vector area (OH to 3FFH). The location of
CP/M-68K is defined dur ing system genera tion. Usually I the CP/M-68K
opera ting system is placed at the top end (high address) of
available memory,' and the TPA runs from 400H to the base of the

3

CP/M-68K System Guide 1.3 Memory Layout

operating system. It is possible, however, to have other
organizations for memory. For example, CP/M-68K could go in the low
part of memory with the TPA above it. CP/M-68K could even be placed
in the middle of available memory.

However, because the TPA must be one contiguous piece, part
of memory would be unavailable for transient programs in this case.
Usually this is wasteful, but such an organization might be useful
ifan area of memory is to be used for a bit-mapped graphics device,
for example, or if there are ROM-resident routines. The BIOS and
specialized application programs might know this memory exists, but
it is not part of the TPA.

CCP & BOOS & BIOS

User Stack

Free Memory

bss

Data

Text

Base Page

Interrupt Vectors

Top of
Memory I

I
CP/M 68K

TPA

OOSOOH

00400H

OOOOOH

user
pgm

Figure 1-2. Typical CP/M-68K Memory Layout

1.4 Console Command Processor (CCP)

The Console Command Processor, (CCP) provides the user
interface to CP/M-68K. It uses the BDOS to read user commands and
load programs, and provides several built-in user commands. It also
provides parsing of command lines entered at the console.

4

CP/M-68K System Guide 1.5 Basic Disk Operating System

1.5 Basic Disk Operating System (BDOS)

The Basic Disk Operating System (BOOS) provides operating
system services to applications programs and to the CCP. These
include character I/O, disk file I/O (the BOOS disk I/O operations
comprise the CP/M-68K file system), program loading, and others.

1.6 Basic I/O System (BIOS)

The Basic Input Output System (BIOS) is the interface between
CP/M-68K and its hardware environment. All physical input and
output is done by the BIOS. It includes all physical device
drivers, tables defining disk characteristics, and other hardware
specific functions and tables. The CCP and BOOS do not change for
different hardware environments because all hardware dependencies
have been concentrated in the BIOS. Each hardware configuration
needs its own BIOS. Section 4 describes the BIOS functions in
detail. Section 5 discusses how to write a custom BIOS. Sample
BIOSes are presented in the appendixes.

1.1 I/O Devices

CP/M-68K recognizes two basic types of I/O devices: character
devices and disk drives. Character devices are serial devices that
handle one character at a time. Disk devices handle data in units
of 128 bytes, called sectors, and provide a large number of sectors
which can be accessed in random, nonsequential, order. In fact,
real systems might have devices with characteristics different from
these. I t is the BIOS IS responsibility to resolve differences
between the logical device models and the actual physical devices.

1.7.1 Character Devices

Character devices are input output devices which accept or
supply streams of ASCII characters to the computer. Typical
character devices are consoles, printers, and modems. In CP/M-68K
operations on character devices are done one character at a time. A
character input device sends ASCII CTRL-Z (lAB) to indicate end-of
file.

1.1.2 Character Devices

Disk devices are used for file storage. They are organized
into sectors and tracks. Each sector contains 128 bytes of data.
(If sector sizes other than 128 bytes are used on the actual disk,
then the BIOS must do a logical-to-physical mapping to simulate 128-
byte sectors to the rest of the system.) All disk I/O in CP/M-68K is
done in one-sector units. A track is a group of sectors. The
number of sectors on a track is a constant depending on the
particular device. (The characteristics of a disk device are
specified in the Disk Parameter Block for that device. See

5

CP/M-68K System Guide 1.7 I/O Devices

Section 5.) To locate a particular sector, the disk, track number,
and sector number must all be specified.

1.8 System Generation and Cold Start Operation

Generating a CP/M-68K system is done by linking together the
CCP, BOOS, and BIOS to create a file called CPM.SYS, which is the
operating system. Section 2 discusses how to create CPM.SYS.
CPM.SYS is brought into memory by a bootstrap loader which will
typically reside on the first two tracks of a system disk. (The
term system disk as used here simply means a disk with the file
CPM.SYS and a bootstrap loader.) Creation of a bootstrap loader is
discussed in Section s.

End of Section I

6

2.1 Overview

Section 2
System Generation

This section describes how to build a custom version of CP/M-
68K by combining your BIOS with the CCP and BOOS supplied by Digital
Research to obtain a CP/M-68K operating system suitable for your
spec if ic hardware system. Sec tion 5 descr ibes how to create a BIOS.

In this section, we assume that you have access to an already
configured and executable CP/M-68K system. If you do not, you
should first read Section 6, which discusses how you can make your
first CP/M-68K system work.

A CP/M-68K opera ting system is genera ted by using the linker,
L068, to link together the system modules (CCP, BOOS, and BIOS).
Then the RELOC utility is used to bind the system to an absolute
memory location. The resulting file is the configured operating
system. It is named CPM.SYS.

2.2 Creating CPM.SYS

The CCP and BOOS for CP/M-68K are distributed in a library
file named CPMLIB. You must link your BIOS with CPMLIB using the
following command:

A>L068 -R -UCPM -0 CPM.REL CPMLIB BIOS.O

where BIOS.O is the compiled or assembled BIOS. This c rea tes
CPM.REL, which is a relocatable version of your system. The cold
boot loader, however, can load only an absolute version of the
system, so you must now create CPM.SYS, an absolute version of your
system. If you want your system to reside at the top of memory,
first find the size of the system with the following command:

A>SIZE68 CPM.REL

This gives you the total size of the system in both decimal
and hex byte counts. Subtract this number from the highest memory
address in your system and add one to get the highest possible
address at which CPM.REL can be relocated. Assuming that the result
is aaaaaa, type this command:

A>RELOC -Baaaaaa CPM.REL CPM.SYS

The result is the CPM.SYS file, relocated to load at memory
address aaaaaa. If you want CPM.SYS to reside at some other memory
address, such as immediately above the exception vector area, you
can use RELOC to place the system at that address.

7

CP/M-68K System Guide 2.2 Creating CPM.SYS

When you perform the relocation, verify that the resulting
system does not overlap the TPA as defined in the BIOS. The
boundaries of the system are determined by taking the relocation
address of CPM.SYS as the base, and adding the size of the system
(use SIZE68 on CPM.SYS) to get the upper bound. This address range
must not overlap the TPA that the BIOS defines in the Memory Reg ion
Table.

2.3 Relocating utilities

Once yo~ have built CPM.SYS, it is advisable to relocate the
operating system utilities for your ",TPA using the RELOC utility.
RELOC is described in the CP/M-68K Operating System Programmer's
Guide. This results in the utilities being absolute, rather than
relocatable, but they will occupy half the disk space and load into
memory twice as fast in their new form. You should also keep the
relocatable versions backed up in case you ever need to use them in
a different TPA.

End of Section 2

8

Section 3
Bootstrap Procedures

3.1 Bootstrapping Overview

Bootstrap loading is the process of br ing ing the CP/M-68K
operating system into memory and passing control to it. Bootstrap
loading is necessarily hardware dependent, and it is not possible to
discuss all poss ible var ia tions in th is manual. However, the manual
pre sen ts a model of bootst.rapping that is applicable to most
systems.

The model of bootstrapping which we present assumes that the
CP/M-68K operating system is to be loaded into memory from a disk in
which the first few tracks (typically the first two) are reserved
for the opera ting system and bootstrap rou tines, wh ile the rema inder
of the disk contains the file structure, consisting of a directory
and disk files. (The topic of disk organization ana parameters is
disc ussed in Sec tion 5.) In our model, the CP/M-68K operating
system resides in a disk file named CPM.SYS (described in Section
2), and the system tracks contain a bootstrap loader program
(CPMLDR.SYS) which knows how to read CPM.SYS into memory and
transfer control to it.

Most systems have a boot procedure similar to the following:

1) When you press reset, or execute a boot command from a
monitor ROM, the hardware loads one or more sectors
beginning at track 0, sector 1, into memory at a
predetermined address, and then jumps to that address.

2) The code that came from track 0, sector 1, and is now
executing, is typically a small bootstrap rou tine that
loads the re st of the sec tor s on the system tracks
(containing CPMLDR) into another predetermined address in
memory, and then jumps to that address. Note that if your
hardware is smart enough, steps 1 and 2 can be combined
into one step.

3) The code loaded in step 2, which is now executing, is the
CP/M Cold Boot Loader, CPMLDR, which is an abbreviated
version of CP/M-68K itself. CPMLDR now finds the file
CPM.SYS, loads it, and jumps to it. A copy of CPM.SYS is
now in memory, executing. This completes the bootstrapping
process.

In order to create a CP/M-68K diskette that can be booted, you
need to know how to create CPM.SYS (see Section 2.2), how to create
the Cold Boot Loader, CPMLDR, and how to put CPMLDR onto your system
tracks. You must also understand your hardware enough to be able to
design a method for bringing CPMLDR into memory and executing it.

9

CP!M-68K System Guide 3.2 Creating the Cold Boot Loader

3.2 Creating the Cold Boot Loader

CPMLDR is a min iature version of CP!M-68K. It contains
stripped versions of the BOOS and BIOS, with only those functions
which are needed to open the CPM.SYS file and read it into memory.
CPMLDR will exist in at least two forms; one form is the information
in the system tracks, the other is a file named CPMLDR.SYS which is
created by the linker. The term CPMLDR is used to refer to either
of these forms, but CPMLDR.SYS only refers to the file.

CPMLDR.SYS is generated using a procedure similar to that used
in generating CPM.SYS. That is, a loader BIOS is linked with a
loader system library, named LDRLIB, to produce CPMLDR.SYS.
Additional modules may be linked in as required by your hardware.
The resulting file is then loaded onto the system tracks using a
utility program named PUTBOOT.

3.2.1 Writing a Loader BIOS

The loader BIOS is very similar to your ordinary BIOS; it just
has fewer functions, and the en try conven tion is slightly differen t.
The differences are itemized below.

1) On ly one disk needs to be suppor ted. The loader system
selects only drive A. If you want to boot from a drive
other than A, your loader BIOS should be written to select
that other drive when it receives a request to select drive
A.

2) The loader BIOS is not called through a trap; the loader
BDOS calls an en try poin t named bios instead. The
parameters are still passed in reg isters, just as in the
normal BIOS. Thus, your Function 0 does not need to
initialize a trap, the code that in a normal BIOS would be
the Trap 3 handler should have the label bios, and you
exit from your loader BIOS with an RTS instruction instead
of an RTE.

3) Only the following BIOS functions need to be implemented:

O· (Init) Called just once, should initialize hardware
as necessary, no return value necessary. Note that
Func tion 0 is called via bios with the function number
equal to O. You do not need a separate _init entry point.

4 (Conout) Used to print error messages during boot. If
you do not wan terror mes.sages, this function should just
be an rts.

9 (Seldsk) Called just once, to select drive A.

10 (Settrk)

10

CP/M-6SK System Guide

11 (Setsec)

12 (Setdma)

13 (Read)

16 (Sectran)

3.2 Creating the Cold Boot Loader

IS (Get MRT) Not used now, but may be used in future
releases.

22 (Set exception)

4) You do not need to include an allocation vector or a check
vector, and the Disk Parameter Header values that point to
these can be anything. However, you still need a Disk
Parameter Header, Disk Parameter Block, and directory
buffer.

It is possible to use the same source code for both your normal
BIOS and your loader BIOS if you use cond itional compila tion or
assembly to distinguish the two. We have done this in our example
BIOS for the EXORmacs!"

3.2.2 Building CPMLDR.SYS

Once you have written and compiled (or assembled) a loader
BIOS, you can build CPMLDR.SYS in a manner very similar to building
CPM.SYS. There is one additional complication here: the result of
this step is placed on the system tracks. So, if you need a small
prebooter to bring in the bulk of CPMLDR, the prebooter must also be
included in the link you are about to do. The details of what must
be done are hardware dependent, but the following example should
help to clarify the concepts involved.

Suppose that your hardware reads track 0, sector 1, into memory
at location 400H when reset is pressed, then jump to 400H. Then
your boot disk must have a small program in that sector that can
load the rest of the system tracks in to memory and execute the code
that they contain. Suppose that you have written such a program,
assembled it, and the assembler output is in BOOT.O. Also assume
that your loader BIOS object code is in the file LDRBIOS.O. Then
the following command links together the code that must go on the
system tracks.

A>lo68 -s -T400 -uldr -0 cpmldr.sys boot.o ldrlib ldrbios.o

Once you have created CPMLDR.SYS in this way, you can use the
PUTBOOT utility to place it on the system tracks. PUTBOOT is
described in Section S. The command to place CPMLDR on the system
tracks of drive A is:

A>putboot cpmldr.sys a

11

CP/M-68K System Guide 3.2 Creating the Cold Boot Loader

PUTBOOT reads the file CPMLDR.SYS, strips off the 28-byte
command file header, and puts the result on the specified drive.
You can now boot from this disk, assuming that CPM.SYS is on the
disk.

End of Sec tion 3

12

4.1 Introduction

Section 4
BIOS Functions

All CP/M-68K hardware dependencies are concentrated in
subroutines that are collectively referred to as the Basic I/O
System (BIOS). A CP/M-68K system implemen tor can ta ilor CP/M-68K to
fit nearly any 68000 operating environment. This section describes
each BIOS function: its calling conventions, parameters, and the
actions it must perform. The discussion of Disk Definition Tables
is treated separa tely in Sec tion 5.

When the BOOS calls a BIOS function, it places the function
number in register DO.W, and function parameters in registers 01 and
02. It then executes a TRAP 3 instruction. DO.W is always needed
to specify the function, but each function has its own requirements
for other para·meters, which are descr ibed in the sec tion descr ibing
the particular function. The BIOS returns results, if any, in
reg ister DO. The size of the result depends on the particular
function.

Note: the BIOS does not need to preserve the contents of registers.
That is, any register contents which were valid on entry to the BIOS
may be destroyed by the BIOS on exit. The BOOS does not depend on
the BIOS to preserve the contents of data or address registers. Of
course, if the BIOS uses interrupts to service I/O, the interrupt
handlers will need to preserve registers.

Usually, user applications do not need to make direct use of
BIOS functions. However, when access to the BIOS is required by
user software, it should use the BnOS Direct BIOS Function, Call 50,
instead of calling the BtOS with a TRAP 3 instruction. This rule
ensures that applications remain compatible with future systems.

The Disk Parame ter Header (DPH) and Disk Parame ter Block (DPB)
formats have changed slightly from previous CP/M versions to
accommodate the 68000's 32-bit addresses. The formats are described
in Sec tion 5.

13

CP/M-68K System Guide 4.1 Introduction

Table 4-1. BIOS Register Usage

Entry Parameters:

DO.W function code
Dl.x = first parameter
D2.x = second parameter

-----.-.. ---------.-----.----------------------~

DO.B
DO.W
DO.L

Return Values:

byte values (8 bits)
word values (16 bits)
longword va lues (32 bi ts)

The dec imal BIOS function numbers and the functions they
correspond to are listed in Table 4-2.

Number

o
1
2

3
4
5
6

7

8
9

10
11
12
13
14
15
16
18
19
20
21
22

I
Table 4-2. BIOS Functions

Function

In itialization (called for cold boot)
Warm Boot (called for warm start)
Console Status (check for console
character ready)
Read Console Character In
Write Console Character Out
List (write lis·ting character out)
Auxiliary Output (write character to
auxiliary output device)
Auxiliary Input (read from auxiliary
input)
Home (move to track 00)
Select Disk Drive
Set Track Number
Set Sector Number
Set DMA Address
Read Selected Sector
Wr i te Se lec ted Sec tor
Return List Status
Sector Translate
Get Memory Region Table Address
Get I/O Mapping Byte
Set I/O Mapping Byte
Flush Buffers
Set Exception Handler Address

14

CP/M-6BK System Guide Function 0: Initialization

FUNCTION 0: INITIALIZATION

Entry Parameters:
Reg ister OO.W: OOH

Returned Value:
Reg ister DO. W: User/Disk Numbers

This routine is entered on cold boot and must initialize the
BIOS. Function 0 is unique, in that it is not entered with a TRAP 3
instruction. Instead, the BIOS has a global.label, init, which is
the entry to this routine. On cold boot, Function O-is called by a
j sr init. When initialization is done, exit is through an rts
instruction. Function 0 is responsible for initializing hardware if
necessary, initializing BIOS internal variables (such as IOBYTE) as
needed, setting up register DO as described below, setting the Trap
3 vector to point to the main BIOS entry point, and then exiting
with an rts.

Function 0 returns a longword value. The CCP uses this value
to set the initial user number and the initial default disk drive.
The least significant byte of DO is the disk number (0 for drive A,
1 for drive B, and so on). The next most significant byte is the
user number. The high-order bytes should be zero.

The entry point to this function must be named init and must
be declared global. This function is called only once from the
system at system initialization.

Following is an example of skeletal code:

.globl init ;bios init entry point

in it: * do any initialization here
move.l i traphndl ,$ Bc
clr.l dO
rts

15

;set trap 3 handler
;login drive A, user 0

CP/M-68K System Guide Function 1: Warm Boot

FUNCTION 1: WARM BOOT

En tr y Par a me te r s :
Reg ister DO.W: OlH

Returned Value: None

This function is called whenever a program terminates. Some
reinitialization of the hardware or software might occur. When this
function completes, it jumps directly to the entry point of the CCP,
named _ccp. Note that _ccp must be declared as a global.

Following is an example of skeletal code for this BIOS
function:

. globl _ccp

wboot:
* do any reinitialization here if necessary

jmp ccp

16

CP/M-68K System Guide Function 2: Console Status

:b""UNCTION 2: CONSOLE STATUS

En try Parameters:
Reg is ter DO. W: 02H

Returned Va lue:
Reg is te r DO. W: OOl!'FH if ready
Register DO.W: OOOOH if not ready

Th is function returns the sta tus of the currently assigned
console device. It returns OOFFH in register DO when a character is
ready to be read, or OOOOH in register DO when no console characters
are ready.

17

CP/M-68K System Guide Function 3: Read Console Character

FUNCTION 3: READ CONSOLE CHARACTER

Entry Parameters:
Register DO.W: 03H

Returned Value:
Register DO.W: Charac ter

This function reads the next console character into register
DO.W •. If no console character is ready, it waits until a character
is typed before returning.

18

CP/M-GaR System Guide Function 4: Write Console Character

FUNCTION 4: WRITE CONSOLE CHARACTER·

Entry Parameters:
Reg is ter 00. W: 04H
Reg ister 01. W: Character

Returned Value: None

Th is function sends the charac ter from reg ister 01 to the
console output device. The character is in ASCII. You might want
to include a delay or filler characters for a line-feed or carriage
return, if your console device requires some time interval at the
end of the line (such as a TI Silent 700 Terminal@). You can
also filter out control characters which have undesirable effects on
the console device.

19

CP/M-68K System Guide Function 5: List Character Output

FUNCTION 5: LIST CHARACTER OUTPUT

Entry Parameters:
Reg is ter DO. W: OsH
Reg ister 01. W: Character

Returned Value: None

This function sends an ASCII character from register 01 to the
currently assigned listing device. If your list device requires
some communication protocol, it must be hanQled here.

20

CP/M-68K System Guide Function 6: Auxiliary Output

FUNCTION 6: AUXILIARY OUTPUT

Entry Parameters:
Reg ister DO .W: 06H
Reg ister Dl.W: Charac ter

Returned Value:
Register DO .W: Character

This function sends an ASCII character from register Dl to the
currently assigned auxiliary output device.

21

CP/M-68K System Guide Function 7: Auxiliary Input

FUNCTION 7: AUXILIARY INPUT

Entry Parameters:
Reg ister DO. W: 07H

Returned Value:
Reg is ter DO. W: Character

This function reads the next character from the currently
assigned auxiliary input device into register DO. It reports an
end-of-file condition by returning an ASCII CTRL-Z (lAH).

22

CP/M-68K System Guide Function 8: Home

FUNCTION 8: HOME

Entry Parameters:
Reg ister DO. W: 08H

Returned Value: None

This function returns the disk head of the currently selected
disk to the track 00 position. If your controller does not have a
special feature for finding track 00, you can translate the call to
a SETTRK function with a parameter of O.

23

CP/M-68K System Guide Function 9: Select Disk Drive

FUNCTION 9: SELECT DISK DRIVE

Entry Parameters:
Register DO.W: 09H
Reg ister Dl.B: Disk Dr ive
Reg is ter D2. B: Logged in Flag

Returned Value:
Register DO.L: Address of Selected

Dr ive 's DPH

This function selects the disk drive specified in register Dl
for further operations. Register Dl contains 0 for drive A, 1 for
drive B, up to 15 for drive P.

On each disk select, this function returns the address of the
selected drive's Disk Parameter Header in register DO.L. See
Section 5 for a discussion of the Disk Parameter Header.

If there is an attempt to select a nonexistent drive, this
function returns OOOOOOOOH in register DO.L as an error indicator.
Although the function must return the header address on each call,
it may be advisable to postpone the actual physical disk select
operation until an I/O function (seek, read, or write) is performed.
Disk select operations can occur without a subsequent disk
operation. Thus, doing a physical select each time this function is
called may be wasteful of time.

On en try to the Selec t Disk Dr ive function, if the· least
significan t bit in reg ister D2 is zero, the disk is not curren tly
logged in. If the disk drive is capable of handling varying media
(such as single- and double-sided disks, single- and double-density,
and so on), the BIOS should check the type of med ia curren tly
installed and set up the Disk Parameter Block accordingly at this
time.

24

CP/M-68K System Guide Function 10: Set Track Number

FUNCTION 10: SET TRACK NUMBER

Entry Parameters:
Reg ister DO.W: OAH
Register Dl.W: Disk track number

Returned Value: None

This function spec ifies in reg ister DO. W the disk track number
for use in subsequen t disk accesses. The track number remains valid
until either another Function 10 or a Function 8 (Home) is
performed.

You can choose to physically seek to the selected track at this
time, or delay the physical seek until the next read or write
actually occurs.

The track number can range from 0 to the maximum track number
suppor ted by the physical dr ive. However, the max imum track number
is limited to 65535 by the fact that it is being passed as a 16-bit
quantity. Standard floppy disks have tracks numbered from 0 to 76.

25

CP/M-68K System Guide Function 11: Set Sector Number

FUNCTION 11: SET SECTOR NUMBER

Entry Parameters:
Reg is ter DO. W: OBH
Reg ister 01. W: Sector Number

Returned Value: None

This func tion spec ifies in reg ister 01. W the sec tor number for
subsequen t disk accesses. Th is number rema in s in effec t un til
either another Function 11 is performed.

The function selects actual (unskewed) sector numbers. If
skewing is appropriate, it will have previously been done by a call
to Function 16. You can send this information to the controller at
this point or delay sector selection until a read or write operation
occurs.

26

CP/M-68K System Guide Function 12: Set DMA Address

FUNCTION 12: SET DMA ADDRESS

En try Parameters:
Reg is ter DO. W: OCH
Register Dl.L: DMA Address

Returned Value: None

This function contains the DMA (disk memory access) address in
reg ister Dl for subsequen t read or wr ite opera tions. Note that the
controller need not actually support DMA (direct memory access).
The BIOS will use the l28-byte area starting at the selected DMA
address for the memory buffer during the following read or write
operations. This function can be called with either an even or an
odd address for a DMA buffer.

27

CP/M-68K System Guide Function 13: Read Sector

FUNCTION 13: READ SECTOR

En try Paramete rs:
Register DO.W: ODH

Returned Value:
Reg ister DO.W: 0 if no error
Register DO.W: 1 if physical error

After the drive has been selected, the track has been set, the
sector has been set, and the DMA address has been specified, the
read function uses these parameters to read one sector and returns
the error code in register DO.

Currently, CP/M-68K responds only to a zero or nonzero return
code value. Thus, if the value in register DO is zero, CP/M-68K
assumes that the disk operation completed properly. If an error
occurs however, the BIOS should attempt at least ten retries to see
if the error is recoverable.

28

CP/M-68K System Guide Function 14: Write Sector

FUNCTION 14: WRITE SECTOR

Entry Parameters:
Reg ister DO.W: OEH
Reg ister Dl.W: O=normal wr ite

l=wr ite to a directory
sector

2=wr ite to first sec tor
of new block

Returned Value:
Reg ister DO.W: O=no error

l=physical error

Th is func tion is used to wr ite 128 byte s of da ta fr om the
currently selected DMA buffer to the currently selected sector,
track, and disk. The value in register Dl.W indicates whether the
w rite is an ord inary wr ite operation or whether the there are
special considerations.

If register Dl.W=O, this is an ordinary write operation. If
Dl.W=l, this is a write to a directory sector, and the write should
be physically completed immediately. If Dl.W=2, this is a write to
the fir st sec tor of a newly allocated block of the disk. The
significance of this value is discussed in Section 5 under Disk
Buffe ring.

29

CP/M-68K System Guide Function 15: Return List Status

FUNCTION 15: RETURN LIST STATUS

Entry Parameters:
Reg is ter DO. W: OFH

Returned Value:
Reg ister DO: OOFFH=dev ice ready
Reg ister DO: OOOOH=device not ready

This function returns the sta tus of the list dev ice. Reg ister
DO contains either OOOOH when the list device. is not ready to accept
a charac ter or OOFFH when a charac ter can be sen t to the list
dev ice.

30

CP/M-6aK System Guide Function 16: Sector Translate

FUNCTION 16: SECTOR TRANSLATE

Entry Parameters:
Reg is ter DO. W: lOH
Reg ister D1. W: Log ical Sector Number
Register D2.L: Address of Translate

Table

Returned Value:
Reg ister DO. W: Physical Sector Number

Th is funct ion per for ms log ical-to-phys ica 1 sec tor trans lation,
as discussed in Section 5.2.2. The Sector Translate function
receives a logical sector number from register Dl.W. The logical
sector number can range from 0 to the number of sectors per track-I.
Sector Transla te a Iso receives the address of the transla te table in
reg ister D2.L. The log ical sec tor number is used as an index in to
the translate table. The resulting physical sector number is
returned in DO.W.

I f reg is te r D 2. L = OOOOOOOOH, imply ing that there is no
translate table, register Dl is copied to register DO before
returning. Note that other algorithms are possible; in particular,
is is common to incremen t the log ical sec tor number in order to
convert the log ical range of 0 to n-l in to the physical range of 1
to n. Sector Translate is always called by the BOOS, whether the
transla te table address in the Disk Parameter Header is zero or
nonzero.

31

CP/M-68K System Guide Function 18: Get Address of MRT

FUNCTION 18: GET ADDRESS OF MEMORY
REGION TABLE

Entry Parameters:
Reg iste r DO. W: 12H

Returned Value:
Register DO.L: Memory Reg ion

Table Address

This function returns the address of the Memory Region Table
(MRT) in register DO. For compatibility with other CP/M systems,

CP/M-68K maintains a Memory Region Table. However, it contains only
one reg ion, the Transien t Prog ram Area (TPA). The forma t of the MRT
is shown below:

En try Coun t = 11 16 bits

Base address of first region 32 bits

Length of first region 32 bits

Figure 4-1. Memory Region Table Format

The memory reg ion table must beg in on an even address, and must
be implemen ted.

32

CP/M-68K System Guide Function 19: Get I/O Byte

FUNCTION 19: GET I/O BYTE

Entry Parameters:
Reg is ter DO. W: 13H

Returned Value:
Register DO.W: I/O Byte Curren t

Value

This function returns the current value of the logical to
physical input/output device byte (I/O byte) in register DO.W. This
8-bit value assoc ia tes physical dev ices with CP/M-68K' s four log ical
devices as noted below. Note that even though this is a byte value,
we are using word references. The upper byte should be zero.

Peripheral devices other than disks are seen by CP/M-68K as
logical devices, and are assigned to physical devices within the
BIOS. Device characteristics are defined in Table 4-3 below.

Table 4-3. CP/M-68K Logical Device Characteristics

Device Name I
CONSOLE

LIST

AUXILIARY OUTPUT

AUXILIARY INPUT

Charac ter istics

The interactive console that you use
to communicate with the system is
accessed through functions 2, 3 and
4. Typically, the console is a CRT
or other terminal device.

The listing device is a hard-copy
device, usually a printer.

An optional serial output device.

An optional serial input device.

Note that a single peripheral can be assigned as the LIST,
AUXILIARY INPUT, and AUXILIARY OUTPUT device simultaneously. If no
per ipheral dev ice is assigned as the LIST, AUXILIARY INPUT, or
AUXILIARY OUTPUT device, your BIOS should give an appropriate error
message so that the system does not hang if the device is accessed
by PIP or some other transient program. Alternatively, the
AUXILIARY OUTPUT and LIST functions can simply do nothing except
return to the caller, and the AUXILIARY INPUT function can return
with a lAH (CTRL-Z) in register DO.W to indicate immediate end-of
file.

33

CP/M-68K System Guide Function 19: Get I/O Byte

The I/O byte is split into four 2-bit fields called CONSOLE,
AUXILIARY INPUT, AUXILIARY OUTPUT, and LIST, as shown in Figure 4- 2.

most s ignifican t least significant

AUXILIARY AUXILIARY
I/O Byte LIST OUTPUT INPUT CONSOLE

bits 7,6 5,4 3,2 1,0

Figure 4-3. I/O Byte

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. The values
which can be assigned to each field are given in Table 4-4.

Table 4-4. I/O Byte Field Definitions

CONSOLE field (bits 1,0)

Bit I Definition

0 console is assigned to the console pr.inter (TTY:)
.1 console is assigned to the CRT device (CRT:)
2 batch mode: use the AUXILIARY INPUT as the CONSOLE

input, and the LIST device as the CONSOLE output
(BAT:)

3 user defined console device (UCl:)

AUXIJ ... IARY INPUT field (bits 3,2)

Bit I Definition

0 AUXILIARY INPUT is the Teletype device (TTY:)
.1 AUXILIARY INPUT is the high-speed reader device

(PTR:)
2 user defined reader #1 (URI:)
3 user defined reader #2 (UR2:)

34

CP/M-68K System Guide Function 19: Get I/O Byte

Table 4-4. (continued)

AUXILIARY OUTPUT fie Id (bits 5,4)

Bit I De fin i tion

0 AUXILIARY OUTPUT is the Teletype device (TTY:)
1 AUXILIARY OUTPUT is the high-speed punch device (PTP:)
2 use r defined punch # 1 (UP1:)
3 user defined punch # 2 (UP 2:)

LIST field (bits 7,6)

Bit I De fin ition

0 LIST is the Teletype device (TTY:)
I LIST is the CRT dev ice (CRT:)
2 LIST is the line printer device (LPT:)
3 user defined list device (ULI:)

Note that the implementation of the I/O byte is optional, and
affects only the organization of your BIOS. No CP/M-68K utilities
use the I/O byte except for PIP, which allows access to the physical
devices, and STAT, which allows logical-physical assignments to be
made and displayed. It is a good idea to first implement and test
you r BIOS withou t the IOBYTE functions, then add the I/O byte
function.

35

CP/M-68K System Guide Function 20: Set I/O Byte

FUNCTION 20: SET I/O BYTE

Entry Parameters:
Reg ister DO.W: l4H
Reg ister Dl.W: Desired

Returned Value: None

This function Uses the value in register Dl to set the value of
the I/O byte that is stored in the BIOS. See Table 4-4 for the I/O
byte field definitions. Note that even though this is a byte value,
we are using word references. The upper byte should be zero.

36

CP/M-68K System Guide Function 21: Flush Buffers

FUNCTION 21: FLUSH BUFFERS

Entry Parameters:
Reg ister DO .W: lSH

Returned Value:
Reg ister DO.W: OOOOH=successful write
Reg ister DO.W: FFFFH=unsuccessful write

This function forces the contents of any disk buffers that have
been modified to be written. That is, after this function has been
performed, all disk writes have been physically completed. After
the buffers are written, this function returns a zero in register
DO.W. However, if the buffers cannot be written or an error occurs,
the function returns a value of FFFFH in register DO.W.

37

CP/M-68K System Guide Function 22: Set Exception Address

FUNCTION 22: SET EXCEPTION HANDLER ADDRESS

Entry Parameters:
Register DO.W: 16H
Register Dl.W: Exception vector Number
Register D2.L: Exception Vector Address

Returned Value:
Register DO.L: Previous Vector Con ten ts

This function sets the exception vector indicated in register
Dl.W to the value specified in register D2.L. The previous vector
value is returned in register DO.L. Unlike the BDOS Set Exception
Vector Function (61), this BIOS function sets any exception vector.
Note that register Dl.W contains the exception vector number. Thus,
to se t exception i 2, bus error, th is reg ister con ta ins a 2, and the
vector value goes to memory locations 08H to OBH.

End of Section 4

38

5.1 Overview

Section 5
Creating a BIOS

The BIOS provides a standard interface to the physical
input/output devices in your system. The BIOS interface is defined
by the functions described in Section 4. Those functions, taken
together, constitute a model of the hardware environment. Each BIOS
is responsible for mapping that model onto the real hardware.

In addition, the BIOS contains disk definition tables which
define the characteristics of the disk devices which are present,
and provides some storage for use by the BOOS in maintaining disk
directory information.

Section 4 describes the functions which must be performed by
the BIOS, and the external interface to those functions. This
Section contains additional information describing the structure and
significance of the disk definition tables and information about
sector blocking and deblocking. Careful choices of disk parameters
and disk buffering methods are necessary if you are to achieve the
best possible performance from CP/M-68K. Therefore, this section
should be read thoroughly before writing a custom BIOS.

CP/M-68K, as distributed by Digital Research, is configured to
run on the Motorola EXORmacs developmen t system with Un iversal Disk
Controller. The sample BIOS in Appendix D is the BIOS used in the
distr ibuted system, and is written in C language. A sample BIOS for
an Empirical Research Group (ERG) 68000 based microcomputer with
Tarbell floppy disk controller is also included in Appendix B, and
is written in assembly language. These examples should assist the
reader in understanding how to construct his own BIOS.

5.2 Disk Definition Tables

As in other CP/M systems, CP/M-68K uses a set of tables to
define disk device characteristics. This section describes each of
these tables and discusses choices of certain parameters.

39

CP/M-68K System Guide 5.2 Disk Definition Tables

5.2.1 Disk Parameter Header

Each disk dr ive has an assoc iated 26-byte Disk Parameter Header
(DPH) which both contains information about the disk dr i ve and
provides a scratchpad area for certain BDOS operations. Each drive
must have its own unique DPH. The format of a Disk Parameter Header
is shown in Figure 5-1.

XLT 0000 0000 0000 !DIRBUF! DPB CSV ALV

32b 16b 16b 16b 32b 32b 32b 32b

Figure 5-1. Disk Parameter Header

Each element of the DPH is either a word (16-bit) or longword
(32-bit) value. The meanings of the Disk Parameter Header (DPH)
elements are given in Table 5-1.

Table 5-1. Disk Parameter Header Elements

Element I Description

XLT Address of the logical-to-physical sector
translation table, if used for this particular
drive, or the value 0 if there is no translation
table for this drive (Le, the physical and
logical sector numbers are the same). Disk
drives with identical sector translation may
share the same translate table. The sector
translation table is described in Section 5.2.2.

0000 Three scratchpad words for use within the BDOS.

DIRBUF Address of a 128-byte scratchpad area for
directory operations within BDOS. All DPHs
address the same scratchpad a~ea.

DPB Address of a disk parameter block for this dr ive.
Drives with identical disk characteristics may
address the same disk parameter block.

40

CP/M-68K System Guide 5.2 Disk Definition Tables

Table 5-1. (continued)

Elemen t I De sc rip tion

CSV Address of a checksum vector. The BOOS uses this
area to rna in ta in a vec tor of d irec tory check sums
for the disk. These checksums are used in
detec ting when the disk in a dr ive has been
changed. If the disk is not removable, then it
is not necessary to have a checksum vector. Each
DPH must point to a unique checksum vector. The
checksum vector should contain 1 byte for every
four directory entries (or 128 bytes of
directory). In other words: length (CSV) =
(DRM+l) / 4. (ORM is discussed in Section
5.2.3.)

ALV Address of a scratchpad area used by the BOOS to
keep disk storag.e allocation information. The
area must be different for each OPH. There must
be 1 bit for each allocation block on the dr ive,
requiring the following: length (ALV) = (DSM/8) +
1. (DSM is discussed below.)

5.2.2 Sector Translate Table

Sector translation in CP/M-68K is a method of logically
renumbering the sectors on each disk track to improve disk I/O
performance. A frequen t situation is that a program needs to access
disk sectors sequentially. However, in reading sectors
sequentially, most programs lose a full disk revolution between
sectors because there is not enough time between adjacent sectors to
begin a new disk operation. To alleviate this problem, the
tradit ional CP/M solu tion is to create a log ical sec tor number ing
scheme in which logically sequential sectors are physically
separated. Thus, between two log ically con tiguous sec tor s, there is
a several sec tor rotational delay. The sector translate table
defines the log ical-to-physical mapping in use for a particular
drive, if a mapping is used.

Sector translate tables are used only within the BIOS. Thus
the table may have any convenient format. (Although the BOOS is
aware of the sec tor transla te table, its only in terac tion with the
table is to get the addre ss of the sec tor transla te table from the
OPH and to pass that address to the Sector Translate Function of the
BIOS.) The most common form for a sec tor tr ansla te table is an n
byte (or n-word) array of physical sector numbers, where n is the
number of sec tor s per disk track. Index ing in to the table with the
logical sector number yields the corresponding physical sector
number.

41

CP/M-68K System Guide 5.2 Disk Definition Tables

Although you may choose any convenient logical-to-physical
mapping, there is a nearly universal mapping used in the CP/M
community for single-sided, single-density, 8-inch diskettes. That
mapping is shown in Figure 5- 2. Because your choice of mapping
affects diskette compatibility between different systems, the
mapping of Fig ure 5- 2 is strong ly recommended.

Log ical Sector I 0 1 2 3 4 5 6 7 8 9 10 11 12
Physical Sector 1 7 13 19 25 5 11 17 23 3 9 15 21

Log ical Sector I 13 14 15 16 17 18 19 20 21 22 23 24 25
Physical Sector 2 8 14 20 26 6 12 18 24 4 10 16 22

Figure 5-2. Saap1e Sector Trans1ate Tab1e

5.2.3 Disk Parameter B10ck

A Disk Parameter Block (DPB) defines several characteristics
associated with a particular disk drive. Among them are the size of
the drive, the number of sectors per track, the amount of directory
space, and others.

A Disk Parameter Block can be used in one or more DPH I s if the
disks are identical in definition. A discussion of the fields of
the DPB follows the format description. The format of the DPB is
shown in Figure 5-3.

SPT BSH BLM EXM 0 DSM DRM Reserved CKS OFF

l6b 8b 8b 8b 8b l6b l6b 1Gb l6b l6b

Figure 5-3. Disk Parameter B10ck

Each field is a word (16 bit) or a byte (8 bit) value. The
description of each field is given in Table 5-2.

Tab1e 5-2. Disk Parameter B10ck Fie1ds

Field I Definition

SPT Number of l28-byte logical sectors per track.

BSH The block shift factor, determined by the data
block allocation size, as shown in Table 5-3.

42

CP/M-68K System Guide 5.2 Disk Definition Tables

Table 5-2. (continued)

Field I Definition

BLM The block mask which is determined by the data
block allocation size, as shown in Table 5-3.

EXM The extent mask, determined by the data block
allocation size and the number of disk blocks, as
shown in Table 5- 4.

o Reserved byte.

DSM Determines the total storage capacity of the disk
dr ive and is the number of the last block,
counting from O. That is, the disk contains
DSM+l blocks.

DRM Determines the total number of directory en tr ies
which can be stored on this drive. DRM is the
number of the last directory entry, counting from
O. That is, the disk contains DRM+l directory
entr ies. Each directory entry requires 32 bytes,
and for maximum efficiency, the value of DRM
shou Id be chosen so that the direc tory en tr ies
exac tly fill an in teg ral number of allocation
units.

CKS The size of the directory check vector, which is
zero if the disk is permanently mounted, or
length (CSV) = (DRM) / 4 + 1 for removable media.

OFF The number of reserved tracks at the beginning of
a logical disk. This is the number of the track
on which the directory begins.

To choose appropria te values for the Disk Parameter Block
elements, you must understand how disk space is organized in CP/M-
68K. A CP/M-68K disk has two major areas: the boot or system
tracks, and the file system tracks. The boot tracks are usually
used to hold a machine-dependen t bootstrap loader for the operating
system. They consist of tracks 0 to OFF-I. Zero is a legal value
for OFF, and in that case, there are no boot tracks. The usual
value of OFF for 8-inch floppy disks is two.

The tracks after the boot tracks (beginning with track number
OFF) are used for the disk directory and disk files. Disk space in
this area is grouped into units called allocation units or blocks.
The block size for a particular disk is a constant, called BLS. BLS
may take on anyone of these values: 1024, 2048, 4096, 8192, or
16384 bytes. No other values for BLS are allowed. (Note that BLS
does not appear explicitly in any BIOS table. However, it
determines the values of a number of other parameters.) The DSM
field in the Disk Parameter Block is one less than the number of

43

CP/M-68K System Guide 5.2 Disk Definition Tables

blocks on the disk. Space is a llocated to a fi le or to the
directory in whole blocks. No fraction of a block can be allocated.
block size

The choice of BLS is very important, because it effects the
efficiency of disk space utilization, and because for any disk size
there is a minimum value of BLS that allows the entire disk to be
used. Each block on the disk has a block number rang ing from 0 to
DSM. The largest block number allowed is 32767. Therefore, the
largest number of bytes that can be addressed in the file system
space is 32768 * BLS. Because the largest allowable value for BLS
is 16384, the biggest disk that can be accessed by CP/M-68K is
16384*32768 = 512 Mbytes.

Each directory entry may contain either 8 block numbers (if DSM
>= 256) or 16 block numbers (if DSM < 256). Each file needs enough
directory entries to hold the block numbers of all blocks allocated
to the file. Thus a large value for BLS implies that fewer
directory entries are needed. Since fewer directory entries are
used, the directory search time is decreased.

The disadvantage of a large value for BLS is that since files
are allocated BLS bytes at a time, there is potentially a large
unused por tion of a block at the end of the file. If there are many
small files on a disk, the waste can be very significant.

The BSH and BLM parameters in the DPB are functions of BLS.
Once you have chosen BLS, you should use Table 5-3 to determine BSH
and BLM. The EXM parameter of the DPB is a function of BLS and DSM.
You should use Table 5-4 to find the value of EXM for your disk.

Tab1e 5-3. BSB and BLM Va1ues

BLS I BSH I BLM

1024 3 7
2048 4 15
4096 5 31
8192 6 63

16384 7 127

44

CP/M-68K System Guide 5.2 Disk Definition Tables

Table 5-4. EXM Values

BLS J DSM <= 255 J DSM > 255

1024 0 N/A
2048 1 0
4096 3 1
8192 7 3

16384 15 7

The DRM entry in the DPB is one less than the total number of
directory entr ies. DRM should be chosen large enough so that you do
not run out of directory entries before running out of disk space.
It is not possible to give an exact rule for determining DRM, since
the number of directory entr ies needed will depend on the number and
sizes of the files present on the disk.

The CKS entry in the DPB is the number of bytes in the CSV
(checksum vector) which was pointed to by the DPH. If the disk is
not removable, a checksum vector is not needed, and this value may
be zero.

5.3 Disk Blocking

When the BDOS does a disk read or write operation using the
BIOS, the unit of information read or written is a l28-byte sector.
This mayor may not correspond to the actual physical sector size of
the disk. If not, the BIOS must implement a method of representing
the l28-byte sectors used by CP/M-68K on the actual device. Usually
if the physical sectors are not 128 bytes long, they will be some
multiple of 128 bytes. Thus, one physical sector can hold some
integer number of l28-byte CP/M sectors. In this case, any disk I/O
will actually consist of transferring several CP/M sectors at once.

It might also be desirable to do disk I/O in units of several
l28-byte sectors in order to increase disk throughput by decreasing
rotational latency. (Rotational latency is the average time it
takes for the desired position on a disk to rotate around to the
read/write head. Generally this averages 1/2 disk revolution per
transfer.) Since a great deal of disk I/O is sequential, rotational
latency can be greatly reduced by reading several sectors at a time,
and saving them for future use.

In both the cases above, the point of interest is that physical
I/O occurs in units larger than the expected sector size of 128
bytes. Some of the problems in doing disk I/O in this manner are
discussed below.

45

CP/M-68K System Guide 5.3 Disk Blocking

5.3.1 A Si~le Approach

This section presents a simple approach to handling a physical
sector size larger than the logical sector size. The method
discussed in this section is not recommended for use in a real BIOS.
Ra ther, it is given as a sta r ting poin t for re finemen ts discussed in
the following sections. Its simplicity also makes it a logical
choice for a first BIOS on new hardware. However, the disk
throughput that you can achieve with this method is poor, and the
refinements discussed later give dramatic improvements.

Probably the eas ie st method for hand ling a phys ical sec tor size
which is a multiple of 128 bytes is to have a single buffer the size
of the physical sec tor in ternal to the BIOS. Then, when a disk read
is to be done, the physical sector containing the desired l28-byte
log ical sec tor is read in to the buffe r, and the appropr ia te 128
bytes are copied to the DMA address. Writing is a little more
complicated. You only want to put data into a l28-byte portion of
the physical sec tor, but you can only wr ite a whole physical sec tor.
Therefore, you must first read the physical sector into the BIOS's
buffer; copy the 128 bytes of output data into the proper l28-byte
piece of the physical sector in the buffer; and finally write the
en tire physical sec tor back to disk.

Note: this operation involves two rotational latency delays in
addition to the time needed to copy the 128 bytes of data. In fact,
the second rotational wait is probably nearly a full disk
revolu tion, since the copying is usually much faster than a disk
re'lolu tion.

5.3.2 Some Refinements

There are some easy things that can be done to the algor ithm of
Section 5.2.1 to improve its performance. The first is based on the
fact that disk accesses are usually done sequentially. Thus, if
data from a certain physical sector is needed, it is likely that
another piece of that sector will be needed on the next disk
operation. To take advantage of this fact, the BIOS can keep
information with its physical sector buffer as to which disk, track,
and physical sec tor (if any) is represen ted in the buffer. Then,
when reading, the BIOS need only do physical disk reads when the
information needed is not in the buffer.

On writes, the BIOS still needs to preread the physical sector
for the same reasons discussed in Section 5.2.1, but once the
physical sector is in the buffer, subsequent writes into that
physical sector do not require additional pre reads. An additional
saving of disk accesses can be gained by not writing the sector to
the disk un ti 1 absolu tely necessa ry. The cond it ions under wh ich the
physical sector must be written are discussed in Section 5.3.4.

46

CP/M-68K System Guide 5.3 Disk Blocking

5.3.3 Track Buffering

Track buffering is a special case of disk buffering where the
I/O is done a full track at a time. When sufficient memory for
several full track buffers is available, this method is quite good.
The method is essentially the same as discussed in Section 5.3.2,
but there are some interesting features. First, transferring an
entire track is much more efficient than transferring a single
sector. The rota tional la tency is incurred only once for the en tire
track, whereas if the track is transferred one sector at a time, the
rotational latency occurs once per sector. On a typical diskette
with 26 sectors per track, rotating at 6 revolutions per second, the
difference in rota tional la tency per track is abou t 2 seconds versus
a twelfth of a second. Of course, in applications where the disk is
accessed purely randomly, there is no advantage because there is a
low probability that more than one sector will be used from a given
track. However, such applications are extremely rare.

5.3.4 LRU Rep1acement

with any method of disk buffering using more than one buffer,
it is necessary to have some algor ithm for manag ing the buffers.
That is, when should buffers be filled, and when should they be
written back to disk. The first question is simple, a buffer should
be filled when there is a request for a disk sec tor that is not
pre sen tly in memory. The second issue, when to wr ite a buffe r back
to disk, is more complicated.

Generally, it is desirable to defer writing a buffer until it
becomes necessary. Thus, several transfers can be done to a buffer
for the cost of only one disk access, two accesses if the buffer had
to be preread. However, there are several reasons why buffers must
be written. The following list describes the reasons:

1) A BIOS Write operation with mode=l (write to directory
sector). To maintain the integrity of CP/M-68K's file
system, it is very impor tant that directory in forma tion on
the disk is kept up to date. Therefore, all directory
writes should be performed immediately.

2) A BIOS Flush Buffers operation. This BIOS function is
explicitly intended to force all disk buffers to be
written. After performing a Flush Buffers, it is safe to
remove a disk from its drive.

3) A disk buffer is needed, but all buffers are full.
Therefore some buffer must be emptied to make it available
for reuse.

4) A Warm Boot occurs. This is similar to number 2 above.

47

CP/M-68K System Guide 5.3 Disk Blocking

Case three above is the only one in which the BIOS writer has
any discretion as to which buffer should be written. Probably the
best strategy is to write out the buffer which has been least
recently used. The fact that an area of disk has not been accessed
for some time is a fairly good indication that it will not be needed
aga in soon.

5.3.5 ~be New B10ck F1ag

As explained in Section 5.2.2, the BDOS allocates disk space to
files in blocks of BLS bytes. When such a block is first allocated
to a file, the information previously in that block need not be
preserved. To enable the BIOS to take advantage of this fact, the
BOOS uses a special parameter in calling the BIOS Wr ite Function.
If register Dl.W contains the value 2 on a BIOS Write call, then the
write being done is to the first sector of a newly allocated disk
block. Therefore, the BIOS need not preread any sector of that
block. If the BIOS does disk buffering in units of BLS bytes, it
can simply mark any free buffer as corresponding to the disk address
specified in th is wr ite, because the con ten ts of the newly allocated
block are not important. If the BIOS uses a buffer size other than
BLS, then the algorithm for taking full advantage of this
information is more complicated.

This information is extremely valuable in reducing disk delays.
Consider the case where one file is read sequen tially and copied to
a newly created file. Without the information about newly allocated
disk blocks, every physical write would require a preread. With the
in forma tion, no physical wr ite requires a pre read. Thus, the number
of physical disk operations is reduced by one third.

End of Section 5

48

Section 6
Installing and Adapting

the Distributed BIOS and CP/M-68K

6.1 Overview

The process of bringing up your first running CP/M-68K system
is either trivial or involved, depending on your hardware
environment. Digital Research supplies CP/M-68K in a form suitable
for booting on a Motorola EXORmacs development system. If you have
an EXORmacs, you can read Section 6.1 which tells how to load the
distributed system. Similarly, you can buy or lease some other
machine which already runs CP/M-68K.

If you do not have an EXORmacs, you can use the S-record files
supplied with your distribution disks to bring up your first CP/M-
68K system. This process is discussed in Section 6.2.

6.2 Booting on an EXORmacs

The CP/M-68K disk set distributed by Digital Research includes
disks boot and run CP/M-68K on the Motorola EXORmacs. You can use
the distribution system boot disk without modification if you have a
Motorola EXORmacs system and the following configuration:

1) 128K memory (minimum)

2) a Universal Disk Controller (UDC) or Floppy Disk Controller
(FDC)

3) a single-density, IBM 3740 compatible floppy disk drive

4) an EXOR termT
•
M

•

To load CP/M-68K, do the following:

1) Place the disk in the first floppy drive (#FD04 with the UDC
or #FDOO with the FDC).

2) Press SYSTEM RESET (front panel) and RETURN (this brings in
MACSbugT .M.) •

3) Type "BO 4" if you are using the UDC, "BO 0" if you are
using the FDC, and RETURN. CP/M-68K boots and begins
running.

49

CP/M-68K System Guide 6.3 CP/M-68K with S-record Files

6.3 Bringing Up CP/M-68K Using the S-record Fi1es

The CP/M-68K distr ibution disks conta in two copies of the CP/M-
68K operating system in Motorola S-record form, for use in getting
your first CP/M-68K system running. S-records (described in detail
in Appendix F) are a simple ASCII representation for absolute
prog rams. The two S-record systems con ta in the CCP and BOOS, bu t no
BIOS. One of the S-record systems resides at locations 400H and up,
the other is configured to occupy the top of a 128K memory space.
(The exact bounds of the S-record systems may vary' from release to
release. There will be release notes and/or a file named README
describing the exact characteristics of the S-record systems
distributed on your disks.) To bring up CP/M-68K using the S-record
files, you need:

1) some method of down-loading absolute data into your target
system

2) a computer capable of reading the distribution disks (a
CP/M-based computer that suppor ts standard CP/M 8-inch
diskettes)

3) a BIOS for your target computer

Given the above items, you can use the following procedure to
bring a working version of CP/M-68K into your target system:

1) You must patch one location in the S-record system to link
it to your BIOS I S in it en try poin t. Th is location will be
specified in release notes and/or in a README file on your
distr ibution disks. The patch simply consists of inse rting
the address of the init entry in your BIOS at one long
word location in the S-record system. This patching can be
done either before or after down-loading the system,
whichever is more convenient.

2) Your BIOS needs the address of the ccp entry point in the
S-record system. This can be obtained from the release
notes and/or the README file.

3) Down-load the S-record system in to the memory of your ta rget
computer.

4) Down-load your BIOS into the memory of your target computer.

5) Begin executing instructions at the first location of the
down-loaded S-record system.

Now that you have a working version of CP/M-68K, you can use
the tools provided with the distribution system for further
developmen t.

End of Sec tion 6

50

Section 7
Cold Boot Automatic Command Execution

7.1 Overview

The Cold Boot Automatic Command Execution featur,- of CP/M-G8R
allows you to configure CP/M-G8R so that the CCP will automatically
execute a predetermined command line on cold boot. This feature can
be used to start up turn-key systems, or to perform other desired
opera tions.

7.2 Setting up Cold Boot Automatic Command Execution

The CBACE feature uses two global symbols: autost, and
usercmd. These are both defined in the CCP, which-uses them on

cold boot to determine whether this feature is enabled. If you want
to have a CCP command au toma tically executed on cold boot, you
should include code in your BIOS's init routine (which is called at
cold boot) to do the fOllowing: -

1) The byte at autost must be set to the value Olli.

2) The command line to be executed must be placed in memory at
usercmd and subsequent locations. The command must be

terminated with a NULL (OOH) byte, and may not exceed 128
bytes in length. All alphabetic characters in the command
line should be upper-case.

Once you write a BIOS that performs these two functions, you
can build it into a CPM.SYS file as described in Section 2. This
system, when booted, will execute the command you have built into
it.

End of Sec tion 7

51

Section 8
The PUTBOOT Utility

8.1 PUTBOOT Operation

The PUTBOOT utility is used to copy information (usually a
bootstrap loader system) onto the system tracks of a disk. Although
PUTBOOT can copy any file to the system tracks, usually the file
being written is a program (the bootstrap system).

8.2 Invoking PUTBOOT

Invoke PUTBOOT with a command of the form:

PUTBOOT [-H] <filename> <drive>

where

• -H is an optional flag discussed below;

o <filename> is the name of the file to be written to the system
tracks;

o <drive> is the drive specifier for the drive to which
<filename> is to be written (letter in the range A-P.)

PUTBOOT writes the specified file to the system tracks of the
specified drive. Sector skewing is not used; the file is written to
the system tracks in physical sector number order.

Because the file that is written is normally in command file
format, PUTBOOT contains special logic to strip off the first 28
bytes of the file whenever the file begins with the number 601AH,
the magic number used in command files. If, by chance, the file to
be written begins with 60lAH, but should not have its first 28 bytes
discarded, the -H flag should be specified in the PUTBOOT command
line. This flag tells PUTBOOT to write the file verbatim to the
system tracks.

PUTBOOT uses BOOS calls to read <filename>, and used BIOS calls
to write <filename> to the system tracks. It refers to the OFF and
SPT parameters in the Disk Parameter Block to determine how large
the system track space is. The sou rce and command files for PUTBOOT
are supplied on the distribution disks for CP/M-68K.

End of Section 8

53

Appendix A
Contents of Distribution Disks

This appendix briefly describes the contents of the disks
that contain CP/M-68K as distributed by Digital Research.

Table A-I. Distribution Disk Contents

File

AR68.REL

AS68INIT

AS68.REL

ASM.SUB

BIOS.O

BIOS.C

BIOSA.O

BIOSA.S

BIOSTYPS.H

BOOTER.O

BOOTER.S

C.SUB

C068.REL

CI68.REL

I Contents

Relocatable version of the
archiver/librarian.

Initialization file for assembler--see
AS68 documentation in the CP/M-68K
Operating System Programmer's Guide.

Relocatable version of the assembler.

S ubmi t file to assemble an assembly
program with file type .S, put the object
code in filename.O, and a listing file in
filename.PRN .

Object file of BIOS for EXORmacs.

C language source for the EXORmacs BIOS as
distributed with CP/M-68K.

Objec t file for assembly por tion of
EXORmacs BIOS.

Source for the assembly language portion
of the EXORmacs BIOS as distributed with
CP/M-68K.

Include file for use with BIOS.C.

Object for EXORmacs bootstrap.

Assembly boot code for the EXORmacs.

Submit file to do a C compilation.
Invokes all three passes of the C compiler
as well as the assembler. You can compile
a C program with the line: A>C filename.

Relocatable version of the C parser.

ReI 0 cat a b I eve r s ion 0 f the C cod e
generator.

55

CP/M-68K System Guide A Contents of Distribution Disks

Table A-I. (continued)
~---------;--~

File I
CLIB

CLINK. SUB

CP68.REL

CPM.H

CPM.REL

CPM.SYS

CPMLIB

CPMLDR.SYS

CTYPE .H

DDT.REL

DDT!. 68K

DUMP.REL

ED.REL

ELDBIOS.S

ERGBIOS.S

ERRNO.H

FORMAT.REL

Conten ts

The C run-time library.

Submit file for linking C object programs
with the C run-time library.

Relocatable version of the C preprocessor.

Include file with C definitions for CP/M-
68K. See the C programming Guide for
CP/M-68K for details.

Relocatable version of CPM.SYS.

CP/M-68K operating system file for the
EXORmacs.

Library of object files for CP/M-68K. See
Section 2.

The bootstrap loader for the EXORmacs. A
copy of this was wr itten to the system
tracks using PUTBOOT.

Same as above.

Relocatable version of the pre loader for
DDTTM. (Loads DDTl into the high end of
the TPA.)

This is the real DDT that gets loaded in to
the top of the TPA. I t is re locatable
even though the file type is .68K, because
it must be relocated to the top of the TPA
each time it is used.

Relocatable version of the DUMP utility.

Relocatable version of the ED utility.

Assembly language source for the ERG
sample loader BIOS.

Assembly language source for the ERG
sample BIOS.

Same as above.

Relocatable disk formatter for the
Motorola EXORmacs.

56

CP/M-68K System Guide A Contents of Distribution Disks

File I
FORMAT.S

INIT.REL

INIT.S

LCPM.SUB

LDBIOS.O

LDBIOSA.O

LDBIOSA.S

LDRLIB

L068.REL

LOADBIOS.H

LOADBIOS. SUB

MAKELDR. SUB

NORMBIOS.H

NORMBIOS.SUB

NM68.REL

PIP.REL

PORTAB.H

PUTBOOT.REL

Table A-I. (continued)

Conten ts

Assembly language source for the FORMAT
utility.

Relocatable version of the INIT utility.

Assembly language source for the INIT
utility.

Submit file to create CPM.REL for
EXORmacs.

Object file of loader BI-OS for EXORmacs.

Objec t file for assembly por tion of
EXORmacs loader BIOS.

Source for the assembly language portion
of the EXORmacs loader BIOS as distr ibuted
with CP/M-68K.

Library of object files for creating a
Bootstrap Loader. See Section 3.

Relocatable version of the linker.

Include file for use with BIOS.C, to make
it into a loader BIOS.

S ubmi t file to create loader BIOS for
EXORmacs.

Submit file to create CPMLDR.SYS on
EXORmacs.

Include file for use with BIOS.C, to make
it into a normal. BIOS

Submit file to create normal BIOS for
EXORmacs.

Relocatable version of the symbol table
dump utility.

Relocatable version of the PIP utility.

Same as above.

Re loca ta ble ve r s ion of the PUTBOOT
utility.

57

CP/M-68K System Guide A Contents of Distribution Disks

File I
PUTBOOT .S

README.TXT

RELCPM. SUB

RELOC.REL

RELOCx.SUB b

S.O

SENOC68.REL

SETJMP.H

SIGNAL.H

SIZE68.REL

SRl28K.SYS

SR400.SYS

STAT.REL

STDIO.H

Table A-I. (continued)

Contents

Assembly language source for the PUTBOOT
utility.

ASCII file containing information relevant
to this shipment of CP/M-68K. This file
might not be present.

Submit file to relocate CPM.REL into
CPM.SYS.

Relocatable version of the command file
relocation utility.

This file is included on each disk that
contains .REL command files. (x is the
number of the distribution disk containing
the files). I t is a submi t file wh ich
will relocate the .REL files for the
target system.

Startup routine for use with C programs-
must be first object file linked.

Relocatable version of the S-record
creation utility.

Same as above.

Same as above.

Relocatable version of the SIZE68 utility.

S-record version of CP/M-68K. This
version has no BIOS, and is provided for
use in porting CP/M-68K to new hardware.

S-record version of CP/M-68K. This
version has no BIOS, and is provided for
use in por ting CP/M-68K to new hardware.

Relocatable version of the STAT utility.

Include file with standard I/O definitions
for use with C programs. See the C
programming Guide for CP/M-68K for
deta ils.

End of Appendix A

58

Appendix B
Sample BIOS Written in Assembly Language

CP/M 68000 Assembler Revision 02.01 Page
Source File: a:ergbios.s

CP/M-68K BIOS

1
2
3
4
5
6
7
8
9

Basic Input/Output Subsystem
For I':RG 68000 with Tarbell floppy disk controller

10
11

.globl

.globl
_init
_eep

12 00000000 23FCOOOOOOOE0000008C init: move.l
elr .1
rts

ftraphndl,$8c
dO 13 OOOOOOOA 4280 -

14 OOOOOOOC 41':75
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

00000001': OC400017
00000012 6408
00000014 1':548
00000016 207B0006
OOOOOOlA 41':90

OOOOOOlC 41':73

OOOOOOlE 00000000
00000022 0000007A
00000026 00000080
0000002A 00000094
0000002E 000000A8
00000032 OOOOOOBC
00000036 OOOOOOBE
0000003A OOOOOOCO
0000003E 000000C8
00000042 00000000
00000046 000000F8
0000004A 00000100
0000004E 00000114
00000052 OOOOOllC
00000056 0000015E
0000005A 000000C2

traphndl:
cmpi Infuncs,dO
bee trapng
lsl t2,dO
movea.l 6 (pc,dO) ,aO
j sr (aO)

trapng:
rte

biosbase:
.dc.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l
.de.l

ini t
wboot
constat
conin
eonout
ls tout
pun
rdr
home
seldsk
settrk
setsec
setdma
read
wr ite
listst

• bios initialization entry point
• ecp entry point

• set up trap 13 handler
• log on disk A, user 0

• multiply bios function by 4
• get handler address
• call handler

Listing B-1. Sarnp1e Assernb1y Language BIOS

59

CP/M-68K System Guide

42 0000005E 00000108
43 00000062 00000114
44 00000066 0000029C
45 0000006A 000002A4
46 0000006E 000002A6
47 00000072 00000298
48 00000076 000002A8
49
50
51

B Sample Assembly Language BIOS

.dc.l sectran

.dc.l setdma

.dc.l getseg

.dc.l getiob

.dc.l setiob

.dc.l flush

.dc.l setexc

nfuncs= (*-biosbase)/4

52 0000007A 4EF900000000 wboot: jmp _ccp
53
54 00000080 103900FFFFOl
55 00000086 02400002

CP/M 68000 Assemb
Source File: a:ergbios.s

56 0000008A 6704
57 0000008C 7001
58 0000008E 4E75
59
60 00000090 4280
61 00000092 4E75
62
63 00000094 61EA
64 00000096 4A40
65 00000098 67FA
66 0000009A 103900FFFFOO
67 OOOOOOAO COBCOOOOO07F
68 000000A6 4E75
69
70 0000001'.8 103900FfFFOl
71 OOOOOOAE C03COOOl
72 000000B2 67F4
73 000000B4 13CIOOFFFFOO
74 OOOOOOBA 4E75
75
76 OOOOOOBC 4E75
77
78 OOOOOOB£ 4E75
79
80 OOOOOOCO 4E75
81
82 000000C2 103COOFF
83 000000C6 4E75
84
85
86
87
88
89
90
91
92

constat: move.b SffffOl,dO
andLw 12,dO

1 e r Revision 02.01

beq noton
moveq.l 'Sl, dO
rts

noton: clr .1 dO
rts

cOn in: bsr constat
tst dO
beq conin
move. b SffffOO,dO
and.l IS7f,dO
rts

conout: move. b SffffOl,dO
and.b I Sl, dO
beq conOlJt
move. b dl,SffffOO
rts

lstout: r ts

pun: rts

rdr: rts

listst: move. b ISff,dO
rts

* get status byte
* data available bit on?

Page 2

* branch if not
* set reslJl t to true

* set result to false

* see if key pressed

• wa it un ti 1 key pressed
* get key
* clear all but low 7 bits

• get status
* check for transmitter buffer empty
• wait until our port has aged •••
* and output it
* and exit

• Disk Handlers for Tarbell 1793 floppy disk controller

maxdsk = 2
dphlen = 26

* this BIOS supports 2 floppy drives
• leng th of disk pa rame ter header

iobase = SOOfffff8 • Tarbell floppy disk port base address
dcmd = iobase • au tPlJ t port for command

Listing B-1.. (continued)

60

CP/M-68K System Guide

93
94
95
96
97
98
99

100
101 000000C8 423900000002
102 OOOOOOCE 4E75
103
104
105
106 00000000 7000
107 00000002 B23C0002
108 00000006 6AIE
109 00000008 13C100000000
110 OOOOOOOE E909

dsta t
dtrk
dsect
ddata
dwait
dcn tr 1

home:

seldsk:
*

B Sample Assembly Language BIOS

iobase
iobase+l

= iobase+2
= iobase+3
= iobase+4

iobase+4

clr.b track
rts

* input status por t
* disk track port
* disk sector port
* disk data port
* input port to wait for op finished
* output control port for dr ive selection

select disk given by register dl.b
moveq 10,dO
cmp.b Imaxdsk,dl * valid drive number?
bpl se lr tn * if no, return 0 in dO
move.b dl,seldrv * else, save drive number
Is1. b 14,dl

CP/M 68000 Ass embler Revision 02.01 Page
Source File: a:ergbios. s

111 OOOOOOEO 13C10000000A
112 000000E6 103900000000
113 OOOOOOEC COFCOO lA
114 OOOOOOFO OOIlCOOOOOO 16
115 000000F6 4E75
116
117 000000F8 13C10000000 2
118 OOOOOOFE 4E75
119
120 00000100 13C100000004
121 00000 106 4E75
122
123
124
125
126 00000 108 2042
127 00000 lOA 48Cl
128 QQOOO laC 1030 1000
129 00000 110 48CO
130 00000112 4E75
131
132
133 00000 114 23ClOOOOOOQ6
134 00000 11A 4E75
135
136
137
138
139 0000011C 13FCOOOAOOOOO OOB
140
141 00000124 61000076
142 00000128 0043008B
143 0000012C 13C300FFFFFB

move. b dl, se lcode * select code is 00 for drv 0, $10 for drv 1
move. b se ldrv, dO
mulu Idph len, dO
add.l IdphO,dO * point dO at correct dph

selrtn: r ts

settrk: move. b dl, track
rts

se tsec: move. b dl, sec tor
rts

sectran:
* translate sector in dl with trarlslate table pointed to by d2

result in dO

setdma:

read:

movea.l d2,aO
ext.l dl
move.b 10(aO,dl),dO
ext.l dO
rts

move.l dl,dma
rts

* Read one sector from requested disk, track, sector to dma address
* Retry if necessary, return in dO 00 if ok, else non-zero

rretry:
move. b IIO,errcnt * set up retry counter

bsr
or i
move.b

setup
ISBB,d3
d3, dcmo

* OR read command with head load bit
* output it to FDC

Listing B-1. (continued)

61

CP/M-68K System Guide

144 00000132 0839000700FFFFFC
14 5 0000013A 6708
146 0000013C 10F900FFFFFB
147 00000142 60EE
148
149
150
151
152
153
154
155
156
157
158
159
160
161

00000144
00000148
0000014A
0000014C
0000014E
00000152
00000158
0000015A
0000015C

61000146
6604
4280
4E75
610000B 0
53390000000B
66CA
70FF
4E75

162 0000015E 13FCOOOAOOOOOOOB
163
164 00000166 6134
165 00000168 004300A8

B Sample Assembly Language BIOS

rloop: btst t7,dwait
beq rdone * if end of read, exit
move.b ddata,(aO)+ * else, move next byte of data
bra rloop

rdone:
bsr rsta tus * get FOC sta tus
bne reerer
c1r.l dO
rts
bsr errchk * go to error handler
subq.b II, errcn t
bne r re try
move. 1 l$ffffffff,dO
rts

wr ite:
* Write one sector to requested disk, track, sector from dma address
* Retry if necessary, return in dO 00 if ok, else non-zero

..,retry:
move.b 110,errcnt * set up retry counter

bsr
or i

setup
l$a8,d3 * OR wr i te command with head load bit

CP/M 68000 Assembler Rev is ion 02.01 Page 4
Source File: a:ergblos.s

166 0000016C 13C300HFFF8
167 00000172 0839000700FFFFFC
168 0000017A 6708
169 00000 17C 13D800FFFFFB
170 00000182 60EE
171
172 00000184 61000106
173 00000188 6604
174 0000018A 4280
175 0000018C 4E75
176 00000 l8E 617 a
177 00000190 53390000000B
178 00000196 66CE
179 00000198 70FF
180 0000019A 4E75
181
182
183
184
185 0000019C 13FCOODOOOFFFFF8
186 00000lA4 163900000001
187 OOOOOlM B63900000000
188 00000180 661A
189 000001B2 163900000002
190 00000188 B63900000003
191 OOOOOlBE 6620
192 OOOOOlCO 4283
193 000001C2 0839000500FFFFF8
194 OOOOOlCA 6618

..,loop:

wdone:

setup:

move. b
btst
beq
move. b
bra

bsr
bne
clr .1
rts
bsr
subq.b
bne
move. 1
rts

d3, dcmd
'7,dwait
wdone
(aO)+,ddata
w100p

rsta tus
werror
dO

errchk
'l,errcnt
wretry
'$ffffffff,dO

* output it to FOC

* if end of read, exit
* else, move next byte of data

* get FOC sta tus

* go to error handler

* common read and wr i te se tup code
* select disk, set track, set sector were all deferred until now

move.b '$dO,dcmd * clear controller, get status
move.b curdrv,d3
cmp.b seldrv,d3
bne newdr ive
move. b track, d3
cmp.b oldtrk,d3
bne newtrk
clr.l d3
btst '5,dstat
bne sexit

* if dr ive not selected, do it

* if not on right track, do it
* if head already loaded, no head load delay
* if head unloaded, treat as new disk

Listing 8-1. (continued)

62

CP/M-68K System Guide

195
196 OOOOOlCC 13F90000000AOOFFFFFC
197 00000106 13F9000000000000000 1
198
199 OOOOOlEO 6126
200 000001E2 7604
201
202 00000lE4 13F90000000400FFFFFA
203 OOOOOlEE 13F90000000200FFFFF9
204 000001F8 207900000006
205 000001FE 4E75
206
207
208 00000200 08070004
209 00000204 6602
210 00000206 4E75
211
212
213
214 00000208 615C
215 0000020A 671E
216
217
218 0000020C 13FCOOOBOOFFFFF8
219
220 00000214 0839000700FFFFFC

newdrive:
move.b
move. b

newtrk:

sexit:

errchk:

chkseek:

bsr
moveq

move. b
move.b
move. 1
rts

btst
bne
rts

• check
bsr
beq

restore:

B Sample Assembly Language BIOS

se lcode, dcn tr 1
seldrv,curdrv

chkseek
14, d3

sector ,dsect
track,d trk
drna,aO

14, d7
chkseek

• select the drive

• seek to correct track if required
• force head load delay

• set up sector number
• set up track number
• dma address to aO

• if record not found error, reseek

for correct track, seek if necessary
read id • find out what track we're On
chksl • if read id ok, skip restore code

home the dr ive and
move.b I$OB,dcmd

reseek to correct track
• restore com"and to command port

rstwait:
btst

CP/M 68000 Assembler
17, dwa it

Revision 02.01 Page
Source File: a:ergbios.s

221 0000021C 66F6
222 0000021E 0839000200FFFFF8
223 00000226 67E4
224 00000228 4283
225
226 0000022A 13C300FFFFF9
227 00000230 13F90000000200000003
228 0000023A B63900000002
229 00000240 6722
230 00000242 13F90000000200FFFFFB
231 0000024C 13FC001800FFFFF8
232 00000254 0839000700FFFFFC
233 0000025C 66F6
234 0000025E 163900FFFFF8
235
236 00000264 4E75
237
238
239
240 00000266 13FCOOC400FFFFF8
241 0000026E lE3900FFFFFC"
242 00000274 l63900FFFFFB
243
244 0000027A 0839000700FFFFFC
245 00000282 6708

bne rstwait
btst 12,dstat
beq restore
clr.1 d3

chksl:
move.b
move.b
cmp. b
beq
move. b
move.b

chks2: btst
bne
move.b

chkdone:
rts

d3,dtrk
track,01dtrk
track,d3
chkdone
track, dda ta
1 $18, dcmd
17,dwait
chks2
dstat,d3

• loop until restore completed

• if not at track 0, try again
• track number returned in d3 from readid

• update track register in FOC
• update oldtrk
• are we at right track?
• if yes, exit
• else, put desired track in data reg of FOC

and issue a seek command

• loop until seek complete
• read status to clear FOC

readid: . read track id, return track rrurnber in. d3

r id2:

move.b l$c4,dcmd • issue read id command
move.b dwait,d7 • wait for intrq
move.b ddata,d3 • track byte to d3

btst
beq

17 ,dwait
rstatus • wait for intrq

Listing B-1. (continued)

63

CP/M-68K System Guide

246 00000284 lE 39 0 OFFFFF B
247 0000028A 60EE
248
249 0000028C lE3900FFFFF8
250 00000292 0207009D
251 00000296 4E75
252
253
254
255 00000298 4280
256 0000029A 4E75
257
258
259 0000029C 203COOOOOOOC
260 000002A2 4E75
261
262
263 000002A4 4E75
264
265
266 000002A6 4E75
267
268
269 000002A8 0281000000FF
270 000002AE E549
271 00000280 2041
272 000002B2 2010
273 00000284 2082
274 000002s6 4E75
275

C P / M 6 8 o 0 0 A s
Source File: a:ergbios.s

276
277 00000000
278
279 00000000 FF
280 00000001 FF
281
282 00000002 00
283 00000003 00
284
285 00000004 0000
286 00000006 00000000
287 OOOOOOOA 00
288
289 00000008 OA
290
291 OOOOOOOC 0001
292 OOOOOOOE 00000400
293 00000012 00017COO
294
295
296

s e m b

B Sample Assembly Language BrOS

move. b ddata ,d7 • read another byte
bra r id2 • and loop

rstatus:
move.b dstat,d7
andL b 1$9d, d7 • set condition codes
rts

flush:
c1r .1 dO • return successful
rts

getseg:
move.l Imemrgn,dO * return address of mem region table

getiob:

setiob:

setexc:

noset:

rts

rts

rts

and L1 l$ff,d1
lsI 12,d1
movea.1 dl,aO
move. 1 (aO) ,dO
move. 1 d2, (aO)
rts

• do only for exceptions 0 - 255
* multiply exception nmbr by 4

* return old vector value
* insert new vector

1 e r Revision 02.01 Page

.data

se Id r v : • dc • b $ f f
curdrv: .dc.b $ff

track: .dc. b
oldtrk: .dc.b

sector: .dc.w
dma: .dc.l

selcode: .dc. b 0

errcnt: .dc.b 10

memrgn: .dc.w
.dc.l
.dc.l

1
$400
$l7cOO

• disk parameter headers

* dr ive requested by seldsk
* currently selected drive

* track requested by settrk
* track we were on

* drive select code

* retry counter

* 1 memory region
* starts at 400 hex
• goes until 18000 hex

Listing B-1. (continued)

64

CP/M-68K System Guide B Sample Assembly Language BIOS

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

00000016 0000005A
0000001A 0000
OOOOOOlC 0000
000000 IE 0000
00000020 00000000
00000024 0000004A
00000028 00000080
0000002C OOOOOOAO

00000030
00000034
00000036
00000038
0000003A
0000003E
00000042
00000046

0000005A
0000
0000
0000
00000000
0000004A
00000090
OOOOOOCO

0000004A 00 LA
0000004C 03
0000004D 07
0000004E 00
0000004F 00
00000050 00F2
000000 52 003F
00000054 COOO
00000056 0010
00000058 0002

CP/M 68000 As
Source File: a:ergbios.s

331 0000005A 01070D13
332 0000005E 19050B11
333 00000062 17 03090F
334 00000066 1502080E
335 0000006A 14LA060C
336 0000006E 1218040A
337 00000072 1016
338
339
340 00000000
341
342 00000000
343
344 00000080
345 00000090
346
347 OOOOOOAO

dphO: .dc.l xlt
.dc.w 0 · dummy
.dc.w 0
.dc.w 0
.dc.l dirbuf · ptr to directory buffer
.dc.l dpb · ptr to disk parameter block
.dc.l ckvO · ptr to check vector
.dc.l alvO · ptr to allocation vector

dphl: .dc.l xlt
.dc.w 0 · dummy
.dc.w 0
.dc.w 0
.dc.l dirbuf · ptr to directory buffer
.dc.l dpb · ptr to disk parameter block
.dc.l ckvl · ptr to check vector
.dc.l alvl · ptr to allocation vector

• disk parameter block

dpb: .dc.w
.dc.b
.dc.b
.dc.b
.dc. b

.dc.w

.dc.w

.dc.w

.dc.w

.dc.w

26
3
7
o
o

242
63
$cOOO
16
2

• sectors per track
• block sh ift
• block mask
• ex ten t rna s k
• dummy fill

• disk size
• 64 directory en tr ies
• directory mask
• directory check size
• track offset

• sector translate table

sembler

xlt:

dirbuf:

ckvO:
ckvl:

alvO:

Rev is ion 02.01 Page

.dc.b

.dc.b

.dc. b

.dc.b

.dc. b

.dc.b

.dc. b

• bss

.ds.b

.ds. b

.ds.b

.ds.b

1, 7,13,19
25, 5,11,17
23, 3, 9,15
21, 2, 8,14
20,26, 6,12
18,24, 4,10
16,22

128 • directory buffer

16 • check vec tor
16

37 • allocation vector

Listing B-1. (continued)

65

CP/M-68K System Guide B Sample Assembly Language BIOS

348 OOOOOOCO a1v1: .ds. b 32
349
350 OOOOOOEO • end

CP/M 68000 Assembler Revision 02.01 Page
Source File: a:ergbios.s

Symbol Table

ccp *****.** EXT in it 00000000 TEXT alvO OOOOOOAO BSS a 1v1 OOOOOOCO BSS
oiosbase 0000001E TEXT chkdone 00000264 TEXT chksl OOOOOnA TEXT chks2 00000254 TEXT
chk seek 00000208 TEXT ckvO 00000080 BSS ckv1 00000090 BSS conin 00000094 TEXT
conout 000000A8 TEXT cons tat 00000080 TEXT curdrv 00000001 DATA dcmd 00FFfFF8 AB:;
dcntr 1 OOFfFFFC ASS ddata OOFffFFB ABS d irbuf 00000000 BSS dma 00000006 DATA
dpb 0000004A DATA dphO 00000016 DATA dphl 00000030 DATA dphlen 0000001A ABS
dsect OOFFFFFA ABS dstat 00fFFFF8 ABS dtrk 00FFFFF9 ABS dwa it OOFFfFFC ASS
errchk 00000200 TEXT errcnt OOOOOOOB DATA flush 00000298 TEXT getiob 000002A4 'IE ~

getseg 0000029C TEXT home 000000C8 TEXT iobase 00FFFFF8 ABS listst 000000C2 TE>
lstou t OOOOOOBC TEXT maxdsk 00000002 ABS memrgn OOOOOOOC DATA newdr ive 000001CC TJ::XT
newtrk 000001EO TEXT nfuncs 00000017 ABS noset 00000286 TEXT noton 00000090 TEXT
o1dtrk 00000003 DATA pun OOOOOOBE TEXT rdone 00000144 TEXT rdr OOOOOOCO TEXT
read OOOOOllC TEXT readid 00000266 TEXT re [rOr 0000014E TEXT restore 0000020C TEXT
r id2 0000027A TEXT r loop 00000132 TEXT r retry 00000124 TEXT rstatus 0000028C TEXT
rstwait 00000214 TEXT sector 00000004 DATA sec tran 00000108 TEXT se1code OOOOOOOA DATA
se1drv 00000000 DATA se 1d sk OOOOOODO TEXT se 1rtn 000000F6 TEXT se tdma 00000114 TEXT
setexc 000002A8 TEXT setiob 000002A6 TEXT setsec 00000100 TEXT se t tr k 000000F8 TEXT
setup 0000019C TEXT sexit 00000lE4 TEXT track 00000002 DATA traphnd1 OOOOOOOE TEXT
trapng OOOOOOlC TEXT wboot 0000007A TEXT wdone 00000184 TEXT werror 0000018E TEXT
wloop 00000172 TEXT wretry 00000166 TEXT we i te 0000015E TEXT xlt OOOOOOSA DATA

Listing B-1. (continued)

End of Appendix B

66

Appendix C
Sample Loader BIOS Written in Assembly Language

CP/M 6BOOO Assembler Revision 02.01 Page
Source File: a:eldbios.s

1
2
3
4
5
6
7
B
9

10
11
12
13
14 00000000 OC400017
15 00000004 6COB
16 00000006 E54B
17 OOOOOOOB 207B0006
IB OOOOOOOC 4E90
19
20
21
22
23
24
25
26
27
2B
29
30
31
32
33
34
35
36
37
3B
39
40
41
42

OOOOOOOE 4E75

00000010
00000014
OOOOOOlB
OOOOOOlC
00000020
00000024
0000002B
0000002C
00000030
00000034
0000003B
0000003C
00000040
00000044
0000004B
0000004C
00000050
00000054
0000005B
oooooose

OOOOOOOE
OOOOOOOE
0000006C
OOOOOOBO
00000094
OOOOOOOE
OOOOOOOE
OOOOOOOE
OOOOOOAB
OOOOOOBO
00000OC4
OOOOOOCC
OMOOOEO
OOOOOOEB
OOOOOOOE
OOOOOOOE
00000004
OOOOOOEO
OOOOOOOE
OOOOOOOE

bios:

nogood:

CP/M-6BK Loader BIOS
Basic Input/Output Subsystem
For ERG 6BOOO with Tarbell floppy disk controller

• globl bios • declare external entry point

cmpi In funcs, dO
bge nogood
Isl 12,dO • multiply bios function by 4
movea.l 6 (pc,dO) ,aO • get handler address
jsr (aO) • call handler

rts

biosbase:
.dc.l nogood
.dc.l nogoOO
• dc. 1 constat
.dc. 1 conin
.dc.l conout
• dc. 1 nogoOO
• dc.l nogood
.de.l nogoOO
• dc.l home
.dc.l seldsk
• dc.l settrk
.dc.l setsec
.de.l setdma
.dc.l read
• dc.l nogood
.dc.l nogood
.dc.l sectran
.dc.l setdma
.dc.l nogood
.dc.l nogood

Listing C-l. Sample BIOS Loader

67

CP/M-68K System Guide

43 00000060 OOOOOOOE
44 00000064 OOOOOOOE
45 00000068 00000222
46
47
48
49
50
51
52
53
54
55

0000006C 103900FFFFOl
00000072 02400002
00000076 6704
00000078 7001
0000007A 4E75

.dc.l
• dc.l
.dc.l

nogoOO
nogood
se texc

nfuncs= (*-biosbase) /4

constat: move. b $ffffOl,dO
andi.w • 2,dO
beq no ton
moveq.l • $1, dO
rts

C Sample Loader BIOS

* get status byte
* data available bit on?
* branch if not
* set result to true

CP/M 68000 Assembler Revision 02.01 Page
Source File: a:eldbios.s

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

0000007C 4280
0000007E 4E75

00000080 61EA
00000082 4A40
00000084 67FA
00000086 103900FFFFOO
0000008C C aBC 0 0 0 a a 07 F
00000092 4E75

00000094 103900FFFFOl
oa00009A C03CaOOl
0000009E 67F4
OaOOOOAO 13CIOOFFFFOO
000aOOA6 4E75

89 000000A8 423900000002
90 OOOOOOAE 4E75
91
92
93
94 OOOOOOBO 423900000000

noton: clr.l
r ts

conin: bsr
tst
beq
move.b
and. 1
rts

conout: move. b
and.b
beq
move.b
rts

dO

consta t
dO
conin
$ff ffOO, dO
#$ 7 f, dO

$tfffOl,dO
'$l,dO
conout
dl,$ffffOO

* set result to false

* see if key pressed

* wait until key pressed
* get key
* clear all but low 7 bits

* get status
• check for transmi tter buffer empty
* wait until our port has aged •••
* and output it
* and exit

: Disk Handlers for Tarbell 1793 floppy disk controller

maxdsk
dphlen

2
26

* th is BIOS suppor ts 2 floppy dr i ves
* length of disk parameter header

iobase
dcmd
dstat
dtrk
dsect
ddata
dwait
dcntrl

$ 00fffff8
iobase
iobase
iobase+l
iobase+2
iobase+3
iobase+4
iobase+4

home: clr.b track
rts

seldsk:
select disk A
clr.b seldrv

* Tarbell floppy disk por t base address
* output port for command
* input status port
* disk track port
* disk sector port
* disk da ta port
* input port to wait for op finished
* output control port for dr ive selection

* select dr ive A

Listing C-l. (continued)

68

CP/M-GBK System Guide

95 000000B6 42390000000A
96 OOOOOOBC 203COOOOOOOC
97 000000C2 4E75
98
99 000000C4 13C100000002

100 OOOOOOCA 4E75
101
102 OOOOOOCC 13CI00000004
103 00000002 4E75
104
105
106
107
108 00000004 2042
109 00000006 48C1
110 00000008 10301000

se1rtn:

settrk:

setsec:

sectran:

C Sample Loader BIOS

clr. b se 1code • select code 1s 00 for drv 0, $10 for drv 1
move.1 I dphO, dO
r ts

move. b dl,track
rts

move. b d1, sector
rts

translate sector in d1 with translate table pointed to by d2
result in dO
movea.l d2,aO
ext.1 d1
move.b 10(aO,d1),dO

CP/M 68000 Assembler Revision 02.01 Page
Source File: a:e1dbios.s

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

OOOOOOOC
OOOOOOOE

OOOOOOEO
00QOOOE6

000000E8

OOOOOOFO
000000F2
000000F6
OOOOOOFC
00000104
0000"0106
0006~10C

0000010E
00000112
00000114
00000116
00000..118
OOOOOllA
00000120
00000122
00000124

48CO
4E75

23C100000006
4E75

13FCOOOAOOO OOOOB

6134
00430088
13C300FFFFF8
0839000700FFFFFC
6708
10F900FFFFFB
60EE

61000106
6604
4280
4E75
6170
53390000000B
66CE
70FF
4E75

145 00000126 13FCOOOOOOFFFFF8
146 00000l2E 163900000001

ext.1 dO
rts

setdma:
move.1 d1,dma
r ts

read:
• Read one sector from requested disk, track, sec tor to dma address
• Re try if necessary, return in dO 00 if ok, else non-zero

move. b 110,errcnt • set up retry counter
rretry:

bsr setup
or i 1$ 88, d3 • OR read command wi th head load bit
move. b d3,dcmd • output it to FOC

r loop: btst i7 ,dwait
beq rdone • if end of read, exit
move.b ddata, (aO)+ * else, move next byte of data
bra rloop

rdone:
bsr rstatus • get FOC status
bne rerror
c1r .1 dO
rts

rerror: bsr errchk • go to error handler
subq. b il,errcnt
bne rretry
move.1 l$ffffffff,dO
rts

~e~~~on read and write setup code
• select disk, set track, set sector were all deferred until now

move.b l$dO,dcmd • clear cOntroller, get status
move.b curdrv,d3

Listing C-1. (continued)

G9

CP/M-68K System Guide

147
148
149
150
151
152
153
154
155

00000134 B63900000000
0000013A 66lA
0000013C 163900000002
00000142 B63900000003
00000148 6620
00000HA 4283
0000014C 0839000500FFFFF8
00000154 6618

156 00000156 13F90000000AOOFFFFFC
157 00000160 13F90000000000000001

cmp. b
bne
move. b
cmp.b
bne
c1r .1
btst
bne

newdrive:
move.b
move. b

se Idrv, d3
newdr ive
track,d3
oldtrk, d3
newtrk
d3
'5,dstat
sexit

se lcode, dcn tr 1
se 1drv, curdrv

C Sample Loader BIOS

• if dr ive not selected, do it

• if not on right track, do it
• if head already loaded, nO head load delay
• if head unloaded, treat as new disk

• select the dr ive

158 newtrk:
159 0000016A 6126
160 0000016C 7604
161
162 0000016E 13F90000000400FFFFFA
163 00000178 13F9 0000000 200FFFFF9
164 00000182 207900000006
165 00000188 4E75

sexit:

bsr
moveq

move. b
move. b
move.l
rts

chkseek
,4,d3

sec tor, dsec t
track,dtrk
dma,aO

• seek to correct track if required
• force head load delay

• set up sec tor number
• set up track number
• dma address to aO

CP/M 68000 Assembler Revision 02.01 Page
Source File: a:eldbios.s

166
167
168 0000018A 08070004
169 0000018E 6602
170 00000190 4E75
171
172
173
174 00000 192 61SC
175 00000194 67lE
176
177
178 00000196 13FC 0 0 OB 0 OFFFFF 8
179
180 0000019E 083900070 OFFFFFC
181 00000 lA6 66F6
182 00000lA8 083900020 OFFFFF8
183 00000180 67E4
184 00000182 4283
185
186 00000184 13C300FFFFF9
187 000001BA 13F90000000 200000003
188 000001C4 B63900000002
189 OOOOOlCA 6722
190 000001CC 13F90000000200FFFFFB
191 00000lD6 13FCOOI800FFFFF8
192 OOOOOlDE 0839000700FFFFFC
193 00000 lE6 66F6
194 00000lE8 163900FFFFF8
195
196 000001EE 4E75
197
198

errchk:

chkseek:

btst
bne
rts

'4,d7
chkseek • if record not found error, reseek

check for correct track, seek if necessary
bsr readid •. find out what track we're on
beq chksl • if read id ok, skip restore code

restore:
* home the drive and reseek to correct track

move.b tSOB,dcmd • restore command to command port
rstwait:

btst
bne
btst

17 ,dwait
rstwait
12,dstat

beq restore
clr.l d3

chksl:
move. b
move. b
cmp. b
beq
move. b
move.b

chks2: btst
bne
move. b

chkdone:
rts

readid:

d3,dtrk
track,oldtrk
track, d3
chkdone
track,ddata
1$18, dcmd
t7,dwait
chks2
dstat,d3

• loop un ti 1 restore completed

• if not at track 0, try again
• track number returned in d3 from readid

• update track reg ister in FOC
• update oldtrk
• are we at right track?
• if yes, exit
• else, put desired track in data reg of FDC

and issue a seek command

• loop until seek complete
• read status to clear FDC

Listing C-l. (continued)

70

CP/M-68K System Guide

199
200 OOOOOIFO 13FCOOC400FfFFFB
201 00000lFB lE3900FFFFFC
202 000001FE 163900FFfFFIl
203
204 00000204 0839000700FfFFFC
205 0000020C 6708
206 0000020E 1E:3900FfFFFB
207 00000214 60EE
208
209 00000216 lE3900FFFFF8
210 0000021C 02070090
211 00000220 4E75
212
213
214
215 00000222 0281000000FF
216 00000228 E549
217 0000022A 2041
218 0000022C 2010
219 0000022E 2082
220 00000230 4E75

rid2:

rstatus:

setexc:

C Sample Loader BIOS

read track id, return track number in d3
move.b ISc4,dcmc:\ • issue read id command
move. b dwa it, d7 • wa it for in trq
move.b ddata,d3 • track byte to d3

btst
beq
move. b
bra

mOve. b
and L b
r ts

17,dwait
rsta tus
ddata,d7
r id2

dstat,d7
IS9d, d7

andLl .Sff,dl
lsI !2,dl
movea.1 dl, aO
move. 1 (aO) ,dO
move. 1 d2, (aO)
rts

• wait for intrq
• read another byte
• and loop

• set co[,d it ion code 5

• do only for exceptions 0 - 255
• multiply exception number by 4

• return old vector value
.. insert new vector

CP/M 68000 Assembler Revision 02.01 Page
Source File: a:eldbios.s

221
222
223 00000000
224
225 00000000 FF
226 00000001 FF
227
228 00000002 00
229 00000003 00
230
231 00000004 0000
232 00000006 00000000
233 OOOOOOOA 00
234
235 OOOOOOOB OA
236
237
238
239
240 OOOOOOOC 00000036
241 00000010 0000
242 00000012 0000
243 00000014 0000
244 00000016 00000000
245 OOOOOOlA 00000026
246 OOOOOOlE 00000000
247 00000022 00000000
248
249
250

.data

se1drv: .dc. b Sff
curdrv: .dc. b Sff

track: .dc. b
oldtrk: .dc.b

sector: .dc.w 0
dma: .dc.1 0

selcode: .dc. b 0

errcnt: .dc. b 10

. disk parameter headers

dphO: .dc.l x1t
.dc.w 0
.dc.w a
.dc.w a
.dc.l dirbuf
.dc.l dpb
.dc.l a
.dc.l a

* disk paramete r block

*

*
*
*
*

• dr ive requested by se1dsk
* currently selected drive

* track requested by settrk
* track we were on

• drive select code

• retry counter

dummy

ptr to directory buffer
ptr to disk parameter block
ptr to check vector
ptr to allocation vec tor

Listing C-l. (continued)

71

CP/M-68K System Guide C Sample Loader BIOS

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

00000026 OOlA
00000028 03
00000029 07
0000002A 00
0000002B 00
0000002C 00F2
0000002E 003F
00000030 COOO
00000032 0010
00000034 0002

00000036
0000003A
0000003E
00000042
00000046
0000004A
0000004E

01070D13
19050B11
1703090F
1502080E
14lA06OC
1218040A
1016

274 00000000
275

CP/M 68000 As
Source File: a:e1dbios.s

dpb: .dc. w 26 • sec tor s per track
.dc.b 3 • block sh itt
• dc. b 7 • block mask
.dc.b 0 • extent mask
.dc. b 0 • dummy ft 11

.dc.w 242 • disk size

. dc. w 63 • 64 directory en tr ies

.dc.w $cOOO • directory mask

.dc.w 16 • directory check size

.dc.w 2 • track offset

• sector translate table

xlt:

sembler

.dc.b

.dc.b

.dc.b

.dc.b

.dc.b

.dc.b

.dc. b

.bss

1, 7,13,19
25, 5,11,17
23, 3, 9,15
21, 2, 8,14
20,26, 6,12
18,24, 4,10
16,22

Rev is ion 02.01 Page

276 00000000 dirbuf: .ds.b 128 * directory buffer
277
278
279 00000080 .end

CP/M 68000 Assembler Rev ision 02.01 Page
Source File: a:e1dbios.s

Symbol Table

bios 00000000 TEXT biosbase 00000010 TEXT chkdone 000001EE TEXT chksl
chks2 OOOOOlDE TEXT chkseek 00000192 TEXT conin 00000080 TEXT conout
constat 0000006C TEXT curdrv 00000001 DATA dcmd 00FFFFF8 ABS dcn tr 1
ddata OOFFFFFB ABS dirbuf 00000000 BSS dma 00000006 DATA dpb
dphO OOOOOOOC DATA dph1en OOOOOOlA ABS dsect OOFFFFFA ABS dstat
dtrk 00FFFFF9 ABS dwait o OFFFFFC ABS errchk 0000018A TEXT er rcnt
hOlVe 000000A8 TEXT iobase 00FFFFF8 ABS maxdsk 00000002 ASS newdr ive
newtrk 0000016A TEXT nfuncs 00000017 ABS nogood OOOOOOOE TEXT noton
oldtrk 00000003 DATA rdone 0000010E TEXT read 000000E8 TEXT readid
rerror 00000118 TEXT restore 00000196 TEXT r id2 00000204 TEXT r100p
rretry OOOOOOFO TEXT rstatus 00000216 TEXT rstwait 0000019E TEXT sector
sectran 000000D4 TEXT selcode OOOOOOOA DATA se1drv 00000000 DATA se1dsk
selr tn 000000C2 TEXT setdma OOOOOOEO TEXT setexc 00000222 TEXT setsec
settrk 000000C4 TEXT setup 00000126 TEXT sexit 0000016E TEXT track
xlt 00000036 DATA

Listing C-l. (con t inued)

End of Appendix C

72

00000lB4 TEXT
00000094 TEXT
o OFFFFFC ABS
00000026 DATA
00FFFFF8 ABS
OOOOOOOB DATA
00000156 TEXT
0000007C TEXT
000001FO TEXT
OOOOOOFC TEXT
00000004 DATA
OOOOOOBO TEXT
OOOOOOCC TEXT
00000002 DATA

Appendix D
EXORmacs BIOS Written in C

This Appendix contains several files in addition to the C
BIOS proper. First, the C BIOS includes conditional compilation to
make it into either a loader BIOS or a normal BIOS, and there is an
include file for each possibility. One of these include files
should be renamed BIOSTYPE.H before compiling the BIOS. The choice
of which file is used as BIOSTYPE.H determines whether a normal or
loader BIOS is compiled. Both the normal and the loader BIOSes need
assembly language interfaces, and they are not the same. Both
assembly interface modules are given. Finally, there is an include
file that defines some standard variable types.

BIOS.C

This is the rna in text of the C language BIOS for the EXORmacs.

1* ~~= ==== =~=== == ==== ~ ~==== = ===== == ======~=~= = ===== = == ~= = == = = = = == == = ===== =* I
I * I - - -- ------ - -- -- -- - ---- -- -- -- - - --- --- - ---------- --- -- --- - - - - - - -- - - - - - - * I
1* *j
1* CP/M-68K(tm) BIOS for the EXORMACS *j
1* *j
1* Copyright 1982, Digital Research. *j
1* *j
1* Modified 91 7/82 wbt *j
1* 101 5182 wbt *j
1* 12/15/82 wbt *j
1* 12/22/82 wbt *j
1* *j
1* --- --- -------- ---- -- --- ----- ------------------------------ -- --- ------ j * I
1* === = = == ==== ======= == == = = ======== ========== ==== == = = = = = === = = = = = = = == == = = ==* j

• include "biostype.h" 1* defines LOADER: 0-> normal bios, l->loader bios *j
1* also defines CTLTYPE 0 -> Universal Disk Cntrlr *1
(* 1 -> Floppy Disk Controller *1

i include "biostyps. h" 1* defines por table var iable types *1

char copyright[) = "Copyright 1982, Digital Research";

struct memb 1 BYTE byte; j;
struct memw WORD word: ;
struc t meml LONG lword; ;

1* use for peeking and poking memory *1

/*** ••• *. *. * * •• * **. *. * * * * •••• *. * ** •• * *. ** •• * * •••• *. * ••• *. *. * •••• * ** * •• * ** /
j* 1/0 Device Definitions *1

Listing D-1. EXORmacs BIOS Written in C

73

CP/M-68K System Guide

I de fine NAK OxlS

Idefine PKTSTX
Idefine PKTID
Ide fine PKTSZ
I de fine PKTDEV
I define PKTCHCOM
I de fine PKTSTCOM
Idefine PKTSTVAL
Idefine PKTSTPRM
Idefine STPKTSZ

OxO
Oxl
Ox2
Ox3
Ox4
OxS
Ox6
OxB
Oxf

/* offsets within a disk packet */

/** •• * •••••••• *" * ••• _ •••••• *_ ••• *. * .. - * _ ••••••••••••• /
/* BIOS Table Definitions */
j •••••••••• lit lit lit_ *_ * * .. It .. ••• _ •• _ • • Iit/

/* Disk Parameter Block Structure */

(truct dpb

WORD
BYTE
BYTE
BYTE
BYTE
WORD
WORD
BYTE
BYTE
WORD
WORD

};

spt;
bsh;
blm;
exrn;
dpbjunk;
dsm;
drm;
alO;
all;
cks;
off;

/* Disk Parameter Header Structure */

ftruct dph

BYTE
WORD
BYTE

struct dpb
BYTE
BYTE

};

*xltp;
dphscr [3] ;

*dirbufp;
*dpbp;
*CSVPi
*alvp;

/**ft _ ... * •• Iit_ •• _ .. *. * •• _ ... * _._. * * lit lit_ •• *._ .• * * *. *._ ... Iit •• lit lit lit lit * * /
/* Directory Buffer for use by the BOOS */
/._ftlrt ... Iit .. ***** .. * •• * •• Iit _ lit. lit ••• lit lit .. lit lit * .. lit ... * * ••• * .. * _._ lit lit •• /

BYTE dirbuf[12B];

Listing D-1. (continued)

74

D EXORrnacs BIOS

CP/M-68K System Guide

I if I LOI\I)ER

/** •• i. *. **t_t_ •• * •••••• _ •••••• , t •••• t._ •••.. t * *. _._ .. *. _._._ /
/* CSV's *f I····· * •••••••• _ ••• - ••• *._. t __ ,_ it._ .-. _ ••••• t •••••• _. ****. _._._ ... - •• -.-**1
BYTE csvO[16):
BYTE csvl[16):
BYTE csv2[256):
BYTE csv3 [256):

1*· • .. • .. ·* • .. * ••••• * * * *.* * ••• * ... * * ** * •• */
/* ALV's *f
1*·"""""" ** ** * •••• * ... * * * * * * * * ** * *.* */

BYTE
BYTE
BYTE
BYTE

I endif

alvO[32);
alvl[32) ;
alv2[412) ;
alv3 [412):

/* (d smO / B) + 1
/* (dsml f B) + 1
/* (dsm2 f B) + 1
f* (dsm2 f B) + 1

*f
*f
*f
*f

/t * .. * * •••••••• * ** ••••• _* .. , .. _ .. * .. * * •••• ** * * •• * *.* * .. * ** *./
/* Disk Parameter Blocks *f
/* ** *. * * * ._* * * *. * ** •••••• * * •••••••• * III-It * ** •• *"/

/* The following dpb definitions express the intent of the wr iter, *f
/* unfortunately, due to a compiler bug, these lines cannot be used. *f
/* Therefore, the obscure code following them has been inserted. *f

/ i._ spt, bsh, blm, exm, jnk, dsm, drm, alO, all, cks, off

struct dpb dpbO={
struct dpb dpb2={

26,
32,

3, 7,
5, 31,

0,
1,

0, 242, 63, OxCO,
0, 32BB, 1023, OxFF,

0, '16,
0, 256,

--_.-._._- end of readable definitions •• *****.*****/

/* The Alcyon C compiler assumes all structures are arrays of int, so *f
/* in the following definitions, adjacent pairs of chars have been *f
/* combined into int constants --- what a kludge! **********************f

struct dpb dpbO = {
struct dpb dpb2 = {

26, 775, 0,
32, 1311, 256,

242, 63, -16384, 16, 2 l:
32BB, 1023, OxFFOO, 256, 4 };

/*****.*** •••• ** End of kludge ** •••••• **.**** •• /

/ •••••••••••••••••••• * ••• * •• * ••• * ••••••••••• * ••• * •••• * •• ** •• * * .* •• * ••••• * /
/* Sector Translate Table for Floppy Disks *f
I·t. * •• * •• * ••••••••• * ••• * •• *. ** ••• ** ••••••••••••••••••••••••••••• ** •• * *** /

BYTE xlt[26) = { 1, 7,13,19,25, 5,11,17,23, 3, 9,15,21,

Listing 0-1. (continued)

75

2} ;
4} ;

D EXORmacs aIOS

CP/M-G8K System Guide

2, 8, 14, 20, 26, 6, 12, 18, 24, 4, 10, 16, 22 };

1* •••• * ** -* .. *. *. * •• * ** * ** ** .. ** ••• * ••• * ••• * ... * ** * .*./
1* Disk Paran,eter Headers *1
1* *1
1* Four disks are defined: dsk d iskno=O, (Motorola's t fd04) *1
1* dsk d iskno=l, (Motorola's I fdOS) *1
1* dsk c d iskroo=2, (Motorola's t hdOO) *1
1* dsk d diskno=3, (Motorola's thdOl) *1
/*** * ****.* ** •• * * ***, it * ****.****** ••• /

t if ! LOADER

1* Disk Paran,eter Headers *1

struct dph dphtab[4) = { rXlt
'

0, 0, 0, &dirbuf, &dpbO ,
&xl t, 0, 0, 0, &dirbuf, & dpbO,

OL, 0, 0, 0, &dirbuf, &dpb2,
OL, 0, 0, 0, &dirbuf, & dpb2,

};
'e lse

struct dph dphtab[4) =
{ !&Xlt, 0, 0, 0, &dirbuf, &dpbO,

&xlt, 0, 0, 0, &dirbuf, &dpbO,
OL, 0, 0, 0, & d i r bu f, & dp b2 ,

}; OL, 0, 0, 0, &dirbuf, &dpb2,

I end if

& csvO,
&csvl,
& csv2,
&csv3,

OL,
OL,
OL,
OL,

&alVO\' I*dsk a'i
& a 1 vI , I'dsk b*1
&alv2 , I'dsk c'l
& a 1 v3 , I'dsk d*1

OLI I*dsk a'i
OL : I*dsk b*1
OL , I'dsk c'l
OL , I*dsk d'i

1* •• * ... * .. * ** *. *** ••• *' ** ••• * •• * *** *** ** * •••• * * ** *.*.* ***. ** /
1* Memory Region Table *1
1**'- * •• ** .. * .. * ** ******** **.'* .. ** .. * *.* * *** .. **** * ****. **** ** ***** ****/

struct mrt

}

WORD count;
LONG tpalow;
LONG tpa len;

memtab = { 1, Ox0400L, Ox14cOOL };

I if ! LOADER

1** * *** * .. ** * * *. * ... * .. *** .. * * ** * ** * * ** ** * .. * .. * * *** /
1* roBYTE *1
j**. * * *. * * *. ** * *** * .. * * ** .. ** .. *. * **** * * * * * ** * * * ***/

WORD iobyte; 1* The 1/0 Byte is defined, but not used *1

lendif

Listing D-1. (continued)

76

D EXORmacs BIOS

CP/M-68K System Guide

/*** 11.* ** * ** •• ** .. *** III ** .. ** _ * .. ** *' *. *t " *_*/
1* Currently Sel<:eted Disk Stuff *1
/** *t at * ** .. * ** .*. * •• a._ ** **_ * •• * * ... * *** /

WORD settrk, setsec, setdsk:
BYTE *setdma:

1* Currently set track, sE"Ctor, disk *1
1* C;"ICently set dma address *1

/*** *.* ••••••• ** *t t. *t * •••••• tll_.t_ttt/

1* Track Buffering Definitions and Variables *1
1* ** _._. _ .. *t , ***.i1: .t __ •• t_ *t.t * •••••• ** .. * ... *.- -._1

I if ! LOADER

Idefine NUMTB 4 1* Numb"r of track buffers -- must be at least 3 *1
1* for the algor ithms in this BIOS to work properly *1

1* Define the track buffer structure *1

struct tbstr

};

struct tbstr
BYTE
WORD
WORD
BYTE
BYTE

*nextbuf:
buf [32*128]:
dsk:
trk:
va lid;
dirty;

1* [orm linked list for LRU *1
1* big enough for 1/4 hd trk *1
1* disk for this buffer *1
1* track for this buffer *1
1* buffer valid flag *1
1* true if a BIOS wr ite has *1
1* put data in this buffer, *1
1* but the buffer hasn't been *1
1* flushed yet. *1

struct tbstr *firstbuf; 1* head of linked list of track buffers *1
struct tbstr *lastbuf; 1* tail of ditto *1

struct tbstr tbuf[NUMTB]: 1* array of track buffers *1

lelse

1* the loader bios uses only 1 track buffer *1

BYTE bufltrk[32*128]; 1* big enough for 1/4 hd trk *1
BYTE bufvalid;
WORD buftrk;

lend if

It. * .. * * .. * _.* .. * ... *.* * * * ** * * * .. * * * ** ** /
1* Disk 1/0 Packets for the UDC and other Disk 1/0 Var iables *1
1·· ·* * *. ** *-* *. * ** * .. * :* * ... :* * •• * ** * * ••• * * * ••• ** ** * ** *. * •• /

1* Home disk packet *1

Listing D-~. (continued)

77

o EXORmacs BIOS

CP/M-G8K System Guide

struct hmpkst {
BYTE a1;
BYTE .,2;
BYTE a3;
BYTE dskno;
BYTE com1;
BYTE com2;
BYTE a6;
BYTE .,7;

hmpack
l

= { 512, 1792, 0, 768 I; /* kludge init by words */

/* Read/wr i te disk packet */

struct rwpkst {

};

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
WORD
WORD
LONG
WORD
LONG
BYTE
BYTE

stxchr;
pktid;
pk tsize;
dskno;
chcmd;
devcmd;
numblks;
b1ksize;
iobf;
ck sum;
lsect;
etxchr;
rwpad;

struct rwpkst rwpack = { 512, 5376, 4097, 13, 256, 0, 0, 0, 0, 0, 768 };

• if ! LOADER

/* format disk packet */

struct fmtpkst {
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

l:

fmtstx;
fmtid;
fmtsize;
fmtdskno;
fmtchcmd;
fmtdvcmd;
fmtetx;
fmtpad;

struct fmtpkst fmtpack = { 512, 1792, Ox4002, Ox0300 };

• endif

/**:It •• *:It:lt * •• * ••••• * *. * .. * * * *:It. * *.:It * *. * *.:It * *:It •• *:It * •• * *. *.:It. *. * *:It:lt * *. *. *. *. * /
/* Define the number of disks supported and other disk stuff */
/.* •• * * *. * •• *t •••••••••• * * •• *:It. *:It. * * *:It •• * * * •• * * * •• * *:It * * *. *t *. * *. * •• It. *. *. /

Listing D-l. (continued)

78

D EXORmacs BIOS

CP/M-68K System Guide

1' * _.t *t_ *. *t .*. '*, .. * t ... *'_ '* t * * *t.*""" ••• ** •• ,/
/* Generic serial port inp~t */
/t_ *._ * .. ** .*,_.* ** ** •• ** ... t ••• * t.* '*' _'_'t ... ** ... ,.,'/

BYTE portin(port)
lEG BYTE *port;

while (I portstat(port» ;
re turn (* (port + PORTRDR»;

/* wa it for input
/* got some, return it */

*/

1'···············_-,················_·············· __ ·._.,.,.t .. ,." ... _,/
/* Gener ic serial port output */
It' ... * ** ... '* .. *t , _.* i._ * *t.* *.t ttl

portout(port, ch)
REG BYTE * par t;
REG BYTE ch;
{

while (I (* (port + PORTSTAT) & PORTl'DRE» /* wait for ok to send */
* (port + PORTTDR) = ch; /* then send character */

/ * * * *., •• * ... *. ** *** ** *t* .. "'*""'*""" * "I
/* Error procedure for BIOS */ 1'-.' 't. * ** * •• t ** *.* _,tt"" -** * .. * _.,/

I if ! LOADER

bioserr (errmsg)
iEG BYTE *errmsg;

printstr("nrBIOS ERROR __ 0);
pr intstr (errmsg);
printstr(" .nr a):

pr in tstr (s)
REG BYTE *s;

/* used by bioserr */

{

I
while (*s) {portout(PORT1,*s); s += 1; I;

I else

rOSerr()

1

/* minimal error procedllre for loader BIOS */

gate 1;

lendif

Listing 0-1. (continued)

79

o EXORmacs BIOS

CP/M-68K System Guide

jf •• * ••••• t *. * ••• ". * • ." ••• "." *."." ••••• *t ••• ."."." **."." •• ." • ." ••• *." '.'1
1* Disk 1/0 Procedures *1
It •••• * * ••••••• ." .t •• * ••• t.".t" *t .. ." ••• "t, ••••••• ." • ." .t • ." • ."." •.••• ." * * ••••• /

EXTERN dskia();
EXTERN se tim~ sk ();

1* external irlterrupt handler -- calls dskic *1
It use to set interrupt mask -- returns old mask */

dskic()
(

1* Disk Interrupt Handler -- C Language Portion *1

REG BYTE workbyte;
BYTE stpkt[STPKTSZ);

workbyte = (DSKIPC + ACKFMIPC)->byte;
tf ((workbyte == ACK) II (workbyte == NAK)

if (ipcstate == ACTIVE) intcount += I;
else (DSKIPC + ACKFMIPC)->byte = 0; 1* ??? *1

workbyte = (DSKIPC + MSGFM IPC) ->byte;
tf (workbyte & Ox8D)

getstpk t (stpk t) ;

if stpkt[PKTID) == OxFF
{

I
else
{

1* unsolic ited *1

unsolst (stpk t) ;
sendack ();

1* solicited *1

if (ipcstate == ACTIVE) intcount += I;
else sendack();

I 1* end of dskic *1

It"'''''''''' ,tt •• t.t. **." *"t • ." *. **.". *. * • ." * * **." *.". *. * • ." ** * •••• **." * * ** •• t **. *."." /

1* Read status packet from IPC *1
It' **. *. **." *t * .t •• .".* *.t *."." •• ." .. *." * *t * *t tt_ • ." ,t,.,,'* ,t._." *."." * * *."." •• ."."." *.* *. I
ge tstpk t (stpk tp)
iEG BYTE *stpktp;

REG BYTE *p, *q;
REG WORD i;

Listing D-1. (continued)

80

D EXORmacs BIOS

CP/M-68K System Guide

p ~ stpl<tp;
q = (DSKIPC + PKTFMIPC);

for (i = STPKTSZ; i; i -~ 1)
(

*p ::::I *q:
p += 1;
q += 2;

/,. * *. * .*.* .. ** .. *.* *.* •• * ... ** .. * *.'* •• * * *** * *'/
/* lIar,d1e Unso1ic itcd Status from IPC */
1*'*"""·* * .'**** *** * *.*. ** ***.* .* ** .-.* * * •• * * ••• ** .*/

unsolst(stpl<tp)
REG BYTE 'stpl<tp;
!

REG WORD d ev;
REG WORD ready;
REG struet dskst *dsp;

dey = renvdsk[(stpktp+PKTDEV)->byte];
ready = ((stpktp+PKTSTPR.'I) ->byte & Ox80) == OxO;
dsp = & dskstate[dev];
if ((ready && ! (dsp->ready) II

(!rcady) && (dsp->ready)) dsp->ehange = 1;
dsp->ready = ready;

I if ! LOADER
if (! ready) setinvld(dev); /' Disk is not ready, mark buffers */

I end if
)

I if ! LOADER

I··· · ... * *. *.* * •••• * * * **** * * * *** * ... ** •••••••• * ** * .. * ••• *** •••••• *. **.* *./
/* Mark all buffers for a disk as not valid */
j*'*" ** * ... ** *.*.** •• *.* ** * * ** **." * .. *** .. ** •••• * * * * ** ••• ****/

setinvld(dsk)
lEG WORD dsk;

REG s true t tbstr *tbp;

tbp = firstbuf;
{'hile (tbp)

if (tbp->dsk == dsk) tbp->valid 0;
tbp = tbp->nextbuf;

lendif

J.,isting D-1. (continued)

81

o EXORrnacs BIOS

CP/M-68K System Guide

iopaekp = (DSKI PC+PKTTOI PC) ;
do {*iopaekp = ·pkt.adr++; iopaekp +- 2; pktsize -- 1;} while(pktsize);
(DSKI PC+MSGTOI PC) -> by te - OxBO;
imsave = setimask(7);
dskstate[aetvdsk] .state = ACTIVE;
ipestate = ACTIVE;
in tcount = OL~
(DSKIPC+INTTOIPC) ->byte 0;
setimask (irnsave);
waitaek();

It ••• ** ••• *.* *. '* ... * *. **." '* ... * '" * **. ***.* '* .. ** **/
/* Wait for a Disk Operation to Finish */
1*""" ... '* * * * * /

WORD dskwait(dsk, steom, stval)
REG WORD d sk;
BYTE steom;
WORD stval;
{

REG WORD imsave;
BYTE stpkt[STPKTSZ];

imsave = setimask(7);
while ((! inteount) &&

dskstate[dsk).ready && (! dskstate[dsk).ehange)

setimask[imsave); imsave = setimask(7);

if inteount)
{

in teoun t -= 1;
tf (((DSKIPC + MSGFMIPC)->byte & Dx8D) Dx8D)

getstpkt(stpkt) ;
setimask(imsave);
if ((stpkt[PKTSTCOM) == steom) &&

((stpkt+PKTSTVAL)->word == stval)
else

)
setimask (imsave) ;
return(D) ;

return (1);
return (0);

/ * **** *** * * * * .. *.* .*. * •• * ** •• ** .. *** *. * •• * ** .. * ••• * .. **.* .. ** *. * /
/* Do a Disk Read or Write */
/** * *** *. * •• *** *** *** ** * * *** *. *.* ** *.* * * ** .. ** * * /

d skx fer (dsk, tr k, bufp, cmd)
REG WORD dsk, trk, coo;
iEG BYTE ·bufp;

Listing D-1. (continued)

82

D EXORmacs BIOS

CP/M-68K System Guide

/* bu i ld packet */

REG WORD sectcnt;
REG WORD result;

• if CTLTYPE

• end if

LONG bytecnt; /* only needed for FDC */
WORD cheksum;

rwpack.dskno ~ cnvdsk[dskJ;
rwp~ck. iotrf D "bufp;
sectcnt = (dphtab[dskJ .dpbp) ->spt;
rwpack.lsect = trk * (sectcnt » 1);
rwpack. chcmd = cmd;
rwpack.numblks = (sectcnt » 1);

• if CTLT'fPE

I end if

cheksum ~ 0; /* FDC needs checksum */
bytecnt = «LONG) sectcnt) « 7;
while (bytecnt--) cheksum += (- (*bufp++)) & Oxff;
rwpack.cksum = cheksum;

ac tvdsk = dsk;
dskstate[dskJ. change = 0;
sendpk t (& rwpack, 21);
result = dskwait(dsk, Ox70, OxO);
sendack () ;
dsk sta te [dskJ • sta te = IDLE;
ipcstate = IDLE;
return (result);

I if I LOADER

/.**** ••••••••• *.* •• *** •••• * .*** •• **** .*.* * •• * •••••• * •••••••••••••• *./
/* Wr ite one disk buffer */
/*.*.* ** •• **** .*.*.*.* .. *** ••••• *.* •• * •• ** •• *.* •••• * ••• * ** ••••• *** /

flushl (tbp)
ftruct tbstr *tbp;

REG WORD ok;

if (tbp->valid && tbp->dirty)
ok = dskxfer(tbp->dsk, tbp->trk, tbp->buf, DSKWRITE);

else ok = I;

tbp->dirty = 0;
tbp->valid &= ok;

return(ok) ;

/* even if error, mark not dirty */
/* otherwise system has trouble */
/* continuing. */

Listing D-l. (continued)

83

D EXORmacs BIOS

CP/M-68K System Guide

1 •••••• * .*.* * 'It * * * .. /
/* Wr ite all disk buffers */
I •••• *" _ _ _ _'It * * ••• 'It •• - * * ••• * **/

flu sh ()
{

REG struct tbstr *tbp;
REG WORD ok;

ok = 1;
tbp = firstbuf;
tile (tbp)

if (! flush1 (tbp)) ok

}
tbp = tbp->nex tbuf;

return (ok);

0;

I···· _ *"" *.* *._ * * ••• /
/* Fill the indicated disk buffer with the current track and sector */
/*** ** •••••••••. ",.*.*.**** .. ****** ••• *.****** •••••••••••••••••••••• /

fi 11 (tbp)
lEG struct tbstr *tbp;

REG WORD ok;

if (tbp->valid && tbp->dir ty) ok = flushl (tbp);
else ok = 1;

if (ok) ok = dskxfer(setdsk. settrk. tbp->buf. DSKREAD);

tbp->valid = ok;
tbp->dir ty = 0;
tbp->trk = settrk;
tbp->dsk = setdsk;

return(ok) ;

/ * •••• *.* * * * .. * * .. * .. * ** * ***** * .. * * ••••• * ** ** ••• * * *. /
/* Return the address of a track buffer structure containing the */
/* currently set track of the currently set disk. */
/** * .. * * * ... * * * .. * *. * ** .. * *.*" ... * * .* *.* /

(truct tbstr *gettrk ()

REG struct tbstr *tbp;
REG struct tbstr *1tbp;
REG struct tbstr *mtbp;

Listing D-1. (continued)

84

D EXORrnacs BIOS

CP/M-68K System Guide

REG WORD imsave;

/* Check for disk on-line -- if not, return error */

imsave = setimask(7);
if (1 dskstate[setdsk).rcady
{

setimask (imsave) ;
tbp = OL;
return (tbp);

/* Search through buffers to See if the required stuff */
/* is alrcady in a buffer */

tbp = firstbuf;
1 tbp = 0;
mtbp = 0;

tile (tbp)

if (tbp->valid) && (tbp->dsk == se tdsk)
&& (tbp->trk settrk))

tf (ltbp) /* found it -- rearrange LRU links */

ltbp->ncxtbuf = tbp->nextbuf;
tbp->nextbuf firstbuf;

}
else
{

}
firstbuf tbp;

setimask (imsave);
return (tbp);

mtbp = ltbp; /* move along to next buffer */
ltbp = tbp;
tbp = tbp->nextbuf;

/* The stuff we need is not in a buffer, we must make a buffer */
/* available, and fill it with the desired track */

if (mtbp) mtbp->nextbuf = 0;
ltbp->nextbuf = firstbuf;
firstbuf = ltbp;

/* detach lru buffer */

set ima sk (imsave) ;
if (flushl(ltbp) && fill (ltbp))
else
return (mtbp);

mtbp = ltbp;
mtbp = OL ;

Listing D-l.

/* success */
/* failure */

(continued)

85

o EXORmacs BIOS

CP/M-G8R System Guide

/*.* •• t •••• ** t""'_' *,. ** _._._" ** * **.* ••• * .*. * •••••••••••• _" •• *t' ._* __ .,/
1* Bios READ Function -- read one sector *1
1."'-' .•• , ••• ".- *. *' * ••• ** "', •• *. * ** **. * * •••• ** •••• "" *.ot t.* * * t./

read()
\

REG BYTE *p;
REG BYTE *q;
REG WORD i;
REG struct tbstr *tbp;

tbp = gettrk(); 1* locate track buffer with sector *1

if (! tbp) return(l); 1* failure *1

1* locate sector in buffer and copy contents to user area *1

p = (tbp->buf) + (setsec « 7); 1* multiply by shifting *1
q = setdma;
i = 128;
do {*q++ = *p++; i -= l;} while (i); 1* this ger,erates good code *1
return(O) ;

/ * * t •••••• _ Ill" *.* .. ** .. *t •• ___ " •• * * '*, •• * i" ._._.* ... *.*. * •• * *. /
1* BIOS WRITE Function -- wr ite one sector *1
/ *. * *. '*- * •••••• *. * ** .. ** * * .. ** ... * •• * * •• * *. It """ * ** * *' **. *.* '*'1

wr i te (mode)
BYTE mode;
{

REG BYTE *p;
REG BYTE *q;
REG WORD i;
REG struct tbstr *tbp;

1* locate track buffer containing sector to be written *1

tbp = gettrk();
if (! tbp) return (1); 1* failure *1

1* locate desired sector and do copy the data from the user area *1

p = (tbp->buf) + (setsec « 7); 1* multiply by shifting *1
q = setdma;
i = 128;
do {*p++ = *q++; i -= l;} while (i); 1* thi:; generates good code *1

tbp->dirty = 1; f* the buffer is nOW "dirty· *f

1* The track must be written if this is a directory write *f

if (mode == 1){if (flushl(tbp)) return(O); else return(l);}
else return(O);

Listing D-1. (continued)

8G

D EXORmacs BIOS

CP/M-68K System Guide

I else

/.* * * * •• *.* *.* ... * ** .. *. * *. *. * ... ***' ** ** ... * ** * * •• *. ** *** ... *.* -**1
/* Read and Wr i te funct ions for the Loader BIOS */
/*. ** *.*.* .*.* * ... **** *** ... * *** *'*** ** •••• * *** *** •• , ** .*. ·*"'*1

read ()
j

REG BYTE *p;
REG BYTE *q;
REG WORD i;

if (((! bufvalid) II (buftrk 1= settrk)) &&
(1 dskxfer(setdsk, settrk, bufltrk, DSKREAD))) jreturn(l);/

bufvalid = 1;

'end if

buftrk = settrk;
p = bufltrk + (setsec « 7);
q = setdma;
i = 128;
do j *q++ = *p++; i-=l; } while(i);
return(O);

/* * * •• * * * ... * *.* "* ******* *. ** ** *** *.***.*. *.* * *** * "1
/* BIOS Sector Translate Function *j
;*. * *. * ••••• * * * * **.*.*., * * *. * *** .. * "*1

WORD sectran(s, xp)
REG WORD s;
{EG BYTE *xp;

if (xp) return (WORD) xp[s);
else return (s+l);

1*·" * * * * ** *. * * .. * * * * * * * .. /
j* BIOS Set Exception Vector Function *j
/*. * * .. * * *. ** * * *** * * *.* .. ** * * .. * ... * ** ** * * ... * .. * * * *.* * /

LONG setxvect(vnum, vval)
WORD vnum;
LONG vval;
j

REG LONG oldval;
REG BYTE *vloc;

vloc = ((long) vnum) « 2;
o Idva 1 = v Ioc- > Iword;
vloc->Iword = vval;

Listing D-1. (continued)

87

D EXORmacs BIOS

CP/M-G8K System Guide

return(oldval) ;

/* •• * ** * ** •• *** ** _ •••••••• */
;* BIOS Select Disk Function *;
1* * ** 11:.' ••• _.,_ •••• * *.* '" •••••• *** •• */

LONG slctdsk(dsk, logged)
REG BYTE d sk;

BYTE logged;

REG struct dph *dphp;
REG BYTE stl, st2;
BYTE stpkt[STPKTSZ];

setdsk = dsk; ;* Record the selected disk number *;

I if LOADER

I end if

/* Special Code to disable dr ive C. On the EXORmacs, dr ive C *;
/* is the non-removable hard disk. '*;

tf (dsk > MAXDSK) II (dsk == 2

pr in tstr ("n rBIOS ERROR -- DISK ");
portout(PORTI, 'A'+dsk);
printstr(" NOT SUPPORTEDnr");
return(OL) ;

dphp = &dphtab[dsk)'; tf (! (logged & Oxl)

hmpack.dskno = cnvdsk[setdsk);
hmpack.coml = Ox30;
hrnpack. corn2 = DxO 2;
actvdsk = dsk;
dskstate[dsk) .change = 0;
sendpkt(&hmpack, 7);
if (! dskwait(dsk, Ox72, OxO))
{

}

sendack ();
ipcstate = IDLE;
return (OL);

getstpkt(stpkt); ;* determine disk type and size *;
sendack () ;
ipcsta te = IDLE;
stl = stpkt[PKTSTPRM);
st2 = stpkt[PKTSTPRM+I);

Listing D-l. (continued)

88

D EXORmacs BIOS

CP/M-68K System Guide

if stl & Ox80)
{

/* not ready / ready */

)

dskstate(dsk) .ready = 0;
return(OL) ;

else
dskstate(dskl.ready 1;

r itch (s tl & 7)

ca se 1 :

case 2

/* floppy disk */

dphp->dpbp = &dpbO;
break;

/* hard disk */

dphp->dpbp = &dpb2;
break;

default bioserr("Invalid Disk Status");
dphp = OL;
break;

)
re turn (dphp) ;

• if ! LOADER
1*·" ***. *.* *. *.*. *** ** * ••• ****** *.* * ** *. ** *** *.* .. *.* •• */
/* */
/* Th is function is included as an undocumented, */
/' unsupported method for EXORmacs users to format */
/* disks. It is not a part of CP/M-68K proper, and */
/* is only included here for convenience, since the */
/* Motorola disk controller is somewhat complex to */
/* program, and the BIOS contains supporting routines. */
/* */
/* * **** *.* * ... * * *.* * * * * ** ** * /

format(dsk)
REG WORD d sk;
{

REG WORD retval;

if (I slc tdsk ((BYTE) dsk, (BYTE) 1)) re turn;

fmtpack.dskno = cnvdsk(setdskl;
actvdsk = setdsk;
dskstate[setdskl • change = 0;
sendpk t (& fmtpack, 7);
if (I dskwait(setdsk, Ox70, OxO)) retval = 0;
else retval = 1;

Listing D-l. (continued)

89

D EXORmacs BIOS

CP/M-68K System Guide

I end if

s~"dack () ;
ipcstate = IDLE;
return(retval);

1*··""· * •••• _ * * * ••••• * * * ••••• *_ *.- * •• *** *_./
f* *f
f* Bios in itialization. Must be done before any regular BIOS *f
f* calls are per formed. *f
f* *f I·· *- •••••••••••• -•••••••••••••••• * ... *- * ••••••••••••••• *_ -••••••• *./

?iOS in it ()

initprts() ;
initdsks() ;

tn itpr ts ()

por tinit (PORTl);
portinit(PORT2) ;

initdsks()
{

REG WORD i;
REG WORD imsave;

I if LOADER
for (i = 0; i < NUMTB; ++i
{

}

tbuf[il.valid = 0;
tbuf[il.dirty = 0;
if ((i+l) < NUMTB
else

tbuf[il.nextbuf = &tbuf[i+l1;
tbuf[il.nextbuf = 0;

lelse

I end if

firstbuf = &tbuf[Ol;
lastbuf = & tbuf[NUMTB-l1;

bufvalid = 0;

for (i - 0; i <= MAXDSK; i += 1)

dskstate[il.state IDLE;
dskstate[il.ready· I;
dskstate[il.change 0;

imsave = setimask(7); f* turn off interrupts *f
in tcount = 0;
ipcsta te = IDLE;

Listing D-1. (continued)

90

D EXORmacs BrOS

CP/M-68K System Guide

setimask (imsi1ve); 1* turn On interrupts */

/.- ** *.* '* **.'11 '* ** •• *.* *** * '* '* * ... **.* ** ** '* ... * ... * * ** '* *. *.1
1* */
1* IlIOS MAIN ENTRY -- B,ar.ch out to the various Cur.ctions. *1
1* *1
/** * •••• *** •••••• _'III *** •• **** .. '* *. ** ** .. ** •••• *. ***.*. ** '* .. **** '* ••• *.*/

LONG cbios(dO, dl, d2)
REG WORD dO;
lEG LONG dl, d2;

ritch(dO)

I if I LOADER

i end if

case 0: biosinit();
break;

ca Se 1: flu sh () ;
initdsks() ;
"boot() ;

1* break; *1

2: return(portstat(PORTl»;
1* break; */

case 3: return(portin(PORTl»;
1* break; *1

case 4: portout(PORTl, (char) dl);
break;

~:~: ~: ~ortout(PORT2, (char)dl);
break;

case 7: return(portin(PORT2»;
1* break; *1

case 8: se ttrk = 0;
break;

1* INIT *1

1* WooOT *1

1* CONST *1

1* CONIN *1

1* CONOUT *1

1* LIST *1
1* PUNCH *1

1* READER */

/* HOME */

case 9: return(slctdsk((char)dl, (char)d2»; 1* SELDSK */
/* break; */

10: settrk = (int) dl; /* SETTRK */
break;

11: se tsec = ((in t) dl-l) ; /* SETSEC */
break;

Listing D-l. (continued)

91

D EXORmacs BIOS

CP/M-GaK System Guide

• if
1 LOADER

• end if

• if LOADER

I end if

I if ! LOADER

I end if

12: setdma ~ d1; /* SETDMA
break;

13 : return(read(» ; /* READ
/* break; */

14 : return(write«char)d1)); /* WRITE
/* break; */

case 15: if (* (BYTE *) (PORT2 + PORTSTAT) , PORTTDRE
return (OxOff);

else return (OxOOO);
/* break; * /

16 : return (sectran((int) d1, d2)) ; /* SECTRAN
/* break; */

case 18 : return (&memtab) ; /* GMRTA
/* break; */

case 19: return (iobyte) ; /* GETIOB
/* break; */

case 20: iobyte = (int) dl; /* SETIOB
break;

case 21: if (flush ()) return (OL); /* FLUSH
else return(OxffffL) ;

/* break; */

22: return (setxvect((int) d1,d2)); /* SETXVECT
/* break; */

*/

*/

*/

*/

*/

*/

*/

*/

*/

/**** * * * .. *** **. ** •• * ** ** * .. * * ... * * * *** ** ** *. * ** /
/* This function is not part of a standard BIOS. */
/* It is included only for convenience, and will */
/* not be supported in any way, nor will it */
/* necessarily be included in future versions of */
/* CP/M-68K */
/***** *** ** * .. *** * * .. * *** .. ****** * ****. * ** .. ** /
case 63: return(! format«int)dl)); /* Disk Formatter */

/* break; */

default: return(OL);
break;

I /* end switch */

I /* END OF BIOS */

Listing D-1. (continued)

92

D EXORmacs BIOS

CP/M-68K System Guide

f* End of C Bios *f

NORMBIOS.H

This should be renamed "BIOSTYPE.H" if you are compiling a
normal BIOS.

'define LOADER
'define CTLTYPE

LOADBIOS.R

This should be renamed "BIOSTYPE.H" if you are compiling a
loader BIOS •

• de fine LOADER
'define CTLTYPE

BIOSA.H

This is the assembly language interface needed by the normal
BIOS.

• text

Listing D-l. (continued)

93

D EXORmacs BIOS

CP/M-G8K System Guide

init:

wboot: -

entry:

_dskia:

.globl

.globl

.globl
• globl
.globl
.globl
.globl
.globl
.g lobl

lea
move.l
lea
move. 1
move
jsr
c1r .1
rts

c1r.1
jmp

move. 1
move. 1
move.w
j sr
add
rte

link

init
-biosinit

flush
-wboot
-cbios
- dskia
-dskic
::::setimask
_ccp

entry,aO
aO,$ se
dskia, aO

aO,$3fc
1$2000,sr
biosinit

dO

dO
_ccp

d2,-(a7)
dl,-(a7)
dO,-(a7)

cbios
110,a7

a6,IO
movem.1 dO-d7/aO-aS,-(a7)

dskic jsr
movem.1 (a7)+ ,dO-d7/aO-aS
un1k
r te

setimask: move
lsr
and.l

ror .w
and.w
add.w
ror. w
move
rts

.end

a6

sr, dO
,8, dO
17 ,dO
sr, dl
IS ,dl
1$ f f fS, dl
4(a7),d1
IS, dl
d1, sr

Listing D-1.

D EXORmacs BIOS

(continued)

94

CP/M-68K System Guide

LDBIOSA.S

Th is is the assembly language in ter face used by the loade r
BIOS.

• text
• globl
.globl
• globl
.globl
• globl
.globl

link
move.l
move.l
move.w
move
lea
move. 1
jsr
unlk
rts

bios
-bios in it
-cbios
-dskia
- dsk ic
:=setimask

a6,'O
d2,-(a7)
dl,-(a7)
dO,-(a7)
'$2000,sr
dskia,aO

aO,$3fc
cbios

a6

_dskia: link a6,tO
movem.l dO-d7/aO-a5,-(a7)
j sr dsk ic
movem. 1 T a7)+, dO-d7/aO-a5
unlk a6
rte

setimask: move
- lsr

and.l

[or .w
and.w
add.w
ror. w
move
rts

.end

sr ,dO
'8, dO
,7,dO
sr, dl
,8,dl
'$fEf8,dl
4(a7) ,dl
'8, dl
dl,sr

Listing D-l. (continued)

95

D EXORrnacs Bros

~~/M-btlK ~ystern Guide

BI OSTY PS.H

These type definitions are needed by the C BIOS.

I'''······ * * ... * ... * * * * * *. * •••• /
/* */
/* Portable type definitions for use */
f* with the C BIOS according to *f
f* CP/M-6aK (tm) standard usage. */
f* */ I'''···· ... * •••••••••••••••••••• *.*. *** •• ,* ••••••• /

.define LONG
'define ULONG
#define WORD
#define UWORD
#define BYTE
de fi n e UBYTE
Ide fine VOID

Ide fine REG
de fine LOCAL
Idefine MLOCAL
I de fine GLOBAL
de fine EXTERN

long
unsigned long
short int
unS igned shor t
char
unsigned char

register
au to
static
ex tern
ex te rn

It" * **. * * * * * •• ** **.* *. *** *** •• /

Listing D-l. (con t inued)

End of Appendix D

96

D EXORrnacs BIOS

Appendix E
Putboot Utility Assembly Language Source

CP/M 68000 Assembler Rev is ion 02.01 Page
Source File: putboot.s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 00000000
29
30 00000000 4E560000
31 00000004 206E0008
32 00000008 43E8005C
33 OOOOOOOC 23C900004080
34 00000012 423900004094
35 00000018 DOFC0081
36 0000001C OC180020
37 00000020 67FA
38 00000022 5388
39 00000024 4A10
40 00000026 67000lA4
41 0000002A OC180020
42 0000002E 6626

Program to Write Boot Tracks for CP/M-68K (tIn)

Copyright Dig ita1 Research 1982

prn tstr 9 BOOS Functions
dseldsk 14
open 15
read seq = 20
dsetdma 26

se Idsk = 9 BIOS Functions
set tr k = 10
se tsec = 11
ise tdma 12
wr ite 14
sectran ~ 16
flush 21

bufcnt $80
bufsize = $8 O*bu fcn t

• text

start: link a6,,0
move. 1 8 (a6) ,aO base page address
lea $5c(aO),al
move. 1 aI, fcb
clr. b hflag
add 1$81,aO first character of command

scan: cmpLb 1$20, (aO)+ skip over blanks
beq scan
sub.l 11, aO

scanl: tst. b (aO)
beq erxit
cmpL b 1$ 2d, (aO)+ check for -H flag
bne nohyph

Listing B-1. PUTBOOT Assembly Language Source

97

ta i1

CP/M-68K System Guide

43 00000030 OC180048
44 00000034 66000196
45 00000038 4A3900004094
46 0000003E 6600018C
47 00000042 13FCOOFF00004094
48 0000004A 04B90000002400004080
49 00000054 6OC6
50 00000056 OCIOOO 20 nohyph:
51 0000005A 66C8
52 OOOOOOSC OC180020 scan2:
53 00000060 67FA
54 00000062 OC200061
55 00000066 6004

CP/M 68000 Assembler
Source File: putboot. s

56 00000068 04500020
57 OOOOOOGC OCI00041
58 00000070 6000015A
59 00000074 OCI00050
60 00000078 6E000152
61 0000007C 1010
62 0000007E 4880
63 00000080 907C0041
64 00000084 J3C00000408A
65
66
67
68 0000008A 303COOOr
69 0000008E 223900004080
70 00000094 4E42
71 00000096 OC4000FF
72 0000009A 660C
73 0000009C 223C00000034
74 000000A2 4EF900000lD2
75 000000A8 207900004080
76 OOOOOOAE 42280020
77
78
79
80 000000B2 24JCOOOOOOOO
81 000000B8 42790000408E
82 OOOOOOBE JOJCOOlA
83 000000C2 2202
84 000000C4 4E42
85 00000OC6 30JCOO 14
86 OOOOOOCA 223900004080
87 00000000 4E42
88 00000002 4A40
89 00000004 661A
90 00000006 04BC00000080
91 OOOOOODC 52790000408E
92 000000E2 OC7900800000408E
93 OOOOOOEA 6EOOOOFE
94 OOOOOOEE 60CE

upper:

openok:

r loop:

cmpL b
bne
tst. b
bne
move. b
sUb.l
bra
cmpLb
bne
cmp L b
beq
cmpL b
blt

1$48, (aO)+
erxit
hflag
erxit
I$ff, hflag
1$24, fcb
scan
1$ 20, (aO)
scanl
1$ 20, (aO) +
scan2
1$61,-(aO)
upper

Rev is ion 02.01

sub
cmp i. b
blt
cmp L b
bgt
move.b
ext.w
sub. w

'$ 20, (aO)
'$41, (aO)
erxit
1$ 50, (aO)
erxit
(aO), dO
dO
1$4l,dO
dO, dsk

open file to copy

move. w
move. 1
trap
cmp L w
bne
move.l
jmp
move.l
clr. b

read

move. 1
clr.w
move. w
move. 1
trap
move.w
move. 1
trap
tst.w
bne
add.l
add.w
cmpLw
bgt
bra

lopen,dO
fcb, dl

'2
'$OOff,dO
openok
I opnf 1, dl
erx
fcb, aO
32 (aO)

Ibuf, d2
count
I dse tdma, dO
d2,dl
12
I read seq, dO
fcb,dl
12
dO
wrtout
1l28,d2
11, coun t
Ibufcnt,count
bufoflx
rloop

E PUTBOOT utility

change to 2nd default fcb

get disk letter
upsh i ft

Page

compare with range A - P

put disk letter into range 0 - 15

Listing B-1. (continued)

98

CP/M-68K System Guide E PUTBOOT utility

95
96 wr ite
97
98 OOOOOOFO 303COO09 wrtout: move.w 'se Idsk, dO select the disk
99 000000F4 32390000408A move.w dSk,dl

100 OOOOOOFA 4202 clr. b d2
101 OOOOOOFC 4E43 trap , 3
102 OOOOOOFE 4A80 tst.l dO check Cor select error
103 00000100 67000008 beq selerx
104 00000104 2040 move. 1 dO ,aO
105 00000106 2068000E move. 1 14(aO) ,aO get OPB add.ess
106 0000010l'. 330000004084 move.w (aO) ,spt get sectors per track
107 00000110 33E80 OOEOOO 04 0 8C move. w 14(aO),off get offset
108 00000118 427900004088 ClLW trk start at trk 0
109 000001lE 33FCOOO 100004086 move.w '1, sect start at sector 1
110 00000 126 4lF90000000b lea buf, aO

C P / M 6 8 a 0 0 Ass e III b 1 e • Revision 02.01 Page
Sou.ce File: putboot. s

III 0000012C 4A3900004094 tst. b hflag
112 00000132 660C bne w.tl
113 00000134 OC 506 a lA cmpLw '$ 60la, (aO)
114 00000138 6606 bne wrtl
115 0000013l'. OlFCOOOOOOIC add. 1 '28,aO
116 00000140 2lC80000~090 wrtl: move.! aO,bufp
117 .
118 00000146 4A 790000408E wloop: tst.w count
119 0000014C 6774 beq exit
120 00000141': 323900004086 move.w sect,dl check for end-of-track
121 00000154 B27900004084 cmp.w spt, dl
122 00000 15A 6Fll': ble sok
123 000001~C 33FC 000 10000'; 08 G move .. w 'l,sect advance to new track
124 00000164 303900004088 move.w trk, dO
125 0000016A 5240 add. w '1, dO
126 0000016C 3lCOOOO04088 move.w dO, tr k
127 00000172 B0790000408C cmp.w off, dO
128 00000178 6C78 bge of Ie x
129 00000 17A 303COOOA sok: rove.w t se t tr ~, dO set the track
130 00000171': 323900004088 move.w tr k, dl
131 000001d4 41':43 trap , 3
132 00000186 3239000 04 086 lIIove.w sect,dl set sec tor
133 00000 laC 303COOOB IDOve .. w • SP. tsec, dO
134 00000190 4En trap '3
135 00000192 303COOOC move.w t i se td m." d'l set up dma addre ss for wr ite
136 00000196 223900004090 move. 1 bufp,dl
137 00000 19C 41':43 t.ap .3
138 00000 191': 30lCOOOE UlOve.w ,write,dO and wr ite
139 00000lA2 4241 clr. w dl
140 00000 lA4 4£43 trap f3
141 00000lA6 4A40 tst. w dO check for write eccor
142 00000 lAB 6638 bne we terx
143 OOOOOlAA 527900004086 add 'l,sect increment sector number
144 00000180 537900004081': sub .1 ,coun t
145 00000186 06B90000008000004090 add. 1 1l28,bufp
146 OOOOOleO 6084 bra wloop

Listing B-1. (continued)

99

CP/M-68K System Guide

147
146 000001C2 303C0015
149 000001C6 4E43
150 000001CS 4E5E
151 000001CA 4E75
152
153 000001CC 223COOOOOOOO
154 00000lD2 303C0009
155 00000lD6 4E42
156 00000 lD6 GOE8
157
158 OOOOOlDA 223C00000017
159 00000 lEO 60FO
160 00000lE2 223C00000026
161 000001E8 60E8
162 OOOOOlEA 223C0000004E
163 000001FO 60EO
164 00000lF2 223C00000060
165 00000 lF8 6008

CP/M 66000 As
Source File: putboot.s

166
167
168 00000000
169
170
171
172 00000000
173
174 00004080
175 00004084
176 00004066
177 00004088
178 0000406A
179 0000408C
160 0000408E
161 00004090
182 00004094
183
184 00004096
184 00000000
185

s e m b

186 00000000 496E76616C696420
186 00000008 436F6060616E6420
186 00000010 4C696E65000A24
IB7 00000017 53656C6563742045
187 000000 IF 727 26F7 2000A24
168 00000026 5772697465204572
18B 0000002E 726F72000A24
189 00000034 43616E6E6F74204F
169 0000003C 70656E20536F7572
189 00000044 63652046696C6500
169 0000004C OA24
190 0000004E 427566666572204F

E PUTBOOT utility

exit: lOClve.w t flush, dO exit location - flush bios buffers
trap 13
unlk a6
rts and exit to CCP

*
erxit: move. 1 lerstr,dl miscellaneous errors
erx: move.w Iprn tstr, dO print error message and exit

se Ie rx:

wrterx:

bufoflx:

of lex:

1 e r

buf:

*
fcb:
spt:
sect:
trk:
dsk:
off:
count:
bufp:
~flag :

trap 12
bra exit

move. 1 I se lstr, dl
bra erx
move. 1 Iwrtstr, dl
bra erx

move. 1 Ibufofl, dl
bra erx
move. 1 itrkofl,dl
bra erx

Revision 02.01

.bss

.even

.ds. b bufsize+128

.ds.l 1

.ds.w 1

.ds.w 1

.ds.w 1

.ds.w 1

.ds.w 1

.ds.w 1

.ds.l 1

.ds. b 1

.data

disk select error

disk write error

buffer overflow

Page

fcb address
sectors per track
current sector
cur ren t track
selected disk
1st track of non-boot area

erstr: .de.b 'Invalid Command Line',13,10,'$'

selstr: .de. b 'Select Error' ,13,10,' $'

wrtstr: .dc.b 'Write Error',l3,10,'$'

opnfl: • dc. b 'Cannot Open Source File' ,13,10,' $'

bUfofl: .dc.b 'Buffer Overflow',13,10,'$'

Listing B-1. (continued)

100

CP/M-68K System Guide

190 00000056 766572666C61i'770D
190 0000005E OA24

E PUTBOOT Utility

191 00000060 546F6F204D756368 trkofl: .dc. b 'Too Much Data for System Tracks',13,10,'$'
191 00000068 204461746120666F
191 00000070 7220537973746560
191 00000078 2054726163607300
191 00000080 OA24
192
193
194 00000082 .end

CP/M 68000 Assembler Revision 02.01 Page
Source File: putboot.s

Symbol Table

buf 00000000 BSS bufcn t 00000080 ASS bufofl 0000004E DATA bufoflx OOOOO1£A TEXT
bufp 00004090 OSS bufsize 00004000 AOS count 0000408E BSS dse Id sk OOOOOOOE AOS
dse tdma OOOOOOlA ASS dsk 0000408A BSS e rstr ~ 00000000 DATA erx 00000102 TEXT
erxit OOOOOICC TEXT exit 000001C2 TEXT fcb 00004080 SSS flush 00000015 ABS
hflag 00004094 BSS isetdma OOOOOOOC ASS nohyph 00000056 TEXT off 0000408C BSS
of lex 00000 IF 2 TEXT open OOOOOOOF ABS openok 000000A8 TEXT opnfl 00000034 DATA
pm tstr 00000009 ASS readseq 00000014 ASS r loop OOOOOOBE TEXT scan 0000001C TEXT
scan1 00000024 TEXT scan2 0000005C TEXT sect 00004086 BSS sec tran 00000010 ABS
se1dsk 00000009 ASS se Ie rx 0000010A TEXT se Is tr 00000017 DATA se t sec OOOOOOOB ABS
se t tr k OOOOOOOA ABS sok 00000 I7A TEXT spt 00004084 BSS start 00000000 TEXT
trk 00004088 SSS trkofl 00000060 DATA upper 0000006C TEXT w100p 00000146 TEXT
wr i te OOOOOOOE ABS wrt1 00000140 TEXT wr terx 000001£2 TEXT wr tout OOOOOOFO TEXT
wr tstr 00000026 DATA

Listing E-1. (continued)

End of Appendix E

101

F.l S-record Format

Appendix F
Motorola S-Records

The Motorola S-record forma t is a method of repre sen ting
binary memory images in an ASCII form. The pr imary use of S-records
is to provide a convenient form for transporting programs between
computers. Since most computers have means of reading and writing
ASCII information, the format is widely applicable. The SENDC68
utility provided with CP/M-68K may be used to convert programs into
S-record form.

An S-record file consists of a sequence of S-records of
various types. The entire content of an S-record is ASCII. When a
hexadec imal number needs to be represen ted in an S-record it is
represented by the ASCII characters for the hexadecimal digits
comprising the number. Each S-record contains five fields as
follows:

Field: S type leng th address data checksum

C ha r ac te r s : 1 1 2 2, 4 or 6 variable 2

Figure F-l. S-record Fields

The field con ten ts are as follows:

Field

S

type

Table F-l. S-record Field Contents

I Contents

The~ASCII Character'S'. This signals
the beginning of the S-record.

A digit. between 0 and 9, represented in
ASCII, with the exceptions that 4 and 6
are not allowed. Type is explained in
detail below.

103

CP/M-68K System Guide

Field I
length

address

data

checksum

F.2 S-record Types

F.l S-record Format

Table F-l. (continued)

Con ten ts

The n umber of cha rac te r pa ir s in the
record, excluding the first three
fields. (That is, one half the number
of characters total in the address,
data, and checksum fields.) This field
has two hexadecimal digits, representing
a one byte quantity.

The address at which the data portion of
the record is to reside in memory. The
data goes at this address and
successively higher numbered addresses.
The length of this field is determined
by the record type.

The actual data to be loaded into memory,
with each byte of data represented as a
pair of hexadecimal digits, in ASCII.

A checksum computed over the length,
address, and data fields. The checksum
is computed by adding the values of all
the character pairs (each character pair
represents a one-byte quantity) in these
fields, taking the one's complement of
the result, and finally taking the least
significant byte. This byte is then
repre sen ted as two ASCII hexadecimal
dig its.

There are eight types of S-records. They can be div ided in to
two categories: records containing actual data, and records used to
define and delimit groups of data-containing records. Types 1, 2,
and 3 are in the first category, and the rest of the types are in
the second category. Each of the S-record types is described
individually below.

104

CP/M-68K System Guide F.2 S-record Types

Table F-2. S-record Types

Type I Meaning

o This type is a header record used at the beg inn ing
of a group of S-records. The data field may
contain any desired identifying information. The
addre ss fie Id is two bytes (four S-record
characters) long, and is normally zero.

1 This type of record contains normal data. The
address field is two bytes long (four S-record
characters) •

2 Similar to Type 1, but with a 3-byte (six S-record
characters) address field.

3 Similar to Type 1, but with a 4-byte (eight S
record characters) address field.

5 This record type indicates the number of Type 1,
2, and 3 records in a group of S-records. The
count is placed in the address field. The data
field is empty (no characters).

7 This record signals the end of a block of type 3
S-records. If desired, the address field is 4
bytes long (8 characters), and may be used to
contain an address to which to pass control. The
data field is empty.

8 This is similar to type 7 except that it ends a
block of type 2 S-records, and its address field
is 3 bytes (6 characters) long.

9 This is similar to type 7 except that it ends a
block of type 1 S-records, and its address field
is 2 bytes (4 characters) long.

S-records are produced by the SENDC68 utility program
(described in the CP/M-68K Operating System Programmer's Guide).

End of Appendix F

105

Appendix G

CP/M-68K Error Messages

This appendix lists the error messages returned by the in ternal
components of CP/M-68K: BDOS, BIOS, and CCP, and by the CP/M-68K
system utility, PUTBOOT. The BIOS error messages listed here are
specific to the EXORmacs BIOS distributed by Digital Research.
BIOSes for other hardware might have different error messages which
should be documented by the hardware vendor.

The error messages are listed in Table G-l in alphabetic order
with explanations and suggested user responses.

Table G-l. CP/M-68K Error Messages

Message Meaning

bad relocation information bits

CCP. Th is me ssage is a result of a BDOS
Program Load Function (59) error. It indicates
that the file specified in the command line is
not a valid executable command file, or that
the file has been corrupted. Ensure that the
file is a command file. The CP/M-68K Operating
System Programmer's Guide describes the format
of a command file. If the file has been
corrupted, reassemble or recompile the source
file, and re link it before you reen te r the
command line.

BIOS ERROR -- DISK X NOT SUPPORTED

BIOS. The disk drive indicated by the variable
'-'X" is not supported by the BIOS. The BDOS
suppor ts a maximum of 16 dr ives, lettered A
through P. Check the documentation provided by
the manufacturer for your particular system
configuration to find out which of the BDOS
dr ives your BIOS implements. Specify tl'\e
cor rec t dr ive code and reen ter the command
line.

107

CP/M-68K System Guide G CP/M-68K Error Messages

Table G-l. (continued)

Message Meaning

BIOS ERROR -- Invalid Disk Status

BIOS. The disk controller returned unexpected
or incomprehensible information to the BIOS.
Retry the operation. If the error persists,
check the hardware. If the error does not come
from the hardware, it is caused by an error in
the internal logic of the BIOS. Contact the
place you purchased your system for assistance.
You should provide the information below.

1) Indicate which version of the operating
system you are using.

2) Describe your system's hardware
configuration.

3) Provide sufficient information to reproduce
the error. Indicate which program was
running at the time the error occurred. If
possible, you should also provide a disk
with a copy of the program.

Buffer Over flow

PUTBOOT. The bootstrap file will not fit in
the PUTBOOT bootstrap buffer. PUTBOOT contains
an internal buffer of approximately 16K bytes
in to which it reads the bootstrap file. Ei ther
make the bootstrap file smaller so that it will
fit into the buffer, or change the size of the
PUTBOOT buffer. The PUTBOOT source code is
supplied with the system distributed by ORI.
Equate bufsize (located near the front of the
PUTBOOT source code) to the required dimension
in Hexidecimals. Reassemble and relink the
source code before you reenter the PUTBOOT
command line.

Cannot Open Source File

PUTBOOT. PUTBOOT cannot locate the source
file. Ensure that you specify the correct
drive code and filename before you reenter the
PUTBOOT command line.

108

CP/M-68K System Guide G CP/M-68K Error Messages

Table G-l. (continued)

Message Meaning

CP/M Disk change error on drive x

BOOS. The disk in the drive indicated by the
var iable x is not the same disk the system
logged in prev iously. When the disk was
replaced you did not enter a CTRL-C to log in
the current disk. Therefore, when you
attempted to write to, erase, or rename a file
on the curren t disk, the BDOS set the dr ive
status to read-only and warm booted the system.
The current disk in the drive was not
overwritten. The drive status was returned to
read-wr ite when the system was warm booted.
Each time a disk is changed~ you must type a
CTRL-C to log in the new disk.

CP/M Disk file error: filename is read-only.
Do you want to: Change it to read/write (C),

or Abort (A)?

BDOS. You attempted to write to, erase, or
ren arne a file whose s ta tu s is read-only.
Specify one of the options enclosed in
parentheses. If you specify the C option, the
BOOS changes the status of the file to read
write and continues the operation. The read
only protec tion prev iously assigned to the file
is lost.

If you specify the A option or a CTRL-C,
the program terminates and CPM-68K returns the
system prompt.

CP/M Disk read error on drive x
Do you want to: Abort (A), Retry (R), or Continue

with bad data (C)?

BOOS. This message indicates a hardware error.
Specify one of the options enclosed in
parentheses. Each option is described below.

Option

A or CTRL-C

Action

Terminates the operation and
CP/M-68K returns the system
prompt. (Meaning continued on
next page.)

109

CP/M-68K System Guide G CP/M-68K Error Messages

Table G-l. (continued)

Message Meaning

CP/M Disk read error on drive x (continued)

Option

R

C

Action

Retries operation. If the retry
fails, the system reprompts with
the option message.

Ignores error and continues
program execution. Be careful
if you use this option. Program
execution should not be
con tinued for some types of
programs. For example, if you
are updating a data base and
receive this error but continue
program execution, you can
corrupt the index fields and the
entire data base. For other
programs, continuing program
execution is recommended. For
example, when you transfer a
long text file and receive an
error because one sector is bad,
you can continue transferr ing
the file. After the file is
transferred, review the file,
and add the data that was not
transferred due to the bad
sector.

~--.----------~
CP/M Disk write error on drive x
Do you want to: Abort (A), Retry (R),

or Continue with bad data (C)?

BDOS. This message indicates a hardware error.
Specify one of the options enclosed in
parentheses. Each option is described below.

Option

A or CTRL-C

R

Action

Terminates
CP/M-68K
prompt.

the opera t ion and
returns the system

Retries operation. If the retry
fa ils, the system reprompts with
the option message (Meaning
continued on next page.)

110

CP/M-68K System Guide G CP/M-68K Error Messages

Table G-l. (continued)

Message Meaning
1--------------------- -- --------~

CP/M Disk write error on drive x (continued)

Option

C

Action

Ignores error and continues
program execution. Be careful
if you use this option. Program
execution should not be
con tinued for some types of
programs. For example, if you
are updating a data base and
receive this error but continue
program execution, you can
corrupt the index fields and the
en tire da ta base. For other
programs, continuing program
exec u tion is recommended. For
example, when you transfe r a
long text file and receive an
error because one sec tor is bad,
you can continue transferring
the file. After the file is
transferred, review the file,
and add the data that was not
transferred due to the bad
sector.

CP/M Disk select error on drive x
Do you want to: Abort (A), Retry (R)

BOOS. There is no disk in the drive or the
disk is not inserted correctly. Ensure that
the disk is securely inserted in the drive. If
you enter the R option, the system retries the
operation. If you enter the A option or CTRL-C
the program terminates and CPM-68K returns the
system prompt.

CP/M Disk select error on drive x

BOOS. The disk selected in the command line is
outside the range A through P. CP/M-68K can
support up to 16 drives, lettered A through P.
Check the documentation provided by the
manufacturer to find out which drives your
particular system configuration supports.
Specify the correct drive code and reenter the
command line.

III

CP/M-6BK System Guide G CP/M-6BK Error Messages

Table G-I. (continued)

Message Meaning

File already exists

CCP. This error occurs during a REN command.
The name specified in the command line as the
new filename already exists. Use the ERA
command to delete the existing file if you wish
to replace it with the new file. If not,
select another filename and reenter the REN
command line.

insufficient memory or bad file header

CCP. This error could result from one of three
causes:

1) The file is not a valid executable command
file. Ensure that you are requesting the
correct file. This error can occur when you
en te r the filename before you en te r the
command for a utility. Check the
appropriate section of the CP/M-6BK
Operating System Programmer's Guide or the
CP/M-6BK Operating System User's Guide for
the cor rec t command syn tax before you
reenter the command line. If you are trying
to run a program when this error occurs, the
program file may have been corrupted.
Reassemble or recompile the source file and
relink it before you reen ter the command
line.

2) The program is too large for the available
memory. Add more memory boards to the
system configuration, or rewrite the prog ram
to use less memory.

3) The program is linked to an absolute
location in memory that cannot be used. The
program must be made relocatable, or linked
to a usable memory location. The BDOS
Get/Set TPA Limits Function (63) returns the
high and low boundaries of the memory space
that is available for loading programs.

112

CP/M-68K System Guide G CP/M-68K Error Messages

Table G-l. (continued)

Message Meaning

Invalid Command Line

No file

PUTBOOT. Ei ther the command line syntax is
incorrect, or you have selected a disk drive
code outside the range A through P. Refer to
the sec tion in this manual on the Pu'rBOOT
utility for a full description of the command
line syntax. The CP/M-68K BOOS supports 16
drives, lettered A through P. The BIOS mayor
may no t suppor tall 16 dr ives. Check the
documentation provided by the manufacturer for
your particular system configuration to find
ou t wh ich dr ives your BIOS suppor ts. Spec ify a
valid dr ive code before reen ter ing the PUTBOOT
command line.

CCP. The filename spec ified in the command
line does not exist. Ensure that you use the
correct filename and reenter the command line.

No wildcard filenames

CCP. The command specified in the command line
does not accept wildcards in file
specifications. Retype the command line using
a specific filename.

Program Load Error

CCP. This message indicates an undefined
failure of the BOOS Program Load Function (59).
Reboot the system and try again. If the error
persists, then it is caused by an error in the
internal logic of the BOOS. Contact the place
you purchased your system for assistance. You
should provide the information below.

I} Indicate which version of the operating
system you are using.

2} Describe your system's hardware configur
ation. (Meaning continued on next page.)

113

CP/M-68K System Guide G CP/M-68K Error Messages

Message

Table G-I. (continued)

Meaning

3) Provide sufficient information to reproduce
the error. Indicate which program was
running at the time the error occurred. If
possible, you should also provide a disk
with a copy of ,the program.

read error on program load

CCP. This message indicates a premature end
of-file. The file is smaller than the header
information indicates. Either the file header
has been corrupted or the file was only
partially written. Reassemble or recompile the
source file, and relink it before you reenter
the command line.

Se lect Error

PUTBOOT. This error is returned from the BIOS
select disk function. The drive specified in
the command line is either not supported by the
BIOS, or is not physically accessible. Check
the doc umen ta t ion p rov id ed by th e rna nu fac tu re r
to find out which drives your BIOS supports.
This error is also returned if a BIOS supported
drive is not supported by your system
configuration. Specify a valid drive and
reenter the PUTBOOT command line.

SUB file not found

CCP. The file requested either does not exist,
or does not have a filetype of SUB. Ensure
that you are requesting the correct file.
Refer to the section on SUBMIT in the CP/M-68K
Operating System User's Guide for information
on creating and using submit files.

Syntax: REN newfile=oldfile

CCP. The syntax of the REN command line is
incorrect. The correct syntax is given in the
error message. Enter the REN command followed
by a space, then the new filename, followed
immediately by an equals sign (=) and the name
of the file you want to rename.

114

CP/M-68K System Guide G CP/M-68K Error Messages

Table G-l. (continued)

Message Meaning

Too many arguments: argument?

CCP. The command line contains too many
arg umen ts. The ex tran eou s a rg umen ts are
indicated by the variable argument. Refer to
the CP/M-68K Operating System U!~er's Guide for
the correct syntax for the command. Specify
only as many arguments as the command syntax
allows and reenter the command line. Use a
second command line for the remaining
arguments, if appropriate.

Too Much Data for System Tracks

PUTBOOT. The bootstrap file is too large for
the space reserved for it on the disk. Either
make the bootstrap file smaller, or redefine
the number of tracks reserved on the disk for
the file. The number of tracks reserved for
th e bootstrap fi le is con trolled by the OFF
parameter in the disk parameter block in the
BIOS.

This error can also be caused by a
bootstrap fi Ie that con ta ins a symbol table and
relocation bits. To find out if the bootstrap
program will fit on the system tracks without
the symbol table and relocation bits, use the
SIZE68 Utility to display the amount of space
the bootstrap program occupies. The first and
second items returned by the SIZE68 Utility are
the amount of space occupied by the text and
data, re spec tively. The th ird item re turned is
the amount of space occupied by the BSS. The
sum of the first two items, or the total minus
the third item, will give you the amount of
space required for the bootstrap program on the
sy s tern track S. Compare the amount of space
your bootstrap program requires to the amount
of space allocated by the OFF parameter.

Because the symbol table and relocation
bits are at the end of the file, the bootstrap
program may have been entirely written to the
system tracks and you can ignore this message.
Or, you can run RELOC on the bootstrap file to
remove the symbol table and relocation bits
from the bootstrap file and reen ter the PUTBOOT
command line.

115

CP/M-68K System Guide G CP/M-68K Error Messages

~ab1e G-l. (continued)

Message Meaning

User * range is [0-15]

CCP. The use r number spec i fied in the command
line is not supported by the BIOS. The valid
range is enclosed in the square brackets in the
error message. Specify a user number between 0
and 15 (decimal) when you reenter the command
line.

Wr i te Error

PUTBOOT. Either the disk to which PUTBOOT is
writing is damaged or there is a hardware
error. Insert a new disk and reenter the
PUTBOOT command line. If the error persists,
check for a hardware error.

End of Appendix G

116

Index

-H flag, 53
0000, 40
autost, 51

-ccp, 16
-ccp entry point, 50
-init, 15
-init entry point, 50
-init routine, 51
=usercmd, 51

A

absolute, 2
absolu te data

down-loading, 50
address, 1
address space, 1
a 19 or i thms , 31
allocation vector, 11
ALV, 41
applications programs, 5
ASCII character,S, 20
ASCII CTRL-Z (lAH) , 22
AUXILIARY INPUT device, 33
AUXILIARY OUTPUT device, 33

B

base page, 2
BDOS, 3, 5, 6, 7, 50
BDOS Direct BIOS Function

Call 50, 13
BDOS function 61 Set Exception

Vector, 38
BIOS, 3, 5, 6, 10, 13
BIOS

compiled, 7
creating, 39

BIOS flush buffers operation,
47

BIOS function 0, 15
BIOS function 0

Initialization, 15
BIOS function 2 Console

Status, 17
BIOS function 3 Read Console

Character, 18
BIOS function 4 Write Console

Character, 19
BIOS function 5 List Character

Output, 20

117

BIOS function 6 Auxiliary
Output, 21

BIOS function 7 Auxiliary
Input, 22

BIOS function 8 Home, 23
BIOS function 9 Select Disk

Drive, 24
BIOS function 10 Set Track

Number, 25
BIOS function 11 Set Sector

Number, 26
BIOS function 12 Set DMA

Address, 27
BIOS function 13 Read Sector,

28
BIOS function 14 Write Sector,

29
BIOS function 15 Return List

Status, 30
BIOS function 16 Sector

Translate, 31
BIOS function 18 Get Address

of MRT, 32
BIOS function 19 Get I/O Byte,

33
BIOS function 20 Set I/O Byte,

36
BIOS function 21 Flush

Buffers, 37
BIOS function 22 Set Exception

Handler Address, 38
BIOS function I Warm Boot, 16
BIOS function

called by BDOS, 13
Home (8), 25

BIOS interface, 39
BIOS internal variables, 15
BIOS register usage, 14
BIOS write operation, 47
BLM, 43
Block Mask, 43
block number

largest allowed, 44
Block Shift Factor, 42
block storage, 2
BLS, 44
BLS bytes, 48
boot disk, 11, 49
boot tracks, 43
boot

warm, 47

bootstrap loader, 6
machine dependent, 43

bootstrap procedure, 9
bootstrapping loading, 9
BSH, 42
bss, 2
buffer

writing to disk, 47
built-in user commands, 4
byte, 1
byte (8 bit) value, 42

C

C language, 39
carriage return, 19
CBASE feature, 51
CCP, 3, 4, 6, 7, 50
CCP entry point, 16
character devices, 5
checksum vector, 41
CKS, 43
Cold Boot Automatic Command

Execution, 51
Cold Boot Loader, 7
Cold Boot Loader

crea ting, 10
cold start, 6
communication protocol, 20
configuration requirements, 49
Conout, 10
CONSOLE device, 33
CP/M-68K

customiz ing, 7
generating, 7
installing, 49
loading, 49
logical device

characteristics, 33
system modules, 3

CP/M-68K configuration, 39
CP/M-68K file structure, 1
CP/M-68K programming model, 2
CPM.REL, 7
CPM.SYS

creating, 7
CPM.SYS, 6, 9
CPM.SYS file, 51
CPMLDR, 9
CPMLDR. SYS, 10

building, 11
CPMLIB, 7
CSV, 41
CTRL-Z (lAH), 5

118

D

data segment, 2
device models

logical,S
DIRBUF, 40
directory buffer, 11
directory check vector, 43
disk, 6
disk access

sequential, 46
disk buffers

writing, 37
disk definition tables, 39
disk devices, 6
disk drive

total storage capacity, 43
disk head, 23
Disk Parameter Block (DPB), 11,

13, 24, 42, 43
Disk Parameter Block fields,

42
Disk Parameter Header (DPH),

11, 13, 24, 31, 40
Disk Parameter Header

elements, 40, 41
disk select operation, 24
disk throughput, 46
disk writes, 37
DMA address, 27
DMA buffer, 29
DPB, 40
DRM, 43
DSM, 43, 44

E

end-of-file, 5
end-of-file condition, 22
error indicator, 24
ESM, 44
exception vee tor area, 1, 38
EXORmacs, 49
Extent Mask, 43

F

FDC, 49
file storage, 6
file system tracks, 43
Function 0, 10

G

Get MRT, 11
graphics device

bit-mapped, 4

I

I/O byte, 34
I/O byte field definitions, 34
I/O character, 5
I/O devices

c ha r ac te r, 5
disk drives, 5
disk file, 5

Init, 10
in ter face

hardware, 5
interrupt vector area, 3

J

jsr ini t, 15

L

L068 command, 7
LDRLIB, 10
line-feed, 19
list device, 20
LIST device, 33
Loader BIOS

wr iting, 10
loader system library, 10
logical sector numbering, 41
longword (32-bit) value, 40
longword value, 1, 15
LRU buffers, 48

M

MACSbug, 49
mapping

logical to physical, 41
maximum track number

65535, 25
memory location

absolute, 7
Memory Region Table, 32
mopping

logical-to-physical, 6
Motorola MC68000, 1

119

N

nibble, 1

o

OFF parameter, 43, 53
offset, 1
output device

auxiliary, 21

p

parsing
command lines, 4

physical sector, 46
PIP, 35
PUTBOOT utility, 10, 11, 53

R

Read, 11
read/write head, 45
README file, 50
register contents

destroyed by BIOS, 13
RELOC utility, 7
relocatable, 2
reserved tracks

number of, 43
return code value, 28
rotational latency, 41, 45, 47
RTE, 10
rts instruction, 15

s

S-record files, 49
S-record systems, 50
S-records

bringing up CP/M-68K, 50
longword location, 50

scratchpad area, 40
scratchpad words, 40
sector, 5
sec.tor numbers

unskewed, 26
sector skewing, 53
sector translate table, 41
sectors

128-byte, 5, 45
Sectran, 11
Seldsk, 10
Set exception, 11
Setdma, 11

Setsec, 11
Settrk, 11
SETTRK function, 23
SIZE68 command, 7, 8
SPT, 42
SPT parameter, 53
STAT, 35
system disk, 6
system generation, 6

T

tex t segmen t, 2
TPA, 1
track, 6
track 00 position, 23
transient program, 2
translate table, 31
Trap 3 handler, 10
TRAP 3 instruction, 13
Trap 3 vector, 15
trap initialization, 10
turn-key systems, 51

u

UDC, 49
user interface, 4

w

warm boot, 47
word, 1
word (16-bit) value, 40, 42
word references, 36

x
XLT, 40

120

Reader Comment Card
We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date _____ First Edition: January 1983

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

CP / M-68KTM Operating System System Guide

COMMENTS AND SUGGESTIONS BECOME THE PROPERlY OF DIGITAL RESEARCH.

From: ____________________ __

Attn: Publications Production

BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 182 / PACIFIC GROVE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

[ill DIGITAL RESEARCH'"
P.o. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

CP/H-60KHA Operating System System Guid.e

Release Notes

Copyright © 1983 by Digital Research
CP/M-68K is a trademark of Digital Research.

Compiled February 1983

'l'he following listings are omitted from Appendix D of the CP/M-
68K'" Operating System System Guide. Insert them in your System
Guide after the following pages.

PAGE. 73

Insert page 73a after page 73 in Appendix D.

PAGE 78

Insert page 78a after page 78 in Appendix D.

PAGE 81

Insert page 8la after page 81 in Appendix D.

All Information Presented Here is Proprietary to Digital Research

1

CP!M-68K System Guide D EXORmacs BIOS

I····· ... /
/It .. It It /
1° Define the two serial ports on the DEBUG bo .. rd *1
/ .. It /

1* Port I\ddr .. ~" .. " *1

Ideflne PORTI OxFFEEOll 1* con!Jole port *1
Id"flne rORT2 OxFFF:EOl5 1* d"buq port °1

1* Por t orr"ets *1

Id .. fin .. PORTCTRL 0
Iddlne rOIlTSTr.T 0
Iddlnf! POIlTRDIl 2
hI .. fin .. rORTTOR 2

1* Control R .. " Ister *1
I· St"tU!I Reqi!!ter *1
I· Read Data Rp.ql"ter *1
/. Writf! Oata Reqlst .. r *1

1* ror t Control Function!! *1

Id,.[lne POIlTRSET J /. Port Reset ·1
I,I .. f1o .. PORT I II IT Oxll /. Port Inlttalh .. *1

I· rort 5tatu!J Valu,,!! ./

Iddlne PORTRDIlF I 1° R""d D"ta R"q Ister Full *1
Id"fln .. rORTTORE 2 /" Wr it" D"ta Reg i!lter Empty °1

I···· ... /
I· D<!f1n<! DI!!k 1/0 Addres!!e" and Relat"d Con"t"nt!! *1 I······· /
1<1"fln .. OSI(IPC

Id"On .. OSI(IIITV

1 d" f Inl! INTTOI PC
,define IlSTTOIPC
I d" fin .. HSGTOI PC
'define r.CI(TOIPC
Id'!(lnl! PKTTOIPC
Id .. fln .. I1SGFHIPC
Id"HnO! r.CKFHIPC
h!"f1n .. rKTFHIrc

I de fln .. DSKREr.D
Irl,,(ln .. OSKWRITE

OxFFOOOO

Ox)FC

OxD
OxF
OxlOI
OxlO)
OdOS
OxlS I
OdO)
OxlS 5

OxlO
Ox20

/* IPC OilS .. Addr .. s!! ·1

1° Addr .. s!! of Disk Int"rrupt Vl!ctor ·1

1* r)f[s .. ts in m .. m m"pp .. d io .. r .. " ·1

/. disk comm"nds */

I" So",,, chllra"t<!r!! 1I5 .. d In disk controller packets °1

'MHne STX 0)(02.
I,! .. f1n" ETX OxO)
'dp f In .. liCK Ox06

Listing 0-1. (continued)

~ll Information Presented Here is Proprietary to Digital Research

73 a

CP/M-68K System Guide o EXOHmacs DIOS

1<.I"t111" NUI11l:iK!i ~
1 <.I.d Ine MAXDSK IIIUl1IlaK:i-1)

/0 nu, .. (><:c ot <.I1:iks <.I"fin,,<.1 °1
/. ID.20X 1 ffiUUI l.llsk numbec III'

IIYTI:: cnv<.l:;k IUUI11l:iK:i1 •
BYTE ccnvdsk 161 I 4,

2,
5, 0, 1 I; 1° COllv",t CI'/M dskl to I::XOllu,.scs 01
l, 0, 0, 0, I II I" .. n<.l v1C" V"t:i" °1

I" defines toc 11'C .. n<.l <.Iisk st .. t"tI °1

1<.1 .. (1<>" lOLl::
Idefine ACTIVE

WORU 1PCtlt .. t,,;
WORD .. ctvdak,
LONG lntcountl

I

I" cucrent Jl-'C st"'t.~ "/
I" disk numl.lec of cuc,""tlV .. ctive <.I1:;k, if .. nv °1
1° count of interrupts """din,) to be I',ocessed °1

WOllD
ll'tTE
BYTE

!itAt~; ,e frolu defint:s .2.bove
ce, .. lYI I" 0 ~) not (e .. Llv
ch .. n,)el I" 0 .) nO ch .. nge

°1
°1
°1

LI"ktlta too INUMDSKSI;

/ •••••••••••••••••••••••••••••• l1li •••• 111 •••••••••••••••••••••••••••••••••••• /

I" Cc"ec 1C !iec 1 .. 1 Poct 1/0 Pcu.;"duc,," °1
/ •••••••••••••••••••••••••••••••••• 111 ••••••••••••••••••••••••••••••••••••• / I

/
/ ••••••••••••• 111 .. / /

I" Poct initi .. Uz .. tion 0/
/ •••••••••••••••••••••••••••••• l1li ••• /

poe tin it (poe t)
jEG BYTE "pOtt •

• (poc t • l'OltTCTRL) • i'OIl'I'IlSl::'f. 1° ce:let the poc t °1
° (pOtt • POR'I'CTRL) • PORTINIT;

/ ... /
1° G"nec ic ,;"c 1 .. 1 poct st .. tuS ",put ~t .. tu" 0/
/ ... t /

portst .. tlpocq
jEG B1TE ° por t.

1f (° (poc t • l'ORTSTA'r) , POIl'fRUllt') c"turn (Oxtt), 1° 1nput ,,, .. <IV 0/
else cetuclI(OxOOI. 1° not r" .. dv °1

Listing 0-1. (continued)

All Information Presented Here is Proprietary to Digital Research

78a

CP/M-68K System Guide D EXORmacs BIOS

I··· /
;. w.~1t Cor an liCK from the IrC ";
I·· .. •••• •••• .. •• ... /

",.,1 t"ck (I
I

REG WORD im~ave:
REG nYTE ",ork:

wh i 1r. (11
I

"'hile (I lntcount I : ;. w"lt .;

Ims1Ive 0 setilMsk(7I,
lntcount -0 1:
... ork • (DSIOf'C + IICKnlIf'CI->byte:
tf ((work" liCit I II (work·~ Ullitl

I

(DSKIf'C + IICKFl1If'CI->byt .. 0 0:
setllMskllmsavr.l:
rl!turn(work ~. IICKI:

5p.tlm""k I lm9av"I,

I····· .. ···· ... * */
/. IIckncw1edge a rnessag'! from the rrc .;
I·· .. •• */

(DSKJf'C + MSGFl1Jf'CI->bytp. 0 0, ;. clear m-sslIge fl~q .;
(DSKIf'C + IICItTOIrq->byte • ACIt: /. send 1\(:1(";

(DSKIf'C + IUTTOIf'CI->bytp. .. 0: ;. Int .. rrllpt If'C ";

/" ... /
;" Send II pack to the Ire "; I··"··"" ... " •• " •• " •••••••••• " ••••••••••••.••• " ••••• "" •••. """"" ••.•••••••• /
!Hm<ipkt(pktadr. pkt9izel
REG OYTE "pk til de: iEG WORD pkt~lzp.:

REG OYTE °IOPIICkpl
REG WORD Im,,"v!'!:

whlll! I (DSKIf'C+HSGTOIf'CI->byt!'! I: ;" w .. lt til ready 0;
(DSKIf'C+ACKFl1IPCI->byte 0 0:
(DSKIf'C4MSGFl1If'CI->byte 0 0:

Listing 0-1. (continued)

All Information Presented Here is Proprietary to Digital Research

81 a

DIGITAL RESEARCH
END USER PROGRAM LICENSE AGREEMENT

NOTICE TO USER - PLEASE READ THIS NOTICE CAREFULLY. DO NOT OPEN THE
DISKETTE PACKAGE UNTIL YOU HAVE READ THIS LICENSE AGREEMENT.

OPENING THE DISKETTE PACKAGE INDICATES YOUR AGREEMENT TO BE BOUND BY
THESE TERMS AND CONDITIONS. IF YOU DO NOT ACCEPT THESE TERMS AND
CONDITIONS, YOU MUST PROMPTLY RETURN THE PACKAGE UNOPENED TO THE PLACE OF
ACQUISITION AND YOUR MONEY WILL BE REFUNDED.

1. DEFINITIONS

- In this License Agreement, the terms:

1. DRI means DIGITAL RESEARCH (CALIFORNIA) INC., P.O. Box 579, Pacific Grove,
California 93950, owner of the copyright in, or authorized licensor of, the
program.

2. Machine means the single microcomputer on which you use the program.
Multiple CPU systems require additional licenses.

3. Program means the set of programs, documentation and related materials in
this package, together with all ancillary updates and enhancements supplied
by DRI to you regardless of the form in which you may subsequently use it,
and regardless of any modification which you make to it.

4. AUTHOR means any third party .iiuthor . and ow.ner of the .copyright in this
program.

You assume responsibiHty ·:for .the sel~ctlon of tt1~; program to achieve your intended
results, and for the installation, use and results obtained from the program.

2. LICENSE

You may:

1. Use the program on ,a single machine;

2. Copy the program into any machine readable or printed form for backup or
modification purposes in support of your use of the program on a single
machine. You may make up to three (3) copies of the program for such
purposes. (Certain programs, however, may include mechanisms to limit or
inhibit copying. They are marked "copy protected.") Copying of
documentation and other printed materials is prohibited;

3. Modify the program and/or merge it into another program for your use on the
single machine' (Any ,portion of th!s program .merged into another ,pr<)gram will
continue to be subject to the terms and conditions of this Agreement); and,

0900 (8/83) Page 1

END USER PROGRAM LICENSE AGREEMENT

4. Transfer the program ami license to another party if you notify DRI of name
and address of the other party and the other party agrees to a) accept the
terms and conditions of this Agreement, b) sign and forward to ORI a copy of
the registration card and c) pay the then current transfer fee. If you transfer
the program, you must at the same time either transfer all copies, including
the original, whether in printed or machine readable form to the same party or
destroy any copies not transferred; this includes all modifications and portions
of the program contained or merged into other programs.

You must reproduce and include the copyright notice on any copy, modification or
portion merged into another program.

YOU MAY NOT USE, COPY, MODIFY, TRANSFER, OR OTHERWISE MAKE AVAILABLE TO
ANY THIRD PARTY, THE PROGRAM, OR ANY COPY, MODIFICATION OR MERGED
PORTION, IN WHOLE OR IN PART, EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS
LICENSE AGREEMENT.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION OR MERGED PORTION
OF THE PROGRAM TO ANOTHER PARTY, YOUR LICENSE IS AUTOMATICALLY
TERMINATED.

3. TERM

The license is effective until terminated. You may terminate it at any other time by
destroying the program together with all copies, modifications and merged portions in
any form. It will also terminate upon conditions set forth elsewhere in this Agreement or
if you fail to comply with any term or condition of this Agreement. You agree upon such
termination to destroy the program together with all copies, modifications and merged
portions in any form.

4. LIMITED WARRANTY

THE PROGRAM IS PROVIDED "AS IS". NEITHER DRI NOR AUTHOR MAKE ANY
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE· ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU (AND
NOT DRI OR AUTHOR) ASSUME THE ENTIRE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY BY STATE OR
JURISDICTION.

Neither DRI nor AUTHOR warrant that the functions contained in the program will meet
your requirements or that the operation of the program will be uninterrupted or error free.

However, DRI warrants the diskette(s) on which the program is furnished, to be free
from defects in materials and workmanship under normal use for a period of ninety (gO)
days from the date of delivery to you as evidenced by a copy of your receipt.

0900 (8/83) Page 2

END USER PROGRAM LICENSE AGREEMENT

5. LIMITATIONS OF REMEDIES

DRI's entire liability and your exclusive remedy shall be:

1. The replacement of any diskette not meeting DRI's "Limited Warranty" and
which is returned to DRI or your place of acquisition with a copy of your
receipt. or

2. If DRI or the place of acquisition is unable to deliver a replacement diskette
which is free of defects in materials or workmanship, you may terminate this
Agreement by returning the program and your money will be refunded.

IN NO EVENT SHALL DRI OR AUTHOR BE LIABLE FOR ANY DAMAGES, INCLUDING ANY
LOST PROFITS, LOST SAVINGS, OR OTHER SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, EVEN IF DRI OR AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

SOME STATES AND JURISDICTIONS DO NOT ALLOW THE LIMITATION OR EXCLUSION
OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

6. REGISTRATION CARD

DRI may from time to time update its programs. Updates will be provided to you only if
a properly signed registration card is on file at DRI's main office or an authorized
registration card recipient. DRI is not obligated to make any program updates, or to
supply any such updates to you.

7. GENERAL

You may not sublicense, assign or transfer the license or the program except as
expressly provided in this Agreement. Any attempt otherwise to sublicense, assign or
transfer any of the rights, duties or obligations hereunder is void.

This Agreement will be governed by the laws of the State of California, except as to
matters of copyright where this Agreement shall be governed by U.S. federal law. You
and DRI hereby agree to the non-exclusive jurisdiction of the courts in the State of
California.

Should you have any questions concerning this Agreement, you may contact DRI by
writing to Digital Research Inc., P.O. Box 579, Pacific Grove, California 93950.

THIS AGREEMENT CANNOT AND SHALL NOT BE MODIFIED BY PURCHASE ORDERS,
ADVERTISING OR OTHER REPRESENTATIONS BY ANYONE, AND MAY ONLY BE MODIFIED
BY A WRITTEN AMENDMENT EXECUTED BY YOU AND AN AUTHORIZED OFFICER OF DRI.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT AND
AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER AGREE THAT IT
IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN YOU
AND DRI WHICH SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT, ORAL OR
WRITTEN, AND ANY COMMUNICATIONS BETWEEN YOU AND DRI RELATING TO THE
SUBJECT MATTER OF THIS AGREEMENT.

0900 (8/83) Page 3

