

Abstract

The application architecture of Newton, a technology
for supporting Personal Digital Assistants (PDAs), is
described. It combines a dynamic, object-oriented lan-
guage called NewtonScript with a hierarchical view sys-
tem and a persistent object store. It also contains
extensible subsystems for communications and user-input
recognition. In addition to PDA devices, the portable
implementation has been used to build supporting tools
for desktop machines.

1. Introduction

Newton



 technology was designed to support a new
type of computing device, the “personal digital assistant”.
PDAs are intended to help people capture, organize, and
communicate information more effectively. They are very
personal machines, adapting to the needs of individual
users, focused on the functionality required for an individ-
ual’s tasks. Physically, they are small, light, and inexpen-
sive, and their limited computing resources must be
carefully conserved.

This paper focuses on the higher levels of Newton soft-
ware, collectively known as the application architecture.
These components of the system are the most visible to
users and to application programmers, and as a group are
largely independent of the underlying operating system.

2. Overview

The bulk of the application architecture is found in
four interrelated components. The

object system

 imple-
ments the data representation model used by the other
pieces.

NewtonScript

 is a language defined and imple-
mented using the object system. The

view system

 handles
screen display and user input, using the object system
and NewtonScript to represent views and define applica-

The Newton Application Architecture

Walter R. Smith
Apple Computer, Inc.

Cupertino, California 95014

wrs@apple.com

tion behavior. Finally, the

object store

 is used by applica-
tions to store and retrieve objects.

The other parts of the architecture are more indepen-
dent. There is a flexible and extensible communications
system. The recognition architecture, also extensible,
interprets user input. Add-on software is delivered in the
form of

packages

 that combine multiple pieces of soft-
ware into a single unit.

Most of the implementation is highly portable. We
have re-used parts of the architecture to construct a set of
tools that run on computers using the Microsoft Windows
and Macintosh operating environments. These tools are
used by end users, programmers, and content developers.

3. Object system

The object system is used by other parts of the system
to represent data. The data model is similar to that found
in many dynamic language runtime systems [1]. The basic
element is a 32-bit

value

, which may be an “immediate”
object such as an integer or character, or a pointer to a
heap object. A few low-order bits are reserved for tags
that distinguish between the different kinds of values.

The primitive object types include integers, characters,
floating-point numbers, symbols (as found in Lisp and
Smalltalk), and Unicode strings [8]. A “binary” object
type is used for sounds, pictures, and other large pointer-
less objects. More complicated structures can be created
using heap objects called

arrays

 and

frames

. An array is
an ordered list of slots, numbered consecutively from
zero, each holding a value. A frame is a list of

tags

 (which
are symbols) and associated values. Combinations of
these fundamental object types can represent a wide vari-
ety of data structures. (See Fig. 1.)

Objects are self-describing. That is, given a value, it is
possible to determine all of its characteristics at runtime.
In addition to the obvious advantages for debugging, this
feature allows more powerful programming. For example,

Newton and MessagePad are trademarks of Apple Computer, Inc.

In

Proceedings of the 39th IEEE Computer Society International Conference

, pp. 156–161, San Francisco, 1994.
Copyright



 1994 IEEE

This document was created with FrameMaker 4.0.4

a function may take a sound or an array of sounds, in the
latter case playing all the sounds in the array.

Binary objects and arrays have a special “type” slot
that must contain a symbol reference. This slot is used to
attach type information to these objects. For example, a
picture in Macintosh PICT format is represented as a
binary object whose type slot contains the symbol

pic-

ture

. This slot is needed to make such objects self-
describing; without such identifying information, they
would be identifiable only by context. Type symbols are
arranged in a simple hierarchy.

Because objects are uniform and self-describing, the
system can locate all object references, which allows it to
perform automatic memory management. At various
times, such as when an object allocation would fail for
lack of memory, the system performs a garbage collec-
tion that frees memory occupied by objects that cannot be
legitimately accessed, due to the lack of references to
them. The layout of the objects in memory is kept simple,
to make algorithms that must scan objects for pointers,
such as garbage collection, simple and fast.

4. NewtonScript

All Newton applications are written in a dynamic
object-oriented language called NewtonScript. The syn-
tax of NewtonScript is similar to Pascal. It uses infix nota-
tion for built-in math and comparison operators,

begin

and

end

 for compound statements, and has the standard
Pascal control structures (such as

if

/

then

,

while

,

repeat

, and

for

). (See Fig. 2.) However, it is a dynamic
language whose semantics are similar to Scheme [6]:
functions are first-class objects, all statements have a
return value, variables are untyped, and it has upward clo-
sures (but not continuations). In addition, it has features
for object-oriented programming.

name
company
phones

fullName

Walter
Smith

array
408-996-
1010

faxPhone

408-974-
6094

0
1

corpName

workPhone
face

picture

Figure 1. An example of the object model, showing one
frame, one array, and five binary objects.

Apple
Computer

The language is strongly tied to the Newton object sys-
tem. It includes operators and syntax features that make it
easy to create and manipulate Newton objects. More sig-
nificantly, frames are the basis for inheritance and mes-
sage passing.

NewtonScript’s object-oriented features are in some
ways a simplified version of Self [7], with frames taking
the role of Self objects. A frame is the only kind of object
that can respond to messages and serve as the context of a
method execution. Like Self, inheritance is prototype-
based: there are no classes, and objects inherit directly
from other objects. However, variable references are dis-
tinct from message sends, and inheritance is limited to
two paths with fixed priority.

The inheritance system looks for two slot tags,

_proto

and

_parent

, which define the inheritance relationship
between frames. The names are chosen to reflect the con-
vention that

_parent

 frames are containers, frames hold-
ing shared data, while

_proto

 frames are prototypes,
frames to be refined by other frames. When a message is
sent to a frame, or a variable reference is resolved, the
interpreter looks for a matching tag in the receiver frame.
If it is not found, the lookup tries the frames in the
receiver’s

_proto

 chain, then goes up to the

_parent

frame and tries its

_proto

 chain, and so on.
A slightly different rule applies to variable assignment.

The same lookup occurs to locate the frame containing
the variable, but the assignment always occurs in the

_parent

 chain, not in a

_proto

 chain, creating a new
slot if necessary. This assignment rule makes it difficult to
accidentally modify a prototype frame, which might be
shared by many frames. More importantly, it provides a
form of “copy-on-write”: the prototypes may provide an
initial value for a slot, which is overridden in a particular
frame by the first assignment. This delays the allocation
of the slot as long as possible, saving space. (See Fig. 3.)

Figure 2. A tiny NewtonScript example. This function
finds the highest value from the price slots of all the
entries in the given soup.

func (soup) begin
 local max := nil;
 local cursor :=
 Query(soup, '{type: index});
 while cursor:Entry() do begin
 local e := cursor:Entry();
 if not max or e.price > max then
 max := e.price;
 cursor:Next()
 end;
 max
end

NewtonScript is compiled into bytecodes, which are
interpreted at runtime. This has two advantages: the byte-
codes are significantly smaller than native code, and they
make Newton applications inherently portable to any pro-
cessor. Because the Newton technology is widely
licensed, and expected to migrate to a variety of devices,
these are important properties. However, some applica-
tions cannot tolerate the speed penalty of bytecode inter-
pretation. We are working on a native-code compiler for
NewtonScript that will allow the programmer to selec-
tively pay the space penalty for the parts of an application
for which speed is critical. Bytecodes will still be gener-
ated, so the code will retain portability.

5. View system

The view system is used to define the appearance and
behavior of application software. It is similar in many
respects to the view systems in Smalltalk-80 [4] and

Figure 3. NewtonScript inheritance. Lookup proceeds
from the receiver in the order shown. Assignment to the
variable X will create a slot X in frame ➂.

receiver

X

➀ ➁

➂ ➃ ➄

➅ ➆

frame

_parent

_proto

MacApp [2]. Briefly, an application’s user interface is
decomposed into

views

, which are rectangular areas
mapped into screen space. Each view displays itself on
the screen and reacts to user input in its space, under the
management of the view system. A view can contain other
views, so they form a hierarchy.

In Newton’s view system, each view is defined by a
frame. The characteristics of the view are defined by the
slots of the frame. For example, the bounds of the view
are determined by its

viewBounds

 slot. The view system
translates events into NewtonScript messages to the view
frames.

NewtonScript’s inheritance system is used to advan-
tage in the view system. When a view and its subviews
are activated, the

_parent

 slot of each view is set to its
enclosing view. This allows variables and view character-
istics to be inherited from enclosing views through the

_parent

 chain.
The

_proto

 chain is used to share common view fea-
tures. A

view template

 may be constructed that contains
some or all of the slots necessary for a certain kind of
view, such as a button. Specific views may then have a

_proto

 slot referring to the template, thus inheriting its
characteristics, and additional slots parameterizing the
template, such as a button’s title. Some templates may be
located in the system ROM, where they can be shared by
all applications, and each application may contain tem-
plates for its own views to share.

_Proto

 inheritance is also used to reduce RAM
usage. View frames are normally located in ROM or in
read-only package space (see “Packages” below). Rather
than cloning them into RAM so their

_parent

 slots can
be set, the view system creates a small frame in RAM for
each view. This frame init ial ly contains only the

_parent

 slot and a

_proto

 slot referring to the view

Figure 4. A view containing four subviews, and its underlying Newton objects. The views are represented by the small RAM
frames on the left, containing only _parent and _proto pointers. The RAM frames’ _proto slots reference the view
frames in the application package, whose _proto slots reference view templates in the system ROM.

protoRadioCluster

protoButtonprotoRadioButton

System ROMPackageRAM

frame. When view slots are changed by variable assign-
ment, the standard NewtonScript assignment mechanism
will create new slots in the RAM frame to hold the
changed values, thus delaying the use of RAM space as
long as possible. (See Fig. 4.)

6. Object store

Newton devices can have a variety of storage systems.
For example, the Apple MessagePad



 reserves a portion
of its internal RAM as a permanent, protected user data
store. PCMCIA cards can extend that storage with RAM,
Flash RAM, or ROM devices. All of these media are
accessed through a single high-level interface called the
object store.

The object store imposes the uniform Newton object
model on persistent storage devices. Each physical
device (internal RAM, PCMCIA card, etc.) contains a

store

. Each store contains one or more

soups

, which are
collections of related data items called

entries

. Each entry
is structured as a frame. Of course, the frame may refer to
other objects, which may refer to others, and so on; the
entry includes the entire set of objects reachable from the
top-level frame.

Each soup has a set of

indexes

, which are defined by a
data type (integer, string, etc.) and a path from the top
level of an entry to the indexed data item. For example, a
soup for inventory items might have an integer index on
the “item number” slot of its entries. The indexes can be
used in a

query

, which specifies an index and a set of con-
straints and results in a

cursor

. A cursor is an object that
represents a position in the set of entries matched by the
query. It can be moved back and forth, and can deliver the
current entry.

An entry acts exactly like a regular frame in all
respects, except that it has a few more valid operations to
find out what soup it came from, write out changes to the
soup, and so forth. This transparency makes it easy to
manipulate persistent data. To minimize RAM usage,

fault
blocks

, small objects containing only enough information
to locate an entry in the storage medium, are used to rep-
resent entries. The system does not actually read in and
decompress an entry until the first access to one of its
slots.

The usual behavior of a Newton application is to
present a merged view of the data in the internal store
with data on a PCMCIA card. The data on a card is
regarded as an extension to the internal data. The object
store makes this easier by providing

union soups

, which
are virtual soups—objects with the same interface as
soups—that automatically merge the data from a set of
real soups.

The object store has many advantages over a more tra-
ditional filesystem. Applications do not need to implement

their own methods of translating objects between runtime
form and persistent form, so they are smaller and easier to
write. It is very easy for Newton applications to share
data, since they all get the same high-level interface to it;
we encourage developers to share their persistent data
structures to foster the creation of highly cooperative
applications.

The Newton object store was inspired by a number of
research projects, notably PS-Algol [3] and Persistent
Smalltalk [5].

7. Communications

The ability to communicate with other devices is criti-
cal to many PDA applications. Newton’s communication
framework is designed to provide uniform access to com-
munication services, and to allow new protocols and ser-
vices to be installed and removed dynamically.

Communications services are accessed through
objects called

endpoints

. When an endpoint is created, all
information necessary to construct and connect it is speci-
fied through a set of

options

. For example, the options
might specify an ADSP (AppleTalk Data Stream Protocol)
connection to a certain address and socket number, or a
modem connection at 9600 baud using MNP 5 to a certain
phone number. Once the connection is made, data can be
sent and received over the endpoint using a set of opera-
tions common to all endpoints. Separating the protocol-
dependent connection process from the largely indepen-
dent data-moving operations simplifies the interface as
well as the client applications.

Application developers use endpoints through a New-
tonScript interface. This interface is somewhat similar to
the view system, in that endpoints are represented by
frames. An endpoint frame specifies the options for the
connection, as well as actions to be performed when cer-
tain events occur to the endpoint. The inheritance system
allows common features to be shared between endpoint
frames.

Protocol developers use a low-level interface to add
new kinds of endpoints. New protocols can be installed
and removed at runtime, and are looked up dynamically
when an endpoint is created. This ability is useful for
PCMCIA cards that contain communications hardware.
For example, the Apple Messaging Card is a PCMCIA
card that contains an alphanumeric pager and a ROM with
a Newton communication driver and application. The
pager has its own power supply and processor and can
receive and store messages independently. When the card
is inserted into a Newton, a protocol on the card is
installed that allows access to the pager interface from
applications.

8. Recognition

User input is managed by a powerful recognition archi-
tecture that can arbitrate between several recognizers
operating simultaneously. For example, the MessagePad
contains a text recognizer that can handle printed, cursive,
or mixed handwriting; a graphics recognizer that looks for
lines, curves, and symmetries; and a recognizer for ges-
tures such as scrubs and carets. All of these recognizers
can be examining the input from the tablet at the same
time. The match with the highest confidence is dis-
patched to the appropriate view. Applications can activate
and parameterize recognition on a view-by-view basis.
Also, the recognition architecture is extensible: new rec-
ognizers can be added and existing ones replaced.

9. Application structure

A Newton application usually consists of at least one
top-level view, with many subviews. When the applica-
tion is installed, the top-level view is made a subview of
the “root view”, which is the view that contains every-
thing that appears on the screen. Opening the application
is done simply by showing the application’s top-level
view.

The definition of NewtonScript does not allow the pos-
sibility of certain bugs endemic to low-level languages
like C—dangling pointers, pointer aliasing, multiple deal-
location, out-of-bounds array references—that can result
in arbitrary corruption of the heap or stack. Thus, Newton

does not need the usual solution to such bugs: walling off
applications into their own heaps, stacks, or even entire
address spaces.

All Newton applications run in the same address space.
In fact, they are part of the same “meta-application”, since
they are just subviews of the root view. This simplifies the
system structure considerably. There are no “windows”,
just views that look like windows, so there is no need for
a separate “window manager”. Applications can commu-
nicate simply by sending NewtonScript messages to each
other, or to objects whose pointers they put in a public
place, so there is no need for an inter-application commu-
nication system. Code, data, and view templates can be
freely shared between applications just by passing point-
ers around.

Newton software is delivered in the form of a

package

.
Each package contains one or more

parts

, which are inde-
pendent pieces that are dispatched to the appropriate part
of the system when the package is installed. For example,
a package for a communication application might contain
three parts: the application itself, a font used by the appli-
cation, and a communication driver.

Packages are stored in the object store, but the system
uses them as if they were resident in memory. This allows
the use of direct pointers to objects embedded in the pack-
age, from objects in RAM as well as other objects in the
package. Each package is assigned a region of virtual
memory and is paged in as necessary. Because storage is
very limited, the pages are usually compressed in the store
and decompressed on demand.

Figure 5. Newton Toolkit. The window on the left shows an application’s views in graphic form; they can be moved and
resized with the mouse. The upper-right window is a browser on the view hierarchy, currently showing the NewtonScript
source for a view method. The “Inspector” window allows NewtonScript expressions to be executed on the Newton device.

10. Tools

The object system, the compiler and interpreter for
NewtonScript, and the object store are portable by design,
and are currently working on Macintosh and Windows
platforms in addition to Newton devices. We have used
these subsystems as the basis of several tools.

Newton Toolkit (or “NTK”) is the development envi-
ronment for Newton applications. (See Fig. 5.) It gives the
programmer a graphical interface to edit the visual aspects
of the view hierarchy, as well as a browser to edit the slots
of the view frames. The output of NTK is a package,
which is downloaded to a Newton for execution. An
“Inspector” window gives access to the NewtonScript
interpreter in a Newton device, allowing live debugging
and modification of a running application. The editor in
NTK is partially written in NewtonScript, and can be
extended with new commands written by the user.

Book Maker is an adjunct to NTK that produces digital
books. It accepts files in common word processor file for-
mats, and produces a data structure that can be built into a
package by NTK and interpreted by a book reader built
into the Newton system. The files can contain commands
that specify pagination, hypertext-like links, embedded
forms, and other features.

Newton Connection extends the reach of the Newton
object store to desktop machines. It can maintain dupli-
cate data stores on the desktop, periodically “synchroniz-
ing” with the data on a Newton device—changes are
propagated in both directions on an entry-by-entry basis.
It also contains editors that allow the desktop user to mod-
ify the data using the native interface.

11. Conclusion

Newton combines many advanced software technolo-
gies. It is the first widely-available platform with a
dynamic object-oriented language, view system, and per-
sistent object store built into the basic system software.
Nevertheless, the highly integrated nature of the design
gives it a surprisingly simple structure—a small number
of concepts used in different ways. Our experience so far
shows that the system and tools are relatively easy to
learn, and that programmer productivity is much higher
than with more traditional systems. We hope to see New-
ton become a standard platform for a new PDA industry.

We would also like to promote a broader software mar-
ket. In desktop computing, there is a strong trend toward
huge, monolithic application programs whose vast func-
tionality is largely ignored by any individual user. It is dif-
ficult for the smaller, perhaps more innovative, software
maker to compete and survive in such an environment.
The Newton architecture and tools make it easier to create
and distribute small, focused applications quickly, open-

ing up opportunities for smaller vendors in the PDA soft-
ware arena.

12. Bibliography

[1] Andrew W. Appel. A runtime system.

Lisp and Symbolic
Computation 3

, 1990, 343–380.

[2]

Programmer’s Guide to MacApp

. Developer Technical
Publications 030-1937-A, Apple Computer, Inc., 1992.

[3] M. P. Atkinson, K. J. Chisolm, and W. P. Cockshott. PS-
Algol: an Algol with a persistent heap.

ACM SIGPLAN
Notices 17

, 7 (July 1981).

[4] A. Goldberg and D. Robson.

Smalltalk-80: The Language
and its Implementation.

 Addison-Wesley, 1983.

[5] Anthony L. Hosking, J. Eliot B. Moss, and Cynthia Bliss.
Design of an object faulting persistent Smalltalk. C

OINS

Technical Report 90-45, Department of Computer and
Information Science, University of Massachusetts,
Amherst, MA, May 1990.

[6] J. Rees and W. Clinger, editors. The revised

3

 report on the
algorithmic language Scheme.

ACM SIGPLAN Notices 21,
12 (December 1986).

[7] David Ungar and Randall B. Smith. Self: the power of
simplicity. In OOPSLA ’87 Conference Proceedings, pp.
227-241, Orlando, Florida, 1987. Published as SIGPLAN
Notices 22, 12, December 1987.

[8] The Unicode Consortium. The Unicode Standard: World-
wide Character Encoding, Version 1.0. Addison-Wesley,
1991.

[9] N. Wirth. The programming language PASCAL. Acta
Informatica 6, 4, 35–63.

