
Inside This Issue

continued on page 21

Volume II, Number 2 April 1996

gy gy Newton Technolo
J O U R N A L

®

Newton Directions New Technology

Newton Directions
C++ and NewtonScript 1

New Technology
Apple Announces New
MessagePad 130 with Newton 2.0! 1

Communications
Technology
Finite-State Machines:
A Model for Newton Communications 3

Technology Update
Package Deal 6

New Technology
Suppressing and Freezing Packages
(Newton’s “Shift Key”) 10

Communications
Technology
Move It! 12

Communications
Technology
Writing a Transport 17

Business Opportunities
Seven Ways to Create
the Killer Newton Application 22

Letter From the Editors
Dear Newton Developer 23

Apple Announces
New MessagePad
130 with Newton
2.0!
by Korey McCormack, Apple Computer, Inc.

Apple Computer, Inc. has announced the
newest member of the MessagePad family of
products, the MessagePad 130. The
MessagePad 130, with the award-winning
Newton 2.0 operating system, is the first
Newton PDA for mobile professionals that offers
user controllable backlighting for on-demand
use, and a new non-glare screen for viewing and
entering information under any lighting
conditions. The MessagePad 130 also provides
additional system memory for improved
performance with Internet communications
applications and multi-tasking.

THE POWER OF NEWTON 2.0
The MessagePad 130 with Newton 2.0 allows
users to organize their work and personal life,
seamlessly integrate information with personal
computers, communicate using faxes, wireless
paging and e-mail, and expand its capabilities
with a wide range of third-party solutions.
Improved handwriting recognition allows for
easy data entry, recognizing printing, cursive or a
combination of both that transforms the
handwriting into typed text. It has a built-in
notepad, to-do list, datebook, telephone log, and
address file for organizing personal and business
affairs, as well as Pocket Quicken (US only) to
help organize personal and business expenses.

C++ and
NewtonScript
Walter Smith and Rick Fleischman,
Apple Computer, Inc.

With the release of Newton C++ Tools later this
year, Newton software developers will have the
ability to incorporate C++ code in their Newton
applications. However, the Newton software
architecture is rather non-traditional, so the use
of C++ will be somewhat different on the Newton
platform than on other platforms. NewtonScript
will continue to be the high-level application
development language, while C++ can be used
when necessary for optimized performance, or
when you have existing C or C++ code you would
like to reuse.

In this article, we explore the relationship
between C++ and NewtonScript. We will discuss
the languages themselves and the motivations
behind their designs, as well as the practical
aspects of combining them in the Newton
environment.

LANGUAGE DIFFERENCES

The designers of NewtonScript and C++ had very
different goals and priorities. Not surprisingly,
the resulting languages are different.

C++

C++ was intended to be a “better C” – a
language that could supersede the C language and
add features for larger-scale programming, such as
classes. Some of the critical design goals were:
• Compatibility with C
• Speed and space performance equivalent to C
• Integration with existing development

systems

April 1996 Newton Technology Journal

2

Dear Newton Developer,
The Newton Systems Group has just
concluded its most successful quarter to
date. In addition to the Best-Of-Comdex
honors for 2.0, an avalanche of positive
press has followed. In validation of what
you may already know, sales at 150% of
expected volumes tell the world that
Newton 2.0 is a hit.

Going forward, our collective challenge
will be to build upon the increasing
awareness and goodwill being generated by
the launch of 2.0 to focus all our energy on
solutions development. The key to our
mutual success is to dominate in the
applications space.

Customers tell us that they are impressed
with the applications available for Newton
devices, and are purchasing MessagePads for
much more than their integration,
communication, and organization
capabilities. Third party applications often
offer customers a complete mobile solution
which parallels their work on the desktop,
but lets them work away from the office with
a truly mobile device.

At our recent SI / VAR developers
conference over 400 developers (our other
customer base) saw demonstration after
demonstration of vertical, horizontal and
peripheral solutions for the platform. It was
obvious to everyone in attendance that
critical mass is quickly approaching. In the
closing remarks executives Jim Buckley
(President of the Americas), Dave Nagel
(Senior VP R&D) and Mike Markula

all commented that the future for Newton
was indeed a bright, if not a critical part of
Apple’s strategy.

For our part, we will continue to innovate
and make systems facilities and tools available
so you can realize your best applications ideas
in the Extras Drawer. We will also continue
our platform marketing and advertising, and
we will continue to pursue licensees to help
proliferate the platform.

For your part, we hope you remain as
committed to our shared vision as you have
been and continue to show the world how
great Newton is by putting forth your best
work on our platform first.

Best Regards,

Mike Lundgren
Acting Director WW Sales and Market
Development

……………………………………………………

Published by Apple Computer, Inc.

Lee DePalma Dorsey • Managing Editor

Gerry Kane • Coordinating Editor,Technical Content

Gabriel Acosta-Lopez • Coordinating Editor, DTS and
Training Content

Philip Ivanier • Manager, Newton Developer Relations

Technical Peer Review Board
J. Christopher Bell, Bob Ebert, Jim Schram,
Maurice Sharp, Bruce Thompson

Contributors
J. Christopher Bell, Michael S. Engber, Rick Fleischman,
Guy Kawasaki, Korey McCormack, Jim Schram,
Walter Smith, Bruce Thompson

……………………………………………………

Produced by Xplain Corporation

Neil Ticktin • Publisher

John Kawakami • Editorial Assistant

Matt Neuburg • Editorial Assistant

Judith Chaplin • Art Director

……………………………………………………

© 1996 Apple Computer, Inc., 1 Infinite Loop,Cupertino,CA
95014, 408-996-1010. All rights reserved.

Apple, the Apple logo, APDA, AppleDesign, AppleLink,
AppleShare, Apple SuperDrive, AppleTalk, HyperCard,
LaserWriter, Light Bulb Logo, Mac, MacApp, Macintosh, Macintosh
Quadra, MPW, Newton, Newton Toolkit, NewtonScript,
Performa, QuickTime, StyleWriter and WorldScript are
trademarks of Apple Computer, Inc., registered in the U.S. and
other countries. AOCE, AppleScript, AppleSearch, ColorSync,
develop, eWorld, Finder, OpenDoc, Power Macintosh,
QuickDraw, SNA•ps, StarCore, and Sound Manager are
trademarks, and ACOT is a service mark of Apple Computer, Inc.
Motorola and Marco are registered trademarks of Motorola, Inc.
NuBus is a trademark of Texas Instruments. PowerPC is a
trademark of International Business Machines Corporation, used
under license therefrom. Windows is a trademark of Microsoft
Corporation and SoftWindows is a trademark used under license
by Insignia from Microsoft Corporation. UNIX is a registered
trademark of UNIX System Laboratories, Inc. CompuServe,
Pocket Quicken by Intuit,CIS Retriever by BlackLabs, PowerForms
by Sestra, Inc.,ACT! by Symantec, Berlitz, and all other trademarks
are the property of their respective owners.

Mention of products in this publication is for informational
purposes only and constitutes neither an endorsement nor a
recommendation.All product specifications and descriptions were
supplied by the respective vendor or supplier. Apple assumes no
responsibility with regard to the selection, performance, or use of
the products listed in this publication. All understandings,
agreements, or warranties take place directly between the vendors
and prospective users. Limitation of liability: Apple makes no
warranties with respect to the contents of products listed in this
publication or of the completeness or accuracy of this publication.
Apple specifically disclaims all warranties, express or implied,
including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose.

gy gy Newton Technolo
J O U R N A L

®

Volume II, Number 2 April 1996

An Address to Developers from
Newton WW Sales and Marketing

Guest Editorial

Communications between the Newton and other devices tends to be a
complex task. Between managing the endpoint and handling the
interactions with the user, there is a lot going on. Modeling the
communications using a finite-state machine simplifies the task of designing
a communications-based application.

WHAT IS A FINITE-STATE MACHINE?
A finite-state machine (FSM, or simply state machine) is a collection of
states, events, actions, and transitions between states. Figure 1 shows an
example of a simple FSM.

Figure 1: Simple Finite State Machine

This FSM has four states (Start, State1, State2, and End) and responds to
two different events (Event1 and Event2). The actions occur when moving
from one state to the next. For example, if the FSM is in the Start state and
Event1 occurs, then Action1 will be performed as the FSM is moving to
State1. It is often easier to draw a state-transition diagram (like Figure 1)
than it is to describe in words (and often code) what the actions are.

Given a state-transition diagram, it is easy to create a state-transition table
like the following:

Event *Event?*
Current State Event1 Event2
Start (Action1, State1) (Action3, State2)
State1 – (Action2, End)
State2 (Action4, End) –
End – –

The state-transition table is the key to creating FSMs for Newton
communications. With a state-transition table, NTK, and protoFSM
(described below), building a finite-state machine is actually quite easy.

PROTOFSM
protoFSM , protoState , and protoEvent are a set of user prototypes
that can be used to easily construct finite-state machines. The state machine,
the states, and the events are laid out as if a view were being created. The
state machine is the parent, with the states as children. Each state contains
event children for each event that the state responds to. The event contains
an action function and the symbol of the next state to transition to after the
action has completed.

The state machine itself has a few additional slots. The vars slot is a
frame that contains any additional variables that the actions may need to use.
An endpoint is a good example of something to put into the vars frame,
because many of the action procedures will need to access the endpoint in a
communications-based state machine. There are also slots that reflect the
current state, the current event, and the current action procedure.1

Once a state machine is set up, using it is simply a matter of calling the
doEvent method of the machine. doEvent takes two parameters: the
first is the symbol of the event, and the second is an array of additional
parameters for the action procedure. The action procedure is invoked in the
context of the state machine, with the current state, event, and additional
parameters passed in. After the action procedure returns, the state will be
changed according to the nextState defined for the event.

WHY USE A STATE MACHINE?
Many Newton applications that perform communications have two main
“tasks” operating essentially in parallel.2 The main “tasks” of a
communications application are user-interface management (in general, the
primary operation of the application) and communications management.
An example of this separation is the Llama-Talk sample from Newton DTS.
This application has user-interface elements to send various kinds of objects
over an ADSP connection. The user-interface elements (buttons) queue up
requests to send the objects, and an idle-script actually performs the
communications.

A state machine runs in a similar fashion. The user-interface elements will
typically post events to the state machine based on what the user has
requested. This includes operations like initiating a connection, disconnecting,
sending items, and so on. The response to the event (the action procedure)
will perform the actual endpoint calls asynchronously, with the completion
scripts also posting events to indicate the success or failure of the action.

AN EXAMPLE OF A STATE MACHINE

To help illustrate all this, let’s look at a state machine for doing simple

Newton Technology Journal April 1996

3

Finite-State Machines: A Model for Newton Communications
by Jim Schram and Bruce Thompson, Apple Computer, Inc.

Communications Technology

endpoint setup and tear-down. The endpoint will establish a serial
connection, send and receive simple items, and do a disconnect in response
to a user action (or whenever an error occurs). First, we need to draw a state
diagram to show the behavior of the endpoint state machine (see Figure 2).

Figure 2: State Diagram

The next step is to construct a state-transition table from this diagram.
For the sake of readability, the table is being presented more as an outline.
This helps match the form the state machine will take in NTK.

• Start State:
• Instantiate Event:

• NextState: Istantiated
• Action: Create an endpoint frame in vars , call ep:Instantiate()

• Instantiated State:
• Bind Event:

• NextState: Binding
• Action: call ep:Bind asynchronously; the completionScript

will post either Error or BindComplete
• Dispose Event:

• NextState: Start
• Action: call ep:Dispose() and throw away the endpoint frame

• Binding State:
• BindComplete Event:

• NextState: Bound
• Action: none

• Error Event:
• NextState: Instantiated
• Action: Post a Notify that an error occurred. Could also post a

Dispose event from here!
• Bound State:

• Connect Event:
• NextState: Connecting
• Action: call ep:Connect asynchronously; the completionScript
will post either Error or ConnectComplete

• Unbind Event:
• NextState: Unbinding

• Action: call ep:Unbind asynchronously; the completionScript
will post either Error or UnbindComplete

• Connecting State:
• ConnectComplete Event:

• NextState: Connected
• Action: Setup the inputSpec . The inputScript will post an

InputArrived event, the completionScript will post an
InputError event if an error occurs

• Error Event:
• NextState: Bound
• Action: Post a Notify that an error occurred. Could also post an

Unbind event from here!
• Connected State:

• InputArrived Event:
• NextState: Connected
• Action: Handle the input somehow

• Output Event:
• NextState: OutputInProgress
• Action: Call ep:Output asynchronously; the completionScript

will post either an Error or OutputComplete
• Disconnect Event:

• NextState: Disconnecting
• Action: Call ep:Disconnect with the cancel option selected. The

completionScript will post either Error or
DisconnectComplete
• OutputInProgress State:

• OutputComplete Event:
• NextState: Connected
• Action: none

• InputArrived Event:
• NextState: OutputInProgress
• Action: Handle the input somehow

• Error event:
• NextState: Disconnecting
• Action: Post a Notify that an error occurred. Call

ep:Disconnect with the cancel option selected. The
completionScript will post either Error or DisconnectComplete

• Disconnecting State:
• DisconnectComplete Event:

• NextState: Bound
• Action: none

• Error Event:
• NextState: Bound
• Action: Post a Notify that an error occurred. Could also post an

Unbind event from here!
• Unbinding State:

• UnbindComplete Event:
• NextState: Instantiated
• Action: none

• Error Event:
• NextState: Instantiated
• Action: Post a Notify that an error occurred. Could also post a

Dispose event from here!

Using this table, it’s easy to lay out the elements of the state machine in

April 1996 Newton Technology Journal

4

NTK. The final concept worth noting is that you can pass parameters to the
action procedure along with the event. For example, the Output event
could take an additional parameter: the item to be output. The error event
could take an additional parameter: an exception frame, etc. In general, it’s
best to make the actions as simple as reasonably possible, and to try to
capture as much of the behavior in the states as possible.

SUMMARY

Finite-state machines are a simple and elegant way to model the behavior of
applications. By referring to a state diagram, it’s easy to see if all
contingencies have been handled. protoFSM provides a nice clean way to
specify state machines for Newton applications. Communications protocols
are often specified in terms of a state machine. Being able to easily
transcribe a protocol definition into a finite-state machine will help cut down
on development time and reduce the complexity of the resulting
communications code.

Communications on the Newton platform is complex enough; using
state machines helps reduce that complexity to a more manageable level.
Because state machines lend themselves better to performing
communications asynchronously (synchronous communications calls

involve a fair amount of overhead), applications will gain a performance
advantage.

Communications on the Newton platform is complex enough; using
state machines helps reduce that complexity to a more manageable level.
Appplications using asynchronous communications are generally more
efficient than those using synchronous communications because the latter
calls involve a fair amount of overhead. However, asysnchronous
communication applications can be more difficult to program. But, since
finite state machines simplify the programming of asynchronous
communications by reducing complexity. Thus, the end result can be
applications that have improved performance.

1 protoFSM is a Newton DTS sample that should be available by press time. You
can find protoFSM and the accompanying sample code on AppleLink and at the
Newton WWW Site (http://dev.info.apple.com/newton/newtondev.html) The next
Newton Developer CD will also contain this sample.

2 The word “task” should not be confused with the idea of any sort of multitasking.
Although the Newton 2.0 OS is a multitasking (or, more properly, multiprogramming)
operating system, this is not available to NewtonScript-based applications.

Newton Technology Journal April 1996

5

If you have an idea
for an article

you’d like to write
for Newton Technology Journal,

send it via Internet to:
NEWTONDEV@applelink.apple.com

or AppleLink: NEWTONDEV

To request information on
or an application for

Apple’s Newton developer programs,
contact Apple’s Developer Support Center at

408-974-4897
or Applelink: NEWTONDEV

or Internet: NEWTONDEV@applelink.apple.com

NTJ

April 1996 Newton Technology Journal

6

This article discusses some of the changes to packages in Newton OS 2.0.
Several related topics, such as the details of the package format, Unit
Import/Export, and the new Extras Drawer hooks, are mentioned
peripherally to point out their relationship to packages and parts. In-depth
coverage of those topics is beyond the scope of this article.

To benefit from this article, you should have some experience using the
Newton Toolkit (NTK) to write Newton applications for Newton OS 2.0, and
be familiar with the basic concepts of packages and parts. Familiarity with the
“Bit Parts” article (see “References and Suggested Reading,” at the end of this
article) would also be helpful.

Note that some of the details of creating parts with NTK are specific to
NTK version 1.6. Earlier versions of NTK may not support parts, and future
versions of NTK may support them in a different, more convenient, way.

BASICS

Most people think they understand the concepts of packages and parts, but
I’m continually hearing nonsensical terms like “auto package,” or “my
package’s RemoveScript.” People often confuse packages and parts.
Sometimes it’s just a slip of the tongue. Sometimes it’s indicative of deeper
misunderstandings.

A package consists of a collection of zero or more parts. (Yes, it’s possible
– but pointless – to have a package containing no parts.) A modest example
is shown in Figure 1 (in hex).

7061636B616765306E6F6E6500000000
00000001000000020000000200000036
00000000000000000000000000000036

000000000058

Figure 1: The World’s Smallest Package (54 bytes)

Most packages are somewhat larger than 54 bytes, and consist of one or
more parts. Table 1 lists the most common kinds of parts.

Type Frame part? Description

form Yes Applications

book Yes Books

auto Yes Tricky hacks

font Yes Additional fonts

dict Yes Custom dictionaries

soup No Store w/ read-only soups

Table 1: Part Types

Notice that the second column of Table 1 indicates if a type of part is a
frame part. Frame parts are basically just a single NewtonScript object – a
frame. Conventions for what goes in the frame vary, depending on the type
of part. For example, form parts keep their base view’s template in a slot
named theForm .

You can access the actual part frames (of a package’s frame parts) via the
parts slot of the frame returned by GetPkgRefInfo . There is bound to
be some minor confusion in this regard. Although the argument passed to a
form part’s InstallScript is commonly called partFrame , it is not actually a
part frame. In version 1.x it was a clone of the part frame, and in 2.0 it is a
frame that protos to the part frame. This detail may change. You should
simply rely on the fact that partFrame.slot returns the specified slot
from the part frame.

Most types of parts are frame parts (store parts being the most notable
exception). There are other types of non-frame parts that can be created
(e.g., communications drivers), but tools for doing so are not available yet.

PACKAGE OBJECTS

In Newton OS 1.x there was no way to directly access packages. The call
GetPackages returned an array of information about the active packages,
but there was no object returned that was itself a package.

In Newton OS 2.0, packages are stored as virtual binary objects (VBOs).
A reference to a package VBO is called a package reference (abbreviated
pkgRef in many of the related function names). In most ways, package
VBOs are the same as regular VBOs created with store:NewVBO . For
example, GetVBOStore can be used to determine the store on which a
package resides.

The downside of representing packages this way is that, like ordinary
VBOs, package VBOs are kept in a soup, providing a tempting target for
hacking. The details of this soup are private and subject to change. APIs are
provided for the supported operations. Anything you do outside of the
supported APIs is likely to interfere with the current system (in some subtle
way), not to mention breaking in future systems.

PACKAGE REFERENCES VS. ORDINARY VBOS

For most purposes, you can think of a package VBO as simply containing the
binary data from the package file you created with NTK. There are a few
place-holder fields (like the time of loading) that are filled in as the package
is loaded, but apart from those, they are byte-wise identical – or so it seems.

If you create a VBO, set its class to 'package , and then use
BinaryMunger to copy in the bytes from a “real” package, you’ll wind up
with something that looks like a package but is still not the real thing. Try

Package Deal
by Michael S. Engber, Apple Computer, Inc.

Technology Update

passing it to IsPackage.
The differences are subtle. One obvious difference is that the real

package is read-only. Another, more fundamental, difference is that the fake
package is missing the relocation information that is associated with a
package during the normal package-loading process. This relocation
information is not part of the binary data and cannot be accessed via
ExtractByte .

The only way to get a real package from the fake one is to pass it to
store:SuckPackageFromBinary , which will create a real package
from the data. There is no way to convert it in place.

THE EXTRAS DRAWER

In 1.x, the Extras Drawer was used solely to launch applications. The icons in
the Extras Drawer corresponded to form parts and book parts. Package
removal was handled by the “Remove Software” button, whose pop-up
menu listed packages, not parts.

In Newton OS 2.0, the “Remove Software” button is gone. The Extras
Drawer is one-stop shopping for all your package needs. Therefore, the
model underlying the Extras Drawer icons is different. For example, a
package that contains no form parts still needs an icon to represent it so the
user will have something to delete.

The two obvious solutions are to have one icon per package or one icon
per part. Neither of these solutions turns out to be satisfactory. Consider the
following examples:
• Some multi-part packages require two icons (e.g., form + book part)
• Some multi-part packages require only one icon (e.g., form + auto part)
• Non-frame parts have nowhere to provide title and icon data (i.e., no

part-frame)
The approach adopted by the Extras Drawer is a hybrid of the two, sort

of a Miranda rule for packages: “You have the right to an icon. If you cannot
afford an icon, one will be appointed for you.”

Any frame part in a package can have an Extras Drawer icon by providing
a text slot (and optionally, an icon slot) in its part frame. If no frame part in
the package provides an icon, then a generic icon labeled with the package
name is created.

This approach preserves the 1.x representation of existing packages, as
well as providing flexibility for more complex packages created in the future.
The majority of existing packages, which consist of a single form part, get a
single icon, just like they always have. Multi-part packages are also handled
correctly. The form + book part example gets two icons, and the form +
auto part example gets only one icon.

Unfortunately, existing packages that contain no form or book parts get
the “court-appointed” representation: a single generic icon (see Figure 2)
labeled with their package name. Without more information, there is no way
to do much better. Use NTK 1.6 to rebuild these packages and provide a
more aesthetically-pleasing title and icon.

Figure 2: Generic Icon

For form parts, the title and icon slots are created from the settings in the
Project Settings dialog box (under Output Settings). For other frame parts,
you’ll have to create these part-frame slots manually (this is something that
could change in future versions of NTK). For example, in one of the project’s

text files you would define the title and icon slots with code like the following:

SetPartFrameSlot('title, "foo");
SetPartFrameSlot('icon, GetPICTAsBits("foo picture", true));

You shouldn’t feel that you need to provide an icon for every part in your
package “just because you can.” For most packages, a single icon for the
main form part will suffice. Extra icons serve no purpose, and will only
confuse the user.

If your package doesn’t contain any frame parts (e.g., it contains just a
soup part) you can avoid getting the generic icon by adding in a dummy
frame part that specifies the title and icon. For example, you might add a
form part that displays information about the package.

ACTIVE VS. INACTIVE PACKAGES

Executing a package’s InstallScript (and, in the case of form parts, creating
the base view) is part of the process of activating a package. Executing the
RemoveScript is part of the process of deactivating a package. Prior to
Newton OS 2.0, packages were activated when they were installed and
deactivated when they were removed. There was no concept of packages
existing on a store and being inactive – unless you used a third-party utility.
(By inactive package, I mean that the InstallScript has not yet run or, if the
package was previously active, the RemoveScript ran during deactivation.)

In Newton OS 2.0, it’s possible to have packages visible in the Extras
Drawer that are not active. They are identified by either a special snowflake
icon, if the user purposely “froze” the package, or by an X’d-out icon, if they
are inactive due to an error or because the user suppressed package
activation. (See the article “Suppressing and Freezing Packages,” in this issue,
for further details.)

For the most part, applications need not concern themselves with these
details. Any package that correctly handles being installed and removed (by
either deletion or card-yanking) should work correctly with user-controlled
activation and deactivation.

INVALID REFERENCES

Invalid references are references to NewtonScript objects residing in a
package that is either inactive or unavailable (i.e., on a card that is in the
process of being removed). This topic is discussed in the article “Newton Still
Needs the Card You Removed” (see “References and Suggested Reading,” at
the end of this article).

A reference to an object in a package goes bad after the package is
deactivated. In 1.x, attempting to access such an object resulted in a -48214
error. In Newton OS 2.0, after a package is deactivated, existing references to
it are replaced with a special value. This means that instead of getting a
cryptic -48214 error (which also occurs when loading a bad package), you
get a more specific error message in the NTK Inspector:

!!! Exception: Pointer to deactivated package
or
<bad pkg ref>
or
bus error with value 77

A related problem occurs for packages on a card that is in the process of
being removed. Obviously, the objects in the package are unavailable, and
attempting to access them results in the dreaded card-reinsertion dialog.

Newton Technology Journal April 1996

7

April 1996 Newton Technology Journal

8

You’ll be relieved to hear that the card-reinsertion dialog has not gone away
in Newton OS 2.0. However, it has been somewhat improved. It now displays
the name of the package that used the invalid reference. There are other,
less common, causes for the card-reinsertion dialog appearing (e.g.,
attempting to access the store) which do not allow for the package to be
easily determined. In these cases, the package name is not displayed.

Knowing the name of the offending package is a great help to users
trying to figure out why they can’t remove a card, but this does little to help
a developer figure out why his package is plagued by the “grip of death.”
There are plans to provide a tool to allow developers to find out what invalid
object was accessed.

There is also a new function available for dealing with these problems.
Previously, it was impossible to determine if a reference was valid before
attempting to access it. In Newton OS 2.0 you can use the function IsValid
to make this determination.

NEW PART-FRAME SLOTS

Newton OS 2.0 offers you some new part-frame slots. Some of the slots are
data, and some are methods (i.e., they contain functions). You set their values
using the SetPartFrameSlot function in NTK, as was previously described.

New Part-Frame Data Slots
app
icon
title

In 1.x, the app , icon , and title slots were used to specify a form part’s
appSymbol and Extras Drawer icon and its Extras Drawer title, respectively.
In 2.0, they can be used for any frame part. For non-form-parts, the
appSymbol is used to identify the part when using SetExtrasInfo .

labels
This slot is used to pre-file an Extras Drawer icon. For example, use

'_SetUp to specify that the icon initially goes in the SetUp folder. See the
article “Extra, Extra” (see “References and Suggested Reading,” at the end of
this article) for a more in-depth example.

New (Optional) Part-Frame Methods
DoNotInstall

The DoNotInstall message is sent (with no arguments) before the
package is installed on the unit. It gives a package a chance to prevent itself
from being installed. The message is sent to every frame-part in a package. If
any of them return a non-nil value, the package is not installed. You should
provide the user with some sort of feedback, rather than silently failing to
install. For example, a package wanting to ensure it was only installed on the
internal store could have a DoNotInstall like the following:

func()
begin

if GetStores()[0] <> GetVBOStore(ObjectPkgRef('foo)) then
begin

GetRoot():Notify(kNotifyAlert, kAppName, "This package was
not installed.

It can only be installed onto the internal store.");
true;

end;
end

DeletionScript
The DeletionScript message is sent (with no arguments) just prior to the

package being deleted. This script allows you to distinguish the user
scrubbing a package from the user yanking a package’s card. A
DeletionScript typically does “clean up” like deleting soups, deleting local
folders, and eliminating preferences from the system soup.

RemovalApproval
ImportDisabled

These scripts are used to inform a package that some of the units it’s
importing are being removed. RemovalApproval give the package a
chance, prior to removal, to warn the user of the consequences of removing
the unit. ImportDisabled is sent if the unit is subsequently removed. See
the “MooUnit” DTS sample code for further details on units.

NEW PACKAGE-RELATED FUNCTIONS

GetPackageNames(store)
return value – array of package names (strings)
store – store on which the package resides

GetPackageNames returns the names of all the packages on the
specified store. Note that it returns the names of all the packages, even those
that are not active (e.g., frozen packages).

GetPkgRef(packageName, store)
return value – package reference
packageName – name of the package
store – store on which the package resides

GetPkgRef returns a reference to a package given the package’s name
and the store on which it resides.

ObjectPkgRef(object)
return value – package reference (nil if object is not in a package)
object – any NewtonScript object

Determines which package an object is in and returns the package
reference. Returns nil for immediates and other objects in the NewtonScript
heap, including soup entries.

A package can get its own package reference by calling ObjectPkgRef
with any non-immediate literal. For example, ObjectPkgRef('read ,
ObjectPkgRef("my") , or ObjectPkgRef('[l,i,p,s]) . Note that the
InstallScript of a form part is cloned (by EnsureInternal), and the
clone is executed. This means that the above examples wouldn’t work
because the entire code block – including the argument to
ObjectPkgRef – resides in the NewtonScript heap. A workaround is to
get an object from the package via the argument passed to the
InstallScript – e.g., ObjectPkgRef(partFrame.theForm) . Other
types of parts do not have this problem.

GetPkgRefInfo(pkgRef)
return value – info frame (see below)
pkgRef – package reference

This function returns a frame of information about the specified package,
as shown below.

{
size: <int> // uncompressed package size in bytes,
store: <frame> // store on which package resides
title: <string>, // package name
version: <int>, // version number

Newton Technology Journal April 1996

9

timestamp: <int>, // date package was loaded
creationDate: <int>, // date package was created
dispatchOnly: <nil or non-nil>, // is package dispatch-only?
copyprotection: <nil or non-nil>, // is package copyprotected?

copyright: <string>, // copyright string
compressed: <nil or non-nil>, // is package compressed?
cmprsdSz: <int>, // compressed size of package in bytes

numparts: <int>, // #parts in the packages
parts: <part data array>, // part-frames for the frame parts
partTypes: <array of symbols>, // part types corresponding to data in parts slot

// other slots are private and undocumented
}

IsPackageActive(pkgRef)
return value – nil or non-nil
pkgRef – package reference

IsPackageActive determines if the specified package is active or not.

IsPackage(object)
return value – nil or non-nil
object – any NewtonScript object

IsPackage determines if the specified object is a package reference.

IsValid(object)
return value – nil or non-nil
object – any NewtonScript object

IsValid detects if the specified object is (was) in a package that is no
longer active. If the package is on a card in the process of being removed, it
will return nil and will not cause the card-reinsertion dialog. IsValid
returns true for immediates or objects that do not reside in a package (e.g.,
in the NS heap or in ROM).

Note that IsValid does not deeply check the object.

MarkPackageBusy(pkgRef, appName, reason)
return value – unspecified
pkgRef – package reference
appName– string describing the entity requiring the package
reason – string describing why the package should not be

deactivated
MarkPackageBusy marks the specified package as busy. This means

the user will be warned and given a chance to abort operations that
deactivate the package (e.g., removing or moving it). The appNameand
reason are used to generate the message shown to the user.

You should mark a package busy if its deactivation will cause you
problems. For example, a store part might be providing critical data. Since
the user may still proceed with the operation, you should attempt to handle
this eventuality as gracefully as possible.

Be sure to release the package as soon as possible so as not to
inconvenience the user.

Note that you do not need to use MarkPackageBusy on a package
because you’re importing units from it. Units have their own mechanism for
dealing with this problem (RemovalApproval et al.).

MarkPackageNotBusy(pkgRef)
return value – unspecified
pkgRef – package reference

MarkPackageNotBusy marks the specified package as no longer

busy.

SafeRemovePackage(pkgRef)
return value – unspecified
pkgRef – package reference

SafeRemovePackage removes the specified package. If the package
is busy, the user is given a chance to abort the operation.

SafeMovePackage(pkgRef, destStore)
return value – unspecified
pkgRef – package reference
destStore – store to which to move the package

SafeMovePackage moves a the specified package to the specified
store. If the package is busy, the user is given a chance to abort the
operation; moving a package requires deactivating it, moving it, and then
reactivating it.

SafeFreezePackage(pkgRef)
return value – unspecified
pkgRef – package reference

SafeFreezePackage freezes the specified package. If the package is
busy, the user is given a chance to abort the operation.

ThawPackage(pkgRef)
return value – unspecified
pkgRef – package reference

ThawPackage un-freezes the specified package.

REFERENCES AND SUGGESTED READING

Engber, Michael S., “Bit Parts.” PIE Developers, May 1994, pp. 27 – 29.
This article discusses packages in Newton OS 1.x and creating them with

older versions of NTK. Most of the information is still relevant. It is available
from the various PIE DTS CDs and archives as well as for ftp from
ftp.apple.com/pub/engber/newt/articles/BitP
arts.rtf

Engber, Michael S., “MooUnit.” PIE DTS Sample Code, Fall 1995.
This sample code provides documentation on unit import/export and a

simple example. It is available from the various PIE DTS CDs and archives.

Engber, Michael S., “Newton Still Needs the Card You Removed.” Double
Tap, May 1994, pp. 12 – 18.

This article provides an in-depth discussion of invalid references (to
objects in inactive packages). It is available from the various PIE DTS CDs
and archives as well as for ftp from
ftp.apple.com/pub/engber/newt/articles/New
tonStillNeedsTheCard.rtf

Goodman, Jerry, “Psychic Archaeology.” 1980, Berkley Books.
This book discusses techniques for researching artifacts of mysterious

origin about which very little factual information is known.

Sharp, Maurice, “Extra Extra.” Newton Technology Journal, February
1996.

NTJ

April 1996 Newton Technology Journal

10

New Technology

This article discusses the concept of package activation from the practical
perspective of how it can be suppressed to help you deal with incompatible
applications (even those that cause such severe system problems that you
can’t delete them). It also discusses the related concept of package freezing,
a latent feature of Newton OS 2.0.

SUPPRESSING PACKAGE ACTIVATION

In Newton OS 1.x, if you had a package on the internal store that caused
trouble at startup, your only option was to completely erase the internal
store (reset with the power switch down). Similarly, if you had a package on
a card that interfered with mounting the card, you had to force the card to
be erased (insert the card with Prefs open).

In Newton OS 2.0, it’s possible to suppress package activation.This allows
the unit to start up or a card to be inserted without running any of the
packages’ code. This gives you a chance to delete the problem package
instead of having to completely erase the store it’s on. (Macintosh users will
find this reminiscent of booting with the Shift key down to keep extensions
from loading.)

To suppress package activation on the internal store, first reset the unit,
then turn the unit over and hold the pen down in the left 1/4 inch of the
screen. Keep the pen down until you see a message asking if you want to
activate the packages on the internal store (see Figure 1). Select “No.”

(Note: This procedure won’t work if you place the pen too far to the left, so
it rests against the raised edge of the plastic case; there’s a small dead area at the
border of the screen and the case. The message shown in Figure 1 will come up
before the splash screen disappears. Therefore, if the splash screen disappears
you need to try again, holding the pen a little further in from the edge.)

Figure 1: Package Activation Dialog Box

When you open the Extras Drawer, you’ll see X’s over some of the icons
(see Figure 2). This indicates that those packages are not active. This
procedure does not affect the packages that are built into ROM; only the
packages you’ve loaded or that were preloaded onto the unit at the factory

can be disabled in this way.

Figure 2: X’d-Out Icons in the Extras Drawer

Tapping an X’d-out icon causes its package to be activated. Activate them
one at a time until you identify the culprit. For example, if the symptom is
that the Names application won’t open, tap an X’d-out icon and, once the X
disappears, see if you can open Names.

If at this point you can delete the guilty icon, great. If the problem is
nasty enough to mess up the Extras Drawer, then you’ll have to reset again,
suppressing package activation. This time you should simply delete the icon,
without first activating it.

When searching for offending apps, remember to look in the Extensions
Folder (or show “All Icons”). In 1.x systems there were some packages that
didn’t have a corresponding icon in the Extras Drawer. In 2.0, every package
has at least one icon.

The same procedure can be applied to storage cards. First, insert the
card. After you lock it, hold the pen down near the left edge of the screen,
as described above. You’ll be asked if you want to activate the packages on
the card.

A MORE ADVANCED TRICK

If you reset the unit and hold down the pen near the top edge of the screen
(instead of the left edge), in addition to suppressing package activation, the
unit’s orientation and backdrop application will be reset to their defaults:
portrait orientation and Notepad as backdrop. This is useful if you have an
application that seems to be working fine until you make it the backdrop.

The top edge has these additional effects only when you reset the unit.
When inserting storage cards, you can use the top or left edge to suppress
package activation.

Suppressing and Freezing Packages (Newton’s “Shift Key”)
by Michael S. Engber, Apple Computer, Inc.

Newton Technology Journal April 1996

11

OTHER REASONS ICONS ARE X’D OUT

An X’d-out icon indicates that a package is inactive. Even if you don’t
suppress package loading, there are other circumstance when you might run
into inactive packages. The most common instance occurs when you try to
load two copies of the same package. For example, if package “foo” is on the
internal store and a card containing “foo” is inserted, the icon for “foo” on
the card will be X’d out.

There might be other circumstances where you briefly see an X. For
example, moving a package between stores causes it to be deactivated,
moved, then reactivated. We try not to show the X in this situation because
the package is only temporarily inactive, but in some circumstances the X is
briefly visible.

If you see an inactive icon, feel free to go ahead and tap it. The system
will attempt to activate and launch it. If there’s a problem, you’ll get an error
message. With any luck, it will be an informative one, like “The package ‘foo’
(on store my card) was not activated because a package by the same name
(on store internal) is already in use.”

PACKAGE FREEZING

If you don’t know what frozen packages are, read on (and no, they’re not

something you buy at the supermarket). A number of third-party developers
are providing utilities that turn on this latent feature of the Extras Drawer.

Frozen packages are inactive packages. The difference between frozen
packages and the suppressed packages described earlier is that frozen
packages are purposely made inactive by the user, and stay inactive until
the user reactivates them. Suppressing package activation deactivates
packages only temporarily. If you reset the unit (or reinsert the card), the
icons that were X’d out won’t be X’d out any more. Frozen packages, on
the other hand, are deactivated at startup, and remain so until the user
specifies otherwise.

Activating packages uses up some of the system’s working memory and
takes time. Cards with a large number of packages can take a long time to
mount and can cause you to run low on memory. A way to work around this
is to selectively “freeze” (deactivate) the packages you don’t use very often.
You freeze a package or group of packages by selecting them in the Extras
Drawer and choosing Freeze from the Action button. The package’s icon will
turn into a snowflake (see Figure 3) indicating that the package is frozen.
You thaw (activate) a frozen package by simply tapping its icon.

NTJ

To send comments or to make requests for articles in Newton Technology Journal,
send mail via the Internet to: NEWTONDEV@applelink.apple.com

To request information on or an application for Apple’s Newton developer programs,
contact Apple’s Developer Support Center

at 408-974-4897
or Applelink: NEWTONDEV

or Internet: NEWTONDEV@applelink.apple.com

April 1996 Newton Technology Journal

12

When users first access applications on a mobile Newton device, their
primary concern is to enter information (or, in some cases, to retrieve
information). Only after they enter information do they move it outside
their Newton, whether to a printer or to a friend’s email account. Moving
the information outside the Newton – or deleting or duplicating it – is done
by tapping the Action button (the envelope icon), which is ubiquitous in the
Newton user interface. Tapping the Action button reveals a list of ways to
move the currently viewed information.

The ability to move information using the Action button is called routing.
The items above the line in the Action list are services that move

information outside the Newton device. These communications services are
called transports. The Newton OS includes built-in transports, but
developers can add choices to Action lists by creating new transports that
users can install as packages.

The items below the line are application-specific actions, which often
include Duplicate and Delete. Every application can add these actions,
called route scripts, to its own Action lists. Applications also have control
over which transports appear in the top part of the list.

Applications do not enable transports by listing by name which transports
they can support. If that were the case, application developers would need
to upgrade their products with a new transport list whenever other
developers created new transports. Instead, applications specify, in general
terms, what types of transports would be appropriate based on the
characteristics of the information they manipulate. A dataType is the generic
classification used to describe the way in which information will be sent
outside the Newton device. Common dataTypes are plain text (the 'text
dataType used by Mail), NewtonScript frames (the 'frame dataType used by
Beam), and imaging layouts (the 'view dataType used by Print and Fax).
You can also define your own dataTypes, although applications would have to
know about them in order to take advantage of them.

Using dataTypes to specify categories of transports offers many benefits.
The greatest benefit is that third-party transports can be just as important as
built-in transports for Newton platform solutions. This is because transports

that support at least one standard dataType automatically work with most
applications. If appropriate, in-house or vertical developers can also write
custom transports. Applications and transports do not need to know
anything about each other’s details in order to work together.

Before the user chooses among transports and route scripts to move
information, the Action button must present the Action list. Determining
which actions should appear in your application occurs when the user taps
the Action button, not when an application is installed. This interface offers
some interesting advantages. For instance, transports can register and
unregister dynamically, yet maintain a consistent user interface. Because of
the dynamic nature of this process, you have flexibility in how and where
you implement your routing code. You must help the system build the
Action list by supplying certain methods and slots, as well as using some
global registries. Writing code to use the Action button and communicate
with the In/Out Box is what it meant by implementing routing.

BEFORE WRITING ROUTING CODE

Before coding your application to support routing, you should think about
the following issues. The most important question to answer before
implementing routing is: “How many different types of data are in my
application?” You must identify each type of data with a unique symbol that
contains your developer signature. For instance, if your application had two
main views, where one manipulated llama information and one manipulated
llama rancher information, you might represent the data using two types of
data. The types of data – called data classes – might have the symbols
'|llama:jX| and '|rancher:jX| .

To determine how many data classes you have, it might help to think
about which types of transports can route your data. For instance, in our
example, perhaps the rancher information could be exported to a text-only
email system, but the llama information might consist of only a picture;
therefore, sending to a text-only transport would make no sense. This
difference indicates that our information consists of multiple data classes,
and we must figure out what they represent.

When users print information from your application, would some
printing layouts (called print formats) be accessible only from certain parts
of your application? If so, the subviews of your application might represent
different data classes, and you must figure out what they represent.

Before you write your routing code, you should think about the things
that your application or its subviews must handle when the user taps the
Action button. The answers to these questions may affect your application
design if you determine that you have more data classes than originally
expected. For instance, do you know how to get references to the
information the user is viewing or has selected? Also, should some route
scripts appear in only some circumstances? For instance, in our sample
application, the “Feed” route script might appear when the user selects an

Move It!
by J. Christopher Bell, Apple Computer, Inc.

Communications Technology

item in the llama viewer, but not in the rancher viewer.
Answering these questions and looking at the rest of your application

design will make most remaining design decisions more straightforward.

ROUTING FORMATS

In Newton 2.0, print formats and pre-routing initialization are encapsulated
into objects called routing formats. These objects format the data for use
outside your application. This section discusses the various types of routing
formats and how to create them.

For printing and faxing, you will base your routing format on
protoPrintFormat . The bulk of your work will be designing your views
so they look nice, handling view justifications properly, and using as little
NewtonScript memory as possible. Your print format code must create
views to display the contents of the the target variable. Note: Do not
write to target or access fields.body , since the behavior of doing either
is undefined.

Your format’s PrintNextPageScript method must return a non-nil
value while there is more data to route. You can design your format’s
PrintNextPageScript to call the RedoChildren view method and let its
view methods recreate child views with new information. Alternatively, you
can update the view contents directly, for instance using code like
SetValue(myParagraph, 'text, newText) to change the contents
of text views.

Some fax protocols will time out after a few seconds of inactivity. If
you must perform time-consuming calculations or prepare complex
drawing shapes in your print layouts, do it your format’s
FormatInitScript method. This method is guaranteed to be called
before connecting to a fax machine.

To enable transports supporting the 'frame or 'text dataTypes (Beam
or Mail, for example), you will base your routing format on
protoFrameFormat . Your application may not need to perform special
pre-routing formatting if simple NewtonScript frames are routed, but
registering formats in this way is required to inform the system that
transports like Beam or Mail can move your frame or text information.

By default, protoFrameFormat handles both frame and text
dataTypes. If you need text-only or frame-only formats, you can override
your format’s dataTypes slot. For instance, if your routing format
supported sending only NewtonScript frames, it would look like this:

LlamaFrameFormat := {
_proto: protoFrameFormat,
symbol: kFormatSym,
title: kFormatTitle,

// override if you don't want both 'frame & 'text
dataTypes: ['frame]

}

FROM FORMATS TO TRANSPORTS

A common question is: “How does the system decide which transports to
show in the Action list?” The short answer is that the Action button looks for
routing formats that can route the data, then looks for transports that can
handle at least one of those formats. Here is a more detailed description of
what occurs both before and after the user taps the Action button:

1. In NTK, you create routing formats. Slots in your base view will
reference those formats.

2. Your application registers your formats with
RegisterViewDef(format , dataClassSym) in its
installScript . Access formats with code like

partFrame.theForm.myBaseViewSlot

(Note: Don’t use the GetLayout NTK function for this. See the DTS
Routing samples for more information.)

3. The user opens your application and selects and views some data, called
the target.

4. The user taps the Action button.

5. The Action button determines the data to route. The Action button
uses inheritance to find :GetTargetInfo('routing) , which must
return a frame like {target: ..., TargetView: ...} . For instance, if
the user is viewing a llama rancher in our application, the target might
be a frame of the form

{class: '|rancher:jX|, rancherID: 929, name: {...}}

(Note: If your application already maintains target and targetView
slots, implementing GetTargetInfo is optional.)

6. The Action button determines the class of data to route. The system
uses the ClassOf function to determine the data class of the target.

7. The Action button determines which formats can display or route this
data class. The Action button uses the data class of the data and the
View Definition registry to build a list of registered formats for that data
class. The View Definition registry contains the formats you registered
with RegisterViewDef . (Note: This list does not include on-screen
view definitions that are not routing formats; see the “Routing Gotchas”
section of this article for more information.)

8. The Action button determines which transports can display at least
one of these formats. Both transports and formats have a dataTypes
slot, and at least one dataType in each must match in order for that
transport to appear. For instance, if the only available format from the
last step is my custom LlamaFrameFormat , and its dataTypes
slot is ['frame] , then only transports having the value 'frame in their
dataTypes array will be included in the Action list.

9. The Action button determines which route scripts to add. The Action
button uses inheritance to find a routeScripts slot containing an
array of route scripts. Route script frames have the form

{routeScript: 'myExplodeScript, title: "Explode", icon:
kMyIcon}

(Note: If you must determine route scripts dynamically, see the Newton
Programmer’s Guide for more information on the GetRouteScripts
view method.)

10. The Action button displays the newly created list. In this list, a line
separates the transports from the route scripts.

Newton Technology Journal April 1996

13

11. If a transport is selected, the Action button invokes the current format’s
SetupItem method, then opens the transport’s custom routing slip.
If the user switches formats, the system calls the new format’s
SetupItem method.

12. If a route script is selected, the Action button sends itself the message. If
the route script example above were selected, the Action button would
would execute code similar to

self:myExplodeScript(target, targetView);

MULTIPLE-ITEM TARGETS

If your application can handle overviews or multiple selection, your routing
code must prepare for multiple-item targets. The terminology can be a bit
confusing, because there are two types of objects that relate to multiple-item
targets. A mutiple-item target is a special array that contains information
about multiple objects (and can be put into a soup), which may include soup
entries stored as soup entry aliases. To create a multiple-item target, use the
function CreateTargetCursor .

You can read the contents of a multiple-item target by calling the
GetTargetCursor function. It takes a multiple-item target and returns a
target cursor, which is an object that responds to the basic soup cursor
messages Next , Prev , and Entry , returning nil when there are no more
items. If the current item was stored as a soup alias, the target cursor
methods will resolve the entry alias and will return the soup entry.

Your route script functions must handle multiple-item targets if you have
any overviews in your application. Note that you can check to see whether a
target is a multiple-item target with the TargetIsCursor function. Even if
it isn’t a multiple-item target, GetTargetCursor(item) will correctly
return a target cursor containing a single item. Here is an example of how to
use GetTargetCursor in a route script:

myDeleteScript := func(target, targetView)
begin

local current;
local tc := GetTargetCursor(target, nil);
while (current := tc:entry()) do

begin
self:HandleMyDelete(current);
tc:Next();

end;
end;

Routing formats have two different flags to indicate support for multiple-
item targets. The storeCursors slot determines how the item may be
stored in the Out Box. If the format’s storeCursors slot is nil , then
multiple-item targets are split into separate Out Box items rather than stored
as a multiple-item target. Also, even if storeCursors slot is true ,
transports that do not support multiple-item targets will split multiple-item
targets into separate Out Box items. The default for storeCursors is
true for protoPrintFormat and nil for protoFrameFormat .

The usesCursors flag tells what data print formats are designed to
handle. If the format’s usesCursors slot is set to nil (the default), your
format will be created once for each item. After printing an item, the value
of target will change to the value of the next item, and the system will
create your print format again. If usesCursors is non-nil , your format
must handle multiple-item targets and use GetTargetCursor to iterate
through the items.

OTHER ROUTING HOOKS

You might also receive multiple-item targets when putting away items. In the
In Box, users can select an item, tap the Transport button (the luggage tag
icon) and put away the item from the In Box to another application.

For instance, if a friend beams a business card to you, you can put away
that item to the Names application. To allow your application to support Put
Away, you must provide a PutAwayScript method in your base view that
takes one argument: the item. The method must verify that your application
can handle the data, perform an appropriate action, and then return true
to indicate that it succeeded. For instance, the PutAwayScript for the
Names application might verify that the item is a valid single Names card,
create a Names soup entry, and then return true if successful (otherwise, it
will return nil). Note that your PutAwayScript may be called when your
application is closed.

If you use the protoActionButton for routing, items sent to the Out
Box will usually have an appSymbol slot that is set by the Action button to
the current value of appSymbol . The appSymbol slot is found in your
base view using inheritance (NTK creates an appSymbol slot in your base
view if you haven’t already added one). If a user selects Put Away on an item
that contains an appSymbol , and that application is installed, the
application will appear as a choice in a Put Away slip created by the In/Out
Box (see the previous illustration).

There is another way to tell the system that you can put away information
of a certain data class (which might be necessary if other applications could
create or route your data). Do this by registering your data class symbols
with the RegAppClasses function in your installScript . If more than
one application could put away an item, the Put Away slip displays a picker
to let the user choose a destination application.

Another helpful function is the Send function. Some applications want
to send items to the Out Box without using a protoActionButton and
an Action list. In those cases, you must first determine what transport or
transport group is appropriate. A transport group is a collection of similar

April 1996 Newton Technology Journal

14

transports in which only one transport is active at one time. These transport
groups are identified by symbols, an example of which is the 'mail group.
For instance, we might want a button to automatically email someone. That
button might use code like

Send('mail, {body: yourData, toRef: [aRecipient]}).

The important slots to add to the item are a body slot containing your
data (the target), and the recipients in the toRef slot. You can also add a
title slot (the subject line) and an appSymbol slot (for Put Away). See
the Newton Programmer’s Guide (NPG) for a list of other slots you could
add to the item, although some items’ slots do not apply to all transports.

The recipients in the toRef slot are represented by an array of
nameRefs, which are recipient frames returned from choosers based on
protoListPicker (this includes the common “to” and “cc” lines in routing
slips). If you have a reference to a Names soup entry and wish to convert it
to a nameRef, you should use the nameRef ’s data definition – an object that
describes how to manipulate nameRefs of a specific class (for
example,|nameRef.fax| and |nameRef.email|). Note that every
transport stores its preferred nameRef class symbol (its addressing class) in
its addressingClass slot.

For instance, imagine we want to fax a letter programatically. If we
wanted to send to someone who is not in the Names file, we could
substitute a frame containing the minimal slots for addressing (which varies
among addressing classes and transports). To fax the letter, you could use
code like the following example:

faxLetter := func()
begin

local transportSym := '|faxSend:Newton|;

rancher := {
name: {last: "Bell", first: "J. Christopher"},
phone: SetClass("408 555 1212", '|string.fax|)
};

target := {class: '|letter:jX|, style: 'VisitUsAgainSoon};

// TransportNotify sends a message to our transport
// to create a new item that we pass to Send(...)
item := TransportNotify(transportSym, 'NewItem, [nil]);

aClass := GetItemTransport(item).addressingClass;

item.body := target;
item.toRef := [GetDataDefs(aClass):MakeNameRef(rancher,

aClass)];

// Register a format with RegisterViewDef (see rest of article...)
// It must have this symbol in its symbol slot.
item.currentFormat := kMyViewFormatSym;

Send(transportSym, item); // submit the item to the outbox
end;

If you are using Send with a transport that supports text, that transport
must export items to text by calling your routing format’s textScript
method. That method must convert item.body (item is one of the
arguments to your textScript method) and return the text to be sent.

WHERE DO I IMPLEMENT THIS?
Some of the routing hooks use inheritance to find the methods or
variables. More specifically, the Action button uses its message context (its
_proto and _parent chain) and sends messages to itself. For example,
if you implement a GetTargetInfo method in your base view, the Action

button will find the base view method by parent inheritance. However,
when GetTargetInfo executes, self will be the Action button.
Although many developers put these messages in their base view, the
context-sensitive nature of routing allows flexibility in where you implement
your code. For instance, if you want your subviews to route different
information or handle it differently, you can implement some variables and
methods in your subviews.

Note that formats and applications exist in separate places. The Action
button finds routing formats because they are registered globally (see
RegisterViewDef , mentioned above). You can use this architecture to
allow other developers to extend your application. If you publish the format
of your data, other developers can globally register new formats for your
data classes. For example, you can register a protoPrintFormat on the
'person class so that users of the Names application (and other
applications that use the 'person class) will see your new format as a
choice in the Print or Fax routing slip.

Common Routing Questions Where to Implement Relevant Code
What is the target? Action button message context
What route scripts are available? Action button message context
Where to implement routeScripts ? Action button message context
What routing formats are available? ViewDef registry
What types of transports should be used? ViewDef registry and the format’s

dataTypes slot
How to visually represent the data? Routing format (based on

protoPrintFormat)
Where to export text before it is sent? Routing format (TextScript method)
Where to manipulate data before sending? Routing format (SetupItem method)
Where to execute slow pre-fax code? Routing format (FormatInitScript

method)
Where to implement PutAwayScript ? Application base view

CHECKLISTS FOR ROUTING TO BUILT-IN TRANSPORTS

Required for Routing:
• Add a routeScripts slot†

• Add a GetTargetInfo method†

• Add an Action button (a protoActionButton)
• Add [Un]RegisterViewDef calls in your installScript and

removeScript
• With RegisterViewDef , access formats with

partFrame.theForm.myBaseViewSlot (Note: Don’t use the
GetLayout NTK function for this! See the DTS Routing samples for
more information.)

Required for Print, Fax, and future view transports:
• Create layouts based on protoPrintFormat in NTK
• Create a symbol slot containing your unique format signature
• Create a title slot containing your format title
• Add child views (draw out subviews and/or use

viewSetupChildrenScript)
• Add printNextPageScript method
• If you need to do pre-routing setup, add a SetupItem method
• If you need to do slow pre-fax initialization, add a FormatInitScript

method
• Put a reference to the format in a base view slot using the NTK

GetLayout function. You will reference this from your

Newton Technology Journal April 1996

15

April 1996 Newton Technology Journal

16

installScript (see RegisterViewDef , above).

Required for Beam, Mail, and other frame or text transports:
• Create a format based on protoFrameFormat
• Create a symbol slot containing your unique format signature
• Create a title slot containing your format title
• To support text export, supply a TextScript method
• If you need to do pre-routing setup, add a SetupItem method
• Put a reference to the format in a base view slot. You will reference this

from your installScript (see RegisterViewDef , above).
• For support for Put Away, add [Un]RegAppClasses calls in your

installScript and removeScript
• For support for Put Away, add a PutAwayScript method to your

base view

† Often in base view, but context-sensitive from Action button

ROUTING GOTCHAS

Here are some of the common mistakes or “gotchas” to keep in mind when
implementing routing in your application.

The difference between routing formats and on-screen view definitions
(viewDefs) confuses many people. They are both registered and
unregistered using the same functions, but they serve different purposes.
For more information on on-screen stationery and viewDefs, see the NPG’s
Stationery chapter. On-screen viewDefs cannot be used as routing formats,
and routing formats cannot be used as on-screen viewDefs. This is because
of a type slot that indicates the type of viewDef. For routing formats, which
are based on protoRouteFormat , the type will be printFormat or
routeFormat . This is to distinguish routing formats from on-screen
viewDef types like viewer and editor .

If you have a layout you want to use for both on-screen viewing and
printing, you must create two different layouts. However, since both layouts
will be similar, you will end up laying out two views that are almost identical.
To save development time, you can create a user proto (see the NTK user
manual) that encapsulates the common behavior, and use that as the basis
for your on-screen view and print formats. The only gotcha is that print
formats automatically set up a target slot that contains the data to display.
In order to standardize the behavior of your user proto, you may need to
make modifications to your on-screen view to create a target slot
containing your on-screen data.

Another common problem is setting the data class incorrectly. When
your GetTargetView method returns the targetInfo frame, the targetInfo
frame must have a target with a meaningful class. That means that
classof(target) represents a unique symbol representing your data class.
Since the target is usually a frame, this means that your target must have a
class slot, or a class slot is added when target is returned by your
GetTargetInfo method. As mentioned in the “From Formats to
Transports” section of this article, the Action button uses the class of the data
to decide what routing formats and transports are available.

Another gotcha is enabling routing from overviews. There is some
special code in routing that makes overviews and multiple selections easier
for some applications. If your application wants to register formats only for
the types 'frame , 'text , and 'view , and your print formats do not need
special initialization, you can use the special 'newtOverview data class to
represent multiple-item selections in overviews.

If your GetTargetInfo method returns a multiple-item target, you can
use the code CreateTargetCursor('newtOverview, myItems) to
create a multiple-item target with this special data class, This enables your
application to use built-in routing formats registered on the
'newtOverview class (do not register your own viewDefs on this data
class). Since the defaults of the formats registered on this class have their
usesCursors slot set to nil , the system will use the helpful default routing
format behaviors mentioned in the “Multiple-Item Targets” section of this
article, which is what most developers want for printing and routing multiple
items.

There are some limitations to this approach. As mentioned above, your
print formats might need special initialization in a SetupItem method or a
formatInitScript method to avoid timing out during fax connections. If
so, please note that your formats are not guaranteed to get their
SetupItem or FormatInitScript messages when using the
'newtOverview class for your multiple-item targets.

If you want to enable dataTypes other than 'frame , 'text , and 'view ,
or need the SetupItem or FormatInitScript messages for your print
formats, you must use your own data class symbol when creating the
multiple-item target with CreateTargetCursor . For instance, let’s
suppose our application can print and fax from a llama layout, but cannot
use other transports like beam and mail. Since the default
'newtOverview behavior enables transports like beam and mail because
it registers formats with 'frame and 'text dataTypes, we cannot use the
'newtOverview behavior . Instead, we can use code like the following to
create our multiple item target:

CreateTargetCursor(kLlamaClassSym, selectedItems);

For our kLlamaClassSym data class, we register only routing formats
based on protoPrintFormat so that we would see only Print and Fax as
transport choices in the Action list.

If you want your routing formats to handle multiple items, set their
usesCursors slots to true so that you can print multiple items on a page
(using GetTargetCursor to traverse the item list) or route multiple items
in a different way. For instance, a format based on protoFrameFormat
could traverse the list of items in its SetupItem method and set
item.body to a new Virtual Binary Object (VBO) representing all the
items (see the NPG’s Data Storage chapter for more information). Since the
system stores VBOs on a store, not in NewtonScript memory, you can route
large amounts of data in a single Out Box item without running low on
NewtonScript memory. Be sure to give your Virtual Binary Object a a
meaningful class symbol so that your application can check for this data class
during Put Away.

On a similar topic, some developers use the optional NewtApp
application framework to design their applications (see the NPG for more
information). If your application uses the NewtApp framework, and you use
the layout proto called newtOverview, and you do not want to use the
'newtOverview multiple-item behavior mentioned above, you must do
some extra work. You must supply an overviewTargetClass slot in
your layout (or somewhere in its _parent chain) containing a symbol that
will be used as the data class for multiple-item targets in that layout.

These are the basics you need to know before implementing routing in
your Newton 2.0 application. This information will get you started with
routing; once you’ve mastered these concepts, you’ll be able to move
around all the information you want.

NTJ

Newton Technology Journal April 1996

17

WHAT IS A TRANSPORT?

When you tap that ubiquitous envelope icon, the Action button, it opens up
a list of ways you can move information.

The items above the line in the Action list are services that move
information outside the Newton device. For instance, you can Beam a
package from the Extras drawer, Print a note, or Mail an item to a friend.
These communications services are called transports. There are built-in
transports, but developers can add choices to Action lists by creating new
transports that users can install as packages. In one sense, transports are a
user interface for complex communications code. This article discusses some
of the things to keep in mind before writing a transport for Newton 2.0.

Before reading this article, you should be familiar with routing, which is
the general term for moving information using the Action button and the
In/Out Box. Routing is covered in more detail in the Newton Programmer’s
Guide (NPG) and in the “Move It!” article in this issue of the Newton
Technology Journal.

The most important term to understand is dataType. A dataType is a
generic classification of the way in which information is sent outside the
Newton device. Common dataTypes are plain text (the 'text dataType),
NewtonScript frames (the 'frame dataType), and imaging layouts (the
'view dataType). You can also define your own dataTypes, although
applications must know details about your custom dataType in order to
take advantage of this ability. See the “Move It!” article in this issue for
more information.

You also should know the basics of Routing Formats. Print Format
layouts and pre-routing initialization are encapsulated into objects called
Routing Formats. These objects format the data for use outside your
application.

When you implement your transport, much of your time will be spent
designing, coding, and testing the endpoint communications code with
protoBasicEndpoint . Check out the NPG 2.0 and DTS Communications
samples for tips on designing and debugging your endpoint code.

Once you design the basic communications code, you can test it by creating

a protoTransport , registering it with the RegTransport function, and
hooking your endpoint code into the SendRequest and
ReceiveRequest messages, which will be described later. If your transport
can send data (it could just receive data), you will probably design a routing slip
to test your code with different recipients and options. This article discusses
design issues and the basic transport APIs to get you started writing a transport.

BEFORE WRITING A TRANSPORT

If your communications service is similar to Beam or Mail, you probably will
structure your code as a Newton transport. However, not all communications
code is well suited to becoming a transport. You might want to take time to
determine whether a transport is best for your project. Although they may
not apply in all situations, here are some guidelines to follow in transport
design. When you read these guidelines, keep in mind that your transport
does not have to both send and receive data; it can just receive or just send.

Transport Guidelines
If you answer “yes” to all of the following questions, a transport might be

a good approach:

• Would your endpoint code have a user interface similar to a built-in
transport (for example, routing slips, using the In/Out Box, status views)?

• Would queuing items to send make sense?

• Would all your communications setup preferences belong in the
In/Out Box?

• Would invoking Send and/or Receive from the In/Out Box make sense?

The following are indications that you might not want to structure your code
as a transport:

• You answered “no” to one of the Transport Guidelines above.

• Incoming and outgoing info is a stream, rather than distinct items to be
previewed or queued.

• Your code’s purpose is to synchronize Newton soups with a non-Newton
database or application. Implementing a synchronize action within a
single application might be simpler.

• Your transport will be available only to your own applications. (See
note below)

• Your transport must dynamically manipulate In/Out Box items when

Writing a Transport
by J. Christopher Bell, Apple Computer, Inc.

Communications Technology

April 1996 Newton Technology Journal

18

connected to other devices. It is possible to design transports that use
remote items. This means that items in the In Box (not the Out Box) can
download summary information from services that offer additional items
for users to view or open. However, if your endpoint code must add
items to the Out Box or dynamically add or delete records from the
In/Out Box, designing your code as an application may more closely fit
user expectations.

• Your transport is similar to Print or Fax, such that it draws views on a
page. If so, you might need to write a printer driver. Contact the Newton
Developer Relations Group at NEWTONDEV@applelink.apple.com for
more information.

Note: Some developers want their transports to be available only to their
own applications. Sometimes this is the best way to do the job, but not
always. Performing setup and activity (preferences, initiating Send/Receive)
within the application controlling the services might be the most
straightforward user interface. As an alternative to implementing a transport
that works only with one application, you might encapsulate the endpoint
code within one application or use the Unit import/export mechanism to
share code among several applications. See the DTS Q&As for more
information on the Unit import/export mechanism.

You might find that according to the guidelines above, your transport
differs from other transports. If so, your transport may need a slightly
different user interface. For instance, if your transport creates lots of small
Out Box items, check the NPG for more information about the item
hidden slot, which allows items to remain invisible in the Out Box.

To make your transport available only to your applications, create a
custom dataType like '|MyDataBaseRecord:MYSIG| to be supported
only by your own Routing Formats (in their dataTypes slot), instead of
standard dataTypes like 'frame and 'text .

ROUTING SLIPS

Designing a basic routing slip is easy when you use the handy built-in
protoFullRouteSlip . It contains most of the user interface elements in a
routing slip, including the Format picker, the envelope appearance, the
return address proto, the close box, and the Send button. The most complex
design decisions for routing slips involve your recipient information. Note
that the top part of the routing slip contains recipient controls, and the

bottom part contains formatting controls.
If your transport is like Beam, which needs no recipient controls when its

preferences are set to Send Later, this will be easy. For most transports, you
will need to do work to let the user tell your transport who should receive
this item.

A common user interface element for choosing recipients is
protoAddressPicker , which allows users to select recipients from the
Names file for “to” or “cc” components of a message. If your transport can
use the addressee type used by Mail, then you don’t need to do anything
special. If you want to use the addressee type for phone numbers or fax
numbers, you can override the class slot in protoAddressPicker. For
example, to pick phone numbers you would specify '|nameRef.phone| .

If you need custom addressing information that the built-in classes do
not supply (such as email that can’t use Internet addresses), you will need to
add your own subclass of the nameRef data definition. See the NPG
(protoListPicker , protoNameRefDataDef) and DTS samples for
more information on how to add your own subclass of nameRef .

In the bottom half of the routing slip, you can add formatting controls
such as a subject editor or resolution settings, or other controls specific to
your transport. We recommend making this part of the routing slip as simple
as possible by putting most setup controls in your transport preferences.

There are some subtle variations in the size of this area of the routing slip
that make view layout tricky. For instance, if there is only one format option,
the Format picker is not visible and the height changes. To lay out views in
the bottom part of the routing slip, the easiest way is to use the routing slip
method BottomOfSlip to find the offset of the bottom of the routing slip.

When the user tries to send an item, your routing slip gets a
PrepareToSend message. In your PrepareToSend method, extract
information from your routing slip controls, store that information in slots in
fields (which will become the Out Box soup entry), and call the inherited
method to continue to send the item. Store recipient information in
standard slots called toRef , cc , and bcc . Those must contain an array of
nameRefs, which are recipient frames returned from choosers based on
protoListPicker and protoAddressPicker .

One special routing slips interface relates to transport groups. You could
make your transport a member of the 'mail group by including that symbol
in the transport’s group slot. This will display your transport in the Action
list as “Mail,” rather than by the title of your transport (for example,
“MySuperMail”).

When more than one transport in the same group is installed, the user
must use the routing slip to switch between transport group members. The
transport title in the routing slip will contain a diamond (indicating multiple
choices), and the user can tap the transport title to open a list of other
transport group members from which to choose. If the user switches
transports using the Group Transport picker, the routing slip will close, and
the new transport’s routing slip will open.

SENDREQUEST AND RECEIVEREQUEST

Most of your communications code will execute in response to a
SendRequest or ReceiveRequest message. In SendRequest , you
must iterate over the items by sending your transport the ItemRequest
message to retrieve the corresponding items. Your endpoint code can
execute asynchronously and call ItemRequest for more items until the
value is nil . When an item is completed, your transport can notify the Out
Box of the new status using transport:ItemCompleted(item,

Newton Technology Journal April 1996

19

state, errorNumOrNil) . If the state is 'sent , the item will be deleted
from the Out Box. Pass nil for the state if there was an error, to indicate that
the item should stay in the Out Box.

Most transports that receive items respond to the ReceiveRequest
message by connecting to another device and retrieving as many items as
possible. Submit the items to the In Box by using ItemCompleted with
the status 'received . You can also implement a browse feature using
remote items. To do this, download the title and recipient information, and
set the item’s remote slot to a non-nil value. The user will be able to sort
or view the summaries, but tapping the item will cause a second
ReceiveRequest to be issued with the argument cause set to
'remote, indicating that your transport must download the entire item and
call ItemCompleted again. When creating the remote item, you will
probably encode some message ID in the item to indicate how to retrieve
the full item if the user taps it.

OTHER TRANSPORT HOOKS

If your transport’s dataTypes slot contains the 'text symbol (in other
words, it supports text), you will use the ItemToText function to extract
the text from the item. The primary function of the ItemToText function
is to send the Routing Format textScript method and store the text in the
item’s body slot in the form {class: 'text, text: "whatever..."} .
See the DTS Transport samples for more information about how to use the
ItemToText function, which is currently available as a stream file to
include in your NTK project.

The basic protoTransport provides helpful defaults to handle views
that show transport status to the user.

Most of the default status view behavior can be achieved using
commands like transport:SetStatusDialog('Connecting,
'vStatus, "Connecting to"&&printername&"…") . These
defaults are probably what you want to use during development and
debugging so that you can concentrate efforts on your endpoint code.
Closing the dialog with SetStatusDialog is as easy as setting the first
argument (the status) to 'idle . If you want a status indicator other than
the built-in gauge indicator, page indicator, or barber pole indicator, you can
fully customize the dialogs using protoStatusTemplate (see the DTS
samples and the NPG for more information).

The In/Out Box is the main user interface to your transports, and there
are several user interface hooks available to transport developers. (Note: Do
not send messages directly to the In/Out Box application itself, because the
implementation might change.)

The most often used transport hook in the In/Out Box is the transport
preferences slip, accessible via the Info button in the In/Out Box (see the
following illustration).

You provide a layout based on protoTransportPrefs that contains
connection options, defaults, and logging and filing options. Some optional
controls are provided by the proto.

When a user taps an item in the In/Out Box, the In/Out Box opens an
item viewer (see the following illustration. Within the item viewer are several
buttons, including an Action button to reroute items to another transport, a
Show button that is sometimes visible, and the Transport button (the one
with a luggage-tag icon). The Transport button opens a picker with default
commands (Readdress, Log, and Put Away, depending on the situation), but
your transport can add actions like Reply or Forward.

For example, to add a transport action called Explode, implement a
GetTransportScripts transport method that returns an array of
transport script frames (similar to route script frames) which includes a
frame like

{title: "Explode", routeScript: 'myTransportMethod, appSymbol:
kMyTransportSym }.

You can also design an item info slip for your transport which is
opened when the user taps the transport icon in the upper-left corner of
the item viewer.

Default information includes the item’s size and subject, but you can fully
customize the slip and add transport-specific information or item history that
might be relevant for In Box or Out Box items (see the NPG for more info
on protoTransportHeader).

These are the APIs you should know about before writing your
communications code and designing your own transport. Happy
transporting! NTJ

April 1996 Newton Technology Journal

20

C++ is intended to be a superset of C. This goal is considered critical,
because C is the most popular systems programming language. Because C++
includes the low-level operations of C, it can be used for very low-level
system code – manipulating hardware registers, for example. Algorithms can
be written in C++ to take maximum advantage of the processor hardware.
Most importantly, existing code written in C can be compiled by a C++
compiler with minimal changes.

Performance was one of the highest priorities in the design of C++. As a
general rule, no feature was included unless it was possible to implement it
at zero cost for code that didn’t use it directly.

In order to be a viable C replacement, C++ had to be “pin-compatible”
with existing development systems. In particular, the output of the C++
compiler had to link with C code, and C++ and C data structures had to
interoperate.

The same operations that are so useful for low-level system code are easy
to misuse accidentally. Common programming mistakes in C++ can corrupt
the runtime environment, resulting in system crashes or data corruption.
The program must be designed to deallocate memory manually, an error-
prone process in which bugs are often difficult to locate.

In its early incarnations, C++ did not include features such as exception
handling, multiple inheritance, parameterized classes, and run-time type
information. Over time, these features have been added to the language,
always in a manner consistent with the overriding priority of performance.
C++ is now a complicated language; it requires years of experience to fully
understand and use all its features.

NewtonScript
NewtonScript was intended to make writing Newton applications as easy

as possible. Its critical design goals included:
• Natural interaction with the Newton application framework
• Small program size and low RAM footprint
• Safe execution
• Simplicity

The NewtonScript language is based on an object model that is used
throughout the Newton system. In-line constructors and built-in access
operators make it easy to construct and manipulate objects.

NewtonScript uses prototype-based inheritance, which is the most
natural way to write user-interface code. The view system is designed
around NewtonScript’s object model, which makes it easy to reuse user
interface elements provided by the system or the programmer.

Because the Newton OS is intended to support small devices,
NewtonScript was designed for small amounts of memory. NewtonScript
executable code is very small – several times smaller than equivalent native
code. The prototype-based inheritance model makes it easy to minimize
RAM usage by putting only the varying slots of an object in RAM.

NewtonScript is a safe language. All operations are checked for validity,
and violating the rules causes a controlled exception rather than a system
crash. This makes debugging much easier, and lessens the need for
system “firewalls” between applications. Memory is deallocated
automatically by the language at runtime; this eliminates memory-

management bugs such as dangling pointers and multiple deallocations,
and also simplifies program design.

The language is small and relatively simple in syntax and semantics. Most
programmers can read the code almost instantly, and learn to take advantage
of all the important features in a few months. Despite its simplicity, however,
NewtonScript is a complete general-purpose language.

The execution model of NewtonScript is divorced from the hardware;
instead, it is a set of well-defined operations on typed data. There is no access
to the underlying representation, and thus no “unsafe casts” between types.
This makes the language safe and portable, but it also means the programmer
can’t take full advantage of the hardware to get maximal performance.

LANGUAGE RELATIONSHIP

C++ and NewtonScript have complementary strengths. The “C-ness” of C++
makes it good for manipulating hardware (device drivers, for example) and
for writing very fast code, at the expense of unsafe features and lack of
flexibility. NewtonScript’s safety, expressiveness, and flexibility make it good
for higher-level application code; the price is in performance and
incompatibility with existing C/C++ source.

The native NewtonScript compiler included with Newton Toolkit allows
you to reach roughly the same performance as C++ code for many programs.
Algorithms based on NewtonScript objects are usually about the same speed
in both languages. C++ code that uses the native data structures of C++ will
generally be faster.

Internally, the Newton OS has always made use of both languages.
NewtonScript is used at the high level to create the user interface objects
and built-in applications, and to tie the system together. C++ is used for
the low level, such as the OS kernel, graphics primitives, device drivers,
and the NewtonScript interpreter. The choice of language is dictated by
the requirements of the system component; when performance is critical,
we write in C++, and when safety or space are more important, we write in
NewtonScript.

This may sound familiar, because the idea of using a high-level object
model as a system-structuring device is now entering the mainstream. SOM
and OLE are examples of system-wide object models that connect lower-level
code together. A SOM or OLE object may be implemented in C++ or some
other language; the user of the object doesn’t need to know which.

The Newton OS uses the NewtonScript object model for a similar
purpose. The system is structured as a set of NewtonScript objects, but any
particular function may be implemented in C++ if needed. An API is provided
for C++ code to create and manipulate NewtonScript objects, so a C++
function can interact with the rest of the system just as well as a
NewtonScript function.

NEWTON C++ TOOLS

With Newton C++ Tools, you will be able to write code in C++ that fits into the
overall NewtonScript system framework. The basic idea is that a group of
C++ source files can be compiled and linked into a “native module,” which is
a chunk of native code with function entry points defined by you. When the
native module is included in a Newton Toolkit project, each entry point is

continued from page 1

C++ and NewtonScript

made available as a NewtonScript function object.
The rest depends on how you assign these entry points to your objects.

The simplest technique is simply to call the functions directly. You can rewrite
NewtonScript methods in C++ by putting C++ entry points in slots in place of
“func” expressions. A C++ class can be given a NewtonScript interface by
creating a frame containing “wrapper” functions for the class methods.

Through the APIs provided to C++ code, you can create and manipulate
NewtonScript objects, call NewtonScript functions, and send NewtonScript
messages. The interface between NewtonScript and C++ is always in terms of
NewtonScript objects, but it’s easy to write “glue routines” to convert to and
from C++ data types.

Newton C++ Tools works best on “engine” code – a fairly well isolated
part of an application that deals with a core set of data structures and
operations. Many applications consist of an engine surrounded by a user

interface. Newton C++ Tools can be used for the engine (or, preferably, just
the speed-critical parts of it), while NewtonScript is used for the rest of the
application. This is particularly useful when a complete, debugged engine
already exists in the form of C++ code.

Newton devices tend to have fewer resources – such as memory – than
machines for which existing C++ code was written. Thus, you should be
careful when using existing code to ensure that it can operate within the
constraints of the intended platform.

Newton C++ Tools is the latest example of how Apple is continuing to
provide a more open, flexible development platform for software
developers. Even with the limitations described above, we feel that many
developers will be able to take advantage of Newton C++ Tools to enable
them to more easily port existing routines written in C or C++ to the Newton
platform.

Newton Technology Journal April 1996

21

NTJ

NTJ

NEW LCD
The MessagePad 130 features a new transflective EL backlight which allows
viewing of data in any lighting conditions. Be it in a dimly lit conference
room, a dark storage facility, or at night in the car, with on-demand
backlighting, information can now be easily viewed and accessed. The EL
backlight is easy to turn on, with just a flip of the power switch, and its time-
out feature is user-controlled via Preferences.

Third-party Newton developers will have access to the backlight APIs to
take advantage of backlight controls in software if desired. Three
NewtonScript calls have been added to control the backlight:

BackLightPresent()
Returns true if the unit has a backlight

BackLightStatus()
Returns true if the backlight is on

BackLight(RefArg onOrOffArg)
Turns the backlight on or off. Returns the previous state

MORE SYSTEM MEMORY

The MessagePad 130 comes with an additional 512K of system memory
bringing the total to 1MB of system memory, which will allow for better
performance with communications solutions such as TCP/IP and wireless
LANs. The addition of system memory will also allow for better performance
with multi-tasking support. The system heap is also expanded to utilize the
extra memory.

The change in heap does not mark a new standard for Apple Newton
based hardware. The additional heap is intended to enable more robust
communications applications. The MessagePad 120 will continue to be sold
in the channel alongside the MessapePad 130 and will have the same
available heap as it does today. Please keep this in mind when designing and
developing your applications.

MORE DURABLE, NONGLARE SCREEN

The MessagePad 130 now features a new, more durable nonglare screen
which makes for easier viewing of information in a variety of lighting
environments. With the improvements to the durability of the tablet, the
MessagePad 130 provides for a more robust mobile forms and data
capture tool.

THE MESSAGEPAD 130 OFFER

The MessagePad 130 comes with a variety of built-in productivity tools
such as a Call Log, Time Zone map, a Formula application, and Pocket
Quicken (US only) to name a few. Newton Backup Utility and serial cables
for Mac OS- and Windows-based computers are also included for backing
up and restoring information on a PC as well as installing packages onto
the MessagePad.

THE APPLE MESSAGEPAD PRODUCT LINE

The MessagePad 120 is the entry-level Newton PDA from Apple which retails
for $699.00 in the US. The MessagePad 130 is the high-end Newton PDA
with backlighting and more system RAM retailing at $799.00 in the US.

continued from page 1

Apple Announces New MessagePad 130 with Newton 2.0!

April 1996 Newton Technology Journal

22

Note From The Editor:
September 1995 Newton Platform Developers Conference attendees have

continually commented on the wisdom of the advice delivered in Guy
Kawasaki’s keynote speech. We’ve had repeated requests to publish the text
of his presentation. While we are not able to publish the entire speech
word-for-word, Guy has put together the following points, which are the key
elements of his Newton application development strategy. Enjoy!

1) Ignore the past. “Porting” software from one platform to another is for
wimps. Thinking that old application categories is what will sell on a new
platform is dumb. If you want to create a killer application, you need to
jump to a new curve, not milk a previous one.

2) Let a thousand flowers bloom. When people come up to you with weird
ideas, listen to them. (Newton-based devices as tour guides for
museums – Imagine that!) Apple didn’t evangelize music software for
Macintosh. That software, and therefore that market, developed because
thousands of flowers were blooming.

3) Lead, don’t follow, Apple. Desktop publishing was never planned by
Apple. If it weren’t for Paul Brainerd (PageMaker) and John Warnock
(PostScript), Apple might not be around today. They led Apple into
desktop publishing. Go where you want to go, and Apple might be able
to follow. Even if Apple isn’t following, go there alone.

4) Ignore your customers. Customers are great at telling you how to evolve
a product – new features, etc. But customers suck as far as being able to
tell you how to create a revolutionary product. If we had listened to
customers in 1984, we’d be making the Apple XXII now. You have to
take the shot – that’s why you get the big bucks.

5) Create the product you want to use. Woz designed the Apple I and
Apple II because they were the computers he wanted to use – not the
result of data from some high falutin market research study or focus
group. If you create the product you want to use, at least you know
there’s one customer for sure. That’s more than research can tell you.

6) Don’t raise too much money. Too little money is a much better problem
than too much money. A scarcity of resources will force you to be more
clever, more guerilla-like, and more aggressive. An abundance of

resources will only encourage you to buy nicer furniture, cooler
stationary, and more shrimp for your press conference.

7) Don’t worry, be crappy. Although I’ll swear I never wrote this, during the
early stage of a product like Newton (and it’s still early), I recommend
that you ship something right away to test your product concept. If you
wait for that “perfect version” with all the features your beta sites
requested, you might die on the vine. Get the essential features of your
product done and ship. Validate the product. Then revise quickly.

Guy Kawasaki is an Apple Fellow and legend in his own mind. He is the author of
How to Drive Your Competition Crazy and a Forbes columnist.

Stop the hegemony. Join EvangeList. Send an email to <macway-
request@solutions.apple.com> for an automatic reply. (Any message will
work.) Archives are at: <http://wais.sensei.com.au/searchform.html>.

Seven Ways to Create the Killer Newton Application
by Guy Kawasaki

Business Opportunities

If you have an idea
for an article you’d like to write for Newton
Technology Journal, send it via Internet to:

NEWTONDEV@applelink.apple.com
or AppleLink: NEWTONDEV

NTJ

Dear Newton Developer,
A little over a year and a half ago, we sent the first issue of the Newton Technology
Journal to the printer, with high hopes and expectations for how it would be received,
and what it might become. And in these last 18 months, we have not been disappointed.
The Newton Technology Journal has proven to be an excellent medium for explaining
Newton programming techniques and covering some detailed areas of the Newton OS
not covered in our documentation or other support tools. We’ve used it to deliver the
latest news and marketing information from Apple’s Newton Systems Group, and as a
forum for announcing new products and encouraging you to keep up the great work.

While we’re thrilled with the feedback we’ve gotten from you on the Journal’s
usefulness, we are not yet ready to settle and leave it at that. The last seven issues have
been full of excellent articles written by Apple engineers, trainers, product marketing
managers, and a few developers with a knack for a particular programming technique.
While we want lots of those to continue, we also want the publication to become a forum
for folks in the Newton development community to share programming tips and tricks,
share market successes and deliver additional programming information. How about a
Question and Answer column – something like Ask Dr. Llama? You send in the questions,
we provide the answers. This is a publication dedicated solely to your pursuit of excellent
Newton platform solutions. Let us know how you want the magazine to improve, and
we’ll make it happen. Also, let us know what you’ve enjoyed and want to see more of, so
we can continue to deliver the content you need.

More than just providing us feedback, we’d like to see you start authoring articles.
Now that so many of you are experienced Newton programmers, we’d like you to share
your expertise with others in the community. Getting published is easy – all you need to
do is let us know what your idea is, and we’ll let you know how and when we can fit it into
the publishing schedule. Or, if you’ve written an article already and want it published, just
submit it! We’ll let you know if and when we can print it. Of course there are some more
details (like the legal stuff), but we’ll pass them all on when you send us your ideas or
request to be published. Just send your requests, ideas, or articles to
newtondev@applelink.apple.com.

So, here’s to another year of great articles and content. We look forward to hearing
from you soon!

– Newton Technology Journal Editorial Review Board
Apple Computer, Inc.

Newton Technology Journal April 1996

23

Letter From the Editors

Newton Developer Programs
Apple offers three programs for Newton developers – the Newton Associates Program, the Newton
Associates Plus Program and the Newton Partners Program. The Newton Associates Program is a low
cost, self-help development program. The Newton Associates Plus Program provides for developers
who need a limited amount of code-level support and options. The Newton Partners Program is
designed for developers who need ujnlimited expert-level development. All programs provide focused
Newton development information and discounts on development hardware, software, and tools – all
of which can reduce your organization’s development time and costs.

Newton Associates
Program
This program is specially designed to provide low-cost,
self-help development resources to Newton developers.
Participants gain access to online technical information
and receive monthly mailings of essential Newton
development information. With the discounts that
participants receive on everything from development
hardware to training, many find that their annual fee is
recouped in the first few months of membership.

Self-Help Technical Support
• Online technical information and developer forums
• Access to Apple’s technical Q&A reference library
• Use of Apple’s Third-Party Compatibility Test Lab

Newton Developer Mailing
• Newton Technology Journal – six issues per year
• Newton Developer CD – four releases per year

which may include:
– Newton Sample Code
– Newton Q & A’s
– Newton System Software updates
– Marketing and business information

• Apple Directions – The Developer Business Report
• Newton Platform News & Information

Savings on Hardware, Tools, and

Training
• Discounts on development-related Apple hardware
• Apple Newton development tool updates
• Discounted rates on Apple’s online service
• US $100 Newton development training discount

Other
• Developer Support Center Services
• Developer conference invitations
• Apple Developer University Catalog
• APDA Tools Catalog

Annual fees are $250.

Newton Partners
Program
This expert-level development support program helps
developers create products and services compatible
with Newton products. Newton Partners receive all
Newton Associates Program features, as well as
unlimited programming-level development support via
electronic mail, discounts on five additional Newton
development units, and participation in select
marketing opportunities.

With this program’s focused approach to the
delivery of Newton-specific information, the Newton
Partners Program, more than ever, can help keep
your projects on the fast track and reduce
development costs.

Unlimited Expert Newton

Programming-level Support
• One-to-one technical support via e-mail

Apple Newton Hardware
• Discounts on five additional Newton development

units

Pre-release Hardware and Software
• Consideration as a test site for pre-release Newton

products

Marketing Activities
• Participation in select Apple-sponsored marketing

and PR activities

All Newton Associates Program

Features:
• Developer Support Center Services
• Self-help technical support
• Newton Developer mailing
• Savings on hardware, tools, and training

Annual fees are $1500.

New: Newton Associates
Plus Program
This new program now offers a new option to
developers who need more than self-help information,
but less than unlimited technical support. Developers
receive all of the same self-help features of the Newton
Associates Program, plus the option of submitting up
to 10 development code-level questions to the Newton
Systems Group DTS team via e-mail.

Newton Associates Plus Program

Features:
• All of the features of the Newton Associates

Program
• Up to 10 code-level questions via e-mail

Annual fees are $500.

For Information on All

Apple Developer Programs
Call the Developer Support Center for
information or an application. Developers
outside the United States and Canada
should contact their local Apple office for
information about local programs.

Developer Support Center

at (408) 974-4897
Apple Computer, Inc.
1 Infinite Loop, M/S 303-1P
Cupertino, CA 95014-6299

AppleLink: DEVSUPPORT

Internet: devsupport@applelink.apple.com

Apple Developer Group

®

