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Describing the mathematical development underlying current and classical 
methods of geolocating electronic systems that are emitting, this newly revised 
and greatly expanded edition of a classic Artech House book offers practical 
guidance in electronic warfare target location techniques. This second edition 
features a wealth of additional material, including new chapters on time delay 
estimation, direction finding techniques, and the MUSIC algorithm. This practi-
cal resource provides critical design information on geolocation algorithms and 
establishes the fundamentals of existing algorithms as a launch point for further 
algorithm development. 

Engineers gain an in-depth understanding of key target location methods that 
can be effectively applied to their work in the field. Readers discover triangula-
tion algorithms that offer a highly efficient way to geolocate targets when the 
real estate on the sensor systems is adequate to support an antenna array. The 
book also presents quadratic geolocation techniques that can be implemented 
with extremely modest antennas — frequently a single dipole or monopole. 
Moreover, this authoritative volume details methods for geolocating the source 
of ionospherically refracted high frequency signals with a single sensor site. 
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Preface 
 
 
This book is about methods and techniques for geolocating noncooperative targets 
of interest that are emitting radio frequency signals. This is a critical function for 
most military electronic warfare systems; tactical ones at least.  

Added to this second edition, which were not included in the first edition, are 
chapters on methods of estimating the fundamental parameters that allow the 
position fixes to be calculated. These are either the measurement of angles of 
arrival of the signal of interest (as in interferometry), or some other time, 
frequency, amplitude, or phase parameter such as time of arrival or differential 
frequency. In any real-world situation these parameters are always statistical as 
random components introduced by noise processes are always present. 

This material is intended to be useful in applications as it is presented, 
allowing implementation of hardware and algorithms with the information 
provided. It can also serve as a launching point for further developments in the 
methods for geoposition estimation. 

The material is also suitable for a short course on electronic warfare emitter 
geolocation. End of chapter problems are not included, so its utility as a text on the 
subject for part of a full course is limited. When augmented with problems, 
however, it could fill that need as well. In such a role, it would best be taught as 
part of a fourth year or first level graduate engineering curriculum. 

The intended audience for this book is the same as the first edition. It is aimed 
primarily at technical personnel with at least a four-year degree in an engineering 
or scientific discipline, new to the field of electronic warfare. It also serves as a 
source for experienced engineers who would like to have a reference on the topic 
of emitter geolocation. Most of the more common techniques are included so the 
coverage is reasonably complete. 
 One area that is not explored in detail here is array-beamforming. It is a 
method for determining the angle of arrival of signals of interest, while rejecting 
interfering signals from other directions. The reason this topic is not covered in 
depth here is because a thorough coverage of it is contained in [1]. Another area 
not described at length is the theory of phase interferometry. The reason is similar: 
considerable detail is included in [2]. 
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After the introduction in Chapter 1, we delve into the concepts behind 
triangulation in Chapter 2. This chapter did not change much from the first edition. 
Triangulation is the notion of estimating the position fix of a target emitter based 
on measurements of the angle of arrival of the signal at 2 or more intercept sites. 
The estimate of the target location is the intersection of the lines defined by these 
angles, since the locations of the receiving systems are assumed to be known. 
 Chapter 3 is all new in this edition. We did not include any descriptions in the 
first edition of how to obtain the angles of arrival used in the triangulation 
methods discussed in Chapter 2. We now have included discussions of several 
techniques. One of the more important such technique is called MUSIC, and it is 
an example (perhaps the example) of techniques that carry the appellation 
subspace methods. Chapter 4 is devoted to the MUSIC algorithm and its 
characteristics. 
 Chapter 5, like Chapter 2, did not change much from the first edition. It 
covers quadratic position fixing methods including time difference of arrival, time 
of arrival, differential Doppler, and range difference methods. Chapter 6 explores 
techniques for estimating the time delay of signals at several receiving systems. 
This topic was not included in the first edition. 
 We included discussions about single site location technology in the first 
edition, and we expand on that in this edition. That is the subject of Chapter 7. 
 Two appendices are included that explore in more detail two of the more 
mathematical topics mentioned in the main text. 
 Errors tend to creep into technical works such as this monograph. The author 
accepts all the responsibility for any such errors or omissions. As always, 
constructive feedback is welcomed. 
 
 

References 
 
[1] Poisel, R. A., Antenna Systems and Electronic Warfare Applications, Norwood, MA: Artech 

House, 2012. 
[2] Poisel, R. A., Introduction to Communication Electronic Warfare Systems, 2nd Ed., 

Norwood, MA: Artech House, 2008, Ch. 8. 
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Chapter 1 
 
 

Introduction to Emitter Geolocation 
 
 
1.1  Introduction 
 
Determining the location of an emitting target is one of the fundamental functions 
of communication electronic warfare (EW) systems. Knowing the location of 
targets is useful for several purposes. First, knowing the location of targets 
indicates the disposition of forces. Second, precision location of targets allows for 
use of global positioning system (GPS)-enabled fire-and-forget munitions for 
negation of the target. Third, clustering different types of emitters in the same 
region can give an indication of the type of entity at a particular location. 
 This monograph presents several modern (and some not-so-modern) 
techniques for computing the position fix (PF) of a target based on differing 
information available from measurements performed on intercepted signals. 

The azimuth angle of arrival (AOA) of a signal, or its line of bearing (LOB), 
is a frequently used parameter for PF computation. Two or more LOBs, assumed 
to be measured on the same target at more or less the same time, may intersect as 
illustrated in Figure 1.1 [1–6]. Such a technique for PF determination is referred to 
as triangulation. Triangulation is discussed at length in Chapter 2, where several 
different algorithms are presented. 

There are several methods to estimate the AOA of signals impinging on the 
antenna array at an intercept site. They are all based on measuring the time 
difference of arrival (TDOA) or phase difference of the signals at two antennas 
that are spaced half a wavelength or less apart (at least two of the set of antennas 
used must satisfy this; otherwise, ambiguities arise) [7]. We present some of the 
more common methods in Chapter 3. One of the most important and widely used 
methods carries the appellation multiple signal classification (MUSIC) [8]. This 
technique is discussed at length in Chapter 4. 

Another possibility is to measure the time of arrival (TOA) of the signal at 
several dispersed sensors that are located substantially more than a wavelength 
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apart. The TOA itself can be used to compute the PF, where the isocontours are 
circles, but more typically the TOAs are transferred to a central site where the 
TDOAs are computed between the sensors, two at a time. Closely related to the 
method of using the TDOAs is to compute the range differences between the 
sensors and the target. Such range differences (RD) are related to the TDOAs by 
the speed of propagation in the medium through which the signal propagates. In 
the air this is normally assumed to be the speed of light. If the signal is an audio 
signal, then in the air it is the speed of propagation of sound through the air, which 
can be influenced by humidity and other parameters in the air. If the signal is an 
audio signal underwater, then the speed of propagation is that of sound through 
water. 

 Another form of quadratic processing is to measure the differential Doppler 
(DD), otherwise known as differential frequency. Such measurements generate 
target location isochrones upon which the target is estimated to lie. Its greatest 
challenge is the target cannot be moving; otherwise, large errors can occur when 
trying to measure Doppler differences. Examination of DD is included as well. 

All of the techniques that use the TOA, TDOA, RD, or DD generate quadratic 
curves, called lines of position (LOP), upon which the emitter lies, subject to 
measurement errors and noise perturbations. The intersection of these LOPs is 
used to estimate the PF. Quadratic PF techniques are discussed in Chapter 5.  As 

 
 
Figure 1.1 Intersection of measured LOBs. 



Introduction to Emitter Geolocation 
 

 

3 

discussed in Chapter 5, if the target is moving, errors can occur in the PF 
calculations.  These errors can be mitigated if the motion is detected. It is required 
to estimate the time delay between the sensors to determine the LOPs. Some 
techniques to do so are presented in Chapter 6. 
 Signals in the high frequency (HF) range can propagate for considerable 
distances using reflections off the Earth’s ionosphere. Such bending of the signal 
is actually being caused by refraction of the signals within the ionosphere due to 
variations in the electron and ion density in the ionosphere.  

Estimating the geoposition of such targets is possible using the AOA 
estimation techniques presented in Chapter 2. However, knowing the azimuth 
angle of arrival of the signal, as well as its elevation angle, combined with an 
estimate of the equivalent height of the ionosphere where the signals are reflected 
allows estimation of the PF of a target with a single sensor. Such PF techniques 
are known as single-site location (SSL). SSL methods are discussed in Chapter 7. 
Comparison of the virtues of AOA methods to the SSL technique are also 
presented in Chapter 7. 

Perhaps the most used form of AOA estimation is amplitude comparison since 
that is the popular technique used in aircraft survivability equipment (ASE), in 
particular, in radar warning receivers (RWRs). Every combat aircraft in the Air 
Force and Navy has this equipment employed on it. The downfall of the method is 
that it is fairly inaccurate. Nevertheless, we include a discussion on how it is used. 

 
 

1.2 Gradient  Descent Algorithm 
 
Foy presented a PF algorithm based on the simple process of using a Taylor series 
expansion of the defining equations (also known as Gauss or Gauss-Newton 
interpolation) [9]. This development provides a convenient introduction to the 
algorithmic approach to computing PFs. It contains many of the characteristics 
typical of solving the PF estimation problem, so it is presented in this introduction. 
It is also one of the most general and most accurate methods available. Other types 
of descent algorithms exist and can be used as well [6]. More in-depth information 
on the decent algorithms is provided in Appendix B. 

The equations express the geometry involved in mathematical terms and are 
frequently nonlinear. Expanding the nonlinearities in a Taylor series and retaining 
only the linear terms allows for employing Newton-Raphson methods of gradient 
descent to iteratively find a solution. An initial guess of the solution is made, and 
the estimation process proceeds iteratively until an estimated solution is found. At 
each stage, a correction factor is calculated based on the local linear least-sum 
square error. 
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 The principal disadvantages and advantages according to Foy are as shown in 
Table 1.1. 

Suppose T T T( , )x x y=
represents the true position of the target emitter and      

k k k( , ), 1, 2, ,x x y k K= =
 represents the true positions of the K PF sensors.1, 2 Let 

nki represent the nth measurement at sensor k. These measurements, at this point, 
are not restricted to LOBs, ranges, and so forth, but could represent any 
measurement useful for calculating the PF. Thus, 
 
 T T( , , , ) , 1,2, ,i k k i ki if x y x y u n k K= = + =� �  (1.1) 

 
where 
 

true value of the measured quantitykin =  

 
and 
 

error in the  measurementi kin=  

 
For example, if the measurement is that of an LOB from the PF sensor to the 

emitter, then 
 
                                                           
1 Bold capital letters (X) refer to matrices, small italicized letters with an arrow ( )x


 refer to vectors, 

and italicized letters refer to variables. 
2 This analysis is restricted to two dimensions. Extension to higher dimensionality is straightforward. 

Table 1.1 Advantages and Disadvantages of the Gradient  Descent Approach to PF 

Advantages Disadvantages 
Multiple independent measurements to a single station 
are averaged naturally 
Multiple measurements and mixed-mode measurements 
are combined properly, that is, with the correct 
geometric factors, and can be weighted according to 
their a priori accuracies 
The statistical spread of the solution can be found easily 
and naturally 
Experience indicates that the initial position guess can 
be quite far off without preventing good convergence 
Failure to converge is easy to detect 
Simulation is easy, so convergence can be readily tested 
Computational complexity is less than that of a Kalman-
Bucy filter 

The method is iterative, 
requiring an initial guess 
It is computationally 
complex compared to 
simple plotting of lines of 
position 
Being a local correction, its 
convergence is not assured 

Source: [9]. 
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 T1
T T

T

( , , , ) tan k
i k k i

k

y y
f x y x y

x x
− − = + − 

  (1.2) 

 
The covariance matrix for two random vectors  1 2 ( )[ ]yy y y y= 


  and 

1 2 ( )[ ],zz z z z=  
  where (.) stands for the cardinality of the argument, is a 

matrix whose element in the i, j position is the covariance between the ith and jth 
elements of the vectors. It is given by 
 
 H

yz { , } {[ { }][ { }] }y z y y z z= = − −C Cov   
    

 (1.3) 

 
where H stands for the Hermitian operation (conjugate transpose) and {} denotes 

statistical expectation.3 If the two vectors have zero means, then obviously 
 
 H

yz { }yz=C    (1.4) 

 
If the two vectors are the same then 
 
 yy { }y=C Var  (1.5) 

 
The covariance matrix is a measure of the quality of the relationship between the 
two constituent vectors. 
 The goal is to find (xT, yT) given the measurements and known locations of the 
sensors. The errors in the measurements i  are assumed to be independent (of each 

other) and identically distributed (i.i.d.) with zero means, { } 0.i =   

The error covariance matrix is given by 
 
 [ ]ijc=C  (1.6) 

 
with entries 
 
 { }ij i jc =     (1.7) 

 
  Let T Tˆ ˆ( , )x y  be guesses of the true position (xT, yT). Then 

 

                                                           
3 Strictly speaking, specification of expectations requires a domain (ensemble) over which the 
expectation applies. When that domain is obvious, it will not be indicated. 
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 T Tˆ δxx x= +  (1.8) 

 
and 
 
 T Tˆ δ yy y= +  (1.9) 

 
The Taylor series is an expansion of a (usually) nonlinear function. Its 

purpose is to typically retain only the linear terms (the first couple), or perhaps up 
to the second order, to simplify analysis. When retaining only the linear terms, the 
process linearizes an otherwise nonlinear, and thus generally intractable, function. 
The result is normally a linear approximation to the original function, and can be 
quite accurate in a small region around a given point. 

The Taylor series expansion of fi() around point a is given by [10] 
 

 
2( ) ( )

( ) ( ) ( ) '( ) ''( ) ( )
2! !

n
nx a x a

f x f a x a f a f a f a
n

− −= + − + + + +   (1.10) 

 
where the notation f n(a) refers to the nth derivative of f(x) evaluated at point a. In 
two dimensions, this becomes 
 

 

( , ) ( , ) ( , )

1
( , )

!

x a
y b

n

x a
y b

h kf a h b k f a b f x y
x y

h k f x y
x yn

=
=

=
=

∂ ∂ ++ + = + + ∂ ∂ 

∂ ∂ ++ + ∂ ∂ 




 (1.11) 

 
where the bar and subscripts mean that, after differentiation, x is replaced with a 
and y is replaced with b. Also, in this notation, 
 

            
( , ) ( , )

( , )
f x y f x y

h k h kf x y
x y x y

∂ ∂ ∂ ∂   + +=   ∂ ∂ ∂ ∂   
 

2 2 2
2 2( , ) ( , ) ( , )

( , ) 2
f x y f x y f x y

h k f x y h hk k
x y x x y y

∂ ∂ ∂ ∂ ∂ + = + + ∂ ∂ ∂ ∂ ∂ ∂ 


 

 
For the case at hand, the two-dimensional Taylor expansion, after deleting all 
terms higher than the linear ones, is 
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T T
T T

ˆ ˆ
ˆ ˆ

()()ˆ δ δii
i x y ki i

x x x x
y y y y

ff
f n

yx = =
= =

∂∂+ + ≈ +
∂∂

  (1.12) 

 
where 
 

 T T
ˆ ˆ ˆ( , , , )i i k kf f x y x y=  (1.13) 

 
To put this development into matrix form for easier manipulation, define 

 

 

T T

T T

T T
T T

T T
T T

11

ˆ ˆ
ˆ ˆ

11 12
2 2

21 22 ˆ ˆ
ˆ ˆ

1 2

ˆ ˆ
ˆ ˆ

()()

() ()

()()
S S

SS

x x x x
y y y y

x x x x
y y y y

N N

NN

x x x x
y y y y

ff
yx

h h
f f

h h x y

h h
ff

yx

= =
= =

= =
= =

= =
= =

 ∂ ∂
 ∂∂ 
   ∂ ∂  
   ∂ ∂= =   
  
     ∂∂
 

∂∂  

H
 



 (1.14) 

                              
δ

δ
x

y

 
δ =  

 


  (1.15) 

                              

1 1

2 2

ˆ

ˆ

ˆ
S S

k

k

kN N

n f

n f
z

n f

 −
 

− 
=  
 
 − 




  (1.16) 

 
and 
 

                              

1

2

SN

 
 
 =  
 
  











  (1.17) 

 
then (1.12) can be rewritten as 
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 zδ ≈ +H 
  

 (1.18) 
 

The form of δ


 that yields the least sum squared error with the terms weighted 
according to the covariance matrix is [11] 
 

 1 1 1[ ]T z− − −δ = H Y H Y
 

 (1.19) 

 
where Y is a weighting matrix used to factor in one or more parameters.  Y is 
arbitrary, but must be positive definite and full rank so that Y–1 exists.  Therefore, 

during one step of the iteration, δ


is computed according to (1.19), and new 
estimates (guesses) are obtained via 
 

 
new old

new old

ˆ ˆ

ˆ ˆ
x

y

x x

y y

← + δ
← + δ

 (1.20) 

 
in (1.18), and the iteration is repeated until there is a satisfactory minimization of 

change in (xg, yg) from one iteration to the next ( 0).δ ≈
 

 

 The covariance matrix of the PF estimate is given by 
 

 
2

1 1
0 2[ ] x xyT

xy y

− −  σ ρ
= =  ρ σ  

C H Y H  (1.21) 

 
If the error statistics are normal, then the error region is an ellipse, called the 
elliptical error probable (EEP), with semimajor axis a and semiminor axis b given 
by [12] 
 

 
2 2 2

2 2
e2 2 2 2 2 1/2

2
[ 4 ]
x y xy

x y x y xy

a c
σ σ − ρ

=
σ + σ − σ − σ + ρ

 (1.22) 

 
2 2 2

2 2
e2 2 2 2 2 1/2

2
[ 4 ]
x y xy

x y x y xy

b c
σ σ − ρ

=
σ + σ + σ − σ + ρ

 (1.23) 

 
where e e2 ln(1 ),c P= − −  with Pe being the confidence that the target lies within 
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the EEP (e.g., 0.5 for 50%, 0.9 for 90%, and so forth). The tilt angle θ of the 
semimajor axis relative to the x-axis is given by 
 

 1
2 2

21
tan

2
xy

y x

− ρ
θ =

σ − σ
 (1.24) 

 
The circular error probable (CEP) is similar in concept to the EEP. It is a 

circle centered on the computed PF with an area such that the target lies within the 
circle with a prescribed probability. Based on the fact that the trace of a matrix is 
equal to the sum of its eigenvalues, the CEP can be estimated to within 10% by [7, 
13] 
 

 
 
Figure 1.2 Mixed observation example geometry. 
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 2 2CEP 0.75 a b≈ +  (1.25) 
 

Example 
 
This example is from [9] and is a good illustration of the mixed 
observation capability of the gradient descent method. Consider 
two sensors as shown in Figure 1.2. The two sensors are located 
at (–20, 20) and (8, 12). Three measurements are made: an LOB 
from sensor S1 at –38o with o3 0.0524 radian,φσ = =  a range 

measurement also from S1 at r1 = 32 units with 2 units,rσ =  and 

a range difference between the two sensors 1 2 12 16r r r− = Δ =  

units with 1unit.
rΔσ =  The bearing can be expressed as 

 

 
( )

1 1
1 2 2

1 1

sin
( )

k

k k

y y

x x y y

−
 − φ =
 − + − 

 

 
for which the first-order expansion is 
 

 
1

11 1 1
x y 12 2

11 1

tank k k

k

y y x x y y

x xr r
−

θ

    − − −
δ − δ ≈ φ − −     −     

  

 
This result must be weighted by multiplying by the distance 
between the current guess and S1, yielding 
 

 
1

11 1 1
x y 1 1

11 1

tank k k

k

y y x x y y
r

x xr r
−

φ

     − − −
δ − δ ≈ φ − −      −       

  

 
This is used for a11, a12, and z1. 
 The true range from S1 to the current guess is given by 
 

 2 2
1 1 1( ) ( )k kr x x y y= − + −  

 
The first-order Taylor series expansion is given by 
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1

1 1
x y measured 1

1 1

k k
k r

k k

x x y y
r r

r r

− −
δ + δ ≈ − −   

 
while the first-order Taylor series expansion of the range 
difference is given by 
 

12

1 2 1 2
x y

1 2 1 2

12 1 2( )

k k k k

k k k k

k k r

x x x x y y y y

r r r r

r r r Δ

   − − − −
− δ + − δ   

   
≈ Δ − − − 

 

 
When the measurement errors are independent, the error 
covariance matrix of the measurements is 
 

 

2 2 2
1

2

2

0 0 (0.0524) 0 0

0 0 0 4 0

0 0 0 0 1
r

k

r

rφ

Δ

   σ
   = σ =   
   σ   

C  

 
The algorithm was started with the initial point of x0 = 22 and y0 
= 4, as illustrated in Figure 1.2. This results in δx = –23.5 and δy 
= –24.4 from (1.19). These values yield x1 = –1.5 and y1 = –20.4 
from (1.20). Continuing the algorithm, the final solution at the 
end of iteration 3 is, as shown in Figure 1.2, x3 = 2, y3 = –5.1, 
after which δx = 0.05 and δy = –0.05 and the algorithm halts. At 
this point, 
 

 

0.752 0.659

0.659 0.752

0.990 0.192

 
 = − 
  

H  

 
and 
 

 
1T 1

0

0.899 0.640

0.640 3.578

−− −  = Ρ =    − 
C H H  

 
From (1.22) to (1.24), the EEP parameters are 
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 o1.929 units 0.868units 102.76a b= = θ =  

 
yielding 
 
 CEP 1.587 units=  

 
The EEP is plotted in Figure 1.2. 
 In this example, convergence occurred after only three 
iterations and the resulting EEP was reasonable, considering the 
variances of the measurements. 

+ 
1.3 Concluding Remarks 
 
There are many PF estimation methods, some of which are presented in this 
monograph. There has been no attempt to include all possibilities. GPS alone has 
spurred considerable interest and research into different techniques of computing 
PFs (although all of those related to GPS are based on time differences). The 
ongoing implementation of the Federal Communications Commission (FCC) 
ruling in the United States mandating geoposition availability of all 911 calls has 
spurred considerable research into methods for computing PFs as well. 
 It is hoped that the reader garners a basic understanding of the problems and 
some useful approaches for estimating the locations of emitters. 
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Chapter 2 
 
 

Triangulation 
 
 

2.1 Introduction 
 
Triangulation is the appellation applied to estimating a PF by calculating the most 
likely point for the target, given the intersection of two or more LOBs from 
sensors at known locations. It is widely used in this role, and there are several 
techniques available for measuring the azimuth angles of arrival of signals. Noise, 
measurement errors, and multipath reflections typically limit the PF accuracy. 
 Perhaps the first documented exploration of the triangulation concept was 
done by Stansfield [1]. Although not noted at the time, the Stansfield algorithm is 
a maximum likelihood estimation (MLE) technique. It is, however, biased 
(explained shortly). We examine Stansfield’s method in this chapter. 
 Triangulation can be implemented on all varieties of platforms, including 
aircraft, ships, and ground vehicles. If signal phase is used as the parameter for 
computing the LOBs, then triangulation requires an array of antennas, with a 
baseline shorter than half a wavelength to avoid ambiguities in phase angle 
measurement. Parameters other than phase, such as relative amplitude, can also be 
used as the angle indicator. Most methods, however, require the antenna array. 
 This chapter starts with a simple illustration of triangulation to introduce the 
fundamental concepts. Several of the available algorithms for optimum PF 
calculation are based on the least-square error (LSE) estimation technique. 
Therefore, a generalized introduction to the LSE method is presented next. An 
extension to the LSE method is the total least-square error (TLSE) technique, 
which is somewhat more general and is presented next. PF algorithms based on the 
method of least-squared distance error are presented. This is followed by a 
discussion of optimum PF estimation based on the method of minimum mean-
square error. A technique based on dividing up the area of interest (AOI) into 
discrete intervals, called the discrete probability density (DPD) method, is 
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discussed. The concept of generalized bearings, where the LOBs are not based on 
the Cartesian coordinates but are three-dimensional, yields a different algorithm 
for PF estimation; this is discussed next. Using concepts from the statistical 
process of maximum-likelihood estimation also yields PF estimation algorithms, 
and two of these are presented. A method of PF estimation based on the 
intersection of LOB fans, defined as ±maximum LOB error, is discussed next. 
Then the discussion shifts to presentations of the theoretical observability 
requirements for estimation of the PF and velocity of a target. The last topics 
discussed in this chapter are the sources of error in PF estimation using 
triangulation. These include systematic errors (bias) and random errors (noise).  
 
 

2.2 Basic Concepts 
 
The geometry shown in Figure 2.1 can be used to describe the triangulation 
concept. Initially consider just two dimensions. There are two sensors, S1 and S2, 
separated by distance d, and a single target. Of course, the two sensors could be 
the same sensor that has moved distance d. Each of the sensors computes an LOB 
relative to some reference, which is the same for both sensors. By simple 
trigonometry, 
 

 1
1sin

d

d
φ =  

             1 1sind d= φ  

 
and 

 
 
Figure 2.1 Geometric relationships for PF by triangulation. 
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1
2 1

2

1
2

2 1

sin( )

sin( )

d

d

d
d

φ − φ =

=
φ −φ

 

yielding 
 

 1
2

2 1

sin

sin( )

d
d

φ
=

φ −φ
 (2.1) 

 
With knowledge of d2 and φ2, x and y, the distances to the target from S2, can be 
computed as 
 

 2 2

2 2

cos

sin

x d

y d

= φ
= φ

 (2.2) 

 
 These notions extend to more than two sensors and to three dimensions in the 
obvious way, taking two sensors at a time and computing the coordinates of the 
target. The resulting coordinates can then be averaged. Other methods of using 
more than two LOBs are discussed in this chapter. 
 Another technique for PF with triangulation is to plot (figuratively or literally) 
the measured LOBs and see where they cross, as shown in Figure 2.2 (the sensors 
could be one moving as shown or three stationary, and the same results would 
apply). In the absence of errors in the measurement process, these LOBs will all 
cross at a single point. However, in general, the LOBs are corrupted with 
measurement error and noise. This noise is frequently assumed to be zero mean 
additive white Gaussian noise (AWGN). The result on the PF computation, 
however, is to cause the LOBs to move away from crossing at a single point. If the 
noise is random, the measured LOB could be larger than or smaller than the actual 
LOB, as illustrated in Figure 2.3. The result is an error ellipse. The sensors could 
also exhibit biases, which many parameter estimators do. Biases can be caused by 
being an inherent property of the algorithm to compute the PF or they can be due 
to systematic errors in the parameter measurement device. 
 If there are only three LOBs available, they will form a triangle hopefully 
close to the actual location of the target as illustrated in Figure 2.2. There are three 
popular nonstatistical methods to estimate the location of the target given the 
triangle. These are shown in Figure 2.4 [2]; they are all techniques for estimating 
the centroid of the area of the triangle. In Figure 2.4(a), the medians of the sides 
are connected with the opposite angle. In Figure 2.4(b), the angles are bisected and 
the point where the bisectors intersect is chosen as the PF. In Figure 2.4(c), the 
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Figure 2.2 Triangulation. 
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Figure 2.4 Nonstatistical PF calculations with only three LOBs: (a) intersection of medians, (b)
intersection of angle bisectors, and (c) Steiner point (defined by the point where the angles
between the lines from the corners are all 120o as shown). They are all methods for estimating the
centroid of the triangle. 

 
 
Figure 2.3 Random error effects on computing the PF. 
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intersection of lines drawn from each angle to the point in the triangle where the 
lines form 120o angles is chosen as the PF. 
 If there are more than three LOBs in the calculation, such as those illustrated 
in Figure 2.5(a), they can be taken three at a time, as shown in Figure 2.5(b–e). 
The coordinates of the resultant centroids can then be averaged to determine the 
final fix, as shown by the white circle in Figure 2.6. Note that averaging the 
intersections of bearings may lead to biased results. 
 
 

2.3 Least-Squares Error Estimation 
 
Many of the optimization methods to be presented rely on finding an estimate 
based on minimizing the error between the estimate and the actual value of the PF. 
Therefore, this section presents the general development of the optimal LSE 
estimator. Here, the recursive form of LSE estimation is assumed such that 
measurements are made sequentially at time instants 0, 1, …, k, …, N – 1. That is, 
measurements are available at time instants k and before. LSE estimation can be 
applied to any appropriate set of data points [3], however, to include the case when 
the estimate is not obtained until all the data points are available. 

Let the linear estimation model for the kth time instant be given by1  
 

 k k k kz n= θ +H
 

 (2.3) 

 
where kz


is the vector of measurements up to time k, and Hk is the observation 

matrix such that measurement zk at time instant k is related to the vector kθ


by  

 

 k k k kz h n= θ +
 

 (2.4) 

 

where kh


is the kth row vector in Hk and kθ


is the unknown parameter vector up to 

k. Noise term nk is the measurement noise vector for sample time k. 
The estimation model for kz


is given by 

 

 
ˆˆ

k k kz = θH


 (2.5) 

 

                                                           
1 Vectors are denoted with an overhead arrow ( ),x


 usually, but not necessarily, small case, while 

matrices are indicted in bold (X), usually, but not necessarily, capitalized. 
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Figure 2.5(a–e) Calculating the PF when there are more than three LOBs. PFs are computed using three
LOBs at a time, then the results are combined. 
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The goal is to find the optimum estimate for ,θ


denoted by ˆ ,θ


 such that some cost 
function is minimized. For LSE estimation, that cost function is the squared error 

of the difference between the actual value for θ


and the estimate. Thus, the cost 
function to be minimized is given by 
 

 Tˆ
( )k k k kc θ = W 
  

 (2.6) 

 
where Wk is a weighting matrix, which is arbitrary but must be symmetric and 
positive definite, and is usually used to enhance some aspect of the estimation 
process. When Wk = I, then the process is called LSE estimation. If  Wk ≠ I, then it 
is called weighted LSE (WLSE) estimation. Wk may be a constant matrix or it may 
be updated for each k. The difference between the actual value of kz


and its 

estimate ˆ
kz


at instant k is called the error term, denoted by ,
kz


 and is given by 

 

 ˆ
kz k kz z= −
  

 (2.7) 

 
and 
 
 T

1 1[ ]
kx k k k N− − +=   
     (2.8) 

 
 Substituting (2.7) into (2.6) yields 
 

 Tˆ ˆ ˆ( ) ( ) ( )k k k k k kc z z z zθ = − −W
    

 (2.9) 

 
 
Figure 2.6 The centroid of the polygon formed by connecting the centroids of the triangles formed
with three LOBs yields the final fix. 
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Using (2.5) in (2.9), 
 

                        Tˆ ˆ ˆ
( ) ( ) ( )k k k k k k k kc z zθ = − θ − θH W H
   

 (2.10) 

                                 T T Tˆ ˆ
( ) ( )k k k k k k kz z= −θ − θH W H

  
 

                                 T T Tˆ ˆ
( )( )k k k k k k k kz z= −θ − θW H W H

  
 

  T T T Tˆ ˆ ˆ
2k k k k k k k k k k k kz x z= − θ +θ θW W H H W H

   
 (2.11) 

 
This last step is possible because all three terms in (2.11) are scalars and therefore 
symmetric.  

The minimum of the cost function is found by finding the derivative of (2.11) 

and setting it to zero. The first term in (2.11) is independent of ˆ ,kθ


 so its 

derivative is zero. The derivative of the second term is based on a result from 

vector calculus that says for two n × 1 vectors a


and ,b


 
 

 
Tda b

a
db

=
 
  (2.12) 

 
Thus, 
 

 ( )
T

TT T

ˆ
( 2 )

2 2
ˆ

k k k k
k k k k k k

k

d z
z z

d

− θ
= − = −

θ

W H
W H H W


 

  (2.13) 

 
The derivative of the third term in (2.11) is found by using the fact that for n × n 
matrix A 
 

 
T

2
db b

b
db

=A
A

  
  (2.14) 

 
Therefore, 
 

 
T T

T

ˆ ˆ
ˆ

2
ˆ

k k k k k
k k k k

k

d

d

θ θ
= θ

θ

H W H
H W H

 


  (2.15) 
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Using (2.13) and (2.15), 
 

 T T

ˆ
( ) ˆ

0 2 2
ˆ

k
k k k k k k k

k

dc
z

d

θ
= = − + θ

θ
H W H W H


 

  (2.16) 

 
so 
 

 T 1ˆ [ ]k k k k k k kx−θ = TH W H H W
 

 (2.17) 

 
which is the optimal LSE estimate desired. Expression (2.17) is sometimes 
referred to as the normal equation. That this is a minimum can be established by 
taking the second derivative of (2.11), which is 
 

 
2

T

2

ˆ
( )

2
ˆ

k
k k k

k

d c

d

θ
=

θ
H W H



  (2.18) 

 
which is in quadratic form and, since Wk is positive definite, T 0,k k k >H W H  and 

ˆ
kθ


is a minimum. 

 The accuracy or quality of the estimate provided by (2.17) is given by the 
covariance matrix, which is 
 
 1 1[ ]T

k k k k
− −=C H W H  (2.19) 

 
In three dimensions, when the covariances are fixed, this matrix is (k assumed) 
 

 

2

2
xyz

2

x xy x y xz x z

xy x y y yz y z

xz x z yz y z z

 σ ρ σ σ ρ σ σ
 = ρ σ σ σ ρ σ σ 
 ρ σ σ ρ σ σ σ 

C  (2.20) 

 
where 2

xσ  is the variance of x, ρxy is the correlation coefficient between x and y, 

and so forth. It is often assumed that x, y, and z are uncorrelated so that 
0,xy xz yzρ = ρ = ρ =  in which case 
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2

2
xyz

2

0 0

0 0

0 0

x

y

z

 σ
 = σ 
 σ 

C  (2.21) 

 
 The nonrecursive form of the LSE estimation procedure is identical to the 
above except that k is not the sample time but is interpreted as the size of the final 
measurement set. 
 

Example 
 
Suppose it is desired to fit a set of N paired points (xi, yi) to a 
straight line. The equation for the line is 
 
 1 0y x= β +β  

 
The problem can be cast into matrix form as 
 

 [ ]T1 2 Ny y y y=


  

                                 [ ]T0 1β = β β


 

 
T

1 2

11 1

Nxx x

 
=  
 

X



 

 
The LSE estimate based on (2.17) is given by 
 

 T 1ˆ
[ ] y−θ = TX W X X W

 
 

 
where W = I, yielding 
 
  

 T 1ˆ
[ ] y−= Tθ X X X

 
 (2.22) 

 
Now, 
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1

2T

1 2

1

11 1 1

1
N

N

x

x

xx x

x

 
    =     
 
 

X X


 
 

   1

2

1 1

N

ii

N N

i ii i

N x

x x

=

= =

 
 =
 
 


 

 

 
so 
 

  

( )
2

1 1 1T
2

2
11 1

1
N N

i ii i

NN N
iii ii i

x x

x NN x x

− = =

== =

 −
   =   −−  

 
 

X X  

 
and 
 

 1T

1

N

ii

N

i ii

y
y

x y

=

=

 
 =
 
 




X


 

  
From (2.22), 
 
 

( )
2

1 1 10

2
2

1 1 11 1

ˆ 1ˆ
ˆ

N N N

i i ii i i

N NN N
i i ii ii ii i

x x y

x N x yN x x

= = =

= == =

   − β    β = = 
   β  −  −    

  
  



 

 

( )
2

1 1 1 1

2
2

1 1 11 1

1
N N N N

i i i i ii i i i

N N NN N
i i i ii i ii ii i

y x x x y

N x y x yN x x

= = = =

= = == =

 −
 =
 −−  

   
   

 

              
which are the optimal estimates of the coefficients in an LSE 
sense. 

 
 Substituting (2.3) into (2.17) with W = I (and dropping the k) yields 
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                                     T 1 Tˆ
( ) ( )n−θ = θ+H H H H

  
 (2.23) 

 T 1 T T 1 T( ) ( ) n− −= θ +
=

H H H H H H H

I

 
  (2.24) 

 
so 
 

 T 1 Tˆ
( ) n−θ = θ+ H H H

  
 (2.25) 

 
The bias error is given by 
 

 
ˆ

{ }δ = θ −θ
  

 (2.26) 

 
The resulting LSE estimation bias is approximated by [4] 
 

 { }T T1
n

N
 δ ≈  
 

H H H 
 

 (2.27) 

 
Therefore, in general, the LSE estimation process produces biased estimates.  
However, specific cases of LSE estimation, as will be shown, can produce 
unbiased results. 
 
 

2.4 Total Least-Squares Estimation 
 
A generalization of the LSE estimation technique discussed in Section 2.2 allows 
for the existence of noise in not only the measurements kz


in (2.3), but also for 

errors in the observation matrix Hk. When there is no noise in Hk, and the noise 
represented by 2~ (0, )kn σ


 (this notation means that the noise is normal, or 

Gaussian, with zero mean and variance σ2), then the LSE solution ,LS

ˆ
kθ


 is the 

same as the maximum likelihood estimate. However, when noise is present in Hk, 
(2.17) with Wk = I is no longer optimal. It exhibits bias and increased covariance. 
To determine the optimal LSE estimate in this case, the method of TLSE 
estimation was developed [5]. The subscript k will be dropped here for notational 
convenience. 
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 As described in Section 2.2, the LSE estimate is obtained by finding 
ˆθ


 by 
calculating 
 

 
2

min z
θ

θ −H

 
 (2.28) 

 

where 
2
 is the 2 norm of the argument. The solution to (2.28) is given by 

 

 †
LS zθ = H
 

 (2.29) 

 
where †H  is the pseudoinverse of HN×P.2 It is typically assumed that N > P and 
that H has full rank, so that † 1( )∗ − ∗=H H H H  and 

 

 T 1
LS

ˆ
( ) z− ∗θ = H H H

 
 (2.30) 

 
The measurement vector and observation matrix can be expressed as 
 
 0 0z z z= +Δ = + ΔH H H

  
 (2.31) 

 

where zΔ and ΔH are the noise perturbations. With no noise, 0 0 0.zθ =H
 

 The 

TLSE estimate is obtained from 
 

 
2

F,
min subject to ( ) 0

1Δ θ

 θΔ + Δ =  − D
D D D

 
 (2.32) 

 
D is given by 
  
 [ : ]z=D H


 (2.33) 

                                                           
2 For any full rank matrix A (m×n) (m > n) (rank = n) the pseudoinverse of A is

† T 1 T
.( )

−=A A A A  One 

way to compute 
†

A  is to use singular value decomposition (SVD). With 
T

,=A USV  where U(m×m) 

and V(n×n) are orthogonal and ,
T

( ) ( ) ( )m n n n m n n× × − ×=   S D 0  with D(n×n) diagonal with real, 

nonnegative singular values dii, then 
† T 1 T T

( )
−=A V S S S U . If r = rank(A) < n, the inverse of STS 

does not exist, and the first r singular values only are used in S, and U and V are correspondingly 
smaller. 
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and ΔD is given by 
 
 [ : ]zΔ = Δ ΔD H


 (2.34) 

 

The value 
F
  stands for the Frobenius norm of the argument, which is given by 

( )F
tr .z z z∗=  

 Let the SVD of D be ∗=D UΣV  (N × P), where Σ has real 

diagonal elements σi such that 
 
 1 2 min( , ) 0, 1, 2, , 1N P i Nσ ≥ σ ≥ ≥ σ ≥ = +   (2.35) 

 
The σi are the singular values of D and the first min(N, P) columns of U and V are 
the left and right singular vectors of D. These singular values and singular vectors 
satisfy 
 
 andi i i i i iv u u v∗= σ = σD D

   
 (2.36) 

 
where iu


and iv


are the ith columns of U and V, respectively. 

 Based on these derivations, the TLS estimate is given by 
 

 
1ˆ

'
l

v
v

θ = −
 

 (2.37) 

 
or 
 

 2 1
TLS

ˆ
( )i z∗ − ∗θ = −σD D I D

 
 (2.38) 

 
The factor vl is the last component of V in the ith row and 'v


is the first element of 

V. In (2.38), σi is the smallest singular value and 2
iσ I  helps to reduce the bias that 

the noise in the observation matrix introduces in .∗D D  
 When 2~ (0, ),Δ σDD   TLSE estimation is very effective and more accurate 

than LSE. 
 
 
 
 



Electronic Warfare Target Location Methods 30

2.5 Least-Squares Distance Error PF Algorithm 
 
2.5.1 Brown’s Least-Squares Triangulation Algorithm 
 
An algorithm developed by Brown [6] will be presented in this section for 
calculating the PF, which is based on minimizing the square of the miss distance 
of the PF from the measured LOBs. This algorithm was presented in [7] and is 
included here for completeness.  

Referring to Figure 2.7 [6], to minimize the sum of the squares of the total 
miss distance, formulate  

 

                              2

1

N

i
i

D d
=

=
         

  (2.39) 

  

2 2
T T T T

1 1 1

2 2 2
T T

1 1 1

2 2

2

N N N

i i i i i
i i i

N N N

i i i i
i i i

a x a b x y a c x

b y b c y c

= = =

= = =

= + −

+ − +

  

  
 (2.40) 

 
where  
 

sin

cos

sin cos

is the number of LOBs

i i

i i

i i i i i

a

b

c x y

N

= φ
= − φ
= φ − φ

 

 
Setting the first partial derivative of D with respect to xT and then yT equal to zero 
will find the values of xT and yT for which the total squares distance is minimized. 
 

 2
T T

1 1 1T

0 2 2 2
N N N

i i i i i
i i i

D
x a y a b a c

x = = =

∂ = = + −
∂     (2.41) 

 2
T T

1 1 1T

0 2 2 2
N N N

i i i i i
i i i

D
x a b y b b c

y = = =

∂ = = + −
∂     (2.42) 

 
which yield  
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Figure 2.7 Definitions of the terms for derivation of Brown’s mean-squares distance algorithm. 
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2

1 1 1 1
T 2

2 2

1 1 1

N N N N

i i i i i i i
i i i i

N N N

i i i i
i i i

b a c a b b c
x

a b a b

= = = =

= = =

−
=

 −  
 

   

  
 (2.43) 

 

2

1 1 1 1
T 2

2 2

1 1 1

N N N N

i i i i i i i
i i i i

N N N

i i i i
i i i

a b c a b a c
y

a b a b

= = = =

= = =

−
=

 −  
 

   

  
 (2.44) 

  
The above miss distance for sensor i is expressed as 
 
 T Ti i i id a x b y c= + −  (2.45) 

 
where i is the ith measurement of a line of bearing, and ai, bi, and ci are as given 
above. In matrix form this is 
 

 Td x c= −Η
  

 (2.46) 

  
In this expression, 
 

 

1 1 1 1

2 2 2 2T
T

T

N N N N

c a b d

c a b dx
c x d

y

c a b d

     
           = = = =       
     
     

H
 

   
 (2.47) 

 

The LSE estimator for the target location vector Tx


is given by (2.17) as 

 

 
1T 1 T 1

Tx c
−− − =  H W H H W

 
 (2.48) 

 
where, as usual, the superscript –1 denotes inverse and T denotes transpose. We 
assume that the noise is zero mean AWGN. The variance of this estimator is given 
by the two-dimensional covariance matrix (2.19) 
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2

1T 1
xy 2

x xy x y

xy x y y

−−  σ ρ σ σ
 = =    ρ σ σ σ  

C H W H  (2.49) 

 

The EEP parameters are related to the elements of this covariance matrix as 
follows: 

     
           A semimajor axisL =  

                
( )
( )

2 2 2 2 2 2

1/ 222 2 2 2 2 2 2

2

4

x y xy x y

x y y x xy x y

bσ σ − ρ σ σ
=

 σ + σ − σ − σ + ρ σ σ  

 (2.50) 

            I semiminor axisL =  

                
( )
( )

2 2 2 2 2 2

1/222 2 2 2 2 2 2

2

4

x y xy x y

x y y x xy x y

bσ σ − ρ σ σ
=

 σ + σ + σ − σ + ρ σ σ  

 (2.51) 

    
2

2 2

2
tan 2 xy x y

y x

ρ σ σ
ζ =

σ −σ
  (2.52) 

             e2 ln(1 )b P= − −   (2.53) 

            e is probability of being insideP   (2.54) 

 
Here, ζ is the tilt angle of the semimajor axis of the ellipse relative to the x-axis. 
 The weighting matrix W–1 is used to optimize the performance. In one 
application of this algorithm, W–1 is given by 
 

 

1

2
1

3

0 0 0

0 0 0
1

0 0 0

0 0 0

i
i

N

QF

QF

QF
QF

QF

−

 
 
 
 =
 
 
  


W





    


 



Electronic Warfare Target Location Methods 34

 

1

2

3

2

2

2

2

1
0 0 0

1
0 0 0

1
0 0 0

1
0 0 0

N

d

d

d

d

 
 σ 
 
 

σ 
 ×  

σ 
 
 
 
 

σ  







    



 (2.55) 

 
 
where QFi is some quality factor associated with measurement i. It might be the 
variance of the measurement, it could be some higher order statistic as it makes 
sense, or it could be a measure of the signal-to-noise ratio (SNR), as examples. 
 
2.5.1.1 Mean and Covariance of the Bias in Brown’s Algorithm 
 
Matrix H is given by (2.47) which contains no random components. Therefore, 
HTH contains no random components.  Thus, from (2.27), 
 

 T 1 T
2

1
( ) { }n

N
−δ ≈ − H Η H 

 
 (2.56) 

 

Since it is assumed that 2~ (0, )n σ


, { } 0n =


 and therefore 0.δ =


 

 Denoting the covariance matrix of d


by Cdd and assuming for simplicity that  
W = I, the variance of the estimator described by (2.48) is given by [8] 
 
 T 1 T T 1

ddVar( ) ( ) ( )c − −= H H H C H H H


 (2.57) 

 
2.5.2 Hemispheric Least-Squares Error Estimation Algorithm 
 
A different least-squared algorithm for PF estimation is presented in this section. 
The measured bearing from a sensor, iφ , as illustrated in Figure 2.8, projected onto 

the surface of the Earth in the northern hemisphere (the other hemisphere will 
work as well with appropriate change of variables) can be characterized by [9, 10] 
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 T

2 2
T T

cos( )
( ) ( )

i
i

i i

y y

y y x x

−
φ =

− + −
 (2.58) 

 
where the variables are defined in Figure 2.8 as (all in degrees) 
 
xi is the longitude of the sensor during the ith observation interval 
yi is the latitude of the sensor during the ith observation interval 
xT is the actual longitude of the target emitter 
yT is the actual latitude of the target emitter 
η is the heading of the sensor relative to north 
φi is the ith measured bearing 
Δφi is the error in the ith measured bearing 
Δxi is the error in the calculation of the longitude in the ith observation interval 
Δyi is the error in the calculation of the latitude in the ith observation interval 
 
It is assumed that all LOBs are referenced to north; therefore, adjustments for 
vehicle/aircraft navigation/orientation/attitude have been previously accounted for. 
It is further assumed that N LOB measurements are made at regular intervals as 
indicated by the index i.  

If the bearing errors are normally distributed with zero mean, the best least-
squared estimates of the PF, T Tˆ ˆ( , )x y , assuming that (x0, y0) is available or 

estimated, are given by 
 
 ˆi i ix x x= −Δ  (2.59) 

 
and 
 

 
 
Figure 2.8 Geometry for hemispheric least-squared. 
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 ˆi i iy y y= −Δ  (2.60) 

 
Using (1.10), expanding (xi – Δxi) about ΔxT = ΔyT = 0 yields 
 
 
 1 T 2 Ti i i ix x x yΦ = Δ + Δ +   (2.61) 

 
where 
 

ˆ
i i iΦ = φ −φ  

   
1 2 2

ˆ

ˆ ˆ
i

i
i i

n
x

m n
=

+
 

  
2 2 2

ˆ

ˆ ˆ
i

i
i i

m
x

m n
=

+
 

                  1
2 2

ˆ
ˆ cos

ˆ ˆ
i

i

i i

m

m n
−  

φ =   + 
 

Tˆ ˆi im x x= −  

  Tˆ ˆi in y y= −  

                               higher order termsi i= Δφ +  

 
If there is systematic error manifest in a bias in the measurements given by φs, then 
 
 si i

∗Δφ = φ + Δφ  (2.62) 

 
where i

∗Δφ  is the random part of Δφi, and (2.61) is not necessarily the best 

estimator. 
 This procedure yields an estimate of the location of the target according to the 
expression 
 

 x = β+X 
 

 (2.63) 

 
where 
 

 
T

111 21

212 22

N

N

xx x

xx x

 
=  
 

X



 (2.64) 
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                                             [ ]TT Ty xβ = Δ Δ


 (2.65) 

                                            ˆy = φ−φ
    (2.66) 

 
and 
 

                                             [ ]T1 2 N=   
   (2.67) 

 

 The estimate of β


is obtained by solving (2.63) for β


as in (2.17) with W = I: 

 

 ( ) T1T T
1 2

ˆ ˆx
−  β = = β β X X X

 
 (2.68) 

 

where 1β̂  and 2β̂  are the best estimate of the errors in calculating the PF of the 

target. The target location is thus obtained by subtracting these values from the 
initial estimates given by λ0 and ψ0 as 
 
 T 0 1ŷ y= −β  (2.69) 

 
and 
 
 T 0 2x x= −β


 (2.70) 

 
This is one iteration through the procedure. It can be repeated to generate better 

estimates as many times as desired by using the computed values of Tψ̂  and Tλ̂  

from (2.69) and (2.70), respectively, as the initial values of the next iteration, so 
that 
 
 0 Tˆy y←  (2.71) 

 
and 
 
 0 Tˆx x←  (2.72) 

 
 For the same reasons discussed above for Brown’s algorithm, since the mean 
of the noise is zero, the resulting bias due to the algorithm is zero as well. 
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 A MathCAD® program is given in Appendix 2A to compute one pass of this 
technique. 

Example 
Consider the case when the target is located at (15, 15) units and 
the sensor is an aircraft flying along the x-axis as indicated in 
Figure 2.9. There are 21 measurements taken at unit intervals. 
The bearings are corrupted by Gaussian noise with a variance of 
4 degrees squared. 
 A few results of estimating the PF of the target with the 
algorithm described in this section are shown in Figure 2.10. 
Although the cases illustrated in Figure 2.10 all appear to be 
converging to the target location, they do so slowly. 
Convergence was not obtained in all cases. When the initial 
points were (5, 10), (1, 1), and (10, 20), the algorithm diverged, 
for example. 

 
 
Figure 2.9 Scenario for the least-squared example. The sensor is flying across the x-axis while the target is 
located at (15, 15). 
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Figure 2.10 Illustrative results of estimating the PF of the target at coordinates (15, 15) with the least-
squared algorithm. In (a) the initial point was (20, 20), in (b) it was (10, 10), in (c) it was at (10, 5), and
in (d) it was at (20, 1). 
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For those cases illustrated in Figure 2.10, more than 10 
iterations are required to have the results converge. If the initial 
point is closer to the actual target location, then convergence is 
faster, although it is still not assured. The results when the initial 
point was (13, 13) are illustrated in Figure 2.11. While 
convergence appears to occur, it is still fairly slow. 

 
 A well-known problem with the least-squared approach to PF is that an initial 
estimate of the emitter location is required and it is only valid for small 
bearing errors. Convergence is not guaranteed, as illustrated in the previous 
example. Also, slow convergence may occur even when convergence occurs. A 
technique using total least-squares is described in Section 2.4.4 that does not have 
these shortcomings. 

Since the bearing errors were assumed to have zero mean, the covariance 
matrix of the estimate, assuming no weighting is applied, is given by  
 

 T 1 T T 1
xy ( ) ( )− −=C Η H H C H H H  (2.73) 

 
where C is the covariance matrix of .


 

 

 
 
Figure 2.11 Results of LSE when the initial point was closer to the target location at (13, 13). 
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2.5.3 Pages-Zamora Least-Squares 
 
Pages-Zamora, Vidal, and Brooks [11] presented an LSE algorithm based on the 
cellular phone requirements imposed by the FCC in the United States. The 
fundamental algorithm is based on the geometry shown in Figure 2.12 [11] and 
recognition of the fact that 
 

 o oi i id d d v i= + ∀
  

 (2.74) 

 
where di is the distance between the target and sensor i and iv


is the unit vector 

given by 
 

 [ ]Tcos sini i iv = φ φ


 (2.75) 

 
The distance di can be removed from (2.74) as follows: 
 

 T
o o

T

cos

sin
i i

i
i i

xx
d d

yy

φ    
= = +     φ     


 

 
and changing these equations from matrix form to conventional form gives: 

 
 
Figure 2.12 Geometry describing the algorithm developed by Pages-Zamora, Vidal, and Brooks. 
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                                               T o

T o

cos

sin
i i i

i i i

x x d

y y d

= + φ
= + φ

 (2.76) 

 
From (2.76), 
 
 T osin sin sin cosi i i i i ix x dφ = φ + φ φ  (2.77) 

 T ocos cos sin cosi i i i i iy y dφ = φ + φ φ  (2.78) 

 
Subtract (2.77) from (2.78) and we get 
 
 T Tsin cos sin cosi i i i i ix y x y− φ + φ = − φ + φ  (2.79) 

 
Doing this for all the sensors yields, in matrix form, 
 

 

1 1 1 1 1 1

2 2 2 2 2 2 T

T

sin cos sin cos

sin cos sin cos

sin cos sin cosN N N N N N

x y

x y x

y

x y

− φ + φ − φ φ   
   − φ + φ − φ φ     =       
   − φ + φ = φ φ   

  
 (2.80) 

 
or 
 

 T( ) ( )a xφ = φH
  

 (2.81) 

 
Generally, this matrix expression is over determined—that is, N > 2, so there are 
more equations than unknowns. Therefore, H cannot be directly inverted and the 
pseudoinverse must be used which results from the least-squares solution. The 
least-squared solution of (2.81) is given by 
 

 
1

T T
T

ˆ ( ) ( ) ( ) ( )x a
−

 = φ φ φ φ H H H
    

 (2.82) 

 
Now assume that the bearing measurements contain a small amount of error 

denoted by δφ


so that 'φ = φ+ δφ
  

. It is assumed that 2~ (0, ).δφ σ
 

It is further 

assumed that the 2
iσ  are uncorrelated with each other. Now, 

 

 ( ') ( )a a aφ = + δ φ
   

 (2.83) 
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and 
 

                                      ( ') ( ) ( )φ = φ + δ φH H H
  

 (2.84) 

 

1 1 1 1

2 2 2 2

sin cos

sin cos
( )

sin cosN N N N

x y

x y
a

x y

− φ + φ 
 − φ + φ φ =
 
 − φ + φ 




 (2.85) 

 
so that 
 

 

1 1 1 1

2 2 2 2

cos sin

cos sin( )

cos sinN N N N

x y

x ya

x y

− φ − φ 
 − φ + φ∂ φ  =
 ∂φ
 − φ + φ 





 (2.86) 

 

Using the approximations that δφ ≈ ∂φ
 

 and ,a aδ ≈ ∂
 

 then 

 

 

1 1 1 1 1 1

2 2 2 2 2 2

cos sin

cos sin

cos sinN N N N N N

x y

x y
a

x y

− δφ φ − δφ φ 
 − δφ φ + δφ φ δ =
 
 − δφ φ + δφ φ 




 (2.87) 

 
Likewise, 

 

 

1 1

2 2

sin cos

sin cos
( )

sin cosN N

− φ φ 
 − φ φ φ =
 
 = φ φ 

H


 
 (2.88) 

 
so that 
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1 1

2 2

cos sin

cos sin( )

cos sinN N

− φ − φ 
 − φ − φ∂ φ  =
 ∂φ
 − φ − φ 

H



 
 (2.89) 

 
Using the same approximations that lead to (2.87) yields 
 

 

1 1 1 1

2 2 2 2

cos sin

cos sin

cos sinN N N N

−δφ φ −δφ φ 
 −δφ φ −δφ φ δ =
 
 −δφ φ −δφ φ 

H
 

 (2.90) 

 
 Substituting (2.83) and (2.84) into (2.81) yields 
 
 T T

T T( ) ( ) ( ) ( )( )a a x x+ δ + δ = + δ + δ + δH H H H H H
   

 (2.91) 

 
In this expression, Txδ


is identified as the bias in the PF algorithm.  Carrying out 

the multiplications and discarding all terms where two or more incremental terms 
are products yields 
 
 T 1 T

T T( ) ( )x a x−δ = δ − δH H H H
  

 (2.92) 

 
Substituting (2.87) and (2.90) into (2.92) shows that 0xδ =


and the estimator is 

therefore unbiased. 
 The covariance matrix of Txδ


is given by 

 
 T T 1 T T 1 T T

xx T T{ } ( ) [( ) ]x x − −= δ δ =C H H H Λ H H H
 

 (2.93) 

 
where  
 

 

2 2
1 1

2 2
2 2

2 2
N N

d

d

d

 σ
 σ =
 
 

σ  

Λ


 (2.94) 
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2.5.4 Total Least-Squares Error 
 
The method of total least-squares estimation (TLSE) starts with squaring (2.58): 
 

 
2

2 T
2 2

T T

( )
cos ( )

( ) ( )
i

i
i i

x x

x x y y

−
φ =

− + −
 (2.95) 

 
Manipulating this equation eventually yields 
 
 2 2

T T T Ti i i i ia x b c x d y e+ φ + + = −  (2.96) 

 
where 
 

22 cos ( ) 2i i i ia x x= − φ +  
2 22 cos ( ) cosi i i ib y x= − φ  

2cos ( ) 1i ic = φ −  
2 2cos ( ) cosi i id x= φ  

2 2 2 2 2 2cos ( ) cos ( ) cosi i i i i i ie x y x x= φ + φ −  

 
For N observations, (2.96) generates N overdetermined equations as 
 

 T eθ = −A
 

 (2.97) 

 
where 
 

 

1 1 1 1

2 2 2 2

N N N N

a b c d

a b c d

a b c d

 
 
 =
 
 
 

A
   

 (2.98) 

 
T2 2

T T T T Tx y x yθ =   


 (2.99) 

                                               [ ]T1 2 Ne e e e=


  (2.100) 

 
Rewriting (2.97) as 
 

 T 0eθ + =A
 

 (2.101) 
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which can be expressed as 
 

 T T
T[ : ][ : 1] 0e− θ − =A
 

 (2.102) 

 
The singular value decomposition (SVD) of the first term in (2.102) can be 
expressed as 
 

 
H

sH s
s o H

o

0
[ : ] [ ]

0 0
e

  
− =   

   

S V
A USV U U

V


  (2.103) 

 
The σi in S are singular values of [ : ].e−A


The solution of (2.102) is given by the 

last column of V if the smallest singular value of A is greater than the smallest 
singular value of [ : ].e−A


 The TLSE solution is obtained by scaling 1Mv +


until the 

last component is –1: 
 

 T 1
T

1, 1

1 N

N N

v

v
+

+ +

 θ − = − 


 (2.104) 

 
It is tacitly assumed here that the errors in the bearings are i.i.d. with zero mean. 
 
 

 
 
Figure 2.13 Geometry for the TLSE example. 
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Example 

 

Rao and Reddy conducted a simulation experiment to evaluate 

the performance of the TLSE approach to geolocation [12]. The 

geometry studied is illustrated in Figure 2.13 [12], where 122 

bearings were taken along the sensor path as shown. The PF was 

computed using the TLSE algorithm as presented. The results 

for three cases are given in Table 2.1. The estimates produced by 

the TLS method increased substantially when there was 

systematic bias in the bearing measurements.  

 The effects of the  = SNR on the TLSE method were also 

examined during the same experiment. The results are shown in 

Figure 2.14 [12]. As expected, the error decreased as the SNR 

increased, with the error dropping to less than 1% of range (from 

the perpendicular bisector of the baseline) for values of SNR 

above about  25 dB. 

 The effects of decreasing the number of observations were 

also examined for the TLS algorithm, with the results as 

indicated in Figure 2.15 [12]. One percent of range was achieved 

for 80 observations and above, but even with only 10 

observations the error was only 1.5 km. 

 

 

2.6 Minimum Mean-Squares Error Estimation 
 

The PF algorithms presented in this section are based on dynamic system models. 

These algorithms are typically applicable when the measurements are obtained 

recursively with the PF updated during each iteration. The section begins with a 

background discussion on dynamical systems before the algorithms are presented. 

 

2.6.1 Dynamical Systems 

 

Dynamical systems can be described by the state transition equation: 

 

Table 2.1 Results of the TLSE Algorithm for the Example 

Case Random Error Systematic Error Error (km) 

1 ~(0, 1) 0o 0.2637 

2 ~(0, 1) –3o 2.917 

3 ~(0, 1) 6o 7.339 

       Source: [12]. 
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Figure 2.15 TLSE performance versus the number of observations. 

 

 
 
Figure 2.14 PF performance of TLSE versus SNR. 
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 1 , 0,1,i i i i is s u n i−= + + =Φ B
   

 (2.105) 

 
with Ns∈R

and the measurement vector given by 
 
 , 0,1,i i iz s i= +η =H


 (2.106) 

 
with ,P

iz ∈ R where s


is the state of the system at time i and Φi is the state 

transition matrix, which can be linear, nonlinear, time variant, or time invariant. 
Matrix B relates the effects of the input iu


to the state is


at sample time i. The 

vector of random noise in


is usually modeled as white noise:  

 

                                            { } 0in =


  (2.107) 

 { }
2

T n ,

0, otherwise
i i

i j
n n

σ == 



 

 (2.108) 

 
so 
 
 2 2 2 2

nn n n n ndiag[ ]= σ σ σ = σC I  (2.109) 

 
where Cnn is the covariance matrix of the process noise. 

The measurement noise is characterized by 
 

                                            { } 0iη =


  (2.110) 

 { }
2

T ,

0, otherwise
i j

i jησ =η η = 



 

 (2.111) 

 
so 
 
 

1 2

2 2 2diag[ ]
Pηη η η η= σ σ σC   (2.112) 

 
is the ηηC measurement error covariance matrix. The state variable noise and 

measurement noise processes are assumed to be independent: 
 

 { }T 0, ,i jn i jη = ∀
 

 (2.113) 
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The N × N matrix Φi relates the state at the previous time step i – 1 to the state 

at the current step i, in the absence of any driving function iu


or process noise .in


The N × L matrix B relates the control input u


 (if present) to the state .is


The P × 

N matrix H relates the state to the measurement .iz


 

Thus, we wish to determine the values of is


 at instant i but are not able to 

measure the states directly. Instead, we measure ,i iz z=  which are functions of .is


 

Knowing these ,iz


we wish to estimate the values of .is


For minimum mean-square 

error (MMSE) estimation, the optimality criterion used is to minimize the mean of 
the squared error given by 
 

 2ˆ{( ) }i is s−
 

 (2.114) 

 
We assume that the probability density functions (PDF) ( )ip s


 and ( )i ip s z

 
 are 

known. Therefore, we want to find the best guess of is


 given that i iz z=   in the 

MMSE sense. In other words, we want to find a function ˆ ˆ( )i is g z= 
 such that we 

can minimize 
 

 2MSE {[ ( )] }i i i iJ s g z z z= = − =
      (2.115) 

 
Now, 
 

 2{[ ( )] } 0i i i i

dJ d
s g z z z

dg dg
= − = =

      (2.116) 

 
yields 
  

                                                        2[ ( )] 0i i

d
s g z

dg

 
− = 

 


   

2 2[ 2 ( ) ( )] 0i i i i

d
s s g z g z

dg

 
− + = 

 


      

                                                             2 { } 2 ( ) 0i is g z− + =
   

                                                                               ( ) { }i i i ig z s z z= =
     (2.117) 
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So the optimum estimate given i iz z=   is the expected value, or mean value, of .is


 

 The stochastic function ( ) { }i i ig z s z= 
 

 minimizes the unconditional mean- 

square error (MSE) 2{[ ( )] }i is g z−
 

 in addition to minimizing the conditional 

MSE 2{[ ( )] }i i is g z z−
  

. Using iterated expectations, 

 

          { }2 2{[ ( )] } {[ ( )] }i i i i is g z s g z z− = −  
   

 

 { }2{[ ( )] } ( )
ii i i i z i is g z z z p z dz

∞

−∞

− = = 
          

 

Since ( ) { }i i i ig z s z z= =
    minimizes 2{[ ( )] }i i i is g z z z− =

     for each ,iz
  the 

integral is also minimized. Let ˆ { }i i is s z= 
  

 and ˆ
i iis s s= −

  
. Then 

 

  ˆ{ } { }i i i i i i is z z s s z z= = − = 
        

                      ˆ{ } { }i i i i i is z z s z z= = − = 
       

                      ˆ{ } { }i i i i i is z z s z z= = − = 
       

                                                     0=  

                                            { }{ } { } 0i i is s z= =  
  

 

 
so the MMSE estimator is unbiased. 
 In addition, 
 

          { }ˆ
ˆ ˆ( { })( { })

i i
i i i is s

s s s s= − −C    

    
 

   { }ˆ( { })i i is s s= − 
  

 

            { }ˆ{ ( { }) }i i i is s s z= −  
   

 

                    ˆ( { }) { } 0

0

{ }i i i is s s z= − =
=

  
   

  

 

so is


 and ˆ
is


 are uncorrelated, and as a result, 
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 ˆ( ) ( ) ( )i i is s s= +V V V
  

 (2.118) 

 
2.6.2 Linear Minimum Mean-Square Estimation 
 

The MMSE estimator requires the a posterior density ( )p zθ
 

[ ( )i ip s z
 

 above] to 

be known, which is frequently difficult to calculate. If the analysis is restricted to 
the class of estimators that are affine (linear with a possible translation) functions 
of the observation vector ,z


however, the linear minimum mean-square error 

(LMMSE) estimator ensues which is a function of the first and second moments of 

θ


and z


only. Furthermore, if z


and θ


are jointly Gaussian, the LMMSE estimator is 
the same as the MMSE estimator. 

The LMMSE estimator for an K-dimensional unknown vector θ


and an N-
dimensional observation vector z


will be considered, which are of the form 

 

 
ˆ

z bθ = +H
 

 (2.119) 
 

where H is an K × N matrix and b


is an K element vector. H and b


are chosen to 
minimize 
 

 
T

z

ˆ ˆ
θ

     θ − θ θ − θ    
     


   

 (2.120) 

 
The LMMSE estimate is 
 

 { } { }( )1
θz zz z z−θ = θ + −C C 

   
 (2.121) 

 

The value { }θ


is the mean of ,θ


{ }z


is the mean of ,z


Cθz is the cross 

covariance matrix of θ


and z


given by 
 

 { }( ) { }( ){ }T

z z zθ = θ − θ −C   
   

 (2.122) 

 
and Czz is the autocovariance matrix of z


given by 
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 { }( ) { }( ){ }T

zz z z z z= − −C   
   

 (2.123) 

 

Assume that z


 and θ


 have zero means. Then the orthogonality principle 
applies. 
 

Property: Orthogonality Principle 
 

For the LMMSE estimate
ˆ
,θ


the estimate error is orthogonal to 
the data. That is, 
 

 Tˆ
z  θ−θ =  

  
0

  
 (2.124) 

 
Note that in this case, 0 is a K × N matrix. 
 

An example when N = 2 is illustrated in Figure 2.16. The projection of 
ˆθ


onto the 
plane formed by the measurement vectors will be the smallest (zero in this case) 

when
ˆθ


is orthogonal to that plane. 
 
Proof: Let A be a K × N matrix for which the orthogonality 
principle holds: 
 

 ( ){ }T
Tz zθ − =A 0

  
 (2.125) 

 

 
 
Figure 2.16 N = 2 example of projection of θ


onto the plane formed by z1 and z2. 
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Let B be any other K × N matrix and zB


be the estimate that it 

gives for .θ


 The expected squared error of this estimate is 
 

( ) ( ){ } ( ) ( ){ }T T

z z z z z z z zθ− θ − = θ− + − θ − + −B B A A B A A B 
          

 

           ( ) ( ){ }T

z z z z   = θ − + − θ − + −   A A B A A B
    

 

           

( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

T

T

T

T

z z

z z

z z

z z

= θ − θ −

+ θ− −

+ − θ −  

+ − −      

A A

A A B

A B A

A B A B









  

  

 

 

 (2.126) 

( ) ( ){ } ( ) ( ){ }T T
trz z z zθ − − = θ − −  A A B A A B 

    
 

                                       ( ) ( ){ }TTtr z z= θ − −A A B
  

 

                                       ( ){ }( )TTtr z z= θ − −A A B
  

 

                                       ( )Ttr= −0 A B  

                                      0=    (2.127) 

 
In a similar fashion, it can be shown that

( ) ( ){ }T
0.z z− θ − =  A B A

 
 Thus, the squared error becomes 

 

 
( ) ( ){ } ( ) ( ){ }

( ) ( ){ }

T T

T

z z z z

z z

θ − θ − = θ − θ −

+ − −  

B B A A

A B A B

 



      

 
 (2.128) 

 
but 
 

 ( ) ( ){ }T
0z z− − ≥  A B A B

 
 (2.129) 
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so 
 

 ( ) ( ){ } ( ) ( ){ }T T

z z z zθ − θ− ≥ θ − θ −B B A A 
      

 (2.130) 

 
Thus, the expected squared error of any linear estimator cannot 
be smaller than the expected squared error of a linear estimator 
that satisfies the orthogonality principle. Therefore, the LMMSE 
estimator must satisfy the orthogonality principle. 

 
There is a geometric interpretation of the orthogonality principle. A collection 

of random variables can be considered as a Hilbert space (a vector space). The 

random variables z0 through zN–1 and θ


are elements of the space. The inner 
product between elements is 
 
 ( ) { },i j i jz z z z=   (2.131) 

 
The magnitude of an element of the space is 
 

 ( ) { },i i i i iz z z z z= =   (2.132) 

 

The vector 
ˆθ


is a linear combination of z0 through zN–1. To make the magnitude of 

the estimate error as small as possible, the estimate is a projection of 
ˆθ


onto z0 
through zN–1; in other words, the error should be perpendicular (in N-space) to z0 
through zN–1. 

 Given that the estimator has the form 
ˆ

,zθ = H
 

 the orthogonality principle is 
used to solve for the value of H as follows. 

 

 ( ){ }Tz zθ − =H 0
  

 (2.133) 

 
Expanding the inner product, 
 

 { } { } { } { }T T T Tz zz z zzθ − = θ − =H H 0   
    

 (2.134) 
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These expected value terms are identified as the cross-covariance of θ


 and z


 and 
the autocovariance of ,z


respectively. Therefore, 

 
 z zzθ − =C HC 0  (2.135) 

  
and 
  
 1

z zz
−

θ=H C C  (2.136) 

  
so 
 

 1
z zz

ˆ
z−θθ =C C

 
 (2.137) 

 

If z


 and θ


 do not have zero means, new random variables are created that do 
have zero means as 
 

 { }z z z= −    (2.138) 

 { }θ = θ − θ
  

 (2.139) 

 

The LMMSE estimate of θ


 is 
 

 1
ˆ

zzz
z−

θθ =C C 

    

 1
x xx x−θ=C C

  (2.140) 

 
From (2.139), 
 

 { } { } { }( )1
z zz

ˆˆ
z z−

θθ = θ+ θ = θ + −C C  
     

 (2.141) 

 
This estimator is unbiased: 
 

 { } { } { }( ){ }1
z zz

ˆ
0z z−

θθ = θ + − =C C   
   

 (2.142) 

 
with the expected squared error matrix given by 
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{ } { }( )

{ } { }( )

1
θz zz

T
T

1
θz zz

ˆ ˆ
x z

z
z z

−

−

  θ − θ − −     θ − θ θ − θ =     
      × θ − θ − −  

C C

C C

 
 

 

   
    

   
 

                    

{ }( ) { }( )
{ }( ) { }( ){ }

{ }( ) { }( )
{ }( ) { }( ){ }

T

T1
θz zz

T
1

θz zz

T1 1
θz zz θz zz

z z

z z

z z z z

−

−

− −

 = θ − θ θ − θ 
 

 − θ − θ −
 

  − − θ− θ   

   + − −   

C C

C C

C C C C

  

  

  

  

   

   

  

   

 

                     

{ }( ) { }( )
{ }( ) { }( ){ }

{ }( ) { }( )
{ }( ) { }( ){ }

T

T1
θz zz

T
1

θz zz

T1 1
θz zz θz zz z

z z

z z

z z z

−

−

− −

 = θ − θ θ − θ 
 

 − θ − θ − 

  − − θ− θ   

  + − −   

C C

C C

C C C C

  

  

  

  

   

   

  

  

 

                                    

{ }( ) { }( )
{ }( ) { }( ) ( ){ }

{ }( ) { }( )
{ }( ) { }( ) ( ){ }

T

TT 1 T
zz z

T
1

θz zz

TT1 1 T
θz zz zz θz

z z

z x

z z z z

−
θ

−

− −

 = θ− θ θ− θ 
 

− θ− θ −

  − − θ− θ   

 + − −  

C C

C C

C C C C

  

  

  

  

   

   

 

   

 

                                   
1

θθ θz zz zθ

1 1 1
θz zz zθ θz zz zz zz zθ

−

− − −

= −

− +

C C C C

C C C C C C C C
 

                                   1
θθ θz zz zθ

−= −C C C C   (2.143) 
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Example 
 
N = 1 and θ has a mean μθ and a variance 2

θσ : 

 
 0 0z n= θ+  

 
This example might apply to a single LOB from a single sensor. 

The noise ( )2
0 n~ 0,n σ  and is independent of θ. 

 

      { }0x x θμ = = μ    

       ( ){ }2zz 0 zc z= −μ  

            ( ){ }20n θ= θ + −μ  

            ( ){ } ( ){ } { }2 2
0 0

0

2 n nθ θ

=

= θ −μ + θ −μ +  


 

     2 2
nθ= σ +σ  

       ( )( ){ }0 zxc zθ θ= θ −μ −μ  

            ( ) ( )( ){ }0nθ θ= θ−μ θ−μ +  

            ( )( ){ } ( ){ }0
0

nθ θ θ

=

= θ −μ θ−μ + θ−μ 
  

     2
θ= σ  

         ( )1
z zz 0 z

ˆ c c z−
θ θθ = μ + −μ  

           ( )
2

02 2
n

zθ
θ θ

θ

σ
= μ + −μ

σ + σ
 

        
2 2

n
02 2 2 2

n n

zθ
θ

θ θ

σ σ
= + μ
σ + σ σ + σ

 

 
The expected squares error for this estimator is 
 

( ){ }2 1
θθ θz zz cθ

ˆ c c c c−θ − θ = −  
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( )22
θ2

θ 2 2
θ n

σ
= σ −

σ +σ
 

                                                   

2 2
θ n

1
1 1

=
+

σ σ

 

 
  
2.6.3 Target Location Estimation with the Linear Model 
 
For the linear model, the observation vector is given by ,z


which consists of N 

random observations. The parameters to be estimated are given by the K element 

vector ,θ


with means given by the mean vector θμ


and covariance matrix Czz. The 

observation matrix, H, is known, deterministic, and is N × K. The noise, ,n


is an  

N-element vector with mean zero and covariance matrix Cnn. It is assumed that θ


and n


are uncorrelated. 
 The model is given by 
 

 z n= θ +H
 

 (2.144) 
 
As seen in Figure 2.17, the observations consist of the azimuth of the target (φ), 
elevation of the target (ϕ), and range to the target (d) corrupted by noise: 

 
 
Figure 2.17 Target location geometry. 
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T[ ]z d n= φ ϕ +


 (2.145) 

 
The unknown is the target position in Cartesian coordinates: 
 

 
T

T T T Tx x y zθ = =   
 

 (2.146) 

 
The relationship between the observations and the target position is 
 

                                       1 T

T

tan i

i

y y

x x
− −

φ =
−

 (2.147) 

 1 T

2 2
T T

tan
( ) ( )

i

i i

z z

x x y y

− −
ϕ =

− + −
 (2.148) 

 
and 
 

 2 2 2
T T T) ( ) ( )i i id x x y y z z= − + − + −  (2.149) 

 
where the position of the sensor at instant i is given by S ( , , ).i i ix x y z=


 These are 

put into matrix form as 
 

 z n= θ +H
 

 (2.150) 
 
Note the squares, square roots, and tan–1 functions in (2.147) to (2.149) are 
nonlinear functions and therefore do not fit the basic assumptions given above. 
However, (2.150) can be expanded in a Taylor series about some nominal value 

0θ


to get 

 

 ( )0 0z h n≈ θ + θ− θ +H
   

 (2.151) 

 
where 
 

 

0

h
θ=θ

∂ θ=
∂θ
H

 


  (2.152) 
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One possibility is to set 0 0 .θ = μ
 

 Make the following definitions: 

 

 ( )θz z= − μH
   (2.153) 

                                                      θθ = θ − μ
  

 (2.154) 

 
and 
 

               z n= θ+H
    (2.155) 

 
This is now in the form of the linear model. 

The LMMSE estimator for this linear model is found as follows. 
 

         { } { }z θz nμ = = θ + = μH H 
  

  (2.156) 

       ( )( ){ }T

zz z zz z= −μ −μC 
  

 

       ( )( ){ }T

θ θn n= θ + − μ θ + − μH H H H
    

 

      T
θθ nn= +HC H C   (2.157) 

       
( )( ){ } ( ){ }

( ){ } { }

T
T

θ θ θ

T
T T

θ

n

n nn

= θ −μ θ −μ + θ −μ

+ θ −μ +

H H

H

 

 

     

  
 (2.158) 

      ( )( ){ }θz θ zz= θ −μ −μC 
  

 

             ( ){ }T

θ θn= θμ θ + − μH H
   

 

             ( )( ){ } ( ){ }T
T T

θ θ θ n= θ−μ θ −μ + θ −μH 
     

 

             T
θθ= C H   (2.159) 

 
and 
 

        ( )1
θ θz zz z

ˆ
z−θ = μ + −μC C

  
 

        ( ) ( )1T T
θ θθ θθ nn θz

−
= μ + + − μC H HC H C H
 

 (2.160) 
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The squared error matrix from (2.143) is  
 

           
T

1
θθ θz zz zθ

ˆ ˆ −    θ − θ θ − θ = −   
    

C C C C
   

 

                                           ( ) 1T T
θθ θθ θθ nn θθ

−
= − +C C H HC H C HC  

                                           ( ) 11 T 1
θθ nn

−− −= +C H C H  (2.161) 

 
2.6.4 Kalman Filter Methods 
 
In some cases, knowing only the PF of a target is inadequate. Examples of this 
include subsurface oceanographic targets that are tracked with active sonar and 
surface and airborne targets that are tracked by active radar. Thus, methods were 
devised to accommodate such tracking. Kalman filtering is one of those methods, 
although Kalman filters have much broader applications than tracking targets. 
Kalman filtering is based on the principles of MMSE. 

In 1960, R. E. Kalman published a seminal paper describing a recursive 
solution to the discrete-data linear filtering problem [13]. That solution was based 
on modeling dynamic linear systems as discrete-data systems, and the resulting 
state variables are used to solve the Wiener filtering problem. Kalman filtering is a 
technique for optimally estimating the state of a dynamical system at time t1 given 
the value of the state variables at time t. If t1 < t, then the estimate is an 
interpolation of the state variables. If t1 = t, then the system is a filter. If t1 > t, the 
problem is one of prediction of a future state given the current state. Of interest 
here is the filtering problem. 

Kalman filter estimation uses a form of feedback control: the filter estimates 
the process state at some time and then obtains feedback in the form of noisy 
measurements. The behavior of a dynamic system can be described by the time 
evolution of the state variables. As indicated previously, the state variables of a 
dynamic system cannot be determined exactly by direct measurements; instead, 
the measurements available are functions of the state variables corrupted by 
random noise. It is then necessary to estimate the state variables from the noisy 
observations. The measurement and estimation process is illustrated in Figure 
2.18. The purpose of the Kalman filter is to optimally estimate the state variables 
in the dynamical system. Optimum in this sense means that the mean squared 
estimation error is minimized. 

The Kalman filter can be applied to the PF estimation problem in a variety of 
ways, two of which are presented here. In the case of the standard Kalman filter, 
the results are optimum in the least mean-squares error sense. In the case of the 
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extended Kalman filter (EKF) described later, the results are not optimum. The 
EKF is an ad hoc estimator because of the approximations employed. 

 
2.6.4.1 Standard Kalman Filter 
 
Denote the state vector with N

is ∈R
and the measurement vector with .P

iz ∈R

The Kalman filter assumes that the state vector follows the equation given by 
(2.105), and the measurements are given by (2.106).  
 The equations for the Kalman filter can be derived by a number of methods. 

Let ˆ N
is − ∈R


 denote the a priori state estimate at instant i given information about 

the process prior to instant i (that is, the measurements at instant i have not been 

factored in to update the state at instant i) and ˆ N
is ∈R

 denote the a posteriori state 

estimate at instant i, given measurement .iz


Two estimate errors can then be 

defined as 
 

 ˆ
ii is s− −−
    (2.162) 

 
and 
 

 ˆ
i i is s−

    (2.163) 

 

 
 
Figure 2.18 Kalman filter application. 
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which are the a priori and a posteriori estimate errors, respectively. The associated 
(weighted) error covariance matrices are  
 

 { }T
i i i− − −=C W  

 
 (2.164) 

 
and 
 

 { }T
i i i=C W  

 
 (2.165) 

 
where W is any positive semi-definite weighting matrix, chosen to optimize some 
criterion. 

The Kalman filter implements the derivation of an a posteriori estimate of the 
state as a linear combination of the a priori estimate and a weighted difference 

between the actual measurement kz


and a measurement prediction of the state ˆ
is −H


 

 

 ( )ˆ ˆˆi ii is s z s− −= + −K H
 

 (2.166) 

 

The last term in (2.166), ( ˆ
i iz s −−H


), is called the innovation of the process. 

Matrix K, which is N × P, is selected to minimize the a posteriori error covariance  
(2.165). K is given by 
 

 ( ) 1
T T

i i i

−

ηη− −= +K C H HC H C  (2.167) 

  
The Kalman filter is a variable gain filter, as indicated by (2.167). As the 

measurement noise covariance is reduced ( ηη →C 0 ),  

 
 T T 1 1 1 1lim ( )i i i

ηη

− − − −
− −→

= =
C 0

K C H H C H H  (2.168) 

 
and the gain is adjusted with weighting favoring the residual—that is, more 
credibility is given to the measurements. On the other hand, as the a priori estimate 
error covariance i −C  decreases, 

 

 ( ) 1
T Tlim

i
i i i

−

−

ηη− −→
= + =

C 0
K C H HC H C 0  (2.169) 
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and the residual is weighted less heavily. 
 A flowchart for the standard Kalman filter is illustrated in Figure 2.19. It is 
defined by the evolution equations as follows (the numbers correspond to the 
numbers in the blocks in Figure 2.19): 
 

• State prediction 
 

 1 1
ˆ ˆ(1) i kis s u− −− = +Φ B
  

 (2.170) 

 
• Prediction of covariance matrix of states 
 

 T
1 nn(1) ii −− = +C Φ C Φ C  (2.171) 

 
• Kalman gain matrix computation 

 

                 ( ) 1
T T(2) i i i

−

ηη− −= +K C H H C H C  (2.172) 

 
• Update state estimation 

 

       ( )ˆ ˆ ˆ(3) i i i ii is s z s− −= + −K H
  

 (2.173) 

 
• Update covariance matrix of states 

 
                                         ( )(4) i i i −= −C I K H C  (2.174) 

 
• Initialization 
 

 
 
Figure 2.19 The standard Kalman filter algorithm. 
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00

00

{ }

{ }

s s

s

−

−

=

=C Cov


 

  (2.175) 

 
Thus, the equations for the Kalman filter fall into two groups: time update 

equations and measurement update equations. The time update equations, given by 
(2.170) and (2.171), are responsible for projecting forward in time the current state 
and error covariance estimates to obtain the estimates for the next a priori time 
step. The measurement update equations, given by (2.173) and (2.174), are 
responsible for the feedback, that is, for incorporating a new measurement into the 
a priori estimate to obtain an improved a posteriori estimate. 

Noise processes characterized by Ci and ηηC are measured or assumed to be of 

some value. They are often specified via an assumed value of SNR, and the SNR 
is varied to determine system performance trade-offs. As mentioned, frequently 
the noise processes are reasonably assumed to be uncorrelated so that 

 
 

1 2

2 2 2
n n ndiag[ ]

Ni = σ σ σC   (2.176) 

 
and 
 
 

1 2

2 2 2diag[ ]
Pηη η η η= σ σ σC   (2.177) 

 
Example 

 
Suppose it is necessary to ascertain the diameter of a steel rod 
that is nominally 1 mm. Measurements of the diameter are 
sequentially made and processed in a Kalman filter. In this case, 
there is only one state variable: the diameter. Therefore 1,=Φ  
B = 0, and 
 
 1i is s+ =  (2.178) 

 
There is no process noise here, but suppose the manufacturer of 
the rod specifies that the diameter is 1 mm with a variance of 1% 
(0.01 mm2). Therefore, initially the best estimate of the diameter 
is 0 1s − =  mm with an uncertainty variance of 0C 0.01.− =  

 Repeated micrometer measurements 
  
 i i iz s= +η  
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indicate the diameter to within the measurement noise ηi. Thus, 
H = 1. It is assumed (reasonably) that the noise is uncorrelated 
from one measurement to the next. The micrometer 
manufacturer specifies that the micrometer is accurate to within 
an uncertainty variance of 0.1% (0.001 mm2 in this case), and 
therefore C0 = 0.001. 
 Starting at i = 0, with the initial estimate of 1 mm and an 
uncertainty of 0.01, the weight for updating with the first 
measurement is 
 

 
0

0
00

0.01
0.91

0.01 0.001
K

C

−

−

Γ
= = =
Γ + +

 

 
with an updated state estimate as 
 
 0 0 00 0 0(1 )s K s K z−= − +  

 
where 0 0s  denotes the best estimate at time 0, based on the 

measurement at time 0. The associated variance of the updated 
estimate is 
 
 4

0 0 0(1 ) (0.09)(0.01) 9 10C K C −
−= − = = ×  

 
According to (2.178), the state projects identically to time 1, so 
the state at time 1 and variance projection is 
 
 4

1 0 0 0 1 0 0 0 9 10s s C C −= = = ×  

 
Repeating the cycle yields 
 

 
4

1 0

1 4 3
11 0

9 10
0.47

9 10 10

C
K

C C

−

− −

×= = =
+ × +

 

 
and 
 
 4 4

111 1 0(1 ) (0.53)(9 10 ) 4.8 10C K C − −= − = × = ×  
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Figure 2.20 illustrates a simulation of this process. The path of 
the covariance for this simulation is illustrated in Figure 2.21. 
The covariance gets to be quite small as the estimate approaches 
the true value of the diameter. 

  
  

 
 
Figure 2.21 Variance of the rod diameter for the example. 

 
 
Figure 2.20 Diameter of the steel rod for the example. 
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This discussion assumed that the Kalman filter is linear, time invariant (LTI). 
In general, nonlinear and time-variant versions of the Kalman filter are possible. In 
fact, it is these characteristics that make the Kalman filter as ubiquitous as it is. In 
particular, if i isΦ


 is nonlinear or a linear relationship between ix


 and is


 is not 

available, the extended Kalman filter (EKF) can be applied.  
 
2.6.4.2 Extended Kalman Filter 
 
The EKF approach is to apply the standard Kalman filter for the linear systems 
just discussed to nonlinear systems with AWGN by linearizing the nonlinearity via 
the Taylor series expansion and ignoring the terms of second order and higher. In 
other words, a linear Taylor approximation of the system function at the previous 
state estimate and that of the observation function at  the corresponding  predicted 
position are considered. Convergence to a reasonable estimate may not be 
obtained if the initial guess is poor or if the noise is so large that the linearization 
is inadequate to describe the system. Also, as mentioned, the EKF is an ad hoc 
estimator due to the approximations incorporated (in particular, the linearization). 
It should be noted, however, that the EKF can have instability problems caused by 
the linearization approximation [14]. 
 

 
 
Figure 2.22 Geometry for EKF PF analysis. 
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2.6.4.3 Position Fix Estimation with the Extended Kalman Filter 
 
An analysis of using the EKF for the location of stationary emitters from a moving 
platform was conducted by Spingarn [15]. The two-dimensional geometry is 
illustrated in Figure 2.22. In this case, 
 

 T, T, 1
1

T, T, 1

ˆ ˆ1 0ˆ ˆ( , 0,0)
ˆ ˆ0 1

k k
k k

k k

x x
z f z

y y
−

−
−

    
= = =    

    

   
 (2.179) 

 
 
The state transition matrix in this case is the identity matrix because the target is 
stationary. If the target were moving, then there would be dynamic terms involved. 
The state transition in this case is linear. The observables are the bearing angles φi 
and the measurement model is given by 
 

 ( )ˆ
k k kh zφ = + η

 (2.180) 

 
where ηk represents the noise process, assumed here to be zero mean AWGN such 
that 
 

 { } 2
j k jkηη η = σ δ  (2.181) 

 
and  
 

 2
ηη η= σC  (2.182) 

 
The state estimation equation is 
 

 ( )ˆ ˆ ˆ
k kk kz z h z− −

 = + φ −  
K

  
 (2.183) 

 
where 
 

 ( ) T,1

T,

ˆ
ˆ ˆ tan

ˆ
kk

kk
kk

y y
h z

x x

−−
−

−

 −
 = φ =
 − 


 (2.184) 

 
The update for the covariance matrix of states is 
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 ( )ˆ
k k kz − −

 = −  
C I KJ C


 (2.185) 

 
where J is the Jacobian matrix corresponding to h: 
 

 
( ) ( )

[ ]11 12

ˆ

k

k

z z

h z
z

z

J J

−

−
=

∂
=
∂

=

J
 





 (2.186) 

 
where 
 

 
T T,

11 2
T T,ˆ

1
ˆ1

k
kkx x

h u
J

x x xu
− −=

∂ −= =
∂ −+

 (2.187) 

 
and 
 

 
T T,

12 2
T T,ˆ

1 1
ˆ1

k
kky y

h
J

y x xu
− −=

∂= =
∂ −+

 (2.188) 

 
with 
 

 
T,

T,

ˆ

ˆ
kk

kk

y y
u

x x
−

−

−
=

−
 (2.189) 

 
The Kalman gain matrix is 
 

 ( ) ( ) ( ) 1
T T

,
ˆ

kk k k k kz z z
−

ηη− − − − −
 = + K C J J C J C

  
 (2.190) 

 
where 
 

 
2

, 2

0

0
x

k
y

ηη

 σ
=  σ  

C  (2.191) 

 
and the error covariance is 
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 T
1k k+ = +C JC J Q  (2.192) 

where 
 

 11

22

0

0

q

q

 
=  
 

Q  (2.193) 

Q is a function of the noise. In this case, there is no noise in the model, so q11 = 0 
and q22 is set to a small positive value.  
 In this development, the state estimate equation is linear but the measurement 
equation is a tan–1 function—highly nonlinear. Initial values of the state variables 

(location) are required, denoted by e0ẑ


. Initial values for the error covariance are 

also required: 

 
2
x

0 0 2
y

0

0

 σ
=  σ  

C  (2.194) 

 
Example 
 
Example results of a Monte Carlo simulation of the EKF model 
are shown in Figure 2.23 [15]. For this figure, 

( )22 2 o 2
n 0.0175 rad (1 ) .σ = =  The target was located at (141, 

141) miles and the initial position of the aircraft was (x, y) =   
(130, 11) miles. The velocity of the sensor was v = 0.1 miles/sec. 
Measurements were made every 300 seconds and the closest the 
sensor got to the target was 100 miles. The bearing error was 
caused by AWGN with σ = 1o. The initial estimate of target 
location to initialize the iterations was T,0 T,0ˆ ˆ 135miles,x y= =  

q11 = 0 (because there is no process noise included), q22 = 0.0252 
rad2, and 2 2

0 diag(5 ) miles .−Γ =  The x-error converges to about 

1 mile, while y-error converges to about –0.7 mile after nine 
observations. 

 
2.6.4.4 Total Least-Square Error with a Kalman Filter 
If the bearing errors contain a bias Φ, as expressed in (2.62), the TLSE solution is 
not necessarily the best statistical estimate. An alternate technique using TLSE and 
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a Kalman filter is discussed in this section [12]. This Kalman filter approach 
deviates somewhat from the earlier development in Section 2.5.2.1, which serves 
to illustrate the considerable flexibility available with the Kalman filter. 

The bearing errors have a constant part given by Φ and a random part given 
by i

∗Δφ : 

 
 i i

∗φ = Φ + Δφ  (2.195) 

 
First the TLSE estimate is found, and that estimate is used in (2.58). The state 

equations of the filter are given by 
  
 1i i+δφ = δφ  (2.196) 

 1i i+Φ = Φ  (2.197) 

 
while the observation equation is 
 

 ˆ ˆ
i i i i i i

∗φ −φ = Δφ = δφ +Φ +Δφ  (2.198) 

 
where iδφ  is the bearing error at interval i due to the error in the estimation of  

(ψT, λT). 

 
 
Figure 2.23 Results of Monte Carlo simulation of a passive position fix Kalman filter. 
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 The Kalman filter algorithm is found as follows. Suppose that N observations 
are available. 
 

For i = 1, 2, ..., N 

1 1T
2

11

ˆ ˆ ˆ
ˆ 1

ˆ ˆ ˆ
i i i

i i

ii i

− −

−−

      φ φ Φ
 = + Δφ −      δΦδφ δφ           

K


 

  2
1 T

, 2 , 1

1

1 1
i i

i i

−
φ ψλ −

=
+

K C
C C


   

  , 1T
1 1 2 2 T

, 2 , 1 2

1 1
1 1

i
i i i

i i

ψλ −
− −

φ ψλ −

= −
+

C
C C C

C C

 
   

 
Ki is the Kalman gain vector 

φC is the covariance of i
∗Δφ  

,iψλC is the covariance matrix 
T

21 [1 1]=


 

 The set of observations ˆ
i i iφ = φ − φ   for all i are then used with the TLS 

algorithm above to obtain a new estimate T T( , )ψ λ  . These values are then used in 

(2.95) to generate a new estimate of θi. An updated estimate nΦ
  is then obtained 

with the Kalman filter. This procedure is repeated until the bias disappears. 
 

Example 
 

In addition to conducting a simulation experiment for TLSE PF 
computations, Rao and Reddy [12] also included a simulation 
experiment using TLSE with the Kalman filter. The geometry 
was as indicated in Figure 2.13, and 122 bearings were taken on 
the baseline length of 242 km. The results are indicated in Table 

Table 2.2 Results of TLS Estimation with a Kalman Filter 

 
Case Random Error Systematic Error Error (km) 

1 ~(0, 1) 0o 0.524 

2 ~(0, 1) –3o 0.524 

3 ~(0, 1) 6o 0.524 

    Source: [1]. 
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2.2. This indicates that TLSE alone is not necessarily optimal 
when there is a systematic bias in the bearings. Using TLS with 
the Kalman filter produced significantly better results in that 
case. 

 
2.6.4.5 Unscented Kalman Filter 
 
The EKF linearizes the system nonlinearity by expanding it in a Taylor series and 
retaining only the linear terms. When the nonlinearity is highly nonlinear, 
retaining only the linear terms can lead to significant modeling errors and 
divergent behavior. An extension to the EKF was proposed by Julier and Uhlman 
[16] called the unscented Kalman filter (UKF). This method improves on the 
performance of the EKF by, inter alia, retaining up through the third-order 
nonlinear terms in the Taylor series. This, coupled with retaining only specially 
selected sample points to propagate from one state to the next, can lead to much 
better models for nonlinear systems. 
 
 

2.7 The Discrete Probability Density Method  
 
All of the position fixing algorithms discussed here are subject to erroneous results 
due to errors in the data used to compute the fixes. The effects of errors vary. 
Presented in this section is a technique that mitigates some of the erroneous results 
when the input data for the fix computations are LOBs [17]. 
 The AOI is segmented into small squares or rectangles with a grid such as the 
one shown in Figure 2.24. This grid can be as granular as desired/required; 
however, the smaller the segmentation, the higher the computational burden and 
the higher the resolution (but not necessarily the accuracy). A 100 × 100 grid 
requires 100 times the amount of computations of a 10 × 10 grid, for example. 

 The position-fixing algorithm computes the probability that an emitter lies 
within each of the grid segments based on the LOBs provided. The LOBs are 
assumed to have a von Mises PDF (also called the Tikhonov PDF [18]) that is 
defined over the angular interval (–π, π). The Tikhonov PDF is given by [17] 
 

 0

exp[ cos( )]
,

2 ( )( )

undefined, elsewhere

Ip

ν φ−μ −π < φ ≤ π π υφ = 


 (2.199) 

 

where υ is the concentration and indicates the dispersion of φ around μ and is 
similar to the inverse of the variance of the Gaussian density. μ is the mean of the 
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distribution and, for the purposes here, is the measured LOB, which ranges over  
(–π, π) radians. This function is plotted in Figure 2.25 for some values of υ. As υ 
gets larger, the Tikhonov PDF gets larger at the mean value (zero in this case) and 
narrower, and the variance is smaller. 

The distribution function corresponding to (2.199) is given by 
 

 0
10

( ) sin[ ( )]1
( ) ( ) 2

2 ( )
i

i

I i
P I

I i

∞

=

υ φ −μ φ = φ υ + π υ  
  (2.200) 

 
which is plotted in Figure 2.26 for the same values. As expected and predicted 
from Figure 2.25, the larger υ is, the more rapid is the transition from low to high 
probability around the mean value. 
 The PDF expands as the distance from the sensor increases. Close to the 
sensor, the PDF is narrow, with probability values close to the mean as illustrated 
in Figure 2.27. Farther from the sensor, the PDF expands, encompassing more grid 
squares. 

 The errors in the LOBs from different platforms are independent random 
variables, so the overall PDF obtained by combining N individual distributions is 
given by 

 
 
Figure 2.24 Discrete probability density grid with three LOBs. 
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Figure 2.26 von Mises distribution function. 

 
 
Figure 2.25 von Mises PDF. 
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1 0

exp[ cos( )]
( , )

2 ( )

N
i i i

i i

F x y k
I=

υ φ −μ
=

π υ∏  (2.201) 

 
The constant k is present to normalize the total volume under the total grid 

surface and is present to avoid numerical stability problems. It is calculated after 
all the probability terms have been determined. After normalization, the 
probability value for each cell is given by F(x, y). 

 Based on this PDF, the probability that the target lies within a particular 
segment is computed by first computing the probabilities at each of the corners of  
the grid segment. The overall probability of being within the segment is then the 
average of these probabilities, to wit, 
 

, 1 1 1 1

1
Pr(within cell ) [ ( , ) ( , ) ( , ) ( , )]

4i j i j i j i j i jF x y F x y F x y F x y+ + + += + + +  (2.202) 

 
A wild bearing tends to have less effect on this method of fix computation.  

This is because the overall fix PDF is the product of the N individual PDFs. Even 

Figure 2.27 DPD LOB distribution. (Source: [16]. © 2003 British Crown. Reprinted with permission.) 
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if the wild bearing has a small associated variance, its contribution to the overall 
PDF will be small because the wild PDF is largest where the tails of the good 
PDFs are located. Assuming the remainder of the PDFs are of good quality, their 
product will be larger than the product of the wild PDF main lobe and the good 
PDF tails, even though the former PDF is multiplied by the wild PDF tail. 
 

Example 
 
Figure 2.28 illustrates the technique for three PF sensors located 
according to the data in Table 2.3. The product of the PDFs is 
significant only over a small segment of the grid, as shown in 
Figure 2.28(d). In this case, the root mean-square (RMS) error is 
3o, corresponding to 
 

Figure 2.28 (a–d) Example of the DPD PF algorithm with three PF systems. (Source: [16]. © 2003
British Crown. Reprinted with permission.) 
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2

1
364.8

3
180

ν = =
π 

 
 

 

  
The volume under the curve in Figure 2.28(d) between 55 < x < 
65 and 55 < y < 65 is approximately 0.92 and therefore 
approximately equal to the 90% error ellipse. This ellipse has a 
major axis of 14 cells and a minor axis of 8 cells, with a major 
axis orientation of 45o. 

 
2.8 Generalized Bearings 
 
A different approach to iterating toward a PF solution was presented by 
Paradowski [19]. Given the ith azimuth AOA φi and the ith elevation AOA ϕi, the 
generalized bearing αi is determined as indicated in Figure 2.29. The generalized 
bearing is in the plane defined by triangle TSiA and is given by  
 

 
2 2

T T1

T

( ) ( )
( ) tan i i

i i i
i

x x z z
f x

y y
− − + −

= α =
−


 (2.203) 

 
The measurements are expressed as 
 
 ( ) , 1,2, ,i i i iu f x n i N= + =


  (2.204) 

 
or 
 

Table 2.3 Bearings for the DPD Example 

PF System x-Coordinate y-Coordinate Bearing from y-Axis (degrees) 

1 10 10 45 

2 10 50 80 

3 50 10 10 
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 ( )u f x n= +
  

 (2.205) 

 
where, in the absence of measurement errors ( ) ,i i i iu f x= = α


 and ( )i if x


 is the 

function in which the PF and LOB information is contained. The measurement 
noise, ni, is characterized by 
 
 { } 0 { }i i j ijn n n= = σ   (2.206) 

 
2
ij

ij

ij i j

i j

i j

σ =σ = 
ρ σ σ ≠

 (2.207) 

 
σi and σj are standard deviations for the ith and jth measurements and ρij is the 
correlation coefficient between these measurements. 

The gradient vector at the mth step in the iteration toward the solution is given 
by 
 

 

T

2 2

ˆ ˆ ˆ
i i

ii i i i

m i m i m i
m m

mm m m m

x x y y z z
g s

dd s d s

 − − −
= − 
  


 (2.208) 

 
where 
 

 
 
Figure 2.29 Generalized bearing, denoted by αi. 
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 2 2 2 2ˆ ˆ ˆ( ) ( ) ( )
im m i m i m id x x y y z z= − + − + −  (2.209) 

 
and 
 

 

2

1
ˆ

i

i

m

m
i

d
s

y y

 
= − − 

 (2.210) 

 
The gradient matrix consists of rows that are the gradient vectors 
 

 [ ]T1 2m m m mMg g g=G
  

  (2.211) 

 
At the mth iteration, the covariance matrix of generalized bearing errors is a 
diagonal matrix expressed as 
 
 

1 2

2 2 2diag[ , , , ]
mm m m mαα α α α= σ σ σC   (2.212) 

 
Where 2

imασ is the variance of the αi error at the mth iteration. These can be 

expressed in terms of the variances of the measurements as 
 
 2 2 2

i i i i i i i im m m m ia b cα φ ϕ φ ϕσ = σ + σ + ρ σ σ  (2.213) 

 
where 
 

2

ˆ1
ˆi

i

m i
m

m m i

x x
a

s y y

 −
=   − 

 

21/2

1
ˆ

i

i i

m

m m
m i

d
b s

z z

−
    = −   −     

 

i i im m mc a b=  

 
Given that the noise is AWGN, then the iteration equation is given by 
 

 T 1 1 T 1
1

ˆ ( )m m m m m m mx w− − −
+ αα αα= G C G G C

 
 (2.214) 
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where 
 

 ˆ ˆ( )m m m mw u x f x= + −G
   

 (2.215) 

 

and where ( )mf x
 

is ( )f x
 

 evaluated at .mx x=
 

 

 Of course, being an iterative procedure, and an approximate procedure, a good 
initial guess is required or the solution may settle to a local minimum. Also, 
convergence cannot be guaranteed. 
 

Example 
 

Consider the geometry shown in Figure 2.30. The unattended 
aerial system (UAS) sensor is flying along the x-axis at an 
altitude of 3,000 m and the targets are somewhere in the 20 × 20 
km region. The y-coordinate of the sensor is therefore 
unchanging and set to zero. The sensor makes an LOB 
measurement every 1 km along its straight route. 
 The results of this algorithm for two target locations are 
shown in Figure 2.31. The results appear to be converging to the 
correct location, although there were many cases that did not 
converge. 
 The parameters used in the example cause the convergence 
to be particularly sensitive to 0ˆ .z  This is likely due to the low 

altitude at which the sensor was flown compared to the distance 
to the targets; the slant angle was fairly low. 

 

 
 
Figure 2.30 Example scenario for the generalized bearing algorithm. 
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 A MathCAD® program listing is contained in Appendix 2B that implements 
one pass through the iterative procedure for the generalized bearing algorithm 
described. 
 
 

2.9 Maximum Likelihood PF Algorithm 
 
The analysis of interferometric LOB algorithms using a maximum likelihood 
approach is presented in this section. The development follows that in [20]. 
 Consider the geometry shown in Figure 2.32 [20], which contains an airborne 
sensor flying in the +y direction with velocity v. It contains two receivers as noted. 
Distance yk is at the center of the two receivers at instant k. Measurements are 
taken over the observation interval, which has a center located at yc. The target is 
located at coordinates (xT, yT) (the z-dimension is ignored for now). Initially it is 

 
 
Figure 2.32 Geometry for the maximum likelihood algorithm. 

 
 
Figure 2.31 Results of the generalized bearing algorithm example. The target in (a) is located at

T (10, 20, 0.5),x =


while the target in (b) is at (10, 10, 0.5). Variations in ẑ are not shown. 
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assumed that yT = 0. N = 2P + 1 measurements are collected over interval IL. 
 The sensor measures the phase difference of the signals received by the two 
receivers. This difference is related to the ranges d1 and d2 by 
 

 2i

dΔΔφ = π
λ

 (2.216) 

 
 When the baseline between the two receivers is small compared with the 
range to the target and the bearing angle is small, the two rays that delineate d1 and 
d2 in Figure 2.32 are approximately parallel, as shown in Figure 2.33 [20]. Then 
 

 sin
d

b

Δφ =  

but for small φ,  
 
 sinφ ≈ φ  

 
so 
 

d

b

Δφ ≈   

 
 
Figure 2.33 Details of the geometry shown in Figure 2.17. 
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so the error in the range difference, as indicated by the standard deviation σΔd, is 
related to the error in the angle measurement as indicated by the standard deviation 
σφ as 
 

 , 1 radd

b
Δ

φ
σ

σ ≈ φ <<  (2.217) 

 
 The noise is assumed to be Gaussian with zero mean and variance 2

nσ . The 

estimator used in this PF system is a least-squared estimator that implements an 
iterative approach. 
 
2.9.1 Maximum Likelihood Estimation Triangulation Algorithm 
 
The unknowns in the geometry shown in Figure 2.32 are yc, the center of the 
observation interval, and xT, the  location  of the target (since it is assumed for now 
that yT = 0). Therefore, the vector of unknowns is 
 

 [ ]TT cx yθ =


 (2.218) 

 
For the interferometer, from Figure 2.32, the noiseless measurements are 

 

 1
T c

T

( , ) tan n
n n

y
h x y

x
−  

= φ = − 
 

  (2.219) 

where 
 

cny y k L= + Δ  

 
The N = 2P + 1 noisy measurements, denoted by zn, where each receiver 

makes P measurements, corrupted by samples of the Gaussian noise process 
denoted by nn, are given by 
 

 n( ) ( ) , 0, 1, 2, ,n nz z n n Nθ = θ + = ± ± ±
 

   (2.220) 

 
Let 
 

 x
T

( )n
n

z

x

∂ θ
∂ =

∂




 (2.221) 
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 y
c

( )n
n

z

y

∂ θ
∂ =

∂




 (2.222) 

 
define the matrix of partial derivatives as 
 

 

T

xN xn xN

yN yn yN

−

−

∂ ∂ ∂ 
=  ∂ ∂ ∂ 

G
 
 

 (2.223) 

 
and 
 
 T[ ]N n Nz z z z−=    (2.224) 

 T[ ]N n Nz z z z−=      (2.225) 

 T[ ]N n Nn n n n−=


   (2.226) 

                                          T
T c[ ]w x y= Δ Δ


 (2.227) 

 
If the noise is i.i.d. with covariance matrix 
 
 2

nn n= σC I  (2.228) 

 
then the correction vector for the next iteration is given by 
 

 T 1( ) ( )w z z−= −G G
    (2.229) 

 
and the estimate for the next iteration is 
 

 1i i w+θ = θ +
  

 (2.230) 

 
The iterating ceases when w


vanishes. 

 The final covariance matrix for the variables gives the PF error. It is given by 
 
 2 T 1

zz n ( )−= σC G G  (2.231) 

 
From (2.219), (2.221), and (2.222), 

 

 c
x 2 2

T c( )n

y n L

x y n L

+ Δ
∂ =

+ + Δ
 (2.232) 
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and 
 

 T
y 2 2

T c( )n

x

x y n L

−
∂ =

+ + Δ
 (2.233) 

 
so that 
 

 

2

T

2

( )

( )

N N

xn xk yk
n N n N

N N

xn yn yn
n N n N

=− =−

=− =−
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 =
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 

 

 
G G  (2.234) 

 
When yc = 0, the off-diagonal terms in (2.234) are zero, so 

 
2

1
T 2 2 2 2

T

1 ( )
 

[ ( ) ]

N

n N

n L
V x

x n L
−

=−φ
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σ + Δ  (2.235) 

 
and 
 

 
2

1 T
c 2 2 2 2

T

1
 

[ ( ) ]

N

n N

x
V y

x n L
−

=−φ

=
σ + Δ  (2.236) 

 
Again, assuming that the observations are dense, so that ΔL ≈ dL, multiplying by 
dL inside the sum, dividing by ΔL outside the sum, and replacing the sum with an 
integral with 

 L,
2

I
k L y N LΔ = Δ =  (2.237) 

 
then 
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T 2 2 2 2
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and 
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/2 2

1 T
c 2 2 2 2

T/2

1
 

[ ]

L

L

x
V y dy

L x y
−

φ −

=
σ Δ +  (2.239) 

 
Assuming xT >> L and the fact that  
 

 L2 1 2
I

N P P
L

= + ≈ =
Δ

 (2.240) 

 
then (2.238) and (2.239) become 
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and 
 

 1
c 2 2

T

N
V y

x
−
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σ

 (2.242) 

 
so that 
 

 
2
T

L

12
x

x

N I
φσσ ≈  (2.243) 

 
and 

 T
y

x

N

φσσ ≈  (2.244) 

 
 When yc ≠ 0, (2.243) remains the same while (2.244) changes to 
 
 

 
2

T 2
L

1
1 12 c

y

y
x

N Iφσ ≈ σ +  (2.245) 

 
Example 

 
The performance of the LOB algorithm is illustrated in Figure 
2.34 [20], where x0 = 10 km, IL = 1.6 km, N = 40, 
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0.0141m,dΔσ =  and the initial guess of b = 50 m. The down-

range standard deviation remained constant as dictated by 
(2.243), while the cross-range standard deviation varied as yc 
was varied, as expected from (2.245). 
 

2.9.2 Maximum Likelihood Estimation Algorithm Comparison 
 
Gavish and Weiss compared the performance of two MLE PF algorithms [21]. 
Assuming the noise is Gaussian with zero mean, the MLE of the location of the 
target is given by 
 

 ˆ argmin ( , )x F x= φ
x


 
 (2.246) 

 
where  
 

 T 1
xx

1
( , ) [ ( ) ] [ ( ) ]

2
F x g x g x−φ = − φ − φC

      
 (2.247) 

 
is a cost function. The components of the cost function are 
 
 T

1( ) [ ( ) ( )]Ng x g x g x=
   

  (2.248) 

 
In two dimensions, 
 

 
 
Figure 2.34 Interferometer results. 
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 T
T T[ ]x x y=


 (2.249) 

 
and the bearing measurements are given by (see Figure 2.35) 
 

 T
1 2[ ]Nφ = φ φ φ


  (2.250) 

 
The components of ( )g x

 
are given by 

 

 
y1

x

( ) tan n

n

ng x −
Δ 

=   Δ 


 (2.251) 

where 
 

 
x T

y T

n

n

n

n

x x

y y

Δ = −

Δ = −
 (2.252) 

 

Finally, ( )2 2 2
xx 1 2diag , , , N= σ σ σC  is the N × N covariance matrix of the LOB 

observations. 

 
 
Figure 2.35 MLE LOBs. 
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 N is the number of observations and there can be multiple observations per 
sensor. However, the number of observations from all sensors is assumed to be the 
same. 
 The LOB observations are corrupted with AWGN given by 
 

 T
1 2[ ]Nδφ = δφ δφ δφ


  (2.253) 

 

When the true LOBs are given by 0 ,φ


the observed LOBs are given by 

 

 0φ = φ + δφ
  

 (2.254) 

 
 Expression (2.247) can be put in the form 
 

 
2

T 1
xx 2

1

1 1
( , )

2 2

N
n

n n

f
F x f f−

=

φ = =
σC

 
 (2.255) 

 
where 
 

 T
1 2[ ] ( )Nf f f f g x= = − φ

  
  (2.256) 

 
The solution of (2.246), which is a nonlinear equation, can be found 

numerically by the Newton-Gauss method, which iterates to a solution with 
 

 T 1 T T 1
1 x xx x x xx

ˆ ˆ ˆ[ ] [ ( )]m m mx x g g g g x− −
+ = + φ −C C

      
 (2.257) 

 
where x /g g x= ∂ ∂

  
 evaluated at the true target position, yielding 

 

 

1 2

1 2

yy y

22 2
1 2

x
x x x

2 2 2
1 2

N

N

N

N

dd d
g

d d d

ΔΔ Δ 
−− − 

 =  Δ Δ Δ
 
  




 (2.258) 

 
with 
 
 2 2 2

x yn nnd = Δ + Δ  (2.259) 

 
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The two MLE techniques analyzed by [21] are the original Stansfield 
algorithm [1] and the true MLE algorithm, as given by (2.255) to (2.257). The 
analysis presented in this section follows [22]. 
 One of the first algorithms developed for the purpose of calculating the 
location of an emitter based on multiple lines of bearing was due to Stansfield [1]. 
In that algorithm, it is assumed that the bearing errors of the EW systems are 
normally distributed. The joint probability density function of multiple lines of 
bearings is then a multivariate Gaussian probability density function. A maximum 
likelihood estimator for the PF ensues by maximizing the exponent in the equation 
for the joint probability density function (which will minimize the total probability 
of error because the exponent is negative). 

Stansfield’s original technique for calculating the PF of an emitter is probably 
the first example of maximum likelihood-like estimation applied to the PF 
problem. The geometry involved is illustrated in Figure 2.36. As described in [1, 
22, 23], the goal is to minimize the expression for the joint probability of miss 
given as a function of the miss distances given by 
 

 ( )
( )

2

miss 1 2 2
/ 2 1

1

11
, , , exp

2
2 m

m

M
m

M M
M m p

p
m

d
P d d d

=

=

 
−=   σ π σ



  (2.260) 

 
when there are M sensors. This expression is minimized when the argument of exp 
is maximized. The result is the PF that is the most likely location of the target. 

The MLE cost function from (2.255) is given by 

 
 
Figure 2.36 Stansfield’s PF geometry. 
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2

ML 2
1

1
( , )

2

M
m

m m

f
F x

=

φ =
σ


 (2.261) 

 
where T T T( , )x x y=


is the target location to be estimated. The Stansfield fix 

algorithm is an example of an MLE-like algorithm, where it is assumed that the 
errors in bearing measurement are small. In (2.261), the fi represent the difference 
between the measured bearings and the bearings corresponding to a target at the 

estimated position given by T T
ˆ ˆ ˆ( , ),x x y=  as shown in Figure 2.36. Thus, fm = Δφm. 

Stansfield’s approach assumes that the bearing errors are small enough so that        
sin(Δφ) ≈ Δφ. The cost function is thus given by 
 

 
2

ST 2
1

sin1
( , )

2

M
m

m m

F x
=

Δφ
φ =

σ


 (2.262) 

 
However [20], 
 

                                     1sin sin tan m

m

y

m m
x

f −
  Δ

= −φ   Δ   
 

 y xcos sin
m mm m

m

Δ φ − Δ φ
=

Δ
 

                 T T( ) cos ( )sinm m m m

m

y y x x− φ − − φ
=

Δ
 

 
where 
 

2 2 2
x y , 1, 2, ,

m mm m MΔ = Δ + Δ =   

 
Then 
 

 
[ ]2T T

ST 2 2
1

( ) cos ( ) sin1
( , )

2

M
m m m m

m m m

y y x x
F x

=

− φ − − φ
φ =

Δ σ


 

                                        T 1 11
( ) ( )

2
x b x b− −= − −A D C A

  
 (2.263) 
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where 
 

1 1sin cos

sin cosM M

φ − φ 
 =  
 φ − φ 

A    

                                                 
1 1 1 1sin cos

sin cosM M M M

x y

b

x y

φ − φ 
 =  
 φ − φ 


  

                                                2 2 2
1 2diag( , , , )M= Δ Δ ΔD   

 
The value of STx


 that minimizes (2.263) is given by (2.17) with the weighting 

matrix as 1 1
xx ,− −=W D C  which yields 

 

 T 1 1 1 T 1 1
ST xx xx

ˆ ( )x b− − − − −= A D C A A D C


 (2.264) 

 
2.9.2.1 Bias and Variance of the Stansfield PF Estimator 
 
The bias and variance of the Stansfield PF estimator are examined in this section. 
As in Section 2.7.1, it is assumed that there are M sensors, each making P 
observations so that N = MP is the total number of observations. It is shown in 
[20] that the bias of the Stansfield PF estimator is given by 
 

 xx

1
{ }x h

P
δ ≈ − C

   (2.265) 

 
where 
 

 

2 2
x y y x

2 4 2 2
y x x y1

2
12 y x

xx
x y

21

21

m m m m

m m m m

m m

m m

M m m

m m

h
h

h
P

=

  Δ Δ Δ −Δ
  
σ Δ Δ −Δ − Δ Δ     = =    Δ −Δ Δ      

× +     Δ Δ       


C




 (2.266) 

 
and 
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2
y x y1 T 1

xx xx 2 4 2
1 x y x

1 m m m

m m m

M

x x
m m m

g g− −

=

 Δ −Δ Δ
= =  

σ Δ −Δ Δ Δ  
C C

    (2.267) 

 
The tilde indicates that the matrix is evaluated at P = 1. 
 Thus, 
 

 

x

2

xx
1 y

2

lim { }

m

m

M
m

P
m

m

x
→∞ =

Δ 
 Δ δ ≈ −  Δ
 
Δ  

C
   (2.268) 

 
which indicates that the Stansfield algorithm produces biased results, since, even 
for very large numbers of samples, M, the bias does not disappear. 
 The covariance of this estimator is given by [20] 
 

 
b 0

1 T

( , )

1
x xP

−
δ φ
≈C CHS H C 

     (2.269) 

 
where 
 

x y T
2

1 x y

sin 2 cos 21

sin 2 cos 2
m m

m m

M
m m

m
m m mm

e
=

Δ φ − Δ φ 
=  −Δ φ − Δ φΔ   
H

  

b 0 { }x x x= + δ
  

 
T
me
 is the mth column of the M × M identity matrix IM 

 
 Because the Stansfield PF estimator is biased, the Cramer-Rao bound (CRB) 
cannot be used as an estimate of performance, since the CRB only applies to 
unbiased estimators. If an unbiased PF estimator is sought, the Stansfield 
algorithm is probably a poor choice. 
 

Example 
 

Suppose there are two sensor locations at (–a, 0, 0) and (a, 0, 0) 
and a target located at (0, b, 0), as shown in Figure 2.37. Each 
sensor collects P observations with variance σ2, assumed to be 
the same for all sensors. Therefore, M = 2, N = 2P. In this case, 
from (2.258), 
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2 2 2 2 2 2 2 2

T
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2 2 2 2 2 2 2 2

2  timesN P
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2

1 2
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2

1
0 0

1
0 0

1
0 0

−

 
 σ 
 
 = σ
 
 
 
 
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C





   
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with matrix B–1 given as 
 

    1 T 1
x xx xg g− −=B C
 

 

 
 
Figure 2.37 Geometry for MLE algorithm example. 
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From (2.265) and (2.266), 
 

 
2 2 2

2
2

2

0
( )

{ } 3
1

b b a
x a

a
P Nb

 
σ +  δ ≈ −  − +

  




 

 
so that 
 

 
2 2 2

2

0( )
lim { }

1P

b b a
x

a→∞

 σ +δ = −  
 




 

 
In the x direction, the limit converges to zero, forming an 
unbiased estimator. The same cannot be said for the y direction. 
There is a residual bias. 
 The results of this analysis for the two estimators are 
illustrated in Figure 2.38 [20], with the MLE as solid lines and 
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the Stansfield estimator as dashed lines. The total RMS error 
continues to decrease for the MLE as the number of 
measurements increases, while that for the Stansfield estimator 
levels after about 10 measurements. The y bias for the MLE 
approaches zero, while the y bias for the Stansfield estimator 
settles to a relatively large negative value. The x and y standard 
deviations for both estimators are approximately the same. 

  
 

2.10 Multiple Sample Correlation 
 
Fu, Vian, and Grose developed an algorithm for position fixing that utilizes the 
intersection  of  the LOB  fans,  defined  as  the measured LOB plus and minus the 
maximum error in the sensor [24]. Using the maximum error guarantees that the 
emitter is within the resulting area. If 1σ or other statistical quantity is used instead 
of the maximum error, this guarantee cannot be assumed. However, the EEP can 

 
 
Figure 2.38 MLE example results. 
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be calculated with a certain probability. The basic idea is illustrated in Figure 2.39. 
Successive LOBs are obtained from a single sensor or simultaneous LOBs from 
multiple sensors. The area on the surface of the Earth defined by the sides of these 
fans is the estimate of the region within which the target lies. The steps in the 
algorithm are given in Figure 2.40 [24]. 
 

 
 
Figure 2.39 Multiple sample correlation position fixing. 



Triangulation 

 

101 

 

 
 
Figure 2.40 Multiple sample correlation algorithm. 
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Example 
 

The reference describes a test case, the flight paths of which are 
shown in Figure 2.41 [24]. Two  flight  paths  are  described, the  
first a straight line along the x-axis and the second a curvilinear 
path with a constant turn rate of 1o per second. The bearing 
measurement error was assumed to be ±1o. 

Figure 2.42 [24] illustrates the results. Flight path 2 
ultimately yielded more accurate PFs, primarily because of how 
close to the target the sensor traveled. 
  

A comparison to the Kalman filter described by Spingarn [14] was also 
described based on Monte Carlo simulations of both algorithms. The results are 
shown in Table 2.4.  

The idea of using maximum error is appealing because it guarantees the 
emitter is within the error bounds. Unfortunately, it is difficult to guarantee that 
there is some maximum error associated with an LOB measurement device. 
Operational factors are frequently the dominant source of LOB error, especially 
for sensors close to or on the ground, where reflections off buildings, the ground, 
passing vehicles, and so forth can cause LOBs that are off by a full half-circle. In 
those cases where multipath reflections are not likely to cause problems, such as 
satellite sensors or high-flying UAVs, the approach is more viable.  
 
 

 
 
Figure 2.41 Flight paths for the multiple sample correlation. 
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Figure 2.42 Emitter area of uncertainty. For the first 40 seconds for flight path 1 and 60 seconds for
flight path 2, the areas of uncertainty are off the scale (larger than 0.04 nautical mile). 

 

Table 2.4 Emitter Location Error 

Standard 
Deviation 
(degrees) 

Maximum 
Error 

(degrees) 

Percent 
with Maximum 

Error 

EKF Error 
(feet) 

MSC* Error 
(feet) 

1 1 68.3 5,477 1,633 
1 2 95.6 5,477 3,267 
1 3 99.7 5,477 4,900 

      Source: [24].  *Multiple sample correlation. 



Electronic Warfare Target Location Methods 104 

 

 

2.11 Bearing-Only Target Motion Analysis 
 
It is possible to track moving targets with bearing-only data [called bearing-only 
target motion analysis (TMA)]. In  TMA  it  is desirable to determine the location  
and velocity of a moving target, in general. For a set of instantaneous LOBs, the 
velocity cannot be determined, which is a special case of TMA—the target is not 
moving [25]. 
 TMA had its origins in tracking ships at sea, both surface ships and subsurface 
with sonar. This, by far, is not the only application of TMA. 

TMA is based on the scenario illustrated in Figure 2.43. The three-
dimensional formulation shown in Figure 2.43 can be analyzed using only the 
azimuth and elevation bearings [26]. The target, located at (xT, yT, zT), is moving 
with a constant velocity (vTx, vTy, vTz). The state vector associated with the target at 
time i is thus 
 

 
x y z

T

T T T T T T T( ) ( ) ( ) ( ) ( ) ( ) ( )s i x i y i z i v i v i v i =  


 (2.270) 

 
The sensor state vector is defined similarly as 
 

 
 
Figure 2.43 Geometry to establish observability requirements. 
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x y z

T

R R R R R R R( ) ( ) ( ) ( ) ( ) ( ) ( )s i x i y i z i v i v i v i =  


 (2.271) 

 
The velocity of the sensor is not necessarily constant, so it is therefore a function 
of i. The relative target-sensor state vector is given by 
 

T

T R x y z x y z( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s i s i s i i i i v i v i v i = − = Δ Δ Δ 
  

 (2.272) 

 
The discrete time equation describing this dynamic system is given by 
 
 ( ) ( , 1) ( 1) ( )s i i i s i u i= − − +Φ

  
 (2.273) 

 
where the state transition matrix is given by 
 

 2 2

2 2

[ ( 1)]
( , 1)

i i
i i

− − 
− =  

 

I I
Φ

Z I
 (2.274) 

 2

1 0

0 1

 
=  
 

I  (2.275) 

 2

0 0

0 0

 =  
 

Z  (2.276) 

 
and i is the ith sample index while i–1 is the i–1st sample index. The term 
 

 T
x y z( ) [0 0 0 ( ) ( ) ( )]u i u i u i u i=


 

 
in (2.273) accounts for the effects of acceleration of the sensor.3 
 The measurements in this system consist of azimuth bearings collected at the 
sensor referenced to the positive x-axis and measured counterclockwise-positive, 
corrupted by noise as 
 

 i i inφφ = φ +  (2.277) 

 

where iφ is the true bearing to the target given by 

 

                                                           
3 Acceleration could be as simple as turning the sensor. 
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 1 x

y

( )
tan

( )i

i

i
− Δφ =
Δ

  (2.278) 

  

and 2
n~ (0, )inφ φσ , ( , ).inφ ∈ −π π  In addition, the elevation angle of arrival, ϕi, 

measured from the negative z-axis, also corrupted by noise, given by 
 
 i inϕϕ = ϕ+  (2.279) 

 
where iϕ is the true elevation bearing to the target given by 

 

 
2 2
x y1

z

( ) ( )
tan

( )i

i i

i
−
Δ + Δ

ϕ =
Δ

  (2.280) 

 

and 2
n~ (0, )inϕ ϕσ , ( , ).inφ ∈ −π π  We denote the measurement vector as 

 

 [ ]Ti i iθ = φ ϕ


 (2.281) 

 
and the noise vector as 
 

 
T

i i in n nφ ϕ =  


 (2.282) 

 
 These equations describe a nonlinear process. They can be converted into a 
linear problem by defining a new measurement given by 
 

 T
R( ) ( )i ih s iα = θ

  
 (2.283) 

 
and 

 T
T( ) sini i i ih s d nα = θ +

   
 (2.284) 

 
where 
 

 2 2 2
x y z( ) ( ) ( )id i i i= Δ +Δ +Δ  (2.285) 

 
and 
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 T ( ) [cos sin sin 0 0 0]i i i ih θ = θ − θ − θ
    

 (2.286) 

 
 Since the noise is assumed to be Gaussian and additive, the series of bearing 

measurements given by the vector 1 2[ ]iθ = θ θ θ
   

  have the likelihood 

function 
 

 T 11 1
exp [ ( )] [ ( )]

2(2 ) det( )
s i

P s s−
θ

 = − θ − θ θ − θ 
 π

W
W

 
     

 (2.287) 

 

where ( )sθ
 

is the vector of correct bearings and  

 
 2diag( )

iα
= σW  (2.288) 

 
The MLE is given by the solution of 
 

 
ln

0
s

P

s

φ
∂

=
∂

 

  (2.289) 

 
Using (2.287), this equates to 
 

 

T

1( )
[ ( )] 0

s
s

s
− ∂θ θ−θ = ∂  

W

    
  (2.290) 

 
Carrying out the math finally yields the iteration equation 
 

 T 1 1 1 1 T 1 1
1

ˆˆ ˆ ˆˆ ˆ ˆ[ ] [ ]i i is s − − − − − −
+ θ θ θ
= − λ θ − θΓ Ψ W Ψ Γ Γ Ψ W  

  
 (2.291) 

 
where 
 

  
ˆ ˆ( )sθ = θ
  
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 θ − θ − θ − θ − θ − θ 
 θ − θ − θ − θ − θ − θ =
 
 
 θ − θ − θ − θ − θ − θ 

Γ

     

     


     

 

  ˆ diag( )id=Ψ  

 
Parameter λi is the step size at step i, and m is the reference index when the time 
scale started. 
 The estimated information matrix is 
 

 T 1 1 1ˆ ˆ ˆˆ ˆ− − −
θ θ=Ω Γ Ψ W Ψ Γ   (2.292) 

 
and the estimated error covariance matrix is 
 

 1
MLE MLE

ˆ −=P Ω  (2.293) 

 
The general requirement for being able to perform bearing-only TMA in 

terms of observability requirements was established by Hammel and Aidala [26] in 
an underwater sonar context. Assuming a single moving sensor system, then with 
the notation as indicated in Figure 2.43, the requirements to be able to determine 
the location and velocity of the target (to be able to observe the target4) are given 
by 
 
 Tdet( ) 0≠H H  (2.294) 

 
where H is the matrix given by 
 

                                                           
4 A dynamical system described by the normal form equations 

x x v y x v v= + = + +A B C D E
         

with n states in vector ,x


m inputs in vector ,v


and p outputs in vector ,y


with An×n the state transition 

matrix, Bn×m, Cp×n, Dp×m, and Ep×m, is controllable if, given any initial state 
0

x


at t0, a set of inputs exists 

that can drive the system to the zero state at t1. This system is observable if, observing the outputs over 
(t0, t1), the initial state of the system at t0 can be determined. 
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2 0 2

2 1 2 0

2 2 2 1

3 22 2

2 4 2 3

2 25 4

0

2

3

4

5

h

h h

h h

h h

h h

h h

 
 
 
 
 
=  
 
 
 
 
 

I Z

Z I

Z Z
H

Z Z

Z Z

Z Z

 

 

 

 

 

 

 (2.295) 

 
with I2 and Z2 given by (2.275) and (2.276) and 
 

(sin cot )

, 0,1, ,5
(cos cot )

i

i
k

k i
k

i

d
f dth k
g d

dt

 φ ϕ
    = = − =   φ ϕ 
  


  

 
Evaluation of the determinate expressed by (2.294) yields the equivalent 
requirement for observability as 
 

 

2
1 14 4

T 2
1 1

1 1

1 1 2

[( 1) ( 1) ]
1

det( ) 2[( 1) ( 1) ]
2

[( 1) ( 1) ]

k l k k

k k k k
k l

k k k k

k f f l f f

k f g l g f

k g g l g g

+ +

+ +
= =

+ +

 + − +
 = + + − + 
 + + − + 

H H  (2.296) 

 
Requirement (2.294) is satisfied if at least one of the terms in the double 
summation in (2.296) does not vanish. 

Sensor or target motion is required in order to evaluate the velocity terms. If 
more than one sensor is available so that multiple instantaneous LOBs are 
available, then geoposition determination is possible from a single set of LOBs, 
but velocity still cannot be determined. 

Note that if the sensor as well as the target are both moving at a constant 
velocity, the system is unobservable [26]. When there is only one moving sensor 
involved, this requirement dictates that the sensor must perform some sort of 
maneuver so that the velocity vector of the sensor is changed. (It is tacitly assumed 
that the velocity vector of the target cannot be affected by the sensor.) Changing 
the velocity vector implies an acceleration/deceleration of the sensor. Thus, the 
fundamental requirement is for the sensor to accelerate/decelerate in some fashion 
in order for the target to be observable. It should be noted that some forms of 
acceleration are better than others. 
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The portions of the sensor path that are defined by different velocity vectors 
are referred to as legs. The target is unobservable in the first leg of the sensor path 
when there is only one sensor involved. If the motion of the single sensor is co-
linear5 with the motion of the target, the system is not observable either. 
Acceleration is required in this case as well, that changes the direction of the 
velocity vector. 

It is relatively easy and fast to maneuver an airborne sensor observing a target 
on the ground or on the sea. For surface sensors, such as a ship with sonar, this 
maneuvering can take considerably more time. The same can be said for sub-
surface boats. 
 
 

2.12 Sources of Error in Triangulation 
 
There are several sources of error that can enter into the PF estimation by 
triangulation. Two have already been discussed at length: noise and measurement 
errors. There are others, however. Some of these are discussed in this section. 
 
2.12.1 Geometric Dilution of Precision in Triangulation 
 
As explained in [27], the geometry of the baseline of sensors has an effect on the 
accuracy of the geopositions computed. Generally, the farther from the baseline, 
the less accurate the PF estimate will be. This is illustrated in Figure 2.44. The 
sensors shown at the top and bottom of Figure 2.44 have the same LOB accuracy, 
yet the area within which the target lies is substantially larger the farther it is from 
the baseline of the sensors. As can be seen, the farther from the baseline the target 
is, the LOBs become more and more parallel. This effect is called geometric 
dilution of precision (GDOP). These effects are quantified in the example shown 
in Figure 2.45 [28], where CEP/σ normalized by d, the length of the baseline, is 
plotted versus x and y, also normalized. 
 GDOP also has degradation effects when the target is moved off the 
perpendicular bisector of the baseline. These effects are also illustrated in Figure 
2.45. 

The shape of the baseline also has an effect. Off the end of a baseline between 
any two sensors, the LOBs become linearly dependent (they are collinear) and the 
fix  accuracy  explodes. This  is  illustrated  in Figure 2.46 [28]. The effect is seen 
  
                                                           
5
 A system moving with velocity vector

0
( )v t


 is moving collinearly with another system moving with 

velocity 
T
( )v t


if

0 T
( ) ( )v t kv t=

 
for some constant vector .k


Expressed as 3-D vectors, this means that 

the two systems are moving in the same direction. 
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Figure 2.45 The effects of GDOP when a linear baseline is employed. The dotted lines represent
regions where the geoposition calculation is suspect (too close to the end of one or more baselines). 

 
 
Figure 2.44 Distance effects on PF calculation accuracy. 
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here by the range over which the CEP is some finite value.  Off the ends of the 
baselines, the CEP increases without bound. 
 
2.12.2 LOB Error 
 
The constituent LOBs used for the PF estimation are never error free. Noise and 
systematic errors are always present. Some of the systematic error can be, and 
usually is, removed by calibration. 
 The LOB error contribution increases the farther the sensor array is from the 
target. This can be seen with the aid of Figure 2.44. The accuracy of LOB systems 
is usually specified in terms of LOB angular error. The LOBs in Figure 2.44 
represent the 1–σ limits and are the same for both parts of the figure. Notice that 
the area in the error zone in the lower part of the figure is much larger than that at 
the top. This is because in the lower case, the PF is farther from the sensor 
baseline. 
 
2.12.3 Effects of Bias on Bearing-Only PF 
 
The effects of bias errors on bearing-only PF calculations were examined by 
Gavish and Fogel [29]. The geometry is depicted in Figure 2.47. It is assumed that 
the angle measurements are corrupted by zero mean AWGN nk with variance 2

nσ  

and bias φ, which has zero mean and variance 2
φσ . Therefore, 

  

 2
n{ }j k jkn n = σ δ  (2.297) 

 

 

Figure 2.46 GDOP V-baseline. 
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Thus, the measured bearings are characterized by 
 

 y1

x

tan , 1,2, ,n

n

n nn n N−
 Δ

φ = + φ+ =  Δ 
  (2.298) 

 
where y Tn ky yΔ = −

 
and x Tn kx xΔ = −

 
and there are N observations (bearing 

measurements). Let 
 

 T
T T[ ]x yθ = φ


 (2.299) 

 
denote the vector to be estimated. Since the bearing error bias is assumed 

2~ (0, )φσ  and the noise is assumed 2
n~ (0, ),σ  then θ


 has a multivariate 

normal distribution with mean vector m


 and positive definite covariance matrix 

.θC  Let ( , ) 0h m θ =
  

be a vector of constraints. Also let 

 

 
 
Figure 2.47 Effects of LOB bias errors. 
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 ,m

h h
h h

m θ
∂ ∂= =
∂ ∂θ

  
  (2.300) 

 

With a priori information about θ


given by the information matrix J, the CRB 

of any unbiased estimator of θ


is given by 
 

 T T 1 1[ ( ) ]m mh h h h− −
φ φ φθ
= +S C J
   

 (2.301) 

 

The variance of the bias, 2 ,φσ is assumed to be known and nonzero. Therefore, 

 

 
2

0 0 0

0 0 0

0 0 1/ φ

 
 =  
 σ 

J  (2.302) 

 
From (2.298), 
 

 [ 1 ]Nhθ = G
 

 (2.303) 

 
where 
 

 

1 2

1 2

T

yy y

2 2 2
1 2

xx x

2 2 2
1 2

N

N

N

N

d d d

d d d

−Δ−Δ −Δ 
 
 =  −Δ−Δ −Δ
 
  

G




 (2.304) 

 
with, as before, 
 
 

n

2 2 2
y , 1, 2, ,

nn xd n N= Δ + Δ =   (2.305) 

 

and 1N


is a vector of N 1’s. 

 In this case mh


and σ–2R are equal to the N × N identity matrix, since from 

(2.297) the noise covariance is assumed to be diagonal. 
 Substituting (2.303) and (2.302) into (2.301) yields 
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 T 2 1 2 1
n{[ 1 ] ( ) [ 1 ] diag(0,0, )}N N N

− − −
θ φ= σ + σS G I G

 
 (2.306) 

                             

11

22
n T n N

−−

φ

 
 

= σ   σ
+   σ   

Y f

f
 (2.307) 

 
where 
 

 T T 11 , ( )Nf −= =G Y G G
 

 (2.308) 

 
The CRB is the upper left 2 × 2 block of (2.307), yielding 
 

 
T

2
n 2

Tn

ff

N f f
φ

 
 
 

= σ + 
  σ + −   σ   

Y Y
S Y

Y



 
 (2.309) 

 
 The example from [29] is useful for illustrating the effects of bias in this 
analysis. There is a sensor (own-ship) moving along the x-axis (yn = 0), as 
illustrated in Figure 2.48. For large N, (2.308) can be expressed as 
 

 
T

d
1

sin1
ln

sin
NN

f
L

 φ−= −φ φ 


 (2.310) 

 
 
Figure 2.48 Geometry for examining the effects of bias. 
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and 
 

 

d d s d s
2 2
d d d d

d s d d s
2 2
d d d d

sin cos sin sin

sin 2 sin 22

sin sin sin cos1

sin 2 sin 2

dh

N

φ + φ φ φ φ 
 φ − φ φ − φ =
 φ φ φ − φ φ−
 φ − φ φ − φ 

Y  (2.311) 

where 
 

d 1Nφ = φ −φ  

s 1 Nφ = φ + φ  

 
The CEP for this case is given by 
 

 CEP 0.75 Tr≈ S  (2.312) 
 
which is accurate to approximately 10%. 
 

Example 
 

For specificity, suppose that (xT, yT, zT) = (0, 50, 0) and the 
sensor trajectory is given by x(t) = –50 + 0.15t, y(t) = 0, and z(t) 
= 0. Suppose that a bearing is taken every five time units and 
that σn = 2o. The resulting CEP is illustrated in Figure 2.49 [29] 
for the case of no bias and σφ = 3o. For the case of no bias, the 
CEP asymptotically approaches approximately 300 m while that 
with the bias approaches 400 m. 
 For this example, the CEP is shown in Figure 2.50 [29] 
versus the amount of bias in the bearing measurements for         
T = 500. The bias approaches  
 

 
T

2
max n T

lim
ff

N f fφσ →∞

  = = σ + 
−  

Y Y
S S Y

Y


   

 
2.12.4 Combining Noisy LOB Measurements 
 
McCabe and Al-Samara [30] developed an approach to triangulation using a 
fusion  methodology. The  scenario considered is  shown  in  Figure 2.51  [29] for      
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Figure 2.50 CEP versus the bias standard deviation for the example. 

 

 
 
Figure 2.49 CEP of computed fixes for the bias example. 
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Figure 2.51 Fusion geometry. 



Triangulation 

 

119 

M = 2. The position estimate obtained from combining the LOBs from sensors S1 
and S2 is given by 
  

 1 1 2 2 2 1
12

1 2

tan tan

tan tan

x x y y
x

φ − φ + −
=

φ − φ
 (2.313) 

                                       12 12 1 1 1( ) tany x x y= − φ +  (2.314) 

 
Likewise, the PF estimate obtained by combining the data from sensors S2 and S3 
is given by 
 

 

2 2 3 3 3 2
23

2 3

tan tan

tan tan

x x y y
x

φ − φ + −
=

φ − φ
 (2.315) 

 23 23 2 2 2( ) tany x x y= − φ +  (2.316) 

 
with 
 

                     12 1

12

12 2

12 1 2 12 1 2

1 2

12 1 2 12 1 2

1 2

( , ) ( , )

( , ) ( , )

x

z
y

x x

y y

φ

φ

∂ φ φ ∂ φ φ 
 Δ Δ   ∂φ ∂φ Δ ≈    Δ ∂ φ φ ∂ φ φ Δ       ∂φ ∂φ 


  (2.317) 

                            1

2

12

φ

φ

Δ 
 Δ  

A   (2.318) 

 
the covariance matrix, C12, corresponding to (2.313) and (2.314) can be 
approximated by 
 

 1

12 12

2

2

T T
12 12 122

0
{ }

0
z z

φ

φ

 σ
Δ Δ =  

σ  
C A A

 
  (2.319) 

 
Likewise, 
 

 2

23 23

3

2

T T
23 23 232

0
{ }

0
z z

φ

φ

 σ
Δ Δ =  

σ  
C A A

 
  (2.320) 

 
The cross-covariance matrix, C123, corresponding to these measurements is 
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12 23

2

T
2123 12 23

0 0
{ }

0z z
φ

 
Δ Δ =  σ 

C A A
 

  (2.321) 

 
The combining of these measurements is done with a fusion algorithm from [31]. 
That algorithm forms the linear combination 
 

 
1

ˆ ˆ
M

m m
m=

=X A X  (2.322) 

 
For P = 2 sets of measurements, as considered here, 
 
 1

1 21[ ]−′ ′=A C C  (2.323) 

 
and 
 
 2 1[ ]= −A I A  (2.324) 

 
where 
 

T
21 23 123′ = −C C C  

12 123 123′ ′= − −C C C C  

 
The resulting fused covariance matrix is given by 
 
 T T 1 T

0 23 23 123 12 123 123 23 23 123( )( ) ( )−= − − − − + −C C C C C C C C C C  (2.325) 

 
Although presented in two dimensions, this algorithm extends to three 

dimensions in the obvious way. Also, only three sensors were illustrated yielding 
P = 2 sets of LOB measurements. This too extends in the natural way to P > 2. 

 
Example 

 
Consider the case where the PDFs for the LOBs at the sensors 
are given as in Figure 2.52 [30]. Three sensors are located at S1: 
(2, 3); S2: (5, 4); and S3: (9, 3). The PDF parameters are δ1 = 5o, 
δ2 = 4o, and δ3 = 6o. The fused x-data errors are shown in Figure 
2.53(a) [30] and the fused y-data errors are shown in Figure 
2.53(b). 
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Figure 2.53(a, b) Results of the simulation for the example. Chart (a) illustrates the errors for the
x-parameters, while chart (b) is for the y-parameters. 

 
 
Figure 2.52(a–c) PDFs for the three sensors in the example. 
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2.12.5 Effects of Navigation Error 
 
Another source of error in triangulation estimation of the PF is errors associated 
with knowing the locations of the sensors. Manolakis and Cox [32] presented an 
analysis of sensor position error effects on the estimation of three-dimensional 
target PFs, although their analysis was actually based on calculating the effects of 
range difference estimation using distance measuring equipment (DME) to 
estimate the location of cooperating aircraft. This section follows [32]. 

The notation used here is as follows: 
 

 [ ]Tm m m mx x y z=


 is the vector of coordinates for sensor m 

[ ]TT T T Tx x y z=


is the vector of target coordinates 

T( )mf x


is the system measurement equation for sensor m given by 

 
 T( ) 0mf x =


 (2.326) 

 
For simplicity it is assumed that there is one master sensor where the PF 
calculations are performed and two slave stations configured similar to that 

illustrated in Figure 2.51. Thus, T
T 1 T 2 T 3 T( ) [ ( ) ( ) ( )] .f x f x f x f x=

    
 

 A Taylor series expansion of (2.326) is used and the terms higher than the 
linear ones are discarded, yielding 
 

 
0T0 0

T T T( ) ( )
Tx xf x f x x≈ + −J 

   
 (2.327) 

 

where the notation 
0TxJ  denotes J evaluated at 

0T .x


 In (2.327), 

 

 
T

f

x

∂=
∂

J



  (2.328) 

 
is the Jacobian matrix.  

Calculation of the target position is an iterative process, with the initial guess 
denoted by 

0T .x


 New position estimates are provided by (2.326) and (2.327) as 

 

 
0 T0

1
T T x

x x f−≈ − J 

 
 (2.329) 
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and iteration continues until convergence is achieved. 
 Let T

s s s[ ]
m m m

x y x  denote the measured position vector of sensor m and 
T

x y z[ ]
m m m

δ δ δ  the corresponding measurement errors for m = 1, 2, 2. Let xp


denote the actual sensor vector along the x-axis, with corresponding definitions for 
measured sensor vectors along the y-axis and z-axis. Thus, using this notation, 

T
x 1 2 3[ ]p x x x=


, T
y 1 2 3[ ]p y y y=


, and T
z 1 2 3[ ]p z z z=


. Let sxp


denote 

the vector of measured sensor x-coordinates so that 
1 2 3

T
sx s s s[ ]p x x x=


. 

Likewise, 
1 2 3

T
sy s s s[ ]p y y y=


 and 
1 2 3

T
sz s s s[ ]p z z z=


. Last, let xpδ


denote 

the error vector containing the errors in measuring the coordinates, namely, 

1 2 3

T
sx x x x[ ]pδ = δ δ δ


, as well as 
1 2 3

T
sy y y y[ ]pδ = δ δ δ


, and 

1 2 3

T
sz z z z[ ]pδ = δ δ δ


. Obviously, 

 
 s { , , }i i ip p p i x y z= +δ ∈

  
 (2.330) 

 

Let T
x y z[ ]p p p p=

   
denote the vector consisting of all of the coordinates. That 

is, if xp


is 3 × 1, then p


 is 9 × 1. Likewise for sp


and .pδ


 

 The errors in estimating the PF of the target due to sensor positioning errors 

are given by T[ ]x y z=   


 and 

 
 

T Tx x′= −x 
 

 (2.331) 

 
where 
 

 
0T T s0

1
T ( , )x x px x f−′ = − J  

 
 (2.332) 

 

is the estimate of the PF when J–1 and f


are evaluated at 
0T s( , )x p
 

. 

Therefore, errors in sensor positioning can and should be included in (2.326), 
yielding 

 

 
0

T s0

T s0

T

T T ( , )

( , )

( , ) ( )
p

x p

f
f x p f x x p

p

 ∂≈ + − + δ  ∂ 
T x

J  

 

     
  (2.333) 
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so that the new value of Tx


is given by 

 

 
0

( , )T0

T s0

T

1 1
T T

( , )
s

x p

f
x x f p

p
− −  ∂= − − δ  ∂ x p

J J
 

  
  (2.334) 

or 
 

 
0

T s0

T

1
T T

( , )x p

f
x x p

p
−  ∂′= − δ  ∂ 

J
 


  

  (2.335) 

 
yielding 
 

 

T s0

T

1

( , )x p

f
p

p
−  ∂= − δ  ∂ 

J
 




  (2.336) 

 
Consider the case of errors in sensor positioning on PF estimation using 

triangulation with generalized bearings as discussed in Section 2.6. The geometry 
is shown in Figure 2.29. The system equations are given by 
 

 
2 2

T T1
T

T

( ) ( )
( , ) 0 tan m m

i m m
m

x x z z
f x p

y y
− − + −

= = −α
−

 
 (2.337) 

 
where αm is the measured generalized bearing from mx


to T .x


Now, 

 

0 0 0T T T( , , , )i mf x x y y z z p+δ +δ +δ


 

 
0 0 0T T T T T T

T T T

( , , , ) ( , , , )i m m mf x y z p x y z f x y z p
x y z

 ∂ ∂ ∂= + δ + δ + δ ∂ ∂ ∂ 

 
 (2.338) 

 
In (2.338), 
 

 0 0

0 0 0

0

2 2
T T1

T T T
T

( ) ( )
( , , , ) tan

m m

m m m
m

x x z z
f x y z p

y y
−

− + −
= −α

−


 (2.339) 
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T T
2 2 2 2 2

T T T T T T

( )( ) 1

( ) ( ) ( ) ( ) ( )

m m m

m m m m m

f x x y y

x x x y y z z x x z z

∂ − −
=

∂ − + − + − − + −
 (2.340) 

2 2
T T

2 2 2
T T T T

( ) ( )

( ) ( ) ( )

m mm

m m m

x x z zf

y x x y y z z

− + −∂
= −

∂ − + − + −
 (2.341) 

T T
2 2 2 2 2

T T T T T T

( )( ) 1

( ) ( ) ( ) ( ) ( )

m m m

m m m m m

f z z y y

z x x y y z z x x z z

∂ − −
=

∂ − + − + − − + −
 (2.342) 

 
which are all evaluated at 

0 0 0T T T T T T, ,and .x x y y z z= = =  

 The Jacobian matrix in this case is 
 

 

T

31 2

T T T T TT T T0 0 0
1 2 3

31 2

T0 T T T T T TT T T T0 0 0
T 1 2 30

31 2

T T T T T TT T T0 0 0
1 2 3

x x x x x x

m m m

x x x x x x x

m m m

x x x x x x

m m m

ff f

x x x

ff ff

x y y y

ff f

z z z

= = =

= = =

= = =

= = =

= = =

= = =

 
∂∂ ∂ 

 ∂ ∂ ∂ 
 

∂∂ ∂ ∂=  ∂ ∂ ∂ ∂ 
 
 ∂∂ ∂
 ∂ ∂ ∂ 
 

x

J

     

      

     


  (2.343) 

 
with T T0T/ x xm

m k
f x =

=
∂ ∂    given by (2.340) with m = k, T T0T/ x xm

m k
f y =

=
∂ ∂    given by (2.341) 

with m = k, and T T0T/ x xm
m k

f z =
=

∂ ∂    given by (2.342) with i = k. 

 The derivative of f


with respect to p


is given by 

 

              

31 2

31 2

31 2

x x x

y y y

z z z

ff f

p p p

ff ff

p p p p

ff f

p p p

 ∂∂ ∂
 
∂ ∂ ∂ 
 ∂∂ ∂∂  
 ∂ ∂ ∂ ∂
 
 ∂∂ ∂
 
∂ ∂ ∂ 

 

  
 

   

 

  

  (2.344) 
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T

1 1 1

1 1 1

2 2 2

2 2 2
3 3 3

3 3 3

f f f

x y z
f f f

x y z
f f f

x x z

∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂
 =

∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ 

 (2.345) 

with 
 

T T
2 2 2

T T T

2 2
T T

( )( )

( ) +( ) +( )

1
,

( ) ( )

0, otherwise

i i

i i i

m

i i i

x x y y

x x y y z z

f
i m

x x x z z

− −− − − −
∂
= × =∂ − + −




 (2.346) 

2 2
T T

2 2 2
T T T

( ) ( )
,

( ) +( ) +( )

0, otherwise

i i
m

i i i
i

x x z z
f i m

x x y y z z
y

 − + −
∂  ==  − − −∂ 



 (2.347) 

T T
2 2 2

T T T

2 2
T T

( )( )

( ) +( ) +( )

1
,

( ) ( )

0, otherwise

i i

i i i

m

i i i

y y z z

x x y y z z

f
i m

z x x z z

− −− − − −
∂
= × =∂ − + −




 (2.348) 

 
These derivatives are all evaluated at 

0T Tx x=
 

. This process is iterated as long as 

necessary after updating the target location estimate with (2.335). 
 
 

2.13 Concluding Remarks 
 
The notion of geolocating emitting targets by triangulation was introduced in this 
chapter. Triangulation requires processing LOBs and determining the most likely 
target location based on where the LOBs intersect. When there is no noise or 
measurement error, this intersection is at a single point and the optimal PF is at 
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that point. Such is rarely the case, however, and noise and measurement error must 
be taken into account. 
 Triangulation is based on relatively simple trigonometric principles. 
Determination of the optimum PF, taking noise into consideration, complicates the 
calculations. Least-squared estimation techniques are quite common for 
calculating optimum locations, in a least-squares sense. Least-squares means that 
the error that is the square of the difference between the actual parameter being 
estimated and the estimate is minimized. 
 A novel PF calculation method based on the discrete probability density using 
the Tikhonov PDF was presented. This method deals with inaccurate data and 
tends to minimize the effects of highly inaccurate LOBs. 
 The Kalman filter realizations for PF determination are sequential methods for 
PF determination. They typically assume that the data is arriving at the sensor in a 
serial fashion, and the estimate of the PF is updated based on newly arriving data. 
The PF calculation problem is normally nonlinear in nature, and the standard 
Kalman filter does not apply. In that case, the extended Kalman filter can be used 
which linearizes the problem with a Taylor series expansion of the nonlinear 
equations. 
 The maximum likelihood methods attempt to find the optimal PF based on 
finding the location with maximizing probability. The a priori probabilities are 
assumed or measured, and the data is used to maximize those PDFs. Stansfield’s 
method was perhaps the first of these techniques and is widely used for PF 
calculation. It is a biased technique, however, in that as the amount of data is 
increased, the covariance does not tend to zero. 
 There are many sources of error in triangulation. Some are due to the 
aforementioned noise and measurement error. Others are due to the geometry of 
the problem and can only be addressed by changing the geometry. GDOP is the 
primary cause for these types of errors. 

A summary comparison of the methods introduced in this chapter is provided 
in Table 2.5. It should be noted that for most of these methods, special conditions 
may exist that lower the computational complexity. Indeed, it is the search for 
these special conditions that is the focus of much of the modern research in PF 
estimation. 
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Table 2.5 Comparison of Triangulation Methods Discussed 

Method Biased Covariance Iterative Complexity Remarks 

Least-squares — 
Brown 

No (2.49) No 
(MN2 logN) 

[32] 

Can be iterated 
and/or 
recursive 

Least-squares — 
Hemispheric 

No (2.73) Yes 
(MN2 logN) 

[32] 

Can be iterated 
and/or 
recursive 

Least-squares — 
Pages-Zamora 

No (2.93) No 
(MN2 logN) 

[32] 

Can be iterated 
and/or 
recursive 

TLS No N/A No 
(N3) 

[33] 

(N) or(N2) 

using minor 
component 
analysis 

MMSE No (2.118) No (MN2 logN)  

LMMSE No (2.153) No (MN2 logN)  

Kalman Filter N/A (2.192) Yes 
(MN2 logN) 

[34] 
 

DPD No N/A No (NL2) 

Grid search 
required 
L is the number 
of grid cells in 
each dimension 

Generalized 
Bearings 

N/A N/A Yes (MN2 logN)  

MLE No (2.231) Yes N/A  
Stansfield (2.268) (2.269) No N/A Widely used 

Multiple Sample 
Correlation 

N/A N/A Yes N/A 

Must know or 
estimate limits 
of LOB 
accuracy 

    All complexity estimates are per iteration when applicable. 
    M: Number of sensors. 
    N: Number of data points. 
    N/A: Not available. 
    In all cases zero mean AWGN is assumed. 
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Appendix 2A 
 
 

Least-Squares Error Estimation Program Listing 
 
 
This appendix contains a source program listing in MathCAD® for the least-
squared algorithm discussed in Section 2.2. This algorithm presented in Section 
2.2 is intended to be a multipass, iterative procedure where the output of each pass 
is used in the subsequent pass to refine the PF calculation. 
 
Initialize variables 

Tψ : 15 : 0..20i= =  

Tλ : 15=  

0

0

λhat : 13

ψhat : 13

=
=

 

 
ψS(t) := 0

 

 
 
Calculate the bearing errors according to the normal distribution. 
 
BearingError := rnorm(21, 0, sigma) 
 
Calculate the bearings to which the random errors will be added. 
 

 

λs i( ) i:=

sigma 2
π

180
⋅:=

φi acos
ψT ψs i( )−( )

ψT ψs i( )−( )2 λT λs i( )−( )2+











:=
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φtilde is the vector of measured bearings. 
 
φtilde := φ + BearingError 
 

 
 
Initialize nhat and mhat for this pass. With multiple iterations, λhat.0 and φhat.0 
are updated with the results from the previous pass. 
 

 

 
Calculate the estimated bearing vector. 
 

 

φ

0

0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.785
0.751

0.714

0.675

0.633

0.588

0.54

0.49

0.437

0.381

0.322

0.261

0.197

0.133

0.067

0

=

Iteration

nhat
i
λhat0 λs i( )−:=

mhat
i
ψhat0 ψs i( )−:=
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Calculate vector Y. 
 

 
 
Determine the elements of two columns of X. 
 

 

 

 

 
Convert these to vectors. 
 

 

 

 
Calculate the error vector β. 
 

 
 
Calculate the estimated PF for this pass. 
 

 

 

 

φhati acos
mhat

i

mhat
i( )2 nhat

i( )2+











:=

Y φtilde φhat−:=

Xt1i

nhat
i

mhat
i( )2 nhat

i( )2+
:=

Xt2i

mhat
i

mhat
i( )2 nhat

i( )2+
:=

X
i 0, Xt1i
:=

X
i 1, Xt2i
:=

βhat XT X⋅( ) 1−
XT Y⋅:=

PT0
ψhat0 βhat0−:=

PT1
λhat0 βhat1−:=

PT
10.256

13.415









=
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Iterate 

ψhat0 PT0
:=

λhat0 PT1
:=
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Appendix 2B 
 
 

Generalized Bearing Program Listing 
 
 
This appendix contains a source program listing in MathCAD® for the generalized 
bearing algorithm discussed in Section 2.7. This algorithm is intended to be a 
multipass, iterative procedure where the output of each pass is used in the 
subsequent pass to refine the PF calculation. 
 
Initialize variables 
m := 0 
yT := 0 
i := 0..20 
xT := 10 
ρθε := 0 

 

 

zT := 0.5
 

 
Distances are in kilometers 
 
Initial values of estimated location 
 
xhat0 := 12 
yhat0 := 5

 

zhat0 := 0.5
 

 
 
Equations of sensor motion. An LOB is measured every unit of distance. 
 
xs(i) := i 

σθ 2
π

180
⋅:=

σε 2
π

180
⋅:=

xhatv0

xhat0

yhat0

zhat0













:=
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ys(i) := 0 
 
zs(i) := 3 
 
Calculate the bearing errors according to the normal distribution. 
 
BearingError := rnorm (21, 0, σθ) 
 
Calculate the generalized bearings to which the random errors will be added. 
 

 

 
The vector of observed bearings 
 
αobs := α + BearingError 
 
Iteration 
 

 
 
Calculate the components of Gm. 
 

 

 

 

αi atan
xT xs i( )−( )2 zT zs i( )−( )2+

yT ys i( )−











:=

m m 1+:=

rm i( ) xhat0 xs i( )−( )2 yhat0 ys i( )−( )2+ zhat0 zs i( )−( )2+:=

sm i( )
rm i( )

yhat0 ys i( )−









2

1−:=

gmi 0,

xhat0 xs i( )−( )−

rm i( )( )2 sm i( )⋅
:= gmi 1,

yhat0 ys i( )−( )sm i( )

rm i( )
:=
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Calculate the correlation coefficients. 
 

Gm

gm0 0,

gm1 0,

gm2 0,

gm3 0,

gm4 0,

gm5 0,

gm6 0,

gm7 0,

gm8 0,

gm9 0,

gm10 0,

gm11 0,

gm12 0,

gm13 0,

gm14 0,

gm15 0,

gm16 0,

gm17 0,

gm18 0,

gm19 0,

gm20 0,

gm0 1,

gm1 1,

gm2 1,

gm3 1,

gm4 1,

gm5 1,

gm6 1,

gm7 1,

gm8 1,

gm9 1,

gm10 1,

gm11 1,

gm12 1,

gm13 1,

gm14 1,

gm15 1,

gm16 1,

gm17 1,

gm18 1,

gm19 1,

gm20 1,

gm0 2,

gm1 2,

gm2 2,

gm3 2,

gm4 2,

gm5 2,

gm6 2,

gm7 2,

gm8 2,

gm9 2,

gm10 2,

gm11 2,

gm12 2,

gm13 2,

gm14 2,

gm15 2,

gm16 2,

gm17 2,

gm18 2,

gm19 2,

gm20 2,

























































































:=
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Convert σ to a vector. 
 

 

 
 

 

 

 
Calculate the updated location estimate. 

( ) 1T 1 T 1
1 m m m mxhat : G C G G C w

−− −=  

 
 
xhat : xhat

0 1
0

=  

 

 

The above procedure is iterated until the difference in location estimate is small. 
 
 

am i( )
1−

sm i( )

xhat0 xs i( )−( )
yhat0 ys i( )−
⋅









2

:=

bm i( ) sm i( )
rm i( )

zhat0 zs i( )−









2

1−⋅










2−

:=

cm i( ) am i( ) bm i( )⋅:=

σm i( ) am i( ) σθ( )2⋅ bm i( ) σε( )2⋅+ cm i( ) ρθε⋅ σθ⋅ σε⋅+:=

h
i
σm i( ):=

C diag h( ):=

αhati atan
xhat0 xs i( )−( )2 zhat0 zs i( )−( )2+

yhat0 ys i( )−











:=

wm αobs Gm xhatv0⋅+ αhat−:=

xhat1

13.207

4.254

2.112











=

yhat0 xhat11
:=

zhat0 xhat12
:=
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Chapter 3 
 
 

DF Techniques 
 
 

3.1 Introduction 
 
In Chapter 2 we presented several approaches to computing an estimate of a target 
emitter based on estimates of the AOAs of the signal determined at two or more 
receiving sites. What we did not include there were any discussions on how those 
AOAs are determined in the first place. We address that issue in this chapter and 
the next. In this chapter we present several such methods, each with its own 
benefits and drawbacks. We devote Chapter 4 in its entirety to discussions of one 
of the most popular modern AOA determination algorithms called MUSIC. 
 As a reminder, Figure 3.1 illustrates the PF estimation using two or more DF 
sites (three are shown here). The φ’s represent the AOAs of the signal at the 
various receive sites. These AOAs establish the LOPs, which, in turn, determine 
the PF. We discuss some methods of determining these LOPs in this chapter. For 
completeness, we also briefly include sections on phase interferometry, amplitude 
difference systems; monopulse systems based on the Butler matrix, which is a type 
of amplitude measurement system, using the array covariance to calculate the 
phase differences; beamforming; and maximum likelihood and least square error 
estimation processes. Many of the approaches in this last category of algorithms 
have been discussed at length elsewhere [1]. 

There is a considerable variety of approaches to calculation of the LOBs that 
have been developed. Each has its strong points and weak points. Those that we 
include here are not exhaustive; they are typical of some of the approaches that 
have been developed. 

This chapter is structured as follows. We begin with a discussion of 
techniques that employ statistical methods for determining the AOA at an antenna 
array. We then briefly mention other, more hardware-oriented methods for making 
this estimation. Next we discuss a phase interferometer that employs MSE 
minimization to determine the AOA. DF with a Butler matrix is then discussed. 
The chapter concludes with a modern technique for estimating the phase 
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difference between two collocated antennas using especially configured SAW 
devices. 

 
 

3.2 Array Processing Direction of Arrival 
Measurement Methods 
  
3.2.1 Introduction 
 
In this section, we present some of the more common algorithmic approaches for 
determining the AOAs of one or more signals impinging on an antenna array [2]. 
They all perform mathematical manipulations with the covariance matrix 
calculated from the samples of the signals. They differ in the specific steps taken 
to determine the AOAs. 
 These procedures differ from what could be referred to as hardware 
approaches to AOA determination. These methods usually rely on a particular 
antenna array configuration, such as the Adcock. Other examples are the phase 
interferometer and amplitude measuring and comparison techniques described in 
[3]. The Watson-Watt AOA determining technique is a further example of the 
hardware approaches. We include a summary of these techniques here, but do not 
discuss the details. 

 
 
Figure 3.1 Determining geoposition. Each of the antennas shown at the receiving sites is actually an
array of antennas of some sort. 
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 The AOAs thus determined can then be used in the PF algorithms described in 
Chapter 2 to estimate the point source locations of the targets from which the 
signals originate. In these algorithms it is assumed that techniques are available to 
properly associate which AOA corresponds to the AOAs measured from other 
receiving sites, when multiple AOAs are impinging on any one or more of the 
receiving systems. We take note that this may be a nontrivial task, but choose not 
to delve into that problem herein. 
 The approaches considered in this chapter are primarily associated with short 
baseline techniques. That is, time delays and corresponding phase differences at 
several antennas are all such that the phase differences are all on the order of  λ/2 
or less. Baselines between antennas can be larger than this but there must be at 
least one baseline that meets the criteria in order to remove ambiguities in the 
measurements. Phase interferometry is one such technique. 
 In Chapter 5 we will discuss long baseline TDOA techniques. These baselines 
can be on the order of several kilometers. In such cases, phase unwrapping is 
normally necessary to remove ambiguities. 
 The coverage of array processing techniques in this chapter is limited by 
intent. For those wishing to delve more deeply into this fascinating topical area [4–
7] are recommended. 
 
3.2.2 The Model 
 
We assume that one or more stochastic wavefields are generated by sources in the 
far field, denoted by s(t) [when there are more than one such signals then s(t) is a 
vector, denoted ( )]s t


, are impinging on the antenna array. Random noise is 

assumed to accompany the signals, resulting in the signals at the antennas as 
 

     ( , ) ( , ) ( )r t x s t x n t= +
 

               (3.1) 

 

where x


represents the vector of antenna locations, i.e., T
1 1 1 1[ ] .x x y z=

Furthermore, we assume arbitrary antenna configurations. The antenna elements 
are assumed to have identical responses.  

We consider only narrowband signals. A noiseless propagating signal can be 
represented by 
 

   0( , ) cos[2 ( ) ]s t r A f t x= π −β⋅ + ξ
 

       (3.2) 

 

where A is its amplitude, f0 is the frequency, and 
2

0 /vf vβ =
  

is the wavenumber 

when v


is the three-dimensional velocity vector. Note that v


 and therefore β


point 

in the direction of propagation. For example, in the x-y-plane we have 
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     ( ) ( ) T
cos sinv vβ = β ∠ ∠  

  
      (3.3) 

 
where v∠  is the direction of propagation, defined counterclockwise relative the x-
axis and ξ is a random variable (r.v.) uniformly distributed over (0, 2π). We can 

also show that the magnitude of β


is given by 2 / .β = π λ [ ]T
x x y z=


is an 

arbitrary spatial coordinate in the three-dimensional (3-D) space.  
 Suppose we have a set of M omnidirectional sensors located at the points 

1 2, , , Mx x x
  

 , where T[ ]i i i ix x y z=


 in real 3-D space and that L narrowband 

plane waves impinge on the array (see Figure 3.2). The effect of these wavefields 
is to induce sensor signals which after conversion to baseband take the form of the 
M × 1 vector 
 

     
1

( ) ( ) ( ) ( )
M

k k k
k

r t g t a n t
=

= θ +  
             (3.4) 

 

 
 
Figure 3.2 Arbitrary three-dimensional array. 
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where the gk(t) denote the envelope signals of the incident wavefields, ( )n t


represents additive sensor noise, and the M × 1 steering vector associated with the 
kth incident wavefield is given by 
 

    

c 1

c 2

c

( )

( )

( )

( ) , 1

k

k

M k

j

j

k k

j

e

e
a k L

e

− ω τ φ

− ω τ φ

− ω τ φ

 
 
 θ = ≤ ≤
 
 
  




            (3.5) 

 
where ωc is the carrier frequency. The steering vector parameters 

1( ), , ( )k M kτ φ τ φ correspond to the delay times that appear across the array for the 

kth incident wavefield. These delay times depend on the array’s geometry. Since 
we assume that the wavefields are planar, then these delay times are given by 
 

[ ]1
( ) cos( )cos( ) sin( )cos( ) sin( ) , 1m m m mx y z m M

c
τ θ = φ θ + φ θ + θ ≤ ≤


     
(3.6) 

 
where T[ ]m m m mx x y z=


 corresponds to the location of the mth sensor and φ 

and θ designate the azimuth and elevation angles of the incident plane wave, 
respectively. The AOA parameters associated with the kth wavefield are 

designated by the AOA source parameter vector T[ ] .k k kθ = φ θ


 

 Expressed in matrix/vector form,  (3.4) becomes 
 

     ( ) ( ) ( ) ( )r t g t n t= φ +A
  

                    (3.7) 

 
where ( )g t


is the source signal vector whose components are given by gk(t). The 

M × L composite steering matrix ( )θA


 has as its columns the steering vectors 

associated with the incident wavefields, that is, 
 

   1 1 2 2( ) ( ) ( ) ( )L La a a θ = θ θ θ A
     

              (3.8) 

 

This steering matrix is a function of the AOA parameter vector θ


whose elements 
are composed of a concatenation of the m individual source AOA parameter 

vectors. We assume that ( )θA


has full rank which is generally true in most 

multiple source applications that we are interested in for which .L M≤  
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3.2.3 Array Covariance Modeling 
 
We further assume that the source envelope signals and the additive noise are all 
mutually uncorrelated, wide-sense stationary stochastic processes. The snapshot 
vector then is also wide-sense stationary and its covariance matrix is given by 
 

            H
rr {[ ( ) { ( )}][ ( ) { ( )}] }r t r t r t r t= − −C   

   
 

H{ ( )} { ( )}r t r t=  
         (3.9) 

           
because we assume that the source signals rk(t) and the sensor noise n(t) are zero 
mean [so that { ( )} 0r t =


 and { ( )} 0]n t =


, wide-sense stationary (wss) 

stochastic processes. Since we assume that the source signals and the additive 
noise are mutually uncorrelated, we further get 
 

     H 2
rr gg nn( ) ( )= θ θ + σC A C A C

 
                 (3.10) 

 
where {.} denotes the expected value operator and the H designates complex 

conjugate transpose. The L×L source covariance matrix is given by 

gg { ( ) ( )}g t g t∗=C 
 

 and the M×M noise covariance matrix 2 H
nn { ( ) ( )}.n t n tσ =C 

 

Cgg is diagonal for incoherent sources, nondiagonal and nonsingular for partially 
coherent sources, and nondiagonal and singular if a subset of the sources is 
perfectly coherent. Finally, Cnn is assumed to be known, but the noise power level 
σ2 is not. 
 It is possible to solve the fundamental AOA problem in the covariance 
domain. The concept of generalized eigenanalysis plays a prominent role in so 
doing. The (generalized) eigenanalysis of the matrix pair (Crr, Cnn) is given by 
 

   rr nn , 1m m me e m M= λ ≤ ≤C C
 

           (3.11) 

 
The λm scalars are called (generalized) eigenvalues. If me


obeys (3.11), with some 

λ, then we call the  M × 1 vector me


the generalized eigenvector of Crr and Cnn, 

and λ is called the generalized eigenvalue of Crr and Cnn which corresponds to the 
generalized eigenvector .me


The possible values of λ must obey the following1 

                                                           
1 On a related side note, the set of matrices of the form A − λB, where λ is a complex number, is called 
a pencil; the term matrix pencil can also refer to the pair (A, B) of matrices. If B is invertible, then the 
original problem can be written in the form 

1
v v

− = λB A
 

 
which is a standard eigenvalue problem. However, in most situations it is preferable not to perform the 
inversion, but rather to solve the generalized eigenvalue problem as stated originally. This is especially 
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     rr nndet( ) 0− λ =C C              (3.12) 

 
The following property provides a basis for employing the covariance domain 

description to estimate the AOA source parameters of the incident wavefields [8]. 
 

Property 3.1 
 
Let the snapshot vector be given by (3.7). Furthermore, let the 

corresponding M × L steering matrix ( )θS


have full rank L and 

the L × L source covariance matrix Cgg have rank r where .r L≤  
Then the eigenvalues as specified by (3.11) have the property 
that 
   

2
1 2 rλ ≥ λ ≥ ≥ λ > σ  

 
and 
 
  

2
1 2r r M+ +λ = λ = λ = σ  

 
The eigenvalue σ2 of multiplicity M – r is referred to as the noise 
eigenvalue while the r larger eigenvalues are called signal 
eigenvalues. With this eigenvalue classification, the associated 
generalized eigenvectors are characterized as follows. 
 
Noise Eigenvectors: The eigenvectors associated with the noise 
eigenvalue σ2 are all contained in the null space of matrix

H
gg ( ),θC A


that is 

 
H

gg ( ) 0, 1, 2, ,ke k r r Mθ = = + +C A
 

  
 
Furthermore, if the sources are only partially coherent or 
incoherent so that r = L, the noise eigenvectors are orthogonal to 

                                                                                                                                     
important if A and B are Hermitian matrices, since in this case B − 1A is not generally Hermitian and 
important properties of the solution are no longer apparent. If A and B are Hermitian and B is a 

positive-definite matrix, the eigenvalues λ are real and eigenvectors 1v


and 2v


 with distinct eigenvalues 

are B-orthogonal 1 2( 0).v v∗ =B
 

Also, in this case it is guaranteed that there exists a basis of generalized 

eigenvectors. This case is sometimes called a Hermitian definite pencil or definite pencil.  
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each of the steering vectors associated with the incident plane 
waves, that is 
 

H ( ) 0, 1, 2, ,k me k r r Mθ = = + +A
 

  
 
If a subset of the plane waves is fully coherent, this 
orthogonality condition is generally invalid. 
 
Signal Eigenvectors: The eigenvectors associated with the signal 
eigenvalues when premultiplied by Cnn are each contained in the 
range space of the steering matrix, namely 
 

nn ( ) , 1m me a m r= θ ≤ ≤C A
   

 
where na


are L × 1 vectors. The vectors nn meC


form a basis for the 

range space of ( )θA


if and only if there are no coherent sources 

present. 
 

3.2.4 Direction of Arrival 
 
We use snapshot data to estimate the individual-source AOA parameter vectors 
that characterize the multiple wavefields incident on the array. The goal is to 
determine the AOA of these wavefields on the array. These AOAs are estimates of 
the direction to the point sources in the far field of the antenna array from which 
they originate.  

Several direct methods have been developed for directly using samples of the 
raw snapshot data as specified by 
 

     1 2( ), ( ), , ( )Nr t r t r t
  

              (3.13) 

 
to estimate the source AOA parameters. The sampling scheme is typically 
uniform. Some of these direct methods are classical beamforming algorithms [9], 
the ML method, and LSE modeling techniques. Several indirect methods of AOA 
estimation have been developed as well that depend on the eigencharacteristics of 
the array covariance matrix characterized by Property 3.1. These include noise 
subspace-based methods as exemplified by MUSIC that we discuss in the next 
chapter and other similar signal subspace-based methods.  

In these eigen-based methods, the array covariance matrix must first be 
estimated from the sampled snapshot vectors. The standard estimate for the array 
covariance matrix is given by 
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     H
rr

1

1ˆ ( ) ( )
N

n n
n

r t r t
N =

= C             (3.14) 

 
where N is the number of snapshots. Indirect AOA algorithms use the 
eigencharacteristics of an array covariance matrix estimate such as this one to 
obtain the required AOA parameter vector estimate. 
 
3.2.5 Subspace-Based Methods 
 
The subspace-based methods of array processing first determine the signal and 
noise subspaces associated with the covariance matrix.2 Manipulation using the 
properties of these subspaces is the unifying theme of these methods. 

The subspace methods essentially form a beam in the “look direction” and 
rotate that beam to try to find from which direction the most energy is coming. 
What differentiates the methods is the way this beam is formed and therefore their 
resolution, accuracy, and bias. 

The class of noise subspace methods are those that use the eigenvectors 
associated with the noise level eigenvalues. On the other hand, signals subspace 
methods employ the eigenvectors corresponding to the signal level eigenvalues. 
We will consider only the former of these approaches here.  
 
3.2.5.1 Eigenvector Decomposition 
 
All of the subspace-based methods are based on the eigenvector decomposition of 
the covariance matrix 
 

     H
rr { ( ) ( )}r t r t=C 

 
        (3.15) 

 

Dropping the index of the steering matrix ( ),θA


we get the covariance matrix 

 
   H H H

rr { ( ) ( )} { ( ) ( )}s t s t n t n t= +C A A 
   

    (3.16) 

 

                                                           
2 The subspaces referred to here are mathematical constructs called vector spaces. A vector space V 
over a field F is a set of elements called vectors, such that any two vectors α and β of V determine a 
(unique) vector α + β as sum, and that any vector α from V and any scalar c from F determine a scalar 
product c ⋅α  in V, with the properties 

• V is an Abelian group under addition, 
• ( ) , ( ') 'c c c c c c c⋅ α + β = ⋅ α + ⋅ β + ⋅ α = ⋅ α + ⋅ α  (Distributive Laws), 

• ( ') ( ' ), 1 .cc c c⋅ α = ⋅ ⋅ α ⋅ α = α  
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Denote the covariance matrix of s(t) as H
ss{ ( ) ( )} .s t s t = C

 
 Assuming the noise is 

i.i.d. Gaussian, the covariance matrix of ( )n t


 is 2
nn .= σC I Therefore, Crr can now 

be written 
 

     H 2
rr ss= + σC AC A I       (3.17) 

 
Since Crr is a positive definite, Hermitian matrix, we can use SVD to get 
 

      H
rr =C EΛE        (3.18) 

 
with E unitary3 and [ ]1 2diag ,M= λ λ λΛ  a diagonal matrix of real 

eigenvalues ordered such that 1 2 0.Mλ ≥ λ ≥ ≥ λ >   

If a vector r


is orthogonal to HA (so that H 0),r =A


 then it is an eigenvector 

of Crr with eigenvalue σ2, because then 
 

    
H 2 2

rr ss
0

r r r r
=

= + σ = σC AC A
   

     (3.19) 

 
The eigenvector of Crr with eigenvalue σ2 lies in {AH}, the nullspace of AH. If 

and only if L < M, then 
 

 H ( ){ } { }, , rank{ }M M L M L× −= ∈ = −A Q Q Q  C   (3.20) 

 
where {Q} is the range of Q. 

Due to Property 3.1, it is possible to partition the eigenvectors into noise 
eigenvectors and signal eigenvectors and the covariance matrix Crr can be written 
as 
 

     H H
rr s s s n n n= +C E Λ E E Λ E      (3.21) 

 
The eigenvectors s n[ ]=E E E  form an orthonormal basis (i.e., H H ).= =EE E E I  

 The span of the L vectors Es defines the so-called signal subspace, and the 

                                                           
3An n × n complex matrix U is a unitary matrix if the condition 

H H
n= =UU U U I  

is satisfied. This condition implies that H 1
.

−=U U  
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orthogonal complement spanned by En defines the noise subspace. This 
terminology is a consequence of the fact that s nspan{ } span{ } span{ }.= ⊥E A E  

Furthermore, the range of Q is the orthogonal complement to the range of A, 
because 
 

     H †{ } { } { }= =Q A A       (3.22) 

 
We therefore have 
 

      s{ } { }=E A        (3.23) 

      H
n{ } { }⊥=E A       (3.24) 

 
{Es} is called the signal subspace, and {En} is called the noise subspace. The 

projection operators onto these signal and noise subspaces are defined as 
 

   † H 1 H H
A s s s s s s( )−= = =P AA E E E E E E     (3.25) 

   † H 1 H H
S n n n n n n( )⊥ −= − = =P I AA E E E E E E    (3.26) 

 
where †A is the pseudo-inverse4 of A. 
 
3.2.6 Beamforming AOA Estimation 
 
The snapshot vector (3.7) is composed of a time-varying linear combination of 
source steering vectors contaminated by noise. The kth steering vector is the 
response of the array to a signal arriving from direction specified by 

T[ ] .k k kθ = φ θ


 Therefore, at any instant of time the snapshot vector generally has 

a nonzero component in each of the incident source steering vector directions. 
Beamforming techniques are based on fitting the sampled snapshot vector data by 
a single incident wavefront model. We can use the following squared error 
criterion for this fitting: 
 

H
bf 1 1 1 1 1 1

1

( ,{ ( )}) [ ( ) ( ) ( )] [ ( ) ( ) ( )]
N

n n n n n
n

c g t r t g t s r t g t s
=

θ = − θ − θ
     

         (3.27) 

 

                                                           
4 When m × n matrix F is full rank, the Moore-Penrose pseudo-inverse is as follows: 

† H H 1
: ( )m n

−< =F F FF  
† H 1 H

: ( )m n
−> =F F F F  
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where g1(tn) and 1θ


designates the sampled single source signal and the source 

AOA parameter vector, respectively. We want to find 
 

     
1 1

bf 1 1
, ( )
min ( ,{ ( )})

n
n

g t
c g t

θ
θ


      (3.28) 

 
When the minimum is sufficiently small, there is a high likelihood that an incident 
wavefront is present at that single source AOA parameter vector. 
 For any selection of this parameter vector, the corresponding optimum single 
source envelope signals are obtained by setting the derivatives of (3.27) with 
respect to the real and imaginary components of the single source signals to zero. 
This results in the optimum single source envelope sample selections 
 

   opt H
1 1

1
( ) ( ) ( ), 1n ng t s r t n N

M
= θ ≤ ≤

 
         (3.29) 

 
Upon substitution of (3.29) into (3.27), we find that 
 

 opt H H
bf 1 1 1 rr 1

1

ˆ( ,{ ( )}) ( ) ( ) ( ) ( )
N

n n n
n

N
c g t r t r t s s

M=

θ = − θ θ C
     

         (3.30) 

 

where rrĈ is given by (3.14). 

 Since N and M are fixed, finding θ


that minimizes (3.30) is equivalent to 
maximizing the beamforming function 
 

H
1 1 rr 1

ˆ( ) ( ) ( )bf s sθ = θ θC
   

      (3.31) 

 
The nonlinear nature of (3.31) does not allow funding a closed form solution for 

1( ).bf θ


Instead of a closed form solution (3.31) is typically evaluated on a grid of 

relatively finely spaced values for 1.θ


Values of 1θ


that provide significant local 

maxima on this grid then serve as estimates of potential multiple incident sources. 
Interpolation is then used to refine these estimates. (We discuss interpolation later 
in Section 3.3.) 
 
3.2.7 Maximum Likelihood AOA Estimation 
 
When the additive sensor noises in (3.7) are Gaussian distributed, we have the 
LSE criterion whose minimization gives the MLE AOA estimate. We can show 
that the MLE estimate of the noise level eigenvalue in this case is given by 
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 2 H 1
nn

1

1
ˆ [ ( ) ( ) ( )] [ ( ) ( ) ( )]

N

n n n n
n

r t g t r t g t
NM

−

=

σ = − θ − θ A C A
    

         (3.32) 

 

The ML estimate of the θ


 is found by minimizing the ML criterion 
 

 H 1
ml nn

1

( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )]
N

n n n n
n

c r t g t r t g t−

=

θ = − θ − θ A C A
     

              (3.33) 

 

Again, a closed-form solution for a minimizing θ


is generally unavailable because 
(3.33) is nonlinear. Although we could compute approximations of the minimum 
by direct evaluation as in beamforming, such an approach has a large 
computational cost due to the fact that the number of parameters used in this 
evaluation correspond to all the unknown parameters of the incident wavefields, a 
situation not encountered in beamforming, where a single wavefield was 
examined. Alternately we can use nonlinear programming techniques to iteratively 

find an optimum selection of opt .θ


 We provide a description of this iterative 
approach in Section 3.2.9. 
 
3.2.8 Least-Squares Error AOA Estimation 
 
Snapshot vectors are used to estimate the individual source AOA parameters 
characterizing the multiple incident signals. The approach taken in many AOA 
algorithms is to select the AOA parameter vector so that the snapshot vector model 
is most compatible with these measurements in some sense. The following sum of 
squared errors criterion is often used for this purpose 
 

 H
lse

1

( ,{ ( }) [ ( ) ( ) ( )] [ ( ) ( ) ( )]
N

n n n n n
n

c g t r t g t r t g t
=

θ = − θ − θ A W A
     

    (3.34) 

 
where W is a positive definite Hermitian matrix. We can see that the ML criterion 
is of this form in which 1

nn .−=W C This weighted criterion is a function of the AOA 

parameter vector and the sampled source signals { ( )}.ng t


We want to find values 

for these vector entities to render (3.34) a global minimum. Such a selection 
provides a multiple source model which is most compatible with the sensor data in 
the weighted LSE sense depicted by (3.34). 
 Again we encounter the difficulty of finding a closed-form solution for the 

minimum of  (3.34) to yield  parameters θ


and { ( )}.ng t


 As in the ML approach, it 
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is generally necessary to use nonlinear programming techniques to iteratively 
generate the optimum parameters.  
 
3.2.9 Decoupling Sample Source Signals from AOA Parameters 
 
The computational burden in using a nonlinear programming approach is 
proportional to the number of unknown parameters. It therefore makes sense to 
decrease this number whenever feasible. We will discuss such a technique in this 
section. 

By examining the squared error criterion (3.34), we see that the source signals 
appear in a weighted quadratic fashion. We may therefore use standard calculus to 
determine the optimum choice for the source signal that is associated with any 
AOA parameter vector. If these optimum selections are then substituted back into 
the squared error criterion, the criterion becomes an exclusive function of the 
AOA parameter vector.  Golub and Peryra first recognized this possibility in the 
unweighted case (i.e., W = I) and employed an AR decomposition to implement 
the decoupling operation [10]. This same objective may be reached in the 
weighted case by employing a generalized Gram-Schmidt orthogonalization 
procedure. The results of this approach are summarized in the following property 
[11]. 
 

Property 3.2 
 

Let the M × L steering matrix ( )θA


have full rank L. This matrix 

can therefore be represented by the factorization

( ) ( ) ( )θ = θ θA Q R
  

 in which ( )θQ


is an M × L orthogonal matrix 

so that ( ) ( )∗ θ θ =Q WQ I
 

and ( )θR


is an L × L nonsingular upper 

triangular matrix (this is the QR decomposition5 [12]). Then the 
optimum source signals for any AOA parameter vector are given 
by 
 

opt 1 H( ) ( ) ( ) ( ), 1n ng t r t n N−= θ θ ≤ ≤R Q W
  

   (3.35) 

 

                                                           
5A QR decomposition (also called a QR factorization) of a matrix is a decomposition of a matrix A into 
a product A = QR of an orthogonal matrix Q and an upper triangular matrix R. If A has linearly 
independent columns (say, n columns), then the first n columns of Q form an orthonormal basis for the 
column space of A. More specifically, the first k columns of Q form an orthonormal basis for the span 
of the first k columns of A for any 1 ≤ k ≤ n. The fact that any column k of A only depends on the first k 
columns of Q is responsible for the triangular form of R.  
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The weighted squared error criterion (3.34) for these optimum 
source amplitudes is 
 

opt H
lse

1

H

1

( ,{ ( }) ( ) ( )

( ) ( ) ( ) ( )

N

n n n
n

N

n n
n

c g t r t r t

r t r t

=

∗

=

θ =

− θ θ





W

WQ Q W

   

  
   (3.36) 

 
 The following procedure for solving the AOA problem ensues based on the  
above:  
 

(1) Find an AOA parameter vector that minimizes (3.36). 
(2) Determine the associated optimum sampled source signal using (3.35).  

 
As previously, the first step of this procedure is the more difficult due to the 
nonlinear character of the process. It will therefore be computationally prudent to 
employ nonlinear programming techniques to obtain this solution. We will discuss 
such nonlinear programming methods in Section 3.2.11. 
 
3.2.10 Gram-Schmidt Orthogonalization  
 
Given two sets of vectors { }u


and { },v


we define the projection operator by 

 

     
,

proj ( )
,u

v u
v u

u u

< >=
< >



  
               (3.37) 

 
where ,u v< >

 
denotes the inner product of the vectors u


and .v


This operator 

projects the vector v


 orthogonally onto the vector .u


 The Gram-Schmidt process 
[13–17] then works as follows: 
 

                       

1
1 1 1

1

,
u

u v e
u

= =


  


 

1

2
2 2 2 2

2

proj ( ),u

u
u v v e

u
= − =


   

  
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1 2

3
3 3 3 3 3

3

proj ( ) proj ( ),u u

u
u v v v e

u
= − − = 


    

  

  
 

          

1

1

proj ( ),
j

k
k

k k k ku
j k

u
u v v e

u

−

=

= − = 


   

  

  
The first two steps of this process are illustrated in Figure 3.3. The sequence 

1 2, , , ku u u
  

 is the required system of orthogonal vectors, and the normalized 

vectors 1 2, , , ke e e
  

 form an orthonormal set. The calculation of the sequence 

1 2, , , ku u u
  

 is known as Gram-Schmidt orthogonalization, while the calculation of 

the sequence 1 2, , , ke e e
  

  is known as Gram-Schmidt orthonormalization as the 

vectors are normalized. 
 
3.2.11 Nonlinear Programming 
 
We now describe a nonlinear programming procedure for minimizing (3.34). We 
first seek an AOA parameter vector that minimizes (3.36), which is equivalent to 
maximizing the second term in (3.36) as the auxiliary function 

 
 
Figure 3.3 The first two steps of the Gram-Schmidt process. 
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     H H

1

( ) ( ) ( ) ( ) ( )
N

n n
n

d r t r t
=

θ = θ θ WQ Q W
   

           (3.38) 

 

Let optθ


denote an optimum AOA parameter vector that maximizes this auxiliary 
function. Then the corresponding optimum source amplitude factors are obtained 
from (3.35). 
 These nonlinear programming techniques are based on incrementally 
perturbing the parameters being optimized in a systematic fashion so that the 
function being maximized takes on monotonically increasing values. The 
parameter sequences generated this way typically converge to a relative maximum 
of the function. In terms of the t × 1 AOA parameter vector [t = 2L, two entries 
(one azimuth angle and one elevation angle) for each incident wavefield], this 
incremental perturbation takes the form 
 

       ( 1) ( ) ( )k k k
k p+θ = θ + α

  
             (3.39) 

 

where ( ) ( ), ,k kpθ
 

 and αk denote the values of the AOA parameter vector, the 

perturbation vector, and the step size scalar, respectively, at the kth iteration. The 
various nonlinear programming algorithms differ, and therefore their 
characteristics (e.g., convergence rate) also differ, depending on how they select 
the perturbation vector and step size scalar. In all cases, an improvement in 
function value is obtained whenever the following improvement condition is met 
 

       ( 1) ( )[ ] [ ]k k
m md d+θ > θ
 

             (3.40) 

 
Otherwise we are either on a nonincreasing slope and we are not converging. 
 The nonlinear programming algorithms used to solve these systems require 
the determination of the gradient vector and the Jacobian matrix of the function 
being maximized. For example, the perturbation vectors associated with the 
Gauss-Newton method is given by 
 

     ( ) H ( ) ( ) 1 ( )
GN d d[Re{ [ ] [ }] [ ]k k k k

mp d−= θ θ ∇ θJ J


           (3.41) 

 
and for the Levenberg-Marquardt algorithm6 by 
 

    ( ) H ( ) ( ) 1 ( )
LM d d p[Re{ [ ] [ ] }] [ ]k k k k

mp d−= θ θ + μ ∇ θJ J I
 

          (3.42) 

 

                                                           
6 See Appendix B for a brief description of these algorithms. 
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In these expressions, the gradient vector associated with the auxiliary function 

being maximized is denoted by ( )[ ]k
md∇ θ


 and the Jacobian matrix by ( )
d [ ].kθJ


 The 

NM × t Jacobian matrix is given by 
 

    

H H

1 1

d

H H

( ) ( ) ( ) ( )

(1) ( )

( )

( ) ( ) ( ) ( )

(1) ( )N N

r r
t

r r
t

 ∂ θ θ ∂ θ θ
 ∂θ ∂θ 
 θ =
 
 ∂ θ θ ∂ θ θ
 ∂θ ∂θ 

Q Q Q Q

J

Q Q Q Q

   
 




  
   

 


          (3.43) 

 
where θ(k) are the azimuth and elevation angle entries in the t × 1 AOA parameter 
vector. Similarly, the t × 1 gradient vector is 
 

     

H
1

H
2

d

H

( ) ( )

( ) ( )
( ) Re ( )

( ) ( ) N

r

r
d

r

∗
θ

  θ θ
  
  θ θ∇ θ = θ  
  
  θ θ  

Q Q

Q Q
J

Q Q



  
   


  

           (3.44) 

 
The Gauss-Newton method and the Levenberg-Marquardt algorithm for 

solving nonlinear least-squares problems are readily implemented using the above 
formulation of the Jacobian matrix and the gradient vector. The AOA parameter 
vector sequence generated by employing either of these algorithms converges in a 
rapid (e.g., quadratic) fashion. 

 
 

3.3 Other Methods of Estimating the AOA 
 
The next several techniques we will discuss are presented at length and analyzed 
in detail elsewhere [18–20]. We include a brief description of them here for 
completeness, but we will not duplicate the analyses provided there. The interested 
reader can get many more details from the references. 
 
3.3.1 Phase Interferometry 
 
Phase interferometry uses the phase differences of a signal impinging on an array 
of antennas to determine an estimate of the AOA. The concept is illustrated in 
Figure 3.4 where a single baseline is formed by two antennas. In this case, signal 
s(t) impinges on the left antenna a time τ before reaching the right antenna. These 
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time delays impose a phase shift between the antenna signals. The idea is to find 
the AOA φ from measurements of these phase angle differences. Advantage is 
taken of the expression 
 

cos
D

c
τ = φ        (3.45) 

 
where c is the speed of propagation, to determine this AOA. With a single baseline 
there is a left-right ambiguity. This ambiguity is usually resolved by adding one or 
more antennas, forming at least one more baseline. 
 
3.3.2 Amplitude Systems 
 
Perhaps the most widely implemented DF technique over history has been the 
Watson-Watt amplitude DF systems with an Adcock antenna. One such four-
element Adcock antenna is illustrated in Figure 3.5. This figure shows four dipoles 
mounted atop an antenna mast (monopoles or loops and several other antenna 
types are also possible). The sense antenna is rarely implemented as a separate 
antenna but is formed as the sum of the outputs of the other four antennas. 
 A simplified block diagram of this configuration is illustrated in Figure 3.6. 
The N and S antenna outputs are combined through an appropriately configured 
transformer as shown. So are the E and W antenna outputs. The two antenna 
patterns thus formed take the shape of orthogonal cardioids as shown in Figure 
3.7. These two signals are fed to their own receivers where they are down-
converted to baseband. The amplitudes of the two signals are compared. The ratio 

 
 
Figure 3.4 Interferometer (Source: [3]. © Artech House 2008. Reprinted with permission.) 
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Figure 3.5 Four-element Adcock array. (Source: [3]. © Artech House 2008. Reprinted with
permission.) 
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of the amplitudes provides an (ambiguous) indication of the AOA. The sense 
antenna is used to remove this ambiguity.  
 
3.3.3 Doppler Direction Finder 
 
As indicated in [21], the Doppler effect can be used to implement AOA estimators. 
Simply put, when a moving sensor is moving toward an emitting device, the 
frequency of the  emission  appears  to be higher than when moving away. So, as 
long as the rotation rate is constant, the signal from a stationary antenna, when 
compared to the signal from an antenna that is rotating around the stationary 
antenna, will have frequency behavior that appears to be cyclic. See Figure 3.8. 
The amount of frequency shift is an indication of the AOA of the target signal. 

  
 

3.4 MSE Phase Interferometer 
 
3.4.1 Introduction 
 
Direction finders for EW systems often employ compact circular arrays of dipoles 
or  monopole  antenna  elements  in  the  interest  of  mobile  operation.  One such 
system is the Adcock array shown in Figure 3.9. The N, E, S, W outputs from the 
four antenna elements are combined in such a way so as to provide an estimate of 
the AOA of a signal impinging on the array.  

 
 
Figure 3.6 Watson-Watt (Source: [3]. © Artech House 2008. Reprinted with permission.) 
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Figure 3.7 Cardioid. 

 
 

Figure 3.8 Doppler (Source: [3]. © Artech House 2008. Reprinted with permission.) 
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3.4.2  The Algorithm 
 
Figure 3.9 defines the angle of arrival φ of signal s(t) with respect to the array. 
Taking the center of the array as the reference, the output of the antennas are 
 

    

1 1 1

2 2 2

1 3 3

2 4 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

N s t n t x t

E s t n t x t

S s t n t x t

W s t n t x t

= + τ + =
= + τ + =
= − τ + =
= − τ + =

            (3.46) 

 
where 
 

1 2

cos sinR R

c c

φ φτ = τ =     (3.47) 

 
and R is the array radius and c the velocity of the signal. The additive noise ni(t),    
i = 1,…,4 are stochastic processes mutually independent and independent of s(t). 
 Sampling the outputs at fs = 1/T, where without loss of generality we assume 
that T = 1, then the sampled outputs are for n = 0, 1, …, N – 1, 
 

 
Figure 3.9 Adcock. 



Electronic Warfare Target Location Methods 162 

    

1 1 1

2 2 2

3 1 3

4 2 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x n s n n n

x n s n n n

x n s n n n

x n s n n n

= + τ +
= + τ +
= − τ +
= − τ +

      (3.48) 

 
 The noise samples ni(t) are Gaussian, zero mean band-limited white noise 
(BLWN) of variance σ2. The DFT of xi(n) is 
 

1

0

( ) ( ) k

N
j n

i i
n

X k x n e
−

− ω

=

=
    

 (3.49) 

 
where 
 

      
2

k

k

N

πω =        (3.50) 

 
Substituting (3.48) into (3.49) produces 
 

     

1

2

1

2

1 1

2 2

3 3

4 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j k

j k

j k

j k

X k S k e N k

X k S k e N k

X k S k e N k

X k S k e N k

ω τ

ω τ

− ω τ

− ω τ

= +

= +

= +

= +    

 (3.51) 

 
where 
 

      
1

0

( ) ( ) k

N
j n

n

S k s n e
−

− ω

=

=      (3.52) 

 
is the DFT of s(n) and Ni(k) is the DFT of ni(n). It also follows from the time and 
phase shift relationship of the Fourier transform and (3.52) that 
 

     
1

0

( ) ( ) , 1,2k i k

N
j j n

i
n

S k e s n e i
−

± ω τ − ω

=

= ± τ =  (3.53) 

 
S(k) can be written in polar form as 
 

      ( ) ( ) kjS k S k e ξ=       (3.54) 
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where ξk is the phase of S(k). The goal is to estimate ξ from the Xi(k). 
 The process is an interferometer-type TDOA estimator that finds τ1 and τ2 by 
finding the LSE TDOA estimates between the N-S antenna outputs and the E-W 
antenna outputs. The N-S TDOA is 2τ1 and its estimate comes from an LSE fit of 
the phase of 1 3( ) ( )X k X k∗ against frequency. Repeating the same procedure with the 

E-W output yields 2τ2. Now from (3.47) 
 

      
2

2 2
1 2 2

R

c
τ + τ =              (3.55) 

 
Incorporating (3.55) in the form of a constraint to the two LSE fits can improve 
the accuracy.  

Consider first the LSE of τ1 from X1(k) and X3(k). The solution is 
 

     

( / 2) 1

1
1 ( / 2) 1 2

1

1ˆ̂
2

N

n n nn
N

n nn

W

W

−

=
−

=

ω ϕ
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ω

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     (3.56) 

 
where 
 

     
2

n

n

L

πω =         (3.57) 

     
2

2

ˆ( )

ˆ1 ( )
n

n
W

n

γ
=

− γ
       (3.58) 

 
and 
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1 311
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Re ( ) ( )

N

l ll

k N

n ll

X k X k

X k X k
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         (3.59) 

 
is the cross-spectral phase between X1(k) and X3(k). The magnitude squared 
coherence estimate is 
 

    

s

s s

2

1 312

1 31 1

( ) ( )
ˆ( )

( ) ( )

N

l ll

N N
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X k X k
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  (3.60) 

 



Electronic Warfare Target Location Methods 164 

(not to be confused with the SNR, γ, used elsewhere herein). In (3.57) through 
(3.60), the spectral components X1l(k) and X3l(k) are the DFTs of the lth segments 
of x1(n) and x3(n), n = 0, 1, …, N – 1. These components come from breaking an 
N-point sequence into Ns segments of L points each, with a 50% overlap. Thus, if 
N = 1,024, Ns = 7 and L = 253. 

 Similarly, let 2τ̂ be the TDOA obtained from x3(n) and x4(n), with kϕ and kW
the corresponding phase and weight in (3.56).  

To incorporate the constraint (3.55) with the joint estimation of τ1 and τ2, we 
use the Lagrange multiplier technique [18]. Consider the cost function 
 

2T
T

2

R
J b b

c

    = τ − τ + + τ τ −      
B B

    l
  

  (3.61) 

 
where l is the Lagrange multiplier. The unknown vector we seek values for is 
 

       [ ]T

1 2ˆ ˆτ = τ τ
     (3.62) 

 
and 
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   (3.63) 

 
and 
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 (3.64) 

 
To find the τ that minimizes J, differentiate it with respect to τ and l and set the 
results to zero. This gives 
 

     T T2 2 2 0
J

b
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∂τ

B A B
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 l            (3.65) 
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     (3.66) 

 
or 
 

      T Tb + τ = B B I B
l             (3.67) 

 
Now 
 

   

( / 2) 1 2

1T

( / 2) 1 2

1

0

0

L

k kk

L

k kk

W

W

−

=

−

=

 ω
 =
 ω 




B B


           (3.68) 

 
and 
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Solving (3.65) yields 
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where 
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Putting 1τ̂ and 2τ̂ into constraint (3.55) yields 
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which is a fourth-order equation in l. Let the root with the smallest magnitude be 

denoted as .l Then 
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           (3.73) 

 
and 
 

      1 2

1

ˆˆ tan
ˆ

− τ
φ =

τ         
         (3.74) 

 
3.4.3 Simulation 
 
This section describes two simulation experiments to evaluate the estimator 
described in the last section. The sampling frequency is fs = 50 MHz (Ts = 20 ns) 
with the analog output signal digitized to form segments of N = 1,024 samples. We 
break up N into 7, 50% overlapped segments of L = 256 points each, before taking 
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the Fourier transform. The independent noise sources are outputs of four separate 
Gaussian number generators of zero mean and variance σ2. There were 250 
independent trials to give the RMS error of the estimate 
 

   [ ]
1/2250

2

1

RMSE ( ) / 250
i

i
=

 = φ − φ 
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             (3.75) 

 
where φ(i) is the estimate of the ith trial. The array radius R = 2 m and c = 
2.99776×108 m s–1. 
 
Results: Sinusoid Signals 
 
The cross-correlation function of two sinusoids exhibits multiple peaks, any one of 
which can easily be selected as the TDOA. This makes estimating the TDOA 
difficult. The signal in this experiment is at 15 MHz, which is an off-bin 
frequency. The results are shown in Figure 3.10 where (dB) SNR(dB).δ = The loss 

of signal power in the gaps between bins reduces the effective SNR [23], and thus 
a higher error ensues than otherwise. The CRB is independent of the relationship 
between fs and the frequency of the sinusoid, since it assumes analog processing. 
Zero filling a time sequence prior to taking the DFT can produce more frequency 
bins for processing. While this may ostensibly recover some of the off-bin energy 
of the sinusoid, the noise components between bins becomes correlated. As a 
result, there is no improvement in the TDOA estimate by zero filling. 
 
 

 
 
Figure 3.10 15 MHz experiment. 
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Results: Stochastic Signals 
 
The signal is BLWN of variance 2

sσ  and 2 2
10 s nSNR(dB) (dB) 10log ( / ).= δ = σ σ

Figure 3.11 shows the results. In this case significantly better results are produced. 
The BLWN has a flat frequency spectrum within its bandwidth, which produces an 
approximate delta function TDOA estimate in the time domain. 
 
 

3.5 DF with a Butler Matrix 
 
3.5.1 Introduction 
 
The N × N Butler matrix consists of passive four-port hybrid power dividers and 
fixed phase shifters [24]. It has N input ports and N output ports. As a 
beamforming network, it is used to drive an array of N antenna elements. A 
beamformer is a reciprocal device so “drive” in this case means that they can be 
used to form beams for both transmitting and receiving. It can produce N 
orthogonally space beams overlapping at the –3.9 dB level and having the full gain 
of the array. The network is used to produce (possibly 3-D, depending on the array 
geometry) beams in a pincushion deployment, where to be orthogonal (sin x)/x 
patterns must be spaced so that the crossover is at about 4 dB down (2/π), and the 
first sidelobes will be down 13.2 dB. Tapering changes these numbers; for a cosine 
taper, for example, the crossover level becomes approximately 9.5 dB for 
orthogonality. 
 
 

 
 
Figure 3.11 BLWN experiment. 
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3.5.2 Beamforming Network 
 
A generic version of the Butler matrix used as a beamforming network is shown in 
Figure  3.12.   It consists  of  a  3 dB  quadrature  hybrid  driving  two antenna 
elements with separation d. Note the amplitude and phase relationships for the 
hybrid structure.  

When used in a receiving role, the AOA of a signal impinging on the array 
causes variable voltage levels out of the input ports, the levels of which are 
determined by that AOA. By measuring and comparing these voltage levels, the 
angle of arrival of the signal can be estimated. The biggest single advantage of 
using a Butler matrix in this mode is its speed of operation. There are no servo 
loops that must settle. The estimated AOA appears immediately and continuously 
at the matrix output. This has advantages when the target set of concern includes 
short duration signals such as frequency-hopping push-to-talk communication 
networks. 
 
3.5.2.1 Scattering Matrix of the Quadrature Hybrid 
 
For the N-port network shown in Figure 3.13, we have the inputs and outputs 
related through the scattering matrix S as 
 

   
1 11 1 1

1

N

N N NN N

O s s I

O s s I

     
     =     
          


    


             (3.76) 

 
The scattering matrix for a four-port network is 
 

 
 
Figure 3.12 A two-beam Butler matrix (90o). 
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11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

s s s s

s s s s

s s s s

s s s s

 
 
 =
 
 
 

S              (3.77) 

 
In a theoretical ideal device, certain ports are isolated from each other. For 

example, in the quadrature hybrid, port 1 is isolated from port 2, and port 3 from 4. 
Therefore, these elements in the matrix are 
 

12 21 34 43 0s s s s= = = =  

  
If all the ports are matched there are no reflections (VSWR = 1 or Γ = 0 dB), 

and since the diagonal elements are reflection coefficients, they equal zero 
 

11 22 33 44 0s s s s= = = =  

 
 Off-diagonal elements are the transmission coefficients. The hybrid is 
reciprocal making the elements of the matrix symmetrical about the diagonal. 
Therefore 
 

12 21 23 32 41 14

42 24 43 34 23 32

, ,

, ,

s s s s s s

s s s s s s

= = =
= = =

 

 
The quadrature hybrid and the scattering matrix shown in Figure 3.14 reflect the 
comments made above. 
 If we perform the matrix operation, we get 

 
 
Figure 3.13 N-port network. 
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 

1 1

2 2

3 3

4 4

InputsOutputs

0 0 1

0 0 11

1 0 02

1 0 0

O Ij

O Ij

O Ij

O Ij

−    
    −    =
    −
    −    

           (3.78) 

 
Therefore, 
 

    1 3 4

1
( )

2
O I jI= −               (3.79) 

    2 3 4

1
( )

2
O jI I= − +               (3.80) 

    3 1 2

1
( )

2
O I jI= −               (3.81) 

    4 1 2

1
( )

2
O jI I= − +               (3.82) 

 
but 
 

    2 3 4 0I I I= = =  

 
therefore 
 

1 0O =  

2 0O =  

 
 
Figure 3.14 Quadrature hybrid for producing equal signals, but with 90o phase differential. 
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  o1 1
3 0

2 2

I I
O = = ∠  

  o1 1 1
4 90 exp

22 2 2

jI I I
O

− π = = ∠ − = − 
 

 

 
that is, two outputs from ports 3 and 4 but in phase quadrature. 

 
Example 

 
Feeding port 1 in the Butler matrix in Figure 3.12 results in the 
antenna array being uniformly illuminated and differential 
phased to point the resulting beam peak to the right of boresight. 
With the phasing indicated, the relationship becomes 
 

1

2
sin 0

2

dπ πθ − =
λ

 

       
or 
 

    1sin
4d

λθ =  

 
Feeding port 2 results in a beam pointing to the left of boresight 
at an angle 
  

1
2 sin

4d
− λ θ = − 
 

 

 
If both ports 1 and 2 are driven, two beams will be produced at 
angles θ = ±λ/4d. The matrix produces N (= 2 here) orthogonally 
spaced beams overlapping at the –3.9 level. 

 
A four-beam version is shown in Figure 3.15. This consists of several 

quadrature hybrids and fixed phase shifters. As we trace a phasor through the 
network, we note that no boresight beam is formed and the beams are 
symmetrically deployed about the array axis. For the port driven in Figure 3.15 we 
can see that the phase front across the aperture elements is –45°, –90°, –135°, and 
–180°. Therefore, the shaded beam is produced. 
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Figure 3.15 Four-beam Butler matrix. 
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The four-beam matrix may also have a sequencing switch on the input ports to 
scan to any one of the four positions shown. A more elaborate network can scan or 
produce many more beams. 

In the basic array, the number of beams is equal to the number of elements, 
and the normalized array factor is of the form sin(Mx)/(Msinx), where M is the 
number of elements. The (normalized by M) magnitude of the field intensity in the 
far field of a linear array of N uniformly excited isotropic radiators is given by [25] 

 

   e

sin( / 2)
( ) ( )

sin( / 2)

M
E E

M

ϕθ = θ
ϕ

              (3.83) 

 
where 
 
Ee(θ) is the element factor (weights the array factor [26]). Since we are assuming 
isotropic antennas for this analysis, Ee(θ) = 1. 

(2 / ) sindϕ = π λ θ − δ is a measure of the angle off boresight of the beam. 

δ is the progressive phase difference generated by the matrix and is equal to 
(2 1) / , 1,2, , / 2.k k M k Mδ = − π =   

k is the beam number. 
 
Note in the two-element array previously shown 
 

(2 1) /k k Mδ = − π  

/ Mδ = π = π  
 
The location of the beams can be found using 
 

     
1

sin
2

k
Md

π  θ = −  
             (3.84) 

 
The first sidelobe is down 13.5 dB, which is typical for a linear array with 

equal excitations and equal spacing. Interestingly, the beams cross over at the    
3.9 dB points, which suggest that the beams are orthogonal and the network is 
lossless. 

The sidelobes can be significantly improved by coherently combining two 
output ports to give a cosine variation with the sidelobes down by 23 dB, but with 
a beam distention of 35%. This also is quite common for beams: along with 
greater sidelobe suppression comes a broadening of the beam. Figure 3.16 
illustrates the addition of two beams each having uniform illumination (with sin 
x/x far field) to obtain a cosine illumination. In general, n + 1 beams can be added 
to form a cosine(n) illumination. 
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Figure 3.16 Cosine illumination achieved by combining two adjacent beams. 
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Figure 3.17 Beam scanning in a Butler matrix using a variable power divider. 



DF Techniques 177 

There are other uses for the Butler matrix. The network shown in Figure 3.17 
can be used to provide a limited scan function. Power is varied to ports 3 and 4 
(for example) and the variable power divider controls the power to each port. 
Varying the division of power steers the beam between individual beam axes. 

Note that 180o hybrids are also possible. They are used mostly when forming 
beams  with  nonlinear arrays, such  as  circular  arrays. As the name implies, the 
outputs from such a device can be 180° out of phase. The S matrix of the 180° 
hybrid is 

 

    

0 1 1 0

1 0 0 1

1 0 0 12
0 1 1 0

j

 
 −−  =
 
 − 

S              (3.85) 

 
with reference to the port definitions in Figure 3.18. With inputs at ports 2 and 3 
and using columns 2 and 3 of S, we can deduce that both ports 2 and 3 are 
matched, port 1 will provide the sum of the two input signals, and port 4 will 
provide the difference. Because of this, ports 1 and 4 are sometimes called the sum 
and difference ports, respectively. We will discuss an application of the 180o 
hybrid next. 
 A Butler matrix configuration that works with a circular Adcock antenna 
array is shown in Figure 3.19 [3]. This is a phase comparison architecture. The 
output port labeled n = 0 is the reference signal. The signals from all four antennas 
arrive at output port 0 with the same phase. The north antenna output passes 
through the two bottom 180o hybrids with no phase shift to port zero. The east 
antenna output passes through the +90o phase shifter, is shifted –90o through the 
90o hybrid, and passes through the bottom right hybrid with no phase shift for a 
net total of 0o. The south antenna’s signals passes through both the bottom two 
hybrids with no phase shift. The west antenna’s signal reaches output port 0 
bypassing through both the 90o hybrid and the bottom right hybrid with no phase 
shift. 

Next consider the phase at the n = 1 output port. The signal from the north 
antenna reaches this port with no phase shift, passing directly through the bottom 
left hybrid and upper right hybrid. The signal from the east antenna reaches the     
n = 1 port by passing through the +90o phase shift and then directly through the 
upper two hybrids for a net +90o phase shift. The south antenna’s signal reaches 
the n = 1 port via 180o phase shift in the bottom left hybrid and then directly 
through the upper right hybrid for a net 180o phase shift. The west antenna’s signal 
reaches the n = 1 port with –90o (270o) phase shift through the 90o hybrid and 
direct connection through the upper right hybrid for a total of 270o. The results are 
tabulated in Table 3.1.  
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Figure 3.18 180o hybrid. 

 

 
 
Figure 3.19 Butler matrix. (Source: [3]. © Artech House 2008. Reprinted with permission.) 
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 As shown, the phase difference between the n = 0 and n = 1 ports is equal to 
the spatial angle around the circular array. Note that only one-fourth of the power 
from any one antenna is available at a given output port due to the power-dividing 
properties of the hybrids. Also note that the phase difference at the n = 0 and n = 2 
ports is exactly twice the phase difference between the n = 0 and n = 1 ports 
(modulo 360o). 

By measuring the n = 0 to n = 1 phase difference, the bearing angle is 
obtained. This is true even if the signal is, let us suppose, at a 45o bearing angle. 
Then the north and east antennas have equal phase and the result is a 45o phase 
difference at the output (i.e., equal components at 0o and 90o produce a 45o phase 
shift). As long as the antennas produce equal amplitudes, the proper bearing angle 
can be found regardless of AOA. If the hybrids and antenna elements are 
broadband, the AOA measurement can be made over a broad band. 

This type of receiver measures the AOA of a single pulse and thus the name 
monopulse. Because of this, the Butler matrix-based monopulse receiver has been 
adopted in several applications for DF of short duration communication signals, 
such as those associated with frequency hopping targets. On these targets, the 
signal dwells at a single frequency for only a short time (~1 ms or so) before 
moving on to the next channel. Speed is the critical factor in this application. 

Another type of monopulse receiver uses directional antennas to form the 
beams for estimating the AOA. This type of receiver is fairly inaccurate, using the 
amplitudes of the received signals as adjusted by the antenna gain patterns.   

These monopulse direction finders had their debut in radar warning receivers 
for aircraft self-protect applications. A block diagram showing two channels (there 
are a total of four or more) of one implementation is shown in Figure 3.20 [28]. 
The antennas are squinted away from each other and they have directive response 
patterns (not omnidirectional). The radar signals impinging on the antennas are 
first amplitude detected in the square-law detectors, lowpass filtered, and fed to a 
pair of logarithmic amplifiers. The difference of the log signals emerging from 
these amplifiers contains relative amplitude information and the ratio of these 
signals is an indication of the AOA of the signal at the two antennas. Since the 
amplitudes are used to measure the AOA, this is a version of an amplitude-based 
DF system. Amplitude measurements tend to be not as accurate as phase 

Table 3.1 Phase Shifts through a Butler Matrix 
 

Antenna 
Spatial 

Angle (o) 
Electrical Phase Shift at Port 

n = 0 n = 1 n = 2 n = –1 
N 0 0o 0o 0o 0o 
E 90 0o 900 1800 270o 
S 180 0o 180o 0o 180o 
W 270 0o 270o 180o 90o 

    Source: [27]. 
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measurements, so the accuracy of such a monopulse receiver is not very high. Due 
to their primary application, that is, as ASE receivers, high accuracy is normally 
not required. They are quite simple to implement, however, and therefore 
inexpensive. Cost is the primary driver for the ASE application. 

Another type of monopulse DF uses phase interferometry to make the AOA 
measurements. The accuracy of this receiver is much higher than the amplitude DF 
technique. It is quite a bit more complicated, however, and therefore more 
expensive to implement. 
 
3.5.3 Summary 
 
The Butler matrix is a versatile device. It can serve as a beamforming network 
permitting each port to have the gain of the full array. Being passive and 
reciprocal, they can be used for both reception and transmission in an antenna 
array. The beams may be deployed simultaneously or sequentially depending on 
the application. 
 
 

3.6 Phase Difference Estimation Using SAW Devices7 

3.6.1 Introduction 
 
In this section we describe an approach for rapidly determining the TDOA of a 
signal at two separated antennas using a surface acoustic wave (SAW) device in a 
distinctive way, coupled with algorithms for processing the output of the SAW 
[29, 30]. From this time difference we can readily determine the AOA. In this 
analysis, we will initially assume that there are multiple signals present. 

                                                           
7 U.S. patent pending. 

 
 
Figure 3.20 Amplitude monopulse receiver. (Source: [1]. © Artech House 2011. Reprinted with
permission.) 
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As a refresher, the triangulation system being considered was shown in Figure 
3.1. LOPs from two or more receiving sites are determined, and an estimate of the 
location of the emitter is where these lines intersect. With three or more systems, 
due to noise, they rarely intersect at the same point. 

A block diagram of such a system for measuring the LOPs is illustrated in 
Figure 3.21. A switch determines which antennas are selected for input to each end 
of the SAW, two at a time. In this way a single SAW can be used. A more 
complicated switch could also be used to reverse the inputs to the SAW to reduce 
the effects of component errors. It is also possible to implement a SAW between 
each pair of antenna elements so that simultaneous measurements are possible, 
making the determination of the TDOAs even faster, at the expense, of course, of 
more complicated and therefore costlier hardware. 

The advantages of this SAW processor are: 
 

1. Speed. The SAW device determines the time difference very rapidly, 
thereby enabling determination of the AOA of short duration signals. 

 

 

Figure 3.21 Block diagram of triple antenna direction-finding system. 
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2. The potential for operation at low SNR levels. 
 

The AOA, φ, is related to  the time difference t12 through 
 

       122
c

tφ = π
λ

                               (3.86) 

 
so if we determine the time difference between the arrival times at the two 
antennas, we can determine φ. We demonstrate how this time can be estimated 
with a properly configured SAW device. 
 
3.6.2 SAW Characteristics 
 
Due to superposition, counterpropagating signals injected into the two ends of a 
SAW delay line, the second the negative and delayed version of the first, as shown 
in Figure 3.22, will form standing waves within the SAW device.  These standing 
waves are of the form 
 

( )( ) sini i ix A x fα = β − π τ               (3.87) 

 
where x represents the lateral distance from one end of the active region of length 
LA within the SAW, β is a  constant associated with the SAW, f is the operating 
frequency of the SAW, Ai is the amplitude of the ith waveform,  and τi is the time 
delay difference of  signal i at the two ends of the SAW device.  At any given time 
there will be a finite number of standing waveforms present which will be denoted 
herein by L. In general L is unknown and the task at hand is to determine the 
parameters of these waveforms from the measurement of the output of the SAW 
device. 

 
 
Figure 3.22 SAW device. 
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M will denote the number of taps in the SAW.  Typical values for M are 16 to 
64. Shown in Figure 3.23 is a typical standing wave in such a device when there is 
only one signal present and no noise added. It is more informative to plot the 
standing wave versus the time delay. For the parameters in the caption, such a 
curve is illustrated in Figure 3.24. 

With 16 taps, the angular resolution that results is 360/16 = 22.5o. Except in 
some specific applications, such as ASE, like the monopulse receiver discussed 
previously, such a resolution would typically not be adequately precise. Instead, an 
interpolation scheme, such as parabolic interpolation shown in Figure 3.25(a) (if 
looking for peaks) or Figure 3.25(b) (if looking for zero-crossings) would be 
employed. With such a technique, resolution on the order of 1o is possible. (Note 
that this is the achievable resolution, not the accuracy.) 

When there is more than one signal present, then the signals interact within 
the SAW.  Three signals and their sum, which is the standing wave observed at the 
output taps, are shown in Figure 3.26.  Notice that the sum of the three standing 
waveforms is of the same functional shape as the constituent waveforms.  It is also 
worth noting that the amplitudes of the constituent waveforms affect the zero 
crossing of the sum waveform.  
 
 

3.7 Concluding Remarks 
 
Some of the more commonly used procedures for solving the AOA problem have 
been presented. Beamforming constitutes the technique most often employed in 
applications where  low  resolution is tolerable. It provides robust behavior and is 
effective in cases where coherent sources are present. MLE, LSE modeling, and 
signal subspace AOA methods share some of the same attributes of beamforming 
and are capable of determining AOAs with high resolution. Noise subspace-based 
methods also give high-resolution performance but are adversely affected by 
highly coherent sources (such as multipath). 
 We also included a novel technique for AOA estimation using a properly 
configured SAW device. Signals from two antennas (one inverted) are inserted 
into the ends of the SAW. They interact within the SAW in such a way that the 
phase difference between the two signals can be determined. From this phase 
difference the AOA can be determined. 
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Figure 3.23  Standing wave in a SAW device caused by counterpropagating like signals, amplitude 
versus tap number. For this example, A1 = 1 V, τ1 = 0 nanoseconds, β = 180 × 103 degrees/meter,
L = 1 mm, and f = 125 MHz. 

 
 

Figure 3.24 Standing wave in a SAW device caused by counterpropagating like signals, amplitude
versus time delay. For this example, A1 = 1 V, τ1 = 0 nanoseconds, β = 180 × 103 degrees/meter,           L
= 1 mm, and f = 125 MHz. 
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Figure 3.25(a, b) Parabolic interpolation. In these cases, five points are used to define a parabola.
Minimum MSE is often used to estimate the parabola, where the square of the distances between the
parabolic model and the actual data points is minimized. 
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Chapter 4 
 
 

MUSIC 
 
 
4.1 Introduction 
 
In this chapter we discuss one of the more popular methods in modern use for 
AOA determination called multiple signal classification (MUSIC). The MUSIC 
algorithm was first reported in [1] by Schmidt. That reference, however, had rather 
limited distribution so the paper was republished in [2] because of its wide interest 
and referencing in the literature. 

According to Schmidt: 
 

The term MULTIPLE signal classification (MUSIC) is used to 
describe experimental and theoretical techniques involved in 
determining the parameters of multiple wavefronts arriving at an 
antenna array from measurements made on the signals received 
at the array elements. 

 
As mentioned in Chapter 3, MUSIC is one technique out of several in a class of 
algorithms known as subspace methods that can determine the AOAs of several 
signals impinging on an array at the same time. We discuss MUSIC in this chapter 
as the premier method of processing multiple signals simultaneously. We describe 
MUSIC here and examine some of its performance characteristics as an example 
of the subspace techniques. It has been shown, however, that it is one of the more 
robust techniques available and it has been widely implemented. Its major 
shortcoming is that it does not perform with fully correlated signals. 

After describing the algorithm in its vanilla form, we delve into some error 
models that can perturb the amplitudes and phases of the signals collected at a 
plurality of antennas in an array. The performance of MUSIC in the presence of 
these error sources is estimated. We finish the chapter with a comparison of 
MUSIC with some other superresolution techniques that determine the AOAs of 
multiple signals. 
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4.2 MUSIC Overview 
 
The AOA 0θ


of a signal is not calculated directly from the data in superresolution 

DF systems, in general, but by finding which of the stored array gain vectors[ ( )a θ


for direction ]θ


corresponds to the gain vector b


seen by the signal arriving from 

direction 0.θ


[We represent 0θ


as a vector with two components T
0 [ ] ,θ = φ ϕ


 the 
azimuth and elevation angles of the signal.1] Having determined which vector, say 

0( ),a ′θ


is “nearest” in some sense to b


we take 0′θ


to be our estimate of the signal 

AOA. (The array gain vector in direction θ


is the set of complex amplitude factors, 
relative to a unit gain element at some reference position, applied to the waveform 
of any signal in this direction by the elements of the array. Beamforming using the 
conjugate of this vector, or a scaled version of it, will maximize the array gain in 
this direction and may be termed the steering vector for direction .)θ


 

 In MUSIC the data from the M array elements is processed to give not the L 
signal vectors 1 2, , , Lb b b

  
 directly, but a set of vectors which form a basis for the 

L-dimensional vector space spanned by the signal vectors—a subspace of the M-
dimensional Hilbert space containing the gain vectors (assuming L < M). This 
vector space is termed the signal space, or subspace. We have a stored set of array 
gain vectors for all AOAs of interest, at some resolution (thus forming a set of 
samples rather than a continuum), or alternatively with a mathematical description 
of the array from which these vectors can be calculated as required. The full 
(continuous) set of such vectors is referred to as the array manifold. 

Each manifold vector is taken in turn to determine how close it lies to the 
signal space. The vectors which most nearly lie in this space are taken to be the 
signal gain vectors, thereby giving the signal AOAs. In fact, the square magnitudes 
of the projection of the (normalized) manifold vectors orthogonal to the signal 
space is calculated to give the MUSIC functional ( )f θ


and the positions of the L 

lowest minima are taken. 
The signal space basis may be found in various ways, but the most common is 

eigenanalysis of the (estimated) data covariance matrix ˆ .C  
 
 
 
 

                                                           
1 Note that this is not the typical use elevation angle, which is normally measured from zenith. We use 
ϕ here as the elevation angle as measured from the horizontal plane. 
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4.3 MUSIC 
 
The MUSIC algorithm was devised as a form of superresolution DF technique for 
processing the signals from many antennas to obtain estimates of the AOA of 
multiple signals [3]. It is in a family of processes called subspace-based2 
processing and it is based on an eigendecomposition of the covariance matrix 
derived from data samples (vectors). 
 In most cases of interest the covariance matrix Crr is singular as noted above 
since normally R < N–1.  That makes inverting this matrix for ML processing 
impossible in the absence of noise and measurement errors. A different technique 
for determining the time differences is thus required. One method is based on the 
singular value decomposition on the data matrix. 
 
4.3.1 The MUSIC Algorithm 
 
The simplest of the algorithms that are based on the subspace decomposition is the 
MUSIC algorithm. Assume that L signals are impinging on the sensor array. Now 

( )a θ


 is projected onto the noise subspace {En}. The projection vector gives the 
vector 
 

     ( )z a⊥= θAP


          (4.1) 
 
The magnitude squared of z

 can be written as 
 

 H H H H H
A A n n( ) ( )( ) ( ) ( ) ( )f z z a a a a⊥ ⊥θ = = θ θ = θ θP P E E

        
     (4.2) 

 
Obviously ( ) 0f θ =


when 1 2{ , . , }.Lθ∈ θ θ θ

   
  Therefore we search the array 

manifold, that is, ( )f θ


is evaluated for all ,θ


and we select the AOA estimates as 

the points which satisfy ( ) 0.f θ =


 
For coherent or fully correlated signals the autocovariance matrix Css is rank 

deficient. Therefore, (3.29) must be replaced with 
 

     s{ } { )∈E A           (4.3) 
 

                                                           
2 The “space” involved here is a mathematical construct consisting of one or more n-tuples (vectors). A 
subspace is a subset of the vectors from the space. 
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This condition is the major drawback of the MUSIC algorithm (i.e., it breaks down 
for correlated or fully coherent signals). As we will show, however, it performs 
reasonably well until the fractional coherence approaches 0.8 to 0.9, and in all real 
situations there is a certain amount of noise on signals, even multipath signals. 
 Sharper peaks ensue if the MUSIC functional is the inverse of (4.2) yielding 
the power spectrum evaluated at all 1 2{ , , , }iθ ∈ θ θ θ

   
 : 

 

    MU H H
n n

1( )
( ) ( )

i

i i

P
a a

θ =
θ θE E


          (4.4) 

 
where D is the number of possible AOA arrival angles (size of the array manifold). 
A typical example of the MUSIC spectrum when only azimuth AOAs are 
considered is illustrated in Figure 4.1. 

If the additive noise is not spatially white, its covariance 2{ ( ) ( )}n t n t∗ = σ Σ
 

 

is not the identity 3( ),≠Σ I and the minimization of ( )f θ


must be carried out in 
the Σ-metric. Assuming that Σ is known, this minimization can be done either via a 
generalized eigendecomposition of the pair (Crr, Σ) or via an eigendecomposition 
of the prewhitened covariance 

 
   1/2 1/ 2 1/ 2 1/ 2 2

rr ss
− − ∗= + σΣ C Σ Σ AC A Σ I  

       H H 2 H
s s s n n

1

M

m m m
m

e e
=

= λ = + σ E Λ E E E
 

       (4.5) 

 

 
 
Figure 4.1 MUSIC spectrum. Example of a MUSIC power spectrum plot for a ULA. 
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where s 1[ ]Le e=E
 
  and n +1[ ].L Me e=E

 
  The subspace relationships are 

1/2
s nspan{ } span{ } span{ },−= ⊥E Σ A E and the MUSIC functional becomes 

 
     H

, n n
ˆ ˆ( ) Tr( )f Σ θθ = P E E


               (4.6) 

 
where 1/ 2 H 1 1 H 1/2

, ( )[ ( ) ( )] ( ) .a a a a− − − −
Σ θ = θ θ θ θP Σ Σ Σ

      
This more general formulation 

of MUSIC will be used in the error analysis in the next section. 
 
 
4.4 Performance of MUSIC in the Presence of 
Modeling Errors 
 
Errors in MUSIC AOA estimates can arise from a number of sources. The most 
important of these include: 
 

• Finite sample effects; 
• An imprecisely known noise covariance matrix Σ; 
• A perturbed array manifold { ( )}a θ


 (amplitudes, phases, or both). 

 
Finite sample effects occur since a perfect covariance measurement Crr cannot 

be obtained. In practice, the sample covariance rrĈ defined by 
 

    rr
1

1ˆ ( ) ( )
N

n n
n

r t r t
N

∗

=

= C
                                   (4.7) 

 
is used to estimate Crr. For finite N, the signals and noise have not had time to 
decorrelate, and the noise covariance has not yet converged to its limiting value. 
When N is large or the SNR is high, finite sample effects may usually be 
neglected, however. There are many applications for which the limiting factor in 
performance is not due to finite sample effects, but rather to the model errors. 
 
4.4.1 Model Errors 
 
To isolate the effects of these model errors on the AOA estimates, we will assume 
that the finite sample effects due to additive noise are negligible and that an exact 
measurement of the perturbed covariance rrĈ is available. A model for rrĈ when it 
contains errors is 
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 H 2 H
rr ss

ˆ ( ) ( ) ( ) ( ) ( ) = + + + + σ + + C I Δ A A C A A Σ Σ I Δ              (4.8) 
 
where the matrices Δ, ,A  and Σ  are the results of various types of model 
perturbations. The matrix Δ contains errors that affect both the signal and noise 
components. Such errors include gain imbalances in the receivers, channel 
crosstalk, and antenna mutual coupling effects. The matrix A represents the error 
in the nominal array response, and incorporates the effects of imprecisely known 
sensor locations, perturbations in the antenna amplitude and phase patterns, and 
signal-only mutual coupling. Finally, deviations of the additive noise statistics 
from Σ are denoted by the Hermitian matrix .Σ  

We are primarily interested in how Δ, ,A and Σ affect the noise subspace since 

that is the subspace we use for MUSIC. Let n n n
ˆ = +E E E represent the perturbed 

noise subspace eigenvectors, and assume that nÊ has been normalized so that 
H
n n

ˆ ˆ .=E E I The perturbation nE will, in general, have components in both the true 
signal and noise subspaces.3 As we will see shortly, however, only those 
components of nE in the signal subspace will contribute to the estimation error. 

Next we examine the noise eigenvectors of 1/2 1/2
rr

ˆ ,− −Σ C Σ defined by 
 

    1/2 1/2 2
rr n n

ˆ ˆ ˆ ( )− − = σ +Σ C Σ E E I Λ               (4.9) 
 
to establish a link between the error terms of (4.8) and n .E In (4.9) Λ represents 
the perturbed noise eigenvalues. Expanding this equation using the model of (4.8) 

and eliminating second-order error terms [e.g., terms of order 
2

( ), ( ),O O ΔA A 

and so forth] and terms involving H 1/2
n 0− =A Σ E

 we get 
 

1/2 H 1/ 2 H 1/2
ss n n

2 1/ 2 H 1/2
n n

( )

( )

− − −

− −

 + + 
+σ + + Σ =

Σ AC A ΔA Σ E A Σ E

Σ Σ ΔΣ ΣΔ E E Λ

  


 

 
Multiplying on the left by H 1/2−A Σ and transposing the result then yields 
 

     H 1/2 H 1/2
n n

− −= −E Σ A E Σ Ξ             (4.10) 

                                                           
3 This phenomenon may also result from the fact that, in general, nÊ is unique while nE is not (i.e., it 
may be replaced by EnU for any unitary U). 
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where we have defined the error matrix Ξ as 
 

  2 H 1/2 1/2 H 1
ss( ) ( )− − −Ξ = + + σ + +A ΔA Σ ΣΔ ΔΣ Σ Σ A C           (4.11) 

 
It is clear from (4.10) that only those model errors that give rise to components 
outside the signal subspace (i.e., those that result in errors in the AOA estimates) 
will produce a noise eigenvector perturbation nE with components outside the 
noise subspace. 
 Multiplying (4.10) on the left by nÊ  and using the fact that H 1/2

n
ˆ −E Σ A

H 1/ 2
n

−= E Σ A leads to 
 

H 1/2 H 1/2 H 1/2
n n n n n n

ˆ ˆ ( ) ( ) , 1, ,i i ia a i L− − −θ = θ = − =E E Σ E E Σ E E Σ 
          (4.12) 

 
where the error vector i

 for the ith source is defined as the ith column of Ξ: 
 

2 H 1/ 2 1/ 2 H 1
ss,( ) ( ) ( ) ( )i i i ia a − − −= θ + θ + σ + +Δ Σ ΣΔ ΔΣ Σ Σ A C

                  (4.13) 
 
and 1

ss,i
−C denotes the ith column of 1

ss .−C  Thus, the projection of the true steering 

vector 1/2 ( )ia− θΣ


into the perturbed noise subspace is approximately equal to the 
projection of the perturbation vector 1/ 2

i
−Σ 
 into the true noise subspace. This is the 

key relationship used in the following to develop error expressions for the AOA 
estimates. 
 
4.4.2 Error Expressions 

Expanding f̂ ′ about the estimate ˆ ,iθ


for small enough error, we may write 
 

     ˆ ˆ ˆˆ ˆ0 ( ) ( )( )i i i if f′ ′′= θ + θ θ − θ
   

           (4.14) 
 
where ˆ ˆ( ) /f f′ θ = ∂ ∂θ

 
and 

 
      ˆ ˆ( ) ( )

i
if f

θ=θ
′ ′θ θ  
 
  
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Before solving for the error ˆ
i iθ − θ
 

in (4.14), we will find approximations for each 
term of the sum. 
 To evaluate ˆ ,f ′ we note that 
 

 , 1/ 2 1/ 2 † 1/2 † H H 1/2
, ,( )[ ( )] {[ ( )] } ( )d a a dΣ θ ⊥ − − − − ⊥

Σ θ Σ θ

∂
= θ θ + θ θ

∂θ

P
P Σ Σ Σ Σ P

     
  

 
where 
 

      ( )( ) a
d

∂ θθ =
∂θ

 
  

       , ,
⊥
Σ θ Σ θ= −P I P  

 
With these expressions and the relationship H 1/2

n ( ) 0,ia− θ =E Σ


the first derivative 
may be written as 
 

  { }H 1/2 H 1/2 † H
, n n

ˆ ˆ ˆ( ) 2Re ( ) {[ ( )] }i i if d a− ⊥ −
Σ θ′ θ = θ θΣ P E E Σ

  
 

             { } 2H 1/2 H 1/2 † H
n n n2Re ( ) {[ ( )] } ( )i id a O− −= θ θ +Σ E E Σ E

    

       
{ }H 1/2 H 1/2

n n

H 1

2Re ( ) ( )

( ) ( )

i i

i i

d a

a a

− −

−

θ θ
=

θ θ

Σ E E Σ

Σ

  
              (4.15) 

 
 Since the second derivative appearing in (4.14) is multiplied by the error term 
ˆ ,i iθ − θ
 

which is assumed to be small, we make the following approximation: 
 

    ˆ ˆˆ ( )( ) ( )i i i i if f′′ ′′θ θ − θ = θ − θ
    

 
 
which, together with (4.14), produces 
 

     
ˆ ( )ˆ

( )
i

i i

i

f

f

′ θ
θ − θ = −

′′ θ


 

              (4.16) 

It is straightforward to show that 
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H 1/2 H 1/2

n
H 1

( ) ( )
( ) 2Re

( ) ( )
i i

i

i i

d d
f

a a

− −

−

 θ θ ′′ θ =  
θ θ  

nΣ E E Σ

Σ

  


             (4.17) 

 
So using (4.12), (4.15), (4.16), and (4.17) leads to the following first-order 
expression for the estimation error 
 

  
{ }H 1/2 H 1/2

n n

H 1/2 H 1/2
n n

Re ( ) ( )ˆ
( ) ( )

i i

i i

i i

d a

d d

− −

− −

θ θ
θ − θ = −

θ θ

Σ E E Σ

Σ E E Σ

   
    

      
{ }H 1/2 H 1/2

n n

H 1/2 H 1/2
n n

Re ( )

( ) ( )

i i

i i

d

d d

− −

− −

θ
=

θ θ

Σ E E Σ

Σ E E Σ


  

               (4.18) 

 
 We assume that i

 is not known precisely, but instead is a realization of some 
known perturbation model. We are not interested in a particular value of the 

estimation error ˆ
i iθ − θ
 

but rather some averaged measure of it. Here we will 
assume that the perturbation model is specified in probabilistic terms (i.e., i

 is 

random) and develop expressions for the resulting bias and variance of ˆ .i iθ − θ
 

 

 For cases where i
 is zero mean, from (4.18) we see that ˆ{ } 0.i iθ − θ =

 
This 

condition will be assumed for all cases that we consider here since we have no 
reason to factor a bias term in and the bias is a systematic type of error that usually 
can be calibrated out, so the bias term will not be addressed further.  

As for the variance (or, in this case, RMS value) of the estimation error for 
MUSIC 
 

{ }MU,
ˆ ˆ( )( )ik i i k kθ − θ θ − θC 
   

  

   

( ){ }H H 1/ 2 1/2 1/ 2
n ,1 n ,2 n

H H

Re
, , 1, ,

2( )( )

ik ik
i k k

i i k k

f f f
i k L

f f f f

− − −
ξ ξ+

= =
E Σ C Σ E C Σ E

  

         (4.19) 

 
where 
 

     H 1/2
n ( )i if d−= θE Σ

  
 

     H
,1 { }ik

i kξ =C   
 

 

     T
,2 { }ik

i kξ =C   
 
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Thus, the error covariance of MUSIC’s AOA estimates can be computed for any 
scenario where the perturbation covariances ,1

ik
ξC and ,2

ik
ξC may be evaluated. This 

will, in turn, be possible provided that the second-order statistics of the elements 
of , ,A Δ and Σ are known. 
 

Example [4]  
 
There are a variety of models that could be used to describe .A  
A particularly simple model that has been widely used is to 
assume that the columns of A are independent zero-mean 
complex Gaussian random vectors with known covariance 
 

T( ) ~ (0, ), { ( ) ( )} 0, 1, ,i i i ia a a i Lθ θ θ = =B C

          (4.20) 
 
If the errors are independent from sensor to sensor, Bi is clearly 
diagonal. Off-diagonal terms indicate sensor to sensor 
correlations that result, for example, if there are uncalibrated 
mutual coupling effects, or if some sensors tend to perturb 
uniformly (such as identical or adjacent elements). 
 If under (4.20) the errors are i.i.d., then ,2 0ik

ξ =C  and

,1
ik
ξ =C B 2

a ,ik= σ δI  where 2
aσ  represents the variance of the 

perturbation at each sensor and δik is the Kronecker delta 
function. This corresponds to adding an independent, circular 
complex Gaussian r.v. of variance 2

aσ  to the response at each 
element of the array and in each signal direction. Though the 
sensor errors themselves are angle-dependent, their statistics 
under this model are independent of φ. For this simple case, the 
covariance of the MUSIC estimates as given by (4.19) can be 
written as 
 

  
2

1 H H 1 1a
MU n n( ) ( )( )

2
− − −σ

=C H I F E Σ E F I H I      (4.21) 

 
where X Y is the Schur (Hadamard) product: 
 
     ( )ik ik ik=X Y X Y  

    H 1/2
1 nLf f − = = F E Σ D
 
  
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    1( ) ( )Ld d = θ θ D
  

  

  
and 
 
    H H 1/ 2 H 1/ 2

n n
− −= =H F F D Σ E E Σ D  

 
Note that if ,=Σ I  (4.21)reduces to 
 

    
2

H 1a
MU A( )

2
⊥ −σ

=C D P D I  

 
where H 1 H H

A n n( ) .⊥ −− =P I A A A A E E   
The variance 2

aσ of the perturbation determines the amount 
of deviation of the gain and phase response from their nominal 
values. To quantify this deviation, the relative gain error 
amplitude (RGEA) and phase error amplitude (PEA) for the 
response of the kth antenna in direction iθ


 are defined to be 

10 a20 log [ / ( )]k iaσ θ


and a180( / )σ π degrees, respectively. 
 

4.4.3 Results 
 
The reader interested in derivation of more of the various perturbation models 
should consult [4]. We will present in this section some of the simulation results 
from that reference. 
 
4.4.3.1 Phase Error Amplitude 
 
First we consider the effects of perturbations to the amplitude of the phase error. 
We assume that the array is a 12-element λ/2 uniform linear array (ULA). Two 
uncorrelated emitters at true AOAs of 10o and 15o relative to broadside were 
simulated, each with a power level of 0 dB relative to the additive noise, that is, 
SNR = γ = 0 dB. The signal at 10o is the SOI. An angle- and sensor-independent 
Gaussian phase perturbation was made to the array response, and the performance 
of MUSIC was evaluated as a function of the variance of the perturbation. The 
results of the simulations are plotted in Figure 4.2. The solid line is the sample 
standard deviation of the MUSIC algorithm while the dashed line represents the 
CRB for this case. For this scenario, MUSIC compares very favorably to the CRB. 
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4.4.3.2 Noise Covariance Perturbation 
 
Next we consider the effects of perturbations to the noise covariance as a function 
of signal correlation. This array and source configuration was identical to that of 
the previous case, except that the SNR was increased to 5 dB. The nominal 
covariance of the noise was assumed to be identity, and two types of perturbations 
were simulated. The first was a diagonal perturbation of covariance 2

s ,σ = σB I and 

the second was random errors of variance 2
sσ  were added to all elements of the 

noise covariance. Figure 4.3 shows the performance of MUSIC for these two types 
of perturbations as a function of the correlation between the two signals when 

s 0.2.σ =  The solid line corresponds to the case of nondiagonal perturbation, 
while the dashed line corresponds to the case for diagonal perturbation. Even 
though in this case the level of uncertainty in Σ results in diagonal elements 
between 0.6 and 1.4 and the off diagonal terms of magnitude as large as 0.3 to 0.5, 
at low values of correlation the error in the AOA estimates is quite small. 
Performance does, however, degrade rapidly as the correlation coefficient 
approaches 0.8–0.9.  
 
4.4.3.3 Mutual Coupling 
 
The performance degradation due to uncalibrated mutual coupling is examined in 
the next example. The sources are at 10o and 15o with 0 dB SNRs. The antenna is a 

 
 
Figure 4.2 MUSIC versus phase error amplitude; 12-element λ/2 ULA. 
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UCA with a radius of 3λ. Immediately adjacent sensors on the perimeter of the 
circle were coupled with angle- and sensor-independent complex Gaussian 
coupling coefficients of variance 2

m .σ  
An angle-independent gain perturbation with RGEA g 0.01 ~ 40 dBσ = − and 

an angle-independent phase perturbation with PEA o0.06φσ = were also made to 
the nominal array response in addition to the mutual coupling errors. The results of 
the simulations are shown in Figure 4.4. Notice that, as we would expect, the 
mutual coupling perturbation deteriorates only when its magnitude exceeds that of 
the gain and phase errors and that the theoretical expressions accurately rack the 
effects of increasing σm.  
 
 

4.5 Determining the Number of Wavefields 
 
Estimating the number of incident signals ˆ( )L plays a critical role in most array 
processing eigenanalysis algorithms. Perhaps the simplest way to estimate the 
number of waves present is to set a threshold on the eigenvalues by some criterion, 
and declaring all those smaller than the threshold as noise eigenvalues and all 
those larger than the threshold as signal eigenvalues. Setting the threshold may not 
always be easy, however. 
 Wax and Kailath [5] developed a particularly simple process for making this 
determination. It makes direct use of the array covariance matrix estimate 
eigenanalysis. They showed that the criterion can be expressed as 
 

 
 
Figure 4.3 MUSIC correlation. 
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Figure 4.4 MUSIC performance versus mutual coupling perturbation. 
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∏


 (4.22) 

 
In (4.22), ˆ

iλ are the eigenvalues of the sample covariance matrix ˆ.R  The number 
of incident sources is then determined by finding that integer 

{0,1, 2, , 1}m M∈ −  that minimizes this criterion. Thus,  
 

      minL̂ m=        (4.23) 
 
Wax and Kailath showed that this criterion yields a consistent estimated of the 
number of sources [5]. 
 

Example [5] 
 
Consider an array with seven sensors (M = 7) and two sources  
(L = 2) with AOAs 20o and 25o. The SNR for both signals was 
10 dB. Using N = 100 samples, the resulted eigenvalues of the 
sample-covariance matrix were 21.2359, 2.1717, 1.4279, 1.0979, 
1.0544, 0.9432, and 0.7324. Observe the gradual decrease of the 
eigenvalues; it is clear that the separation of the three “smallest” 
eigenvalues from the two “large” ones is a difficult task. 
However, applying the approach described here yielded the 
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values in Table 4.1. The minimum of the MDL is obtained, as 
expected, for L = 2, although the difference between L = 1 and  
L = 2 is not large. 

 
  
4.6 Effect of Phase Errors on the Accuracy of MUSIC 
 
Brandwood documented an investigation of the effects of phase errors on the 
MUSIC algorithm [6]. This investigation included the effects of both azimuth and 
elevation angle measurement distortions. It was assumed that the effects of the 
phase errors were so significant that the usual effects of noise (both amplitude and 
phase) could be ignored. The results of that investigation are presented in this 
section. 
 
4.6.1 Introduction 
 
In practical parameter estimation systems it is often calibration and other system 
errors, rather than receiver noise, which limit the performance. In antenna systems 
used for AOA measurements the dominant errors are most likely to be phase 
errors—the difference between the stored (computed or calibrated) phase values of 
the array description and the values actually seen by the signal. Phase errors may 
arise, for example, as a result of local array site multipath effects, from small 
errors in the knowledge of element positions or from mismatches in receiver 
channels. With tactical ES systems where the antenna resides on an erectable mast, 
raising and lowering the mast can cause shifts in the relative positions of the 
antenna in the array, which, in turn, invalidates any calibration to some degree. Of 
course, amplitude errors will also arise, which also limits the performance, but 
generally they are less serious and more easily controlled. (For example, element 
position errors have little or no effect on amplitude response.)  

Clearly it is desirable to know how the performance depends on the errors and 
what error tolerances may be allowed for a given required performance. This is 
particularly the case for DF operation at HF where both azimuth and elevation 
measurements are often required, or at all frequencies when the sensor platform is 
elevated, such as on UAS aircraft, helicopter platforms or higher flying fixed 
winged aircraft. Again, at HF, frequently the arrays are planar, with groundwave 
signals arriving in the plane of the array, and other signals arriving with near 
vertical incidence (NVI). The elevation accuracy for this type of array is relatively 

Table 4.1 Eigenvalues for the Example.
 

L 0 1 2 3 4 5 6 
λ 590.4 67.2 64.9 80.7 94.5 104.2 110.5 

    Source: [5]. 
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very poor for the ground wave signals and the azimuth accuracy is poor for the 
NVI signals. 
 In this section expressions are obtained for the measurement variance, for 
both azimuth and elevation, in terms of the phase error variance and the array 
geometry, using MUSIC as the DF processing method. MUSIC is a widely known 
and used superresolution method, often used as a standard for comparison with 
other methods, which we will do at the end of this chapter. The results are derived 
here only for the case of a single signal present; for multiple, well-separated 
signals (with the number of signals considerably less than the number of array 
elements), the accuracies should be close to these results. However, for close 
signals the problems of accuracy and resolution are related [1] and the analysis 
presented in this section is not appropriate. The derived expressions are plotted for 
a number of arrays, showing the expected variation in accuracy with azimuth or 
elevation. Simulation results are shown that agree well with the theoretical curves. 
 
4.6.2 Accuracy 
 
Even with a perfect manifold containing the exact gain vectors seen by the signal, 
the system performance will be limited because the ever-present receiver noise 
will perturb the estimate of the signal space basis. Here we ignore the effect of 
noise, taking the case of a single large signal, with random phase errors, rather 
than noise, limiting the performance. We assume the gain vector seen by the signal 
r


becomes the single signal space basis vector. We assume that r


has phase errors 
in each component relative to 0( ),a θ


the manifold vector for the signal direction, 

and we ignore inaccuracies due to the finite sampling of the manifold. We want to 
determine the value of ,θ


say, 0 ,θθ + δ

 
that gives the manifold vector closest to ,r


 

as this is what will be given by MUSIC; θδ


is then the error in the measurement of 

0.θ


 
 In the case of a single signal, with signal space bases ,r


the MUSIC function, 

in the form of the square modulus of the projection of ( )a θ


orthogonal to r


is 
 

     
2

H( ) 1 ( )f r aθ = − θ
  

             (4.24) 

 
where, without loss of generality, a


and r


 are taken to be normalized. Let the 

components of a


and r


be represented by 
 

     exp( )k k ka A j= α  
     exp( )k k kr j= ρ β  
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where xk and yk are real amplitude factors and αk and βk are real phase values. 
Then, from (4.24), 
 

   
2

( ) 1 exp[ ( )]k k k
k

f x y jθ = − ε θ
 

            (4.25) 

 
where 
 

    ( ) ( ) ( )k k kε θ = α θ −β θ
  

 
 
 We now consider the case where the elements all have the same gain 
magnitude in any given direction. (This is a common case in practice, when the 
elements are similar and oriented in the same way—vertical monopoles for 
example.) In this case 1/k kA M= ρ = for all k, giving 
 

   
21( ) 1 exp[ ( )]k

k

f j
M

θ = − ε θ
 

             (4.26) 

 
The first few terms of the series expansion for exp(x) are given by

2exp( ) 1 / 2,x x x≈ + +  so for small exp[ ( )]kx j= γ θ


 we have for variables vk 
 

2 2
2

2 2
2 2

2

1 1exp( ) 1 ( )

1
2 2

k k kjv jv v
M M

v v
jv v

≈ + −

 
= − = − +  

 

 

 

      
2

2
2 2 2 2( ) ( ) 1 var( )

2
v

v v v v v
 

= − − + ≈ − − = −  
 

 

 
As such, (4.26) becomes 
 

     ( ) var[ ( )]kf θ ≈ ε θ
 

      (4.27) 
 
Thus, we see that minimizing f is the same as minimizing var[ ( )].ε θ


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4.6.3 Solutions for Errors 
 
We now express ε


in terms of the measurement error θδ


(assumed small) and the 

phase errors, ,αδ


 such that 0 0( ) ( ) .αβ θ = α θ + δ
   

 The phase of an element of a 

manifold vector at 0 φθ = θ + δ
  

 is, again using the first order (linear) Taylor 

approximation (recall that T[ ] ),θ = φ ϕ


 
 

  0 0
0

( ) ( )
( ) ( ) k k

k k φ θ
∂α θ ∂α θ

α θ ≈ α θ + δ + δ
∂φ ∂ϕ

 
 

         (4.28) 

 
or 
 

   [ ]0 0( ) ( ) ( )k k p q φ
θ

ϕ

δ 
α θ ≈ α θ + = α θ + δ δ 

P
    

        (4.29) 

 
where 
 

[ ]p q=P
 

 

0( )kp
∂α θ

=
∂φ




 

0( )kq
∂α θ

=
∂ϕ




 

T[ ]θ φ ϕδ = δ δ


 
 
so 
 

0 0 0( ) ( ) ( ) ( ) [ ( ) )]θ α θ αε θ = α θ − β θ = α θ + δ − α θ + δ = δ − δP P
          

         (4.30) 
 
Expressing var[ ( )]ε φ


in terms of θδ


and ,αδ


we get 

 

 
2 2

22 T1 1 1 1var[ ( )] 1k kM M M M
   ε θ = ε − ε = ε − ε      

 
   

 

    T T T T
2

1 1 11
M M

= ε γ − ε ε = ε εV
      

           (4.31) 
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where 
 

( )T
2

1 11M
N

= −V I
 

 

 
is a variance matrix and the vector 1


is given by [ ]T1 1 1 1=


 of appropriate 

size. Substituting for ,ε


we have 
 

( ) ( )T
var[ ( )] θ α θ αε θ = δ − δ δ − δP V P

    
 

     T T T T T2θ θ θ α α α= δ δ − δ δ + δ δP VP P V V
     

          (4.32) 
 

Note that for any two variables z and c, two vectors x
  and ,m


and matrix B, if 

T T2z x x x m c= − +B
   

with B symmetric, then, differentiating with respect to ,x


2 2 ,z x m∇ = −B
  

 and we see that the function is stationary when 0,z∇ =
 

that is, 
when 1 .x m−= B

 
 

So the value of θδ


that minimizes var[ ( )]ε θ


is given by   
 

    T 1 T( )−
θ α αδ = δ = δP P P V S
  

            (4.33) 
 
where 
 

1T T T

T T T

p p p q p

q p q q q

−
   

=    
   

V V V
S

V V V

    
      

 

Putting 
TT T

1 2s s =  S
 

and
T

,θ φ ϕ δ = δ δ 


we get 
 

 
1 2

T
1 1 11 12 1k Nk N

k

s s s s sφ α α α α αδ = δ = δ = δ + δ + + δ


                 (4.34) 

 
1 2

T
2 2 21 22 2k Nk N

k

s s s s sϕ α α α α αδ = δ = δ = δ + δ + + δ


                 (4.35) 

 
4.6.4 Statistics 
 
The results provide the measurement errors, given the array geometry, that defines 
S, and the actual phase errors present, .αδ


If the errors are not known, but their 
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statistics can be estimated, then we can obtain statistics for the measurement 
errors. The mean of φδ  is 1{ }

k k kk
k

sφ φ α αδ = δ = δ δ and if we assume that the 

mean phase errors in all the channels have the same value (a reasonable first order 
assumption), ,αδ then we have 
 

   T T
1 1 1 1

k kk
s s sφ α α αδ = δ = δ = δ
 

     (4.36) 
 
Similarly 
 

    T T
2 2 1

k
s sϕ α αδ = δ = δ
 

       (4.37) 
 
 The value of 2

φδ is given by 2
1 1 i ji ji j

s sφ α αδ = δ δ  so the mean square value 

of δφ depends on the cross terms { }
i jα αδ δ as well as the square terms 2{ }.

iαδ If 
we assume that the mean cross-terms are zero and the square terms are all equal, 

2 ,αδ then 
 

   22 2 2 T 2 2
1 1 1 1k

k

s s s sφ α α αδ = δ = δ = δ   
     (4.38) 

 
and 
 

    22 T 2 2
2 2 2s s sϕ α αδ = δ = δ
  

      (4.39) 
 
The variances of φδ and ϕδ are therefore given by 
 

   
2 22 2 T 2

1 1var( ) ( 1 )s sφ φ φ φ αδ = δ − δ = δ − δ
 

    (4.40) 
 
and 
 

   
2 22 2 T 2

2 2var( ) ( 1 )s sϕ ϕ ϕ ϕ αδ = δ − δ = δ − δ
 

    (4.41) 
 
 If the phase error distributions have zero means ( 0)αδ = then 0,φδ = 0,ϕδ =  
 

     22 2
1var( ) sφ φ αδ = δ = δ


     (4.42) 
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and 
 

     22 2
2var( ) sϕ ϕ αδ = δ = δ


     (4.43) 
 

To determine S, we need the vectors p


and .q


The phase at element k for a 

signal in direction T[ ]θ = φ ϕ


is given by 
 

      T2 ( )k kx u
πα = θ

λ

        (4.44) 

 
where kx


is the position vector of element k and ( )u θ


is the unit vector in direction 

θ


and λ is the wavelength. Using cylindrical coordinates ( , , )k k kr zψ for antenna k, 
we have 
 

[ ][ ]T2( ) cos sin cos cos cos sin sink k k k k kr r z
πα θ = ψ ψ ϕ φ ϕ φ ϕ

λ


   

      [ ]2 cos cos( ) sink k kr z
π= ϕ ψ − φ + ϕ

λ
       (4.45) 

 
producing the components of p


and q


as 

 

  0
0 0

( ) 2 cos sin( )k
k k kp r

∂α θ π= = ϕ ψ − φ
∂φ λ


     (4.46) 

  0
0 0 0

( ) 2 [ sin cos( ) cos ]k
k k k kq r z

∂α θ π= = − ϕ ψ − φ + ϕ
∂ϕ λ


  (4.47) 

 
4.6.5 Horizontal Planar Arrays 
 
When considering the important case of horizontal planar arrays (a typical case),  
zk = 0, and for groundwave signals, for which 0,ϕ = we see that 0q =


for these 

arrays. Although the expressions hold to quite low elevations, for this case the 
elevation error expressions are unbounded because the assumptions are violated. 
The expressions for azimuth errors for groundwave signals, however, are obtained 
by replacing P by p


and S by T T/ ,s p p p= V V

   
producing 
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T

T

p

p pφ αδ = δV

V

 
               (4.48) 

 
We note that T1 ,Mα αδ = δ

  
which is zero if the errors have zero means, and in 

this case 
 

    T
2

1 111M
MMα α

 δ = − = δ V I
   

           (4.49) 

 
Also Tp pV

 
 is the variance of the elements of p


or 2

RMSp


 where RMSp


 is the mean 
square value of the components of ,p


assuming the mean value is small.4 Thus we 

have 
 

     
T

2
RMS

p

Mpθ αδ = δ
 
                 (4.50) 

 
and 
 

    2 2 2
2 4

RMS

1
k

k

p
M pφ αδ = δ              (4.51) 

 
if the covariance matrix of δα is 2

αδ I as assumed above. Putting 2 2
RMS,kk

p Mp=  
we have 
 

     2 2
2
RMS

1
Mpφ αδ = δ               (4.52) 

 
or 
 

     
RMSRMS

RMS

1
M p

αφ = δ             (4.53) 

 
 At ϕ = 0 we have (2 / ) sin( ) (2 / ) ( )k k k kp r y= π λ ψ − φ = π λ φ where yk(φ) is the 
length of the projection of the element position vector orthogonal to the signal 
direction. Thus, finally we have 

                                                           
4 In fact, the mean is zero if the centroid of the array is its coordinate origin. 
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RMSRMS

RMS

1
(2 / ) ( )M y

αφ = δ
π λ φ

           (4.54) 

  
4.6.6 Simulations 
 
We present the results of some typical simulations to verify the above theoretical 
results. In the figures the solid curves give the theoretical results and the broken 
curves are the results of simulation for the same case. For the simulations a single 
large noise-like signal with the element SNR = γ = 40 dB, with integration over 50 
snapshots and 40 runs were used to give the RMS errors. Antenna phase errors 
were extracted from a zero mean normal distribution with RMS value of 3o.  

Figures 4.5 and 4.6 are for a six-element uniform circular array (UCA) of one 
wavelength radius. Therefore the array elements are 60o apart. Figure 4.5 shows 
the azimuth and elevation errors against elevation, and we see a very good 
agreement between theory and simulation. Figure 4.6 shows no variation with 
azimuth (at an elevation of 30o) because of the circular symmetry of the UCA. 
 For the less symmetrical case, a five-element array with a length of two 
wavelengths and a width of a half wavelength was used for the remaining figures. 
Figure 4.7 shows the errors with elevation varied at an azimuth of 0o, along the 
length of the array, its maximum aperture for the elevated signals. The agreement 
again is very good. At an azimuth angle of 90o (Figure 4.8), when we are looking 
across  the  narrow  dimension  of  the array,  the elevation errors are rather large, 
especially for the lower elevation angles. The theory curve is in error at low angles 
as the small error approximations are no longer valid. At an azimuth of 30o (Figure  

 
 
Figure 4.5 RMS accuracy for UCA.  Solid lines = theory, dashed lines = simulation. 
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Figure 4.6 RMS accuracy for UCA. Solid lines = theory, dashed lines = simulation. 
 

 
 
Figure 4.7 RMS accuracy for 5 element linear array, φ = 0o  (along the longest length). Solid lines =
theory, dashed lines = simulation. 
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4.9), the theory seems consistently to overestimate the errors found in simulation 
by a factor of about 2. Finally Figure 4.10 shows the errors with azimuth, and the 
variation with aperture, over a factor of 4, as expected. The simulation results 
approximately follow the theoretical curves, but tend to be about a degree lower. 
 
4.6.7 Summary 
 
Theoretical expressions estimating the accuracy of AOA measurement with 
MUSIC, when limited by phase error have been derived and these results have 
been generally confirmed by simulations of some specific cases. 
 Phase errors are perhaps the most dominant form in error in many systems 
and knowledge of how the performance of the system depends on these errors and 
assists system designers by indicating either what performance may be expected, 
given an error level, or what level errors should be reduced to in order to achieve a 
required performance. 
 
 
4.7 Other Superresolution Algorithms 
 
Some other algorithms for high-resolution AOA estimation are described in this 
section. We do not go into the derivation of these approaches and simply briefly 
describe them. The ones identified here were included in a comparison against 
each other and MUSIC by Johnson and Miner [7]. 
 
 

 
 
Figure 4.8 RMS accuracy for 5 element linear array φ = 90o (along the shortest length). Solid lines =
theory, broken lines = simulation. 
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Figure 4.10 RMS accuracy for five-element linear array, ϕ = 30o. Solid lines = theory, dashed lines = 
simulation. 

 
 
Figure 4.9 RMS accuracy for five-element linear array, φ = 30o. Solid lines = theory, dashed lines =
simulation. 
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4.7.1 Maximum Likelihood Method 
 
The maximum likelihood method (MLM) estimates the AOAs from a given set of 
array samples by maximizing the log-likelihood function [8, 9]. The likelihood 
function is the joint PDF of the sampled data given the AOAs and viewed as a 
function of the desired variables, which are the AOAs in this case. The method 
searches for those directions that maximize the log of this function. The MLM 
criterion signifies that plane waves from these directions are most likely to cause 
the given samples to occur.  

The MLM power spectrum is given by 
 

 MLM H 1
rr

1( ) , 1,2, ,
( ) ( )k

k k

P k
a a−

θ = =
θ θC




    (4.55) 

 
Based on (4.55), we search the array manifold for those azimuth and elevation 
AOAs where peaks in the power spectrum occur. Those are the assumed AOAs of 
the impinging signals. 
 
4.7.2 Adaptive Angular Response 
 
The adaptive angular response (AAR) method is an adaption of the MLM 
described above. The algorithm normalizes the output power of the array to a 
thermal noise term [7, 8, 10]. The power spectrum is given by 
 

 
H 1

rr
AAR H 1

rr

( ) ( )
( ) , 1, 2, ,

( ) ( )
k k

k

k k

a a
P k

a a

−

−

θ θ
θ = =

θ θ
C

C


  
    (4.56) 

 
4.7.3 Thermal Noise Algorithm 
 
The thermal noise algorithm (TNA) is also derived from the MLM. It uses only 
the thermal noise term in (4.56) (the denominator) so the power spectrum is of the 
form [7, 8] 
 

 TNA H 2
rr

1( ) , 1,2, ,
( ) ( )k

k k

P k
a a−

θ = =
θ θC




    (4.57) 

 
4.7.4 Maximum Entropy Method 
 
The maximum entropy (ME) method finds a power spectrum such that its Fourier 
transform equals the measured correlation subjected to the constraint that its  
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entropy is maximized.5 The entropy of a Gaussian band-limited time series with 
power spectrum S(f) is defined as 
 

    
N

N

( ) ln ( )
f

f

H S S f df
−

=                (4.58) 

 
where fN is the Nyquist frequency. 

For estimating AOAs from the measurements using an array of sensors, the 
ME method finds a continuous function ME ( ) 0P θ >


such that it maximizes the 

entropy function; that is 
 

   
2

ME
0

max [ ( )] max ln ( )H P P d
π

φ φ
θ = θ θ 

  
                  (4.59) 

  
subject to the constraint that the measured correlation between the ith and the jth 
elements ρij satisfies 
 

    
2

ME
0

( ) cos[2 ( )]ij i jP f d
π

ρ = θ π τ θ θ
  

           (4.60) 

  
where ( )ijτ θ


denotes the differential delay between elements i and j due to a source 

in θ


direction. The solution to this problem requires an infinite dimensional search. 
The problem may be transformed to a finite dimensional search using the duality 
principle [11] leading to 
 

      ME
1( ) ˆ ( )

P
wq

θ =
θ


               (4.61) 

  
In (4.61), ŵ

 is obtained by minimizing 
 

    
2

T

0

min ( ) min ln[ ( )]
w w

H w w q d
π

= θ θ 

               (4.62) 

  
subject to 
 
                                                           
5 The appellation entropy is derived from thermodynamics—the entropy of a process is the amount of 
“randomness” of that process and therefore is a measure of the information is in the process. 
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     T 2w ρ = π


               (4.63) 
  
and 
 

     T ( ) 0w q θ = ∀θ
                   (4.64) 

  
where ( )q θ


 and ,ρ


respectively, are defined as 

 
T

12 13( ) 1 2 cos[2 ( )] 2 cos[2 ( )]q f f θ = π τ θ π τ θ 
  

        (4.65) 

  
and 
 

     
T

11 12 132 2 ρ = ρ ρ ρ 


                 (4.66) 

  
It should be noted that the dimension of these vectors depends on the array 
geometry and is equal to the number of known correlations ρij for every possible i 
and j. 

The minimization problem defined above may be solved iteratively using the 
standard gradient LMS algorithm.   

The variation of the ME method here was developed by Lang and McClellan 
[12]. The ME spectrum is specified by the positive polynomial P defined as 
 

 MEM
1 1

( ) j x

P
P

p x e− β⋅
= =


 

 (4.67) 

 
4.7.5 Comparisons 
 
Johnson and Miner investigated a comparison of these techniques with each other 
as well as with MUSIC [7]. In particular, they were interested in comparing the 
performance for application to HF skywave DF. This implies that both azimuth 
and elevation angles need to be determined. As such, they simulated the three-
dimensional, seven-element array shown in Figure 4.11 at 4 MHz. The distance 
between elements was 30 m, which yields an array spacing of 0.4λ as shown. 
 
4.7.5.1 Signal Separation 
 
The first comparison evaluated the algorithm’s ability to separate multiple signals. 
These results are shown in Figure 4.12. From left to right, the algorithms are  
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MLM, TNA, AAR, MUSIC, and the ME method. The two signals are indicated by 
the vertically arrowed lines. In all cases except for MEM, all algorithms correctly 
separated the signals when the elevation angle was 10o. For ME, the results were 
biased 1o away from the correct result. For 5o, the MLM spectrum shows only one 
broad peak. The TNA and AAR spectra show two narrow peaks separated by 1o in 
elevation and biased 2o from the correct value. The MUSIC spectrum shows two 
unbiased narrow peaks. For 4o separation, the MLM, TNA, and AAR spectra have 
a single peak at 42o elevation, while the MUSIC peaks are correct. 
 
4.7.5.2 SNR Simulation 
 
Figure 4.13 shows the results of varying the SNR of the signals. At γ = 10 dB, all 
the procedures except ME resolved the signals correctly. The peaks for MUSIC 
are the most clearly defined, followed by the AAR, TNA, and MLM. The ME 
spectrum is a hollow with the larger peaks displaced ±3o in azimuth and at 45o 
elevation. At 5 dB, the MLM algorithm produces a single broad peak. The TNA, 
AAR, and MUSIC spectra results are correct. At 0 dB the MLM spectrum shows a 
single broad peak, just as at 5 dB while the TNA spectrum shows two peaks that 
are barely resolvable. The AAR and MUSIC peaks are resolvable and at the 
correct locations. 
 

 
 
Figure 4.11 Seven-element array. 
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Figure 4.12 Signal separation. Equal amplitudes, mutually incoherent, γ = 30 dB, φ = 45o,  nominal
ϕ = 45o, Δϕ = 10o, 5o, 4o. (Source: [7]. © IEEE 1986. Reprinted with permission.) 
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Figure 4.13 SNR simulation. Equal amplitude, mutually incoherent, φ = 45o, ϕ = 40o and 50o, γ = 10,
5, 0 dB. (Source: [7]. © IEEE 1986. Reprinted with permission.) 
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4.7.5.3 Coherent Signals 
 
While [7] contains other comparisons of these algorithms, the last one we will 
include here is the performance when the signals are varying degrees of coherence. 
The results are shown in Figure 4.14. 
 Although these algorithms are not confined to the HF range for their 
performance, the HF range can certainly produce coherent cochannel interference 
due to the multiple reflections possible off the ionosphere.  

The signals are not resolved by MLM, TNA, and AAR when the signals have 
equal amplitude and coh = 0.8 (top row). The MUSIC algorithm correctly resolves 
the peaks, while the ME procedure shows two incorrectly resolved peaks. In the 
second row, the signal at 45o azimuth and 40o elevation has unit amplitude while 
the signal at 50o elevation has an amplitude of 0.1. The mutual coherence in this 
case was 0.8. The MLM, TNA, and AAR spectra show a single resolved peak 
corresponding to the stronger signal with a 1o bias in the direction of the weaker 
signals. MUSIC produced the correct spectra, while ME shows a single peak 
midway between the signals. The third row corresponds to equal amplitude 
signals, with mutual coherence of 0.3. The MLM produces two barely resolved 
peaks, while TNA, AAR, and ME did not resolve the signals. The MUSIC 
algorithm correctly found the peaks. 

MUSIC’s greatest shortcoming is frequently stated to be its performance with 
correlated signals. We can see from these examples that the signals must be 
significantly correlated (coh > 0.9) before MUSIC starts having difficulties 
resolving two correlated signals. 

 
4.7.5.4 Summary  
 
MUSIC performed far better than any of the other algorithms for the cases 
considered. The same can be said for the other results in [7] that are not included 
here. Even in the case of relatively high coherence, where MUSIC is susceptible to 
degraded performance, it performed remarkably well. Two signals must be 80% to 
90% coherent for the performance to degrade noticeably. 
 
 
4.8 Concluding Remarks 
 
We discussed the MUSIC superresolution algorithm in this chapter and examined 
its performance when noise and measurement errors are present. We concluded 
that it is fairly resilient to such errors. We also presented a brief comparison with 
some other available, nonsubspace-based superresolution algorithms. That 
comparison showed that MUSIC is the most robust of the methods evaluated. 
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Figure 4.14 Coherent signals. γ = 30 dB, φ = 45o, ϕ = 40o and 50o. Top: equal amplitude, coh = 0.8;
middle: 10:1 amplitude, coh = 0.8; bottom: equal amplitude, coh = 0.3. (Source: [7]. © IEEE 1986.
Reprinted with permission.) 
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The singular largest issue with MUSIC in its role of finding the AOAs of 
multiple signals on an array is its tendency to fail when fully coherent signals are 
present. We showed, however, that it is fairly robust as long as the degree of 
coherence is 0.8 to 0.9 or less. All real signals have noise present that tends to 
decrease the degree of coherence. 
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Chapter 5 
 
 

Quadratic Position-Fixing Methods 
 
 

5.1 Introduction 
 
Techniques for determining PF estimates of targets based on measuring the TOA, 
TDOA, differential frequency [otherwise known as differential Doppler (DD)], 
and RD are discussed in this chapter. 

When the TOA or the time difference of arrival (denoted here by τ ) measured 
at two or more widely dispersed sensors are used to geolocate emitters, then 
quadratic LOPs result. Generally, the intersection of these LOP curves is taken as 
the estimated emitter location. Calculation of this intersection can be tedious and 
complicated, requiring a search over a large parameter space. 
 The principal advantages of these forms of processing are the following: 
 

• Frequently a single antenna per sensor is required as opposed to an array 
for interferometric and similar processing methods that rely on the 
intersection of LOBs to determine the PF. 

• Normally, higher precision and more accuracy can be obtained with 
quadratic processing. 

 
On the other hand, there is one primary drawback: 
 

• Typically, preprocessed data samples are required for nonpulsed 
modulations. This requires interlinking data links with considerable 
bandwidth between sensor platforms or the sensor platform and some 
processing site. This is not normally a problem in pulsed signal 
environments where signal events can be identified (for example, the 
leading edge of a pulse), such as radar geolocation or digital data signals. 

 
A technique that yields the PF in closed form using TDOA measurements was 

presented in [1]. Presented here are some alternative algorithms. Two of these 
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algorithms would be expected to perform better with noisy or erroneous 
measurements because of their iterative search behavior. 

This chapter begins with a presentation of some TDOA techniques of PF 
estimation. After a presentation of the definitions involved, a nonlinear least-
squared technique is discussed. This is followed by a presentation of estimation of 
the TDOA from phase data collected at widely separated sensors. Next, a 
discussion of TDOA measurement accuracy is included. The independent 
variables in this discussion are the SNR and integration time, as these two 
parameters are the primary determining factors of TDOA estimation performance. 
Three algorithms are presented next and compared for TDOA estimation when 
noise is included. The effects of GDOP are present in TDOA estimation, just as 
they were for triangulation in Chapter 2. The last topics discussed in the TDOA 
section are these GDOP effects. 

This chapter also talks about DD methods for PF estimation. After basic 
definitions are presented, a brief discussion of measurement accuracy is included. 
This is followed by a section in which a maximum likelihood algorithm is given, 
along with performance estimates. After a presentation of the cross-ambiguity 
function (CAF), which uses both TDOA and DD data, a section is included that 
discusses the very practical case of estimating the DD of a sinusoid in AWGN 
using phase data. 

The last major topic presented in this chapter is PF estimation using range 
data. After definitions are presented, three least-squared distance error algorithms 
are discussed and compared—the spherical interpolation method, the spherical 
intersection method, and the plane intersection method. Lastly, an RD method for 
estimation of the PF using mathematical constructs from Grassmann algebra, 
called feasible bivectors, is presented. 
 
 

5.2 TDOA Position-Fixing Techniques 
 
5.2.1 Introduction 
 
The time of arrival (TOA) measured at several sensors can be used for geoposition 
determinations. Although these arrival times can be used directly for this purpose, 
described in this chapter are techniques for calculating PFs using the time 
differences of the TOA at several sensors compared with a reference sensor. 

TOA techniques can also be, and have been for years, used for geoposition 
calculations. Navigation systems such as Loran use TOA to determine the location 
of aircraft and ships at sea. It has been shown by Rusu [2] that TDOA and TOA 
processing are exactly equivalent. It has been shown by Shin and Sung [3] that the 
error characteristics of TOA and TDOA, as manifest in the dilution of precision 
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(DOP), are exactly equivalent. We will be concerned only with TDOA processing 
here. 
 
5.2.2 TDOA 
 
The geometry is shown in Figure 5.1, where, for simplicity, only two receiving 
systems are shown. Since the transmitter and/or receiving systems can be elevated, 
in general, d1 and d2 are slant ranges between the transmitter and the sensor 
systems. Initially here, only two dimensions will be considered, however. 

In a constant velocity medium, these distances can be expressed as 
  
 , 1, 2i id ct i= =  (5.1) 

 
where c is the speed of propagation of the signal, normally for communication 
signals assumed to be the speed of light, and ti is the time between when the signal 
leaves the transmitter and when it arrives at the sensor.  

The τ  is the time difference between when the signal arrives at one receiving 
site and the other: 

 

 2 1
2 1 2 1

1
)

d d
t t d d

c c c
τ = − = − = −  (5.2) 

 
From Figure 5.1,  
 

 
 
Figure 5.1 TDOA computation scenario. 
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 2 2
T T( ) , 1, 2i id x x y i= − + =  (5.3) 

 
so that 
 
                               2 1 T T R R( , , , )d d d h x y x yΔ = −    

      2 2 2 2
T 1 T T 2 T( ) ( )x x y x x y= − + − − +  (5.4) 

 
where Rx


and Ry


are vectors of the x- and y-coordinates of the sensors. Let d 

denote the length of the baseline, which is the distance between the sensors given 
by 
 
 1 2d x x= +  (5.5) 

 
This can be rewritten in the form of a hyperbola as 
 

 
2 2 2 2

2 2 2
1

( ) / 4 / 4 ( ) / 4

x y x y

a b d d d
− = − =

Δ − Δ
 (5.6) 

 
The resulting LOPs are called isochrones, since they characterize points in space 
where τ is a constant. The target can lie at any point on the isochrone. 
 Denote (X, Y) as the global coordinates for sensor positions that are located 
off the axis as in Figure 5.1. If (x, y) are the local coordinates, then 
 

 0

0

cos sin

sin cos

XX x

YY y

α − α      
= +      α α      

 (5.7) 

 
where 
 

 0 02 2
i j i jX X Y Y

X Y
+ +

= =  (5.8) 

 0

0

cos sin

sin cos

X Xx

Y Yy

−α α     
=      −− α α     

 (5.9) 

 
and 

 1tan i j

i j

Y Y

X X
−
 −

α =   − 
 (5.10) 
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The τ  contour for the scenario shown in Figure 5.1 is shown in Figure 5.2 
when d = 80 km. The τ varies between about –130 μsec to +130 μs. Also shown is 
a constant τ  curve; in this case, τ  is 90 μs. The intersection of these curves forms 
a hyperbola as shown. As visualized from above, several of these curves are 
shown in Figure 5.3. 

Let M denote the number of sensors. Then there are 
2

K
M

=  
 
 

sensor pairs, or 

hyperbolas, available for geolocation. 
 
5.2.3 Calculating the PF with TDOAs 
 
Consider the 3-D geometry shown in Figure 5.4. It will be assumed that, without 
loss of generality, a reference sensor is placed at the origin. It is also assumed 
without loss of generality that the reference sensor is sensor 1. This section 
follows [4] closely; a similar derivation was documented by Mellen et al. [5]. 

Measurement at the ith sensor is given by the expression 
 
 2 2 2 2

T T T 0( ) ( ) ( ) ( )i i i ix x y y z z c t− + − + − = τ +  (5.11) 

 
where t0 is the unknown arrival time at the reference sensor placed at the origin.  

The target is located at [ ]T

T T T .x x y z=  At the reference site, 

 

 
22 2 2 2 2 T

T T T 0 0 2
( )x y z ct d x x x+ + = = = =  

 (5.12) 

 
where 

2
x


 denotes the 2 norm of .x


Combining (5.11) and (5.12) yields 

 

[ ]
T

2 2 2
T T T T

T

i i i i

x

x y z y c x y z

z

 
  + τ + + 
    

 

 2 2 2 2 21 1
( ), 1,2, , 1

2 2i i i ic x y z i M= − τ + + + = −    (5.13) 

 
 In matrix form, (5.13) is represented as 
 
 

2
x c x m+ =A
   

 (5.14) 



Electronic Warfare Target Location Methods 

 

230 

  

 
Figure 5.2 The intersection of the τ curve with the plane defined by a constant τ curve of 90 μsec forms a
hyperbolic curve. (Source: [1]. © Horizon House 2002. Reprinted with permission.) 

 
 
Figure 5.3 TDOA isochrones with no error. (Source: [1]. Horizon House © 2002. Reprinted with
permission.) 
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where 
 

T
1
T

1 32

T
1

M

M

x

x

x

− ×

−

 
 
 = ∈ℜ
 
 
  

A







 

T[ ]i i i ix x y z=  
1 1Mc c − ×= τ∈ 

R  
T

1 2 1[ ]M −τ = τ τ τ   

T 2 T 1 11
( ) , 1,2, ,

2
M

mm

m c m M − × = − ττ = ∈  
AA R

    

m n×R denotes an m × n array of real numbers (an m × n matrix). 
 

 
 
Figure 5.4 TDOA geometry. 
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 In general (5.14) will be overdetermined in that there are more measurements 
than the minimum number required; that is ,m n×∈A R  where m > n. Equation 
(5.14) can be rearranged as 
 

 
2

( )x m c x f p= − =A
   

 (5.15) 

 
The vector 1mf ×∈


R  has the parameter p such that, as discussed in Section 2.3, for 

any p, the pseudoinverse of A given by 
 
 † T 1 T( )−=A A A A  (5.16) 

 
solves (5.15) in the least-squared sense; thus 
 
 †ˆ ( )x m cp= −A

  
 (5.17) 

 
solves (5.15) such that the residual 
 

 
2

ˆ ( )x m cp= − −A
  

 (5.18) 

 
is minimized. 
 The measurements are used in the computation of the scalar equation 
 
 T 2 T T( 1) 2 0c c p m cp m m− − + =Φ Φ Φ

     
 (5.19) 

 
where 
 
 T T 1 T( )−=Φ A A AA A A  (5.20) 

 
 With noise present, the measurements are corrupted so that 
 
 ( )x f p n= +A

 
 (5.21) 

with 
 
 T{ } 0 { }n nn= = Q  

 (5.22) 

 
The pseudoinverse in this case is 
 



Quadratic Position-Fixing Methods 

 

233 

 † T 1 1 T( )− −=A A Q A A Q  (5.23) 

 
If the noise is uncorrelated among sensors with equal variances given by 2σ ,n  then 

 
 2

nσ=Q I  (5.24) 

 
In this case, (5.20) must be changed to account for the noise as 
 
 1 T 1 T 1 1 T 1( ) [( ) ( ) ] ( )∗ − ∗ ∗ − ∗ ∗ − ∗ − ∗ −=Φ A A A Q A A Q A A Q  (5.25) 

 
The solution of (5.19) determines p, which is equal to d0, the range from the 

reference sensor to the target. Thus, 
 

 T
0 2

p d x x x= = =  
 (5.26) 

 
and is used to compute the estimate of the geolocation of the target as 
 

 [ ]T †
0 T T T 0

ˆ( ) ( )x d x y z m cd= = −A
  

 (5.27) 

 
 The Taylor series gradient descent algorithm described in Chapter 1 is one of 
the most accurate methods for estimating a PF (discussed more fully in Appendix 
B). If the PF computed as indicated here is not accurate enough, the PF can at least 
be used as a starting point for the descent algorithm to improve upon the accuracy. 
As mentioned in Chapter 1, the gradient descent algorithm can use any type of 
measurement. 
 
5.2.4 Nonlinear Least-Squares 
 
Equation (5.4) is highly nonlinear and we want to solve it in generalized 
coordinates, which is a nonlinear minimization problem. Note that this expression 
could be overdetermined by the measurements. In two dimensions, the nonlinear 
least-squares estimate of the target location T T( , )x y is given by 

 
 2

T T , T T
( , )

ˆ ˆ( , ) argmin [ ( , , , , , )] 1i j i i j j
x y i j

x y d h x y x y x y i j N
>

= Δ − ≤ < ≤  (5.28) 

 

In matrix form, the target location being sought is denoted by [ ]T

T T T ,x x y=
 

and this minimization becomes 
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T

T 1
T T T

ˆ argmin[ ( )] [ ( )]
d d

x
x d h x d h x−

Δ Δ= Δ − Δ −C  


     
 (5.29) 

 
where 
 

 1,2 2,3 1,[ ]N Nd d d d −Δ = Δ Δ Δ


  (5.30) 

 
and 
 

 ( )
d d

dΔ Δ = ΔC Cov 


 (5.31) 

 
 Assuming the calculated position is close to the true position, T,0 ,x


then          

T,0( ) ,d h xΔ = + 
   

 and if ( ),=C Cov  then, finding the Taylor series and retaining 

only the linear terms we get 
 

 
T

H H
ˆ p T,0 p T,0{[ ( )] } ( )
x

h x h x′ ′=C C
  

 (5.32) 

 

where H denotes the Hermitian or conjugate transpose, and h′


 denotes 

differentiation of h


with respect to .x


 When 2~ (0,σ ), 


 then (5.32) describes 

the CRB. 
 
5.2.5 TDOA Measurement Accuracy 
 
When errors are taken into consideration, the TDOA isochrones are no longer 
clean functions, as illustrated in Figure 5.3, but form regions or areas within which 
the target should lie, as illustrated in Figure 5.5. 

All of the methods of computing the geolocation of targets with measurement 
of the TDOAs are subject to errors in the measurements. The accuracy of TDOA 
measurements is discussed in this section in terms of the standard deviation. The 
noise and measurement errors are the two primary sources of error. Included here 
are the effects of noise that determine the SNR at the receiver. Measurement errors 
are systematic and unique to each implementation. They will not be discussed 
here. 
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5.2.5.1 Expected Accuracy of TDOA PF Estimates 
 
As indicated in [1], the Cramer-Rao bound on parameter estimation is a frequently 
used measure of how well such a parameter can be measured, as long as the 
parameter is unbiased. Under some reasonable assumptions it represents the best 
that can be obtained under those assumptions. The CRB for estimating the TOA of 
a signal at a sensor is given by [6] 

 

 
1 1

WT
τσ =

β γ
 (5.33) 

 
where W is the noise bandwidth of the receivers, T is the integration time, and γ is 
the effective input SNR at the two sensor sites.  

 
 
Figure 5.5 TDOA isochrones with errors included. The target indicated location could be anywhere in
the light area. 
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 The RMS radian frequency is given by β, which is a measure of the 
bandwidth of the signal and is given by  
 

 

1 2

22

2

( )

2

( )

/

f S f df

S f df

∞

−∞
∞

−∞

 
 
 β = π
 
 
  




 (5.34) 

 
where S(f ) is the spectrum of the signal. For an ideal signal with sharp edges in 
the frequency spectrum, 3Wβ = π  (where W is in hertz), for example.  

 Variable γ is a composite SNR at the two sensors. If γi and γj are the SNRs at 
the two sensors, then γ is given by 
 

 
1 1 1 1 1

2 i j i j

 
= + + 

γ γ γ γ γ  
 (5.35) 

 
5.2.5.2 Low SNR 
 
Quazi compared the theoretical measurement accuracy of several TDOA 
computation models [7]. For low SNR levels, the standard deviation computed 
with the Knapp and Carter [8], Schultheiss [9], Hahn [10], and Tomlinson and 
Sorokowsky [11] techniques all evaluated to 
 

 
2 3 3

2 1

3 1 1

8 T f f
τσ ≥

γπ −
 (5.36) 

 
where T is the integration time, γ is the SNR (not dB), and it was assumed that 
both the signal and noise were constant levels over the bandwidth specified by f1 
to f2. This function is illustrated in Figures 5.7 and 5.8 for a 25 kHz bandwidth for 
several values of T. This expression can be represented in terms of the center 
frequency f0 and bandwidth W = f2 – f1 as 
 

 
2 2

0

2
0

1 1 1 1 1

8
1

12

fTW W

f

τσ ≈
γπ

+

 (5.37) 
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5.2.5.3 High SNR 
 
The standard deviation when the SNR is high, γ >> 1, is given by 
 

 
2 3 3

2 1

3 1 1

4 T f f
τσ ≈

π γ −
 (5.38) 

 
which is the same as (5.36) with the square root of the SNR in the denominator 
rather than just the SNR. This function is plotted in Figures 5.8 and 5.9. 
 
5.2.6 TDOA PFs with Noisy Measurements 
 
Gustafsson and Gunnarsson [12] presented three algorithms for determining the 
PF of a target based on TDOA measurements that may contain measurement 
errors. Those algorithms are discussed and compared in this section. 
 
5.2.6.1 Isochrone Intersection Algorithm 
 
The first of these computes the intersection point of each pair of isochrones. With 
K pairs of sensors, this results in 

 

 
!

2 2!( 2)!

K K

K

 
=  − 

 (5.39) 

 

points to estimate. The PF estimate is given by the point where all ( )2

K  of these 

isochrones intersect (or perhaps point where the largest number of them intersect). 
Each pair of isochrones can have zero, one, or two intersections. Determining such 
intersections can be difficult. The authors claim that this approach leads to inferior 
results compared to the other two algorithms when the measurements are 
corrupted with noise. With noise present, it could be that no more than two 
isochrones intersect at any point. 
 
5.2.6.2 Stochastic Gradient Algorithm 
 
The second algorithm applies the stochastic gradient algorithm to the nonlinear 

least-squares problem described above. Let [ ]T

T T Tx x y=
denote the target 

position and T,
ˆ

ix


the estimate of Tx


on the ith iteration. In this algorithm, 
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Figure 5.7 TDOA standard deviations for longer integration times, W = 25 kHz. Both (5.33) and
(5.36) are plotted with (5.33) given by dotted lines and (5.36) by solid lines, but, as with Figure 5.8,
the differences in the curves are not discernible because T > 10 μs. 

 
 
Figure 5.6 TDOA standard deviation for low SNRs and short integration times. The dotted lines are
(5.33) while the solid lines are (5.36). For T  > 10 μs, the differences in the lines are not discernible. 
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Figure 5.9 TDOA standard deviation for higher SNRs and long integration times, W = 25 kHz. The 
dotted lines are (5.33) and the solid lines are (5.38). 

 
 
Figure 5.8 TDOA standard deviation for higher SNRs and short integration times, W = 25 kHz. The 
dotted lines are (5.33) and the solid lines are (5.38). 
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 T, 1 T, T,
ˆ ˆ ˆ ˆ( )[ ( )]i i i P i ix p h x d h x+ ′= − μ Δ −

     
 (5.40) 

 
The step size μ(i) can be found using 
 

 
T, T,

ˆ ˆ[ ( )] ( )
i T

P i P ih x h x

μμ =
′ ′
    (5.41) 

 
where μ is the least-mean square (LMS) step size. 
 Step size μ is selected based on stability considerations. The sequence (5.30) 
will converge if and only if μ satisfies 
 

 
max

1
0 < μ <

λ
 (5.42) 

 
where λmax is the largest eigenvalue of the covariance matrix .

d dΔ ΔC   Of course, the 

larger the value of μ, the faster the convergence, typically. 
 
5.2.6.3 Static Particle Filter Algorithm 
 
The third algorithm in [12] is based on the static particle filter [13–15]. The 
particle filter is a method of implementing a recursive Bayesian filter by Monte 
Carlo simulations. The a posteriori density function is represented by a set of 
random samples with associated weights and estimates based on these samples and 
weights are computed. The static particle filter algorithm is an approximation of 
the optimal Bayesian filter described here. Note that the Kalman filter (not the 
EKF) described in Section 2.9.1 is an implementation of the optimal Bayesian 
filter. 
 Given the system state equation that describes the evolution of the state 
sequence of the target  
 
 1 1( , )k k k kx f x n− −=

  
 (5.43) 

 
where { , }.kx k ∈

N  The set { , }kx k ∈
N describes the state of the system at time 

step k, : x n xN N N
kf × →

R R R describes the state update from k – 1 to k and may 

be nonlinear, { , }kn k ∈N is an i.i.d. noise process sequence, Nx and Nn are the 

dimensions of the state and noise vectors, respectively, and N  is the set of natural 
numbers. The measurements at time k are given by 
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 ( , )k k k kz h x= η

 
 (5.44) 

 
where : x xNN N

kh η× →

R R R  is a (possibly nonlinear) function, { , }k kη ∈

N is an 

i.i.d. measurement noise sequence, and Nη is the dimension of that noise process. 
The goal is to estimate the states kx


based on the set of measurements up to time k: 

1: { , 1, , }.k iz z i k= =    

 The PDF 1:( )k kp x z
 

 is the desired function to be maximized to provide the 

best estimate of .kx


This PDF is obtained recursively by prediction and updating. 

The initial PDF 0 0( )p x z
 

 is assumed to be known. If the PDF 1 1: 1( )k kp x z− −
 

 is 

known, then (5.43) and the Chapman-Kilmogorov equation 
 

 1: 1 1: 1 1 1: 1 1( ) ( ) ( )k k k k k k kp x z p x x p x z dx− − − − −= 
     

 (5.45) 

 
which uses the fact that (5.43) is a first-order Markov process so that

1: 1 1: 1 1: 1( , ) ( )k k k k kp x x z p x x− − −=   
, are used to obtain the prior PDF of the state at 

time k. The PDF 1: 1( )k kp x x −
 

is determined from (5.43) and the noise characteristics 

that are assumed to be known. 
 The PDF is updated for time k using Bayes’ rule 
 

 1: 1
1:

1: 1

( ) ( )
( )

( )
k k k k

k k
k k

p z x p x z
p x z

p z z
−

−

=
  

 
   (5.46) 

 
where 
 

 1: 1 1: 1: 1( ) ( ) ( )k k k k k k kp z z p z x p x z dx− −= 
     

 (5.47) 

 
which is a function of (5.44) and noise process .kη  

 There are four principal concepts of the particle filter algorithm: 
 

1. Bayesian inference; 
2. Monte Carlo samples; 
3. Importance sampling; 
4. Resampling. 
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Based on the above development, the Bayesian inference consists of ,kx


 

which is an unknown vector of random variables. The set of observations is given 
by ,kz


which is also a set of random variables. We wish to estimate kx


by knowing 

.kz


 The a priori PDF ( )kp x


contains our prior knowledge of .kx


The conditional 

PDF 1:( )k kp z x


describes the relationship between kz


 and .kx


The a posteriori PDF

1:( )k kp x z
 

represents the information about kx


given measurement .kz


 

The a posteriori PDF 1:( )k kp x z
 

may be difficult or impossible to compute in 

closed form. Thus, Monte Carlo samples, also called particles, are used to 
approximate this PDF. Each particle has a value and an associated weight. Ideally, 
each particle would represent a sample from the PDF 1:( ).k kp x z

 
Since in general 

this PDF is not known in closed form, importance sampling is used. The particles 
are weighted with weights drawn from an importance distribution denoted

0: 1:( )i
k kq x z

 
for weight i. Selection of this distribution is typically based on some 

optimality criterion [14]. 
In estimation with the particle filter, most weights tend to zero except a few, 

which become large. The few that grow large are those that closely match the 
observations. Resampling is done to concentrate particles in regions where

1:( )k kp x z
 

is larger. 

These steps are shown graphically in Figure 5.10. The steps to the particle 
filter algorithm for computing the PF estimate based on TDOA measurements are 
as follows: 
 

1. Randomize L possible target locations as ( )
T

ix


from the a priori distribution

T,0( ).p x


 

2. Choose jittering constants Kn and Kw and let the position random walk 
covariance 2

w w /K k=C and jittering measurement noise
1 2

nn n /
d d

K k−
Δ Δ= +C C   .  

3. Iterate for k = 1, 2, … until ˆ
kx


 has converged. 

a. Compute the location weights ( )iw


using the likelihood 
 

( ) ( ) T 1 ( )
T Texp{[ ( )] [ ( )]}i i i

d d
w d h x d h x−

Δ Δ= Δ − Δ −C  
     

  
(5.48) 

 

where dΔ


is given by (5.30), r rΔ ΔC   is given by (5.31), and ( )iw


is 

normalized to 
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( )

( )
( )

i
i

i

w
w

w
=


  (5.49) 

 
b. Compute the estimate 
 

 ( ) ( )
T, T

ˆ i i
k

i

x w x=  
 (5.50) 

 
c. Resample with the replacement locations, where the probability 

to pick one location is proportional to its weight. After the 
resampling, the weights are reset to ( ) 1/ .iw L=  

 
d. Spread out the locations as ( ) ( )

T T ,i ix x w= +  
 where 

ww(0, ).w ∈ C


 

 
The idea with jittering noise in step (2) is to explore a smaller and smaller 
neighborhood more accurately. 
 A comparison example of these algorithms is shown in Figure 5.11 [11]. The 
receiver and target layout are shown in Figure 5.11(a), along with the results of the 

 
 
Figure 5.10 Steps in the particle filter algorithm. 
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stochastic gradient algorithm with no noise. The receivers are placed at (–1, 0),   
(0, –1), (1, 0), and (0, 1), while the target is located at (1.2, 1.2). In the noise-free 
case, all six hyperbolas intersect at the target location. With noise added, the 
results are as shown in Figure 5.11(b). There is no unique target location computed 
in this case. The results for the static particle filter algorithm are shown in Figure 
5.11(c) with the contour plots of the nonlinear least-squares criterion: 
 
 2

, T T[ ( , )]i j
i j

d h x y
<

Δ −  (5.51) 

 
The algorithm is seen to converge on the correct target location. The results for the 
gradient search algorithm using a normalized least-mean squares method with the 
static particle filter algorithm are illustrated in Figure 5.11(d). Again, convergence 
to the correct target location occurs. In this case there are no local minima and 
convergence to the correct target location is assured. 
 
5.2.7 TDOA Dilution of Precision 
 
TDOA geoposition estimating suffers from another type of error caused by long 
ranges from the sensor baseline. Consider Figure 5.12, where three sensors are 
included and the target is a considerable distance from the baselines between the 
sensors. The hyperbolic LOPs are nearly parallel in this region, and noise or small 
measurement errors can cause considerable errors in computing the geolocation. 
This is called GDOP or DOP. The farther away from the sensor baselines, the 
worse GDOP gets. 
 Combining (5.11) and (5.12) yields (5.13). Expressing (5.13) in vector form, 
 

    

22 2

2 2

1 1

2 2i i i ix x c x c x+ τ = − τ +   
           (5.52) 

 
where T[ ]i i i ix x y z= .  

The sensitivity of the measurements is given by the gradient of (5.52) as 
 

 
2

22 1

2
ii i

xx x
c c

x x x

∂τ∂ ∂τ
+ = −

∂ ∂ ∂

 
    (5.53) 

 
since the last term in (5.52) is a constant. This can be written as  
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Figure 5.11(a–d) Algorithm comparison example. The test scenario is illustrated in (a), which also
shows the PF estimate for the first algorithm, with noise-free hyperbolas; (b) also shows the results of
the stochastic gradient algorithm but with noisy data; (c) is the contour plot of the nonlinear least-

squares criterion ;
2

[ ( , )]T Td h x yi j ij Δ −<  and (d) is the gradient search with the static particle filter

algorithm. 



Electronic Warfare Target Location Methods 

 

246 

  
  

 
 
Figure 5.12 An illustration of the errors caused by the GDOP effect with TDOA processing. 
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 T 2

2
2

i i
i i i

x
x c x c

x x x

 ∂τ ∂τ
+ τ + = − τ  ∂ ∂ 

 
    (5.54) 

 
The solution to this partial differential equation is given by [16] 
 

 
T

T
22

1i i

i

x x x

x c xx x

 ∂τ − = −
 ∂ − 

  
    (5.55) 

 
A gradient vector with entries from (5.55) is defined as 
 

 
T

1 2 N

x x x

∂τ∂τ ∂τ κ =  ∂ ∂ ∂ 

     (5.56) 

 
 Let g denote the GDOP, which is given by [17] 
 

 T 1tr( )g −= κ κ   (5.57) 

 
If the variances of the measurements are not the same at all sensors, then this is 
taken into consideration by weighting matrix W. In this case, 
 
 

 

2
1

2
22

2

0 0

0 0
( )

0 0

r r

M

mΔ Δ

 σ
 σ =
 
 

σ  

C  




   


 (5.58) 

 
Then the GDOP becomes 
 

 T 1tr( )g −= κ κW
 

 (5.59) 

 
where 2 1

b d d

−
Δ Δ= σW C    and 2

bσ  is a selected normalizing variance. The spherical 

uncertainty is then given by 
 
 3D b gσ = σ  (5.60) 
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In [16], an example of the effects of GDOP is illustrated. The sensors consist 
of a near-planar circular array of a certain radius; the radius is referred to as the 
baseline. The results of GDOP-induced error with this array are illustrated in 
Figure 5.13 [16]. At a range of only two baselines, the accuracy degrades by a 
factor of 20 to 60. 
 
5.2.8 Bias Effects of TDOA PF Estimation 
 
Just as LOB measurement bias errors cause errors in estimating a PF with 
triangulation, errors are caused by measurement bias in TDOA calculations as 
well. An analysis and simulation was presented by Koorapaty, Grubeck, and 
Cedervall [18] to examine such effects when TDOA and TOA measurements were 
used to estimate the location of 911 callers. Their results are based on the 911 
emergency call requirements and the specific results are couched in the vernacular 
of this requirement. Nevertheless, they illustrate the effects of bias on TDOA PF 
estimation. 
 The system equations are given by 
 
 ( ) , 1, 2, ,m m m md f x b n m M= + + =   (5.61) 

 

 
 
Figure 5.13 TDOA GDOP for N = 4 to 10 sensor elements. 
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where bi represents the bias in measurement i and T
T T T[ ]x x y z=  is the 

location of the target. In general, ( )if x


 is nonlinear, so a Taylor expansion is 

determined and only the linear terms are retained. In matrix form, this becomes 
 
 ( )d f x b n= + +

   
 (5.62) 

 

The least-squares estimator finds the x̂


that minimizes 
 

 T 1( ) [ ( ) ] [ ( ) ]
d d

Q x d f x b d f x b−
Δ Δ= − − − −C  

       
 (5.63) 

 
When the elements of n


are jointly Gaussian with covariance matrix Cnn, this 

process is also the maximum likelihood estimator. 
It is assumed that the biases were unknown but nonrandom parameters, 

constant over the measurement interval. It was also assumed that the target 
remained fixed over the measurement interval. 

The Taylor series approximation around reference point 0x


is given by 

 
 0 0 0( ) ( ) ( )f x f x x x≈ + −G

    
 (5.64) 

 
where 
 

 
0 0

0 0

1 1

1

0

1

( ) ( )

( ) ( )

kx x x x

M M

kx x x x

f x f x

x x

f x f x

x x

= =

= =

 ∂ ∂
 ∂ ∂ 
 =  
 ∂ ∂ 

∂ ∂  

G

   

   

 


  
 



 (5.65) 

 
Therefore, from (5.63) and (5.64), 
 

 
T

1
1 0 1 0( )

d d
Q x d x b d x b−

Δ Δ
   = − − − −   G C G 
     

 (5.66) 

 
is the function to be minimized where 
 
 1 0 0 0( )d d f x x= − + G

    
 (5.67) 
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To ascertain where the minimum lies, the gradient vector is calculated, 
 

 
T

x
1 2

( )
k

Q Q Q
Q x

x x x

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 

   (5.68) 

 
and that value of x


such that x ( ) 0Q x∇ =


 is determined. 

 If we assume that the biases b


are not a function of x


in the region around the 

sensor yielding x 0b∇ =
 

 and that T 1
0 0d d

−
Δ ΔG C G   is nonsingular, then that value of x



that yields the minimum Q( x


) is given by 
 

 T 1 1 T 1 T 1 1 T 1
0 0 0 1 0 0 0

ˆ ( ) ( )
d d d d d d d d

x d b− − − − − −
Δ Δ Δ Δ Δ Δ Δ Δ= −G C G G C G C G G C       

 
 (5.69) 

 
If the biases are known, then (5.69) can be used to determine the best estimate of 
the target location. If the biases are not known, then they are assumed to be zero 
and, using (5.67), 
 

 T 1 1 T 1
0 0 0 0 0

ˆ ( ) [ ( )]
d d d d

x d f x x− − −
Δ Δ Δ Δ= − +G C G G C   

   
 (5.70) 

 
and, using (5.62), 
 

 T 1 1 T 1
0 0 0 0 0 0

ˆ ( ) [ ( ) ( ) ( ) )]
d d d d

x f x f x x x b n x− − −
Δ Δ Δ Δ= − − − + + +G C G G C G   

        
 (5.71) 

  
The indication of how the bias affects the PF estimate is given by the CEP.  

Assuming that the measurement errors are Gaussian, a simulation was performed 
using the geometry illustrated in Figure 5.14 [18]. The base stations are indicated 
by the black dots. The CEP was calculated at 100 equally spaced points within the 
square and the average value over the area was used as the figure of merit. The 
standard deviation of the measurements at the base stations was assumed to be    
50 meters. The mean values of bias were assumed to be 0, 50, 100, 150, and 200 
meters as one set and 0, 25, 50, 75, and 100 meters as another set. One hundred 
evenly spaced points within the square were selected and the mean CEP computed 
for each of them assuming the bias values given. A comparison of the results is 
shown in Figure 5.15 [18]. This cumulative distribution function shows the 
fraction of cells with CEPs less than the percentage shown on the abscissa, which 
is the percentage of the 125 m CEP. The rest of the CEPS were larger than 125 m.   
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Figure 5.14 Geometry to simulate the effects of measurement bias on TDOA PF estimation in a cellular
phone system. 
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Clearly, the performance with smaller biases produced significantly more CEPs 
within the 125 m limit imposed by the FCC. 
 
5.2.9 Effects of Movement on TDOA PF Estimation 
 
When there is relative motion between the target and sensors, which would 
normally be the case for airborne sensors, then errors in TDOA measurements 
arise. Chan and Ho call this effect the scale difference of arrival (SDOA) [19] and 
provide a method of estimating its effects. The TDOA error induced by this 
motion is proportional to the SDOA and the data record length. 
 The signals received at the two sensors are given by 
 
 1 1( ) ( ) ( )r t s t n t= +  (5.72) 

          2 2( ) ( )
t D

r t s n t
a

+ = + 
 

 (5.73) 

 
where s(t) is the transmitted signal, n1(t) and n2(t) are noise sources independent of 
each other and of the signal, D is the TDOA sought, and a is the SDOA. The joint 
estimate of the TDOA and SDOA can be obtained from the CAF between the two 
signals given by 
 

 
 
Figure 5.15 Cumulative distribution function of the CEP considering the effects of bias. The abscissa
is the percentage within 125 m.  The others were larger than 125 m. The mean measurement variance
= 2,500 m2. 
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 1 2

0

CAF ( ) ( )
T

r t r t dt= α − τ  (5.74) 

 
by finding the values of α and τ that maximize (5.74). Note that when there is no 
noise present,  
 

 2 ( )
t D

r t s
a

α − τ + α − τ =  
 

 (5.75) 

 
so that (5.74) is maximized when aα =  and .Dτ =  
 The TDOA estimate from maximizing (5.74) neglecting SDOA is given by 
 
 (1 )a t Dτ = − +  (5.76) 

 
so the bias error is 
 
 (1 )t D a t− = −  (5.77) 

 
Averaging (5.77) from 0 to N, where N is the number of data samples, yields 
 

 
0

1 (1 )
( , ) (1 )

2

N a N
a N a tdt

N

−= − =  (5.78) 

 
The effects of the data record length on the TDOA bias are illustrated in 

Figure 5.16 [18].  Here the bias, neglecting the SDAO when there is no noise, with       
a = 1.001 and D = 0, is plotted versus the record length. Clearly from (5.78) the 
bias is a linear function of the record length N. 

The reference contains a fast algorithm for computing the TDOA MSE and 
SDOA MSE from the CAF. The results for one case are illustrated in Figures 5.17 
and 5.18 [19]. Figure 5.17 illustrates the MSE estimation error on the TDOA 
versus the SNR given by 
 

      
2
s
2
n

10 log , dB
σ

γ =
σ

       (5.79) 

 
where 

1 2

2 2 2
n n nσ = σ = σ  and band-limited white noise is assumed. Likewise, Figure 

5.18 shows the MSE estimation error of the SDOA versus SNR. At low SNR the 
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Figure 5.17 TDOA bias error caused by motion. 

 
 
Figure 5.16 TDOA bias error caused by data record length, ignoring the SDOA. 
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effects on the TDOA MSE are significantly more pronounced than those on the 
SDOA.  At γ = 0 dB, the SDOA MSE is 45 dB less than that for the TDOA. 
 
 

5.3 Differential Doppler 
 
Utilization of frequency difference information at two or more sensors for PF 
calculation is presented in this section. This follows that in [1] closely, and is 
included here for completeness. 
 
5.3.1 Introduction 
 
The signals emitted by a moving object exhibit an effect called Doppler shift that 
manifests itself in a frequency difference depending on the direction of travel of 
the moving object relative to a receiver. When the frequency of a signal is 
measured at two (or more) sensor sites, the frequency difference between the 
signals at the two sensors can be computed. This frequency difference, called DD, 
is a measurement that can be used for target geolocation estimation. To utilize the 
DD effect, only one object needs to be moving—one or more sensors or the target. 
The higher the velocity the greater the frequency difference, which makes the DD 
easier to measure accurately. 
 
 

 
 
Figure 5.18 SDOA error caused by relative motion. 
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5.3.2 DD 
 
The DD, where the two sensors and/or target velocities are much smaller than the 
speed of light, is given by 
 

 02 1
0 0 2 1( )

fv v
f f v v

c c
τ = − = −

λ
  (5.80) 

 
where vi represents the instantaneous velocity of the sensors relative to the 
transmitter in the radial direction and f0 is the frequency of the transmitted signal. 
The DD is frequently denoted by τ because it represents the difference in two 
velocities, which are, in turn, the time derivatives of the distances, to wit, 
 

 0 2 1f dd dd

c dt dt
 τ = − 
 

  (5.81) 

 
where di is the range between the transmitter and the sensor, as shown in Figure 
5.1. Thus, ddi/dt is the rate of change of the range in the radial direction. The 
distances are given by 
 

 2 2
T T( )i id x x y= − +  (5.82) 

 
yielding 
 

                          

1/ 22 2
T T( )ii

d x x ydd

dt dt

 − + =  (5.83) 

   T
1/ 22 2

T T

( )
, 1, 2

( )

i i

i

x x dx
i

dtx x y

−
= =
 − + 

 (5.84) 

 

where it is assumed that the aircraft are flying at the same speed parallel to the     
x-axis so that dyi/dt = 0. Denoting 1 1 2 2/ / ,v v dx dt v dx dt= = = = then 

 

 0 T 1 T 2
1/2 1/ 21/2 2 1/ 2 2

T 1 T T 2 T

( ) ( )

( ) ( )

f v x x x x

c x x y x x y

 − − τ = − 
   − + − +     

  (5.85) 

 



Quadratic Position-Fixing Methods 

 

257 

The surface formed by this expression for the example here is shown in 
Figure 5.19. The DD curves are complex quadratic functions, not simple 
hyperbolas, as was the case for TDOA processing. Viewed from the top they look 
as seen in Figure 5.20. The intersection of these curves for the appropriate value of 
τ  will yield candidate geolocations for the emitter, but with only two sensors there 
is a left-right ambiguity as seen in Figures 5.21 and 5.22. As with TDOA, adding a 
third sensor can resolve the ambiguity and produce a unique solution, as shown in 
Figure 5.23. 

 
5.3.3 DD Measurement Accuracy 
 
Just as for TDOA, at extreme ranges from the baselines the iso-Doppler curves 
become nearly parallel, as illustrated in Figure 5.26. For accurate PF estimates it is 
desirable for the Doppler isochrone lines to cross at right angles. When they are 
nearly parallel, as in Figure 5.24, poor PF estimates result. 

The CRB for estimating τ is given by 

 

Figure 5.19 Surface of the DD for the example. In this case v = 10 m/sec and f = 100 MHz (λ = 3m).
(Source: [1]. © Horizon House 2002.  Reprinted with permission.) 
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Figure 5.20 Top view of the τ contour. The shape resembles an ellipse, but actually it is a complex
quadratic. (Source: [1]. © Horizon House 2002.  Reprinted with permission.) 
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Figure 5.22 DD contours corresponding to an emitting target. The contours have a left-right ambiguity. 

 

 

Figure 5.21 Lines of constant τ are complex quadratic curves. 
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e

1 1

T WT
τσ =

γ
  (5.86) 

 
where W, T, and γ are as above, τσ is the standard deviation of the τ  measurement, 

and Te is the RMS integration time given by 
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


 (5.87) 

 
where u(t) is the PDF of the integration time. Again, for example, if the actual 
integration time is T and the PDF for the integration time has sharp edges, then 

/ 3.eT T= π  Equation (5.86) is plotted in Figure 5.25 for a few values of 

integration time versus SNRs. As indicated in Figure 5.21, the DD values for 
representative values of parameters  are  in the single-to-double digit hertz range. 
The standard deviation values indicated in Figure 5.25 for low SNRs are only 
about 1/100 those values, so the possible accuracy at these integration times may 
be suspect. Higher SNRs produce better fixes. 

 
 
Figure 5.23 Iso-Doppler contours for three sensors can uniquely locate the target. 
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Figure 5.25 The CRB for DD processing versus SNRs assuming a uniform distribution for Te and
W = 25 kHz. 

 

 
 
Figure 5.24 Iso-Doppler contours for a distant target are nearly parallel. 
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5.3.4 Maximum Likelihood DD Algorithms 
 
A DD MLE algorithm similar to the LOB MLE algorithm described in Section 2.6 
has been developed by Levanon [20]. A PF system that uses DD measurements 
avoids the ambiguity problem inherent in interferometer PF systems. The antennas 
on the same platform can be separated by more than λ/2 and effective 
measurements can be obtained. On an airborne sensor platform, however, 
relatively dense measurements are required. For an airborne sensor, the Doppler 
measurements must be made often enough so that at least one measurement is 
taken during each interval defined by the wavelength of the signal. 
 An interferometer, on the other hand, must have the sensor receivers spaced 
less than λ/2 to avoid ambiguous results. 
 The DD is determined by utilizing many measurements of the phase, and, 
therefore, range differences along the path. Each time the phase jumps by 2π, one 
more wavelength in range has been traversed. These jumps are counted and used 
as a measurement of the differential frequency. 
 
5.3.4.1 DD MLE Algorithm 
 
The unknowns in the geometry shown in Figure 2.32, repeated here as Figure 5.26 
[20], are yc, the center of the observation interval, and xT, the location of the target 
(it is assumed for now that yT = 0). Therefore, the vector of unknowns is 
 

 [ ]T

T cx yθ =


 (5.88) 

 
Denote the noiseless relationship between the unknowns and the measurement 

during the kth observation as ( ).kz θ


  For the case of the Doppler measurements 

here, 
 
 1 2 10 20( ) ( )k k kz R R R Rθ = − − −


  (5.89) 

 
where, for 0, 1, 2, , ,k K= ± ± ±  N = 2K + 1, 
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is the distance traveled between measurementsLΔ  

 
With these values of k, the reference is at the center of the observation interval IL. 
The 2K + 1 noisy measurements, denoted by zk, corrupted by samples of the 
Gaussian noise process denoted by nk, are given by 
 
 k( ) ( ) , 0, 1, 2, ,k kz z n k Kθ = θ + = ± ± ±

 
   (5.90) 

  
The final covariance matrix for the variables gives the PF error. It is given by 

 

 2 T 1
n= ( ) ( )−

θθ θ = σC Cov G G


 (5.91) 

 
The error in the 0th range difference measurement  must be accommodated in 

the noiseless measurement (5.89), changing it to 
 

 1 2 10 20( ) ( )k k kz R R R Rθ = − − − + 


  (5.92) 

 
where  is an unknown and therefore must be estimated along with xT and yc. Thus, 
the unknown vector to be estimated is  

 
 T

T c[ ]x yθ = 


 (5.93) 

 

 
 
Figure 5.26 MLE geometry. 
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With two simplifying assumptions that yc = 0 and KΔL << xT, then 
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 (5.94) 
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and 
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The G matrix now is 
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which, using (5.94) and (5.96), generates 
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Assuming that ΔL is small enough that it can be approximated by a differential, 
then converting these sums to integrals, dividing (outside the sum) by dL, and 
multiplying (inside the sum) by dL yields 
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and 
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Now from (5.91) and (5.99), 
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When yc ≠ 0, (5.100) becomes more complicated while (5.101) remains the same. 
Thus, 
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5.3.4.2 Performance 
 
The DD results are portrayed graphically in Figure 5.27 [20]. These values of the 
parameters would correspond to a UAV platform that is prosecuting a fixed- 
frequency target that is transmitting a considerable length of time. A UAV flying 
at 100 kph would require about 1 minute to fly 1.6 km, so the target must be 
transmitting for at least that length of time. 

Comparing Figure 5.27 with Figure 2.36 for the interferometric algorithm, it 
can be seen that the DD performance is better in the down-range estimation, while 
the interferometer is better in the cross-range results. The DD performance would 
be expected to be good, especially when yc = 0, because at that point the quadratic 
is intersecting with the x-axis at right angles, yielding the highest sensitivity 
possible from the DD measurements (see Figure 5.28). The fact that the variance is 
a minimum can be established by finding the derivative of (5.102) with respect to 
yc and setting it to zero. 

The highest sensitivity in the interferometric measurement also occurs at       
yc = 0, as seen in Figure 5.29. At that point, the slope of the Δφ versus yc curve is 
maximized because it is an inflection point. The difference in phase of the signals 
impinging on the two antennas is zero since the arrival azimuths are orthogonal to 
the y-axis. Again, the minimum variance point can be shown to be at yc = 0 by 
taking the derivative of (2.125) with respect to yc and setting it equal to zero. 
 
 

 
 
Figure 5.27 Differential Doppler results. For this example N = 40, xT = 10 km, IL = 1.6 km, and σΔR =
0.0141m. 
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5.3.5 Cross-Ambiguity Function 
 
TDOA and DD calculations can be combined to take advantage of the benefits of 
each, as well as possibly increase the accuracy of the PF estimates. This is 
typically accomplished with the CAF. This computation simultaneously yields the 
τ and τ for two sensors, and, just as for TDOA isochrones and iso-Doppler curves, 
the CAF must be computed for each pair of sensors in order to yield sufficient 
information to calculate an estimate. The CAF is a generalization of the cross-
correlation function and is given by 
 

 1 2

0

CAF( , ) ( ) ( )
T

j tt s t s t e dt− ωτ = + τ  (5.103) 

 
Under ideal conditions, a plot of the amplitude of the CAF versus τ and τ  displays 
a peak at the proper value of these variables. 

As indicated in [1], the standard deviation of the measurements of the PF 
coordinates, calculated on the perpendicular bisector of the baseline shown in 
Figure 5.1, depends on these equations as follows: 
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c d
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τ
 σ + 
 σ =  (5.104) 

 
 
Figure 5.28 Intersection of the iso-Doppler contour with the x-axis when yc = 0. 
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and 
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d
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  λσ +  
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

 (5.105) 

 
where λ is the wavelength, v is the velocity of the sensors, b is the baseline length, 
and d is the distance from the baseline.  
 As with TDOA and DD processing alone, as the target deviates from the 
perpendicular bisector, GDOP comes into play and the accuracy degrades. 
 
5.3.6 Estimating the DD of a Sinusoid in Noise Using Phase Data 

 
Otnes derived a method of estimating the DD of a sinusoidal signal in noise 
received at two or more platforms using regression techniques [21]. In other 
words, the DD is estimated as the slope of the line that is the linear regression of 
the DD data. This is a similar approach to that described in Section 5.1.8, which 
discussed a regression matching technique for estimating the TDOA derived by 
Piersol [22]. 
 The signal transmitted by the target is given by 
 
 0 0( ) j ts t Ae ω +ϕ=  (5.106) 

 
 
Figure 5.29 Least-squared LOB geometry when yc = 0. 
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where ω0 is the frequency and ϕ0 is the phase offset. The signals received at two 
geographically dispersed sensors j and k are given by 
 
 ( ) ( ) ( )j jr t s t n t= +  (5.107) 

          ( ) ( ) ( )k jk kr t s t D n t= − +  (5.108) 

 
where it is assumed that the noises are uncorrelated to each other or to the 
transmitted signal. It is also assumed that there is relative motion between one or 
more sensors and the target. Normalizing the received signals so the time delay 
can be ignored and using relative phase delays so φ0 = 0 results in the received 
signals given by 
 

 ( )( ) ( )j jj t

j j jr t A e n tω +ϕ= +  (5.109) 

 ( )( ) ( )k kj t
k k kr t A e n tω +ϕ= +  (5.110) 

 
The mixing product [6] of these two signals is given by 
 
 ( ) ( ) ( )jk j kp t r t r t∗=  (5.111) 

 
Because of the assumed independence of the noise from the signals, 
 

 ( ){ ( )} jk jkj t

jk j kp t A A e ω +ϕ∗=  (5.112) 

 
where ωjk = ωj – ωk and ϕjk = ϕj – ϕk. 
 Using (5.109) and (5.110) in (5.111) gives 
 

   ( )( ) ( )jk jkj t

jk j k jkp t A A e n tω +ϕ∗= +  (5.113) 

 ( )jkj t

jkAe n tω= +  (5.114) 

 

where jkj

j kA A A e ϕ∗= and njk(t) is the noise term consisting of the remaining 

products resulting from (5.111) incorporating (5.109) and (5.110). 
Ignoring noise, the phase of the mixing product after the phase has been 

unwrapped is given by 
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p t A t
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 (5.115) 

 
Thus, ignoring noise, the phase function is a linear function of time. With noise 
included and assuming a sufficiently high SNR, the phase function can be 
expressed as 
 
 ( ) ( )jk jk jky t t n t= ω + ϕ +  (5.116) 

 
and ωjk and ϕjk can be determined using linear regression as discussed in Section 
2.2, resulting in the MLSE estimate provided by (2.31). 

Considering discrete time processing, during time interval i, 
 
 0 0 0 0i i i iy x n iT n= ω + ϕ + = ω + ϕ +  (5.117) 

 
because xi = iT with T the sampling interval. The optimum DD is given by 
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where x  denotes the average value of x. 

We can reduce (5.118) to 
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where 
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The corresponding variance is given by 
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 The expected value of the variance for large N is given by 
 

 
2

2 n
2 3

12
{ }

jk T Nω
σ

σ ≈  (5.122) 

 
where 2

nσ  is the variance of the phase noise. Thus, the variance in the estimation of 

the DD decreases as the square of the sampling interval and the cube of the 
number of samples (N). This indicates that the accuracy in estimating the DD 
improves by these factors, illustrating the significant advantage of using a large 
number of samples. 
 Utilizing some assumptions, this method of estimating the DD will work 
when there is amplitude modulation (AM) applied to the sinusoidal carrier. In 
particular, when the DD value being sought is the fine value (as opposed to the 
coarse value which just gets close), then the amplitude of the modulation can be 
assumed to be equal to one and (5.109) and (5.110) still apply. This amplitude can 
be made to equal to one by clipping the signal, for example. 
 Because the parameter being sought is the differential frequency received at 
two sensor sites, this estimation method would not work well for signals with 
frequency modulation (FM) or phase modulation (PM). 
 
5.3.7 Effects of Motion on DD PF Estimating 
 
As discussed in Section 5.1.8, relative motion between the target and sensor can 
cause errors in the measurement of TDOA unless such motion can be taken into 
account. Even though it is necessary for there to be relative motion between the 
target and a receiver to be able to observe Doppler shift, assuming the transmitter 
to be stationary when it is in fact moving can lead to considerable error estimating 
the DD. It can be very difficult to take out the effects of a moving target on 
calculating the DD. An alternative is to attempt to ascertain that the target is 
moving or stationary, and, if moving, do not attempt to estimate the PF because it 
will contain substantial error. 
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Ullman and Geraniotis [23] developed two techniques for estimating when the 
transmitter is moving so that the data obtained can be ignored for PF computation 
purposes. Both techniques assume that the target position is confined to some 
surface and its velocity is constrained to a tangent plane. Also, both techniques 
form and test the hypotheses 

 
 0 e: 0H v =


 (5.123) 

 1 e: 0H v ≠


 (5.124) 

 
where ev


is the actual velocity vector of the target. 

The first technique is based on postulating that the transmitter is stationary. 
After several samples of TDOA/DD data are collected, the maximum likelihood 
stationary target position is found using these measurements and the probability of 
the measurements occurring given this position is determined. Let e e( , )q p v

  
 denote 

the TDOA/DD measurement vector. Let C denote the covariance matrix of 
measurements. The observed measurement vector, ,mq


consisting of noise 

corrupted measurements is assumed to be e e~ [ ( , ), ],mq q p v C
   

 where ep


is the 

actual position vector of the target. The maximum likelihood estimate is then 
given by 

 

 T 1argmin[ ( ,0) ] [ ( ,0) ]e m m
p

p q p q q p q−= − −C
         (5.125) 

 
The second technique is based on a likelihood ratio test (LRT) (LRT-like actually, 
since it is not a true LRT) given by 

 

 e e

e

1 e e
,

0 e e

max Pr { , }
LRT

max Pr { , 0}

m
p v

m
p

q p v

q p v
=

=

 



  

    (5.126) 

  
Both of these techniques yield similar results, although the specific results are 
highly scenario dependent, as we would expect, since the performance of the 
algorithms used for estimating the PF using TDOA and DD measurements are 
scenario dependent (due to GDOP, for example). 
 A comparison of the two techniques for specific examples illustrates that they 
produce similar results at detection of target motion.  The test for stationarity is 
relatively simple compared to the LRT test, for which the computation complexity 
is substantially larger. Based on this result, the test for stationarity is the 
recommended approach in most situations. 
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 An alternative to ignoring the data when target motion is detected is to 
estimate the velocity vector along with the target location.  One such technique 
was developed by Rusu [24]. In that work, the TDOA and FDOA data are 
transformed into TOA and FOA data and closed-form expressions for the target 
location and velocity are used to determine the unknowns by using the implicit 
function theorem.  The algebraic results are compared with simulation results. 
 Another technique for estimating the target velocity along with the location 
was developed by Ho and Xu [25]. Least squares minimizations are used to 
determine the unknowns. When the TDOA and FDOA errors are Gaussian, the 
technique is claimed to achieve the CRB. The analytical results are compared 
favorably with the algebraic results. 
 
 

5.4 Range Difference Methods 
 
5.4.1 Introduction 
 
The time of arrival of a signal at sensor i is given by 
 

 i
i

d
t

c
=  (5.127) 

 
where di is the range from the target to sensor i. The corresponding TDOA of that 
signal arriving at two sensors is given by 
 

 ( ) i j
i j ij

d d
t t

c

−
− = τ =  (5.128) 

 
In the absence of errors due to inaccurate measurements or noise, the target must 
lie at the intersection of hyperboloids that are formed as the locus of constant RD 
as determined by (5.128). Therefore, finding this intersection is a method for 
establishing where the target lies. 
 Noise and measurement errors are always present, however, and normally 
these hyperboloids do not intersect at a single point but at several points. LSE 
techniques can then be used to determine the point where the total distance from 
that point to each of the hyperboloids is minimized. 
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5.4.2 Least-Squares Range Difference Methods 
 
Let N represent the number of sensors and let Δij represent the range difference 
between sensor i and the target and sensor j and the target. The location of sensor i 
is given by the coordinate vector T[ ]i i i ix x y z=  and the location of the target 

is given by the vector T
T T T T[ ] .x x y z=

 The distance between the target and 

sensor i is given by 
 
 T 2i id x x= − 

 (5.129) 

 
while the distance from the origin to point i is denoted by Ri. 

Smith and Abel [26] formulated a method for minimizing the PF estimation 
error in an LS sense. They define the equation error as follows. Consider the 
geometry indicated in Figure 5.30 [24] where, without loss of generality, sensor j 
is placed at the origin. Also without loss of generality, j = 1. Thus, 

 
 T0 and 0,j j jx R d R= = =  (5.130) 

Now 
 
 2 2 T 2

T T T( ) 2ij i iR d R x x R+ = − + 
 (5.131) 

 
 
Figure 5.30 Geometry of the problem. 
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so 
 
 2 2 T

T2 2 0i ij ij i TR d R d x x− − − = 
 (5.132) 

 
yielding N – 1 equations in three unknowns. 
 With measurement errors and noise in the data, (5.132) is not identically zero, 
but it is equal to some residual amount of error denoted by .i That is, 

 
 2 2 T

T T2 2 , 1, 2, ,i ij ij i iR d R d x x i N− − − = =
    (5.133) 

 
In matrix notation, (5.133) can be expressed as 
 
 T T2 2R d x= δ − − S

 
 (5.134) 

 
where 
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The least-squares solution for Tx


when RT is known with weighted equation 

error, where the weights W on the range differences are determined a priori, is 
 

 T W T

1
( 2 )

2
x R d= δ −S


 (5.135) 

 
where W

S  is given by (2.16), 

 
 T 1 T

W ( ) −=S S WS S W  (5.136) 

 
Unfortunately, RT is unknown if the location of the target is unknown, which it is 
in this case. In addition, expression (5.135) is nonlinear and some nonlinear 
minimization technique must be used to solve it. 
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 Smith and Abel proposed a technique they referred to as the spherical 
interpolation (SI) method for solving (5.135). Furthermore, they compare three 
types of PF techniques based on range difference computations: 
 

• The SI method; 
• The spherical intersection (SX) method; 
• The plane intersection (PX) method. 
  

The SX method was developed by Schau and Robinson [27] and the PX method is 
based on a development by Schmidt described later. 
 
5.4.2.1 Spherical Interpolation Method 
 
The SI method is based on substituting (5.135) into (5.134) and minimizing  with 
respect to RT. First, two matrices are defined as 
 
 T 1 T

, 1 1 ( )s N NP −
− × − S S WS S W  (5.137) 

 
and 
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d
R

d d

⊥ ⊥

⊥ ⊥

δ
=

P YP

P YP

 
    (5.139) 

 
where Y is a symmetric positive definite weighting matrix. 

The resulting estimate for Tx


 that minimizes the error in an LS sense is given 

by 
 

 T 1 T
s d d d d

1ˆ ( )
2

x ⊥ ⊥ − ⊥ ⊥= δS P WP S S P WP


 (5.140) 

 
where 
 

 
T

d T

dd

d d
⊥ −P I


   (5.141) 
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is a projection matrix. 
 
5.4.2.2 Spherical Intersection Method 
 
The spherical intersection solution to find Tx


 is found by substituting (5.135) into 

2 T
T T TR x x=   , which yields 

 
 2

T T 0aR bR c+ + =  (5.142) 

 
where 
 
      T T

W W4 4a d d = − S S
 

 (5.143) 

 T T
W W4b d  = δS S

 
 (5.144) 

 T T
W Wc ∗ ∗= −δ δS S

 
 (5.145) 

 
Then (5.142) yields two solutions as given by the roots 
 

 
2

T

4

2

b b ac
R

a

− ± −=  (5.146) 

 
Given RT, it is substituted into (5.135) to obtain T .x


 

 
5.4.2.3 Plane Intersection Method 
 
This technique is based on a development due to Schmidt [28]. In this case, 
 

 T 2 2 2
T2 [ ]i jk ijk ijk ji kj ik i kj j ik k jix d d d R d R d R d= Δ − + + +S

 
 (5.147) 

 
where i jk  is the equation error, djk is the range difference measured between 

sensors j and k, and 
 
 2 2 2

i i iR x y= +  (5.148) 
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where T[ ]i i ix x y= when xi and yi are the coordinates of sensor Si. The three 

coordinate terms in (5.147) are given by 
 

 
T

kj ik jiijk d d dΔ =   


 (5.149) 

 
TT T T

ijk i j kx x x  S
    (5.150) 

 
Expression (5.147) is linear in Tx


and therefore can be used as the basis for an LS 

solution, just as (5.133) was used above.  
 
5.4.2.4 Performance Comparison 
 
To compare the performance of these three methods, Smith and Abel conducted 
Monte Carlo simulation experiments with the configuration shown in Figure 5.31 
[24] and Table 5.1. One hundred runs with four configurations were performed. 
The four cases were according to the parameters shown in Table 5.1. In all cases 
the sensors were located at (0, 0, 0), (0, 0, 100), (0, 0, 200), (100, 0, 0), (100, 0, 
100), (100, 0, 200), (0, 100, 0), (0, 100, 100), and (0, 100, 200). 
 The bias results are given in Table 5.2, while the sample standard deviations 
are given in Table 5.3. The sample RMS values are given in Table 5.4. The 
spherical intersection is seen to have much higher errors than the other two 
methods. The spherical interpolation has the lowest RMS error, followed not too 
distantly by the plane intersection method. 

 
 
Figure 5.31 Range difference example. 
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Table 5.1 Simulation Cases 

Case 
Target 

Location 
xT 

Range 
RT 

Bearing 
Cosines 

Ωs 

RD Noise 
Standard 
Deviation 

σdi1 
1 (390, 160, 170) 454.5 (0.858, 0.352, 0.374) 0.1 
2 (390, 160, 170) 454.5 (0.858, 0.352, 0.374) 1.0 
3 (540, 1,360, 110) 1,467 (0.368, 0.927, 0.750) 0.1 
4 (540, 1,360, 110) 1,467 (0.368, 0.927, 0.750) 1.0 

Source: [24]. 

Table 5.2 Biases in the Computed PFs 

Method Run 
Source Location Bias 

T Tx̂ x−
    T Tŷ y−

  T Tẑ z−  

Range 

T TR̂ R−  

Bearing 

T Tθ̂ − θ  

 
Spherical 

Interpolation 

1 
2 
3 
4 

0.239 
5.16 
1.87 
62.7 

0.60 
1.47 
4.60 
165 

0.026 
0.837 
0.003 
1.40 

0.225 
5.42 
4.95 
178 

0.010 
0.174 
0.014 
0.500 

 
Plane 

Intersection 

1 
2 
3 
4 

0.195 
4.24 

0.961 
26.9 

0.052 
1.22 
2.18 
72.5 

–0.035 
0.602 

–0.035 
1.8 

0.183 
4.19 
2.37 
76.9 

0.010 
0.150 
0.009 
0.2 

 
Spherical 

Intersection 

1 
2 
3 
4 

0.341 
0.316 
–2.0 

* 

0.090 
–0.129 
–5.76 

* 

0.048 
–0.057 
–0.090 

* 

0.341 
0.129 
–6.10 

* 

0.012 
0.035 
0.017 

* 

   Source: [24]. 
   * Results too large to be useful. 
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Table 5.3 Standard Deviations of the Simulations 

Method Run 
Source Location Error 

Tx̂σ
       Tŷσ

     Tẑσ  

Range 

TR̂
σ  

Bearing 

Tθ̂
σ  

Spherical 
Interpolation 

1 
2 
3 
4 

2.07 
20.4 
9.98 
82 

0.698 
6.91 
26.2 
219 

0.445 
4.39 
0.600 

5 

2.27 
22.4 
28.2 
234 

0.042 
0.41 
0.07 
0.7 

Plane 
Intersection 

1 
2 
3 
4 

4.17 
40.3 
15.8 
159 

1.33 
12.8 
42.5 
421 

0.898 
8.732 
0.817 

7 

4.37 
42.2 
45.2 
449 

0.07 
0.66 
0.11 
1.0 

Spherical 
Intersection 

1 
2 
3 
4 

5.12 
31.1 
39.4 

* 

1.10 
11.1 
105 
* 

0.513 
5.13 
0.958 

* 

5.24 
32.4 
112 

* 

0.066 
0.64 
0.28 

* 
          Source: [24]. 
           *Results too large to be useful. 

Table 5.4 RMS Values Simulation Results 

Method Run 
Source Location Error 

Tx̂σ
    Tŷσ

  Tẑσ  

Range 

TR̂
σ  

Bearing 

Tθ̂
σ  

Spherical 
Interpolation 

1 
2 
3 
4 

2.08 
21 

10.1 
103 

0.700 
7.06 
26.6 
274 

0.446 
4.47 
0.600 
5.2 

2.28 
23 

28.6 
294 

0.043 
0.45 
0.071 
0.7 

Plane 
Intersection 

1 
2 
3 
4 

4.18 
40.5 
15.8 
161 

1.33 
12.9 
42.6 
427 

0.898 
8.75 
0.818 

7 

4.37 
42.4 
45.3 
456 

0.07 
0.68 
0.11 

1 

Spherical 
Intersection 

1 
2 
3 
4 

5.12 
31.1 
39.4 

* 

1.1 
11.1 
105 
* 

0.515 
5.13 
0.962 

* 

5.25 
32.4 
112 

* 

0.067 
0.64 
0.28 

* 
           Source: [24]. 

                *Results too large to be useful. 
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5.4.2.5 Geometrical Interpretations 
 
The geometrical arguments put forth by Smith and Abel are particularly interesting 
and point out some physical reasons why one technique performs better than 
another. 

The SI geometry is shown in Figure 5.32 [24]. The RDs in this case are spread 
over a reasonable range. This will make the technique relatively insensitive to 
noise-induced errors. 

The SX geometry is shown in Figure 5.33 [24]. The target is located at the 
intersection of spheres with radius T 1

ˆ
iR r+  around each sensor. When the target is 

far away from the sensor array, these spheres have large radii and their intersection 
is close to the intersection of parallel lines—the intersection could be anywhere on 
a long circle segment. This leads to inherent inaccuracies as the SNR is decreased. 
 For the PX method, the target lies on the major axis of some conical shape. 
Shown in Figure 5.34 are two ellipses. Considering three sensors at a time, the 
three sensors define a plane. The conic shape is on this plane and, therefore, so is 
its major axis.  

With two such ellipses, the major axes intersect at a point and that, of 
necessity, is where the target lies. With more than two ellipses and including 
measurement error and noise, these conic axes do not intersect at a point and 
therefore the LS process is required. Nevertheless, the intersection of the axes 
indicating the location of the target produces reasonable crossing angles, so higher 
noise immunity would be expected. 

 
5.4.3 Range Difference Using Feasible Bivectors 
 
A novel approach to geolocation with range differences was developed by Schmidt 
[28]. The development included use of Grassmann algebra, some details of which 
are given in Appendix A. 
 The approach is based on modifying each set of TDOAs from three sensors so 
that their sum is zero by subtracting their average. Each of these sets defines a 
plane which may or may not (mostly will not) contain the location of the target. 
The planes will not normally contain the target due to noise in the process and the 
intersection of the planes (the intersection of two planes defines a straight line and 
the intersection of three planes defines a point). The target will, however, be close 
to these planes. Once these TDOAs are thus modified, a least-squares computation 
finds the point that is closest to all the planes. That is the estimated location of the 
target. 
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Figure 5.32 The SI configuration of the sensors and target geometry. 
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Figure 5.33 SX geometry. 
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Figure 5.34 PX geometry. 
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 Given that there are N sensors with the coordinates of the ith sensor being   
(xi, yi, zi), then 
 

 2 2 2
T T T( ) ( ) ( )i i i id x x y y z z= − + − + −  (5.151) 

 
is the range between the ith sensor and the target when (xT, yT, zT) are the 
coordinates of the target emitter. The range differences are given by 
 
 , 1 ,ij j id d i j NΔ = − ≤ ≤  (5.152) 

 
and ,ji ijΔ = −Δ  as well as  

 0iiΔ =  

  
A differencing matrix D is defined such that  
 

 dΔ = D


 (5.153) 
 
For N sensors it is denoted DN. Thus, for N = 4, 
 
 

 

12

13 1

14 2

23

24 4

34

1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

d

d

d

d

Δ −   
   Δ −          Δ −  =     Δ −        Δ −     
Δ −     

 (5.154) 

 
Vector Δ is referred to as a bivector, since each element has two subscripts, not 
just one as in a linear vector. As noted in [29], Δ cannot be just any bivector; it 
must lie in the range space of D. If Δ can be expressed in the form of (5.153), it is 
said to be feasible, otherwise, it is infeasible. 

 Given a real (measured) bivector ,Δ


the nearest feasible bivector Δ̂


is obtained 

in an LS sense by projecting Δ


onto the range space of D. That is, 
 

 Δ̂ = ΔP
 

 (5.155) 
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The projection vector is 
 
 T T( )−=P D D D D  (5.156) 

 
where D– is the generalized inverse of D.1 In addition, in this case, 
 

 T T1
11N

N
 = − 
 

D D I
 

 (5.157) 

 

where 1


is a vector of all 1s. The term in the brackets in (5.157) is its own 
generalized inverse, so 
 
                                         T T T T( ) ( 11 )N= − = − −P D D D D D I D

 
 

                                            T T1 1
11

N N
 = − 
 

D I D
 

 

                                            T T T
2

1 1
11

N N
= −DD D D

 
 (5.158) 

                                           T1

N
= DD   (5.159) 

 
because the second term in (5.158) is zero. 
 Any algebra is a mathematical construct that includes vectors and an 
operation called the product that is closed under that operation. In Grassmann 
algebra, the product operation is called the wedge product and is normally denoted 

by ∧. “Closed” means that if a


and b


are vectors in the algebra, then so is .a b∧


 
Note that the set of bivectors generated by a set of vectors is not in the same space 
as the vectors and therefore does not form an algebra. Extending the results, 
however, to include all higher forms does form an algebra. If N = 4, then the 

wedge product of [ ]T

1 2 3 4x x x x x=  and [ ]T

1 2 3 4y y y y y= is given by 

 

                                                           
1 A generalized inverse of matrix A is any matrix B satisfying ABA = A. 
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1 2 2 1 12

1 3 3 1 131 1

1 4 4 1 142 2

2 3 3 2 233 3

2 4 4 2 244 4

3 4 4 2 34

x y x y z

x y x y zx y

x y x y zx y
x y

x y x y zx y

x y x y zx y

x y x y z

−   
   −   
   −

∧ = = =   −   
   −
   

−      

 
 (5.160) 

 
Note that 
 

 

2 1 21

3 1 311

4 1 412

3 2 323

4 2 424

4 3 43

1

1
1

1

1

d d

d dd

d dd
d

d dd

d dr d

d d

− Δ   
   − Δ   
   − Δ

∧ = = = = Δ   − Δ   
   − Δ
   

− Δ      

 
 (5.161) 

  
 Adding a second product to (5.161) forces the product to zero as 
 

 1 1 1 0d∧ Δ = ∧ ∧ =
   

 (5.162) 
 
This expression is true because any bivector multiplied by itself is zero; to wit, 
 

 3 3 3

1 1 1 1

1 1 1 1 1 1 0

1 1 1 1

−
∧ = = − =

−

  
 (5.163) 

 
where 1N


is a vector of all 1s of length N. Expression (5.162) is called a trivector 

equation. Expression (5.162) is true if and only if Δ


is a feasible bivector. With 
measurement errors and noise included, (5.162) will not be identically true and the 

closest feasible bivector Δ̂


 is sought. 
 The trivector equation 1 ,s∧ Δ =

  
 including measurement errors and noise, 

can be expressed in terms of vectors and matrices as .sΔ =S
 

For N = 4, for 
example, 
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12

13 123

14 124
4

23 134

24 234

34

1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 0 1 1 1

s

s

s

s

Δ 
 Δ−          Δ−   Δ = =     Δ−       Δ−    
Δ  

S


 (5.164) 

 
The matrix product nS Δ  equals zero if Δ is feasible and equals the trivector of 

residuals if not. 
 The matrices nD  and nS  can be found recursively by 

 

 2
1 1

1 1

0 0

N N
N N

N N

N
N

 
 
 + +

−  −  = =        

D I

D S
D S

 
   (5.165) 

 
 Schmidt defines TDOA (range difference) averaging as 
 

 
,

1ˆ ( ) 1 ,ij ij ij jk ki
k i j

i j n
n ≠

Δ = Δ − Δ + Δ + Δ ≤ ≤  (5.166) 

 
which simply subtracts from each triad measured range difference the average of 
the range differences involved. The term in brackets is referred to as circuital sum 
and will equal zero if Δij is feasible (lies on a plane). 
 It is also proven in [28] that TDOA (range difference) averaging produces the 
same result as minimum least-squared estimating. The algorithm for emitter 
geolocation is given as the following: 
 

1. Given the measured range difference bivector ,Δ


 calculate the closest 

feasible range difference bivector Δ̂


 using either (5.166) or (5.155), since 
they are equivalent. 

2. Calculate the point nearest to the 
3

N 
  
 

 planes of position, one for each of 

the triads of elements of ˆ .Δ

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The second step can be executed using the location on the conic axis (LOCA) 
algorithm developed in [29]. It is the algorithm upon which (5.147) is based and is 
summarized by the following: 
 

Given that sensor i is located at (xi, yi, zi) and there are N sensors 
total, then the target lies in planes described by 
 
 Ax By Cz D+ + =  (5.167) 

 
where 
 

1 23 2 31 3 12A x x x= Δ + Δ + Δ  

1 23 2 31 3 12B y y y= Δ + Δ + Δ  

1 23 2 31 3 12C z z z= Δ + Δ + Δ  

2 2 2
12 23 31 1 23 2 31 3 12

1
( )

2
D d d d= Δ Δ Δ + Δ + Δ + Δ    

2 2 2
i i i id x y z= + +  

 

For M sensors there are 
3

M 
  
 

 such planes. Thus, 

 
 

 

123 123 123 123

ijk ijk ijk ijk

A B C D
x

y
A B C D

z

   
    
    =    
     

   

   

   

 (5.168) 

 
The point closest to the intersection of these planes provides the 
least-squares estimate of the target location. 
 

 Schmidt presents simulation results that are based on the same geometry as 
that used by Smith and Abel. Those results are given in Tables 5.5 and 5.6, but the 
SX results have been omitted, since those results are much worse than the rest. 

Comparing the results in Table 5.6 with those in Tables 5.2 through 5.4 
indicates that the feasible bivector method is the best of those analyzed. The 
improvements range from a factor of just a few to over 10 times better. 
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Table 5.5 Least-Squares and Weighted Least-Squares Simulation Results 

Run x  σx y  σy z  σz RMS 

LS Plane Intersection 
1 –0.03 1.6 0.0005 0.63 –0.002 0.32 1.2 
2 –7.7 15.6 –2.8 5.8 –1.2 5.5 18.3 
3 –6.2 7.4 –16.7 20 –0.06 0.66 17.5 
4 –226 104 –610 283 –4.1 5.0 690 

 
Weighted LS Plane Intersection 

1 0.06 1.1 0.01 0.37 0.0002 0.23 1.30 
2 –8.3 11.7 –2.7 4.3 –1.6 2.6 15.2 
3 –1.2 5.1 –5.4 15.8 –0.05 0.30 14.5 
4 –102 27 –276 74.5 –1.6 2.4 156 

Source: [28]. 

Table 5.6 Feasible Bivector Simulation Results 

Run x  σx y  σy z  σz RMS 

1 –0.02 0.53 –0.01 0.19 0.004 0.12 0.678 
2 0.15 5.6 0.10 2.0 0.08 1.3 6.79 
3 0.55 5.7 1.7 10.0 –0.01 0.20 0.37 
4 –9.4 35 –25 95 –0.13 2.2 95.75 

Source: [28]. 
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5.5 Concluding Remarks 
 
Calculating target geolocation estimates by methods other than triangulation were 
presented in this chapter. These techniques are based on calculating the TDOA, 
DD, and range differences between several sensors. These methods invariably lead 
to nonlinear (quadratic) equations to solve for the PF. 
 The principal advantage of these techniques over triangulation is the antenna 
configuration—quadratic methods typically require only a single antenna, while 
triangulation typically requires an antenna array. The biggest drawback is that for 
many communication signals there is no feature that can be used to correlate 
arrival times between sensors. This leads to the requirement to compute the pre-
detect cross-correlation function of the received signals, which requires 
exchanging large amounts of data leading to the requirement for significant data 
link capacity, if real-time operation is a requirement. Of course, if real-time is not 
a requirement, then the data can be stored for later processing. 
 The quadratic methods generally produce more accurate PFs than 
triangulation. Among the quadratic methods discussed here, the RD method using 
feasible bivector calculations based on Grassmann algebra is the most accurate.  

The quadratic methods are still subject to GDOP-induced errors, however. 
They are also subject to the errors produced by noise and inaccurate 
measurements. 
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Chapter 6 
 
 

Time Delay Estimation 
 
 

6.1 Introduction 
 
In Chapter 3 we discussed PF estimation using quadratic algorithms that include 
time delay estimates. Again, we did not mention in that chapter how these time 
delay estimates are obtained. In this chapter some of the techniques for estimating 
time delay are presented. We denote time differences by D in this chapter. 

In this chapter we examine cross-correlation methods for determining the time 
delay (the TDOA) between a stochastic signal arriving at two sensor elements. 
Classic cross-correlation is covered in the first section while generalized cross 
correlation is considered in the second [1–3]. Using the phase of the cross 
correlation function to determine the TDOA is analyzed in the third. 
 
 

6.2 System Overview 
 
Consider a military communication system with a transmitter and an intended 
receiver. The transmitter will most likely employ measures to avoid detection 
and/or location by an adversary, such as stealth waveforms (LPI), power control, 
directional antennas, and so forth. The EW system using two intercept receivers is 
eavesdropping on this communication with no knowledge of waveforms or 
position, as illustrated in Figure 6.1. 

As shown in Figure 6.2, the transmitted signal, x(t), is assumed to have 
unknown characteristics, and accordingly the message s(t) is modeled as a 
complex-valued zero-mean wss process, characterized by its autocorrelation 
function ρss(τ). Furthermore, it is assumed that s(t) is band-limited into the 
frequency range (–W, W) Hz and that its PSD is continuous in frequency f, that is, 
the transmitted signal is assumed to be band-limited, but broadband with center 
frequency f0 and phase ϕ0 = 0. 
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Figure 6.2 The transmitted signal x(t) is a bandpass signal with carrier frequency f0 (determined by 
the oscillator LO0) and bandwidth W. 

 
 
Figure 6.1 A communication system with a transmitter and an intended receiver is shown at the top. 
The two intercept receivers noncooperatively intercept the signal sent by the transmitter. Using the 
outputs of the intercept receivers, an estimate of the TDOA is obtained.  
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The signal is transmitted through nondispersive channels and is received by 
two sensors whose outputs [say, z1(t) and z2(t), respectively] after quadrature 
mixing contain two noisy and differently delayed versions of the real-valued 
bandpass signal x(t). See Figure 6.3. 

 Now, z1(t) and z2(t) are complex-valued bandpass RF signals. We model the 
receivers as simple superheterodyne receivers (filter, mixer, filter) where the filter 
bandwidths are W Hz and the LO frequencies of the two receivers are f1 and f2 with 
phases ϕ1 and ϕ2, respectively. The outputs after mixing are 
  
 1 12

1 1 1( ) ( ) ( )j f t jr t z t e n t− π − ϕ= +  

            0 1 12 ( )
1( ) ( )j f f t js t e n tπ − − ϕ= +  (6.1) 

 
and 
  
 2 22

2 2 1( ) ( ) ( )j f t jr t z t e n t− π − ϕ= +  

                            0 2 0 22 ( ) 2
2( ) ( )j f f t j f D js t D e n tπ − − π − ϕ= − +  (6.2) 

 
which is depicted in Figure 6.3. 

The complex-valued noise terms in (6.1) and (6.2) are assumed zero-mean 
with flat spectral density, that is, 
 

 
2

n

,
( ) , 1, 2

0,p

p f B
P f p

f B

σ ≤= =
>

 (6.3) 

 
The corresponding autocorrelation functions are denoted by

1n ( )ρ τ and
2n ( ),ρ τ  

respectively. 
 In this chapter we will assume that the mixing and filtering that occurs while 
generating the baseband signal does not significantly affect the baseband signal 
and the statistical characteristics of the signals received at the two receivers are 
only perturbed by the corresponding noise sources and the time delay. 

 
Figure 6.3 The nonideal receiver systems introduce both a frequency error �and a phase error κ
between the mixing oscillators, LO1 and LO2, in the two intercept receivers depicted in Figure 6.2. 
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6.3 Cross-Correlation 
 
We model the signals at the two sensors to be [4] 
 

 1 1

2 2

( ) ( ) ( )

( ) ( ) ( ) 0

r t s t n t

r t s t D n t t T

= +
= − + ≤ ≤

 (6.4) 

 
where the signal s(t) and noises n1(t), n2(t) are real baseband signals. D is the 
unknown delay, and T is the observation time. We assume that the signal s(t) and 
noises n1(t) and n2(t) are stationary, band-limited, zero mean stochastic signals 
mutually uncorrelated. We further assume that the correlation durations of the 
signals s(t), n1(t), and n2(t): 

1 2S n n, , ,D + τ τ τ respectively, are very small compared 

to the observation time T. In addition, s(t) is assumed to be ergodic. 

 The delay D can be estimated by D̂τ = for which the cross-correlation 
function (CCF), which we denote by 

1 2r r ( ),ρ τ is maximized; that is 

 

 
1 2 1 2r r r r 1 2

0

ˆ( ) max ( ) max ( ) ( )
T

D r t r t dt
τ τ

ρ = ρ τ = + τ  (6.5) 

 

We will show that the estimate D̂ of D is unbiased. In addition, we will establish 
an expression for its MSE as a function of the observation time T and the 
autospectra of the signal s(t) and the noise n1(t) and n2(t). In the derivations it is 
assumed that TDOA estimation error is very small compared to the correlation 

duration τs of s(t), that is, s
ˆ .D D− << τ  

 
6.3.1 Error Analysis of the Cross-Correlation Method 
 
The CCF

1 2r r ( )ρ τ consists of two terms: a signal term ρss(t) and a noise term ρn(t), 

that is,  
 
 

1 2r r ss nn( ) ( ) ( )ρ τ = ρ τ + ρ τ  (6.6) 

 
where the signal term ρss(τ) is defined by 
 

 ss

0

( ) ( ) ( )
T

s t s t D dtρ τ + τ −  (6.7) 
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The noise term ρnn(t) is defined by 
 

 nn 2 1 1 2

0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
T T T

s t n t dt n t s t D dt n t n t dtρ τ + τ + + τ − + + τ    (6.8) 

 
 Expanding the signal term ρss(τ) in the neighborhood of Dτ = into a Taylor 
series up to order two, we get 
 

 2
ss ss ss

1
( ) ( ) ( )( )

2
D D D′′ρ τ ≈ ρ + ρ τ −  (6.9) 

 
[Note that ss ( ) / 0,Dd d τ=ρ τ τ ≈  because the correlation times of the s(t), n1(t), and 

n2(t) are very short compared to the observation time T.] Let D̂ be the estimate of 
D obtained by maximizing ρ(τ) in (6.6). Differentiating (6.6), we get 
 

 1 2r r ss nn

ˆˆˆ

( )
0

DDD

d d d

d d d τ=τ=τ=

ρ τ ρ ρ
= + =

τ τ τ
 (6.10) 

  
Using (6.9) with (6.10), we get 
 
 ss nn

ˆ ˆ( )( ) ( ) 0D D D D′′ ′ρ − + ρ =  

 
Therefore, 
 

 nn
ss

1ˆ ˆ( )
( )

D D D
D

′− = − ρ
′′ρ

 (6.11) 

 
where 
 

 
2

ss 2
0

( ) ( ) ( )
T

D

d
D s t s t D dt

d
τ=

 
′′ρ = + τ − τ 

  (6.12) 

 
and 
 

 nn 2 1 1 2
ˆ0 0 0

ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
T T T

D

D s t n t dt n t s t D dt n t n t dt
τ=

 
′ ′ ′ ′ρ = + τ + + τ − + τ 

 
    (6.13) 
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Our goal is to compute ˆ{ }D D−  and 2ˆ{( ) }D D−  over the ensemble of the 

stochastic processes s(t), n1(t), and n2(t). 

 Note that D̂ is an r.v. depending upon s(t), n1(t), and n2(t). D̂ is an unbiased 
estimate of D. This is seen using the following property of conditional expected 
values.  
 

Property 6.1 It is widely known that given two uncorrelated 
(and therefore unrelated) r.v.s u and v, the expected value of the 
random value { } { }.u v u=  That is, the occurrence of some 

value of v has no impact on any occurrence of a value of u.  
 
Thus, using (6.11), we get 
 

 nn
ss

1ˆ{ } { , }
( )

D D s D
D

 ′− = − ρ ′′ρ 
    

 

and because s(t), n1(t), and n2(t) are uncorrelated then nn
ˆ{ , } 0,s D′ρ = and we get 

ˆ{ } 0.D D− = Therefore this estimator is unbiased. 

Note that for sT >> τ and since s(t) is ergodic, the fluctuation ss ( )Dδρ τ −
defined by 
 

 ss ss ss

1
( ) [ ( ) ( )]D T D

T
δρ τ − ρ τ − ρ τ −  

 
is negligible compared to the autocorrelation function ss ( )Dρ τ − of the signal s(t), 

that is, 
 

 ss

ss

( )
1

(

D

D

δρ τ −
<<

ρ τ −
 

 
By neglecting the fluctuation ss ( ),Dδρ τ − we can approximate (6.12) as 

 
 ss ss ss( ) ( ) (0)D DT D Tτ= τ=′′ρ τ ≈ ρ τ − = ρ  

 
Assuming ss (0)ρ exists and is nonzero, (6.11) yields 
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 nn
ss

1ˆ ˆ( )
(0)

D D D
T

′− ≈ − ρ
ρ

 

 
Therefore, we conclude that 
 

 2 2
nn2 2

ss

1ˆ ˆ{( ) } { ( )}
[ (0)]

D D D
T

′− ≈ ρ
ρ

   (6.14) 

 
Property 6.2 [5] The variance of an integral of a stochastic 
process is given by 
 

 
2

uu

0 0

var ( ) 1 ( )
T T v

u t dt T v dv
T

  
= − ρ  

   
   (6.15) 

 
where u(t) is a zero-mean stationary process with autocorrelation 
function ρuu(τ).   

 
Assuming that the correlation duration τu of u(t) is very small compared to the 

observation time, T, so that / ~ 0,v T (6.15) can be approximated by 

 

 
2 2

uu uu uu

0 0

1 ( ) ( ) ( )
T Tv

v dv v dv v dv
T

∞

−∞

 
− ρ ≈ ρ ≈ ρ 

 
    (6.16) 

 
 Using (6.13), (6.16), and Property 6.1, we get 
 

 2 2
n n

ˆ{ } { { }}D′ ′ρ = ρ    

 
2 2 1 1 1 1 2 2ss s s( ) ( ) ( ) ( ) ( ) ( )n n n n n n n nT v v dv v v dv v v dv

∞ ∞ ∞

′ ′ ′ ′ ′ ′
−∞ −∞ −∞

 
= ρ ρ + ρ ρ + ρ ρ 

 
    (6.17) 

 
where, because of uncorrelated signal and noise, the integrals of the cross products 
in (6.13) are zero. 
  

Property 6.3 [6] If u(t) is zero mean stationary process, the 
autocorrelation of its first derivative is given by 
 

 
2

uu
u u 2

( )
( )

d

d
′ ′

ρ τ
ρ τ = −

τ
 (6.18) 



Electronic Warfare Target Location Methods 300 

Using (6.14), (6.17), and (6.18), and integrating  the first and third terms in 
(6.17) by parts, we get 
 

1 1 2 2

1 1 2 2

n n ss n n ss

2
2

ss
n n n n

( ) ( ) ( ) ( )
1ˆ{( ) }

[ (0)]
( ) ( )

v v dv v v dv

D D
T

v v dv

∞ ∞

−∞ −∞

∞

−∞

 
′′ ′′− ρ ρ − ρ ρ 

 − =  ′′ρ
 ′ ′+ ρ ρ
  

 


  (6.19) 

 
The equivalent of (6.19) in the frequency domain is 
 

 

1 1

2 2

1 1 2 2

2
n n ss

2 2
n n ss2

2
ss

2
n n n n

(2 ) ( ) ( )

1 1ˆ{( ) } (2 ) ( ) ( )

(2 ) ( )

(2 ) ( ) ( )

f G f G f df

D D f G f G f df
T

f G f df

f G f G f df

∞

−∞

∞

∞
−∞

∞
−∞

−∞

 
π 

 
 
 − = + π
  

π   
   π  








  (6.20) 

 
where we used the inverse Weiner-Kinchen Fourier relationship  
 

 2
uu uu( ) ( )j fe G f df

∞
π τ

−∞

ρ τ =   

 
with ρuu(τ) and Guu(f) the autocorrelation function and the PSD of u(t), 
respectively. Equations (6.19) and (6.20) are general expressions for the MSE of 
TDOA estimation by the cross-correlation method.  
 
6.3.2 Flat Noise Spectra: Arbitrary Signal Spectrum 
 
To express the MSE (6.20), as a function of SNRs and signal and noise 
bandwidths, first we will assume that the noise spectra are flat across a defined 
spectra. That is we assume that the spectra of the noise n1(t) and n2(t) are flat with 
double sided bandwidths 

1n2W and 
2n2 ,W and PSDs

1 1n nG  and 
2 2n n ,G  respectively. 

For now we assume that the signal spectrum is arbitrary but with  the bandwidth of  
2Ws. The “spillover” of the autospectra of the signal s(t), and noise n1(t) and n2(t) 
outside their bandwidths is assumed to be negligible, and 
 
 

2 1n n n sW W W W= = >  
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The SNRs are given by 
 

 
1 1 1

ss
1

n n

(0)

2 nW G

ρ
γ =  (6.21) 

 
2 2 2

ss
2

n n

(0)

2 nW G

ρ
γ =  (6.22) 

 
and effective bandwidths W (in rad/s) by 
 

 

2
ss

2
s

ss

(2 ) ( )

( )

f G f df

W

G f df

∞

−∞
∞

−∞

π
=



 (6.23) 

 

2
n n

2
n

ss

(2 ) ( )

, 1, 2

( )

p p

p

f G f df

W p

G f df

∞

−∞
∞

−∞

π
= =



 (6.24) 

 
Substituting (6.22) and (6.23) into (6.20), and because the noise spectra are flat, 
we get 
 

 
2

2 n
2 2

n 1 2 1 2s s

1 1 1 1 1 1 1 1ˆ{( ) }
2

W
D D

T WW W

 
− = + + γ γ γ γ 

  (6.25) 

 
The factor 2 2

n s/W W is of significance for cases of narrowband signals embedded in 

broadband noise n s( )W W>> at low SNRs. 

 Now we establish conditions for which the validity of neglecting the fourth 
term in the Taylor expansion of the signal term applies. 
 
6.3.3 Flat Noise Spectra: Flat Signal Spectrum 
 
Now we assume that the spectra of the signal s(t), and noise n1(t), n2(t) are flat 
with the same bandwidth, that is, 
 
 

1 2n n sW W W= =  

The bandwidth assumption is reasonable since in most EW applications the target 
environment is, in general, fairly well known or estimated. The assumption of flat 
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spectrums applies fairly well to the noise, but can be unreasonable for the signal 
spectrum, depending on the type of modulation employed by the targets. 
Ironically, the lower the SNR the more applicable this assumption becomes. 

In the Taylor expansion of the signal term, (6.9), the third term vanishes 
because Rss(τ) is symmetric with respect to τ = 0, and the fourth term (and 
therefore higher as well) in the Taylor expansion can be neglected compared to the 
second term provided that 
 

 

(4) 4
ss

(2) 2
ss

1 ˆ( )( )Fourth term 24 1
1Second term ˆ( )( )
2

D D D

D D D

ρ −
= <<

ρ −
 (6.26) 

 
Because the correlation times of s(t), n1(t), and n2(t) are short compared to T, 
(6.26) can be expressed as 
 

 2
2 2

s

5 1ˆ( )D D
W

− <<
π

 (6.27) 

 
Moreover, because the spectra are flat from (6.25) we get 

 

 2
2 3

s

3 1 1 1ˆ{( ) }
4

D D
T W

− =
γπ

  (6.28) 

 
where a combined SNR, γ, is defined by 

 

 
2

n
2

1 2 1 2s

1 1 1 1 1 1

2

W

W

 
= + + γ γ γ γ γ 

 (6.29) 

 
Combining (6.27) and (6.28), we get 

 
 s 0.15W T γ >>  (6.30) 

 
This is the required condition for the validity of the approximate results. 
 
 

6.4 Generalized Cross-Correlation 
 
The generalized cross-correlation (GCC) method of determining the TDOA 
between two signals [1–3] consists of prefiltering the two signals, r1(t), r2(t) by 
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two linear filters h1(t), and h2(t), respectively, resulting in two filtered signals 1( )r t  

and 2 ( ) :r t  

 

 1 1 1 1 1

2 2 2 2 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

r t h t r t s t n t

r t h t r t s t n t

= ∗ = +
= ∗ = +

  
  

 (6.31) 

 
where 
 

 

1 1

2 2

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

s t h t s t

s t D h t s t D

n t h t n t

n t h t n t

= ∗
− = ∗ −
= ∗
= ∗






 (6.32) 

 
and ∗ denotes convolution (see Figure 6.4).1 We will establish the optimum filters 
to minimize the MSE in this section. 

 As before, the delay D is estimated as D̂τ =  for which the GCC 
1 2

g
r r ( )ρ τ is 

maximized, i.e. 
 

 
1 2 1 2

g g
r r r r 1 2

0

ˆ( ) max ( ) max ( ) ( )
T

D r t r t dt
τ τ

ρ = ρ τ = + τ    (6.33) 

 
In the frequency domain, the GCC method is equivalent to multiplying the cross 
spectra of r1(t) and r2(t) by a weight function Ψ(f) given by 
 
 *

1 2( ) ( ) ( )f H f H fΨ =  (6.34) 

where H1(f ) and H2(f ) are the Fourier transforms of h1(t) and h2(t), respectively. 
 As in the discussion in Section 6.2, we assume that 

                                                           
1 We use * to denote both convolution and conjugate transpose. The one that is intended should always 
be clear from the context in which * is used. 

 
 
Figure 6.4 GCC flow diagram. 
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1 2 1 2s s s s( ) ( )T Dρ τ ≈ ρ − τ     

                                    2 ( )
ss( ) ( ) j f DT f G f e df

∞
π −τ

−∞

= Ψ  

 
then 
 

 
1 2s s ss( ) 2 ( ) ( ) 0D T j f f G f df

∞

−∞

′ρ ≈ π Ψ =   

 
for Ψ(f) a real symmetric function. 

 As in Section 6.2, we can show that the estimate D̂ is unbiased and the MSE 
of the TDOA estimate is given by 
 

 

1 2

2
2

2
s s

1 1ˆ{( ) }

(2 ) ( )

D D
T

f G f
∞

−∞

− =
 

π 
 



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1 2 2 2

1 2 1 1

1 1 2 2

2
n n s s

n n s s

n n n n

(2 ) [ ( ) ( )

( ) ( )

( ) ( )]

f G f G f

G f G f df

G f G f

∞

−∞

 π
 

+×  
 +  


   

   

   

 (6.35) 

 
Applying (6.32) to (6.35), we get 
 

 

1 2

2
2

2
s s

1 1ˆ{( ) }

(2 ) ( ) ( )

D D
T

f f G f
∞

−∞

− =
 
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

  

 
1 1

2 2

1 1 2 2

2 2
n n ss

n n ss

n n n n

(2 ) ( )[ ( ) ( )

( ) ( )

( ) ( )

f f G f G f

G f G f df

G f G f

∞

−∞

 π Ψ
 

× + 
 +  

  (6.36) 

 
Hence, the MSE of TDOA estimation by the GCC method depends on the spectra 
of the signal and the noise, and on the weight function. 
 We can rewrite Equation (6.36) in a shorter notation as 
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2

2
2

( ) ( )
1ˆ{( ) }

( ) ( )

f A f df

D D
T

f B f df

∞

−∞

∞

−∞

Ψ
− =

 
Ψ 

 




  (6.37) 

 
where 
 
 

1 1 2 2 1 1 2 2

2
n n ss n n ss n n n n( ) (2 ) [ ( ) ( ) ( ) ( ) ( ) ( )]A f f G f G f G f G f G f G f= π + +  (6.38) 

 2
ss( ) (2 ) ( )B f f G f= π  (6.39) 

 
The optimal weight function Ψ(f), for which the MSE given by (6.37) is minimal 
is obtained by applying the Schwartz inequality by extending results from [7]. 
 The Schwartz inequality [8] that pertains to two real functions f and g states  
 

 

2

2 2( ) ( ) ( ) ( )f v g v dv f v dv g v dv
∞ ∞ ∞

−∞ −∞ −∞

 
≤ 

 
    (6.40) 

 
Equality in (6.40) holds for f = Kg, where K is an arbitrary real constant. 
 By applying (6.40) to the denominator of (6.37), we get 
 

 

2 2

2( ) ( )
( ) ( ) [ ( ) ( )]

( ) ( )

B f B f
f A f df f A f df df

A f A f

∞ ∞ ∞

−∞ −∞ −∞

   
Ψ ≤ Ψ   

      
    (6.41) 

 
We assume that A(f) is a positive valued function.2 From (6.41) 
 

 2 2
2

1 1

( )
( ) ( )( ) ( ) ( )

B f
A f f df dff B f df A f

∞ ∞∞

−∞ −∞−∞

≥
  ΨΨ 
 

 
 (6.42) 

 
Multiplying (6.41) by the numerator of (6.37), we get 
 

                                                           
2 From (6.38) we see that A(f) is the sum of products of PSDs. The PSD of a signal is certainly never 
negative since it is an indication of the power per Hz in a signal which cannot be negative. In some 
cases, however, a PSD can be zero and A(f) could be zero at some frequencies. We assume here that not 
all of the product terms are simultaneously zero, without much loss of generality. 
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2

1 1ˆ{( ) }
( )

( )

D D
T B f

df
A f

∞

−∞

− ≥


  (6.43) 

 
Equality holds provided that 
 

 
( )

( ) ( )
( )

B f
f A f K

A f
Ψ =  

 
or 
 

 
( )

( )
( )

B f
f K

A f
Ψ =  (6.44) 

 
where K is an arbitrary constant. 
 
 

6.5 Estimating the Time Delay with the Generalized 
Correlation Method 
 
The weighting function Ψ(f) discussed in Section 6.4, given by (6.34), primarily 
serves to sharpen the peaks in the CCF thereby facilitating more accurate 
estimation of the time delay between the two signals r1(t) and r2(t). Under ideal 
conditions where 
 

 
1 2 1 2

ˆ ( ) ( )r r r rG f G f f≈ ∀  (6.45) 

 
Ψ(f) should be chosen to ensure a sharp peak in 

1 2
( )r rρ τ  rather than a broad one in 

order to ensure good time-delay resolution. However, sharp peaks are more 
sensitive to errors introduced by finite observation time, particularly in cases of 
low SNR. Thus, as with other spectral estimation problems, the choice of Ψ(f) is a 
compromise between good resolution and stability. 
 For the model described by (6.31) and (6.32), the cross-correlation of r1(t) and 
r2(t) is 
 
 

1 2 1 2r r ss n n( ) ( ) ( )Dρ τ = αρ τ − + ρ τ  (6.46) 

 
The Fourier transform of (6.46) gives the CSD 
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1 2 1 2

2
r r ss n n( ) ( ) ( )j fDG f G f e G f− π= α +  (6.47) 

 
If n1(t) and n2(t) are uncorrelated, then 

1 2n n ( ) 0G f =  and the CSD between r1(t) 

and r2(t) is a scaled signal power spectrum times a complex exponential. Since 
multiplication in one domain is convolution in the transformed domain, it follows 
for 

1 2n n ( ) 0G f = that 

 
 

1 2r r ss( ) ( )* ( )t Dρ τ = αρ τ δ −  (6.48) 

 
 Equation (6.48) indicates that the delta function has been spread or “smeared” 
by the Fourier transform of the signal spectrum. If s(t) is a white noise source, then 
its Fourier transform is a delta function and no spreading takes place. For all other 
types of time waveforms some spreading will occur. In all cases, however, the 
autocorrelation function peaks at delay D. 

In this section we examine five generalizations to Ψ(f) = 1; in particular, we 
analyze the weighting functions indicated in Table 6.1 [9]. The purpose is to 
minimize the smearing.  

 
6.5.1 Roth Process 

 
The Roth weighting is given by [10] 

 

 
1 1

R
r r

1
( )

( )
f

G f
Ψ =  (6.49) 

Table 6.1 Candidate Processes 

 

Process 
Weight 

1 2( ) ( ) ( )f H f H f
∗Ψ =  

Cross Correlation 1 

Roth Impulse Response 
1 2r r1 / ( )G f  

SCOT 
1 1 2 2r r r r1 / ( ) ( )G f G f  

PHAT 
1 2r r1 / ( )G f  

Eckart 
1 1 2 2ss n n n n( ) / [ ( ) ( )]G f G f G f  

Maximum Likelihood 

1 2

2

12

2

r r 12

( )

( ) [1 ( ) ]

f

G f f

γ

− γ  

Source: [9]. 
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which yields 
 

 1 2

1 2

1 1

r r(R) 2

r r

ˆ ( )
ˆ ( )

( )
j f

r r

G f
e df

G f

∞
π τ

−∞

ρ τ =    (6.50) 

 
When 1( ) 0,n t ≠ as is almost always the case in any real scenario [n1(t) can pass 

through zero occasionally in most cases, but even then 
1 1n n ( ) 0],G f ≠ then 

 
 

1 1 1 1r r ss n n( ) ( ) ( )G f G f G f= +  (6.51) 

 
and 
 

 
1 2

1 1

(R ) 2ss

ss n n

( )
( ) ( )*

( ) ( )
j f

r r

G f
D e df

G f G f

∞
π τ

−∞

α
ρ τ = δ τ −

+   (6.52) 

 
One advantage of this process is that it tends to suppress the frequency regions 

where
1 1n n ( )G f is large and

1 2r r
ˆ ( )G f is more likely to be in error. The Roth process 

spreads the peak being sought. 
 
6.5.2 Smoothed Coherence Transform (SCOT) 
 
Errors in 

1 2r r
ˆ ( )G f

 
can be caused by large 

1 1n n ( ),G f
 

large
2 2n n ( ),G f

 
or both. 

Therefore, we don’t know for sure whether to make 
1 1R r r( ) 1 / ( )f G fΨ = or 

2 2R r r( ) 1 / ( ).f G fΨ = The SCOT algorithm addresses this issue by making the 

weighting function 
 

 
1 1 2S r r r2r( ) 1/ ( ) ( )f G f G fΨ =  (6.53) 

 
which generates the CCF 
 

 
1 2 1 1

(S) 2
r r r rˆ ˆ( ) ( ) j ff e df

∞
π τ

−∞

ρ τ = γ   (6.54) 

  
where the coherence is approximated with 
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 1 2

1 1

1 1 2 2

r r

r r

r r r r

ˆ ( )
ˆ ( )

ˆ ˆ( ) ( )

G f
f

G f G f
γ   (6.55) 

 

In Figure 6.4, 
1 11 r r( ) 1/ ( )H f G f= and 

2 22 r r( ) 1/ ( )H f G f= in the SCOT 

process. When 1( ) 0n t ≠ and 2 ( ) 0,n t ≠ then the same spreading occurs as in the 

Roth process. 
 
6.5.3 Phase Transform (PHAT) 
 
The spreading of the peak in the last two processes is avoided in the ad hoc PHAT 
process. The weighting function in this case is 
 

 
1 2

P

r r

1
( )

( )
f

G f
Ψ =  (6.56) 

 
which produces 
 

 1 2

1 2

1 2

r r(P) 2
r r

r r

ˆ ( )
ˆ ( )

( )
j f

G f
e df

G f

∞
π τ

−∞

ρ τ =   (6.57) 

 
 
with uncorrelated noise, 

1 2n n ( ) 0,G f = and 

 

 
1 2r r ss( ) ( )G f G f= α  (6.58) 

 
In the ideal case we have 
 

 
1 2 1 2r r r r

ˆ ( ) ( )G f G f=  (6.59) 

 
and 
 

 1 2

1 2

r r ( ) 2

r r

ˆ ( )

( )
j f j fD

G f
e e

G f
ϕ π= =  (6.60) 

 
which, of course, has unit amplitude and 
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1 2

(P)
r r ( ) ( )t Dρ τ = δ −  (6.61) 

 
In more realistic scenarios when (6.59) is not satisfied, the delta function is not 
produced, but is smeared somewhat but typically less than the previous two 
processes. 
 
6.5.4 Eckart Filter 
 
The Eckart filter maximizes the deflection criterion, which is the ratio of the 
change in mean correlator output due to the signal present to the standard 
deviation of the correlator output due to noise alone. For long averaging time, T, 
the deflection coefficient is given by 
 

 
1 2

1 1 2 2

2

1 2 s s
2

2 2

1 2 n n n n

( ) ( ) ( )

( ) ( ) ( ) ( )

L H f H f G f df
d

H f H f G f G f df

∞ ∗

−∞

∞

−∞

 
  =



 (6.62) 

 
where L is a constant proportional to T, and 

1 2s s ( )G f is the cross-power spectrum 

between s1(t) and s2(t). For the model specified by (6.31) and (6.32), 
 
 

1 2

2
s s ss( ) ( ) j fDG f G f e π= α  (6.63) 

 
From this we get 
 
 2

1 2 E( ) ( ) ( ) j fDH f H f f e∗ π= Ψ  (6.64) 

 
which maximizes d 2 where 
 

 
1 1 2 2

ss
E

n n n n

( )
( )

( ) ( )

G f
f

G f G f

α
Ψ =  (6.65) 

 
6.5.5 Maximum Likelihood 
 
The ML estimator selects as the estimate of delay the value of τ at which 
 

 
1 2 1 2

1 2

2

12(ML) 2
r r r r 2

r r 12

( )1ˆ ( )
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∞
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achieves a peak. The weighting is 
 

 
1 2

2

12
ML 2

r r 12

( )1
( )

( ) 1 ( )

f
f

G f f

γ
Ψ =

− γ
 (6.67) 

 

where 
2

12 ( ) 1,fγ ≠
 
achieves the ML estimator. Under low SNR conditions, this 

ML process is equivalent to the Eckart prefiltering and cross correlation process. 
 
6.5.6 Variance of the Delay Estimators 
 
It can be shown [11] that the variance of these time delay estimators in the 
neighborhood of the true delay for weighting function Ψ(f ) is given by 
 

 1 1 2 2

1 2

2 22
r r r r

2
2

r r
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
 (6.68) 

 
The variance of the ML process is 
 

 ML
2

2
20

1ˆvar { }
( )

2 (2 )
1 ( )

D
f

T f df
f

∞
=

γ
π

− γ
 

 
Numerical simulations of these processes are possible but are dependent on 

the particular signal and noise employed. Therefore, they do not shed much insight 
into the results. 

 
 

6.6 Time Delay Estimation Using the Phase of the 
Cross-Spectral Density 
 
6.6.1 Introduction 
 
Two approaches to correlation-based TDOA estimation are available: time and 
frequency-domain-based estimators [12]. The more popular of these is the time-
domain-based estimators, as described above, where the peak of the CCF is 
determined and used as the estimate of the TDOA. When using a frequency-
domain estimator, frequency and direction filtering can be used to increase the 
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SNR by suppressing signals in all but one angular sector. The beamwidth can be 
quite narrow if the signals have a large bandwidth since the beamwidth is 
proportional to the reciprocal of the signal bandwidth. 
 In this section we present such a frequency-domain-based estimator where the 
phase of the CSD of the signal received at two separated intercept sites is used to 
determine the TDOA. Initially we assume perfect synchronization between the two 
receiving systems. We relax that assumption in this section and examine the 
effects of imperfect synchronization. 

 
6.6.2 Data Model 
 
The transmitted signal is received by two sensors whose outputs, after quadrature 
mixing, contain two noisy and differently delayed versions of the complex valued 
baseband signal s(t). The transmitted signal is assumed to be unknown and 
accordingly s(t) is modeled as a zero-mean wide-sense stationary process, 
characterized by its autocorrelation function ss ( ) { ( ) ( )}.s t s t∗ρ τ = + τ  Furthermore, 

we assume that s(t) is band-limited into the frequency range (−W, W) Hz and that 
its PSD is continuous in frequency f, that is the transmitted signal is assumed to be 
band-limited, but broadband. The two channels in the digital receivers are sampled 
with sampling frequency fs Hz, such that fs ≥ 2W. Without loss of generality, we let 
fs = 1 Hz in the forthcoming. 

Under an assumption of perfect receiver synchronization, the complex-valued 
output from two synchronous digital receivers are modeled as 

 

     
1 1

2 2

( ) ( ) ( )

( ) ( ) ( )

t n

t n D

r n s t n n

r n s t n n

=

= −

= +

= +
            (6.69) 

 
where D denotes the unknown normalized delay and the actual delay is given by  
D/fs. The noise terms ( ), ( 1, 2),pn n p = are assumed zero-mean white (temporal and 

spatial) complex Gaussian with variance 2 ,pσ respectively. 

The CCF for the received signals is 
 

     
1 2r r 1 2( ) { ( ) ( )}m r n m r n∗ρ = +            (6.70) 

 
where * denotes complex-conjugate. Then, since n1(n) and n2(n) are uncorrelated 
and s(t) is broadband, 
 

      
1 2r r ss( ) ( ) m Dm τ= +ρ = ρ τ            (6.71) 
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One method to estimate the unknown delay D is to find the argument that 
maximizes the estimated CCF, say, ˆ( ),mρ followed by some interpolation to find 

the delay with sub-bin accuracy. In particular, triple parabolic interpolation for 
time-delay estimation is considered in [6]. Alternatively, the delay can be 
estimated from the spectral representation of the CCF. The CSD is defined by the 
DFT of the CCF 

 

    
1 2 1 2r r d r r d ss( ) { ( )} { ( )} m DP m τ= +ω = ρ = ρ τ        (6.72) 

 
where d{}⋅ denotes the DFT. A translation in the time domain corresponds to a 

rotation in the frequency domain; that is, 
 

   
1 2r r d ss s( ) { ( )} ( )j D j D

me e Pω ω
τ=Ρ ω = ρ τ = ω           (6.73) 

 
where Ρs(ω) is the PSD of the sampled version of the baseband signal s(t). 

The direct correlator estimator by peak picking the CCF followed by 
parabolic interpolation mentioned above is not statistically efficient at high SNR 
[13]. Accordingly, alternative methods for the sub-bin search are required. In this 
section, we rely on time delay estimation using phase data [2]. We note from 
(6.73) that 

 
     

1 2 1 2r r r r( ) ( ) DΓ ω = ∠Ρ ω = ω              (6.74) 

 
Now, estimating the unknown D in the time domain by maximization of the 
magnitude of the CCF has been transformed into fitting a straight line to the 
argument of the CSD. In Figure 6.5, the linear portion of the phase is used to 
estimate D. 
 
6.6.3 Properties of the Sample CSD 
 
The finite length discrete signals r1(n) and r2(n) are given by 
 

     1 1{ (0), , ( 1)}r r N −              (6.75) 

 
and 
 

     2 2{ (0), , ( 1)}r r N −              (6.76) 
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where rp(n) = 0 for n < 0 or n ≥ N (p = 1, 2). Replace the CCF in (6.70) with its 
common estimation 
 

 
1 2

1

1 2
0r r

1
( ) ( ), 1 , , 1

ˆ ( )

0, 1

N

n

r n m r n m N N
Nm

m N

−
∗

=

 + = − −ρ = 
 > −

 
        (6.77) 

 
The estimated CSD is now given by the DFT of 

1 2r r
ˆ ( ).mρ We have 

 

   
1 2 1 2r r d r r

ˆ ˆ( ) { ( )}P mω = ρ  

         
1 2

1

r r
1

ˆ ( )
N

j n

n N

n e
−

− ω

= −

= ρ  

         
1 1

1 2
1 1

1
( ) ( )

N N
j n

n N n N

r n m r n e
N

− −
∗ − ω

= − = −

= +            (6.78) 

 
where (6.77) with zero padding was used in the last equality. Let p = n + m; then 

 
 
Figure 6.5 Typical energy-phase representation of the CSD obtained in two EW systems. (Source: 
[12]. © Radiovetenskap och Kommunikation 2002. Reprinted with permission.) 
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Accordingly, 
 

    
1 2r r d 1 d 2

1ˆ ( ) { ( )} { ( )}P r m r m
N

∗ω =    

          s ( ) ( )j De P Eω= ω + ω      (6.80) 

 
where E(ω) is an error term describing imperfections due to finite sample effects 
and noise. Note the similarity between (6.73) and (6.80). 

Utilizing the DFT on a regular grid in place of the d − operator, we obtain 

 

     
1 2r r

2ˆ ( ) ( )
nD

n n
B

πΓ = +       (6.81) 

 
where B  ≥  2N − 1 denotes the number of frequency bins, and ( )n is the error 

term describing imperfections due to finite samples effects and noise. With B = 2N 
− 1, the frequency index n spans the interval n = 1 − N, ..., N − 1, where N is the 
length of the two sample records. 
 
6.6.4 TDOA Estimation 
 
In general, we assume to know very little about the SOIs, so we choose an 
estimator that does not require any probabilistic assumption on the signals. It is 
shown in [2, 4], that a linear least-squares estimator (LLSE) is statistically 
efficient for real-valued flat spectrum signals, but additional weighting is needed 
for non-flat spectrum signals. The proper frequency weighting function for signals 
with arbitrary spectrum is derived in [14]. 

From (6.81), we can constrain a first order polynomial model to have a zero 
bias term. The LLSE criterion becomes 
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21
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1
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N

n N

nD
J D n

N

−

= −
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     (6.82) 

 
which is minimized by 
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LLS r r
1

3 ˆ ( )
2 ( 1)

N

n N

D n n
N N

−

= −

= Γ
π −      (6.83) 

 
Of course the bandwidth of the signal, (−W, W) Hz, must be known and here,        
n = 1− N, . . . , N − 1 denotes the number of frequency-bins allocated by the signal. 
The stationary assumption on the signal yields phase values independent of one 

another [2, 15]. Hence the 
1 2r r

ˆ ( )nΓ ’s are independent of one another. The variance 

of 
1 2r r

ˆ ( )nΓ is [16] 
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2 12
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12
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n
n

n

− γ σ Γ ≈  γ
     (6.84) 

 
where γ12(n) is the discrete coherence function [17] and the approximation comes 
from a small errors assumption. The variance of (6.83) follows as 
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2 12
LLS 2 2 2

1 12
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N
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D
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−
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For flat spectrum signals and equal channel noise powers 2

n ,σ we obtain 

 

 
2

12 2
( )

1 2
n

δγ =
+ δ + δ

 

       
where 2 2

s n/δ = σ σ is the SNR, and with 2
sσ denoting the signal power. 

Evaluating (6.85) yields 
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LLS 2 2

3(2 1) 2 1ˆ( )
4 ( 1)

N
D

N N

− δ +σ ≈
π − δ

 (6.86) 

  
6.6.5 Cramer-Rao Bound 
 
The Cramer-Rao bound (CRB) is given by [18] 
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where T = N / fs is the observation time, and γ12(f) is the coherence function. From 
[18], 
 

     
1 2

2
s

12
r r

( )
( )

( ) ( )

P f
f

P f P f
γ =

    
 (6.88) 

 
In (6.88), Ρs(f), 

1r
( ),P f and 

2r
( )P f are the PSDs of the continuous time signals s(t), 

r1(t), and r2(t), respectively. We assume that s(t), n1(t), and n2(t) are all strictly 
band-limited to the frequency range (−W, W) Hz. Without loss of generality, we 
assume Nyquist sampling, that is fs = 2W. 
 
6.6.5.1 CRB for Flat Spectrum Signals 
 
Assuming flat spectrum signals (see Figure 6.6), that is 
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Accordingly, 
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Figure 6.6 Power spectral densities. 
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where W = fs / 2 was used in the last equality. Proper scaling gives 
 

     2 2

3 2 1
CRB( )

2
D

N

δ +==
π δ

     (6.91) 

 
The result (6.91) forms a lower bound on the performance of any unbiased time 
delay estimator for signals with a fat spectrum. Note that for large N, (6.86) is 
equivalent to (6.91), and thus the LLSE is asymptotically efficient for flat 
spectrum signals. 
 
6.6.5.2 CRB for a Triangular Spectrum 
 
We approximate a signal that has been filtered with a signal that has a triangular 
spectrum as illustrated in Figure 6.6. Considering equal channel noise with a flat 
power spectral density 2

n ,σ we define a frequency-dependent SNR as 

 

     s
2
n

( )
( ) ,

P f
f f Wδ = ≤

σ     
 (6.92) 

 
 Inserting (6.92) into (6.87) yields, for T = N / fs  
 

   
1

2
2s

s 2

( )
CRB( / )

1 2 ( )8

W

W

f f
D f f df

fN

−

−

 δ≈  + δπ  
    (6.93) 

 
The major contribution to the CRB is given by the frequency regions with high 
SNR, that is for ( ) 1.fδ >> Thus, we approximate the CRB in (6.93) as 

 

   
1

2s
s 2

CRB( / ) ( )
4 H

f
D f f f df

N

−
 

≈ δ π  
     (6.94) 

 
where H denotes the high-SNR frequency regions. Consider a signal with 
triangular PSD according to Figure 6.6, where 2 2

s n/δ = σ σ is the SNR within the 

full bandwidth W. Then  
 

     ( ) 2 1 ,
f

f f W
W

 
δ = δ − ≤ 

    

 (6.95) 
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The high-SNR frequency region is characterized by H ∈ (−αW, αW) for some α in 
the interval 0 < α < 1. Inserting (6.95) into (6.94) gives 

  

   

1

2s
s 2

0

CRB( / ) 1
16

W ff
D f f df

WN

−α  
≈ −  π δ    

  

          
2 3 2

3

2 (4 3 )N W
=

π δα − α  
   (6.96) 

 
where fs = 2W was used. Proper scaling gives the CRB for the normalized delay D 
 

    
2 3

6
CRB( )

(4 3 )
D

N
≈

π δα − α
     (6.97) 

 
Comparing (6.91) with (6.97), we note that the latter result is at least twice as large 
as the former one. We may define the high-SNR region by α given by the line 
crossing 2

s n( ) ,P Wα = σ  that is α = 1− 1/2δ. The approximation (6.97) is quite 

accurate, as illustrated in Figure 6.7. 
 
6.6.6 Other Considerations 
 
For long delays, the phase unwrapping can be problematic and can lead to loss in 
performance due to erroneous estimates. One natural approach is to perform a first 

 
 
Figure 6.7 Mean square error as function of SNR for p = 4 and p = 8, respectively. The Cramer-Rao 
bound for flat spectrum signals and triangular spectrum signals are given as references. 
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initial estimate by peak-picking the magnitude of the CCF and precompensate the 
data according to this estimate. Then, a delay estimate with sub-bin accuracy is 
obtained by applying the method described above on the precompensated data. 
The final time delay estimate is obtained as the sum of the initial estimate from the 
CCF method and the correction obtained from the least-squares fit of the phase of 
the CSD. 

Performance can be improved by averaging the CSD. Here, for simplicity, we 
average the CSD without overlap, that is based on N samples the CSD is 
calculated in p disjoint intervals based on N / p measurements. Increasing p lowers 
the SNR threshold. On the other hand, an increased p-value reduces the operating 
range of the estimator, that is, doubling p implies that the operating range of the 
estimator is reduced by half.  
 

Example  
 
Flat spectrum signals are simulated in this example [12]. Based 
on 500 independent simulation runs, the performance of the 
least-squares fit of the phase of the CSD is investigated. 
Gaussian data were generated with an integer delay of D = 3 
samples. A block length of N = 200 samples was considered. 
The mean-square error (MSE) as function of SNR is depicted in 
Figure 6.7. An initial integer-delay estimate was obtained by 
peak-picking the CCF. The correction was obtained by the least-
squares fit (6.83). A sub-block length of 50 and 25 samples were 
used, that is p = 4 and p = 8, respectively. The CSD in each sub-
block was calculated using the discrete Fourier transform of the 
estimated CCF in (6.77), with some additional zero-padding. 

The results are displayed in Figure 6.7. From the depicted 
curves we observe that 25/8 (i.e. a sub-block length of 25 
samples and eight times averaging of the CSD) has a lower SNR 
threshold compared to 50/4. The performance above the 
threshold is similar for both methods, that is, they produce 
estimates with an MSE close to the CRB. The CRB is also 
included, given by (6.91) as is the CRB for the signal with a 
triangular spectrum.  

We can also observe that the MSE is quite low (<–10 dB) 
for rather low SNRs, a very desirable attribute for practical EW 
systems where the target SOIs can be significant ranges from the 
intercept sites. 
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6.6.7 Summary 
 
Direction-finding in an EW scenario is considered and correlation-based TDOA 
estimators, using the phase of the CSD, analyzed. The results using full bandwidth 
flat-spectrum signals show that the considered estimator is asymptotically 
efficient. An approximate CRB for a triangular spectrum signal was derived. The 
triangular spectrum serves as a rough model of an SOI waveform using a roll-off 
filter. At least a 3 dB reduction in performance is encountered compared to a full-
bandwidth flat-spectrum signal. This method shows promising results for use in an 
EW system with DF capabilities. 
 
 

6.7 Effects of Frequency and Phase Errors in EW 
TDOA Direction-Finding Systems 
 
6.7.1 Introduction 
 
The time delay estimation method considered in this section is a frequency-
domain-based method to estimate the TDOA based on correlation and the phase of 
the CSD [15, 19]. In order to digitize the signal of interest, a down conversion in 
frequency is often required using a superheterodyne receiver where an oscillator is 
used to mix the signal of interest to baseband (see Figure 6.3). In a two-channel 
TDOA based DF system the performance may be degraded by mismatches of the 
oscillators of the two intercept receivers. Due to the relatively short acquisition 
time the mismatch in the oscillators are assumed time-invariant during the 
acquisition time. 
 
6.7.2 Perfect Synchronization 
 
For a perfectly synchronized TDOA DF system the transmitter and the intercept 
receivers are tuned to exactly the same frequency (f0 = f1 = f2) and are phase- 
locked (ϕ0 = ϕ1 = ϕ2 = 0), this yields the model described in [4]. The resulting 
received signals follow from (6.1) and (6.2) 
 
 1 1( ) ( ) ( )r t s t n t= +  (6.98) 

 02
2 2( ) ( ) ( )j f Dr t s t D e n t− π= − +  (6.99) 

 
The CCF of these signals is 

1 2r r 1 2( ) { ( ) ( )},r t r t∗ρ τ = + τ and it follows from (6.98) 

and (6.99) that 
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 0

1 2

2
r r ss( ) ( )j f De Dπρ τ = ρ τ +  (6.100) 

 
where the autocorrelation function is given by ss ( ) { ( ) ( )}.s t s t∗ρ τ = + τ The CSD 

follows from the Fourier transform of (6.100), that is 
  
 0

1 2

2
r r ss( ) { ( )}j f DP f e Dπ= ρ τ +  

      02 ( )
ss ( )j f f De P fπ +=  (6.101) 

 
where {}⋅  denotes the Fourier transform. In the second equality  

ss ss( ) { ( )}P f = ρ τ and the time-shift property of the Fourier transform was used. 

The phase of the CSD is 
  
 

1 2 1 2r r r r 0( ) ( ) 2 ( )f P f f f DΓ = ∠ = π +  (6.102) 

 
which is linear in f with slope 2πD and can be used to estimate the TDOA D. We 
see that the unknown carrier frequency of the transmitter, f0, only affects the bias 
of the phase and not the slope, upon which the estimate of D is based. This is the 
estimator that was described in Section 6.5. 
 
6.7.3 Errors in Synchronization 
 
The intercept receivers in Figure 6.1 are typically passive and do not communicate 
with the transmitter, that is, f0 and ϕ0 are unknown. The intercept receivers may be 
separated up to several tens of kilometers which most likely will result in 
frequency and phase offsets between the two oscillators LO1 and LO2. We model 
this as f1 = f2 +   and ϕ1 = ϕ2 + κ where  and κ are unknown constants. For 
simplicity and without loss of generality, let f0 = f1 ≠ f2 and ϕ0 = ϕ1 ≠ ϕ2. The 
received signal from receiver 1 is then given by (6.98) and the output from the 
second receiver is 
 
 2 22

2 2( ) ( ) j f t jr t z t e− π − ϕ=  

                          02
2( ) ( ) ( )j f Ds t D e q t n t− π= − +  (6.103) 

 
where 
 
 2( ) j t jq t e π + κ=   (6.104) 
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is the resulting quantity that describes the receiver imperfections. Since s(t), n1(t), 
and n2(t) are assumed  zero-mean, wide-sense stationary the resulting r1(t) and r2(t) 
are also zero-mean wss, and their autocorrelations are given by 
  
 

1 11 1 ss n n{ ( ) ( )} ( ) ( )r t r t∗+ τ = ρ τ + ρ τ  (6.105) 

 
2 22 2 ss n n{ ( ) ( )} ( ) ( )r t r t∗+ τ = ρ τ + ρ τ  (6.106) 

 
The CCF between the complex-valued, analog, and wide-sense stationary outputs 
of the intercept receivers is 
  
 

1 2r r 1 2( , ) { ( ) ( )}t t r t r t∗ρ + τ = + τ  

                           02
s ( ) ( )j f De D q tπ ∗= ρ τ +  (6.107) 

 
The result follows using (6.98) and (6.103). We note that the CCF depends on 
time, and in particular that 
  

 
1 2 1 2r r r r( , ) ,

k k
t t t t k

 ρ + τ = ρ + τ + + ∀ 
  

 (6.108) 

 
To obtain a time-independent CCF, we time-average to eliminate the dependence 
on t 
  

      
1 2 1 2

/ 2

r r r r

/2

1
( ) lim ( , )

T

T
T

t t dt
T→∞

−

ρ τ = ρ + τ  

 0

/2
2

ss

/ 2

1
lim ( ) ( )

T
j f D

T
T

e D q t dt
T

π ∗

→∞
−

= ρ τ +   (6.109) 

 
which evaluates to

1 2r r ( ) 0ρ τ ≡  due to the infinite observation interval. That is, 

when there are errors in frequency and phase of the receiver oscillators no 
information about the TDOA, D, can be found in the CCF. This is to be compared 
with (6.100) where finding the maxima of the CCF yields an estimate. 
 
6.7.4 Effects of Finite Sample Time 
 
In practical applications the data acquisition is made over a finite time interval 0 < 
T < Tmax. The  acquisition  interval  is  (–T/2, T/2)  for  any  fixed T < ∞  and D is 
assumed to be within (–T, T). The signal in the first receiver is then given by 
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 1 1( ) ( ) ( ) ( ) ( )r t s t p t n t p t= +  (6.110) 

 
where p(t) = u (t + T/2) – u (t – T/2) and u(t) is the step function, that is p(t) = 1 for 

/ 2 / 2T t T− ≤ ≤ and zero otherwise. The delayed signal from the second receiver 
is given by 
  
 02

2 2( ) ( ) ( ) ( ) ( ) ( )j f Dr t s t D e q t p t n t p t− π= − +  (6.111) 

 
where q(t) was introduced in (6.104). The CCF between the complex-valued 
analog receiver signals with finite observations is then 
  
 0

1 2

2
r r ss( , ) ( ) ( ) ( ) ( )j f Dt t t D e q t p t p tπ ∗ρ + τ = ρ + + τ  (6.112) 

 
Again, we remove the time dependency by time-averaging, 
  

 
1 2 1 2r r r r

1
( ) ( , )

T

t t dt
T

ρ τ = ρ + τ


 (6.113) 

 
where  is the nonzero region of 

1 2r r ( , )t tρ + τ  and T  is the time spanned by . 

From (6.110)–(6.112) it follows that 
1 2r r ( ) 0ρ τ = for .Tτ > For Tτ ≤  

 

 
1 2r r

( ), 0
( )

( ), 0

T

T
−

+

ρ τ − < τ <
ρ τ = ρ τ ≤ τ <

 (6.114) 

 
For 0 T≤ τ <  inserting (6.112) into (6.113) yields 
  

 0

/ 2
2

ss

/ 2

1
( ) ( ) ( )

T
j f D

T

D e q t dt
T

−τ
π ∗

+
−

ρ τ = ρ τ + 


 (6.115) 

 
where .T T= − τ The limits of the integral follows directly from (6.112). A 

straightforward calculation gives 
 

 02
ss

sin[ ( )]
( ) ( ) ( / 2)

( )
j f D T

D e q
T

π ∗
+

π − τρ τ = ρ τ + −τ
π − τ



 (6.116) 

 
 ( )−ρ τ follows from symmetry as 
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 0

/2
2

ss

/ 2

1
( ) ( ) ( )

T
j f D

T

D e q t dt
T

π ∗
−

− −τ

ρ τ = ρ τ + 


 

 02
ss

sin[ ( )]
( ) ( / 2)

( )
j f D T

D e q
T

π ∗π + τ= ρ τ + −τ
π − τ



 (6.117) 

  
We see that for Tτ <  

  

 0

1 2

2
r r ss

sin[ ( )]
( ) ( ) ( / 2)

( )
j f D T

D e q
T

π ∗π − τ
ρ τ = ρ τ + −τ

π − τ



 (6.118) 

 
and

1 2r r ( ) 0ρ τ = for .Tτ >  Now the CSD is given by the Fourier transform of 

(6.118) 
  

 0 0

1 2

2 2 2 ( / 2)
r r ss

sin[ ( )]
( ) ( )

( )

T
j f D j j f D j f

T

T
f e D e e d

T
π − κ π − π − τ

−

π − τ
Ρ = ρ τ + τ

π − τ 


 (6.119) 

 
The phase of the CSD is used to estimate the TDOA, D, as described in Section 
6.5.  
 
6.7.5 White Noise Signal 
 
The expression describing the CSD in (6.119) is quite complicated. However, by 
approximating the band-limited signal by a zero-mean white noise, that is, 
  
 ss ( ) ( )ρ τ = δ τ  (6.120) 

 
then the CSD (6.119) evaluates to 
  

 0

1 2

2 ( /2)(w )
r r

sin[ ( )]
( )

( )
j f f D j T D

f e
T D

π + − − κ π −
Ρ =

π −
 


 (6.121) 

 
for .D T<  We can see the familiar sinc(x) function that introduces oscillations 

into the CSD. Note that for some combinations of T, ,  and D, (6.121) is zero. This 
occurs specifically when 
 
 , 0,1, 2,T n D n= + =    (6.122) 
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If n = 0, ,T D= or when the pulse length is equal to the TDOA, 
1 2

(w)
r r ( ) 0,fΡ = and 

the CSD contains no information about the TDOA. 
The phase of (6.121) is 

  

 
1 2

0(w)
r r

2 2 ( / 2) ,
( )

undefined, otherwise

fD f D D T
f

 π + π − − κ <∠Ρ = 



 (6.123) 

 
and we note that in the white noise signal case the frequency and phase errors only 
affect the bias of the phase-slope using the Fourier transform. The white-noise 
approximation is only valid for true wideband signals, that is, when the bandwidth 
of the signal equals or exceeds the receiver bandwidth s( )W W≥  and its spectrum 

is flat. 
 
6.7.6 Simulation Results 
 
The results of simulations based on sample data are run to evaluate the 
performance in the presence of frequency and phase errors are presented in this 
section. Considering a crystal oscillator and a GPS-caliber rubidium oscillator, 
then the relative frequency errors are typically 5

r ~ 10− and 11
r ~ 10 ,− respectively. 

For receiver mixer frequency f0 = 109 Hz and sample rate fs = 107 Hz, this results 
in 3

s10 f−= Hz and 9
s~ 10 f− Hz, hence the numerical simulations are based on 

9 3
s s10 10 .f f− −< < The parameter κ is drawn from the uniform distribution [–π, 

π]. Since the FFT is used to calculate the CSD, its discrete frequency bins 
combined with the frequency error  results in leakage into adjacent bins and a 
noise-like degradation. This effect is not described by the model in (6.119). In 
addition, not sampling at precisely the correct time causes leakage into adjacent 
frequency bins as well [20], which also is not included in (6.119). 

To generate a wideband flat-spectrum signal a white Gaussian sequence is 
used. The estimate of the CCF differs from a delayed version of (6.120) due to the 
finite-length data. This estimation error is suppressed, but not eliminated, by 
windowing the received data and by averaging the estimate of the CCF. The 
additive noise used in the simulations are white Gaussian sequences. The CRB for 
D in an ideal receiver system with a white noise signal and equal power white 
Gaussian noise is given in Section 6.5 as (6.91) 

 

 
2 2

3 2 1
CRB( )

2 N

δ +Δ =
π δ

 (6.124) 
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where N = Tfs is the number of samples used, δ is the SNR, and s/D fΔ =  

samples. We define the SNR as 
  

 ss
2
n

(0)ρ
δ =

σ
 (6.125) 

 
where 

1 2

2 2 2
n n n .σ = σ = σ   

 
6.7.7 Estimator Performance 
 
A frequency-based estimator using the phase of the CSD is used. This estimator 
was investigated in Section 6.5 for the error-free case, where the MSE was used as 
the performance criterion. Two cases are considered, high (30 dB) and low          
(–10 dB) SNR using N = 219 (=524,288) complex samples. The MSE is 
numerically found through simulation for each case using different combinations 
of frequency errors   and block lengths, ψ, in the averaging. That is, the data of 
length N is divided into Λ overlapping blocks of length ψ. The results are 
presented in Figures 6.8 and 6.9 where the gray-scale defines the MSE for the 
scales on the right in the figures. For δ = 30 dB and N = 219 complex data samples 
we note that the CRB is attained for block lengths larger than 28 samples and 
frequency errors 7

s10 f−< Hz. The CRB for 30 dB is 10~ 5 10 .−×  
The low SNR case (Figure 6.9) indicates a higher tolerance against frequency 

errors and the CRB is attained for low and moderate frequency errors using short 
blocks (high degree of averaging). In both cases the estimator performs badly in 
the presence of large frequency errors. This degradation is due to the bin-leakage 
in the FFT due to the frequency error .  
 
6.7.8 Ramifications 
 
In Figures 6.8 and 6.9 we see that for both high (30 dB) and low (–10 dB) SNRs, a 
block length of ψ ~ 26 – 28 complex samples gives low MSE using N = 219 
complex data. However, we have shown that this is valid only for data length       
N = 219. What block length should be chosen for a specific data length and a 
specific frequency error?  

In Figures 6.10 and 6.11, the optimal block length is shown for combinations 
of data length and frequency errors. The high SNR simulation (Figure 6.10) shows 
that large block lengths should be chosen at all data lengths, with an exception for 
large frequency errors where the estimator performs badly and the size of the MSE 
is in parity with the block length squared. Choosing the block length to ψ ~ 26 – 
210 gives good results at all data lengths and frequency errors. Note that Figure 
6.10 implies  that  for  really  large data lengths the optimal block length becomes 
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Figure 6.8 For high SNR, here γ = 30 dB, and small ,  ψ ~ 28 – 218 gives the smallest MSE. However

in presence of large frequency errors, shorter blocks of length ψ ~ 22–26 give the lowest MSE. The
white grid shows the level of the CRB, that is where the CRB is attained. (Source: [19]. © 2003 IEEE.
Reprinted with permission.) 
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Figure 6.9 For low SNR, here –10 dB, block lengths of ψ ~ 24 – 26  give the lowest MSE regardless of
the frequency error. The white grid shows the level of the CRB, that is where the CRB is attained.
(Source: [19]. © 2003 IEEE. Reprinted with permission.) 
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Figure 6.10 For high SNR the conclusion is to choose the longest block length possible. However, for
large frequency errors shorter blocks should be chosen. The sawtooth characteristic is due to limited
steps in the simulation. (Source: [19]. © 2003 IEEE. Reprinted with permission.) 
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Figure 6.11 For low SNR, shorter blocks (here  ψ ~ 22–24 samples) give the lowest MSE.  (Source:
[19]. © 2003 IEEE. Reprinted with permission.) 
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small (for all ) and the MSE becomes large. This is also seen in (6.109) and 

(6.118) since large N equals large T. The low SNR simulation (Figure 6.13) shows 
that short blocks gives the best result regardless of the frequency error. Here the 
degradation from the frequency error   (bin-leakage) is small compared to the 
degradation from the channel noise (SNR). The simulations also verify that the 
phase error κ is of no importance to the performance of the estimator as seen in 
(6.123). 
 
6.7.9 Summary 
 
A model describing a two-channel EW receiver system with frequency and phase 
imperfections in the receiver oscillators was established for a TDOA DF system. 
Numerical simulations verify that the oscillator phase is of no importance to the 
performance of the estimator. The simulations also show that the large frequency 
errors in an ordinary crystal oscillator are too large to be useful. However, a 
rubidium oscillator gives satisfactory results and the CRB for an ideal system 
(with no frequency error) is attained in some cases. 
 
 

6.8 Concluding Remarks 
 
We investigated some techniques for determining the TDOA of a signal arriving at 
two dispersed intercept sites in this chapter. This information can then be used 
with the methods discussed in Chapter 3 for estimating the geolocation of the 
target emitter from which the signal emanates. This is a critical function of EW 
systems as it is used to ascertain the electronic order of battle, as well as 
potentially determine target locations accurate enough for targeting of artillery and 
other kinetic weapons. 
 We established that the errors inherent in the synchronization of the receivers 
at the two intercept sites, that is frequency and phase offsets, have no effect on the 
accuracy of the TDOA estimate when the phase of the CSD is used to determine 
the TDOA. 
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Chapter 7 
 
 

Single-Site Location Techniques 
 
 

7.1 Introduction 
 
Skywave HF signals can be geolocated by triangulation with two or more DF sites, 
just as signals in other frequency bands can be. In this chapter we will discuss 
techniques for geolocating HF signals using only a single sensor site. As will be 
seen, this is possible because long-range HF signals are reflected (refracted 
actually) in the ionosphere back to the Earth, and measuring the AOAs in three 
dimensions allows calculation of the PF of the transmitter when the effective 
height of the point of reflection is known. This height information is not required, 
however, when there are two or more ray paths arriving at the sensor sight and the 
angles of arrival of these rays can be measured and discerned. 
 
 

7.2 HF Signal Propagation 
 
Under some circumstances, HF signals can propagate for considerable distances. 
This long-range communication capability of such signals was used by navies 
around the world for ship-to-shore and ship-to-ship communications before 
satellite systems were available. In fact, it is still used for that purpose. 
 The ionospheric layers that surround the Earth are responsible for the 
phenomenon. During the daytime there are four layers involved in the process, the 
lowest being the D-layer, the next the E-layer, and then two F-layers: the F1 and 
F2. At night the two F-layers combine into one and the D- and E-layers disappear, 
as shown in Figure 7.1. These layers are regions of ions that have been charged by 
bombardment of atoms with photons from the sun and the resulting free electrons.  
It is widely believed that it is the free electrons that are responsible for the 
refraction  phenomenon;  the   positively  charged  ions  have  a  minor role.  They 
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Figure 7.1 Structure of the atmosphere close to Earth. 
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interact with HF signals and the Earth’s magnetic field in such a way that EM 
wave refraction is possible. Normally this is below 10 MHz or so, but can occur 
higher depending on the density of the free electrons. 
 The D-layer does not actually refract HF signals, but can attenuate them such 
that penetration is impossible. The E-layer refracts HF signals, as do the F-layers. 
Occasionally, a highly ionized small region will traverse rapidly through the E-
layer. This is called sporadic E, and it significantly changes the characteristics of 
the reflecting process. The frequency characteristics change as well as the 
amplitude of the reflection. 
 Propagation via the ionosphere is also possible under some circumstances in 
the low VHF range (up to 100 MHz) as well. The mechanism is the same as for 
the HF. Distances of up to 2,000 km are possible.  
 More than one reflection is possible by the EM wave reflecting off the 
ionosphere and returning to the ground, as shown in Figure 7.2. If the ground is 
suitably reflective (this is a reflection, not refraction), the signal will be reflected 
again upward. This can continue for several hops. 
 Short-term disturbances of the composition of the ionosphere in a region 
sometimes occur which impact HF radio propagation.  They are super-ionized 
regions that last only a short time and are called traveling ionospheric 
disturbances (TID). 
 Short-range propagation of HF signals is also possible, of course. The modes 
of propagation involved with such signaling follow the same rules that VHF and 
higher signals follow. The direct wave travels straight from the transmit antenna to 
the receive antenna. This can only occur, however, if the two antennas are within 
radio line of sight of one another.  

There is also a phenomenon known as surface wave propagation that occurs 
much more predominantly in the HF range than in higher ranges. This is caused by 
the interaction of the Earth’s characteristics (mainly the dielectric constant along 

 
 
Figure 7.2 Ionospheric propagation modes vary and can consist of several hops. 
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the propagation route) with that of the air immediately above it. Such waves 
follow the curvature of the Earth and can propagate several hundreds of 
kilometers. 

The geolocation of HF signals with these propagation modes is calculated by 
the same techniques as for VHF+ signals described elsewhere herein. The mode of 
propagation of interest in this chapter is that due to ionospheric reflections that, 
most of the time, are used for long-distance communications [near vertical 
incidence sky wave (NVIS) is an exception to this]. 

Figures 7.1 and 7.2 can be misleading because their dimensions have been 
intentionally exaggerated to show detail. The actual HF signal propagation paths 
would be more like those shown in Figure 7.3. 
 
7.2.1 Ionograms 
 
The heights of the various ionospheric layers are measured with sounders. These 
are devices that send a signal upward and measure the time delay when a response 
is received. The frequency is varied (usually swept) so that the ionospheric heights 
are measured versus frequency. The resultant graph of virtual height versus 

frequency is called an ionogram. 
 Vertical sounding is when the height is measured directly overhead of the 
receiving site. This is the only method typically available to SSL PF systems; 
since the targets to be located can normally be anywhere in azimuth and measuring 
the height of the ionosphere at other points would require many such sounders. 
When the ionospheric height is measured at some point other than directly 
overhead, it is referred to as oblique sounding. On HF communication paths such 

 
 
Figure 7.3 The Earth and ionosphere in correct perspective. 



Single-Site Location Techniques 
 

 

 

339 

measurements are feasible, but, as mentioned, are not practical for calculating a 
PF. 

The devices used to measure the height of the ionosphere versus frequency are 
called ionospheric sounders. Typically, a swept signal is radiated straight up for 
vertical sounders or at an angle for oblique sounders. The time of the return 
reflection is compared to when the signal was transmitted to ascertain the 
ionospheric height. The resultant displays of the sounder results are the ionograms. 
A typical vertical ionogram is illustrated in Figure 7.4 taken at Boulder, Colorado, 
on June 29, 1968, at 1930 hours UT.1 

Vertical sounders, of course, measure the ionospheric height directly 
overhead. It is frequently assumed that the ionosphere is homogeneous, and the 
heights are the same throughout the region. The height is usually measured at the 
site of the PF system, and it is assumed to be the same height at the reflection 
point. This is rarely true, so such techniques for measuring the location of 
transmitters are not that accurate. EEPs with axes that are 10% of the range to the 
target are typical. Thus, if the target is 100 km from the PF system, the major axis 
of the EEP can be 10 km or more. It should also be noted that, although the 
reflecting surface discussed here was the ionosphere, any reflecting surface could 
                                                           
1 Universal time (UT) is time at the Greenwich Observatory outside of London, United Kingdom, 
where the prime meridian (0o longitude) is located. UT is also known as Greenwich time (GT), 
Greenwich mean time (GMT), and Zulu time. 

 
Figure 7.4 Typical ionogram display. This was obtained at Boulder, Colorado, on June 29, 1968 at
1930 hours UT. The critical frequencies for the layers can be ascertained, as can the LUF. The LUF is
just below 2 MHz, while f0E is just below 4 MHz, f0F1 is approximately 5 MHz, and f0F2 is about 6.6
MHz. (Source: [1]. © Peter Peregrinus 1989. Reprinted with permission.) 
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also be used in some circumstances as long as the distance between that surface 
and the PF system is known. The effects of range between the emitter and receiver 
on the ionospheric characteristics are typified by the ionograms shown in Figure 
7.5. The maximum frequency that can be used increases with increasing distance 
between the transmitter and receiver, even though the critical frequency,  which is 
always measured directly overhead, remains the same. In fact, the maximum 
usable frequency (MUF) and critical frequency are related by Snell’s law: 
 
 max c 0secθf f=  (7.1) 

 
where θ0 is the zenith angle (measured from the virtual point of reflection). The 
critical frequency for the E-layer is denoted by f0E, while that for F1 is denoted by 
f0F1, and for F2 by f0F2. 
 
7.2.2 Magnetic Field Effects 
 
The principal effect of the Earth’s magnetic field on ionospheric waves is to split 
the wave into two: one being left-handed (with respect to the magnetic field), the 
so-called ordinary wave, and the other being right-handed, the so-called 
extraordinary wave [2]. The directions here refer to the rotation direction of the 
polarization vector. These two components traverse the ionosphere via totally 
different paths. They recombine when they leave the ionosphere, and the net effect 
is to change the polarization of the wave headed downward toward the receiver. 
 The frequencies of these two waves are different. Furthermore, the 
relationship between these frequencies depends on the orientation of the wave 
propagation relative to the orientation of the magnetic dipole of the Earth. Thus, 
waves propagating north-south or south-north will have different characteristics 
than those propagating east-west or west-east. 
 

 
 
Figure 7.5 Oblique ionograms determined at different distances between the transmitter and receiver:
(a) vertical, (b) short distance, (c) medium distance, and (d) long distance. Note that the trace is
asymptotic to the critical frequency and that the maximum frequency increases with increasing
distance.  
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7.3 Single-Site Location 
 
The source of HF signals propagating via sky-wave paths can be located by 
triangulation using any of the techniques discussed previously. However, it is also 
possible to use a single PF system for this purpose under some circumstances. If 
the elevation of the ionospheric layer that the HF signal is refracting through or, 
more accurately, the equivalent height of the layer that is reflecting the signal is 
known, as shown in Figure 7.6, then the emitter can be located since we know the 
range to the target and its angle of arrival. The wave is assumed to be reflected at 
the midway point between the transmitter and the PF system. The elevation angle 
is related to the range and ionospheric height by 
 

 
/ 2

tan
B

h
θ =  (7.2) 

 
so 
 
 2 tanB h= θ  (7.3) 

 
Thus, by measuring the elevation AOA, the range to the target can be 

estimated. Although this derivation was given using planes for the ionosphere and 
the Earth, it can also be derived using spherical surfaces, which is more accurate. 

For the SSL technique to function properly, the number of times the signal has 
been reflected off the ionosphere and/or the ground must be known. Otherwise, the 
range to the target cannot be determined. Signals that arrive from a longer range 
will arrive at a lower elevation angle and this may assist in determining the 
number of hops. Otherwise, it is necessary to assume some number of reflections  
(usually one). 

 
 

7.4 Passive SSL 
 
When the signal arrives at the sensor from two or more directions, multipath 
propagation modes are present. In such cases it is possible to calculate the target 
location without sounding the height of the ionosphere. This is called passive SSL. 
 Consider the situation depicted in Figure 7.7 that shows the signal being 
reflected off two different ionospheric layers. According to the Briet and Tuve 
Theorem [3, 4], even though the signals are in actuality refracted in the 
ionospheric layers, there  are  equivalent  planes  from which  the  signals  can  be  
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Figure 7.6 Single-site location of HF emitter. 
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assumed to be reflected. It is assumed that the Earth is flat, as are the equivalent 
reflecting planes, and the range can be determined as  
  

L H

ˆ ˆ
2 2ˆ ˆtan tan

B B

h h h
θ = θ =

+ Δ
 

 
L H

ˆ ˆ/ 2 / 2
ˆ ˆtan tan

B B
h h= = − Δ

θ θ
 

 

H L

2ˆ
1 1
ˆ ˆtan tan

h
B

Δ=
−

θ θ

 (7.4) 

 
Now consider the detail of the signal and ionosphere interaction shown in Figure 
7.8. The TDOA of the two signals at the receiver site is denoted by τ and the speed 
of propagation is denoted by c. Point A is the reflection point of the signal in the 
lower layer, while point C is that for the upper layer. Denoting the receive point as 
Rx (the transmit point could also be used with a mirror reflection of Figure 7.7), 
triangle ABRx forms an isosceles triangle because the time to travel from A to Rx 
is the same as that from B to Rx, by construction of line AB. Summing the angles 
around the triangle defined by ABC then 
  

 H
ˆβ = α − θ  (7.5) 

 
From triangle ABRx, 
 

 L H
ˆ ˆ2 180 ( )α = − θ − θ  

 
 
Figure 7.7 Multipath reflection. 
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Figure 7.8 Multipath reflection details. 
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L H
ˆ ˆ

90
2

θ − θ
α = −

         
(7.6) 

 
and 
 

 
L H

ABC 180

ˆ ˆ
90

2

∠ = − α

θ − θ
= +

 (7.7) 

 
From the law of sines, 
 

 
H L L H

2
ˆ ˆ ˆ ˆ

sin 90 sin 90
2 2

c hτ Δ=
   θ + θ θ − θ− +      
   

 (7.8) 

 
Solving (7.8) for Δh and substituting into (7.4) yields 
 

 

L H

L H

H L

ˆ ˆ
sin 90

2
ˆ

1 1 ˆ ˆ
sin 90ˆ ˆtan tan 2

c
B

 θ − θ+  τ  =
 θ + θ− −  θ θ  

 (7.9) 

 
Therefore, the range can be determined by measuring the two elevation AOAs [if 
there are more than two, they can be combined two at a time in (7.9) and the result 
averaged]. 
 As above, the target location is found by combining the range information 
with the azimuth angle of arrival, as illustrated in Figure 7.9. 
 
 

7.5 Determining the Reflection Delay with the 
Cepstrum  
 
The cepstrum is one processing technique for determining the time delay between 
two versions of the same signal or the echoes of a signal that has been reflected. 
Knowledge of the time delay is necessary for measuring both the azimuth AOA 
and  the  elevation  AOA  for SSL  PF  estimation. Other  methods  for  measuring  
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Figure 7.9 SSL target location. 
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differential dime delay have also been proposed, including the generalized 
correlation method (GCM) [5] and the adaptive eigenvalues decomposition 
algorithm [6]. 

Its genesis lies in the technology of speech processing, but it has been widely 
applied outside of that area. The cepstrum can be employed to determine the time 
delays of the reflections described in the previous section. 

Generally speaking, the complex cepstrum is found by computing the inverse 
Fourier transform (FT) of the logarithm of the FT of the signal [7]. The power 
cepstrum is also sometimes used. The complex cepstrum retains the phase 
information and therefore requires phase unwrapping, while the power cepstrum 
does not retain the phase. 

If c(t) represents the baseband impulse response of the propagation path and 
g(t) represents the baseband impulse response of the transmitter and receiver, then 
the received demodulated signal is given by 
 

( ) ( ) ( ) ( )r t T t h t g t= ∗ ∗            (7.10) 

 
where T(t) is the source signal and ∗  denotes convolution. The source signal 
represented at the receiver output is therefore given by 
 

     ( ) ( ) ( )s t g t T t= ∗             (7.11) 

 
Therefore, 
 

     ( ) ( ) ( )r t s t c t= ∗             (7.12) 

 
The goal is to determine c(t) from (7.12). The power spectrum of r(t) is given by 
 

    ( ) ( ) ( )R f S f C f=
    

        (7.13) 

 
Calculating the natural logarithm, 
 

   ln ln ln( ) ( ) ( )R f S f C f= +            (7.14) 

 
The inverse FT of (7.14) (denoted by IFT) yields the power cepstrum of r(t) 

 

       
ˆ( ) [ln ]( )r t IFT R f=  

     ˆ ˆ( ) ( )s t c t= +             (7.15) 
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As long as ˆ( )s t  and ˆ( )c t  do not overlap in the cepstrum domain, ˆ( )c t can be 

found by filtering. 
 Note that 
 

{ }[ln ] ln( ) ( )FT IFT R f R f=  

    { }exp ln ( ) ( )R f R f=  

      
( )( )IFT tR f = γ  

 
where γ(t) is the autocorrelation function of r(t). 

To illustrate using the cepstrum for the purpose of determining the TDOA of 
the two multipath components, assume that the signal consists of impulse 
functions [8] that are by definition short, which are transmitted at intervals that are 
long enough so that the channel and all receiving equipment has settled by the 
time the next impulse occurs. In that case, the channel impulse response can be 
written as 
 

    ( ) (0) δ( )r t A= δ + τ             (7.16) 

 
where A is the normalized signal strength of the second multipath component and 
τ is the TDOA to be determined. The power spectrum of r(t) is of the form 
 

   2( ) 1 2 cos(2 )R f A A f= + + π τ           (7.17) 

 
which can be written in the form 
 

    2
2

2
( ) (1 ) 1 cos(2 )

1

A
R f A f

A
 = + + π τ +          

(7.18) 

 
Now using the series expansion of ln(1 + x) as 
 

  
2 3 4

ln(1 ) 1
2 3 4

x x x
x x x+ = − + − + <        (7.19) 

 
and ignoring all but the first term, 
 

     ln(1 ) 1x x x+ ≈ <<         (7.20) 
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Using this approximation in ln ( )R f  yields 

 
 2ln ( ) ln(1 ) 2 cos(2 )R f A A f≈ + + π τ  (7.21) 

 
which is the cepstrum of r(t). This cepstrum contains an impulse at the time delay 
equal to the TDOA. 
 The cepstrum is an example of an area of signal processing referred to as 
homomorphic deconvolution [9, 10]. Systems that obey the homomorphic rules are 
characterized by a generalization of the rules of superposition that are inherent to 
linear time invariant systems. Homomorphic deconvolution is a form of 
generalized filtering. 
 
 
7.6 MUSIC Cepstrum SSL 
 
Using (7.9) to compute the range to the target requires knowing the TDOA, τ, 
between the arrival times of the signals at two antennas at the receiver (typically, 
more than two antennas are used and the results combined). Johnson, Black, and 
Sonsteby developed a method of computing this TDOA when interference is 
present using an adaptation of the MUSIC algorithm [11]. 
 The geometry considered is illustrated in Figure 7.10. The transmitted signal, 
s(t), is reflected off a lower layer and a multipath version of the same signal is 
reflected off a higher layer. The signals received at the receiving array, denoted 
r1(t) and r2(t) corresponding to antenna 1 and antenna 2, respectively, are a 
combination of the lower signal and the multipath component. The received 
signals can be represented as 

 
 
Figure 7.10 Interfering multipath signals for passive ranging. 
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           1 g s( ) ( ) ( )r t A s t A s t= + − τ  (7.22) 

 2 g g s s( ) ( ) ( )r t A s t A s t= − τ + − τ − τ  (7.23) 

 
where τg is the propagation delay of the interfering signal between the two 
antennas at the receiver, τs is the propagation delay for the lower signal, and Ag is 
the path attenuation of the interfering signal, assumed the same for both receive 
antennas, since it is assumed that the antennas are much closer together than the 
height of the reflecting ionosphere, likewise for As, which is the path attenuation of 
the lower signal. Calculating the Fourier transforms of (7.22) and (7.23) yields 
 
                        2

1 1 g s[ ( )] ( ) ( ) ( )j fr t R f A A e S f− π τ= = +  (7.24) 

 g g2 2 ( )

2 2 g s[ ( )] ( ) [ ] ( )j f j fr t R f A e A e S f− π τ − π τ +τ= = +  (7.25) 

 
where S(f ) is the Fourier transform of s(t). 
 The normalized cross-power spectrum of r1(t) and r2(t) is 
 

 
1 2

1 2
r r 2 2

1 2

( ) ( )
( )

( ) ( )

R f R f
P f

R f R f

∗

=  (7.26) 

 
which, in polar form, becomes 
 

 
1 2

2

1 2 1 2

r r 2 2

1 1 2 2

arg( ) ( )
( )

( ) ( )

A A A A S f
P f

A A S f A A S f

∗ ∗

∗ ∗
=  (7.27) 

 
where 
 
 2

1 g s 1 1
j fA A A e A A− π τ= + = ∠  (7.28) 

 
and 
 

 g s
2 2 ( )

2 g s 2 2

j j fA A e A e A A− πτ − π τ +τ= + = ∠  (7.29) 

 
Expression (7.27), after trigonometric manipulation and with the addition of noise, 
reduces to 
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1 2

( )
r r ( ) ( )j fP f e n fϕ= +  (7.30) 

 
where 
 

2 2
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sin 2 sin 2
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 
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    + π τ + τ − τ π τ + τ     

 (7.31) 

 
 Assume that the signal is distributed over F frequencies so that 
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
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 (7.32) 

 
The spectral cross-correlation matrix is given by 
 

 
1 2 1 2 1 2

†
r r r r r r( ) { ( ) ( )}f P f P f=R 

 
 (7.33) 

 
The ijth element of 

1 2r r ( )fR is given by 

 

     ( )( )( ) {[ ( )][ ( )]}ji
j fj f

ij i jr f e n f e n fϕϕ= + +  (7.34) 

 [ ( ) ( )] 2 ( )i jj f f

i je f fϕ −ϕ= + σ δ −  (7.35) 

 
It is the spectral cross-correlation matrix 

1 2r r ( )fR
 

upon which the MUSIC 

processing is performed. 
 MUSIC determines the eigendecomposition of R. This finds the eigenvalues 
and their associated eigenvectors. The eigenvalues {λi} are ordered such that 

1 1F F −λ ≥ λ ≥ ≥ λ  with corresponding eigenvector matrix 

 
 e 1 1[ ]F Fe e e−=E   

  (7.36) 
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For a single pair of coherent signals, as is the case here, Ee will have rank 1 with a 
single eigenvector ( )Fe


and the nullspace matrix is given by the remaining 

eigenvectors as  
 
 N 1 2 1[ ]F Fe e e− −=E   

  (7.37) 

 
The MUSIC spectrum is given as 
 

 
H H

N N

1
( )P f

b b
=

E E
   (7.38) 

 
where 
 

 1 2
T( ) ( ) ( )Fj f j f j fb e e eϕ ϕ ϕ =  


  (7.39) 

 
To find the TDOA to use in (7.9) for calculation of the range, the spectrum given 
by (7.38) is searched for the peak value. 

When there are p paths, as opposed to the two just discussed, then 
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      0ii iτ = ∀  (7.42) 

 
and the paths are characterized by 
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The amplitude of the ith path is Vi, the delay between antennas for path i is τi, and 
the delay between antenna i and the reference antenna (1) is τi1. 
 
 

7.7 Earth Curvature 
 
The development above assumed that the surface of the Earth was a plane. For 
those cases where the range is 500 km or more, the curvature of the Earth cannot 
be ignored for purposes of determining the PF of the target. The geometry is 
illustrated in Figure 7.11. The distance from the receive sensor to the halfway 
point in the path is given by the arc s and 
 
 Es R= α  (7.45) 

 

 
 
Figure 7.11 Effects of the curvature of the Earth’s surface. 
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when α is measured in radians and RE is the radius of the Earth (assumed to be 
spherical). The totality of the angles around triangle ABC is 
 

 EL 2

πα + β + θ =  (7.46) 

expressed in radians. Finally, by the law of sines, 
 

 E E

ELsin sin( / 2 )

R R h+
=

θ π + β
 (7.47) 

 
Manipulating (7.45) through (7.47) yields 
 

 1 E EL
E EL

E

( )sin
cos

2

R h
s R

R
− + θπ= − θ − 

 
 (7.48) 

 
and B = 2s. 
 One of the effects of including the Earth’s curvature is to decrease the MUF. 
This is because the effective distance between the transmitter and receiver is 
decreased. 
 The maximum one-hop range is determined by including the curvature. This 
range is given by 
 

 m E 08d R h=  (7.49) 

 
and the MUF is given by 
 

 E
max c

02

R
f f

h

 
≈  

 
 (7.50) 

 
where h0 is the reflection height. 
 
 

7.8 Skywave DF Errors 
 
7.8.1 Introduction 
 
Other than instrumental inaccuracies, errors in DF of skywave signals are caused 
primarily by lateral deviations of the estimated equivalent reflection point. Causes 
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of lateral deviations of the equivalent reflection point are due to ionospheric 
disturbances such as ionospheric tilts, TIDs, polarization rotation, and the lens-
effects such as focusing and defocusing.  
 Sounding of the ionosphere for skywave DF, especially SSL, is usually 
accomplished obliquely. That is, directly overhead of the intercept site. Yet the 
skywave signals are usually propagating from considerable distances from the 
intercept site. The validity of oblique sounding results depends largely on the state 
of the ionosphere at the time of the sounding versus when estimating the DF. If the 
ionosphere is relatively undisturbed then oblique sounding is a useful tool. If it is 
disturbed that is not likely the case. 
 
7.8.2 Magnetic Field Effects 
 
As mentioned, when the effects of the Earth’s magnetic field are considered, the 
ray path can be significantly different from what is expected. The magnetic field 
causes the ordinary wave and extraordinary wave to take different paths and that 
can force the point of virtual reflection to be considerably different from the 
vertical (oblique) sounding results. 
 
7.8.3 Ross Curve 
 
The Ross curve [12] shows the variance in DF bearing as a function of target 
range, as derived from a large amount of quality data mostly collected during 
World War II. The variance represents the ionospheric effect on the bearing error 
due to disturbances such as TIDs. There is a general decrease of the variance with 
range out to about 1,000 km, followed by an increase attributed to the presence of 
several propagation modes. A Ross curve is shown in Figure 7.12. 
 
7.8.4 Bailey Curve 
 
A Bailey curve of azimuth angle estimate deviation is shown in Figure 7.13 [13]. 
Like the Ross curve, we can see significant errors, well in excess of 10o, especially 
at short ranges. These lateral deviations change relatively slowly compared to 
other sources of error such as polarization. 
 
 
7.9 Ray Tracing 
 
Ionospheric tilt can cause significant errors in PF computation with SSL 
techniques. If the ionosphere is not  accurately  modeled as a horizontal plane, the 
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Figure 7.12 Ross curve. 

 
 
Figure 7.13 Bailey curve for a 5 km lateral displacement of the equivalent reflection point. 
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measured azimuth will be incorrect, as the effective tilt will cause the signal to be 
reflected at an incorrect angle. 
 The ionospheric tilts are caused by horizontal gradients of the refractive index 
in the ionosphere. This, in turn, is caused by nonuniform ionic densities. The effect 
is particularly problematic for SSL PF calculations when TIDs occur. 
 Mathematical models of the ionosphere have been developed in which it is not 
represented as a flat plane. Ray tracing is the appellation applied to utilization of 
these models, and, technically, the term also applies when the ionosphere is 
modeled as a plane. Theoretically, if details of the ionospheric structure are 
known, the ray paths taken by the signal between the transmitter and receiver can 
be retraced and the PF of the emitter can be determined by the intersection of the 
multiple paths. Measurement errors and noise, of course, prevent this from 
happening, and the characteristics of the ionosphere can only be determined to a 
certain degree of accuracy. Furthermore, in the case of PF on target emitters, the 
ionospheric height is normally measured at the location of the receiver, and a flat 
ionospheric plane is assumed. Measuring more details about the ionosphere is 
usually precluded when the targets in question are hostile. Therefore, modeling is 
a useful tool for increasing the accuracy of the measurement of the azimuth AOA. 
 The effects of refraction in a nonanisotropic medium can be accounted for 
using Fermat’s principle of least path time.2 Fermat’s principle dictates that the 
path traversal time is minimized, which accounts for the apparent bending of a 
light ray at the interface of two media of different refractive indices. Using the 
calculus of variations, this can be expressed as 
 

 
2

1

0
E

E

dsδ μ =  (7.51) 

 
where E1 and E2 are the two end points of the path and μ is the refractive index of 
the ionosphere. Converting this to polar coordinates, 
 

 2 2 2 2ds dR R d dz= + α +  (7.52) 
 
where R is the distance from the center of the Earth, α is the great circle distance 
angle, and z is the lateral distance. With 
 

 2 2 2' ' ' '
dR dz

R z L R R z
d d

= = = μ + +
α α

 

                                                           
2 An anisotropic medium is one that accounts for the magnetic-ionic interaction effects. The effects of 
the Earth’s magnetic field can be taken into account but are ignored here. 
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then, from (7.51), 
 

 0
'

d L L

d R R

∂ ∂ − = α ∂ ∂ 
 (7.53) 

 
and 
 

 0
'

d L L

d z z

∂ ∂ − = α ∂ ∂ 
 (7.54) 

 
Let 
 
 2 2 2 1/ 2'( ' ' )Q R R R z −= μ + +  (7.55) 

 
and 
 
 2 2 2 1/ 2'( ' ' )W z R R z −= μ + +  (7.56) 

 
then, because for path P, 
 
 1dP ds−= μ  (7.57) 

 
we get the following 
 

                                            
dR

Q
dP

=   (7.58) 

 
2 2 2 21

2

dQ Q W

dP R R

∂μ μ − −= +
∂

 (7.59) 

                                            
2 2 2 1/2( )d Q W

dP R

φ μ − −=  (7.60) 

                                           
21

2

dW

dP z

∂μ=
∂

  (7.61) 

                                            
dz

W
dP

=   (7.62) 
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Equations (7.58) through (7.62) specify the coordinates of a ray given in terms of 
R, z, and φ at every point along P given that the initial conditions and the refractive 
index are specified. 
 The refractive index is a function of the coordinates in the ionosphere and is 
approximated by 
 

 
1/ 2

2

( , , )
( , , ) 1

N R z
R z

f

 β αμ α = − 
 

 (7.63) 

 
where N(R,z,α) is the electron density (electrons per cubic centimeter), f is the 
frequency in megahertz, and β  = 8.05 × 10–5 MHz2cm3. 
 Assuming that there are three layers in the ionosphere, the E, F1, and F2, then 
the electron density is a function of the height above the Earth, h, and is 
spherically symmetric. Using a cylindrical coordinate system, then, N(r,z,α) is a 
function of R but not of z nor α, (7.61) and (7.62) are not needed, and (7.58) to 
(7.60) reduce to a two-dimensional model. 
 The electron density is given by [14, 15] 
 
 1 1[1 sec exp( )]/ 2

1 0( ) r rN r N e − − χ −=  (7.64) 

 
where χ is the zenith angle of the sun relative to the ionosphere, where it has been 
tacitly assumed that dN(R)/dt is small. In addition, 
 

 0
1

p

R R
R

H

−
=  (7.65) 

 
where R0 is the reference height where the production of ions is maximum when 
the sun is directly overhead. Hp is the pressure scale height given by 
 

 p

KT
H

mg
=  (7.66) 

 
with 
 

mean molelular mass

acceleration of gravity

temperature (Kelvins)

m

g

T

=
=
=
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The irregular variations of the magnetic field disturbances are given by K. 
When there are lateral gradients in the electron density in the ionosphere, then 

there is a dependence on altitude z and the electron density is denoted as N(R, z).  
From (7.63) 

 

 
2

2

( , ) ( , )R z N R z

R Rf

∂μ β ∂= −
∂ ∂

 (7.67) 

 
and 
 

 
2

2

( , ) ( , )R z N R z

z zf

∂μ β ∂= −
∂ ∂

 (7.68) 

 
 For a ray that originates at sea level, then the initial conditions are that R is the 
approximated radius of the Earth, Q = sin θEL, and W = z = 0. This is sufficient 
information to solve (7.58) through (7.62) numerically. 
 The electron density in the ionospheric layers can be modeled as parabolas. In 
that case, several interesting characteristics emerge. An example of this is 
illustrated in Figure 7.14. In general, the entry and exit angles are not equal. They 
are, however, related by 
 
 2 2

e i e isin sin ( )A x xφ − φ = −  (7.69) 

 
and 
 

 

 
Figure 7.14 A horizontal tilt in the parabolic layer model causes an asymmetric ray path. 
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  2 2 2 2
e i e icos cos ( )C z zφ − φ = − −  (7.70) 

 
where 
 

0
2

A
A

f
= −  

2

m

cfC
fy

 
=  
 

 

A0 is the gradient of (f0F2)2 in the horizontal direction 

mz h h= −  

ym is the semithickness of the layer 
hm is the height of the maximum electron density 
 
7.9.1 Parabolic Modeling 
 
Parabolic mathematical models of the ionospheric layers have proven to be fairly 
reliable and they can be fit well to the layers with parameters determined from 
ionograms. Baker and Lambert [16] discuss multiquasiparabolic ionospheric 
models, initially developed by them [17] and Dyson and Bennett [18]. In that 
model, the electron density profile is given by 
 

 
2

m
m

m

( ) 1
h h

N h N
y

  −
 =  
   
  (7.71) 

 
where N is the electron density at height h, Nm is the maximum electron density at 
height hm, and ym, as above, is the layer semithickness. The minus sign 
corresponds to a parabolic layer, while the plus sign applies to an inverted 
parabolic layer. An ionosphere with an E-layer and an F-layer is thus modeled 
with two normal parabolic layers with an inverted parabolic transition segment 
between them. The height ht2 at which the transition segment 2 blends with layer 3 
and the semithickness of that transition segment ym2 are given by 
 

2 2m1
m3 m3 m1 m3

m3

t2
m1 m3

1
N

y h h h
N

h
h h

  
− + −  

  = −
−

    (7.72) 

 
and 
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 2 2t2 m1m1
m2 m3

m3 t2 m3

h hN
y y

N h h

  −
= −  −  

 (7.73) 

 
This model is illustrated in Figure 7.15, which compares two ionospheres with the 
Dudeney model. The two ionospheres are the same except the second one contains 
a slab of electrons of constant density above hmE. 
 
 
7.10 Accuracy Comparison of SSL and Triangulation 
for Ionospherically Propagated Signals 
 
7.10.1 Introduction 
 
Horing undertook an investigation of the comparison of the SSL technique to 
triangulation for long-range propagated HF signals [19]. The model he used for his 
analysis is shown in Figure 7.16. Since the analysis was about SSL, it was 
assumed that there was only one hop, so that the skywave signal is reflected only 
once at the ionosphere and that the projection of the propagating path onto the 
Earth’s surface is a great circle. However, multipath transmissions (reflections at 
various heights), multiple hops, and deviations from a great circle path are all 
encountered. At the DF site, we therefore have to expect the multiple incidences of 
coherent waveforms with a variety of azimuths, elevations, phases, and 
amplitudes. We have already discussed the deleterious effects of lateral deviations 
on geolocation of HF emitters, for example. These factors cause azimuth and 
elevation measurement errors. In addition to the usual sources of fixing errors 
(equipment error, man-made and natural noise, emitter modulation, adjacent 
channel interference, and intermodulation), the SSL is also prone to special errors 
due to anomalies in the ionosphere and to virtual height estimation errors. 
 We will derive an approximation for the fixing errors of the SSL and to 
compare these errors with the fixing errors of a two-site DF triangulation system. 
 We assume that all the factors that affect the azimuth, elevation, and reflection 
height give rise to errors that have a mean of zero, a normal distribution, are 
mutually independent and small. Ideal wave propagation (single hop, great circle 
LOP) with errors of the type described is assumed. In the neighborhood of the 
target emitter, the Earth’s surface is approximated by a tangential plane. 
 Under these assumptions, the fixing errors have a two-dimensional, normal 
distribution with ellipses as curves of constant probability. For the SSL, one of the 
ellipse’s axes lies on the LOP as illustrated  in  Figure 7.16. These  error  ellipses,  
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Figure 7.15 Plasma frequency profiles (lower curves) and corresponding ionograms (upper curves). In
this case f0E = 3 MHz, hmE = 110 km, ymE = 20 km, f0F = 6 MHz, hmF = 320 km, and ymF = 100 km. 
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Figure 7.16 SSL geometry. 
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and the error circle radii that can be derived from them, are used as measures of fix 
accuracy. 
 
7.10.2 Spherical Model 
 
Given the measured elevation angle ϕ3 and an equivalent reflection height, h, the 
estimated fix lies on a great circle. The azimuth is φ as measured from north, and 
the great circle distance between the DF site and the target, B, is given by 
 

 1
E

E

cos
2 cos

1 /
B R

h R
−  ϕ= − ϕ  +   

 (7.74) 

 
where RE = 6,370 km, the radius of the Earth, which is assumed to be a perfect 
sphere. All angles are in radians. 
 
7.10.2.1 Effect of Azimuth Errors on the Fix 
 
If the azimuth error is small (Δφ << 1), at the Earth’s surface we can make the 
following approximation 
 

 E
E

sin
B

y R A
R

Δ ≈ Δφ Δφ  (7.75) 

 
The effect of azimuth error is illustrated in Figure 7.17. The effect of azimuth error 
is to widen the miss distance, Δy, as shown.  
 
7.10.2.2 Effect of Elevation and Height Errors on the Fix 
 
We approximate the nonlinear expression for the arc B, which is a function of the 
elevation ϕ and the height of reflection, h, using the first term of its Taylor 
expansion. Doing so we get the following expressions for the fixing errors ΔBϕ, 
and ΔBh, where we assume that the elevation and height errors Δϕ and Δh are 
small: 
 

                                                           
3 Notice that this is not the normal definition of elevation angle, which is usually specified relative to 
zenith, as in Figure 7.6. 
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 E

h
R H

h

Δ  (7.77) 

 
The impacts of these measurement errors are illustrated in Figure 7.18. The net 
effect of both error sources is to influence the measurement of the range to the 
target. 
 
7.10.2.3 Error Ellipse and Error Circle 
 
The standard deviations for the x and y directions at the target are obtained from 
the fix errors given by (7.75) through (7.77) using the formulas below. We assume 
that the errors have normal distributions with σφ, σϕ, and σh,rel = σh/h as the 
standard deviations for the azimuth, elevation, and height of reflection, 
respectively 

 

 
 
Figure 7.17 Effects of azimuth error. 
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 Ey R Aφσ = σ  (7.78) 

 Ex R Eϕ ϕσ = σ  (7.79) 

 xh h,rel ER Hσ = σ  (7.80) 

 
We then can calculate the semiaxes of the error ellipse as 
 

 ( )1/22 2
x xha ϕ= σ + σ  (7.81) 

 yb = σ  (7.82) 

 
The factors A, E, and H in (7.78) – (7.80) are functions of ϕ and factor E is 
considerably larger than A and H. The effects of elevation errors is, therefore, 
particularly heavily weighted and so produces narrow ellipses with a small axis 
ratio given by 
 

 
 
Figure 7.18 Effects of elevation. 
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1/ 22 2

2 2 2 2
h,rel
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a E H
φ

ϕ

 σ
=  

σ + σ  
 (7.83) 

 
 The probability that a fix lies within an error ellipse having semiaxes a and b 
as given by (7.81) and (7.82) is 39.9%. To obtain the semiaxes for an ellipse for 
another probability, P, the semiaxes are multiplied by the factor 

1/ 2
10[ 2 log (1 )] .P− −  

 An error circle can be calculated from the semiaxes of the ellipse producing 
what is referred to as the CEP. The RMS error RRMS is 
 

 
1/22 2

RMS 0.75R a b = +   (7.84) 

 
which is accurate to within 10%. 
 The probability that the fix lies within a circle of radius RRMS is a function of 
the semiaxes ratio b/a. If b/a = 0, the probability is 68%; for b/a = 1, the 
probability is 63%. 
 For the spherical model, (7.78) – (7.80) yield 
 

 ( )1/22 2 2 2 2 2
RMS E h,relR R A E Hφ ϕ= σ + σ + σ  (7.85) 

 
Figure 7.19 [19] illustrates the RMS error for the special case with 

o
h,rel1 , 3 , 5%,o

φ ϕσ = σ = σ = and the two heights, h = 100 km (E-layer reflection, 

and h = 300 km (F-layer reflection). Figure 7.20 [19] shows the axis ratio of the 
error ellipse for this case. 
 
7.10.3 Plane Model  
 
When we assume that the Earth is flat and that the LOPs are straight lines then 
(7.81) and (7.82) simplify to 
 
 b d φ= σ  (7.86) 

 

1/ 22
2 2
h,rel 4

4

h d
a d

d hϕ

  = σ + σ +  
   

 (7.87) 

 
where d is the distance  measured  in the plane between the target and the receiver. 
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Figure 7.19 RMS error. 
 

 
 
Figure 7.20 b/a special case. 
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Figure 7.21 [19] shows the RMS error as a function of the plane model separation 
D = d, (7.86), (7.87), and (7.84), assuming the azimuth and the elevation errors are 
equal and that the height error is zero h,rel( , 0).φ ϕσ = σ = σ σ =  Figure 7.22 also 

shows the RMS error as a function of the spherical model separation D = B. We 
can see that, up to separations of about 800 km, the plane model is a satisfactory 
approximation. 
 
7.10.4 Comparison between SSL and Triangulation 
 
For SSL, the radius of the error circle depends on the virtual height of reflection 
and its relative estimation error, the distance of the intercept site from the target, 
and the standard deviations of the azimuth error and the elevation error. For 
triangulation, the radius of the error circle depends on the standard deviations of 
the azimuth errors of the two DF sites, the triangulation baseline and the position 
of the emitter site relative to the baseline.  

For comparison purposes we make the following simplifications: 
 

• The standard deviations of all angular errors are the same (both azimuth 
angles for horizontal triangulation, and the azimuth and the elevation for  
SSL). 

• For SSL, the virtual height error is negligible (this is a somewhat dubious 
assumption but necessary for comparison purposes). 

• The plane model is used. 
 

 
 
Figure 7.21 Normalized RMS. 
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In the case of triangulation, the RMS error, which is normalized by dividing by the 
product of the baseline C and the standard deviation σ in degrees, depends on the 
polar coordinates constructed on the baseline, d/C, and φ of the LOP intersection 
(see Figure 7.22). 
 

 

1/ 2
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            + − + φ                    π   =
σ φ

 (7.88) 

 
So that a direct comparison of RRMS,SSL can be made with RRMS,tri, the SSL 

error circle radius will also be normalized by dividing by C, the baseline of the 
triangulation system which is to be used as a comparison. Equations (7.84), (7.86), 
and (7.87) yield 
 

 

1/ 22
RMS,SSL / 1 /

1 4
180 / 4 /

R d h C d C

C C d C h C

 π  = + +  σ    
 (7.89) 

 
If the propagation conditions do not depend on the angle of incidence, the curves 
of constant RRMS,SSL are, from (7.89), simply concentric circles about the receive 
site. 

 
 
Figure 7.22 Triangulation geometry. 
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 When (7.88) is solved for d/C or sinφ, curves of constant RRMS,tri are obtained. 
Errors are large in this case if sin 1,φ <<  which occurs when the target is very 

near the extended baseline defined by the two receivers. This is the familiar GDOP 
effect. As expected, the fix error is a minimum on the perpendicular bisector of the 
baseline ( sin 1).φ =  In other words, the alignment of the triangulation system is 

optimal when the emitter is on this perpendicular. 
 Figure 7.23 illustrates comparison of the SSL RMS error with the 
triangulation error of an optimally aligned triangulation system. We note that the 
assumptions underlying the theoretical treatment of SSL errors at distances less 
than 50 km are not very realistic. At these distances, the ground wave and 
skywave can arrive with about the same amplitude and, because the elevation 
angle is so great, the effective aperture of the DF antenna system is greatly 
reduced. Errors due to propagation conditions then have an appreciably greater 
effect. 
 We can conclude from Figure 7.23: 
 

• h/C = 0.3 (h = 100 km, C = 333 km): The SSL is comparable with a 
triangulation system having a very large baseline. At long ranges, error 
circle radii of the same order of magnitude can be obtained with both 
methods. At shorter ranges, a triangulation system is not very effective 
due to the obtuse angles of intersection. 

• h/C = 1 (h = 100 km, C = 100 km): Triangulation is somewhat better for 
short ranges, whereas SSL is better over long ranges. 

 
 
Figure 7.23 Normalized RMS error. 
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• h/C = 5 (h = 100 km, C = 20 km): Triangulation is superior at small 
distances. As we mentioned previously, SSLs cannot be used at distances 
less than 50 km. At long ranges, triangulation gives very acute angles of 
intersection so that the SSL, in this case, is far superior. 

 
A field test was conducted at 7.5 and 7.8 MHz over a range of 138 km to 

compare actual, experimental results with the theoretical calculations. The results 
were quite comparable. The RMS error ranged from 12.5 km to 29 km, which is in 
line with approximately 10% of range, the expected result. 
 
7.10.5 Summary 
 
We can say from this analysis that the SSLs are better for long-range position 
fixing if a very large triangulation baseline cannot be established [if the 
simplifying assumption of equal angle errors is valid and the height of reflection 
error can be neglected (a bold assumption at best)]. If the elevation errors are 
considerably larger than the azimuth errors, and there is insufficient information 
about the height of the reflecting ionospheric layer, long-range triangulation 
carried out using even moderately sized baselines can be superior. 
 Empirical fixing-error data, obtained from an HF Doppler SSL, were in good 
agreement with the calculated values. 
 
 

7.11 Concluding Remarks 
 
Some methods for geolocating HF targets from a single sensor site have been 
discussed in this chapter. While triangulation and quadratic processing methods 
apply to HF targets as well as higher frequency targets, in some cases it may be 
advantageous to apply only a single sensor. Such techniques typically result in 
lower accuracy geolocations because of the necessity of normally requiring 
knowledge of the height of the ionosphere. Measuring this height with EW 
systems in a noncooperative fashion is inherently inaccurate because of the 
assumption of uniform height of the reflecting layer above the Earth’s surface. 
 In addition to their utility in EW applications, SSL EW systems have been 
applied to ionospheric research projects. Such projects endeavor to characterize 
the ionosphere, allowing for scientific study of the atmosphere. 
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Appendix A 
 
 

Grassmann Algebra 
 
 

A.1 Background 
 
Hermann Gunther Grassmann was born in 1809 near the border of Germany and 
Poland in a town called Stettin. He discovered an algebra of geometry that 
includes vectors. His algebra subsumes the common form of algebra that we all 
learn in high school. During his lifetime he received very little recognition for his 
discovery. William Kingdon discovered Grassmann’s work about 1877, the year 
Grassmann died. Clifford’s algebras are still used today for manipulation of 
vectors and linear mathematical systems. 
 A brief introduction to Grassmann algebra is presented in this appendix. The 
information included here is based on [1]. For those desiring more detailed 
information references [2–21] are recommended. 
 
 
A.2 Introduction 
 
Grassmann’s algebra is a theory of “extension,” with the fundamental product 
operation being the exterior product. In this algebra, addition, negation, and 
multiplication by a scalar carry the same meaning as in the normal mathematics 
we are all familiar with. The product operation, however, is different. 
 The constructs of this algebra allow manipulation of geometric objects 
algebraically. That is, lines can be constructed from points, and lines can be 
manipulated. Planes can be constructed from lines and/or points and these planes 
can be manipulated algebraically. Higher forms of geometric shapes can be 
constructed and manipulated just as easily. Such manipulation includes functions 
such as finding the intersection of two or more geometric objects. 
 The common 3-D vectors are one form of geometric shapes that can be built 
in the algebra. Vectors such as these, of course, have a direction as well as 



Electronic Warfare Target Location Methods 

 

376 

magnitude. However, that is not enough to completely specify a vector. It is also 
necessary to know where the vector is located in the 3-D space to determine the 
effects. For example, if the vector represents a force exerted on an object, it is 
necessary to know where on the object the force is exerted, yet there is no 
information inherent in the specification of the vector to convey this information. 
Grassmann algebra solves this problem as part of the specification of the vector. 
All the necessary information about the force is part of the vector. 
 The concept of direction associated with vectors is included as part of the 
specification of planes and higher-order objects. Thus, a plane has a “direction.” 
On the other hand, the concept of magnitude associated with vectors is not 
necessary for the manipulation of geometric objects, although it can be included if 
desired. This lack of magnitude is manifest in the lack of necessity of specifying a 
metric in the algebra, which is necessary in the familiar algebra of vectors. 
 
 
A.3 Exterior Product 
 
Grassmann algebra is a mathematical system that describes and manipulates 
physical entities. It is a linear or vector algebra such that the product operation 
facilitates the notion of linear dependence. The product operation is normally 
called the exterior product or wedge product and is denoted by ∧. Linear 
dependence is encapsulated in the notion that if vectors 1 2, ,x x

 
  are linearly 

dependent, then their exterior product is zero: 
 
 1 2x x 0Nx

  
   =  (A.1) 

 
On the other hand, if the vectors are linearly independent, then their exterior 
product is nonzero. 
 A vector 1x


can be interpreted as a direction in a linear space. If that space has 

a metric,1 the 1x
 , the magnitude of 1,x


is its length. The exterior product extends 

this vector to higher dimensions. The wedge product of two vectors, 1 2 ,x x
 
  is 

called the bivector and can be thought of as the analog of direction to two-space, 

                                                           
1 A metric is a generalization of distance. The metric for a space consisting of vectors 1 2, ,x x

 
and so 

on, is a function d such that: 
(1) 1 2( , ) 0d x x

 
= if and only if 1 2 ;x x

 
=  

(2) 1 2 2 1( , ) ( , );d x x d x x
   

=  

(3) 1 2 1 3 3 2( , ) ( , ) ( , ).d x x d x x d x x
     

£ +  
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that is, the planar direction. If this two-space has a metric, then the magnitude of 
1 2x x
 
 is its area. This can be extended to any number of dimensions. 

 Lines and planes are but examples of higher-order constructs that originate 
with points. A line is represented by the exterior product of any two points on it, or 
by any point on it with a vector parallel to it. A plane is the exterior product of any 
three points on it, any two points with a vector parallel to it, or any point on it with 
a trivector parallel to it. 
 The real algebra familiar to all of us as learned in high school is subsumed by 
Grassmann algebra. In that case the exterior product reduces to the normal 
product. 
 
A.3.1 Properties of the Exterior Product 
 
Given the exterior product of two vectors 1x


and 2 ,x


1 2x x
 
 is the bivector 

corresponding to them. This bivector is not a vector and therefore does not belong 
to the vector space in which 1x


and 2x


lie. The set of bivectors constructed with the 

vectors in the vector space in fact forms its own linear space. 
 The exterior product exhibits antisymmetry (or anticommutativity). That is, 
 
 1 2 2 1x x x x

   
 =-   (A.2) 

 
Therefore, we deduce that 
 
 1 1 1 1x x x x

   
 =-   

                                      1 1 1 1 0x x x x
   
 +  =  

                                                1 12( ) 0x x
 
 =  

                                                     1 1 0x x
 
 =  (A.3) 

 
which indicates that 1x


is linearly dependent on itself (the coefficient is 1; that is, 

1 11 ).x x
 
=  

 
Properties 

 
1. The exterior product is associative, 

 
1 2 3 1 2 3( ) ( )x x x x x x
     
  =    

 
2. The exterior product is distributive, 
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1 2 3 1 2 1 3( )x x x x x x x
      
 + =  +   

 
3. If a and b are any scalars, then 
 
 1 1 1( )a b x ax bx

  
+  =   

        1 2 1 2( )ax x a x x
   
 =   

 
4. Let 1 2, ,e e

 
 and 3e


 be three basis vectors in 3-D space.      

Then any vectors can be expressed in terms of these vectors 
as 
 
 1 1 1 2 2 3 3x a e a e a e

   
= + +  (A.4) 

 2 1 1 2 2 3 3x b e b e b e
   

= + +  (A.5) 
 
where ai and bi are appropriate scalars. The bivector 
formed from 1x


and 2x


is given as 

 

          1 2 1 1 2 2 3 3 1 1 2 2 3 3( ) ( )x x a e a e a e b e b e b e
       
 = + +  + +  

                

1 1 1 1 1 1 2 2 1 1 3 3

2 2 1 1 2 2 2 2 2 2 3 3

3 3 1 1 3 3 2 2 3 3 3 3

a e b e a e b e a e b e

a e b e a e b e a e b e

a e b e a e b e a e b e

     
     
     

=  +  + 

+  +  + 

+  +  + 

 

                     
1 1 1 1 1 2 1 2 1 3 1 3

2 1 2 1 2 2 2 2 2 3 2 3

3 1 3 1 3 2 3 2 3 3 3 3

a b e e a b e e a b e e

a b e e a b e e a b e e

a b e e a b e e a b e e

     
     
     

=  +  + 

+  +  + 

+  +  + 

 

                      1 2 2 1 1 2

2 3 3 2 2 3 3 1 1 3 3 1

( )
( ) ( )

a b a b e e

a b a b e e a b a b e e

 
   

= - 

+ -  + - 
       (A.6) 

 
The coefficients in (A.6) are those obtained by the normal 
cross product of 1x


and 2.x


 However, the bivector space 

does not require a metric. The cross-product generates a 
vector orthogonal to x1 and x2 and therefore assumes the 
existence of a metric. In addition, the cross-product applies 
to two vectors in 3-D space. The exterior product 
formulation presented here applies to vector spaces of any, 
arbitrary dimension. For example, the trivector derived just 
as (A.6) was derived yields 
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1 2 3 1 2 3 3 2 1 2 3 1

3 1 2 2 3 2 2 1 3 1 2 3

(
)

x x x a b c a b c a b c

a b c a b c a b c e e e

  
  

  = - +

+ - -  
 (A.7) 

 
5.  A trivector such as (A.7) has a single component

1 2 3( )e e e
  
  whose coefficient is the determinant of the 

constituent vectors given by the term 
 

        1 2 3 3 2 1 2 3 1 3 1 2 2 3 2 2 1 3( )a b c a b c a b c a b c a b c a b c- + + - -  
 
In any metric space, such as considered here, this 
coefficient is the volume of the 3-D parallelepiped formed 
from the constituent vectors. Note that if x1, x2, and x3 are 
lying in a plane, then they are dependent and the trivector 
is zero, indicating that the volume is zero. 

 
A.3.2 m-Vectors 
 
The exterior product of m 1-vectors is called an m-vector. The number m is 
referred to as the grade of the m-vector. It is common practice to annotate an m-
vector with its grade as an underscript. Thus, 1 2 3 4x x x x

   
   is of grade 4, which 

is denoted 1 2 3 4
4

.x x x x
   

g =     A 1-vector is usually not endowed with the 

underscript. The grade of a scalar is zero. With the dimension of the linear space 
denoted by N, the complementary grade of an m-vector is N – m. 
 

Property: Interchanging Order. Interchanging the order of any 
factors in the exterior product, adjacent or otherwise, changes 
the sign of the product: 
 
 ( )i j j ix x x x

   
       =-    (A.8) 

 
Property: Grade of m-Vectors. The exterior product of an m-
vector 

m


a  and k-vector 

k


b  is an (m + k) vector: 

 
 

m k m k

 
a b g

+
 =  (A.9) 
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Property: Identity Element. The identity for the exterior 
product is the unit scalar: 
 
 1 1

m m m

 
a a a=  =   (A.10) 

 
Property: Scalar Factors. Scalars factor out of products 
 

 ( ) ( ) ( )m m mk k k
a a a

    
a b a b a b =  =   (A.11) 

 
Property: Anticommutative. An exterior product is 
anticommutative whenever the grades of both vectors is odd: 
 
 ( 1)mk

m mk k

  
a b b a = -   (A.12) 

 
It is only vectors of an odd grade that are antisymmetric. If at 
least one of the vectors of an exterior product has an even grade, 
then the product commutes—that is, it is symmetric: 
 
 1 2 3 3 1 2( ) ( )x x x x x x

     
  =    (A.13) 

 
Property: Distributivity. The exterior product is both left and 
right distributive under addition: 
 

 ( )m m m m mm m k kk k k k k

            
a b g a g b g a b g a b a g

æ ö÷ç+  =  +   + =  + ÷ç ÷çè ø
 (A.14) 

 
Property: Associativity. The exterior product is associative: 
 

 ( )m mk kn n

    
a b g a b g

æ ö÷ç  =   ÷ç ÷çè ø
 (A.15) 

 
 

A.4 Regressive Product 
 
The regressive product can be thought of as a dual product to the exterior product. 
It is used to find the intersection of geometrical objects. The regressive product is 
denoted by ∨. 



Grassmann Algebra 
 

 

381 

 
A.4.1 Unions and Intersections of Spaces 
 
Any given 1-element z


 is in the subspace spanned by x


 and y


 if the exterior 

product of (nonzero) x y
 
 with z

 is zero. Thus, x y
 
  is an element that can be 

used to define the subspace instead of the individual 1-elements x


and .y


 

Thus, the space of x y
 
 as the set of all 1-vectors z

 such that 0.x y z
  

  =
This can be extended to more general elements by defining the space of a simple 
element 

m


a  as the set of all 1-elements β such that 0.

m

 
a b =  

Two elements are congruent if one is a scalar factor times the other. In a 3-D 
vector space, this is equivalent to saying that two vectors are congruent if they 
point in the same direction. The two vectors need not have the same magnitude nor 
the same point of origin. In fact, for general linear spaces, magnitude as a concept 
may not be necessary—it only becomes necessary when the space has a metric 
defined. The concepts of union and intersection only make sense up to 
congruence. Congruent elements define the same subspace. 

A union of elements is an element defining the subspace they span together. It 
is similar in concept to the common union of sets. If A and B denote two not 
necessarily distinct sets of objects, then the union of A and B, usually denoted by 
A BÈ , is the set comprised of elements from A or elements from B. An 

intersection of elements is an element defining the subspace they span in common. 
Again, from the concepts of sets, the intersection of A and B, denoted by ,A BÇ is 
defined as the set comprised of elements from A and B. See Figure A.1. 

Given three independent 1-elements, , ,x y
  and ,z

 then a union of x y
 
 and      

y z
 
 is any element congruent to .x y z

  
   An intersection of x y

 
  and y z

 
 is 

any element congruent to .y
  

 
A.4.2 Properties of the Regressive Product 
 
The regressive product of an m-element and a k-element in an N-space is an        
(m + k – N)-element. 
 

Property: Associative. The regressive product is associative: 
 

 ( )m mk kn n

    
a b g a b g

æ ö÷ç  =   ÷ç ÷çè ø
 (A.16) 
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Figure A.1 Union and intersection of sets. 
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 Property: Unit Element. The unit n-element 1
N


 is the 

identity under the regressive product: 
  

 1 1
m N m m N

   
a a a=  =   (A.17) 

 
Property: Scalar Factors. Scalars factor out of products. 
 

  

 ( ) ( ) ( )m m mk k k
a a a

    
a b a b a b =  =   (A.18) 

 
Property: Anticommutative. A regressive product is 
anticommutative whenever the complementary grades of the 
factors are both odd: 
 
 ( )( )( 1) N m N k

m mk k

  
a b b a- - = -   (A.19) 

 
Property: Distributive. The regressive product is both left and 
right distributive under addition: 
 

 ( )m m m m mm m k kk k k k k

            
a b g a g b g a b g a b a g

æ ö÷ç+  =  +   + =  + ÷ç ÷çè ø
 (A.20) 

 
A.4.3 The Common Factor Axiom 
 
Assume that , ,x y

  and z
 are three independent vectors in a vector three-space. The 

common factor axiom states that the regressive product of the two bivectors x z
 
  

and y z
 
  may also be expressed as the regressive product of a three-element 

x y z
  
  with :z


 

 
 ( ) ( ) ( )x z y z x y z z

      
   =     (A.21) 

 
Since the space is 3-D, we can write any three-element such as x y z

  
   as a 

scalar factor times the unit three-element: 
 
 ( )3

( ) 1x y z z a z az
     

   =  =  (A.22) 
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Thus, the regressive product of two elements possessing an element in common is 
congruent to that element. That is, the regressive product of two elements defines 
their intersection: 
 
 ( ) ( )x z y z z

   
   º  (A.23) 

 

Let , , and
m k n

 
a b g  be simple elements with m + k + n = N, where N is the 

dimension of the space. Then the common factor axiom states that 
 

 
m mk kn n n n

m k n N
      

a g b g a b g g
æ ö æ ö æ ö÷ ÷ ÷ç ç ç   =    + + =÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è ø

 (A.24) 

 
When n is zero, the common factor axiom shows that the regressive product of an 
m-element with an (n – m)-element is a scalar that can be expressed as a regressive 
product with the unit 1.


 

 

 ( ) 1
m mk N m

   
a b a b

-
 =    

 
A.4.4 The Common Factor Theorem 
 
Suppose that x y

 
 and u v

 
 are noncongruent bivectors in a 3-D space. The 

regressive product of x y
 
 and u v

 
 is given by 

 
 ( ) ( )z x y u v

   
=     

 
The common factor theorem states that z

 can be expressed as 
 
 ( ) ( ) ( ) ( )x y u v x y v u x y u v

           
   =    -     (A.25) 

 
A.4.5 The Intersection of Two Bivectors in a 3-D Space 
 
As given by (A.7), in a three-space, the exterior product of three vectors will, in 
any given basis, give the basis trivector, multiplied by the determinant of the 
components of the vectors making up the trivector. The regressive product 
(intersection) of a vector with an element like the basis trivector completely 
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containing the vector gives an element congruent to itself. Thus, the intersection of 
the two bivectors is given by 
 
 det[ , , ] det[ , , ]z x y v u x y u v

       
= -  (A.26) 

 
where det[ , , ]x y v

   is the determinant of the components of , ,x y
  and .v


 

 

A.5 Geometric Interpretations 
 
All of the above discussion applies irrespective of any physical associations of, for 
example, elements and vectors, to physical objects. As noted, a metric is not 
necessary for the notions to apply, yielding a powerful algebra that can be used to 
manipulate higher-order geometric objects and shapes. In this section, associations 
to physical objects will be established and application of the algebra to their 
manipulation will be demonstrated. 
 
A.5.1 Points and Vectors 
 
The element in a linear space is called a vector. Even though it need not be the 
case, the term vector is associated with the geometric concept of direction. 

 
 
Figure A.2 Vectors and points. 
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An element of a linear space may also be interpreted as a point. Of course, 
vectors may also be used to represent points, but only relative to another given 
point (the information for which is not in the vector). For a single vector, this other 
point is often the origin of the linear space. The origin of 3-D space, for example, 
is given by (x, y, z) = (0, 0, 0), as illustrated in Figure A.2. These vectors are 
sometimes called position vectors. The reference point, however, need not be the 
origin and the concept of a vector can still be applied to define a point. We cannot 
interpret it physically in this case, however. When both position and direction are 
required in the same element, we must somehow include the information about the 
point of origin of the vector. A point can be represented in 3-D space by two (or 
more) vectors without the assumed reference to the origin, however, as illustrated 
in Figure A.3.   
 
A.5.2 Sums and Differences of Points 
 
A point is defined as the sum of the origin point and a vector. If o is the origin and 
x
 is a vector, then o + x

 is a point: 
 
 o xP


 +  (A.27) 

 
The vector x

 is the position vector of the point P. The difference of two points is a 
vector (not a point), since the origins cancel (remember that in Grassmann algebra,  
the operations of addition and subtraction are the familiar ones from high school 
linear algebra): 

 
 
Figure A.3 Difference of two points. 
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 1 2 1 2 1 2( ) ( )o x o x x xP P
   

- = + - + = -  
 
See Figure A.3. 

A scalar multiple of a point is called a weighted point. For example, if m is a 
scalar, mP is a weighted point with weight m. The sum of two points with unit 
weights gives the point halfway between them with a weight of 2. Such a sum is 
illustrated in Figure A.4. 
 

 1 2
1 2 1 2( ) ( ) 2

2
x x

o x o x oP P
 

  æ ö+ ÷ç+ = + + + = + ÷ç ÷÷çè ø
 

 
A.5.3 Lines and Planes 
 
The exterior product of a point and a vector gives a line-bound vector. A line is the 
space of a line-bound vector. That is, it consists of all the points on the line and all 
the vectors in the direction of the line. The reason for this is the lack of the point of 
origin of the vectors—all such origination points are included in the definition. 
Thus, all vectors in the direction of the line are included. 

A line-bound vector can be represented by the line L through the point P in 
the direction of x

 and any entity congruent to the exterior product of P and .x
  

 
 xL P


º   

 
The concept of the line-bound vector is illustrated in Figure A.5. 

A line may also be represented by the exterior product of any two points on it. 
Let Q be any point on the line so that axQ P


= + is the sum of P and any scalar 

multiple of the vector. Then 
 

( )ax a xL P Q P P P
 

º  =  + =   
 

 
 
Figure A.4 Sum of two points. 
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Figure A.5 Line-bound vector; a line defined by a point and a vector is the line passing through the
point in the direction of the vector and any entity congruent to the exterior product of P and .x


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Therefore, as a general statement of these conditions: 
 
 1 2 xL P P P


º  º   (A.28) 

 
These concepts extend to higher dimensions in the natural way. Thus, a plane 

π may be represented by the exterior product of any three points on it, any two 
points on it together with a vector in it (not parallel to the line joining the points), 
or a single point on it together with a bivector in the direction of the plane: 
 
 1 2 3 1 2 1x x yπ P P P P P P

  
º   º   º    (A.29) 

 
Higher-dimensional geometric entities are constructed from lower- 

dimensional ones by simply computing their exterior product. A line can be 
obtained by taking the exterior product of a point with any point or vector exterior 
to it, as was just illustrated, or a plane can be constructed by taking the exterior 
product of a line with any point or vector exterior to it. 
 
A.5.4 Intersection of Two Lines 
 
The regressive product is used to find intersections of geometric entities. For 
example, to find the intersection of two lines in a plane, which will be a point in 
the plane, the regressive product of the two lines is computed. The lines can be 
represented as 
 
 1 1 1 1 1 1 1 1( )x o v x o x v xL P

     
º  = +  =  +   

   2 2 2 2 2 2 2 2( )x o v x o x v xL P
     

º  = +  =  +   
 
The point of intersection is found by 
 
 1 2 1 1 1 2 2 2( ) ( )o x v x o x v xP L L

     
º  =  +    +   

 
Four terms arise from this expression: 
 

 1 2 1 1 2

1 2 2 1 1 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

o x o x v x o x

o x v x v x v x

P
    

      
º    +   

+    +   
 

 
The common factor theorem in (A.25) applied to these products generates: 
 
 1 2 1 2 1 2( ) ( ) ( ) ( )o x o x o x x o o x o x

     
   =    -     
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 1 2( )o x x o
 

=     
 
  1 1 2 1 1 2 1 1 2( ) ( ) ( ) ( )v x o x v x x o v x o x

        
   =    -     

    1 1 2( )v x o x
  

=-     
 
                      1 2 2 2 2 1( ) ( ) ( ) ( )o x v x v x o x

     
   =-     

                                                    2 2 1 2 2 1( ) ( )v x x o v x o x
     

=-    +     
                                                    2 2 1( )v x o x

  
=     

 
    1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) ( )v x v x v x x v v x v x

           
   =    -     

                                                    0=  
 
These simplifications arise because the following facts about vectors and exterior 
products were applied: (1) the term 1( )o x o


   is zero because of the exterior 

product of repeated factors; and (2) the four terms involving the exterior product 
of three vectors, for example, 1 1 2( )v x x

  
  , are also zero, since any three vectors 

in a two-dimensional vector space must be dependent. Thus, 
 
 1 2 2 2 1 1 1 2( ) ( ) ( )o x x o o v x x o v x xP

       
    +    -     

 
Given a basis with basis vectors given by 1e


 and 2 ,e


 this expression can be 

represented as 
 

 2 2 1 1
1 2

1 2 1 2

Det[ , ] Det[ , ]
Det[ , ] Det[ , ]

v x v x
o x x

x x x x
P

   
 

   = + -  

 
where the coefficients of the vectors are the coefficients in the given basis.  

To verify that P does indeed lie on both the lines L1 and L2, we only need to 
carry out the straightforward verification that the products P ∧ L1 and P ∧ L2 are 
both zero. Thus, 
 

 
1

2 2 1 1
1 1 1 1 2

1 2 1 2

Det( , ) Det( , )
( )

Det( , ) Det( , )
v x v x

o x v x o x x
x x x x

P L
   

    
   

é ù
ê ú =  +  + +ê úë û

 



Grassmann Algebra 
 

 

391 

                   

1 1

1

2 2
1

1 2

1 1
2 1 1

1 2

1 1 2 2
1 1 1 1 1 2

1 2 1 2

det( , )
det( , )

det( , )
det( , )
det( , ) det( , )
det( , ) det( , )

v x
o x o o x x

x x

v x
o x x v x o

x x

v x v x
v x x v x x

x x x x

 
  

 
 

   
 
   

     
   

=   +  

+   +  

+   +  

 

 
Now 
 

 
1 1

2 2 2 2
1 1 1 1

1 2 1 2

det( , ) det( , )
0 0 0

det( , ) det( , )
v x v x

o x o o x v x x
x x x x

x
       
     =   =   =  

 
because of the exterior product of like elements, leaving 
 
 

 
[ ]

1

1 1 1 1
2 1 1 1 1 2

1 2 1 2

1 1
1 1 2 1 1

1 2

det( , ) det( , )
det( , ) det( , )

det( , )
det( , )

v x v x
o x x v x o v x x

x x x x

v x
o v x x v x o

x x

  
      

   
 

    
 

  +   +  

= +   +  
 (A.30) 

 
 
The first term on the right in (A.30) is zero because three elements in a two-space 
are, of necessity, dependent and therefore their exterior product is zero. Thus 
 
 1 1 1 0v x oP L

 
 =   =  (A.31) 

 
Therefore, P lies on L1. It can be similarly shown that P lies on L2. Therefore, P is 
the intersection of L1 and L2. 

This development is more complicated than for the simple linear algebra 
solution to the same problem. However, this can be generalized to any dimension 
and therefore any geometrical object, not just lines and points. The intersection of 
arbitrary geometrical shapes can be found.  
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A.6 The Complement 
 
A.6.1 The Complement as a Correspondence Between Spaces 

Given a linear space of dimension N with basis 1 2, , , ,Ne e e
  

  the set of all the 
different m-element products of these basis elements forms the basis of another 

linear space of dimension ( )N

m
. The antisymmetric nature of the exterior product 

means that there are just as many basis elements in the linear space of                   
(n – m)-elements as there are in the linear space of m-elements. There is a 
correspondence between the elements in the space of dimension N and that of 
dimension N – m. The (N – m)-element is called the complement of the m-element. 
 
A.6.2 The Euclidean Complement 
 
In a 3-D linear space with basis 1 2, ,e e

  and 3,e
 the Euclidean complement of each of 

the basis elements is defined as the basis two-element whose exterior product with 
the basis element gives the basis three-element 1 2 3.e e e

  
   Thus, 

 
 1 2 3 1 1 1 2 3e e e e e e e e

       
    =    (A.32) 

 2 3 1 2 2 1 2 3e e e e e e e e
       
    =    (A.33) 

 3 1 2 3 3 1 2 3e e e e e e e e
      
    =    (A.34) 

 
The Euclidean complement of a general 1-element, 1 2 3 ,x ae be ce

   
= + + can 

now be defined by extending the definition on the basis elements by linearity, 
 
 1 2 3 1 2 3 2 3 3 1 1 2( ) ( ) ( )x ae be ce ae be ce a e e b e e c e e

            
= + + + + =  +  +   

 
The product x x

 
  expands to 

 
                              1 2 3 2 3 3 1 1 2( ) ( )x x ae be ce ae e be e ce e

          
 = + +   +  +   

 2 2 2
1 2 3( )a b c e e e
  

= + +    
 
The complements of the basis two-elements are defined just as those for one-
elements, such that the exterior product of a basis two-element with its 
complement is equal to the basis three-element. The complement of a two-element 
in three-space is therefore a one-element 
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 2 3 1 2 3 2 3 2 3 1 1 2 3e e e e e e e e e e e e e
            
 =     =   =    

 3 1 2 3 1 3 1 3 1 2 1 2 3e e e e e e e e e e e e e
            
 =     =   =    

                    1 2 3 1 2 1 2 1 2 3e e e e e e e e ee
        

 =     =    
 
In addition, 
 

 1 2 31 e e e
   
=    

 1 2 3 1e e e
  

  =  
 
A.6.3 The Complement of a Complement 
 
The complement of the complement of x is just x itself. 
 
            1 2 3x ae be ce

   
=    

 1 2 3 1 2 3 2 3 3 1 1 2x ae be ce ae be ce ae e be e ce e
            
=   =   =  +  +   

            2 3 3 1 1 2x ae e be e ce e
      
=  +  +   

              2 3 3 1 1 2 1 2 3ae e be e ce e ae be ce
        

=  +  +  = + +  
 
The complement of any element is the element itself, apart from a possible sign: 
 
 ( )( 1)m N m

m m

 
a a-= -  (A.35) 

 
A.6.4 The Complement Axiom 
 
The complement axiom states that the Euclidean complement of the exterior 
product of two elements is equal to the regressive product of their complements: 
 

 
m mk k

  
a b a b =   (A.36) 

 
We can immediately recognize the similarity of (A.36) to de Morgan’s law in 

Boolean algebra. 
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A.7 The Interior Product 
 

The interior product of an element 
m


a  with an element 

k


b  is denoted by 

m k

a b and 

defined to be the regressive product of 
m


a  with the complement of :

k


b  

 

 
m mk k

   a b a b  (A.37) 

  

The grade of an interior product 
m k

a b  is m + (N – k) – N = m – k. 

 The interior product is a generalization of the inner product of scalars and 
vectors. 

 
 

A.7.1 Inner Products and Scalar Products 
 
The interior product of two elements 

m


a  and 

m


b  of the same grade is called their 

inner product. Since the grade of an interior product is the difference of the grades 
of its factors, an inner product is always of grade zero, hence scalar. 

When the two factors of the product are grade 1, the inner product is called a 
scalar product, which is the definition used in everyday life. 

The inner product is symmetric, that is, 
 

 
m mm m

   a b b a=  (A.38) 

 
A.7.2 Calculating Interior Products 
 
Let the linear space under consideration be a three-space with Euclidean metric 
and basis elements 1 2, ,e e

  and 3.e
  The scalar products 1 1e e

 
 and 1 2e e

 
  are 

 

 1 1 1 1 1 2 3 1 2 3( ) ( ) 1 1 1 1e e e e e e e e e e
           

 =  =   =    =  =  

 1 2 1 2 1 3 1 1 3 1( ) ( ) 1 0 1 0e e e e e e e e e e
           

 =  =   =    =  =  
 
That is, the scalar product of a basis element with itself is 1 while the scalar 
product of two different basis functions is 0. 
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Since identical basis two-elements are the same element, their inner product is 
one: 
 
      1 2 1 2 1 2 1 2( ) ( ) ( ) ( )e e e e e e e e

       
  =     

 1 2 3 1 2 3( ) ( ) 1 1 1 1e e e e e e
       

=   =    =  =  
 
Likewise, the inner product of nonidentical basis two-elements is zero: 
 
      1 2 2 3 1 2 2 3( ) ( ) ( ) ( )e e e e e e e e

       
  =     

 1 2 1 1 2 1( ) ( ) 1 0 1 0e e e e e e
       

=   =    =  =  
 

If a basis two-element contains a given basis one-element, then their interior 
product is not zero: 

 

1 2 1 1 2 1( ) ( )e e e e e e
     

 =    

 1 2 2 3 1 2 3 2 2 2( ) ( ) ( ) 1e e e e e e e e e e
         

=    =    =  =  
 
If a basis two-element does not contain a given basis 1-element, then their interior 
product is zero: 
 
                               1 2 3 1 2 3( ) ( )e e e e e e

     
 =    

 1 2 1 2( ) ( ) 0e e e e
   

=    =  
 
A.7.3 Expanding Interior Products 
 

Property Interior Common Factor  
 
If 

m


a  is a simple element, 

 
1

,
v

i i im k k k m ki

m
k m v

k

    a b a b a
-=

æ öæ ö ÷ç÷ç ÷= £ =ç÷ç ÷÷ç ç ÷çè ø è øå  

 1 1 2 2 v vm k m k k m k k m k

      a a a a a a a
- - -

=  =  = =   

 

In these expressions 
k


b  need not be simple. Thus, the interior 

product of a simple element 
m


a  with another element of equal or 
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lower grade 
m


b  may be expressed as a linear combination of the 

v essentially different factors 
m k


a
-

 (of grade m – k) of the simple 

element of higher degree. 
 
A.7.4 The Interior Product of a Bivector and a Vector 
 
Given that x

 is a vector and that 1 2x x
 
 is a simple bivector, the interior product 

of 1 2x x
 
  with x

 is the vector 1 2( ) .x x x
  

  By the Interior Common Factor 
Theorem, or the formula above derived from it, this can be expanded to give 
 
 1 2 1 2 2 1( ) ( ) ( )x x x x x x x x x

        
   = -  

 
which is a linear combination of 1x

 and 2.x
 Thus, it is clearly contained in the 

bivector 1 2 .x x
 
  Taking the result’s scalar product with ,x

  
 
 1 2 2 1 1 2 2 1(( ) ( ) ) ( )( ) ( )( ) 0x x x x x x x x x x x x x x x

              
      - = - =  

 
shows that the result is orthogonal to .x

  
These concepts are not restricted to two dimensions and may readily be 

extended to geometric entities of arbitrary dimension. 
 
 
A.8 Concluding Remarks 
 
The basics of an algebra discovered by Hermann Grassmann in the nineteenth 
century were presented in this appendix. The application of concern to EW target 
geolocation was presented in Section 3.3. That is by no means the only application 
of this algebra, however. 
 Grassmann algebra subsumes the linear algebra that most learn about in high 
school. By making the appropriate associations of exterior and interior products 
with everyday products, the mapping becomes clear. 
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Appendix B 
 
 

Nonlinear Programming Algorithms 
 
 

B.1 Introduction 
 
In this appendix we describe some nonlinear programming algorithms. 
Specifically we discuss the method of steepest descent, the Gauss-Newton method, 
and the Levenberg-Marquardt algorithm. These are but a few of the many 
algorithms available for this function. 
 
 

B.2 Steepest Descent 
 
B.2.1 Introduction 
 
The steepest descent method, also known as the gradient descent method, was first 
proposed by Cauchy in 1847 [1]. Cauchy proposed the use of the gradient as a way 
of solving a nonlinear equation of the form 
 
 1 2( , , , ) 0nf x x x =  (B.1) 

 
where f is a real-valued continuous function that never becomes negative. The 
basis for the method is the simple observation that a continuous function should 
decrease, at least initially, if one takes a step along the direction of the negative 
gradient. The only difficulty then is deciding how to choose the size of the step. 
While this is easy to compute for special cases such as a convex quadratic 
function, the general case usually requires the minimization of the function in 
question along the negative gradient direction. 
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Despite its simplicity, the steepest descent method has played an important 
role in the development of the theory of optimization. Unfortunately, the method is 
known to be quite slow in most real-world problems and is therefore not widely 
used. Instead, more powerful methods such as the conjugate gradient method or 
quasi-Newton methods are frequently used. 
 
B.2.2 Method of Steepest Descent 
 
Let ( ), ,nf x x ∈R 

and : nf →R R, be the function for which we want to find the 

minimum. We denote the gradient of f by ( ) ( ).k k kg g x f x= = ∇   
The general idea 

behind most minimization methods is to compute a step along a given search 

direction, ,kd


for example, 

 

 1 , 0,1,k k k kx x d k+ = + α =
    (B.2) 

 
where the step length, αk, is chosen so that 
 

 arg min ( )k k kf x d
α

α = + α


 (B.3) 

 
Here argmin refers to the argument of the minimum for the given function. For the 

steepest descent method, the search direction is given by ( ).k kd f x= −∇
 

 

The steepest descent algorithm is as follows:  
 

Algorithm  Steepest Descent 
 

Given an initial 0 0 0, ,x d g= −
 

 and a convergence tolerance tol 

for k = 0 to kmax do 
Set arg min ( )k k kf x g

α
α = − α 

 

1k k kx x g+ = − α  
 

Compute  

1 1( )k kg f x+ += ∇ 
 

if 1 2kg tol+ ≤
then 

converged 
end if 

end for 
 
The two main computational advantages of the steepest descent algorithm is the 
ease with which a computer algorithm can be implemented and the low storage 
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requirements necessary, O(n). The main work requirement is the line search 
required to compute the step length, αk and the computation of the gradient. 
 
B.2.3 Convergence 
 
It is fairly easy to show that the steepest descent method has a linear rate of 
convergence, which is not too surprising given the simplicity of the method [2, 3]. 
Unfortunately, even for mildly nonlinear problems this will result in convergence 
that is too slow for any practical application. 

Consider the case of minimizing the quadratic function 
 

 T T1
( )

2
f x x x b x= −Q

   
 (B.4) 

 

where ,nb ∈

R  and Q is an n×n symmetric positive definite matrix. Since Q is 

symmetric and positive definite, all of the eigenvalues are real and positive. 
Arrange the n eigenvalues of the matrix Q as 2 1 0.nλ ≥ ≥ λ ≥ λ > The gradient of 

(B.4) is 
 

 ( )g x x b= −Q
  

 (B.5) 

 
so we can write one step of the method of steepest descent as 
 

 1 ( )k k k kx x x b+ = − α −Q
  

 (B.6) 

 
where αk is chosen to minimize ( )f x


along the direction .kg−  A simple calculation 

(for the quadratic case) yields the following equation for αk 
 

 
T

T
k

k
k k

g

g g
α =

Q


   (B.7) 

 
To analyze the convergence, we consider the quantity ( ) ( ),kf x f x− 

where x

denotes the global minimizer of (B.4). We first notice that the unique minimizer to 
(B.4) is given by the solution to the linear system 
 

 x b =Q


 (B.8) 
 
Now consider 
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 T T T1 1
( ) ( ) ( ) [( ) ]

2 2k k kf x f x x x x x b x   − = − −Q Q
      

 

                                              T T T T1 1
( ( ) ] [( ) ( ) ]

2 2k k kx x x x x x x x    = − − −Q Q Q Q
      

 

      T1
( ) ( )

2 k kx x x x = − −Q
   

 

 
When the method of steepest descent with exact line searches is used on a 

strongly convex quadratic function then [2] 
 

 
2

1

( ) 1
( ) ( ) ( ) ( )

( ) 1k kf x f x f x f x 
+

 κ −− ≤ − κ + 

Q

Q

   
 (B.9) 

 
where 1( ) /nκ λ λQ  is the condition number of matrix Q. 

 
Example 
 
Consider the 3-D quadratic function given by 
 

 T T T1
( )

2
f x x b x= −Q
  

 (B.10) 

 
where 
 

 
2

1 0 0 1

0 0 1

0 0 1

b

   
   = τ = −   
   τ   

Q


 

 
The results of employing the steepest decent method are given in 
Table B.1. The convergence tolerance was set so that the 

algorithm would terminate when 
6

2
( ) 10 .kg x

−

≤ 
 We can clearly 

see the effects of even a mildly large condition number as 
predicted by the error bound and as seen in the number of 
iterations required to achieve convergence. 
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B.2.4 Scaling 
 
One of the most important aspects in minimizing real problems is the issue of 
scaling. Because of the way that many scientific and engineering problems are 
initially formulated it is not uncommon to have variables with widely differing 
magnitudes. This can be due to many issues, but a common one is that variables 
have different physical units that can lead to the optimization variables having 
orders of magnitude differences. For example, one variable could be given in 
kilometers and another variable might be in milliseconds leading to a 6 order of 
magnitude difference. We would like to have all the variables in an optimization 
problem having roughly similar magnitudes, however. This leads to better 
decisions in which search direction to choose as well as in deciding when 
convergence is achieved. One fairly standard approach is to use a diagonal scaling 
based on what a “typical” value of a variable is expected to be. We then transform 
the variables by the scaling 
 

 x̂ x= D
 

 (B.11) 
 
where D is a diagonal scaling matrix. In the test problem given above, for 
example, one simple choice would be 
 

 
2

1 0 0

0 0

0 0

 
 = τ 
 τ 

D  (B.12) 

 
B.2.5 Extensions 
 
Several modifications to the steepest descent method have been proposed. In 1988, 
Barzilai and Borwein [4] proposed two new step sizes for use with the negative 
gradient direction. Although their method did not guarantee descent in the 
objective function values, their numerical results indicated a substantial 

Table B.1 Steepest Descent. ( ) / 1nκ = λ λQ  

 
τ Number of Iterations κ(Q) Bound 
2 27 4 0.3600 
5 161 25 0.8521 
10 633 100 0.9801 
20 2,511 400 0.9950 
50 15,619 2,500 0.9984 
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improvement over the classical steepest descent method. One of their main 
observations was that the behavior of the steepest descent algorithm depended as 
much on the step size as on the search direction. They proposed instead the 
following procedure. First we write the new iterate as 
 

1

1
k k k

k

x x g+ = −
α

  
        (B.13) 

 
Then, instead of computing the step size by doing a line search or using the 
formula for the quadratic case (B.7), we compute the step length, αk, through 
 

T
1 1

T
1 1

k k
k

k k

s y

s s
− −

− −

α =
 
         (B.14) 

 
where 1 1k k ks x x− −= −  

 and 1 1.k k ky g g− −= −  
Using this new formula, Barzilai and 

Borwein were able to produce a substantial improvement in the performance of the 
steepest descent algorithm for certain test problems. 
 
 

B.3 Gauss-Newton Method 
 
Functions used in a nonlinear regression have three types of variables. These three 
variables are the dependent variables, the independent variables, and the 
regression parameters.  

The independent variables are usually the variables that are used as inputs 
while measuring the effect of them on other variables. The vector of independent 

variables is [ ]T

1 2 .lx x x x= 
 

The dependent variables are the observed 

outcome of varying the independent variables. The vector of dependent variables 

is [ ]T

1 2 .my y y y= 
 

Both the independent variables and the dependent 

variables are model independent. They both can be determined experimentally 
without using a model. 

A model is one or more equations that are used to correlate the dependent 

variables with respect to the independent variables. The model functions are 

denoted as f. 

The regression parameters are parameters of the model used to correlate the 

dependent and independent variables and are model dependent. The regression 

parameters are the unknown variables to be determined in a nonlinear regression. 

The vector of regression parameters is [ ]1 2 .np p p p=    
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In a model, the dependent variables are functions of the independent variables 

and the model parameters. The difference between the values of the dependent 

variables predicted by the model and the values of the dependent variables actually 

observed is the error of the model, which is designated as .  That is,  

 

 ( , )y f x p= +   (B.15) 

 

In vector form 

 

 ( , )y f x p= +     (B.16) 

 

so 

 

 ( , )y f x p= −    (B.17) 

 

A Taylor series for 
 written about a set of regression parameters while 

holding the dependent and independent variables constant and retaining only the 

linear terms yields 

 

 

0 0 0 0 0 0

0 1

1 1 1 1 1 1

0 1

0 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

m m m m m m

n

y f y f y f

p p p

y f y f y f

p p p

y f y f y f

p p p

∂ − ∂ − ∂ − 
 ∂ ∂ ∂ 
 ∂ − ∂ − ∂ −
 ∂ ∂ ∂=  
 
 
∂ − ∂ − ∂ − 
 ∂ ∂ ∂ 

J





   



  (B.18) 
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0 0 0

0 1

1 1 1

0 1

0 1

n

n

m m m

n

f f f

p p p

f f f

p p p

f f f

p p p

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 ∂ ∂ ∂=  
 
 

∂ ∂ ∂ 
 ∂ ∂ ∂ 

J





   



 (B.19) 

 
 p1 p0 1 0( )p p= + −J

  
   (B.20) 

 

The m × n matrix J is known as the Jacobian of the error functions with respect to 

the regression parameters and the m × n matrix J is the Jacobian of the model 

functions with respect to the regression parameters. 

Using (B.17) and noting that y


 is constant with respect to the parameters, so 

their partial derivatives relative to the parameters are zero, gives 

 

 = −J J  (B.21) 

 

Substituting (B.21) in (B.20) gives 

 

 p1 p0 1 0( )p p= − −J
     (B.22) 

 

The square residual error Rs


about 1p


can be written as 

 

 2 2 T
R p1 p0 1 p0 1 0 p0 1 0( )] [ ( )] [ ( )]s p p p p p p= = − − = − − − −0[ J J J
              

 T T T T
p0 p0 1 0 1 0 p0 1 0( ) ( ) 2 ( )p p p p p p= + − − − −J J J

           (B.23) 

 

At the minimum square residual error, the derivatives of Rs


with respect to 1 0p p− 

are equal to zero, so we get  

 

 T TR
1 0 p0

1 0

2 ( ) 2 0
( )

ds
p p

d p p
= − − =

−
J J J

   
    (B.24) 
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which yields the Gauss-Newton equation 

 

 T T
1 0 p0( )( )p p− =J J J
    (B.25) 

 
so 
 
 T 1 T

1 p0 0( )p p−= +J J J 
 

 (B.26) 

 
The Gauss-Newton algorithm works by starting with an initial guess of the 

parameters. These are used as 0.p


The residual error and the Jacobian are then 

solved. Then (B.26) is used to solve for 1,p


 which becomes the new 0p


 and the 

algorithm is repeated until it either converges or goes unstable. 

 
 

B.4 Levenberg-Marquardt Algorithm 
 
B.4.1 Introduction 
 
The Levenberg-Marquardt (LM) algorithm is an iterative technique that locates the 
minimum of a multivariate function that is expressed as the sum of squares of non-
linear real-valued functions [5, 6]. It has become a standard technique for non-
linear least-squares problems, widely adopted in a broad spectrum of disciplines. 
LM can be thought of as a combination of steepest descent and the Gauss-Newton 
method described in the last section. When the current solution is far from the 
correct one, the algorithm behaves like a steepest descent method: slow, but 
guaranteed to converge. When the current solution is close to the correct solution, 
it becomes a Gauss-Newton method. Next, a short description of the LM algorithm 
based on the material in [5] is supplied. Note, however, that a detailed analysis of 
the LM algorithm is beyond the scope of this appendix and the interested reader is 
referred to [7–9] for more comprehensive treatments.  
 
B.4.2 Nonlinear Least-Squares Minimization 
 
The problem for which the LM algorithm provides a solution is called nonlinear 
least-squares minimization. This implies that the function to be minimized is of 
the form 
 

 2

1

1
( ) ( )

2

m

j
j

f x r x
=

=  
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where T
1 2[ ]nx x x x=  is a vector, and each : .n

jr →R R  The rj are referred 

to as residuals and it is assumed that .m n≥  

f can be represented with a residual vector : n mr →
R R  defined by 

 
 T

1 2( ) [ ( ) ( ) ( )]mr x r x r x r x
       

 
Now, f can be rewritten as 
 

 
21

( ) ( )
2

f x r x=  
 

 
The derivatives of  f can be written using the Jacobian matrix J of r


with respect 

to x


 whose entries are 
 

 ( ) , 1 ,1j

i

r
x j m j n

x

∂
= ≤ ≤ ≤ ≤

∂
J


 

  
Let us first consider the case where every ri function is linear. Here, the 

Jacobian is constant and we can represent r


as a hyperplane through space, so that 
f is given by the quadratic 

 

 
21

( ) (0)
2

f x x r= +J
  

 

 
We also get 
 
 T( ) ( )f x x r∇ = +J J

  
 (B.27) 

  
 
and 
 
 2 T( )f x∇ = J J


 

 
Solving for the minimum by setting ( ) 0,f x∇ = we obtain 

 
 T 1 T

min ( )x r−= − J J J
 

 (B.28) 

 
which is the solution to the set of normal equations given by 
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 T T
minx r= −J J J
 

 (B.29) 

 
obtained by setting (B.27) equal to zero. 

If a covariance matrix Σx for the measured vector x


 is available, it can be 

incorporated into the LM algorithm by minimizing the squared 1-normx
−Σ instead 

of the Euclidean T .r r
 

 Accordingly, the minimum is found by solving a weighted 
least-squares problem defined by the weighted normal equations 
 
 T 1 T 1

minx xx r− −= −J Σ J J Σ
 

 (B.30) 

 
The rest of the algorithm remains unchanged. 

Returning to the general, non-linear case, we have 
 

 T

1

( ) ( ) ( ) ( ) ( )
m

j j
j

f x r x r x x r x
=

∇ = ∇ + J
     

 (B.31) 

 2 T 2

1

( ) ( ) ( ) ( ) ( )
m

j j
j

f x x x r x r x
=

∇ = + ∇J J
    

 (B.32) 

 
A useful property of least-squares problems is that given the Jacobian matrix J, we 
can essentially get the Hessian 2[ ( )]f x∇ 

for free if it is possible to approximate 

the rjs by linear functions 2[ ( )jr x∇ 
are small] or the residuals[ ( )]jr x


 
themselves 

are small. The Hessian in this case simply becomes 
 
 2 T( ) ( ) ( )f x x x∇ = J J

 
 (B.33) 

 
which is the same as for the linear case. 

The common approximation used here is one of near linearity of the rjs near 
the solution so that 2 ( )jr x∇ 

 are small. It is also important to note that (B.33) is 

only valid if the residuals are small. Large residual problems cannot be solved 
using the quadratic approximation, and consequently, the performance of the 
algorithms here is poor in such cases. 

 
B.4.3 LM as a Blend of Gradient Descent and Gauss-Newton Iteration 
 
Vanilla gradient descent is the simplest, most intuitive technique to find minima in 
a function. Parameter update is performed by adding the negative of the scaled 
gradient at each step, that is, 
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 1i ix x f+ = − α∇ 
 (B.34) 

 
Simple gradient descent suffers from various convergence problems. Logically, we 
would like to take large steps down the gradient at locations where the gradient is 
small (the slope is gentle) and, conversely, take small steps when the gradient is 
large, so as not to rattle out of the minima. With the above update rule, we do just 
the opposite of this. Another issue is that the curvature of the error surface may not 
be the same in all directions. For example, if there is a long and narrow valley in 
the error surface, the component of the gradient in the direction that points along 
the base of the valley is very small while the component along the valley walls is 
quite large. This results in motion more in the direction of the walls even though 
we have to move a long distance along the base and a small distance along the 
walls. 

This situation can be improved by using curvature as well as gradient 
information, namely second derivatives. One way to do this is to use Newton’s 
method to solve the equation ( ) 0.f x∇ = Expanding the gradient of f using a Taylor 

series around the current state 0 ,x


 we get 

 
 T 2

0 0 0 0( ) ( ) ( ) ( ) higher order terms of ( )f x f x x x f x x x∇ = ∇ + − ∇ + −      
 (B.35) 

 
If we neglect the higher-order terms (assuming f to be quadratic around 0 ),x


and 

solve for the minimum x by setting the left hand side of (B.35) to 0, we get the 
update rule for Newton’s method 
 
 2 1

1 [ ( )] ( )i i i ix x f x f x−
+ = − ∇ ∇   

 (B.36) 

 
where 0x


has been replaced by ix


and x


 by 1.ix +


 

Since Newton’s method implicitly uses a quadratic assumption on f (arising 
from neglecting the higher-order terms in the Taylor series expansion of f ), the 
Hessian need not be evaluated exactly. Rather the approximation of (B.33) can 
usually be used. The main advantage of this technique is rapid convergence. 
However, the rate of convergence is sensitive to linearity around the starting 
location.  

We see that simple gradient descent and Gauss-Newton iteration are 
complementary in the advantages they provide. The LM algorithm is based on this 
observation, whose update rule is a blend of the above-mentioned algorithms and 
is given as 

 
 1

1 ( ) ( )i i ix x f x−
+ = − + αH I
  

 (B.37) 
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where H is the Hessian matrix evaluated at .ix


 This update rule is used as follows. 

If the error goes down following an update, it implies that our quadratic 
assumption on ( )f x

  is working and we reduce α (usually by a factor of 10) to 

reduce the influence of gradient descent. On the other hand, if the error goes up, 
we would like to follow the gradient more and so α is increased by the same 
factor. Thus: 
 

LM Algorithm 
 
1. Do an update as according to (B.37). 
2. Evaluate the error at the new parameter vector. 
3. If the error has increased as a result of the update, then retract 
    the step (i.e., reset the weights to their previous values) and 
    increase α by a factor of 10 or some such significant factor. 
   Then go to (1) and try an update again. 
4. If the error has decreased as a result of the update, then accept 
    the  step (i.e., keep the  weights  at  their  new  values)  and 
    decrease α by a factor of 10 or so. 
 

The above algorithm has the disadvantage that if the value of α is large, the 
calculated Hessian matrix is not used at all. We can derive some advantage out of 
the second derivative even in such cases by scaling each component of the 
gradient according to the curvature. This should result in larger movement along 
the directions where the gradient is smaller so that the classic “error valley” 
problem does not occur. This crucial insight was provided by Marquardt [6]. He 
replaced the identity matrix in (B.37) with the diagonal of the Hessian resulting in 
the LM update rule 
 
 1

1 [ diag( )] ( )i i ix x f x−
+ = − + α ∇H H
  

 (B.38) 

 
Since the Hessian is proportional to the curvature of f, (B.38) implies a large 

step in the direction with low curvature (i.e., an almost flat terrain) and a small 
step in the direction with high curvature (i.e., a steep incline). We note that while 
the LM method is a heuristic, it works extremely well in practice. The major flaw 
is the need for a matrix inversion as part of the update. Even though the inverse is 
usually implemented using clever pseudoinverse methods such as SVD, the cost of 
the update becomes prohibitive after the model size increases to a few thousand 
parameters. For moderately sized models (of a few hundred parameters) however, 
this method is much faster than, say, vanilla gradient descent. 
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B.5 Concluding Remarks 

 
We discussed some nonlinear programming techniques in this appendix. 
Specifically we discussed the method of steepest descent, the Gauss-Newton 
method, and the Levenberg-Marquardt algorithm. These algorithms are used to 
find the minimum values of functions. They are certainly not the only algorithms 
for performing this function. They are provided as examples. 
 These techniques are included here because many of the approaches for 
geolocating target emitters rely on finding the minimum errors in functions, for 
example, least squares error and minimum mean-square error. Typically these 
functions are nonlinear and the algorithms discussed in this appendix can be used 
to find minima of nonlinear functions. 
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Acronyms 
 
 
2-D two-dimensional 

3-D three-dimensional 

AAR adaptive angular response 

AM amplitude modulation 

AOA angle of arrival 

AOI area of interest 

ASE aircraft survivability equipment 

AWGN additive white Gaussian noise 

BLWN band-limited white noise 

BW beamwidth 

CAF Cross-ambiguity function 

CCF cross-correlation function 

CEP circular error probable 

CRB Cramer-Rao bound 

CSD Cross-spectral density 

DD differential Doppler 

DFT discrete Fourier transform 

DFT direction finding 

DME distance measuring equipment 

DOP dilution of precision 

DPD discrete probability density 
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EEP elliptical error probable 

EKF extended Kalman filter 

EM electromagnetic 

EW electronic warfare 

FCC Federal Communication Commission 

FM frequency modulation 

FT Fourier transform 

GCC generalized cross-correlaiton 

GDOP geometric dilution of precision 

GPS global positioning system 

HF high frequency 

i.i.d. independent and identically distributed 

LCOA location on the conic axis 

LLSE linear least-squares estimator 

LMMSE linear minimum mean-squares error 

LMS least-mean square 

LO local oscillator 

LOB line of bearing 

LOP line of position 

LPI low probability of intercept 

LRT likelihood ratio test 

LSE least-square error 

LTI linear time invariant 

ME maximum entropy 

MEM maximum entropy method 

ML maximum likelihood 

MLE maximum likelihood estimation 
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MLM maximum likelihood method 

MMSE minimum mean-square error 

MSC multiple sample correlation 

MSE mean-square error 

MUF maximum usable frequency 

MUSIC multiple signal classification 

NVI near-vertical incidence 

NVIS near-vertical incidence skywave 

PDF probability density function 

PEA phase error amplitude 

PF position fix 

PHAT phase transform 

PM phase modulation 

PX plane intersection 

RD range difference 

RGEA relative gain error amplitude 

RMS root mean square 

RWR radar warning receiver 

SAW surface acoustic wave 

SCOT smoothed coherence transform 

SDOA scale difference of arrival 

SI spherical interpolation 

SNR Signal-to-noise ratio 

SSL single site location 

SVD singular value decomposition 

SX spherical intersection 

TDOA time difference of arrival 

TID traveling ionospheric disturbances 
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TLSE total least-square error 

TMA target motion analysis 

TNA thermal noise algorithm 

TOA time of arrival 

UAS unattended aerial system 

UAV unattended aerial vehicle 

UCA uniform circular array 

UKF unscented Kalman filter 

ULA uniform linear array 

UT universal time 

VHF very high frequency 

VSWR voltage standing wave ratio 

WLSE weighted least-square error 

wss wide-sense stationary 
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Symbols 
 
 
A    Array manifold matrix 
C   Covariance matrix 
C(t)   Coherence function (t = k if discrete) 

m n×C   Array of m × n complex numbers 
C   Set of complex numbers 
D   Time difference of arrival/time delay 
   Size of (discrete) array manifold 
e    Eigenvector 
f   Frequency 
J   Jacobian matrix 
L   Number of signals 
M   Number of sensors/antennas/receivers 
n(t)   Noise waveform (t = k if discrete) 
N   Number of samples 
N    The set of natural numbers (integers) 
P   Cross-correlation density 
P   Power spectral density 
r(t)   Received time waveform (t = k if discrete) 
R(τ)   Autocorrelation function 
R   Data covariance matrix 

m n×ℜ   Array of m × n real numbers 
ℜ    The set of real numbers 
s(t)   Transmitted time waveform (t = k if discrete) 
T   Observation time 
V   Variance 
V   Variance matrix 
W   Bandwidth 
W   Weight matrix 
W(f)   Weight function (of f) 
β


   Wavenumber 
γ    Signal-to-noise ratio 
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φ    Azimuth angle 
λ   Wavelength 
ρ(t)   Cross-correlation function (t = k if discrete) 
σ2   Variance 
θ   Elevation angle (usually measured from zenith) 
θ


   Unknown parameter vector 
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