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A Time for
Reckoning

The human mind, when it sails by dead reckoning,
without the possibility of a fresh observation, perhaps
without the instruments necessary to take one, will
sometimes bring up in very strange latitudes.

James Russell Lowell (1890), “Witchcraft” [1]

If the mind with its hundred billion neurons is the most
intricate amalgam in the known universe, we should expect to do
marvelous things with it. As we form electrical pathways among
the hundred trillion synapses in the mind when performing a task,
or even in anticipating a task, a library of pertinent mind maps
and templates would be invaluable. This book investigates a por-
tion of such a library, ashelf in the mathematics section, and browsing
there can be an enjoyable and interesting experience for us.

This book describes techniques of computation and approxima-
tion that may be used to rapidly and mentally calculate mathemat-
ical quantities, including results of arithmetic operations and
values of elementary functions. Some of these methods are very
old, some are relatively recent, and some are new. Overall, the
idea is to enjoy developing these capabilities. The concept of dead
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reckoning is meant to convey the adventurous and challenging
spirit that I perceive in this pursuit. At the very least, we will
experience a portion of the panorama of elementary mathematics
that mankind has had thousands of years to develop and that
includes many calculational methods, of which we normally
consider the ones we learned in school to be the only (or even
best) ones. For mental calculations, they usually are not. An
analogous situation occurred in the development of our present
pen-and-paper methods of calculation that minimize erasures,
supplanting the ancient sand reckoning methods in which digits
were continuously and instantly erased and overwritten in the
course of the calculations.

This does not pretend to be a book for teaching arithmetic. It
is intended for those in high school, college, or professional
occupations who are intrigued by mathematics, regardless of
whether they are considered “good” at it or not. Unlike some
books on calculational shortcuts, it is not a business math book—
you won'’t find any dollar signs here. No exercises are included; the
world is full of them. On the other hand, this book is replete with
examples, which usually offer more personal insight than the often
forbidding symbolic formulas.

For those who appreciate numbers and their interrelationships,
the ability to perform mental calculations can provide a great deal
of personal satisfaction and recreation. Speed is without a doubt
a major objective of these techniques, but the sheer power of the
mind to extract, say, square roots to sixteen or more digits offsets,
[ feel, the several minutes required for someone of my limited
capabilities to do it. Therefore, speed is not the only concern and
some methods are included that do take some time. Some of these
algorithms are very interesting and can be thought-provoking in
their own right.

Some may say that this book is a relic, given the calculating
power available to anyone these days. I counter that the contents
of this book are in fact both timeless and timely. Certainly the
enjoyment of exploring mathematics and the challenge of stretch-
ing our personal capabilities will always exist for a cognitive
people. On the other hand, I propose that this is a very appro-
priate time for presenting such calculational methods, for two
curiously interrelated reasons. First, the proliferation of electronic
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calculators and computers throughout our lives and educational
systems are eliminating calculational techniques from our memory
and from our children’s education, threatening to dim our already
narrow view of this very rich field.

Ironically, the material in this book is also timely because a
substantial amount of work on fast calculational algorithms was
performed in the early days of mechanical and electronic com-
puters. Limited in speed and memory and structured as sequential
operations (sound familiar?), these early computers demanded
simple, fast, and accurate approximations to mathematical func-
tions. The work in this field, particularly that for decimal
machines, is reflected in a variety of techniques gathered and pre-
sented in this book. Notably, more recent work in computer
algorithms is much less significant; numeric coprocessors,
extended-bit precision, parallel processing, and so forth have made
the results much less applicable to humans. Newer algorithms,
such as the Fast Fourier Transform (FFT) method of multi-
plication, often rely on internal architectures of microprocessors
and their siblings, arrays of available memory locations, and/or
inherent bit-shifting operations, none of which find analogy in our
thought processes.

My own inability to readily approximate elementary functions
was first brought home several years ago while I was working in
an engineering laboratory. | required the value of sin 28° to
quickly check a test result. Not having a calculator with me, I
came to the shocking realization that, excluding the tedium of
calculating terms by hand in the slowly converging Maclaurin
power series (in radian units, no less), I was lost. Throughout my
physics and mathematics education, trigonometric functions were
always found from tables, slide rules, or calculators.

The next day, as it turned out, the need arose in a meeting to
estimate the square root of 39. Again, a ready estimate to any
significant accuracy at all was impossible. | was appalled.

I was determined to do something about this. As a graduate
teaching assistant I had quietly enjoyed calculating results of
arithmetic expressions before students could locate their calcu-
lators, and I felt I had a fair aptitude with numbers. I had recently
read Steven B. Smith’s excellent book, The Great Mental Calcu-

lators [2], and was somewhat relieved to recall that these were not
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feats that calculating prodigies were generally capable of doing
either. Trigonometric functions were definitely not their province,
and non-integer roots were seldom attempted.

Let us digress here for a moment to talk about such prodigies,
as we will occasionally encounter them in the later chapters. At
the outset, I would like to make it clear that I am not one of these
lightning calculators, a very talented and practiced breed. How-
ever, it also seems appropriate in these days of high-speed pocket
calculators to add that despite popular notions, these lightning
calculators, which we can certainly strive to emulate, were and are
by no means instantaneous in deriving their results. Due to the
paucity of reliable measurements of response times, as well as the
large deviations evident among specific types of presentations and
calculators, I am extremely reluctant to elaborate on this and refer
the interested reader to Smith’s detailed exposition. I would like
to caution that descriptions of performances by lightning calcu-
lators are poor yardsticks. They are generally written to flatter the
calculator, they ignore such delay tactics as conversation and
writing or repeating numbers, and they arbitrarily use phrases such
as “in an instant,” “in a flash,” “momentarily,” and so forth, which
are not quantified.

With this established up front, and only to demonstrate the
finite time required, I point out a test, better than most, reported
in 1894 by Alfred Binet. In the test, the time required to multiply
6241 by 3635 ranged from 21 seconds (Jacques Inaudi) to 70.5
seconds (Ugo Zaneboni). Pericles Diamandi took 127 seconds to
multiply 8637 by 4538. On the other hand, Johann Dase was
credited by a knowledgeable observer in 1861 with mentally
multiplying two eight-digit numbers (79532853 and 93758479)
correctly in 54 seconds. It is also true that two-digit by two-digit
multiplications are often immediately drawn, at least with very
little adjustment, from memory.

Equally important is the realization that the results are not
generated by a spontaneous process. From Hofstadter [3]:

From such people’s introspection, as well as from extensive
research by psychologists, it has been ascertained that noth-
ing occult takes place during the performances of lightning
calculators, but simply that their minds race through inter-
mediate steps with the kind of self-confidence that a natural
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athlete has in executing a complicated motion quickly and
gracefully. They do not reach their answers by some sort of
instantaneous flash of enlightenment (though, subjectively, it
may feel that way to some of them), but—like the rest of us—
by sequential calculation . . .

Mental calculators have usually been extremely talented indi-
viduals who mastered their craft through sheer diligence from an
early age. Efforts typically involved memorization of large tables,
including two-digit endings for root extraction, logarithmic tables,
factors of large numbers, and powers of two-digit numbers. Cou-
pled with an innate number sense cultivated over years, the
calculator historically provided astonishing feats of computation of
limited types, often without an explicit algebraic understanding of
the techniques. On the other hand, many noted theoreticians
were considered lightning calculators, including Pascal, Gauss,
Euler, Ampere, Wallis (who purposefully developed the ability in
middle age), Aitken, Fermi, and Von Neumann.

Actually, the types of calculations performed by professional
lightning calculators are often specialized to a degree that one
would rarely encounter them even in technical work. These
include extracting higher roots of exact powers, finding multiple
squares whose sum is given (for example, every integer can be
expressed as at least one sum of four squares), calculating com-
pound interest, and performing day—date calendar functions.

I began, then, to survey the methods of lightning calculators as
well as what I discovered to be a rather extensive field in
numerical analysis, approximation of elementary functions. This
was simply an interest of mine initially. After a couple of years,
I decided to write an article for a mathematics journal. However,
the article grew quite large and the scope eventually widened to
culminate in this book instead. I am quite sure that you will not
find another book like this one; I looked and ended up researching
this one.

This book is aimed at those of us who, through our interest in
mathematics, have acquired a general appreciation for numbers
(i-e., a number sense), but have limited desire, time, or talent to
develop the tools of lightning calculators. While the techniques
and strategies presented are amenable to mental calculation, they
are useful, of course, for quick pen-and-paper calculations as well.
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Ideally, I think, algorithms designed to be performed mentally
should have the following characteristics:

1. Multiplications that are limited to two-digit by three-digit
at most

Divisions that are limited to two-digit divisors at most

A short-term memory requirement of no more than two
numbers at any one time

A very minimum number of memorized table values

A relatively quick result, accurate to at least three digits,
with the capability of extending this accuracy if so desired

Nl 2

N

This book, then, is not meant to provide a general collection
of approximation techniques, but rather to merge selected tools of
the mental calculator with relatively modern techniques of
numerical analysis. To be precise, it is comprised of a set of useful
methods and algorithms for rapidly and mentally finding products,
quotients, roots of nonperfect powers, trigonometric values, and
logarithmic and exponential values. Extremely detailed error anal-
yses are omitted here to preserve the flavor of the discussion (and,
to be honest, my taste for the subject). If you are interested in
more detail, please consult the references cited; I have tried to be
meticulous. Brief derivations of formulas, however, are generally
given as they occur, although I trust the mathematicians among
us will forgive my lack of rigor.

A notation mention is unavoidable here, because in this book
certain operations involve working with groups of digits in a
number. The notation |n represents a two-digit number string; if
more digits exist in n, they are “melded,” or added, to the digits
to the left of the “|” sign. For example, 31129 = 4129 = 429. We
simply want to work with hundreds groups in the number, and
these can carry or borrow as needed from neighboring groups.

Don’t be confused by the fact that there are three digits in the
rightmost hundreds group of 31129. This can occur in an inter-
mediate result of calculating with individual groups; the melding
process returns each hundreds group to two digits. To illustrate,
consider the numbers 184 and 245. To add these, we can split
them up into two-digit groupings (1184 and 2145) and add each
piece separately (1184 + 2145 = 31129). We then meld the result
into the final answer:
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3
+ 129
429

where the 1 is a carry into the group on its left, as in addition.

While this notation may seem unnecessary at this point, we will
find that in multiplication, division, and square root extraction,
we can work comfortably with separate two-digit groups within
numbers and then meld the final answer back to a number with
two-digit groupings, whence we drop the vertical bars.

It often turns out that when we work with individual groups in
a calculation, one or more groups ends up as a negative number.
In the same way that we “carried” a 1 in melding 31129 into
4129, we can borrow a 1 from a group to add 100 to the group
to its right, as in subtraction. As an example, consider the
calculation 54221 — 10536. We break the original numbers into
two-digit groupings (5142121 and 1105136) and perform the
subtraction on each piece separately, arriving at 41371-15 =
41361(100 — 15) = 4136185 = 43685.

We will occasionally encounter a situation where we want to
work with three-digit, or thousands, groupings in a number. To
distinguish three-digit groupings, we can employ the comma as the
separator, since commas generally separate thousands groupings
with numbers anyway. The final melding process reduces the
number to positive three-digit groupings by carrying or borrowing
as before from groups to the left. For example, 217,39,2820 =
217,039,2820 = 217,041,820 = 217041820. The group 39 was
expanded to 039 to fill its grouping; remember, these are separate
three-digit numbers until they are melded:

217
039
2820
217041820

Rarely, we will need to indicate single-digit groupings. I have
chosen a double vertical bar (| 1) as the separator. To illustrate,
we will show later that multiplying a two-digit number ab by 11
gives a result al [ (a + b) | |b, so

11x78=711(7T+8)118=71115118=8115118 = 858
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It quickly becomes very easy to meld groups into a final answer
in a left-to-right manner as the answer is being read out. Do you
see that 211451-35141-3 = 3446503977

The examples in this book have been chosen to provide realism
to the presentation. Although it is impossible to select numbers
that do not have some sort of special property in an application,
I have endeavored to select values that are not particularly special
(but, ironically, are then atypical). In a few cases I have deliber-
ately chosen a value demonstrating the particular advantage of a
certain technique. Where a special characteristic of a number does
appear, as in that case, | have attempted to point it out. I have
no interest in distorting the efficacy of the methods in this book.
In practice we usually find that shortcuts abound.

It may appear in some instances that the results are taken to
extreme accuracy. However, it is my experience that results to
lesser accuracy become easy only when ones to higher accuracy are
attempted. Too, a good deal of personal enjoyment can be had in
pursuing a calculation to our best efforts. Finally, this enables us
to judge the capabilities of various techniques.

A mathematics professor of mine once told me that he was
surprised occasionally in calculus, rarely in trigonometry, and
never in algebra. I wonder if he would be surprised by some of the
arithmetic in this book.
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Primitives

The whole of Mathematics consists in the organization
of a series of aids to the imagination in the process
of reasoning.

Alfred North Whitehead (1898) [1]

«

Primitive” methods are those strategies for performing arith-
metic operations such as addition, subtraction, multiplication, and
division, as well as the means of error checking the results. These
have been culled from a number of sources, some of which provide
them as particular “tricks” without an appreciation of the exten-
sions necessary for developing general tools. My intention is to
describe methods useful in a variety of calculations; excluded are
tricks specific to certain numbers (except for divisibility tests) or
uncommon digit distributions within numbers. The techniques in
this chapter, aside from their intrinsic value, form helpful tools for
mentally calculating the functions elsewhere in the book.

Addition and Subtraction

Addition and subtraction offer little, actually, in shortcuts. In
general, it is a great help to mentally group digits into twos or
threes for the same reason that it is easier to add 49.55 to 39.62
than 4,955 to 3,962. As mentioned in Chapter 1, the notation

9
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alb denotes the digits a followed by the digits b, where b is
reduced to two digits by melding higher digits into a. In the
above example,

4955 + 3962 = 49155 + 39162
= 881117
= 89117
= 8917

Also, 4955 — 3962 = 101-7 = 9193 = 993. The usefulness of this
notation will become apparent later.
It is often convenient to adjust the numbers for simplicity:

688 + 443 = 700 + 443 - 12
1514 — 688 = 1514 — 700 + 12

Some authors contend that one should never subtract per se,
but rather think of adding a number to the subtrahend to get
the minuend on a digit by digit, or in our case a group by
group, basis.

4955 2+3=5
-131962 6 +9 = 15, carry 1 to subtrahend
993 9+ 1+9=19, carry 1 to subtrahend
3+1+0=4

or,
39162 + 101-7 = 49155

What is apparent here is that these methods all boil down to
the same thing in slightly different ways. Believe me, though, it
is the way we think about the numbers that can make them
seem easy to calculate. This is particularly true in the multi-
plication routines.

Multiplication

Splitting numbers into groups, or using “group vision” as
Menninger [2] calls it, is also useful in multiplications. For
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example, to multiply a number by 5 we halve ten times the
number. This halving process is eased if we advantageously split
up the number into groups of even numbers:

5629432 x5 =56294320 + 2
= 28147160

Mental calculators often performed multiplication as a series of
additions according to the Distributive Law of Algebra:

386 x 471 = 300 ® 400 + 300 70 + 300 e1
+809400+80e70+80e1
+69400+670+60e1

with appropriate shortcuts thrown in (e.g., any calculator would
complete two-digit multiplications almost instantly, shortening
the steps). A digit by digit solution is possible by performing the
classical multiplication routine vertically instead of horizontally,
called cross multiplication [2]. To find 386 x 471:

6¢1=6

6e7+8e1=0,carry5

604+8e7+3e]+5=8 carry 8

8e4+3e7+8=1,carry6

3e¢4+6=18

Answer: 181806

While this eliminates the need to remember the intermediate
values in the classical algorithm, the left-to-right nature of the
first technique is better suited to writing the answer while it is
being obtained. At least one contemporary lightning calculator
uses two-digit by two-digit multiplications in cross multiplica-
tion [3].



12  Dead Reckoning: Calculating Without Instruments

For those of us without the practiced thythm necessary for
quickly doing these steps, there are several ways of simplifying the
calculation by manipulating the numbers into simpler ones. In
fact, this is where the fun lies in all of this. '

One way of simplifying a multiplication is to make use of
the identity

(a+b)e(a+c)=ala+b+c)+hbc (1)
Therefore,

105 x 117 = 122 ¢ 100 + 5 ® 17

98 x 89 =87 @ 100 + 2 ¢ 11
85 x 117 = 102 100 — 15 ¢ 17
=10200- (22 ¢ 10+5 e 7)
or
= 10200 — (12 ® 20 + 3 © 5)

It is impossible to adequately convey the usefulness and perva-
siveness of this technique in practice; if you don’t use it, do.
Interestingly enough, this method was once taught to school-
children in lieu of teaching the multiplication tables above 5 x 5

[4]. To illustrate, the product 8 X 7 was found by forming
this diagram:

8 7 where the 2 and 3 are differences from
\/ 10of8and 7,5is 7 -2 or 8 — 3, and
/\ 6 is 3 x 2, giving 56 as the answer.

3 2 6

5

Why not? Perhaps a second-grader today should learn this tech-
nique instead of learning multiples of 12.

There is an analogous method in finger-counting that utilizes
this relation as well. Again, to find the product 8 x 7, we begin
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with two closed fists. We then raise fingers on one hand to count
from the first number 8 to 10, and we repeat this for the number
7 on the other hand. Then the sum of the closed fingers is the
tens digit and the product of the raised fingers is the units digit.

We can also extend Equation 1 to cases where both numbers
are near numbers of which one is a multiple n of the other. A
straightforward approach would be to multiply the smaller number
by n, use Equation 1, and then divide the result by n. An easier
way makes use of the identity

(a+b) ®(na+c)=al(na+c)+nb]+bc
36 x 157 =40(157 -4 0 4) + 4 o 3
=40 ¢ 141 + 12
= 5652

Again, b and c are signed quantities.
The last example also demonstrates a convenient tool, useful
when a multiplier is divisible by 9:

36 x 157 = (40 — 40/10) * 157
= (1 -1/10) » 40 ® 157
=62180-6128
= 5652

Of course, this is a special case of the common practice of
multiplying by a nearby round number and correcting the result:

26 x 87 =26 903 ® 26 =123140 - 78 = 2262

When multiplying two numbers a5 and b5 that end in 5, we
might remember the relation,

(a5) o (bS) = <ab+a ; b> 125
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35x 75 = (21 +5)125
= 2625

If (a + b) is odd, the .5 emerging from the average is assumed to
merge into the |25, producing |75.

65 x 235 = (138 + 14)175
= 15275

A final instance of algebraic manipulation to ease multiplica-
tions is given by D. E. Smith [5]:

(10a + a) ® (10b + b) = [(10a + a)b + ab] ® 10 + ab
22x44=(2204+294)e10+204
=960 + 8 = 968
Other points to be aware of include
25X n=nl00 + 4
75xn =3nl00 + 4
125 x n = 8n,000 + 8
15xn=(n+n/2) ® 10, or (n/2) ® 3 ¢ 10
11 xallb=all(a+b)llb
Here b is the units digit of a number, and a can contain one or
more digits. Considering the last relation above, if we multiply
al |b by a multiple of 11, we can multiply al I'b by the multiple
and continue as if multiplying by 11. I reluctantly include this

rule, as 11n = 10n + 1 anyway, but it may be useful yet. To repeat
our earlier example,

22x44 - 11 x88 =81116118 = 968
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Notice that the middle digit is melded to become a single digit,
as indicated by the double bar notation. For larger numbers,

44 x 643 —> 11 x 25172

= 2117115
+ 7119112
2.8 2 9 2

This may be extended to include multiplication by, say, 111:
111 x al Ib=al[(a + b) ® 11]1b

where the middle section is now melded to two digits.

Note that often we can factor a number into one or more of
these convenient numbers. Conversely, for example, the number
37 can be represented as 111/4.

Squaring is an extremely important operation to perform men-
tally, mainly because ordinary multiplications can usually be
simplified into a square and a much simpler multiplication. For-
tunately, squares offer advantages to us.

Squares can be obtained by using Equation 1 to reduce the
number of significant digits:

(32)2 =30 » 34 + (2)?
(185)2 = 200 ® 170 + (15)? = 34000 + 225
= 34225

Numbers ending in 5 can be squared by a trivial result of Equa-
tion 1, often presented as a number trick:

(35 =33 + 1)]125
= 1225

Conversely, general multiplication can make use of squares as
follows (called the rule of quarter squares and of very ancient
origins) [5]:
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38 x 32 = (35) — (3)?

62 x 74 = (68)r — (6)> = 70 ® 66 + 4 — 36
It’s useful to me in getting the signs right to remember that the
average number squared is larger than the individual numbers

multiplied.
Another convenient tool is to use the relation

(a +b)? =a’+bla+(a+b)]
(31)* = (30)* + (30 + 31)
(58) = (60)% — 2(60 + 58)

The square of a multiple of 3 can be found by extracting
(3)> = 9 out of the quantity squared and letting this equal
(10 = 1) [5):

(3a)? = 10a? — a?
(132)* = 10(44)* - (44)
=1193160 -~ 19136
= 17424

One of the few explicit “tricks” I find worth remembering is
extremely useful for squaring numbers from about 30 to 70. The
result is obtained by adding the difference b from 50 to 25 and
appending b%, melded to two digits [2].

(58)% = (8 + 25) 164 = 3264

(37)? = 121169 = 1369
For squaring a number between about 400 and 600, add the

difference from 500 to 250 and append the square of the last two
digits melded to three digits:
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(531)% = 281,961
(564)* = 314,391196
= 318,096

Also, it is sometimes convenient to recall that when squaring
a two-digit number ending in 1,

(al 11)? = a?l 12al |1

where the 2a term is melded to a single digit. This follows from
the expansion of (10a + 1)2. In addition, when squaring a number
ending in 25, as in al25 [2],

(al 25)% = 10(a* + af2), 625
(725)? = 525,625
This follows from the identity
(100a + 25)? = 1000(10a2 + 5a) + 625

By this point we should be adept at mentally multiplying two-
digit by two-digit numbers. As you may have guessed, the later
discussions in this book assume this ability. I recommend in spare
moments sequencing through the two-digit numbers and squaring
each one. This actually takes little time. The purpose is not to
memorize the results but rather to formulate general strategies for
arriving at them quickly. Remember here that “particular” tech-
niques are really more general than they appear, because opera-
tions on numbers near convenient ones can use the latter and be
adjusted at the end for the difference. I think you will discover
that there are many ways to skin these cats.

To cube a number, it is generally easier not to square and
multiply, but rather to use the expansion

(a +b)} =ad+ b3+ 3ab(a+Db)
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For example,
(23)* = 8027 + 180 * 23
= 8027 + 10(21 ® 20— 2 o 3)
= 8027 + 4140
= 12167
Failing outright simplification of a large multiplication, we can

make use of the following identity, apparently first introduced in
a more complicated binary format in 1962 [6,7]:

albxcld=ac e 10*+ [ac + bd — (a—b) ® (c — d)] ® 10?
+ bd
6823 x 4519 = 68 ® 45 x 10* + (68 ® 45 + 23 * 19
—45 0 26) x 102 +23 ¢ 19

= 3060100100
+ 23 27100
+ 4137

3083131137 = 30833137

thereby getting an eight-digit result by evaluating the products of
only three two-digit by two-digit numbers. The usual expansion
requires four such products:

albxcld=ace® 10* + (ad + bc) ® 10? + bd

Both equations become identical when squaring numbers.

Knuth [6] comments that this method, while apparently never
used by lightning calculators, should make eight-digit by eight-
digit mental calculations “reasonable” by nesting the procedure.
Although it reduces the number of two-digit multiplications from
16 to 9, it does require temporary storage of a few numbers simul-
taneously, a trivial task for a machine but a difficulty for mortals.
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Division

Division reveals difficulties in simplification, serving to deepen
my suspicion that addition, subtraction, and multiplication are
artifacts of God, while division is a construct of man. Nonetheless,
some things can be done. Following an overview of the useful
properties of repeating decimals, we will delve into strategies for
reciprocals of one-digit and two-digit numbers and divisors near a
multiple of 10 before tackling large divisors.

To begin, we discuss certain properties of repeating (sometimes
called recurring) decimals, that is, those numbers with digits
(usually lying to the right of the decimal point) that recur in repeated
groups [8-10]. For example, 1/7 = 0.14285714285714...,
demonstrating this property. It happens that for a fraction s/t, a
repeating decimal group will occur if t has one or more prime
factors other than 2 or 5. Otherwise, since 2 and 5 are prime
factors of 10, an exact decimal value will result (e.g., 13/16 =
0.8125). A prime number is a positive integer other than 1 that
is divisible only by itself and 1, such as 2, 3, 5, 7, 11, 13, etc.
When repeating groups do occur, they may follow initial non-
repeating digits. However, awareness of the existence of these
groups can save a good deal of effort.

A pertinent question at this point is how we determine the
number of decimal places we need to either terminate the number
completely or complete the first repeating group and, in the latter
case, the number of digits in the repeating group. For a denomi-
nator t with prime factors of 2 and 5 only, the number of decimal
places will equal the highest power of 2 or 5 contained in t. In
our example above, 16 = 2* & 50 5o the ratio 13/16 terminates
after the fourth decimal place. Some would say that a terminating
decimal is actually a repeating one, spewing out zeros or nines to
infinity. We will not label these as such, if only to simplify
our terminology.

Unfortunately, there is no general rule for determining the
recurring period of repeating decimals, although there are some
useful properties of some cases. First, we can see that a group will
begin repeating when, in long division, we arrive at a remainder
that is the same as earlier in the division, whence the whole
process starts repeating. Since there are only (t — 1) different
remainders possible for a divisor t, the repeating group cannot
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have a period greater than (t — 1). Our first example of t = 7
illustrates a repeating group of length (t — 1), as do such numbers
as 17, 19, 23, 29, 47, 59, 61, and 97. The reciprocal of 97 is
occasionally asked of lightning calculators [11].

It turns out that for reciprocals 1/t with t prime, the period of
the repeating group, if not equal to (t — 1), must be exactly
divisible into (t — 1). For example, for the fraction 1/43, the group
period must equal 42, 21, 14, 7, 6, 3, or 2. For a prime t between
3 and 487, the period of 1/(t?) equals t*! times that for 1/t.
Therefore, the repeating group of 1/49 contains 7 ® 6 or 42 digits.
The period of a fraction s/(3") equals (372) digits.

For a reciprocal 1/t with t composite (nonprime, or factorable),
we can sometimes break t into prime factors 22 ® 5> e t; o t, ®
t; ® ..., where t, ty, t3, . . . are all different and are greater than
5. Then the period of the repeating group will equal the lowest
common multiple of the periods of the repeating groups for 1/t;,
1/ty, 1/t3, etc. Yielding to a heightened sense of apprehension, I
offer the example of 1/73920. Here we may find by factorization
methods discussed later that t = 26 ® 5 @ 3 7 @ 11, The recurring
periods of the last three factors are 1, 6, and 2, whose lowest
common multiple 6 is the recurring period of 1/73920 =
0.000013528138528138528 . . ., where we notice that the recur-
ring group appears after six nonrepeating digits, 000013.

In addition, the recurring period for numbers which are factors
of 9, 99, 999, etc. will equal the number of nines in the lowest
such multiple. For example, 999,999 =3 ¢ 3 ¢ 3 ¢ 7 ¢ 1] o 13
¢ 37 yields 63 combinations as factors. Except for the six that are
factors of 9, 99 or 999 (3, 11, 33, 37, 111, and 333), all have a
recurring period of six digits, including the factors 7, 13, 21, 39,
63, 77, 91, and so on. Since 3 is a factor of 9, its reciprocal has
a recurring period of one digit. The numbers 11 and 33 produce
two-digit periods, and 37, 111, and 333 yield three-digit periods.

In another special case of a reciprocal 1/t where t = 22 ® 5b o ¢0
and t is any prime between 5 and 487, the period of the repeating
group equals that of 1/t; multiplied by t21. For 1/968, we have t
= 2% & 112 with a recurring period of 2 ® 11 = 22 digits.

Now, for irreducible fractions s/t yielding groups of even periods
and with t prime, corresponding digits of the first and second
halves of the period add up to 9. Therefore, if we know that 1/7
yielded an even period (as it does since it is one of the ones noted



Primitives 21

for periods of length (t — 1) earlier), we need only find the first
three digits .142 to know the last three of the group as 857. Again,
3/7 = 428571 . ... Of course, this halves the effort required to
find or memorize the reciprocal of, say, 97 as well. Other fractions
with even periods but with t nonprime often exhibit this phenom-
enon, but not always. They always will if no factor of t divides
(10 — 1), for n a positive integer. If t is not divisible by 2, 3, or
5 and 1/t has a period of (t — 1) digits, this situation will occur
as well. Finally, for t = aP ® b9 ® ..., where each multiplier is a
distinct prime other than 2 or 5, halves will be complementary if
and only if the periods for 1/a, 1/b, etc. contain the same power
of 2.

Also, for any reciprocal 1/t, the last digit of the repeating group
will be 1 or 9 if the units digit of t is 9 or 1, respectively. If t is
prime and the units digit is not 1 or 9, the last digit of the
repeating group will be the same as the units digit of t. Therefore,
the repeating group for 1/7 must end in 7, so if we take the
fraction to two digits, or .14, we immediately know that 1/7 =
142857 . ...

We turn now to the task of finding the decimal expansion of
a reciprocal 1/t. The process of long division, which we can end
when a remainder is repeated in the course of the calculation, is
the obvious approach. There is another method which is fre-
quently more convenient, particularly if the period of the recur-
ring group is large. We divide by long division until some digits
are determined and a low remainder is found. Then we can
multiply the entire quotient (including the fraction remainder/t)
by the remainder, converting the fractional part to proper form.
Any digits to the left of the decimal point are discarded. This
process of multiplication can be repeated until the recurring group
is found, with checks provided by our earlier observations. For
example, let us consider the reciprocal of 43:

1/43 = .023'Y,
11/43 = 11(.023"%;) = 253 121/43 = .255 35/43
11%/43 = 11(.255%,) = 2.805 385/43 = 2.813 41/43

etc.
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Then 1/43 = 0.023255813 .. ..

We haven’t reached the end of a recurring group yet, and of
course it may take 42 digits. We could have continued our initial
long division further and found 1/43 = 0.0232558 6/43. On the
other hand, we can continue to 1/43 = 0.023255813 41/43, either
by long division or even better as the intermediate result from
multiplying by elevens in the calculation given above. Here we
can take our remainder as —2 (I find that authors of arithmetic
methods often don’t take arithmetic literally enough). Then

1/43 = .023255814 -2/43
-2/43 = -2(.023255814 -2/43) = —.046511628 +4/43
—2%/43 = ~2(.046511628%;) = +.093023256 —8/43

See the recurrence beginning in the last result, realizing that

6 — %; = 5 *%;? We find then that

1/43 = .023255813953488372093

where the raised line indicates the recurring group.

If we don’t care to work with the fractional parts at all, we can
ignore them if we keep the digits to the left of the decimal point
in each step [9]. These extra digits are then melded into the digits
previously found. Again, 1/43 = 0.023 with a remainder of 11,
which multiplies the numbers in each line:

023
253
2805
023255805 . ..

Here, however, we would not discover the more convenient
remainder of -2 which, as we have seen, would greatly simplify
finding the rest of the repeating group. For reciprocals of numbers
such as 37, 27, 7, 11, or 13, for example, that have multiples one
less or more than a power of 10, the remainder after division to
this number of places will obviously be 1 or -1, respectively. Then

since 37 ® 27 =999 and 7 ¢ 11 ¢ 13 = 1001, we know that
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1/37 = .027
1/27 = .037

and since 11 ® 13 = 143, 7 ® 13 =91, and 7 ¢ 11 = 77,

we find

143 .091
_ 143 - 091
+ 143 + 091
etc. etc.
/7= .142857 yit= .09
077
- 077
+ 077
etc.

1/13 = .076913

Now 43 is prime and we have found above that the period of
the recurring group is 21, a factor of (43 — 1). For t’s containing
more digits, we can, with some luck in remainders, save a great
deal of time with these methods.

For numbers whose reciprocals yield recurring groups of length
(t = 1), values of s/t with s > 1 contain the same recurring group
with its digits cycled to perhaps a different starting position. This
happens to be true for 1/(7)? as well.

For example, we recall that 1/17 has a recurrent period of
(t — 1) and we can find its value through the previous techniques.
We need only find the first eight digits, as the last eight
are complementary.

1/17 = .0588 4/17
4/17 = 4(.0588%,) = .2352 16/17
Then

1/17 = 0.0588235294117647
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Here we also see that since t is prime with a units digit of 7, the
last digit of the recurring group is also 7. Realizing this, we actually
only needed to ascertain the first seven digits of the reciprocal.

Now, say we're interested in the value of 13/17. We found the
decimal expansion of 1/17 fairly easily, so let’s divide 13 by 17 to
a couple of digits or multiply the first few digits of 1/17 (which
we round off) by 13, giving 13 ® 059 = 767. This implies that
the recurring group begins with the digits 764 in 1/17, and we
assert that

13/17 = .7647058823529411

which is indeed true. Lightning calculators of the showmanship
variety occasionally use a trick involving a reciprocal such as 1/7
to perform seemingly unbelievable multiplications. Through a
confederate in the audience or some other contrived means, the
first number is produced, in this case, 142857. Now, we know that
1/7 = 1428517, so 142857 = 10%(1/7) — 1/7 = (10° - 1)/7.
Therefore, any other number easily multiplies this artifical one.
For example, a legitimate audience member volunteers the
number 6297 as the multiplier. Then,

6297000000 — 6297
7

6297 x 142857 =

6296993703
7

and the short division is also done mentally to arrive at the correct
answer of 899570529. Beware.

Returning to our discussion, let us consider the general case of
finding the decimal expansion of s/t, where s is not necessarily 1.
First, we can round off the divisor in many instances by adjusting
the remainder or dividend in each step of the usual division
process. For evaluating 1241/78 = 15.910.. . ., for example, we can
replace the divisor by 80 and correct each remainder by the
errant amount:
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124/80 = 1 remainder = 44 + 1 ® 2 = 46
461/80 = 5 remainder = 61 + 50 2 =71
710/80 =9 remainder = -10 + 9 ¢ 2 =8
80/80 =1 remainder =0+ 12 =2
etc.

Notice that in the third step we had to back up and increase
the previous quotient digit 8 to 9 because the adjusted remainder
ended up greater than the divisor 80. The frequency of this
situation increases as the original and rounded numbers are more
distant. For an original number ending in 9, this situation never
occurs during the string of zeros following the significant digits in
the dividend. Digits in the quotient are simply inserted (added to
zero) into the dividend a number of places to the right given by
the power of 10. In this case, it is convenient to divide both the
divisor ending in n nines (adjusted to a number ending in n zeros)
and the dividend by 10n. Then as the division progresses, each
digit of the quotient is added to the dividend n places later. For

example, in the reciprocal 1/29, we round 29 to 30 and divide this
and the dividend by 10:

03448275 . . .
3).103448275 . ..

where we add each digit of the quotient, as it’s obtained, to the
dividend one place later.

Now in the situation where a fraction s/t has a denominator t
of the form (10m — 1) for m an integer, that is, it ends in a 9,
we can mechanize the previous method of division to speed the
process [9]. We can think in terms of the following relations:

ap = s (not necessarily 1)

b, = integer part of a,/m

c, = remainder of above
ans1 = 10c, + by
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Now b, will consist of the digits of the quotient. The term c,,,
the remainder when a, is divided by m, may be written as
a, mod m, where c, is said to be congruent to a, with respect to
the modulus m. Let us consider the fraction 1/29 again. Then
m = 3 and we have the following sequence of steps:

a b _c

1 0 1
10 3 1
13 4 1
14 4 2
24 8 0

8 2 2
22 7 1
17 5 2
etc.

giving us as we ripple mentally through the rhythmic process:
1/29 = .03448275 .. ..
For the fraction 19/29 we have

2
19
16
15
5
21

\lb—iU'lU'lO\‘O“
ONO»—*»-‘O

etc.

correctly giving 19/29 = 0.65517....
Any divisor ending in 3 will transform into one ending in 9
through multiplication of the numerator and denominator by 3.
For t of the form (10m + 1) or in other words ending in 1, and
for s not necessarily unity, we set a,.; = 10c, — b,. However, since
we can end up with negative values of b, (which may be melded
to obtain a correct result), we can ensure positive values by setting

b, to one less than a,/m if m divides a, without remainder. For
1/21 we have
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a b c
1 0 1
10 4 2
16 7 2
13 6 1
4 1 2
19 9 1
1 0 1

and here we have the initial line repeated, revealing that
1/21 = .047619

Notice that divisors ending in 7 can be converted to ones ending
in 1 by multiplying the numerator and denominator by 3.

If we don’t mind obtaining the digits in a right-to-left manner,
we can use another method, given by Taylor [9]. For a denomi-
nator of the form (10m — 1), we can add shifted terms multiplied
by m, beginning with the numerator itself. Taylor gives the
examples of

1/39 = 025641 and 1/13 =3/39 = .076923
1
4 3
16 12
64 48
256 192
1024 768
+ 4096 + 3042

.. 025641 ...076923

Taylor gives other methods suitable for very particular divisors
(such as squares) that we will not consider here.

For divisors generally lying near a power of 10, the remainder
can be also be adjusted while the entire dividend is divided by the
power of 10 [2]. For example, for 129641/97 we can perform the
division by 100 first:



28  Dead Reckoning: Calculating Without Instruments

129641/100 = 1296  remainder = 41
new remainder = 3 ® 1296 + 41 = 3929
3929/100 = 39 remainder = 29
new remainder = 3 ¢ 39 + 29 = 146
146/100 = 1 remainder = 46

new remainder = 3 ® 1 + 46 = 49

Therefore, 129641/97 = (1296 + 39 + 1) = 1336 with a remainder
of 49. Of course the division process can be carried further into
the region to the right of the decimal point.

For divisors that have a multiple that lies near a power of 10,
the remainder can also be adjusted as in the previous method. The
difference consists of multiplying the quotient in each step by the
value of the multiple factor. To illustrate this, we can find the

value of 4330463/332, where 1000 = 3 ® 332 + 4.

4330463/1000 = 4330 remainder = 463
new quotient = 3 ® 4330 = 12990
new remainder = 4 ® 4330 + 463 = 17783
17783/1000 = 17 remainder = 783
new quotient = 3 ¢ 17 = 51
new remainder = 4 ® 17 + 783 = 851
851/332 =2 remainder = 187

Therefore, 4330463/332 = (12990 + 51 + 2) = 13043 with a
remainder of 187.

Now let us consider a method of cross division, or Fourier
Division, as proposed by Joseph Fourier (1768-1830), useful for
calculations involving multidigit divisors [12-14]. If we are divid-

ing C by A to get B, then AB = C and

ajlaglasla,. ..
by by lbslby. ..
pila
pla
plas
P4l as

A
x B

C-= C1|C2|C3|C4
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where the partial products p, | q, are formed by multiplications of
a and b terms. In particular,

pila; = ab;

P2la = atby + by |

p3las = ajby + aby + ash;
or,

n
palda= Y abpxe n=1,23,...
k=1

where the Greek letter Y, (sigma) indicates the sum of the terms
for k from 1 to n here. Also,

lc, = Ipy + lgng with qo =0

We are interested in solving for B = b;Ib;Ibs...given A
and C:

=P1|C11 =C1|(Cz - )

b,
a a
clc
=12 With a remainder R; = Ip;
]
b o prlay — by Ryl(es — p3) — agby
) = =
a1 a
R1|C3 - azbl
=——Ry=Ip;

a1



30  Dead Reckoning: Calcwdating Withowt Instruments

_palas ~ aby - ashy

by
a3
_ Ryl {cq — pa) = &by — a3y
d1
Rz | Cq azbz - '3313;
= sRy = Ipg
2
In general,
n
Paldn = 2 2cbasi
k=2
b, =
&1
n
pnl (cn+l - pn+1) ""' E anhrr*irk
k=2

a3

n
pnl (Cn+1) - Z anbn+1-—k
k=21 ] Pn+1

a1 23|

and, defining the remainder R, as 1ppq1,

n
Rt lCori = 2y Bnbneis
k=2
bn = 1 R-:z = %pn*'i
&4y

As an example, consider the division of C = 42472487 by
A = 874921. We consider two-digit operations here, although
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single-digit operations are possible after, say, a two-digit a; is split
off as the divisor. Notice that for accuracy the remainders R, are
adjusted to give numerators which are less than a;/2, occasionally
resulting in negative values of b.

C 42147124182
A 87149121

42147
b1="'—i=49;R1=—16
87

quotient thus far: 49

16124 - 49 © 49 1576 — 49 * 49
2 87 87

= — (46R -25) = — 46 ; R; = 25

49146
25182 — (—46) ® 49 — 49 21
b3= (-46) =44;R3=—21
87
49146144
-21100 - 9 6 ¢ 21
by = e i - _ (38R -16)
87
=-38; R, =16
491-461441-38
. - e 21
b5=16|00+38 8749 44 229 R = 15

491-461441-38129
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Melding the b’s and fixing the decimal point results in B =
48.54436229 .... We can continue the process to additional
decimal places if desired. Notice that there is no increase in
difficulty for steps after b, since A has only six digits. Nonethe-
less, a certain knack has to be acquired to perform the algorithm
with any speed.

If the first two digits of C are larger than the first two digits of
A, then c;lc,/a; will produce a three-digit (and therefore inac-
curate) quotient. In these cases, we can precede the first digit of
C with a zero (e.g., C = 92472482 becomes 09124 172148120).
In addition, we should round a; to the nearest integer; if A were
to equal 876221 we would transform A into 88 [-38121. Finally,
it is again worth mentioning that sometimes division by a partic-
ular number can be eased, as in multiplication. For example,
afl5 = 2a/(3 ¢ 10), etc.

Since we occasionally encounter the situation where we precede
C with a zero, perhaps we should add another example where a
small number is divided by a four-digit number, say 23/1024 =
0.022460938 . ... We will add a zero to the end of C as well to
fill out the two-digit quantity left hanging when the zero is added
to the front; we'll sort out the decimal place at the end.

C=02130
A =10124
B=C/A=b1|b2|b3...

02130

b1=—_=23;R1=0
10

23

00100 — 23 » 24
)= = - (55R 2) = -55; R, = -2

10

231 =55

-2100 — (-55) » 24
b3= ( ) =112;R3=0

10
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Since b; is three digits long, let b, = -54 and R, = -12.
Then

12100 — (-54) * 24

b = 10; R; = 4
3 10 3
231-54110
—4100 — 10 » 24
b4= =—64; R4=O
10
231-541101-64

Melding the b’s and adjusting the decimal point yields, without
too large a total effort, the result B = 0.022460936. . ., and the
next step would correct the inaccuracy in the last digit.

While cross division and other methods can be used in calculat-
ing a reciprocal exactly, other methods may prove convenient for
finding an approximation to the reciprocal of a number near a
round number.

For approximate reciprocals of multidigit numbers, we can use
an iterative relation for 1/t [15]:

Xp+1 = X ® (2' - tXn) (2)

This relation is derived by assuming that an approximate value
x, is at hand. Then the quantity (x, — 1/t) is minimized by
minimizing (1 — tx,). Now to ensure that (1 - tx,,;) < (1 - tx,),
we write

1 - x4 = k(1 = tx,)?

For k = 1, we arrive at Equation 2 by solving this equation for x,,1.
The process is a second-order one, doubling the number of
correct digits in each iteration. For t = (a — b), xo = 1/a, and with
(signed) b small relative to the round number a, we can write the
formula for x; in a form more suitable for mental calculation:

X; = xo + bfa?
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‘where we can divide b by a twice rather than by a’ once to
simplify the division. We can take as an example the reciprocal

of 387, or 0.00258398 .. .:

a = 400
b=13
X = .0025

.0025 + 13/(400)?
0025 + .0325/400
00258125

X1

We would generally not calculate x, because of the number of
digits in the numbers involved. However, we can get greater
accuracy if we choose to use a third-order relation [6],

Xpe1 = Xp + Xp(1 — %) + x,(1 — tx,)?
of,

Xnel = X[l + (1 = o )(1 + (1 - tx,))]
or, in the earlier notation,

b + b¥a

a2

X =X+

Repeating the example above,

13 + 169/400

X, = .0025 +
400 * 400
13.4225
= 0025 + —— =22
400 * 400

00258389 ... compared to .00258398...
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Finally, it may be useful at times to convert from a repeating
decimal to a fraction. We can limit ourselves to one method as
follows. We can see that for a reciprocal 1/t yielding a recurring
group g of period p, t must divide into (10P — 1), since it is this
remainder of 1 that starts the whole process again. In fact, for the
fraction s/t,

g
0° -1

S
t

In the chapter on extracting roots, we will see that the lightning
calculator A. C. Aitken at least implicitly used this technique.
From an initial guess of 50/7 = 7.142286. .. for the square root
of 51, he found a closer value of 7.141429. Therefore, he took as
a new initial estimate the value 7.141414 . . ., which he converted
into a convenient fraction:

_ 1
714 =7 + 4
102

! = 707/99

The Greatest Common Divisor

It is also occasionally useful to find the greatest common divisor
of two numbers a and b, or gcd(a,b). This is especially useful for
simplifying the division of a large number by another large
number, and it is also utilized in other calculational techniques.

The traditional method of finding the greatest common divisor
of two numbers, Euclid’s Algorithm, dates from 300 — 400 B.C.
[6,7]. The process is iterative and works for any positive integers
a and b. In each step, the larger number is replaced by the
remainder when the larger number is divided by the smaller.

As mentioned earlier, we write the relationship between num-
bers having the same remainder when divided by b as c =a mod b
for a > b; in the terminology of congruences, ¢ is congruent to a
modulo b. When finding the remainder r when a is divided by b,
we will use the traditional equals sign (a mod b = r). The
reasoning behind Euclid’s Algorithm lies in the rules of modular
arithmetic, which allow straightforward addition, subtraction and
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multiplication of terms of this form. For example, since 230/4
leaves a remainder of 2, we write the congruence 2 = 230 mod 4.
By simple modular arithmetic, we can also write that 2 = 200 mod 4
+ 30 mod 4, 2 = 292 mod 4 — 62 mod 4, and so forth. Modular
multiplication is just as simple; the congruence 2 = 230 mod 4 can
also be expressed as 2 = (10 mod 4) X (23 mod 4). In terms of
remainders, we have 230 mod 4 = 2, (200 mod 4 + 30 mod 4)
mod 4 = 2, (292 mod 4 — 62 mod 4) mod 4 = 2, and [(10 mod 4)
X (23 mod 4)] mod 4 = 2. These are easily verified. Remember that
if we end up with a negative result, we add 4 until we arrive at
a positive number. From above, (292 mod 4 — 62 mod 4) mod 4
=(0-2)mod 4 =-2 mod 4 = 2 mod 4.

Division is more complicated, for if cd = ad mod b, then

b
ged(d,b)

¢ =a mod

At any rate, to exercise Euclid’s Algorithm let us simplify the
fraction 2745/13664:

13664 = 4 © 2745 + 2684
2745 = 1 © 2684 + 61
2684 = 44 ¢ 61 + 0

Therefore, gcd(13664,2745) = 61 and we can transform the
division to 45/224.

We can modify this procedure by choosing the multiplier of b
in each step to obtain the minimum absolute value of the
remainder. This sometimes gives us a negative remainder, of
which the absolute value is used in the next step.

13664 = 5 2745 - 61
2745 =459 61 +0

This is called the least-remainder algorithm for finding the great-
est common divisor of two integers [16], and the number of steps
is decreased over Euclid’s Algorithm by the number of negative
remainders that occur.
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There is another way of reducing the number of steps and
division effort generally required by these algorithms [17]. Notice
that we might as well have divided out all multiples of 2 from the
even value 13664, since it obviously does not divide 2745. If we
do this and start with two odd numbers, we can divide out of the
remainder a mod b in each step all powers of 2 until it is odd. If
the remainder is odd to begin with, we can increment the
multiplier of b to arrive at an even (and now negative) remainder.
We find, for our particular example above, that there are savings
only in the magnitude of the original numbers since the steps were
few due to the fortunate instance of a remainder a mod b very near
b. To illustrate,

gcd(13664,2745) = gcd(427,2745)
2745 =7 @ 427 — 4 * 61
427 =761 +0

giving the result ged(13664,2745) = 61. As another example,
compare the two methods for finding gcd(28567,3829) = 7:

Euclid’s Algorithm Modified Euclid’s Algorithm

28567 = 7 ® 3829 + 1764 128567 = 7 ® 3829 + 4 * 441
3829 =2 e 1764 + 301 3829 =9 ® 441 — 4 e 35
1764 = 5 * 301 + 259 441 =11 35+ 8 7

301 =1 259 + 42 35=57+0
259 =642 +1
42=6¢7+0

In general, there is a real savings in doing this. In addition, we
can eliminate multiples of other primes from the remainders if
these primes are eliminated from the original values a and b.
Again, our first example collapses prior to demonstrating the
effect, since extracting, say, a multiplier of the prime number 5
from 2745 leaves 549 and 549 = 1 ® 427 + 2 e 61. However, in
the second example we can immediately see that neither 28567
nor 3829 contains a multiple of 5. Therefore, at the second step
in the modified Euclid’s Algorithm above, we can reduce the
already reduced remainder 35 to 7. The operations become
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28567 = 7 © 3829 + 4 » 441
3829 =9e441 -4 0507
441 =63 7+0

where we now eliminate both the 4 and the 5 in the second line.

If we don’t care to perform the division at all to find a mod b,
we can use a method of halving operations throughout. This
approach was proposed in 1962 for computer applications [6]. The
process involves initially halving a or b until they are both odd
(at least one is assumed odd to begin with or the common factor
of 2 is obvious). Then in each step the absolute value of the
difference (a — b) is halved until an odd value results, which then
replaces the larger of a and b.

To return to our earlier example of 2745 and 13664, the even
value 13664 is halved until a value of 427 is obtained. Then

2745 - 427 = 2318 — 1159
1159 — 427 = 732 — 183
427 - 183 = 244 — 61
183 — 61 = 122 — 61
61-61=0

This algorithm is actually a manifestation of the previous
method, with the multiplier in each step being unity and only
multiples of 2 being dropped. It is apparent that computers can
perform halving operations as simple single machine cycle shifts
of binary numbers, so this is a major improvement for them. On
the other hand, we are capable of perceiving when higher divi-
sions can be performed, since a number is divisible by 4 if its last
two digits are divisible by 4, and by 8 if its last three digits are
divisible by 8 (since 4 and 8 divide 100 and 1000, respectively).
This significantly decreases our steps in both of the above algo-
rithms. In addition, we can notice that in the fifth step above, 183
is a multiple of 61, so we can terminate the procedure early.
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The lowest common multiple (lcm) of two or more numbers can
be found from their greatest common divisor. Earlier, we determined
that gcd(13664,2745) = 61. The number 61 then contains all
prime factors common to both 13664 and 2745. Then 13664 = 61
® 224 and 2745 = 61 e 45, giving lcm(13664,2745) = 61 e 45
e 224. This may be useful for adding and subtracting fractions:

11 s 7 11 45+ 7 e 7224
13664 2745 61 o 45 o 774

2063

~ 614880

Error Checking and Divisibility Tests

Error checking of calculations is well worth the little extra
effort. A result, of course, should be automatically checked for
reasonableness in the overall sense of correct number of digits,
reasonable initial digits, and exact last digit.

Other methods generally consist of divisibility tests, and are
usually used in addition, subtraction, and multiplication opera-
tions. Some divisibility tests provide a remainder if divisibility
does not hold, and may be used directly as a division process for
one- or two-digit divisors.

Casting out nines, for example, represents a divisibility test for
9, and casting out 99’s can improve the accuracy from 89% to
99%. Casting out nines (the nines test), if you recall, amounts to
finding the sum of the digits of the number and iterating this
process to arrive at a single digit representing the remainder when
the number is divided by 9. Intermediate digits like 9 or digits that
sum to 9 are easily eliminated during this process. For example,

236439 mod 9=2+3+6+4+3 +9)mod 9
=27 mod 9
=0
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We can also eliminate the “36” combination, since 3 and 6 sum
to 9, as well as the lone 9 at the end. The remaining digits (2,
4, and 3) sum to 9, so our answer is 0. We can test the calculation

236439 x 15 = 3546585 as follows:
236439 mod 9 x 15 mod 9 = 3546585 mod 9
O0x6=0 check

Casting out 99’s works on digits pairwise from the right. As an
example of casting out 99’s, consider the calculation 229 x 721
= 165109:

2129 x 7121 = 16151109
test: 31 ¢28=176
8168 = 76

76 = 76 check

The main drawback of the nines test, and one that in practice
lowers its accuracy below 89%, is its failure to detect errors in
place. That is, if a partial result is shifted an incorrect amount
(894 instead of 8940, for example) before being added to the sum
being accumulated, it will not be detected in the final result.

A better tack is to cast out elevens, which amounts to subtract-
ing the sum of the even-place digits from the sum of the odd-place
digits. If a negative result appears, multiples of 11 are added to
bring the overall result to a non-negative integer less than 11.

165109 mod 11 =(9+1+6)-(0+5+1)=10

This elevens test detects errors of place and provides a true 91%
accuracy. We can cast out 101’s by subtracting the sum of even
pairs of digits from the sum of odd pairs of digits, and so forth.
In general, one can construct divisibility tests for various
numbers, and these are helpful not only in many division prob-
lems, but also for factoring a number whose logarithm is sought.
Other than the nines test and elevens test we’ve mentioned, we
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have already noted in the last section that a number is divisible
by 4 if its last two digits are divisible by 4, and by 8 if its last three
digits are divisible by 8, since 4 divides 100 and 8 divides 1000.
In addition, we see that a number is divisible by 3 if the result of
the nines test is divisible by 3.

One convenient method of testing divisibility by a divisor d of
a number N is to recall a multiple m of d that lies near a power
t of ten, the remainder designated here by r [2].

md = 10"+ or 10°mod md =-r
If we dissect N into t-digit groupings ny,

N = ng + n;10° + n,10% + n310% + ...

=ng + 10%(n; + 10%n; + 10%(n3 +...)))

and therefore,

N mod md = [ng — r(n; — r(n; — r(n3 —...)))] mod md

Simply put, then, one works from the left end of N, subtracting
each rny from ny_;. For the resulting number R (consisting of at
most t digits):

R modd =N mod d

which directly provides us with the remainder if desired. This
technique explains why the elevens test works as it does.

For example, to cast out 17’s, we know that 6 ® 17 = 100 + 2.
Therefore, r = 2 and since 100 = 10?, we separate N into pairs
of digits. Beginning on the left, we subtract twice the digit pair

from the next pair, dropping multiples of 17 from any pair when
convenient. For N = 165109,

16151109 - 19109 — 2109 — 5

and 165109 leaves a remainder 5 when divided by 17. As an aside,
we’ve also found here that 165109 mod 6 = 5 as well.
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There are a number of convenient divisors. For example, divi-
sion by the prime number 37 is eased because 37 ® 27 = 1000 - 1.
In addition, since each group can be reduced by any multiple of
the divisor, and 3 ® 37 = 111, we can easily subtract multiples
of 111 from each triplet:

784,165,109 — 7,54,-2 — 61,-2 — 59 — 22

Another one of interest is 7 ® 11 @ 13 = 1001, useful for simplify-
ing the tests for any or all of these factors:

1,109,185 — 108,185 — 77

Therefore, 1109185 is divisible by 7 and 11 and leaves a remainder
of 12 when divided by 13.

We can use a related algorithm [18-20] for determining the
divisibility of a number N by an odd integer d whose last digit is
not a 5. A disadvantage of this method is that, except for d = 3
or 9, the remainder N mod d does not emerge if nonzero.
However, the method is interesting and can be useful.

The basic approach for a number N consisting of a sequence of
digits is to add a multiple m of the terminal digit to the number
formed by the remaining digits. This process is iterated, and each
resulting number Ny, N,, N3, etc. is divisible by d if the original
number N is. We terminate the process when we easily see
whether or not a value of N is indeed divisible by d.

We consider a divisor d consisting of digits D;d;, where d; is
a single digit and D; can be multidigit or single-digit, including
0. The multiplier m is given for d; = 1 as (-D;) and for d;, = 9
as (D; + 1). The absolute value of m here represents the multiple
of 10 that N is either one greater than or one less than; the
negative sign for d, = 1 corresponds to the alternating signs in the
elevens test. For d; = 3 or 7, we multiply d by 3 and arrive at one
of the cases above.

For example, the number N = 304 can be tested for divisibility
by d = 19 as follows:

N = 304
N;=30+2e4=38
N;=3+2e8=19



Primitives 43

Therefore, 304 is divisible by 19. For d; = 9 without multi-
plication by 3, the process will always terminate in d if d divides
N. In fact, for the number ¢ constructed of final digits of all but
this last N, the quotient q is given by (10t — ¢), where t is one
less than the number of digits in N. Here, q = 100 — 84 = 16, so
304 = 19 ¢ 16.

For d, = 1 without multiplication by 3, the process will always
terminate in zero if d divides N, and then q = c. As an example,

N =83049 d =31
N; = 8304 - 3 * 9 = 8277
N, =827-3 ¢ 7 =806
N3;=80-3e6=62
Ny=6-32=0
and
q = 2679
When d; becomes 9 or 1 upon multiplying d by 3, the process

will end with a multiple of d if d divides N. Extraction of the
quotient is not straightforward. As examples, consider

d = 13, becoming 39 d = 27, becoming 81
N = 15587 N = 2619
N; = 1558 +4 o 7 = 1586 N; =261 -89 =189
N, =158 +4 e 6 =182 N, =18-8 ¢ 9 = 54,
N3 =18 + 4 o 2 = 26, divisible by 27

divisible by 13

An extension of this strategy consists of adding or subtracting
a multiple of a group of terminal digits of N. While in most cases
this is too cumbersome to be of much practical use for mental
work, a few cases may be useful [20,21]. For example, divisibility
of N by d = 29 or 23 can be determined by subtracting twice the
number formed by the last three digits of N from the number
formed by the remaining digits, and then iterating. For N = 5851417,
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N; = 5851 — 2 & 417 = 5017
N,=5-2e17=-29

which shows divisibility by 29, but not 23. The quotient is hidden.
The source of this technique, as you probably have guessed by
now, lies in the fact that 2001 is divisible by 23 and 29. Based on
this principle, Smith [3] lists the methods lightning calculator
Wim Klein might use to determine possible factors of the number
N = 114043 (note that these methods don’t directly provide
correct remainders if nonzero). In each case shown in Table 1 the
reduced number (and therefore N) is not divisible by the divisors.
We can also use Euclid’s Algorithm or its modifications to test
divisibility of a number by several primes at once [7,9]. Euclid’s
Algorithm provides the greatest common divisor of two given
numbers. If one of these is the number N to be tested and the
other is a product of some prime numbers, the greatest common
divisor will be divisible by any of these primes that divide N.
This method may be used with a large product of primes, say
up to N2, The intermediate remainders of Euclid’s Algorithm
collapse rapidly, but the initial division is an extreme one. We

Table 1
Some Divisibility Tests (N = 114043) [3]

Divisors Reduction Reason

Yy 13 114 - 043 = 71 7 x 11 x 13 = 1001
37 114 + 043 = 157 37 x 27 = 999

23,29 114 - 2(043) = 28 23 x 29 x 3 = 2001
31, 43 114 + 4(043) = 286 31 x 43 x 3 = 3999
19 1140 + 4(43) = 1312 19 x 21 = 399

17, 47 1140 + 8(43) = 1484 17 x 47 = 799

41 1140 + 16(43) = 1828 41 x 39 = 1599
67 1140 — 2(43) = 1054 67 % 3 =201

89 114 — 8(43) = 796 89 x 9 = 801

53 1140 — 9(43) = 753 53 x 17 = 901
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will consider here a less ambitious example to demonstrate its
possible use in mental calculation.

First, examine those primes that have been treated so far in this
section. Working up through the two-digit primes, we have
derived perhaps the most efficient divisibility tests for the numbers
3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and those of the
form (10m + 1) and (10m — 1) above this. Therefore, let us
consider the product 141987 of the primes 47, 53, and 57. This
number is located near enough to 142000 to ease our calculations.
We will test the number N = 760603 for divisibility by these
primes using what we called the modified Euclidean Algorithm.
We discard easy small prime factors we know are not divisors, such
as 2 and 5, from convenient positive or negative remainders in
each step.

760603 = 5 ¢ 142000 + 50603
=5 © 141987 + 4 * 12667
141987 = 11 © 12667 + 2 ® (5)* 53
12667 = 239 * 53 + 0
Therefore, 760603 is divisible by 53, but not by 47 or 57. The

advantage over long division by each prime increases with the size
of N and the number of primes included in the product, within
the capabilities we possess.

Of course, N can be smaller than the product of the primes. For

N = 26269 we have
141987 = 5 @ 26269 + 2 * 5321
26269 = 5 © 5321 — (2)* » 21

We can stop here since 21 is less than 47, and we conclude that
26269 is not divisible by 47, 53, or 57.

The general procedures of nines tests and elevens tests can be
adapted to other bases. It is occasionally useful, though I have not
seen it presented or practiced by anyone else, to check a hexadeci-
mal equivalent by casting out 17’s. For the hexadecimal base,
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base 16, this is exactly equivalent to casting out elevens in the
decimal base:

F29D - (D+2)-(9+F) >15-24>5-9-58
62109 — 6121109 - 9109 - -9 —» 8

This leads naturally to the question of possible benefits of
changing bases [9]. Whenever two divisors can be expressed as
(b + 1) and (b — 1), we can convert the given number to the base

b and cast out nines and elevens. For example, to determine if
N = 13949 is divisible by 29 or 31, we can convert to base 30:

13949/30 = 464 remainder 29
464/30 = 15 remainder 14
15/30 = 0 remainder 15

Then (15 + 14 + 29) = 58, revealing a factor of 29, and (15 +
29 — 14) = 30, eliminating the factor 31.

Converting bases can be awkward when they are not multiples
of powers of 10. However, we can choose a convenient base that,
when increased or decreased by one, is a multiple of the divisors
we are testing. Taylor [9] gives base 50 as such a base for divisors
3,7, and 17, as 49 = (7)? and 51 = 17 * 3.

Other bases can provide for four divisors less than 100 at once,
including 300 (since 13 and 23 divide 299 and 7 and 43 divide
301), 900 (for 29, 31, 17, and 53) and as we have seen before,
1000 (for 37, 7, 11, and 13). Taylor gives a table like Table 2 of
convenient bases for divisors less than 100, including all primes
except 73, 83, and 97. The prime numbers 3 and 9 actually may
appear in a number of cases here, but are shown in their most
useful base of 10.

Actually, we did something reminiscent of this in our earlier
method for d ending in a 1, 3, 7, or 9. If we regroup the net
operations in, say, our earlier example of N = 304 and d = 19,

we find
31+0e2+4e(2)2=19
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Table 2
Convenient Bases for Divisibility Tests
Base Nines Test Factors Elevens Test Factors
10 9,3 11
20 19 21,7
30 29 31
40 39,13 41
50 49,7 51,17
60 59 61
70 69,23 71
80 79 81
90 89 91,7,13
100 99,11 s
110 — 37
200 == 67
300 13,23 7,43
800 17,47 89
900 29,31 17,53
1000 37 511,13

and for N = 51243 and d = 31,
5¢1-13+2e9_-4e27+3e8] =15
lel-5e3+5e9=3]

Factorization

Finding factors of integers is often useful in simplifying, for
example, multiplications of medium-sized numbers. However, for
large numbers it is surprising in its difficulty; the relative problem
of factoring large integers compared to multiplying them is
exploited in certain forms of cryptography nicely described by
Riesel [7] and Eynden [22].

The fundamental theorem of arithmetic states that any factor-
able, or composite, integer can be represented in one and only one
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way (barring ones and simple re-orderings) as a product of positive
prime numbers. Recall that a prime number, or prime, is a positive
integer other than 1 that is divisible only by itself and 1. These
include the numbers 2, 3, 5, 7, 11, 13, 17, and so forth. In this
section and the next we will examine processes that find factors
of integers and that lend themselves to mental solution. In fact,
we will explore this area well beyond its useful scope because this
represents a fascinating topic for mental recreation and challenge.

To begin, we can apply our earlier divisibility tests for small
primes. On the other hand, “Even though a random number n
usually has small factors (since n is divisible by 2 with probability
1/2, by 3 with probability 1/3, by 5 with probability 1/5, etc.) it
is very unusual for n to have only small factors.” [6]

Riesel [7] remarks that large integers very rarely have many
prime factors, despite popular perceptions. Moreover, the largest
prime factor of N would have approximately 62% of the number
of digits of N. As a cautionary note, the integers in the range we
work in (or particular ones chosen, of course) may have signifi-
cantly different characteristics from these.

To continue, what techniques can we put to bear other than
divisibility tests? One convenient and interesting method (the
first systematic one, in fact) was developed and used by the
mathematician Pierre de Fermat (1601-1665) and will find
the largest factor (prime or not) of N, obviously not greater than
N2, It also has the capability, amazingly enough, of eliminating
division entirely [6,7,9,10,23-25].

First, assuming our number N is odd (the non-trivial case), we
can locate the midpoint of any two factors, which will both be
odd, and call this integer x. Then for y < x,

(x-y) e (x+y)=N
x? =y =N
or
x? - N = y? (3)

Therefore, we must find integers x and vy satisfying Equation 3.
We first set xq equal to the lowest value it can be, i.e., the nearest
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integer above N'2, and increment x in a series of steps. Since
[(x + 1)) =N] = (x2 = N) + (2x + 1), we increase each (x? — N)
value by (2x + 1), or by the previous increase plus 2. When we
find that (x? — N) is the perfect square of an integer y, we extract
(x — y) and (x + y) as factors of N. Obviously, the nearer the
average of the factors is to N2, or correspondingly the nearer the
factors are to each other, the closer the successful x will be to x,.
In fact, to find the factor a = kN2, where 0 < k < 1, we require
(1 — k)NY2/2k steps, which can be large for small k.
To illustrate this algorithm, we can take N = 1403:

X x! - N

38 41

39 41 + 77 = 118
40 197

41 278

42 361

Since 361 = (19), then 1403 = 23 ® 61, because 42 — 19 = 23
and 42 + 19 = 61.

The task of determining whether a perfect square has emerged
is made much easier by realizing that such a number must have
its last two digits as 00, el, e4, 25, d6, or €9, where e is an even
digit and d is an odd digit. In the example above, only 41 and 361
meet this criterion.

Actually, we can extend these rules. A square ending in 25 can
only end in 125, 225, or 625. Also, numbers ending in el and €9
can only have an even thousands digit if 4 divides e. Endings of
this sort are:

e01 e09
d21 d29
e4l e49
dé1 d69

e81 e89
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Implicit in this, since divisibility by 4 is determined by the last two
digits only, is the fact that a number of the form (4k - 1) can
never be a square; squares can only be of the form 4k or
(8k + 1) [10].

These enhancements do not help us in dlstmgulshlng 41 and
361 as squares if we didn’t know.

In general, we can easily construct a table of values of x> mod m
(called the quadratic residues of m) which can help; these are
given for m = 3 to 9 as the third column in Table 3. For example,
x2 mod 9 must leave a residue of 0, 1, 4, or 7, a nines test that
is passed here by 361 but not 41. Riesel notes that x> mod 16 gives
0, 1, 4, or 9 as residues, a test almost twice as efficient. While it
is very nice for computers to work in this base, it is also a nice
rule for us. Both numbers pass this sieve as well!

There is another means of simplifying the entire process using
modular arithmetic. Since 1403 = 2 mod 3 and for any x, x* mod
3=0or 1, then (x> = N) mod 3 = 1 or 2, respectively. Again,
for any y, y> mod 3 = 0 or 1, so for (x? — N) = y?, then x* mod
3 =0, giving x mod 3 = 0. For N = 2 mod 3, then, we need only
consider values of x that are multiples of 3 by the use of this sieve.
From x = 39 we can therefore jump directly to x = 42, increasing
(x2 = N) by 3(39 + 42) = 243.

We can construct a table of possible values of x mod m for
various m. The completed table for some representative values of
m is given in Table 3.

In this table, even values of N mod m do not occur for even
m because multiples of an even number are even and N is odd.
However, multiples of odd numbers can be even, so both even and
odd values of N mod m can occur for odd m.

Looking at Table 3, we note that entries for N mod 6 = 3 and
N mod 9 = 3,6 do not exist since N mod 3 = 0 in this case. Also,
we observe that the cases m = 3 and 6 are redundant to the case

= 9, and the case m = 4 is redundant to that of m = 8. In
addition, the cases m = 8 and 9 have relatively few x* mod m
values for their size, and the results for m = 9 are easily remem-
bered. In fact, the sums of the possible x mod m values in every
row of every m, as well as the sums of (x> — N) mod m values,
are intriguing in themselves.

In summary, perhaps we can best approach the solution to a
factoring problem as follows:
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Table 3
Modular Sieves for Fermat's Method of Factoring
(x2 = N) Possible
xmodm | x2modm | Nmod m | modm x mod m
0,1,2 0,1,1 1 2,0,0 1,2 (not a
mult. of 3)
X 1,2,2 0 (mult. of 3)
01,23 1|0,1,0,1 1 3,0,3,0 1,3 (odd)
3 12,12 | 0,2, (even)
0,1,2, 0,1,4,4,1 1 4,0,3,3,0 |0,1,4
34
342,24 | 14
231,13 2,3
12,002 |023
0,1,2, 0,1,4,3,4,1 1 5,0,3,2,3,0 | 1,2,4,5 (not a
3}4y5 mlllt. Df 3)
5 1,2,5,4,5,2 | 0,3 (mult. of 3)
0,123, (0,142, | 6,0,3,1, 1,3,46
4,5,6 24,1 1,3,0
2 56,2,0, |2,34,5
0,2,6
3 4)5y1)6) OJZ!S
6,1,5
4 3,4,0,5, |1,2,5,6
5,0,4
5 2,3,6.4, 0,3,4
4,6,3
6 Is2)5s3$ O&1|6
352

{table continued on next page)
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Table 3
Continued
(x2 = N) Possible
m|xmodm | x2modm [ Nmoedm | mod m x mod m
0,1',2,3, 0,1,4,1, 1 7,0.3.0, 1,3,5,7 (odd)
4567 |0,14,1 7.0.3.0
3 56,16, |26 (two +
5616 | mult of4)
5 3,4,7,4, 1,3,5,7 (odd)
3,4,7.4
7 12,52, 0,4 (mult. of 4)
1,2,5,2
9|0,1,23, |0,1,4,0, 1 8,0,3,8, 1,8
4,5,6,7,8 | 7,7,0,4,1 6,6,8,3,0

2 1,827, 0,3,6 (mult.
557,28 | of 3)

4 5605, |27
3,3,5,0,6
5 4,5,8,4, 0,3,6 (mult.
2,2,4,8,5 | of 3)

7 I 4,5
0,0,2,6,3
8 B A 0,3,6 (mult.
8,8,1,52 | of 3)

1. Check for divisibility by 2, 3, 5, 7, and 11 using standard
divisibility tests.

2. Find x; as the nearest integer larger than N2, Estimate the
range required of x; since 11 < (x — y) < 13, a conveniently
calculated upper limit on x is (N/25) + 6.

3. Find N mod 9 (by the nines test) to reduce possibilities of
x. Find N mod 8 to further reduce them. Optionally, find
N mod 5 and N mod 7.
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4. Try possible x’s greater than x;, checking the two-digit
endings of (x> — N) for possible squares. For cases that pass
this sieve as well, determine if y = (x* — N)!/2 is an integer.
Ifso, (x—y)® (x+y)=N.

This is actually much easier and more powerful than it appears.
In our earlier example of N = 1403, which appears trivial now, N
mod 9 = 8 implies that x mod 3 = 0. Also, N mod 8 = 3
(remember to look only at the last three digits) and therefore x
mod 4 = 2. The latter two conditions, incidentally, amount to
requiring x to be an odd multiple of 6. In the total range of x from
38 to 62, only x = 42 and x = 54 are possible, and [(52)? — N]
does not clear the two-digit ending sieve. The result x = 42,
y = 19 is therefore easily obtained.

If we had memorized or reconstructed the rules for m = 5, we
could have found that x mod 5 = 2 or 3. Then x = 42 is the only
candidate, the next possible value, 78, being beyond the range of
x. For m = 7, if we bothered to recall it, we would find x mod
7 =0, 2, or 5, and the next possible value after x = 42 would
be 114.

As mentioned, Fermat’s “difference of squares” method of
factoring works from y small toward y large, so two factors a and
b far from each other will take a long time to locate. If it seems
that we are not having any luck, we can try multiplying N by a
factor k. For odd k, we will find the factors a and kb quickly if
a is approximately equal to kb. The case of even k’s is a little
complicated, for then kN will be even. For k = 2, kN cannot have
a midpoint of two factors. If we multiply x and y by 2, then
(2x — 2y) ® (2x + 2y) is a valid factorization, giving k = 4, but
the factors are the same relative distance apart. For k = 8, we then
have the valid factorization (4x — 4y) ® (2x + 2y), giving a fast
solution for a approximately equal to 2b. In general, any even
value of k should be a multiple of 8 when a is an even multiple
of b. A case where a/b is approximately 3/2, of course, would
benefit from setting k = 6, the case a/b approximately 5/3 by
letting k = 15, and so forth.

Given that we generally have no feel for the relative sizes of the
factors, we can abandon the factoring process after a while and try
multiplying by a new factor. Riesel [7] suggests multiplying by a
composite k containing various small divisors (such as 24). There
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is a legendary feat of factorization by Fermat, often quoted as
requiring a primality test lost in history, wherein the number
N = 100895598169 was reduced to 112303 x 898423. It turns out
that 8N = (898424)2 — 898424 = 898424(898424 — 1) = 8 x
112303 x 898423.

There are situations where we can eliminate most values of x
in Fermat’s method without constructing or recalling the modular
sieves we have developed. While this falls very near the domain
of properties of particular numbers, it is of such great potential
that I feel it is worth discussing.

It is known [7] from A. M. Legendre (1752-1833) that odd
integers N of the form N = a® + b" for any integer n and of the
form N = a™ — b for any odd n, where gcd(a,b) = 1, have prime
factors of the form p = 2Zkn + 1, excluding prime divisors of
algebraic factors of N of the form (a™ + b™) for m < n. Of course,
for N = a® — b" for n even, we already have factors as (a2 + b*2).

We will discuss the clause concerning algebraic factors in a
moment. In general, this sieve may appear to limit possible values
of x in Fermat’s method to 1/n of their number otherwise, but it
actually limits them to 1/(2n?), a significant advantage. In fact, we
need only consider values of x for which

N +1

X =

mod (2n?)

The occasional number of the given forms (a™ + b") benefit greatly
from this sieve. There are more of them around than you might
expect, particularly since b can be as small as 1.

As an example, consider N = 1027 = (10)? + (3)3. Then x =
514 mod 18 = 10 mod 18. Since our values of x would normally
begin at 33, we can now jump directly to x = 46 and begin
incrementing by 18:

X xt - N
46 1089

We find 1089 = (33)? immediately, so 1027 = 13 e 79.
Now we return to the matter of algebraic factors. These
are factors of algebraic expressions, such as 3xy + 2y — 3x - 2 =
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(3x +2) ® (y—1). Of course, if N can be expressed as a factorable
polynomial, we immediately have two factors. Now, since

a?-b’=(a+Db)e (a=b)

a —b>=(a—b) e (a + ab + b?)

at — bt = (al + b?) » (a® — b?)

=(a?+b?)e(a+b)e(a-Db)

2 - b’ =(a-b) e (a* + a°b + a’b? + ab® + b*)
and

a’ + b? is unfactorable

@ +b=(a+b)e (a®-ab+b?)

a* + b* is unfactorable

2’ + b’ =(a+b)e (a*-2adb-a’b? —ab® + b?)

then most of the expressions (a® + b") or (a® — b") reveal two
factors immediately. The factor (a + b) is associated with the
expression (a" + b"), and the factor (a — b) with the expression
(a™ — b"). Therefore, we could instantly have known earlier that
one of the factors of 1027 = (10)3 + (3)3 is (10 + 3).

Legendre’s theorem is powerful because it defines a sieve for all
prime factors other than those dividing these algebraic factors of
the form (a® + b®), and as we discussed, most numbers contain a
variety of prime factors. Riesel cautions us to test if prime factors
derived from algebraic factors are multiple factors before we search
for those of the form (2kn + 1).

Let us examine a trivial case, N = 1001 = (10)® + 1. We
immediately know that (10 + 1) = 11 is one factor, and it
accordingly is not of the form (6k + 1). The only algebraic factor
of this type is (a + b), and no other prime divides it. Dividing N
by 11, we find the cofactor N' = 91 (which is not divisible by
11 again) and we know its prime factors now to be of the form
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(6k + 1). We can test k = 1, 2, 3, etc., inding 7 and 13 or, more
generally, we can use Fermat’s method with x = 46 mod 18 = 10
mod 18. Then we find that (10)2 — 91 = (3)%, giving us the
remaining prime factors 7 and 13.

Considering a less trivial case, let N = 2581 = (50)* + (9)2.
There are no algebraic factors here, so all prime factors are of the
form (4k + 1). Using Fermat’s method, we know then that
x = 1291 mod 8 = 3 mod 8. We would normally begin this method
with x = 51, and since 51 mod 8 = 3, we persist, increasing x in
each step by 8:

X x* - N
51 20
59 900 = (30)?

Therefore, 2581 = (59 — 30) ® (59 + 30) = 29 e 89. If as
recommended earlier we had memorized the modular sieve from
Table 3 for m = 9, then the result N mod 9 = 7 would imply that
x mod 9 = 4 or 5, catapulting us immediately to x = 59 as our
initial value.

There isa variation of Fermat’s method called, by Vaes, the method
of remainders [10]. Setting y = (N - 1)/2 and x = (N + 1)/2,
giving N = x* — y%, then a remainder r obtained by dividing y by
p will give a remainder (r + 1) when x is divided by p. Therefore,
if we divide y by p and find r, and (2r + 1) is divisible by p, then
N is divisible by p.

For example, for our earlier N = 1403, we divide (N - 1) by
2 (an immediate advantage) to arrive at y = 701. Then we begin
with Equation 1 to rewrite the value of y in each step, producing
various remainders r. We have

y = (26)* + 25
=25 27+ 126
=24 128 +129
=23 029 + 34

etc.
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and we continue, where the remainder r is the last number in each
step, until (2r + 1) is a multiple of one of the multiplied terms
in that step. In the last step shown, 2 ® 34 + 1 = 69, a multiple
of 23, so 23 is a factor of 1403. Perhaps finding whether a number
is divisible by another is easier than finding if it is a square, but
the memory requirements are greater at each step. We can ease
the task if, instead of adding the squares of 1, 2, 3, and so forth
to our original remainder in each step, we simply add the odd
numbers 1, 3, 5, 7 to the remainder in the previous step or, better
yet, add twice the odd integers cumulatively to our original
(2ry + 1) value:

Iy = 25

2rg + 1 =51

2y+1=51+2e¢1=53

2y +1=53+2¢3=59

23+ 1 =59+2 ¢5=69

etc.

In a different vein, we can use triangular numbers instead of
squares in Fermat’s algorithm [9,10]. Triangular numbers represent
the total number of items in the rows of a triangular array up
through the tth row, such as in the pin arrangement in bowling.

The triangular numbers are given, then, as 1, 3, 6, 10, 15, 21, etc.
and are given by the expression

_x(x +1)

x=12,3,...
2

t

Now, since

X(X+1)_v(v+1)=(x—y)'(x+v+1)=N
2 2 2

or
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t,—-N =t

then if we find a triangular number t, that after subtraction of N
results in another triangular number t;, we have factored N. The
denominator 2 in the factored expression for N divides whichever
term in the numerator comes out even.

As we did with squares, we begin with the nearest t, above N;
x is found here by extracting the square root of 2N. Since

x(x+1)_(x—1)(x—1+1)+
' 2

X

or
k=G tX

we can increase the previous value (t,_; — N) by x in each step.
Of course we knew that, since we form consecutive triangular
numbers by adding another row in the bowling pin arrangement
and the xth row contains x pins. Therefore, we do not have to
keep track of our value of x as we proceed. In our earlier example

of N = 1403, we have
(2806)1/2 is approximately 53
(53 » 54)/2 = 1431

X t, — N
53 28

and we collapse immediately as 28 = (7 ® 8)/2 = t;. The factors
of 1403 are then (53 —7)/2 =23 and (53 + 7 + 1) = 61. We seem
to bear out Taylor’s claim that the great advantage of using
triangular numbers over squares lies in the reduction in the
number of steps involved. Experimenting with various numbers
reveals the startling truth of this for factors not exceedingly close
to one another.

Let’s try factoring another number to show the values added in
each step:
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N = 21449
(2N)2 is approximately 207
207 208 ~ 200 o 215 + 56

= 21528
2
x (or adder) t, - N
207 79
208 79 + 208 = 287
209 287 + 209 = 496

but 496 = (31 e 32)/2. Then the factors are (209 — 31)/2 = 89
and (209 + 31 + 1) = 241, showing an amazing convergence to
a solution with such widely differing factors.

How do we determine if a number is triangular? Triangular
numbers end in the digits- O, 1, 03, 53, 5, 6, 28, or 78, and the
~first such number in the last example is 496. The single-digit
endings listed here can be preceded by any digit, so we unfortu-
nately end up with 44 possible two-digit endings instead of the 22
we had for squares. Now t, mod 9 = 0, 1, 3, or 6, a test easily
performed by casting out nines. Since 496 passes this sieve as well,
we can explicitly check it by finding (2 ® 496)/2 as approximately
31. Then we find that 2(496) = (31)? + 31, or equivalently that
2 ® 496 = 31 e 32, and we are done.

We can construct a table, as for Fermat’s method, of possible
values of x mod m for various moduli m. This is given in Table 4
for various moduli.

Again, even values of N mod m will not occur for even m, as
N is odd and multiples of an even number are even. We also
eliminated N mod 6 = 3 and N mod 9 = 3 and 6, as these would
then be divisible by 3, a prime factor considered to have been
tried already.

Overall, we are not as fortunate here as we were for Fermat’s
method. The cases m = 3 and 6 are again redundant to the case
m = 9, and perhaps in general the most efficient procedure is to
simply memorize the case m = 9, which is not difficult. In our
previous example, 21449 = 2 mod 9, so x = 2 or 6 mod 9. The
first such x > 207 is 209, and the next occurs at 213. To jump from
209 to 213 we would have added 4 ® 211.5 = 846 to arrive at 1342.
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Table 4
Modular Sieves far the Triangular
Number Method of Factoring
(t, = N) Possible
m|[xmodm | t, modm | N modm mod m x mod m
3 101,2 0,1,0 1 2,0,2 1
2 1,2,1 0,2
4 10,1,2,3 0,1,3,0 1 3,0,2,3 0,1,3
3 1,2,0,1 1,2,3 (not a
mult. of 4)
5 | 01,2 0,1,3,1,0 1 4,0,2,0,4 1,3
3,4
3,4,1,4,3 0,2,4
2,3.,0,3,2 12,3
1,2,4,2,1 |04
6 | 0,1,2, 0,1,3,0,4,0 1 5,0,2,5,3,5 | 1,4
3,4,5
5 1,2,4,1,51 | 0,2,3,5
T | 8123, 0,1,3,6, 1 6,0,2,5, 0,1,5,6
45,6 3,1,0 2,0,6
2 56,14, | 1,2,4,5
1,6,5
3 4503, |2,34
0,54
4 3,4,6,2, 0,2,4,6
6,4,3
5 2351, 1,3,5
532
6 1,2,4,0, 0,3,6
4,2,1
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Table 4
Continved
(te = N) Possible
m|xmodm | t,modm | N mod m mod m x mod m
0,123, | 0138, | 180,2.5, 0,1,2,3,
4,5,6,7 2,7,5,0 1,6,4,7 4,5,7
3 5,6,0,3, 0,1,2,3,
7,4,2,5 4,6,7
5 3,4,6,1, 0,2,3,:4,
52,03 5,6,7
7 1247, | 01,24
3,0,6,1 5,6,7
9 | 4123, | 0136, 1 8,0,2,5, 1,4,7
4,5,6,7,8 | 1,6,3,1,0 0,5,2,0,8
2 18,14 2,6
8!4)1!8‘?
- 5,6,8,2, 1,4,7
6,2,8,6,5
5 4.57.1, 3,5
5,1,7,5,4
7 2,3,5,8, 1,4,7
3,8,5,3,2
8 1,2,4,7, 0,8
2,7,4,2,1

There is another method of factorization for numbers of the
form (4k + 1), where k is a positive integer. It has been proven
that a prime number of this form (i.e., 1 mod 4) can be expressed
as the sum of squares (a? + b?), with gcd(a,b) = 1, in one and only
one way; otherwise, the number is composite. Fermat first dis-
covered this relationship which was proved a hundred years later
by Euler. Fermat called this fact “the fundamental theorem on
right-angled triangles,” as for a prime p there is only one such
figure with integral sides and a hypotenuse equal to p2. The
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method of factoring when there are two sums of squares is termed
Euler’s method, although it was given much earlier by Frénicle and
Mersenne [23].

I mention this technique largely because of its use by at least
two lightning calculators in this century [3]. In my opinion, its
main disadvantages are that it can be used on only half of all odd
numbers, it requires checking every possible sum of squares (albeit
sieved), and it requires subsequent extraction of the factors from
the squares if the number is composite and has at least two such sums.

There are two basic methods for finding pairs of squares that add
to a number N, which we term for two sets of squares

N=a+b=c+d

The first method parallels Fermat’s method of factoring, where
we now find whether (N — x?) is a square rather than our previous
quantitzr (x2 = N). We can test every value a between N2 and
(N/2)Y2, or 0.7N'2, at which point we begin duplication with x
and y interchanging roles. In analogy with Fermat’s method, we
begin with x just less than N2 and decrease x as we proceed. We
need only add (2x + 1) in each step, or simply increase the adder
in the previous step by 2:

N-x(=N-(x+12+2x+1

The two-digit endings for squares can be used with advantage here.
Let us take the example N = 1433, which is of the type allowed
since 33 = 1 mod 4.

X N - x?

37 64

36 137=64+ 173
35 208 =137+ 171

34 271
33 344
32 409
31 472
30 533
29 592
28 649
27 704

26 757
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We stop because 757 is larger than (N/2). We see as we mentally
trace these steps that there is one and only one sum of two
relatively prime (gcd(a,b) = 1) squares that add to 1433, (37)? +
(8)? = 1433, revealing that 1433 is prime.

Let’s try N = 1457:

X N — x?
38 13
37 88
36 161
35 232
34 301
33 368
32 433
31 496
30 557
29 616
28 673
27 728

and we find that 1457 is composite, but we have no sum of squares
to extract factors. Actually, this situation will occur whenever any
prime factor of N is of the form (4n + 3) and is of an odd power;

here, 1457 = 31 ® 47 and both factors are of this form [26].
Fortunately, this is not always the case. For N = 1537, we have

X N - x*
39 16
38 93
37 168
36 241
35 312
34 381
33 448
32 513
31 576
30 637
29 696
28 753

27 808
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We find that 1537 = (39)% + (4)? = (31)% + (24)2. Now we wish
to determine factors of 1537 from this information.

The basic procedure for N = a? + b? = ¢Z + d? = (possibly other
sums of pairs of squares) is to first find the following values f and

g [10,23,24]:
f=a-c
g=d-b
given here by f = 8 and g = 20. Now we find the quantity (2cf +
f2) = (Zbg + g*) = 560, and we divide this by fg = 160, giving
h = 3.5 in this case. Then
N = (f +g?) (1 + h%)/4
= (464 * 13.25)/4
=29 53
We could have directly used the relation,

la-c)+ (b-d)f] e [(a+c)+ (b-d)

N 4(b — d)?

divvying up the denominator into products that divide the terms
in the numerator.

Of course, we can use modular arithmetic sieves to decrease the
number of possible values of x. Construction of a table such as
Table 3 for the quantity (N — x?) would show that for N = 1537 =
7Tmod 9, then x =0, 3, 4, 5, or 6 mod 9, small relief in this case.
However, for an N = (5k' + 2), as here, x and y equal 1 or 4 mod
5, or in other words are of the form (5p + 1). The fact that N
is of the form (4k + 1) does us no good, since all x mod 4 are
possible, and since N = (4k + 3) eliminates all x mod 4 we begin
to see why we are limited to the former type.

We can also utilize two-digit endings of squares to determine
possible sums of two squares that will give the last two digits of
N. An analogous situation will be presented later, where this
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sieve is used in finding possible differences of two squares in
Fermat’s method.

As a comparison for this example, Fermat’s method without the
use of sieves takes only two steps before the factors 29 and 53 are
found, although for widely differing factors or for prime numbers
the methods are not as dissimilar.

For those of us still bothered by our inability to factor N = 1457
earlier with this method, despite showing it to be composite, we
can turn to a more general form of Euler’s factorization [7]. Here
we find two regresentations of a number N in the form (a? + Db?)
and (cZ + Dd?). Since all numbers cannot be expressed in this
form, we might veer off into this method when we find an entry
(N - x?) which is a multiple of a square greater than 1. In our
earlier sequence for N = 1457, we find in the second step that
N - (37)% = 88, so that N = (37)? + 22(2)%. Then we start a new
series of tests to find a square result of (N — 22x%), beginning with
x as the nearest integer less than or equal to (N/22)2. Since we
are decreasing in each step the initial value of x = 8, we have at
most eight steps. In each step we can add 22(2x + 1) to our
previous value of (N — 22x%). We begin with

X N — 22x?
8 49

and we stop immediately, having that 1457 = (37)? + 22(2)? =
(7)2 + 22(8)>

To find the factors, we use the more general form of our previous
technique—we find gcd(N,ad — bc) or ged(N,ad + bc), each
representing a factor. Here (ad — bc) = 282 and (ad + be) = 310,
which offers, after a quick solution using Euclid’s Algorithm
and its variations, the factors 47 and 31. (Try Fermat’s method on
this number!)

As a second general method, we can find pairs of squares that
add to N of the form (4k + 1) by finding pairs of triangular
numbers that add to N' = (N — 1)/4 [10]. This derives from the

algebraic equality,

(a+b+1)2+(a_b)2=4{a(a+ 1)+b(b+ 1)}-'_1

2 2
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Considering our earlier example of N = 1537, we have N' = 384.
Then we find (N' — t,) for x up to N'1/2,

X N' —t,

0 384

1 383 =384 -1
2 381 =383 -2
3 378 =381 -3
4 374

5 369

6 363

7 356

8 348

9 339

10 329

11 318

12 306

13 293

14 279

15 264

16 248

17 231

18 213

19 194

From endings and/or modular arithmetic sieves, we find that
378 = t;; and 231 = t;;, again giving us the intermediate result
1537 = (39)% + (4)? = (31)? + (24)%.

There is an intriguing if not foolproof test for determining
whether a given number N is prime if N is of the form (4k + 1)
and ends in 3 or 7 (e.g., 1433) [9,10]. Sadly enough, even when
the trivial case of N ending in 5 is eliminated, this test applies to
only one in four odd numbers.

First, we subtract the nearest square ending in 5 from 2N,
leaving a remainder ry. These squares actually must end, as we
know, in 25 and are the squares of numbers ending in 5, or in
other words (5a)? with a odd, so our shortcut for squaring
such numbers helps a great deal here. Then we find the follow-
ing quantities:
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r; =15+ 100(a - 1)
r; = 1 + 100(a - 3)
r, + 100(a - 5)

I3
etc.

Now if one and only one square appears among these
values, N is divisible by this square or is prime. Otherwise, N
is composite.

For N = 1433, we have 2N = 2866. The nearest square ending
in 25 is found by determining a value b such that b(b + 1) is
nearest without exceeding 28. Therefore, b = 4 and (45)* = 2025.

Continuing,
a=9
1o = 2866 — 2025 = 841 = (29)?
r; = 841 + 800 = 1641
r; = 1641 + 600 = 2241
13 = 2241 + 400 = 2641
14 = 2641 + 200 = 2841

There is only one square here, and 841 does not divide 1433,
so 1433 is very probably prime according to this method. In fact,
1433 is prime, as we have seen.

For three-digit numbers this is very fast:

N = 713
IN = 1426
(35)% = 1225
1o = 201

r; = 801
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No value of r is a square, so 713 is composite (713 = 23 ¢ 31).

Composite integers are identified without fail in this test, but
some numbers indicated as prime are actually composite. Taylor [9]
notes that these latter anomalies “. . . are in general those integers
which are multiples of primes of one of the forms (20k + 13) and
(20k + 17) and also of one or more of the squares of 3, 7, 9, 11,
23,27, ... (ie., (20m + 3,7,9,11)?).” They include 153, 333, 477,
657, 833, and higher numbers. If the factors 3, 7, 11, and 13 are
eliminated first, however, an anomaly will not surface until N
equals 8993.

In closing, I mention for those interested in pursuing this
subject on a computer or programmable calculator that summaries
of factorization methods specifically designed for these instruments
can be found in Riesel [7] and Blair [27]. Other methods suitable
for hand calculations (or the above instruments) are given by

Taylor [9] and Dickson [10].

A Factoring Game

Now I would like to take an extreme case of factorization to
illustrate additional tests. While this will turn out to be unrealistic
to perform on the spur of the moment, we can consider this
factoring of a very large number to be a kind of game, and it’s
actually not a bad one at that if you're interested.

We would like to factor a given large number like 125,869.
Since N is not divisible by 2, 3, 5, 7, 9, or 11, we begin using
Fermat’s method (my choice) with x = 355. Chapter 3 provides
convenient methods for simple square root extraction. Here we
would take (1258)2 as roughly 35; then [1258 — (35)%]/(2  35)
as roughly 0.5. Appending 5 to 35 and checking the decimal point
location, we arrive at 355 as N2 to the nearest integer.

Unfortunately, we now find that the upper limit on x is
(125869/25 + 6) = 5041, leaving an absolutely huge range
to consider! :

Undaunted, we find N mod 9 by casting out nines and arrive
at 4, implying from Table 3 that we need consider only values of
x =2 or 7 mod 9. We therefore decrease the number of possible
values of x to roughly 521. We can then find N mod 5 = 4, giving
x=0, 2, or 3 mod 5, and reducing the choices of x to around 313.
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Finally, N mod 7 = 2, giving x = 2, 3, 4, or 5 mod 7 and a net
of about 179 choices.

Actually, since the formula for the upper limit on x is roughly
inversely proportional to the lowest prime p not tested by standard
divisibility tests,

we can see that we really suffer in considering all primes in
Fermat’s method down to p = 13. Let us set p equal to 101 and
perform two-digit divisibility tests for all primes below this if
required. Then x,,, = 679 and our original set reduces from 4686
to 324 values of x. Then applying our tests N mod 9, 8, 5, and
7 reduces the number of possible values of x to about 12.

We find no primes below 100 to divide N. However, to
sequence through values of x to find the approximately 12 possible
values from 355 to 679 that pass the sieves, and for each one
square x, subtract N and check for endings of those that may be
squares, explicitly inding square roots of those, is tedious still. Can
we use more detective work to help us out?

Yes, we can. Let’s see if we can find other sieves in a different
manner. We know that N ends in 69 and that squares end in 00,
el, e4, 25, d6, or €9, where e is even and d is odd. What possible
difference of squares end in 697 A quick check of Table 5 produces
the number of possibilities for differences of squares ending in a
particular digit.

Obviously, we could have been luckier here. The four possibil-
ities for a difference ending in 9 can be easily deduced to be
(00 —el), (e4 — e5), (25 — d6) and (e9 — 00).

For numbers ending in 69, we can reduce the choices to (25 —
56) and (69 — 00). We can now find what x must end in to arrive
at these endings. It turns out that for each of the 22 possibilities
of two-digit endings for a square x2, there are four possible two-
digit endings of x, except for 00 and 25, which have ten (numbers
ending in 0 and 5, respectively). For the former, when one two-
digit ending, say x;, is found, the other three can be found as
1100 — x;1, 150 — x;| and 150 + x;|, where here the vertical
bars indicate the absolute value of the term inside. This follows
from the equations,
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Table 5
Differences of Squares Ending in Particular Digits

Number

of

b\a 0 1 4 5 6 9 Digit Possibilities
0 01 45¢69 9 4
1f 903 458 8 2
4 6 701 2 5 7 2
5 56 901 4 6 4
6 4 58 90 3 5 6
9 125670 4 4
a—b 3 2
2 2
1 4
0 6

(100 — x;)? = 10000 — 200x; + x}
(50 + x;)? = 2500 + 100x; + x}

For example, we know that (13)? = 169, which ends in 69.
Therefore, other two-digit endings that when squared produce an
ending of 69 are (100 — 13), (50 + 13), and (50 — 13).

We can, then, find possible endings of x for each ending of x?.
We are in reality performing a manual mod 100 sieve.

x?-ending x-ending
69 13,37,63,87
25 05,15,25,35,45,55,65,75,85,95

Notice that we can already see that the sieves x mod 8 = 1, 3,
5,0r 7 and x mod 5 = 0, 2, or 3 are useless here, since they can
be determined by these endings. More work is still necessary.
While it may seem lucky to have isolated the endings to particular
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numbers instead of e4, for example, the value 25 with its ten
entries above hurts us considerably.

In reality we don’t need to construct the above x-endings as a
table in our mind, but rather find each x-ending one at a time and
operate the rest of our procedure on them individually. We then
end up sequencing one line at a time through Table 6. Notice that
355 <x < 679.

Now by using endings we not only have reduced the number
of possible values of x to four, but we have also identified them
without testing intermediate values. At this point, if we want to
avoid squaring the remaining x-values, it is appropriate to check
y? for any reduction of the y-values as well.

Fortunately, this is very easy. Since adding N mod m is the same
thing as subtracting (m — N) mod m, then we can use Table 3 for
x mod m and use the values derived for the complement of N mod
m, thereby giving us general results for a number (y* + N) mod
m. Therefore, without actually doing any divisibility tests we
immediately know that

ymod 9 =03,6 fromentryfor Nmodm=9-4=5
y mod 8 = 2,6 from entry for Nmod m =8 -5 =3
ymod 5 =0,1,4  from entry for Nmodm =5 -4 =1
y mod 7 = 0,3,4 form entry for Nmodm =7-2=5

Of these, we are interested in y mod 5 and y mod 8, since
divisibility by 5 and 4 is obtainable from the two-digit ending.

Looking at endings for y?, we can deduce that a y*-ending of
56 arises from y-endings of 16, 34, 66, and 84. Of these, the above
two sieves limit y-endings to 34 and 66.

We can now take each of the four values of x remaining after
our sieve and find possible values of y. Remember that (x —y) >
100. In addition, we know that (x* — N) = y2, and this must hold
up to all divisibility tests.

For x = 605, we know that (x2 = N) mod 9 = [(2)? - 4] mod
9 = 0; because of the earlier x mod 9 sieve, all of these values of
x will give this result. Therefore, only y = 234 is possible, since
the nines test on the ending 34 implies an initial digit of 2 for the
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Table 6
Modular Sieve Results for N = 125869

x2 — y2 x2 X Sieve Additional Sieve
Ending | Ending | Ending | x mod 9 = 2,7 | x mod 7 = 2,3,4,5
69-00 69 13 —

37 637 —

63 —

87 587 -
25-56 25 05 605 605

15 515 515

5 415 425

35 —

45 -

55 —

65 565 565

75 475 —

85 385 =

95 —

range 0 < y < 505. An ending of 66 produces no initial digit in
this range. As y = 234 seems a likely possibility, we cast out
elevens to check it again, producing (x? — N) mod 11 = [(0)? — 7]
mod 11 = 5. The y-value 234 is now eliminated because (234)?
mod 11 = 9; thus x cannot be 605.

For x = 515, again only y = 234 is possible and is eliminated
by the elevens test.

For x = 425, we find y = 234 does indeed pass the elevens test.

For x = 565, we find that y = 234 passes the elevens test as well.

We can perform other divisibility tests if we still want to avoid
squaring three-digit numbers. As mentioned eatlier, a good one is

for 37.
(x2 = N) mod 37 = [(425)% — 125869] mod 37
= [(-19)? - (014,-019)] mod 37
= [367 — (=19 + 14)] mod 37
= 366 mod 37 = 33
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As a reminder, we dropped multiples of 111 out of each triplet
and added each triplet to the triplet to the right of it. Now (234)?
mod 37 = (12)? mod 37 = 33 as well.

If we repeat this for x = 565, we find (x> — N) mod 37 = 31
and the failure of y to pass this sieve eliminates this possibility.

We've danced around the result for quite a while now and we
know that x = 425, y = 234 is strongly indicated, since out of two
cases like this the odds of one passing the divisibility test for 37
without being a solution is one in 18.5. We could square this out
if we wanted, but let’s continue to be stubborn about this and
assert with great confidence that (425 — 234) = 191 and (425 +
234) = 659 are factors of 125869, which indeed they are.

Without using modular arithmetic sieves, how many steps
would we have had to perform using Fermat’s method to find these
factors? We earlier had the expression (1 — k)* N'/2/(2k) for the
number of steps, given that the lower factor a = kN2, Here
a = 191 and we find k = 0.538, giving 70 steps (after the initial
value of y is obtained). Using triangular numbers, which shine
when factors are disparate, we require 18 steps without sieves.
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Roots

The real test of ability to do square, cube or any
other root is, in my view, to have a number
proposed that is not an exact power, and to be
asked to give the answer to several decimals; but
this type of question you will hardly find in the
published records.

A. C. Aitken (1954) [1]

Although extracting integer roots of powers is a common
practice of lightning calculators, deriving roots of numbers
that are not perfect powers is historically much more rare.
This chapter is concerned with the much more practical
problem of determining roots of such diverse numbers. None-
theless, we will first touch on methods for perfect powers, if
only to satisfy curiosity on the subject.

Roots of Perfect Powers

Roots of perfect powers, particularly odd powers, offer
distinct advantages to the calculator. Briefly, it is well known
that for a power of order (4k + 1), with k a positive integer,
the root will contain the same units digit as the power. For
a power of order (4k + 3), the root will contain a unique units

77
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digit for each unit digit of the power. For a three-digit root
of any odd perfect power, the leading digit can be inferred
from memorized or estimated ranges of such powers. With the
knowledge of the units digit, the middle digit can be derived
by casting out nines and/or elevens.

To illustrate, suppose we are given 6657793506607 as the
fifth power of a number and our task is to find the fifth root.
Now, the given number is about 670 x 10!° and we find (or
memorize) ranges for the first digit of the fifth root. We see
that (300)° = 243 x 100 and (400)° = 1024 x 10!, so the
answer is a three digit number with 3 as its first digit. Since
the order of the root, 5, is of the form (4k + 1), we
immediately know that the last digit is the same as that for
the given number, or 7. To determine the middle digit a, we
use the nines test and, if needed, the elevens test:

6657793506607 mod 9=(6+6+5+T7+7+9+3+5
+0+6+6+0+7) mod9
=4
We know, then, that (3a7)’ mod 9 = 4.

Now we want a number less than nine that, when raised to
the fifth power, will leave a remainder of 4 in the nines test.

Nines test result
Number n on n’

co~IOo0Nnph WNo— O
OhAhON~JO UN—O

We could have memorized this table or generated it on the spot.
To do this, we remember that we can always reduce intermediate
values in our calculation by the nines test. For example, forn = 5,
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nfmod 9= (52 mod9 =7
n* mod 9 = (7)2 mod 9 = 4
n°mod 9=(5¢4)mod9 =2

The only ambiguity in this test is for a result of zero, which
corresponds to n = 0, 3, and 6. The elevens test can then be used
to distinguish between these cases. For cube roots, the elevens test
is preferable up front, because it provides unique results for every
n<l1lI.

In our case, we have now deduced that 3a7 mod 9 = 7, or
(3+a+ 7) mod 9 = 7. Simple inspection shows that a = 6, so
we arrive at 367 as the fifth root of 66577993506607.

For roots containing more (say, m) digits, the logarithm may be
calculated of the first (m — 2) digits of the power. The result is
then divided by the order of the power, as we do when using
logarithms, and then converted back into the initial digits of the
root. The last two digits are then derived from the uniqueness of
the units digit and casting out nines or elevens, as before.

For the practiced calculator, the task can be simplified by
memorizing tables of two-digit or three-digit endings of powers.
For most roots, the endings are not unique, though, and require
a subsequent process of elimination. Nonetheless, the huge ranges
of powers that can be considered can make the extraction of
perfect roots seem amazing. For example, extracting a three-digit
cube root, which as described above is trivial, can be performed
on numbers up to (999)° = 997002999. All three-digit roots of odd
powers are equally trivial, and the ranges of numbers become
incredible for high powers. Smith [2] provides an excellent review
of these techniques and the use of endings to ease multidigit
integer roots.

Particular Square Root Methods

Since we rarely find ourselves extracting roots of powers known
to be perfect, a more desirable algorithm would extract noninteger
roots as well. A few of the better methods of obtaining a
noninteger root (and to be precise, an integer root as well) were
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described by Alexander Craig Aitken, considered by Smith to be
“one of the greatest mental calculators who ever lived [2].”

In a passage from Aitken’s address to the Society of Engineers
[1], part of which can be found in Smith [2] as well, we find a
presentation of six ways an experienced calculator might approxi-

mate the square root of 51 (or 7.141428428543 .. .):

L.

Take an initial estimate of the square root of 51, or (51)2,
as 7. The average of 7 (or 49/7) and 51/7 provides a much
better estimate, 50/7 = 7.1429.. ..

. Take 50/7 as the new initial estimate. The average of this

and 51/(50/7) is 7.141429. . ..

. Take the repeating decimal 7.141414...as a new initial

estimate. Referring to our discussion in Chapter 2, we know
this to be the fraction 707/99. The average of this and
51/(707/99) is 7.14142842857 . . ., accurate to eleven digits.
Return to our estimate of 50/7, which was the average of our
initial estimate of 7 (or 49/7) and 51/7. Their ratio is 49/51
and each “deviates” by one part in 50. Reduce 50/7 by one
part in 2(50)2, or one part in 5000, arriving at 4999/700 =
7.1414285. . ..

Divide the interval from 49 to 51 into fourths and
multiply 7 by the third quarter divided by the first,
giving 7(50%/497%) = 7.141414141414. ... Alternatively,
find (51/7) ® (49%/50%) = 7.141442715700. . . . Their aver-
age is even better, being, in fact, that found in method 3.
Using “subtler and more powerful approximations still,”
reduce 50/7 as in method 4 by one part in 4999 rather than
one part in 5000, giving 7.141428428557 ..., “so commit-
ting an error of 1 in 500,000,000,000. This is an extreme
approximation for [a] square root; and I have never gone
beyond it in mental calculation.”

While Aitken does not elaborate in his presentation on the
bases for his methods, we can with some effort reconstruct the
reasoning behind them. To begin, we make use of a concept
formulated by Heron of Alexandria (c. 507?) and most likely by the
Babylonians of 1700 B.C. [3,4]. Aitken (and Smith) did explicitly
refer to this method.
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We reason here that if a number N is deduced to have an
approximate root a (say, one that is too low), then the quantity
N/a provides a number that will lie on the other (high) side of
the root N2, Therefore, a better approximation to N2 will be
the average of a and N/a. This procedure can be iterated and is
of second order, i.e., the number of correct digits approximately
doubles with each iteration [5-7]. We then have the iterative
relation with n = 0,1,2, . ..

a, + (Nfa,)

Adp+1 = f (4)

N - a2

2a2

an+an

This is actually a special case of the well-known Newton-
Raphson method of finding simple, real roots of a real equation

of the form f(a) = 0 [3,8-11]:

f(a,)
f'(ay)

(5)

dp+] = aAp —
where f'(a,) denotes the first derivative of f(a) with respect to a

evaluated at a,. For f(a) = a? - N = (,

N - a?

paf

(6)

an+1= ap + 2y

which reduces to Equation 4 when the order of the root p = 2.
Aitken derived his first three estimates from his initial approxima-
tions using one iteration of the Newton-Raphson method.

There are several ways of deriving the Newton-Raphson rela-
tion (Equation 5). A nongraphical derivation follows from the
expansion of a function f(a) into a Taylor series:

f'(a,)
f(a) = f(a,) + f'(a,) ® (a—a,) +

o (a—ay)t+...
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We can truncate this after the second derivative term and set
f(a) = 0. Casting the formula in an iterative form to approach f(a),
we then have

f"(an)

f(a,) + f'(a,) ® (age1 — @) + ® (ap; —a,)? =0

which can be rewritten as

"'f(an)
3pn+1 —aAp T
f'(ay) + (age; — a,)? f'(ay)/2

(7)

This reduces to Equation 5 when the second derivative term in
the denominator is neglected.

Certainly more satisfying (if less general) is a simpler derivation
for roots of order p. Here, for an error e,, a root a = a,, + e,, and
an order p = 2 (i.e., a square root),

a?-N =0
(a, + ) -N=0
242 :_N=0
an anen + en
N - aZ
€= ——
la, + e,
or, ignoring the e, term in the denominator and setting
a,, =ap t ey,
2
N - ag
2a,

Adn+l = 3y +

which is identical to Equation 6 for p = 2.

To continue to Aitken’s fourth method, we can perform a
second iteration of Equation 4. Since ay = 7 led to a value a; best
represc;nted as a fraction 50/7, it is useful to rewrite Equation 4 for
a, = s/t
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_ !N - s?
Adn+1 = Ay + a, ¢ 282
Then,
50 50 49 e 51 — 2500
az = — 4+ — ©0
7 7 2 * 2500

= 50/7 + (50/7) * (~1/5000)

= 7.1414285 . ..

which is Aitken’s fourth estimate.

We can also develop an improved version of the Newton-
Raphson method. This variation has been discovered many times
and bears several names; we will adopt the more common and
appropriate designation of Halley’s method, referring to Edmond
Halley (16567-1743) of comet fame [3,9,12-15].

In Equation 7 we can replace the (a,,; — a,) term in front of
the second derivative f"(a,) in the denominator with the approxi-
mation found in Equation 5, which we obtained by ignoring this
term completely. This is Halley’s formula:

2(a,) f'(a,)
C2'(a)? - f(a) f'(ay)

Adp+] T 3y

For f(a) = aP — N = 0, we arrive at a third-order formula for

finding the pth root of N [6,16,17]:

Jp-Dap+ (p+ )N
(p + ag + (p - )N

dp+] = 2

or,
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+1
e (N —-aR)

2
an+1 T Ay o P (8)

+<1_p * 1> o (N -ap)
Zp

For the square root, we have p = 2 and
ai + (3/4) » (N - al)
al + (1/4) » (N - a)

Returning to our example N = 51 and ag = 7, we obtain the
first approximation in Aitken’s fifth estimate:

a; = 7 (50%/49%) = 7.14141414 . ..

ab +

dn+1 = 3p

We can now rewrite Equation 8 for a!, = N/aR™! as

NP p+1 Np
w0 T 55 N e
af P ap

NP p+1 Ne
(-5 ()
22D 2p 22D

After some algebra we arrive at the relation

NE-ragle-D) + (1 - (p + 1)/2p) © (N = N>vagie-D)
[ ]
7 NETagED + ((p + Di2p) * (N - NEvage D)

anel =

9)

For p = 2, the extensive term multiplying a), is the reciprocal
of the corresponding term in Equation 8. This provides us with the
second approximation by Aitken in the fifth estimate:

ap = (51/7) ® (49%/50%) = 7.14142715700. . .

Now Equation 4 gives a better approximation as the average
of a, and Nfa,. For a; = 7(50%/49%), then N/a1 = a) and we

culmlnate in the fifth estimate,
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ay = (a; + a})/2 = 7.14142842857 . ..

correct to eleven digits.
Returning to Equation 8, we can transform the third-order
relation to one that eases our later calculations:

N — af
(p+ Dag + (p- 1N

An+1 = An * zan °

We now recognize this as second-order Equation 6 if we set N
equal to af in the denominator.

Use of this algorithm requires nontrivial division when N is a
multidigit number or p is larger than 2. Given this, we can write
the relation in a form suitable for a, being a fraction s/t:

tPN — sP
(p + 1) + (p — I)PN

ape; T Ap F zan ¢

or, forp = 2,

tIN — s?
3s2 + 2N

An+1 = An F zan °

Again, for a; = 50/7,

49 o 51 — (50)?

= 50/7 + 2(50/7) o
2 = 5011+ 205010 * 5 o 49 - 50

= 50/7 + (50/7) ® (-2/9999)
= 7.141428428557 . ..

which, since we are reducing 50/7 by one part in 49997, is
apparently the extreme approximation used by Aitken in the sixth
estimate to eleven digit accuracy.
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The Chebyshev Correction

We can add at this point a further generalization of the
Newton-Raphson method discovered by P. L. Chebyshev
(1821-1894). His paper on this subject earned a silver medal in
a competition in 1840, but actually was not published until 1951
[3,11]. His iterative algorithm is a third-order one, meaning the
error falls off cubically with each iteration, or equivalently, that
the number of correct digits is approximately tripled with each
iteration. The relation is given by

dn+l = 3y

fla,) /fla)\? f"(a,)
—f'(an)_<('(an)> 26'(a,)

Notice that this amounts to subtracting a term in each iteration
from the Newton-Raphson algorithm. For f(a) = a? — N = 0,

<f(an)>2 , ) <a¥’, - N>2 , Pp — 1) 2

f'(a,) 2f'(a,) - pab! 2pab!
1N - an?
_P=, An (10)
2pta, b1

For p = 2, this correction term is given by
1 <N - aﬁ)z

_

8a, an

This method offers two advantages. It allows a preliminary
estimate to be produced quickly using the Newton-Raphson
method, and then improved afterwards with this correction if
desired (merging the terms does not simplify the calculation). It
also uses a divisor simpler than that used in Equation 8.

For an initial estimate of ay = 7 for (51)2, we arrived at a; =

50/7 by using the Newton-Raphson technique. We can therefore
improve this estimate by finding
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- () (52

= 7.1413994
compared to (51)/2 = 7.14142843 . ..

which is an improvement over 50/7 = 7.142857 ... but poorer
than two iterations of the Newton-Raphson method, which earlier
yielded 7.1414285.... As we will see for higher-order roots,
however, two iterations of the Newton-Raphson method can in
fact be prohibitive. For example, if a single-digit a is used in the
Newton-Raphson method to find a two-digit a; for the next
iteration, then p doesn’t have to be very large to prevent the next
iteration a, from being calculated, particulatly since af appears as
a divisor. However, Chebyshev’s additional term uses the original
single-digit a; in its calculation.

A General Square Root Algorithm

The selection of N = 51 is a convenient, though illustrative,
one for Aitken and in general the approximations become unman-
ageable very quickly. Incredibly, though, we can develop a method
for mentally extracting square roots of more general multidigit
numbers to greater and, with patience, even arbitrary precision.

To begin, we rearrange the second-order Equation 6 for p = 2
to express the amount b, to be added to a, in each iteration:

N - a2
2a,

b, =

Isaac Newton (1642-1727), incidentally, pointed out that hand
calculations of square roots may be quickened if, after finding the
square root the standard way to one-half the required number of
digits, the remainder is divided by twice the existing calculated
root to obtain the rest of the digits [4].

How good is this approximation? For our purposes, we can shift
the decimal point (two places at a time) in the given number to
scale the root to have two digits left of its decimal point. The
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decimal point can then be moved in the root (one place at a time)
when we are finished. For example, if N = 51, we can let N = 5100
and find an approximate root 71.41, easily scaled back to 7.141.
We do this because two-digit operations are most convenient in
the general algorithm.

We can further assume for the time being that a two-digit
approximation ap to N2 is achievable by hook or by crook.
Remember that we can square two-digit numbers fairly easily. One

convenient technique for finding ay is to begin with a round
number. For N = 1867,

1867 = 40 * 46 = 1840
But 40 ® 46 = (43) — (3)?, so
(1867)Y2 =~ 43 and 1867 — (43)? =27 -9 = 18

Continuing now,

18
by = = 9/43 = 0.20930. ..
2 e 43
and
ag + by = 43.2093 . .. Actual: 43.2088 . ..

In general, the error in (ay + by) is given by

112 _ 5\
error = (ag + by) — N2 = (N %)

2ag

Obviously, for large a the error is small, as 0.5 < (N2 - a;) < 0.5.
As it turns out, for a two-digit integer ay we find that 98% of the
time the quantity (ag + bg) will be accurate to two decimal places,
and 50% of the time to three decimal places, offering four or five
digit accuracy in a square root with a minimum of effort.

Since (ag + bp) will always be in excess, we can ask whether
subtracting a number 0.000x before rounding, with x a digit, might
improve the 50% average. In fact, it turns out that 0.0005 is the
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optimum amount to subtract. Therefore, by simply truncating the
result to three decimal places rather than finding the fourth and
rounding, the result will be accurate to three decimal places 61%
of the time. The third decimal place will be within one of the
correct digit 85% of the time.

The next iteration b;, however, presents difficulties because
a; = ay + by is now a multidigit number; mentally calculating b;
is generally prohibitive. We can in fact overcome this obstacle by
developing an algorithm specifically for our purposes.

Let ag and b, be two-digit numbers defined by

I\]ll2 = ao|b0|b1|b2|bn

=ay+ ), 1022,
k=0
where the decimal place lies between ay and by and the symbol

“|b” as before indicates that digits in b are melded into the term
to the left to leave a two-digit value of b. Now,

[N - <ao + nil 10‘2"—2bk>2]/2

k=0

n-1

ap + E 10—2k—2bk
k=0

10-20-2b,, =

If we limit b, to two digits and approximate the denominator
as ag, we get

n-1 2
[N - <ao + ¥ 10—2k-2bk> ]/z
k=0 107202
107202, = _
o an

where r, is the remainder of the first term after dividing to two
digits. Now,
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n 2
[N - <a0 + ) 10—2k-2bk> ]/2
- 10—2n-2 .
10_2n_2b:\+1 = k=0 - Tn+1

2N 2l
but,

n 2
N - <a0 + ) 10-2‘<—2bk>
k=0

n-1 2
=N - [(ao + Y 10‘2k‘2bk> + 10‘2“‘2bn]
k=0

n-1 2
=N- <a0 + ) 10‘2k—2bk>
k=0

n-1
—2(1021p ) o <ao + Z 10~ 21“Zbk>
k=0

_ 10-4n—4b%l

= 2(107222) agb, + 2(1072) .

n-1
- 2(10722p,) <a0 + Z lO“Zk‘Zbk>
k=0

— 10443

Therefore,
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n-1
107202, — 107202, ), 1022, — 1044b22
k=0
10—2n—4bn+ | =
o
10—2n—4rn+ 1
Q
or,
n-1
100r, — b, Y, 10Zb, — 10-2°b22
k=0 .
bn+1 - _ I+
40 a0
2
_ (gt N = (ag!bglby ...1b)2/2

a0

This is perfectly general. The validity of the b,,; value is not
affected by the approximations of ag in the denominators of earlier
b’s. In fact, ag should be a rounded two-digit approximation to
N2 50 by, which now may be positive or negative, has a magni-
tude of 50 or less.

Since we are concerned only with terms in the numerator that
contribute to the division to two digits, we can shift other terms
into the remainder term to be used in calculating b’s of higher
order. Conversely, since each b multiplies the remainder of the
previous b by 100, we need to extract these shifted terms in the
b at which they become significant (i.e., when the power of ten
preceding the term is 0). Therefore, for n even,

%1
100R, - ¥ buaby — b2

k=0
bn+1 = + Rn+1
a0
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where R, and R, represent the new remainders of b, and b, .,
carrying with them the lower-order terms of previous b’s that have
not become significant yet in the division to two digits.

For n odd,

%1
100R, — Y. boiby

k=0
bn+1 = + Rn+1
2l

Simply put, to find b,,; we subtract from 100R, pairwise
multiplications of b starting from the outside (bgb,) and working
inward to the center; if one b is left in the center, we subtract b?/2
as well. We then divide by aj to two digits and use the remainder
for calculating the next b. Despite the heavy mathematical
notation and derivation, the concept is quite simple, and is best
understood by working through an actual calculation.

For example, to find the square root of 51, we first consider
(5100)2, which provides a two-digit ag.

70 @ 72 = 4900 + 140 = 5040

giving (71)2 = 5040 + 1 = 5041
Then,

ap = 71 with a remainder of 59
Root thus far: 71

590012

b
T

41 R, = 39

71141

We now begin the algorithm.
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_ 3900 — (41)%/2 _ 3059.5 ~

b1 43 R1 = 6.5
71 71
71141143
650 — 41 * 43 1113
)= =_ <—> = (16 R -23) = -16
71 71
RZ = +23
711411431-16
2300 — (-16) ® 41 - (43)%2  2031.5
by - (-16) « 41 - (432 _ s
71 71
R; = 43.5
711411431-16128
350 — 28 o 41 — (-16) * 43 3890
by = 4 41 - (-16) 43 _ s
71 71
R, = 56

711411431-16128154

_ 5600 - 54+ 41 - 28 + 43 - (16V2 2054

71 71
Rs = 66

5

711411431-16128154128

In the last step, we could have taken bs = 29, R5 = -5, but with
the preponderance of positive b’s it seems likely that the numer-
ator of bg will now be reduced to a number whose absolute value
is less than 7100/2 = 3550 (giving bg < 50), which is what we
desire for two significant digit accuracy. In fact, the same philos-
ophy was used in the two previous steps. If the absolute value of
the numerator had turned out to be greater than 3550, giving
a b > 50, we would have simply backed up and increased or
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decreased the previous b, adjusting the previous remainder accord-
ingly. This is most likely to occur when ag is small or when cal-
culating higher-order b’s involving several terms in the numerator.

After all this buildup, it happens that I am mistaken and the
numerator is still larger than 3550, but we’re close enough to call
it good.

6600 — 28 » 41 — 54 * 43 + 16 * 28 3578
71 71

; 50

Rg = 28
71141143 1-16128154128150

We could continue, but we’re already well beyond the eleven
digits obtained by Aitken. Adjusting the decimal point back to
where it belongs, we get

(51)12 = 7.141428428542850 . . .
Actual = 7.141428428542850. . .

An alternative in finding ay may be more convenient than what
we did earlier:

(70)? = 4900

(5100 - 490002 _
70

Remainder = 30

Therefore ay = 71 and

_ [30 — (1)¥2]100 _

b
0 71

41 R, = 39

and we are back where we were before.
At any rate, we have succeeded in obtaining a sixteen-digit
result with a reasonable number of two-digit multiplications and
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divisions. In fact, all b’s in this algorithm have magnitudes less
than 50 (except where we let it go in bg). Incidentally, did you
notice that in by, for example, the terms (-28) ® 41 + 16 ® 43
can be reduced to (-12) ® 41 + 32? This is useful in b; through
bs. Two terms with multipliers of 28 also appear in the expression
for bg.

Throughout this discussion I have been careful not to drop the
divisor 2 into the denominator for a reason. If we alter the division
by ay, we alter the remainder. Therefore, if the division is reduced
by a factor m, we have to multiply the remainder by m. Also, it
is incorrect to meld the b’s before the calculation ends. For
example, the terms 431-16 cannot be converted to 42184
when calculating b,’s, even though this is what is done in the
final melding.

It is also apparent that finding the square root of a four-digit
number is no more difficult than for a two-digit number, since we
expand the latter to four digits anyway. In fact, as in cross division,
additional digits beyond the first four are simply taken pairwise,
halved, and added to the numerator of the associated step. To
demonstrate this, we will find the square root of 16460.89. Since
(13)? = 169, we proceed from here:

164 — (13)2 = -5
-500)/2 + 60/2
b0=( ) / =—(17R-1) = -17 Ro=1
13
131-17
100 + 892 — (-17)}2
b, = /13( )/=0 R, = 0

We find in this particular example that (128.3)? = 16460.89
exactly. Since b; = 0 and R; = 0, we see that in no later step can
the numerator be other than 0 as by = -17 will always be
multiplied by a value b = 0.

Therefore, we have a useful method that offers no significant
increase in effort between finding the square root of a one-digit
number and that of a multidigit number. The increase in complexity
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with the number of root digits taken is quite low compared to that
for the traditional square root method taught (at one time) in
school. I encourage you to try extracting a sixteen-digit square
root of 51 using the traditional method with paper and pencil; you
will be astonished at the work involved. The integer-like character
of this algorithm may also be useful for extracting square roots of
extreme precision on small, integer-based computers.

I emphasize at this point what may have slipped by without
notice, namely that we are for all practical purposes outstripping
the capabilities of pocket calculators and virtually all commercial
computer programs. The main reason I ended our calculations at
sixteen digits is the difficulty I had in obtaining a verification of
the answer beyond it! This is a double-precision floating point
value. It takes a specially designed computer program to exceed
this, and these are not routinely available. In my view, we can
excel over the available instruments in extracting square roots in
two areas. First, we can generally find an answer to five digits in
less time than a calculator can be retrieved and worked, much less
a computer. Second, with time we can find an answer to extreme
precision, beyond what a calculator or typical computer would
have the capability of doing without special software. I think we
can take some satisfaction in this.

One expensive software package, a symbolic mathematics pro-
gram, allowed me to arbitrarily define the precision of floating
point values, and with it I obtained the square root of 51 to
additional digits. The first 25 digits or so actually form an
intriguing sequence of no significance that I am aware of:
7.1414284285428499979993998 . . . .

To my chagrin, but not unexpectedly, I found that the essence
of this general method is given in other variations by Uspensky
[18] and Lehmer [19], and perhaps others [20]. Lehmer derives the
algorithm as a variant of cross division, run on the ten-digit
mechanical computers of the day (1926). As in his cross division
method, his algorithm contains internal checks on results and is
therefore somewhat more involved than one designed for mental
calculations. In addition, negative b’s are not considered, creating
additional constraints on significant digits and requiring frequent
multiplications by numbers of magnitude larger than 50. Also,
since the divisor 2 appears in the denominator in determining
quotients and remainders, the denominator generally consists of
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one more digit than necessary. Uspensky traces the algorithm to
Fourier Division using single digits and again does not consider
negative b’s. A

To implement this algorithm using single-digit values of b,
though, is more tedious and, in the end, problematic due to poorer
resolution, as “backing up” can affect twice as many b’s. Uspensky
discusses a convenient correction term when multiple b’s are
altered. Three-digit values lead to frequent reversals to signifi-
cantly adjust previous quotients. Two-digit values provide a nice
compromise conducive to mental calculation.

In conclusion, I mention that for extracting the square root of
a fraction, it is usually better to obtain a denominator that is a
perfect square:

@D = (1449)” = (1)1

Beyond its immediate use, the ability to readily extract square
roots offers an enormous advantage in developing other algo-
rithms, including factoring methods that require an integral square
to be identified, approximations of roots of higher order, very
precise trigonometric approximations, and so forth. It is a very
handy tool to master.

The Reciprocal Square Root

The reciprocal square root, or N~2, can be calculated as a
special case of the Newton-Raphson method applied to the
equation N — 1/aP = 0 [6,21]. Using Equation 5, we arrive at

vt = 2+ = (1 Nap)
p

which we can write for p = 2 as
841 = @, + .5a,(1 — Naf)

a relation surprisingly free of divisions.
For example, let us find the value (51)~/2 = 0.1400280084028 . . .
(a number, incidentally, as fortuitous for us as 51 was for Aitken).

We can take ay = 0.14. Then
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a; — ag = .5(.14)[1 — 51(.0196)]
- = .07(.0004)
= .000028
a; = .140028

Furthermore, multiplying the above result by N provides an
approximate value for N2, obtained without significant division:

51(.140028) = 14.0028/2 + .140028
= 7.141428
Applying Halley’s method to the equation N — 1/aP = 0 results in

2a,(1 — Nab)
+
2p-(p+ 1) (1~ Nap

dp+l = 3p

Again, for p = 2, N = 51, and ap = 0.14,
a; = .14 + 1.12(1074)/3.9988
= .1400280084023 . ..

This is a stunning result, but the division is complicated.
Perhaps the best approach is to factor out a 4 in the denominator
and approximate 1/(1 — .0003) as (1 + .0003). Then a; = .14 +
2.8(107) o (1 + .0003) = .1400280084.

Another alternative, generally more advantageous when ay is
less accurate to the true value N-'/2 is to derive Chebyshev’s
correction term for f(a) = N — 1/aP = 0:

C(an) >2 o f"(an) _ (N - a‘P)Z . — p(p + 1) a—(p+2)
l(":‘ln) Zf'(an) pza-z(Pﬂ) Zpa‘(l"‘l)

p+1
2p?

an(l - Nag)l
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For p =2, N =51 and a,, = .14, we can subtract this term from
our earlier result from the Newton-Raphson method:

a} = .140028 + (.14)(.0004)2

2 e 4

.1400280084

accurate again to the last digit.

Cube Roots

Although the concept used in our last most general square root
algorithm does not apply to extracting higher-order roots, we may
revert to Equation 6 as a workable second-order approximation.
We can rewrite this as

(p - 1) an + N/ag—l

p
In other words, a,,; is the weighted average of a, and N/all.
For this relation, the error e; in a; is less than (p — 1) ey/p. In
general, the error in the nth iteration, for e; the error in ay, is less

than [22-24]:

Adp+l <

(p-1) e,
2'an—l

forn>1

Thus, after a; is found, the error in each step diminishes as the
square of the previous error, defined as a second-order relation and
approximately doubling the number of correct decimal places in
each iteration.

As an example, consider (119)!3 = 4.9186847 . .., which we

initially approximate as ay = 5. Then

2 %5+ 119/(5)
3

= 4.92

a
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Choosing ay = 4.9 provides an a; = 4.91875 ..., correct to four
digits, but the division is more difficult.

Returning to the first weighted average a; = 4.92, we can
increase our accuracy by subtracting Chebyshev’s term, given in
Equation 10, for p = 3:

1 <N—ag>2
a'1 =a1——°

9ag 29
1 119 — (5)%\?
S 492 — ( ( )>
9 e5 (5)2
= 491872

This result is more accurate than the Newton-Raphson method
with ag = 4.9, and was obtained with much simpler division.

An alternate approach for cube roots involves, to gratefully
adopt Aitken’s terminology, the process of “thirding,” a method
corresponding to the quartering performed earlier for the square
root [1]. Equation 8 provides a general method for the pth root,
and for p = 3 it becomes

2+ (23) ¢ (N - a)
a2 + (1/3) « (N - a))

an+] =3,
Again choosing ay = 5 for (119)'3, we find (N - a3) = -6 and
121
ag=5 & — =49186992...
123

which is a more accurate result than before, although this partic-
ular example involves a three-digit divisor.

The complementary process of “sixthing” operated on aj =
119/(5)* is another technique. Equation 9, the basis for the
corresponding square root approximation, proves intractable for
p > 2, so we turn again to Equation 8 with a,_,; = N/ag;}:
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| N | <2 a + ((p + 1)/2p) ® (N - a) >1—p
P+ (1 - (p+ 1)2p) ® (N - ap)
If we define y = /(N + a),

\ N | <v ~ (1/2p) * (N - ag)>;»1

dn+l =

afl  \y + (1/2p) ¢ (N - ap)
_N, (le_p Lo g 2 DR 2)
ag‘l Zp 8p2

-1
X PP (N - aB)? + .. > * <v‘*l - 9—2—— Yo 2N — aB)
p

* - 1‘31:5 ~ 2 y3(N — ap)? +>

by the Binomial Theorem (discovered by Newton).

Now since vy is the average of N and af and (N - aB) is assumed
small in comparison to vy, the terms after and including (p — 1) X
(p=2) y»3(N- aR)2/8F2, can be eliminated with minor error, leaving

p-1
N Ty TN

M =3 (11)
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For p = 3, we have the sixthing process:

N a4+ (16) s (N - 2)
an+l='_2.

i a + (5/6) « (N - a)

Why would anyone use sixthing when any (N — a3) divisible
by 6 would also be divisible by 37 The answer is that sometimes
the numerator and/or the denominator is simpler in sixthing, and
also for very small error in a,.;, the weighted average of the two
techniques provides even greater accuracy.

Indeed, N = 119 was chosen to demonstrate the first advantage.

For aj = 119/(5)?,
aj] = (119/25) * (124/120) = 4.76 + 4.76(1/30)
= 4.9186667 . ..
Aitken remarked in 1954 that he was not aware that sixthing
had ever received notice before, although he gave no basis for it.

We can expect marginally better accuracy (perhaps to the fifth
decimal place) if we find the weighted average of a; and aj:

2 ]
—ﬂg—fl = 4.9186 + 104(1/3) * [2(.99) + .67]

= 4.918688. ..

an approximation accurate to six digits.
Again, an alternate cube root formula [25] can be derived from

(a, — NB)3 = a3 _ N - 3alN'3 + 33 N?3
Now an approximation a,,; satisfies
ar21+1 — pap+) T (33\ - N)/3an =0

giving, for 0 < a2 < 4N,

N — N 1/2
s (B3]
3a,
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The square root term to several places is manageable (using

methods given earlier) and the formula is of third order.
For N = 119 and a; = 5,

6 - 125\
w555 |
®

=4[5 + (351/15)17]

= 4[5 + (23.4)1]

=1 (5 + 4.837355...)
= 4918677 ...

again accurate to six digits (and better here than thirding or
sixthing alone). In general, this method offers the advantage of a
smaller divisor, 3a,,, compared to roughly a} in thirding or sixthing
(unless simplification is possible, as for N = 119). The obvious
disadvantage lies in evaluating the square root. However, the
insensitivity of the square root algorithm to the number of digits,
as opposed to division by a multidigit number, may quickly propel
this method into the forefront when a,, contains two or more digits.

If we really don’t mind taking a square root (as by using the
general square root algorithm given earlier) we can achieve even
greater accuracy in a cube root without raising a,’s to powers and
with division limited to that within the square root extraction
process [26]. To do this, we perform the Newton-Raphson proce-
dure not on the equation a> — N = 0, but on the equation
a2 — N2 = 0 or a3 — N4 = 0. We then produce

ane1 = (1/3) ® [2(N/a,)'? + a] (12)
and
ane = (1/3) © [4(Nay)* - a] (13)

both more accurate than the original Newton-Raphson iteration.
For N = 119 and aj = 5, Equations 12 and 13 yield a; =
491901624 . . . and a; = 4.91851830.. . . respectively, compared to
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the actual value of 4.91868473 . ... For ay = 4.9, we obtain a; =
491870254 . .. and a; = 4.91867584 . . . . However, notice that if
we can manage to multiply N and a, in Equation 13 for a highly
accurate a, or at least divide N by a,, in Equation 12, we are on
the way to an extremely accurate (if time-consuming) cube root.
This assumes that we are comfortable taking square roots to
several places (and I would rather extract a square root than
perform a long division).

For example, we can find 119(4.92) = 119 e (5 —.08) = 585.48,

and from Equation 13,
a; = (1/3) » [4(585.48)14 — 4.92]
= 491868469 . ..

accurate to eight digits.

While not applicable to N = 119, we can sometimes recognize
that by multiplying or dividing N by the cube of a small number,
or the ratio of cubes of small numbers, we can arrive at a number
close to a cube. For example, for N = 91, a number distant from
the nearest cubes (64 and 125), we can multiply N by 8 to arrive
at 728, very close indeed to 729, the cube of 9. Therefore, N3
is approximately 9/2 = 4.5, where 2 is the cube root of 8. Better
yet, we can take a weighted average:

728/(9)? = 8.98765 . ..
IN'3 = (2 9 +898765...)/3
N8 = 3 + 8.98765/6
= 4.4979424 . . . compared to 4.4979408 . . .

Failing this, we can often divide a number by 2 or 5 to produce
a new number close to a cube. We then find the approximate cube
root of this new number, and adjust the result by multiplying by
(2)13 =1.25992...= (1 + .26) or by (5)}3 = 1.70998 .. .= (1 +
71). The factor (3)'3 is less convenient, and is perhaps best
approximated by the fraction 10.1/7.
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Higher-Order Roots

Since fourth roots can be extracted as two successive square
roots, we continue on to fifth roots, say to (48)15 = 2.16894354 . . ..
In general, a second iteration of any technique is prohibitive, so
we can explore algorithms that increase the complexity of each
iteration. For an initial estimate of ay = 2, a weighted average of
ag and 48/(2)* gives a; = 2.2. Subtracting Chebyshev’s term results
in a] = 2.16. Three-fifthing, from Equation 8, produces from a, the
value 2(41.6/38.4) = 2(13/12) = 2.1667 . . .. The complementary
process of tenthing, from Equation 11, produces from a, the value
(48/16) o (33.6/46.4) = 3(21/29) = 2.1724 . ... Their weighted
average yields 2.1678 . . ..

Another method for higher roots like this is to write the
equation N — aP = 0 as

<a>P _ N
an af

Now, for —a, << (a — a,) << a,,, we can use the relation [27,28],

o))
— ~ — | — + —_—
n’ qan q

to convert the equation into one of a degree that simplifies the
process of solving it. Substituting, we get

and rearranging terms,

N
ang—+<l—g> ad
p ag™? p

This can be iterated:
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If we stretch this method to the limit, we can let the new degree
q be 1; then, for p = 5, N = 48 and a; = 2,

a; = (1/5) » 48/(2)* + (4/5) » 2
=22

This is the same answer we obtained from the weighted average
earlier, and indeed this relation always reduces to a weighted
average if q = 1. (Incidentally, cascading the equation down to
q = 1 by steps of 1 results in the same formula as above for a,).
Therefore, we can expect to do better if we reduce the order p by
less. For example, we can let q = 4 and solve for a; by successive
square roots:

a = (4/5) ® (48/2) + (1/5) » (2)* = 224
a} = 47328 . ..
a; = 2.1755 . ..

a procedure still not as accurate as two-fifthing or tenthing, much
less their weighted average. However, since we only divide here
by ag, not by powers of aj as in the previous algorithms, we can
stretch our capabilities of multiplication and actually use a; = 2.2
to calculate an iteration:

aj = (4/5) * (48/2.2) + (1/5) » (2.2)*

Now in this case, we may recall that the pth power of 11 is the
single-digit melded (p + 1)th row of Pascal’s Triangle. The fifth
row is 1,4,6,4,1, so (2.2)* = 16(1.4641) = 23.4256. Alternatively,
since (22)? = 484, then we find (484)% = 500 ® 468 + (16)2. Or
again, we can use the rule of 25 on (48.4)% = (25 -1.6) 100 + (1.6)?
and remove the decimal point. In any event, we soon arrive at
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aj = 22.139665 . ..
a} = 4.7052806 . ..
ay = 2.169166.. . .
our closest approximation yet to 2.1689435. ...

Yet another approach for fifth roots was published by DeLagney
in 1692 [3,14]:

(a® + b)Iis <<5b + a4>1/2 az>1/2 + 2
a P =|(—+—=] —— -
a 4 4 2

For a = 2 and b = 16 (not, as you might imagine, an ideal
circumstance), we find '

(48)1/5 — [(1.6 + 4)1/2 _ 1]1/2 +1
= (1.3664319.. . )12 + 1
= 2.1689448. ..

whicsh is extremely good, considering that b is not small compared
to a-.

Further yet, it is not wholly unreasonable at this point (or is it?)
to perform this approximation with a = 2.2. As before, we arrive
at a* = 23.4256 and therefore a*/4 = 5.8564. Now 2(23.4256) =
46.8512 and a°> = 46.8512 + 4.68512 = 51.53632, giving us the
result b = -3.53632. Then,

(48)5 = [(-3.53632/11 + 5.8564)'2 — 1.21]12 + 1.1
= (5.5349164 ... - 1.21)12 + 1.1
= 2.16894364 . . . compared to 2.16894354 . ..
In addition to this method’s higher accuracy over others, it

offers very simple divisors in its terms, an important benefit for
mental use. Halley generally preferred these approximations
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involving square roots to rational approximations (fractions whose
numerators and denominators are polynomials) because “. . . mani-
fold Experience has taught me” that square root extraction is
easier than division by a large number [14].

An alternative is to use an approximation, again by Halley, that
contains only one square root extraction [14]:

-2 1
(aP + b)p = P a+ 1 [a? + 2ba®®(1 — 1/p)]'?

p-1 p -

which falls directly out of a new iterative relation for finding real
roots of a real polynomial equation:

f'(an) .\ [f'(a,)? - 2f(a,) f"(a,)]"?
- f"(an) f"(an)

dp+1 = A

Now for p = 5,
(a® + b)1 = 3a/4 + (1/4) * (a’ + 8b/5a’)!/?
Repeating the above example of a = 2, b = 16, we find
(48)15 = 3  2/4 + (1/4) ® (4 + 16/5)/?
= 1.5+ (2.68328...)/4
= 2.1708 ...

This is not too bad considering the reduction in effort over the
formula involving nested square roots; on the other hand, the case
a = 2.2 is prohibitive here.

You don’t have to do many of these approximations, particularly
for numbers far from a perfect power, before it becomes apparent
that, in general, the way to extract higher-order roots is through
logarithms. The conversion to and from logarithmic form is
not as hard as it may seem, and we will address this subject in
the next chapter.

How far can we go, then, in mentally extracting roots? At least
for square roots, we can with our general method achieve a result
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whose accuracy depends only on our patience and care. The
mathematician John Wallis (1616-1703) wrote in 1669 that “In
a dark night, in bed, without pen, ink or paper or anything
equivalent,” he mentally extracted the square root of (in
his notation)

3,00000,00000,00000,00000,00000,00000,00000,00000

and found it to be 1,73205,08075,68877,29353 to 21 digits. Two
months later he wrote that he did the same for the 53-digit
number

24681357910121411131516182017192122242628302325272931

and found the result to be 157103016871482805817152171 to
27 digits [2].

I think we can take this as something of a benchmark.
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Logarithms and
Their Inverses

It can be said without exaggeration that our modern
cities with their bridges, railroads, factories, power
installations, skyscrapers, in shert, all our highly
artificial environment, built by mankind during the
last century or two, and which implies an enormous
amount of numerical computations, would be
impossible without the tables of logarithms.

E.G. Kogbetliantz {1968) [1]

The principles of logarithms were discovered first by Archi-
medes, then rediscovered and used by Iranian astronomers in the
thirteenth century, and finally discovered again and published by
John Napier (1550-1617) in 1614. In addition to spontaneously
arising as functions in the solution of mathematical and physical
differential equations, they provide us with tools for vastly sim-
plifying arithmetic operations such as multiplication, division,
powers, and roots. In fact, Napier’s original intention for these
functions was fo ease calculations of trigonometric formulas,
demonstrating their range of applications. Specifically, when nau-
tical tables were unavailable or simply not used, the trigonometric
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calculations needed for estimating position and time were histor-
ically done using logarithms. Slide rules were strictly based on
logarithms, and many computer routines rely on them as well.

The logarithm of a number N to a base B is defined to be the
value x such that

B* =N
Therefore,

x = logg N
where the subscript B denotes the base of the logarithm. “Com-
mon” logarithms have a base of 10, and the notation log N with
no subscript is usually considered, as it is here, to have this
decimal base. The common logarithm x = log N has an inverse,
then, given by N = 10%,

A base not tied to the base of our number system, but providing
a convenient, or “natural,” base for logarithmic solutions to
differential equations, is denoted by the letter e. The value of
the transcendental number e in our base 10 arithmetic is
2.718281828 ..., and the notation for the logarithm to base e,
the natural logarithm, is generally given by In N. The inverse of
the natural logarithm x = In N is given by the exponential
function N = e*.

Logarithms are useful in arithmetic calculations because they
have the following properties:

log (ab) = log a + log b
log (a/b) = log a — log b
log (ab) = b loga
log (a') = (log a)/b
These are true regardless of the base of the logarithm.
In short, logarithms reduce multiplications and divisions to

additions and subtractions, and convert powers and roots to
multiplications and divisions. For our purposes, their latter use is
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of the most benefit. To find, say, the seventh root of 13781, we
could find log 13781, divide by 7, and find the answer as 10 to
that power. The accuracy of the answer is limited only by the
number of digits retained in the calculation. Also, it may be easier
to find either log N or In N, depending on N, but it is almost
always easier to raise 10 to a power than to raise e to a power. This
ultimately requires us to work with common logarithms when
inverses are required.

To find a means of converting from common logarithms to
natural logarithms (and back), we begin with relations that, by the
definition of a function and its inverse, are given by

10 = eln 10
e=10lee
Substituting the second into the first relation, we have
10 = (lolog e)ln 10 — 1olog eln 10
Therefore, log e In 10 = 1. For a number N given by
lolog N_y-= eln N
we again substitute the relation e = 10'°€ € to get
1010g N _ 1olog eln N
or,
log N =log e In N
Therefore, we arrive at log N by multiplying In N by the

constant log e, and we use the reciprocal of this constant to
convert from log N to In N. From formulas given later, we can

find log e = 0.4342945 . . . (or about .4343) and (1/loge) = In 10 =
2.302585 ..., so
log N = 4343 In N

In N = 2.303 log N
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Again, we often are not interested in finding inverse logarithms;
natural logarithms appear very often in formulas requiring
calculation.

In any event, the conversion of a number into logarithmic form
and back is a useful and entertaining knack, and the tools for
mentally doing so are the subject of this chapter.

General Logarithmic Approximations

At first glance, it may appear to be an enormous task to
calculate logarithms, as it was for Napier, Briggs, and others. We
see first that log 1 = 0 (a definition, actually) since (10)° = 1. Also,
log 10 = 1, log 100 = 2, and so on, but intermediate values offer
little hope. We can take, for example, (10)'2 = 3.1622777 ...,
but this just gives us log (3.1622777 ...) = 0.5, something akin
to throwing darts at the problem.

The general procedure, and one deduced by Henry Briggs
(1556-1630) in devising his tables of logarithms published in 1617
and 1624, is to use the properties of logarithms given earlier to
reduce the argument of the logarithm to a value very close to 1.
Then, truncating the following well-known power series provides
the natural logarithm to the degree of approximation desired:

¥ ¥ xt

n(l+x)=x——+———+... for-1<x<1 (14)
2 3 4

It is the cleverness we exhibit in reducing the logarithm to a value
near 1 that makes calculating logarithms a most creative and
engaging activity, and lightning calculators have had a deep
appreciation of this [2].

A very interesting description of Napier’s and Briggs’ develop-
ment of logarithmic tables, as well as the efforts of others later,
is found in Goldstine [3]. We will consider these and other avail-
able techniques best applied to mental calculation.

Obviously, the optimum procedure is to leave x = 0, which
amounts to factoring the argument into powers of ten and low
primes whose logarithms are memorized. If that is not possible, we
can factor a number very close to the argument and extract a value
of x for the power series correction. To illustrate,
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log 1200 = log [3 ® (2)? e 100]

=log3+2elog2+2

=~ 47712 + 2(.30103) + 2

=~ 3.07918
log 1211 = log [1200 e (1 + 11/1200)]

= log 1200 + (.4343...) * [11/1200

— % (11/1200)? +...]

Taking only the first term of the series expansion and letting
4343 .. . become simply .43, we have

log 1211 ~ 3.07918 + .43(11/1200)
~ 3.08312 Actual: 3.08314

If we had preferred, we could have divided by 2.302585 = 2.3
instead of multiplying by .4343. Dividing by 2.3 gives log 1200 =
3.08317.

Alternatively, we could have taken
log 1211 = log 1210 + log (1 + 1/1210)

since 1210 is easily factored into low primes and a power of ten
and the value of x is smaller.
A variation on this was used by the mental calculator George

Parker Bidder (1806-1878) [2]:
log (1 +x) =10™ ® x @ log (1 + 10™) for 10™ < x < 10™*!

The value of m is simply that which makes the term 10™x lie
between 1 and 10. We need to know log (1 + 10™) as well:
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log 1.01 = .00432 ...
log 1.001 = .000434. ..
log 1.0001 = .0000434 . ..
etc.
Obviously, as m increases, the digits of log (1 + 10™) approach
those of loge = 04343 .. ..
To repeat the previous example,
log 1211 = log 1200 + log (1 + 11/1200)
=~ 3.07918 + (11/1.2) log 1.001
~ 3.07918 + .00398
~ 3.08316

Where does this approximation come from? We know from
Equation 14 that

In(l +x)=x
In (1 +10™) = 10™

In (1 + x) log (1 + x)

= =~ 10™x

In (1 + 10™) B log (1 + 10™) -

log (1 +x) = 10m @ x » log (1 + 10-™)

Now, since m is chosen so that x and 10™ are about equal, the
errors in truncating their series are of the same order; therefore,
this approximation is more accurate than that obtained by simply
truncating the series for log (1 + x).

It becomes clear that we can vastly improve our performance
if we memorize the logarithms of a range of low-order primes, say,
up to 11.
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log 2 = 30103 . ..
log 3 = 47712 . ..
log 5 =log (10/2) =1 - log 2
log 7 = .84510. ..
log 11 = 1.04139...

Actually, it’s an intriguing pursuit to estimate these as well, and
very useful if they’re not memorized [4,5]. For example,

(2)1° = 1024 = 1000
50,

10log2=3,0rlog2=.3
Here we could really improve the estimate:

10 log 2 = 3 + .4343(24/1000)

log 2 = .30104...

and if we dare to include the next term in the series expansion,
—4343(.024)%/2 = -.0001251..., and divide by the factor
10 again,

log 2 = .3010298. .. Actual: .301029996. ..
illustrating that we don’t have to have a large number to arrive
at a small value of x if we use our imagination.

Other relations we can come up with (and improve with
correction terms) include:

3#=81=22¢10
3% e 5% = 10125 = 10*
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72 = 49 = 10%/2
37 =1029=10°
2% e 32 ¢ 7 =1008 = 103
112=121 =23 10
711 13=1001, orlog 13 =3 -log 11 —log 7
27 @ 37 =999, or log 37 =3 -3 log 3

The last two products we recall from the Chapter 2 discussion of
divisibility (notice the result if we multiply them together!). In
fact, one reason for the amount of time spent earlier on factoring
numbers is the application here in calculating logarithms.

We can create many of these relations, some very complicated
but precise [6]. One type of relation that is generally useful for
finding the logarithm of a prime p is

pP=(p+1)e(p-1)+1
=(p+1)e(p-1)

All prime f;lctors of (p + 1) ® (p — 1) must be less than p.
Mermin [4] gives the following examples (there are obviously
many more):

(32 @ 11)2 = 100 * 98
74 =~ 50 ® 48 = (100/2) ® 3 o 2¢
212~22020=22e11 ¢ 10

We can even use this in our example of finding log 1211. In
this case, the error in dropping 1 is extremely small.
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(1211)2 = 1212 @ 1210 + 1 = 1212 * 1210
=12 101 ¢ 121 « 10
=22e3e10e 112 e 101
log 1211 = log 2 + log 11 + % [log 3 + log 10 + log 100
+.4343(.01)]

30103 + 1.04139 + % (47712 + 1 + 2 + .00434)

U

=~ 3.08315
Rounding errors produced the error in the last digit.

Neighboring Value Relations

Another form of relation for the natural logarithm In N (which,
as earlier, is easily converted to the common logarithm log N) uses
a variable transformation [1,7]:

N -1 1 +u
u= or N =
N +1 1 —u

Then, from Equation 14,
InN=2(u+u3B+5+...) (15)

where we have now eliminated the even terms in the expansion.
However, this is mostly useful for N near 1, as the series converges
very slowly otherwise.

A much better approach in general is to take Equation 15
and replace N with the expression (N + 1)/N. Then u becomes
1/(2N + 1) and Equation 15 reduces to the very nice result:
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In(N+1)=InN +
2N + 1

xl:1+ ! + 1 +] (16)
32N + 1) 52N + 1)*

This converges very rapidly for larger values of N.
Notice that if we take one term of the earlier series expansion

(Equation 14), we find
In (N + 1) = In [N(1 + /N)]
=InN +In (1 + I/N)
~In N + 1N

The new series (Equation 16) produces a more accurate value
when the first term is taken, and converges more rapidly:

In(N+1)=InN +

2N + 1

Therefore, setting the conversion factor .4343 . . . to simply .43 for
this small second term,

log 1211 = log 1210 + .43(2/2423)
but,

log 1210 = 2 log 11 + log 10 = 3.08279. ..
$0,

log 1211 = 3.08279 + .00036

= 3.08315
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Obviously, more digits are needed here to show the greater
accuracy, a pleasant situation after all. Of course, we are consider-
ing here precision to the fifth decimal place; in reality, we can
reduce this precision if we want to simplify the calculations.

We can also replace N in Equation 15 by (N — 1)/N, giving us
a relation for In (N — 1):

In(N-1)=InN -
2N -1

x[1+ ! + ! +]
32N - 1) 502N - 1)*

This is not as useful for finding log 1211, as 1212 does not factor
quite as nicely as 1210 does.
In general, if a is a positive or negative number,

2a
N + a

In(N+a)=InN -

X [1 + ! + ! + .. ]
32N + a) 5(2N + a)*
Intermediate Value Relations

There is also a nice formula due to Halley for finding the
logarithm of a number N equidistant between two numbers a and
b whose logarithms are easier to calculate [3]. For N = %(a +b),

L
%(a +b)
4ab

(a + b)’

(b - a)z]
(a + b)?

= % log

=1/210g[1—
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or, from Equation 14,

log (ab)/2 —log N = 7 (.4343...)

[(b ~a)? | (b-a)t ]
° -4 +...
(a + b)? "(a+ b

For (b — a) small compared to (a + b), this relation converges
very fast due to the squaring of the denominator. Retaining only
the first term of the expansion, we arrive at

(17)

(b - a)z]

1
log N = 7 [loga + log b + .4343 @+ D)

Now for b — a = 2, we can derive an amazing formula in the
following manner:

4ab _ 4a(a + 2)
(a+b? [a+(a+2)

2a% + 4a

242 + 4a + 2

[(2a% + 4a + 1) + 1]-1
(222 + 42 + 1) - 1

_[L+ 1a? + 4a + 1)]-1
11 — 1/(2a + 4a + 1)

If we make the transformation
y?=2a% +4a+ 1

(where the square of y is denoted to indicate the order of
magnitude of the result), then
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I %
g N 2 log 1 _ 1/y2
or, from Equation 15,
b)1/2 1 1 1
——log(a) =(,4343...)0[—+—+—+...]
YZ 3y6 5y10

It is difficult, I think, to appreciate the rate of convergence of this

expression without an example. Halley provides an example of
finding log 23:

v = 1057
(22 © 24)12 1 1
e s e[ L]
23 1057 3542796579

Even for small numbers, then, the second and later terms are
extremely negligible. Continuing,

log 23 = % (log 22 + log 24) + .43/1057
log 22 = log 2 + log 11 = 1.34242 . ..
log 24 =3 log2 +log3 =1.38021...

average = 1.36132 ...

log 23 = 1.36132 + .00041

= 1.36173

This result is accurate to the last digit, which is all the accuracy
we were retaining in the calculation. The formula is obviously
capable of extreme accuracy, however, and for those who anti-
cipate pursuing it, a convenient multiplier to replace .43 in



126  Dead Reckoning: Calculating Without Instruments

approximating .4342945...is given by the fraction 43/99 =
434343 . . . (the value 1/2.3 = 43478 ...). The best alternative
we have found so far in calculating the logarithm of a relatively
low prime number such as this is:

(23)2=22024+1=2224
log 23 = % (log 22 + log 24)

which is seen as simply the first term of the last result.

Halley’s method does require division by y? and multiplication
by .4343 ..., although we only kept two digits in these opera-
tions. However, we can eliminate even these nuisances, given that
we know the logarithms of the neighboring numbers, at the cost
of some of this extreme accuracy [3]. This relation is due to the
ubiquitous Newton and for practical purposes the reduction in
accuracy is not important.

Newton defined fora =N —xand b =N + x:
d =% (log b — log a)

Then,
N + x
2d = log
- X
1 + x/N
= log ———
1 - x/N
and from Equation 15,
x X X
d=—+—+—
N 3N} 5N°

Also, the difference (log N — log a) can be denoted as g:

N
g=logN X=—log(1-x/N)
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From Equation 14,

2 3

X X

g=§-+—+—+...
N 2IN? 3N°

Therefore,

Dividing through, we arrive at

ndx  (1/12) dx3
+ + ...
N N3

g:

or,

Ydx
zd-l-—
¢ N

Since g is the amount to be added to log a and d = % (log b
— log a), we can rewrite this as:

. ¥ dx
log N = 7 (log a + log b) + —N—— (18)

As d implicitly contains the constant .4343 ... in finding the
difference between common logarithms, we are rid of this multi-
plication. In addition, we divide by a number N, not by the much
larger value y2 = 2a’ + 4a + 1 of Halley’s method. It is also easier
than Equation 17 for x > 1.

Returning to our previous example for log 23 with x = 1:
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%d e 1

log 23 = % (log 22 + log 24) +

log 22 = log 2 + log 11 = 1.34242 . ..
log 24 = 3 log 2 + log 3 = 1.38021 ...
average = 1.36132 ...
d =.018895...
log 23 = 1.36132 + .00945/23
= 1.36173
The result is identical to Halley’s method to‘ the accuracy
retained throughout the calculation. Notice that we can simply
subtract log 22 from the average to find d, since % (log a +
log b) — log a = % (log b — log a). Now if we actually knew
log 22 and log 23 to extreme accuracy (and multiplied by
4342945 . . . in Halley’s method), we would find these results:
Halley’s Method: log 23 = 1.36172783590. ..
Newton’s Method: log 23 = 1.36172770649 . ..
Actual Value: log 23 = 1.36172783602 . ..
The impressive accuracy of Newton’s method for x = 1 leads us
to try log 23 for x = 2. While perhaps necessary in general for
some numbers N, the case x = 2 is actually a little easier for

log 23 as well if log 7 is known.

%d e 2
log 23 = % (log 21 + log 25) + -

log 21 = log 3 + log 7 = 1.322219...
log 25 = 2 log 5 = 1.397940.. ..
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average = 1.360080. ..
d =.03786...
log 23 = 1.360080 + .03786/23
= 1.36173

Again, this is accurate to the number of digits retained. More
exact values would give log 23 = 1.361725754....

In short, Newton’s method gives highly accurate results for
reasonable values of x without the more difficult multiplication
and division of Halley’s method.

This leads us naturally to consider another more general inter-
polation technique. For a known set of values f(xp), f(x;),...,
f(x,) located near or around the unknown value f(x), where x,
X, . . ., X, are not necessarily equally spaced, the most straight-
forward technique for mental calculation of f(x) is through
Lagrange’s formula [3]:

H (X - Xm)

=Y o f(xy)
ko II G = xn) “
k#m

where again the Greek letter sigma here represents the sum of
terms for k = O to n, and the Greek letter pi represents the product
of all terms except for k = m.

Let us consider the calculation of log 13 = 1.1139434....
Since log 11, log 12, log 14 and log 15 may be easily generated
from factors (assuming the logarithms of primes < 11 are memo-
rized), we would expect a better result than Newton’s formula
(Equation 18), which involves just log 12 and log 14.

For x; of this spacing, Lagrange’s formula reduces to:

1 2 2 1
log13=—-~-log 11 + —log 12 + —log 14 — — log 15
og 60g 3 0og 3 g 6 g

log 11 = 1.04139. ..
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log12 =2 log2 + log 3 =1.07918...
log 14 = log 2 + log 7 = 1.14613 . ..
log 15 = log 3 + (1 - log 2) = 1.17609 . ..
log 13 = (1/6) ® [- (1.04139...) + 4(1.07918...)
+ 4(1.14613 ...) — (1.17609 . . .)]
= 1.1139589. .. Actual value: 1.1139434 . ..
Newton’s formula for x = 1 gives

%d e 1

log 13 = 1/2 (log 12 + log 14) +
log 12 = 1.07918.. ..
log 14 = 1.14613 . . .
average = 1.11265. ..
d =.03347. ..
log 13 = 1.11265 ... + (.003347 . ..)/26
= 1.1139421. ..
We find here that Newton’s formula is in fact a superior

approach to the standard Lagrange interpolation performed on
twice as many data points! :

An Iterative Relation

One other approach to finding logarithms involves an iterative
method known as Borchardt’s Algorithm, accelerated by a tech-
nique called Richardson extrapolation [8,9]. While this method
involves extracting a square root and dividing by a multidigit
number, I find it impossible to exclude because of its extreme
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accuracy and the minimal memorization required (log 2 and the
formula itself). The square root is manageable by the techniques
of Chapter 3; the division may be performed by the cross division
technique described in Chapter 2 if desired. Perhaps in a pinch
this provides a good pencil and paper approximation.

The iterative relation, which we will truncate very early, is
given for N >0 and n = 0,1,2,...as

a9 =7 (1+N)
g = Nl/z
An+l < 1/2 (an + gn)
En+1 = (an+1 ¢ gn)llz

The acceleration is achieved by the relations:

d(O,n) = a,
dik — 1,n) — 2% e d(k - 1,n - 1)
d(k,n) = =T
fork=123,...,n

Finally,

N -1
InN =

d(n,n)

This seems incomprehensible, but we will only keep terms

through d(1,1):
d(0,0) = ag = % (1 + N)

d(0,1) = a; =% (ap + go) = % [ (1 + N) + N7
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d(0,1) — 272 e d(0,0)

d(1,1) = —
N + 1 + 4NI2
) 6

and we end up with the formula,

6(N - 1)
lnNzN T 1+ N (19)

To use this formula effectively, we need to reduce the range of
the argument N by extracting powers of 10 and 2 until 1/(2)2
< N' < (2)'2. This technique of domain reduction is crucial to
many computer routines using rational or polynomial approxima-
tions to functions. Since N' = 10P ® 2™ e N then log N = p +
m log 2 + (4343 ...) ® In N'. Of course, the algorithm when
applied in computers only extracts powers of 2, as these are fast
bit-shifting operations.

A plot showing the absolute error in In N' over its reduced
range is given in Figure 1. The accuracy is astonishing and does
not require memorization of any constant other than log 2 =
.3010300. . . (which is easily multiplied by a small integer m) and
log e = 4342945 .. ..

Let’s find log 23:

log 23 = log (10! e 21 @ 1.15)

From the methods given earlier for extracting square roots, we

find (1.15)2 = 1.0723805 .. .. Then,

6(.15)
1.15 + 1 + 4.2895221

log 1.15 = (.4343)

39087
" 6.4395221

= .0606978.. ..
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Figure 1. Absolute error of the logarithmic approximation (Equation 19)
vs. N.

log 23 = 1 + .3010300 + .0606978
~ 1.3617278 Actual value: 1.3617278 ...

While log 23 is best taken using other methods in this chapter,
this example serves to illustrate the execution and accuracy of
the technique.

Approximate Logarithmic Inverses

The techniques of the previous sections can produce excellent
approximations to logarithms of a number, but they provide no
direct means of finding the inverses, or antilogarithms. Here we
will consider this inverse as 10*. We should realize that e* can be
calculated as 10¢834---)x. the latter is much easier to compute.

A more systematic procedure for finding logarithms can provide
in tandem a procedure for finding 10*. One method of this sort
is described by Feynman [10], based on Briggs’ original work. We
first construct Table 7 for 2”th roots of 10.

Feynman extends the table to the power 1/1024, but I have
truncated it in an attempt to balance the required memorization
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Table 7

2"th Roots of 10

d = Fractional
Power Part of 64 104/64
1/2 32 3.16228. . .
1/4 16 1.77828. . .
1/8 8 1:33352. - .
1/16 4 1.15478. . .
1/32 Y. 1.07461. . .
1/64 | 1.03663. . .

and the desired accuracy. In addition, convenient fractions repre-
senting the right-hand column involve larger integers as the
numbers approach 1. The following discussion is valid for any
length of the table.

Notice that as the right-hand column progresses toward 1, the
decimal part of the successive square roots approach that obtained
by simply halving the decimal parts of the preceding entry. This
is because, from the binomial series,

2
(1+ﬂm=1+§-i+w.

By computing the first 27 roots of 10 to fourteen places, Briggs was
able by a more involved process described by Goldstine [3] to
derive the next 27 without loss of precision.

For small d, we can use the relations

xX X

ef=l+x+—+—+...

2! 3!
10% = e(2.303...)x

to find that
10d=1+23d (20)
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The factorial “n!” signifies the product of all integers between n
and 1, inclusive (e.g., 2! =2 ® 1,3! =3 @ 2 o 1, and so forth).
The general procedure for calculating log N, then, is to first
extract powers of 10, say 10P, until N < 10. Then values of 104
corresponding to d;, dy,...are divided out until the absolute
value of N is less than 10Y6%, Then the final term d, can be
estimated from Equation 20. Finally, since we know that

N = 10P e 101 +dz +...+ dp)i64
then

log N =p+(dy +dy +...+d,)/64
For example, for a = 1211, we extract 10° to reduce N to 1.211.

Then, from Table 7, d; = 4 provides the highest 10964 less than
N, so we divide by 1.15478:

1.211
d; = 4 = 1.04868
1.15478
Continuing,
1.04868
,=1: = 1.01162
1.03663
Now we estimate dj:
1 - 1.01162
d3 = —— = .00505
2.30

Then,
log 1211 = 3 + (4 + 1)/64 + .00505
~ 3.08318 Actual value: 3.08314 ...

Now this seems rather complicated, and it is when compared to
our earlier methods. The division by 2°th roots of 10 is in practice
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prohibitive. However, by using the method given in Appendix A,
we can easily arrive at convenient fractions representing these
values, easing the calculations. The rational approximations given
inTable 8 are judgement calls of those giving reasonable accuracy
and offering small integers with good factorability for simplify-
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ing calculations.

Now the calculations become a series of simpler multiplications
and divisions. As it happens, we picked out the two most difficult
approximations, but the calculation is manageable. We need only
carry four decimal places through the calculation since the
rational approximations are not extremely accurate.

d; = 4: 1.211(84/97) = 101.72/97 = 1.0487

dy
ds

log 1211 = 3 + (4 + 1)/64 + .0049 = 3.0830

1: 1.0487(27/28) = (1.0487/28) * 9 » 3 = 1.0112

.0112/2.30 = .0049

which suffers some from the approximations.

At any rate, the procedure is complicated for finding logarithms
and requires some memorization. I present it solely because the
inverse of this method provides a means of finding 10%, which is
generally a more difficult task than finding log x.

Table 8
Rational Approximations to 2"th Roots of 10
Rational

d 10d/64 Approximation Error
32 3.16228 253/80 2 « 104
16 1.77828 16/9 50 10
8 1.33352 4/3 1. 10-¢
4 1.15478 97/84 = 97/3 « 4 + 7) 2« 103
2 1.07461 43/40 4+ 10
1 1.03663 28727 = (4 = 1)/(3)Y 410
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To illustrate this, let us reverse the problem and calculate 10*
for x = 3.08314. First, we extract the integer portion:

10308314 = 103 e Q08314

Then we extract inverse powers of 2 (1/2, 1/4, 1/8, etc.) until we
reach a value less than 1/64. Unless these fractions are memorized
or calculated on the run, it may be best if possible to multiply the
argument by 64:

(.08314)(64) = 5.3210
Now 5 = 4 + 1 and 10321964 = 1 + 2.30(.32)/64, giving

10308314 = 103 o (10(4+1)/64) o 10-3210/64

~ 10% * (97/84) * (28/27) * (1.0115)
= 10° » (97/81) * (1.0115)
~ 1211 . to four digits

Another version of this general method was given by Bemer in
1958 for use in early decimal computers [11]. The idea here for
finding logarithms is to first extract powers of 10 until N is less
than one. Then, N is multiplied by a series of simple numbers
until N is just greater (or less) than 1, at which point the formula
for In (1 + x) given in Equation 14 is invoked. Bemer uses the
multipliers shown in Table 9, based on the first digit following the
decimal point in the current value of N' (other multipliers may be
found in the work of Camp [12]).

Here the multipliers are simply obtained as the highest two-
digit number that, when multiplied by the maximum value in the
range, will result in a new value of N < 1.1. For example, the range
from .1 to .2 would have a maximum value of .2, so the multiplier
is 1.1/.2 = 5.5. A value of N that will lie between 1.0 and 1.1
will be reached in at most three multiplications. The series for
In (1 + x) is then taken to the desired accuracy.

For our purposes, it is probably easier to directly use the
multipliers 1.1/.2, etc., as shown in Table 10.
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Table 9
Multipliers in Bemer’s Method for Logarithms
N to One Digit Multiplier
.1 5.5
2 3.6
3 2.7
4 Bed
k. 1.8
.6 1.5
il 1.3
.8 1.2
9 1
Table 10
Multipliers in Our Method for Logarithms
N to One Digit Multiplier Log (Multiplier)
3| 11/2 log 11 — log 2 = .7404
2 11/3 log 11 — log 3 = .5643
3 11/4 log 11 — log4 = .4393
4 11/5 log 11 — log 5 = .3424
3 11/6 log 11 — log 6 = .2632
6 11/7 log 11 — log 7 = .1963
of 11/8 log 11 — log 8 = .1383
.8 11/9 log 11 — log 9 = .0872
k. 11/10 log 11 — log 10 = .0414

Again, we find log 1211:
log 1211 = 4 + log .1211
1211(11/2) = .66605

66605(11/7) = 1.0466
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log 1211 = 4 - .7404 — .1963 + .43(.0466)
= 3.0833

Of course, greater accuracy can be obtained by using more digits
in the logarithms and more accuracy in the series expansion.
Actually, we could have noticed that the intermediate value
.66605 of N can be brought very close indeed to 1 if multiplied
by 1.5, a logarithm easily obtained from those of low primes. It
pays to be flexible.

Finding 10* with this method parallels the method using even
roots of 10. Powers of 10 are extracted from the number N until -
N < 1. Then the logarithms of the multipliers are subtracted until
N is very near 1. If we do not care to explicitly memorize these
logarithms as unique numbers, we can in each step subtract log 11
= 1.04139 and add the logarithm of a single-digit number (which
we should be able to quickly obtain), leaving the result near 1.

The procedure continues as before:

10398314 = 103 o 1008314
= 10% o (11/9) ® 10-%04
From Equation 20,
1079941 = 1 + 2.3(-.0041) = .9906
giving, to four digits,
10308314 _ 1211
Now let’s try another example, 10167210 = 47.
10167210 _ Q! o 1067210
= 10! o (11/3) 101078

= 10! o (11/3) o (11/9) 1002 (21)
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Again,

109206 ~ 1 + 2.3(.0206) = 1.0474
and we arrive at

10167210 ~ 46.94

Once again, greater accuracy is possible with more work. Given
that log (11/10) = .0414, which can actually be added or sub-
tracted, we ended up within 1 part in 10,000 of the worst (i.e.,
maximum) power of 10 we could have (+.0207). Therefore, we

know we can only improve our accuracy if we choose, say, 11/4
as the first multiplier instead of the prescribed 11/3:

10167210 = 101 o 106721
= 10" ® (11/4) » 10828
= 10 o (11/4) * (11/7) ® 109
= 10" ® (11/4) * (11/7) ® 10-0%
~ 10" ¢ (11/4) * (11/7) * (.9887)
~ 47.00

We can work out situations where the exponent of 10 ends up
relatively large, say of a magnitude greater than .005. These cases

amount to 10@*®) where a = .02, .01, —.01, or —.02 and b < .005.
Consider the case a = .02:
1002 = 1.04713
1 + 2.3(.02) = 1.04600

difference = .00113



Then,

10(.02+b) - 10.02 ° lob

Also,

107002+ = 1 — 2.3(.02 + b) + .1b + .00099

Logarithms and Their Inverses

= [1 + 2.3(.02) + .00113] ® (1 + 2.3b)
=1+ 23(.02 +b)+.1b + .000113

141

Therefore, we will significantly improve our approximation of
10£@*D) if we always add to the prescribed quantity 1 £ 2.3(a + b)
the term (cb + d), where ¢ and d are given in Table 11.

This allows us to achieve greater accuracy from our earlier
intermediate equation (Equation 21) without much additional
work. Now while we could memorize 102, . . ., 10-% and directly
extract these multipliers as needed, I think this is a more difficult
task of memorization. More importantly, this would leave us with
two multidigit numbers to multiply in the final result (10® and
10P) rather than one.

We arrived earlier at Equation 21:

101‘67210 =101 o (11/3) ° (11/9) ° 10.0206

We now have:

1002% = 1 + 2.3(.0206) + .1(.0006) + .00113

=~ 1.0486
Table 11
Correction Values for 10z(a+b)
Sign a c d
+ .02 1 00113
+ .01 1/2 .00029
- .01 1/2 .00024
- .02 .1 .00099
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10167210 = 101 o (11/3) ® (11/9) ® (1.0486)
=~ 46.99

We were actually limited by the four-place precision we retained
throughout the calculation. The example given in the next
section maintains five digits throughout.

An Example Problem

To demonstrate the use of logarithms in extracting higher-order
roots, let’s return to the mental calculation mentioned at the
beginning of this chapter, the seventh root of 13781. I picked the
number 13781 from a table of prime numbers and made every
effort to avoid one offering special qualities for simplifying the
logarithmic conversions. This is actually somewhat of an effort as
the overwhelming majority of numbers have some sort of unique
quality, such as being located near a number that is easily factored.

At any rate, we must first find log 13781. Personal bias leads me
to the following approach:

log 13781 = log 14000 + log (1 — 219/14000)
log 14000 = 3 + log 2 + log 7
=3 +.30103 + .84510
= 4.14613
Because 219/14000 is not really very small, we need to retain two

terms in Equation 14, although the second can be calculated to
very low precision. '

L[ 219 1/219\2
log (1 — 219/14000) ~ — [_ Rt <___> ]
23 | 14000 ~ 2 \14000

219/14000 = .01564
% (.01564)2 = % (15)(16) ® 106 = 12 o 105
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log (1 — 219/14000) = (-.01576)/2.3 = —.00685
Theref;)re,

log 13781 = 4.13928

(1/7) log 13781 = .59133

Notice that the order of the root is almost inconsequential here.
We now need the antilogarithm of this result. Using Bemer’s
method and retaining logarithms of the multipliers to five places,
we find:

log 11 - log 3 = .56427

1059133 = (11/3)  10:02706

log 11 - log 10 = .04139

1059133 = (11/3) » (11/10) & 10-01433

Now, from Table 11, which we memorized if we desire extreme
accuracy,

10701433 = 1 + 2.3(-.01433) + (.1/2)(.00433) + .00024
= .96750
which yields
105133 = (11/3) ® (11/10) * (.96750)
=~ 3.90225
compared to the actual seventh root of 13781, 3.90235.. ..
There are many other ways, of course, to determine log 13781;
upon reflection, I think a number of them will become apparent.

Again, most numbers can be calculated without the second term
in Equation 14 and possibly without the corrections given in

Table 11.
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Since the number of significant digits of a logarithm is the same
as that of the number whose logarithm is taken, we need only
consider five digits of the number if a five-digit result is desired.
The value log 1378131, for example, may be represented as (2 +
log 13781) to this accuracy.

Bibliography

1. E. G. Kogbetliantz, Fundamentals of Mathematics from an
Advanced Viewpoint Vol. II: Algebra and Analysis: Determi-
nants—Equations—Logarithms—Limits, Gordon and Breach, New
York, 1968, pp. 470—490.

2. Steven B. Smith, The Great Mental Calculators, Columbia
University Press, New York, 1983, pp. 150-155.

3. Herman H. Goldstine, A History of Numerical Analysis From
the 16th Through the 19th Century, Springer-Verlag, New York,
1977, pp. 1-62, 70-71.

4. N. David Mermin, “Logarithms!,” American Journal of Physics,
46 (1978) pp. 101-105.

5. William R. Ransom, “Elementary Calculation of Logarithms,”
The Mathematics Teacher, 47 (1954) pp. 115-116.

6. Albert A. Bennett, “Note on the Computation of Logarithms,”
American Mathematical Monthly, 28 (1921) pp. 130-131.

7. James C. Kirby, “An Efficient Logarithm Algorithm for Calcu-
lators,” College Mathematics Jouwrnal, 19 (1988) pp. 257-260.

8. B. C. Carlson, “An Algorithm for Computing Logarithms
and Arctangents,” Mathematics of Computation, 26 (1972)
pp. 543-549.

9. George Miel, “Of Calculations Past and Present: The Archi-
medean Algorithm,” American Mathematical Monthly, 90
(1983) pp. 17-35.

10. Richard P. Feynman, The Feynman Lectures in Physics Vol. I,
Addison-Wesley, Reading, 1963, section 22-4.

11. R. W. Bemer, “A Subroutine Method for Calculating Loga-
rithms,” Communications of the Association for Computing
Machinery, 1 (1958) pp. 5-7.

12. C. C. Camp, “Logarithms of Large Numbers,” American Math-
ematical Monthly, 35 (1928) pp. 547-551.



Trigonometric
Functions and
Their Inverses

Although this may seem a paradox, all exact science
is dominated by the idea of approximation.

Bertrand Russell {1]

Trigonometric functions offer unigue challenges to us in our
attempts to provide convenient techniques for mental calculation.
For one thing, their derivatives vield other trigonometric func-
tions, so efforts to use approximations based on derivatives (such
as the Newton-Raphson method) are generally fruitless. The
orthogonality of the sine and cosine functions, which allows us to
represent any function as a series of sine and cosine terms,
correspondingly makes it difficult to represent them with conven-
ient nontrigonometric functions. In addition, arithmetic opera-
tions such as sin {a + b) or {sin a + sin b} do not lend themselves
well to simplification. Further, the values of at least the sine and
cosine functions lie in the range from ~1 to 1, sharply reducing
the validity of deleting higher-order divisions or truncating
power series. The tangent function spans the other extreme, from

145
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—oo to +oo. Finally, the radian unit of angle measure (in which the
functions are most naturally and simply expressed in relations)
spans for the first 0° to 90° quadrant an almost equally maddening
range of 0 to 1.57.

Despite these difficulties, we will discuss here some methods of
use in reckoning the basic trigonometric functions sin x, cos X,
and tan x, as well as their inverses arcsin x, arccos x, and arctan x.
Only the first quadrant is considered, as trigonometric values in
other quadrants are easily deduced as sign changes from those in
the first quadrant.

Sine and Cosine Functions

We may approach the sine function by utilizing the familiar
power series:

X3 X

sinx=x—-——+——...

3! 5!

where again the factorial function n! represents the product of all
integers between n and 1, inclusive.

We can truncate this series, using “relaxed” coefficients to yield
less overall error in this formula [2]:

sin x = .99989x — .16596x> + .00760x°

Now suppose we know the sine of an angle a in degrees and we
wish to find the sine of an angle d a small number of degrees b
from a. We can then rewrite the last relation for sin (a + b), where
the radian equivalent x to (a + b) is given by m(a + b)/180. The
Greek letter pi is the famous constant of proportionality between
the circumference and the diameter of a circle, and equals
3.14159265 . ... I assume throughout this chapter that we work
in degrees instead of radians, as this occurs an overwhelming
portion of the time in practice. If a calculation in radians does
arise, we can convert the argument to degrees by multiplying it
by 180/m, a quantity conveniently approximated by the fraction
401/7, acquired by the means detailed in Appendix A.
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To continue, we arrive at
sin (a + b) = .017451(a + b) — 8.8234 ¢ 107(a + b)?
+1.23 ¢ 10°!1(a + b)°

We can multiply this out, extract the approximation for sin a
from the right side and drop higher-order terms in b as negligible.
Multiplying through by 1000 to ease calculations then yields
the approximation,

b ad A
1000 sin'd = 1000 sin a + — <174 - —> (22)
10 40

where d = a + b.

This formula is arranged to simplify the mental computation
and is actually far easier to calculate than it first appears. It has
been very useful to me, and it represents my best attempt at a
reasonably convenient approximation.

How good is it? The jagged curve plotted in Figure 2 represents
the absolute error curve, or the quantity (approximation — func-
tion) for this relation over the first quadrant. This curve assumes
that sin a is known for all angles that are a multiple of 10°,
yielding —5° < b < 5°.

Looking at the jagged curve, we can see that for angles d
through 54°, represented by a = 50° and b = 4°, the approximation
is accurate to three (and usually four) decimal places. Therefore,
we can use this formula in the range 0° < d < 54° if we memorize
-the following values:

sin 0° = 0
sin 10° = .1736
sin 20° = .3420
sin 30° = .5

sin 40° = .6428
sin 50° = .7660
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0.004 —
0.003—‘
0,002 e
0.001—;

i O

-0.003 —

-0.004 ~————
0 10 20

30

Figure 2. Error curves {approximation — function) for Equation 22, given
by the jagged plot, and Equation 23, the smooth plot, vs. angle in degrees.

A useful aid in jogging the memory is to recall from Equation 22
that the initial slope of the sine function is 0.174. The value of
sin 10° is just slightly lower than this because the curve begins to
flatten. The value for sin 20° shows some additional flattening.

For those who do not wish to memorize any values of sin a at
all, we can now backtrack and find a very reasonable approxima-
tion of the sine function in the same interval 0° to 54°, although
the average error will be significantly greater than that just given.

In the derivation of Equation 22, if we subtract a quantity that
is relatively small over the range given, namely

b <Za + b>
10 \ 120
we will ind that we can derive the approximation,

d(d + 1)]
120

d
1000 sin d = o [174.4 - (23)
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where we have now kept four places in 174.4 because it is more
significant here than in Equation 22, where the known values
sin a “pulled” the curve closer to the correct one.

The error curve for this approximation is also given in Figure 2
as the smooth plot. The error is quite low over the range 0°-54°,
but nonetheless it is greater on average than the other.

It is important to recognize that the plots in Figure 2 are
designed to accentuate the errors. If the true sine function from
0° to 54° were plotted on a full page here, the difference between
it and either of the sine approximations (Equations 22 and 23)
would be less than the width of the printed line itself!

Now returning to the quandary that began this entire enter-

prise, as mentioned in Chapter 1, we can easily find sin 28°. From
Equation 22,

30 o 28
1000 sin 28° = 1000 sin 30°-.2 <174 - —>
= 500 — 30.6
or,
sin 28° = .4694 Actual value: 46947 ...

From Equation 23,

28 29
1000 sin 28° ~ 2.8 (174.4 - —>

120
sin 28° = .46937

Let us defer the task of finding sin d for d > 54° and instead
address the cosine function. We begin with the identity,

sin (a+ b) =sinacosb + cosasinb
or,

sin (a + b) — sin a cos b

cos a = -
sin b
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For b = 1°, then sin b = .01745 and cos b = .99985. Substitut-

ing our approximation (Equation 22) for sin (a + b), and setting
b = 1° yields

cosa=1-.00014327a(a + 1)

Changing a to the variable d and realizing that 1/7 = .1429. ..,
we find

dd + 1)
1000 cos d = 1000 — —7—— (24)

The smooth curve in Figure 3 displays the absolute error (again,
approximation — function) for this relation as a function of angle.
This approximation shows reasonable accuracy (usually three
digits, but rarely more than one off in the third digit) through 40°.
A passing familiarity with the hump at around 30° can result in
three-digit accuracy throughout this range. This is the formula I

0.004
0.003 —

0.002 —

0.001 —

-0.004

o 10 20 30 40 350 6 70 80 90
Figure 3. Error curves (approximation - function) for Equation 24, given
by the smooth plot, and Equation 25, the jagged plot, vs. angle in degrees.
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have used on occasion, and it requires no memorization of cosine
values. Using this formula without recalling that we are in the
hump area, we find that cos 28° is approximately .8840, compared
to the actual value of .8829 . ...

We can take this formula, however, and form a more uniformly
accurate approximation if we memorize the cosines of angles that
are again multiples of 10°. For d = a + b, Equation 24 becomes

(a+b)e(a+1+Db)
7

1000 cos d = 1000 —

Substituting Equation 24 again for cos a,

b(a +d + 1)
1000 cos d = 1000 cos a — ———7——— (25)

The jagged trace in Figure 3 comprises the error curve for this
function. It shows an improvement on average over that shown
for Equation 24 in the interval 0° < d < 35°, assuming that for
d = 35° we take a = 30° and b = 5°. To use this relation, we
therefore need to know the following values:

cos 0°=1

cos 10° = .9848

cos 20° = 9397

cos 30° = V3/2 = .8660

With this relation, we find cos 28° as:

(-2) * 59
1000 cos 28° = 1000 cos 30° — ————

cos 28° = .8829

which is accurate to four digits.
Nature has been unusually kind to us in both of these relations
because the range of angles for which the sine approximations
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(Equations 22 and 23) are invalid is almost exactly (or is exactly)
the range of angles for which the cosine approximations (Equa-
tions 24 and 25) are valid, and vice-versa. Therefore, we can let
sin d for d > 54° become cos (90° — d), whose argument is less
than 36°, and cos d for d > 35° become sin (90° — d). In the end,
we cover the entire 0° to 90° range of interest for both the sine
and cosine functions with two formulas. Incidentally, the alter-
native if this were not true would be to add a third relation, an
identity, to double the useful range of the cosine approximation:

cos 2d =2 cos*d-1

The corresponding double-angle identity for the sine function
mixes sine and cosine terms and is not useful.

We may note in closing this sine-cosine discussion that Equa-
tions 23 and 24 yield the approximation,

172 sin d
—_—2
d

cos d =

For a right triangle with sides of length a <b < ¢, we can formulate
the above relation to express the smallest angle A of the triangle
in terms of the three sides [3,4]:

a
A =172

(26)

b + 2¢

where A is in degrees. The third angle is then apparent.

This approximation was given by Ozanam in 1699 and is
actually very good, giving almost four-digit accuracy for angles up
to 45° (where the angle is no longer the smallest). For the familiar
34,5 right triangle with a smallest angle of 36.870°, this
formula gives

A =172 * (3/14) = 36.857°

The Tangent Function

The tangent function, of course, may by definition be calculated
by dividing the sine function by the cosine function for the given
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angle. Since these formulas are not valid in the same range,
though, the calculations reduce in practice to:

sin d
tan d = for 0° <d < 36°
cos d
sin d
= for 36° < d < 54°
sin (90° - d)
90° - d
Jes B0 A sk cd< oo
sin (90° — d)

These need not be remembered, as the proper terms become
apparent when performing the individual sine and cosine
calculations.

Using the sine relation (Equation 22) and cosine relation (Equa-
tion 24), we find tan 28° to be .5310... instead of the actual
value of .53171 .. .. Using the cosine relation (Equation 25), we
arrive at a value of .53168 . . ..

There exists a power series for tan x that can be truncated with
relaxed coefficients [5]:

tan x = x + .31755x3 + .20330%°

The magnitude of the error in this approximation is less than
0.001 for the range 0° < x < m/4, or 45°. However, the relatively
large coefficient of the last term indicates difficulty in further
simplification. If we proceed in the same manner as for sin x,
though, recognizing that the form of the relation is the same, we
derive ford = a + b,

b d
1000 tan d = 1000 tan a + — <174 + a_> (27)
10 20

where we memorize or recall the following values:
tan 0°=0

tan 10° = .1763
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tan 20° = .3640
tan 30° = \3/3 = .5774

tan 40° = .8391

tan 45° = 1

Note the change in sign of the last term in Equation 27 compared
to the earlier sine approximation (Equation 23) of the same form.
The error curve for the approximation (Equation 27) is shown
in Figure 4. The increase in difficulty in approximating tan d
compared to sin d or cos d is apparent.
Equation 27 can be modified empirically to greatly improve the
accuracy, but with additional memorization required:

b ad\ nb?
1000 tan d = 1000 tan a + 16 <174 +m + %> +—  (28)

-0.004

Figure 4. Error curve (approximation — function) for Equation 27 vs. angle
in degrees.
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The values of m and n appear below, where they have been
contrived to aid memorization:

a

0
10
20
30 1
40 45 1

5
|:

5
5

U’ltlkv—lv—l
O WL OO

Figure 5 displays the error curve for this approximation,
which is for all practical purposes accurate to at least three
decimal places (or + 0.0005) for 0° < d < 45°, and requires no

significant division.

0.004
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PP [N S W NN S SO N S N,

0 —

-0.001 —

JPPYUR . JWRE U NUNUE. SRR WO . SN, N

20.003 o]

-0.004 { e ———
0 5 10 15 20 25 30 35 40 45

Figure 5. Error curve (approximation — function) for Equation 28 vs. angle
in degrees.
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Using this formula,

28030\ 34
1000 tan 28° = 1000 tan 30° + (-.2) ® <189 + >

+
40
tan 28° = .53145...
compared to the actual value of .53171 .. ..
The range 45° < d < 90° is very difficult to approximate

explicitly because the tangent function tends to infinity. However,
for this range we can use the trigonometric identity,

1
tan (90° - d)

tan d =

and suffer the division, although with this disadvantage it is
probably easier to take the sine-cosine ratio.

The Arcsine and Arccosine Functions

The trigonometric inverses are exceedingly difficult to approx-
imate well mentally, but are not often required in practical work.
Looking at Equations 22 through 28, the only one amenable to
inversion is the simpler cosine function (Equation 24). The result-
ing expression for arccos x after some simplification is given by

arccos x = [7(1000 — 1000x)]'2 - .5 (29)

Three identities linking the arcsine and arccosine functions are
of use to us here:

arccos x = arcsin (1 — x2)1/2 (30)
arcsin x = arccos (1 — x2)1/2 (31)
arcsin x = 90° — arccos x (32)

We can then substitute the last two of these into Equation 29 to
arrive at another relation for arccos x:
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arccos x = 90° — [7(1000 — 1000(1 — x2)12)]12 _ 5 (33)

Plots of the absolute error curves for Equations 29 and 33 are
given in Figure 6 for 0 < x < 1, or 90° 2 d > 0°, where d = arccos
x in degrees. As is evident, Equation 29 provides best results for
x above .707 (d < 45°) and Equation 33 for the complement. The
two relations coincide at d = 45°, where x = (1 — x2)!/2,

This pair of formulas yields angles accurate to + 0.5° over the
first quadrant (other quadrants are easily deduced). The square
roots are readily found to four or more digits by the methods
described in Chapter 3. In fact, the squaring operation here should
be more intimidating at this point than the square root extraction.
The arcsine can also be easily determined through these relations
and the Equations 30-32. _

Can we use our memorized values of the sine function to aid
in calculating the arcsine (and arccosine) functions? Given that
the reader is interested in this abstruse section, we may assume
that sine values have been memorized from the last section for the

: H / i
-1 T 1 T | T | T

|
0 0.25 0.5 0.75 1

Figure 6. Error curves (approximation — function) for Equation 29, the
rightmost plot, and Equation 33, the leftmost plot, vs. the cosine of angles
to 90°.
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first several multiples of 10°. Now, a series relation for arcsin x,
where —1 < x < 1, exists in a similar form to those of the last
section [5]:
x> le3ex’ 1e3e5 0Kl
+ + +...
23 20405 204600607

arcsin x = x +

Truncating this series after the second term, substituting x = a + b,
dropping a b* term and separating out the terms comprising
arcsin a, we find

401 ax
arcsin (a + b) = arcsin a + T b <1 + 7) (34)

The familiar coefficient 401/7 converts the result into degrees.

The general procedure, then, is to recall the sin d value nearest
x and call it a. Then b = x — a. As in general a is not a round
number, and because we multiply by 401/7, Equation 34 is
somewhat more difficult than the corresponding formulas from the
last section.

If x = 46947, then a = .5 = arcsin 30° and b = -.03053.
Then,

01 5)(.469
arcsin x = 30° + 4— (-.0305) o [1 + (_M]
7 2
=~ 30° - 1.95°
= 28.05°

compared to the actual value of 28°.

The error curve for Equation 34 is shown in Figure 7. As
expected, the approximation becomes poorer for larger x, even
though the intervals between values of a become smaller. The first
45° range (0 < x < .707) is quite acceptable, however, and
Equations 30-32 then provide arcsine and arccosine values
throughout the first quadrant.
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"l T i T ! T | T
1] 0.25 0.5 0.75 1

Figure 7. Error curve (approximation — function) for Equation 34 vs. the
sine of angles fo 90°.

For additional accuracy, we find from Hastings [2] that
arcsin x = m/2 — (1 — x)2 @ (1.57073 — .21211x
+.07426x% — .01873x3)

with an error no greater than 0.00005 for 0 < x < 1.

The second term is obviously that for arccos x. Since we desire
x to be as small as possible, let us consider as before the range
0 < x <.707. We can truncate this expression, realizing that we
need to multiply by 180/ to convert arccos x into degrees d. If
we drop terms involving powers of x greater than 1, and empiri-
cally add a correction term on the end of our resulting relation,
we find

arccos x = (1 — x)12 o (90 — 12x) + 1.5(x - .1) (35)

A plot of the error function for this approximation is shown
in Figure 8. We deduced earlier from Equations 31-32 that
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0 .25 0.5 0.75 1

Figure 8. Error curves (approximation — function) for Equation 35, opti-
mized for x < .707, and after modifications, optimized for x > .707, vs. the
cosine of angles to 90°.

arccos x = 90° — arccos(l — x?)/2. The corresponding error
function for this approximation is shown as well in Figure 8, where
Equation 35 is again used for approximating the arccosine func-
tion. This latter approximation represents the arccosine function
with greater accuracy for x > .707.

With Equations 30-32, we have covered the first quadrant for
the arcsine and arccosine functions to reasonable accuracy,
given the infrequency of the situation. Taking again the example

x = 4694716,
arccos x = 62.0044°

compared to the actual value of 90° — 28° = 62°.

It is also worth mentioning more exact approximations (in some
regions) for arcsin x and arccos x formulated from our earlier
approximation (Equation 26) for the smallest angle A in a right
triangle of sides a < b < c. If we define a = x and ¢ = 1, then
A = arcsin (a/c) = arcsin x. Writing b = (c? — a?)/2 = (1 - x?)!/2
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and replacing the number 172 by 3(401/7), we arrive at
the expression,

o 3x . <40l> (36)
arcsin x = - TR, -

Likewise, setting b = x, ¢ = 1, and a = (1 - x2)12, we find

3(1 - xh)2 /401
arccos x = ( * ) L4 <4 > (37)
X + 2 7

An alternative means of deriving these relations uses the
accelerated Borchardt’s Algorithm described in Chapter 4 [6]. To
the iterative relations given there, we apply the initial values
ag = (1 — x3)2 and g, = 1 and produce approximations for the
arcsine function, the first being Equation 36. Setting a; = x and
go = 1 produces approximations for the arccosine function, the
first given by Equation 37.

We find here that the result for the arcsine function is identical
to that obtained by transforming x in the arccosine formula by
(1 — x2)12, The error curves for Equations 36 and 37 are plotted
in Figure 9. Choosing the more accurate equation and, if neces-
sary, using the earlier identities gives the best accuracy yet for
these functions, albeit at the expense of more difficult computa-
tions. Perhaps these relations are best left to cases where x is a
value of one or two digits.

The Arctangent Function

One approach to approximating the arctangent function utilizes
the following relation [5], with the multiplier again added for
conversion to degrees:

401
arctan x = . X (38)

7 1 + .28x%

for -1 £x < 1. A plot of the corresponding error function is shown
in Figure 10, showing an absolute error less than 0.28° over the
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-0.5—

0 0.25 0.5 0.75 1

Figure 9. Error curves (approximation — function) for Equation 36, the
leftmost plot, and Equation 37, the rightmost plot, vs. x.

0 0.25 0.5 0.75 1

Figure 10. Error curve (approximation — function) for Equation 38 vs. the
tangent of angles fo 45°.
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range -1 <x < 1, or 0° < d < 45°, where d = arctan x in degrees.
A potential difficulty exists for the range 45° < d < 90°, however,
as the arctangent function careens to infinity. The solution is to
use the identity,

arctan x = 90° — arctan (1/x) (39)

to reduce x in this region to a value less than 1. To avoid excess
computations, we can replace x in Equation 38 with 1/x and
simplify, giving

401 X
arctan x = 90° — . (40)
7 xt + .28

forx > 1.

Another method makes use of memorized values of tan d for
d = 0°, 10°, 20°, 30° 40°, and 45°, as given in the discussion on
the tangent function. If these values are memorized for calculating
tan d, they may be used here as well to great advantage.

The derivation follows from an identity for the tangent function

[7]. Forx =a + b,

tand = x
tane = a
tan d — tan e X — a
tan (d —e) = =
l+tandtane 1 + ax
or,

b
d = arctan a + arctan (————>
1 +a(a+b)

For small arguments of the last term, we arrive at

401 b

arctan x = arctana + — @

(41)

1 + ax

forx =a + b.
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A plot of the error function for 0 < x < 1 is given in Figure 11.
Notice the order of magnitude change in the scale; this is an
extremely accurate approximation with little increase in complex-
ity over the last, given the memorization required. Again, Equa-
tion 39 is used for x > 1.

For those interested, Equation 26 can be used to derive an
extremely accurate approximation to the arctangent function as
well as the earlier arcsine and arccosine functions. We derive:

3x . 401
1+ 2(1 +x)12 7

arctan x =

The accelerated Borchardt’s Algorithm can also be used to derive
this; the initial values used here for the arctangent function are
givenasap = 1, gy = (1 + x?)12,

The extreme accuracy of this relation for 0 < x < 1 seems
unnecessary considering the accuracy available from the pre-
vious relation.

1 S IO S

'O.l T 1 T i T | ——r '
0 0.25 0.5 0.75 1

Figure 11. Error curve (approximation — function) for Equation 41 vs. the
tangent of angles to 45°.
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Other Approximations

Many other approximations exist for trigonometric and inverse
trigonometric functions. However, the vast majority do not lend
themselves even as well as the ones given here to mental (or back
of the envelope) solution. For those interested, references for
other approximations include Fike [8], Kogbetliantz [9-12], Fox
[13], Frame [14], and Spielberg [15].

Interestingly enough, mental calculation of hyperbolic and
inverse hyperbolic trigonometric functions (an extremely impres-
sive talent) is much easier, since they are simply defined in terms
of real exponential and logarithmic functions more readily eval-
uated by the methods of the last chapter. For example,

2 arctanh x = log (1 + x) — log (1 — x)

Other relations are easily found from definitions of these functions.
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Concluding Remarks

The object of pure Physic is the unfolding of the
laws of the intelligible world; the object of pure
Mathematic that of unfolding the laws of

human intelligence.
J. J. Sylvester [1]

To think the thinkable—that is the
mathematician’s aim.

C. J. Keyser (1904) [1]

This, then, represents a collection of algorithms specifically
developed for mentally calculating or approximating arithmetic
results and elementary functions. I hope that a sense of adventure
and marvel has been conveyed, and a certain eagerness inspired
to try out the techniques as the opportunity arises or is created.

I also strongly recommend looking through the referenced
articles and books for more detailed information on any topic that
piques your interest. I appreciate that this may be an unfamiliar
step for some people; it shouldn’t be, and the majority of the
references can be found in the library of even a small college or
obtained through any public library. The many articles and books
listed are clear ones and are certainly within the grasp of anyone

167
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who appreciates the topics in this book. Some of them, including
those by Mermin [2], Goldstine [3], Taylor [4], Menninger [5],
Aitken [6], Loweke [7], Uspensky [8], Eynden [9], Bailey [10], and
Kovach [11] (in no particular order) are simply a pleasure to read.
As you may have gathered, Smith’s book on mental calculators
[12], which has a somewhat different emphasis, complements this
book very nicely.

One important fact implicit in the presentation of the methods
in this book is that they are in no way the final word on the
subject. 1 encourage the reader to find better and alternate
methods. Experimenting with perceived properties of numbers or
functions can be done at any odd time on any scrap of paper, and
this is an area where playing with particular numbers often leads
to general algebraic relationships or approximations. It invariably
leads to some insight into the intricacies of the number world.
Hoist a sail and catch the wind.
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Appendix

Finding Rational
Approximations to
Precomputed
Constants

The employment of mathematical symbols is perfectly
natural when the relations between magnitudes are
under discussion; and even if they are not rigorously
necessary, it would hardly be reasonable to reject
them, because they are not equally familiar to all
readers and because they have sometimes been
wrongly used, if they are able to facilitate the exposition
of problems, to render it more concise, to open the
way to more extended developments, and to avoid the
digressions of vague argumentation.

A. Cournot {1897) [1]

Often we encounter multidigit numbers, such as scaling
factors, which are difficult to use directly as a divisor or multiplier.
In addition, there are certain types of calculations, such as those

171
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for finding antilogarithms, that benefit from range reduction
techniques, i.e., the original number is reduced in some manner
into a range where we can obtain a good approximation. We then
adjust this approximation to find that for the original number.
This whole process generally involves multiplications or divisions
by constants (such as 10Y2?, where n is an integer) that are
precomputed and memorized. This appendix describes the general
procedure by which we can generate whole-number fractions that
approximate multidigit numbers to a required accuracy and in
practice involve multiplication and division by reasonably small
whole numbers.

To illustrate, to convert from radian units to degrees, we
multiply by 180/r = 57.296. ... This is difficult to do, and in
Chapter 5 I use instead the multiplier 401/7 = 57.286. ... This
is a fraction containing numbers that are easy to multiply and
divide by, yet is very close to the actual conversion factor. More
accurate fractions are 974/17 and 4068/71; worse ones include
172/3 and 229/4. These approximations are straightforward, but
tedious, to generate, so I use a computer program to create them.
I then look over them to find one that is a reasonable approxima-
tion, but that has a numerator and denominator that I can
mentally multiply and divide by relatively easily. Once a fraction
(such as 401/7) is selected, I always use it for this constant in any
calculation that requires it.

We approach this subject in terms of interesting creatures
called continued fractions. A continued fraction is a fraction of
the form:

a; +

a2+

1

a3+ ——
yt...

where the integers a,, are termed partial quotients. A more modern
notation for continued fractions is given by the equivalent form,

1 1 1

a; +a3 +ay +

a; +
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A comprehensive treatment of continued fractions may be found
in the work of Olds [2]; here we are interested in their application
to rational approximations [3,4].

As examples, it is commonly given that:

1 1 1 1 1
1+2+1+1+4+“'
1 1 1 1

3+
7+15+1+292 +

e=2+

For integer values of a, the continued fraction will converge to
a limiting value. Terminating the fraction at given a,’s and
simplifying the fraction produces rational approximations to the
value called the principal convergents A,.

We need, therefore, a procedure for converting a given number
into a sequence of numbers a,, that comprise a continued fraction
for the number. We can extract the principal convergents A, until
we arrive at fractions involving numbers too large for us to work
with. Convenient fractions can then be tested for accuracy to the
original number. As a rule, we expect good approximations for a
given complexity of the fraction to occur when the next a,
following termination is relatively large, as its reciprocal would
provide a correspondingly small correction if included. For exam-
ple, in the continued fraction for T given earlier, terminating the
fraction at a4 (before a5 = 292) gives 355/113, a value accurate to
7 digits. Finally, we can find intermediate convergents; these occur
for any principal convergent A, that results from truncating the
continued fraction at a partial quotient ay greater than 1.

It can be shown that the values a, are simply the multipliers
in each step of Euclid’s Algorithm for finding the greatest common
divisor of two integers (see Chapter 2). To prove this, consider two
numbers a and b with a > b. Euclid’s Algorithm gives:

a=ab+r
b= ar +tn
I; = asry + 13

etc.



174  Dead Reckoning: Calculating Without Instruments

Dividing each line by the variable associated with the a, term,
we find

a I
_= al + —
b b
b |y}
n n
I I3
—_——= a3 + —
Y] LY)
etc.

Then, since the last term in each line is the reciprocal of the first
term in the next, we have

1

I
a + —
I

=al+

ol o

1

etc.

Now, to approximate a constant, we convert it to an integer
fraction by letting a equal the constant stripped of its decimal
point and carried to d digits, and letting b equal 10¢-1), As a
pertinent example from Chapter 4, let us find rational approxima-
tions to 1016 = 1154782 .... Taking a = 1154782 and b =
1000000, we proceed as follows:

1154782 = 1(1000000) + 154782
1000000 = 6(154782) + 71308
154782 = 2(71308) + 12166



Appendix 175
71308 = 5(12166) + 10478
12166 = 1(10478) + 1688
10478 = 6(1688) + 350
1688 = 4(350) + 288
Stopping at this point, we have obtained the partial quotients

a; = 1,a2=6,a3=2,a4=5,a5= 1,a6=6,anda7=4.
These are used to determine the principal convergents A,

Actually, at this point we can ease our work by realizing that

for A, = Pu/%n
Pn = ayPn-1 T Pn2

dn = A9n-1 t 9n2

and we can continue quite rapidly:

2¢7+1 15
Ap=m— o2

2¢6+1 13

e 15+7 82
Ag=r—— =~

5¢13+6 71

97 664 2753
As=—; Ag=_—2; Ar=——

84 575 2384

Now there are intermediate convergents as well between A, _;
and A, for each a, > 1. These are of the form:
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Pn-2
On-2

= An—Z
Pn2 t Pna
dn-2 * Gn1

Pnz * 2Pn
On-2 + 2qn—l

+

Pn-2 anPn-1

/T oA,
Gn-2 t andna1

Representing the intermediate convergents as (A,; A,),
we find

2: (AAs3) t+7_8
Az = /L: = = —
’ R v 7
7+15 22 37 52 67
ay = 5: (AyA,) = = 22 =22

6+ 13 193274558
as; = 1: no intermediate convergents as a, < 1

82 + 97 179 276 373 470 567

= 6: ( = = ) ) ) )
%= 0 A = o T 155 23933 307’ M1

97 + 664 761 1425 2089

a; = 4 (AsAq) = = , ,
7 784 + 575 659 ° 1234 1809
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Here we find those principal convergents we would get if we
allowed subtractions instead of additions in various steps of
Euclid’s Algorithm.

In the end, we arrive at two convergent sequences. The first one
increases, approaching 1016 from below, and consists of the odd
principal convergents and their intermediate convergents:

Ay, (A1A3), As, As, (AsA7), Aq
or,

8 15 97 761 1425 2089 12753

7713784 659 1234 1809’ 2384

The second sequence decreases, approaching 1016 from above,
and consists of the even principal convergents and their inter-
mediate convergents:

Az, (A2A4)’ A4’ (A4A6)7 A6
or,

7 22 37 52 67 82 179 276 373 470 567 664

619732745 58 71155239 323 407 491 575

A computer provides, of course, a convenient means of tabulating
these fractions, as it did for me.

Now we have the intriguing task of choosing a fraction that
provides good accuracy with a convenient numerator and denomi-
nator for multiplication (we flip the fraction for division). Since
ay, a4, and agq are relatively large, we are clued to look at Ay, A;,
and As for proximity to 1.154782 relative to their complexity.
We discover

Al = 1
Az = 15/13 = 1.1538462 . ..
As = 97/84 = 1.1547619. ..
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Perusing other choices reveals 52/45 = 104/90 as a possibility,
but its accuracy is poor (1.1555555 ... ). Therefore, perhaps our
best pick, particularly in light of the factoring available for can-
cellation when additional constants are multiplied or divided, is:

1016 = 97/84

100 - 3
~304o7

~ 1.154762 compared to 1.154782 ...

This rational approximation appears in Table 8.
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rational approximations using,

173-78

179
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Cosine, 149-52
method with table for, 151
method without table for,
149-51
Cournot, A., 171
Cross multiplication, 11
Cube roots, particular methods
for, 99-104. See also Roots.
Cubing, 17-18. See dlso
Multiplication.

Degrees, conversion to radians,
146, 172
Divisibility, 39ff
by numbers with multiple near
power of ten, 41-42
by odd numbers, 42—44
by particular numbers, 40-42,
45-46
elevens test for, 40
Euclid’s Algorithm for, 44
factoring sieves using, 72-73
nines test for, 39—40
other bases for, 4547
Division, 19ff. See also Divisibility.
by factors of numbers near
round numbers, 28
by numbers near round
numbers, 24-28
a cross (or Fourier), 28-33, 97
repeating decimals and,

19-24, 35

Error checking, 39ff. See also
Divisibility.
Euclid’s Algorithm. See also
Greatest common divisor.
continued fractions and,
173-78
definition of, 35-38
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divisibility tests with, 44—45
factoring with, 65

Euler, factoring methods of,
61-65.

Factorization, 47ff
Euler’s method of, 61-65
Fermat’s method of, 48-54,
68-73
general Euler’s method of, 65
Legendre’s method of, 54-56
Triangular number method of,
57-61, 65-66, 13
Vaes’ method of, 56-57
Fermat, Pierre de, 48, 54, 61
Fifth roots, particular methods
for, 105-108. See also Roots.
Finger counting, 12
Fourier, Joseph, 28, 97

Greatest common divisor, 35ff
Euclid’s Algorithm for, 35-36
halving method for, 38
least-remainder method for, 36
modified Euclid’s Algorithm

for, 37-38

Halley, Edmond, 83, 107, 123

Hexadecimal error checking,
45-46

Hofstadter, Douglas R., 4-5

Hyperbolic trigonometric
functions, methods for, 165

Inverse logarithms. See Anti-
logarithms.
Inverse trigonometric functions,

156ff. See also Arccosine;

Arcsine; Arctangent.



Keyser, C. J., 167
Knuth, Donald E., 18, 48
Kogbetliantz, E. G., 113

Lagrange interpolation, 129-30
Legendre, A. M., factoring
method of, 54-56
Lightning calculators
methods of, 11, 18, 20-21, 24,
35, 44, 62, 77-79, 117-18
names of, 4-5, 117
performance of, 3-5
Logarithms, 113ff
Bidder’s method for, 117-18
Borchardt’s Algorithm for,
130-33
definition of, 114-15
factoring for, 40
Halley’s method for, 123-26
Lagrange’s formula applied to,
129-30
neighboring value methods for,
121-23
Newton’s method for, 126-28
prime number, 119-21
root extraction using, 142-144
series approximation for,
116-17
Lowell, James Russell, 1
Lowest common multiple, 39

Melding, 6-8
Mental calculators. See Lightning
calculators.
Modular arithmetic
identities in, 35-36
sieves using, 50-56, 59-61, 64,
68-73
Multiplication, 10-18. See also
Cubing; Squaring.
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cross, 11

distributive law method of, 11

large number, 18, 47

particular simplifications in,
12-15

Napier, John, 113, 116
Newton, Isaac, 87, 101, 126
Notation

mod, 26, 36

pi, 129

sigma, 29, 129 /

vertical bar, 6-8, 10, 89

Ozanam, triangle relation of, 152,

160

Prime numbers. See also
Factorization.
definition of, 19, 48
fundamental theorem of
arithmetic and, 4748
logarithms of, 118-121 rough
test for, 66—-68
sums of squares of, 61-62
Primitives, 9ff
definition of, 9

Quadratic residues, 50

Radians, conversion to degrees,
146, 172

Rational approximations, 171ff

Reciprocals. See also Division.
approximations to, 33-34
calculation of, 19-24
square roots of, 97-99

Roots, 77ff. See also Cube roots;
Fifth roots; Square roots.
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Chebyshev’s correction for,
86-87, 98-99, 100-102,
105

general algorithm for square,
87-97

Halley’s method for, 83-85, 98,
100, 105

integer, 77-79

Newton—Raphson method for,
80-83, 97-99, 103-105

particular methods for cube,
99-104

particular methods for fifth and
higher, 105-108

particular methods for square,
79-87, 98

reciprocal square, 97-99

use of logarithms for, 115,

142-44

Russell, Bertrand, 145

Sine, 145-52

method with table for, 14648
method without table for,
148-149

Smith, Steven B., 34, 44, 79
Square roots, 77-99. See also

Roots.
approximation for reciprocal,

97-99
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general algorithm for, 87-97
particular methods for, 79-87
Wallis’ extraction of, 109
Squares
endings of, 49
endings of differences of, 69
sieves for, 50-52, 69-70
Squaring, 15-17. See also
Multiplication.
Subtraction, 9-10
Sylvester, J. J., 167

Tangent, 152-156
general formula for, 153-54
precise formula for, 154-56
sine/cosine method for, 152
Triangular numbers
definition of, 57-58
endings of, 59
factoring methods using,
57-61, 65-66, 73
sieves for, 59-61
Trigonometric functions, 145ff.
See also Cosine; Sine;
Tangent.

Vaes, factoring method of, 56-57

Wallis, John, 5, 109
Whitehead, Alfred North, 9



