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Preface

How does the mind represent number and make mathematical calculations? What underlies
the cognitive development of numerical and mathematical abilities? What factors affect the
learning of numerical concepts and procedures? What are the biological bases of number
knowledge? Do humans and other animals share similar numerical representations and processes?
What underlies numerical and mathematical disabilities and disorders, and what is the prognosis
for rehabilitation?

These questions are the domain of mathematical cognition, the field of research concerned
with the cognitive and neurological processes that underlie numerical and mathematical abilities.
Mathematical cognition research intersects a wide array of subfields including: cognitive develop-
ment; neurological development; computational science; cognitive and educational psychology;
animal cognition; cognitive and clinical neuropsychology; neuroscience; and cognitive science.

This volume is a collection of twenty-seven essays by leading researchers in the field, and
constitutes a comprehensive survey of state-of-the-art research on important facets of math-
ematical cognition. Anyone interested in any aspect of numerical or mathematical cognition
will find pointers to all the major issues, methods, phenomena, and theories in any major
research subarea of the field. The book thereby provides a general reference for mathematical
cognition research, and is intended for academics, scientists, clinicians, and senior students
who want a definitive, comprehensive survey of the field.

The volume is divided into five parts.

Part 1 (Cognitive Representations for Number and Mathematics) addresses diverse repre-
sentational issues of numerical and mathematical thinking. Fayol and Seron (Chapter 1) re-
view neuropsychological, experimental, and developmental research into the cognitive repre-
sentations that mediate elementary number processing. Many important insights have been
gained, but the authors also identify shortcomings of extant theories of number representa-
tion. Brysbaert (Chapter 2) summarizes research on the recognition of numbers presented in
various surface forms (e.g., verbal, Arabic, and analog). A comprehensive model of the func-
tional relations among the underlying symbolic and semantic codes is proposed. Fias and
Fischer (Chapter 3) review evidence that components of the number processing system (e.g.,
visual Arabic number form, and magnitude representations) are linked with spatial process-
ing. Spatial coding of numbers occurs automatically. Its characteristics are determined by
task-dependent numerical and spatial parameters. Tzelgov and Ganor-Stern (Chapter 4) focus
on automatic processing of numerical information and, in particular, on ordinal relations.
Zorzi, Stoianov, and Umilta (Chapter 5) provide a critical review of existing computational
models of number processing and simple arithmetic. They present simulations of number
comparison, number priming, and simple arithmetic based on a new connectionist theory of
numerosity representation. Brannon (Chapter 6) describes the numerical abilities of non-
human animals and shows that species as diverse as pigeons, rats, cats, and monkeys are
capable of representing numbers and performing operations on numerical representations.

Xiii
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There are both important commonalities and differences between non-human and human
number processing. To conclude Part 1, Nufiez and Lakoff (Chapter 7) explain how conceptual
metaphor provides the inferential organization and structure of mathematical ideas. Everyday
cognitive mechanisms operating in special ways underlie the inferential organization that
makes mathematics what it is.

In Part 2 (Learning and Development of Numerical Skills), the focus turns to the acquisition
of numerical and mathematical abilities. Cordes and Gelman (Chapter 8) present research and
arguments that development of counting skills is based on a domain-specific, nonverbal counting,
and arithmetic structure. These nonverbal mechanisms provide young learners with a basis for
understanding the cardinal counting principle, and the framework to acquire a verbal count
routine. Bisanz, Sherman, Rasmussen, and Ho (Chapter 9) review research on the development
of procedures and concepts related to mathematical cognition in preschool children, with a
focus on knowledge and skills underlying basic arithmetic. Miller, Kelly, and Zhou (Chapter 10)
explore the nature of cross-national differences in mathematics acquisition by preschoolers.
Cross-national comparisons are essential to distinguish universal problems children face in
acquiring mathematical competence from those that are consequences of linguistic conventions
or of a particular cultural context. Noél, Rousselle, and Mussolin (Chapter 11) review research
on the development of number-magnitude representation in children, including studies of both
normal and dysfunctional development. Siegler and Booth (Chapter 12) examine definitional
and conceptual issues of numerical estimation and its development. Their overlapping waves
model provides a unified theory of the development of computational numerosity and number
line estimation skills. Fuson and Abrahamson (Chapter 13) describe the theoretical background
and framework for a model-based approach to the design of curricular units in mathematics
education, and illustrate this approach with research on fifth graders’ understanding of ratio
and proportion. The final chapter in this section by Ben-Zeev, Duncan, and Forbes (Chapter
14) explores how stereotype threat (when individuals are targets of stereotypes alleging intel-
lectual inferiority) can contribute to underperformance in math. They develop the case that
stereotype threat contributes to males outperforming females on standardized mathematics
achievement tests such as the SAT-M and the GRE-Q.

Part 3 of the book (Learning and Performance Disabilities in Math and Number Processing)
deals with troubled numerical cognition. Geary and Hoard (Chapter 15) provide a review of
prevalence, diagnostic issues, and cognitive correlates of mathematical disabilities (MD). The
authors describe how children with MD differ from their academically-normal peers, and
provide a general framework for the study of the cognitive deficits that underlie various forms
of MD. Mazzocco and McCloskey (Chapter 16) describe mathematical deficits associated with
two genetic disorders: Fragile X Syndrome and Turner Syndrome. The research reviewed
illuminates the cognitive dysfunctions that give rise to math disabilities and may also shed
light on the biological basis of mathematical ability. Barnes, Smith-Chant, and Landry (Chapter
17) describe a series of studies of preschoolers, children, and young adults with spina bifida
myelomeningocele (SBM), a congenital malformation of the spine and brain associated with
impairments in math skills. Their focus is on the early motor and cognitive origins of deficits
in emerging number skills, and the relation of neuropathological variables to math skills in
SBM. Ashcraft and Ridley (Chapter 18) review research showing that math anxious individuals
experience disruption of cognitive processes during math performance, particularly for tasks
that rely on working memory. The authors outline future directions for math anxiety research
in the context of the strong co-variation of math achievement with math anxiety.

Part 4 (Calculation and Cognition) presents a series of reviews of basic issues and phenom-
ena of calculation and mathematical problem solving. Zbrodoff and Logan (Chapter 19) review
research on the ubiquitous problem-size effect in basic calculation, tracing the greater difficulty
of numerically large, simple arithmetic problems to factors that affect both associative memory
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for number facts and algorithmic processes for calculation. Campbell and Epp (Chapter 20)
review evidence that memory for basic number facts is affected by the format in which problems
appear (Arabic digits vs. written number words). They conclude that numeral encoding processes
and mechanisms of calculation are more integrated and interactive than is commonly assumed.
LeFevre, DeStefano, Coleman, and Shanahan (Chapter 21) present a comprehensive survey of
extant research on working memory and cognitive arithmetic, and evaluate it with respect to
current models of mathematical cognition. Dixon (Chapter 22) presents a theory of mathematical
problem solving that merges analogical problem solving research with recent work on repre-
senting the functional relations of arithmetic. As people work with mathematics, they create
both contextually rich problem categories and representations of the relational structure inherent
in each operation. Duverne and Lemaire (Chapter 23) present a review of research on age-
related changes in arithmetic. Their review illustrates both the contributions of studies of
aging for understanding cognitive arithmetic, and the contributions of cognitive arithmetic
research for understanding cognitive aging. Pesenti (Chapter 24) summarizes what is known
about calculating prodigies and reviews evidence that calculation expertise entails a large
repertoire of memorized number facts, complex calculation algorithms, as well as increased
number-specific memory capacities. He reviews related behavioral and neuroanatomical data
both from healthy individuals and people suffering neurological disorders.

Part 5 (Neuropsychology of Number Processing and Calculation) concludes the volume with
a focus on neuropsychological issues of mathematical cognition. Dehaene, Piazza, Pinel, and
Cohen (Chapter 25) review neuropsychological evidence and describe corresponding fMRI
activations during a variety of numerical tasks to identify the organization of number-related
processes in the parietal lobe. Butterworth (Chapter 26) reviews developmental disorders of
arithmetic and of reading and writing numbers. He proposes, on the basis of genetic and
neuroanatomical evidence, that developmental mathematical disorders are due to a congenital
deficit in understanding the core concepts of numerosity. In the concluding chapter, Lochy,
Domabhs, and Delazer (Chapter 27) review research on the rehabilitation of disorders of number
processing and calculation after brain lesions, with a focus on methodological principles for
effective design of rehabilitation attempts.

As the contents of this volume illustrate, mathematical cognition research subsumes a
broad, interdisciplinary spectrum of theoretical and practical issues. Yet, there is a strong
cohesiveness, because the research conducted within these diverse areas mutually informs and
reinforces developments across areas. The multidisciplinary interest in mathematical cognition
reflects the central place of mathematics in commerce, education, science and technology; and
also indicates that questions about the nature of mathematical skills have far reaching impli-
cations for psychological science and society.
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About Numerical Representations

Insights from Neuropsychological,
Experimental, and Developmental Studies

Michel Fayol
Xavier Seron

Research into cognitive number processing has made considerable progress over the last
twenty years (Dehaene, 1997; Butterworth, 1999). These advances have been the result of both
work on acquired (Seron & Deloche, 1994) and developmental disorders in number computation
and processing (Temple, 1997) and on adults’ and children’s performances during different
phases of learning (Ashcraft, 1992; Fayol, 1990; Geary, 1994). Although there is an impressive
volume of data providing us with valuable information, this sometimes makes it difficult to
gain a global view of what has been learned, particularly in regard to the different types of
representations involved in number processing. In this chapter, we shall address the question
of the relations between the different mental representations, the existence of which have been
postulated in order to account for number skills in human beings, whether innate or acquired,
approximate or precise, symbolic or nonsymbolic. Within this perspective we shall, on the one
hand, list the most important insights gained into the mental representations that underlie
the elementary processing of numbers and, on the other, stress the shortcomings of the
available theoretical proposals relating to these various representations and their functions,
interrelations, and origins.

Below, we distinguish between different interpretations of the concept of number representa-
tions and, in particular, (a) numerosity, which designates the numeric properties of a set of
items in the real world; (b) the numerical notations or symbolic codes used in order to represent
numerical information, which correspond to realities that are external to the subject and
which have historically been constructed and organized in the form of systems (i.e., Arabic
numerals, spoken numbers, and Roman numerals); and finally (c¢) the internal or mental
numerical representations which correspond to entities that are internal to the subject and
which refer both to systems of numerical notation and to the numerosity of sets of objects or
real or mental events. In the remainder of this text, whenever we talk about the semantic
representation of numbers, we are referring to the mental representation of numerosity.!

The authors are ranked by alphabetic order but they have equally contributed to the writing of this chapter.
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THE TYPES OF MENTAL REPRESENTATION:
CHARACTERISTICS, DEVELOPMENT, AND DISORDERS

The Preverbal Representations

In Animals

The performances of animals in tasks requiring them to compare or discriminate between
quantities of objects or events reveal that they are able to do so, but only to a limited extent.
Although their choices are not random, they simultaneously vary around a mean from one
trial or quantity to the next. This variability increases with the size or magnitude of the
entities that are to be compared. The data collected for different species (monkeys, Brannon &
Terrace, 1998; rats, Meck & Church, 1983; pigeons, Roberts & Mitchell, 1994) have shown that
the dispersal ratio of evaluations of the size of the quantity for estimation is a constant. This
corresponds to a classic finding in the field of psychophysics, namely Weber’s law. Animals are
thus thought to possess a mental representation of magnitude, which is formally analogous to
spatial locations on a continuous line. This representation is thought to be fuzzy given that,
even after a long period of training, animals are not able to distinguish the precise numerosity
of a set or series (e.g., hit a lever an exact number of times). They would thus appear to be
unable to represent quantities such as 4, 6, or 8 in a discrete or digital manner. However,
Hauser, Carey, and Hauser (2000) have shown that rhesus macaques are able to choose precisely
which of two sets (%, 24, %, but not greater) is the larger. To summarize, the animals that have
been studied may be able to form analogous and approximate representations of continuous
(distance, surface, intensity, etc.) and discrete quantities (objects, events) and may also be
capable of accurately processing small, discrete sets (fewer than five).

In Infants

Infants are known to become sensitive to quantity at a very early age. For example, they can
discriminate between groups of objects or counters provided that the quantities involved are
small (1, 2, or 3 items; Antell & Keating, 1983; Starkey & Cooper, 1980; Strauss & Curtis,
1981). They might even possess an amodal representation of quantity since they are able to
discriminate and match numbers of events (Canfield & Smith, 1996; Sharon & Wynn, 1998;
Wynn, 1996) and sets of sounds (Bijeljac-Babic, Bertoncini, & Mehler, 1993) based on their
quantity.

One important question to which there is as of yet no satisfactory answer is whether or not
the identified representations are numerical in nature. Are these representations specifically
numerical, and therefore discrete, from the outset, thus supporting the hypothesis of an innate
system dedicated to number processing (Wynn, 1998; Butterworth, 1999)? Or is there a system
for the processing of continuous quantities in which the inherent discrete, numerical nature of
such processing is absent and emerges only later? Or is it instead a general system (i.e., not
specifically dedicated to either number or quantity) which processes discrete objects and
possesses certain properties which might prompt observers to believe that they are witnessing
numerical processing (Simon, 1997)?

A number of sets of research claim to have found that preverbal infants possess a mental
representation of small quantities. The data comes from habituation tasks and tasks in which
the subjects’ expectations are violated. Generally, the experiments have employed material
which combines the number of items with various continuous dimensions which are closely
correlated with numerosity (e.g., contour length, surface area, volume; Starkey & Cooper,
1980). This observation prompted Feigenson, Carey, and Spelke (2002) to manipulate both the
numerical and continuous dimensions in order to study the comparison of the quantities 1
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versus 2 and 2 versus 3, their hypothesis being that the pair 1 2 should be easier to discriminate
than the 2 versus 3, as in previous studies. The results showed that children did not specifically
respond to numerosity either in a habituation or a transformation task. The authors therefore
suggested that when infants observed an event which involved a limited number of objects,
they opened an object file, i.e., a sort of mental model, for each of the objects in question. This
object file is thought to store the concrete characteristics of the represented item (color,
shape, identity etc.). Separate object files would represent multiple distinct objects or multiple
objects with different trajectories. This would not only be possible for numerosities of two or
three objects but also for larger quantities which exceed infants’ parallel processing capabilities,
for example, five or six items. The processing system for small numerosities would, therefore,
not be specifically dedicated to the processing of number. Feigenson, Carey, and Hauser (2002)
used a new paradigm (asking children to choose which of two boxes contains more biscuits) to
show that infants aged 10 to 12 months possessed a very early understanding of the more
than/less than relation. In general terms, these data showed that young children were able to
discriminate very precisely between small numerosities (1/2, 2/3) and that these discrimina-
tions were associated at an early age with the more than/less than relation. However, the data
also cast some doubt on the specificity of a system dedicated solely to number processing.

When the sets contained more than four or five objects, very young children were thought
to refer to an analogue representation, which yields an approximate quantification. In this
case, number processing might depend on another type of process which is associated with an
analogue number line (Mix, Huttenlocher, & Levine, 2002). Two series of experiments have
yielded unequivocal data in support of this hypothesis. In the first one, Xu and Spelke (2000)
have shown that six-month-old infants exhibit dishabituation when the set size changes from 8
to 16 counters (but not from 8 to 12), when the surface area, density, brightness, etc. are kept
constant across the sets. And in a second series of experiments, Xu (2000) has extended this
conclusion to the difference between 16 and 32.

To summarize, both newborns and animals seem to be able to mobilize two different systems
for the processing of quantities (Brannon & Roitman, 2003). One of these is precise and is
limited by its absolute set size (e.g., 1, 2, and 3), while the other is extensible to very large
quantities, operates on continuous dimensions, and yields an approximate evaluation in accor-
dance with Weber’s law. The question of the specifically numerical character of these modes of
processing remains to be answered, as does that of the characteristics of the representations
to which they might be applied.

Given that most researchers believe that there is an innate cognitive system which is
specifically dedicated to the processing of quantities and even to that of numerosities (Gallistel
& Gelman, 1992; Spelke & Dehaene, 1999), the question of the development of the abilities to
discriminate small quantities and to estimate larger ones has not been raised. However, one
vital question remains: do these preverbal competencies constitute the basis from which sym-
bolic arithmetic emerges and, if so, do they undergo any transformation as a result of this
association? Or is it more appropriate to consider that the acquisition of language and systems
of symbolic notation brings about new representations which are not contiguous with the
earlier ones (Carey, 2001), thus raising the question of the relations between these later
representations and the former ones?

The Persistence and the Development
of the Preverbal Representations in Adults

The question of further development of these initial proto-numeric competencies has been
addressed in three ways. Researchers have attempted to identify traces of these competencies in
adults either (a) by confronting them with tasks which prevent the use of symbolic representations;
(b) by searching for traces of these preverbal representations within symbolic number tasks;
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or, more rarely, (c) by examining the later development of arithmetic abilities in children
exhibiting an impairment in their preverbal representations.

Non-Linguistic Processing of Numerosity in Adults

To test the maintenance of preverbal representations of quantities in adults, Whalen, Gallistel,
and Gelman (1999) asked literate adults to produce tapping movements or to evaluate series
of tones corresponding to different numerosities in situations in which the high speed of
responding and stimuli presentation did not permit the use of verbal counting strategies. The
psychophysical function of the subjects’ performances showed that mathematically educated
adults possess an analog representation of quantity which has the same characteristics as that
observed in animals and infants. Whatever the task, either in estimation or production, the
quantities provided corresponded approximately to the required or presented numerosity and,
in the same way as in animals, the coefficient of variation (i.e., the ratio of the standard
deviation to the mean) remained constant, regardless of the quantities involved. In another
study, Barth, Kanwisher, and Spelke (2003) suggest that this representation is an abstract one.
These authors have indeed shown that normal subjects were able to perform approximate
comparisons of sets of numerosities within and across the visual and auditory modalities and
within and across formats (simultaneous versus temporal sequences) at comparable levels of
efficiency in tasks that also prevented the use of symbolic notations or language. Taken
together, these studies strongly suggest that when human adults have to process numerosities
in situations that prevent them from using symbolic representations, they use an analogue
representation of numerosity. Furthermore, their ability to compare numerosities across modal-
ities indicates that their judgments do not rely on modality and format-specific attributes (e.g.,
duration, rate, texture, density, contour length, or area). However, these attributes may act as
cues in the formation of an abstract representation.

Thus, adults may be able to represent discrete quantities nonverbally in a way which is
qualitatively and quantitatively similar to that which has been adduced in order to explain the
performances observed in animals and infants. Within this perspective, the number semantics
would be provided by the process which associates the numerosity and the symbolic notations
with these internal, nonsymbolic representations as well as by the processes which operate on
these representations.

Activation of the Preverbal Representations by the Symbolic Systems

The existence of analogue representations of numerosity is further supported by the observa-
tion of distance effects (number comparisons are faster and more accurate as the numerical
distance between the items in a pair increases) and size effects (at the same numerical dis-
tance, performance decreases as the size of the numbers increases). These effects indicate the
mobilization of an analogue representation and have been observed in adults performing
comparisons on the basis of symbolic notations (Brysbaert, 1995; Dehaene, 1989; Dehaene &
Akhavein, 1995; Dehaene, Dupoux, & Mehler, 1990). The distance effect is already present in
6-month-old infants (Xu & Spelke, 2000), since it has been observed in children aged 3 to 5
years old (Huntley-Fenner & Cannon, 2000). At 5 years old, response times and error distribu-
tions have been observed as being the same as those seen in adult participants (Duncan &
McFerland, 1980; Huntley-Fenner, 2001; Sekuler & Mierkiewicz, 1977; Siegler & Robinson,
1982). Furthermore, the cerebral activity observed in 5-year-old children and adults in number
comparison tasks is the same (Temple & Posner, 1998).

Moreover, some neuroimaging studies even point to the existence of different representations
of small and large numbers, echoing the distinction observed in children. In a related vein,
Gobel, Walsh, and Rushworth (2001a) have shown that the comparison of two-digit Arabic
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numbers is disrupted when the angular gyrus is stimulated by means of the transcranial
magnetic stimulation (TMS), but not when the stimulation is applied to the more anterior
supramarginal gyrus. In contrast, the comparison of single-digit numbers (Gobel, Walsh, &
Rushworth, 2001b) is disrupted when the supramarginal gyrus is stimulated. Other cerebral
imaging data provide further support for these findings, suggesting that anterior regions tend
to be activated in the case of single-digit numbers (Pinel, Dehaene, Riviére, & Le Bihan, 2001;
Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003), whereas more posterior regions are
activated in the presence of two-digit numbers (Naccache & Dehaene, 2001; Pesenti, Thioux,
Seron, & de Volder, 2000). Similarly, research involving various number tasks designed to
investigate the habitual signature of the analogue continuum in adults, (i.e., the size effect, the
distance effect, and the SNARC effect?), indicate that some of these effects differ for large and
small numbers (Verguts, Fias & Stevens, submitted). For example, Brysbaert (1995) obtained
a size effect in the naming of numbers from 11 to 90, whereas no size effect was observed by
Reynvoet, Brysbaert, and Fias (2002) in the naming of Arabic numerals from 1 to 9 or by
Butterworth and colleagues in the naming of Arabic numerals from 1 to 18 (Butterworth,
Zorzi, Girelli, & Jonckeere, 2001). These discrepancies led Verguts, Fias, and Stevens (submitted)
to suggest that there are actually two numerical systems in the human brain, one corresponding
to a discrete and exact representation which is used for small numbers, while another approxi-
mate one is involved in the representation of large numbers. Thus, even when they are pro-
cessing symbolic codes, the performances observed in adults exhibit effects similar to those
observed in children and animals. These data reinforce the idea that the preverbal internal
representations continue to be activated even when symbolic arithmetic is employed but do not
allow us to assert that the preverbal representations are not modified by the acquisition of
symbolic codes.

Premature Impairment of the Preverbal Representations

If we adopt the developmental continuum viewpoint which considers that the preverbal number
representation constitutes the base on which the symbolic system of number representation is
constructed, then we would expect to observe difficulties in the development of symbolic
arithmetic following the premature impairment of the preverbal representations. In fact, very
little work has been devoted to this question. To our knowledge, the only study of this issue is
the one conducted by Paterson (2001; see also Ansari & Karmiloff-Smith, 2002). This author
investigated the developmental paths exhibited by participants. In particular, he was concerned
about the relations between early performances in quantity discrimination and the later per-
formances observed in certain arithmetical and/or language tasks. Following a familiarization
phase, children aged 30 months who exhibited symptoms of Down’s or Williams’ syndrome
and two groups of normal children, one group matched on IQ and the other on chronological
age, were subjected to a task in which they were required to differentiate between 2 and 3.
Their performances were then compared with those of adults exhibiting the same disorders.
The reported data revealed an interesting paradox. Whereas the children suffering from
Down’s syndrome manifested a disorder in numerical discrimination, this was not observed in
the Down’s syndrome adult group. On the other hand, although the William’s syndrome
children were able to discriminate correctly between 2 and 3, no distance effect was observed
in the William’s syndrome adults. This research therefore indicates the value of conducting a
longitudinal study of the development of performances in children whose preverbal number
representations appear to be impaired and raises (but does not answer) the question of how
these representations are related to adult numerical abilities. Working within the same perspec-
tive, Ta’ir, Brezner, and Ariel (1997) described a child aged 11 years (YK) suffering from a
profound acalculia even though his IQ and language capabilities were normal. They believed
that YK might have suffered from a difficulty in constructing analogue number representations
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which was sufficiently severe to prevent later symbolic learning. Although this interpretation
is speculative, it does indicate the value of studying anarithmetic individuals in order to come
to a thorough assessment of their disorders (see also Chapter 17 by Barnes, Smith-Chant, &
Landry in this volume).

The question of the relationship between the preverbal number and the symbolic ones
remains unanswered. However, before examining this question further, we shall present a brief
review of the current state of knowledge concerning symbolic representations followed by an
examination of the issue of what it is to which they may be related.

The Symbolic Representations

Any model of number processing must account for the fact that educated adults are able to
recognize and produce numbers in the Arabic code and the verbal code. It is therefore necessary
to postulate that adults possess mental representations which are able to guide these recognition
and production operations. However, researchers disagree as to the role and the format of
these representations and their interrelations. It now appears to be well established that the
symbolic representations are functionally independent and that they may undergo isolated
impairment or be degraded in accordance with specific patterns in brain-damaged patients.
More precisely, when considering the manipulation of symbolic representations, dissociations
have been observed between the comprehension and production mechanisms (Benson & Denckla,
1969; McCloskey, Sokol, & Goodman, 1986, case of HY); between the Arabic code and the
verbal code (Noél & Seron, 1993, case of NR); and, finally, between the lexical and syntactic
mechanisms within each code (Cipolotti, Butterworth, & Warrington, 1994, case of DM; Noél
& Seron, 1995; Sokol & McCloskey, 1988). Evidence for the existence of some of these
dissociations is also provided by cerebral imaging data which suggests that the verbal and
Arabic codes are not processed in the same regions (Pinel et al., 1999). We shall examine the
Arabic and verbal representations separately, starting with a presentation of the structure of
the notational systems corresponding to each of them.

The Verbal Codes for Naming Quantities

The verbal systems for naming quantities vary significantly from one culture to another
(Hurford, 1987). However, behind this cultural diversity lie a number of organizational principles
which appear to be universal.

The linguistic organization of the verbal system is manifest at different levels: the size of the
lexicon (e.g., the units, the teens, the decade names, and, in certain languages, multipliers
such as hundred, thousand and million) and the complexity of the syntax in which the order of
the items reveals their relations which are either additive (twenty-four, fifty-six) or multiplicative
(three thousand; two hundred). Importantly, these lexical and syntactic variations may make
the base-ten structure of the number verbal system more or less transparent.

Specifically, the base-ten structure of the system is not immediately evident at the beginning
of the number verbal sequence. This fact becomes clear if we compare verbal numbering in
German, English, Spanish, French, Italian, and Chinese. In the Chinese system, the numbers
above the base are constructed according to very regular additive, multiplicative, and power
rules (i.e., eleven is spoken as “ten one,” twenty-three as “two ten three,” etc.). This is clearly
not the case for most western languages, which are not regular base-10 systems. As a result,
young westerners have to learn by heart the sequence of number names extending above ten
(such as in English: eleven, twelve, thirteen, and so on). In consequence, English (or German
or French) children perform equally well as their Chinese counterparts on the verbal names up
to ten (i.e., up to the age of about three years) which demand the memorization of the number
words and their sequence. In contrast, their performances at age four or five are considerably
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worse than those of young Chinese children when asked to count beyond 10 (Fuson & Kwon,
1991; Miller, Smith, Zhu, & Zhang, 1995). This superiority persists throughout elementary
school and beyond (Geary, Salthouse, Chen, & Fan, 1996; Stevenson et al., 1985; Stevenson,
Lee, & Stigler, 1986), but the question of its impact on later learning remains unanswered.
However, the syntactico-lexical structure of the verbal numeral system also has an influence on
the naming errors made by brain-damaged patients. Some patients primarily made lexical
errors (e.g., saying sixty-three instead of sixty-five), whereas others made syntactic errors
which affect the size (e.g., 10023 instead of 123) or the order of the components (e.g., vingt
quatre instead of quatre-vingt) (Seron & Noé&l, 1995).

The Arabic Code

The written numbering that developed from Indo-Arabian origins possesses only a limited
number of digits (10: from 0 to 9) and uses positional notation to encode the powers of 10. It
offers many advantages for encoding numerosity. It is easy to interpret and write, it can be
easily generalized to very large numbers, and its structure is readily conducive to the development
of computational procedures (Nickerson, 1988; Zhang & Norman, 1995). The acquisition and
use of this notational system tend to have been studied to a lesser extent than the acquisition
of the verbal system. This is probably due to the fact that Arabic numerals are taught and are
therefore explicitly learned.

The data revealed by developmental studies (Hughes, 1986) indicate that the learning of the
series of digits (from 1 to 9) is unproblematic. The zero, as a digit, causes more difficulties
(Wellman & Miller, 1986), although we do not know exactly why. It may simply be because
there is no habitual correspondence in verbal numbering. It should also be noted that zero
requires abnormally long reading times in adults (Brysbaert, 1995). However, the most signifi-
cant difficulties in handling Arabic numerals result from the use of positional notation and, in
particular, from the fact that the value of a digit changes depending on its position within a
number (e.g., 1 may be worth a unit, ten, a hundred, etc., depending on the position it
occupies). In the writing of multiple digit numbers, the 0 again causes particular difficulties
which, in children, result in the appearance of errors in the writing of numbers containing an
interposed zero as well as in a modification to the kinematics of the handwriting (Lochy,
Pillon, Zesiger, & Seron, 2002). Finally, in brain-damaged patients, the 0 is the object of
selective errors depending on whether it occupies a syntactic or lexical role in the number
(Grana, Lochy, Girelli, Seron, & Semenza, 2003).

Relations between the Arabic and Verbal Codes

In terms of ontogeny, verbal numerals are used before arabic numerals. In addition, the latter
are the object of explicit teaching. At least in western societies, tuition is conducted in such a
way that the verbal code is systematically used to introduce the arabic code. The former
therefore precedes and, at least initially, takes precedence over the latter. However, the observa-
tion of double dissociations between the two codes in brain-damaged patients suggests that
they are relatively independent of one another in adults (Anderson, Damasio, & Damasio,
1990; Cipolotti, 1995; McCloskey, 1992). This double observation—initial dominance of the
verbal code and later independence of the two codes—raises questions concerning their inter-
relations in adults on the one hand and the development of learning and the subsequent
representations on the other. The task that has been used most frequently to examine this
question is the transcoding task. This consists of asking subjects to transform a form pre-
sented in one code (the source code) into another code (the target code; i.e., reading aloud or
writing under dictation arabic numerals).
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Some studies have investigated the hypothesis that the processing of the arabic code is
systematically mediated by the verbal code. The question addressed is as follows: do tasks such
as magnitude comparison, reading, or calculation with arabic numerals induce the systematic
activation of the verbal code? The hypothesis that the verbal code is automatically activated
was suggested by Noél and Seron (1993), who described a patient who compared two numbers
not on the basis of the arabic numerals (e.g., 3) presented to him but on their verbal counter-
parts (e.g., /trwa/). The authors suggested that some subjects might employ a “preferred code”
to access number-related knowledge. The possible activation of verbal representations when
processing arabic numbers is also suggested by the observation of code intrusion errors in
transcoding tasks. For instance, Thioux and his coworkers (Thioux, Ivanoiu, Turconi, & Seron,
1999) observed a patient with an Alzheimer’s dementia (AD) who exhibited systematic intrusions
of verbal numerals when she had to produce arabic forms, whatever the task (calculating,
transcoding, delayed copy). These intrusions gave rise to mixed errors such as “3 mille”
instead of “3000” (trois mille/three thousand) or “15ZE” instead of 15 (quinze/fifteen) or even
“h8t” instead of 8 (huit/eight). However, in group studies, intrusion errors have been observed
in both directions (Arabic to verbal and vice versa), mainly in AD patients (Tegnér & Nybdick,
1990; Kessler & Kalbe, 1996) but also in normal elderly subjects (Della Sala, Gentileschi, Gray,
& Spinnler, 2002). These errors have been interpreted as the result of an impairment in the
transcoding mechanism itself as well as in inhibitory processes which are postulated to be
necessary to inhibit one code when the task requires the production of the other. In such a
view, when subjects have to process a number in one code, the other code is automatically
activated but is not produced thanks to the inhibitory processes.

In other transcoding studies, researchers have examined whether there are any traces of the
activation of the verbal code in tasks soliciting the arabic code. The initial studies investigated
the reading of Arabic numbers (e.g., 90), the length in syllables and in phonemes of the
corresponding verbal number being controlled. The various authors either asked their subjects
to read numbers aloud (Eriksen, Pollack, & Montague, 1970) or made use of eye movement
analysis techniques during silent reading. Pynte (1974) found that the fixation time for num-
bers presented in arabic format increased as the number of syllables that the corresponding
verbal form possessed increased (for example, this time was longer for 82 (quatre vingt deux—
3 syllables) than for 28 (vingt huit—2 syllables). Gielen, Brysbaert, and Dhondt (1991, Experi-
ment 1) have replicated this result. These data support the hypothesis of systematic verbal
mediation during the processing of arabic numbers. However, when a motor (nonverbal) task
was used to indicate whether one number was located between two others, all three being
presented in arabic format, no phonological length effect was observed but a size (magnitude)
effect emerged (Gielen et al., 1991, Experiment 2). This last result shows that the processing
of arabic numbers does not systematically and automatically give rise to phonological recoding
and that arabic numbers may directly activate the analogue semantic representation since a
magnitude effect is observed.

The data relating to development and learning, in particular those drawn from interlanguage
comparisons, favor the idea that, in the first acquisition stages, the arabic code is dependent
on the verbal code. Thus, children from Southeast Asia whose verbal system for number
naming is decimal based (e.g., twelve is spoken “ten two”; twenty-eight is rendered as “two ten
eight”) learn the arabic code better and more quickly than their western counterparts, who are
generally confronted with nontransparent verbal systems in which the base-ten organization is
less clearly perceptible (onze, douze; eleven, twelve; elf, zwolf) (Miura, Okamoto, Kim, Steere,
& Fayol, 1993; Miura, Okamoto, Kim, Chang, Steere, & Fayol, 1994). These interlanguage
comparisons suggest that the transparency of the verbal system, that is, the fact that the base-
ten is clearly apparent, facilitates the acquisition of the arabic code, thus providing support for
the position of those who believe that the latter is dependent on the former (Bialystok, 1992;
Bialystok & Codd, 1997).
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Starting from this conception, Seron, Deloche, and Noél (1992) have shown that the errors
of children aged seven and nine years in tasks requiring transcoding from the verbal to the
arabic code (e.g., 10013 for “mille treize/one thousand and thirteen” or 10030 pour “mille
trente/one thousand and thirty”; i.e., the so-called syntactic errors) are due to the induction
and application of an asemantic transcoding mechanism which permits the direct transition,
by means of formal rules, from the verbal code (first) to the arabic code (second) (Power & Dal
Martello, 1990). By comparing the transcoding performances of Walloon and French children,
the former being faced with a simpler number naming system than the latter,® Seron and Fayol
(1994) have been able to show that the difficulties are primarily located in the production
phase, that is to say at the point where the sequence of digits is produced. Here again, the
earlier, dominant verbal format guides the processing of the arabic format.

However, other data yielded by studies of normal or pathological development/learning
support arguments contrary to this hypothesis. Jarlegan, Fayol, and Barrouillet (1996) asked
French second-graders attending normal schools to transcode quantities of varying levels of
difficulty (see Seron & Fayol, 1994). These quantities were presented in three formats (analogue:
cubes-units, bars-tens, plates-hundreds, etc.; written verbal: sixty-three, eight hundred and
four, etc.; arabic: 97, 630, etc.) and the children had to transcode them into the two other
formats (e.g., from verbal to analogue and arabic; from arabic to written verbal and analogue).
The results revealed that the performances were significantly better when transcoding was
performed from the arabic code to the analogue format (and vice versa) than when the verbal
code was involved (it should be remembered that the French verbal code is particularly difficult).
Such a result is difficult to reconcile with the idea of systematic mediation by the verbal code.
As of second grade, children appear to be able to establish a direct relation between the
analogue format and the quantities expressed in arabic code without needing to perform any
verbal recoding. Finally, Donlan (1993) has also suggested the independence of the codes.
While dysphasic children exhibit verbal performances which are generally about two standard
deviations below those of normal children, thus resulting in a failure to accomplish certain
verbal number tasks, their understanding of quantities, in particular as revealed by comparison
tasks, is unaffected. Furthermore, the dysphasic children succeed in these same tasks when
they relate to continuous quantities (e.g., surface area) just as well as when these quantities
are presented in arabic format (Donlan, Bishop, & Hitch, 1998).

To summarize, the currently available data suggests that, in western cultures, the arabic
code is initially learned in relation to the verbal code. However, the arabic code very quickly
becomes independent of the verbal code. In normal subjects, this independence is manifested
in the ability to perform better, or differently, with the former compared to the latter. It can
also be seen in the vastly superior performances achieved by dysphasic children when using
the arabic code. It has been shown to exist in adult patients through the presence of double
dissociations.

These conclusions lead us to raise two issues. The first relates to the possibility that the
arabic code is, from the outset, associated with the analogue representation without any
mediation via the verbal code. If this is the case, it would be conceivable to design a specific
mode of teaching the arabic code for dysphasic children who would then no longer be ham-
pered by the effects induced by their language problems. The second issue bears on the
relations between the verbal code and the arabic code. In effect, even if access to the verbal
code appears to be neither automatic nor indispensable in certain tasks (Brysbaert, 1995), we
know that it plays a role in others, particularly in the transcoding tasks. One possible hypothesis
is that during the transcoding of the verbal code into the arabic code, the retention of the
verbal form (e.g., one thousand two hundred and ninety-seven) at the very same time that
transcoding is to be performed tends to induce performance errors without, however, affecting
number understanding or the number processing mechanisms (Fayol, Barrouillet, & Renaud,
1996). Empirical research will be necessary to fully address this question and to achieve a
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better understanding of the errors described in the literature which may be due not to a
deterioration of the numerical representations but to the fragility of the phonological information
or to a problem in keeping this information activated during transcoding.

Verbal Code and Semantic Representations

Some hypotheses have supported the idea that language might have a major impact on the way
arithmetic cognition proceeds (Brysbaert, Fias, & Noél, 1998). Indeed, differences in performance
in arithmetical tasks, which are associated with language differences, have been reported in a
number of studies. However, very few of these have established a relation between these
differences and a theory of arithmetical cognition (Fayol, 2002), thus making it difficult to
determine the stage in processing at which the variations in performance have their origin.
For example, the differences may not be due to any change in the numerical representations as
a function of the language in question but, more simply, to the fact that the cognitive cost
involved in the transition from the verbal format specific to any given language to the abstract
or analogue format may vary from language to language.

The Question of the Possible Impact
of Language on Mental Arithmetic

Some theories postulate that language exerts an influence on mental arithmetic only at a
peripheral encoding stages, whereas others propose that the language representations intervene
at more central processing stages. McCloskey (1992), like Gallistel and Gelman (1992), consid-
ers that numerical processing is performed on mental representations that are independent of
language, the input and output formats therefore having no influence on the representations
or on the arithmetical processing performed. Other theories hold that numerical processing is
totally or partially dependent on language and more generally on the modality and the format
of the input stimulus and response. Campbell and Clark (1988), for example, postulate that
arithmetical-fact retrieval is mediated by format-specific representations; therefore, they pre-
dict the existence of languagerelated effects in mental arithmetic when problems and/or
answers have to be produced in the verbal code. Finally, other authors propose that some
number processing is independent of language, whereas some is critically dependent on verbal
representations. This is the case of Dehaene’s triple code model (Dehaene & Cohen, 2000),
which postulates the existence of three interconnected systems of numerical representation,
each of which is associated with certain numerical activities. Some activities, such as the
comparison or estimation of numbers, are performed on an analog format and are thus
language-independent, whereas others, such as arithmetical-fact retrieval, are stored in audi-
tory-phonological representations and are thus language dependent. Such a model is thus
compatible with the idea that language has either a central (i.e., affecting the form of the
representations) or peripheral (i.e., affecting only the modes of access to the representations)
impact on arithmetical cognition.

In mental arithmetic, many studies have been conducted to determine the nature of the
underlying representations. These have taken two different directions: some have tried to
demonstrate the impact of stimulus formats on arithmetical-fact retrieval by contrasting ver-
bal and arabic codes—or even the Roman one (Gonzales & Kohlers, 1987; Noél & Seron, 1992,
1997)—whereas others have contrasted the performances of bilingual subjects by varying the
first or second language used when resolving simple arithmetic problems (Marsh & Makki,
1976; Frenck-Mestre & Vaid, 1993; Brysbaert, Fias, & Noé&l, 1998). The majority of this re-
search has identified language- or format-related effects in arithmetic although their interpre-
tation remains controversial. Some authors (Brysbaert et al., 1998; McCloskey, 1992), hold
that the majority of the effects could be due to the transition from the input formats (e.g.,
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verbal or arabic) to the abstract (or analogue) format which is used for processing. Others
(Campbell, 1994), in contrast, believe that at least the numerical facts are stored in a linguistic
format. It is currently difficult to come to a decision between these two views. However, a
consideration of the developmental and learning data could help us to constrain the models
and interpret the phenomena that have been identified in adult subjects. Working within this
perspective, Spelke and Tsivkin (2001) used a bilingual (Russian/English) learning study to
explore the role of a specific language in human representations of number. Adults were
taught new arithmetical operations, arithmetic equations, and new historical or geographic
facts in one language. After learning, they were tested in both languages. Results indicated
that adults retrieved information about exact numbers more effectively in the language of training
but retrieved information about approximate numbers and non-numerical facts with equal
efficiency in either language. These results suggest that the representation of large, exact
numbers is language dependent, whereas that of approximate number representations is not.
However, we have to be prudent about generalizing such data to the representation of arith-
metical facts. Indeed, in a recent study, Whalen and his collaborators (Whalen, McCloskey,
Lindenmann, & Bouton, 2002) have described the performance of two brain-damaged patients
who, although unable to generate the phonological representation of arithmetic problems,
could nevertheless retrieve their correct answer in the arabic code. Such patterns of perfor-
mance do not negate the possibility that arithmetical facts are stored in a phonological form
but are incompatible with the hypothesis that this phonological form is the unique stored
representation.

The Question of the Development of the Relations
between Preverbal and Verbal Representations

The identification of very early abilities to compare and evaluate quantities has led researchers
to believe that the first numbers are probably acquired very quickly and easily. It would then
appear to be sufficient to establish simple associations between the verbal labels and small
quantities (e.g., one, two and three) which are known to be discriminated at a very early age.
However, developmental studies indicate that this phase poses particular problems. There is
indeed a period during which children know that number words refer to cardinality but do not
know which. Wynn (1992) presented children between two and a half and three and a half
years old with number tasks in which the children had to choose which of two cards (contain-
ing drawings of objects or sets of objects) corresponded to which cardinality. The data, and in
particular that obtained from the longitudinal study, suggest that a considerable period of time
is necessary before children move on from the knowledge that a number word refers to a
quantity to the knowledge of precisely to what quantity “3” or “4” refers. This phenomenon is
difficult to explain within an empiricist perspective, which conceives of learning in terms of
associations between quantities and names. The same holds for the theory proposed by Gelman
and Gallistel (1978), which postulates that children possess a set of innate counting-related
principles and that these principles underpin the routines implemented during the activity of
counting.

The acquisition of the cardinal meaning of number names raises two problems that have
been underestimated: the abstract nature of the encoding of quantities in terms of names and
the categorical nature of the number lexicon (Fayol, 2002). The use of verbal numbering to
determine the cardinal value of a set presupposes the understanding of the principle according
to which language represents quantities. In an analogue mental representation, an increase in
quantity is reflected by an increase in length, density, or volume (English & Halford, 1995). In
verbal numbering, quantity is represented in a conventional, nontransparent way in terms of
the rank occupied by the signs in the verbal sequence (one, two, three, four, five, etc.). “Six”
refers to a larger quantity than “five” does because it comes in the sequence after “five.”
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However, there is nothing in the term “six” to indicate that the cardinal value to which it
refers is greater than “five.” The name provides no information about the increase in the
quantities. It therefore makes it necessary for the number names to evoke cardinal values in a
precise and automatic fashion. It is, without doubt, that the evocation of cardinal values
constitutes the most serious problem confronting young children (aged 18 months to four or
five years), and the problem is related to the question of categorization.

The ability to recognize equivalence is a key cognitive ability which in the numerical domain
presupposes the capacity to recognize sets as being equivalent although they differ on numerous
dimensions apart from one: cardinality. Two opposing ideas have been put forward in this
regard: According to the first, the construction of numerical equivalence classes obeys the
general principles of categorization. If this is the case, then judgments of similarity should be
sensitive to the same factors as those that have been identified in the similarity judgment
tasks used in other fields, for example, the degree of similarity relating to irrelevant dimensions
or the knowledge of number words. If knowing the number words has an impact, then children
who know the number names should achieve better performances due to the fact that they are
able to perform categorizations on the basis of these words. According to the second approach,
learning in the numerical field is guided by innate, specific principles (Gallistel & Gelman,
1992; Gelman & Gallistel, 1978). If this is indeed the case, then the development of numerical
equivalence should not exhibit the same difficulties as have been observed in other fields,
especially in relation to categorization.

Mix (1999) has reported a series of nonverbal experiments in which children aged between
two and one-half and four and one-half years had to choose which of two sets differing in the
nature, density, and length of the items corresponded to the number of items depicted in a
target set. Before doing this, the children were asked to perform counting tasks, which made
it possible to assess their level of numerical performance. The results revealed a gradual
progression between the ages of three and four and one-half years from the recognition of
equivalence in comparisons bearing on identical objects to the recognition of equivalence in
comparisons involving relatively homogenous sets and then onto heterogeneous sets. They also
revealed a weak impact of the knowledge of the number words. The children who could count
furthest were also those who were best able to recognize the equivalence of heterogeneous
sets. However, the data reported by Starkey (1992) indicated that, at 18 months, children
understand that a transformation (e.g., adding or taking away) modifies the quantity even if
they err as to the precise result of the operation. This data also revealed that such perfor-
mances were not dependent on the prior acquisition of verbal counting. Therefore, the problem
of the relation between the preverbal and verbal codes is as yet unresolved.

The transition from the preverbal representations to the verbal code is a difficult step
during which children have, on the one hand, to acquire the ability to mentally evoke quantities
on the basis of names and to do so independently of the concrete characteristics involved and,
on the other, to understand that the order of the number names indicates, in a conventional
way, an increase in quantity. These two dimensions each raise specific problems which as yet
have been poorly identified and insufficiently studied but which exist in all languages, as the
comparable slowness in learning the first section of the verbal number sequence (i.e., from one
to ten) in both western and eastern cultures attests (Miller & Paredes, 1996). Furthermore,
the establishment of associations between cardinalities and values seems to be based on the same
mechanisms that are involved in the other types of categorization. In particular, the avail-
ability of a lexicon makes it possible to consider sets whose appearance would tend to cause
them to be processed separately as equivalent in terms of their cardinality. During this stage,
language would thus act as a cognitive tool facilitating the formation of cardinality. To our
knowledge, no one has systematically addressed this question in research.

The most important question remains that of the initial establishment of a relation
between the preverbal representation and the verbal code. In effect, even in the case of very
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small quantities (i.e., 1, 2, and 3) which, according to many studies, are acquired at a very
early age, the observed learning difficulties lead one to suspect that the preverbal representa-
tions might not be specific to numbers but, instead, have to be constructed—including in the
form of discrete, preverbal representations. Indeed, in a study of children aged between 30 and
47 months, Jordan, Huttenlocher, and Levine (1992, 1994) obtained performances which sug-
gest the existence of a precise computational mechanism which can be applied to small quan-
tities independently of the acquisition of language and even of cultural experience. This
mechanism could be based on the mental manipulation of object files or on that of more
abstract representations such as the numerons initially referred to by Gallistel and Gelman
(1978) as a sort of nonconventional, discrete, symbolic code.

Fingers as the Missing Link?

To summarize so far, the acquisition by children of the first number words and their matching
to numerosities appear to be a long and hesitant process which does not seem to lead on
naturally from the preverbal skills that are already in place in infants. The experienced difficulty
in documenting such a relationship could be due to the fact that this relationship is only an
indirect one. It could indeed be that the linkage between preverbal number knowledge and
language is in fact mediated by the relations children establish between number concepts and
the use of their fingers and hands.* As rightly noted by Butterworth (1999), in all human
cultures, children use their fingers to count before they are systematically taught arithmetic in
school. At the developmental level, bi-directional links have been established between the
presence of digital agnosia and an arithmetical deficit, in group studies (Kinsbourne &
Warrington, 1962, 1963; Strauss & Werner, 1938; Rourke, 1993) as well as in single case study
(Pebenito, 1987). Furthermore, in a longitudinal study, Fayol and his coworkers (Fayol, Barrouillet,
& Marinthe, 1998; Marinthe, Fayol, & Barrouillet, 2001) have shown that the perceptuo-tactile
performances of children evaluated at age five are better predictors than the general develop-
ment scores of subsequent arithmetical performance at six and then eight years of age. This
reinforces the hypothesis of a functional link between digital representations and numerical
representations. These results confirm the link that exists between the perceptivo-tactile skills
and the ability to represent and manipulate quantities and suggest their long-term predictive
character. In a similar vein, Barnes and her collaborators have shown in a study on children
with the neurodevelopmental spina bifida myelomeningocele (SBM) that some tests on fine
motor skill (implying the fingers) predict significant and unique variance in tasks measuring
counting concept competencies, whereas visuo-spatial competence appears to be unrelated to
this specific number competence (Barnes, Smith-Chant, & Landry, Chapter 17, this volume).
These data are also supported by some neuroanatomical data. First, brain-damaged adult
patients suffering from severe acalculia after a left brain parietal lesion exhibit a set of
associated disorders (the Gertsmann syndrome), a key element of which is the loss of the
finger sense (digital agnosia) (Gertsmann, 1940; Cipolotti, Butterworth, & Denes, 1991; Mayer
et al., 2000). Second, in various functional imaging studies (Pinel et al., 1999; Dehaene et al.,
1996; Pesenti et al., 2000), the involvement of the left precentral gyrus and close areas in the
frontal lobes has been repeatedly observed when subjects are asked to perform simple arith-
metical tasks. Third, anatomical magnetic resonance images in children with SBM have shown
that the posterior regions of the brain in these children have reduced volumes of gray and
white matter. However, the relationship between these volume changes and math and fine
motor control skills is still to be quantitatively examined.

Although these associations are correlational and cannot thus be used to infer that finger
use is critical for the acquisition of counting and other basic computational abilities, some of
the characteristics of finger-based representations and finger use make these a powerful
candidate for the establishment of such a link. At a representational level, fingers, like language,
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have an abstract dimension since the same pattern of raised fingers can equally well represent
three giraffes, three toys, or three elements in an argument. However, whereas language
permits the same type of abstraction, finger representations exhibit an iconic relation to
numerosities, since they preserve the one-to-one matching relation between the represented
set and the fingers used to represent it. Fingers also possess the advantage of exceeding in
magnitude the span limitation of the object files (i.e., three or four items; Feigenson et al.,
2002). They also have the advantage that they may support children’s actions when adding
items to, or removing them from, small sets to which the raising or lowering of fingers can be
made to correspond. In this way, finger actions can reproduce additive or subtractive compo-
sitions (Brissiaud, 2003). Later, when children begin to count, the fingers might act as an
anchor point or memory aid in the realization of the counting procedures, with the order of
the fingers constituting a conventional sequence which children might associate with the
verbal labels (Fuson, 1988). Finally, it is perfectly conceivable that the joint use of the fingers
and the hands also constitutes a useful representation that plays a mediating role in the
understanding of the number concept of base. Children may indeed discover that one hand
raised and one finger raised on the other hand makes six fingers and that there is, therefore,
a way of counting units by making use of higher-order units.

Relations between Preverbal Representation and Arabic Code

Whereas the study of the relations between the verbal code and preverbal representations has
been frequently addressed, less attention has been paid to the relations between preverbal
representations and the arabic code.

As a matter of fact, quantities are not necessarily compared in the same way when they are
presented in arabic or verbal format. For example, the decision may be made either sequentially
by processing the different digits one after the other until a decision is possible or holistically
by taking account of the overall quantity (i.e., the magnitude). The data available regarding the
comparison of large numbers (i.e., of three or more digits) suggest that adults use a sequential
procedure and therefore successively take account of the different digits (Hinrichs, Berie, &
Mosell, 1982; Poltrock & Schwartz, 1984). In contrast, comparisons of one- or two-digit numbers
tend to support the theory that numbers presented in arabic format directly activate the
analogue representation and are therefore processed on the basis of this representation rather
than by means of a comparison of the digits they contain as a function of their position in the
number. Thus, Dehaene and his collaborators (Dehaene, Dupoux, & Mehler, 1990) as well as
Brysbaert and colleagues (Brysbaert, 1995; Reynvoet & Brysbaert, 1999) found a general
distance effect but no decade break effect in number comparisons involving two-digit numerals
(but see Nuerk, Weger, & Willmes, 2001, for a different point of view).

In accordance with this theory, at least as far as the quantities corresponding to units and
certain Decade-Unit (DU) combinations are concerned, numbers in arabic format activate the
corresponding analogue representation (i.e., the number line) and are therefore processed
holistically. However, numbers larger than two-digit numbers are compared by means of a left-
to-right serial procedure for establishing correspondences between their components. This
corresponds to an analytical processing mode. What is yet unknown is whether the transition
from a holistic processing mode to an analytical processing mode occurs systematically as of
a certain quantity (e.g., 99) or whether interindividual variations exist. We also do not know
whether there are some numbers that give rise to both analytic and holistic processing.
Finally, we do not know whether holistic processing is strategic (i.e., under the participant’s
control) and, if so, what factors prompt its application.

The unsolved question is to determine the extent to which the presentation of numbers in
arabic numerals automatically activates the corresponding analogue representations, even
when these representations are not relevant for the task in question. Dehaene, Bossini, and
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Giraux (1993) made use of a Stroop-type task, in which they asked adults to decide which of
two numbers was the larger while presenting them with pairs of digits whose physical size was
either congruent (5 3) or not congruent (5 ;) with the magnitude. They observed a size congruity
effect which indicated the existence of automatic processing of the irrelevant dimension (as
the physical size). Importantly, this congruence effect was observed both when the judgments
related to digits and to physical sizes. This led the authors to conclude that access to numerical
information is autonomous in adults such that it starts and continues through to its conclu-
sion without any intentional action (Zbrodoff & Logan, 1986).

Duncan and McFerland (1980) have reported a distance effect in magnitude comparison
tasks involving pairs such as (2,3) or (2,8) in both children and adults. This result suggests
that access to the analogue representation of quantity is available at an early age. However, it
is not possible to determine whether this access is automatic or strategic (i.e., intentional).
Girelli, Lucangelli, and Butterworth (2000) used a Stroop-type paradigm to trace the develop-
mental changes in the automatic and intentional processing of arabic numerals. University
students, as well as first-grade, third-grade, and fifth-grade children compared the numerical or
physical size of arabic numerals varying along both these dimensions. In the numerical compar-
ison task, a size congruity effect was found at all ages, whereas in the physical comparison
task, the incongruity between physical and numerical size affected only older children and
adults. These findings strongly suggest that the automatization in number processing is achieved
gradually as numerical skills progress and that six-year-old children do not automatically
access the analogue representation of quantity when confronted with digits. Rubinsten, Henik,
Berger, and Shahar-Shalev (2002) have confirmed the key elements of these conclusions. The
arabic code becomes established rapidly as a structure—easy to learn and use, at least for small
quantities—and is relatively slow in acquiring the capacity to activate the precise quantities
with which it is associated quickly. However, we do not possess the longitudinal studies required
in order to specify the course of this acquisition and determine whether and to what extent the
associations between the arabic numerals and quantity representations are dependent on the
verbal code. Nevertheless, it seems clear that the establishment of a precise relation between
the arabic code and the analogue representation occurs rapidly during the period between six
and nine to ten years of age.

CONCLUSIONS AND OUTLOOKS

The domain of number and calculation processing is still confronted with many open questions
concerning the nature of the representations and processes that underlie arithmetic and
number cognition. As we conclude this chapter, we stress two main challenges for the future.
From the developmental point of view, it will be necessary to explain how preverbal representa-
tions of numerosities, and even the simple additive and subtraction processes that they seem
able to sustain, are connected to (or transformed into) symbolic representations. This is a
somewhat complex question since the literature indicates that children probably possess two
different systems for representing numerosities: the object-file system and the analogue-
magnitude system. Both these systems exhibit some important limitations compared to symbolic
representations. On the one hand, object-file representations are limited to small sets and
cannot represent cardinal values. On the other, analogue magnitude representations have no upper
extension limit. However, in line with Weber’s law, numbers become more imprecise as their
magnitude increases. Furthermore, the analogue medium, at least as it is presently conceived,® is
unable to represent the equidistant property of the number system and does not constitute a
useful medium for precise calculation (even if addition has been described as iterative jumps
on the number line and multiplication as surface areas determined by the length of the
multiplicands; Gallistel & Gelman, 1992). It is also clear that the passage from the protonumeric
representations to the symbolic ones is not rapid or straightforward. On the contrary, the time
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asynchrony between the age at which children master the recitation of the verbal number
sequence and the age at which this sequence is used for cardinality judgments and calculation
is so large that it seems implausible that the protonumeric system implicitly contains all the
core principles of symbolic number and arithmetic processing. This asynchrony has even led
some authors to suggest the hypothesis of a partial discontinuity between these different
systems. It should be stressed here that the use of fingers as a representative medium may
play an intermediary role, permitting the connection between the object-file representations
and the symbolic ones. Fingers, as used by children in number and calculation activities, do
indeed constitute a system that shares some properties with both preverbal and symbolic
systems. Specifically, fingers and the preverbal systems share an analog (or iconic) relation to
the numerosities that makes it possible, as in the object-file system, to establish a one-to-one
correspondence between them and a set of numerosities. On the other hand, fingers and the
verbal system share some abstract properties, since the same collection of fingers can represent
any set of numerosities and, more importantly, the raising of fingers in a regular order can be
matched with the order of the number names in the verbal number sequence. Finally, fingers
may also be used to realize addition and multiplication and, in combination with the hands,
they could act as a mediating representation for the understanding of the concept of base. It
is necessary, however, to recognize that although these particular structural and processing
aspects of fingers use make them plausible candidates for the missing link in a continuity
hypothesis, their precise role in math development still has to be empirically established.

In the study of math cognition, a considerable amount of time is currently devoted to
checking, in human symbolic arithmetic, for the signature behind the symbolic systems of the
preverbal ones. We think that this effort has been detrimental to the study of the properties
of the symbolic number system. Currently, there are only two main proposals concerning the
number representations associated with the symbolic systems: the McCloskey’s (1992) base
ten-semantic system and the verbal semantic system developed by Power and Longuet-Higgins
(1978; Power & Dal Martello, 1990). A good deal of work remains to be done before we
understand how the human brain is able to represent many of the properties of the symbolic
number systems per se.
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Number Recognition
in Different Formats

Marc Brysbaert

An interesting aspect of numbers is that they can be presented in different formats. Although
numbers are associated spontaneously with arabic digits, they can also be represented as
Roman numerals (e.g., MMIV), sequences of words (both spoken and written), or in an ana-
logue form (e.g., dots on a die, tallies on a sheet of paper, or bar graphs). This raises the
question of how numbers in the different formats are processed. What are the commonalities
and what are the differences? I will first deal with the analogue displays, which have a
meaning both for humans and animals, and I will then continue with the verbal and the arabic
numerals, which are uniquely human achievements. In line with McCloskey and Macaruso
(1995), I will use the term number for format-independent aspects of numerical cognition and the
term numeral to refer to modality-specific representations (i.e., analogue, verbal, and arabic
numerals).

PERCEIVING ANALOGUE DISPLAYS OF NUMBERS

The basic function of numbers is to represent quantities (also called numerosities when the
elements are clearly separated). By counting how many similar elements there are in a scene,
we can assess their number. Because five-year-olds regularly make errors in their counting
(e.g., Gelman & Gallistel, 1978), for a long time it was thought that knowledge of numerosities
required formal education to be mastered. However, research in the 1980s and 1990s has
indicated that this is not true for the apprehension of small numerosities. It is now well
established that young babies, just like many kinds of animals (rats, pigeons, pigs, etc.), can
easily discriminate numerosities smaller than four (see Chapter 6). In addition, they can
compare two quantities when the differences between the quantities are large. For instance,
Antell and Keating (1983) reported that newborns who were habituated to successive displays
with two elements each (and, therefore, barely looked at them anymore), showed increased
interest when a display with three elements was presented. Using a similar habituation tech-
nique, Xu and Spelke (2000) reported that 6-month-olds can discriminate between 8 and 16
items but not between 8 and 12.

Human adults also show a distinction between the perception of a small number of items
and the perception of a large number. Whereas it only takes some 50 milliseconds (ms) longer
to decide that a display contains three dots than to decide that it contains one dot, the time
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needed to detect nine dots is more than 600 ms longer than the time to detect seven dots. The
difference is even consciously felt by the participants. Whereas they see the numerosity di-
rectly when the display contains less than four items, they have to count in order to correctly
assess larger numbers. In addition, the assessment of larger numerosities is easier when the
items are presented in a canonical form (e.g., a six represented by two rows of three dots, as
on a die) than when they are presented in a random configuration (Mandler & Shebo, 1982;
Wender & Rothkegel, 2000). The immediate apprehension of small numerosities (up to three
to four elements) has been called subitizing (Kaufman, Lord, Reese, & Volkman, 1949; Jensen,
Reese, & Reese, 1950). Figure 2.1 shows the typical results of a study on subitizing.

Further interesting observations are made when numerosities larger than four are presented
and mathematically literate participants are prevented from counting them (e.g., by a brief
display of the stimulus pattern). Under these circumstances, participants have to come up with
an educated guess, and they again show behavior that very much resembles that of animals.

A first finding is that participants spontaneously underestimate the number of elements in
the display. The underestimate increases as the numerosity grows. For instance, Krueger
(1982) showed each participant one sheet of paper with some Xs on it. Participants were asked
to give an estimate of the number of Xs on the page. When 50 Xs were present on the sheet,
participants estimated them to be around 40; when 100 Xs were shown, estimates hinged
around 75; when 200 were shown, the average estimate was some 135; and when 300 Xs were
shown, participants estimated them to be around 200. There was a compressive function
between the estimates given by the participants and the actual number presented (the former
increased less rapidly than the latter). The compressive function was best captured by a power
function with an exponent of .8 (i.e., in between a linear function—exponent 1—and a square
root function—exponent .5).

A second finding when adults estimate numerosities on the basis of analogue displays is
that the estimates show variability. For instance, van Oeffelen and Vos (1982) showed participants
tachistoscopic displays with random configurations of dots and asked them to estimate whether
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Figure 2.1. Mean reaction time needed by participants to say how many white asterisks
are presented on a computer screen, as a function of numerosity. The points represent the
observed data. The lines represent linear regression functions relating reaction time to
numerosity within the subitizing range (1-3) and the counting range (4-10). Notice that the
lack of a difference between the enumeration of 3 vs. 1 dots, shown in Figure I, is not
always present. Usually, there is a small positive slope of some 50 ms in the subitizing
range (partly dependent on whether or not the numerosity 4 is included in the range). Also
notice the slope of more than 300 ms in the counting range. (From Logan & Zbrodoff, 2003.)
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or not there were exactly 12 dots in the display. The interesting variable was how often the
participants would think there were 12 elements given that another number had been pre-
sented. The results of this study are shown in the lower left part of Figure 2.2. When the
number of elements presented was 11 or 13, participants made some 35% false alarms. When
10 or 14 elements were on the display, participants made some 24% errors. For a distance of
3, they made 17% errors, and for a distance of 4 they made 8% errors. This pattern of mistakes
is very similar to the patterns of errors shown by animals in similar designs (see the two upper
parts of Figure 2.2).

A third finding with numerosity estimates shows that the variability in estimates increases
with growing target numbers. This was particularly clear in an experiment reported by Whalen,
Gallistel, and Gelman (1999). Participants were presented with a dot that repeatedly flashed
on and off in one location and were asked to say approximately how many times the dots
flashed, without verbal counting (special precautions were taken to prevent the counting).
Both the response means and the standard deviations increased in direct proportion to the
target number, which ranged from 7 to 25. Again, these findings were very similar to previous
results obtained with rats and are shown in Figure 2.3.
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Figure 2.2. The distance effect when animals and humans compare numerosities. The data
discussed in the text are those of the lower left part (panel C). This panel shows how many
times participants wrongly indicated that 12 elements were presented on the screen as a
function of the actual number presented. As can be seen, the percentage of errors dropped
systematically from a distance of 1 (i.e., when 11 or 13 elements were presented) to a dis-
tance of 4. The upper panels show data of animals in similar situations: (A) the deviation
between the actual number of pecks made by pigeons and the fixed standard of 50, (B)
chimpanzees selecting the larger of two small numbers of chocolate bits. Finally, panel D
shows the number of errors students make when they compare arabic numerals to a fixed
standard of 65 (see also Figure 2.8). Figure copied from Dehaene et al. (1998).
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Animal Data: Platt & Johnson, 1971
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Figure 2.3. These data show the actual number of lever presses made by rats after they
had learned that a certain number (4, 8, 16, or 24) was required for a reward (part A). Notice
that in this situation, the average number matches the required number quite well but that
the data vary from trial to trial. The variability increases with increasing average number.
The increase in variability is a linear function of the average (and required) number, as
shown in part B. Very similar data are found with humans when they are prevented from
counting the actual number and have to rely on rough estimates. Figure copied from Whalen
et al. (1999).

On the basis of these findings, a considerable number of researchers now assume that
animals and humans are born with a preverbal numerical system (based on analogue magnitudes)
that is capable of apprehending small numerosities precisely and larger numerosities approxi-
mately (e.g., Butterworth, 1999; Dehaene, Dehaene-Lambertz, & Cohen, 1998; Gallistel &
Gelman, 1992; Wynn, 1998).

Gallistel and Gelman (1992), for instance, hypothesized that subitizing is nothing else than
fast counting, based on the preverbal representations. In their model, each time an element of a
display is encountered, a quantity is added to an accumulator (the authors compare this process to
pouring cups of water in a bucket). At the end of the count, the accumulator is emptied into
memory and the total quantity is read. However, because there is some noise in the unit
quantities added and/or in the reading from memory, there will be variability in the outcomes.
This variability grows as the number of units (cups) increases. Therefore, only for small
numbers of units is it possible to rapidly assess the exact quantity. For larger numbers, either
mistakes are made, or a more laborious process must be used that consists of verbal counting.

The idea of an innate, preverbal numerical system has also been defended by Dehaene and



Number Recognition in Different Formats 27

colleagues (e.g., Dehaene, 1992; Dehaene, Dehaene-Lambertz, & Cohen, 1998). They use the
metaphor of a number line for this system. Numerical representations are thought to be
ordered from small to large, and numbers are recognized by looking at which part of the
number line is activated. The number line is thought to be compressed (e.g., according to a
logarithmic function or a power function), so that the part of the line devoted to the number
1 is larger than the part devoted to the number 2, which in turn is larger than the part devoted
to the number 3, and so on. Because of this characteristic, the representations of small
numbers are more easily discernable than those of large numbers and from a certain magnitude
on the numerical representation can no longer be determined with certainty. It can only be
estimated, unless an explicit verbal counting process is initiated.

This interpretation, however, is not shared by everyone (e.g., Mix, Huttenlocher, & Levine,
2002; Simon, 1997). There are two main points of contention. First, there is the question to
what extent the empirical evidence of numerical knowledge in children and animals is due to the
numerosity of the items (i.e., to the abstract notion of number: “two-ness, three-ness”) or to
some confounded perceptual factor, such as the area covered by the items, the duration of the
stimulus display (when the items are presented in time), or the density of the elements in the
display. Feigenson, Carey, and Spelke (2002) replicated Antell & Keating’s (1983) experiment
with the use of animal-like objects made of Lego bricks: infants of seven months old who were
habituated to successive displays of one object showed increased interest when a display with
two objects was shown, and vice versa. However, in four subsequent experiments, the authors
failed to find the dishabituation effect when the front surface area of the objects was con-
trolled, so that the task could not be explained on the basis of the total size of the stimulus
configuration. For instance, the infants did not show renewed interest when in the habituation
phase two small objects were presented and in the test phase one double-sized object. Apparently,
the infants’ behavior was more influenced by the size of the total stimulus configuration than
by the number of elements in the display.

The second point of contention is whether one really needs numerical knowledge to perceive
numerosities up to 4. It is generally assumed that humans (and animals) can keep 3-4 chunks
of information simultaneously in short-term memory. Maybe this is the reason why infants
and animals can perceive the difference between 2 and 3 elements and why human adults show
the subitizing effect. All they have to do is to match the second perceptual stimulus to the
information of the first stimulus stored in short-term memory (Simon, 1997). This could be
done by a simple one-to-one matching process, without any requirement of numerical knowledge
(see also Logan & Zbrodoff, in press, for a recent perceptual interpretation of both the subitizing
effect and the counting effect shown in Figure 2.1). One specific prediction of the short-
term memory account is that infants and animals must not be able to compare numerosities
larger than 4 (when perceptual factors are controlled), because these numerosities lie outside
the short-term memory span. Needless to say, this is currently a matter of strong debate in the
literature (see Feigenson, Carey, & Hauser, 2002 versus Xu & Spelke, 2000; Xu, 2003).

In summary, when mathematically literate humans are confronted with numbers shown in
an analog format, they have no problems perceiving numerosities smaller than 4 (subitizing).
For larger numerosities, they either start to count or they make a rough estimate. Because the
subitizing effect and the rough estimates resemble characteristics of animal cognition (accurate
perception of small numerosities, a tendency to underestimate large numerosities, and an in-
creased variability in the estimates of larger numerosities), some authors have suggested that
they are based on an innate, preverbal numerical system, which humans share with animals.
Other researchers question such a nativistic view of numerical cognition and point to the fact that
much empirical evidence can be explained by perceptual factors unrelated to numerical cognition.

The finding that people spontaneously start to count numerosities larger than 4 shows how
important symbolic representations are for human numerical cognition. In the following sections,
I review the main findings on the processing of these symbolic representations.
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RECOGNIZING VERBAL NUMERALS

The words for the small numbers are among the first acquired, and research has shown that
nearly half of the three-year-olds are capable of using the words up to seven in a sensible way
(e.g., to count a row of objects; Gelman & Gallistel, 1978). Needless to say, knowledge of
number words dramatically facilitates the mathematical competence of humans, and a look at
the number words themselves reveals some of the hurdles that had to be overcome in inventing
them (Ifrah, 1998). For instance, the fact that the words “one,” “two,” and “three” have the
same stem in German and Roman languages indicates that they have a common, more ancient
origin. Similarly, nearly all Western languages have a number word related to “new” (nine,
neuf), presumably because this number marked a discovery at some moment in our history;
and the words for 11 and 12 betray that the base-ten structure of our number system was not yet
well established by the time they were coined (although “eleven” and “twelve” originate from
the sayings “one-left” and “two-left’—after you've counted all 10 fingers/digits; the fact that
our number system has a base 10 also originates from the widespread use of fingers to count).

There are no reasons to assume that the perception and the production of verbal numerals
would be any different from that of other words. Thus, we can take inspiration from the more
general models of visual and auditory word recognition and production. Because not everything
can be covered in the space of a chapter, I will limit myself to the recognition of printed words.
Readers interested in an introduction to spoken word recognition may want to see McQueen
(2004). Those interested in spoken word production are referred to Levelt, Roelofs, and Meyers
(1999) and the following commentaries. Finally, those interested in written word production
may want to read Bonin, Peereman, and Fayol (2001).

There are three discussions within the literature of visual word recognition that are particularly
interesting for number recognition. The first deals with the question of whether or not a
mental lexicon is needed for the recognition of word forms, the second concerns the question
of how the meaning of words is accessed, and the third addresses the question of how morpho-
logically complex words are recognized.

In models of word recognition, it has been customary to make a distinction between a so-
called word-form level and a word-meaning level (e.g., Balota, 1994; see Figure 2.4 for an
example of such a model). The flowcharts of these models usually capture the former under the
term “lexicon” and the latter under the term “semantic system.” At the lexical level, a match
is made between the incoming perceptual information and word-form knowledge stored in
memory to determine whether a given stimulus (either visual or auditory) refers to a known
word or not. At the semantic level, the meaning of a known word is derived. Several reasons
have been given for the distinction between the lexical and the semantic level. A first reason is
that many researchers believe that the lexical level is more differentiated than the semantic
level. For instance, many authors are convinced that a distinction should be made between a
visual and an auditory lexicon. Some arguments for this distinction are related to the nature
of the input (e.g., the letters of short written words are probably processed in parallel, whereas
there is a clear serial component in the phonemes of spoken words, which typically take
hundreds of milliseconds to be pronounced). Other arguments are derived from priming studies.
It has been shown that within-modality repetition of a word (e.g., visual-visual) results in
larger facilitation effects than cross-modality repetition (e.g., auditory-visual, Morton, 1979).

A second reason for separating lexical from semantic representations has to do with the
lack of one-to-one mappings between words and meanings. For example, the meanings of
words to some extent depend on the context: the word big has a different meaning in the
phrase the big ant than in the big rocket (Harley, 2001). Also, many words have different
meanings (polysemy) or share their meaning with other words (synonyms). It is difficult to
explain the resolution of these ambiguities in the mappings from form to meaning within a
single layer of representations.
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Figure 2.4. Coltheart et al.’s (2001) dual-route cascaded model of visual word recognition
and reading aloud. This model is exemplary of many traditional models of visual word
recognition, based on localist representations. First, the letters of the presented words are
identified. These letter representations then activate entries in the orthographic lexicon
and are converted simultaneously into their most likely sounds (phonemes). The phonemes
feed into a phonological lexicon, which contains the spoken representations of all known
words. Reading aloud of words occurs through a combination of direct grapheme-phoneme
conversions and the activation of known word forms in the lexicons. Lexical decision is
based on activation within the orthographic and/or the phonological lexicon. Notice that
although the model contains a third route through the semantic system, this route is not
believed to be fast enough to influence word naming or lexical decision times. For this
reason, it has not yet been implemented in the working, computational model. Copyright
© 2001 by the American Psychological Association. Reprinted with permission.

A third reason for separating the lexical from the semantic system is that humans can do
quite some processing of words without understanding them. For instance, a long series of
neuropsychological patients have been described who had severe difficulties matching visually
presented words to pictures but who nonetheless knew very well which letter sequences formed
existing words and which formed nonwords. In addition, they could read the words aloud, even
when the words contained irregular letter sound correspondences, as in blood, climb, and come
(Coltheart, in press; Gerhand, 2002).

Although the distinction between word form and word meaning is still dominant in models
of visual word recognition, it has been criticized by Seidenberg and McClelland (1989). In their
distributed model of visual word recognition (see Figure 2.5), word knowledge no longer begins
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when the activation of an entry in the orthographic lexicon exceeds a certain threshold but
consists of the co-activation of processing units that encode the orthographic, phonological,
and semantic properties of a word (see also Van Orden, Pennington, & Stone, 1990). A visual
word activates a number of orthographic units representing the sequence of input letters. This
activation spreads to the semantic and the phonological units that are connected to the
activated orthographic units and feeds back until a stable state is reached. In addition, the
various units are no longer devoted to single words (i.e., there are no localist representations).
Each unit is activated by many words, and the identity of a word is determined by a pattern of
activation across multiple units. Seidenberg and McClelland (1989) showed that many features
of human visual word recognition can be simulated with such a model that no longer contains
a visual lexicon.

With respect to the recognition of number words, the large majority of existing models have
taken inspiration from the Coltheart et al. model (Figure 2.4) and, therefore, contain an
orthographic lexicon with localist representations (for a review, see Campbell’s chapter in this
book). A major exception has been Campbell (1994) who defended a view very similar to
Seidenberg and McClelland’s. According to his multiple encoding view, numbers are simulta-
neously encoded in multiple ways (analogue, verbal, arabic) through a process of activation
that automatically dissipates. In this model, number recognition depends on the pattern of co-
activation of the different codes rather than on the activation of one particular, localist code.

The second discussion within the literature of visual word recognition that is pertinent to
number recognition, has to do with the question of how central the meaning system is within

100 hidden units

I Phonology '

64 phoneme units

Orthography
105 grapheme units

Make /MAK/

Figure 2.5. Seidenberg and McClelland’s (1989) triangular model of visual word process-
ing (as implemented by Plaut et al., 1996). In this model, there is no longer a lexicon, where
all known word forms are stored in dedicated (localist) units. Instead, information about
words is stored in collections of units in the orthographic, the phonological, and the mean-
ing layers that are co-activated. The individual units are activated (to a different extent) by
many different words. In this model, the activation of the meaning of words is thought to be
central in word processing. However, this part of the model has not yet been implemented
and does not seem necessary to simulate the basic findings of word naming and lexical
decision.
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the language architecture. To an outsider, this may seem a strange discussion, because what
else is (visual) word recognition for than to access the meaning of a written message? How-
ever, researchers discovered that for the two tasks they usually ask participants to perform,
meaning can be more or less discarded to explain the results. These tasks are the naming of
visually presented, isolated words (word naming) and deciding whether or not a presented
string of letters forms a correct English word (lexical decision). For word naming, traditionally
three routes have been postulated (see Figure 2.4; but also see Seidenberg & McClelland
(Figure 2.5) who distinguished between two routes only). First, there is a direct conversion
from letters to sounds, making it possible to name unknown sequences of letters, such as
nonwords. The second route goes from the orthographic input lexicon to a phonological output
lexicon, enabling the reader to correctly pronounce irregular words such as come. Finally, the
third route goes from the orthographic input lexicon, through the semantic system, to the
phonological output lexicon. However, it is usually assumed that this route is too slow to affect
performance. Hence, this route has not been implemented in any of the existing computational
models of word naming. Similarly, lexical decision times have been explained by focusing on
the activity within the word-form lexicon, with little or no contribution from the words’ meanings.

In general, findings with verbal numerals are well in line with the assumption of asemantic
routes in visual word processing. Fias, Reynvoet, and Brysbaert (2001), for instance, presented
a verbal numeral and an arabic numeral on the same display. Participants were asked to name
the verbal numeral and to ignore the arabic numeral. They were perfectly capable of doing so,
as evidenced by the fact that the naming latencies were the same when the arabic numerals
referred to different magnitudes than the verbal numerals (e.g., six—5) as when they referred
to the same magnitudes (e.g., six—6). In contrast, when the participants had to make a re-
sponse that involved the meaning of the verbal numerals (i.e., indicate whether the verbal
numeral was odd or even), they showed faster responses when both numbers referred to the
same magnitude than when they referred to different magnitudes. Other evidence for the
existence of nonsemantic processing routes for verbal numerals comes from the finding that
participants do not need more time to indicate that eight is written in small letters and two in
large letters than to indicate that eight is written in large letters and two in small letters,
whereas they do show such a magnitude-size congruity effect with arabic numerals and other
types of nonalphabetic stimuli (e.g., Ito & Hatta, 2003; see the section on arabic numerals for
more information about this task).

On the other hand, research on the processing of verbal numerals has also shown that
although the semantically mediated route is slightly slower in the naming of words, its impor-
tance must not be underestimated within the traditional three-route model. Reynvoet, Brysbaert,
and Fias (2002), for instance, showed that the naming of verbal numerals was primed by
arabic numerals with a close value. That is, participants named the target word five faster
when 115 ms before the arabic primes 4 or 6 had been presented tachistoscopically than when
the arabic primes 2 or 8 had been presented (see the section on arabic numerals for more
information about this distance-related priming effect). Subsequent research showed that the
same effect was obtained with masked primes presented a mere 43 ms before the targets
(Reynvoet & Brysbaert, in press). This cross-notation priming effect suggests that it does not
take much to preactivate the number magnitude route enough to find semantically mediated
effects in the naming of verbal numerals.

Other evidence of the importance of the semantically mediated route in the naming of
verbal numerals comes from Cappelletti, Kopelman, and Butterworth (2001). They reported
the case of a semantic dementia patient who could hardly read words any more (21% of the
words with regular letter-sound mappings, such as must; and 12% of the words with irregular
mappings, such as pint) but who was flawless at reading verbal numerals, due to spared
numerical knowledge. Spared numerical knowledge is also often reported in Alzheimer’s dis-
ease and is in line with the finding that numerical knowledge is represented separately from
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many other types of semantic knowledge in the brain (e.g., Pesenti et al., 2000; see also
Chapter 25 of this book).

Finally, the third discussion in the visual word recognition literature that has a particular
bearing on number processing, is the question of how morphologically complex words are
recognized. In number reading, only the verbal numerals from zero to twelve are without
question monomorphemic (i.e., consisting of one meaning unit only). In contrast, words like
twenty-one and one-hundred twenty-six are clearly polymorphemic (i.e., contain at least two
morphemes). Inbetween, there are some number names for which it is not clear whether they
can be considered as polymorphemic because their constituents are different from the original
words (e.g., thirteen, twenty, fifty, ... [instead of threeten, twoty, and fivety]). There are two
types of clear polymorphemic number words. The first are derivations obtained by adding a
suffix to a simple number word (e.g., sixty, seventy). The second are compound words that are
obtained by combining two or more words (e.g., twenty-one). Theoretically, morphologically
complex words can be processed in two ways (see, e.g., Bertram & Hyona, 2003). Either they
can be decomposed into their constituents which are then used to compute the meaning, or
they can be stored as a whole in the mental lexicon. Researchers have offered quite divergent
ideas about the relative importance of the two processing pathways and the factors that
determine the balance. Variables that have been proposed are semantic transparency, word
frequency, and the length of the constituting words. Morphologically complex words are more
likely to be stored and retrieved as a whole when the semantic relation between the word and
the constituents is unclear (i.e., more likely for honeymoon than for honeybee), when the
complex word is frequently encountered (i.e, more likely for honeybee than for honeyfungus),
and when the complex word is short (i.e., more likely for eyelid than for watercourse). These
factors allow us to predict that verbal numerals like fifteen and twenty (high-frequency, short,
no clear relationship between the constituents and the complex word) are more likely to be
recognized as a whole than numerals like seventy and ninety (lower-frequency, semantically
transparent) and that words like ninety-eight (long, low-frequency) are bound to be processed
through decomposition. However, thus far, virtually no research has been done on this topic.

All in all, research on the processing of written verbal numerals, even though limited, has
returned findings that are well in line with what can be expected on the basis of what is known
about the processing of visually presented words in general. Most importantly, there is evidence
that for many tasks (e.g., number naming and decisions about the size of number words) the
meaning of verbal numerals is not activated fast enough to influence the response. This is in
line with the assumption of nonsemantically mediated routes in models of word processing, an
assumption made by both localist (Figure 2.4) and distributed (Figure 2.5) models. As the
majority of verbal numerals consist of more than one morpheme, any comprehensive theory of
verbal numeral recognition will have to address the question of how morphologically complex
words are recognized, an issue that has been overlooked so far.

RECOGNIZING ARABIC NUMERALS

The invention and application of arabic (actually Hindi) numerals has further advanced the
human numerical competence (Ifrah, 1998). It is widely assumed that the use of roman numerals
prevented the Romans from attaining a mathematical sophistication that matches the sophis-
tication they reached in other knowledge areas (just try to solve the problem CMIX times LI).
Interesting features of arabic numerals are the use of a base 10 throughout (remember that
the base-ten structure is not completely present in many verbal number systems; see Miller’s
Chapter 10 for the implications of this) and the use of place coding. Units are always written
rightmost, tens are second, hundreds third, and so on. This way of coding required the
invention of the digit 0, for instance, to represent 909 (nine hundreds and nine units, no tens).
The power of the arabic notation can be seen in the fact that even for simple arithmetic
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problems involving the addition or multiplication of single digits, participants are much faster
and more accurate when the numerals are presented as digits rather than as words (Campbell,
1994; Noel et al., 1997), even when the words are spoken (LeFevre et al., 2001).

The existence of arabic numerals begs the question of how they are recognized. As for the
verbal numerals, a distinction must be made between small numbers and large numbers.
Nearly all numerals with three digits or more require a decomposition (parsing) process. There
is nobody defending the idea that a numeral like 4253 with its associated magnitude is stored
as a whole in the human brain. The only known exception to this parsing requirement is when
a complex numeral is frequently used as a nominal label to refer to a particular entity (e.g.,
when the participant’s car is a Peugeot 206, when the participant is heavily interested in
Boeing 747, or when the participant is a postman working near the Belgian village of Darion,
which has the postal code 4253). For these familiar complex numbers, there is some evidence
that they may be stored holistically, as it is possible to prime them with their associated words
(e.g., the number 206 is recognized faster after the tachistoscopically presented prime Peugeot
than after the tachistoscopically presented prime Boeing; Alameda, Cuetos, & Brysbaert,
2003; Delazer & Girelli, 1997). In general, however, complex numbers must be decomposed
into their constituents, and this is a process that is prone to brain damage (due to a stroke or
to dementia). Many patients with numerical problems have difficulties reading and writing
complex arabic numerals correctly (e.g., writing three hundred and four as 3004).

Researchers largely agree that small numbers are recognized as a whole but disagree about
(1) whether these small numbers are limited to single digits or whether they also include two-
digit numbers (12, 20, 88) and (2) whether semantic activation is pivotal for the processing of
arabic numerals. Before homing in on these two discussions, I will first review the major
empirical findings about the processing of small arabic numerals.

A first robust finding is that the processing is more demanding for larger numbers than for
smaller numbers. This is already true for digits. It is easier to indicate which is the smaller of
the pair 2-3 than to indicate which is the smaller of the pair 8-9. It is also easier to calculate
2+ 3 and 2 x 3 than 8 + 9 and 8 x 9. Brysbaert (1995) even found a robust number magnitude
effect in a short-term memory experiment. In this experiment, participants first had to read
three arabic numerals going from 0 to 99, and then to look at a fourth arabic numeral and to
decide whether this fourth numeral was part of the initial set: yes or no. Eye movements of the
participants were tracked, and the time participants needed to store the numeral in short-term
memory before they proceeded to the next numeral was measured. Figure 2.6 shows the
average reading time for the first numeral seen by the participants as a function of number
magnitude. The most important variable to predict the reading times turned out to be the
logarithm of the number magnitude, in line with the predictions of the compressed number
line model (Dehaene, 1992).

A second robust finding in arabic numeral processing is that when two numbers are pro-
cessed together, processing times are influenced by the distance between the numbers. This is
particularly clear when both numbers have to be compared, as it is much easier to say which
digit is the smaller for the pair 2-8 than for the pair 2-3. More precisely, decision times are
a function of the logarithm of the distance between the two numbers (see Figure 2.7). Another
distance-related effect that has been described is the number priming effect. A target digit is
recognized faster when it follows a (tachistoscopically presented) prime with a close value than
when it follows a prime with a more distant value. Figure 2.8 shows data obtained by Reynvoet
and Brysbaert (1999) with a number naming task and masked primes. Response latencies were
fastest when prime and target were the same (e.g., 5 and 5; the font size was manipulated in
order to diminish the physical overlap of the stimuli). They were significantly slower when
prime and target differed by one unit (e.g., 4 or 6 and 5) and again significantly slower when
the distance was 2 or 3. With non-tachistoscopic presentation of the prime, the priming is
obtained over a range of more than 10 units (Brysbaert, 1995); with tachistoscopic presentation
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Figure 2.6. Reading times for arabic numerals ranging from 0 to 99 in a short-term memory
task. Circles indicate the observed data; lines indicate the predicted times on the basis of
the logarithm of number magnitude, number frequency, and the number of syllables in the
number name. Figure copied from Brysbaert. Copyright © 1995 by the American Psycho-
logical Association. Adapted with permission.

of the prime, it usually ends at a distance of 3. A further intriguing aspect of the distance-
related priming effect is that it is symmetric. That is, the priming is equally strong from 6 on
5 as from 4 on 5, despite the fact that the associative strength between 4 and 5 is stronger
than between 6 and 5 (when asked to say the first word that comes to mind, participants are
more likely to say five after hearing four than after hearing six). A last interesting aspect about
the priming effect is that it is equally strong across notations as within notations (Reynvoet et
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Figure 2.7. Time mathematically literate adults need to indicate whether a two-digit ara-
bic numeral is larger or smaller than a fixed standard of 65. Figure copied from Dehaene et
al. Copyright © 1990 by the American Psychological Association. Adapted with permission.
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Figure 2.8. Time participants need to name an arabic numeral as a function of the value of
the preceding prime. Naming latencies are fastest when prime and target have the same
value (e.g., 9-9). They are slightly slower when the prime is one unit less than the target
(e.g., 8-9) or one unit more (e.g., 10-9). Reaction times are again slower when the distance
between prime and target is 2 and when it is 3 (at which point the priming effect for tachis-
toscopically presented primes levels off). The extra priming effect observed when prime
and target have the same value (identity priming) is present only when prime and target
are displayed in the same modality (e.g., prime and target in arabic notation). When prime
and target are presented in different formats (e.g., prime is verbal, target is arabic), the net
priming effect reduces to what can be expected solely on the basis of the distance between
prime and target. Data from Reynvoet & Brysbaert (1999).

al., 2002). The effect of the prime 6 on the arabic target 5 is the same whether the prime is
presented in arabic notation or in verbal notation. This finding has been interpreted as
evidence that the interaction between prime and target occurs at an abstract, notation-
independent level. The most often cited candidate is the number line of analog magnitudes.

A third major finding about the processing of arabic numerals is that the semantic magnitude
information of the numeral is activated more rapidly than is the case for verbal numerals.
Because of this feature, it is nearly impossible to design a task with arabic input that is not
affected by the meaning of the numeral. Henik and Tzelgov (1982) designed one of the first
studies that demonstrated this aspect of arabic numeral processing. They asked participants to
indicate which numeral of a presented pair of digits had the larger physical size (see also Ito &
Hatta, 2003, discussed above). Participants found it more difficult to indicate that 2 was the
larger in the pair 2-8 than to indicate that 8 was the larger in the pair 2-8, thereby effectively
showing a Stroop-like interference effect between the numerical size (which was to be ignored) and
the physical size. Similar findings have been reported in a counting task. It is easier to say that
four digits are present in the stimulus 4 4 4 4 than in the stimulus 3 3 3 3 (Pavese & Umilta, 1998).

People in western cultures have a strong tendency to associate small numbers with left and
large numbers with right (Dehaene et al., 1993; see also the chapter by Fias & Fischer). When
participants have to indicate whether a number is odd or even, they can do so faster with the
left hand to small numbers (e.g., 1, 3) and with the right hand to large numbers (e.g., 6, 8; see
Figure 2.9). This effect has been linked to the reading direction of the participants and/or to
the way in which ordered continua (such as the number line) are taught in school. In the parity
judgment task, there is an additional tendency to associate odd numbers with left-hand re-
sponses and even numbers with right-hand responses (Nuerk et al., 2004).
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Figure 2.9. Figure illustrating the findings that in western cultures (1) small numbers are
preferentially associated with left-hand responses and large numbers with right-hand re-
sponses and (2) that odd numbers are preferentially associated with left-hand responses
and even numbers with right-hand responses. The figure shows the results of an experi-
ment in which participants had to indicate whether a presented arabic numeral ranging
from 1 to 8 was odd or even by pressing with the left or the right hand. The figure shows the
differences in RT of right-hand responses minus that of left-hand responses. When left-
hand responses were faster than right hand responses, this difference score is positive,
which was the case for the small numbers. For the numbers 5-8, the right-hand responses
were faster than the left-hand responses, giving rise to negative difference scores. The
difference scores in general were also more negative for the even numbers (2, 4, 6, and 8)
than for the odd numbers, indicating that the right-hand responses were faster for these
numbers. Data from Nuerk et al. (2004).

Some of the above effects have been used to try to find out whether two-digit arabic numer-
als are processed as a whole or as a syntactic combination of tens and units (see the first issue
of discussion mentioned at the beginning of this section). If these numbers are processed as a
whole, one would expect them to form some kind of continuous number line as a function of
their magnitude. On the other hand, if they are stored as combinations of tens and units, one
would expect discontinuities at the transition from one ten to the next. As it has turned out,
researchers have observed evidence for both views.

Brysbaert (1995) argued that the reading times shown in Figure 2.6 strongly suggested that
all numerals between 1 and 99 are part of a single compressed number line. Similarly, Dehaene
et al. (1990) obtained a logarithmic distance effect in a magnitude comparison of two-digit
numbers (in which participants had to indicate whether numerals like 60 and 59 were smaller
than 65; see Figure 2.7) and argued on the basis of this that two-digit numbers were compared
by looking at the analog magnitude they represented and not by looking at the individual digits
(in which case it would be much easier to decide that 59 is smaller than 65 than that 60 is
smaller than 65, because the former pair of numbers starts with different digits). Reynvoet
and Brysbaert (1998) wondered whether they would find the same priming effect from 10 on
9 as from 8 on 9 and, having found so, also concluded that units and teens were part of the
same continuum. Finally, Dehaene et al. (1993) noted that the small-left and large-right asso-
ciation extended over the boundary of units and teens and also concluded that they were part
of the same number line.
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On the other hand, there are findings that cannot easily be explained by the assumption of
a single number line going from 1 to 99 and that seem to indicate that two-digit arabic
numerals are rapidly decomposed into a syntactic structure of tens and units (a view most
strongly defended by McCloskey [1992]). Nuerk, Weger, and Willmes (2001) showed that in the
comparison of two-digit number pairs, not only the distance between the numbers (Dehaene et
al. 1990) but also whether or not both numbers are unit-ten compatible count. A number pair
was defined as compatible if the magnitude comparison of the tens and the magnitude com-
parison of the units led to the same response (e.g., 52 and 67 are compatible because 5 < 6
and 2 < 7) and as incompatible if this was not the case (e.g., 47 and 62 are incompatible
because 4 < 6 but 7 > 2). Nuerk et al. (2001) observed a significant compatibility effect.
Participants were faster to indicate that 52 < 67 than that 47 < 62, even though the distances
between the numbers are the same. This compatibility effect suggests that the tens and the
units were compared in parallel, a finding which is more in line with the view that number
magnitudes are represented as composites of powers of 10 (i.e., the meaning of the numeral 28
is represented as {2} x {10} + {8} x {10°)). Other evidence for a rapid decomposition of two-digit
arabic numerals into powers of 10 was recently reported by Ratinck, Brysbaert, and Fias (in
press). These authors asked participants to name two-digit arabic numerals, which were pre-
ceded by tachistoscopically presented primes. They not only observed the expected distance-
related priming effect (e.g., prime 37 and target 38) but also priming when the prime and the
target shared a single digit in the tens or the units position (e.g., primes 28 and 34 for target
38). In addition, there was an interference effect when prime and target shared a digit on
different positions (e.g., primes 82, 43, and 83 for target 38).

One way of interpreting the divergent findings on the processing of two-digit arabic numerals
(recognized as a whole or as a combination of powers of 10) is to assume that both types of
processing occur in parallel. Such a model has been proposed by Dehaene and colleagues (e.g.,
Dehaene, 1992; Dehaene & Cohen, 1995). In this model, arabic numerals simultaneously activate
an analogue magnitude representation on the number line and a visual arabic number form in
which numbers are represented as strings of digits on an internal visuo-spatial scratchpad.
Another idea could be that simultaneously with the analogue magnitude, a more precise semantic
representation consisting of powers of ten is built. This representation is needed, anyway, for
the processing and storing of more complex numbers (i.e., integers with more than two digits
and real numbers with multidigit precision; see the parsing process mentioned above).

Dehaene’s model brings us to the second point of discussion in the literature: whether there
exists a lexicon for arabic numerals similar to the orthographic lexicon for visual word recog-
nition, so that quite some processing of arabic numerals can be done before the meaning is
fully activated. Dehaene and colleagues claim there is.

For instance, Cohen et al. (1994) described a patient who had difficulties reading complex
numbers, except when they were highly familiar (e.g., 1945). They attributed this spared
capacity to the existence of an input lexicon for familiar arabic numerals, which has direct,
nonsemantic connections to the speech output. Similarly, Dehaene and Cohen (1977) described
a patient who could name digits, despite the fact that her number understanding was impaired
(she made 20% errors when asked to indicate whether digits were larger or smaller than a
standard). Also in the literature of visual word recognition, it had been claimed that digits, just
like all other logographic symbols in texts (abbreviations, punctuation marks, special charac-
ters), are part of the orthographic input lexicon used for text reading (e.g., Coltheart, 1978).
On the other hand, there is very little empirical support for nonsemantically mediated process-
ing in arabic numerals. As reviewed above, the meaning of a number can easily be ignored in
a font-size judgment task when the number is presented as an alphabetic word (i.e., deciding
which is the physically smaller stimulus is not more difficult for the pair eight-two than for the
pair eight-two). However, this is much less easy (and maybe impossible) when the numbers are
presented in arabic format or in another logographic script (Henik & Tzelgov, 1982; Ito &
Hatta, 2003 (arabic numerals and Kanji words); Pansky & Algom, 1999). Similarly, Fias et al.
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(2001) reported that verbal numerals could be read without any interference from an arabic
distractor on the same display. However, the very same study showed that this was not true for
the naming of digits: naming latencies to the numeral 5 were longer when the distractor was
four than when it was five.

Because of the rapid and omnipresent activation of the semantic information, it has been
claimed that the processing of arabic numerals resembles more the processing of pictures than
the processing of words (e.g., Brysbaert, Fias, & Reynvoet, 2000; Fias, 2001; Fias et al., 2001;
McCloskey, 1992). In theories of picture processing, it is widely assumed that some perceptual
form processing is needed before the meaning can be activated, but the idea of an independent
picture lexicon directly connected to the speech output has not found empirical support (e.g.,
Hodges & Greene, 1998). In this respect, it is important to keep in mind that the meaning of
arabic numerals need not be confined to magnitude information (although this obviously is the
most important semantic attribute of numbers). It can also be encyclopedic or episodic infor-
mation related to the arabic numeral, certainly when the numeral is often used as a non-
quantitative label (as in Boeing 747 or in the number year 1992). This could explain some of
the remaining abilities of neuropsychological patients to name arabic numerals of which they
no longer know the exact magnitude (Cohen et al., 1994; Dehaene & Cohen, 1997).

Brysbaert, Fias, and Reynvoet (2000) listed some reasons why they thought the creation of
a full-fledged lexicon was less compelling for the recognition of arabic numerals than for the
recognition of visual words (see also Seidenberg & McClelland [1989] for the reasons why they
claim a lexicon is not needed, not even for the recognition of words). For a start, printed words
are quite long combinations of letters, which nevertheless have to be read within roughly a
third of a second. Indeed, one of the most striking characteristics of the visual word recognition
system is that it does not take notably longer to read a nine-letter word than a threeletter
word (e.g., compare lucrative and rat). The same is not true for arabic numerals: as soon as the
number length exceeds two digits, response latencies increase dramatically, indicative of a
cumbersome parsing process (e.g., compare 582617493 and 617). Second, all combinations of
arabic digits have a meaning, as opposed to only a very few of all possible letter combinations.
Third, the meaning of arabic numerals is always the same, independent of the context (as
opposed to words; see the previous section). Fourth, arabic numerals only exist in one visual
form, whereas words can both be written and spoken and are language-dependent (for those
who master more than one language). Finally, more information is attached to words than
simply their meaning. In many languages, words have a gender, can differ in number, and can
only take certain syntactic roles within a sentence. Many authors believe this word-form
related information is stored in the lexicon. For these reasons, the creation of a lexical system
next to a word-meaning system seems more compelling for verbal numerals than for arabic
numerals. Arabic numerals can in principle be recognized like objects (or pictures of them):
the stimulus is decomposed into a structural description of perceptual features, which acti-
vates the corresponding semantic information.

The difference between word and digit processing has also been documented in the neuro-
psychological literature, in which patients have been described who could no longer read
printed words (alexia) but could still recognize arabic numerals and do some rather sophisti-
cated processing on them (e.g., Cohen & Dehaene, 2000). Intriguingly, Pesenti et al. (2000)
also described a patient who had major difficulties identifying visually presented objects (vi-
sual agnosia) but who nevertheless read arabic numerals fluently. Apparently, the similarities
in the processing of pictures and arabic numerals do not imply that they are functionally
identical (maybe because the meaning of numbers and the meaning of visual objects are
different sources of knowledge?).

All in all, recent research on the recognition of small arabic numerals has revealed a rather
intriguing picture. First, digits activate their meaning faster than words and also seem to
require semantic mediation for further processing. In this respect, their processing is closer to
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that of picture recognition than to that of word processing. The meaning primarily refers to the
magnitude of the numeral, but can also involve encyclopedic and episodic knowledge associated
with the numeral certainly if the numeral is frequently used in a nonquantitative way. Arabic
numerals of three digits and more virtually always need to be parsed (unless they are familiar
labels), a process that is rather demanding and highly susceptible to brain damage. Two-digit
numbers form a kind of in-between category with quite some evidence for holistic processing
but also some signs of decomposition into tens and units.

CONCLUSION

I have reviewed the basic findings in number recognition and their implications for our views
of what is happening. Rather than giving a personalized and simplified account, I have tried to
keep an eye for the major discussions that are going on, although inevitably I biased the text
toward my own convictions. A summary of these convictions is shown in Figure 2.10. For each
of the three types of input, I have tried to sketch a general outline of the steps that are likely
to be involved. Attentive readers can, on the basis of the various uncertainties that have been
discussed, build their own version of the model (and test this).

A first choice is to divide the semantic number system in a part dedicated to the processing
of the magnitude of the numerical input, and a part dedicated to the encyclopedic and episodic
knowledge associated with numbers. In the number magnitude system, as before (Brysbaert,
1995), I make a distinction between the recognition of the core numbers and the precise
representation of each and every possible number (simple and complex), probably in a base-10
format. The core numbers consist of the integers 1-99 (the number line) and some basic
multipliers (hundred, thousand, etc.).

For the perception of numerosities in analogue displays, I postulate a visual feature detec-
tion stage (needed for the separation of the stimulus from the background) directly connected
to the compressed, analogue number line. This is a simplification, as it does not deal with the
processes needed for the sequential counting of the elements in a display that is shown long
enough. Another extension of the model would be the addition of a connection between the
visual feature units and stored mental images of triangles, faces of dice, and so on, which are
probably involved in the apprehension of numerosities presented in a familiar, canonical
form.

For the recognition of verbal numerals, I have copied the Coltheart et al. (2001) model and
connected it to the semantic system. As individual number words always represent core numbers,
only connections between the orthographic input lexicon and the core numbers are postulated.
For the same reason, no direct connections between the orthographic input lexicon and the
encyclopedic/episodic information are accepted (e.g., the stimulus “two hundred and six” is
not directly associated with a Peugeot car; this requires mediation of the number magnitude
system). Another choice that has been made is to postulate the feedback mechanisms not from
the number line but from the extended number system (which has more precise representa-
tions, certainly for numbers beyond the subitizing range). Because the verbal output for many
numbers requires a sequence of multiple words, I have included Levelt et al.’s (1999) stage of
lemma retrieval and syntactic parsing between the number magnitude system and the phono-
logical output system.

Arabic numerals are encoded in two different ways: as a sequence of position-specific digits
and as a percept of the complete numeral (probably limited to numerals of four digits, the
maximum capacity of visual short-term memory). The position-specific digits activate the
number line and the extended number magnitude system in parallel (in line with the finding
that all types of numerical tasks are easier with arabic input than with verbal input). In
addition, the mental images of familiar numbers activate associated information in semantic
and episodic memory.
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A justified criticism against the box-and-arrow type of model proposed in Figure 2.10 is that
it offers little explanation of the specific processes involved. There is a big gap between a
general, verbal description of the processes in the different boxes and arrows and the actual
implementation of them, which would make the model detailed enough to quantitatively simulate
the various empirical benchmarks that have been listed in the present chapter. This will be the

major challenge for the coming years.
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Spatial Representation
of Numbers

Wim Fias
Martin H. Fischer

INTRODUCTION

Intuitively, we think of number processing as an abstract and nonspatial cognitive activity.
Apart from those skills necessary for mental symbol manipulation, no spatial processing
seems to be involved in numerical operations. A closer inspection, however, shows that spatial
and number processing are intimately connected. A link between mathematical abilities and
spatial skills has been anecdotally reported in the past. Great mathematicians like Einstein
explicitly emphasized the role of visuo-spatial imagery for the development of their mathematical
ideas (cf. Hadamard, 1945/1996). About 15% of normal adults report visuo-spatial representa-
tions of numbers (Galton, 1880a,b; Seron et al., 1992). This suggests that the integration of
number representations into visuo-spatial coordinates is not a rare phenomenon. The reported
spatial layouts were predominantly oriented from left to right, were mostly automatically
activated, were stable in time and had emerged in childhood.

More systematic studies have supported these anecdotal reports by demonstrating a tight
correlation between mathematical and visuo-spatial skill. In the clinical field, learning disorders
establish a similar association between visuo-spatial and mathematical disabilities (e.g., Rourke
& Conway, 1997). Evidence from brain imaging provides further support for a link between
numbers and space. Tasks that require either number processing or spatial transformations
tend to activate structures within the parietal lobes (Milner & Goodale, 1995; Dehaene et al.,
2003). Using transcranial magnetic stimulation in healthy participants, Gobel et al. (2001)
showed that stimulation of the left and right parietal cortices leads to decreased performance
in both visuo-spatial search and number comparison tasks. This suggests that the processing
of numerical magnitudes and of visuo-spatial information are functionally connected. Patient
studies further confirm the close link between visuo-spatial processing and basic number
processing. A particular example is Gerstmann syndrome, which is characterized by the co-
occurrence of left-right confusion, finger agnosia, and dyscalculia (e.g., Dehaene & Cohen,
1997).

Thus, there appears to be a convincing case for a link between numbers and space. None of
the above reports does, however, force the conclusion that truly numerical representations or
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processes are associated with spatial representations. The observed correlation could instead
reflect the involvement of shared peripheral support structures. For example, visuo-spatial
working memory is engaged in symbol manipulation during mental arithmetic (Lee & Kang,
2002). In this chapter we will report evidence that semantic representations of number magnitude
are indeed spatially defined and can be conceptualized as positions on an oriented mental
number line. The idea of a linear analogue representation of numbers in the mind has been
proposed (e.g., Moyer & Landauer, 1967; Restle, 1970) to account for some basic performance
patterns in numerical cognition. More recently, this useful metaphor has been augmented by
postulating that the hypothetical mental number line also has a spatial orientation. We will
also show that this spatial cognitive representation of numbers should not be considered as
fixed and unchangeable, by demonstrating that the characteristics of spatial number coding
are largely determined by numerical and spatial parameters specific to the task at hand.
Moreover, the spatial coding of numbers is not under strategic control but rather occurs
automatically.

MENTAL REPRESENTATION OF NUMBER MAGNITUDE IS
SPATIALLY CODED: THE SNARC EFFECT

Mental chronometry involves the timing of behavioral responses in simple cognitive tasks.
Using this approach, Dehaene et al. (1990) asked their participants to indicate with a left or
right key press whether a visually presented probe number was smaller or larger than a
previously announced reference number. For example, randomly drawn probe numbers from 1
to 99 (but excluding 55) would be compared against the fixed reference number 55. The
decision speed in this number comparison task with fixed reference was recorded and analyzed
as a function of the probe number’s magnitude and the response side. Participants who had to
press the left key to indicate a “smaller” response and the right key to indicate a “larger”
response were faster than those who had to respond left for “larger” and right for “smaller”
probe numbers. This response side effect suggested that number magnitude is represented on
a left-to-right oriented mental number line, with small numbers on the left side and larger
numbers further on the right side. In a seminal paper, Dehaene et al. (1993) further explored
this observation.

Dehaene et al. (1993) asked their participants to decide, by using a left or right key, whether
a single number was odd or even. In the basic version of this parity task, the digits from 0 to
9 appeared repeatedly in a random order in central vision. Different response rules (odd
number—left button, even number—right button; or even number—left button, odd number—
right button) were tested in counterbalanced blocks. In this way, each participant’s response
speed as a function of number magnitude could be evaluated. Statistical analysis of the reac-
tion times (RT) revealed that small numbers were responded to faster with the left key,
whereas large numbers consistently showed a right key advantage. Dehaene et al. (1993)
named this association of numbers with spatial left-right response coordinates the SNARC
effect for Spatial-Numerical Association of Response Codes.

The SNARC effect is of key importance for the current issue of spatial coding of numbers.
It unequivocally demonstrates that numerical magnitude information is spatially coded in
most people. The SNARC effect, as an index of the spatial attributes of number representations,
has led to several studies into the nature of the mental number line. Below, we will review
these studies and their implications. But first we discuss the measurement of the SNARC
effect.

Figure 3.1a shows that the SNARC effect can be expressed as a statistical interaction
between number magnitude and response side. But because the SNARC effect reflects an
association between the position of a number on the mental number line and the position of a
response key, we can assess this spatial association more effectively with a statistical regression
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Figure 3.1a. Typical SNARC effect presented as an interaction between number magnitude
and side of response (dotted line: right-hand responses; full line: left-hand responses).
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Figure 3.1b. The same SNARC effect presented as a linear regression line with negative
slope that is fitted through the difference scores dRT for each stimulus digit.

analysis (Fias et al., 1996). Specifically, the difference in RTs (dRT) for right minus left key
responses will be positive for small numbers and negative for larger numbers (see Figure 3.1b).
The most straightforward way to capture this negative correlation between numbers and space
statistically is to regress dRT on number magnitude for each participant and to then test the
slope coefficients against zero (Lorch & Myers, 1990).

There are several advantages related to this regression-based analysis of the SNARC effect.
First, the presence of a SNARC effect is judged by a main effect (does the averaged slope
coefficient obtained from individual regression equations differ from zero?) rather than by the
presence of an interaction between magnitude and side of response. Second, number magnitude
is considered as a continuous variable. Third, the regression analysis allows a straightforward

A participant’s hand dominance has no effect on the overall pattern but can affect the intercept of the regression
line.
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quantification of the size of the effect (how steep is the slope?) rather than a mere qualitative
judgment about the presence or absence of an interaction. Fourth, the effect of additional
variables can easily be partialed out through statistical techniques. Fifth, the method evaluates
the linear relation between number magnitude and dRT for each participant, reducing the
chance of misestimating the SNARC effect due to group averaging. This also allows researchers
to explore the influence of individual-specific variables such as gender or handedness on the
association between numbers and space. Finally, the method is more flexible than other ap-
proaches because it does not require an orthogonal combination of the experimental factors.
This is of interest when investigating other tasks than parity judgments that do not rely on the
sequential alternation between number magnitudes and response codes.

SPATIAL NUMERICAL CODING IS DYNAMIC: NUMERICAL AND
SPATIAL DETERMINANTS OF THE SNARC EFFECT

To obtain a detailed understanding of the association between numbers and space and, by
extension, the properties of the mental number line, it is important to know which numerical
and spatial variables determine the SNARC effect. We therefore review the recent literature
from this perspective.

Numerical Determinants of the SNARC Effect

Several studies have shown that the spatial coding of numbers depends on the task context.
The SNARC effect has most frequently been studied in parity tasks with Arabic digits from 0
to 9. An important observation emerged from manipulating the range of stimulus digits: when
the range of digits was either 0-5 or 4-9 in separate conditions (Dehaene et al., 1993, Experiment
3; see also Fias et al., 1996), the digits 4 and 5 were associated with right responses when they
were the largest digits but with left responses when they were the smallest digits to be judged.
This shows that the spatial association for a given number is between its relative magnitude
and space.

An obvious extension is to ask whether the spatial associations also hold for multi-digit
numbers. Dehaene et al. (1993) used digits from 0 to 19 and found that the SNARC effect did
not clearly extend toward the two-digit numbers. This suggests that the mental number line
might be restricted to the representation of single-digit numbers. However, before accepting
this conclusion, it is important to realize that the parity status of a two-digit number is
determined by the rightmost digit. Parity judgment RTs in Dehaene et al.’s (1993) experiment
were indeed largely predictable from the rightmost digit, indicating that the participants had
adopted this selective attentional strategy. More informative with regard to the issue of multi-
digit spatial representations is the earlier magnitude comparison study of Dehaene et al.
(1990), in which probe numbers smaller than the reference were responded to faster with the
left hand than with the right hand and vice versa for larger numbers, indicating spatial coding
of two-digit numbers. Using another variant of the SNARC effect, Brysbaert (1995) also found
a SNARC effect for two-digit numbers, which were processed more quickly when the smaller
number was to the left of the larger number compared to a display with the larger number on
the left.

Together, these results indicate that number meanings conveyed by single-digit as well as by
two-digit numbers are spatially coded. It remains, however, unclear whether the mental number
line is a single, analogue continuum onto which various number intervals can be projected as
required or whether there are separate mental representations for single- and multi-digit
numbers. At this point, it is also unresolved whether two-digit numbers are processed holistically
or compositionally. Initially, holistic processing was assumed (Brysbaert, 1995; Dehaene et al.,
1990; Reynvoet & Brysbaert, 1999), but recently evidence is accumulating for a separate
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representation of decade and unit magnitudes during the processing of two-digit numbers
(Fias et al., 2003; Nuerk et al., 2001). How both separate and holistic effects should be incorpor-
ated into a single processing model is not clear at present. At the very least, effects of stimulus
manipulations in number tasks point to a considerable flexibility in accessing the cognitive
representation of numbers.

Related to the issue of two-digit processing is the possible extension of the mental number
line to negative numbers. In western cultures, negative numbers are frequently displayed to the
left of positive numbers on the abscissas of statistical graphs. As a consequence of this, we
might develop an association of negative numbers with left space. On the other hand, one
could argue that negative numbers can be represented more economically on the basis of
positive entries alone. The empirical evidence on this issue to date is inconsistent. Fischer
(2003a) asked participants to select the numerically larger of a pair of digits ranging from -9
to 9 and measured their decision times in this magnitude comparison with variable reference.
Negative numbers were associated with left responses and positive numbers with right responses,
supporting the learned association hypothesis. However, pairs of negative digits incurred addi-
tional processing costs when compared to mixed or positive pairs, thus suggesting that an
additional processing step might have been involved. Moreover, Nuerk et al. (2004) found no
reliable spatial association with negative numbers in a parity task. Finally, Fischer and Rottmann
(2004) found that large negative magnitudes were associated with right and not left space when a
parity task was used but that negative numbers became associated with left space when digits
from -9 to 9 had to be classified relative to zero as the fixed reference value. Thus, the spatial
associations of negative numbers may be less automatized compared to those of positive
numbers.

We now turn to a discussion of the role of number format for the spatial association of
numbers. Numerical information can be conveyed in many ways, e.g., with Arabic or Roman
symbols; in the form of finger postures, dot patterns, or number words; and using either the
visual, auditory, or tactile modality. If the SNARC effect indicates access to the abstract
representation of number magnitude then it should be insensitive to these variations (see also
chapter 2 on this issue). Several studies have obtained SNARC effects when numbers were
presented either as Arabic digits or as written words (e.g., Fias, 2001; Dehaene et al., 1993;
Nuerk et al.,, 2004). The slopes of the SNARC functions had similar magnitudes (although
sometimes they tended to be smaller for number words), in agreement with the idea that the
spatial association reflects access to an abstract representation of number magnitude. Although
we know of no published SNARC studies with other number formats (e.g., Roman or Chinese
numerals, dot patterns, counting fingers, auditory or tactile magnitude information), further
support for a supramodal number representation comes from priming studies, where in each
trial a task-irrelevant prime appears before the task-relevant probe number. The typical finding
is that decision speed is fastest when the prime and probe are identical, and RT gradually
increases with increasing numerical distance between prime and probe. Importantly, this
distance effect is not affected by whether the prime and probe numbers are presented in the
same or in different formats (Reynvoet et al., 2002).

Finally, it is worth considering whether spatial associations are exclusively numerical or
whether they can occur with non-numerical stimuli that are sequentially ordered (e.g., letters of
the alphabet, days of the week, months of the year). An initial study (Dehaene et al., 1993,
Experiment 4) found no reliable associations between letters and space when participants
classified letters from the beginning or end of the alphabet as vowels or consonants (see also
Fischer, 2003b). However, a statistically more powerful study (Gevers et al., 2003) found that
both letters of the alphabet and months of the year can exhibit a SNARC effect. This raises the
question: Which aspect of numerical information is spatially coded? Numbers do not only
convey quantity information (three buses), but also ordinal information (the third bus) or even
nominative information (Bus line 3). It is possible that these different number meanings are



48 Handbook of Mathematical Cognition

conveyed by different representational systems. Given that both numbers and ordered se-
quences can elicit a SNARC effect, one could argue that it is the ordinal property and not the
quantitative property of numbers that is spatially coded. Alternatively, ordinal and quantita-
tive information may be represented separately but characterized by similar internal properties
(chapter 4 discusses the processing of ordinal information). Another possibility is that a
shared representation can handle numerical or ordinal information, depending on the task
context, because quantitative information hierarchically implies ordinal information. In support
of this possibility, Marshuetz et al. (2000) found that brain areas which responded to ordinal
attributes of non-numerical stimuli were also engaged during number-processing tasks.

Spatial Determinants of the SNARC Effect

In general, spatial information can be coded with respect to a variety of reference frames: either
centered on part of an observer’s body (egocentric coding) or on some non-bodily object
(allocentric coding). To investigate the reference frame(s) involved in the SNARC effect, Dehaene
et al. (1993, Experiment 6) asked participants in a parity task to respond with crossed-over
hands, the left hand pressing the right key and the right hand pressing the left key. Large
numbers were classified faster with the right key/left hand and small numbers were classified
faster with the left key/right hand. This shows that the relative position of the response, and
not the responding hand, determines the SNARC effect. This conclusion is supported by
studies involving unimanual responses. Kim and Zaidel (2003) obtained a SNARC effect when
participants responded with two fingers of one hand. Fischer (2003b) obtained a SNARC effect
when participants classified digits as odd or even by pointing with one hand to a left or right
button.

The SNARC effect can be obtained for effectors other than the hand and in tasks other than
selecting one of two buttons. For example, the time to initiate eye movements away from
centrally presented digits to the left or right side (as a function of parity status) depends on
the relation between the digit’s magnitude and the direction of the eye movement (Fischer et
al., 2004; Schwarz & Keus, 2004). Two further results from these oculomotor studies suggest
that the SNARC effect emerges at a processing stage prior to effector selection. First, Fischer
et al. (2004) showed that the saccadic amplitude is not influenced by the magnitude of the
presented number. Second, Schwarz and Keus (2004) found equally sized SNARC effects when
comparing manual and oculomotor versions of the parity task.

Béchtold et al. (1998) demonstrated that not only the spatial coordinate system of the
response but also the internal representation of the numerical information is important. They
instructed participants to think of the digits as either lengths on a ruler or times on an
analogue clock face. The same digits were then associated with either left or right space,
depending on the ruler or clock face condition. For instance, a small number was preferentially
responded to with the left hand in the ruler condition but with the right hand in the clock face
condition. A similar conclusion can be drawn from two descriptions of brain-damaged patients
with hemi-neglect whose impairment to attentively process left space was reflected in their
mental representation of numbers. In the first study, Zorzi et al. (2002) observed a systematic
representation-based midpoint shift toward the right in a number interval bisection task. For
instance, their patients named 6 as the number in the middle between 3 and 7. Apparently,
because they were neglecting the left side of their mental number line, these patients posi-
tioned the midpoint of a verbally presented interval towards the right. In the second report,
Vuilleumier et al. (2004) studied how a group of patients neglecting the left side of space
compared numbers to a fixed reference. The patients were selectively slow in responding to the
number just smaller than the reference, indicating difficulties in orienting attention towards
the left on their mental number line. This selective difficulty was observed for different
references (5 and 7). When asked to imagine whether the presented target number was earlier
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or later than 6 o’clock, the patients showed the reverse effect, a selective slowing of numbers
larger than 6, thereby further confirming the dynamic and representational nature of the
association between numbers and space

To conclude, the SNARC effect does not seem to tap into a fixed component of the long-term
representation of numbers. Rather, numerical information can be dynamically allocated to
different representationally defined reference frames, with the left-right linelike spatial cod-
ing being merely a default.

A BROADER PERSPECTIVE: THE SNARC EFFECT IN RELATION
TO OTHER SPATIAL COMPATIBILITY EFFECTS

Generally speaking, the SNARC effect is the result of joint activation of the spatial components
of the cognitive representation of number meaning (magnitude) and of spatial task requirements.
More specifically, both the mental number line and the response requirements of certain
number tasks share a left-right code. Its congruent activation seems to cause the effect. This
makes the SNARC effect a special instance of a spatial compatibility effect. Spatial compatibility
refers to the fact that lateralized responses can be emitted faster and, less error prone when the
trigger stimulus is lateralized to the same side (Fitts & Seeger, 1953). Various types of spatial
compatibility can be distinguished as a function of the involvement of spatial aspects in relevant
and irrelevant stimulus attributes and in response components of the task (see Kornblum et
al., 1990, for a taxonomy). The SNARC effect seems structurally similar to the established
Simon effect (Simon, 1969). To obtain the Simon effect, participants are asked to give a left- or
right-key response to a nonspatial task-relevant attribute of a stimulus (e.g., its color) which is
presented randomly either left or right of fixation. This task-irrelevant spatial information
contained in the stimulus position then influences the response: right-key presses are slowed
down when stimuli appear on the left compared to the right side, and vice versa for left key
presses. In SNARC experiments, stimuli are presented centrally and the task-relevant informa-
tion (typically parity status or magnitude) is also nonspatial in nature. Nevertheless, a task-
irrelevant spatial attribute seems to become activated from the internal number representation
and to then either facilitate or interfere with the spatial processing required to respond.

The compatibility effects obtained with internally represented spatial dimensions and externally
presented spatial stimulus attributes seem to have a similar origin. For instance, Masaki et al.
(2000) showed that the compatibility effect with centrally presented arrows (conveying spatial
information symbolically) evoked a pattern of electrophysiological brain potentials that highly
resembled the pattern obtained with the traditional Simon paradigm (e.g., De Jong et al.,
1994). This interpretation is, however, not supported by a recent study of Mapelli et al. (2003).
To look for interactions between the SNARC and the Simon effect, they presented digits to the
left or right of fixation for parity classification. Thus, they introduced a numerical version of
the Simon task, in which the spatial position of the number stimulus was task irrelevant. If the
SNARC effect, like the Simon effect, is indeed originating from a common processing stage,
then one would expect a statistical interaction between magnitude and position of the digits
(Sternberg, 1969). Mapelli et al. (2004), found no such statistical interaction. On the other
hand, researchers recently demonstrated interactions between the SNARC and the Simon
effects (e.g., Caessens et al., 2003; Wood et al., 2004), suggesting that, like the Simon effect,
the SNARC effect results when selecting a spatial response on the basis of task-relevant
information and an automatically induced spatial bias. Moreover, in a recent study, Gevers et
al. (2004) demonstrated that the SNARC effect was characterized by the same electrophysi-
ological correlates of response selection as observed by Masaki et al.

However, to consider the SNARC effect as an instance of the Simon effect, it is important to
demonstrate that the spatial coding of numerical information occurs automatically. We now
turn to evidence supporting such automaticity.
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Although the SNARC effect has been primarily investigated with the parity task and to a
lesser extent with magnitude comparison, the effect is clearly not specific to these tasks.
Participants in the study by Fias et al. (1996), for instance, indicated whether the name
corresponding to a visually presented digit contained an/e/-sound or not by pressing a left or
right response key. Fias et al. found a robust SNARC effect in this phoneme monitoring task.
Huha et al. (1995) also observed a SNARC effect when participants evaluated the appearance
of visually presented digits. Fischer (2001) reported that the perception of the midpoint of
long strings made from small or large digits was shifted to the left or right, depending on the
digit magnitude. Finally, participants respond faster with a left button to 1 than to 100 and
faster with a right button to 100 than to 1 (Tlauka, 2002), again illustrating how perceptual
tasks induce spontaneous semantic processing that is then reflected in a SNARC effect.

Some of the tasks reviewed above required no explicit number-related information to be
performed. However, despite the fact that number magnitude was not needed, the numbers
had to be processed to some degree. The SNARC effect, however, has also been obtained in
studies in which the visually presented numbers were completely irrelevant. For instance,
using digits as a background upon which oriented lines or triangles were superimposed for
classification, Fias et al. (2001) found that participants’ manual responses were influenced by
the spatial-numerical association evoked by the background. This is a strong argument in
favor of automatic spatial coding. Also, in Fischer et al.’s (2003b) study of visual-spatial
attention allocation, the digits served merely as a fixation point but did nevertheless influence
speed of target detection. The fact that the SNARC effect emerges when information about
numbers is not required for correct performance, and may even interfere with performing the
task, suggests that a high degree of automaticity is involved in the processes that give access
to the magnitude representation and its spatial association (cf. chapter 4).

To sum up, the SNARC effect in its pure form expresses an overlap in the cognitive represen-
tations of the spatial left-right dimensions from the irrelevant number magnitude and the
required response and thus fits the category of Simon-like effects in Kornblum et al.’s (1990)
taxonomy of compatibility effects. We believe that it is a theoretically fruitful approach to put
the investigation of the spatial coding of numerical information within the theoretical frame-
works developed to understand general spatial compatibility effects. This leads to two advantages.
First, by understanding the domain-general components of the SNARC effect, the number-
specific components can be isolated and therefore better understood. Second, a framework is
provided to understand spatial coding of numbers in its different manifestations.

DEVELOPMENTAL AND CULTURAL DETERMINANTS

If we want to understand how the association between numbers and space comes about, it
makes sense to look at the way children deal with magnitude information.

Developmental studies have shown that very young infants can discriminate numerosities
and continuous magnitudes and even perform simple additions and subtractions (Wynn, 1998;
see also chapter 9). Following these findings, a debate arose about the functional origin of this
precocious numerical ability. Some authors adhere to the idea that these abilities reflect the
operation of a “number sense” (e.g., Dehaene, 1997), whereas others suggest that these abili-
ties are not truly numerical in nature but reflect the operation of early visuo-spatial abilities
(Newcombe, 2002).

Further evidence for the involvement of spatial cognition in numerical abilities can be
obtained at later stages of a child’s development. From the work of Rourke and Conway (1997),
it is known that visuo-spatial learning disorders correlate with a delayed or abnormal develop-
ment of mathematical skills. The same correlation has been observed in genetic disorders like
velocardiofacial syndrome (Simon et al., 2003) and Williams syndrome (e.g., Ansari et al.,
2003; see also chapter 17). These observations demonstrate a prominent role of visuo-spatial
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abilities in number processing, but they do not clarify how numerical representations become
spatially coded. We must therefore turn to the available evidence from developmental and
cross-cultural studies on the SNARC effect. Berch et al. (1999) investigated the onset of the
SNARC effect with the parity task. They found that the SNARC effect appeared from third
grade. However, given the evidence for well-developed spatial and numerical skills in much
younger children (see above), it could be argued that the parity task is not sensitive enough to
discover the presence of such associations in younger children; they may be unable to respond
consistently in this speeded task. The use of behaviorally simpler tasks such as detection
(Fischer et al. 2003b) or bisection (Fischer, 2001) may reveal spatial-numerical associations
even in such special populations. Alternatively, it might also be that the number line is spatially
coded from an earlier age but that it is not yet automatically activated. Remember that the
parity task does not necessarily require magnitude information. Consistent with this idea,
Girelli et al. (2000) showed that number magnitude is only activated automatically from third
grade onward. In sum, further research is needed to establish the critical developmental
period for the SNARC effect.

What determines the left-right orientation of the mental number line? One prominent
proposal has been that the effect reflects acquired reading habits (Dehaene et al., 1993).
Western participants in number studies typically read from left to right, and this cognitive
strategy may transfer from the domain of letter, word, and sentence processing to the processing
of digits, numbers, and equations. In support of this view, the association of numbers with
space tended to be weaker in a group of Iranian participants who normally read from right to
left and who probably would associate small digits with right space and larger digits with left
space (see Dehaene et al.,, 1993, Experiment 7, for details of this trend). A recent series of
studies by Zebian (2001) strengthens this conclusion. She found that monolingual Arabic
speakers in Beirut process two numbers more easily when the larger number is placed to the
left of the smaller number, compared to a display with the larger number on the right. This
effect decreased for a group of bilingual Arabic-English speakers (see also Maass & Russo,
2003).

Of course, these studies do not demonstrate directly that writing direction itself is the
crucial determinant of the orientation of the number line. With the currently available data,
any variable that is correlated with it can have a decisive impact. For instance, one might
suspect that the association of numbers with spatial positions is a reflection of early training
with number lines in school. Poster boards with printed left-to-right-oriented number lines
have been used to teach generations of school children the principles of addition and subtrac-
tion (Fueyo & Buschel, 1998). Or it could be an expression of culture-specific general exploration
strategies (Dehaene et al., 1993). It may also be worthwhile considering finger-counting habits
as a reason for the emergence of associations between numbers and space. Several arguments
can be made in support of this hypothesis. First and foremost, finger counting is a universal
means of learning to deal with numbers (see Butterworth, 1999, chapter 5). Specifically, it
could then be argued that the majority of children in Western countries prefer to enumerate
objects on the fingers of their left hand and that this brings about the association of small
numbers with left space and larger numbers with right space. Conant (1896/1960, p. 437f)
reported that from 206 U.S. school children almost all began to count with their left hand.
Clearly more up-to-date and cross-cultural data are needed to evaluate this possibility further.

Having discussed these possible candidates for the acquisition of associations between num-
bers and space, we wish to briefly draw the reader’s attention to one further proposal. In an
impressive analysis of mental arithmetic from the viewpoint of embodied cognition, Lakoff and
Nunez (2000) show how numerical abilities can emerge from ordinary behavior and daily
experiences in a physical world. These become cognitively represented in schemas and are
then transferred from their source domain to the target domain of arithmetic through the use
of metaphor. To illustrate, consider how basic facts about any object collection (its size and



52 Handbook of Mathematical Cognition

how it is modified by removing and adding elements) can be mapped onto statements about
numbers. This has also been illustrated by Cooper (1984, p. 158):

“Consider number development as learning about the space of number. In this space, one must
learn where things are and how to get from one place to another. For purposes of the analogy the
locations are specific numerosities and the actions to get from one place to another are additions
and subtractions. How do you get from two to five? You must start in a particular direction
(increasing numerosity) and go past certain landmarks (three and four) until you arrive at five
(having gone a certain distance). Points in this space capture the cardinal characteristics of num-
ber: direction and landmarks, their ordinal properties ... It is through experiences of moving in
this space that children learn its ordinal structure, which is the primary content of early number
development.”

Lakoff and Nunez (2000) elaborate how such concrete experiences yield all the laws of
arithmetic, such as preservation of equality, symmetry, transitivity, and inverse operations.
Their theory, primarily based on arguments from structural and logical analysis, may become
a promising avenue for further theory development if put in an empirically testable theoretical
framework. We refer the reader to chapter 7 by Nunez and Lakoff for more details.

In sum, there is now good evidence that the direction of the number line is culturally
determined, although it remains unclear what the crucial variables are. Further developmental
research in a cross-cultural perspective can increase our understanding of the developmental
trajectory and the cultural determination of how space is integrated in our internal mental
representations of numbers.

CONCLUSIONS

We hope that this chapter has convinced the reader that the meaning of numbers is indeed
spatially coded and that the mental number line is a useful metaphor to capture this surprising
fact. However, this metaphor should not be taken literally, as there is no sign of a topographic
organization of number-selective neurons in the brain (Nieder et al., 2003; Verguts & Fias,
2004). Rather, spatial associations are attached to numbers as part of our strategic use of
knowledge and skills, and, as a result, these associations are highly task-dependent. Further
evidence of this flexibility of spatial associations challenges the appropriateness of the number
line metaphor. Examples include the existence of vertical as well as horizontal spatial associa-
tions (Schwarz & Keus, 2003) and the systematic association of odd numbers with left space
and even numbers with right space (Nuerk et al., 2003). Future research will have to determine
the extent to which the wide range of spatial numerical associations can help us understand
the cognitive representation of numbers.
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Automaticity in Processing
Ordinal Information

Joseph Tzelgov
Dana Ganor-Stern

Ordinality, a critical component of numerical competence (Davis & Perusee, 1988), refers to
the order of the quantities corresponding to the number labels. These quantities are aligned
along a single line—the mental number line (Restle, 1970). In this chapter we discuss the
automaticity of the ordinal processing. Automatic processing is important because it provides
a picture of the internal representation, which is relatively uncontaminated by intentional
operations. We start with a brief review of the various definitions proposed in the literature
for the concept of automaticity, followed with a presentation of the definition posed by the
authors of this chapter. We continue with a critical evaluation of the experimental phenomena
that have been assumed by researchers to be evidence for the automaticity of ordinal processing,
namely, interference effects, distance effect, and SNARC (Spatial-Numerical Association of
Response Code) effects. Next, we discuss the conditions leading to automatization of the
processing of ordinal information. We conclude the chapter by discussing the implications of
the existing data for the emerging picture on the automatization of ordinal relations.

DEFINING AUTOMATICITY

Automaticity has been most frequently defined in terms of a list of features (e.g., Hasher &
Zacks, 1979; Posner, 1978), but, as pointed out by Logan (1992), these definitions state what
automaticity is not rather than what it is. The three features common to most definitions of
automaticity are the absence of (a) attentional limitations, (b) consciousness, and (c) intention-
ality. Previous research, however, has shown not only that it is rarely the case for the three
criteria to hold simultaneously (Carr, 1992; Neumann, 1984), but that the validity of each
feature as a criterion of automaticity is also questionable (e.g., Kahneman & Chajczyk, 1983;
Logan & Zbrodoff, 1979; Tzelgov, Henik, & Berger, 1992a). This has led some (e.g., Pashler,
1998) to conclude that the concept of automatic processing is not useful and should be abandoned.
Others (e.g., Bargh, 1997) believe that the notion of automaticity is important for explaining
human behavior and, therefore, other ways to define it should be pursued.
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Logan (1989, 1992) argued that the definition of automaticity should specify the learning
mechanisms that lead to automaticity. Logan’s (1988) instance theory and connectionist/
controlled architecture of Schneider and Detweiller (1987, 1988) are good examples for such a
“construct-oriented” approach. Another “minimalist approach,” by contrast, defines automatic
processing by a single feature common to all automatic processes. Following Bargh (1989),
Tzelgov has proposed using processing without monitoring as the defining feature of auto-
matic processing, where monitoring means an intentional setting of the goal of behavior, and
a continous intentional evaluation of the output of the process, as long as it takes place
(Tzelgov, 1997; Tzelgov, Yehene, & Naveh-Benjamin, 1997).

Tzelgov et al. (2000; 1997) distinguished between two modes of automatic processing (i.e.,
processing that occurs without monitoring). The first is intentional automatic processing, in
which automatic processing is part of the task requirement but the monitoring is set on a
higher superordinate level (Vallacher & Wegner, 1987). Processing the individual words when
a sentence is read for meaning is a good example. The second is autonomous automatic
processing, in which automatic processing takes place when it is not part of the task require-
ment. The Stroop effect (Stroop, 1935) that indicates reading a word when a person is asked
to name its color exemplifies this mode of automatic processing. Although both cases are
considered to be automatic, when a process is part of the task requirement it is not always
possible to tell whether it runs with or without monitoring. Diagnosing of automatic process-
ing in the autonomous mode is in most cases unequivocal. To diagnose a process as automatic,
therefore, it is necessary to show that it can run when it is not part of the task requirement.
It should be noted that, even in this mode, it is unclear if a process occurs with or without
monitoring when the processing of the irrelevant dimension might be beneficial for the task.
In such a case, one cannot be sure if participants were not processing the irrelevant dimension
intentionally. We therefore call processing conducted under such conditions “incidental” and
consider as markers for automatic processing only experimental phenomena that provide
evidence for the occurrence of a process, although it was neither part of the task nor beneficial
for the task.

In their analysis of markers of automaticity, Ganor-Stern, Tzelgov, and Deutsch (submitted)
introduced the notion of triggering (i.e., activation of the irrelevant dimension provided by the
experimental task). The level of triggering depends on the relationship between the processing
of the relevant and irrelevant dimensions: the more related the two processes, the more
triggering is provided. For example, when studying automatic processing of numerical magni-
tude by using a task that involves a numerical parity task, it might be argued that, since both
dimensions are numerical, the processing of the relevant dimension (parity) might have trig-
gered the processing of the irrelevant dimension (magnitude).

Tasks vary with the amount of triggering that they provide for the processing of the irrel-
evant dimension. Minimizing triggering allows one to see the extent to which it is necessary
for the occurrence of the automatic process. Consequentially, it helps to distinguish between
the two types of automatic processing proposed by Bargh (1996, 1992): “unconditioned auto-
matic processes,” which require only information and skill in order to occur (Neumann, 1984)
and take place even if no triggering is provided by the task, and “conditioned automatic
processes,” which depend upon some level of triggering from the task in addition to informa-
tion and skill.

In the next section we describe three possible markers for automatic processing of ordinal
relations: interference effects, distance effects, and the SNARC effect. For each effect we
discuss the following three questions: Is there evidence that the effect reflects automatic
processing? To what extent does such automatic processing depend upon triggering from the
task? What can be learned from each marker about the nature of the automatic numerical
processing taking place and the representations that underlie it?
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MARKERS OF AUTOMATICITY
IN PROCESSING ORDINAL INFORMATION

Interference Effects

In the interference paradigm, the participant is presented with an object to process. The
experimental task specifies which aspect of the object is relevant for the task, and therefore
should be processed. The purpose of this paradigm is to look for indications for the automatic
processing of an irrelevant dimension, which was not part of the task requirement. In studies
that used the interference paradigm to tap automatic ordinal processing, digits or verbal
numerals were presented for processing, but the numerical magnitude was always the irrelevant
dimension. In one line of studies (e.g., Henik & Tzelgov, 1982), the physical size was the
relevant dimension; digits that varied in physical and numerical magnitude were presented for
a physical size comparison task (“choose the physically larger digit”). In another line of studies
(e.g., Pansky & Algom, 2002; Pavese & Umilta, 1998), displays of identical digits were presented
and the relevant dimension was the number of digits in the display (“choose the display that
contains more digits”). In both lines of research, automatic processing of numerical magnitude
was indicated by poorer performance in the incongruent trials, in which the information in the
relevant and irrelevant dimensions was inconsistent, compared to congruent trials, in which
the information in the relevant and irrelevant dimensions was consistent. Specifically, perfor-
mance was poorer when the physically larger digit was numerically smaller compared to when
it was numerically larger. This effect is known as the Size Congruency Effect (SiCE). In a
similar manner, performance was poorer when the number of digits was large but the numerical
magnitude of each digit was small, compared to when the number of digits in the display and
the numerical magnitude of each digit were large (e.g., Pansky & Algom, 2002). Since, in these
studies, processing of numerical size was not part of the task and it could not be beneficial for
the task, it meets our criterion for a marker for automatic processing. It was argued by Pansky
and Algom (1999, 2002) that because the magnitude of those interference effects is affected by
contextual characteristics, they reflect only partially automatic processing. We disagree. Although
we are aware that automatic processes can be more or less visible depending on the context,
as is shown, for example, by Pansky and Algom (1999, 2002) and by Schwarz and Ischebeck
(2003), there is nothing in our approach to automaticity that requires that the indications for
automatic processes will stay unaffected by context.

In the studies described so far, the level of triggering was not minimal. Thus, the processing
of numerical information could, in principle, be triggered by the task; that is, the physical size
comparison task might have activated the processing of numerical size, and, in a similar
manner, the processing of numerical size might have been activated by counting. As of this
writing, there are no interference studies that used lower levels of triggering.

As to the underlying representations, Tzelgov et al. (1992b) suggested that interference
effects, and in particular SiCE, reflect two components: an activation of the number line and
the tagging of each number larger than 5 as “large” and each number smaller than five as
“small.” The first component is apparently responsible for the increase in the magnitude of
SiCE as a function of intrapair distance found in many studies (e.g., Cohen-Kadosh, Henik, &
Rubinsten, submitted; Henik & Tzelgov, 1982; Tzelgov et al., 2000). The second component
might explain why the size of SiCE for pairs of numbers equal in intrapair distance was
smaller where the two members were on the same side of 5 as compared to when they were on
the two sides of 5 (Tzelgov et al., 1992b).

In sum, the following two conclusions can be drawn from the present section. First, interfer-
ence effects reflecting ordinal processing can be considered markers for automatic ordinal
processing, and second, there is not enough empirical evidence to evaluate the role of trigger-
ing in such effects.
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Distance Effect

The term “distance effect” refers to the effect of the numerical difference between two num-
bers in the time to process them. In the present context, we examine if and under which
conditions it may be seen as a marker for automatic ordinal processing. It should be noted that
the term “distance effect” was used in the past with regard to two manifestations of intrapair
numerical difference. In the first, the larger the difference between the two numbers, the
better the performance. This is found when two numbers are presented for a numerical
comparison task, and for this reason it is called here “comparative distance effect.” In the
second, the smaller the difference, the better the performance. This effect is found when one
number is processed in the context of another number (e.g., Brysbaert, 1995; Reynvoet &
Brysbaert, 1999) and is similar to the priming effect found in the verbal domain. We thus refer
to it as “priming distance effect.” Next, we review separately the existing evidence for the
automaticity of the two manifestations of the distance effect.

Some researchers (e.g., Rubinsten, Henik, Berger, & Shahar-Shalev, 2002) view the “com-
parative distance effect” found in numerical comparison tasks as an indication for automatic
processing of ordinal information. We disagree. In such a case, the distance effect is a product
of the task requirement. According to our approach to automaticity, to view the distance effect
as a marker for automaticity, it should be present when it is not part of the task. Dehaene and
Akhevein (1995) generated conditions in which the comparative distance effect can serve as a
marker of automaticity. They presented pairs of either two digits or two verbal numbers, or
one digit and one verbal number. In the numerical same-different task, participants had to
decide if the two stimuli were numerically the same or different. In the physical same-
different task, participants had to decide if the two stimuli were physically the same or
different. While the former task involves intentional numerical processing, the latter does not,
and therefore a distance effect found in the physical identity task might be seen as an indica-
tion for the automaticity of numerical processing. Moreover, since physical comparison is
unrelated to numerical processing, the physical comparison task of Dehaene and Akhavein
(1995) may be seen as providing weak triggering for numerical processing. The presence of a
distance effect under such conditions could be seen as evidence for an unconditioned auto-
matic numerical process. Dehaene and Akhavein (1995), however, obtained the effect only for
pairs of the same notation (such as 1 8, or one eight) and not in pairs of different notations
(such as 1 eight). Because in pairs of the same notation the numerically identical numbers
were always physically identical, and the numerically different numbers were always physically
different, numerical processing could thus be beneficial in the physical identity task. Thus, the
comparative distance effect found under these conditions cannot be seen as unequivocal evi-
dence for automatic processing.

The priming distance effect found in Morin, Derosa, and Stultz (1967) was taken by Dehaene
and Akhavein (1995) as indicating automatic processing. Morin, Derosa, and Stultz (1967)
asked participants to memorize a set of consecutive digits and to decide if a probe digit was in
the set or not. The priming distance effect was reflected in slower responses when the probe
was outside, but close to the set, than when it was more distant. Although this task provides
relatively weak triggering for numerical processing, the participants still might have used the
number line as an aid for the memorizing task, and, thus, we view it as evidence of incidental,
and not automatic, processing.

The priming distance effect could be taken as a marker of automatic processing only if
shown when the processing of the prime is clearly not beneficial to numerical processing of the
target. Currently, such evidence is missing. Neely (1977) used the primed lexical decision task
paradigm in the verbal domain to provide evidence of processing the prime when it was clearly
not beneficial to task performance. In one of the conditions when the prime was the name of
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category A, it was followed by an item from category B as a target and the participants were
so told. Under this condition, monitored action that is aimed to optimize performance in the
task should lead to facilitated response to items from category B and to inhibition of items
from category A, following the presentation of the name of category A. However, when the
target appeared less than 250 ms after the appearance of prime, presenting the name of
category A as a prime facilitated the processing of items from Category A when they appeared
as targets. Facilitation of processing of unexpected stimuli was not beneficial to the task, and
therefore it indicates automatic processing. One possible way to obtain evidence of the auto-
maticity of the priming distance effect could be by applying a similar paradigm in the numerical
domain.

It should be noted that although there is no doubt that the distance effect in its two
manifestations reflects numerical processing, it cannot be interpreted exclusively in terms of
the numerical relations between the numbers. It might also reflect the associative relations
between the lexical entries of the numbers (e.g., Brysbaert, 1995; Dehaene & Akhavein, 1995;
Reynvoet & Brysbaert, 1999; Reynvoet, Brysbaert, & Fias, 2002). The distance effect can be
seen as a measure of numerical (semantic) relations only, and not also associative (lexical)
processing, when processing of remote numbers is compared to processing of close but non-
consecutive numbers.

To sum up, although the distance effect is usually seen as a marker for numerical processing
and is consistent with the notion of processing in terms of a mental number line, there is not
enough evidence showing that it can be taken as a marker for automaticity of numerical
processing for the following reasons. First, there is not sufficient evidence for its existence
when it is not beneficial for the task. Second, the distance effect obtained in most studies is
not a pure measure of numerical processing, since it also reflects associative lexical relations
between the numbers.

SNARC Effect

The SNARC effect was originally reported by Dehaene and colleagues (Dehaene, Bossini, &
Giraux, 1993). When participants were presented with a single digit for a binary parity judg-
ment, reaction times to relatively small numbers were faster with the left hand than with the
right hand, whereas reaction times to relatively large numbers were faster with the right hand
than with the left hand. This corresponds to the idea that the mental number line spreads
from left to right with small numbers at its left end. The effect seems to be a product of the
association of numerical magnitude to space and not a product of the association of numerical
magnitude to hand, since it was obtained with the participants’ hands crossed (Dehaene et al.,
1993, Experiment 6). Since ordinal processing was not part of the requirement of the parity
judgment, it meets our criterion for automatic processing.

The parity judgment task is a numerical task, and it might have activated the numerical
features of the number, including its magnitude; it therefore might be considered as providing
strong triggering. The question is whether the SNARC effect occurs also when the experimental
task requires non-numerical processing (i.e., under conditions of weak triggering). Fias et al.
(2001, 1996) demonstrate that a SNARC effect also emerged when participants were perform-
ing a non-numerical phoneme-monitoring task on the names of the numbers (“Is there an e-
sound in the name of the number presented?”) and an orientation task (“Is the stimulus
pointing upward or downward?”). Thus, these findings indicate that automatic activation of
the number line also occurs under conditions of minimal triggering. Fias et al. (2001) have also
shown that not all non-semantic tasks produce the SNARC effect. The authors argue that the
presence of a SNARC effect was dependent on the amount of overlap between the neural
circuits activated by the processing of the relevant dimension (orientation, color, or shape) and



60 Handbook of Mathematical Cognition

the irrelevant ordinal dimension. When such overlapping existed (as in the case of an orienta-
tion task), the SNARC effect was present. When there was no such overlap, however (as in the
case of a color or a shape decision), the SNARC effect was absent. These findings suggest that
triggering reflects not only similarity between cognitive processes but also overlapping in the
underlying neural circuits.

Recent findings of Fischer, Castel, Dodd, and Pratt (2003) also support the conclusion that
the SNARC effect requires only minimal triggering. They presented a large (8 or 9) or a small
(1 or 2) number in the center of the screen followed by a target in a box to the left or to the
right of fixation. Responses in a detection task were faster for small numbers than for large
numbers when the target appeared to the left of fixation, and for large numbers as compared
to small numbers when the target appeared to the right of fixation. This indicates that num-
bers were mapped onto their spatial locations on the number line even without triggering.

In sum, the SNARC effect meets our criterion for automaticity, and it seems to suggest an
automatic activation of the whole number line. In addition, its occurrence under minimal
triggering conditions (Fias, 2001; Fias et al., 2001) suggests that processing of ordinal informa-
tion is an “unconditioned automatic process” that occurs given the skill and the information
(Neumann, 1984).

The following conclusions can be drawn from the present discussion on each of the three
markers of automatic ordinal processing. First, interference effects are robust and replicable
markers for automaticity. Studies that used this experimental paradigm, however, did not
reduce the level of triggering sufficiently to allow for the conclusion that automatic processing
of ordinal magnitudes is unconditioned. Second, the distance effect was found when numerical
processing was not part of the task requirement. In most cases, however, this effect was found
under conditions in which numerical processing was beneficial to task performance and there-
fore, according to our view, could indicate only incidental, and not automatic, processing.
Another limitation of the use of distance effect as a marker for automatic processing of ordinal
information is that it is contaminated by associative relations on the lexical level. Third, the
SNARC effect was found when ordinal processing was not part of the task requirement and
was not beneficial for the task therefore suggesting that ordinal processing is an automatic
process. Moreover, because it was also obtained under minimal triggering conditions (Fias,
2001; Fias et al., 2001) suggests that processing ordinal information is an “unconditioned
automatic process.”

Although there is evidence that processing ordinal information is an unconditioned auto-
matic process, it should be clear that it will take place only given skill and information
(Neumann, 1984). Previous findings have shown that the indications for the automatic numeri-
cal processing may disappear when the information is either presented for too short a time or
in an unfamiliar format. Distance effect in the same-different physical task of Dehaene and
Akhavein (1995) was not found for different-notation pairs. This was probably due to the very
fast responses for these highly dissimilar pairs. As shown in a recent study by Schwarz and
Ischebeck (2003), the visibility of the automatic process depends on the speed of processing of
the relevant dimension. Interference effects, which indicate automatic processing of numerical
magnitude, were observed when the experimental task required comparisons between the
physical sizes of the stimuli, but only when the stimuli were Arabic digits and not when they
were number words (Cohen-Kadosh et al., submitted). Similarly, the SNARC effect was observed
under both strong and weak triggering when the stimuli were Arabic digits. However, when the
stimuli were number words, the effect was found only under strong triggering conditions. This
is apparently due to the participants’ being more skilled in extracting numerical information
from Arabic digits than from number words (Cohen-Kadosh et al., submitted; Dehaene &
Akhavein, 1995; Dehaene et al., 1993; Koechlin, Naccache, Block, & Dehaene, 1999). In the
next section we discuss the acquisition of such skill.
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SOME ASPECTS OF THE ACQUISITION AND
AUTOMATIZATION OF ORDINAL RELATIONS

The acquisition and automatization of ordinal relations can be investigated from at least two
perspectives. The developmental perspective is the one taken by some scholars (e.g., Girelli,
Lucangeli, & Butterworth, 2000; Rubinsten et al., 2002), and it raises questions such as at
what age children demonstrate automaticity of numerical processing. For example, Rubinsten
et al. (2002) found that children demonstrated intentional ordinal processing at the beginning
of first grade but that they did not show evidence for automatic ordinal processing until the
end of first grade. The second perspective, which was pursued in our laboratory, is experimental,
and it attempts to specify what kind of training is needed to acquire the ordinal relations of
symbols and to automatize such knowledge.

Tzelgov, Yehene, Kotler, and Alon (2000) were interested to see if it is necessary to encoun-
ter all possible pairs of symbols during study for the acquisition and automatization of ordinal
relations among all possible pairs, or if a subset of pairs that provides all the relevant order
information (i.e., pairs of symbols representing adjacent magnitudes) is sufficient. In the
experimental paradigm that was used, college students were trained with arbitrary symbols
(Gibson figures) that represent a series of consecutive numbers. The study phase included
several thousand trials, in each of which a pair of figures was presented and participants were
asked to decide which figure corresponded to a larger (or smaller) magnitude. Feedback was
provided after each trial. Two groups of participants were used. The “all pairs” group was
trained on all possible pairs of symbols, whereas the “adjacent pairs” group was trained only
on pairs of symbols representing adjacent numbers. The test phase included two tasks per-
formed on all pairs of symbols. In the “numerical size comparison task” that was aimed to
estimate intentional ordinal processing, participants were presented with pairs of symbols,
differing only in numerical size. Participants had to decide which symbol was numerically
larger. In the “physical size comparison task” that was aimed to estimate automatic ordinal
processing, participants were presented with pairs of symbols differing in physical and nu-
merical sizes and had to decide which symbol was physically larger. Automatic processing was
indicated by SiCE—the difference in response latency between congruent and incongruent
trials. In the numerical-size comparisons, both groups showed distance effects. Thus, the
“adjacent pairs” group could numerically process pairs that were never seen during training.
These participants demonstrated transitivity, which, according to Brainerd (1979) and Hulse
and O’Leary (1982), is the marker for ordinal knowledge. More importantly, in a physical
comparison task, participants from both groups demonstrated SiCE that increased with intrapair
distance, indicating automatic processing of ordinal relations. These findings demonstrate
that performance during a test was not based exclusively on retrieval of the binary order
relation encoded during training. It follows that if the training provides all the relevant infor-
mation, experiencing all possible binary relations during training is not necessary to form a
representation of the number line—a representation that can be automatically activated.

Consistency of mapping during acquisition is usually considered critical for automatization
(Schneider, Dumais, & Shiffrin, 1984). In visual search experiments, automatization was achieved
only under conditions of consistent mapping (CM), where the mapping of items to targets and
distractors as such was constant across trials, and not under varied mapping conditions (VM),
where the mapping of items to targets and distractors changed between trials (Schneider &
Shiffrin, 1977; Shiffrin & Schneider, 1977). In such experiments, automatization was indicated
by a reduction or elimination of the set size effect (i.e., the positive correlation between the
number of items in the display and RT). Fisk, Oransky, and Skedsvold (1988) applied the
notion of CM to processing numerical relations. In their study, an array with a varying
number of digits was presented in each trial. Participants had to search for the numerically
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largest digit in the display. Consistency was defined in terms of response requirements. In the
CM group, the instructions were constant across training: the participants had to select the
largest (or the smallest) digit in all trials. In the VM group, the instructions changed randomly
from trial to trial between selecting the largest and selecting the smallest digits. Because the
set size effect was reduced more in the CM than in the VM conditions, the authors argued that
only such conditions lead to automatization. Aviv (2003) manipulated response consistency in
a similar way when training participants, using a procedure similar to the one used in Tzelgov
et al. (2000). There was response consistency for half of the participants—those who had to
select the figure representing either the larger or the smaller magnitude. For the other half,
the instructions alternated across trials between select smaller and select larger. Automaticity
as measured by SiCE was achieved under both CM and VM conditions. Consistency of re-
sponse mapping had no effect on SiCE, either by itself or in interaction with any other
variable, suggesting that such consistency is not necessary for automatization. Thus, automa-
tization does not simply mean that a person trained by being presented with a pair of symbols
(Sj on the right and Si on the left; Sj representing a larger magnitude than Si) and asked which
member of the pair is larger stores “for the pair (Sj Si) press Left” and retrieves this response
when presented with the same pairs even when this is not part of the task requirement.
Rather, these results, together with those of Tzelgov et al. (2000), suggest that there is more
to automaticity than just retrieving the responses or even retrieving the binary relations
between the magnitudes corresponding to pairs of symbols. Rather, it seems that exposure to
the binary relations of a series of pairs results in the mapping of each symbol to its relative
location on the number line.

AUTOMATIC PROCESSING OF ORDINAL INFORMATION:
THE EMERGING PICTURE AND SOME SPECULATIONS

We started this chapter by presenting our approach to automatic processing as processing
without monitoring. We made a distinction between intentional and autonomous modes of
automatic processing and suggested that automaticity of a process, and in particular automaticity
of processing numerical information, can be diagnosed only in the autonomous mode (i.e.,
when it is not part of the task requirement) and when it is not beneficial to the task. In
addition, we also introduced the concept of triggering to differentiate between conditioned and
unconditioned automatic processing. Taking this as a starting point, we discussed three pos-
sible markers of automatic processing of numerical information. Although the distance effect
was reported under conditions of autonomous processing, it was, in many cases, contaminated
by associative relations at the lexical level (Dehaene & Akhavein, 1995). In addition, distance
effect found when not being part of the task requirement happened, in most cases, under
conditions when numerical processing was beneficial to task performance, and therefore it
could indicate only incidental, and not automatic, processing. Thus, although the distance
effect may be a promising candidate for a marker of automatic processing of numerical infor-
mation, additional data are needed to allow such a conclusion. Interference effects are robust,
replicable, and they do not suffer from the limitations of the distance effect; that is, they were
also found when numerical processing was not beneficial for the task, and they did not reflect
any associative relations. They are, thus, reliable markers of automaticity of numerical pro-
cessing. Studies that used this experimental paradigm did not reduce the level of triggering
sufficiently to allow for the conclusion that automatic processing of numerical ordinal magni-
tudes is unconditional. By contrast, the SNARC effect was obtained when it was not part of the
task requirement and when the task provided minimal triggering (Fias, 2001; Fias et al., 2001).
Thus, we may conclude that the processing of numerical information is an “unconditioned
automatic process,” which meets Neumann’s (1984) definition of automatic processing as one
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in which parameters for performance are fully specified by skill (procedures stored in memory)
and input information.

As previously mentioned, automatic processing provides a picture of an internal representa-
tion that is relatively uncontaminated by intentional operations. This leads to the question of
how ordinal information is represented. It should be noted that the answer to this question is
not independent of the experimental paradigm used. In most cases, the SNARC effect seems to
be consistent with the notion of internal representation in terms of location on a mental
number line. The increase of SiCE with intrapair distance and indications (still requiring
additional empirical support) of the distance effects under conditions of autonomous processing
are also consistent with this conclusion.

Tzelgov et al. (1992b) proposed a hybrid representation of numerical information, suggesting
that—in addition to the representation of order on a mental number line—numerical represen-
tation also includes a crude binary classification of numbers as large or small. In their two
experiments, Girelli et al. (2000) obtained a pattern that was similar to that of Tzelgov et al.—
larger SiCE for bilateral pairs (i.e., pairs in which both numbers are from the same side of 5)
than for unilateral pairs (i.e., pairs in which the two numbers are from different sides of 5).
Yet, in their case, SiICE was not significant for unilateral pairs (Experiment 1) or the differ-
ence between bilateral and unilateral pairs was not significant (Experiment 2).

It should be noted that the data from some studies most frequently interpreted as supporting
the notion of a mental number line are also consistent with binary representation. This applies
to studies in which the argument supporting the number line interpretation was based on the use
of numbers 1, 2, 8, 9 (Dehaene & Akhavein, 1995; Fischer et al., 2003). In such cases, the
numerical distance is confounded with small/large tagging. For example, the pair 1, 8 represents
not only large numerical distance but also a small number and a large number. Results
obtained under such conditions do not differentiate between the possible binary and linear
(number line) representations. It seems that additional research is needed in order to decide if a
crude large/small classification is part of the internal representation of numbers. Specifically,
if such a crude classification exists, it should affect the distance effect obtained when numerical
processing is not part of the task requirement. Keeping distance constant, the distance effect
should be larger when it involves numbers on the two sides of five compared to numbers on
the one side of five.

We have already pointed out automatization of ordinal relations cannot be based on encoding
and retrieval of instances of binary relations between pairs of stimuli compared in the past.
We believe that automatization of ordinal processing might be based on associative learning, as
suggested by Perruchet and Vinter (in press), who recently proposed the notion of a “self-
organizing consciousness” that argues for emergence of conscious representations on the basis
of associative learning. Automatic processing is conceived as direct readout from these repre-
sentations. The framework proposed by Perruchet and Vinter (2002) is similar to Logan’s
instance theory in that it attributes automatic processing to readout from memory, but, unlike
Logan, it allows for automatization of relations that were not encoded as instances during
practice. Because automaticity is viewed by Perruchet and Vinter as a direct readout from memory
that does not involve any additional processing, it is consistent with the idea that automatic
processing provides a picture of internal representation that is relatively uncontaminated by
the applications of intentional operations. Furthermore, it explains quite naturally why one
cannot describe the logical procedure or the “algorithm” employed in performing the task.
Such a description cannot be provided simply because such an algorithm has not been applied.
The automatic processing affecting performance is due to readout from the representation
activated in a bottom-up manner by the appearance of the relevant stimuli, perhaps with the
help of triggering by the intentionally performed task, or in a top-down manner by the task
requirement set in terms of a superordinate unit of behavior (Vallacher & Wegner, 1987).
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The model of Leth-Steensen and Marley (2000) provides an example of how associative
learning could lead to representation of ordinal information. The authors emphasized the
importance of activation of the end points of the scale, which serve as anchors. In all the
comparisons, the lowest end point is small and the highest endpoint is large. The other points,
in contrast, are not consistently mapped, as they are large in some of the comparisons and
small in others. It should be noted, however, that this model describes performance after
training only in intentional magnitude comparisons. Thus, in this case the processing of
numerical information is part of the task requirements and, as such, does not model automatiza-
tion of ordinal processing. To show that the model leads to automatization of numerical
information would require showing the effects indicating automatic processing, for example,
the SNARC effect, interference effects, moderation of SiCE by distance, and perhaps the
distance effect. This was done by Cohen, Dunbar, and McClleland (1990) and Roelofs (2003)
with respect to the Stroop effect, a marker of the automatic activation of word meaning. Both
of these models of the Stroop task exemplify how an automatic process (reading) becomes
activated when the task requirement is to do something else (to name the color) given the
information presented and the skill level. In the model of Cohen, Dunbar, and McClleland
(1990), instructions are represented by “task input nodes,” and there is an indication of
automatic reading, as reflected by the Stroop effect, when the “name the color” node, rather
than “read the word” node, is activated. Suppose now that the model of Leth-Steensen and
Marley is extended to include modules for processing the physical size of the presented stimuli
or their parity as well as task nodes (e.g., numerical comparison node, physical size node,
parity decision node). That would allow (by external activation) “to instruct the model which
task to perform.” One could then instruct the model to perform physical size comparisons or
parity decisions in order to see whether, under such conditions, the SiCE or the SNARC effect
were obtained. If, under such conditions, the model showed the SNARC effect or the SICE, it
would support the idea that learning binary order relations, as conceptualized by the model,
leads to automatization of ordinal relations. Working out the details of such a framework
awaits further research.
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INTRODUCTION

Numerical cognition has been studied in both human and animal species for a long time.
However, the computational basis of number representation and numerical skills has received
very little attention, as compared with the computational basis of language processing, for
example, reading (see Zorzi, 2004, for a review). In general, computational modeling is a
powerful tool in cognitive science to evaluate or compare existing verbal theories (e.g., box-
and-arrows models) and to make novel experimental predictions. In contrast to the loose
formulation of traditional verbal theories, computational models need to be explicit in any
implementational detail and can produce highly detailed simulations of human performance
(e.g., they can be explicitly tested on any number of stimuli). Moreover, the performance after
a “lesion” to the model can be readily compared to the behavior of neuropsychological patients.

In this chapter we review recent progress in developing computational (connectionist) mod-
els of numerical cognition. We focus on three main issues: (a) number representations, (b)
basic numerical skills (number comparison, subitizing, counting), and (c) simple mental arith-
metic. We first review the previous attempts to model human numerical skills. We then
present our comprehensive theoretical proposal, which revolves around the notion of numerosity
representations.

THE REPRESENTATION OF NUMBER CONCEPTS

The issue of what is the nature of the mental representation of cardinality is of paramount
importance. Cardinal meanings are distinctive to numbers, since the other functions of numer-
ical expressions—ordering, labeling, and measuring—can be carried out by different means
(Butterworth, 1999). Since cardinality entails size, it has been frequently maintained that its
mental representation is an analogue code. Dehaene and Cohen (1995) and Campbell (1994)
have proposed models of arithmetic that combine an analogue code with representations of
Arabic and verbal numerical expressions. Complex tasks such as multidigit arithmetic and
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symbolic mathematical reasoning are developmentally based on simpler tasks such as number
comparison and simple addition. Hence, in order to understand our capacity to deal with
numbers, it is crucial to identify the type of number representations that our brain uses for
performing these simple tasks.

Theories of number representation place particular emphasis on accounting for the distribu-
tion of reaction times (RTs) and errors in the comparison of numerical magnitudes. As with
many other stimulus dimensions, it is easier and quicker to select the larger of two numbers
when they are numerically dissimilar than when they are similar (the distance effect; Moyer &
Landauer, 1967). Moreover, for a given distance, pairs of small numbers are compared faster
than pairs of large numbers (the size effect). This led to the widely shared assumption that
number magnitudes are encoded as points (or regions) on a continuous, analogue number line
(e.g., Dehaene, 2003, for review). In one proposal, the number line is held to be compressive so that
larger numbers are closer together on the line than smaller numbers. Accordingly, the subjective
difference between two numbers depends on their positions on the line; that is, the subjective
difference between N and N + 1 is smaller as N increases (Dehaene, 1992; Dehaene, Dupoux,
& Mehler, 1990). A different conception of number line is that of Gallistel and Gelman (1992,
2000). First, they propose that the mapping from the number symbol (word or numeral) is
onto a line segment defined from the origin, not a point. Second, the mapping is linear, not
compressive, but the variability of the mapping increases in proportion to the magnitude
(scalar variability).

In most computational models, number semantics have been typically encoded as magnitude
information, with various schemes that were considered as an instantiation of number line
representations. As we shall see, the choice of representation can strongly influence the
success or failure of a model. The comparison and theoretical analysis of the various schemes
are postponed to a later section of this chapter.

MODELS OF SIMPLE ARITHMETIC

Simple arithmetic is a fundamental human numerical ability, thought to have a phylogenetic
origin (Butterworth, 1999). For example, pigeons can subtract the numerosity of two sets of
objects (Brannon, Wusthoff, Gallistel, & Gibbon, 2001), and human infants can sum and
subtract small numerosities even before knowing number words (Wynn, 1992). The basic
phenomena of single-digit arithmetic performance are robust, widely replicated, and well known
(for instance, the effect of problem size; see below), yet there has been much controversy as to
the psychological processes involved and as to how arithmetic facts are represented and
organized in memory. For instance, one major controversy is whether skilled arithmetic per-
formance (e.g., simple addition and multiplication) is built upon abstract semantic representa-
tions (e.g., McCloskey, 1992) or on verbally stored facts (e.g., Dehaene & Cohen, 1995).
Nonetheless, it is generally agreed that competent adults use some mixture of fact retrieval
from memory and procedures for transforming the problem if memory search fails (Cambell &
Xue, 2001; Groen & Parkman, 1972; LeFevre, Sadesky, & Bisanz, 1996).

Simple arithmetic is systematically affected by the “difficulty” of the problem, indexed by its
numerical size. Thus, the problem-size effect indicates that larger problems take longer to solve
and are more prone to errors. For skilled adults, correlations from 0.6 to 0.8 are observed
between mean RTs for correct responses and the sum of the operands or the square of the
sum, with the latter accounting for a larger proportion of variance (e.g., Butterworh, Zorzi,
Girelli, & Jonckheere, 2001, for addition).

Historically, simple mental arithmetic has been the focus of the earliest attempts to simu-
late human numerical abilities using neural network models. However, the number of
connectionist simulations of simple mental arithmetic is quite modest in comparison with
most other cognitive domains (for instance, consider the large number of papers on modeling
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reading aloud; see Zorzi, 2004, for a review). All connectionist simulations of mental arithmetic
take the associative approach of Ashcraft (1992), among others, that mental arithmetic is a
process of stored facts retrieval. We will distinguish two types of modeling approaches: (a)
learning models, in which the knowledge about arithmetic facts is acquired through a learning
algorithm and stored in a distributed form, and (b) performance models, in which the architec-
ture is hard-wired and set up by the modeler(s) according to specific representational and
processing assumptions (as it is typical, for instance, in localist interactive-activation models;
McClelland & Rumelhart, 1981).

Learning Models

The models of Viscuso, Anderson, and Spoehr (1989; also Anderson, Spoehr, & Bennett, 1994)
and McCloskey and Lindemann (1992) are based on associative-memory neural networks that
store in their memory a set of patterns representing entire arithmetic facts—the two argu-
ments and the result—and solve arithmetic problems by exploiting the ability of these networks
to complete partial or noisy patterns. After training, arithmetic problems are solved by presenting
to the network partial arithmetic facts, that is, their two arguments, which is followed by
retrieval of a stored pattern that most closely matches the input. Both models learned single-
digit multiplication facts. In the model of Viscuso et al. (1989), numbers were represented both
as magnitudes (see section 5 below) and with a further set of units representing the number
name, whereas McCloskey and Lindemann’s (1992) MATHNET model used only the magnitude
representation.

The Viscuso et al. (1989) model could only learn about 70% of the problems, and its perfor-
mance was not quantitatively matched against human RT data. MATHNET, which used a more
powerful learning algorithm (the Boltzmann Machine; Ackley, Hinton, & Sejnowski, 1985) but
had the same basic properties, was shown to account for the problem-size effect: the correlation
of the response time with the sum of the arguments was 0.69. However, the authors found that
this result could be entirely attributed to the way in which arithmetic facts were presented to
the network during training. The network experienced the arithmetic problems with a schedule
claiming to be similar to the experience of children learning arithmetic: small facts in the
beginning, all facts later. Fact frequency was also manipulated: smaller problems were pre-
sented up to seven times as often as larger problems. However, this ratio turns out to be highly
implausible when compared to fact frequencies in mathematic textbooks as tabulated by Aschraft
and Christy (1995). Moreover, control simulations showed that presentation frequency was
entirely responsible for the problem-size effect: when frequency was held constant, the network
failed to show the effect.

In later simulations with MATHNET, Lories, Aubrun, and Seron (1994) studied the effects
of artificial lesions to the model and found a reasonable match to neuropsychological data of
brain-damaged patients.

Performance Models

The model of Campbell (1995), known as the network-interference model, aimed to quantita-
tively account for skilled performance. Arithmetical knowledge was represented as both a
physical code and a magnitude code. The physical code is simply an ordered set of elements
(e.g., <{6 3{+H{9}>), and the magnitude code is specified as a logarithmic function of the
numbers. Problems with their solutions are “reactivated” over a series of cycles; variance in
RTs is determined by the competing activation of problems similar in terms of their physical
and magnitude codes. All parameters in the model were chosen to provide the best fit to
empirical data. The problem-size effect arises because larger-number problems are more simi-
lar in magnitude to their neighbors than are smaller-number problems (i.e., because the
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number line is compressive). This causes larger problems to activate neighbors more strongly,
which turns into more interference by way of inhibition from neighbors.

Another model based on a hard-wired architecture is that of Whalen (1997). This model is a
connectionist implementation of the localist associative model of Aschraft (1992), in which
number facts are represented by dedicated problem nodes. Both arguments and results are
semantically represented, using a compressed (logarithmic) magnitude representation. How-
ever, the model was used to simulate an artificial mathematical operation—“diamond arith-
metic’—of complexity similar to that of multiplication but in which the results were not
systematically related to the arguments. The network exhibited growing retrieval times as one
the argument increased, which was explained with the increasing similarity among the argu-
ments that in turn resulted in a larger number of competing problem nodes.

Summary

The computational models of simple arithmetic reviewed above share some important features
that can be summarized as follows:

1. All models are based on associative neural networks, either with distributed or localistic
encoding of number facts.

2. All models use semantic representations of numbers, sometimes paired with a “physical”
or “verbal” code. However, in all cases the semantic representations appear to be crucial.

3. All models have used magnitude information as number semantics (see section 5 below).
The various schemes have been considered as an instantiation of number line representa-
tions.

4. The connectionist learning models have shown limited ability to account for the pattern of
empirical data. The success of MATHNET (McCloskey & Lindemann, 1992) was entirely
the result of an implausible frequency manipulation.

MODELS OF ELEMENTARY NUMERICAL ABILITIES

Number comparison is a core numerical skill. McCloskey (1992) takes the ability to select the
larger of two numbers to be the criterion of understanding numbers. Neurological patients
who perform abnormally on this task turn out to be profoundly acalculic (e.g., Cipolotti,
Butterworth, & Denes, 1991; Delazer & Butterworth, 1997). Developmental psychologists following
Piaget (1952) regard the ability to order number by size as indicating that the child now
possesses the concept of number. However, there have been very few attempts to simulate
number comparison with computational models. One problem faced by connectionist modelers
is that it would make little sense to train a neural network on all possible bigger-smaller
relationships, even for single digits. Number comparison is certainly not learned in the same
way we learn mental arithmetic. Moreover, it is frequently assumed that the key parametric
findings (i.e., distance and size effects) should be attributed to the nature of the representa-
tion into which the numerical symbols are mapped (that is, the mental number line).
Dehaene and Changeux (1993) were the first to investigate the development of elementary
numerical abilities using a complex connectionist architecture. Of particular importance is
their numerosity detection system, depicted in Figure 5.1. In this system, visual objects (pre-
sented as simplified one-dimensional input) are first normalized to a size-independent code.
Activations are then summed to yield an estimate of input numerosity and finally sent to
numerosity detectors that are tuned to a specific numerosity through a center-on, surround-off
pattern of connectivity. The activity peaks for these latter units become lower and wider for
larger numbers, which implies a logarithmic coding (Dehaene, 2003). It should also be noted
that the numerosity detection system was hardwired, reflecting the assumption that it is
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Figure 5.1. The numerosity detector network of Dehaene and Changeux (1993). The visual
input is sent to a normalization layer encoding the objects in a size-independent code,
which in turn activates a layer of “summation clusters” that yield an estimate of input
numerosity. Finally, numerosity clusters are activated only in response to their preferred
numerosity. Reprinted with permission from S. Dehaene and J-P. Changeaux, Development
of elementary numerical abilities: A neuronal model, Journal of Cognitive Neuroscience, 5, 4
(Fall, 1993), 390-407. © 1993 by the Massachusetts Institute of Technology.

present at birth. Dehaene and Changeux augmented the basic architecture to simulate numerosity
discrimination and comparison. To perform the comparison task, the model had to match the
currently detected numerosity against a numerosity stored in short-term memory. Note, however,
that the model was only concerned with preverbal elementary abilities, so it could only operate
on small sets of objects (up to 4-5). After training the system, the distribution of errors in
both the discrimination and the comparison tasks showed size and distance effects.

The ability to detect the numerosity of a small group of objects with a parallel process is
known as subitizing. However, humans can also detect numerosity by means of counting (a slow
sequential process reporting the exact number of visually presented objects, the number of
single tones heard, etc.) or estimation (fast approximate detection of large numerosities).
Subitizing and counting were specifically investigated in the computational study of Petersen
and Simon (2000). While the model of Dehaene and Changeux (1993) assumes an innate
parallel mechanism for the detection of small numerosities, Peterson and Simon proposed that
subitizing is a learned recognition process, with a teaching signal provided by a more general
counting mechanism. In their simulation, based on the ACT-R cognitive architecture of Anderson
(1993), the counting procedure was implemented as a set of production rules that used the
number facts to successively assign numbers to objects in a display. Recognition was implemented
as a simple pattern-matching procedure that could match a given configuration of objects to a
remembered configuration with known numerosity. In this case, the numerosity of the current
display was directly retrieved from memory.

In Peterson and Simon’s (2000) ACT-R simulations, learning to recognize (i.e., subitize) the
patterns was fast and accurate for one to three items, more difficult for four-item patterns,
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and virtually impossible for five-six objects. In the latter case, the system always enumerated
by means of the counting mechanism. Therefore, the enumeration latencies in the model
showed a discontinuity in the slope at the numerosity of 3, in line with the empirical data. The
gradual transfer from counting to recognition for a maximum of four items was taken as
evidence that the subitizing limit derives only from the exponentially increasing complexity of
the spatial combinatorics involved in the recognition process. This account was also tested in
simulations with simple multilayer feed-forward networks (using backpropagation as learning
algorithm; Rumelhart, Hinton, & Williams, 1986) that were trained to recognize the numerosity
of the input patterns. Performance of the networks showed (although with some variability) an
emergent limited capacity of numerosity recognition. However, this theoretical position appar-
ently presumes that enumeration by counting is already developed when learning to subitize
takes place, which is in contrast with experimental data showing that infants can discriminate
numerosity (with a precision that increases over development) prior to the emergence of
language or symbolic counting (Lipton & Spelke, 2003; Wynn, 1998; Xu & Spelke, 2000).

Ahmad, Casey, and Bale (2002) developed a more elaborated connectionist system that
learned both to subitize and count, using two different mechanisms organized in a modular
architecture. The subitizing module consisted of two connected parts: (a) a detector of the number
of objects represented on an input “visual field” and (b) a one-dimensional SOM (self-organizing
map; Kohonen, 1995) neural network of ordered numerosity detectors that self-organized into
a compressive number line. After training, the winning nodes in the SOM network for each
input pattern were ordered topologically in a way resembling Fechner’s law: they were closer
to each other as the numerical size increased and farther apart as the numerical difference
increased. However, it is likely that these effects do not depend on the properties of the system
(e.g., the learning properties of the SOM network, as claimed by the authors) but rather on the
encoding of the input. That is, the input to the map, representing activity accumulated over
the visual scene, was implemented as a “thermometer” representation, which has been shown
to produce size and distance effects in connectionist simulations of number comparison (Zorzi
& Butterworth, 1999; see below). The counting module, on the other hand, sequentially enu-
merated each of the visually presented objects by means of two basic networks that were
synchronously running: (a) a “pointing next object” feed-forward neural network and (b) a
counting recurrent neural network that “verbally” produced the name of the numerosity. The
subitizing and counting modules were combined by means of a “gating” neural network that
selected the response of either of them. However, enumeration RTs were not simulated and the
model does not directly address human skilled performance.

COMPUTATIONAL APPROACHES
FOR REPRESENTING NUMERICAL MAGNITUDE

One important aspect of computational modeling is that theorists are forced to make a number
of formal assumptions about the representations on which the computations are carried out.
In the context of number processing, numbers need to be turned into patterns of activation
over a set of elementary processing units. As previously discussed, most computational models
use a representation of numbers that includes magnitude information. Various schemes have
been proposed, but they were typically considered as instantiations of the number-line hypothesis.
An alternative proposal, built upon the constraint that magnitude information should encode
cardinal meaning, is the numerosity code of Zorzi and Butterworth (1997, 1999).

Number Line Codes

The analogue “number line” hypothesis has been implemented in most neural network models
of arithmetic (Anderson et al., 1994; McCloskey & Lindemann, 1992; Viscuso et al., 1989) as
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an ordered sequence of input nodes, where each node stands for a particular number. In this
scheme, a number is encoded by activating the corresponding node together with the two
immediate neighbors: thus, 5 was represented as the activation of the node labeled “5” plus
activation of “4” and “6” (see Figure 5.2, panel A). Although this provides some ordering of
numbers, “8” and “4,” with no overlapping neighbors, would activate orthogonal representations
(i.e., nodes 7-8-9 for “8” and nodes 3-4-5 for “4”). This kind of coding scheme has been described
as barcode magnitude representation (Anderson, 1998, for review) because number magnitude is
coded as a moving “bar” of activation on a topographic scale. It should be pointed out,
however, that this scheme does not correspond to either a compressed number line (Dehaene,
2003) or to a linear number line with scalar variability (Gallistel & Gelman, 2000).

In Whalen’s (1997) model of arithmetic, numerical magnitudes were encoded as patterns of
activation over a set of 250 nodes, such that 100 nodes were active for each number. The total
activation across nodes for each magnitude summed to 1. Numerals with similar magnitudes
shared nodes with one another, and the closer the magnitudes, the more similar the represen-
tations. Crucially, the representations were designed so that larger magnitudes shared more
nodes than smaller magnitudes. Moreover, the differences between magnitude decreased in a
logarithmic fashion as the numbers increased. Therefore, the representation implements the
assumption of a compressed number line.

Dehaene (2001) implemented number line representations, both in the compressive version
(Dehaene, 1992) and in the linear version with scalar variability (Gallistel & Gelman, 1992) to
simulate the animal data of Brannon, Wusthoff, Gallistel, and Gibbon (2001). The representa-
tion of a number n was a Gaussian, centered according to a logarithmic scale and with fixed
variance (compressed version; see Figure 5.2, panel C) or to a linear scale with variance
proportional to n (scalar variability version; see Figure 5.2, panel D). The important conclusion
was that the two different implementations led to the same metric of number similarity and
therefore to the same behavior.

A. “Barcode” magnitude representations B. Numerosity magnitudes
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C. Compressed number line D. Number line with scalar variability

Figure 5.2. Alternative schemes for representing numerical magnitude. A. Barcode magni-
tude representation (Viscuso et al., 1989; Anderson et al., 1994; McCloskey & Lindemann,
1992). B. Numerosity code (Zorzi & Butterworth, 1999). C. Compressed number line (loga-
rithmic scale and fixed variance, e.g., Dehaene, 2001, 2003). D. Linear number line with
scalar variability (e.g., Gallistel & Gelman, 2002; Dehaene, 2001). A color version of this
figure can be viewed at www.psypress.com/campbell.



74 Handbook of Mathematical Cognition

The Numerosity Code

A radically different approach was taken by Zorzi and Butterworth (1997, 1999; also Zorzi,
Stoianov, Becker, Umilta, & Butterworth, submitted). They proposed to represent numerosity
magnitude straightforwardly as the number of units activated, such that bigger numbers include
smaller numbers; therefore, for N > M, a set with M members can be put in 1-1 correspondence
with a proper subset of the set with N members. This representational scheme is also known
as a “thermometer” representation (see Figure 5.2, panel B). The numerosity representation
has several advantages. First, it readily maps onto lower-level perceptual processes (e.g., object
identification) and enumeration procedures (e.g., subitizing, counting). That is, each magni-
tude increment in the numerosity representation corresponds to the enumeration of a further
element in the to-be-counted set. Second, it entails that larger numbers are more similar to
each other than smaller numbers, without assuming a logarithmic compression, since large
numbers share more active nodes. For example, 9 and 8 would share 8 nodes, whereas 1 and
2 would share only 1 node. This can also be formalized in terms of the cosine of the angle
formed by the vectors coding the two numbers. Finally, it is important to note that Zorzi and
Butterworth’s (1999) scheme does not assume that the variability of the mapping from sym-
bols to magnitude representation increases with size, as Gallistel and Gelman (1992) pro-
posed. Rather, the mapping is linear and not noisy.

It is interesting that the model of Dehaene and Changeux (1993) appears to contain both a
numerosity code and a number line code. The final level of representation (numerosity detec-
tors) is based on a logarithmic coding of numbers (i.e., detectors have Gaussian tuning curves
with fixed variance when plotted on a logarithmic scale), an assumption that has recently
received support from a study of single-cell recordings in behaving monkeys (Nieder, Freedman,
& Miller, 2002). The preceding level of representation in the model (summation clusters; see
Figure 5.1), however, is very similar to the numerosity code. These units sum the total activation
of a normalized visual input and have increasing thresholds. Therefore, if a given unit receives
sufficient input to exceed its threshold, it will be active together with all other units with lower
thresholds. In other words, the representation produced by a set of n objects includes the
representations of all smaller sets.

In the remainder of this chapter, we will discuss how the numerosity code accounts for the
main empirical phenomena that are observed in number comparison, simple arithmetic, and
number priming.

THE NUMEROSITY CODE FOR NUMBER COMPARISON

Zorzi and Butterworth (1999) defended the properties of the numerosity code in the context of
number comparison. They showed that the distance and magnitude effects can be readily
simulated in a model in which a simple nonlinear decision system operates on numerosity
codes to select the larger of two numbers.

The model (see Figure 5.3) has two sets of nine input nodes (one set for each of the two
numbers to be compared) that are activated according to the numerosity scheme. The repre-
sentation of the two possible responses (left or right button-press, to indicate which of the
numbers is the larger) consists of two nodes, which form a nonlinear response system that
exhibits winner-takes-all behavior by means of competitive interactions (lateral inhibition). The
decision system is not specific to number processing; rather, it is a general mechanism for
response selection that has been previously employed in modeling cognitive domains as differ-
ent as attention (e.g., Zorzi & Umilta, 1995) and language processing (e.g., Zorzi, Houghton, &
Butterworth, 1998). Activation of the magnitude nodes propagates gradually to the response
nodes, and the model is allowed to cycle until a response criterion is reached, which consists
of the difference threshold for the activations of the two response nodes.
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Figure 5.3. The model of number comparison of Zorzi and Butterworth (1999). The
numerosity representations of the two input numbers send their activations to the deci-
sion system, which selects the response corresponding to the larger number through com-
petitive interactions.

The comparison between two close numbers (e.g., 4 vs. 5) produces longer model RTs than
the comparison between more distant numbers (e.g., 2 vs. 5). In both cases, the response node
for the larger number needs to inhibit the alternative, incorrect response node to reach
response threshold. The stronger competition produced by two close numbers turns into longer
latencies (i.e., distance effect). Moreover, a sensitivity to number size emerges in the model
through the nonlinearity that is intrinsic to the decision process. The response nodes in the
decision system use a sigmoidal output function that bounds activation in the [-1;1] range, as
is common in connectionist networks. This results in a compression of the output activation
for larger numbers, because their stronger input will correspond to the saturated portion of
the sigmoidal curve. In other words, the activation difference between 6 and 8 will be smaller
than the difference between 2 and 4.

When run on the entire set of comparisons between two single-digit numbers (n = 72), the
model shows an impressive match to human data, both qualitatively (size and distance effects)
and quantitatively (the model latencies account for 42% of the variance when regressed onto
human comparison RTs; Zorzi et al., submitted).

The model of Zorzi and Butterworth (1999) represents a very important demonstration that
analogue representations of number magnitudes are not necessary to fit the data from com-
parison tasks, as has been often claimed. Moreover, magnitude representations need not be
compressed in order to observe a Weber-Fechner logarithmic effect in number comparison,
contrary to the claims of Dehaene (e.g., Dehaene, 1992; Dehaene, 2003). In Zorzi and
Butterworth’s model, numerals are mapped linearly onto magnitude representations, and the
compressive effect on the comparison times emerged by virtue of the interactions of the
numerosity code with a nonlinear decision process. It is also not necessary to postulate that
magnitude representations have the property of scalar variability, that is, that the standard
deviation of mapping from numerals to magnitudes increases with the mean magnitudes of the
numbers, as claimed by Gallistel and Gelman (1992).
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THE NUMEROSITY CODE FOR SIMPLE ARITHMETIC

Stoianov, Zorzi, Becker, and Umilta (2002) contrasted symbolic codes, number line codes, and
the numerosity code in a series of neural network simulations of simple addition. Four differ-
ent types of representation were contrasted:

* Symbolic Code. Symbolic number encoding was abstracted to a simple localist scheme,
which was independent from the numerical meaning. Each number was encoded by the
activation of a dedicated node. Therefore, this simulation examined a model in which
simple arithmetic facts are stored in a verbal form (e.g., Dehaene & Cohen, 1995).

* Number Line Codes. Following Dehaene (2001), two versions of number line were imple-
mented. In the compressed number line, the representation of a number n was a Gaussian,
centered according to a logarithmic scale and with fixed variance (see Figure 5.2, panel
C), whereas in the linear number line with scalar variability, the Gaussian was centered
according to a linear scale with variance proportional to n (see Figure 5.2, panel D).

* Numerosity Code. Numbers were encoded using the numerosity scheme of Zorzi and
Butterworth (1999) (see Figure 5.2, panel B).

To assess independently the computational properties of the representations, all simulations
used exactly the same network architecture and fact frequency was not manipulated. There-
fore, each network was simply exposed to all simple addition facts, from 1 + 1 to 9 + 9. Each
addition fact consisted of the representation of the two addends and of their sum (encoded
according to one of the schemes).

In line with previous connectionist attempts to model mental arithmetic, Stoianov et al.
(2002) used an associative-memory neural network, the Boltzmann Machine (Ackley et al.,
1985), trained with the contrastive divergence mean field learning algorithm (Welling & Hinton,
2002). Training patterns are encoded by visible units, whereas hidden units capture high-order
statistics. The update of a weight connecting two units is proportional to the difference between
the average of the correlations between these two units, computed at time zero (positive, or
fixed phase) and after reconstructing the pattern (negative, or free-running phase). This learn-
ing algorithm is neurobiologically plausible, as it uses only local signals and Hebbian rules.

Thus, arithmetic facts are learned and stored as attractor states in the recurrent neural
network. After successful learning, if some of the visible units are clamped with a part of a
learned pattern (input), the network should iteratively activate the rest of the units according
to the data distribution learned (retrieval). In particular, fixing the two arguments (e.g., 7+ 5
= 7), the network will retrieve the result of the corresponding arithmetic operation (here, 12),
since in the learning data it would have been the only correct completion to this input. The
number of cycles to settle is taken as a measure of the network RT for the stimulus.

The results of the simulations were straightforward. First, numerosity representations made
learning arithmetic facts easier than any other scheme. That is, the network using the numerosity
code took a lower number of epochs (i.e., passes through the training set) to learn the addition
facts. Second, and more crucial, only the network using the numerosity code exhibited the
problem-size effect. The RT distributions for the other codes ranged from uniform to U-shaped
and thus did not resemble the pattern of human RTs. Stoianov et al. (2002) also carried out a
formal analysis of the statistical properties of the various representational schemes. This
showed that the pattern of network RTs was produced by the joint effects of (a) the empirical
distribution of active bits (i.e., a bias toward smaller numerosities) and (b) the degree of
pattern overlap among arithmetic facts. These properties “conspire” toward a problem-size
effect only in the case of the numerosity code. Further simulations with the numerosity code
(Zorzi et al., submitted) show that both qualitative and quantitative fits to the human data can
be further improved when fact frequency (manipulated according to frequency tables reported
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in Ashcraft & Christy, 1995) and the size of the arithmetic table (i.e., extending the table up to
12 + 12) are taken into account.

THE ROLE OF SEMANTIC AND
SYMBOLIC CODES IN SIMPLE ARITHMETIC

Building upon the results of Stoianov et al. (2002), Stoianov, Zorzi, and Umilta (2003) ex-
panded the model with a symbolic component. The aim of the study was to establish how
symbolic representations of numbers would interact with the semantic representations. The
network could in principle use either type of information, or at least differentially weight
them, in learning simple arithmetic. Humans deal with more than one type of symbolic repre-
sentation of numbers—verbal numerals (both spoken and written), Arabic digits, Roman numbers,
etc. However, symbolic number encoding was abstracted to a simple two-digit code, which is
independent from the numerical meaning, with the exception of the two-digit syntactic structure
(the right digit stands for the units and the left one stands for the decades). Thus, each
number was encoded by the activation of a dedicated node and an additional “ten” unit allowed
the representation of two-digit numbers (for encoding sums up to 18).

Thus, representations of arithmetic facts integrated both symbolic and semantic (i.e.,
numerosity) components (see Figure 5.4). Children usually study arithmetic facts in verbal or
Arabic notations (but also semantically, e.g., by finger counting or by observing set relations in
the visual input). When pupils begin to learn arithmetic, they have already developed, or would
shortly develop, associations between symbolic forms and semantic representations of the
numbers. Hence, both the semantic and the symbolic codes would be activated during learning
or practicing arithmetic. Accordingly, the network was trained on both symbolic and semantic
input. As previously described, the network after learning can retrieve the result of an arith-
metic operation as the best completion to the two input arguments. In the extended model,
this can be achieved by activating the arguments in both symbolic and semantic forms, but,
importantly, it can also be done by clamping the symbolic arguments only. The latter testing
mode makes the retrieval objectively more difficult, but it is the best approximation to the task
faced by humans when presented with arithmetic problems.

When provided with symbolic input only, the network had virtually the same success in
retrieving the correct sum as when both symbolic and semantic inputs were present. However,
it turned out that in both testing conditions the network relied upon the semantic representa-
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Figure 5.4. The model of simple arithmetic of Stoianov et al. (2003). Arithmetic facts (the
two arguments and their result) are encoded in the visible layer using both symbolic and
semantic representations. The structure of the semantic representation, based on the
numerosity code, is shown in the call-out box. Note that the network is fully recurrent (each
unit is bidirectionally connected to all other units in both the visible layer and the hidden
layer).
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tions to solve the task. The analysis of the dynamics of retrieval showed that the network had
developed a very specific procedure for retrieving the arithmetic facts, comprising three parallel
stages: (a) activating the associated semantic arguments, (b) retrieving the result corresponding
to the current semantic arguments, and (c) activating the symbolic result corresponding to the
current semantic result. This procedure contributed to producing a better match to the problem-
size effect, because the time to access the semantic arguments increases with numerosity,
adding up to the time to retrieve semantic facts. In a network trained with fact frequencies
manipulated according to Ashcraft and Christy’s (1995) frequency tables, the model RTs
accounted for over 50% of the variance (N = 72) when regressed onto the human addition
latencies of Butterworth et al. (2001).

The idea that semantic processing is central to mental arithmetic is certainly not new (e.g.,
McCloskey, Aluminosa, & Sokol, 1991). However, the model of Stoianov et al. (2003) shows that
a network provided with both semantic and symbolic codes self-organizes its functioning to
exploit the properties (and systematicity) of the semantic representations. It is important to
stress that this division of labor is purely data driven.

To further investigate the division of labor between semantic and symbolic codes, Stoianov,
Zorzi, and Umilta (2004) carried out a series of simulations of acquired dyscalculia using the
dual-code model just described. Acquired dyscalculia is a condition of impaired arithmetic
performance in brain-damaged patients. If simple arithmetic is indeed reliant on semantic
representations, damage to the semantic component of the network should affect addition
performance to a greater extent than damage to the symbolic component.

Acquired dyscalculia was simulated by damaging the connections between the arguments
and the result (direct pathway among visible units) or the connections between the hidden
units and the visible units encoding the result (mediated pathway). To address the symbolic/
semantic issue, Stoianov et al. (2004) selectively damaged (a) the semantic or (b) the symbolic
components of the network. Damage consisted of random elimination of 20%, 50%, or 80% of
the connections in (a) the direct pathway or (b) the mediated pathway between the hidden units
and the result (see Figure 5.5). As expected, the more extensive the damage, the worse was the
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Figure 5.5. Accuracy of the network in producing symbolic (left panel) or semantic (right
panel) responses after artificial lesions (adapted from Stoianov et al., 2004). Filled and
outline marks represent the network performance after damage to semantic and to sym-
bolic connections, respectively. Circles and squares represent damage to direct and to
mediated connections, respectively. The x-axis shows the percentage of damage applied.
Notably, performance is strongly affected by semantic damage.
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network performance. However, damage to the semantic component had a stronger effect on
performance than damage to the symbolic part did: removing even a small percentage of the
semantic links was followed by loss of almost 50% of the learned facts and the responses
significantly deviated from the results. This held independently of the input condition and
output type tested (symbolic or semantic). In contrast, damage to the symbolic part typically
produced few errors, with responses being very close to the correct results. Importantly,
removing direct semantic connections resulted in greater damage than removing mediated
semantic connections, whereas damage to the direct symbolic links did not affect performance.

Note that semantic damage can be assumed to correspond to lesions of the inferior parietal
lobule (IPL), which causes impairments in addition and subtraction (e.g., patient MAR, Dehaene
& Cohen, 1997; patient SS, van Harskamp, Rudge, & Cipolotti, 2002). Damage of the links
between the hidden units and the symbolic result disrupted the production of symbolic re-
sponses but only weakly affected the retrieval of the semantic result (see Figure 5.5, right
panel). This appears to mimic the behavior of patients with impairments in the language areas
and preserved IPL, e.g., patients SAM (Cipolotti & Butterworth, 1995), ATH and VOL (Cohen
et al., 2000). Arithmetic in these patients was generally preserved, but output deficits pre-
vented them from reporting the results.

PRIMING THE NUMEROSITY CODE

The phenomenon of priming refers to a temporary change in the ability to identify perceptual
objects as a result of a specific prior experience. When the effect is semantic (semantic prim-
ing), as opposed to perceptual, it allows one to establish the strength of the relations among
items belonging to the same or to different categories. Several studies have found semantic
priming effects for numbers (e.g., den Heyer & Briand, 1986; Koechlin, Naccache, Block, &
Dehaene, 1999; Reynvoet & Brysbaert, 1999; Reynvoet, Brysbaert, & Fias, 2002). These studies
show that the priming effect is inversely proportional to the numerical distance between the
prime and the target (distance-priming effect). Moreover, the effect is symmetric with respect to
the priming direction and additive to the effect of repetition priming (Reynvoet et al., 2002).

The symmetry of the semantic priming effect has a theoretical relevance. The size of the
priming effect for a given target, say 5, is the same for both larger (e.g., 6) or smaller (e.g., 4)
primes. This finding is difficult to reconcile with the compressed number line model, whereby
the distance between two neighboring numbers depends on their numerical size: if the target
5 is closer to 6 than to 4, priming with 6 should produce stronger priming. It is therefore
important to establish whether the numerosity code can account for the priming data. Prima
facie, the structure of the numerosity code and, in particular, the fact that larger numbers
include smaller numbers, might suggest that it predicts an asymmetric priming effect. How-
ever, this conclusion is incorrect because the numerosity code is linear. In recurrent neural
networks, the priming effect is inversely proportional to the length of the trajectory in the
unit’s state space between initial state (prime) and final state (target). Regardless of whether
the prime is 4 or 6, settling to target 5 requires changing the state of one unit: in one case the
unit must be switched on (from 4 to 5), whereas in the other case it must be switched off (from
6 to 5). Since there is no reason to expect that one of these two operations takes a longer time
to be completed, the priming should be symmetric.

Zorzi, Stoianov, Priftis, and Umilta (2003) tested this prediction in a simulation. A network
was trained to transcode symbolic codes to semantic (numerosity) codes, for numbers ranging
from 1 to 18. Architecture and learning algorithm were identical to those of the addition
simulations (Stoianov et al. 2003), with the exception that hidden units were not used (the task
is much simpler). After training, the priming task was simulated as follows: (a) the network
was primed by activating the semantic units representing the prime numerosity, and (b) the
symbolic representation of the target was then activated and the network was allowed to
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transcode it to the corresponding numerosity representation. As in the Reynovoet et al. (2002)
study, target numbers n ranged from 4 to 9 and primes ranged from n - 3 to n + 3. The
simulations showed an excellent fit to the human data. The network transcoded symbolic
numbers faster when semantically primed with the same numerosity as that of the target
(repetition effect), and the transcoding time gradually increased when the distance between
the two of them increased (distance-priming effect). Moreover, the distance effect was symmetric
(see Figure 5.6).

CONCLUDING REMARKS

The numerosity code proposed by Zorzi and Butterworth (1999; Zorzi et al., submitted) is a
linear, discrete representation of cardinal meaning. Indeed, an exact representation of numerosity
seems to better capture our intuitive understanding of integer numbers. What is more impor-
tant, however, is that network models based on the numerosity code account for a wide range
of empirical data: distance and size effects in number comparison, the symmetric distance
effect in number priming, and the problem-size effect in simple arithmetic. Notably, phenom-
ena that have been typically attributed to nonlinear (Dehaene, 2003) or noisy (Gallistel &
Gelman, 2000) analogue magnitudes can be readily simulated with network models that oper-
ate on the numerosity code. On the other hand, recent empirical findings such as the symme-
try of the distance-priming effect (Reynvoet et al. 2002) and the absence of a size effect in
number bisection (Zorzi, Priftis, & Umilta, 2002) are difficult to reconcile with nonlinear
coding schemes but fit well with the linear nature of the numerosity code. Thus, this novel
perspective offers a unitary and comprehensive account of the diverse phenomena that charac-
terize numerical cognition in humans.

Nonetheless, this theoretical framework would seem to face a potential difficulty if we turn
to the issue of the neuronal correlates of number representations. The numerosity code seems
to be at odds with the recent finding that the tuning functions of “number neurons” in the
monkey brain (Nieder et al., 2002) fit the logarithmic coding of Dehaene and Changeux’s
(1993) model. That is, the neurons studied by Nieder and colleagues have Gaussian tuning
curves with fixed variance when plotted on a logarithmic scale. However, as previously dis-
cussed, the number neurons in Dehaene and Changeux’s model (“numerosity detectors”) are
activated by a preceding layer of neurons (“summation clusters”) that instantiate a numerosity
code. In other words, the numerosity code appears to be a prerequisite for developing numerosity
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detectors. This view is supported by a recent study of Verguts and Fias (in press), which
addressed the issue of how the numerosity detectors can be learned in response to a non-
symbolic input (note that the numerosity detection system was hard-wired in Dehaene and
Changeux’s model). Verguts and Fias showed that number neurons with the characteristics
described by Nieder et al. (2002) may develop through unsupervised learning in response to
the activity of a layer of summation nodes. Notably, the summation nodes were activated
according to the numerosity code (with the small variation of using two nodes for each numerosity
increment instead of one).

Therefore, the question of whether neurons with tuning functions resembling a numerosity
code will ever be found using single-cell recordings remains an empirical issue, but their
existence is predicted not only by our model but also by all models containing a neuronal pool
that accumulates activity over the visual scene (i.e., “summation neurons”; Ahmad et al., 2002;
Dehaene & Changeux, 1993; Verguts & Fias, in press). The same reasoning applies to the issue
of the neuroimaging correlates (e.g., brain activation as measured through the fMRI BOLD
signal) of numerosity representations. Finally, it should be noted that the number neurons
described by Nieder and colleagues (2002) were located in the primate lateral prefrontal cortex
rather than in the parietal regions that have been classically associated to magnitude represen-
tations in both neuropsychological and neuroimaging studies in humans (Dehaene, Piazza,
Pinel, & Cohen, 2003, for a review).

Much modeling work remains to be done. The picture that is likely to emerge is one in which
multiple representations of numerical quantity coexist and are differentially used or weighted
on the basis of specific task demands (e.g., Siegler & Opfer, 2003). Moreover, the way in which
the development of numerical representations is influenced by the acquisition of the symbolic
number system needs to be systematically explored (e.g., Verguts & Fias, in press). Finally,
extending the models of mental arithmetic (e.g., Stoianov et al., 2003) to deal with multiple
operations (addition, subtraction, multiplication) might be crucial for understanding the neu-
ropsychological and neuroimaging patterns of association and dissociation among different
arithmetic operations (see Dehaene et al., 2003, for a review).

The simulations of simple arithmetic using different input representations (Stoianov et al.,
2002) also speak to the issue of adjudication between models. Adjudication can be a difficult
and delicate enterprise (see, e.g., Zorzi, 2000), but the comparison between networks that
differ only for the input coding scheme is a strong formal test of the different theories. The
results of these simulations have far-reaching implications: together with the fact that the
numerosity code is crucial for observing the problem-size effect, they show that domain-
general learning systems come to exhibit human-like performance only if they operate on
domain-specific representations.
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What Animals Know
about Numbers

Elizabeth M. Brannon

Adult humans use number to categorize, quantify, and measure almost every aspect of our
environment—be it serial numbers, football jerseys, addresses, shoe sizes, weights, heights,
spatial coordinates, grocery prices, batting averages, or the Dow Jones Industrial Average.
This book documents the vast research that has addressed how the human mind represents
number and makes mathematical calculations, the biological bases of the human number
sense, and the development of both nonverbal and verbal mathematics. Although humans
alone are capable of complex and abstract mathematics, a Darwinian perspective predicts that
even the most complicated and impressive human cognitive capacities should have precursors
in the minds of nonhuman animals. In accord with this prediction, researchers of the animal
mind have made it increasingly difficult to argue that any particular complex human behavior
is uniquely human. Over the last few decades, precursors of language (e.g., Savage-Rumbaugh,
Shanker, & Taylor, 1998), culture (e.g., Whiten et al., 1999; Van Schaik et al., 2003), tool use
(e.g., Boesch, 1995), theory of mind (e.g., Tomasello, Call, & Hare, 2003), metacognition (e.g.,
Shields, Smith, & Washburn, 1997), and even music appreciation (Wright, Rivera, Hulse,
Shyan, & Neiworth, 2000) have been found in nonhuman primate species. Likewise, researchers
of the animal mind have developed many different experimental paradigms to test the numerical
capacities of animals and found that a wide variety of species possess numerical competence.
The goal of this chapter is to summarize the main findings that a century of study of animal
numerical competence has revealed and to highlight the similarities and differences between
human and nonhuman numerical abilities.

It would be impossible to review all of the many paradigms that have been used to study
animal numerical competence or each numerical feat that animals have mastered in the labo-
ratory, so instead I will review the most important conclusions that can be drawn from this
rich literature with a few key examples. First, I review the evidence that animals represent
number abstractly, independently of superficial features or continuous stimulus attributes
such as surface area. Second, I describe the support for the claim that animals not only
represent number but also operate on their numerical representations by performing arith-
metic calculations. Third, I review the evidence that an animal number sense is likely to be an
evolutionary adaptation rather than a fancy circus act with no biological function. Fourth, I
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review data that address how number is represented in the animal mind, both in terms of the
format of the representation and the process by which the representations are formed. The
fifth section summarizes a burgeoning new area of research that is uncovering the neural
basis of numerical ability in animals. Finally, I offer some conclusions about the similarities
and differences between animal and human numerical capacities.

ABSTRACT NUMBER

What kind of evidence is required to claim that an animal holds an abstract number concept?
First, we must be sure that the concept is truly numerical in nature and not a mere by-product
of an ability to attend carefully to correlated stimulus features such as brightness, density, or
surface area. In fact, the study of numerical competence in animals is a particularly difficult
endeavor because there is a multitude of continuous variables that typically covary with num-
ber. For example, ten acorns are more numerous than five acorns but also have a greater
volume and surface area, two bananas are more numerous than one but also have a greater
caloric content and hedonic value, and three alarm calls are more numerous than two but are
also typically longer in duration. To demonstrate an abstract number conceptit is necessary to
control for all of these many continuous variables (time, perimeter, area, volume, hedonic
value, energetic effort, etc.)and research to date has had variable success in eliminating these
confounds.

Flexibility is another important aspect of an abstract number concept. For example, if
trained to numerically discriminate geometric shapes, will animals numerically discriminate
collections of fruits or conspecifics? A truly abstract number concept should also allow animals
to recognize the equivalence between stimuli presented in different modalities. A young child
uses the same word to describe the numerosity of two dogs, two barks, and two dog biscuits.
Does the dog also appreciate the profound equivalence between these numerical sets?

A nice demonstration that rhesus monkeys represent number independently of continuous
dimensions comes from a recent study by Jordan and Brannon (2003). Three rhesus monkeys
were trained in a delayed match-to-sample task in which the monkeys were required to match
stimuli based on numerosity and ignore the color, size, density, or cumulative area of the
elements. In initial training the sample stimulus contained 2 or 8 elements. After the monkey
touched the sample stimulus, it disappeared and the monkey was presented with a choice
between a stimulus that contained two elements and a second stimulus that contained eight
elements. Element, size, color, configuration, cumulative surface area, and density were all
controlled (see Figure 6.1). Performance did not vary systematically with cumulative surface
area, element size, or density. Subsequently, monkeys were tested in a bisection procedure in
which the sample contained anywhere from 1 to 9 elements and the choices again contained 2
or 8 elements. The monkeys’ job was to choose the test stimulus that was most similar in
number to the sample. As can be seen in Figure 6.2, the probability with which the monkeys
chose 8 varied systematically as a function of stimulus numerosity.

Another example of abstract numerical ability in monkeys comes from an experiment in
which two rhesus monkeys were trained to respond to exemplars of the numerosities 1-4 in
ascending numerical order (Brannon & Terrace, 1998, 2000, 2002). On each trial, four stimuli
were presented in a random spatial configuration on a touch-sensitive video monitor with each
stimulus containing 1, 2, 3, or 4 elements (see Figure 6.3b). The elements were either simple
geometric shapes or more complex clip art shapes, and the stimuli contained a homogeneous
or heterogeneous collection of elements. Across the 35 training and 150 test sets, non-numerical
cues, such as surface area, were randomly varied so that number was the only valid cue as to
the ordinal position of each stimulus in the 4-item sequence (see Figure 6.3a).

After the monkeys learned each of the 35 training lists to a performance criterion, they
were tested with 150 novel stimulus sets, each presented only for a single trial. These test
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Figure 6.1. In a delayed match-to-sample task, three rhesus monkeys were required to
match visual stimuli based on numerosity, independently of continuous dimensions such
as surface area. Four example trial types are shown from two different phases of the experi-
ment. All four trials contained a choice between a stimulus with two and eight elements in
test. To control for surface area, trial types A and B were randomized so that on some trials
(A) the smaller numerosity contained a larger surface area than the larger numerosity and
on other trials (B) the larger numerosity contained a larger numerosity. Note that in no case
did the surface area of the correct or incorrect choice match that of the sample. To control
for density, trial types C and D were randomized so that on some trials density of the two
and eight stimuli was equated (C) and on other trials the size of the stimulus background
was reversed (D) so that background size could not be used as an indicator of the correct
choice.

sessions provided no opportunity to memorize specific stimulus features; thus, above-chance
performance would be evidence that the monkeys used a numerical rule. Figures 6.4a and 6.4b
show that the monkeys’ performance improved rapidly over the 35 training sets, and their
performance was not impaired in the 5 test sessions that were composed of trial-unique
stimulus sets. In addition, monkeys performed above chance on all 7 different stimulus classes.
These data demonstrate that rhesus monkeys can discriminate the numerosities 1-4 without
using non-numerical cues such as shape, color, or element size or cumulative element surface
area.

Using a completely different experimental paradigm adapted from procedures used to study
categorization in human infants, Hauser and colleagues (Hauser, Dehaene, Dehaene-Lambertz,
& Patalano, 2002) tested tamarin monkeys in a habituation-dishabituation task where monkeys
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Figure 6.2. The probability with which an exemplar of the numerosity 8 is chosen rather
than an exemplar of the numerosity 2, plotted as a function of the numerosity of the sample.
Data reflect an average of 3 monkeys over approximately 100 unreinforced trials for each
sample numerosity. Error bars indicate standard error of the mean.

were habituated to two or three tones and then tested with 2 or 3 spoken syllables, carefully
controlling for the duration of the segments. The tamarin monkeys oriented significantly
longer toward the speaker when it played the novel number compared to the familiar number
of syllables, suggesting that the tamarins recognized the equivalence of 2 tones and 2 syllables.

A related question is whether animals appreciate the numerical equivalence between sets of
auditory and visual stimuli. Church and Meck (1984) trained a group of rats to press a right-
hand lever when presented with two sounds and a left-hand lever when presented with four
sounds. The tones were then replaced with light flashes, and half of the rats were given the
same contingency, whereas the other half of the rats were placed in a reversal condition that
required them to make a left response when presented with 2 light flashes and a right response
when presented with 4 light flashes (see Figure 6.5). The rats in the reversal condition took
significantly longer to learn the new pairings compared to the group for which the number
responses were unchanged. In a second experiment, Church and Meck (1984) provided even
more dramatic evidence that rats represent number amodally. Rats were trained to make a
right response to two tones or lights and a left response to four tones or lights. In unreinforced
test sessions, the rats were then presented with 1 or 2 compound stimuli that contained 1 light
flash and 1 tone presented simultaneously. The key finding was that rats classified two compound
stimuli as a “four” stimulus, suggesting that they were summating the individual stimuli
independent of stimulus modality. The Church and Meck experiments are one of the only
attempts to address cross-modal number representation in animals, and more studies address-
ing this important issue are sorely needed.
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Figure 6.3. (a) Exemplars of the seven different types of stimulus sets used by Brannon
and Terrace (1998). Equal size: elements were of same size and shape. Equal area: cumulative
area of elements was equal. Random size: element size varied randomly across stimuli. Clip
art: identical nongeometric elements selected from clip art software. Clip art mixed: clip art
elements of variable shape. Random size and shape: elements within a stimulus were varied
randomly in size and shape. Random size, shape, and color: same as previous with background
and foreground colors varied between stimuli. (b) A drawing of a monkey responding on
the touch screen. (c) Examples of stimulus sets used in the pairwise numerosity test. Re-
printed from Brannon and Terrace, 1998.
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Figure 6.4. (a) Percent correct for 35 training sets. Each was presented for 60 trials and
each data point reflects the average of 5 sessions (300 trials). (b) Percent correct for 150 trial
unique test sets tested in 5 test sessions with 30 trials each. Chance accuracy is less than 4%
in this task (.25 *.33 *.5). Reprinted from Brannon and Terrace, 1998.

ANIMAL ARITHMETIC

A handful of studies have examined whether animals can order, add, and subtract numerosities.
Brannon and Terrace (1998) extended the ordinal experiment described in the previous section
to determine whether the monkeys that were trained to respond in ascending order to the
numerosities 1-4 appreciated the ordinal relations between the numerosities or instead repre-
sented the numerosities categorically. The same two monkeys were tested on their ability to
order pairs of the numerosities 1-9 after the 1-4 training described earlier. The critical
question was whether the monkeys would reliably order pairs of the novel values 5-9 in
ascending order. To do so, they would need to be able to perceive the ordinal relations between
novel values and infer that they should apply the ordinal rule learned with the values 1-4 to
the novel values 5-9. The monkeys were presented with all the possible pairs of the numerosities
1-9, where the smaller number had a larger cumulative surface area than the larger number
on half of the trials (see Figure 6.3c). To provide a pure test of ordinal numerical knowledge,
the monkeys were not reinforced on any trial that contained a novel numerical value. Thus,
only trials that contained two exemplars of the numerosities 1-4 were reinforced. The other 30
pairs were tested in the absence of positive or negative reinforcement. This was a powerful test
of ordinal numerical knowledge because there was no laboratory-learned basis by which the
monkeys could judge the ordinal relations between numerical values that were outside the
training range. For example, if one learned only the beginning of a new alphabet, there would
be no basis for ordering the latter part.

The monkeys’ performance was extremely good for pairs composed of two familiar numerosities
(e.g., 1 vs. 3 or 2 vs. 4) and pairs composed of 1 familiar and 1 novel value (e.g., 2 vs. 8 or 3
vs. 6). Most importantly, however, the monkeys performed above chance expectations on pairs
composed of two novel values (e.g., 6 vs. 8). These results indicate that monkeys represent the
ordinal relations between numerosities and do so spontaneously even when they could have
instead formed arbitrary numerical categories and learned an arbitrary ordering of these
nominal categories. The same pattern of results has since been obtained with a squirrel
monkey and a baboon (Smith, Piel, & Candland, 2003).
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Figure 6.5. Rats were trained to make one response (e.g., right lever press) when pre-
sented with two tones and a second response (e.g., left lever press) when presented with
four tones. Subsequently, rats were presented with two or four light flashes, and one group
of rats was required to reverse the numerical rule (incongruent). The other group was re-
quired to use the same numerical rule (congruent).

In another approach, Washburn and Rumbaugh (1991) trained two rhesus monkeys to choose
between two Arabic numerals on a touch-sensitive screen, with the choice resulting in the
delivery of the corresponding number of food pellets. Both monkeys reliably chose the larger
Arabic numeral and even did so when presented with novel combinations of Arabic numerals.
Olthof, Iden, and Roberts (1997) used a similar paradigm and tested squirrel monkeys on
problems in which they were required to choose between pairs or triplets of Arabic numerals.
They found that the monkeys reliably chose the larger sum and that performance could neither
be attributed to choosing the largest single value nor to avoiding the single smallest value.

A remarkable demonstration of addition comes from Boysen and Berntson’s (1989) research
with the chimpanzee Sheba. In previous research, Sheba had been trained to match numerosities
with Arabic numerals. Subsequently, Sheba was led around a room to three hiding places, two
of which contained 0, 1, 2, 3, or 4 oranges. Sheba was then allowed to choose one of the Arabic
numerals 0-4, positioned in ascending order on a platform. Sheba chose the Arabic numeral
that corresponded to the sum of the hidden oranges with above-chance accuracy on the very
first session.

Sulkowski and Hauser (2000) asked whether rhesus monkeys can spontaneously subtract
food quantities. They tested free-ranging rhesus monkeys, in which each monkey was tested for
a single trial so that no learning could take place during the experiment. Monkeys viewed an
occluded stage as experimenters subtracted 0 or 1 plum from collections of 1-3 plums. In 11
different experiments, Sulkowski and Hauser found that rhesus monkeys invariably chose the
larger food quantity, even when this required choosing the quantity that was originally fewer
in number. Although subjects could have represented a continuous quantity rather than num-
ber, these results suggest that monkeys can perform some type of subtraction. In summary,
animals are not only capable of representing number, they are also adept at ordering, adding,
and subtracting their numerical representations.
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DO ANIMALS USE NUMBER AS A LAST-RESORT STRATEGY?

In 1988 Davis and Perusse published an influential target article in Behavioral Brain Sciences,
arguing that although animals can be trained to make numerical discriminations, they do so
only as a last-resort strategy when all other cues are eliminated and extensive training is
provided. For example, if a problem were given to a rat that could be solved by attending to
differences in number or surface area, the rat would encode surface area and not number.
While few studies have directly addressed the relative salience of number versus other stimulus
dimensions, a growing body of studies suggests that number may be a meaningful dimension
for many animals.

Davis and Perusse’s argument suggests that extensive laboratory training allows an animal
to form an abstract numerical category such that they can appreciate the equivalence between
three tadpoles and three jet planes. If this is the case, then the animal should not appreciate
the inherent relationship between numerical categories; twoness and threeness should be as
related to each other as cowness and rockness. However, the Brannon and Terrace (1998)
study reviewed in the previous section suggests otherwise. Monkeys trained to order the
numerosities 1-4 spontaneously ordered pairs of the values 5-9 without any training on the
larger values. This suggests that the monkeys possessed an internal number line. A second
piece of data from the same series of studies provides further evidence that monkeys represent
the ordinal relations between numerosities. Brannon and Terrace originally attempted to train
one of the two monkeys in their study to respond to the numerosities 1-4 in an arbitrary
nonmonotonic order (Brannon and Terrace, 2000). Figure 6.6 shows that despite extended
training on 13 different sets of stimuli, the monkey never learned to respond in the order
3-1-4-2. Subsequently when given new stimulus sets and required to respond in ascending
order (1-2-3-4), the monkey’s performance quickly accelerated. These data suggest that the
monkey’s inherent ordinal representation of the numerosities 1-4 prevented it from responding
in an arbitrary nonmonotonic order. Together, these two findings suggest that number is a
meaningful stimulus dimension for rhesus monkeys and do not support the idea that animals
use number only as a last-resort strategy.

80

— g MACDUFF (1-2-3-4)
—@- MACDUFF (3-1-4-2)

2]
o
|
|
O
—H
|
\‘.
\
| | \
\.
\

Percent Correct
N N
o o
| |
. L |
\.
l\\.
i
./
\
l\,\.
@
) __
[ | \
\ L |
B
I/. '
\
\

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Stimulus Sets

Figure 6.6. Performance for a monkey required to respond in the order 3-1-4-2 to visual

arrays on a touch-sensitive screen (black circles) and subsequently required to respond to

the same stimuli in ascending numerical order (gray squares). Reprinted from Brannon and

Terrace, 2000.



What Animals Know About Numbers 93

Further evidence comes from Hauser and colleagues (Hauser, MacNeilage, & Ware, 1996;
Hauser, Carey, & Hauser, 2000), who conducted a series of experiments with free-ranging
rhesus macaques to ascertain what numerical skills rhesus monkeys possess spontaneously
without laboratory training. In these studies, each animal is tested for a single trial and given
no opportunity to learn. In one study, Hauser and colleagues tested rhesus monkeys in a
modified version of Wynn’s (1992b) famous experiments designed for human infants. Rhesus
monkeys were shown two eggplants successively placed behind an opaque screen and then
watched as the screen was raised to reveal one or wo eggplants. The monkeys looked longer at
the impossible outcome of 1 (i.e., 1 + 1 = 1) compared to the possible outcome of 2 (i.e., 1 + 1
= 2), suggesting that the impossible outcome violated their expectations. In subsequent experi-
ments Hauser and Carey (in press) showed that the rhesus monkeys were not basing their
decisions on cumulative surface area.

Further evidence that number is an important variable for nonhuman animals comes from
field studies that have investigated how animals might use number in their everyday lives.
Lyon (2003) found that American coots (a species of bird) appear to base decisions about
whether to develop an additional egg follicle on the number of their own eggs in the nest. This
is particularly remarkable because the coots seem to discount the number of nonspecific
parasitic eggs in the nest, suggesting that they can enumerate a subset of elements in a set.
This study provides a rare window into how animals may actually use numerical abilities in the
wild. In another field experiment, Wilson, Hauser, and Wrangham (2001) found that male
chimpanzees only attack neighboring bands if the number of individuals in their party is
sufficiently large to deal with the ensuing conflict. In that study, Wilson and colleagues played
the pant-hoot vocalization of a single extra-group male to listening parties that varied in size.
Only listening parties of three or more males cooperatively called and approached the loud-
speaker.

In summary, although it has been argued that animals represent number as a last-resort
strategy only when coaxed with extensive laboratory training, a growing body of evidence
suggests that animals appreciate the ordinal relations between numerical values and spontane-
ously represent number without extensive laboratory training.

THE FORMAT OF ANIMAL NUMERICAL REPRESENTATIONS

Although number is a property of sets of discrete elements, number is represented nonverbally
by animals, as precise integers, but instead as noisy mental magnitudes. This is illustrated
nicely by a paradigm first designed by Mechner (1958) and later adapted by Platt and Johnson
(1971). Rats were required to signal when they had completed N lever presses by poking their
nose into a hole equipped with a photoelectric sensor. Figure 6.7a shows that the number of
responses the rats made before head poking was roughly normally distributed around the
required number. Thus, when required to make X presses, the animals were much more likely
to make X - 1 or X + 1 presses than X - 4 or X + 4 presses. Furthermore, the standard
deviation of the distribution of the obtained number of responses increased linearly with the
required number of responses (see also Fetterman & MacEwen, 1989; Laties, 1972; Mechner,
1958; Rilling, 1967; Wilkie, Webster, & Leader, 1979). Such results suggest that rats do not
represent number not as precise values but instead as mental magnitudes that are more likely
to be confused with a neighboring quantity as the absolute magnitude increases.

It is not just rats that represent number as approximate magnitudes with variance that
increases proportionally. Whalen, Gallistel, and Gelman (1999) tested human subjects in a
modified version of the Platt and Johnson (1971) design. Adults were asked to make between
7 and 25 key presses as fast as they could without verbally counting. The results closely
resembled the rat data obtained by Platt and Johnson three decades earlier and demonstrates
scalar variance in number discrimination for both species. Scalar variance is defined as variance
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Figure 6.7. (A) The probability of signaling response completion as a function of the num-
ber of responses the rat made and the number that was required to obtain reward ob-
tained by Platt and Johnson (1971). (B) The mean number of responses made (left axis,
circles) and the standard deviation (right axis, squares) of the response distributions shown
in A, and the coefficient of variation (CV), which is the ratio of the standard deviation to the
mean, as a function of the number required. (C) The mean (left axis, circles), standard de-
viation (right axis, squares), and CV (lower panel) as a function of the number of button
responses required, obtained by Whalen et al. (1999). The constant CV shown for rats in B
and humans in C demonstrates that both species represent number with scalar variability.
Reprinted from Whalen et al. (1999).
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(standard deviation) that increases linearly with the mean value. Figures 6.7b and 6.7c show a
linear increase in the standard deviation in the response distributions as a function of the
mean number of responses required but no change in the coefficient of variation as a function
of number for rats and humans respectively (see also Cordes, Gallistel, & Gelman, 2001).
These tasks appear to have tapped a nonverbal system for representing number in adult
humans that is quite similar to that of rats!

Gallistel, Gelman, and colleagues (Cordes, Gallistel, Gelman, & Whalen, 2001; Whalen,
Gallistel, & Gelman, 1999) were not the first to show that adults represent number as mental
magnitudes. In a classic study, Moyer and Landaeuer (1971) showed that when adults were
required to choose the larger of two Arabic numerals, accuracy increased and latency to
respond decreased with increasing numerical disparity. Furthermore, when distance was held
constant, performance decreased with increasing numerical magnitude; this is referred to as
the magnitude or size effect. In other words, both accuracy and latency were modulated by the
ratio of the quantities that the numerals represented.

The numerical distance effect has been replicated in other languages (Dehaene, 1996; Tzeng
& Wang, 1983), in other representational formats (e.g., dot patterns, Buckley & Gilman, 1974;
double digits, Hinrichs, Yurko, & Hu, 1981), and with children as young as five years of age
(e.g., Temple & Posner, 1995). This robust and highly replicable finding has been interpreted
to mean that Arabic numerals are represented as analog magnitudes, much like line length,
brightness, or weight. Figure 6.8a illustrates how numerosities, defined as collections of dis-
crete entities, can be represented as continuous magnitudes, like the amount of water in a
beaker.

Distance and magnitude effects have also been found in nonhuman animals (Beran, 2001;
Tomonaga & Matsuzawa, 2000). For example, Brannon and Terrace (2002) tested rhesus
monkeys and college students in the same experiment, in which both species were required to
touch the smaller of two numerosities presented on a touch screen. The stimuli were con-
structed such that the smaller numerosity had a larger cumulative surface area on half of the
trials and all 36 possible pairings of the numerosities 1-9 were presented. Although monkeys
worked for banana pellets but humans worked for course credit, the tasks were otherwise
identical. Figure 6.9 displays accuracy and latency to respond as a function of numerical
disparity for each species and shows strikingly similar distance effects for the two species:
both species were faster and more accurate as numerical disparity increased. Not shown here
is the finding that when distance was held constant and size was increased, both species
showed a tendency to decrease accuracy and increase reaction time. The similarity in the
distance and size effects observed in monkeys and human adults provides strong support for
the idea that animals and humans share a nonverbal system for representing number as
mental magnitudes.

In another study from Hauser’s group (Hauser, Tsao, Garcia, & Spelke, 2003), tamarin
monkeys were tested in a familiarization-discrimination procedure in which they were famil-
iarized with a given number of tones and then tested with the same number or a novel number
of tones. The tamarins were said to discriminate the numerosities if they exhibited a significantly
greater proportion of orienting to the speaker when the novel, compared to the familiar,
number of tones was played. The tamarins spontaneously discriminated 4 versus 8, 4 versus 6,
and 8 versus 12 tones but failed to discriminate 4 versus 5 and 8 versus 10. Thus, it was the
ratio not the absolute values of the numerosities compared, that determined whether tamarin
monkeys could discriminate them (they seem to require a 2:3 ratio). This suggests that Weber’s
law holds for spontaneous number discrimination in monkeys and that when monkeys make
spontaneous number discriminations, they use a mechanism that is not strictly limited by set
size.

Another important aspect of animal number representations is that number and time ap-
pear to be represented by a single currency. Meck and Church (1983) originally demonstrated
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Figure 6.8. Format of number representations for the values 1, 3, and 5. (A) Meck and Church
mode-control model; number is represented as the accrual of pulses from a pacemaker into
an accumulator.(B) Object file model; each object is represented by an object file. There is
no symbol that represents the set of objects. System is limited by the small number of
available object-files. (C) Arbitrary numeron model; each number is represented by an ab-
stract, arbitrary symbol. Reprinted from Brannon and Roitman, 2003.

this isomorphism between time and number, and the findings have since been replicated and
extended by many laboratories (e.g., Church & Meck, 1984; Fetterman, 1993; Meck, Church, &
Gibbon, 1985; Roberts, 1995; Roberts & Boisvert, 1998; Roberts, Coughlin, & Roberts, 2000;
Roberts, Macuda, & Brodbeck, 1995; Roberts & Mitchell, 1994; Roberts, Roberts, & Kit, 2002;
Santi & Hope, 2001). Meck and Church (1983) trained rats in a duration bisection procedure
to make one response to a 2-s 2-cycle stimulus and another distinct response to an 8-s 8-cycle
stimulus. Rats were then tested with duration held constant at 4-s and number varied or,
alternatively, number held constant at 4 and duration varied. In both cases, the rats’ behavior
was modulated by the stimulus dimension that varied, showing that the rats had encoded both
number and time when the two were confounded. In addition, when the probability of making
a “long” or “many” response was plotted against stimulus duration or number, the psycho-
physical functions for time and number were virtually identical (see Roberts and Mitchell,
1994, for a replication with pigeons). Further, when methamphetamine was administered to
the rats, the psychophysical curve that relates the probability of a “long” and “many” response
to the actual times or counts with which the animal was presented was similarly shifted to the
left, suggesting that methamphetamine functioned to speed up the clock so that it took less
absolute time to produce a subjective stimulus of a given quantity or duration (Meck & Church,
1983).

Studies that evaluate working memory for time and number also suggest that a single
mechanism is used to time and count. Spetch and Wilkie (1983) trained pigeons in a delayed-
match-to-sample procedure to make one response after a short stimulus and a second response
after a long stimulus. As the retention interval between the sample presentation and the
choice was increased, the 2-s sample retention curve was unaffected, whereas the 8-s retention
curve suffered substantially. Thus, as the retention interval increased, so too did the pigeons’
bias to choose the small response. A parallel effect was found when pigeons discriminated
small and large numbers of responses (Fetterman & MacEwen, 1989) or sequences of flashes
(Roberts, Macuda, & Brodbeck, 1995), again suggesting a correspondence between time and
number representation.
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Figure 6.9. Accuracy (left) and latency (right) to the first response in a pairwise numerical
comparison task as a function of numerical disparity. Monkeys (grey circles) and humans
(black diamonds) were required to respond first to the stimulus with the fewer number of
elements. Dotted lines reflect best-fit linear regressions.

The data reviewed above suggest that rats and pigeons use a single mechanism to time and
count and that a single representational currency underlies both duration and number. A more
controversial idea is that animals automatically engage in both counting and timing. A handful
of studies have found that when both time and number are available as cues, animal behavior
is controlled by time and not by number (Breukelaar & Dalrymple-Alford, 1998; Roberts,
Coughlin, & Roberts, 2000). Thus, although there is considerable evidence for a profound
similarity in the way that time and number are represented, it is unclear whether animals
spontaneously count and time all stimuli. This may not be surprising, given the multitude of
computations animals would need to make at each moment if they were tracking both dimen-

sions on all environmental inputs at all times.

Are Animal Number Representations Always Mental Magnitudes?

Although there is definitive evidence that animals represent number as mental magnitudes,
there is also suggestive evidence that animals share with humans a second system for repre-
senting small sets of objects. Evidence that infants use two distinct processes to represent
small and large numbers of objects comes from a variety of paradigms, and some of these
paradigms have been used to test rhesus monkeys and have revealed similar set-size limita-
tions. In one set of studies, infants or monkeys watched as experimenters placed different
numbers of food items in opaque containers. They were then allowed to approach the containers
(Feingenson, Carey, & Hauser, 2002; Hauser, Carey, & Hauser, 2000). Infants successfully
crawled to the bucket containing the larger number of graham crackers when the contrasts
were 1 versus 2 or 2 versus 3, but failed to choose the larger quantity with any contrast that
included quantities larger than 3, even when ratios were favorable (e.g., 2 versus 4). Similarly,
rhesus monkeys tested in the same 2-container choice discrimination paradigm showed a set-size
effect (Hauser, Carey, & Hauser, 2000). Monkeys succeeded with contrasts such as 1 versus 2,
2 versus 3, and even 3 versus 4, but failed with quantities larger than 4 (e.g., 5 versus 6 and

4 versus 8).

However, infants can also form mental magnitude representations of number. For example,
6-month-old infants have successfully discriminated values as large as 8 versus 16 in the visual-
habituation paradigm (Xu & Spelke, 2000) and the head-turn procedure (Lipton & Spelke,



98 Handbook of Mathematical Cognition

2003). Infants habituated to images that contain 8 dots look longer at new pictures with 16
dots than they do at new pictures with 8 dots, even when surface area, perimeter, and density
are carefully controlled (Xu & Spelke, 2000; see also Brannon, 2002; Xu, 2003).

One possibility, then, is that infants and animals can form analogue magnitude representa-
tions of number, but that this system is not activated in some contexts and, instead, a distinct
system is invoked that can only represent a few objects at a time. This second system has been
termed the object file model (Feigenson, Carey, & Hauser, 2002; Feigenson, Carey, & Spelke,
2002; Leslie et al., 1998; Simon, 1997; Uller et al., 1999) and posits that infants represent
number implicitly by representing each member of a set with a symbol (object file). Central to
this model is the fact that no single symbol serves to represent the numerosity of the set
instead, each to-be-enumerated item is represented by a single object file, and there is a
limited supply of object files (see Figure 6.8Db).

In summary, the data reviewed above demonstrate that animals represent number as noisy
mental magnitudes and leave open the possibility that animals share a second system with
human infants that functions to represent the numerosity of small sets as individual object files.

HOW ARE NONVERBAL REPRESENTATIONS
OF NUMBER CONSTRUCTED?

The section above described the evidence that animals and humans represent number as
mental magnitudes and that time and number are computed by a single mechanism. But how
are numerical representations constructed, if not by verbal counting? Gelman and Gallistel
(1978; Gallistel & Gelman, 1992, 2000) proposed that human children form numerical repre-
sentations via a nonverbal counting process that follows the same principles as verbal count-
ing. They provided a formal definition of counting that consists of three essential principles.
(1) The one-to-one principle states that one, and only one, symbol can be applied to each to-be-
counted element. Thus, we cannot apply the count word “three” to both the third and fourth
element in an array. (2) The stable order principle stipulates that the symbols must be applied
in a consistent order across counting episodes. We cannot count “1-2-3” today and “1-3-2”
tomorrow. (3) The cardinal principle dictates that the last symbol applied serves to represent
the numerosity of the set. Although the verbal counting system uses spoken words as symbols,
Gelman and Gallistel’s idea was that preverbal children could be using the same system but be
applying arbitrary neuronal symbols, termed numerons, to each element instead of words. In
the original formulation of Gelman and Gallistel’s hypothesis, the numerons were arbitrary
symbols and had no direct relationship with the numerosities they represented (see Figure
6.8c). The most important aspect of the idea, however, was that the counting principles were
isomorphic in the verbal and nonverbal systems.

Since the numeron-list hypothesis, a handful of models have been proposed to explain how
animals represent number in the absence of linguistic counting. Two models that achieve
analogue number representations, rather than the arbitrary numerons originally proposed by
Gelman and Gallistel (1978), are the Meck and Church mode-control and Dehaene and Changeux
neural network models. The mode-control model (Meck & Church, 1983) was originally devel-
oped as an adaptation of an information-processing model of animal timing behavior (Gibbon
& Church, 1984) to explain the correspondence between rats’ discrimination of time and
number. It was later adapted by Gallistel and Gelman (1992) and termed the accumulator
model. Like the pure timing model, the mode-control model is composed of a pacemaker, an
accumulator, a working memory buffer, reference memory, and a comparator (see Figure 6.10).
The pacemaker produces pulses at a constant rate that can be gated into an accumulator.
When a response by the organism is rewarded, the accumulator value is transferred from
working memory to be stored in reference memory. A comparator process allows the organism
to compare the current working memory content to the reference memory content.
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Figure 6.10. A diagram of the mode-control model, which consists of a pacemaker, switch,
accumulator, working memory, reference memory, and a comparator.

The main advance of the mode-control model is that the switch that allows pulses to flow
from the pacemaker to the accumulator can operate in one of three modes. Here, we focus on
two of the modes: the run mode, which functions as a timer, and the event mode, which
functions as a counter. In the run mode, the switch is closed for the whole trial; thus, the total
pulses in the accumulator serves as a measure of duration. In contrast, in the event mode each
stimulus results in the switch’s closing for a fixed amount of time, regardless of stimulus
duration; thus, the total pulses in the accumulator serve as a measure of the number of
stimuli.

In this way, the mode-control model provides a unified theory of duration and number
discrimination by positing that number and time are represented with a single currency. In
addition, this model of number representation can be considered a form of nonverbal count-
ing, as it obeys the three definitional criteria of counting put forth by Gelman and Gallistel
(1978; see Broadbent, Rakitin, Church, & Meck, 1993; Meck, 1997). The one-to-one principle is
met because each event results in a constant increment to the accumulator. The stable order
principle, which requires that the order of assignment of numerons must be the same from
one occasion to the next, is fulfilled because in no case can the accumulator operating in the
event mode produce anything other than a fixed set of values whose order never varies (you
must pass through the accumulator value of 7 to get to the accumulator value of 8). Finally,
the cardinality principle is met because the value of the accumulator at the end of stimulus
presentation represents the number of stimuli that were presented.

A second model of nonverbal number representation is the Dehaene and Changeux neural
network model (Dehaene & Changeux, 1993), which posits that there are numerosity detectors
that can represent the abstract number of objects independently of the size and configuration
of stimuli. There are three layers to this model: an input “retina,” a map of object locations,
and an array of numerosity detectors. The map of object locations converts stimuli from the
“retina” to a representation of each stimulus irrespective of object size (an echoic auditory
memory also allows the system to enumerate sounds as well as objects). The location map
sends its output to numerosity detectors, which consist of summation units and numerosity
units. Each summation unit has a set threshold. When the total activity from the output of the
location map (which is proportional to numerosity) exceeds the summation unit’s threshold, it
will be activated. These units differ from the event mode of the mode-control model in that
they are only active when the number of events exceeds some level. Finally, the summation
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clusters project to numerosity clusters, which represent the numerosities 1 through 5. A given
numerosity cluster will be activated if the corresponding summation cluster is active, but
those representing higher values are not. Therefore, presentation of stimuli with the same
numerosity, despite differences in size, location and modality, results in the activation of the
same numerosity detectors.

Both the Meck and Church mode-control model and the Dehaene and Changeux neural
network model result in analogue representations of number and predict that numerical dis-
crimination should follow the Weber-Fechner law. However, the models differ in the process
by which they achieve numerical representations. The Dehaene and Changeux neural network
model predicts that number is perceived in parallel, whereas the mode-control model posits
that numerical representations are achieved by a serial counting-like process. Very little em-
pirical data address this important question in animals. Another distinction between the
models is that the mode-control model uniquely predicts that number and time are represented
by a single currency. The evidence in favor of this claim has already been reviewed.

In summary, important questions remain about the process by which animals form numerical
representations and whether this process is universal across human and nonhuman species.
Furthermore, the relationship between time and number should be studied in other species
beyond rats and pigeons. Future research should investigate whether a serial counting-like
process or a parallel process underlies nonverbal number representation.

NEURAL BASIS OF NUMBER REPRESENTATION

What areas of the brain are involved in representing number and making arithmetic calcula-
tions? Are homologous brain regions recruited by nonhuman animals as well as by humans
when number is represented? The neural basis of numerical cognition has been extensively
studied in adult humans using ERPs, fMRI, PET, and patient populations (for a review see
Dehaene, 2000). Generally, this literature implicates parietal cortex in number processing
(inferior or superior parietal lobule). However, the majority of these studies have employed
tasks that require the recognition and manipulation of Arabic numerals and therefore engage
symbolic numerical processing and not enumeration per se (but see Fink, Marshall, Gurd,
Weiss, Zafiris, Shah, & Zilles, 2001; Sathian, Simon, Peterson, Patel, Hoffman, & Grafton,
1999).

In contrast, much less is known about the neural basis of number representation in animals.
The first report of number-related neural activity was from the association cortex of the
anesthetized cat (Thompson, Mayers, Robertson, & Patterson, 1970). The experimenters pre-
sented 10 auditory or visual stimuli to anesthetized cats and recorded neural activity. Five of
the 500 tested neurons fired more to a particular position in the sequence of lights or tones
(see Figure 6.11). These 5 number cells responded to the values 2, 5, 6, 6, and 7 in the series,
regardless of stimulus modality or frequency (interstimulus intervals varied from 1 to 5 s).
One broadly tuned number cell was found in an 8-day-old kitten. These results suggested that
single cells are selective for particular numerical values and that tuning for number may
increase over development. However, it took more than 30 years for the next demonstration of
number-selective neurons. Two other research teams have now found evidence for number
neurons in the monkey brain.

Sawamura, Shima, and Tanji (2002) found number-related activity in parietal cortex as
monkeys performed a series of repetitive arm movements. Monkeys were trained to repeat a
movement (pushing or turning a handle) for five trials, then switch to another movement for
five trials, and so on. Neurons, located in the superior lobule of the parietal cortex, were
modulated by the number of movements a monkey made. This number-modulated activity was
observed during a nonmovement period in which the monkeys waited for a signal to execute
the movement. Although firing rate increased during more than one period for many neurons,
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Figure 6.11. Neural basis of number representation. Number “6” neuron from cat associa-
tion cortex. Action potentials were recorded as a sequence of 10 tones or lights with differ-
ent interstimulus intervals (ISI) was presented to an anesthetized cat. Each sequence was
repeated 10 times. The probability that the neuron discharged to a stimulus is plotted as a
function of the stimulus’s position in the sequence. This neuron was most active to the sixth
stimulus in the sequence, regardless of modality or ISI. Reprinted from Thompson et al.,
1970.

some neurons were selective just before a movement in one ordinal position of the sequence
(see Figure 6.12). Neurons selective for each of the ordinal positions in the sequence were
found across the population.

In an elegant set of studies, Nieder and colleagues (Nieder, Freedman, & Miller, 2002;
Nieder & Miller, 2004) isolated cells in the prefrontal and parietal cortex of macaque monkeys
that are associated with the number of elements in a visual display. In their original study
(Nieder, Freedman, & Miller, 2002), they found that roughly 1/3 of prefrontal cells and only 5%
of parietal cells were number selective. However, more recently, Nieder and Miller (2004)
recorded from the fundus of the intraparietal sulcus and found that approximately 20% of cells
were number selective, suggesting that their original sampling of pareital cortex was too
anatomically superficial. In these experiements, monkeys were trained in a delayed same-
different task in which a “same” answer was rewarded if two successively presented stimuli
were equivalent in number. The numerosities 1-5 were tested with visual arrays that varied in
element area, circumference, arrangement, density, and shape. Neural activity during the
delay period (and the sample period) was maximal for one quantity and declined as distance
from that quantity increased (see Figure 6.13). The majority of number selective cells pre-
ferred the numerosity 1, although cells were found that were selective for 2-5. Furthermore,
Nieder and colleagues showed that neuronal selectivity was broader for larger numbers, sug-
gesting a possible mechanism for the behavioral numerical distance and magnitude effects
reviewed earlier.
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Figure 6.13. Spike density functions for a cell that was selective for visual displays with
three elements. The colored lines illustrate the time course of neuronal activity for the five
tested numerosities. Grey shadowing indicates the period for which the sample was present.
Reprinted from Nieder, Freedman, & Miller, 2002. A color version of this figure can be viewed
at www.psypress.com/campbell.

Nieder and Miller also found that number selective neurons were selective approximately
earlier in parietal compared with prefrontal cortex suggesting that parital cortex may be the
prime source of numerosity processing. More research is needed to elucidate the relationship
between prefrontal and parietal cortex in number representation and to determine whether
numerosity extracted from sequential and/or auditory events is re presented in the same way.

DRAWING CONCLUSIONS

Without question, human mathematical capacities exceed those of nonhuman animals. A rat
will never calculate the time it would take a rocket to travel to the moon, the number of
cartons it would take to hold 8,976 eggs, or the projected cost of a 4-year college education in
the year 2085. However, the data reviewed above suggest that many animal species have a keen
numerical sense. Animals represent number independently of continuous dimensions such as
surface area, perimeter, and density, and there is suggestive evidence that they represent
number independently of modality. Abstract numerical representations are used by animals in
computations such as ordering, addition, and subtraction. Finally, numerical savvy appears to
be a natural part of many animal species repertoire rather than an artificial laboratory skill.

This chapter has focused on the similarities between animal and human numerical sense. To
summarize, both animals and humans show robust distance and magnitude effects when
comparing numerosities, providing evidence that both species represent number as mental
magnitudes. Paradoxically, although number is a property of sets of discrete elements, the
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format of nonverbal mental numbers is continuous, much like our representations of line
length, weight, or time (Gallistel & Gelman, 2000). The nervous system, in essence, inverts the
representational convention that allows us to use numbers to represent magnitudes, such as
describing a person’s height as 5 foot 2 inches, and instead uses magnitude to represent
number (see Gallistel & Gelman, 2000). But what of the differences between humans and
nonhuman animals?

While humans and nonhuman animals share a nonverbal number system, which serves to
represent approximate values, humans later come to possess a verbal number system that can
precisely represent numbers only one unit apart. Thus, while animals are limited to approximate
numerical estimates, humans can enumerate the 7,962 jellybeans in a jar. Can animals learn
something like verbal counting? Although a handful of animals have been taught the relation-
ship between symbols and numerosities (Boysen & Berntson, 1989; Matsuzawa, 1985; Pepperberg,
1987, 1994; Xia, Siemann, & Delius, 2000; Xia, Emmerton, Siemann, & Delius, 2001), the data
from these enterprises suggest that the training required is arduous, and that animals do not
make the same kind of conceptual leaps and intelligent numerical inferences as do young
children. For example, when Ai, a female chimpanzee, was trained to label sets of 1-9 objects,
it took her approximately the same number of trials to learn each successive numerosity-
symbol pairing (Matsuzawa, 1985). Ai first learned to match sets of 1 and 2 objects with the
symbols “1” and “2.” Subsequently, when collections of three objects and the Arabic numeral
“3” were added to her training sessions, performance fell to chance levels for collections of
two. Similarly, when collections of four were added, her performance fell to chance levels with
collections of three. Ai seemed to learn 1 versus many, 1 and 2 versus many, 1, 2 and 3 versus
many, etc., and never seemed to appreciate the successor principle. In striking contrast, at
about 3.5 years of age, children typically make an induction that each symbol in the memo-
rized count list refers to the previous numerosity plus one (Wynn, 1992a).

Another possible difference between humans and animals is that different conditions may
be required to elicit analogue magnitude representations of number. As reviewed above, there
is a great deal of evidence that human infants possess two distinct systems that serve to
represent number and more limited evidence for the same distinction in animals. In some
contexts monkeys and infants show similar set-size limitations (Feigenson, Carey, & Hauser,
2002; Hauser, Carey, & Hauser, 2000; Hauser & Carey, 2003). But in other situations, rhesus
monkeys seem perfectly capable of applying rules learned with small numbers to larger values.
For example, in the Brannon and Terrace (1998) study described earlier, monkeys easily
transferred a numerical rule learned with the values 1-4 to pairs of the larger values 5-9; one
might imagine that if two distinct processes were used for the two numerical ranges, then the
animals would have been at chance on large values after training on small values. Similarly,
rats in the Meck and Church paradigm (1983) and monkeys in the Jordan Brannon (2003)
paradigm differentiated 2 versus 8 and showed a fine-tuned generalization gradient for inter-
mediate values. Furthermore, rhesus monkeys tested by Hauser and colleagues in the modi-
fied Wynn paradigm tracked addition and subtraction events with small values such as 2 - 1
=lor2and 1+ 1=1or 2 (Hauser, McNeilage, & Ware, 1996). They also succeeded at tracking
addition and subtraction events with large values such as 4 + 4 = 4 or 8 (Flombaum, Junge, &
Hauser, unpublished). In both studies, the rhesus monkeys looked longer at the impossible
compared to the possible outcome, suggesting their ability to track number in this task is not
limited to small values.

In conclusion, this chapter has surveyed a few key issues in the large and growing literature
on animal numerical abilities. Although human mathematics far surpasses animal arithmetic,
the studies described here show that animals have a rudimentary numerical sense that allows
them to represent the approximate numerical value of discrete sets, appreciate correspon-
dences between auditory and visual sets, and also order, add and subtract numerical represen-
tations. When adult humans are given tasks designed to bypass their verbal number system,
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they show a strikingly similar nonverbal numerical sense (Brannon & Terrace, 2002; Cordes et
al., 2001; Whalen et al., 1999). A handful of studies have also implicated mental magnitude
representations of number in human infants (e.g., Brannon, 2002; Lipton & Spelke, 2003; Xu,
2003; Xu & Spelke, 2000). Thus, studying the numerical mind of nonhuman animals is providing
insight into the foundations of human mathematical capacities, and results of this endeavor
are contributing to the important conclusion that precursors of human cognition are found

throughout the animal kingdom.
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The Cognitive Foundations

of Mathematics
The Role of Conceptual Metaphor

Rafael Nufiez
George Lakoff

In The Tree of Knowledge, biologists Humberto Maturana and Francisco Varela (1987) analyze
the biological foundations of human cognition. A crucial component of their argument is a
simple but profound aphorism: Everything said is said by someone. It follows from this that any
concept, idea, belief, definition, drawing, poem, or piece of music has to be produced by a
living human being, constrained by the peculiarities of his or her body and brain. The entail-
ment is straightforward: without living human bodies with brains, there are no ideas—and that
includes mathematical ideas. This chapter deals with the structure of mathematical ideas
themselves and with how their inferential organization is provided by everyday human cognitive
mechanisms such as conceptual metaphor.

THE COGNITIVE STUDY OF IDEAS AND
THEIR INFERENTIAL ORGANIZATION

The approach to mathematical cognition we take in this chapter is relatively new, and it differs
in important ways from (but is complementary to) the ones taken by many of the authors in
this volume. In order to avoid potential misunderstandings regarding the subject matter and
goals of our piece, we believe that it is important to clarify these differences at the outset. The
differences reside mainly on three fundamental aspects:

1. The level at which the subject matter, namely, mathematical cognition, is defined and
studied

2. The scope of what is considered to be “mathematics”

3. The methods used to gather knowledge about the subject matter, mathematical cognition

Most chapters in this volume focus on performance, abilities, stereotypes, learning, belief

systems, neurological or developmental disorders, and the effect of aging involved in some
aspect of mathematical behavior (usually basic arithmetic tasks). For instance, some of the
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authors analyze the nature and locus of the most basic of brain functions and locations that
give rise to extremely basic number-related behaviors like subitizing, numeration, counting,
estimating, and so on. Others study the developmental dimensions involved in the learning of
the number concept, others study the peculiarities of number processing, and others focus
their efforts on studying mathematical abilities, problem-solving, and performance, investigat-
ing their psychological and biological underpinnings. What is common to these studies is the
following:

a. Subject matter: Their primary concern is some aspect of the psychological, neurological,
or educational reality involved in some mathematical behavior, performance, or compe-
tence of a person. The subject matter is defined at the level of an individual or at the level
of an individual’s nervous system. Mathematics per se is untouched. It is not the primary
concern.

b. Scope: What is usually meant by “mathematics” is, in general, simple arithmetic, number
processing, or numerical calculation. Occasionally, it also means basic geometry or basic
algebraic thinking.

c¢. Method: The methods of investigation are mainly standard empirical methods used in
behavioral studies in psychology, studies with neuropsychological syndromes, and compu-
tational models of numerical processing.

We, of course, celebrate this work and, building partially on their findings, move on to a
radically different set of questions about mathematics. And here we mean the inferential
organization of mathematics itself, not just performances or behaviors of individuals in some
numerical domain. If mathematics does build on human ideas, how can we give a cognitive
account of what is mathematics, with all the precision and complexities of its theorems,
axioms, formal definitions, and proofs? What is the nature of what is taken to be truth (i.e., a
theorem)? And, how do we get from numbers and baby arithmetic (proto-addition and subtraction
up to three items) to higher forms of mathematics: full-blown arithmetic with rational and real
numbers, set theory, logic, analytic geometry, trigonometry, exponentials and logarithms,
calculus, complex analysis, transfinite numbers, abstract algebra, and so on?

We believe that these are questions for cognitive science—the scientific study of the mind,
not for mathematics per se. We are asking, which cognitive mechanisms are used in structur-
ing mathematical ideas? And more specifically, what cognitive mechanisms can characterize
the inferential organization observed in mathematical ideas themselves? At this point we need
to clarify the notion of inferential organization.

Consider the following two linguistic expressions: “Christmas is still ahead of us” and “That
cold winter took place way back in the 60s.” Literally, these expressions don’t make any sense.
“Christmas” is not something that can physically be in front of us in any measurable or
observable way, and a “cold winter” is not something that can be physically behind us. Hundreds
of thousands of these expressions, whose meaning is not literal but metaphorical, can be
observed in human everyday language. A branch of cognitive science, cognitive linguistics
(and, more specifically, cognitive semantics), has shown that these hundreds of thousands,
metaphorical expressions can be modeled by a relatively small number of conceptual metaphors
(Lakoff, 1993). A crucial component of what is modeled is, precisely, their inferential organiza-
tion. In the previous example, although the expressions use completely different words (i.e.,
the former refers to a location ahead and the latter to a location behind), they are both
linguistic manifestations of a single conceptual metaphor, namely, TIME EVENTS ARE THINGS IN
UNIDIMENSIONAL SPACE,! which maps locations in front of ego with events in the future, co-

'Following a convention in cognitive linguistics, capitals here serve to denote the name of the conceptual mapping as
such. Particular instances of these mappings, called metaphorical expressions (e.g., “she has a great future in front
of her”), are not written with capitals.
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locations with ego with events in the present, and locations behind ego with events in the past.
This mapping preserves transitivity, such that if an object A in the source domain of space is
further away than an object C, then the entailment “A is further away in front of ego than C”
is preserved, via the mapping, in the target domain of Time: event A in time is further away
in the future than event C (spatial construals of time are, of course, much more complex. For
details see Lakoff, 1993; Lakoff & Johnson, 1999; Nunez, 1999. For experimental psychological
studies based on priming paradigms see Boroditski, 2000; Gentner, 2001; Nufiez, in prepara-
tion). For the purposes of this chapter, there are two very important aspects to keep in mind:

1. At this level of the cognitive analysis, what matters is not how single individuals learn how
to use these metaphors, or how they use them under stressful situations, or how they may
lose the ability to use them after a brain injury, and so on. What matters is to characterize
(i.e., to model) across hundreds of linguistic expressions the structure of the inferences
that can be drawn from them. For example, if “Christmas is ahead of us,” we can infer
that New Year’s Eve (which takes place later in December) is not just ahead of us, but
further away in front of us. Similarly, if “the cold winter took place way back in the 60s,”
we can infer that last winter is not only behind us but also much closer to us.

2. Truth is always relative to the inferential organization of the mappings involved in the
underlying conceptual metaphor. For instance, “last summer” can be conceptualized as
being behind us as long as we operate with the conceptual metaphor TIME EVENTS ARE THINGS
IN UNIDIMENSIONAL SPACE mentioned above, which determines a specific bodily orientation
respect to metaphorically conceived events in time. Nufiez and Sweetser (2001; in prepara-
tion) have shown, based on lexical, metaphorical, and gestural empirical evidence, that the
details of that mapping are not universal. In the Aymara culture of the Andes, for in-
stance, “last summer” is conceptualized as being in front of ego, not behind ego (as it is
conceptualized by speakers of many languages around the world, including English), and
“from now on” not as a frontward motion but as backward motion. As we will see, truth in
mathematics also depends on the details of the underlying conceptual metaphors.

In sum, this chapter analyzes mathematical cognition from the perspective of the cognitive
components of the inferential organization of mathematics itself (focusing mainly on concep-
tual metaphor) and not with the behavior or performance of individual subjects doing some
form of mathematics. We believe that the approach we present here is not inconsistent from
standard approaches in mathematical cognition. We think, however, that it is different in what
concerns its subject matter, scope, and methodology:

a. Subject matter: The primary concern of this approach is mathematics itself. The subject
matter is defined at the level of the inferential organization of mathematical ideas. Behav-
ior, performance, and competence of particular individuals are secondary.

b. Scope: Arithmetic (or numerical calculations) is not given any privileged status. The goal
is to study mathematics in all its manifestations, most of which are not numerical at all
(e.g., topology, set theory, and algebra).

c¢. Method: The methods of investigation used are mainly drawn from modeling in cognitive
semantics. In particular, we will be using a technique we call Mathematical Idea Analysis
(Lakoff & Nunez, 2000).

As we said earlier, the approach we present here is still relatively new, and in many ways it
is still being explored. For those interested in studies involving behavior, performance, learning,
brain injuries, and abilities in mathematical cognition, we believe that this approach should
provide fruitful information for the elaboration of hypotheses that can be tested empirically.
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THE COGNITIVE SCIENCE OF MATHEMATICS

In the last 15 years or so, the field of cognitive semantics has produced many interesting
findings regarding the basic mechanisms of human thought as they are manifested through
language. Important discoveries such as force dynamics schemas (Talmy, 1988, 2003), frames
(Fillmore, 1982, 1985), prototypes of various kinds (Rosch, 1981, 1999), image schemas (Johnson,
1987; Lakoff, 1987), conceptual metaphor (Lakoff, 1993; Lakoff & Johnson, 1980/2003; Lakoff
& Nufiez, 1997; Nufiez, 2000; Reddy, 1979; Sweetser, 1990), conceptual metonymy (Lakoff &
Johnson, 1980), and conceptual blends (Fauconnier & Turner, 1998, 2002) have provided new,
deep insights into the nature of human ideas. With this work in mind, the question we ask is:
How are these basic mechanisms of thought (which manifest through language and gesture)
used to characterize the inferential organization of mathematical ideas—ideas like exponentials,
trigonometric functions, derivatives, and so on? We ask further how these mathematical ideas
allow us to express in precise mathematical terms such ordinary ideas as proportion, difference,
negation, change, reversal, recurrence, rotation, and even structure.

Moreover, we ask what the relation is between mathematical ideas and the symbolization of
those ideas. Why do calculations mean what they do, and why do they “work?” In our book
Where Mathematics Comes From (Lakoff & Nufiez, 2000), we claim that the ensemble of those
questions constitutes a new field of inquiry we call the Cognitive Science of Mathematics (see
also Lakoff & Nuiez, 1997). In the book, we provide an in-depth analysis of such questions and
give preliminary answers to them. In addition, we outline the method of analysis we call
Mathematical Idea Analysis. In short, The Cognitive Science of Mathematics asks foundational
questions about the very nature of mathematics itself.

The present chapter can only give the barest suggestion of the answers to the questions we
address in our book and a hint at how mathematical idea analysis works. Perhaps one of the
most interesting findings in our research is that conceptual metaphors and conceptual blends
are constitutive of the ideas of higher mathematics. In this essay we will limit our discussion
to conceptual metaphor, since this particular cognitive mechanism has been studied in depth
for at least 25 years and has gathered evidence from a wide range of sources: psychological
experiments (Gibbs, 1994), historical semantic change (Sweetser, 1990), spontaneous gesture
(McNeill, 1992; Nufiez, 2004; Nufiez & Sweetser, 2001), American Sign Language (Taub, 2001),
child language development (C. Johnson, 1997), generalizations over polysemy (i.e., cases in
which the same word has multiple systematically related meanings; Lakoff & Johnson, 1980/
2003), generalizations over inference patterns (cases in which source and target domains have
corresponding inference patterns; Lakoff, 1993), novel cases (new examples of conventional
mappings, as in poetry, song, advertisements, and so on; Lakoff & Turner, 1989), discourse
coherence (Narayanan, 1997), and cross-linguistic studies (Yu, 1998). For a thorough discus-
sion of such evidence, see Lakoff and Johnson, 1999, Chapter 6).

In order to illustrate our arguments, we would like to consider a simple but deep example:
actual infinity. As finite beings, we have no direct experience of infinity. However, via concep-
tual metaphor, we can extend our finite experiences metaphorically to create and conceptual-
ize infinity as a completed realized entity, such as an infinite set, an infinite sequence, a point
at infinity in projective geometry, an infinite sum, an infinite number, and even an infinite
intersection of sets. Such cases of actual infinity are absolutely central to most of modern
mathematics (for a brief historical analysis, see Maor, 1991). It is important to bear in mind
during the discussion that follows that conceptual metaphors are precisely stateable and that
they preserve inferences, which is what allows them to play a central role in mathematics.

THE BASIC METAPHOR OF INFINITY

Since the time of Aristotle, there have been two concepts of infinity, potential infinity and
actual infinity. Suppose you start to count: 1, 2, 3, ... and you imagine you go on indefinitely
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without stopping. That is an instance of potential infinity, infinity without an end. On the
other hand, consider the set of all natural numbers. No one could ever enumerate all of them;
the enumeration would go on without end. Yet we conceptualize a set containing all of them,
even though the enumeration has never and could never produce them all. That is an instance
of actual infinity—an infinite completed thing.

In Where Mathematics Comes From, we hypothesize that the idea of “actual infinity” in
mathematics is metaphorical, that all the diverse ideas using actual infinity make use of the
ultimate metaphorical result of a process without end. Literally, there is no such thing; if the
process does not end, there can be no such “ultimate result.” But the very human mechanism
of metaphor allows us to conceptualize and construct the “result” of an infinite process—in
terms of the only way we have for conceptualizing the result of a process—in terms of a process
that does have an end.

We hypothesize that all cases of actual infinity—from infinite sets to points at infinity to
limits of infinite series to infinite intersections to least upper bounds—are special cases of a
single general conceptual metaphor in which processes that go on indefinitely (that is, without
end) are conceptualized as having an end and an ultimate result. We call this metaphor
the BASIC METAPHOR OF INFINITY, or the BMI for short (Lakoff & Nunez, 2000). (For details
regarding how the BMI applies to Georg Cantor’s transfinite cardinal numbers, see Nufiez, in
press.)

A conceptual metaphor is a cross-domain mapping (in the cognitive sense of “mapping”)
from one conceptual domain to another, where inferences from the source domain are mapped
to the target. The source domain of the BMI is the domain of iterative processes with end, that
is, what linguists call perfective aspect (Comrie, 1976). That is, the source domain consists of an
ordinary iterative process with an indefinite (though finite) number of iterations with a comple-
tion and resultant state. The target domain of the BMI is the domain of processes without end,
that is, processes having imperfective aspect. In itself, without the metaphorical mapping, the
target domain characterizes potential infinity. The effect of the BMI is to add a metaphorical
completion to the process that goes on and on indefinitely, so that it is seen as having a final
result—an infinite thing. This metaphorical addition is indicated in boldface in the statement of
the conceptual mapping given below.

The source and target domains are alike in certain essential ways:

¢ Both have an initial state.
¢ Both have an iterative process with an unspecified number of iterations.
¢ Both have a resultant state after each iteration.

In the metaphor, the initial state, the iterative process, and the result after each iteration
are mapped onto the corresponding elements of the target domain. But the crucial effect of the
metaphor is to add to the target domain the completion of the process and its resulting state. It
is this last part of the metaphor that allows us to conceptualize the ongoing process in terms
of a completed process and so to produce the concept of actual infinity. Table 7.1 shows the
mapping of the BASIC METAPHOR OF INFINITY.

Notice that the source domain of the metaphor has something that does not correspond to
anything in the literal target domain, namely, a final resultant state. The inferential organiza-
tion of this conceptual mapping functions so as to impose a final resultant state on an
unending process. The literal unending process is given on the right-hand side of the top three
arrows. The metaphorically imposed final resultant state (which characterizes what is unique
about actual infinity) is indicated in boldface on the right side of the fifth line of the mapping.

In addition, there is a crucial entailment that arises in the source domain and that is
imposed by the metaphor on the target domain. In any completed process, the final resultant
state is unique. The fact that it is the final state of the process means that:
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Table 7.1
The Basic Metaphor of Infinity
Source Domain Target Domain
Completed Iterative Processes Iterative Processes That Go On and On
The Beginning State — The Beginning State
State resulting from the initial stage — State resulting from the initial stage
of the process of the process
The process: from a given intermediate — The process: from a given intermediate state,
state, produce the next state produce the next state
The intermediate result after that — The intermediate result after that iteration
iteration of the process of the process
The Final Resultant State — “The Final Resultant State”
(actual infinity)
Entailment: the final resultant state — Entailment: the final resultant state is
is unique and follows every nonfinal state unique and follows every nonfinal state

¢ There is no earlier final state; that is, there is no distinct previous state within the process
that follows the completion stage of the process yet precedes the final state of the process.

¢ Similarly, there is no later final state of the process; that is, there is no other state of the
process that both results from the completion of the process and follows the final state of
the process. Any such putative state would have to be “outside the process” as we concep-
tualize it.

Thus, the uniqueness of the final state of a complete process is a fact of human cognition,
not a fact about some transcendental truth. That is, it follows from the way our brains and
bodies allow us to conceptualize completed processes.

The BASIC METAPHOR OF INFINITY maps this uniqueness property for final resultant states of
processes onto actual infinity. Actual infinity, as characterized by any given application of the
BMI, is unique.

What results from the BMI is a metaphorical creation that does not occur literally, but it
represents a process that goes on and on indefinitely and yet has a unique final resultant
state, a state “at infinity.” This metaphor allows us to conceptualize “potential” unending
infinity, which has neither end nor result, in terms of a familiar kind of process that has a
unique result. Via the BMI, infinity is converted from an open-ended process to a specific,
unique entity with a precise inferential organization. (For details see Lakoff & Nufiez, 2000,
chapter 8.)

In Where Mathematics Comes From, we dedicate several chapters to showing that a wide
range of mathematical concepts use actual infinity and that they can be precisely formulated
using the BMI. The cases covered include infinite sets, points at infinity (in projective and
inversive geometries), mathematical induction, infinite decimals, infinite sums, transfinite
numbers, infinitesimal numbers, infinite intersections, least upper bounds, and limits of se-
quences of numbers. The general technique is to specify precisely what the parameters of the
iterative process are. For example, in the case of the infinite set of natural numbers, we let the
iterative process be to produce the next integer from a prior set of integers and form a new set
containing the new integer and the integers in the prior set. At the metaphorical final result-
ant state, we conceptualize the set of all the natural numbers. Depending on the nature of the
process involved (e.g., iterative sums and iterative nesting of sets) and on the way in which the
elements of the processes are parameterized, different instantiations of the BMI occur. It is
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important to mention that in many ways, the BMI plays a similar role to the various axioms of
infinity in mathematics. The BMI and the axioms of infinity serve to “create” mathematical
infinities. The main fundamental difference, however, is that the BMI is heavily constrained by
findings in cognitive science (i.e., it has to be consistent with state-of-the-art knowledge about
the peculiarities of the human brain, the properties of human language, and so on), whereas
the axioms in mathematics don’t have to meet the requirements of any of these empirical
constraints. Axioms of infinity in mathematics are simply “made up” to assure the logical
existence of mathematical infinities.

To get a sense of how conceptual metaphors work in mathematics, we will consider a
relatively simple and well-known apparent paradox that allows us to see (a) the metaphorical
structures that constitute the most fundamental of mathematical ideas and (b) the underlying
inferential organization that make it appear as a paradox.? The example, which is taken from
the domain of curves and functions in the Cartesian plane, has served as experimental mate-
rial in research in mathematics education (Fischbein, Tirosh, and Hess, 1979) as well as in
cognitive development (Nufiez, 1993).

CURVES, FUNCTIONS, AND LIMITS: THE PROBLEM

There is a classical problem that involves the following mathematical construction, as given in
Figure 7.1. Start at stage 1 with a semicircle of diameter 1, extending from 0 to 1 on the X-axis
of the Cartesian Plane. The perimeter of the semicircle is of length /2. The center will be at
x = 1/2, and the semicircle is above the X-axis.

At stage 2, divide the diameter in half and form two semicircles extending from 0 to 1/2 and
1/2 to 1. The two centers will be at x = 1/4 and x = 3/4 (see Figure 7.2). The perimeter of each

The perimeter is

/-‘ of length m/2.

0 1/2

—_

Figure 7.1

Each perimeter is of length n/4.

'/'\ The total perimeter is /2.

0 1/4 1/2 3/4 1

Figure 7.2

“Due to constraints of space, in what follows we will only give a general characterization of the underlying conceptual
metaphors, without the details of the mappings involved.
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Each perimeter is of length n/8.
The total perimeter is /2.

I | ] ]
0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

Figure 7.3

semicircle is 11/4. The total length of both perimeters is /2. The length of each diameter is 1/2.
The total length of both diameters is 1.

At stage 3, divide the diameters in half again to form two more semicircles. There will now
be four semicircles (see Figure 7.3). The centers will be at x = 1/8, x = 3/8, x = 5/8, and x = 7/8. The
perimeter of each semicircle will be 7t/8. The total length of all four perimeters is /2. The
length of each diameter is 1/4. The total length of all four diameters is 1.

Continue this process without stopping. This is an infinite process without an end. At every
stage n, there will be a bumpy curve made up of 2"! semicircles, whose total length is /2, and
where all the diameters taken together constitute a segment of length 1. As n gets larger, the
bumpy curve gets closer and closer to the diameter line, with the area between the bumpy
curve and the diameter line getting smaller and smaller. But the length of the bumpy curve
remains /2 at all stages, while the length of the diameter line remains 1 at all stages. As n
approaches infinity, the area between the bumpy curve and the diameter line approaches zero,
while the lengths of the curve and the line remain constant at /2 and 1, respectively.

What happens at n = oo?

LENGTHS, FUNCTIONS, AND SETS OF POINTS

At n = oo, there is no area between the bumpy curve and the diameter line. They occupy the
same place in space. Yet the bumpy curve is still of length 1/2 and the diameter line is still of
length 1. How is this possible? The bumpy curve and the diameter line appear to have become
the same line, but with two different lengths! And as we know, a single line should have only
a single length. Situations like this one provide perfect cases for the cognitive study of the
inferential organization involved in mathematical conceptual systems.

A clearer statement of the problem will reveal why the apparent paradox arises. In the
construction, there is an infinite sequence of curves approaching a limit. But sequences that
have limits are sequences of numbers, as characterized by the BMI given above. How can one
get from limits of sequences of numbers to limits of sequences of curves?

To do so, we will have to operate with a central metaphor developed in the late 19th century,
in which naturally continuous curves and lines were reconceptualized in a fundamentally differ-
ent way. Up to the work of Cauchy, Weierstrass, Dedekind, and others in the 19th century,
continuity was predicated on holistic and dynamic entities such as “lines” or “planes” moving
or extending over a background space. The work by Kepler and Euler, as well as the one by
Newton and Leibniz, the inventors of calculus in the 17th century, built upon this notion of
continuity. Euler, for instance, described (natural) continuity as “freely leading the hand.” This
conception of continuity, which is the same idea that students bring to math classes before
they are exposed to calculus, changed dramatically via the introduction of new conceptual
metaphors in which a space was conceived as constituted by sets of discrete elements called
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“points”: SPACE IS A SET OF POINTS. Incidentally, motion in this metaphorical space completely
disappeared. It was replaced by strict statements involving static existential and universal
quantifiers operating on discrete sets of points (for details see Nufiez & Lakoff, 1998; Nuiiez,
Edwards, & Matos, 1999; Lakoff & Nuiez, 2000). Given the inferential organization of this new
metaphor SPACE IS A SET OF POINTS, we can pick an appropriate sequence of functions f,(x),
fZ(x), ..., and conceptualize the ith bumpy curve as a set of ordered pairs of real numbers (x,
f, () in the unit square in the Cartesian plane. The first semicircle will be represented by the
set of ordered pairs of real numbers {(x, fl(x))}. Via this metaphor we are able to replace the
sequence of geometric curves by a sequence of sets of ordered pairs of real numbers. In short,
we have gone, via metaphor, from the geometry of natural space to a different mathematical
domain consisting of sets and numbers.

Now that spaces, curves, and points have been replaced metaphorically by sets, ordered
pairs, and numbers, can we use the characterization of limits of sequences of numbers, as
given by the BMI. For each number x between 0 and 1, there will be a sequence of numbers y—
Yy ¥y Vg - - - —given by the values of y in the functions f,(x) = y,, f,(x) = y,, £,(x) = y,, ...Each
of these sequences of y-values defined for the number x will have a limit as the ys get smaller
and smaller—namely, zero. Thus, for each real number x between 0 and 1, there will be a
sequence of ordered pairs (x, yl), (x, yz), (x, y3), ... that converges to (x, 0) (see Figure 7.4).

A subtle shift has occurred. We have replaced each bumpy curve by a bumpy curve set
consisting of ordered pairs of numbers (x, y), with y = f(x), where x ranges over all the real
numbers between 0 and 1. But what converges to a limit is not this sequence of bumpy curve
sets. Instead, we have an infinity of convergent sequences of y-values—one from each member
of the sequence of bumpy curve sets—for each number x between 0 and 1. The limit of each
such sequence is the pair (x, 0). The set of all such limits is the set of ordered pairs of numbers
{(x, 0)}, where x is a real number between 0 and 1. This set of ordered pairs of numbers
corresponds, via the metaphors used, to the diameter line.

But this set is a set of limits of sequences of ordered pairs of numbers. What we wanted was
the limit of a sequence of curves, that is, the limit of a sequence of sets of ordered pairs of
numbers. Those are very different things conceptually.

To get what we want from what we have, we must operate with a new metaphor, which we
will call the LIMIT-SET METAPHOR: THE LIMIT OF A SEQUENCE OF SETS IS THE SET OF THE LIMITS OF THE
SEQUENCES. Only via such a metaphor can we get the diameter line to be the limit of the
sequence of bumpy curve sets.

Two conceptual metaphors have provided the necessary inferential organization:

¢ CURVES (AND LINES) ARE SETS OF ORDERED PAIRS OF NUMBERS, AND
* THE LIMIT-SET METAPHOR

If we operate with these two conceptual metaphors, then the sequence of bumpy curves can
be reconceptualized as a sequence of bumpy curve sets consisting of ordered pairs of numbers.

first bumnpy curve
€48 04] /,

second bumpy curve

third bumpy curve

1] (x 0)

Figure 7.4
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That sequence will have as its limit the set of ordered pairs {(x, 0)}, where x is between 0 and
1. This set has the same elements as the set of ordered pairs of numbers representing the
diameter line under the metaphor CURVES (AND LINES) ARE SETS OF ORDERED PAIRS OF NUMBERS.
Mathematically speaking, there is an axiom (i.e., the axiom of extensionality) that imposes the
“truth” that a set is uniquely determined by its members. Via this artificially concocted axiom,
the two sets become “identical.” Cognitively speaking, however, the two sets are radically
different. Here we can see that the LIMIT-SET METAPHOR is one of the sources of the apparent
paradox.

WHAT IS THE LENGTH OF A SET?

In order to characterize the limit of a sequence of curves, we have had to metaphorically
reconceptualize each curve as a set—a set of ordered pairs of numbers. The reason is that
limits of sequences are technically defined only for numbers, not for geometric curves. But
now a problem arises. What is “length” for such a set?

In physical space as we experience it every day, there are natural lengths, like the length of
your arm or your foot. Hence, we have units of measurements like “one foot.” But when curves
are replaced by sets, we no longer have natural lengths. Sets, literally, have no lengths. To
characterize the “length” of such a set, we will need a relation between the set and a number
called its “length.” In general, curves in the Cartesian Plane have all sorts of numerical
properties—the area under the curve, the curvature at each point, the tangent at each point,
and so on. Once geometric curves are replaced by sets, then all those properties of the curves
will have to be replaced by relations between the sets and numbers.

The Length Function

The inferential organization of the length of a line segment [a, b] along a number line is
metaphorically provided by the absolute value of the difference between the numbers,
namely, | b - a |. This is extended via the Pythagorean Theorem to any line segment
oriented at any angle in the Cartesian Plane. Suppose its endpoints are (al, bl), and (a? bz).
Its length is V(|a, - a,|>+ |b, - b,|?.

What about the length of a curve? Choose a finite number of points along the curve (includ-
ing the endpoints). Draw the sequence of straight lines connecting those points. Call it a
partition of the curve. The length of the partition is the sum of the lengths of the straight lines
in the partition (see Figure 7.5). Think of the length of the curve via the BMI appropriately

Partition of
the curve
Figure 7.5
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parameterized as the least upper bound of the set of the lengths of all partitions of the curve.
This gives us a length function for every curve.

Now think of the line segments as measuring sticks. As the measuring sticks get shorter and
shorter, they measure the length of the curve more and more accurately. The length of the
curve is the limit of measurements as the length of the measuring sticks approaches zero. Let us
call this the CURVE LENGTH METAPHOR.

The Sources of the Apparent Paradox

The appearance of the paradox comes from two sources with mutually inconsistent inferential
organization:

1. A set of expectations about naturally continuous curves.
2. The metaphors used to characterize curves in formal mathematics.

It should come as no surprise that our normal expectations are violated by the metaphors of
formal mathematics.

Let us start with our normal expectations, that is, with the conceptual apparatus structured
by the inferential organization of natural continuity.

¢ Length, curvature at each point, and the tangent at each point are inherent properties of a
naturally continuous curve.

¢ Identical curves should have identical properties.

¢ Nearly identical curves should have nearly identical properties.

e If a sequence of curves converges to a limit curve, the sequence of properties of those
curves should converge to the properties of the limit curve.

The reason we have these expectations is that we metaphorically conceptualize curves as
objects in space and properties that are inherent to a curve as parts of the curve. For example,
we naturally understand the curvature at a point in a curve as being inherent to the curve. If
we think of a curve as being traced out by a point in motion (as did the brilliant mathemati-
cians Kepler and Euler), we think of the direction of motion at each point (mathematicized as
the tangent to the curve) as inherent to the curve. If we think of curves as objects and their
inherent properties as parts of those objects, then as the curves get very close to each other,
their properties should get correspondingly close. When the curves are so close that they
cannot be distinguished, their properties should also be indistinguishably close.

The conceptual metaphors that characterize post-19th-century formal mathematics, when
taken together, violate these expectations. Here are the relevant metaphors.

¢ Functions ARE SETS OF ORDERED PAIRS oF REAL NUMBERS

¢ ReAL NUMBERS ARE LIMITS OF SEQUENCES OF RATIONAL NUMBERS (uses the BMI)

¢ CURVES (AND LINES) ARE SETS OF POINTS

e PoINTS IN THE (CARTESIAN) PLANE ARE ORDERED PAIRS oF NUMBERS

e Tuk Limir METAPHOR (uses the BMI for limits of sequences of numbers)

e Tuk Lmvir-SET METAPHOR (defines the limit of a sequence of curves as the set of point-by-point
limits, as in Figure 7.4)

¢ PROPERTIES OF CURVES ARE FUNCTIONS

¢ SpaTiaL DistaNck (between points @ and b on a line) Is NumERICAL DIFFERENCE (|b - a])

e Tue CurvE LENcTH METAPHOR (uses the BMI)

¢ CLosENESS (between two curves) Is A NUMBER (defined by a metric, which assigns numbers to
pairs of functions)
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It should be clear why such metaphors violate the expectations discussed above. Curves are
not physical objects; they are sets. Inherent properties are not parts; they are functions from
one entity to a distinct entity. When two “curves” (sets) are “close” (have a small number
assigned by a metric), there is no reason to think that their “properties” (numbers assigned to
them by functions) should also be “close.”

Moreover, the LIMIT-SET METAPHOR that defines limits for curves says nothing about properties
(like curvature, tangent, and length). From the perspective of the metaphors inherent in the
formal mathematics, there is no reason to think that properties like curvature, tangent, and
length should necessarily converge when the curves converge point by point.

Tangents and Length

Imagine measuring the length of a semicircle on one of the bumpy curves using measuring
sticks that get shorter and shorter. If there were n semicircles on that bumpy curve, the
measurements of each semicircle would approach m/2n as a limit. The total length, n times 7/
2n, is always /2.

As the measuring sticks get shorter, they change direction and eventually approach the
orientations of tangents to the curve. The CURVE LENGTH METAPHOR thus provides a link between
lengths of curves and orientations of tangents, which in turn are characterized by the first
derivative of the function defining the curve.

Compare the semicircles with the diameter line. There the measuring sticks are always flat,
with tangents at zero degrees. Correspondingly, the first derivative is zero at each point.

The Bumpy Curves in Function Space

A function space is defined by the metaphor that A FUNCTION IS A POINT IN A SPACE. The metaphor
entails that there is a “distance” between the “points,” that is, the functions. By itself, that
metaphor does not tell us how “close” the “points” are to one another. For this, one needs a
metric, a function from pairs of functions to numbers. The numbers are understood as meta-
phorically measuring the “distance” between the functions.

All sorts of metrics are possible, provided that they meet three conditions on distance d:
d(a, a) = 0, d(a, b) = d(b, a), and d(a, b) + d(b, ¢) = d(a, c). In the field of functional analysis,
metrics are defined so as to reflect properties of functions. To get an idea of how this works,
imagine the bumpy curves and the diameter line as being points in a space. Imagine the metric
over that space as being defined in the following way.

1. The distance between any two functions f{x) and g(x) is defined as the sum of
a. the maximum difference in the values of the functions, plus
b. the average difference in the values of the derivatives of the functions.

Formally, this is written:
df.g) = sup Lf(x)—g) I+ f; (1f'(x) = g'(x) Idx

Via the metaphors CURVES ARE SETS OF POINTS and FUNCTIONS ARE ORDERED PAIRS OF REAL NUMBERS,
let g(x) be the diameter line and let f{x) vary over the bumpy curves. As the bumpy curves get
closer to the diameter line, the maximum distance (the first term of the sum) between each
bumpy curve f(x) and the diameter line g(x) approaches zero. The second term of the sum does
not, however, approach zero. It represents the average difference between the values of the
tangents at each value (x). In the diameter line g(x), the tangents are always zero, so g'(x) = 0
for all x. Since the tangents on each bumpy curve go through the same range of values, the
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average of the absolute values of the tangents will be the same for each bumpy curve. Thus, the
second term will be a nonzero constant when g(x) is the diameter line and f{ix) is any bumpy
curve.

According to this new inferential organization, we obtain the following meaningful entailment:

¢ Curves that are close in the Cartesian Plane point-by-point, but not in their tangents, are
not “close” in the function space defined by this metric.

In this function space, the metric given above takes into account more than the difference
between the values of the functions. It also considers the crucial factor that keeps the length
of the bumpy curves from converging to the length of diameter line, namely, the difference in
the behavior of the tangents. In this metaphorical function space, the sequence of “bumpy
curve” points do not get close to the diameter-line points as n approaches infinity.

In Figures 7.1-7.4, we represented the sequence of functions as curves—bumpy curves. This
was a metaphorical representation of the functions, using the metaphors POINTS IN THE PLANE ARE
ORDERED PAIRS OF NUMBERS AND FUNCTIONS ARE SETS OF ORDERED PAIRS OF NUMBERS, which are part of
the inferential organization of the Cartesian Plane. This spatial representation of the function
gave the illusion that, as n approached infinity, the bumpy curves “approached” (came indefinitely
close to) the diameter line. But this metaphorical image leads one to ignore the derivatives
(the tangents) of the functions, which are crucial to the question of length. In this sense, this
particular metaphorical representation of these functions in the Cartesian Plane is degenerate:
it leaves out crucial information. But in the function space defined by the metaphor Funcrions
ARE PoIiNTs IN SpAcE and metric above, this crucial information is included and it becomes clear
that the bumpy curve functions do not come close to the diameter line function. There is not
even the appearance of a paradox here. Under this metric, curves that are close both point-by-
point and in their tangents will be represented by points that are close in this metaphorical
function space.

CONCEPTUAL METAPHOR AND PARADOX

In the above discussion, we described the inferential organization involved in the conceptualization
of the bumpy curves and the diameter lines as functions so that we could use the theory of
function spaces to show that the bumpy curves do not really converge to the diameter lines.
However, we do not have to bring functions into the discussion at all. Suppose we just look at
the curves in geometric terms as curves. Then the appearance of a paradox remains, since the
area under the bumpy curves does converge to zero and since the radii defining the heights of
the bumpy curves also converge to zero. However, the length of the bumpy curves remains
constant at /2. The reason is that the curvatures of the semicircles, far from converging to
zero, increase without bound. Curvature is a property of the curve. A sequence of curves can
converge to another curve only if all its properties also converge. The appearance of paradox
arises because we are not paying attention to the nonconvergent properties.

Most people tend to not pay attention to curvature and tangents in this case (Fischbein,
Tirosh, Hess, 1979; Nuiez, 1993). Moreover, most educated adults tend not to stop with the
finite cases, but to move to the infinite case (via an inappropriate parameterization of the
BMI, we hypothesize), which is where the “paradox” appears. But, as we said earlier, the BMI
is a general conceptual metaphor, with an unlimited range of possible special cases. Which
version you get depends on how you characterize and parameterize the special case. If you
were to try to plug curvatures or tangents into the BMI for the bumpy curves, it wouldn’t give
you paradoxical inferences because the entailment of the BMI in such a case would not give
you convergence. What is salient for most people in this example is not curvature or tangents
but, rather, the constant lengths on the one hand and on the other, the distance between the
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curves (characterized by the radii) and the area under the bumpy curve—both of which con-
verge to zero.

To get the appearance of a paradox, you have to operate with a version of the BMI highlight-
ing the decreasing distance between the curves, while ignoring curvatures and tangents. The
point here is that the general version of the BMI is cognitively real and can be applied in a way
that is at odds with conventional mathematics. But there are other special cases of the BMI
that are constitutive of conventional mathematics itself. The history of mathematics shows us
that often these are precisely the cases developed in the field to deal with problems, paradoxes,
and inconsistency. Depending on how the BMI is parameterized, one gets different results.
From a cognitive perspective, there is nothing strange about this. The same general metaphor
may be fleshed out in different ways for different purposes—in some cases defining an aspect
of mathematics, in other cases contradicting conventional mathematics.

MATHEMATICAL IDEA ANALYSIS

It should now have become clear why conceptual metaphor is central to the analysis of the
inferential organization of mathematical ideas. In modern geometry, for example, space is not a
medium or a background in which one locates things. A space is a set and points are not
locations but entities that are members of that set and therefore constitute that very space. A
geometric figure, like a circle or a sphere, is not an entity located in space, but rather a set of
the points that make up the space itself. Thus, for example, consider two spheres that touch at
a point. According to the inferential organization of our ordinary conceptual system, the
spheres are distinct entities, and touch at a point-location. But, in this metaphor, the spheres
are two sets of points, sharing a point in common. A point that is constitutive of both spheres!

This is a simple example of how different metaphorical mathematical ideas can be from our
ordinary conceptual system. This difference is often the cognitive reason as to why some
mathematical entities and facts are so counterintuitive and difficult to learn. In the examples
of the bumpy curve analyzed above, however, the mathematical concepts are metaphorically
complex and the analysis is anything but obvious. A serious cognitive analysis of the inferential
organization of metaphorical ideas is simply necessary if one is to understand the conceptual
structure of mathematics itself.

In Where Mathematics Comes From, we take up even deeper cases of mathematical idea
analysis, cases in which certain aspects (but not all) of the inferential organization of everyday
ideas are reconceptualized in terms of mathematical ideas, which allows for a mathematicization
of everyday concepts. A simple case is the concept of difference, which is metaphorically
conceptualized in terms of distance between points in a space and mathematicized in terms of
the arithmetical operation of subtraction—the subtraction of one number from another, in
which the numbers metaphorically represent lengths of lines in space. This way of
mathematicizing difference is ubiquitous not only in mathematics, but also in hundreds of
disciplines applying mathematics to their subject matters, from descriptive and inferential
statistics, to economics, biology, physics, psychology, and political science.

Another easy example is the concept of change, mathematicized in terms of derivatives.
There is a general metaphor outside of mathematics that change is motion in space from one
location to another. Qualities are represented conceptually as dimensions in space, degrees of
qualities as distances along these dimensions, time as a spatial dimension, and change of a
quality as movement from one point in that dimension to another. Instantaneous change is
then conceived of as average change of location over an infinitesimally small interval.

In our book, we give much more complex examples. Exponentiation is shown to express the
inferential organization of the concept of change in proportion to size. Trigonometric func-
tions are shown to characterize recurrence, and so on. It is via this means that we explain why
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mathematics can work in the sciences. Scientists ultimately categorize the phenomena they
experience by operating with the inferential organization of ordinary everyday concepts, like
size, proportion, change, and recurrence. The inferential organization provided by the meta-
phor system of mathematics, as precisely formulated, allows us to mathematicize these con-
cepts and perform calculations. Conceptual metaphors preserve inferences, and algorithmic
calculations encode those inferences. Conceptual metaphors thus play a central role in permitting
the calculation of predictions based on conceptual inferences.

CONCLUSION

Mathematics is a human enterprise. It uses the same conceptual mechanisms of thought as
those used in other intellectual domains, which shows a remarkable optimal use of a human’s
limited and highly constrained biological resources. To understand the inferential organization
that makes mathematics what it is, is to understand how the human mind uses everyday
cognitive mechanisms in very special and sophisticated ways. Mathematics has very unique
features. It is abstract (i.e., not directly perceivable through the senses), precise, consistent,
stable, calculable, generalizable, and effective as a general tool for description, explanation,
and prediction in a vast number of everyday activities. It is the inferential organization pro-
vided by conceptual metaphor, as used to constitute mathematics, that plays a fundamental

role in making all this possible.
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The Young Numerical Mind

When Does It Count?

Sara Cordes
Rochel Gelman

Accounts of early counting differ in the degree of conceptual competence granted to the young
child, as well as whether there are ontogenetic and/or phylogenetic continuities. Much of the
debate is centered on whether various counting tasks license the conclusion that young learners
understand the cardinal counting principle, that the last word in a count list represents the
cardinal value of a collection.

Some theorists hold that a young child’s initial count words have no numerical meaning for
them. They first have to connect each of the first few count words to either a perceptual
representation (Starkey & Cooper, 1995; Huttenlocher, Jordan, & Levin, 1994) or a nonverbal
representation of the exact quantity for a given small N (Bloom, 2000; Wynn, 1990, 1992b).
Others add that the language of count words grows out of the semantics of quantifiers in the
language (Bloom 2000; Bloom & Wynn, 1997; Carey, 1998). Depending on the account, the
requisite induction either co-occurs or sets the stage for learning the relationship between
verbal counting and knowledge of addition and subtraction. Thus, it widely is assumed that
learning the meaning of the counting procedure is developmentally prior to learning about
addition and subtraction (but see Sophian, 1998). Gelman and Gallistel’s (1978) account of a
principled understanding of counting differs in this regard.

For Gelman and Gallistel, the counting principles always have been considered part and
parcel of an implicit arithmetic structure, be it verbal or non-verbal. A meaningful verbal
counting procedure is one that is consistent with the counting principles of: one-one (each
item gets one and only one unique count tag), stable ordering (the count words are consistently
used in a stable order), cardinality (the last word in the count represents the cardinality of the
set), order irrelevance (the items may be counted in any order), and item-kind irrelevance
(there are no restrictions on what counts as a countable entity). The execution of a competent
plan of counting must be consistent with these principles for it to yield a cardinal value to
which the operations of addition and subtraction can be applied. Thus, the counting principles
do not stand alone. Successive count words represent ordered values because they are subject
to the axioms of arithmetic. Below we argue that a domain-specific nonverbal counting and
arithmetic structure provides very important domain-relevant clues for young children to use
when learning the language and meaning of count words.
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BACKGROUND

Much of the early work on numerical knowledge involves one or another counting task. Para-
digms in which assessments of counting are combined with its role in arithmetic are much less
prevalent. This is not surprising if we take into account the theoretical position of many labs.
Given the assumption that young children do not understand their own counting, it hardly
makes sense to ask them to relate counting to mathematical operations. For example, Piaget’s
(1952) theory is a set-theoretic one that grounds the understanding of cardinality in the
operations of one-one correspondence and logical classification. For him, counting in pre-
operational children is done by rote and without understanding. Bermejo (1996; Bermejo &
Lago, 1990) adopts the Piagetian position that preschoolers cannot understand the cardinal
principle on the basis of counting. This class of accounts rejects the view that preschoolers
have any numerical abilities.! Theories in the empiricist tradition (e.g., Baroody & Wilkins,
1999; Mix, Levine, & Huttenlocher, 2002) share with developmentalists like Piaget the view
that children must progress from the perceptual to the abstract—no matter what the conceptual
domain. At first, children use only perceptual information to put together identical items for
a count. Then they move to classifying together items of the same shape but of different color,
then items that differ in kind but share color, and so on, until they can collect for a count
widely heterogeneous “things.” Understanding that a final count number, say 5, represents any
set of 5 requires the use of an abstract classification structure. This criterion converges with
Piaget’s regarding the development of classification.

Mix et al. (2002) also place considerable emphasis on the role of language. McLeish (1991)
shares their overall perspective. “The reason for animals’ (and preverbal children’s [authors’
addition]) inability to separate numbers from the concrete situation is that they are unable to
think in the abstract at all—and even if they could, they have no language capable of communi-
cating, or absorbing, such abstract ideas as ‘six,” or a ‘herd’” (p. 7). Carey’s (2001b) language-
dependent account grants some role to a system for nonverbal counting and/or arithmetic.
But for her, the verbal counting system reflects a conceptual change that is closely related to
and emergent from the semantic/syntactic linguistic system of quantifiers (also see Spelke,
2000, for a related account).

We take up the differences in theoretical perspectives by considering two interrelated topics:
(1) the evidence for early counting abilities and (2) the possibility that all humans, including
preverbal infants and toddlers, possess an implicit understanding of the relationship between
counting and the arithmetic principles.

MATTERS OF EVIDENCE
The Counting Tasks

One popular counting task, the “How Many?” one (HM), involves showing children N objects
and asking “How many [objects]?” Task variables have included homogeneous vs. heterogeneous
items, 2- vs. 3-dimensional pictures or objects, events or sounds, explicitness of instructions
prior to the HM question, and so on. Across these conditions, the data converge. First, a
majority of children succeed on at least some variant of the task. The older the child, the
greater the probability of a correct count within and across conditions (Fuson, 1988). Second,
the probability of the child repeating the last count word in response to an HM question is also
a function of development. Third, the younger the child, the more likely it is she will be open
to misinterpretations of what to count and of variables that influence the production of one-
one and tag-generation errors. As such, younger children benefit from being told to count
more slowly, touching and moving the items, and smaller set sizes (Gelman & Tucker, 1975).
There is debate about the interpretation of these variables as well as scoring criteria. Some
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treat a child’s emphasis of the last word in the count as positive evidence (Gelman & Gallistel,
1978). Others insist that even repetition of the last count word reflects nothing more than the
child’s imitation of a social rule of counting (Fuson, 1988). The difficulty of interpreting data
from the seemingly straightforward HM task led us to work up alternative tasks.

Gelman, Meck, & Merkin (1986) designed a paradigm to test young children’s flexibility with
aspects of the counting procedure. In their study, 3-, 4-, and 5-year-olds watched a puppet count
an array of objects and were told, “It is your job to tell [puppet] if it was OK to count the way
he did or not.” Children in this study were highly sensitive to violations of the one-one and
cardinal principles, correcting the puppet when he double-counted, skipped an item, or repeated
an incorrect cardinal value. In a different study—the “Doesn’t Matter” task (Gelman & Gallistel,
1978; Gelman, Meck, & Merkin, 1986; Gelman & Meck, 1983, 1986)—preschoolers were asked
to count a row of objects in an unconventional manner, by making an item in the middle be the
“one” or the “two” in the count. Children quickly adopted successful strategies for complying,
while honoring the counting principles. Challenges based on the order-irrelevance and item-
irrelevance tasks appeared from various labs (Baroody & Wilkins, 1999; Briars & Siegler,
1984). However, Cowan, Dowker, Christakis, & Bailey’s (1996) subsequent studies showed that
3- to 6-year-old children did well at working with novel counting examples if they did not have
to be metacognitive. The authors concluded that question format is likely to influence whether
children attend to underlying principles or various performance variables. This fits Gelman
and Meck’s (1986) report that youngsters benefit from instructions about the difference between
a “silly” and “wrong” count sequence. But there must be more to the story.

Children younger than 3% years almost always fail Wynn’s “Give-N” task (1990, 1992b),
which asks a child to give a puppet one to six small animals. Developmentally, youngsters can
give one item before they give two items, and two before three animals. Wynn reports that
once a child produces four items (at about 3% years), she also does so with all larger set sizes
in her count list. Until then a child engages in “grabbing.” Wynn concludes that the shift
reflects an understanding of the cardinal principle that “helps them to immediately acquire
the meanings of all the number words [in their count list]” (Wynn, 1990, p. 186).

Although these results are robust, there is reason to question whether the “Give-N” task is
a fair test of the acquisition of verbal counting. Brannon & Van de Walle (2001) observed
different behavioral responses to the “Give-N,” as opposed to the HM and “What’s on the
Card” (see below) tasks. Although children were quick to respond in the latter two tasks, they
hesitated and verbalized much more confusion when participating in the “Give-N” task. Our
lab made similar observations in a replication of the task. We conclude that the “Give-N” task
is a very hard counting task, possibly for the following reasons.

In the “Give-N” task, the child has to create a set of objects, one by one, until she has
created a set whose numerical value corresponds to one in memory. These conceptual require-
ments overlap to a considerable degree with variants of the number conservation task that
have been paired with counting (e.g., Becker, 1989; Fuson, 1988; Gelman, 1982). Results of
these task variations all agree that it is far from easy to get preschool children to use cardinal
count values to construct and/or compare two sets. Becker (1989) reported that only some 3%-
year-old children used the cardinal value resulting from counting each of two sets in corres-
pondence to decide whether these were equal or not on the grounds of one-to-one correspon-
dence. The convergence of ages in the “Give-N” and Becker tasks makes sense. Both involve
using cardinal values in memory to generate or compare an equivalent value. The combined
competence requirements exceed those of a beginning language user (Halford, in press).

No matter what the task, there is another consideration when beginning speakers are the
subjects. Their language is very limited. The risk is nontrivial that whatever the instructions,
they could be misinterpreted. To deal with this, we developed the “What’s on the Card?”
(WOC) task (Gelman, 1993). Subjects were three groups of children between the ages of 2%
and 3% years, all within the age range who fail the “Give-N” task. The stimuli were a number
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of sets of cards, each with 1 through 7 stickers of given kind. As expected, the WOC question
elicited a label response on the first card in a set, e.g., “a bee.” The experimenter then said
“that’s right, that’s a one-bee card” or “there’s one bee,” to communicate that the task was a
number and not a labeling one. The subtle manipulation worked. Both 3-year-old groups per-
formed at or above 80% for set sizes up to 6. The 2%-year-old group also performed better than
predicted by Wynn’s theory, especially when the score was based on all correct trials, includ-
ing those with the minimal prompt of some pointing. Seventy percent of the youngest children
counted and stated the cardinal value on set sizes up to 4.

Bullock & Gelman’s (1977) instructions for their magic show avoided any talk about num-
bers. Still, their 2%%-year-old subjects transferred an initial ordering relationship between 1 and
2 items to the novel displays with 3 and 4 items. Gelman (1993) analyzed the kinds of things
that 2'%-year-olds said following their encounter with the transfer displays. More than 60% of
the 2%-year-olds either spontaneously counted the small sets or responded differentially to
“How many...” and “Can you count...” questions, thus demonstrating the ability to relate
knowledge of the cardinal principle to the ordering relation embedded in the count list. The
counting observed here was in the name of explaining or thinking out loud about the relation
between two pairs of ordered cardinal values. This could not occur if the children were not able
to make arithmetic judgments to start. Nevertheless, even here the counting was variable. The
same is true for the WOC task. This does not surprise us. A competent plan of action and its
successful output involves much more than the use of the constraints of implicit knowledge of
the counting principles and their representation of numerosity.

In addition to the issues considered above, there is one extremely demanding skill necessary
for success on counting tasks, mastery of the count list. Once children identify the string of
sounds that are relevant, they have to memorize a long list of words that lacks inherent
structure. There is nothing about each of the sounds to indicate which one will follow. Children
also need to cope with the information-processing demands involved in a successful output.
For example, they have to coordinate the drawing of tags with points and separate counted
from to-be-counted items. This is just the beginning of a discussion of the demands on perfor-
mance (Gelman & Greeno, 1989; Canobi, Reeve, & Pattison, 2003). It should be clear why
analyses of response variability should be the rule: even if children actively assimilate performance
examples of counting to their nonverbal understanding, this process takes time and practice.

Arithmetic Tasks: A Window to Counting Competence

When knowledge of the effects of addition or subtraction is assessed with a magic show (in
which items are surreptitiously added or removed from a set), many 2%-year-olds notice the
change in the number of objects for small sets (Gelman, 1972). Sophian and Adams (1987)
showed that even toddlers exhibit sensitivity to effects of arithmetic transformations on small
sets. Hughes (1981) also found that 3-, 4-, and 5-year-old children were successful in solving
simple addition and subtraction problems involving sets as large as 8. Zur and Gelman (2004)
found similar results when they asked 3-, 4-, and 5-year-olds to make predictions about changes
to a set. Each block of problems in their study started with a child counting a given number of
items, e.g., donuts in a donut shop. Then she heard about the delivery or sale of N (1, 2, or 3)
donuts. Next she predicted, without counting, how many items there were. Finally, she counted
to check her prediction. Ninety percent of predictions were in the right direction, even for the
youngest subjects, with a large proportion of responses differing from the correct value only
by +/-1. The youngest children’s responses (3:1-3:5 years) did not differ significantly from
those of the older children, suggesting even the youngest subjects had some understanding of
the cardinal principle.

In sum, when very young children count in the name of an arithmetic goal, data suggest that
they do understand the verbal cardinal principle. We consider it premature to rule out the
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possibility that young children’s learning of verbal counting benefits from a nonverbal counting
and arithmetic.

NONVERBAL COUNTING DATA

Animals and Humans

A number of studies reveal that infants discriminate sets based upon the number of items in
each set (e.g., Antell & Keating, 1983) and that they are even sensitive to set manipulations
involving simple arithmetic (Wynn, 1992a). Numerical estimation data from rats, pigeons,
monkeys, and humans of all ages yield similar data (Brannon, Wusthoff, Gallistel, & Gibbon,
2001; Mechner, 1958; Platt & Johnson, 1971; Rilling & McDiarmid, 1965), Pet dogs and dolphins
can pick the larger of two sets (Kilian, Yaman, von Fersen, Gunturkun, 2003; West and Young,
2002), and even salamanders appear sensitive to the numerosity of stimuli (Uller, Jaeger,
Guidry, & Martin, 2003). It is hard to continue to maintain that linguistic capacity is a
condition for the representation of approximate quantities. The comparative data, in combination
with those from adult psychophysical studies, open the door for our position that the nonverbal
system serves as a foundation upon which the human verbal/symbolic numerical system is built.

Regardless of the species and task involved, a similar pattern of responses almost always is
obtained. They obey Weber’s law: that is, the “just noticeable difference” between two values is
a constant proportion. More commonly, the ease (i.e., speed and accuracy) with which two
numbers are discriminated is dependent upon the ratio of the two values (not their arithmetic
difference, as one might suspect). This Weber characteristic is evidenced in the scalar variability
found in the behavioral data, such that the variability of responses increases in proportion to
the mean response. More precisely, the ratio of the standard deviation to the mean (coefficient
of variation) is a constant value.

Scalar variability is not unique to the animal counting data. A constant Weber fraction has
been measured in humans for a wide variety of perceived magnitudes, including weight, tem-
perature, surface roughness, and duration (Stevens, 1970). Psychophysical research suggests
that this is also the case with animals, as the extensive literature on animal timing reveals
scalar variability to be a robust finding in the behavioral data. These cross-species and cross-
modality consistencies suggest a similar mechanism of nonverbal representation for all quantities,
both continuous and discrete (see Gallistel and Gelman, 2000; Walsh, 2003). Recently, direct
tests of nonverbal counting abilities have revealed that humans share with animals this ability
to represent approximate numerical values with scalar variability (Barth, Kanwisher, & Spelke,
2003; Cordes, Gelman, Gallistel, & Whalen, 2001; Whalen, Gallistel, and Gelman, 1999; with
children, Huntley-Fenner, 2001; Whalen, Gelman, Cordes, & Gallistel, 2000).

These nonverbal counting results are not all that surprising. It is known that numerical
discriminations in both animals and humans obey Weber’s law, such that the speed and
accuracy with which two sets are discriminated is negatively correlated with the absolute size
of the sets and the numerical difference between the two sets. These numerical size and
distance effects, respectively, have been demonstrated in animals, adult humans, and preschoolers
(e.g., Dehaene & Akhavein, 1995; Huntley-Fenner & Cannon, 2000; Meck & Church, 1983).
More interesting, however, is that the Weber characteristic of numerical discriminations holds
even when the sets to be discriminated are replaced with Arabic numerals, suggesting that, at
least in numerically fluent individuals (human or primate), the meanings of symbolic represen-
tations of numerosity are closely related to approximate nonverbal representations (Moyer &
Landauer, 1967, 1973; Washburn, 1994).

Overall, we now know that humans and animals share a nonverbal counting ability to
generate approximate representations of the Ns used in various tasks. For us, this implies that
human infants similarly can approximate numerical representations that obey Weber’s law.
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Quantification in Infancy

A variety of habituation and preferential looking studies suggest infants are sensitive to
displays of some numerosities (although see Mix, Huttenlocher, & Levin, 2002). For example,
when habituated to a display of two objects, infants will then look longer to subsequent
displays of three as opposed to two, and vice versa (Antell & Keating, 1983; Starkey & Cooper,
1980; Strauss & Curtis, 1981). Five-month-olds are sensitive to arithmetic transformations of
small sets (Wynn, 1992) and changes in the number of grouped sets of moving dots (Wynn,
Bloom, & Chiang, 2002).

The majority of work with infants has used visual arrays in which all items to be enumerated
are presented simultaneously. A handful of studies have used sets of sequential events or
sounds. For example, 6-month-olds discriminate between 2 and 3 jumps of a rabbit puppet
(Wynn, 1996), and 4-day-old newborns’ sucking rate habituates to a 2 (or 3) three-syllable
utterance, they recover when they hear a 3 (or 2) syllable utterance, and vice versa (Bijeljac-
Babic, Bertoncini, & Mehler, 1993). Infants preferred to look at a display with the same number of
household objects as sounds they heard (Starkey, Spelke, & Gelman, 1983). Similarly, when a
causal relationship was established between dropping objects and noises, 6-month-old infants
expected a cross-modal match in numerosity (Kobayashi, Hiraki, & Hawegawa, 2002) (but see
Mix, Levine, & Huttenlocher, 1997; Moore, Benenson, Reznick, Peterson, & Kagan, 19872).

Preverbal numerosity discrimination is not limited to sets < 4. Xu and Spelke’s (2000) 6-
month-olds detected changes in the numerosity of visual arrays for large sets as long as the
ratio of the numerosities was 2:1 (e.g., 16 from 8, and 32 from 16), but not when the ratio was
as small as 3:2 (e.g., 16 from 12, or 32 from 24). A comparable result holds for sequentially
presented sets (sounds; Lipton & Spelke, 2003).

Evidence from these studies and others lead us to favor the proposal of a nonverbal quanti-
fication system in humans. Many, but not all (Simon, 1997, 1999), concur. Still, there is debate
about which kind of quantity-relevant representational system(s) best accounts for the data.
Issues regarding discrete vs. continuous and numerical vs. non-numerical representations take
center stage in the debate about the processes involved in infant quantification. Demon-
strations of set-size discrimination limits around three or four items contribute heavily to
differences between accounts. A key question is whether the quantification abilities of infants
reflect the same nonverbal system revealed in the adult nonverbal counting tasks.

NONVERBAL QUANTIFICATION: HOW DO THEY DO IT?
The Accumulator Model

Originally proposed by Meck & Church (1983) to explain both the timing and counting data
from nonverbal animals, the accumulator model has been adopted to explain nonverbal quan-
tification abilities in the human domain as well (Gallistel & Gelman, 1992; 2000). According to
this model, objective quantities (e.g., time, number, distance) are represented subjectively as
continuous magnitudes in a mental accumulator. The mapping between continuous objective
values (time, distance, intensity, amount, etc.) and continuous subjective values is a straight-
forward one—a small objective amount equates to a small subjective magnitude and a large
amount equates to a large magnitude, such that there is a simple linear relationship between
the two (but see Dehaene, Dupoux, & Mehler, 1990, for an alternative logarithmic account).
But what about the case of number in which discrete objective values are mapped to continu-
ous subjective magnitudes?

The case of number is a special one. The sole distinction between representations of discrete
number and continuous values is found in the process by which mental magnitudes are mentally
accumulated. While the accumulation process for continuous values is continuous (likened to
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running water from a hose into a bucket), nonverbal counting produces continuous magnitude
representations via a discrete process. Each enumerated item increments the magnitude in
the mental accumulator by an equal amount (equivalent to a cup of liquid being poured into
the bucket for each enumerated item). Thus, whereas continuous and discrete objective values
are represented by similar continuous mental magnitudes, the process by which these magni-
tudes are accumulated is distinct. The nonverbal counting process obeys the basic counting
principles described earlier—each enumerated item is represented by one cup of activation
(one-one) and each cup of activation increases the accumulated magnitude in memory, such
that there is a discrete “next” (stable order), and the resulting magnitude represents the
cardinality of the set (cardinality).

These mental magnitudes are not precise representations, however; that is, they are more
appropriately described as probability density functions than as absolute values. Following the
accumulation process, the resulting magnitude is transferred to memory, where it is subject to
scalar noise—noise proportional to the magnitude of the representation. Thus, the scalar
variability observed in the behavioral data is a reflection of the inherent scalar variability in
the system.

The Mapping between Nonverbal and Written Number

The accumulator model provides a satisfying account of the ubiquitous data, indicating that
magnitude discriminations obey Weber’s law. If objective magnitudes are subjectively represented
via a magnitude system with scalar variability, the ratio of two values directly reflects the
extent to which two values (probability density functions) overlap; thus, as the ratio of two
values approaches one, the amount of overlap in the two representations increases, making the
values subjectively more similar. The fact that symbolic representations of numerosity obey
Weber’s law strongly suggests that at some point in the development of numerical fluency, a
bidirectional map is achieved between the numerical words/symbols and magnitudes represented
in the accumulator system. The question is when does this happen.

A number of recent studies with children have used a numerical Stroop-like task (in which
numerical and physical size of the stimuli contrast with one another) to show the effect of
schooling. Rubinsten, Henik, Berger, & Shahar-Shalev (2002) found that when children in the
beginning of first grade chose the greater of two quantities, number did not interfere with
their success. At the end of their school year, the children’s quantity judgments were negatively
influenced by the presence of irrelevant number dimensions. By the end of the same grade,
there was interference.

An unpublished study by the authors and John Whalen in our UCLA lab? complements these
kinds of results. Kindergarten through fifth-grade students and adults indicated which of two
Arabic numerals (2-9) was larger, either numerically or physically. The stimuli differed in both
physical and numerical size such that the numerically larger digit was either physically larger
(congruent) or physically smaller (incongruent) than the other digit. Repeated measures analyses
of variance of the median times* (p < .05, at least) revealed a reliable advantage of physical
size, such that physical size of the display items interfered with judgments of numerical value
for all age groups. Numerical size interfered with judgments of physical size for all age groups
except for the youngest subjects (< 6% years). Not only did the numerals fail to compromise the
youngest children’s response times when judging incongruent stimuli, they did not elicit a
distance effect in the numerical condition. These two effects lead us to conclude that our
youngest subjects’ reading of numerals is very slow. Still, the process seems to be well on the
way with about a year of schooling, which suggests to us that its beginnings should be placed
earlier in development. No6el, Rousselle, & Mussolin (chapter 11) provide relevant evidence in
their extended treatment of the mapping between culturally defined symbols and nonverbal
representations of numerosity practice.
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Infant Accumulators

The animal and (noninfant) human nonverbal counting data are described well by an accumulator
system. However, do magnitude representations of quantity explain the pattern of results
obtained in the infant counting data? Clearly, some of the evidence for preverbal quantification
can be accounted for by an accumulator-like system. Since the system is truly numerical by
nature, there are no restrictions on what sorts of sets can be enumerated. Thus, data suggesting
infants enumerate spatial displays as well as sequential events and match numerosities cross-
modally are expected. In addition, there is no clear upper limit on the possible cardinal values
this system can handle, so evidence of infant discrimination of sets as large as 32 from sets of
16 (and 16 from 8) also support claims of magnitude representation in these young subjects.

The Weber law characteristic of magnitude representations may be challenged, however, by
some of the infant data. Infants successfully discriminate sets with ratios of 2:1, whereas they
fail on tests of ratios of 3:2 in the “large number range” (16 vs. 12 or 32 vs. 24; Xu & Spelke,
2000). Under a magnitude-representation account, this result would suggest that the Weber
fraction for a just-noticeable difference in number for infants this young was closer to .3 log
units (2:1) than to .18 log units (3:2); thus, sets with logarithmic differences closer to .18 may
simply be beyond the infants’ discrimination capabilities. This account is questioned, however,
by a variety of data revealing infants are able to successfully discriminate sets of 3 from 2
(e.g., Antell & Keating, 1983). These results suggest that the Weber fraction for numerosity
discrimination may actually decrease in the small number range for infants.

The lack of a consistent Weber fraction for numerical discrimination in infants threatens
theories positing magnitude representations as the sole basis for infant quantification results.
The accumulator model incorporates scalar variability in order to account for the Weber
characteristic of magnitude discrimination. The model does not make special allowances for
violations of Weber’s law. The infant data, however, suggest that numerical discrimination is
subject to a Weber fraction of around .3 log units (2:1 ratio) but only for values greater than 3
or 4. For values under 4, discrimination abilities appear to be keener than predicted by this
fraction. Why?

Perhaps the accumulator system is used only to represent values greater than 4. This
cannot be the general case. Scalar variability characterizes the adult psychophysical function
in both the small and large number ranges, without any signs of discontinuities below values
of 3 or 4 (Balakrishnan & Ashby, 1992; Cordes, Gelman, Gallistel, & Whalen, 2001). In addition,
animals are known to treat values above and below 4 in similar ways (Brannon & Terrace,
1998, 2000; Meck & Church, 1983).

Differences in data collection procedures for infants may contribute to their different response
pattern. The majority of infant studies employ either preferential looking or habituation para-
digms with amount of looking time as the crucial dependent variable. This implicit measure
contrasts with the explicit responses obtained in both animal and adult human nonverbal
counting tasks (i.e., lever/button presses or pecks). So, too, does the fact that most infant
analyses are based on group data. Information regarding individual variability, patterns of
responses, and developmental levels (necessary for arguments regarding underlying represen-
tations) are simply not available. Still, the apparent inconsistent Weber fraction for infants
cannot be ignored as the results are fairly robust. Although the accumulator model accounts
for most of the infant quantification data, the change in the Weber fraction for values fewer
than four needs explanation. Many have proposed that the small number range is processed
with object files/indexes.

Object Files

Kahneman, Treisman, & Gibbs (1992) introduced the notion of object files (or object indexes)
to describe how humans track objects in their visual environment. Object files are often
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referred to as mental pointers with a record of some minimal information about the object
being tracked, such as its location and shape. This information is used to identify objects,
allowing one to determine if an object retrieved from behind an occluder is the same or
different from the one originally placed behind the occluder (i.e., object permanence).

Although object files are discrete and can be counted, they are not numerical representa-
tions. They are merely mental pointers, and any estimate of the numerosity of the set of
tracked objects must be performed via some other representational system (e.g., the accumulator
system). A number of studies on multiple-object tracking by Pylyshyn and colleagues (1989;
Trick & Pylyshyn, 1994; Scholl & Pylyshyn, 1999) have determined that there is also a limit on
the number of objects one can simultaneously track. In adults, this limit is about 4 or 5,
although with repeated practice, certain individuals have been able to track as many as 9
objects. Individuation experiments with infants suggests that this limit may also be subject to
developmental changes, as work indicates that infants may only be able to track as many as 3
or 4 objects (Leslie, Xu, Tremoulet, & Scholl, 1998).

Object files have been implicated as an alternative representational system used for small
set discrimination in both infants and adults (e.g., Leslie et al., 1998; Trick & Pylyshyn, 1994).
Because object files are discrete and precise (noise free) by nature, they provide a viable
explanation for the fact that studies have found that infants are able to discriminate 2 objects
from 3 objects, but not 4 from 6, despite a similar ratio. The idea is that an accumulator system
is used primarily for large number representations (wherever discrimination is ratio-dependent)
and object files are used for small numbers (where discrimination has a set-size limit).

There have been claims that object-file representations “underlie most, if not all, of the
infant successes in experiments that involve small sets of objects” (Carey, 2001a, p. 313).
Although object files provide an account for much of the infant discrimination data for sets
smaller than 4, they cannot possibly explain it all. Object files are constructs of the visual
attention system, used for identification and mental tracking of discrete visual objects. By
virtue of this definition, studies indicating infant discrimination of sounds or rabbit hops (e.g.,
Lipton & Spelke, 2003; Wynn, 1996) fail to be accounted for by object files, because events are
not visual objects. Since these studies reveal successful discrimination of 3 events from 2
(Weber fraction of .18 log units), these data cannot be explained by an accumulator system of
representation, either. Clearly, limitations on both of these models prevent a full explanation
of the infant data. Further investigation into infant quantification abilities (preferably using
repeated trials) as well as modifications to current theories or the introduction of novel ones
are necessary for a greater understanding of the basis for numerical competence.

Continuous Extent Representations

There have been a number of developmental studies indicating that infants are able to differ-
entiate sets based upon the quantity of continuous variables such as overall surface area,
perimeter, or volume (independent of number). Recently, Feigensen, Carey, & Hauser (2002)
placed different numbers of graham crackers of varying sizes into two different buckets in
front of 10- and 12-month-old infants. Following the placement of the crackers, the infants
were allowed to crawl to one of the buckets in order to retrieve the graham crackers. Results
revealed that infants in their study crawled to the bucket containing the greater overall
amount of crackers, even if that bucket contained the fewer (cardinal) number of crackers
(interestingly, however, once either bucket contained more than four pieces of cracker, re-
sponding decreased to chance levels—suggesting object files also played a role in this task).
Thus, it appears that infants also use a measure of continuous extent (i.e., amount of cracker)
as a relevant dimension in set discrimination.

Because of results such as the ones reported above, most researchers involved in early
quantification work agree that the data point to the existence of preverbal representations of
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both numerosity and continuous stimulus magnitudes. There are others, though, who offer an
alternative, and decidedly different, explanation of the data. Mix et al. (2002) contest the
proposition that infants are capable of evaluating sets based upon discrete numerosity. They
insist that the successes found in counting experiments all are based upon representations of
continuous stimulus properties. They argue that “development starts with only one principle
of quantification in infancy based on amount of substance, which applies to both continuous
quantity and sets of discrete objects” (p. 62). According to their account, “infants do not
represent quantities numerically at all. Instead, the evidence points to the use of overall
amount” (p. 81).

Principal support for their theory stems from failures to find evidence for infant sensitivity
to numerosity once continuous stimulus variables are controlled. For example, in Clearfield &
Mix (1999), 6- to 8-month-old infants were habituated to displays of either 2 or 3 objects.
Following habituation, the infants saw two test displays: (1) displays with the same numerosity
but different overall contour than the habituation displays (extent test) and (2) displays with a
novel number of items (3 or 2) but with the same amount of overall contour (number test).
Subjects looked significantly longer than during habituation at the extent test displays but did
not behave as if they noticed a change in the number test displays, suggesting their task
tapped into representations of continuous extent, not numerosity.

Although it is likely that some infant counting results are due to distinctions of continuous
extent (and not number), it is unlikely that this is ubiquitously so. There are a number of
studies that fail to be explained by infant quantification of continuous extent alone. Xu and
Spelke (2000) varied continuous extent while maintaining number constant throughout the
familiarization trials of their large number discrimination tasks. If the infants were only
sensitive to changes in continuous extent, it would not be possible to habituate them to these
stimuli. They did. In a study of ordinal relations by Brannon (2002), infants were habituated to
sets of displays of increasing or decreasing numerosity (2-4-8 or 8-4-2) while controlling for
overall surface area of the stimuli. When presented test displays of either ascending or descending
numerosities (also with the same surface area), the 11-month-olds dishabituated to the novel
ordering, suggesting they had attended to the numerical ordering of the habituation displays,
not the extent. Most recently, Leslie, Glanville, & Lerner (2003) and Brannon & Gautier (2003)
pitted continuous extent against number and found infants in their tasks responded significantly
more to changes in number.

These projects, as well as studies of event number discrimination (e.g., puppet jumps, cross-
modal matching, sound enumeration—Wynn, 1996; Starkey, Spelke, & Gelman, 1980; Lipton &
Spelke, 2003) in which it is entirely unclear what would be defined as the continuous extent
variable, imply that infants must also be sensitive to numerosity. For the reasons presented
above, we can conclude that any representational model strictly confined to quantification of
continuous magnitudes is limited and insufficient for explaining the data.

Infants and Quantities: What's the Story?

In sum, work on infant quantification suggests that preverbal infants are sensitive to changes
in numerosity as well as to changes in continuous amounts (surface area, perimeter). Certain
data sets revealing infant discrimination of continuous extent (Clearfield & Mix, 1994), of
large numerosities (Xu & Spelke, 2000), and/or of the number of event sequences (Lipton &
Spelke, 2003) can only be accounted for by an accumulator-like representational system. How-
ever, indications of a shift in the Weber fraction for values smaller than 3 also implicate object-
files in some tasks involving small numerical values, provided the stimuli are discrete, visual
objects. We propose that the infant successes in quantification tasks are due to an interaction
of object file representations and approximate magnitude representations of both number and
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continuous variables. It is suggested that a number of task variables influence which mechanisms
(object files or accumulator) and which relevant dimensions (number, surface area, etc.) present
themselves in the data.

SOME CRITICAL POINTS

The persistence of the arguments from both the skill-first and language-dependency camps has
taken the turn of listing the reasons why the accumulator model for animal counting cannot
apply to the human case. The force with which they are presented is beginning to legitimize them,
even though the arguments are faulty. We take up the statements to this effect one by one:

1. The sequential nature of the nonverbal counting process makes enumeration of static sets
impossible or at least more difficult than enumeration of sequential sets. “Seemingly, it would be
difficult for infants to keep track of which items in a visual set had been ‘accumulated’ without
physically partitioning the set, as we do in verbal counting” (Mix et al., 2002, p. 90). This
comment is also relevant to the adult data, as new evidence suggests that the time required to
discriminate large sets is solely a function of the ratio of the two sets, NOT their overall
magnitude (Barth, Kanwisher, & Spelke, 2001).5

The underlying accumulator system is not necessarily sequential by nature. The physical
model of the accumulator is sequential in order to simplify understanding of the mathematical
model. The true mathematical model of the system does not require each “cupful of activation”
to be poured one after the other. It is quite possible to imagine that the cups are poured in all
at once, or perhaps there is a limit to the number of cups poured at once (the same as the
object file limit?). As Brannon points out, “It may be that two distinct processes yielded large
approximate number representations; an iterative counting like procedure operating over se-
quentially presented arrays and a parallel mechanism operating over simultaneous arrays”
(2003, p. 281).

The accumulator model is not strictly committed to an iterative nonverbal counting process
and equally accounts for the enumeration of sequential and static sets. It should also be noted
that the nonverbal counting routine is naturally implicit. It is not a conscious process—it
occurs as one (whether in an infant, adult, or nonhuman animal) scans the display and does
not require conscious partitions of counted items vs. to be counted items.

2. The accumulator is only used for representations of number or duration, and not other
continuous variables such as surface area or contour.

The accumulator model goes hand in hand with the concept of mental magnitudes. These
magnitudes are used to describe the subjective representation of all objective quantities that
obey Weber’s law. Although the accumulator model was originally proposed to account for the
animal counting and timing data, more generally, it has been adopted to explain all subjective
magnitude representations, including surface area, density, and length.

3. Evidence of nonverbal arithmetic in infants (e.g., Wynn, 1992a) “cannot be explained
without positing complicated maneuvers involving multiple accumulators” (Mix et al., 2002, p. 91).

Central to the Gallistel & Gelman (1992) account of preverbal counting, subjective magnitudes
are in the service of the arithmetic principles. Studies with both humans and animals reveal
that magnitudes are subject to nonverbal computations (in animals—Boysen & Berntson, 1989;
Brannon, Wusthoff, Gallistel, & Gibbon, 2001; Gibbon & Church, 1971; Leon & Gallistel, 1998;
in adult humans—Barth, 2001; Cordes, Gallistel, Gelman & Latham, 2004; Zacks & Hasher,
2002; in infants—Aslin, Saffran, & Newport, 1999; for reviews, see Gallistel, 1990; Gallistel,
Gelman, & Cordes, in press). While physical instantiations of how this works may be complicated,
evidence suggests that arithmetic manipulations of accumulated magnitudes are regularly
performed online.5
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4. “There is no direct evidence for the accumulator mechanism in infants and children” (Mix
et al., 2002, p. 91).

Nonverbal counting studies with young children have revealed the same scalar variability
signature found in nonhuman animals (e.g., Huntley-Fenner, 2001; Huntley-Fenner & Cannon,
2000; Whalen, Gelman, Cordes, & Gallistel, 2000). There is also plenty of indirect evidence of
magnitude representations of numerosity in infants as well as evidence of sensitivity to ordi-
nal relations (Brannon, 2002).

5. Limitations on the magnitude values in the accumulator are not mirrored in the generative
verbal count list (Carey, 2001a). While the natural numbers proceed to infinity, the list of
magnitude values represented is finite.

This has been a criticism of the accumulator model, provided a linear mapping between
objective and subjective magnitudes.” How do we deal with excessively large values without
stressing the bounds of working memory? We propose an account similar to the “relative
amount” case suggested by Mix et al.—the magnitude of the values in the accumulator is
relative, not absolute. The magnitude of the representation of a given value varies as a func-
tion of the magnitude of the other values currently in working memory. For example, when
dealing with numerical values of 1-50, the magnitude for 10 may look like this: .
However, when working with values 1-100, the magnitude for 10 may only be: _ .® Magni-
tude sizes are determined by anchor values. This relative magnitude account allows for subjec-
tive representations of significantly large values without exceeding the capacities of working
memory.

6. Nonverbal representations are inherently different from the verbal ones, as are the two
counting processes.

Both routines strictly adhere to the basic how-to count principles, and both representational
systems are ordered and embody a discrete process for generating new counts. Children may
take time to learn the mapping between the two systems, but this is a function of the time it
takes to memorize an ordered list, implicitly determine the parameters involved in the mapping
between verbal and nonverbal magnitudes (see Cordes et al., 2001), and learn how to apply
these nonverbal principles to the verbal domain. Noise in the nonverbal representation system
also extends the acquisition process.

7. Subitizing is a real phenomenon.

Subitizing is reported as the rapid apprehension and identification of the numerosities of
small sets (1-4) from a visual scene without counting. The literature on subitizing is closely
related to that of object files (Trick & Pylyshyn, 1994). It could be said that subitizing is the
rapid enumeration of open object files, without counting (verbal or nonverbal).

There is little clear evidence of subitizing in infants or young children. The evidence of this
ability in adults is also questionable (Gallistel & Gelman, 1991). Mandler & Shebo (1982) found
the observed subitizing data to be a function of recognizable canonical patterns (e.g., two
points make a line; three, a triangle . ..). Balakrishnan & Ashby (1992) reanalyzed reaction
time data from a variety of studies claiming to provide evidence of this ability in adults.
Researchers who originally obtained the RT data had claimed the slope of the RT function in
the small number range was significantly shallower than the slope of the RT function past that
range (thus producing an “elbow” of discontinuity in the curve). The rigorous statistical tests
run by Balakrishnan and Ashby failed to support this claim, and they concluded that subitizing
was not, in fact, a true phenomenon. Whalen, West, & Cook (2003) also recently compared
both response times and errors obtained when adult subjects were asked to count vs. estimate
the numerosity of a set (size 1-16). Analyses revealed that what previously has been cited as
evidence of subitizing (a shallow slope in the small number range) was well described as the
result of nonverbal counting in a range where there is very little noise in the representation.
Last, variability analyses revealed that there is no evidence of subitizing in the case of sequen-
tial stimuli (Cordes et al., 2001; Gelman & Cordes, 2001).
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SUMMARY

Currently, the preschool counting data fail to provide conclusive evidence regarding competence
of the early counter. While many studies point to a principles-before account, in which children
have an inherent understanding of the basic counting principles, there are results from other
studies that do not merit such strong conclusions. It is our position that even the data from
these studies, in which children do not consistently act in accordance with the cardinality
principle, support the existence of innate skeletal principles. Numerous factors, including
strenuous task demands that tap into performance variables (as opposed to conceptual
competence) and the expected trial-and-error associated with the acquisition of all skills, nec-
essarily contribute to the observed variability in the data.

The available counting tasks are limited in their scope and breadth of assessment. There is
a real need for new experimental paradigms to further investigate these issues and to provide
more conclusive evidence. These tasks must be designed for use with children just beginning
to count in order to look at the abilities of subjects younger than 3% years old. As it is
uncertain whether or not young children understand what the cardinal value of a count
reveals, we favor investigations of early arithmetic competence, such as those demonstrated by
Zur and Gelman (2004), as a means of determining counting competence.

The nonverbal counting data may also provide insight into the mind of young counters. Data
from numerous studies support the existence of preverbal representational mechanisms for
both number and continuous dimensions such as time, surface area, and contour. We propose
that these representations are best described as accumulator magnitudes and object files, both
of which appear to be available to the infant. Provided that object files are non-numerical by
nature, we further suggest that it is the magnitude representations that are responsible for the
young child’s understanding of number and arithmetic. This nonverbal system provides the
framework for the child to acquire a verbal count routine. The bidirectional mapping between
this system and the linguistic one also allows the child to learn the meanings of the count
words, one by one. Our account assumes both phylogenetic and ontogenetic continuities and is
by far the most parsimonious description of early counting available.

Open questions remain regarding how young infants are able to discriminate between 2 and
3 events, as in Wynn (1996) and Kobayashi et al. (2002). In this case, the Weber fraction and
the non-visual nature of the stimuli suggest that neither of the current models accounts for
these results. Perhaps object files are less vision- and object-based than we think, and instead
are simply a manner for individuating sensory stimuli (be they objects, sounds, events, etc.).
Or maybe results of these experiments are somehow an artifact of a developmental shift in the
Weber fraction (e.g., see Lipton & Spelke, 2003). The numerical nature of the object file
representational system should also be examined more thoroughly. That is, if object files are
the dominant representational system employed in small number tasks, it is unclear whether
the basis for discrimination is truly numerical or solely object based (and non-numerical). For
example, infants may look longer at displays of novel numerosities simply because an open
object file no longer has an object to track, and vice versa. Further research should look into
these issues. Clearly, data from repeated trials with individual infants are necessary in order
to look at individual patterns of variability. In addition, investigations into the developmental
trends will also help to shed light on these issues. Through these analyses, the validity of the
current models can be assessed and we will gain insight into the nature of preverbal quantity
representations and their relation to verbal ones.
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NOTES

1. Gelman and Gellistel (1978, Chapter 11) discuss the
relation between the understanding of the cardinal
count principle and the principle of one-to-one corre-
spondence.

2. Both Mix et al. (1997) and Moore et al. (1987) claimed
to replicate the paradigm used by Starkey et al. (1983)
despite severe modifications to the experimental
design. Despite these changes, both studies found
that infants looked longer at the display with the
nonequivalent numerosity—the opposite result of
Starkey et al. Despite differing patterns of results, it
is clear that all three studies revealed a preverbal
attention to the numerosity of the displays and
sounds.

3. These results were reported at meetings of the Psy-
chonomics Society in 1999 and the Congress of the
International Union of Psychological Science in Swe-
den in 2000.

4. Response times greater than 2200 ms, shorter than
150 ms, or for incorrect trials were excluded.

5. Barth et al.’s study need not rule out an iterative
nonverbal counting process. The response times re-
ported are long (in the neighborhood of 1450 ms). It
is possible that these were a function of the decision
criterion with the large sets. This may have over-
shadowed the relatively short time it took for sub-
jects to enumerate (nonverbally count) the two sets.
In addition, subjects may have used alternative strat-
egies. For example, these results are consistent with
subjects using dot density or overall amount of back-
ground area as relevant dimensions, as opposed to
number. These alternatives and others need to be
explored regarding the iterative or noniterative na-
ture of nonverbal counts.

6. We note that Wynn’s (1992a) results can also be ac-
counted for by an object file system of representation.

7. The alternative mapping proposed—a logarithmic one
(e.g., Dehaene, 1989)—does allow for unlimited rep-
resentational capacities. Through a logarithmic map-
ping, larger values become subjectively closer together,
thus preventing representations of arbitrarily large
values from imposing arbitrarily large amounts of
processing demands. However, when rats or pigeons
respond to the difference between two temporal or
numerical values (Time Left, Gibbon & Church, 1981;
Number Left, Brannon, Wusthoff, Gallistel, & Gib-
bon, 2001), the data consistently support a linear
mapping between objective and subjective quantities.

8. It could be argued that Meck, Church, & Gibbon’s
(1985) conclusion that the mental magnitude for one
count takes about 200 ms contradicts these conclu-
sions, because they indicate that magnitude values
are absolute and consistent across individuals (at
least within species). Balci & Gallistel (in prepara-
tion) show that the 200-ms results may be an arti-
fact of the range of values tested, not an absolute
measure of temporal and numerical magnitudes.
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in Preschool Children
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Children and adults “do arithmetic” in a variety of contexts. They compute prices, keep track
of scores in games, calculate statistics, generate answers for tests of mathematics in school,
and solve a host of practical and sometimes theoretical problems. Understanding and skill in
arithmetic are demonstrated in many ways. A person’s proficiency might be judged by the
accuracy of his or her answers, as in the case of achievement tests, but a much richer picture
emerges when we examine how children and adults solve arithmetic problems. Sometimes they
quickly remember arithmetic facts to generate answers, such as the value of 2°, 9 x 8, or 3 + 4.
When answers are not immediately apparent, children and adults sometimes create very
sophisticated problem-solving procedures. Implicit in these procedures is knowledge about the
symbol system used to represent problems and about an array of concepts such as cardinality
(the amount represented by a number), ordinality (relations of more and less among numbers),
and the many principles that define what is or is not legitimate in a system of arithmetical
operations. Documenting the knowledge and skills that support arithmetic performance pro-
vides insights not only into how children and adults do arithmetic but also into the organiza-
tion, coordination, and development of human cognition.

In this chapter we focus on the development of arithmetic in children prior to formal
instruction in school. Often arithmetic is considered narrowly to be a domain of knowledge
that children acquire in school, but this view is quite misleading. The foundations of arithmetic
emerge well before school begins, and preschool children often display striking knowledge of
arithmetic facts, procedures, and concepts prior to entering school. Research on the early
development of arithmetic in children is highly relevant to at least two broad areas of inquiry.
One is the ontogeny of cognition, where questions concern the origins of knowledge, the
development of cognitive processes and concepts, and the interaction of biological and cultural
influences. The study of early arithmetic provides a valuable window on the development of
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cognitive development generally, as well as on a specific domain of knowledge, mathematics,
that has been at the center of controversies over the origins of knowledge (e.g., Geary, 1995;
Newcombe, 2002). Another area of inquiry is educational assessment and instruction. When
instructional practices do not match the cognitive skills and inclinations children bring with
them to school, learning can be hampered severely (e.g., Seo & Ginsburg, 2003). If instruction
and early assessment are to be optimized for the benefit of children, they must be based on a
thorough understanding of what children do and do not know about arithmetic prior to schooling
(Ginsburg, Klein, & Starkey, 1998).

In restricting our view to children “prior to formal instruction in school,” we recognize that
this upper limit is vaguely defined. Certainly some children receive direct, intentional instruction
in arithmetic prior to school from preschool teachers, relatives, or television. An argument to
the contrary can be made, however, that some children fail to receive appropriate instruction
until long after they have entered school. Nevertheless, age of school entry is fairly consistent
around the world (4-7 years, roughly), and it is reasonable to assume that most children
receive relatively little direct instruction in arithmetic prior to elementary school. Therefore,
we focus primarily on children from infancy through approximately 5 years of age, where the
latter might include children in transitional or early years of school (kindergarten or
grade 1).

We begin by examining evidence for arithmetical capacity in infants. We then review the
kinds of arithmetic achievements preschool children display as well as the methods researchers
have used to probe the competence of preschool children. Next we explore how children do
arithmetic, with a focus on what can be inferred about the processes and representational
capacities children are likely to use as they solve arithmetic problems. Our tour of the arith-
metical capacities in young children is, by necessity, brief and illustrative, and we omit a
variety of research on individual differences, cultural factors, and early instruction that are
not directly relevant to our immediate target. We refer readers to other texts for additional
insights into the development of mathematical cognition in children (Baroody & Dowker, 2003;
Bryant, 1995; Bryant & Nunes, 2002; Donlan, 1998; Geary, 1994; Ginsburg et al., 1998; Mix,
Huttenlocher, & Levine, 2002b; Nunes & Bryant, 1996; Sternberg & Ben-Zeev, 1996).

ARITHMETIC IN INFANCY

Infants appear to have the capacity to discriminate between small sets of objects that differ in
number, at least when set sizes are less than four (see reviews in Haith & Benson, 1998; Mix,
Huttenlocher, & Levine, 2002a). For example, Starkey and Cooper (1980) found that 4-month-
old infants could discriminate between sets of 2 and 3 but not between sets of 4 and 6. Because
the relations between these sets are proportionally identical and because children were habituated
to certain non-numerical cues, these results typically are interpreted as showing that quantity
is the critical cue that infants use to discriminate sets. Similar results have been found in
neonates (Antell & Keating, 1983) and 10- to 12-month-olds (Strauss & Curtis, 1981) with
procedures designed to minimize the impact of potentially confounding stimulus variables,
with moving stimuli (Van Looesbruk & Smitsman, 1990), and with events presented sequentially
(Canfield & Smith, 1996). If infants are capable of preverbal and presymbolic quantification,
then the question arises as to whether they might also have some nascent capacity for arithmetic
operations on quantities. Evidence for any such capacity would be a stunning testament to the
availability of domain-specific knowledge at or shortly after birth.

Initial Evidence and Conclusions

Results from a number of studies in the 1990s supported the view that infants are capable of
arithmetic, at least with very small set sizes. The first demonstration came from Wynn (1992),
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who developed a method used in several subsequent studies. First, infants see a number of
dolls on a stage (typically 1 or 2). A screen then covers this display, and then either a doll is
added or removed from the stage. Because the screen is still in place, the infant can see the
operation (addition or subtraction) but not the resulting set. With the screen in place, the
experimenter can either (a) do nothing, thus leaving a set intact that is “possible” (i.e.,
arithmetically correct), or (b) surreptitiously remove or add a doll, thus creating an “impossible”
(arithmetically incorrect) set. Finally, the screen is removed and the infants’ visual behavior is
recorded. If infants are capable of computing the correct answer, then presumably they would
expect to see the arithmetically correct number of objects on the stage, and so they would look
longer at an outcome that violated their expectations.

Wynn (1992) found that 4- and 5-month-old infants looked longer at impossible than possible
outcomes across three problems: 1 + 1 = 2 (possible) or 1 (impossible); 2 - 1=1o0r2;1+1=2 or
3. Wynn noted that success on the first two problems might indicate only that infants are
sensitive to the direction of the arithmetic transformation, but they may not be able to compute
the exact answer. Success on the third problem shows, however, that infants are not merely
sensitive to direction. Wynn concluded that “infants can compute the results of simple arith-
metical operations” and that “the existence of these arithmetical abilities so early in infancy
suggests that humans innately possess the capacity to perform simple arithmetical calculations,
which may provide the foundations for the development of further arithmetical knowledge”
(1992, p. 750).

Exploring the Evidence and Interpretations

Replications are especially important when striking claims are made. In several studies using
Wynn’s (1992) method or close variants (Cohen & Marks, 2002, Experiment 1; Feigenson,
Carey, & Spelke, 2002, Experiment 6; Koechlin, Dehaene, & Mehler, 1997; Simon, Hespos, &
Rochat, 1995; Uller, Carey, Huntley-Fenner, & Klatt, 1999), results have been found that are
generally consistent with those of Wynn, although the expected effects depend at least to some
extent on stimulus conditions (Koechlin et al., 1997; Uller et al., 1999). Wakeley, Rivera, and
Langer (2000a), however, conducted three experiments with 5-month-olds and found no hint of
the expected effects. Possible procedural differences between these experiments and Wynn’s
original study have been identified (Cohen & Marks, 2002; Wakeley, Rivera, & Langer, 2000b;
Wynn, 2000) but have not yet been explored empirically. In their reviews of related research,
Wakeley et al. (2000a, b) also pointed to a number of empirical inconsistencies across studies
and concluded that “whatever arithmetic competence young infants may have must be fragile”
(2000b, p. 1538). Aside from this issue, another concern has been raised based on data with
older children (e.g., Wakeley et al., 2000a). If, as Wynn concluded, her data imply that 5-
month-olds are capable of simple arithmetical calculations, then presumably older children
should do as well or better on similar tasks. To the contrary, when Wynn’s task has been
adapted for use with 2.5-year-olds, these children have mixed success at best (Houdé, 1997,
Vilette, 2002).

Even if the empirical effects found by Wynn (1992) were entirely replicable, the issue of how
to interpret these effects remains. Wynn’s conclusion about innate numerical and arithmetical
abilities has been challenged on a number of grounds. One possibility is that the pattern of
responses often observed in these studies may be due to a preference for familiar stimuli
combined with a preference for displays with more objects (Cohen & Marks, 2002). Another
possibility is that the physical transformation used in the procedure may lead to a violation of
expectations based on infants’ physical reasoning (Baillargeon, 1995) rather than on any
particular numerical competency. For example, when an infant views the transformation 1 + 1
followed by the impossible outcome 1, the disappearance of an object might be interpreted by
the infant as abnormal because it violates expectations about physical reality (Haith & Benson,
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1998). Simon et al. (1995) noted that numerical and physical identity must be inextricably
confounded to some extent.

More generally, Simon (1997) proposed that what passes for numerical and arithmetical
processing may in fact be due entirely to general-purpose, non-numerical processes such as the
ability to individuate separate entities, to remember and compare entities, to encode information
corresponding to individual entities, and to reason in simple ways about the existence and
movement of physical entities. Simon suggested that infants, when faced with a problem such
as 1 + 1 =2 or 1, create an internal representation of the first object and then update that
representation when the second object is presented. These internal representations could be
abstract tokens or object files (Kahneman, Treisman, & Gibbs, 1992) that at first contain little
or no information, but that later are enriched by subsequent attentional processes. When the
screen is lowered and the outcome (possible or impossible) is viewed, the infant is able to map
the internally represented set to the external display by using a one-to-one comparison process.
When this comparison process produces a mismatch, as in the case of an impossible outcome,
expectation is violated and visual attention is increased. Thus, what appears to be numerical
processing may be due to basic attentional and memory processes that are recruited for
particular situations.

The idea that non-numerical processes may account for what appears to be number-specific
cognitive capacity has received empirical support recently (for an excellent review, see Mix et
al., 2002a). Although infants appear to discriminate readily between small sets on the basis of
number, the belief is growing that these “numerical” discriminations may be due to processes
that are non-numerical. The problem is that in earlier studies number typically was con-
founded to some degree with one or more aspects of continuous extent, which includes variables
such as total surface area, total length of contour, brightness, and spatial frequency. When
continuous extent is carefully manipulated, infants tend to discriminate between sets based on
continuous extent rather than number (Clearfield & Mix, 1999; Feigenson et al., 2002). Feigenson
et al. (Experiment 7) found a similar effect for arithmetical transformations. For example, 6-
and 7-month-old infants were presented with 1 + 1 = 2 or 1 using Wynn’s (1992) procedure, but
the outcomes varied in size (total area) as well as number so that these two dimensions were
not confounded. Thus, infants in one condition would see one small object plus one small
object followed by 2 large objects, an arithmetically possible outcome but covering an unexpect-
edly large area. In another condition infants would see one small object plus one small object
followed by one large object, an arithmetically impossible outcome but covering an area equiva-
lent to that of the two small objects combined. Infants looked longer at outcomes that were
unexpected in terms of total area, not number. Thus, when number and continuous extent are
unconfounded, infants appear to “solve” addition problems on the basis of continuous extent
rather than number.

Although conclusions must be viewed as tentative at this point, the picture that is beginning
to emerge is quite different from early claims about innate arithmetical abilities. Rather than
supporting the conclusion that infants have mathematics-specific processes and representa-
tions that underlie smallnumber discriminations and arithmetic, the evidence seems to be
consistent with the view that non-numerical capacities are recruited as infants perform these
tasks. When presented with putatively numerical tasks, infants are able to use basic percep-
tual and attentional mechanisms to individuate a small number of objects (perhaps three or
four) and to represent them internally as abstract tokens or object files. As attentional pro-
cesses provide more and more details, each object file contains an increasing amount of
information about its corresponding object, including information about continuous extent.
This information is available in working memory for subsequent processing and computation,
including, possibly, one-to-one comparisons or computations on continuous extent.

This sketch is obviously incomplete. For example, questions remain about how the proposed
comparison processes work and how they are selected as well as how mathematical processes
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and representations develop in older children from these non-numerical origins. Also, the
mechanisms activated by small quantities may differ from those used for large quantities
(Lipton & Spelke, in press; Xu & Spelke, 2000). Although Wynn (1992) may be proved wrong
in her claims about innate mathematical abilities, she may yet be proved right in a more
general sense: the processes and representations used by infants on what appear to be numer-
ical and arithmetical tasks may indeed provide the foundations for the development of further
arithmetical knowledge, even if these processes and principles are, initially, entirely non-
numerical.

PRESCHOOL CHILDREN'’S PROFICIENCY IN ARITHMETIC

Whereas the capacity of infants for arithmetic is uncertain, older children clearly show some
skill in solving arithmetic problems. Their success depends greatly, however, on problem
characteristics and manner of presentation. We review young children’s performance in two
areas, their sensitivity to the directional effects of addition and subtraction and their ability to
compute exact answers for addition and subtraction problems. We also describe some of the
relevant studies in detail to illustrate the methods used to study arithmetic in preschool
children.

Sensitivity to Arithmetic Operations

Older children and adults readily understand that adding items increases the quantity of a set
and removing items has the opposite effect. This sensitivity to the directional effects of arithmetic
operations presumably depends on an appreciation of ordinal relations among numbers. Three-
year-olds show knowledge of ordinality when they compare sets differing in quantity, and this
knowledge appears to be unrelated to counting skill (Huntley-Fenner & Cannon, 2000). Even
11-month-olds can distinguish between ascending and descending sequences of quantities
(Brannon, 2002). The question, then, is whether young children can use their knowledge of
ordinality to judge the directional effect of arithmetic transformations.

Brush (1978) presented 3- to 5-year-olds with two cylinders that were partially hidden behind
a screen so that only the top portion of each cylinder was visible. An experimenter simulta-
neously placed many marbles into each cylinder such that, when asked, children correctly
stated that both cylinders had an equal number of marbles. The screen prevented children
from counting all the marbles. Children viewed the cylinders as having many marbles; the total
number in each set was never counted or mentioned. After establishing equal sets for each
new trial, the experimenter proceeded with a number of conditions, including simple addition
(one marble added to one of the cylinders), simple subtraction (one marble removed from one
of the cylinders), complex addition (two marbles added to one cylinder and one marble to the
other), and complex subtraction (two marbles removed from one cylinder and one from the
other). Children were asked which cylinder had more marbles. Accuracy was very high (above
96%) for all conditions except complex subtraction (65%). Unfortunately, possible age-related
changes were not documented. In a second study, Brush used a similar procedure with 4- to 6-
year-olds. Again, the majority (= 75%) of children were correct in judging which set contained
more or fewer objects. Thus, children at these ages can show sensitivity to the directional
effects of arithmetic (i.e., more and fewer) in situations that do not require exact computation.
Sophian and Adams (1987), using a similar but simplified task, concluded that children from
14 to 28 months of age also showed sensitivity to the effects of insertions and deletions of
objects on the magnitude of hidden sets. Performance was highly variable, however, especially
at the lower age levels, and so conclusions about the earliest age of onset are only suggestive.

Vilette (2002) employed a different procedure to examine sensitivity to arithmetic operations
in children from 2.5 to 4.5 years. Using a variant of Wynn’s (1992) method, Vilette presented
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one addition and one subtraction problem, each with a possible and an impossible solution
2+1=38o0r2; 3-1=2or 3). Children were asked whether the results of transformations
were “normal” or “not normal.” Responses were scored as correct when children identified
both the possible and impossible solutions appropriately. Because the correct answer was
larger than the augend for addition and smaller than the minuend for subtraction, accuracy
can be taken as an indicator of sensitivity to the direction of these arithmetic transformations.
Vilette observed that 4.5-year-olds answered at above-chance levels on addition and subtraction,
3.5-year-olds on addition only, and 2.5-year-olds on neither type of problem. These results were
interpreted as indicating that sensitivity to the directional effect of addition develops before
that of subtraction and that neither is present prior to 3 years of age.

The conclusion about these specific age-related limits may be misleading for two reasons,
however. First, children were tested with only one problem of each type (i.e., one problem for
each combination of addition/subtraction and possible/impossible). If children’s performance
is highly variable, sensitivity to arithmetic operations may have been underestimated. Second,
Vilette’s assumptions about chance levels of performance appear to have been questionable.!
With a corrected level of chance, the 3.5-year-olds performed at above-chance levels on both
addition and subtraction, and the 2.5-year-olds did so on addition.

Indeed, very young children have shown evidence of sensitivity to arithmetic operations in
other tasks. Starkey (1992) developed a search box task to assess arithmetic skills in children
aged 1.5 to 4 years. In this task, the child put objects into an opaque container. The experi-
menter either added or subtracted an object from the box in full view of the child. The child
was then instructed to retrieve the objects one by one from the search box container. To
prevent the child from feeling how many objects were left in the search box, a hidden trap door
was installed so that each time the child reached in, only one object would be available to
touch. If children recognized that adding objects to the original set increases the size of the
set, presumably they would reach into the box more often than would be required by the
original set. Subtraction would require fewer reaches. Children from 2 to 4 years of age
showed this pattern on the great majority of problems, as did many 1.5-year-olds.

Thus, evidence from studies with three different methods converges on the conclusion that
preschool children understand, in some sense, that addition increases set size and subtraction
decreases set size. How young children represent and process numerical information in these
tasks is not clear, but this sensitivity appears to emerge as early as 2 years of age and is well
developed by approximately 4 years. At the early end of this age range, children show this
sensitivity to arithmetic transformations well before they can count or use number words
competently. Thus, preschool children have a capacity to represent and reason about ordinal
relations based on arithmetic operations, which presumably is a prerequisite for computing
exact answers to arithmetic problems.

Computing Exact Answers

Preschool children show some skill in exact addition and subtraction, but their levels of
success vary greatly with age and depend on problem characteristics and how problems are
presented. Evidence comes from research in which problems are presented with minimal or no
verbal content. Consider, for example, the search box task described above (Starkey, 1992).
Children were scored as computing an exact solution when the number of reaches corresponded

Vilette (2002) appears to have assumed that chance level of performance was .50 (correct or incorrect). Because
accuracy was based on two possible responses (“normal,” “not normal”) to two solutions (possible and impossible),
however, four outcomes were possible. Only one of these outcomes (“normal” on possible, “not normal” on impos-
sible) would result in scoring the child as correct. Thus, the chance of answering both problems correctly by guessing
would be .25. When statistical analyses are conducted using this level of probability, the performance of 2.5-year-olds
on addition (.64) and of 3.5-year-olds on subtraction (.45) was significantly greater than chance (o =.05).
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exactly to the number of the set following the adding or subtracting operation. With problems
ranging in size from small (e.g., 0 + 1 and 1 - 1) to large (e.g., 2 + 3 and 5 -1), accuracy
improved with increasing age (from 49% for 2-year-olds to 62% for 4-year-olds) and tended to be
higher on problems with smaller numbers. Even 1.5-year-olds performed with some accuracy
on addition when the sum or minuend was less than 3. Huttenlocher, Jordan, and Levine
(1994) examined computation in children from 2 years, 6 months to 3 years, 11 months using
a somewhat different procedure. An experimenter placed the augend (represented with disks)
on the table in front of a child and then covered the array. Then the experimenter added or
subtracted disks from this array by sliding the disks under or out of the cover. The child was
then prompted to represent how many disks were under the cover with his or her own disks.
Accuracy rates are presented in Table 9.1. Clearly, preschool children can add and subtract to
some extent, but their accuracy is strongly related to age and problem size and is very limited
prior to three years of age.

Performance depends on problem format as well. Hughes (1981) tested 3- to 5-year-old
children with arithmetic problems presented in a variety of verbal and nonverbal formats and
with problems ranging from small (operands from 1 to 3) to large (operands from 5 to 8).
Hughes (1981) found that small problems were solved with much greater accuracy than large
problems. In both cases, nonverbal problems (similar to those used by Huttenlocher et al.,
1994) were solved more accurately than the purely verbal problems (e.g., “what do x and y
make?”), and hypothetical problems (“if there were x children in a store and y more walked in,
how many would there be all together?”) were intermediate in difficulty. Addition was easier
than subtraction for large problems. Moreover, children from working-class neighborhoods
lagged behind children from middle-class neighborhoods in performance by approximately 12
months.

In a similar study, Levine, Jordan, and Huttenlocher (1992) presented 4- to 6- year-olds with
nonverbal (as in Huttenlocher et al., 1994) and verbal arithmetic problems. The verbal prob-
lems consisted of simple story problems (“Jon had x balls. He got y more. How many balls did
he have altogether?”) and number fact problems (“How much is x and y?”). Nonverbal problems
were much easier than verbal problems for the 4-year-olds, but this difference was diminished
for the 6-year-olds. Jordan, Huttenlocher, and Levine (1992) also found that nonverbal prob-
lems were easier than verbal problems for kindergarten children (aged 5 to 6 years) and that

Table 9.1
Percentage of Problems Solved Correctly as a Function of Age and Problem Size

Age Group
Problem  2:6-2:8 2:9-2:11 3:0-3:2  3:3-3:5  3:6-3:8 3:9-3:11 Mean
1+1 23 33 60 77 67 97 60
2-1 30 20 60 63 57 70 50
3 -2 13 17 30 50 47 67 37
2+1 13 10 27 37 43 70 33
1+2 7 7 37 40 47 53 32
3-1 10 13 20 37 37 50 28
1+3 17 13 37 10 20 43 23
3+1 3 3 23 33 30 40 22
2+2 7 13 23 17 30 27 20
4 -1 7 10 13 30 27 30 20
4 -3 3 7 13 17 23 40 17
4+1 0 3 17 7 17 30 12
Mean 11 12 30 35 37 51 30

Note. From “A mental model for early arithmetic” by J. Huttenlocher, N. C. Jordan, and S. C. Levine, 1994,
Journal of Experimental Psychology: General, 123, p. 291. Copyright 1994 by the American Psychological
Association. Adapted with permission.
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middle-income children outperformed low-income children on verbal problems but not on non-
verbal problems.

How Preschool Children Solve Arithmetic Problems

Given that preschool children can solve arithmetic problems, albeit with limited success, the
next important question is how? As is usually the case with questions about cognitive pro-
cesses, the answer is not entirely straightforward. Siegler and Shrager (1984) presented two-
term addition problems verbally to 4- and 5-year-old children and observed their solution
procedures. Children typically solved the problems by using a variety of overt and covert
procedures. When children used their fingers to externally represent the addends and then
counted their fingers, they were coded as using the counting fingers procedure. Children who
raised fingers to represent the addends but did not count their fingers were considered to use
finger recognition. On other occasions, children used counting with no external representation.
Each of these three procedures involved overt behaviors that could be coded relatively easily.
In contrast, children solved some problems relatively quickly with no overt signs of counting.
These covert solutions were presumed to involve retrieval of answers from memory. These four
procedures, and others, have been identified in numerous studies with young children (Bisanz,
Morrison, & Dunn, 1995; Geary, 1994; Jordan et al., 1992; Siegler & Jenkins, 1989; Siegler &
Shrager, 1984), and some are used by adults even on simple, single-digit arithmetic problems
(LeFevre, Sadesky, & Bisanz, 1996). Individual children typically use more than one procedure
and select their procedures flexibly so that, for example, they are more likely to use overt
procedures on difficult than on easy problems. Thus, children display a variety of procedures
as they solve arithmetic problems, and they choose between these procedures, at least some-
times, as a function of problem difficulty.

The solution procedures described thus far form merely the tip of the iceberg. Preschool
children, in contrast to their older counterparts, show the remarkable diversity and creativity
in their solution processes that can often be expected in “immature” but capable learners
(Bjorklund, 1997; Bransford & Heldmeyer, 1983). Examining the processes children use, the
errors they make, and the changing patterns of procedure use provides insights into important
aspects of how children represent and process information in the domain of mathematical
thinking. We first describe research on how children use counting and retrieval to solve simple
arithmetic problems, and how they might select particular solution procedures to solve particu-
lar problems. Next, we consider the types of representational processes that might be involved
in solving arithmetic problems presented nonverbally. Finally, we discuss preschool children’s
knowledge of arithmetic concepts with reference to a particular concept, inversion.

Counting and Retrieval

Most of the solution procedures used by preschool children involve counting or retrieval.
Siegler and Jenkins (1989), for example, identified eight procedures that 4- and 5-year-olds
used to solve small addition problems (operands < 5). Five of these procedures involved
counting of some sort. The other three procedures were retrieval, guessing, and decomposi-
tion. The latter involves converting a problem with an answer not immediately known (e.g., 2
+ 3) into a problem with a known answer plus an adjustment (e.g., 2 + 2 =4 and 4 + 1 = 5).
Neither guessing nor decomposition was used frequently by the children, however (see Table
9.2).

When preschool children count to solve arithmetic problems, they do so in a variety of ways
(Siegler & Jenkins, 1989; for a detailed taxonomy, see Baroody, 1987). For instance, the sum or
count-all procedure involves counting sets to correspond to each operand (e.g., 2 and 3 fingers
for 2 + 3), and then counting all the enumerated fingers to determine the sum. With the short-
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Table 9.2
Procedures Used by 4- and 5-Year-Old Children to Solve Addition Problems
Strategy % Use % Correct Median RT (s)
Sum 34 89 10.8
Retrieval 22 89 5.0
Short-cut sum 17 85 13.2
Finger recognition 11 92 6.4
Min 9 86 9.0
Guess 2 20 9.9
Count-from-first 1 40 15.6
Unknown 4 71 —
Total/Mean 100 85 9.4

Note. From How Children Discover New Strategies, by R. S. Siegler and E. Jenkins, 1989, p. 60,
Hillsdale, NJ: Erlbaum. Copyright 1989 by Lawrence Erlbaum Associates. Adapted with permission.

cut sum procedure, children count to the sum without first counting the two operands separately.
Using the count-from-first-addend procedure, children count on from the augend, regard-
less of whether it is larger than the addend. The min procedure is defined by children’s use of
counting on from the larger of either the augend or addend. In this case, children would begin
with the larger of the two operands (e.g., 3 in 2 + 3) and continue to count an amount that
corresponds to the smaller (minimum) operand (i.e., “4, 5”). Of all these procedures, min
involves the least amount of counting and, consequently, is likely to be more efficient than the
other counting procedures, especially given that young children do not always count quickly or
correctly (see Table 9.2). The variety of procedures children use is even greater than what we
describe here, especially when children’s use of fingers, other concrete objects, and mental
representations are considered (Baroody, 1987).

Children’s counting procedures change with practice, as illustrated in three microgenetic
studies. Groen and Resnick (1977) taught preschool children with little knowledge of arith-
metic to solve simple arithmetic problems (operands < 5) by using the sum procedure with
blocks. The blocks then were removed and children solved problems presented symbolically.
After extended practice, 5 of the 10 children abandoned more laborious procedures for the
more efficient min strategy without any further instruction. Siegler and Jenkins (1989) tested
4- and 5-year-olds on simple addition problems repeatedly over a 4-month period. Nearly all of
these children (7 of 8) discovered and used the min procedure, and most were able to explicitly
describe counting from the larger addend. Most of the children who eventually used min first
discovered shortcut sum. The children who used min varied considerably, however, in the rate
with which they discovered this procedure and the frequency with which it was used once it
was discovered. Baroody (1987) followed the performance of 17 kindergarten children over
nearly 9 months. Fifteen of these children eventually developed some sort of shortcut proce-
dure, but by the end of the period only nine used shortcuts with any regularity and only five
used min predominantly.

Completely documentin