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combinatory logic, with two rewrite rules:Kxy ! x; Sxyz ! xz(yz):But again, is it reasonable to consider erasing and du-plication as atomic operations?Following this tradition of rewrite systems, the interac-tion nets have been introduced in [Laf90] as a model ofdistributed computation with local synchronization (sec-tion 1). These nets, which are related to the connectiongraphs of [Baw86], appeared as a generalization of Girard'sproof nets for linear logic (see [Gir95, Laf95]).By \local synchronization", we mean that there is noneed to consider a global time for computation. In otherwords, times is relativistic. By \distributed", we meanthat the computation is performed at several places at thesame time, whereas \parallel" sometimes refers to a kindof magical superposition, as in \parallel or":T _ x! T; x _T! T; F _F! F:Our interaction nets are deterministic in a strong sense:not only the result, but also the computation is unique, upto trivial commutations. In particular, it is not possible toencode \parallel or". We shall not address the question ofdeciding whether this should be considered as a good or abad point.From the viewpoint of computability, our interactionnets are equivalent to the Turing machines, but from theviewpoint of computation, there is something more, forinstance parallelism (in the sense of distributed computa-tion). To express this rigorously, we introduce a naturalnotion of translation of interaction system preserving theessential properties of computations, such as the complex-ity and the degree of parallelism.By de�nition, a universal interaction system has theproperty that any other interaction system can be trans-lated into it. Turing machines can be seen as particularinteraction systems, but such systems are intrinsically se-quential and cannot be universal in the above sense, even if1



they come from universal Turing machines. On the otherhand, it is proved that a system of interaction combina-tors is universal (section 2). This suggests an answer toour original question, at least within the framework of in-teraction nets: the fundamental laws of computation arecommutation and annihilation.Our system of interaction combinators has been obtainedby a kind of distillation, starting from some more com-plicated system suggested by Samson Abramsky for im-plementing the proof boxes of linear logic (see [Mac94]).Independently, Simon Gay has also obtained a universalsystem, with 8 symbols instead of 3 (see [Gay95]). Oursystem is simpler because it uses the same symbols fordi�erent purposes. Among the other related systems, letus mention the in�nite one introduced by John Lampingfor the optimal reduction of �-calculus (see [Lam90]) andthe variants proposed by Georges Gonthier, Martin Abadi,and Jean-Jacques Levy, in connection with linear logic (see[GAL92a, GAL92b]).Apart from its simplicity, the system of interaction com-binators has an unexpected interpretation in terms of re-versible 2-stack machines which seems to throw a bridge be-tween distributed and sequential computation (section 3).This section bene�ted from discussions with Vincent Danosand Laurent Regnier.1 Interaction netsThe origin of our favorite model of computation is ex-plained in [Laf95]. Here, it is introduced from scratch,without explicit reference to proof theory.1.1 NetsFrom now on, a symbol � will always be given with itsarity n � 0. An occurrence of such a symbol is called acell, and is pictured as follows:�: : :nz }| { �: : :| {z }norSuch a cell has one principal port and n auxiliary ports. Itis well understood that the latter are not interchangeable.For instance, one can number them from 1 to n, keeping 0for the principal port. In practice, the ports will always beimplicitly numbered in clockwise order. In particular, thesecond picture is obtained from the �rst one by a rotationof 180 degrees. If n = 0, there is no auxiliary port, and thecell is pictured as follows:� �or

A net is a graph consisting of a �nite number of cellsand an extra set of free ports, each port being connectedto another one by means of a wire. For instance, here is anet built with the symbols �, � and , of respective arities2, 1 and 0: �  �� �� �x zyThis net has 3 free ports x, y and z. Note that a net is notnecessarily connected, and that a wire may connect twoports of the same cell. In fact, we shall also allow cyclicwires which do not connect any ports:To sum up, a net is completely described by the followingdata:� a �nite set X (of free ports),� a �nite set C (of cells),� a symbol `(c) for each c 2 C,� a �nite set W (of wires),� a set @w of 0 or 2 ports for each w 2W .Here, a port is either an element of X, or a pair (c; i)where c 2 C and i ranges from 0 to the arity of `(c). Thenonempty @w must de�ne a partition of all ports. In thispaper, we shall avoid such cumbersome descriptions, butthe reader may check that our arguments can always beformalized in this way.If � is a symbol of arity n, an �-cell can be seen as a netwith n+1 free ports. More generally, a tree is a net � withone distinguished free port, called the root. It is either asingle wire, in which case the root is �xed arbitrarily, or itis obtained by plugging the n auxiliary ports of a cell intothe roots of smaller trees �1; : : : ; �n:�1 �n�: : :: : : : : :2



In that case, the root is the free port which is connectedto the principal port of this cell.A wiring is a net ! without cell and without cyclic wire.So it is just a pairing of its free ports. In particular, awiring has an even number of free ports. A permutation �of f1; : : : ; ng de�nes a wiring with 2n free ports, which isrepresented as follows:�: : :: : :x1 xny1 yn : : : : : :�x1 y1xn ynorIn both cases, xi is connected to y�(i). For instance, thewiring corresponding to the identity on f1; 2; 3g is picturedas follows:x2y2 x3y3x1y1 x1 x2 x3 y3y2y1or1.2 InteractionFix a �nite alphabet � with m symbols �1; : : : ; �m of re-spective arities n1; : : : ; nm. An interaction rule is a reduc-tion of the form�i �j: : : : : : �i;j: : : : : :where �i;j is a net with ni + nj free ports. Note that cellscan only interact pairwise, through their principal ports.Cyclic wires may be created when such a rule is appliedinside a net, and this is why they have been allowed in thede�nition of nets. The above rule is clearly equivalent to�j �i: : : : : : �i;j: : : : : :where �i;j is obtained by exchanging the ni �rst free portswith the nj last ones in �i;j.An interaction system is a set of interaction rules whichcan be applied without any ambiguity. More precisely:� if a rule is given for �i; �j, then no other one is givenfor �i; �j, or for �j; �i;� if a symbol �i interacts with itself1 then �i;i = �i;i.1In [Laf90], symbols were not allowed to interact with themselves,but it appeared later that this was too restrictive.

In particular, an interaction system is necessarily �nite,with at most m(m + 1)=2 rules. Alternatively, such a sys-tem can be described by a partially de�ned square matrix(�i;j)1�i;j�m satisfying the following symmetry condition:� if �i;j is de�ned, so is �j;i, and �j;i = �i;j.Later we shall add the technical condition that the �i;j arereduced nets.Proposition 1 If a net � reduces in one step to � andto � 0, with � 6= � 0, then � and � 0 reduce in one step to acommon net �. � � 0� �Proof: In an instance of the left member of a rule, thecells are connected through their principal ports, so thattwo such instances are necessarily disjoint and the corre-sponding rules can be applied independently. Q.e.d.This strong conuence property has the following conse-quence: if a net � reduces to an irreducible net � in n steps,then any reduction starting from � eventually reaches � inn steps. Moreover, if one abstracts from the irrelevant or-der of application of rules, there is only one possible reduc-tion from � to �. So we can say that interaction nets area deterministic and asynchronous model of computation.In fact, we think that any computation of that kind canbe modeled by means of interaction nets, but of course, anassertion of this kind cannot be proved.1.3 Example: Turing machinesClassical models of sequential computation such as Tur-ing machines, register machines and stack machines can beseen as special classes of interaction systems. For instance,a Turing machine is given by a triple (Q;A; T ), where Qis a �nite set of states, A a �nite set of letters, and T a(partially de�ned) map from Q � A to A � f+;�g � Q.A con�guration of the machine is given by a state q, anin�nite tape �lled with letters, and a current position inthe tape: a0q � � �� � � a1 a2a�2a�1If T (q; a) = (a0;+; q0), and being in state q, the machinereads a from the tape, then it writes a0, moves right, and3



goes to state q0: � � �a� � � q a0 � � �� � � q0If T (q; a) = (a0;�; q0), the machine has the same behav-ior, except that it moves left. By doubling the numberof states, one can always assume that the direction of themove depends only on q0. One says that q0 comes from theleft in the �rst case, and that it comes from the right inthe second case.All states and letters are now considered as symbols ofarity 1. The above con�guration is simulated by the neta0 a1 a2q� � � � � �a�2 a�1 q a1 a2a0� � � � � �a�2 a�1 ordepending on whether q comes from the left or from theright. Similarly, the above transition is simulated by therule aq a0 q0a0 q0qa ordepending on whether q comes from the left or from theright. Of course, all this assumes that we have an in�nitenet! To simulate computations with a �nite net, one mustadd a new symbol of arity 0 corresponding to the boundaryof (the written part of) the tape, and some appropriaterules to cope with this new symbol. The details are left tothe reader.So it appears that interaction nets are complete fromthe viewpoint of computability. Similarly, the register ma-chines and the stack machines can be simulated in a fairlyobvious way.1.4 Example: cellular automataMore surprisingly, the cellular automata, which are a syn-chronous model of distributed computation, can also be

simulated by means of interaction nets. For instance, a 1-dimensional cellular automaton is given by a pair (Q; T ),where Q is a �nite set of states and T is a map fromQ � Q � Q to Q. A con�guration of the automaton isgiven by an in�nite sequence of states:q0 � � �� � � q1 q2q�2 q�1After one step of computation, it becomesq00 � � �� � � q01 q02q0�2 q0�1where q0i = T (qi�1; qi; qi+1). In particular, this means thatall cells change at the same time.Two symbols q and q are introduced for each state q, andalso two symbols pq and pq for each pair p; q. The abovecon�guration is simulated by� � � q1 � � �q2q�1q�2 q0and the transitions byqp pqpqpq q0 r0rs andwhere q0 = T (p; q; r) and r0 = T (q; r; s). This simplymeansthat a transition is decomposed into two steps: each cellinteracts �rst with its left (or right) neighbor, and thenwith the other one. In this way, the global synchronizationis no more needed.The main di�erence between the system for Turing ma-chines and the one for cellular automata appears in thestructure of the right members of rules: in the �rst case,only one free port is connected to a principal port, whereasin the second case, both free ports are connected to princi-pal ports. In fact, a system of the �rst kind can only modelsequential computation.1.5 Example: unary arithmeticsNow we shall build a simple interaction system for unaryarithmetics, using the following symbols: s (successor) ofarity 1, 0 of arity 0, + and �, both of arity 2. The �rst twosymbols are used to represent natural numbers in unary4



form. One starts from the usual equations de�ning addi-tion and multiplication:sx+ y = s(x+ y); 0 + y = y;sx� y = (x � y) + y; 0� y = 0:Since addition is de�ned by induction on the �rst argu-ment, we shall always plug this argument into the principalport of +, and similarly for �. Therefore, the ports will beinterpreted in the following unusual way:+xx+ yy �xy x� y00sxsxOne gets the following rules for addition:+s + ss+ +0 0+Note that the argument y is used twice in the �rst equationde�ning the multiplication, and it is not used at all in thesecond one. For that reason, two extra symbols are needed:� (duplicator) of arity 2 and " (eraser) of arity 0, with thefollowing interpretation: �xx x"xThe idea is that a net representing a natural number shouldbe duplicated when it is connected to the principal port ofa �, and it should be erased when it is connected to theprincipal port of an ". One gets the following rules formultiplication:�s +��s� 0� " 00�Of course, extra rules are needed for duplication and eras-ing: 0� 0 00��s �s ss�

"0 0""s "s"An example of computation is given in �gure 1. Note thatthis computation is essentially parallel, since in many cases,several rules can be applied simultaneously.If one had to duplicate tree-like structures, such as listsof natural numbers, then one would introduce the followingrules for each binary constructor : """ " � �� �We shall �nd them again in the system of interaction com-binators.1.6 Reduced netsTwo kinds of con�guration may lock a computation: theirreducible cuts and the vicious circles. A cut consists oftwo cells connected through their principal ports:... ...For a given interaction system, there are two kinds of cuts:the reducible ones and the irreducible ones. For instance,in the case of unary arithmetics, a cut between s and + isreducible, whereas a cut between s and 0 is irreducible. Ifan irreducible cut occurs in a net �, it can never be elim-inated, because the cells can only interact through theirprincipal ports.A principal path of length n consists of n cells c1, : : :, cnsuch that the principal port of ci is connected to an aux-iliary port of ci+1. In particular, a wire can be consideredas a principal path of length 0. A vicious circle of length nis a closed principal path of length n:: : :... ... ...... ... ...In particular, a cyclic wire can be considered as a viciouscircle of length 0. Clearly, a vicious circle can never beeliminated, because no ci can interact �rst.Say that a net is reduced if it contains no cut and novicious circle. Trees and wirings are typical examples of5
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reduced nets. An irreducible net is not necessarily reduced,since it may contain irreducible cuts or vicious circles, buta reduced net is always irreducible.Note that in the case of unary arithmetics, for instance,all right members of rules are reduced nets. From now on,we shall only consider interaction systems satisfying thisextra condition. If it is not the case, one can always try toreduce the right members. If this does not work, it meansthat there is something wrong in the system.Proposition 2 Any reduced net � with n free ports can beuniquely decomposed as follows:�1 �n!: : :: : : : : :�: : : =where �1; : : : ; �n are trees and ! is a wiring.Proof: By induction on the number of cells. If there isno cell, then � is a wiring. Otherwise, one can choose acell c1, and construct a principal path c1; c2; c3; : : : Sincethere is no cut and no vicious circle, this path must stopat some cell cn whose principal port is connected to a freeport. It su�ces to apply the induction hypothesis to thenet obtained by removing this cn, which is also a reducednet. Q.e.d.One says that a reduced net is principal if it is a sin-gle wire (degenerate case), or if one of its free ports isconnected to a principal port and all other free ports areconnected to auxiliary ports. For instance, a tree is a prin-cipal net. Proposition 2 gives the following decompositionfor a principal net �: �!: : :: : :�: : : =where � is a tree and ! is a wiring which does not connectupper ports. If � has n + 1 ports, one says that � is aprincipal net of arity n, because it can be considered asa generalized symbol of arity n. In the non-degeneratecase, the free port which is connected to a principal port iscalled the root of �. In the degenerate case, the choice ofthe root is arbitrary. We shall need a result which followseasily from the above decomposition:Lemma 1 Let � be a principal net with n+1 free ports x0,x1, : : :, xn, the root being x0. Then, for i = 1; : : : ; n, thereis a unique principal path from xi to x0. Except in thedegenerate case, there is no other principal path betweenfree ports.

By proposition 2, a reduced net with no free port is nec-essarily empty. A reduced net with only one free port iscalled a package. Such a net is necessarily principal, withthe following decomposition:� �!: : :=where � is a tree and ! is a wiring.1.7 TranslationsLet � and �0 be alphabets of symbols with arities. A trans-lation � of � into �0 maps each symbol � of arity n in � toa principal net �(�) of arity n, built with symbols of �0. Iffurthermore, this �(�) is non-degenerate for every �, onesays that � is strict. A translation extends to nets in anobvious way. Just notice that, in the non-strict case, thetranslation may create cyclic wires, and this is another rea-son why cyclic wires have been allowed in the de�nition ofnets. The fact that the �(�) are principal has the followingconsequence:Proposition 3 If � is a reduced net, then �(�) is a re-duced net. The converse holds if � is strict.Proof: It su�ces to check the following points:� if �(�) contains a cut, so does �;� if � is strict and � contains a cut, so does �(�);� if �(�) contains a vicious circle, then � contains avicious circle or a cut;� if � contains a vicious circle, so does �(�).Lemma 1 is used for the last two statements. One simplyhas to be careful in the non-strict case. For instance, it mayhappen that �(�) contains a vicious circle, and � containsno vicious circle, but a cut. It may also happen that �contains a cut, and �(�) is reduced. Q.e.d.Composition of translations is de�ned in the obviousway. One says that � is invertible if there is a trans-lation ��1 of �0 into � such that ��1 � � = id� and� � ��1 = id�0 . In that case, it is easy to see that each�(�) is necessarily of the following form:�(�): : : ��0: : :: : :=7



where �0 is a symbol of �0 and � is a permutation. Inother words, � is given by a renaming of the symbols anda permutation of the auxiliary ports of each symbol.Assume that some interaction system is given for � andsimilarly for �0. One says that � is a translation of inter-action system if it is compatible with reduction. This isexpressed by the following property:�(�i) �(�j): : :: : : : : : : : :�(�i;j)�The !� stands for a reduction of arbitrary length, possi-bly 0. Remember that �i;j is supposed to be reduced, andso is �(�i;j) by proposition 3. Therefore, if � is strict, theleft member is not reduced, and the reduction cannot beof length 0. Similarly, if � is invertible, the reduction mustbe of length 1. In general, let L (resp. M ) be the minimal(resp. the maximal) length of all those reductions. By theabove remark, L > 0 if � is strict, and L = M = 1 if � isinvertible. Obviously, one has:Proposition 4 If � is a net built with symbols of � whichreduces in n steps to �, then �(�) reduces in n0 steps to�(�), with Ln � n0 �Mn.2 Interaction combinatorsThis section is the heart of the paper. It is entirely devotedto the universality of the system of interaction combinators.2.1 The systemThe system of interaction combinators consists of 3 sym-bols, called combinators:  (constructor) and � (duplica-tor) of arity 2, and " (eraser) of arity 0. The 6 interactionrules (�gure 2) are of two kinds: commutation when thetwo cells carry di�erent symbols (�, ", �") and annihila-tion when they carry the same symbol (, ��, ""). Thereader can check that the symmetry condition is satis�ed.Note that the annihilations for  and � are not the same.Furthermore, if one numbers the auxiliary ports, one real-izes that it is , not ��, which exchanges the ports: 221 1 22 11 ��2 21 1 2 211��One can already notice that the process of reduction doesnot always terminate. Figure 3 shows a net which reduces

to itself in 4 steps. In fact, we shall prove that, despite itssimplicity, this system is universal in the following sense:Theorem 1 Any interaction system can be translated intothe system of interaction combinators.In order to prove this, we shall introduce several construc-tions which are inspired by the rules of linear logic: themultiplexors and the transpositors (inspired by the multi-plicative rules), the menus and the selectors (inspired bythe additive rules), the codes, the copiers, and the decoder(inspired by the exponential rules).2.2 Multiplexors and transpositorsFor any n 2N, one constructs two principal nets Mn andM�n (multiplexors) of arity n, with the following property:: : :M�nMn: : :: : : �An implementation of these multiplexors is given in �g-ure 4. The needed rules are  and "". There is an alter-native implementation using � instead of , but in fact, itwill be essential that our implementation of the multiplex-ors does not use �.We shall also need a kind of autodual multiplexor, thatis a principal net Tn of arity n with the following property:: : : : : :Tn Tn: : : : : : �An implementation of these autodual multiplexors is givenin �gure 5. The needed rules are �� and "". Note that  isnot suitable for that purpose.More generally, if p; q 2 N, one constructs a principalnet Tp;q (transpositor) of arity 2p + q with the followingproperty: � �p;q: : : : : :Tp;q Tp;q: : : : : :where �p;q is the involutive permutation of f1; : : : ; 2p+ qgwhich exchanges 1 with 2, 3 with 4, and so on until 2p.8



�  � ��  �� �� "" """ """ �" ""�"
Figure 2: interaction rules for the combinators� "" � � "" ""� "" � "" � ""=�Figure 3: a nonterminating computationM2M�2 == M�3  M3  == : : :: : :""M0M�0 == M1M�1 ==Figure 4: implementation of the multiplexors"T0 = T1 = T2 �= � �T3 = : : :Figure 5: implementation of the autodual multiplexors9



Here is a possible implementation of these transpositors: Tp+q: : : : : :2pz }| { qz }| {Tp;q2p+qz }| {: : : =The needed rule is . Note that � is not suitable for thatpurpose.Finally, if � is an involutive permutation of f1; : : : ; ng,one constructs a principal net T� of arity n with the fol-lowing property: �T� T�: : : : : : � : : :: : :Any such permutation is indeed a product of disjoint trans-positions, that is � = ��1��p;q �� where � is a permutationof f1; : : : ; ng and 2p + q = n. So, here is a possible imple-mentation of T�: Tp;q�: : :: : :T�: : : =Note that conversely, if such a T� exists, the permuta-tion � is necessarily involutive. This is a consequence ofthe symmetry condition.2.3 Menus and selectorsIf �1; : : : ; �n are packages, one constructs a new package�1& � � �&�n (menu) from which the original ones can beextracted by means of principal nets S1n; : : : ;Snn (selectors)of arity 1: Sin�1& � � �&�n �i�Here is a possible implementation: Mn�1 �n: : :�1& � � �&�n =

Sin M�n" " " ": : : : : :| {z }i�1 | {z }n�i=One uses the fact any package � can be erased as follows:"� �This is an obvious corollary of the following lemma:Lemma 2 (erasing)i) For any tree � :"�: : : � "" : : :ii) For any wiring !:" "!: : : �Both statements are proved by induction, using ", �" and"". In fact, (i) holds more generally for principal nets and(ii) for reduced nets.2.4 Translation (restricted case)With the previous constructions, we can already simulateinteraction systems which are in some sense recursion-free.Consider an interaction system with m symbols �1, : : :,�m of respective arities n1, : : :, nm. The right member ofa rule is a reduced net which can be decomposed as follows:�i;jniz }| { njz }| {: : : : : : 'i;j  i;j�i;j : : :: : :: : :: : :niz }| { njz }| {=where 'i;j and  i;j are reduced nets, and �i;j is a permu-tation. Of course, such a decomposition is not unique, but10



there is a canonical one. For instance, here is the canonicaldecomposition for the rule s� of section 1.5:�+ �By the symmetry condition, and by unicity of the canonicaldecomposition, one gets 'j;i =  i;j and �j;i = ��1i;j . Inparticular, if i = j, one gets �i;i = ��1i;i , which meansthat �i;i is involutive. If i 6= j, it is always possible toinclude the permutation into 'i;j (or into 'j;i), so that thedecomposition is no longer canonical, but �i;j is an identity.To sum up, one can assume that in all cases, 'j;i =  i;j,�j;i = �i;j and �i;j is involutive.Now, assume that the alphabet f�1; : : : ; �mg can be or-dered in such a way that the net 'i;j , when de�ned, con-tains only symbols which are strictly smaller than �j (andsymmetrically,  i;j = 'j;i contains only symbols which arestrictly smaller than �i). It is easy to see that the processof reduction always terminates in such a system. A typicalexample is our system of interaction combinators withoutthe rule � (using an ordering such that " <  and " < �,and a non-canonical decomposition for " and �").With this restriction, a principal net [�i] can be de�nedinductively for each symbol �i as in �gure 6. In this de�-nition, ['i;j] stands for the net obtained by replacing each�k by [�k] in 'i;j. If 'i;j happens to be unde�ned, whichmeans that there is no rule for �i; �j, then �i;j can be �xedarbitrarily. In that way, one gets a translation of interac-tion systems (�gure 7).2.5 DuplicationIntuitively, the package �i above represents the �nite tree ofall possible futures of a cell. In the general case, this treemay be in�nite, but it is possible to replace this actualin�nity by a potential one: it su�ces to use somethinglike a genetic code. Duplication is clearly essential for thispurpose.Unfortunately, the analogue of lemma 2 for duplicationdoes not hold, because � cannot duplicate � (whereas "can erase "). Nevertheless, a package � without � can beduplicated as follows:�� � ��This is an obvious corollary of the following lemma:

Lemma 3 (duplication)i) For any tree � without �:��: : : � �� �: : : : : :: : :�ii) For any wiring !:� �!: : : : : :: : : � !! : : :: : :Both statements are proved by induction, using �, �" and��. Note that the rule �� is forced by (ii), and this is why� cannot duplicate �. Again, (i) holds more generally forprincipal nets and (ii) for reduced nets without �.How to cope with this impossibility of duplicating arbi-trary packages? This is the crucial point of our proof.2.6 Codes, copiers and decoderOne constructs, for any package �, another package !�(code of �) which can be duplicated, and from which �can be extracted. More precisely, one constructs principalnets Cn (copier) of arity n andD (decoder) of arity 1, withthe following properties:� !� !�: : :Cn!�: : : �!�D �If one manages to construct !� without using �, then bylemma 3, there is an obvious implementation of the Cn (infact, the same as for the Tn). It remains to de�ne !� andD.If � contains n occurrences of �, it can be decomposed asfollows: � ��0: : : : : :: : :� =11



[�i]: : : Mni+1Sim�i T1;1: : := �i;j M�ni+1T�i;j['i;j]: : :: : :=�i �1;i& � � �&�m;i=
Figure 6: translation of a cell (restricted case)

� M�nj+1T�i;j T�j;iMni+1 Mnj+1M�ni+1['i;j] ['j;i]: : :: : :: : :: : :: : : : : :�Mni+1 Mnj+1Sim Sjm�j �i: : : : : :
� [�i;j]: : : : : :T�i;j T�j;i['j;i]['i;j]: : :: : : : : :: : : ['i;j] ['j;i]�i;j : : :: : :: : :: : :� =

�j�i Mni+1 Mnj+1SjmSimT1;1 T1;1: : : : : :[�i] [�j]: : : : : : =

Figure 7: translation of a rule (restricted case)12



where �0 is a reduced net with 3n+1 free ports containingno �. An implementation of the code and the decoder isgiven in �gure 8. Clearly, !� contains no � and � can beextracted from it by means of the decoder (�gure 9). Notethat lemma 3 is used once more.2.7 Translation (general case)Using the previous constructions, a principal net [�i] canbe de�ned for each symbol �i as in �gure 10, where pi;j isthe total number of cells in 'i;j and h'i;ji is obtained byreplacing each symbol �k in 'i;j by h�ki. Note that thish�ki has one more port than the cell �k. All those extraports must be plugged into the copier Cpi;j in �i;j. Oth-erwise, this translation works very much like the previousone. The package !� plays the role of a genetic code, fromwhich each [�k] can be extracted as follows:[�k]: : :h�ki!� : : : �The reader is invited to complete the proof of theorem 1 byworking out the analogue of �gure 7 for this translation.2.8 Minimality of the systemOne may wonder whether the system of interaction combi-nators is minimal. In other words, is it possible to removesymbols or rules without losing the property of theorem 1?One can already make the following remarks:� � is necessary because it is the only rule which in-creases the number of cells. In particular,  and � arenecessary;� "" is necessary because it is the only rule for which theright member is empty. In particular, " is necessary;� one rule among " and �" is necessary because theyare the only rules which increase the number of occur-rences of ";� one rule among  and �� is necessary because theyare the only rules for which the right member is anonempty wiring.A more detailed study shows that, in fact, both  and�� are necessary. On the other hand, it happens that thesystem remains universal if one removes �", but this is nota signi�cant simpli�cation.One may also wonder whether there is a universal in-teraction system with less symbols. Starting from the in-teraction combinators, Denis Bechet proposed a universal

interaction system with only 2 symbols and 3 rules (pri-vate communication), but one of his rules is quite com-plicated. Also, it is easy to see that one symbol is notenough. Therefore, we conjecture that our system of inter-action combinators is essentially the simplest one satisfyingtheorem 1.3 Semantics of combinatorsHere, we interpret the nets of combinators as reversible2-stack machines. This interpretation gives a notion ofequivalence on nets of combinators, and suggests a systemof directed combinators.3.1 ExecutionLet � be a net of combinators which reduces to somewiring !, as in �gure 11. Looking carefully at the rulesof interaction, one sees that it is possible to compute !without reducing �, just by travelling in �. This will becalled the execution of �.During this execution, one carries a pair (u; v) where u(the -stack) and v (the �-stack) are �nite strings over thealphabet fp;qg. We shall write 1 for the empty string.The letter p (resp. q) corresponds to the �rst (resp. thesecond) auxiliary port of  or �. One travels according tothe following rules (�gure 12):� if one enters a cell through an auxiliary port, onepushes the corresponding letter onto the relevantstack, and one exits through the principal port;� if one enters a cell through the principal port, one popsp or q from the relevant stack, and one exits throughthe corresponding auxiliary port (in the case of a �-cell) or through the other one (in the case of a -cell).If the relevant stack is empty, one stops.Of course, one considers that the "-stack is always empty.An example of execution is given in �gure 13.Let � be an arbitrary net of combinators. One writes(x; u; v) �; (x0; u0; v0) if, starting from the free port x withthe pair (u; v), one eventually reaches the free port x0 withthe pair (u0; v0). One writes u for the string obtained byexchanging p with q in u.Proposition 5 The execution satis�es the following prop-erties:i) for any (x; u; v), there is at most one (x0; u0; v0) suchthat (x; u; v) �; (x0; u0; v0) (determinism);ii) if (x; u; v) �; (x0; u0; v0) then (x0; u0; v0) �; (x; u; v), andconversely (reversibility);13



M�n M�nMn �0M4: : : : : :: : :!� = � M�4D =Figure 8: implementation of the code and the decoders
� M�4 M�n M�nM4Mn �0: : : : : : : : : �M�n M�nMn�0: : :: : : : : :!�D �= �� �M�n M�nMn Mn�0: : : : : :: : :: : : : : : � ��0: : : : : :: : : �� =Figure 9: decoding14



�i �1;i& � � �&�m;i=� �1 & � � �&�m=
�i;j T�i;jM�ni+2Cpi;j: : : : : :h'i;ji: : :=

[�i]: : : Sim�i!� Mni+2T1;1: : :=
h�ki: : : C2DSkm SkmMnk+2T1;1: : := Figure 10: translation of a cell (general case)� � � �    ��    �Figure 11: a net reducing to a wiring #(u; v)#(qu; v) �(u; v)#(u;pv)#(u; v)#(pu; v)# � #(u; v)#(u;qv) "(u; v)"(pu; v) �(u; v)"(u;pv)"(u; v)"(qu; v)" � "(u; v)"(u;qv)Figure 12: rules of execution15



�� � x x0 y y0(1; 1)" �� � x x0 y y0(q; 1)" �� � x x0 y y0(q;q)"
�� � x x0 y y0(1;q)" �� � x x0 y y0

!(1;qq) �� � x x0 y y0 (1;q)
�� � x x0 y y0
!(1;pq) �� � x x0 y y0#(1;q) �� � x x0 y y0#(q;q)

�� � x x0 y y0(q; 1)# �� � x x0 y y0#(1; 1)Figure 13: example of execution16



iii) if (x; u; v) �; (x0; u0; v0), then for any u00 and v00,(x; uu00; vv00) �; (x0; u0u00; v0v00) (monotonicity);iv) if � reduces to �, then �; and �; are the same (invari-ance).Proof: The �rst three statements are obvious. The factthat u becomes u in the reverse computation comes fromour de�nition of the execution in the case of a -cell. It is ofcourse related to the fact that  exchanges the ports. Forthe last statement, it su�ces to check that the executionis invariant by each rule. Clearly, the execution has beende�ned in such a way that it is invariant by  and ��.Here is a typical case for :(pu; v)#(u; v)#(u; v)# (u; v)#(u; v)#Here is a typical case for ��:��(u; v)#(u;pv)# #(u; v)(u; v)# #(u; v)The execution is also invariant by �, because the twostacks are independent. Here is a typical case: � �(u; v)#(u;qv)#(pu; v)#�(u;qv)#(pu; v)#(pu;qv)#The remaining cases are similar. Q.e.d.3.2 EquivalenceSay that two nets of combinators � and � with the samefree ports are equivalent if �; and �; are the same. Thisis obviously a congruence: if one replaces a subnet of �by an equivalent one, the resulting net is equivalent to �.Furthermore, the invariance property tells us that � and �are equivalent whenever � reduces to �.In the case of a wiring !, one has (x; 1; 1) !; (x0; 1; 1)if and only if x is connected to x0 in !. Therefore, if anet � reduces to a wiring ! as in �gure 11, this ! can beobtained by executing �, as in �gure 13. Note also that

two wirings are equivalent if and only if they are equal. Inorder to characterize the equivalence of reduced nets, weshall use the rules of �gure 14, which can be applied inboth directions.Say that a free port x of a reduced net � accepts a pair(u; v) if there is a free port x0 and a pair (u0; v0) such that(x; u; v) �; (x0; u0; v0). Of course, this notion depends onlyon the equivalence class of �. Say that x is passive if it isnot connected to a principal port, and say that x is -active(resp. �-active, "-active) if � can be transformed by meansof the rules of �gure 14, in such a way that x is connectedto the principal port of a -cell (resp. a �-cell, an "-cell).Again, these notions depend only on the equivalence classof �:� x is passive if and only if it accepts all (u; v);� x is -active if and only if it accepts no (1; v);� x is �-active if and only if it accepts no (u; 1);� x is "-active if and only if it accepts no (u; v).The �rst statement follows easily from the decompositionof proposition 2, and the other ones are proved by inductionon the number of cells.Proposition 6 If � and � are reduced nets of combinatorswith the same free ports, then � is equivalent to � if andonly if � can be transformed into � by means of the rulesof �gure 14.Proof: It is easy to see that the execution is invariant bythese rules. It remains to show that, if � is equivalent to �,then � can be transformed into � by means of the rulesof �gure 14. This is proved by induction on the numberof cells in �. If all free ports are passive, then � and �are the same wiring. Otherwise, there is a free port xof � which is connected to the principal port of a cell, forinstance a -cell. In other words, x is -active, and � canbe transformed in such a way that x is connected to theprincipal port of a -cell. One can remove the -cell in bothcases, and apply the induction hypothesis to the remainingnets. Q.e.d.3.3 Algebraic formulationThe execution can be reformulated in a more algebraic way,as in the geometry of interaction (see [Gir89, DR95]). Forconciseness, we omit all proofs here.First, one considers the non-commutative ring < gener-ated by the letters p, q, p�and q� subjected to the followingequations: p�p = q�q = 1; p�q = q�p = 0:The letters p and q are called positive, and the other onesare called negative. A reduced monomial is an expression of17



the form uu0 where u consists of positive letters and u0 con-sists of negative ones. By the above equations, the productof two such monomials is either a reduced monomial or 0.For instance:(pp�q�)(qppq�) = (pp�)(ppq�) = ppq�;(pp�q�)(qqpq�) = (pp�)(qpq�) = 0:So, one can show that any element of < can be uniquelywritten as a �nite sum of reduced monomials. In particular,the strings of positive letters can be identi�ed with thecorresponding monomials in <. Moreover, the duality canbe extended to the whole ring <, in such a way that itsatis�es the following properties:(uv)�= v�u�; 1�= 1; (u+ v)�= u�+ v�; 0�= 0;u��= u; u�u = 1:Let � be an arbitrary net of combinators. If x and x0are free ports of �, a direct path P from x to x0 is a pathfrom x to x0 such that, if one enters through an auxiliaryport (resp. the principal port), then one exits through theprincipal port (resp. an auxiliary port). For each type ofcrossing, one introduces an element of the ring < 
 < asin �gure 15. The weight jP j is the product of all theseelements, in reverse order. For instance, the weight of thepath in �gure 13 is(q�qq�q) 
 (q�p�pq�qq) = 1
 1The weight is invariant by reduction. In fact, if one con-siders the interaction rules for  and �, it appears that theequations de�ning < correspond to the rules of annihila-tion ( and ��) and the commutation (u 
 1)(1 
 v) =(1
 v)(u 
 1) to the rule of commutation (�).Clearly, (x; u; v) �; (x0; u0; v0) if and only if there is adirect path P from x to x0 such that jP j(u
 v) = u0 
 v0.This is just a reformulation of the execution.Let � be a reduced net with n free ports x1, : : :, xn.By proposition 2, one sees that there is a �nite numberof direct paths in �. So it makes sense to consider thesum ai;j of all jP j where P is a direct path from xj to xi.This de�nes an n� n matrix A with coe�cients in <
<.Consider for instance the following net: �x1 x2There are two direct paths from x1 to x2, and vice-versa.The matrix of this net is:A = � 0 p
 q�+ q
 p�q�
 q+ p�
 p 0 �

The matrix of a reduced net will always satisfy the fol-lowing symmetry property: aj;i = �(ai;j) where � is theanti-automorphism of <
 < de�ned by�(p
 1) = q�
 1; �(q
 1) = p�
 1;�(1
 p) = 1
 p�; �(1
 q) = 1
 q�:Note also that two reduced nets have the same matrix ifand only if they are equivalent.If � is a net with n free ports, k cuts, and no viciouscircle, it can be decomposed as follows:�: : : �0: : : : : :| {z }k=where �0 is a reduced net with n + 2k free ports. If �reduces to a reduced net �, then the matrix A of � can beobtained by means of the execution formula:A = tJ(A0 +A0KA0 + A0KA0KA0 + � � �)J= tJA0(I �KA0)�1Jwhere� A0 is the matrix of �0,� I is the matrix of the identity on f1; : : : ; n+ 2kg,� J is the matrix of the inclusion of f1; : : : ; ng intof1; : : : ; n+ 2kg,� K is the matrix of the partial permutation which isunde�ned on f1; : : : ; ng and which exchanges the ele-ments of fn+ 1; : : : ; n+ 2kg pairwise.The execution formula makes sense because, in that case,the matrix KA0 is nilpotent.3.4 Directed combinatorsOur execution is revertible, but the backward executiondoes not follow exactly the same rules as the forward exe-cution: the -stack u must be replaced by u. This is alsoexpressed by the fact that the anti-automorphism � abovemaps p
1 to q�
1 instead of p�
1. Of course, this wouldnot happen if the rule  was the same as ��: This modi�ed system of combinators is not universal in thetechnical sense of theorem 1, but we shall see that it hasthe same expressive power as the original one.18



To show this, it is natural to consider a system of directedcombinators with 6 symbols , �, �, ��, ", "�, and the 9interaction rules of �gure 16. This system looks very muchlike the original one, except that it has no symbol whichinteracts with itself. Because of this, the choice for theannihilations (� and ���) is just a matter of taste.If � is a net of combinators with n free ports, one de�nesa net ~� of directed combinators (the covering of �) with 2nfree ports labelled by + or �. The covering is de�ned oncells as in �gure 17. It extends to nets in the obvious way,with the convention that a + must always be plugged intoa �, as in �gure 18.In fact, we have just separated the forward and the back-ward executions. This construction is inspired by a clas-sical one in topology: the 2-fold covering of an arbitrarysurface by an orientable one.This covering is obviously not a translation in the techni-cal sense of section 1.7, but it is compatible with reduction:Proposition 7 If � reduces to � in n steps, then ~� reducesto ~� in 2n steps.Proof: It su�ces to check that each interaction betweencombinators is interpreted by two interactions between di-rected combinators. Q.e.d.This kind of generalized translation can be called a 2-translation. A consequence of theorem 1 and proposition 7is that any interaction system can be 2-translated into thesystem of directed combinators. Conversely, there is anobvious translation � of directed combinators into combi-nators: �() = ; �(�) = �; �(") = ";�(�) = ; �(��) = �; �("�) = ";where � stands for � with exchanged auxiliary ports:�There is also a translation 	 of directed combinators intothe modi�ed system of combinators, where the rule  isthe same as ��:	() = ; 	(�) = �; 	(") = ";	(�) = ; 	(��) = �; 	("�) = ":In particular, this shows that the modi�ed system of com-binators has the same expressive power as the original one.The system of directed combinators itself has some in-teresting properties. First, it is an extension of the systemof multiplicative proof-nets (see [Laf95]). Furthermore, ithas a lot of automorphisms which operate on the setf; ; �; �; �; �; ��; ��; "; "�g:

One can show that the group of automorphisms has or-der 16 and is isomorphic to the group of symmetries of arectangle parallelepiped with square basis (�gure 19).4 DiscussionIf a net � reduces to a wiring !, one may wonder whetherthe execution is an e�cient algorithm for computing !.This question was already raised by Vincent Danos andLaurent Regnier in [DR95]. They considered a linear �-term which corresponds to the following net: .. .  Clearly, such a net reduces to a single wire in a linear num-ber of steps, whereas one can show that the execution takesexponential times! Therefore, the practical interest of thisexecution is not clear, even if one ignores the parallel as-pects of the reduction.One may also wonder whether our translation of inter-action systems into the system of combinators can be seenas a process of compilation. This would mean that wehave a physical machine suitable for the reduction of netsof combinators. The problem is that, even if the rules aresimple, the geometry of the net may become very com-plicated during the computation. In fact, we only knowthat the reduction of interaction nets can be easily and ef-�ciently implemented on a traditional sequential machine,but from this viewpoint, the translation into the system ofcombinators does not seem to be useful.From a more theoretical viewpoint, one may also wonderwhether there are typed versions of our various systems ofcombinators. In other words, is there a logic behind theinteraction combinators ? A simple solution has been givenby the author, and independently by Peter Selinger (pri-vate communication), but this would lead us too far awayfrom our issue, and we prefer to keep this for subsequentpublication.19
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Figure 16: interaction rules for the directed combinators20
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