Interaction Combinators

YVES LAFONT*

Institut de Mathématiques de Luminy, UPR 9016 du CNRS,
163 avenue de Luminy, case 930, 13288 MARSFEILLE CEDEX 9, France

Email: lafont@iml.univ-mrs.fr

March 25, 1997

It is shown that a very simple system of interaction com-
binators, with only 3 symbols and 6 rules, is a universal
model of distributed computation, in a sense that will be
made precise. This paper is the continuation of the au-
thor’s work on interaction nets, inspired by Girard’s proof
nets for linear logic, but no preliminary knowledge of these
topics 1is required for its reading.

Introduction

This paper addresses the following question: what are the
fundamental laws of computation? Of course, the answer
depends on the choice of a particular model of computa-
tion. Let us mention some of them:

e the Turing machines imitate the mathematician writ-
ing symbols on paper. There are many variants, for in-
stance the register machines and the stack machines.
This notion has the advantage of being simple and
powerful at the same time, but it models only sequen-
tial computation;

e the cellular automata can be seen as discrete approx-
imations of physical processes. This notion models
distributed computation, but with a global synchro-
nization of transitions;

e the rewrite systems are closer to the algebraic tradi-
tion, since a rewrite rule is just an oriented equation.
An interesting example 1s the A-calculus, with only one
rewrite rule:

(Az.u)v — vu/z].

This calculus i1s Turing complete and it has a nice log-
ical interpretation, at least in the typed case. How-
ever, the rule is more complicated than 1t seems: 1s it
reasonable to consider substitution as an atomic op-
eration? In this sense, a more primitive system is the

*Partially supported by HCM Project CHRX-CT93-0046 (Lambda
Calcul Typ€).

combinatory logic, with two rewrite rules:

Kry - 2, Szyz — xz(yz).

But again, is it reasonable to consider erasing and du-
plication as atomic operations?

Following this tradition of rewrite systems, the interac-
tion nets have been introduced in [Laf90] as a model of
distributed computation with local synchronization (sec-
tion 1). These nets, which are related to the connection
graphs of [Baw86], appeared as a generalization of Girard’s
proof nets for linear logic (see [Gir95, Laf95]).

By “local synchronization”, we mean that there is no
need to consider a global time for computation. In other
words, times 1s relativistic. By “distributed”, we mean
that the computation is performed at several places at the
same time, whereas “parallel” sometimes refers to a kind
of magical superposition, as in “parallel or”:

Tvz—T, xVT T, FVF > F.

Our interaction nets are deterministic in a strong sense:
not only the result, but also the computation is unique, up
to trivial commutations. In particular, it is not possible to
encode “parallel or”. We shall not address the question of
deciding whether this should be considered as a good or a
bad point.

From the viewpoint of computability, our interaction
nets are equivalent to the Turing machines, but from the
viewpoint of computation, there is something more, for
instance parallelism (in the sense of distributed computa-
tion). To express this rigorously, we introduce a natural
notion of translation of interaction system preserving the
essential properties of computations, such as the complex-
ity and the degree of parallelism.

By definition, a wunwersal interaction system has the
property that any other interaction system can be trans-
lated into it. Turing machines can be seen as particular
interaction systems, but such systems are intrinsically se-
quential and cannot be universal in the above sense, even if

they come from universal Turing machines. On the other
hand, it is proved that a system of interaction combina-
tors is universal (section 2). This suggests an answer to
our original question, at least within the framework of in-
teraction nets: the fundamental laws of computation are
commutation and annihilation.

Our system of interaction combinators has been obtained
by a kind of distillation, starting from some more com-
plicated system suggested by Samson Abramsky for im-
plementing the proof boxes of linear logic (see [Mac94]).
Independently, Simon Gay has also obtained a universal
system, with 8 symbols instead of 3 (see [Gay95]). Our
system 1s simpler because it uses the same symbols for
different purposes. Among the other related systems, let
us mention the infinite one introduced by John Lamping
for the optimal reduction of A-calculus (see [Lam90]) and
the variants proposed by Georges Gonthier, Martin Abadi,
and Jean-Jacques Levy, in connection with linear logic (see
[GAL92a, GAL92b]).

Apart from its simplicity, the system of interaction com-
binators has an unexpected interpretation in terms of re-
versible 2-stack machines which seems to throw a bridge be-
tween distributed and sequential computation (section 3).
This section benefited from discussions with Vincent Danos
and Laurent Regnier.

1 Interaction nets

The origin of our favorite model of computation is ex-
plained in [Laf95]. Here, it is introduced from scratch,
without explicit reference to proof theory.

1.1 Nets

From now on, a symbol a will always be given with its
arity n > 0. An occurrence of such a symbol is called a

cell, and is pictured as follows:
e

——

or

N——

n

Such a cell has one principal port and n auziliary ports. 1t
is well understood that the latter are not interchangeable.
For instance, one can number them from 1 to n, keeping 0
for the principal port. In practice, the ports will always be
implicitly numbered in clockwise order. In particular, the
second picture is obtained from the first one by a rotation
of 180 degrees. If n = 0, there is no auxiliary port, and the
cell 1s pictured as follows:

?

or

A net is a graph consisting of a finite number of cells
and an extra set of free ports, each port being connected
to another one by means of a wire. For instance, here is a
net built with the symbols «, 8 and =, of respective arities
2, 1 and 0:

%
\/

Y z

g h<

This net has 3 free ports , y and z. Note that a net is not
necessarily connected, and that a wire may connect two
ports of the same cell. In fact, we shall also allow cyclic
wires which do not connect any ports:

O

To sum up, a net is completely described by the following
data:

e a finite set X (of free ports),

o a finite set C' (of cells),

a symbol £(¢) for each ¢ € C,

a finite set W (of wires),
e aset Jw of 0 or 2 ports for each w € W.

Here, a port is either an element of X, or a pair (e, 1)
where ¢ € C' and i ranges from 0 to the arity of ¢(¢). The
nonempty Jw must define a partition of all ports. In this
paper, we shall avoid such cumbersome descriptions, but
the reader may check that our arguments can always be
formalized in this way.

If a 1s a symbol of arity n, an a-cell can be seen as a net
with n+ 1 free ports. More generally, a tree is a net 7 with
one distinguished free port, called the root. It is either a
single wire, in which case the root is fixed arbitrarily, or it
is obtained by plugging the n auxiliary ports of a cell into
the roots of smaller trees 71, ..., T:

In that case, the root is the free port which is connected
to the principal port of this cell.

A wiring 1s a net w without cell and without cyclic wire.
So it is just a pairing of its free ports. In particular, a
wiring has an even number of free ports. A permutation o
of {1,...,n} defines a wiring with 2n free ports, which is
represented as follows:

€1 T, €1 Tp Y1 Yn

g or g

In both cases, z; is connected to y,(;). For instance, the
wiring corresponding to the identity on {1, 2, 3} is pictured
as follows:

T1 Ty T3 Ty T2 T3 Y1 Y2 Y3
or
Y1 Y2 Y3
1.2 Interaction

Fix a finite alphabet X with m symbols ay, ..., a,, of re-
spective arities ny, ..., n,. An interaction rule is a reduc-
tion of the form

a5 Oé]‘ 1/2»7]4

where v; ; is a net with n; + n; free ports. Note that cells
can only interact pairwise, through their principal ports.
Cyclic wires may be created when such a rule is applied
inside a net, and this is why they have been allowed in the
definition of nets. The above rule is clearly equivalent to

Oé]‘ a5 vi,j

where 7; ; is obtained by exchanging the n; first free ports
with the n; last ones in v; ;.

An nteraction system 1s a set of interaction rules which
can be applied without any ambiguity. More precisely:

o if a rule is given for a;, a;, then no other one is given
for a;, ay, or for oj, ay;

o if a symbol «; interacts with itself’ then Vii =Vj;.

n [Laf90], symbols were not allowed to interact with themselves,
but it appeared later that this was too restrictive.

In particular, an interaction system is necessarily finite,
with at most m(m + 1)/2 rules. Alternatively, such a sys-
tem can be described by a partially defined square matrix
(vi,5)1<i,j<m satisfying the following symmetry condition:

o if 1; ; is defined, so is v;;, and v; ; = 7; ;.

Later we shall add the technical condition that the v; ; are
reduced nets.

Proposition 1 If a net p reduces in one step to v and
to V', with v # V', then v and v' reduce in one step lo a
common net &.

Proof: In an instance of the left member of a rule, the
cells are connected through their principal ports, so that
two such instances are necessarily disjoint and the corre-
sponding rules can be applied independently. Q.e.d.

This strong confluence property has the following conse-
quence: if a net u reduces to an irreducible net v in n steps,
then any reduction starting from p eventually reaches v in
n steps. Moreover, if one abstracts from the irrelevant or-
der of application of rules, there is only one possible reduc-
tion from p to v. So we can say that interaction nets are
a deterministic and asynchronous model of computation.
In fact, we think that any computation of that kind can
be modeled by means of interaction nets, but of course, an
assertion of this kind cannot be proved.

1.3 Example: Turing machines

Classical models of sequential computation such as Tur-
ing machines, register machines and stack machines can be
seen as special classes of interaction systems. For instance,
a Turing machine is given by a triple (@, A, T), where Q
1s a finite set of states, A a finite set of letters, and T a
(partially defined) map from @ x A to A x {+,—-} x Q.
A configuration of the machine is given by a state ¢, an
infinite tape filled with letters, and a current position in
the tape:

s d_9g_q| Ao | A1 | U3

If T(q,a) = (a’,+,¢'), and being in state ¢, the machine
reads a from the tape, then it writes a’, moves right, and

goes to state ¢':

If T(q,a) = (¢/,—,¢'), the machine has the same behav-
ior, except that it moves left. By doubling the number
of states, one can always assume that the direction of the
move depends only on ¢’. One says that ¢’ comes from the
left in the first case, and that it comes from the right in
the second case.
All states and letters are now considered as symbols of
arity 1. The above configuration is simulated by the net
. %a_l q Qo % e
% %

or

ao q

depending on whether ¢ comes from the left or from the
right. Similarly, the above transition is simulated by the
rule

M — > /
or
>—< o > q’

depending on whether ¢ comes from the left or from the
right. Of course, all this assumes that we have an infinite
net! To simulate computations with a finite net, one must
add a new symbol of arity 0 corresponding to the boundary
of (the written part of) the tape, and some appropriate
rules to cope with this new symbol. The details are left to
the reader.

So it appears that interaction nets are complete from
the viewpoint of computability. Similarly, the register ma-
chines and the stack machines can be simulated in a fairly
obvious way.

1.4 Example: cellular automata

More surprisingly, the cellular automata, which are a syn-
chronous model of distributed computation, can also be

simulated by means of interaction nets. For instance, a 1-
dimensional cellular automaton is given by a pair (Q,T'),
where () is a finite set of states and T i1s a map from
@ X Q x Q to . A configuration of the automaton is
given by an infinite sequence of states:

" |9-2/9-1) 9o | 41| G2

After one step of computation, it becomes

! ! ! ! !

" 19_919-1| 90 | 91 | 92

where ¢} = T(qi-1, ¢, ¢s+1). In particular, this means that
all cells change at the same time.

Two symbols ¢ and g are introduced for each state ¢, and
also two symbols pg and pg for each pair p,q. The above
configuration is simulated by

e

and the transitions by

—p q — Pq — pq
and
— pq TS - - g

where ¢' = T'(p, ¢, 7) and v = T'(¢, r, s). This simply means
that a transition is decomposed into two steps: each cell
interacts first with its left (or right) neighbor, and then
with the other one. In this way, the global synchronization
i1s no more needed.

The main difference between the system for Turing ma-
chines and the one for cellular automata appears in the
structure of the right members of rules: in the first case,
only one free port is connected to a principal port, whereas
in the second case, both free ports are connected to princi-
pal ports. In fact, a system of the first kind can only model
sequential computation.

1.5 Example: unary arithmetics

Now we shall build a simple interaction system for unary
arithmetics, using the following symbols: s (successor) of
arity 1, 0 of arity 0, 4+ and x, both of arity 2. The first two
symbols are used to represent natural numbers in unary

form. One starts from the usual equations defining addi-
tion and multiplication:

st+y = s(z+y), 0+y = v,

(xxy)+y, Oxy = 0.

Since addition is defined by induction on the first argu-
ment, we shall always plug this argument into the principal
port of +, and similarly for x. Therefore, the ports will be
interpreted in the following unusual way:

Voo 4o

y z+y y Xy

sr Xy =

One gets the following rules for addition:

iﬁ £

Note that the argument y is used twice in the first equation
defining the multiplication, and it is not used at all in the
second one. For that reason, two extra symbols are needed:
d (duplicator) of arity 2 and ¢ (eraser) of arity 0, with the
following interpretation:

T T

®

The idea is that a net representing a natural number should
be duplicated when it is connected to the principal port of
a d, and it should be erased when it is connected to the
principal port of an €. One gets the following rules for

multiplication:
0 : ﬁ)?

Of course, extra rules are needed for duplication and eras-

v sd A 0 06
A A ??

r Z

zseé (0) Oe
O,

An example of computation is given in figure 1. Note that
this computation is essentially parallel, since in many cases,
several rules can be applied simultaneously.

If one had to duplicate tree-like structures, such as lists
of natural numbers, then one would introduce the following
rules for each binary constructor ~:

T Tes

We shall find them again in the system of interaction com-
binators.

1.6 Reduced nets

Two kinds of configuration may lock a computation: the
wrreducible cuts and the vicious circles. A cut consists of
two cells connected through their principal ports:

For a given interaction system, there are two kinds of cuts:
the reducible ones and the trreducible ones. For instance,
in the case of unary arithmetics, a cut between s and + is
reducible, whereas a cut between s and 0 is irreducible. If
an irreducible cut occurs in a net v, it can never be elim-
inated, because the cells can only interact through their
principal ports.

A principal path of length n consists of n cells ¢q, ..., ¢,
such that the principal port of ¢; is connected to an aux-
iliary port of ¢;41. In particular, a wire can be considered
as a principal path of length 0. A wvicious circle of length n
is a closed principal path of length n:

In particular, a cyclic wire can be considered as a vicious
circle of length 0. Clearly, a vicious circle can never be
eliminated, because no ¢; can interact first.

Say that a net i1s reduced if it contains no cut and no
vicious circle. Trees and wirings are typical examples of

©
¥
Y
N
/5
NG

©

X
2

Y/
©

e (0
N AN
&

© © ©
vV VY
N N N
AR

©)
N
N

©
o PAIN
VV

©)
N
PR

vAS vAS

- =

©)

N/
0 Y @
NN
N AN (©

- =

©)

AN

N8/

N8/
NN
N/ AN ()
©)

- =

©)
&/
PR
N/
LI
N AN (©

=4

Figure 1: 2 x 2

reduced nets. An irreducible net is not necessarily reduced,
since 1t may contain irreducible cuts or vicious circles, but
a reduced net is always irreducible.

Note that in the case of unary arithmetics, for instance,
all right members of rules are reduced nets. From now on,
we shall only consider interaction systems satisfying this
extra condition. If it is not the case, one can always try to
reduce the right members. If this does not work, 1t means
that there is something wrong in the system.

Proposition 2 Any reduced net v with n free ports can be
untquely decomposed as follows:

e]

DA

where T1,...,T, are trees and w s a wiring.

Proof: By induction on the number of cells. If there is
no cell, then v is a wiring. Otherwise, one can choose a
.. Since
there is no cut and no vicious circle, this path must stop

cell ¢1, and construct a principal path ¢q, ¢, 3, .

at some cell ¢, whose principal port is connected to a free
port. It suffices to apply the induction hypothesis to the
net obtained by removing this ¢,, which is also a reduced
net. Q.e.d.

One says that a reduced net is principal if it is a sin-
gle wire (degenerate case), or if one of its free ports is
connected to a principal port and all other free ports are
connected to auxiliary ports. For instance, a tree is a prin-
cipal net. Proposition 2 gives the following decomposition
for a principal net :

where 7 is a tree and w 1s a wiring which does not connect
upper ports. If m has n 4+ 1 ports, one says that 7 is a
principal net of arity n, because it can be considered as
In the non-degenerate
case, the free port which is connected to a principal port 1s
called the root of m. In the degenerate case, the choice of
the root is arbitrary. We shall need a result which follows
easily from the above decomposition:

a generalized symbol of arity n.

Lemma 1 Let 7 be a principal net with n+1 free ports xq,
X1, ..., Ty, the root being xo. Then, fori=1,... n, there
15 a unique principal path from wx; to xg. Fxcept in the
degenerate case, there is no other principal path between
free ports.

By proposition 2, a reduced net with no free port is nec-
essarily empty. A reduced net with only one free port is
called a package. Such a net is necessarily principal, with
the following decomposition:

where 7 1s a tree and w is a wiring.

1.7 Translations

Let X and ¥/ be alphabets of symbols with arities. A trans-
lation ® of ¥ into ¥’ maps each symbol a of arity n in ¥ to
a principal net ®(«) of arity n, built with symbols of ¥'. Tf
furthermore, this ®(«) is non-degenerate for every o, one
says that ® is strict. A translation extends to nets in an
obvious way. Just notice that, in the non-strict case, the
translation may create cyclic wires, and this is another rea-
son why cyclic wires have been allowed in the definition of
nets. The fact that the ®(«) are principal has the following
consequence:

Proposition 3 If v is a reduced net, then ®(v) is a re-
duced net. The converse holds if ® is strict.

Proof: It suffices to check the following points:
e if ®(v) contains a cut, so does v;
o if & is strict and v contains a cut, so does ®(v);

e if ®(v) contains a vicious circle, then v contains a
vicious circle or a cut;

e if v contains a vicious circle, so does ®(v).

Lemma 1 is used for the last two statements. One simply
has to be careful in the non-strict case. For instance, it may
happen that ®(v) contains a vicious circle, and v contains
no vicious circle, but a cut. It may also happen that v
contains a cut, and ®(v) is reduced. Q.e.d.

Composition of translations is defined in the obvious
way. One says that ® is wnvertible if there 1s a trans-
lation ®~! of ¥ into ¥ such that ®~! o ® = ids and
® o d! = ids/. In that case, it is easy to see that ecach
®(«) is necessarily of the following form:

where o' is a symbol of ¥’ and ¢ is a permutation. In
other words, @ is given by a renaming of the symbols and
a permutation of the auxiliary ports of each symbol.

Assume that some interaction system is given for ¥ and
similarly for ¥/. One says that ® is a translation of inter-
action system if 1t 1s compatible with reduction. This is
expressed by the following property:

[B I ‘
®(vi;)

P(a;) ®(a;) *

—_ =

The —* stands for a reduction of arbitrary length, possi-
bly 0. Remember that v; ; is supposed to be reduced, and
so is ®(v; ;) by proposition 3. Therefore, if ® is strict, the
left member is not reduced, and the reduction cannot be
of length 0. Similarly, if ® is invertible, the reduction must
be of length 1. In general, let L (resp. M) be the minimal
(resp. the maximal) length of all those reductions. By the
above remark, L > 0 if @ is strict, and L = M =1 if ® is
invertible. Obviously, one has:

Proposition 4 If u is a net built with symbols of ¥ which
reduces in n steps to v, then ®(u) reduces in n' steps to
S(v), with Ln < n' < Mn.

2 Interaction combinators

This section is the heart of the paper. It is entirely devoted
to the universality of the system of interaction combinators.

2.1 The system

The system of interaction combinators consists of 3 sym-
bols, called combinators: v (constructor) and ¢ (duplica-
tor) of arity 2, and e (eraser) of arity 0. The 6 interaction
rules (figure 2) are of two kinds: commutation when the
two cells carry different symbols (76, ve, §¢) and annihila-
tion when they carry the same symbol (vy, §d, c¢). The
reader can check that the symmetry condition is satisfied.

Note that the annihilations for 4 and 4 are not the same.
Furthermore, if one numbers the auxiliary ports, one real-
izes that it is 47y, not 44, which exchanges the ports:

1 2 1 2 1 2 1 2

One can already notice that the process of reduction does
not always terminate. Figure 3 shows a net which reduces

to itself in 4 steps. In fact, we shall prove that, despite its
simplicity, this system is universal in the following sense:

Theorem 1 Any interaction system can be translated into
the system of interaction combinators.

In order to prove this, we shall introduce several construc-
tions which are inspired by the rules of linear logic: the
multiplexors and the transpositors (inspired by the multi-
plicative rules), the menus and the selectors (inspired by
the additive rules), the codes, the copiers, and the decoder
(inspired by the exponential rules).

2.2 Multiplexors and transpositors

For any n € N, one constructs two principal nets M,, and
My (multiplezors) of arity n, with the following property:

An implementation of these multiplexors is given in fig-
ure 4. The needed rules are vy and ee. There is an alter-
native implementation using § instead of v, but in fact, it
will be essential that our implementation of the multiplex-
ors does not use 4.

We shall also need a kind of autodual multiplexor, that
is a principal net T, of arity n with the following property:

An implementation of these autodual multiplexors is given
in figure 5. The needed rules are §d and c¢. Note that v is
not suitable for that purpose.

More generally, if p,q € N, one constructs a principal
net T, , (transpositor) of arity 2p + ¢ with the following

property:

Tp7 Tp7 — Lp,q
where ¢y, , is the involutive permutation of {1,...,2p + ¢}

which exchanges 1 with 2, 3 with 4, and so on until 2p.

ETI AN SN RN

vy

VN

Figure 2: interaction rules for the combinators

$-B9-Bre-B

Figure 3: a nonterminating computation

8.0 W $Y ¥
SRR S

Figure 4: implementation of the multiplexors

wep T ST

Figure 5: implementation of the autodual multiplexors

Here is a possible implementation of these transpositors:

2p+q 2p q
—— —— ——
T 7 _ Ce
Tp-l—q

The needed rule is 4. Note that § is not suitable for that
purpose.

Finally, if ¢ is an involutive permutation of {1,... n},
one constructs a principal net T, of arity n with the fol-
lowing property:

T,

Any such permutation is indeed a product of disjoint trans-
positions, that is ¢ = p~!ou, ,0p where p is a permutation
of {1,...,n} and 2p + ¢ = n. So, here is a possible imple-
mentation of T,:

Note that conversely, if such a T, exists, the permuta-
tion ¢ is necessarily involutive. This 1s a consequence of
the symmetry condition.

2.3 Menus and selectors

If T, .-
1 & & 7 (menu) from which the original ones can be
extracted by means of principal nets S1,... S (selectors)
of arity 1:

., ™, are packages, one constructs a new package

7-[-1&...&7-[-7;

Here is a possible implementation:

10

One uses the fact any package 7 can be erased as follows:

This is an obvious corollary of the following lemma:
Lemma 2 (erasing)

i) For any tree T:

ii) For any wiring w:

Both statements are proved by induction, using e, d¢ and
ge. In fact, (i) holds more generally for principal nets and
(i1) for reduced nets.

2.4 Translation (restricted case)

With the previous constructions, we can already simulate
interaction systems which are in some sense recursion-free.
Consider an interaction system with m symbols aq, ...,
. N . The right member of
a rule is a reduced net which can be decomposed as follows:

oy, of respective arities nq, ..

n g n ny
—— —— —— ——
‘ ‘ ‘ : ‘ IR I IR

Pii || Vi

Ti,j

where ¢; ; and ¢; ; are reduced nets, and o; ; is a permu-
tation. Of course, such a decomposition is not unique, but

there is a canonical one. For instance, here is the canonical
decomposition for the rule sx of section 1.5:

Pz

X

"

By the symmetry condition, and by unicity of the canonical
decomposition, one gets ;; = ¥;; and 0;; = o7} In

2,7 :
particular, if ¢ = j, one gets 0;; = o Z»l, which means
that o;; is involutive. If ¢ # 7, it is alWays possible to
include the permutation into ¢; ; (or into ¢; ;), so that the
decomposition is no longer canonical, but o; ; is an identity.
To sum up, one can assume that in all cases, ¢;; = ¥; ;,
0ji = 05; and o; ; is involutive.

Now, assume that the alphabet {a1, ..., a.,} can be or-
dered in such a way that the net ¢; ;, when defined, con-
tains only symbols which are strictly smaller than o; (and
symmetrically, ©; ; = ¢;,; contains only symbols which are
strictly smaller than «;). Tt is easy to see that the process
of reduction always terminates in such a system. A typical

example is our system of interaction combinators without
the rule v (using an ordering such that ¢ < vy and £ < 4,
and a non-canonical decomposition for v and d¢).

With this restriction, a principal net [«;] can be defined
inductively for each symbol a; as in figure 6. In this defi-
nition, [¢; ;] stands for the net obtained by replacing each
ay by [ag] in ¢; ;. If ¢; ; happens to be undefined, which
means that there is no rule for oy, o, then 7; ; can be fixed
arbitrarily. In that way, one gets a translation of interac-
tion systems (figure 7).

2.5 Duplication

Intuitively, the package ?; above represents the finite tree of
all possible futures of a cell. In the general case, this tree
may be infinite, but it is possible to replace this actual
infinity by a potential one: it suffices to use something
like a genetic code. Duplication is clearly essential for this
purpose.

Unfortunately, the analogue of lemma 2 for duplication
does not hold, because § cannot duplicate § (whereas ¢
can erase ¢). Nevertheless, a package m without ¢ can be
duplicated as follows:

296

This is an obvious corollary of the following lemma:

11

Lemma 3 (duplication)

i) For any tree T without §:

Both statements are proved by induction, using 4§, de and
dd. Note that the rule §§ is forced by (ii), and this is why
d cannot duplicate §. Again, (i) holds more generally for
principal nets and (ii) for reduced nets without 4.

How to cope with this impossibility of duplicating arbi-
trary packages? This is the crucial point of our proof.

2.6 Codes, copiers and decoder

One constructs, for any package m, another package !m
(code of m) which can be duplicated, and from which =
can be extracted. More precisely, one constructs principal
nets C,, (copier) of arity n and D (decoder) of arity 1, with
the following properties:

PRI

If one manages to construct !m without using §, then by
lemma 3, there is an obvious implementation of the C,, (in
fact, the same as for the T,,). It remains to define !r and D.
If © contains n occurrences of 4, it can be decomposed as
follows:

Figure 6: translation of a cell (restricted case)

= =

TUm TUN

Figure 7: translation of a rule (restricted case)

12

where 7 is a reduced net with 3n+ 1 free ports containing
no §. An implementation of the code and the decoder is
given in figure 8. Clearly, !7 contains no 6 and 7 can be
extracted from it by means of the decoder (figure 9). Note
that lemma 3 is used once more.

2.7 'Translation (general case)

Using the previous constructions, a principal net [«;] can
be defined for each symbol «; as in figure 10, where p; ; is
the total number of cells in ¢; ; and {p; ;) is obtained by
replacing each symbol oy in ¢; ; by (ag). Note that this
(o) has one more port than the cell . All those extra
ports must be plugged into the copier Cp, ; in 7; ;. Oth-
erwise, this translation works very much like the previous
one. The package !7 plays the role of a genetic code, from
which each [ag] can be extracted as follows:

The reader is invited to complete the proof of theorem 1 by
working out the analogue of figure 7 for this translation.

2.8 Minimality of the system

One may wonder whether the system of interaction combi-
nators is minimal. In other words, 1s it possible to remove
symbols or rules without losing the property of theorem 17
One can already make the following remarks:

e 74 is necessary because it is the only rule which in-
creases the number of cells. In particular, v and ¢ are
necessary;

¢ 1s necessary because it 1s the only rule for which the
right member is empty. In particular, £ is necessary;

one rule among v¢ and de is necessary because they
are the only rules which increase the number of occur-
rences of ¢;

one rule among vy and §§ is necessary because they
are the only rules for which the right member is a
nonempty wiring.

A more detailed study shows that, in fact, both vy and
d4 are necessary. On the other hand, it happens that the
system remains universal if one removes d¢, but this is not
a significant simplification.

One may also wonder whether there is a universal in-
teraction system with less symbols. Starting from the in-
teraction combinators, Denis Bechet proposed a universal

13

interaction system with only 2 symbols and 3 rules (pri-
vate communication), but one of his rules is quite com-
plicated. Also, it is easy to see that one symbol is not
enough. Therefore, we conjecture that our system of inter-
action combinators is essentially the simplest one satisfying
theorem 1.

3 Semantics of combinators

Here, we interpret the nets of combinators as reversible
2-stack machines. This interpretation gives a notion of
equivalence on nets of combinators, and suggests a system

of directed combinators.

3.1 Execution

Let v be a net of combinators which reduces to some
wiring w, as in figure 11. Looking carefully at the rules
of interaction, one sees that it is possible to compute w
without reducing v, just by travelling in v. This will be
called the execution of v.

During this execution, one carries a pair (u,v) where u
(the v-stack) and v (the d-stack) are finite strings over the
alphabet {p,q}. We shall write 1 for the empty string.
The letter p (resp. q) corresponds to the first (resp. the
second) auxiliary port of 4 or §. One travels according to
the following rules (figure 12):

e if one enters a cell through an auxiliary port, one
pushes the corresponding letter onto the relevant
stack, and one exits through the principal port;

e if one enters a cell through the principal port, one pops
p or q from the relevant stack, and one exits through
the corresponding auxiliary port (in the case of a 4-
cell) or through the other one (in the case of a y-cell).
If the relevant stack 1s empty, one stops.

Of course, one considers that the e-stack is always empty.
An example of execution is given in figure 13.

Let v be an arbitrary net of combinators. One writes
(x,u,v) 5 (2w, v') if, starting from the free port @ with
the pair (u, v), one eventually reaches the free port ' with
the pair (u/,v"). One writes @ for the string obtained by
exchanging p with q in u.

Proposition 5 The execution satisfies the following prop-
erties:

i) for any (x,u,v), there is at most one (x',u',v") such
that (x,u,v) 5 (2/, W', v") (determinism);

14

i) if (2, u,v) 5 (& u',v') then (2, uw/,v') 5 (

conversely (reversibility);

T, u,v

), and

f—/‘

Figure 8: implementation of the code and the decoders

] \W/... |
’/_J

Figure 9: decoding

14

T,

Figure 12: rules of execution

15

Figure 13: example of execution

16

ii) if (x,u,v) ~ (', u',v'), then for any ' and v",

1,01

(z, uu’ v} S (2 w'u v'v") (monotonicity);

. . 1 v . .
iv) if p reduces to v, then ~ and ~ are the same (invari-
ance).

Proof: The first three statements are obvious. The fact
that u becomes w in the reverse computation comes from
our definition of the execution in the case of a y-cell. Tt is of
course related to the fact that vy exchanges the ports. For
the last statement, it suffices to check that the execution
is invariant by each rule. Clearly, the execution has been
defined in such a way that it is invariant by 4y and 44.
Here is a typical case for v7v:

(u,v)
(pu,v))
(u,v)

Here is a typical case for §4:

()} (u,0)
Vo) W)

The execution is also invariant by ~d, because the two
stacks are independent. Here is a typical case:

(u, qu)i (u,qv% /s\
| <
(pu,v){ (pu,v)iv V

The remaining cases are similar. Q.e.d.

(u,v))

- =

- =

(pu, qv)l

3.2 Equivalence

Say that two nets of combinators g and v with the same
free ports are equivalent if £ and < are the same. This
is obviously a congruence: if one replaces a subnet of v
by an equivalent one, the resulting net is equivalent to v.
Furthermore, the invariance property tells us that 4 and v
are equivalent whenever p reduces to v.

In the case of a wiring w, one has (x,1,1) ~ (z/,1,1)
if and only if = is connected to =’ in w. Therefore, if a
net v reduces to a wiring w as in figure 11, this w can be
obtained by executing v, as in figure 13. Note also that

17

two wirings are equivalent if and only if they are equal. In
order to characterize the equivalence of reduced nets, we
shall use the rules of figure 14, which can be applied in
both directions.

Say that a free port x of a reduced net v accepts a pair
(u, v) if there is a free port &’ and a pair (v, v’) such that
(z,u,v) 5 (@', o', v'). Of course, this notion depends only
on the equivalence class of v. Say that = is passive if it is
not connected to a principal port, and say that z is v-active
(resp. d-active, e-active) if v can be transformed by means
of the rules of figure 14, in such a way that z is connected
to the principal port of a y-cell (resp. a d-cell, an e-cell).
Again, these notions depend only on the equivalence class
of v:

e 1 is passive if and only if it accepts all (u, v);
e 1 is y-active if and only if it accepts no (1, v);
e 1 is d-active if and only if it accepts no (u, 1);
e 1 is e-active if and only if it accepts no (u, v).

The first statement follows easily from the decomposition
of proposition 2, and the other ones are proved by induction
on the number of cells.

Proposition 6 If u and v are reduced nets of combinators
with the same free ports, then p is equivalent to v if and
only if p can be transformed into v by means of the rules

of figure 14.

Proof: It is easy to see that the execution is invariant by
these rules. It remains to show that, if g is equivalent to v,
then g can be transformed into v by means of the rules
of figure 14. This is proved by induction on the number
of cells in v. If all free ports are passive, then p and v
are the same wiring. Otherwise, there is a free port z
of v which 1s connected to the principal port of a cell, for
instance a 7-cell. In other words, z is v-active, and u can
be transformed in such a way that z is connected to the
principal port of a y-cell. One can remove the y-cell in both
cases, and apply the induction hypothesis to the remaining

nets. Q.e.d.

3.3 Algebraic formulation

The execution can be reformulated in a more algebraic way,
as in the geometry of interaction (see [Gir89, DR95]). For
conciseness, we omit all proofs here.

First, one considers the non-commutative ring R gener-
ated by the letters p, q, p*and q*subjected to the following
equations:

PP=dqdq=1, pq=qPp=0.

The letters p and q are called positive, and the other ones
are called negative. A reduced monomaial is an expression of

the form uu’ where u consists of positive letters and u’ con-
sists of negative ones. By the above equations, the product
of two such monomials is either a reduced monomial or 0.
For instance:

(prq’)(apra’) = (PP (PPY") = PPJ",

(pp'q)(aqaprq’) = (pp”)(apq’) = 0.

So, one can show that any element of & can be uniquely
written as a finite sum of reduced monomials. In particular,
the strings of positive letters can be identified with the
corresponding monomials in . Moreover, the duality can
be extended to the whole ring R, in such a way that it
satisfies the following properties:

=1, (utv)"=u+v, 0

0,

(uv)" = v,

*%

uwr=u, uwu=1.

Let v be an arbitrary net of combinators. If z and z’
are free ports of v, a direct path P from z to z’ is a path
from x to x’ such that, if one enters through an auxiliary
port (resp. the principal port), then one exits through the
principal port (resp. an auxiliary port). For each type of
crossing, one introduces an element of the ring & @ N as
in figure 15. The weight |P| is the product of all these
elements, in reverse order. For instance, the weight of the
path in figure 13 is

(9"aq™q) ® (' PPa’qq) =1®1

The weight 1s invariant by reduction. In fact, if one con-
siders the interaction rules for v and 4, it appears that the
equations defining 3 correspond to the rules of annihila-
tion (yy and d§) and the commutation (v ® 1)(1 ® v)
(1®v)(u®1) to the rule of commutation (vd).

Clearly, (z,u,v) ~> (2/,u,v') if and only if there is a
direct path P from z to &’ such that [P|(u® v) = v @ v'.
This is just a reformulation of the execution.

Let v be a reduced net with n free ports zy, ..., z,.
By proposition 2, one sees that there is a finite number
of direct paths in v. So it makes sense to consider the
sum a; ; of all |P| where P is a direct path from z; to ;.
This defines an n x n matrix A with coefficients in f @ R.
Consider for instance the following net:

€1 T2

There are two direct paths from #; to x5, and vice-versa.
The matrix of this net is:

(0

T0q+p Op

PR®q*+q®p*
0

18

The matrix of a reduced net will always satisfy the fol-
lowing symmetry property: a;; = ¢(a; ;) where ¢ is the
anti-automorphism of & ® N defined by

plqol)=p @1,
s(leq=1loq"

pp@l)=q @1,
s(lop)=12p7

Note also that two reduced nets have the same matrix if
and only if they are equivalent.

If 1 is a net with n free ports, & cuts, and no vicious
circle, it can be decomposed as follows:

/

1

1
k

where p’ is a reduced net with n + 2k free ports. If p
reduces to a reduced net v, then the matrix A of v can be
obtained by means of the execution formula:

A (A + AKA + AKAKA +--)J

JA'(I - KA

where
e A’ is the matrix of p/,
e [is the matrix of the identity on {1,...,n+ 2k},

e J is the matrix of the inclusion of {I,...,n} into

{1,...,n+ 2k},

e K is the matrix of the partial permutation which 1s
undefined on {1,...,n} and which exchanges the ele-
ments of {n+ 1,... n+ 2k} pairwise.

The execution formula makes sense because, in that case,
the matrix K A’ is nilpotent.

3.4 Directed combinators

Our execution is revertible, but the backward execution
does not follow exactly the same rules as the forward exe-
cution: the v-stack u must be replaced by w. This is also
expressed by the fact that the anti-automorphism ¢ above
maps p® 1 to q*® 1 instead of p*® 1. Of course, this would
not happen if the rule 4y was the same as §4:

Y

—

This modified system of combinators is not universal in the
technical sense of theorem 1, but we shall see that it has
the same expressive power as the original one.

To show this, 1t is natural to consider a system of directed
combinators with 6 symbols v, v* 4, §* ¢, ¢*, and the 9
interaction rules of figure 16. This system looks very much
like the original one, except that it has no symbol which
interacts with itself. Because of this, the choice for the
annihilations (yy* and §6%) is just a matter of taste.

If v 1s a net of combinators with n free ports, one defines
a net U of directed combinators (the covering of v) with 2n
free ports labelled by 4+ or —. The covering is defined on
cells as in figure 17. It extends to nets in the obvious way,
with the convention that a + must always be plugged into
a —, as in figure 18.

In fact, we have just separated the forward and the back-
ward executions. This construction is inspired by a clas-
sical one in topology: the 2-fold covering of an arbitrary
surface by an orientable one.

This covering is obviously not a translation in the techni-
cal sense of section 1.7, but it is compatible with reduction:

Proposition 7 If y reduces to v in n steps, then fi reduces
to v wn 2n steps.

Proof: It suffices to check that each interaction between
combinators is interpreted by two interactions between di-
rected combinators. Q.e.d.

This kind of generalized translation can be called a 2-
translation. A consequence of theorem 1 and proposition 7
is that any interaction system can be 2-translated into the
system of directed combinators. Conversely, there is an
obvious translation @ of directed combinators into combi-
nators:

®(v) =,
e(v) =1,

where & stands for § with exchanged auxiliary ports:

There 1s also a translation ¥ of directed combinators into
the modified system of combinators, where the rule vy is
the same as §6:

Y(vy) =1,
V(v =7,

In particular, this shows that the modified system of com-
binators has the same expressive power as the original one.

The system of directed combinators itself has some in-
teresting properties. First, it is an extension of the system
of multiplicative proof-nets (see [Laf95]). Furthermore, it
has a lot of automorphisms which operate on the set

v(9)
U (67)

U(e) =,

.y
=45, V() ==

{PY’ 7’ Py*’ 7*’ 6’ g’ 6*’ S*’ 6’ 6*}'

19

One can show that the group of automorphisms has or-
der 16 and is isomorphic to the group of symmetries of a
rectangle parallelepiped with square basis (figure 19).

4 Discussion

If a net v reduces to a wiring w, one may wonder whether
the execution is an efficient algorithm for computing w.
This question was already raised by Vincent Danos and
Laurent Regnier in [DR95]. They considered a linear A-
term which corresponds to the following net:

&

Clearly, such a net reduces to a single wire in a linear num-
ber of steps, whereas one can show that the execution takes
exponential times! Therefore, the practical interest of this
execution is not clear, even if one ignores the parallel as-
pects of the reduction.

One may also wonder whether our translation of inter-
action systems into the system of combinators can be seen
as a process of compilation. This would mean that we
have a physical machine suitable for the reduction of nets
of combinators. The problem is that, even if the rules are
simple, the geometry of the net may become very com-
plicated during the computation. In fact, we only know
that the reduction of interaction nets can be easily and ef-
ficiently implemented on a traditional sequential machine,
but from this viewpoint, the translation into the system of
combinators does not seem to be useful.

From a more theoretical viewpoint, one may also wonder
whether there are typed versions of our various systems of
combinators. In other words, is there a logic behind the
interaction combinators 7 A simple solution has been given
by the author, and independently by Peter Selinger (pri-
vate communication), but this would lead us too far away
from our issue, and we prefer to keep this for subsequent
publication.

e e g

Figure 14: rules for equivalence

P®1W WQ@M 1®p\\(V \s//lééq
R

Figure 15: algebraic interpretation

S A ST !

.

Yy

A A

L=0A 290 £%f

Yy o 607 ge*
— — —

Figure 16: interaction rules for the directed combinators

20

Figure 17: covering of a cell

¥

+— +—

Figure 18: covering of a net

v oy

Figure 19: symmetries of the directed combinators

21

References

[Baw86]

[DRO5]

[Gay95]

[Gir89)]

[Gir95]

[GAL92a]

[GAL92b]

[Laf90]

[Laf95]

[Lam90]

A. Bawden (1986), Connection Graphs. In Pro-
ceedings of ACM Conference on Lisp and Func-
tional Programming, pp 258-265.

V. Danos & L. Regnier (1995), Proof-nets and
the Hilbert space. In Advances in Linear Logic
(J.-Y. Girard, Y. Lafont & L. Regnier, editors),
London Mathematical Society Lecture Note Se-
ries 222, pp 307-328, Cambridge University
Press.

S. J. Gay (1995), Combinators for Interaction
Nets. In Proceedings of the Second Imperial Col-
lege Department of Computing Workshop on
Theory and Formal Methods (C. L. Hankin,
I. C. Mackie & R. Nagarajan, editors), Impe-
rial College Press.

J.-Y. Girard (1989), Geometry of Interaction I:
interpretation of system F. In Proceedings Logic
Colloguium ’88 (Ferro & al., editors), pp 221-
260, North Holland.

J.-Y. Girard (1995), Linear Logic: its syntax
and semantics. In Advances in Linear Logic (J.-
Y. Girard, Y. Lafont & L. Regnier, editors),
London Mathematical Society Lecture Note Se-
ries 222, pp 1-42, Cambridge University Press.

G. Gonthier, M. Abadi & J.-J. Levy (1992), The
geometry of optimal lambda reduction. In Pro-
ceedings of 19th ACM Symposium on Principles
of Programming Languages (POPL ’92), ACM.

G. Gonthier, M. Abadi & J.-J. Levy (1992), Lin-
ear Logic without boxes. In Proceedings of 7th
Annual Symposium on Logic in Computer Sci-

ence (LICS ’92), IEEE.

Y. Lafont (1990), Interaction Nets. In Proceed-
wngs of 17th ACM Symposium on Principles of
Programming Languages (POPL °90), pp 95—
108, ACM.

Y. Lafont (1995), From Proof-Nets to Inter-
action Nets. In Advances in Linear Logic (J.-
Y. Girard, Y. Lafont & L. Regnier, editors),
London Mathematical Society Lecture Note Se-
ries 222, pp 225-247, Cambridge University
Press.

J. Lamping (1990), An Algorithm for Optimal
Lambda Calculus Reduction. In Proceedings of
17th ACM Symposium on Principles of Pro-
gramming Languages (POPL °90), pp 16-46,
ACM.

22

[Mac94]

I. Mackie (1994), The Geometry of Implemen-
tation (an investigation into using the Geome-
try of Interaction for language implementation).
PhD thesis, Imperial College of Science Tech-
nology and Medicine, London.

