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Pre£ace

everybody thinks probabilistically, whether knowingly or not. We judge the
likelihood that the barking dog will bite, that the rumor that the company is
about to have a big layoff is true, that bottled water is purer than what one gets
from one's kitchen faucet... The ability to think probabilistically is important
for many reasons. Lack of it makes one prone to a variety of irrational fears and
vulnerable to scams designed to exploit probabilistic naivete, precludes intelli-
gent assessment of risks, ensures the operation of several common biases, im-
pairs decision making under uncertainty, facilitates the misinterpretation of
statistical information, precludes critical evaluation of likelihood claims, and
generally undercuts rational thinking in numerous ways.

Often we lack the kind of evidence on complex issues that would permit us
to draw a conclusion that we can be certain is correct. Frequently we have to
make decisions on the basis of incomplete information and we cannot be sure
of their consequences. But the need to settle for incomplete and uncertain in-
formation does not mean that our reasoning and decision making must be re-
duced to pure guesswork. Usually information of a statistical or probabilistic
sort is available, or at least there is a basis for making some assumptions about
the statistical or probabilistic characteristics of a situation of interest. One who
can use this type of information effectively should do better, on the average,
than one who cannot.

How good are individuals at thinking probabilistically? How consistent is
people's reasoning under uncertainty with the principles of probability theory
and mathematical statistics? These questions have been of considerable inter-
est to researchers and the literature on this topic is very large. The evidence that
has been produced is mixed. On the one hand are numerous indications that
certain basic principles are poorly understood and that reasoning that should
make use of those principles often is faulty. On the other hand are some experi-
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mental results that support the view that in many circumstances people's intu-
itions about statistics or probabilistic events are quite good.

My own interest in probabilistic reasoning derives in part from the belief
that we all engage in it, more or less constantly, that we sometimes reason
probabilistically in ways that suit our purposes very well and that we some-
times do rather poorly in this regard, and, finally, that a better understanding of
probability and our abilities and limitations as probabilistic thinkers might
help improve our thinking generally. But even if one could not legitimately
claim that there are compelling practical reasons for studying probability and
probabilistic thinking, I suspect that the allure of the topic, for me at least,
would remain. I find probability, chance, randomness, and closely related con-
cepts fascinating. I do not pretend to know what these terms mean in any deep
sense; in fact the more I have thought about them, the more elusive whatever
their referents are have become. I know that I am not alone in this respect and,
indeed, believe that I am in rather good company.

My motivation for writing this book, as nearly as I can tell, was to learn
something about probabilistic reasoning—about its origins, its status, its use in
various contexts, what recent research has revealed about it, and so on. One
should write a book, I have been told, with a specific audience in mind. This is
undoubtedly good advice, but I confess to not following it. What I have written
has been determined primarily by what I have found interesting. The book is
divided roughly into two parts. The emphasis in the first part, which includes
the first seven chapters, is historical and conceptual. The later chapters focus
more on what research has shown about people's abilities and limitations as
probabilistic thinkers.

Chapter 1 presents the history of the development of probabilistic ideas be-
ginning with the seminal correspondence between Blaise Pascal and Pierre de
Fermat in 1654 and continuing with the contributions of other 17th- and
18th-century figures. The concept of randomness, which is at once elusive and
central to probability theory, is the subject of chapter 2. Coincidences and the
question of what makes them interesting are discussed in chapter 3. The notion
of inverse probability, as represented by Bayes's theorem, and Bayesian deci-
sion making and reasoning are discussed in chapter 4. Chapter 5 presents a va-
riety of problems that illustrate some of the subtleties that can be involved in
dealing with probabilities. Chapter 6 continues this theme with a discussion of
several paradoxes and dilemmas involving probabilities. Chapter 7 gives an ac-
count of the birth of statistics and its increasing applications in science.

Chapter 8 reviews empirical work on the question of how well people are
able to estimate probabilistic variables and predict the outcomes of probabilis-
tic events. Chapter 9 continues the review of empirical work, now with a focus
on people's abilities to perceive covariation and contingency, and the factors



PREFACE • xi

that affect their performance in this regard. Chapter 10 deals with decision
making under uncertainty and the notions of expected utility, inductive
heuristics, and probabilistic mental models. Chapter 11 focuses on the general
question of how good people are as intuitive statisticians. Some concluding re-
marks comprise chapter 12.

I can only hope that some readers will learn as much from reading the book
as I think I did from writing it, and with as much pleasure. As to who such read-
ers might be, I hope they might include psychologists, philosophers, and econ-
omists for whom probabilistic reasoning is an essential aspect of their efforts to
understand the workings of the human mind more generally, researchers study-
ing probabilistic reasoning, and students preparing to do so. I believe the book
could be used as a major text for a graduate or upper-class seminar on probabil-
istic reasoning, or as a supplementary text for graduate or upper-class courses
in cognitive psychology, philosophy, economics, or any subject for which
probabilistic reasoning is a key topic. I have tried to write also, however, for the
general reader who has an interest in the subject and little or no technical train-
ing beyond standard high school math. Familiarity with basic algebra should
suffice for the great majority, if not all, uses of mathematics, of which there are
relatively few.

I owe thanks to Jonathan Baron, Susan Butler, Richard Chechile, Julie
Downs, Ruma and Rafael Falk, R. Duncan Luce, Nathan Nickerson, Richard
Shiffrin, Salvatore Soraci, Howard Wainer, and Michael Wenger for helpful
comments on parts of the manuscript and/or stimulating conversations on one
or another aspect of probabilistic reasoning, to my granddaughter Amara
Nickerson for helping to organize and check references, and, as always, to my
wife Doris for her constant love, companionship, and encouragement.
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CHAPTER

1

Probability ana Chance

Probability is... the philosophical success story of the first half of the twentieth
century.

—Hacking (1990, p. 4)

Strictly speaking it may even be said that nearly all our knowledge is problemat-
ical; and in the small number of things -which we are able to know with certainty,
even in the mathematical sciences themselves, the principal means for ascer-
taining truth—induction and analogy—are based on probabilities.

—Laplace (1814/1951, p. 1)

Subjective probabilities are required for reasoning ...a theory of partially or-
dered subjective probabilities is a necessary ingredient of rationality.

—Good (1983, p. 95)

BEGINNINGS

TX he use of chance devices and the drawing of lots for purposes of sortilege
and divination were common to many cultures of antiquity. Classical Greek lit-
erature contains numerous references to games of chance at least as early as the
Trojan wars, and there is evidence to suggest that such games were known in
Egypt and elsewhere long before then. One of the earliest known written docu-
ments about the use of chance devices in gaming is in the Vedic poems of the

1
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Rgveda Samhita. "Written in Sanskrit circa 1000 B.C., this poem or song,
called the 'Lament of the Gambler,' is a monologue by a gambler whose gam-
bling obsession has destroyed his happy household and driven away his de-
voted wife" (Bennett, 1998, p. 34).

Gambling had become a sufficiently common form of recreation in Europe
by the time of the Roman Empire that laws forbidding it were passed—and
largely ignored. The emperor Caesar Augustus (63 B.C.-14 A.D.) was an avid
roller of the bones. The bones, in this context, were probably astragali, a form
of dice made from the heel bones of running animals. The astragalus, some-
times referred to as a talus, huckle-bone, or knuckle-bone, was shaped in such a
way that, when tossed, it could come to rest with any of four sides facing up, the
other two sides being somewhat rounded. It is known to have been used in the
playing of board games at least as early as 3500 B.C. Dice, which presumably
are evolutionary descendants of astragali, are known to have existed in the
Middle East as early as the third millennium B.C. According to Bennett
(1998), the earliest known six-sided die was made of baked clay around 2750
B.C. and was found in what was once Mesopotamia and is now Northern Iraq.

In view of the fact that chance devices have been used for a variety of pur-
poses for so long, scholars have found it difficult to explain why quantitative
theories of randomness and probability were not developed until relatively re-
cent times. Although why a theory of probability was so long in coming re-
mains unknown, there has been much speculation as to what some of the
contributing factors may have been. Hypothesized deterrents include perva-
sive belief in determinism, lack of opportunity to observe equiprobable sets
(astragali did not turn up all four faces with equal relative frequency), absence
of economic incentives, and lack of a notational system suitable for represent-
ing the critical ideas and computations. Each of these explanations has been
challenged, if not discredited to one or another degree (Hacking, 1975). There
appear what Gigerenzer et al. (1989) refer to as suggestive fragments of proba-
bilistic thinking in classical and medieval literature, and there may have been
some theoretical ideas about probability, especially in India, that are lost to us,
but apparently nothing approaching a systematic theoretical treatment of the
subject was attempted in Europe until the 17th century.

Gigerenzer et al. (1989) attribute considerable significance to the Reforma-
tion and Counter-Reformation and the associated clashes between extremist
views on faith and reason, which influenced attitudes regarding how beliefs
should be justified:

Confronted with a choice between fideist dogmatism on the one hand and the
most corrosive skepticism on the other, an increasing number of seventeenth-
century writers attempted to carve out an intermediate position that abandoned
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all hope of certainty except in mathematics and perhaps metaphysics, and yet
still insisted that men could attain probable knowledge.... The new criterion for
rational belief was no longer a watertight demonstration, but rather that degree
of conviction sufficient to impel a prudent man of affairs to action. For reason-
able men that conviction in turn rested upon a combined reckoning of hazard and
prospect of gain, i.e. upon expectation, (p. 5)

They continue:

Mathematicians seeking to quantify the legal sense of expectations inevitably
became involved in quantifying the new rationality as well. So began an alliance
between mathematical probability theory and standards of rationality that
stamped the classical interpretation as a 'reasonable calculus'; as a mathemati-
cal codification of the intuitive principles underlying the belief and practice of
reasonable men. (p. 6)

Interest in probability was spurred by questions relating to games of chance,
such as why the tossing of three dice turned a total of 10 more frequently than a
total of 9. Much of the early thinking about the topic was prompted by the spe-
cific question of how to divide fairly the stakes in a prematurely terminated
game of chance. The following problem appeared in Fra Luca Paccioli's
Summade Arithmetic, Geometria et Proportionality, (The Whole of Arithmetic,
Geometry and Proportionality), published in 1494: "A and B are playing a fair
game of balla. They agree to continue until one has won six rounds. The game
actually stops when A has won five and B three. How should the stakes be di-
vided?" (David, 1962, p. 37).

One solution by Paccioli was published in De Divina Proportione (On Di-
vine Proportion) in 1509, and another by Gio Francesco Peverone in Due Brevi
e Facile Trattati: II Primo d'Arithmetica, I'Altro di Geometria (Two Short and
Easy Treatises: The First on Arithmetic, the Other on Geometry) in 1558 (Da-
vid, 1962). These early efforts considered the question of what would be a fair
division in specific cases and did not attempt a general solution to the problem.
The answers proposed for the cases considered differ from the answers that
would be given to the same questions on the basis of probability theory as it
now exists, employing, as they did, the notion of dividing the stakes in the same
ratio as that of the games won, or a close derivative of it. It is doubtful whether
either Paccioli or Peverone had a clear concept of probability. This type of
problem appears repeatedly in the writings of 16th- and 17th-century mathe-
maticians and differences of opinion as to the correct answer prompted heated
debate (P. L. Bernstein, 1996; Todhunter, 1865/2001).

A significant early contributor to a theory of probability, as we know it—or
to a theory of chance, as it was and is sometimes called—was Girolamo
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Cardano, who wrote a book with the title Liber de Ludo Aleae (The Book of
Games of Chance). Although written, according to his own account, in 1525, it
was not published until 1663. David (1962) credits Cardano with being the first
mathematician to calculate a theoretical probability correctly. Galileo also
wrote briefly about the numbers of ways different sums can be obtained with
the tossing of three dice.

The Pascal— Fermat Correspondence

Blaise Pascal and Pierre de Fermat thought collaboratively about the stakes-di-
vision problem as a consequence of the question being put to Pascal by a gam-
bler, Chevaleau de Mere. Pascal and Fermat exchanged letters on the topic over
several months during the summer and fall of 1654. (The collaborators never
met before, during, or after their remarkable correspondence.) The correspon-
dence between Pascal and Fermat regarding the stake-division problem is
worth considering in some detail, because it is viewed as one of the defining
events in the emergence of probability theory as a mathematical discipline.
And it provides a glimpse at the kind of struggle that the founders of probabil-
ity theory had in trying to understand their own intuitions and to make them ex-
plicit and clear. An English translation of what is preserved of the corres-
pondence—apparently the surviving record is not entirely complete— may be
found in David (1962, Appendix 4).

The specific situation that Pascal and Fermat considered was this. Two play-
ers are involved in a series of games and play is terminated when one of the play-
ers, say A, is two games short of winning the series and the other player, say B, is
three games short of doing so. How should the stakes be divided between the
players at this point? The tacit assumption is that A should get a larger share than
B because A would have been more likely to win the series had play continued,
but exactly what proportion of the total should each player receive?

Fermat had proposed a way of analyzing the situation. In a letter dated Monday,
August 24,1654, Pascal repeats Fermat's analysis and argues that it works for two
players but will not do so if more than two are involved. Fermat's analysis starts
with a determination of the maximum number of additional games that would
have to be played to decide the winner of the series. In this case, the number is four,
because in the playing of four games either A will win two or B will win three.
Fermat's method then calls for identifying all possible outcomes of four games, of
which there are 16, determining the percentage of them that would be won by each
player, and dividing the stakes in accordance with the ratio of these percentages.

The situation is represented in Pascal's letter by the following tabular ar-
rangement in which each column represents one possible outcome of the four
games, with a representing a win of an individual game by A and b a win by B



(Pascal actually used 1 s and 2s in the last row of the table where I have As and
Bs, but this is irrelevant to the point of the discussion):

a a a a a a a a b b b b b b b b
a a a a b b b b a a a a b b b b
a a b b a a b b a a b b a a b b
a b a b a b a b a b a b a b a b
A A A A A A A B A A A B A B B B

As this analysis shows, of the 16 possible outcomes of four games* A would
win the series (by winning at least two individual games) in 11 cases and B (by
winning at least three individual games) in 5. So, according to Fermat's reason-
ing, the stakes should be divided between A and B in the ratio 11 to 5.

Pascal argues that Fermat's analysis gives the correct answer, so long as
there are only two players, but will not do so if there are more than two: "I must
tell you that the solution of the problem of points for two players based on com-
binations is very accurate and true, but if there are more than two players it will
not always be correct" (David, 1962, p. 240).

Before giving his reasons for believing Fermat's solution not to be reliable
when there are more than two players, Pascal digresses to deal with an objection
that a colleague, M. de Roberval, had raised to Fermat's solution, which Pascal
had shown to him, even in the two-player case: "What is mistaken [according to
de Roberval] is that the problem is worked out on the assumption that/owr games
are played; in view of the fact that when one man wins two games or the other
three, there is no need to play four games, it could happen that they would play
two or three, or in truth, perhaps four" (David, 1962, p. 241).

In reporting to Fermat how he dealt with this objection, Pascal notes that he
himself did not rely on the combinatorial method, "which in truth is not appro-
priate here," but that nevertheless he was able to construct an argument that the
method gave the correct answer in this case. First he made the point that if the
two players, finding themselves in the situation that one needed two games to
win the series and the other three, agreed to play four additional games, then
Fermat's analysis shows the correct division of stakes. De Roberval agreed
with this, but denied that it would apply if the players were not compelled to
play the four games.

Pascal then argued that the continuation of play after one or the other has
won the series—after A has won two games or B three—can have no effect on
the outcome, so whether or not the players do continue is irrelevant:

Certainly it is easy to see that it is absolutely equal and immaterial to them both
whether they let the game take its natural course, which is to cease play when
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one man has won, or to play the whole four games: therefore since these two pro-
cedures are equal and immaterial, the result must be the same in them both. Now,
the solution is correct when they are obliged to play four games, as I have
proved: therefore it is equally correct in the other case. (David, 1962, p. 242)

He does not say whether de Roberval was convinced.
Returning to the question of the applicability of Fermat's combinatorial

analysis to cases in which there are more than two players, Pascal considers the
following three-person situation. One player, whom I call A, needs one game
to win and each of the other two, B and C, needs two. The maximum number of
games that will be required to determine the winner is three, inasmuch as each
of the 27 possible combinations of three wins contains either one win for A or
two wins for either B or C. The problem, and the reason that Pascal dismisses
the method, is that these are not mutually exclusive possibilities; some combi-
nations contain more than one of them.

As before, Pascal represents the situation with a tabular arrangement in
which each column identifies one possible outcome of three games:

a a a a a a a a a b b b b b b b b b c c c c c c c c c
a a a b b b c c c a a a b b b c c c a a a b b b c c c
a b c a . b c a b c a b c a b c a b c . a b c a b c . a b c

So, given the need of A to win one game, and that of the other two players
each to win two, the playing of three games will not invariably produce an un-
ambiguous result. Pascal dismissed the possibility of simply adding up the to-
tal "wins" for each player and dividing the stakes in the proportion 19:7:7 on
the grounds that a combination that is favorable to two players (e.g., abb)
should not count as much for each of them as does a combination that is favor-
able to that player alone. One possibility that he considered is that of counting
those combinations that are favorable to two players as half a win for each of
them. This would give a division in the proportion 16:5.5:5.5.

Pascal argues that the latter solution would be fair if the players' intention
was to play three additional games and to share the winnings equally if there
happened to be two winners, but not if their intention was to play only until the
first player to reach his goal had done so. He contends that, given the second in-
tention, the solution is unfair because it is based on the false assumption that
three games will always be played. A similar assumption caused no difficulty
in the two-person situation considered earlier, but it is problematic here. The
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difference between the situations is that in the first one a combination with
more than one winner could not occur whereas in this one it could. Pascal goes
on to say that if play is to be continued only until one of the players reaches the
number of games he needs, the proper division is 17:5:5. This result, he says,
can be found by his "general method," which is not described in the letter.

In a reply to Pascal, dated Friday, September 25,1654, Fermat agrees that the
appropriate division in the three-person situation considered by Pascal is 17:5:5:

I find only that there are 17 combinations for the first man and 5 for each of the other
two: for, when you say that the combination a c c is favourable to the first man and to
the third, it appears that you forgot that everything happening after one of the play-
ers has won is worth nothing. Now since this combination makes the first man win
the first game, of what use is it that the third man wins the next two games, because
even if he won thirty games it would be superfluous? (David, 1962, p. 248)

Fermat seems to be saying that if one uses his combinatorial analysis and
credits a combination only to the first of the players to reach his goal, then one
will get the right proportion in a straightforward way. If we do this with the pre-
vious table, for example, and let the top-to-bottom order of the rows represent
the order in which the games are played, we get:

a a a a a a a a a b b b b b b b b b c c c c c c c c c
a a a b b b c c c a a a b b b c c c a a a b b b c c c
a b c a b c a b c a . b c a b c a b c a b c a b c a b c
A A A A A A A A A A A A

B

A A A A A
B B B B

C C C C C

Fermat argues that this method is general in the sense that it works just as
well no matter how many games are to be played. If it is done with four games,
for example, it will be seen that A wins 51 of the 81 possible combinations and
B and C each win 15, giving again the proportion 17:5:5. The tone of Fermat's
letter suggests that he understood all this before Pascal pointed out the "prob-
lem" with his analysis of the two-person game.

Fermat proposes another way to view the situation. I quote his presentation
of this view in its entirety, because it would be easy to change it subtly but ma-
terially by paraphrasing it:

The first man can win, either in a single game, or in two or in three.

If he wins in a single game, he must, with one die of three faces, win the first
throw. [Throughout the correspondence Fermat and Pascal use the abstraction
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of an imaginary die with two or three faces.] A single [three-faced] die has
three possibilities, this player has a chance of 1/3 of winning, when only one
game is played.

If two games are played, he can win in two ways, either when the second player
wins the first game and he wins the second or when the third player wins the first
game and he wins the second. Now, two dice have 9 possibilities: thus the first
man has a chance of 2/9 of winning when they play two games.

If three games are played, he can only win in two ways, either when the second
man wins the first game, the third the second and he the third, or when the third
man wins the first game, the second wins the second and he wins the third; for, if
the second or third player were to win the first two games, he would have won the
match and not the first player. Now, three dice have 27 possibilities: thus the first
player has a chance of 2/27 of winning when they play three games.

The sum of the chances that the first player will win is therefore 1/3,2/9 and 2/27
which makes 17/27.

And this rule is sound and applicable to all cases, so that without recourse to any
artifice, the actual combinations in each number of games give the solution and
show what I said in the first place, that the extension to a particular number of
games is nothing but a reduction of the several fractions to a common denomina-
tor. There in a few words is the whole mystery, which puts us on good terms
again since we both only seek accuracy and truth. (David, 1962, p. 248)

Although Fermat does not use it, his comments suggest the following tree
representation of the situation he described—the case of three players, one of
whom, say A, needs one more win and two of whom, B and C, both need two:
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The boxed outcomes in this representation indicate possible terminal
points. Play ceases after Game 1, for example, if that game is won by A, which
will happen with probability 1/3. If B wins Game 1, which also will happen
with probability 1/3, Game 2 is played. In 1/3 of those games A will win Game
2; so the probability that B wins Game 1 and A wins Game 2 is (1/3) x (1/3) or
1/9. And so on. The probability that A will win the series is the sum of the prob-
abilities of the individual ways in which A can win, which is 1/3 + 2/9 + 2/27 =
17/27. The probability that B will win the series is 1/9 + 2/27 = 5/27, as is the
probability that C will win it.

I have considered the correspondence between Pascal and Fermat at some
length, because it provides a glimpse into the thinking of two giants of mathe-
matics—Todhunter (1865/2001) calls them the most distinguished mathemati-
cians of Europe at the time—as they attempted to deal with probabilistic
concepts before the theory of probability had been developed to any great de-
gree. (Fermat was not a mathematician by profession, but apparently did math-
ematics for the sheer pleasure that he derived from it. Extraordinarily
productive, E. T. Bell [1937] calls him "the prince of amateurs" [p. 56].) One
sees a progression of thought that involves a gradual increase in awareness of
the various dimensions of the problem and the realization that convergence on
a consensus requires making assumptions clear.

It is interesting to note that neither Pascal nor Fermat seemed intent on rush-
ing into print to establish the priority of their early work in probability theory. As
Todhunter (1865/2001) points out, it apparently was sufficient for each of these
men to gain the approbation of the other. Todhunter notes, too, that the theory
was advanced only little during the half century following their correspon-
dence—Pascal soon turned his attention from mathematics, Fermat died in
1665, and there soon were other topics, such as the differential calculus of New-
ton and Leibnitz, to capture mathematicians' attention. Pierre de Montmort,
writing shortly after the turn of the 18th century could claim, with only moderate
exaggeration, to be exploring a subject that after being only slightly noticed had
been entirely forgotten for sixty years (Todhunter, 1965/2001).

Montmort gives the following general solution to the "problem of points"
that was the subject of the Pascal-Fermat correspondence. Let m and n repre-
sent the number of points that A and B, respectively, need to win the game, and
letp represent the probability of A winning a single trial and q the probability
ofBdoingso,/? + #= 1. Let r=m + n-l, the number of trials in which the game
must be decided. A's chance of winning is given by
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and B's by

This formula applies if p + q = 1 , which is to say if one or the other player
must win on each trial; a different formula is required if ties are allowed
(Todhunter, 1865/2001, p. 97).

It is very easy, with the benefit of hindsight, to underestimate the difficulty
with which some of the insights that we now take for granted were attained.
The distinction between combinations and permutations, which is essential to
an understanding of probability theory and is now encountered very early in
any study of the subject, was obscured for a very long time. Bennett (1998)
notes that for centuries learned people believed that the tossing of three dice
had 56, not 216, possible outcomes, because they failed to make this distinc-
tion. She points out that although games involving the tossing of three dice had
been popular since the days of the Roman Empire, the first known correct enu-
meration of all the equiprobable outcomes of the toss of three dice is attributed
to Richard de Fournival, and was written sometime between 1220 and 1250.

Other Major Contributors to Theory Development

Another significant contributor to the early development of probability theory
was Christiaan Huygens, who documented the collaboration between Pascal
and Fermat in his De Ratiociniis in Ludo Aleae (On Reasoning and Games of
Chance) (I have seen both 1654 and 1657 as the publication date), which, Da-
vid (1962) says, served as the unique introduction to probability theory for the
following half century. In this book, Huygens treated the question, as had
Pascal and Fermat, of how to divide the stakes in an uncompleted game of
chance, but he did so in a more general way. Here, also, he introduced the idea
of mathematical expectation.

Another 17th-century work that contained some references to probability
and a discussion of some ideas that might be considered precursory to statisti-
cal inferencing was La Logique, ou I' Art de Penser (Logic, or the Art of
Thinking), which was published in 1662, with financial support from Pascal,
by a group at the Port- Royal monastery. Although the author of the book was
not identified, Antoine Arnauld is believed to have been the primary, but not
the only, one (P. L. Bernstein, 1996).

Noteworthy advances in the development of probability theory came early
in the 1 8th century with such works as Essai d' Analyse sur les Jeux de Hasard
(Essay on the Analysis of Games of Chance), by Montmort (1708/1713), Ars



Conjectandi (The Art of Conjecture), by Jacob (sometimes Jakob, Jacques, or
James) Bernoulli (1713), and The Doctrine of Chances: or a Method of Calcu-
lating the Probabilities of Events in Play, by Abraham de Moivre (1718; sec-
ond and third editions of which were published in 1738, and, posthumously, in
1756), the last being an expanded version of De Mensura Sortis (On the Mea-
surement of Risks [or lots]) (1711).

The relationship between Montmort and de Moivre, a somewhat testy one,
provides a glimpse at how egos can intrude even in the presumably dispassion-
ate world of mathematics. De Moivre, born in 1667, was 11 years older than
Montmort, but de Moivre outlived Montmort, who died in 1719, by 35 years.
Because Montmort published his essay about 3 years before de Moivre pub-
lished De Mensura Sortis, and de Moivre lived and produced much longer than
Montmort, de Moivre is often considered Montmort's successor. Both contrib-
uted significantly to the advancement of probability theory, but neither was
particularly generous in his assessment of the contributions of the other.
Montmort was angered by what he took to be de Moivre's belittling of his work
on probability theory, as put forth in Essai d'Analyse sur les Jeux de Hasard,
when de Moivre referred to it in a condescending way in the preface to one of
his own books on the subject. Montmort chastised de Moivre in print and de
Moivre later acknowledged Montmort's contribution to the field. Montmort
held that his essay contained implicitly all that was in de Moivre's De Mensura
Sortis (Todhunter, 1865/2001).

Todhunter (1865/2001) contrasts the persons and work of Montmort and de
Moivre this way:

Montmort's work on the whole must be considered highly creditable to his
acuteness, perseverance, and energy. The courage is to be commended which led
him to labour in a field hitherto so little cultivated, and his example served to
stimulate his more distinguished successor. De Moivre was certainly far supe-
rior in mathematical power to Montmort, and enjoyed the great advantage of a
long life, extending to more than twice the duration of that of his predecessor; on
the other hand, the fortunate circumstances of Montmort's position gave him
that abundant leisure, which De Moivre in exile and poverty must have found it
impossible to secure, (p. 134)

De Moivre made many contributions of unquestioned originality to the
development of probability theory. His De Mensura Sortis was essentially a
collection of 26 probability problems and solutions. In this regard, it is rep-
resentative of much of the early work; most of the attention was directed at
finding solutions to very specific problems. The Doctrine of Chances con-
tains a more extensive collection of problems and solutions. Unlike De
Mensura Sortis, however, The Doctrine of Chances (third edition) begins
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with a tutorial presentation of the subject with illustrations of the principles
involved. Even so, many of problems subsequently discussed are likely to
be abstruse to the reader who is not relatively adept at mathematics. David
(1962) refers to the third edition of his The Doctrine of Chances, which was
published posthumously in 1756, as "the first modern book on probability
theory" (p. 171). Writing in the middle of the 19th century, Todhunter
(1865/2001) credits de Moivre with contributing more to the theory of
probability than any other mathematician up to that time with the sole ex-
ception of Laplace. Todhunter gives an extensive summary of the problems
de Moivre considered.

Other notable mathematicians who were important to the early develop-
ment of probably theory included other members of the Bernoulli family,
Leonhard Euler, and Joseph Lagrange. Daniel Bernoulli published an essay ti-
tled "Specimen Theoriae Novae de Mensura Sortis" ("Exposition of a New
Theory on the Measurement of Risk") in Papers of the Imperial Academy of
Sciences in Petersburg in 1738, in which he distinguished among the concepts
of value, price, and utility. P. L. Bernstein (1996) considers this paper to be
"one of the most profound documents ever written, not just on the subject of
risk but on human behavior as well" (p. 100).

Hacking (1975) credits Jacob Bernoulli with presenting, in his Ars
Conjectandi, "the most decisive conceptual innovations in the early history
of probability" (p. 143). The book, which was published eight years after
Bernoulli's death—Bernoulli died before the fourth part of his four-part
book was finished—contains the first limit theorem of probability, a key de-
velopment in the history of probability theory. This theorem formalizes the
idea, now known as the "law of large numbers," which Bernoulli considered
to be intuitively compelling, that the relative frequencies of chance events
are very close to the probabilities of those events in sufficiently large sam-
ples. The following statement of the theorem is from Uspensky (1937):
"With the probability approaching 1 or certainty as near as we please, we
may expect that the relative frequency of an event E in a series of independ-
ent trials with constant probability p will differ from that probability by less
than any given number e > 0, provided the number of trials is taken suffi-
ciently large" (p. 100).

Imagine an urn containing balls some proportion, pw, of which are white. Ac-
cording to the limit theorem, if balls are drawn from such an urn randomly, one at
a time, and replaced after each drawing, then as the number of drawings, N, in-
creases indefinitely the probability that the proportion of white balls in the sam-
ple, W/N, gets arbitrarily close to the proportion of white balls in the urn. That is,

lim (N -><*>) P(\ pv - W/N\ < e = 1, for any £.
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Laplace (1814/1951) expressed the theorem this way: "The probability
that the ratio of the number of white balls drawn to the total number of balls
drawn does not deviate beyond a given interval from the ratio of the number
of white balls to the total number of balls contained in the urn, approaches in-
definitely to certainty by the indefinite multiplication of events, however
small this interval" (p. 610).

Gigerenzer et al. (1989) refer to this result as a "curious mixture of the banal
and the revolutionary" (p. 29). Banal because it expresses a relationship be-
tween number of observations and the confidence one should have in infer-
ences drawn from them that, as Bernoulli had acknowledged, seems intuitively
obvious, and revolutionary "because it linked the probabilities of degrees of
certainty to the probabilities of frequencies, and because it created a model of
causation that was essentially devoid of causes" (p. 29).

Bernoulli's limit theorem provides the basis for inferences in two directions.
Assuming one knows the probability of the outcome of an event, one can invoke
it to predict the approximate relative frequency of that outcome from a large
number of such events. Conversely, if one does not know the probability of a par-
ticular outcome of an event, one can take the relative frequency with which that
outcome occurs in a large number of such events as an approximation of the
probability of that outcome. (The obvious circularity in these assertions is the
basis for some of the puzzlement in discussions of what probability "really is")

We have seen that a great deal of the early work on probability theory in-
volved analyses of games of chance, generally played with cards or dice.
Games of the day considered by various developers of the theory included
Pharaon, Treize, Bassette, Her, Raffling, Hazard, Whist, and numerous others.
Sometimes the problems considered involved imaginary dice—dice with
some number of sides other than six. Progress involved correcting errors of
earlier analyses, generalizing (extending an analysis of a game with a specified
number of cards or specified number of rolls of a die to the general case; ex-
tending consideration of games with evenly matched players to consideration
of games with players with different probabilities of winning), finding better
representations of problems, proving conjectures, and replacing existing for-
mulas or proofs with simpler or more elegant ones. Although important books
were produced, much of the documentation of the thinking that was done and
the progress that was made resides in correspondence among many of the ma-
jor contributors—the Bernoullis, Montmort, Leibnitz, and so on. Numerous
excerpts from this correspondence may be found in Todhunter (1865/2001).

Despite the fact that several eminent figures in the history of mathematics gave
some attention to probability theory during the latter part of the 17th century and
the early part of the 18th, it did not become a major focus of mathematicians more
generally until much later. Perhaps the next noteworthy work published on the
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topic that is still referenced today was Pierre Laplace's Theorie Analytique des
Probabilites (Analytic Theory of Probabilities), the first edition of which appeared
in 1812, more than 150 years after the work of Pascal and Fermat, and remained
the dominant publication on the subject for about a century (Kamlah, 1987).
Todhunter (1865/2001) says of Laplace that the theory of probability was more in-
debted to him than to any other mathematician. The first edition of Theorie
Analytique des Probabilites, but not the second and third editions, which were
published in 1814 and 1820, contained a dedication to Napoleon-le-Grand.
Laplace also published, in 1814, Essai Philosophique sur les Probabilites (A
Philosophical Essay on Probabilities) for more popular consumption.

Laplace (1814/1951) referred to the theory as "at bottom only common sense
reduced to calculus; it makes us appreciate with exactitude that which exact minds
feel by a sort of instinct without being able ofttimes to give a reason for it" (p. 196).
Laplace recognized the importance of probability theory—"It is remarkable that a
science, which commenced with the consideration of games of chance, should be
elevated to the rank of the most important subjects of human knowledge" (p.
195)—and contended that if we considered its remarkable aspects, which he men-
tions, "then we shall see that there is no science more worthy of our meditations,
and that no more useful one could be incorporated in the system of public instruc-
tion" (p. 196). However, after his work, interest in probability among mathemati-
cians again waned and remained at a low level for the remainder of the 19th
century and the first couple of decades of the 20th, despite the fact that its applica-
tion was proving to be very useful, even in theoretical physics.

Kac (1964) attributes the relative lack of interest in probability theory
among mathematicians immediately following Laplace to a feeling within the
discipline that the theory was "built on loose and nonrigorous foundations" (p.
96). Laplace's definition of probabili ty, he contends, is circular because it in-
vokes the notion of equally likely outcomes, which notion is itself a probabilis-
tic one. Kac notes too that "the field was plagued with apparent paradoxes and
other difficulties. The rising standards of rigor in all branches of mathematics
made probability seem an unprofitable subject to cultivate" (p. 96). There were
a few notable 18th- and early-19th century mathematicians who cultivated the
subject nevertheless. Major contributors to the continuing development and
application of probability theory during the 19th and 20th centuries included
Cournot, Mill, Venn, Gauss, Poisson, Chebyshev, Markov, Bertrand, Poincare,
Hilbert, Khinchine, Kolmogorov, Reichenbach, and Keynes.

Practical Applications

Although much of their work involved games of chance and the solutions of
abstract problems, many of the contributors to the development of theory



PROBABILITY AND CHANCE • 15

found ways to apply their work to socially significant problems. Some, includ-
ing Daniel Bernoulli and Jean le Rond D'Alembert, applied probability theory
to the question of the advisability of the use of smallpox vaccination;
Bernoulli, Euler, and others applied it to the computation of annuities; some
calculated rates for insurance that took account of the probabilities of specific
insurable events; several used the theory to argue the irrationality of participat-
ing in lotteries; Laplace applied it to problems in astronomy, to voting,
and—especially with his invention of the method of least squares—to the pre-
diction of error in many contexts.

As in mathematics more generally, problems that might appear to be solved
simply for the intellectual challenge they posed were later turned to some prac-
tical purpose. Daniel Bernoulli, for example, solved the following problem:
"In a bag are 2n cards; two of them are marked 1, two of them are marked 2, two
of them are marked 3,... and so on. We draw out m cards; required the probable
number of pairs which remain in the bag" (Todhunter, 1865/2001, p. 229).
Subsequently he found the solution to the problem useful in calculating tables
of remaining life expectancies of married couples (as couples), letting the cou-
ples be represented by the pairs of cards in the problem.

People who wished to apply notions of probability or statistics to practical
problems did not feel compelled to wait until a firm theoretical foundation
had been built before doing so. Indeed, probability theory is an existence
proof, par excellence, of the principle that the usefulness of mathematics of-
ten outruns its theoretical justification. It is one of several examples that
could be given of an area of mathematics whose rigorous development was
spurred by interest in practical problems to which it could be applied and, as
such, it gives the lie to the idea that the best mathematics invariably comes
from interests other than practical ones. As Daston (1987a) puts it, "The doc-
trine of aleatory contracts stimulated the development of a mathematics of
chance and provided the fledgling theory of probability with both problems
and a conceptual framework within which to solve them" (p. 254). Today
probability theory is among the most extensively used areas of mathematics,
despite continuing debates about the meanings of its foundational concepts;
Kac (1964) refers to it as "a cornerstone of all the sciences" (p. 95). The ways
in which this area of mathematics has been applied have had a profound im-
pact on how we view ourselves and the world.

The importance of probability and statistics in the physical sciences was es-
tablished by their application to a variety of problems, first to astronomy nota-
bly by Laplace (Stigler, 1987), and later to the kinetic theory of gases by
Maxwell, Boltzmann, and Gibbs, to the analysis of Brownian motion by Ein-
stein and Smoluchowski, and to the theory of radioactive decay by Rutherford.
Pais (1986) identifies Rutherford's discovery of a half-life and Planck's devel-
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opment of the theory of the quantum at about the same time as the two events
that marked the end of the era of classical physics and necessitated a funda-
mental revision of the concept of causality. That atoms decay spontaneously
and that the probability that a given atom will decay instantaneously is constant
over time are sufficiently well established in modern physics to be viewed as
facts and are invoked to explain a wide range of other phenomena. Why atoms
have this probabilistic property—why one cannot tell that ̂ particular atom is
more or less likely than others of the same type to decay in a given time—re-
mains a mystery. The theory of the quantum has made probability central to
particle physics in many ways; indeed, one may say that the theory of probabil-
ity is fundamental to quantum physics.

More generally, although the term revolution is undoubtedly overworked, it
seems appropriate to apply it to the change in thinking effected by probability,
chance, and closely related concepts during the 19th and early 20th centuries.
As I. B. Cohen (1987) puts it:

The physical, biological, and social scientists of the twentieth century are al-
most universally aware that the establishment of a statistically based physics (ra-
dioactivity and quantum physics), biology (especially genetics), evaluation of
experimental data, and social science have constituted so sharp a break with the
past that no term of lesser magnitude than revolution should be used to charac-
terize this mutation, (p. 34)

Hacking (1987b) highlights the transformation in thinking that occurred by
pointing out that for Hume chance was "nothing real," whereas for von
Neumann, it was perhaps the only reality. Regarding whether revolutionary is
the right term to apply to the effect that notions of probability and chance have
had on scientific thinking, Hacking concludes this way: "What is clear, beyond
all scholasticism, is this. The taming of chance and the erosion of determinism
constitute one of the most revolutionary changes in the history of the human
mind. I use the word 'revolutionary' not as a scholar but as a speaker of com-
mon English. If that change is not revolutionary, nothing is" (p. 54). Kriiger
(1987b) argues that "if probabilism means to accord probability an explana-
tory function, it could not be realized short of a revolution in thought, a rethink-
ing of the relationship of human reason and factual contingency" (p. 84).

Surprisingly, the revolution in thinking did not extend initially to econom-
ics. Menard (1987) points out that leading 19th-century economic theorists
made little or no use of probability in their writings: "Cournot's leading book,
Researches into the Mathematical Principles of the Theory of Wealth [pub-
lished in 1838], did not use probability at all. On the contrary, the first rigorous
model in economic theory was a rejection of the idea that probability could be a
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useful tool at the core of economic analysis" (p. 140). This is the more surpris-
ing in view of the fact that Cournot, the author of Exposition de la Theorie des
Chances et des Probabilites (Exposition of the Theory of Chance and Proba-
bility), which was published in 1843, was an expert on probability theory and a
contributor to its development. As to why the impact of probability on eco-
nomic thinking was delayed relative to its impact in other areas, one hypothesis
is that certain preconditions had to be met before probabilistic ideas could be
applied to advantage in this context, and these were not met until well into the
20th century (Horv£th, 1987).

M6nard (1987) contends that the probabilistic revolution in economics has
yet to happen. M. S. Morgan (1987), in contrast, argues that, although the
probabilistic revolution in economics was surprisingly delayed, it did occur in
econometrics in 1944 with the publication of Trygve Haavelmo's "The Proba-
bility Approach in Econometrics": "Economists' perception of the role of
probability theory in the 1910s to the 1930s was that it had a very narrow do-
main of application, which extended neither to the treatment of economic data
nor to the activity of measuring and uncovering economic laws; still less was
probability seen as an element in theory itself (p. 172). Morgan points out that
during this period, statistical methods (e.g., least squares) that did not need to
be justified by probability theory were widely used by economists, but by the
end of the 1930s, things had begun to change and probabilistic concepts had
started to find their way into the theoretical models economists were develop-
ing; in the mid-1940s, Haavelmo made a strong, and apparently successful,
case for continuing and expanding this trend.

WHAT IS PROBABILITY?

The vision and the intuition of the fair coin are fogged over and the road to
axiomatization is beset with pitfalls. So also are the philosophical and psycho-
logical bases of probability. (P. J. Davis & Hersh, 1981, p. 165)

Despite the many attempts no agreement as to what probability is appears to be
in sight. (Macdonald, 1986, p. 16)

The abstract noun "probability"—despite what we learnt at our kindergartens
about nouns being words that stand for things—not merely has no tangible coun-
terpart, referent, designation or what you will, not merely does not name a thing
of whatever kind, but is a word of such a type that it is nonsense even to talk
about it as denoting, standing for, or naming anything. (Toulmin, 1958, p. 65)

The concept of probability has been around in something close to its current
form for more than 300 years and has proved to be extremely useful. The theory
of probability is now an established area of mathematics with a well-stocked
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store of axioms, theorems, corollaries, lemmas, and the rest. What exactly
"probability" means, or should mean, however, is far from established. Is there
such a thing as objective probability as distinct from a state of mind? Is probabil-
ity a property of a proposition or of an event? Is the concept of chance incompati-
ble with that of determinism? How does one determine the probability of a
possible event? These and many similar questions have been the subjects of de-
bate and discussion that began in the beginning and continue to this day.

One point on which there appears to be little debate is that whatever proba-
bility is it is closely related to the concept of chance. Uspensky (1937) put it
this way: "It is always difficult to describe with adequate conciseness and clar-
ity the object of any particular science; its methods, problems, and results are
revealed only gradually. But if one must define the scope of the theory of prob-
ability the answer may be this: The theory of probability is a branch of applied
mathematics dealing with the effects of chance" (p. 1). Certainly in what fol-
lows, we shall have many occasions to refer to chance, and the closely associ-
ated concept of randomness; it would not be possible to discuss probability
without use of them.

As to what constitutes chance, Laplace (1814/1951) offered the following
definition:

The theory of chance consists in reducing all the events of the same kind to a cer-
tain number of cases equally possible, that is to say, to such as we may be equally
undecided about in regard to their existence, and in determining the number of
cases favorable to the event whose probability is sought. The ratio of this num-
ber to that of all the cases possible is the measure of this probability, which is
thus simply a fraction whose numerator is the number of favorable cases and
whose denominator is the number of all the cases possible, (p. 7)

Laplace argued that when the probability is unknown, all possible values of
probability between 0 and 1 should be considered equally likely. (This view
has been controversial [Hacking, 1975; Polya, 1954b].) Together, Upsensky's
definition of probability and Laplace's definition of chance make a fairly tight
circle; the idea of equal possibility or likelihood keeps popping up in discus-
sions of both of these concepts. Laplace did, however, make provision for situ-
ations in which all the cases are not equally possible. In such cases, one should
"determine first their respective possibilities, whose exact appreciation is one
of the most delicate points of the theory of chance. Then the probability will be
the sum of the possibilities of each favorable case" (p. 11). (Laplace often used
possibility in much the way we today use probability,)

Peirce (date unknown/1956) referred to the theory of probability as "simply
the science of logic quantitatively treated" (p. 1334): "The general problem of
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probabilities is, from a given state of facts, to determine the numerical proba-
bility of a possible fact. This is the same as to inquire how much the given facts
are worth, considered as evidence to prove the possible fact. Thus the problem
of probability is simply the general problem of logic" (p. 1334). Despite his use
of simply in these comments, Peirce saw probability as a controversial and not
well understood subject. "It may be doubted," he claimed, "if there is a single
extensive treatise on probabilities in existence which does not contain solu-
tions absolutely indefensible" (p. 1334). This state of affairs he attributed in
part to the lack of a regular method for calculating probabilities and in part to
the disputed nature of the fundamental principles of its calculus.

Probabilistic reasoning is an example, in Peirce's (date unknown/1956)
view, of explicative, analytic, or deductive reasoning, which he distinguished
from amplificative, synthetic, or, "loosely speaking," inductive reasoning. He
interpreted probability frequentistically and defined the probability of a mode
of argument "as the proportion of cases in which it carries truth with it" (p.
1336). The probability of the conclusion B given the premise A, for example,
was seen as the ratio of the number of times in which both A and B are true to
the total number of times in which A is true independently of the truth of B.
Peirce also recognized the distinction between probability "as a matter of fact,"
which is calculated as a ratio of two sets of events, one of which is a subset of
the other, and probability as "the degree of belief which ought to attach to a
proposition" (p. 1342), although he claimed that most writers had mixed the
two conceptions together. The latter view, "though answering well enough in
some cases" (p. 1346), he considered to be generally inadequate.

In contrast to the view that probabilistic reasoning is a form of deduction is a
close association of it with induction. "The two topics, induction and probability,
are nowadays so closely linked in philosophers' minds, that no explanation is felt
to be needed why a book, for example, which is about induction should also be
about probability" (Stove, 1986, p. 113). Stove argues that probability and induc-
tion are so closely linked in philosophers' minds that they "are often inextricably
confused" (p. 113). Perhaps the point on which one would be most likely to get
consensus among philosophers, mathematicians, and others who make use of the
concepts of probability and chance is that it is difficult indeed to find definitions on
which one can expect general agreement. As Carnap (1953) put it: "Practically ev-
eryone will say that probability as used in science has only one meaning, but when
you ask what that meaning is, you will get different answers" (p. 128).

States 01 Mind or Something More?

Any probability should in principle be indexed with the name of the person, or
people, whose opinion it describes. (Edwards, Lindman, & Savage, 1963, p. 197)
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A question about probability that has been around almost as long as the con-
cept and that persists to this day is whether statements such as "The probability
that the next toss of the die will come up 4 is 1/6" and "The chance of rain to-
morrow is about .8" should be viewed as anything more than reflections of
states of mind—expressions of expectations, of degrees of knowledge or igno-
rance, about the outcomes of uncertain events, or of levels of confidence in the
truth of specified assertions.

According to one view, the idea of chance is necessitated only by the limita-
tions of human knowledge. This view was held by many of the major contribu-
tors to probability theory, including Laplace and de Morgan. According to it,
all apparently probabilistic phenomena are, in fact, deterministic. They are un-
predictable because of our ignorance of the cause-effect relationships in-
volved, or because, even if we understand the relationships in principle, the
situations are too complex to be tractable computationally.

Hacking (1990) notes that the association of chance and probability with
lack of knowledge prevailed during what we now refer to as "the Age of Rea-
son." There is, in his characterization of the view, a hint of something bordering
on the disreputable; the need to invoke such concepts appears to have been seen
as an embarrassment to the human intellect:

Chance, superstition, vulgarity, unreason were of one piece. The rational man,
averting his eyes from such things, could cover chaos with a veil of inexorable
laws. The world, it was said, might often look haphazard, but only because we do
not know the inevitable workings of its inner springs. As for probabilities—
whose mathematics was called the doctrine of chances—they were merely the
defective but necessary tools of people who know too little, (p. 1)

An alternative view is illustrated by Poincar^'s (1913/1956) position that
"chance is something other than the name we give our ignorance" (p. 1381).
We must, he suggests, distinguish between two types of phenomena the causes
of which are unknown to us: those "fortuitous phenomena about which the cal-
culus of probabilities will provisionally give information" and "those which
are not fortuitous and of which we can say nothing so long as we shall not have
determined the laws governing them" (p. 1381). Poincare recognized that very
slight causes can have very large effects and believed that often when the
causes are sufficiently slight to escape our notice we (mistakenly) say the ef-
fects are due to chance. This idea has found more recent expression in the con-
cept of chaos and complexity theory, according to which some events that
appear to be random are really deterministic but too complex to be predictable,
except probabilistically; the occurrence of such events does not rule out, of
course, the existence of other events that are unpredictable, except probabil-
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istically, in principle. Statements of probability can be seen as based on lack of
knowledge in both cases, but knowledge that is available in principle in one
case and not in the other.

The theory of probability was affected by the 19th-century development of
statistics as a discipline and a frequency interpretation was worked out by sev-
eral people in the 1830s and early 1840s. According to the statistical, or fre-
quency, view, which was held by John Stuart Mill, R. L. Ellis, Antoine
Augustin Courant, and J. F. Fries, and worked out in detail by John Venn in the
1860s, "statements of probability are properly understood as being about the
frequency of like events in the long run, and not as measures of expectation
concerning the outcome of some particular uncertain event" (Gigerenzer et al.,
1989, p. 45). Gigerenzer (1994) argues that failure to distinguish between fre-
quencies and single-event probabilities has led to much confusion in the psy-
chological literature on probabilistic thinking.

But even on a strict frequentistic interpretation of probability, it is not clear
that one can expect unanimity with respect to what it means in all contexts.
Consider, for example, Toulmin's (1958) claim that "no one person is permit-
ted, in one and the same breath, to call the same thing both improbable and true
... to do this is to take away with one hand what is given with the other" (p. 54).
According to Toulmin's position, it is inappropriate to speak of an event that
one knows to have occurred as improbable; it once may have been appropri-
ately considered improbable, but not after it is known to be true. To say that
something that is known to have happened sounds improbable, or seems im-
probable, or is believed by someone else to be improbable is permitted, but to
say that it is improbable is not. Moreover, if an event has occurred, someone
who does not realize that it has occurred and who believes its occurrence to be
improbable is mistaken in that belief. Similarly, if I believe it to be probable
that such and such an event will occur at such and such a time, its failure to oc-
cur at the specified time shows my belief to have been mistaken. Toulmin is
careful to distinguish between a claim that was improper when it was made and
one that subsequently turned out to have been mistaken; the fact that a claim
proved to be mistaken does not demonstrate that it was improper as judged in
light of the evidence on which it was based.

This view seems to me to carry the implication that all probabilistic claims
are mistaken. All events that are assigned a probability eventually either occur
or do not, which is to say they all prove to have a probability of either 1 or 0. So,
according to this view, if I say the probability that the next toss of a die will
come up 3 is 1/6, that is a proper belief for me to hold, but I should realize that it
is a mistaken one; as soon as the die is tossed, I will discover that the probabil-
ity was not 1/6 at all but either 1 (if it comes up 3) or 0 (if it does not). This
strikes me as a tenable view, but not a particularly helpful or attractive one.
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Some writers make a distinction between a probability and a degree of con-
fidence. Suppose a fair coin has already been tossed, but I do not know how it
has landed. Some, who might allow that before the coin was tossed the proba-
bility that a toss would come up head was .5, would argue that the probability
no longer applies after the toss; after the fact, they would claim, the appropriate
thing for me to say is that my degree of confidence that it has landed head is .5
(Reichardt & Gollob, 1997).

One Meaning or Many?

Citing B. J. Shapiro (1983) and Daston (1988), Gigerenzer (1994) notes that
many connotations of probability were promoted at different times during the
18th and 19th centuries, including "physical symmetry (e.g., the physical con-
struction of dice, now called 'propensity'); frequency (e.g., how many people
of a given age died annually); strength of argument (e.g., evidence for or
against a judicial verdict); intensity of belief (e.g., the firmness of a judge's
conviction in the guilt of the accused); verisimilitude; and epistemological
modesty, among others" (p. 134). A remarkable aspect of the use of the concept
by Enlightenment probabilists, Gigerenzer suggests, is the ease with which
they slid from one meaning of the term to another.

Writing in the 18th century, D' Alembert suggested the need for a distinction
between what is metaphysically possible and what is physically possible. Any-
thing is metaphysically possible that is not ruled out as a conceptual absurdity;
something is physically possible only if it could actually occur: "It is meta-
physically possible to throw two sixes with two dice a hundred times running;
but it is physically impossible, because it never has happened and never will
happen" (Todhunter, 1865/2001, p. 262).

The considerable attention given to probability during the 20th century did
not result in a convergence on a definition to which all theorists would sub-
scribe. Not only do different writers continue to conceptualize probability in
different ways, many explicitly recognize two or more types of probability and
discuss the circumstances under which each meaning is to be used. W. Weaver
(1950), for example, makes a distinction between mathematical probability
and statistical probability. For mathematical probability, "equally likely
cases" is an undefined concept, playing much the same role in probability the-
ory that points and lines play in geometry. For statistical probability, the likeli-
hood of cases is determined empirically; the likelihood that a randomly
selected child will be a girl is the percentage of all children that are girls.
Margolis (1987) distinguishes between probabilityg, or probability in the gam-
bling sense, and probabilityb, which connotes believability or plausibility. He
argues that sometimes participants in experiments on probabilistic reasoning
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answer questions on the basis of probabilityb when the experimenter intended
that they answer them on the basis of probabilityg.

Nagel (1936/1956) distinguishes three interpretations of probability: the
view formulated by de Morgan (and held more recently by Harold Jeffreys
[1934, 1939] and L. J. Savage [1954/1972, 1962] among others), which sees
probability as a state of mind or the strength of belief in the truth of a proposi-
tion; the view, associated with John Maynard Keynes (1921), that probability
is an unanalyzable but intuitively understandable logical relation between
propositions; and the view that equates probability with relative frequency in
the same sense as noted earlier. Nagel argues that probability can have different
meanings in different contexts. He sees the frequency interpretation (when
properly qualified) as the most satisfactory one in everyday discourse as well
as in applied statistics and measurement, and in many branches of the theoreti-
cal sciences. He sees it also as appropriate for interpreting some statements
about the probability of hypotheses, but does not think it the appropriate inter-
pretation in statements about the probability of complicated scientific theories.

Keynes (1921/1956) treats the concept of probability almost as an undefin-
able primitive:

No knowledge of probabilities, less in degree than certainty, helps us to know
what conclusions are true, and... there is no direct relation between the truth of a
proposition and its probability. Probability begins and ends with probability.
That a scientific investigation pursued on account of its probability will gener-
ally lead to truth, rather than falsehood, is at the best only probable. The proposi-
tion that a course of action guided by the most probable considerations will
generally lead to success, is not certainly true and has nothing to recommend it
but its probability. The importance of probability can only be derived from the
judgment that it is rational to be guided by it in action; and a practical depend-
ence on it can only be justified by a judgment that in action we ought to act to
take some account of it. (p. 1373)

Keynes expects that people with the same education would tend to agree re-
garding what the probability of a specified uncertain event would be.

Ayer (1965) distinguishes three types of judgments of probability: judg-
ments of a priori probability, statistical judgments, and judgments of credibil-
ity. As illustrations of the three, he gives a statement of the likelihood of tossing
double six with a pair of true dice, the observation that any given unborn child
is slightly more likely to be a boy than a girl, and the claim (as of 1965) that
there is little chance that Britain will join the Common Market. Ayer distin-
guishes also five different types of events that are described as happening by
chance: (a) a member of a series that conforms with the a priori calculcus of
chances (theory of probability), (b) a deviation from an established frequency,
(c) an event that was not intended by the agent that caused it, (d) concurrent
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(coincidental) events for which there is no ready causal explanation, and (e)
specific outcomes of statistically determined processes (on average, one of six
tosses of a die will show a three; which tosses show a three is a matter of chance
in this sense).

L. J. Cohen (1982) identifies five different interpretations of probability:
"We can interpret the probability-function that is regulated by the classical cal-
culus of chance either as a ratio of a priori chances, or as a relative frequency of
empirically given outcomes, or as a causal propensity, or as a logical relation,
or as a measure of actual or appropriate belief (p. 253). He does not contend
that one of these interpretations is right and the others wrong: "Just as we can
usefully measure quantities of apples in at least three different ways (by num-
ber, by weight or by volume), so too, if we desire, we can measure probabilities
in several different ways according to the purpose in hand" (p. 253).

Continuing the escalation, Good (1983b) explicitly distinguishes seven
kinds of probability: tautological (mathematical), physical, and five types of
intuitive (logical, subjective, multisubjective, evolving, and psychological).
He defines subjective probability as "psychological probability to which some
canons of consistency have been applied" and logical probability as "the sub-
jective probability in the mind of a hypothetical perfectly rational man" (p.
122). Logical probability is sometimes referred to as credibility.

In sum, two points are clear: First, there is not a consensus among people
who use probability theory about what probability means, and second, it is pos-
sible to distinguish several different connotations that have been given to the
term. A comment by Toulmin (1958) describes the situation well:

The attempt to find some "thing," in terms of which we can analyze the solitary
word "probability" and which all probability-statements whatever can be
thought of as really being about, turns out therefore to be a mistake.... To say
that a statement is a probability-statement is not to imply that there is some one
thing which it can be said to be about or express. There is no single answer to the
questions, "What do probability-statements express? What are they about?"
Some express one thing: some another. Some are about to-morrow's weather:
some about my expectation of life. If we insist on a unique answer, we do so at
our own risk. (p. 70)

G. Shafer and Tversky (1985) express a similar view in characterizing theo-
ries of subjective probability as "formal languages for analyzing evidence and
expressing degrees of belief (p. 309), and arguing that, because the picture of
chance can be related to practical problems, the probability languages that can
be constructed can differ with respect to both semantics and syntax. It need not
be assumed that all of these languages have equal normative claims, they con-
tend, and there is "the possibility that no single language has a preemptively
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normative status" (p. 315). Shafer and Tversky discuss specifically the lan-
guage of Bayesian probability and that of belief functions, making finer dis-
tinctions within this broad one. (Bayesian probability is discussed in chap. 4.)
Within Bayesian probability, for example, they distinguish the following three
semantics: frequency semantics (which "compares our evidence to the scale of
chances by asking how often, in situations like the one in hand, the truth would
turn out in various ways"), propensity semantics (which "makes a comparison
by first interpreting the evidence in terms of a causal model and then asking
about the model's propensity to produce various results"), and betting seman-
tics (which "makes the comparison by assessing our willingness to bet in light
of evidence: at what odds is our attitude towards a given bet most like our atti-
tude towards a fair bet in a game of chance?") (p. 316).

Much more could be said by way of illustrating that there is not general agree-
ment among people who think about such things regarding what probability and
closely associated concepts mean, but enough has been said to make the point.
From a pragmatic perspective, it is not necessary that there be a single
agreed-upon definition of probability for the concept and the mathematics that
has been developed around it to be of use, and indeed the mathematics of proba-
bility theory is used to great advantage by people holding very different views on
the question of what probability "really means" as well as by those who hold
none at all. This fact makes the question no less interesting to those who like to
think about such matters, but it may be reassuring to those who wish to use the
concept and associated mathematics for practical purposes, without concerning
themselves much with philosophical debates about meaning.

Probability theory provides us with a tool for making useful predictions at
certain levels of observation. It permits us to deal with the behavior of gases or
human populations, for example, by treating probabilistically the motions of
the molecules of gas or the behavior of the individuals that comprise a group;
and this is a very great help, because even if the motion of every single mole-
cule or the behavior of every individual is assumed to be deterministic and to
obey known laws, there are simply too many of them to allow the inferring of
the behavior of gases or populations from calculations of their individual tra-
jectories or actions.

Probability ana Determinism

The historical relationships of probability theory and statistics with determin-
ism and indeterminism ... defy any simple generalization. Probability and sta-
tistics have served both masters at one or another point in their history,
depending on which interpretation of probability was then in the ascendant.
(Gigerenzer et al., 1989, p. 276)
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The disavowal of determinism was, ironically but essentially, a development of
the statistical tradition. It represents one of the most interesting outcomes of the
introduction of statistical thinking to science, social thought, and philosophy in
the nineteenth century. (Porter, 1986, p. 227)

There are people who say that it is merely extremely probable that water over a
fire will boil and not freeze, and that therefore strictly speaking what we con-
sider impossible is only improbable. What difference does this make in their
lives? Isn't it just that they talk rather more about certain things than the rest of
us? (Wittgenstein, 1953/1972, p. 43)

Probability and determinism are often viewed as antithetical ideas. The be-
havior of deterministic systems is considered to be lawful and, at least in
principle, predictable. That of probabilistic systems is seen to be erratic and
inherently unpredictable in detail. In fact, completely deterministic systems
can produce unpredictable behavior. Mathematical chaos, complexity the-
ory, and other areas of mathematics that focus on nonlinear systems present
many examples of unpredictably complex—some would say truly ran-
dom—behavior produced by systems whose operation is governed by rela-
tively simple deterministic rules. Some observers believe this fact reveals a
deep truth about the universe and our ability to know it: "The conclusion must
be that even if the universe behaves like a machine in the strict mathematical
sense, it can still happen that genuinely new and in-principle unpredictable
phenomena occur" (Davies, 1988, p. 55).

Not only can deterministic systems be unpredictable, but the behavior of proba-
bilistic systems can be highly predictable in the aggregate; at the appropriate level
of description, probabilistic phenomena are remarkably lawful and predictable,
and this is a primary reason why probability theory has been of such great interest
and of use in so many contexts. It would seem that "we can't get away from deter-
minism. Chase it out the door, by postulating total incoherence, and it comes back
through the window, in the guise of statistical laws" (Ekeland, 1993, p. 50).

The relationship between probability and determinism is not easy to de-
scribe in a few words, in part because both terms are used to represent a variety
of concepts. We have already noted several connotations that have been given
to probability. Determinism has been conceived in several ways as well.
Gigerenzer et al. (1989) distinguish five—metaphysical, epistemological, sci-
entific, methodological, and effective—and argue that whereas "the empire of
chance" has shaken scientific determinism, it has left the other types intact.

Some students of chance have seen statistical regularity as a form of deter-
minism. De Moivre (1756/1962), for example, expressed that view this way:
"If from numberless observations we find the ratio of events to converge to a
determinate quantity, as to the ratio of P to Q, then we conclude that this ratio
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expresses the determinate law according to which the event is to happen" (p.
264). Buckle (1857-1861) saw statistical regularities as evidence of a lawful-
ness that could be countermanded neither by chance nor by human will. Davies
(1992) captures something of this idea in declaring a difference between
stochasticity and anarchy.

Heated and extensive debate has occurred also as to whether the phenome-
non of statistical regularity should be seen as evidence against human freedom.
No one denies the reality of the phenomenon; the debate has centered on the
question of whether aggregate regularity is consistent with freedom at the level
of the individual. Like most such debates, this one has had no clear winner, or at
least no losers willing to acknowledge themselves as such.

A particularly interesting aspect of the debate, because it tells us something
about human reasoning, is the contrast between attitudes prevailing in the early
part of the 19th century and those more common a century later: "In the 1930s,
the conviction that the laws of nature are probabilistic was thought to make the
world safe for freedom. The incoherence went in the opposite direction in the
1830s: if there were statistical laws of crime and suicide, then criminals could
not help themselves. In 1930, probability made room for free will; in 1830, it
precluded it" (Hacking, 1990, p. 136). Hacking goes on to note, however, that
doubts about whether the fact of statistical regularity really does support the
idea of free will persist: "The cool-headed analytic view says that a statistical
law may apply to a population, but members of the population remain free to do
as they please. The law applies only to the ensemble of individuals.... Despite
this glib and comfortable opinion, we have not made our peace with statistical
laws about people. They jostle far too roughly with our ideas about personal re-
sponsibility" (p. 117).

Given the course that physics took during the 20th century, the history of
the development of probability theory and statistics now seems a little ironic.
Quetelet and others wanted to quantify social and psychological phenomena
in the fashion of the physical sciences, in order to give the former the cer-
tainty enjoyed by the latter, and the application of statistics to social and psy-
chological phenomena was central to this effort. Porter (1986) summarizes
the attitudes among social scientists regarding the application of statistics to
their field this way:

The evident success of statistics as an approach to social science was not inter-
preted by contemporaries as vindication of a metaphysic which regarded the
laws governing certain domains as only probable. On the contrary, statistical
laws were deliberately formulated to extend the certainty of sciences like astron-
omy and mechanics to knowledge of phenomena which hitherto had resisted ex-
act scientific investigation, (p. 69)
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The irony is that an area of mathematics that was seen to be the avenue to
certainty regarding social and psychological phenomena subsequently became
instrumental in relieving us of much of the certainty with which we had viewed
the physical world before the appearance of quantum mechanics on the scene.
The acceptance of indeterminism has been referred to as "one of the most strik-
ing changes of modern scientific thought" (Porter, 1986, p. 149), and the dis-
covery that the physical world is not deterministic as "the most decisive
conceptual event of twentieth century physics" (Hacking, 1990, p. 1).

In quantum mechanics, the probabilistic nature of the properties of sub-
atomic particles is considered to be not a matter of the limitations of our
knowledge, but inherent to the particles themselves. Our inability to deter-
mine both the position and momentum of a particle to a high degree of accu-
racy is not just a consequence of the crudeness of our measuring techniques,
and it is not even only a result of the fact that the act of determining one of
these properties has an effect on the other property; according to some inter-
pretations of the theory, a particle does not have a precise location and a pre-
cise momentum at the same time.

The emergence of probability theory and statistics as mathematical disci-
plines was not the only—perhaps not even the primary—cause of the demise
of determinism in physics. This was forced by the results of experiments that
could not be accounted for in classical deterministic terms. The fact that by
the time these experimental results were obtained, probability theory and sta-
tistics were well established meant that scientists had the concepts and tools
they needed to accommodate the new results. One wonders what course
physics might have taken had these concepts and tools not been at hand.

Surprisingly, acceptance of the idea that the universe is nondeterministic
at the quantum level has had the effect of greatly increasing physicists' abil-
ity to predict phenomena at higher levels of organization. Discovery of the
indeterminate character of the building blocks of nature has somehow made
their behavior in the aggregate more understandable and susceptible to
modification and control. In short, indeterminism at the level of the individ-
ual particle does not seem to rule out the possibility of determinism at the
level of their aggregate behavior. This observation applies equally to the be-
havior of inanimate physical systems and to that of individual people and
large groups. Koestler (1972) speaks of the paradox of the lawfulness of
chance: "The paradox consists, loosely speaking, in the fact that probability
theory is able to predict with uncanny precision the overall outcome of pro-
cesses made up out of a large number of individual happenings, each of
which in itself is unpredictable. In other words, we observe a large number
of uncertainties producing a certainty, a large number of chance events cre-
ating a lawful outcome" (p. 25).
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Probability as a Mathematical Discipline

Neither philosophers nor mathematicians have been able to converge on a con-
sensus as to what probability "really is," and it seems unlikely that such a con-
sensus will emerge any time soon. This conceptual impasse appears not to have
impeded the development of probability theory as a mathematical discipline,
however, at all. William Feller, whose 1957 text on probability theory has long
been recognized as a classic, declined to define probability: "We shall no more
attempt to explain the 'true meaning' of probability than the modern physicist
dwells on the 'real meaning' of mass and energy or the geometer discusses the
nature of a point. Instead, we shall prove theorems and show how they are ap-
plied" (p. 3). As a calculus, the theory of probability works just fine without the
benefit of such a definition, and its usefulness in countless contexts has been
established beyond doubt.

One way to characterize probability theory as a mathematical discipline is
as a set of rules for "calculating the probabilities of complex events consisting
of collections of 'elementary' events whose probabilities are known or postu-
lated" (Kac, 1964, p. 98). To apply the calculus of probability it is not neces-
sary to know what it means, at a deep level, to say that the probabilities of
specific elementary events are thus and so or to know how those probabilities
were established; it is necessary only that the probabilities be specified numer-
ically and that the values used conform to certain constraints (e.g., be positive
values between 0 and 1 inclusive).

As a mathematical discipline, the calculus of probability functions like any
other branch of mathematics. Its corpus is a set of theorems that are deducible
from a few axioms and undefined primitives. And as is the case with other
branches of mathematics, the entities with which it deals—the symbols it ma-
nipulates—can be viewed as abstractly as one might wish; they need bear no
relationship to any aspects of the physical world. As it happens, much of the in-
terest in probability theory—as in many other areas of mathematics—derives
from the fact that when its symbols are taken to represent specific aspects of the
physical world, the inferences that can be drawn by application of the sym-
bol-manipulating rules of the calculus prove to be remarkably close to what
can be determined by observation.

This correspondence is not a property of the mathematics itself, but a useful
bonus. In the probability calculus, the joint probability of two independent
events is the product of the probabilities of the individual events as a matter of
definition. The definition stands whether or not there are such things as inde-
pendent events in the physical world. No conclusions about the world can be
drawn from the calculus without the involvement of some assumptions that do
not come from the calculus itself. I may say that i/real-world variables A (say
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the toss of a three with a specific die) and B (say the toss of a two with a differ-
ent specific die) are independent and each is probabilistic, then I expect that the
probability of their joint occurrence is equal to the product of their individual
probabilities of occurrence. I would say this on the strength of my belief that
the "laws of probability," by which I mean the theorems of probability theory,
are descriptive of certain types of events in the physical world; but the belief is
neither part of the calculus nor essential to it.

As Ayer (1965) puts it, "In themselves the propositions of the calculus are
mathematical truisms. What we can learn from them is that if we assume that
certain ratios hold with respect to the distribution of some property, then we are
committed to the conclusion that certain other ratios hold as well" (p. 46). In the
absence of an assumption about the applicability of probability theory to the
physical world, we are committed to the indicated conclusion only in the abstract
realm of the calculus itself. We make the assumption with some confidence be-
cause we have considerable evidence that it is true, but that evidence comes not
from the calculus but from observation of real-world events. This dictates cau-
tion in applying probability theory to the description of real-world events.
Rozeboom (1997) makes the point explicitly: "Until such time as the founda-
tions of applied probability theory become rather less mysterious, we should ex-
ercise prudence in how unconditionally we trust the statistical models through
which we filter our empirical research findings" (p. 366). This is not to contend
that such models should not be used, but only to note the appropriateness of some
care and tentativeness in the interpretation of the results of their use.

JUDGMENTAL VERSUS STATISTICAL PROBABILITY

Probability has two aspects. It is connected with the degree of belief warranted
by evidence, and it is connected with the tendency, displayed by some chance
devices, to produce stable relative frequencies. (Hacking, 1975, p. 1)

What guarantee have we for assuming that limits of relative frequencies bear any
significant relation to finite relative frequencies, which are, after all, the only
things we can observe? (Von Plato, 1987, p. 393)

Although several possible meanings of probability have been articulated by
people who have thought about the subject, the distinction that has been most
widely recognized is the dichotomous one between judgmental (subjective, in-
tuitive, epistemological, inductive, epistemic) and statistical (objective, physi-
cal, aleatory) probability. Some variant of this distinction is recognized by
most modern writers. Polya (1954a, p. 116) makes this distinction, for exam-
ple, when he points out that the calculus of probability can be used both to sys-
tematize the rules of plausible inference and to describe random mass
phenomena. In the first case probability refers to credibility or degree of rea-
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sonable belief and in the second to long-range relative frequency. He considers
both uses legitimate, but warns against confusing the two.

Kamlah (1987) also makes this distinction in discussing the history of the
concept of probability: "[T]he more probabilistic laws, such as Mendel's laws or
the statistical laws of Brownian motion or radioactive decay, became known in
natural science, the more it became clear that physical probabilities are physical
quantities, while subjective probabilities are at best methodological tools—if
they can be justified at all" (p. 113). Kamlah's claim that physical connotation of
probability gained popularity over time suggests that subjectivism was stronger
among the original contributors to the development of probability theory. Daston
(1987b) makes this explicit: "The apparent miscellany of applications to gam-
bling, insurance, astronomy, medicine, reliability of testimony, accuracy of tri-
bunal judgments, economic theory of value, and reasoning from known effects
to unknown causes were in fact joined by a single thread: all problems were
posed in terms of reasonable belief and action based upon that belief (p. 297).
This perspective is sometimes referred to as Laplacian inasmuch as his concept
was strongly subjectivist. Sometimes the distinction between subjective and ob-
jective probability was made on the basis of whether the event(s) in question oc-
curred only once or repeatedly; probability was considered subjective in the
former case and objective in the latter (Jorland, 1987).

Carnap (1950/1962, 1953) distinguishes between probability as a logical
concept—inductive probability—which refers to the amount of evidentiary sup-
port for some hypothesis or claim, and probability as an empirical concept—sta-
tistical probability—which connotes the frequency of an event of interest
relative to the frequency of all events in the same class (e.g., the frequency of the
toss of a three with a die relative to the total number of tosses of the die). He sees
both types of probability as indispensable to science, but argues the importance
of maintaining a distinction between them. Salmon (1974) too distinguishes be-
tween probability as degree of rational belief and probability as relative fre-
quency. Hacking (1975) makes a similar distinction, referring to probability that
connotes degree of belief as epistemological probability and to that which con-
notes stable frequencies as aleatory probability.

Although, as already noted, Feller (1957) declines to define probability in his
textbook treatment of probability theory, he does distinguish between intuitive
or judgmental probability and physical or statistical probability. The former has
to do with beliefs or states of mind, the latter with possible outcomes of a concep-
tual experiment. Fundamental to physical or statistical probability is the concept
of a "sample space," the points of which represent the full set of possible out-
comes of the conceptual experiment. The sample space and its points are the
primitive undefined notions of the theory and occupy within it the same status as
do the notions of point and straight line in Euclidean geometry.
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A distinction of this sort was made explicitly at least as early as 1837. Both
Poisson (1837) and Couraot (1843) use the wordprobabilite to represent rea-
son for belief that an event has occurred or will occur and chance to indicate
an objective property of an event, namely its propensity or "facility" to occur.
Hacking (1975) argues that the dual character of probability can be seen even
in the work of the several people who began to develop the theory independ-
ently around 1660, and in some precursor work, such as that represented by
Cardano's book, which, as has already been noted, was written early in the
16th century but not published until 1663: "It is notable that the probability
that emerged so suddenly is Janus-faced. On the one side it is statistical, con-
cerning itself with stochastic laws of chance processes. On the other side it is
epistemological, dedicated to assessing reasonable degrees of belief in prop-
ositions quite devoid of statistical background" (p. 12).

The correspondence between Pascal and Fermat regarding how to divide the
stakes in a prematurely terminated game of chance concerns aleatory probabil-
ity; Pascal's famous "wager" defending the reasonableness of belief in God
concerns probability in the epistemological sense. Hacking (1990) contends,
however, that whereas philosophically minded students take this and related
distinctions seriously, the vast majority of users of probability theory for prac-
tical purposes do not, and some extremist proponents of one or another view
often deny the distinction, recognizing as legitimate only the type of probabil-
ity they espouse. Hacking notes that the two have been dominant at different
times and argues that debate about which is correct is pointless. The change
that time has effected in the connotation that probability has had in physics is
seen in a comment by Beatty, Cartwright, Coleman, Gigerenzer, and M. S.
Morgan (1987): "The probabilistic laws of classical statistical mechanics were
supposed to be a function of human ignorance; those of quantum mechanics, to
reflect the structure of nature" (p. 1).

A strong commitment to a frequentist interpretation of probability ap-
pears to have been the case among mid-19th-century philosophers and
philosophically minded mathematicians with an empiricist bent, including
Cournot, Ellis, Fries, Boole, Mill, and Venn (G. Shafer, 1993). Notable
frequentists of the 20th century include Ronald A. Fischer and Richard von
Mises. Heidelberger (1987) credits Gustav Fechner with doing the founda-
tional work on which von Mises and other 20th-century frequentists built:
"It was mainly Fechner's work that led to the decline of the classical
Laplacian theory of probability and the rise of frequency theory in our cen-
tury. Determinism in the nineteenth century allowed for indeterminism
only as a result of human ignorance, while Fechner's theory led to the con-
ception that probability theory is an empirical science of chance phenom-
ena in nature" (p. 135). Basic to Fechner's theory were the concepts of a



PROBABILITY AND CHANCE • 33

collective object and chance variation. Heidelberger describes Fechner's
contribution in some detail.

G. Shafer (1993) argues that a resolution of the subjectivist-frequentist con-
troversy, of sorts, was provided by Kolmogorov's axiomatization of probabil-
ity theory early in the 20th century. The effect of this work was to differentiate
clearly probability theory as a mathematical discipline from interpretations
and practical applications thereof. Salsburg (2001) says of Kolmogorov's
axiomatization that "it is taught today as the only way to view probability. It
settles forever all questions about the validity of those [probability] calcula-
tions" (p. 144). As Shafer notes, however, Kolmogorov's resolution of the sub-
jectivist-frequentist controversy has not been satisfactory to all. And Salsburg
points out that Kolmogrov was himself keenly aware that it did not answer the
question of what probability means in real life. This question—more philo-
sophical or metaphysical than mathematical—has yet to be answered in a way
that is recognized as compelling by all, or even most, of the people who have
thought and written about it.

The distinction between judgmental and statistical probability seems to me
to be an intuitively compelling one. The probability that the extinction of the
dinosaurs was the result of a meteorite colliding with the earth seems different
in kind from the probability of tossing five straight heads with a fair coin. Simi-
larly, the probability that a woman will win a specific future U.S. presidential
election seems a different sort of entity than the probability that a specified
ticket holder will win a particular lottery. We speak of probabilities in all four
cases, but in the second of each pair of examples we would expect to find a high
degree of agreement among statisticians as to how to determine the probabili-
ties and even regarding what they are, whereas for the first example in each pair
we would not expect a strong consensus with respect to either what the proba-
bility is or how to determine it.

Although many writers recognize both judgmental and statistical interpre-
tations of probability, many others recognize one or the other but not both.
Some who see a probability statement as a description of a state of mind—an
expression of a degree of uncertainty—hold that this is true whether one is talk-
ing about events, like births of male and female children, that happen all the
time, about one-of-a-kind events, like the extinction of the dinosaurs, or about
possible future events, like worldwide thermonuclear war, that have never hap-
pened in the past. Some theorists who hold a strictly frequentistic view of prob-
ability see all meaningful statements of probabilities either as assertions about
the actual relative frequencies with which the events of interest have occurred
in the past or, in the case of events that have occurred infrequently or not at all,
as statements of the relative frequencies that would be observed if the events
that made up the numerator and denominator of the ratio occurred often. The
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position has sometimes been argued by frequentists that application of proba-
bility to an individual unrepeatable event is not justified.

The distinction between two types of probability, one referred to as judg-
mental, subjective, intuitive, epistemological, inductive, or epistemic and the
other as statistical, objective, physical, or aleatory, seems fundamental, but
finer distinctions have also been made. Gigerenzer et al. (1989) note that the
mathematicians who initially tried to measure probabilities came up with at
least three methods: "equal possibilities based on physical symmetry; ob-
served frequencies of events; and degrees of subjective certainty or belief' (p.
7). The second and third of these correspond directly to statistical and judg-
mental probability, respectively, as these terms are used here. The first cate-
gory—equal possibilities based on physical symmetry—is generally
considered an instance of statistical or physical probability; but there clearly is
a difference between accepting 1/6 as the probability that a tossed die will land
with three up on the strength of the physical symmetry of the die, and taking
18/35 to be the approximate probability that an unborn child will be male on
the grounds that historical data show this to be the long-term relative frequency
of male births.

What Is a Judgmental Probability?

Relative frequency is, for most observers, a noncontroversial concept, connot-
ing or denoting simply ratios of numbers of events. To say that the relative fre-
quency of heads in a large number of tosses of a coin was .507 is to say that, on
the average, 507 of every 1,000 tosses were heads. No one quarrels about this
use of terms. What is sometimes disputed is the use of empirically determined
relative frequencies as the basis of making claims about probabilities. No one
will question the appropriateness of saying that the relative frequency of male
births is 18/35, or about .514, assuming that is what the records show; but some
people will object to saying, on the strength of this fact, that the probability that
the gender of some soon-to-be-born child (whose gender has not been deter-
mined by tests) will be a male about .514. On the other hand, there is the view
that relative frequency is a more fundamental concept than probability and that
people's beliefs about the latter derive largely from their observations of the
former (Estes, 1976a, 1976b).

What exactly should a judgmental probability be taken to mean? When I say
that I believe the probability of some possible future event to be X, what am I
saying? One answer to this question invokes the notion of statistical probabil-
ity in a theoretical way. It essentially says that j/the appropriate experiment
could be done, it would yield the event in question in the ratio X; the fact that
the experiment cannot be done, if it cannot, does not preclude this interpreta-
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tion. Another possible interpretation is that the statement of probability repre-
sents nothing more than the strength of a belief, expressed in such a way that 0
and 1 represent respectively the minimum and maximum strengths possible.
One way of measuring strength of belief, and thus of subjective probability, is
by determining one's willingness to bet on the event whose probability is in
question, as proposed by Borel (Knobloch, 1987). There are other interpreta-
tions as well. Hacking (1975) distinguishes three different conceptions of
probability among current subjectivists: the extreme form of subjectivism of L.
J. Savage (1954/1972, 1962) and Bruno de Finetti (1976), the theories of in-
ductive probability developed by J. M. Keynes (1921), and the subjective prob-
ability of quantum physicists. It suffices, for present purposes, to acknowledge
these distinctions without pursuing them further here.

L. J. Cohen (1982), who stresses the ambiguity of judgmental probability,
argues that the common view that a subjective probability assigned to an uncer-
tain event is veridical to the extent that the assigned number reflects the objec-
tive probability of that event is correct in a trivial sense where the subjective
probability of X means a person's estimate of the objective probability of X,
but incorrect when the subjective probability of X means the strength of belief
in X and the objective probability of X means the relative frequency of X.
When people estimate the probability of a specific outcome, Cohen contends,
they may take into account not only the relative frequency of that outcome but
also any other relevant information they may have. One's strength of belief that
a specified individual would survive to a given age could be informed, for ex-
ample, not only by one's knowledge of the actuarial data that provide the rela-
tive frequency with which people in the demographic group to which the
individual belongs survive to that age, but one's knowledge of the person's
general state of health, survival-relevant habits, and so on.

L. J. Cohen (1982) notes further that a subjective probability can be taken to
mean what one personally believes about some uncertain event, or it can be
taken to mean what anyone ought to believe on the strength of the evidence. By
the first, or descriptive, interpretation, different subjective probabilities held
by different people are not necessarily contradictory, but by the second, or pre-
scriptive, interpretation they are.

Trie Principle 01 Inaiiierence

Carnap (1953) illustrates the distinction between subjective—his term is in-
ductive—and statistical probability by noting that the "principle of indiffer-
ence" can be interpreted in different ways when the former type of probability
is in question. His illustration involves the drawing of four balls from an urn
that contains blue and white balls in an unknown ratio. The question is how to
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assign a priori probabilities to the possible outcomes. The answer is obtained
by listing all possible outcomes and applying the principle of indifference, ac-
cording to which, in the absence of evidence to the contrary, all possible out-
comes should be considered equally probable. Carnap argues that in this
example, the principle can be applied in two ways, depending on what one con-
siders an outcome to be.

One might consider an outcome to be a specific sequence of draws: blue, blue,
white, blue; or one might consider an outcome to be the drawing of a particular
ratio of blue to white balls: three blue, one white. Sixteen different outcomes are
distinguishable in the former case, but only five in the latter. Applying the princi-
ple of indifference gives as the probability of each outcome 1/16 in the first case
and 1/5 in the second. Unfortunately, when the 16 outcomes from the first analy-
sis are mapped onto the 5 of the second, the probabilities assigned are seen to be
inconsistent. There is only one sequence that yields four blues, for example, and
this has probability 1/16 according to the first view and 1/5 according to the sec-
ond; similarly, there are six sequences that contain two blues and two whites, so
the probability of getting some one of these sequences, according to the first
view is 3/8 (the sum of the probabilities of the individual sequences), whereas,
according to the second application of the principle of indifference, the probabil-
ity of getting two blues and two whites is 1/5.

I believe that most theorists would reject this illustration on the grounds that
it is wrong to consider all possible blue-to-white ratios to be equally probable.
Assuming that the drawing is with replacement, and letting the probability of
drawing a blue ball be/? and that of drawing a white one l-p, the probability of
drawing k blues and 4 - k whites in four draws would be

In order for the probability of the drawing of k blues and 4-k white balls to
be equal for all values of n from 0 to 4, it would have to be the case that

(1 -pY = 4p(l -P)3 = 6p\l -p)2 = 4p\l -p) =/,

and there is no value of p for which these equalities can all hold.
Nevertheless, the principle of indifference is a controversial one, and at least

as sometimes expressed, can lead to contradictions. (See the discussion of
Bertrand's paradox in chap. 6.) Carnap (1953) illustrates this by applying
Jeffreys' (1939) claim that in the absence of a reason to consider one hypothe-
sis more likely than another the probabilities are equal—to the situation in
which the question is what probability to assign to the drawing of a ball of a
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specified color from an urn containing balls of three colors, say blue, red, and
yellow, in unknown proportions:

Let us consider as a starting hypothesis that the first ball we draw from the urn will
be blue. According to Jeffreys' (and Laplace's) statement of the principle of indif-
ference, if the question is whether the first ball will be blue or not blue, we must as-
sign equal probabilities to both these hypotheses; that is, each probability is 1/2. If
the first ball is not blue, it may be either red or yellow, and again, in the absence of
knowledge about the actual proportions in the urn, these two have equal probabili-
ties, so that the probability of each is 1/4. But if we were to start with the hypothe-
sis that the first ball drawn would be, say, red, we would get a probability of 1/2 for
red. Thus Jeffreys' system as it stands is inconsistent, (p. 132)

Carnap suggests that "one of the fundamental questions to be decided is
whether to accept a principle of indifference, and if so, in what form. It should
be strong enough to allow the derivation of the desired theorems, but at the
same time sufficiently restricted to avoid the contradictions resulting from the
classical form" (p. 134).

The principle of indifference is problematic even—perhaps especially—
when applied to situations that do not have the complication of alternative plau-
sible interpretations like that described by Carnap. Consider the workhorses of
probability theory: coins, dice, and cards. We assume that the (fair) coin is
equally likely to come up head or tail, that the (fair) die is equally likely to show
any of its six faces, and that each of the possible hands of, say, 13 cards (as in
bridge) is equally likely to be dealt from a well-shuffled deck. But why should
we make this indifference assumption in any of these cases? Ayer (1965) raises
this question and proposes that, in the absence of experience, we have no reason
to do so: "Antecedently to experience ... we have no more reason to expect that
the results of tossing coins or throwing dice will conform to the a priori probabil-
ities than that they will deviate from them. The reason that we think that results
that are highly improbable in this sense call for a special explanation is that they
are empirically abnormal" (p. 51). As a matter of historical fact, statistical regu-
larities were observed in nature before any rational basis for predicting them had
been developed; it was the observation of them that prompted the effort to pro-
vide a theoretical explanation. It is not clear that any explanation has been found;
it appears, as Ayer seems to be claiming, that we expect statistical regularities be-
cause that is what we have observed and we can say no more than that.

Probability ana Uncertain Knowledge

Probability in its most general use is a measure of our degree of confidence that a
thing will happen. (Tippett, 1941/1956, p. 1485)
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Whatever else it may be, the idea of probability is a reflection of the fact that
our knowledge of the world is often uncertain and incomplete. Because our in-
dividual knowledge bases about specific aspects of the world differ, the proba-
bilities we assign to possible events should sometimes differ also. If a fair coin
were about to be tossed, you and I would undoubtedly agree that the probabil-
ity that the toss would result with a head is .5. If the coin had already been
tossed, but neither of us had seen the outcome, we both would again consider
the probability of head to be .5. If you now looked at the coin but I did not, the
probability of head for you would immediately become either 0 or 1, but for me
it would remain at .5. Your uncertainty about this aspect of the world has been
resolved by the information you received from your observation, but my uncer-
tainty remains. Or if one of us knew the coin tosser to be using a trick coin
weighted so as to produce a head on about 75% of the tosses, and the other did
not have this knowledge, again the probability of the outcome of the upcoming
toss would be different in our minds.

In this book, a number representing a probability will be taken to reflect a
belief regarding the likelihood of the occurrence of a particular event. Gen-
erally it will be assumed that such beliefs are based on, and are consistent with,
either assumptions of physical symmetry (as would be involved in coin tossing
or dice throwing) or objective relative frequency data (as, for example, in actu-
arial statistics) when such data are available. When notions of symmetry are
not relevant or relative frequency data are not available (as when estimating the
probability of a third world war before the middle of the 21st century), such a
number will be taken to reflect the judgment of an individual or group, the basis
of which may or may not be possible to make explicit.

For purposes of describing experimental investigations of reasoning under
uncertainty, it may not be necessary to make much of the distinction between rel-
ative frequency and probability. To be sure, some investigators have had people
estimate relative frequencies and some have had them estimate probabilities, but
typically the basis for judging the accuracy of the probability estimates (when
that has been a concern) has been relative-frequency data. When, for example,
people have been asked to estimate the probability that one will be the victim of
some type of accident, it has been assumed that the true probabilities are seen in
past-incidence statistics. In this book, when discussing experimental work on
reasoning under uncertainty, I will follow the convention of using the same terms
(relative frequency, probability) as have the investigators whose work is cited,
and generally will not make anything of the differences in terminology.

Until the development of the theory of quantum mechanics early in the 20th
century, the need to make use of statistical probability was assumed to be a re-
flection of the limitations of our powers of observation and understanding of
physics. The outcome of the toss of a coin, for example, was assumed to be pre-
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dictable, in principle, though not in practice, given the current state of under-
standing of the interacting causal forces. With the development of the theory of
quantum mechanics came acceptance of the idea that some properties of the
universe are inherently probabilistic, and are not predictable, except statisti-
cally, even in principle. In quantum theory, distributions of quantum events are
predictable, but individual events are not. The intensity of a field at a particular
point is said to equal the probability of the occurrence of the field's associated
quantum particle at that point; whether it will actually be observed at that point
can be predicted only probabilistically until the observation is made.

The debate between those who hold a frequentist view of probability and
those who hold a subjectivist view is unlikely to be resolved soon; there are
knowledgeable people on both sides of the divide who see their position as ob-
viously correct and who fail to understand how anyone could find the opposing
view tenable. Fortunately, the debate represents little threat to probability cal-
culus as a mathematical discipline; the mathematical theory of probability, es-
pecially as axiomatized by Kolmogorov, appears to be immune to disagree-
ments about what probability really is. It is remarkable that the theory has
proved to be so practically useful in so many contexts, despite the continuing
lack of consensus regarding what the basic concept means, but a similar obser-
vation can be made about mathematics more generally.

G. Shafer (1993) argues that an axiomatic theory of probability can be based
on axioms pertaining to any of three ideas—knowledge of the long run, fair
price (or fair odds), and warranted belief—that the concept of probability ties
together in what he calls a circle of reasoning. But whichever idea is selected as
foundational, one cannot do full justice to probability without involving the
other two ideas as well; the three were inextricably intertwined in the emer-
gence of mathematical probability. Historically, Shafer attributes the develop-
ment of the theory of fair price in games of chance to Pascal, Fermat, and
Huygens in the 1650s, and the step from fair price to probability during the fol-
lowing 50 years primarily to Jacob Bernoulli, who also proved the law of large
numbers, which is fundamental to knowledge of the long run. Knowledge of
the long run was brought back to fair price by Condorcet in the 1780s, thus
making the circle complete. The contemporary thinker can enter this circle at
any point, Shafer suggests, but getting the ideal picture of probability requires
that one appreciate all three ideas and the connections among them.

WHAT IS AN IMPROBABLE EVENT?

Some of the concepts relating to probability theory are somewhat difficult. Ar-
guably, many, if not most, of them are relatively simple. Confusions sometimes
arise unnecessarily, however, because of imprecision in the use of language.
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For this reason, it often is hard to tell whether certain confusions are simply the
results of imprecise use of language or have deeper conceptual roots. Consider,
for example, the basic idea of an improbable event.

Specific Events Versus Events With Specific Properties

Imagine a bag containing 10 marbles, each with a unique number on it between 1
and 10 inclusive, and suppose someone were to draw them from the bag, while
blindfolded, one at a time (sampling without replacement). A drawing in the or-
der 8, 2, 3, 6,10, 4, 1, 5, 9, 7 would not be considered remarkable, whereas to
most people a drawing in the order 1,2,3,4,5,6,7,8,9,10 undoubtedly would.
Given that each of these specific orderings is equally improbable, why should
one of them be readily accepted as the result of a random draw whereas the other
one is likely to raise suspicions about the drawing process?

Or consider two sequences of coin tosses with 10 tosses in each one. Sup-
pose one sequence i s H H T H T T T H T T and the other is 10 consecutive
heads. Again, most people would not find the first sequence remarkable, but
the second one would lead them to wonder whether the coin had a head on both
sides. In fact, assuming a fair coin, the two sequences are equally likely, or—to
be more precise—equally unlikely, inasmuch as the probability in each case is
1 in 210, or 1 in 1,024.

These examples illustrate the importance of distinguishing between a specific
event and an event with specific properties (Nickerson, 2002). Consider again
the coin-tossing case. The first sequence looks more random, and consequently
seems more likely, than the second because one expects the sequence to have
heads and tails in roughly equal proportions. We run into difficulty here when we
fail to distinguish the event HHTHTTTHTT from the set of events having the
property, say, "from four to six heads." Inasmuch as there are 672 ways of obtain-
ing from four to six heads in 10 tosses, getting some member of this set is 672
times as likely as getting the single member of the set "10 consecutive heads,"
but getting the particular member that was obtained is not. Similarly, returning
to our first example, the drawing of 8,2,3,6,10,4,1,5,9,7 is no more likely than
the drawing of 1,2,3,4,5,6,7,8,9,10, but the probability of drawing some se-
quence that is not perfectly ordered, of which there are many, is very much
greater than the probability of drawing the single one that is.

It is easy to imagine one saying, at this point, "I see the distinction, but I would
still be more surprised to see 10 tosses of a coin result in 10 heads than to see
them result in H H T H T T T H T T." Would such an attitude be justified? The an-
swer is, it depends on what, precisely, one means. If one means that one would be
less surprised to see a result containing four heads and six tails than to see one
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with all heads, it is justified. If one means that one considers the specific result H
H T H T T T H T T t o b e more likely than 10 consecutive heads, it is not.

Another way to make the distinction is to contrast irregularity with random-
ness (or regularity with nonrandomness). The fact that a sequence is irregular
is not compelling evidence that it was produced by a random process, nor is the
fact that it is regular proof that it was not produced by a random one. It will per-
haps be readily conceded that an irregular sequence can be produced by a
nonrandom process; what may be less apparent is that a regular sequence can
be produced by a random one. The tossing of a fair coin can yield 10 heads in a
row; it is unlikely that it will do so, but not impossible. Such an outcome might
be described as "chance regularity." It is much more likely that the tossing of a
fair coin will result in a mix of heads and tails. So it is reasonable to associate ir-
regular sequences with randomness and regular sequences with nonrandom
processes, as a general rule, even though any specific irregular sequence is no
more likely than a comparable specific regular one.

Twice within a period of a few months a few years ago, the Massachusetts
and New Hampshire lotteries turned up the same (four-digit) number on the
same day. The first time this happened, the event was considered sufficiently
improbable to merit a prominent article in the Boston Globe. The article mis-
reported the chances of the two lotteries producing the same number on the
same day as being 1 in 100 million. In fact, they are 1 in 10,000. What the arti-
cle had reported was the probability that the lotteries would both turn up a
specific number (say, 2734). The chance of that happening is indeed 1 in 100
million, but because there are 10,000 numbers (between 0000 and 9999 in-
clusive) that the two lotteries could both pick, the chance of them picking the
same number (irrespective of what the number is) is 10,000 times 1 in 100
million, or 1 in 10,000.

One can say of any specific pair that the chance of that particular combination
coming up is 1 in 100 million. This being so, why is it that the one outcome, say
2734 and 2734, attracts attention and another, say 6135 and 2864, does not? The
answer is in the way in which outcome of interest is defined. In the aforemen-
tioned example, the outcome of interest is the occurrence of any two numbers
that are identical, which is a rare outcome (1 chance in 10,000) relative to the oc-
currence of any two numbers that are not identical (9,999 chances in 10,000).
Both of these outcomes are sets composed of disjunctions of many possible
combinations. The outcome identical numbers includes the events 0000-0000,
0001-0001 ... 9999-9999. The outcome nonidentical numbers includes all
other combinations of which there are 9,999 times as many.

I have belabored the distinction between specific events and events with spe-
cific properties because I believe it to be not only important to an understanding
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of many probabilistic phenomena but also extremely easy to forget, or to obscure
with the careless use of language. So we may refer to an event as being more or
less probable when what we should say is that observing some event with certain
properties of interest in common with the one in question is more or less proba-
ble. This type of confusion may help account for a variety of results that have
been obtained in experimental studies of statistical or probabilistic reasoning.

If one understands this distinction, one should recognize that any sequence
of numbers in a fair lottery is as likely to occur as any other. Thus in a lottery in
which five numbers are drawn, without replacement, from, say, the numbers 1
through 20, the sequence 1,2,3,4,5 is precisely as likely to occur as is the se-
quence 11,5,20,3,16. This being true, is it rational to have a preference for the
second sequence over the first? An argument can be made either way. On the
one hand, one might prefer to have a ticket with the second sequence rather
than one with the first, on the grounds that suspicions that would be likely to
arise if the former sequence were drawn would not be evoked by a drawing of
the latter one, even though each is as likely (or unlikely) as the other. On the
other hand, if one assumes that people would be disinclined to select a regular
sequence like 1,2,3,4,5, one might prefer to select it with the idea that if one
won, one would be unlikely to have to share the prize with other winners.

The distinction between specific events and events with specific properties
is relevant to an understanding of the second law of thermodynamics, accord-
ing to which the entropy (randomness) of a closed system tends always to in-
crease, which is to say that the natural tendency of any closed system is to
proceed from more orderly to less orderly states, or in probability terms, from a
less probable state to a more probable state. The principle is often illustrated
with the example of the distribution of gas molecules in a closed container.
Suppose we have a container with molecules of, say, neon and argon, in equal
numbers and begin with all the neon molecules congregated on one side of the
container and the argon ones on the other. We would say that this is a highly or-
dered (improbable) state of affairs. If we look at the container again after it has
been left alone for a while, we will find that the neon and argon molecules are
considerably more mixed—the longer we wait the more thoroughly they will
be mixed—and we would say that the situation has less order (a more probable
distribution) than it had before. If, on the other hand, we begin with the mole-
cules mixed, and inspect the container after leaving it alone for a while, we are
very unlikely to discover that the neon has migrated to one side of the container
and the argon to the other—that the distribution has changed from a less or-
derly (more probable) state to a more orderly (less probable) one.

But suppose that every molecule were identifiable—we had neon molecules
Nep Ne2, Ne3, and so on, and the argon molecules were similarly tagged—and
we wished to describe the distribution of the individual molecules in the con-



PROBABILITY AND CHANCE • 43

tainer. Inasmuch as this description will require the specification of the x, y, z
coordinates of every molecule, the description will be equally complex
whether the neon and argon are segregated or thoroughly mixed. Moreover, if
we assume that all possible distributions are equally likely, say after the con-
tainer has been undisturbed by any outside influence for some time, any spe-
cific mixed distribution has precisely the same probability of being obtained as
any specific segregated distribution. The probability that some mixed distribu-
tion will be obtained is much greater than the probability that some segregated
distribution will be, simply because there are many more possibilities of the
former type. The situation is completely analogous in this respect to the
coin-tossing and number-drawing events considered earlier. Any specified se-
quence of tosses or drawings is as likely as any other, but the probability of get-
ting a sequence of tosses that contains a mixture of heads and tails is greater
than that of getting one that contains only heads, and the probability of drawing
numbers in a mixed order is greater than that of drawing them in their natural
order, simply because there are more possibilities of the latter type than of the
former in both cases.

What does this all mean with respect to our understanding of the second law
of thermodynamics? It means that whether we see entropy increasing depends
on the level of detail at which we choose to describe the system. Physicists re-
fer to the coarseness of the grain of a description; the coarser the grain, the less
detailed—hence less complex—a description is said to be: "Entropy is a useful
concept only when a coarse graining is applied to nature, so that certain kinds
of information about the closed system are regarded as important and the rest
of the information is treated as unimportant and ignored" (Gell-Mann, 1994, p.
371). In the case of the example of the distribution of gas molecules, entropy
would be seen to increase, given a description of the situation that is relatively
coarse-grained, but not given a description that is sufficiently fine-grained to
track the movements of individual molecules. In terms of the distinction that
has been made here between specific events and events with specific proper-
ties, we might say that entropy would be seen to increase if one's description
focuses on events with specific properties—such as the clustering or disper-
sion of molecules of specific types—but not if it focuses on the specific distri-
bution of individually identifiable molecules.

The results of several experiments suggest that the distinction between
specific events and events with specific properties is not clearly understood
by many people. In one study, high school students were given the following
problem: "All families of 6 children in a city were surveyed. In 72 families the
exact order of birth of boys and girls was G B G B B G. What is your estimate
of the number of families surveyed in which the exact order of births was B G
B B B B?" (Kahneman & Tversky, 1972, p. 432). About 80% of the subjects
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in this study judged the latter sequence to be less likely than the former; the
median of their estimates for the number of families with this birth order was
30. Other investigators who have obtained similar results include Tune
(1964) and Wagenaar (1970).

Assuming the probabilities of male and female births to be equal, the two
birth sequences G B G B B G and B G B B B B are equally probable (and the
same also as the orders BBBBB and GGGGG). Obtaining a sequence composed
of about half boys and half girls, however, is considerably more likely than ob-
taining one composed almost entirely of boys. If people are confused with re-
spect to this distinction, they may, in some cases at least, judge the probability of
obtaining sequences with specific properties similar to those of the given se-
quences, rather than the probability of obtaining those specific sequences.

Kahneman and Tversky (1982b) note that sometimes the occurrence of the
more probable of two outcomes of a random process can be seen as more sur-
prising than the occurrence of the less probable outcome. They give the exam-
ple of a fair coin being tossed 40 times: The most likely result, in terms of
numbers of heads and tails, is 20 heads and 20 tails, but some people are more
surprised by this outcome than by the result 22 heads and 18 tails. Kahneman
and Tversky give two possible explanations of this reaction. First, it may be
that the 22-18 split is considered more representative of a random sequence
than the 20-20 split. Second, perhaps one's expectation for the outcome of the
coin tossing is for an approximately even split and, if so, the outcome 20-20,
which is an exactly even split, would be perceived as a low-probability event.

This situation, like the one involving birth order, is complicated by the im-
precision and ambiguities of language. To determine whether the surprise reg-
istered by the people in this example is warranted, one must have a clear
understanding of what constitutes the outcomes of interest in their minds. The
outcome 20 heads and 20 tails in 40 tosses of a coin is more likely (p = .125)
than the outcome 22 heads and 18 tails (p - .103) and if these are the two out-
comes that are being contrasted, then one should not be more surprised to see
the first one occur than to see the second one do so. Outcomes of interest can be
defined in other ways in this situation, however. The probability of a 22-18 split
(i.e., 22 heads and 18 tails or 22 tails and 18 heads) (p = .206) is greater than the
probability of a 20-20 split. And the outcome "approximately even split" (say
from 23-17 to 17-23, excluding 20-20) is very much more likely (p = .606) than
a precisely even split. If the people in Kahneman and Tversky's example had in
mind one of these types of comparisons, then their surprise at the occurrence of
a 20-20 outcome was less clearly unjustified.

In general, failure to make a distinction between specified events and
events with specified properties is bound to lead to confusion in the assess-
ment of probabilities. And this is a distinction that we should not assume
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most people make spontaneously. Before judging a reaction to the outcome
of a probabilistic process to be irrational or otherwise inappropriate, how-
ever, we need to know what is the nature of the event, in the mind of the ob-
server, to which the reaction is made. A reaction that could be viewed as
irrational if the event of interest is conceived in one way might be quite rea-
sonable if conceived in a different way.

What Establishes the Probability of an Event?

Fair coins, if tossed repeatedly, will come up heads approximately half of the
time. No one, no matter what one's understanding of what probability "really is,"
doubts that this is so. But why is it so? What determines that heads and tails will
occur with about equal frequency? This question pertains to physical or aleatory
probability, and it is one that, in one form or another, has perplexed probability
theorists, and other people who have thought about such things, for a long time.

Consider again Bernoulli's limit theorem. What gives us confidence that
what this theorem claims—that "in the limit" the relative frequencies with
which specific events are observed in a sample will be arbitrarily close to the
probabilities of those events—is true? We cannot check it empirically, because
we cannot examine a sample that is "close to infinity" in size. Moreover, sup-
pose we could do so. If we found that the observed relative frequencies of spe-
cific events in such a sample differed from the assumed probabilities of those
events, we would revise our assumptions regarding the probabilities. If we
found, for example, that a large number of tosses, say a million, of a coin
yielded heads and tails in the ratio 55:45, we would conclude not that the limit
theorem is wrong but that the probability of that particular coin coming up head
is not .5 but closer to .55. And we would do so on the strength of Bernoulli's
limit theorem or reasoning of a similar kind. But is this not circular?

What are we to say to Gigerenzer et al.'s (1989) claim that Bernoulli's
limit theorem "created a model of causation that was essentially devoid of
causes" (p. 29)? Is it true, as these writers suggest, that this new model "aban-
doned all search for mechanisms, for the hidden springs and principles that
ran the clockwork of the world" (p. 30)? "In Bernoulli's urn model," they ar-
gue, "numbers generated numbers; the physical processes by which they did
so were wholly inscrutable" (p. 30). Are we closer to an understanding of
what probability really is today than when Bernoulli's theorem and urn
model were originally articulated?

Early literature on probability contains references to possibilities, propensi-
ties, proclivities, and facilities, but such terms have little explanatory power.
Sometimes the circularity of attempts to define or account for probability was
glaring, as when Laplace, in his first paper on the topic, noted that probability
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could be defined in terms of a ratio among cases, so long as the cases are
equally probable (Oeuvres, VIII, p. 10; noted in Hacking, 1975, p. 131). Fortu-
nately, as already noted, it is not necessary to be able to explain probability in
order to be able to use the concept to good effect.

The Ubiquity 01 the Improbable

It would be very unlikely for unlikely events not to occur. (Paulos, 1990, p. 37)

The essence of chance is that anything is possible, even the improbable.
(Ekeland, 1993, p. 113)

Just how great do the odds against a particular outcome have to be before one can
be confident that the outcome is not the result of chance? (Devlin, 2000b, p. 14)

Poincare (1913/1956) described the birth of a great man as the greatest bit of
chance:

It is only by chance that meeting of two germinal cells of different sex, contain-
ing precisely, each on its side, the mysterious elements whose mutual reaction
must produce the genius. One will agree that these elements must be rare and
that their meeting is still more rare. How slight a thing it would have required to
deflect from its route the carrying spermatozoan. It would have sufficed to de-
flect that a tenth of a millimeter and Napoleon would not have been born and the
destiny of our continent would have been changed. No example can better make
us understand the veritable characteristics of chance, (p. 1392)

Poincare"'s (1913/1956) point is interesting, but it understates the improbabil-
ity of the existence of Napoleon, or of any particular person by a good bit. The
existence of each one of us is so incredibly improbable that one can become
dizzy thinking about it. Consider. Every human cell has 23 pairs of chromo-
somes. When a reproductive cell divides during meiosis in preparation for pos-
sible union with another reproductive cell, each of the resulting haploid cells
has 23 chromosomes, one from each of the 23 pairs. Assuming that each mem-
ber of any given pair is as likely as the other to end up in a particular haploid
cell, there are 223, or more than 8 million different haploids that can be gener-
ated by the meiosis of one diploid cell.

When a sperm cell and an egg cell are united to form a new diploid, the
sperm is 1 in 223 possibilities, as is the egg; therefore, the combination of chro-
mosomes in the new diploid is 1 of 246 or more than 70 trillion possibilities.
Thus given the existence of individuals with the genetic endowments of your
parents, the probability that their union would result in an individual with pre-
cisely your genetic makeup is 1 in about 70 trillion. This number is more than
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10,000 times as large as the current world population and probably several
thousand times as large as the number of human beings who have ever lived.
Which is to say that the reproductive cells of two human parents are potentially
capable of generating the genetic blueprints of more different individuals than
have walked the face of this planet, without ever making a duplicate.

But of course these figures do not begin to reflect the uniqueness of a human
being, because they assume (a) the existence of an individual with the person's
mother's genetic endowment, (b) the existence of an individual with his or her
father's genetic endowment, and (c) the meeting and mating of those two partic-
ular individuals. Given the existence somewhere among more than 6 billion peo-
ple 2 with specific genetic makeups, the probability of their meeting and mating
must be vanishingly small. And an attempt to estimate the a priori probabilities
that such people should come to exist involves us in a very lenghty regress.

Another way to look at uniqueness is to consider the makeup of an individ-
ual at the level of the gene. Heterozygosity is defined as the average proportion
of gene loci in the DNA molecules of an individual that are occupied by two al-
leles. In man the average heterozygosity is estimated to be about 6.7%. As-
suming an individual has about 100,000 gene loci, this means that about 6,700
of those loci would be occupied by different alleles and that consequently an
individual has the potential to produce 26>70°, or 102'017, unique germ cells
(Ayala, 1978). This is an unimaginably large number. If one were to subtract
from this number the number of all human beings who have ever lived, the re-
mainder would be (in round numbers) 102>017. So much is clear: The probability
that an individual precisely like you should ever have come into existence is so
close to zero to be, for all practical purposes, indistinguishable from it. But
then, as Thomas (1979) points out: "Uniqueness is so commonplace a property
of living things that there is really nothing unique about it" (p. 2).

Uniqueness, or unlikeliness, is a common property not only of living things
but of the physical world as well:

Rarity by itself shouldn' t necessarily be evidence of anything. When one is dealt
a bridge hand of thirteen cards, the probability of being dealt that particular hand
is less than one in 600 billion. Still, it would be absurd for someone to be dealt a
hand, examine it carefully, calculate that the probability of getting it is less than
one in 600 billion, and then conclude that he must not have been dealt that very
hand because it is so very improbable. (Paulos, 1990, p. 54)

The fact that any particular hand is so improbable is undoubtedly one of the
reasons people can play such a game as bridge for many years without becom-
ing bored with it. One can easily play the game regularly for many years with-
out ever seeing the same hand twice.
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Paulos' claim that it would be silly to decide that one could not have been
dealt the bridge hand that one holds on the grounds of its improbability is
unlikely to provoke much debate. The bridge hand illustration makes the
case too for the observation by Devlin (2000b) that "simply computing the
probability of an event is not enough to decide whether some phenomenon
is the outcome of chance or design" (p. 14). But suppose now that someone
predicts the cards that her next hand will contain and it turns out that she is
dealt precisely the predicted cards. The probability that the prediction
would prove to be accurate, assuming a random deal, is less than 1 in 600
billion, the same as the probability of getting any particular unpredicted
hand, but in this case we would all be surprised indeed that the prediction
came true and we would surely believe that the deal was not quite as random
as it was supposed to be.

Why are we surprised in the second case and not in the first? Should we be
surprised in the second case and not in the first? What evokes the surprise, or
what should do so, is not the fact that a low-probability hand has been dealt but
that in the second example one was able to predict the dealing of a particular
low-probability hand. If we registered surprise at every occurrence of a low-
probability event, we would exist in a state of constant amazement, because all
events are, from one or another perspective, low-probability events. The ability
to predict the occurrence of specific low-probability events, however, is some-
thing we do not, generally speaking, have.

To make the same point in slightly different terms, we can note that life is
full of situations in which we can say that an improbable event is certain to oc-
cur—that the probability that an improbable event will occur is 1. Such events
are represented by a lottery with, say, 1,000,000 participants. Assuming the
lottery is fair, the probability that any specific participant will win is very
small, 1/1,000,000, close enough to 0 to be considered 0 for practical purposes.
The probability that someone will win, however, is 1. Some individual will feel
very fortunate after the fact and may be inclined to wonder "why me?" But it
had to be somebody; the only way to avoid that is to not have the lottery, and
most of the real-life events for which this is symbolic do not give us that option.

I have argued that the chance occurrence of a low-probability event should
not necessarily evoke surprise, but that the chance occurrence of a. predicted
low-probability event should; the occurrence of a predicted low-probability
event is likely to make us wonder whether it really occurred by chance. This is
not the whole story, however; sometimes we are truly surprised by low-proba-
bility events even if they were not predicted, and it is hard to argue convinc-
ingly that we should not be. Consider again the bridge hand. We are not
surprised when we are dealt a hand that has less than 1 chance in 600 billion of
being dealt, but we would be surprised if dealt a perfect hand— 13 cards of the
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same suit—even though the probability of receiving thatparticularhand is just
the same as that of getting any other particular hand.

Why are we more surprised at getting a perfect hand than at getting any partic-
ular hand? Again we come back to the distinction between specific events and
events with specific properties. Our surprise at being dealt a particular bridge
hand is determined, at least in part, I suspect, by the relative size of the set of pos-
sible hands that share salient features with the hand in hand. There are only four
members of the set of perfect hands, whereas most specific hands have features
in common with many other hands. The probability of getting a hand with, say,
four cards in each of two suits, three in a third, and two in the fourth is very large
by comparison with the probability of getting one with all cards in the same suit.
The probability of getting a hand with a mix of face and number cards is much
larger than the probability of getting one with all face cards. And so on. We need
not suppose that one can calculate, or even accurately estimate, the probabilities
involved in order to have some rough feel for them. People who play the game
frequently are likely to acquire from experience an approximate knowledge of
the relative frequency with which hands with certain properties of interest occur,
and even the most inexperienced novice is likely to recognize that a hand with a
mix of suits is much more probable than one with all cards of the same suit.

The distinction between small-probability events that are noticed after the
fact and those that are predicted in advance is critically important for many
purposes; however, I do not mean to suggest that low-probability events that
are noticed after the fact should always be dismissed as chance events. If I toss
a coin 10 times and it comes up head every time, I am surprised, whereas if it
comes up TTHTHHHTHT, I am not, despite the fact that I recognize the proba-
bility of each sequence to be precisely the same—about .001. The all-heads se-
quence makes me wonder about the fairness of the coin and the other one does
not. Are my different reactions justified? The reader who feels they are not
might imagine tossing the coin 100 times, or 1,000 times, and asking whether a
sequence of all heads would be more surprising than a particular sequence
with a mix of heads and tails, despite the fact that any two specific 100-toss (or
1,000-toss) sequences are equally probable.

The argument I want to make is that discovered low-probability regularities
can be legitimate bases for surprise and that they can serve as reasonable stim-
uli for hypothesis formation and can motivate searches for causal explanations.
Getting all heads in even only 10 tosses of a coin justifies, in my view, some
suspicion that something peculiar is going on. I would want to entertain—and
test—some hypothesis other than that the coin is fair. The observation of the 10
heads does not prove that the tossing was a nonrandom process, but it raises the
suspicion and rightfully prompts the search for a causal explanation. When
does perceived low-probability structure warrant investigation? When should
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it be taken as suggestive evidence of a nonchance effect? When does it beg a
causal explanation?

These are difficult questions, and challenges to the statistical decision mak-
ing, a subject to which we return in chapter 10. It suffices to note here that ap-
parent structure can happen by chance and apparent structure will happen by
chance. Search for structure among outputs of a random process is bound to
succeed. It does not follow, however, that all apparent structure should be dis-
missed as effects of chance.

How Does One Prove a Probability to Be Wrong?

Suppose I were to say that the probability of getting 10 heads in a sequence of
10 coin tosses is approximately .001 and that you then set out to check the accu-
racy of this claim by doing a set of trials, each consisting of 10 tosses, counting
the number of heads obtained in each case. Imagine now that you get 10 heads
in a row on your very first trial. Does this disprove my claim that the probability
of getting 10 heads in a row is about .001 ? The claim was not that it was impos-
sible to get 10 heads in a row on any particular trial, but only that such an out-
come was improbable. Suppose you got 10 heads in a row on each of your first
three trials. Surely, this would prove conclusively that my claim was wrong.

But again, the claim does not make that event impossible either; assuming
the claim is true, three consecutive trials of 10 heads is to be expected about one
time in a billion, on the average, but maybe this it that one time—it is not im-
possible. We can keep on in this vein; no matter how many times you toss 10
heads in a row, I can say that my claim that a single such outcome is about .001
does not rule out the possibility of a series of such outcomes of any given
length. To be sure the probability becomes vanishingly small, but no smaller
than that of any particular outcome. I could always argue, could I not, that the
event, improbable though it is, is consistent with my original claim. You would
long since have come to the conclusion that there was something wrong with
the coin, and so would I, but it is still the case that the possibility of such a sur-
prising outcome cannot be said to be inconsistent with my claim.

For practical purposes, we act, in some instances, as though the occurrence
of low-probability events is indeed impossible, or at least we take such occur-
rences as evidence that our assumptions about their probability of occurrence
were wrong. The explosion of the Challenger on the 25th launch of a space
shuttle, for example, has been taken by some as evidence that the National
Aeronautics and Space Administration's (NASA, 1985) estimate that the prob-
ability of such an accident was about 1/100,000 was grossly in error. In fact, if
the probability of such an accident really was 1/100,000, this would not rule
out the possibility of one occurring on the 25th launch—or on the 1st launch,
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for that matter—but this argument is not likely to count for much—and per-
haps should not—in the practical world of assessing risks to life. It is possible
that NASA's estimate was correct and that the Challenger disaster had a
1-in-100,000 chance of occurring as it did; alternatively, the probability esti-
mate may have been overly optimistic. The choice is not incidental, inasmuch
as how much effort is put into reducing the probability of a future accident is
likely to depend on which of these views is taken.

In using statistics to test scientific hypotheses, the convention to reject a null
hypothesis—to consider it to be false—if the chance probability of obtaining
the observed outcome is considered to be less than a specified small value, say
.01. Strictly speaking, the logic of statistical hypothesis testing does not allow
one, when one obtains a "statistically significant" result, to rule out the possi-
bility that the result was obtained by chance; but the convention is to behave as
though it did so.

SO WHAT REALLY IS CHANCE?

Paradoxically, chance lies at the root of most of the uniformities of the world we
are familiar with. (Barrow, 1990, p. 297)

The existence of chance, far from opposing the order of the universe, manifests
ever more cogently the existence of order. (Nogar, 1966, p. 292)

Chance has been evoked many times in the preceding discussion; it is time
to take stock of this concept. We speak of "chance devices," "chance events,"
and "chance variations." We refer to "effects of chance," noting that this or that
event was "due to chance" or "happened by chance." We refer to many games
as "games of chance." The importance of the concept to mathematics and sci-
ence is seen in references to the "mathematics of chance," the "theory of
chance," the "doctrine of chances," "the science of chance phenomena," and
the, some would say incongruous, term "the laws of chance."

Chance is a controversial concept. As I see it, the word has several connota-
tions as used in the scientific and mathematical literature. I note three:

• Chance as a cover for undetermined physical causes. When I say that
whether a coin I am about to toss will land head or tail is a matter of chance,
what do I mean? I do not mean that the outcome of the toss is not determined
by the laws of physics. I mean only that I am unable to determine what those
laws will dictate in this particular instance, because I do not know the parame-
ters of the situation essential to make that determination. I do not know, for
example, how high the coin will be thrust into the air, the rate at which it will
revolve, the elasticity of the surface on which it will land, and so forth. As to
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why the two possible outcomes are likely to occur with roughly equal relative
frequency in a large number of tosses, I assume that the values of the deter-
mining parameters will change haphazardly from toss to toss and that there is
no reason why they should consistently favor one outcome over the other, but
I consider the outcome to be determined by the physics of the situation in all
cases. If allowed to toss the coin only a little way (say a few inches) into the air
and to let it land on a soft surface from which it would be unlikely to bounce, I
might, with lots of practice learn how to control the toss well enough to make
the coin land one way considerably more often than the other.

• Chance as a cover for ignorance. Suppose a friend has tossed a coin and
knows the outcome, but has not told me what it is. This situation is very dif-
ferent from the preceding one. To my friend the probability that the coin
came up head is either 0 or 1, but from my perspective, I consider the proba-
bility that it was head to be .5. One might say that to me the outcome of the
toss is still a matter of chance, and this would be entirely in keeping, I think,
with the way the word is often used.

• Chance as an explanation. Sometimes the intention in evoking chance ap-
pears to be to explain some phenomenon of interest. When one says this or
that event was "due to" chance, happened "by" or "because of chance, or
"was governed by" chance, one may mean simply that the event was
caused by factors that cannot be identified or that are beyond one's control.
This is essentially the first connotation mentioned earlier. However, an-
other interpretation that may be given to such a statement is that chance
was the cause of the event. This use of the concept is not appropriate or
helpful, as I see it.

In my view, chance is a descriptive concept and never an explanation. We
may say that under specified conditions, certain events are best described as
chance events—that the various possibilities have equal probability of occur-
ring—and this observation may be very useful, but simply calling it chance
does not explain why the behavior is such as it is. The atoms of a radioactive
substance are constantly decaying, the rate of decay differing over a very large
range from substance to substance. We say that precisely which of the atoms
will decay during any particular period—or whether any specific atom will do
so—is a matter of chance. But by calling it a matter of chance adds nothing to
the observation that every remaining atom has the same probability of decay-
ing immediately, and that this does not change over time. And the invocation of
chance does not explain why the decay process is as it is.

Chance is one of those terms that lend themselves to the fallacy of reifica-
tion—the uncritical assumption that a name must name some thing. In invoking
the name, we convince ourselves that we have explained some phenomenon of in-



PROBABILITY AND CHANCE • 53

terest. But in what sense have we done so? Attributing the behavior of something
or someone to chance is analogous to saying that a person picks fights because of a
quarrelsome nature. In this respect, the concept of chance is on a par with that of
gravity. Saying that bodies attract each other because of the force of gravity really
says no more than that bodies attract each other. The inverse square law of gravita-
tional attraction appears to be a universal law, something that characterizes the be-
havior of matter everywhere and everywhen, and the observation that this is the
case is immensely useful, but stating the law does not constitute an explanation of
the why of it. Just so with the concept of chance. Many phenomena, especially in-
volving the behavior of aggregates, are well described as chance phenomena, or as
phenomena that obey the laws of chance; such descriptions can be immensely use-
ful, but they leave unanswered the question of why such lawfulness is observed.

SUMMARY

Some conception of chance dates to antiquity, as evidenced by such practices
as the drawing of lots, the rolling of bones, and other forms of gambling. De-
spite this fact, the development of a quantitative theory of probability did not
begin in earnest until the 17th century. Accounts of the thinking of the early de-
velopers of this theory reveal struggles between conflicting intuitions regard-
ing what the answers to specific questions of probability should be. Such
conflicting intuitions were often resolved by consensus, but not always.

As to what probability really means, differences of opinion persist.
Frequentist (or statistical) and subjectivist (or judgmental) connotations repre-
sent one, and perhaps the most important, distinction in both historical and
contemporary views. The development of probability theory as a mathematical
discipline seems not to have been impeded by the lack of consensual closure
about meaning; the theory has been, and continues to be, used to good effect in
numerous areas of practical application.

The concept of chance, which is central to probability theory, also has sev-
eral connotations in the literature, and what, precisely, it should be taken to
mean is still a matter of debate. That what are generally considered to be
chance events are lawful, which is to say predictable, in the aggregate is be-
yond dispute, thus the peculiar notion of "laws of chance." But chance is not an
explanatory concept, at least in the view of the writer; why chance events are
lawful remains an unanswered question.
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Randomness

Probability is the branch of mathematics that describes randomness.

—Moore (1990, p. 98)

The puzzle is this, if randomness is a product of ignorance, it assumes a subjective
nature. How can something subjective lead to laws of chance that legislate the ac-
tivities of material objects like roulette wheels and dice with such dependability ?

—Davies (1988, p. 31)

Whatever your views and beliefs on randomness—and they are more likely than
not untenable—no great harm will come to you.

—Kac (1983, p. 406)

A he concept of randomness is fundamental in probability theory. At one
level, the concept is relatively simple and intuitively easy to grasp. The selec-
tion of a number between 1 and 10, inclusive, would be considered a random
selection if it were such that every number from 1 to 10 had an equal chance of
being selected. However, specification of a selection procedure that guarantees
this equal-chance requirement is considerably more difficult than describing
the requirement. More generally, the concept has proved to be more than a little
elusive, and it remains enigmatic, despite the fact that it has proved to be very
useful in many contexts.

54
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WHAT IS RANDOMNESS?

Randomness must be easy to define—P. J. Davis and Hersh (1981) point out
that there are a good dozen different definitions of a random sequence—but it
is not easy to find a definition with which experts agree. There are, however,
certain concepts that one encounters often in discussions of randomness and
that characterize properties that a random set or sequence is expected, at least
by some observers, to have. Among the more common of these properties are
equal representation, irregularity or unpredictability, and incompressibility.

Some Conceptions

During the 1870s, William Shanks published the value of n to 707 places, a
prodigious feat, given that the computation was done entirely by hand. Three
quarters of a century passed before someone produced, with the help of com-
puting machinery, an approximation with a larger number of digits. Before this
time, the last 200 or so digits of Shanks' approximation had been suspect, be-
cause some digits were represented noticeably more than others. Inasmuch as
7i is a transcendental number, the digits should be randomly distributed, and
therefore should appear with about equal frequency in any sizeable part of its
decimal approximation. As it turned out, Shanks' approximation was indeed
incorrect after about the 500th decimal place (Ogilvy & J. T. Anderson, 1966).

This story illustrates the equal-representation conception of randomness:
Given a process that selects repeatedly (with replacement) from a finite set in
such a way that every member of the set has the same chance as every other of
being selected on each occasion, we would expect every member of the set to
be represented approximately the same percentage of times among the selected
items after a large number of selections.

This property is easily misunderstood. If an urn contains three black balls
and one white one, we do not expect black and white balls to be represented
equally in a large number of random selections, with replacement, from the
urn. What we mean by equal representation is that in a large number of random
selections, each ball will be represented approximately the same number of
times, or that on any given draw every ball, independently of color, has the
same chance of being drawn.

A random set or sequence is said to be irregular in the sense that it is rela-
tively unstructured. I say "relatively unstructured" because structure or regu-
larity is a matter of degree. A measure defined by Pincus (1991) and his
colleagues (Pincus & Kalman, 1997; Pincus & Singer, 1996), which they call
approximate entropy (ApEn), can be computed for any sequence and indicates
the degree to which the sequence approximates maximum irregularity. ApEn is
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maximum when all fc-tuples of digits are as nearly equally represented in the
sequence as possible. Unpredictability, in the sense that knowledge of a part of
a set or sequence does not provide a basis for predicting any other part, follows
from the lack of structure; the greater the irregularity or lack of structure, the
less the predictability.

A sequence is said to be incompressible if a description of it cannot be given
that is shorter than the sequence itself. The sequence of even numbers starting
with 2 and ending with 1,000 can be described (to wit the last few words) with
fewer characters than would be required to write out the sequence in its entirety;
so this sequence is compressible. Another way to make the same point is to say
that the sequence is such that it can be generated by a rule or procedure that is
shorter than the sequence. The procedure in this case could be: Start with 2; let
each successive integer be the preceding integer plus 2; end with 1,000. Follow-
ing this line of thought, a random sequence is sometimes defined as a sequence
the shortest description of which is itself (Chaitin, 1975; Kolmogorov, 1965;
Martin-L6f, 1966). The sequence 10101010101010101010 ... is easily com-
pressed, for example, as "alternating 1 s and O's," or as " 10 repeated indefinitely."
The sequence 00101110100010110101 ... is not so readily compressed. So ac-
cording to the compressibility criterion, the second sequence might be consid-
ered random, but the first clearly would not.

Because any sequence can be represented in binary form, the compressibil-
ity criterion is sometimes expressed in terms of the length of a computer pro-
gram, represented in binary form, that would generate the sequence of interest
relative to the length of the sequence itself, also expressed in binary form. The
sequence is said to be compressible if the program is shorther than it. Any rela-
tively short binary number is likely to be shorter than a program that would be
able to generate it, but if the number is very long and has enough structure to
permit it to be produced by a simple rule, the program could be shorter than the
number itself.

Some Difficulties

All of these properties have been invoked to characterize randomness, but, al-
though each contributes to the richness of the concept, each also has limita-
tions. The expectation of relatively equal representation, for example, is an
expectation and neither a necessary nor sufficient condition of randomness. It
is not necessary because a random process can produce a set in which the items
do not appear with anything close to equal frequency. It is not sufficient, be-
cause equal representation can be obtained by a process that samples in a
highly regular and deterministic way. One would ensure equal representation
of the 10 digits in a large number of digits, for example, by selecting the digits
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in order, from 0 to 9, and repeating this process as many times as necessary to
get the size sample desired.

Total irregularity appears to be unattainable. According to an area of mathe-
matics pioneered by Frank Ramsey, any sizable set will contain structured sub-
sets within it, no matter how it was produced (Graham, Rothschild, & Spencer,
1990; Graham & Spencer, 1990).

The idea of minimal description or incompressibility is closely related to the
concept of randomness as the absence of pattern or organization. The location of
dots on a page would be said to be random if the simplest way to "describe" its
"organization" were to present the page itself. If the arrangement admits of a
simpler description, or if it could be generated by a procedure that could be de-
scribed more tersely than the page—that would not have to give the coordinates
of the individual dots—it is not random according to this conception.

One attractive consequence of defining randomness in terms of incompress-
ibility (or absence of structure) is that it appears to help avoid the type of per-
plexing question that was raised in the preceding chapter at the beginning of
the discussion of what constitutes an improbable event. By most conceptions
of randomness, the outcome of the toss of a fair coin is considered a random
event and a sequence of heads and tails produced by 20 tosses would be consid-
ered a random sequence. But, as already noted, the probability of getting a
specified highly patterned sequence, say, alternating heads and tails, is pre-
cisely the same as the probability of getting a specified sequence with no dis-
cernible pattern, or a little less than one in a million in both cases.

The compressibility idea seems to permit us to avoid the question of why we
should consider one of two equally likely outcomes to be random and the other
not, given that they are equally probable. Clearly the one sequence is com-
pressible whereas the other is not. We can state a simple rule for generating the
first one, but, it would appear, there is no better way to specify the second one
than to write it out explicitly. But consider the following sequence:

00111101011100001010...

This sequence has no apparent structure, but it was generated by a simple
rule. The rule was the following one:

Choose a number x between 0 and 1. Compute the sequence 2x, 22x, 23x,... For
each number in this sequence substitute 1 when its fractional part is less than Vi
and 0 otherwise.

The value of x that I used was .38. For many choices of x, this rule will pro-
duce a sequence of Is and Os that will pass most, if not all, of the tests of ran-
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domness that one might wish to apply (Kac, 1983). The short—20-digit—
sequence that I produced is shorter than the expression of the rule, so giving the
rule does not demonstrate its compressibility; but it could be made arbitrarily
long by simply applying the rule many times, and any long sequence produced
by this procedure can be described in compressed form by stating the rule and
specifying the value of x that was used to produce the sequence. And each time
the rule is applied with the same value of x, precisely the same random-looking
sequence will be produced.

There are other formulas that will generate numbers that appear to be ran-
dom—that will pass many of the tests that are conventionally used to establish
randomness. One such is the recursive formulaxn+l = kxn( 1 - jtn), 0 < xl < 1. For
some values of k, x stabilizes at some number; at other values of k, x oscillates
successively between two or more numbers. But for certain values of k, x varies
haphazardly (Paulos, 1992).

These examples illustrate the asymmetry of the compressibility test for ran-
domness. Anyone who saw a sequence produced by these processes would be
hard-pressed to find a way to compress them if he or she did not know the for-
mula that produced them. If one can find a way to compress a sequence, one
can say with certainty that, by the criterion of compressibility, the sequence is
not random. Inability to find a way to compress a sequence, however, does not
guarantee that none exists, so the most one can say in this case is that the se-
quence has not been shown to be nonrandom.

Random to Whom?

Despite its apparent straightforwardness, the idea of compressibility is prob-
lematic in some respects. Determining whether or not a particular arrangement
is random in this sense is not always an easy, or even a doable, task. Moreover,
if a description is to be useful, it must be comprehensible. Comprehension de-
pends on a store of knowledge that can be applied to the description's interpre-
tation. What is comprehensible to one person may not be to another. The first of
the aforementioned rules for generating a random sequence of Is and Os will
not be comprehensible, for example, to a person who does not know what a
fractional part of a number is, or what the use of exponents signifies. Should
the knowledge on which the comprehension of a description depends be con-
sidered an implicit part of the description, contributing to its length? To
Hideaki Tomoyori, who was reported to have been able to recite from memory
the first 40,000 digits of n (C. P. Thompson et al., 1991), "the first 1,000 digits
of TC" would be an effective compression of that string of digits; one who does
not have this string stored in memory would have to consult a source that can
provide it in order to make use of the "compressed" description.
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It seems reasonable to consider information obtained from an external
source to be part of the description, from the user's point of view; but then,
should we not consider also the critical information stored in Tomoyori's head
as part of the description in that case as well? These types of considerations
lend support to Shafer's (1993) contention that randomness should be consid-
ered not a property of a sequence of numbers, but rather a property of the rela-
tion between the numbers and an observer. In particular, Shafer argues that a
random-appearing sequence that was produced by a computer program might
be nonrandom from the point of view of one who knew of the program but ran-
dom from that of one who did not: "So the question is not whether or not a given
sequence of numbers is truly random; it cannot be random in and of itself. The
question is what observer we are talking about. A sequence of numbers gener-
ated by a certain program is not random relative to observers who are able to
use the program to reproduce them. It may be more or less random relative to
observers to whom we deny (or who deny themselves) this ability" (p. 192).

Randomness remains an enigmatic concept. (A very readable discussion of
it has been written for a lay audience by Beltrami [1999]). Its usefulness in
many contexts, especially the physical and social sciences, is beyond question.
A variety of tests of randomness, in addition to the compressibility test, have
been developed and are applied in specific instances, but they tend to be indica-
tions and not proofs of randomness, and, at best, they represent necessary but
not sufficient conditions for considering something to be random. That is, if a
set of numbers fails to pass a given test, one may conclude that it is not random;
but if it passes, the most one can conclude is that it may be random, the test did
not rule out the possibility. If one wants to have a high degree of confidence that
one has a means of producing random sequences, the best one can hope for is
that the process will yield sequences that are not shown, by some of the more
demanding tests that can be applied, to be nonrandom; for most practical pur-
poses this appears to be more than enough.

RANDOM PROCESSES AND RANDOM PRODUCTS

Implicit in much of the foregoing discussion has been a distinction between a
random process and a random product, a distinction that has been made ex-
plicit by several writers (e.g., Falk & Konold, 1997; Zabell, 1988). Concep-
tually the difference between a process and a product is clear: but how to
operationalize it in practice is not obvious. Some investigators argue that ran-
domness is more appropriately applied, as a descriptor, to a process than to a
product (Lopes, 1982; Wagenaar, 1991), or take the position that a random
product should be defined as the output of a random process (Pollatsek, 1991).
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Disagreement on the question of whether randomness is better thought of as a
property of a process or as a property of the outcome of a process is not new and
not likely to be resolved to everyone's satisfaction soon (Bennett, 1998).

A random process may be defined as one that selects items from a set in such
a way that every item in the set has the same probability as every other item of
being selected on each trial. A random product could be defined as any product
produced by a random process; alternatively it could be defined in terms of
characteristics, like incompressibility, that make no reference to the way it was
produced. According to the process-based definition of a random product,
HHHHHHHHHHHHHHHHHHHH, representing the tossing of 20 heads in a
row with a fair coin, would be considered a random sequence; according to a
definition based on incompressibility, such a sequence would be considered
distinctly nonrandom.

In other words, random processes can produce products that are
nonrandom, as judged by criteria that are not process based. And, as we have
seen, deterministic processes can produce products that are random, as judged
by the same criteria. Add to this the fact that the way one usually decides
whether a process is random is by checking the products it produces, and it is
easy to see why the concept of randomness is more than a little elusive. The
usefulness of the concept, despite its shaky conceptual foundation, is remark-
able. From a practical perspective, it is not necessary to have a definition of
randomness on which everyone agrees; it suffices to be able to produce sets
that are random in a sense and to a degree that suits the purpose for which they
are to be used, and what is satisfactory for one purpose may not be for another.

TESTING FOR RANDOMNESS

How should one test for randomness? One answer to this question that has been
proposed is that there is no way to demonstrate, beyond all doubt, that the out-
put of a given process is truly random. Horwich (1982), for example, argues
that no finite sequence can be shown to be entirely representative of the long-
term output of a stochastic process; conversely, one can argue that any finite se-
quence could be the output of a stochastic process, because, according to the
theory, every sequence that has nonzero probability of occurring will be pro-
duced by a random process if only it runs long enough.

It is sometimes held that establishing that a nonrandom sequence is not ran-
dom is more straightforward than establishing that a random sequence is ran-
dom (Wagenaar, 1972), but this is debatable. Given that a random process can,
and will, produce sequences that have as much structure as one pleases, one
can never say with certainty by inspecting a sequence that it is not random if
one defines a random sequence as a sequence produced by a random process.
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Randomness as a Contingent Property

Twenty tosses of a coin that produced 20 heads would, by just about any
test, be judged to be nonrandom, but 20 consecutive heads embedded in a
sequence of a few million tosses would not be considered evidence that the
entire sequence was nonrandom; to the contrary, the larger sample would be
suspect if it had no runs of this length. It follows from this type of consider-
ation that it is possible to have many sequences that pass conventional tests
of randomness that, when joined together, yield a much longer sequence
that fails because it does not contain sufficiently long runs (Ayton, Hunt, &
G.Wright, 1991a).

Suppose we invoke the idea of compressibility. Devlin (2000b) gives the
following sequence as one he generated by rolling a fair die 42 times: 1,3,3,6,
5,6,6,4,3,5,2,4,6,1,5,2,1,2,5,6,1,1,4,3,5,4,1,4,4,1,5,1,3,3,2,2,6,2,
6,4,3,5. This sequence probably satisfies the criterion of noncompressibility;
it is hard to imagine producing a description of it that is shorter than the se-
quence itself. So, according to this criterion, we would call the sequence ran-
dom. Devlin goes on to argue:

But suppose I doctored the list a bit, changing the first 1 to a 2? Not only would
such a sequence be the product of design (because of my tampering with the
original result), but it would also carry the mark of design, inasmuch as each
number from one through six would occur exactly seven times. Still, there seems
to be no way to specify the new list of numbers that is shorter than the sequence
itself.... Hence, according to Kolmogorov's definition, the sequence is random,
despite the element of design in its generation, (p. 15)

(Devlin's treatment of equal representation as evidence of design may seem
contrary to the treatment a few pages back of equal representation as evidence
of randomness. But note that the earlier reference said approximately equal
percentages after a large number of selections. The qualifications are impor-
tant; when actual relative frequencies match expected relative frequencies too
closely, especially in small samples, suspicion of tampering is aroused.)

Consider the distribution of points on the area shown in Figure 2.1. Is this
distribution random? What does it mean for the distribution of points within
an area to be random? One thing it might mean is that each point is equally
likely to appear anywhere within the area. This definition implies that if the
area were subdivided into subareas of equal size, the numbers of points fall-
ing in the different subareas should not differ from each other more than
would be expected by chance. So if we wanted to determine whether the dis-
tribution of points in the figure is random, we might do a statistical test to see
if the numbers of points within equal-size subareas differ more than would be
expected by chance. The chi-square test was designed for just such purposes.



62 • CHAPTER 2

FIG. 2.1. Are the dots in this figure randomly distributed?

There are, of course many ways in which a circular area can be divided into
subareas of equal size. Figure 2.2 shows a few of them. Which of these divi-
sions or other possibilities should be used to test whether the distribution of
points in Fig. 2.1 is random? Presumably it should make no difference. If a test
using one division showed the distribution to be random and one with a differ-
ent division showed it to be nonrandom, we would wonder either about our
concept of randomness or about the appropriateness of our test for it.

If we divide the circle into four quadrants, a chi-square test is likely to come
out one way if the division is made horizontally and vertically than if it is made
with the two diagonals (bottom two divisions in Fig. 2.2). In the first case, the
test will not force rejection of the null hypothesis and will therefore lead us to
conclude that the assumption of a random distribution is tenable. In the second
case, the test will make us reject the hypothesis of no difference and conclude
that the distribution is not random. So if we want to believe that the distribution
is random, we should perform the test with the first division, and if we prefer to
believe that it is not random, we should do it with the other one.

It is generally agreed by statisticians that this way of proceeding is cheating.
In situations of this sort, one is likely to be able to find a way of partitioning the
world so as to get a desired outcome if one has the opportunity to scrutinize the
data before deciding how to design the test. This is one of the reasons that many
statisticians insist that the hypotheses that are to be tested by experimentation
and the statistical procedures that are to be used to test those hypotheses be
specified in detail before the experimental data are collected.
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FIG. 2.2. Possible ways to partition the area of a circle to test for the randomness of the
distribution of points in the circle.

The decision as to what would be an appropriate test for randomness, even
when made before the collection of data, must be guided by the nature of the
hypothesized nonrandom phenomenon of interest. Suppose that we wish to
know whether some process that is about to distribute some points in a circular
area will distribute them at random. We might agree, before the fact, to divide
the area into four equal pie-shaped quadrants and to use chi-square to test the
hypothesis that the number of points ending up in each of the various quadrants
does not differ more than would expected by chance. This seems like an unbi-
ased approach, provided we specify the boundaries between the quadrants in
advance of seeing any data.

But suppose that points represent the locations of darts thrown at a bull's-
eye within a circular target and the subject of interest is the accuracy of the dart
thrower. Specifically, imagine that we wish to decide which of the two hypoth-
eses is the more tenable: (a) the points are distributed randomly on the target or
(b) the points are more clustered around the bull's-eye than would be expected
if they were randomly placed. A test based on division of the circle into pie-



64 • CHAPTER 2

shaped quadrants will tell us something about randomness with respect to an-
gular dispersion but nothing about whether the clustering of the points around
the bull's-eye is greater than would be expected by chance. Clearly the test
should take into account the location of the darts relative to the bull's-eye. But
there is still a choice to make.

One way to proceed would be to draw a circle around the bull's-eye so as to
divide the target into two subsections of equal area, as shown in Fig. 2.3, and
then use an appropriate statistical test of whether there are more dart points in
the inner area than in the outer one and the difference is significantly greater
than would be expected by chance. Alternatively, one might represent each
dart location by its Euclidean distance from the center of the target area and do
an appropriate statistical test of whether the dart locations that are less than half
the length of the radius from the center outnumber those that are more than half
the length of the radius from the center and whether the difference between
these numbers is greater than would be expected by chance.

Either of these approaches to deciding whether the dart locations are more
clustered around the center of the target than would be expected by chance
seems to make sense. Unfortunately they are not equivalent. The area of the in-
ner circle shown in Fig. 2.3 is half that of the target, and thus equal to the area of

FIG. 2.3. The area of a circle partitioned as it might be to determine whether points
within it representing the locations of darts thrown at a bull' s-eye are randomly dispersed
over the entire area. The area of the inner circle is equal to half the area of the larger one,
that is, equal to the area of the larger circle minus the area of the smaller one.
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the torus surrounding it. But all the points that are less than half the length of
the radius of the target from the center of the target define an area, as shown in
Fig. 2.4, that is only one quarter the area of the whole target, or one third of the
area of the torus surrounding it. It would be possible to have a distribution of
dart locations that would be considered clustered around the center of the target
according to the first criterion, represented by Fig. 2.3, but that would be con-
sidered a chance distribution by the second criterion, represented by Fig. 2.4.

What appears to be a difficulty follows from the nonlinear relationship be-
tween a circle's area and its radius, A = Ttr2, and in particular the fact that

2 / \2

* n — . When the areas of two circles are in the ratio 2:1 their respec-

tive radii are in the (approximate) ratio 1:4.1; when the ratio of their radii are in
the ratio 2:1 their respective areas are in the ratio 4:1. So which of the two ap-
proaches considered is the appropriate one to use to test the question of
whether or not the dart locations are random with respect to the center of the
target? The answer is one cannot say without being more precise about what
one wants to mean by random in this context. Imagine being given the task of
distributing points on the target area in such a way that their locations would be

FIG. 2.4. The ratio of the areas of the outer and inner circles is 4:1; the ratio of the radii
of the outer and inner circle is 2:1.
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random with respect to the center. One way to proceed would be to superim-
pose a grid on the target and select the x, y coordinates of each point using a pair
of numbers from a table of random numbers. This would produce a distribution
of points that is expected to be roughly the same in any two regions of equal
area, and, given this operational definition of randomness, the first approach
mentioned earlier would be appropriate.

Alternatively, one might determine the random points, again by drawing
pairs of numbers from a random number table, but this time using the first num-
ber of each pair to designate the distance of a point from the center and the sec-
ond one to determine the orientation of a radius drawn through the point with
respect to the 360 degrees of the circle. This would produce a distribution that
is uniform with respect to distance from the center, but with a greater density of
points for a region closer to the center than for a region of equal area farther
from the center, and given this operational definition of randomness, the sec-
ond approach mentioned earlier would be appropriate.

One may have good reason to prefer one of these definitions of randomness
over the other for a specific purpose, but neither can be said to be correct in an
absolute sense. The important point is that failure to be specific about what one
means by randomness in particular contexts can be problematic. We will en-
counter this fact again in the chapter on paradoxes and dilemmas, in particular
in a discussion of Bertrand's paradox.

Another point regarding testing for randomness that is implicit in the pre-
ceding comments is that variables can be random in some respects and struc-
tured in others. One might say, for example, that the distribution of points in a
circle is random with respect to the horizontal dimension, but nonrandom with
respect to the vertical. Or we might describe a distribution as random with re-
spect to angular displacement from the vertical but nonrandom with respect to
distance from the center.

Predicted Versus Discovered Randomness

The rule that hypotheses and statistical testing processes should be specified
before the collection of experimental data seems a good one to apply whenever
experimentation is to be done. This does not mean, however, that what appears
to be structure that was not predicted or anticipated should be ignored. When
one discovers by observation that there is a way of looking at a data set that
makes it appear nonrandom, as, for example, when one observes that one way
of partitioning a space is likely to produce statistical evidence of structure
whereas another partitioning is not, this can be a useful hint for further experi-
mental exploration. Such evidence of structure must be considered tentative,
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and should never be reported without a clear explanation of the role that selec-
tion played in revealing it, but it can be of considerable interest, nonetheless.

Gilovich (1991) discusses an interesting case of after-the-fact assessment
of the randomness of a distribution of points over an area based on studies by
Clarke (1946) and D. Johnson (1981). The question of interest was whether
the V-l bombs dropped on central London by the German airforce during
World War II were randomly distributed over the entire area. Visual inspec-
tion of the distribution (see Gilovich, p. 20) suggests a greater-than-chance
concentration in the northwest and southeast quadrants. And indeed, a
chi-square test would permit rejection of the hypothesis of equal distribution
over the four quadrants with a high degree of confidence. But is the perfor-
mance of such a test appropriate, given the absence of an a priori reason for
partitioning the area into quadrants by dividing it north-south and east-west,
and the fact that interest in the possibility of a nonrandom distribution was
stimulated by inspection of the data? Gilovich says unequivocally no, on the
grounds that "with hindsight it is always possible to spot the most anomalous
features of the data and build a favorable statistical analysis around them" (p.
21). The reason for partitioning the map into four rectangular quadrants, in-
stead of dividing it into four sectors with two bisecting diagonals, say, is to
maximize the sensitivity of the test to the structure that we think we see by in-
specting the figure.

A more extreme case of selectivity in testing for randomness is seen in the
following illustration. Consider a set of points distributed as shown in Fig. 2.5.
It is easy to imagine a partitioning of this space for which a chi-square test
would provide evidence of randomness. If one divides the area into 16 equal
squares as shown in Fig. 2.6, for example, one gets a chi-square of 11 that, with
15 degrees of freedom, yields a.p of about .75, so one cannot reject the hypothe-
sis of a chance distribution. But in inspecting the original distribution, one may
notice that there appear to be more points in the upper right and lower left quad-
rants than in the upper left and lower right. If one divides the total area into four
equal-size squares, as in Fig. 2.7, and does a chi-square test, one gets a
chi-square of about 8.6 that, with 3 degrees of freedom, yields a.p of less than
.05, so one can now reject the hypothesis of random distribution.

Is one entitled to conclude from this second analysis that the points are not
randomly distributed within the entire area? Many statisticians would say defi-
nitely not. I want to argue that the question requires a qualified answer. One can
certainly say that the distribution of points in the space does not pass the partic-
ular (second) test of randomness that was used. Because of the way in which
the test was applied, one does not have a good basis for drawing any firm con-
clusions; however, the observed pattern of results raises a question as to
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FIG. 2.5. Is the distribution of points in the square random?

X
FIG. 2.6. A chi-square test with this partitioning of the square supports the hypothesis
that the points are distributed randomly.
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X
FIG. 2.7. A chi-square test with this partitioning of the square supports the hypothesis
that the points are not distributed randomly. There appears to be greater clustering in the
lower left and upper right quadrants than in the upper left and lower right ones.

whether there may be some causal reason why the points are clustered more
along the major diagonal (lower left to upper right) than along the minor one
(upper left to lower right). It would be foolish to ignore this possible clue to
structure; it provides a reason for making an effort to check more data with this
hypothesis in mind.

Although the illustrations in this discussion have been spatial, the issue of
selectivity is relevant to the problem of distinguishing between randomness
and nonrandomness more generally. Imagine a long sequence of Is and Os of
the kind that might be generated by many tosses of a coin. If one were to scan
such a sequence looking for a subsequence of length 20, say, that appeared to
be nonrandom, and that would be shown to be nonrandom by the application
of some standard statistical test, one would be very likely to be able to find
one. This method of finding structure would be rejected by statistical sophis-
ticates, of course. We should note, however, that in principle the approach is
not unlike the practice of repeating a failed experiment until it yields the de-
sired statistical result.
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Every so often, there is a report in the news media of a neighborhood or
town that has become alarmed because there appears to be a higher-than-
chance incidence of some disease (usually cancer) among its residents. From
the perspective of a resident, this is an understandable cause for concern and
for an effort to determine whether there is a causal explanation for the unusu-
ally high rate of the condition. However, from the perspective of a demogra-
pher, the finding that among the many thousands of towns and neighborhoods
in the country, a few have an unusually high rate of cancer would not be sur-
prising; this is to be expected on a purely statistical basis, just as an occa-
sional run of 10 consecutive heads is to be expected if one tosses a fair coin a
sufficiently large number of times. One cannot blame the resident of a
high-incidence town for looking for something unusual about the area that
would account for the rate, but one should not be surprised, either, if there is
nothing unusual to be found.

As already noted, any sizable set will contain structured subsets within it, no
matter how it was produced; so, if one looks for structure, one is very likely to
find it, even in data that have been produced by a random process. This being
said, it would be hard to deny that the adventitious discovery of structure has
played an important role in science and is a critical aspect of effective thinking
more generally as well. The moral of the fact that structure may be found even
in products of random processes is that discovered structure should be taken
not as strong evidence of causal forces at work but as a stimulus for further in-
vestigation—controlled experimentation when feasible—aimed at providing
independent evidence as to the tenability of the hypothesis that the observed
structure is real and not simply the result of having selected a low-frequency
outcome of a random process.

However, not all the hypotheses that one might want to entertain regarding
randomness lend themselves to testing via controlled experimentation. As-
tronomers, for example, are interested in the question of whether stars and gal-
axies are distributed randomly throughout the universe. They are quite
convinced that, except on the largest scale, the degree of clustering is greater
than would be expected by chance, and this conclusion has been drawn on the
basis of after-the-fact observation. No one proposed a hypothesis about the dis-
tribution of stars and specified a statistical process for testing it before the ac-
tual distribution of stars was observed. It was by looking at the actual distri-
bution that astronomers got the idea that it is nonrandom in specific ways.
When data suggesting structure are obtained from observation and they are not
subject to experimental corroboration, as in the case of the distribution of stars,
perhaps the best that can be done is to consider the aggregate weight of all the
data that can be brought to bear on the question of interest.
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THE PRODUCTION AND PERCEPTION OF RANDOMNESS

Charles Dickens is said to have refused, late one December, to travel by train
because the annual quota of railroad accidents in Britain had not yet been filled
that year.

Nature abhors a vacuum, human nature abhors chaos. Show us randomness and
we will find order, pattern, clusters, and streaks. (Myers, 2002, p. 134)

In view of the difficulty that statisticians have had in agreeing on the nature of
randomness, we should not be surprised if lay people often have an imperfect
understanding of the concept. Many experiments have been done to determine
how good people are at producing or identifying random sequences or sets
(Nickerson, 2002). The general conclusion that the results of these experi-
ments in the aggregate seem to support is that people are not very good at these
tasks—that they find it hard to generate random sets on request and to distin-
guish between those that have been produced by random processes and those
that have not. It appears that people often consider sequences that have been
generated by random processes to be nonrandom and they see contingencies
where they do not exist (J. Cohen, 1972; Wagenaar, 1972). Studies of the per-
ception of covariation, for example, some of which have been motivated by an
interest in superstitious behavior, have yielded evidence that people sometimes
impute contingency relationships between variables that are independent
(Catania & Cutts, 1963; Hake & Hyman, 1953; J. C. Wright, 1962). The gam-
bler's fallacy, the negative-recency effect, the law of small numbers, and a vari-
ety of other concepts attest to the prevalence of the belief among researchers
that people find it hard to distinguish consistently between random and non-
random sets and to generate random ones on request.

The tenability of the conclusion that people are poor producers and
perceivers of randomness has been challenged on the ground that much of the
work has been predicated on the assumption that there exist valid objective cri-
teria with which to judge the adequacy of subjective conceptions of random-
ness and nonrandomness (Ayton, Hunt, & G. Wright, 1991a, 1991b). Ayton et
al. (199la) argue not only that this assumption is false but that in many cases
"psychologists have set their subjects the task of generating or recognizing
random sequences, without explicitly defining what sort of sequence would
count as patterned, and therefore nonrandom, and then do not demur from
passing judgment on the adequacy of the performance of the task" (p. 224).
They suggest that often, in telling people to attempt to produce sequences that
have certain properties (appear to be jumbled or orderless) or that fail to have
others (structure or regularity), they are, in effect, instructing them to produce
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sequences that have properties (e.g., local representativeness, no long runs,
etc.) that are later taken as evidence of nonrandomness.

Other investigators have argued that the controversial nature of the concept
of randomness and lack of agreement among experts as to how it should be de-
fined make it difficult to assess the ability of nonexperts to recognize or pro-
duce randomness, because the standard against which their performance
should be judged is unclear (Lopes, 1982). If experts do not agree as to what
constitutes randomness, it is not clear what we should assume that nonexperts
take the term to mean. One suspects that there are large individual differences
in this regard and that many of the conceptions are imprecise. Evidence that
people produce sequences that are more nearly random by conventional tests
when asked to make them unpredictable than when asked to make them ran-
dom (Finke, 1984) suggests that randomness and unpredictability may not be
equivalent in many minds.

A review of experimentation on people's ability to produce or perceive ran-
domness (Nickerson, 2002) revealed the importance of task instructions and
the difficulty of interpreting results when instructions are vague or ambiguous,
as they often have been. The results of many experiments have been taken as
evidence that people are not good at generating or recognizing randomness,
but, although the conclusion might be correct, much of the experimental sup-
port that has been advanced for it is weak because of the ambiguities involved.

COMMON MISUNDERSTANDINGS INVOLVING
EVENT INDEPENDENCE

The idea of randomness is closely associated with that of event independence.
A random sequence of coin tosses, for example, is one in which the probability
of a head on each toss is .5, or, in other terms, the outcome of each toss is inde-
pendent of the outcomes of the preceding tosses. Some misunderstandings of
randomness seem to have their basis in the imputation of contingencies among
independent events, or lack of acceptance of the idea of event independence.

The "Gambler's Fallacy"

Perhaps the best known case of an imputed contingency is the "gambler's fal-
lacy," according to one form of which arun of successive occurrences of one type
of random event (e.g., a run of heads in coin tossing) will make an additional oc-
currence of that event appear to be less likely. Another, but closely related, form
is the belief that when a sample of ongoing random events shows a "deficit" of
one type of event, the probability of the imminent occurrence of that event is in-
creased. If, for example, heads has outnumbered tails in a series of coin tosses,
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the probability of the occurrence of tails is assumed to be increased until the bal-
ance is restored. Laplace (1814/1951) gives an amusing example of this form of
the bias: "I have seen men, ardently desirous of having a son, who could learn
only with anxiety of the births of boys in the month when they expected to be-
come fathers. Imagining that the ratio of these births to those of girls ought to be
the same at the end of each month, they judged that the boys already born would
render more probable the births next of girls" (p. 162).

Closely related to the gambler's fallacy is the "negative-recency" effect,
which refers to a bias against repetition evidenced by people attempting to gen-
erate or identify random sequences (Bar-Hillel & Wagenaar, 1993; Wagenaar,
1970). A spatial analog to the negative-recency effect has been observed when
people make presumably random selections from a list and avoid selecting ad-
jacent items (H. C. A. Dale, 1960). A negative-recency effect appears to be op-
erative in the attitudes many people express regarding the occurrence of
natural disasters that are generally assumed to be randomly timed; many peo-
ple seem to believe that the occurrence of a natural disaster (earthquake, flood,
tornado) more or less guarantees that such an event will not recur for a rela-
tively long time (Burton, Kates, & White, 1978).

The gambler's fallacy can take more complicated forms as, for example,
when in a two-alternative prediction task people tend to predict the more fre-
quent event after one occurrence of the less frequent event and to predict the less
frequent event after two consecutive occurrences of the more frequent one
(Jarvik, 1951). Study of the gambler's fallacy is complicated by the fact that peo-
ple sometimes make predictions that are consistent with the assumption that they
believe that independent events are contingent even when they indicate, when
asked, that they believe them to be independent. Bar-Hillel and Budescu (1995)
cite this finding, reported in an unpublished manuscript by Gold and Hester
(1989), as evidence of the need for caution in inferring what people believe about
probabilities from their predictions of the outcomes of probabilistic events.

When attempting to predict the outcomes of binary events (win-loss of abet
on a coin toss, win-loss of a football game) people sometimes use information
regarding previous outcomes differently, depending on what they assume
about how the outcomes are determined. When outcomes are assumed to be
determined by chance, as in the case of bets on coin tosses, previous wins are
likely to lead to prediction of a loss; when they are assumed to be determined
causally, as in the case of football games, previous wins are likely to lead to
prediction of a win. The first case is an example of the gambler's fallacy. The
second has sometimes been viewed as an example of a complementary mis-
conception of chance within the world of sports, which is illustrated by the
"hot-hand" phenomenon in basketball: It is commonly believed among basket-
ball players and fans that players sometimes experience an unusual streak of
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successful shots; on such occasions they are said to be hot, or to have a hot hand
(Gilovich, Vallone, & Tversky, 1985).

The "Hot Hand" ana Streaky Performance

In a long series of events of the same kind the single chances of hazard ought
sometimes to offer the singular veins of good luck or bad luck which the major-
ity of players do not fail to attribute to a kind of fatality. (Laplace, 1814/1951,
p. 164)

Some investigators have argued that both the gambler's fallacy and the hot-hand
belief rest on a misunderstanding of randomness, and, in particular, on unaware-
ness of the frequency with which runs of moderate length are likely to occur in
randomly generated sequences; runs in small samples are more likely than they
are generally believed to be (Wagenaar, 1972). Gilovich (1991) explains the hot-
hand belief this way: "Players and fans are not mistaken in what they see: Bas-
ketball players do shoot in streaks. But the length and frequency of such streaks
do not exceed the laws of chance and thus do not warrant an explanation involv-
ing factors like confidence and relaxation that comprise the mythical hot hand"
(p. 16). The mistake that players and fans who believe in the hot-hand phenome-
non make lies, according to this view, not in what they see but in how they inter-
pret what they see. The claim that the length and frequency of streaks of
successful shots do not exceed the laws of chance is based on an analysis of
shooting records of professional players by Gilovich et al. (1985).

Gilovich et al. (1985) note that they do not attempt in their analysis to cap-
ture all that people might mean by "the hot hand" or "streak shooting," but
they argue that the common use of the terms implies that the sequences of hits
and misses of basketball shots should differ from sequences of heads and tails
produced in coin tossing in two ways: (a) the probability of a hit should be
greater following a hit than following a miss, and (b) the number of streaks of
successive hits should be greater than the number produced by a chance pro-
cess with a constant hit rate. The data presented by Gilovich et al. constitute
evidence against the idea that the probability of a hit is greater, on the aver-
age, immediately following one or a sequence of other hits than following
one or a sequence of misses.

Some dyed-in-the wool sports fans who are aware of the data presented
by Gilovich and colleagues are reluctant to accept them as compelling evi-
dence that there is no such thing as a hot hand (Hooke, 1989; Larkey, R. A.
Smith, & Kadane, 1989). I confess to being among them, and although I re-
alize that that reluctance may simply bear out Gilovich's (1991) observa-
tion that belief in the hot hand within the basketball world is very strong and
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not easily changed by the presentation of counter-indicative evidence of the
sort that he and his colleagues have produced, I will try to say why I find
their data unconvincing. I do not mean to deny that observers often see evi-
dence of conditional dependencies where none exists. This was demon-
strated convincingly by Tversky and Gilovich's (1989a) finding that
believers in the hot-hand phenomenon are sometimes convinced they see
streak shooting in randomly generated data. But from the fact that people
sometimes see dependencies that do not exist, it does not follow that there
are never such dependencies to be seen.

The hot-hand or streaky performance can mean at least two things: (a) that
the outcomes of successive trials are not independent (e.g., that the probability
of success on trial n, given success on trial n - 1, is greater than would be pre-
dicted from a knowledge of the overall probability of success and the assump-
tion of trial independence); (b) that a player's short-term steady-state
probability of success fluctuates over time more than is consistent with the as-
sumption of random variation around a stable long-term probability—that in-
dividual players experience limited periods of time during which they play
significantly better than they do on average. Gilovich et al. recognize the latter
conception in noting that references to hot-hand or streak-shooting phenom-
ena "express the belief that the performance of a player during a particular pe-
riod is significantly better than expected on the basis of the player's overall
record" (p. 295). In my view, the data they present do not constitute strong evi-
dence against the occurrence of this type of hot-hand phenomenon.

According to this conception, a hot (or cold) hand would reveal itself, not in
the difference between the probability of a hit conditional on a preceding hit
and the probability of a hit conditional on a preceding miss, but in a short-term
increase (or decrease) in a player's hit rate. To be specific, when a player who
has a long-term-average hit rate of .5 plays a game in which his hit rate is .7, one
might say that during that game he had a hot hand. Conversely, when the same
player plays a game with a hit rate of .3, one might say that his hand, during that
game, was cold. Of course, short-term fluctuations in hit rate would be ex-
pected strictly on the basis of chance, just as the proportion of heads in short se-
quences of coin tosses would be expected to deviate from precisely .5.
However, if the probability of the outcome is really constant, and not varying
over time, one expects the extent to which the relative frequencies of outcomes
in small samples will deviate from that probability to be limited and within
specifiable bounds.

Gilovich et al. (1985) addressed the possibility that the short-term hit rate
varies from the long-term average more than would be expected by chance, as-
suming a fixed underlying probability, in two ways. They compared two esti-
mates of the standard error of individual players' per-game shooting
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percentage, one based on the player's shooting percentages for each game and
the other from his overall shooting percentage across games. They also looked
for evidence of more sequences of successive hits than would be expected by
chance if the hit rate were constant over time. The rationale for the latter analy-
sis was the assumption that if a player is occasionally hot, his performance re-
cord ought to reveal a greater number of hit streaks than would be expected by
chance. Both analyses failed to yield evidence of a nonchance effect. This re-
sult justifies the claim that no evidence for the reality of the hot hand was
found, but not, unless one wishes to assert that the null hypothesis has been
proved, to claim that it has been shown not to exist.

Larkey et al. (1989) argue that the analyses from which Gilovich et al.
(1985) concluded that streak shooting is illusory ignore the effects on perfor-
mance of game context and how a player's shooting interacts with the activities
of the other players. On the basis of an analysis of the shooting records of 18
star players during the 1987-1988 NBA season that was designed, in their
view, to take game context into account, these authors concluded that streak
shooting does occur and offered Vincent ("the Microwave") Johnson as a bona
fide streak shooter. Although I agree with Larkey, Smith, and Kadane's point
that any analysis that purports to demonstrate the existence or nonexistence of
streak shooting should take game context into account, their own analysis was
criticized, effectively in my view, by Tversky and Gilovich (1989b).

Gilovich et al. (1985) make it clear how randomly produced runs can easily
be misperceived as hot-hand effects. And the results of their analyses certainly
give believers in the hot-hand phenomenon something to think about. As
Hooke (1989) has argued, however, they do not justify the conclusion that no
such thing as a hot hand exists, which is what designating belief in the hot hand
as erroneous and as based on a cognitive illusion seems to imply. It may be the
case that the belief is erroneous and that the basis for it is totally illusory, but
this has yet to be demonstrated. There is a difference between saying that no
one has produced compelling evidence that it exists and saying that it does not
exist. And although some of the people who have written on this subject recog-
nize this difference, not all do. S. J. Gould (1989), for example, citing the data
presented by Tversky and Gilovich (1989a), says flatly of the hot hand, "no
such phenomenon exists" (p. 12). One might argue that in the absence of com-
pelling evidence of its existence the assumption of its nonexistence should be
made on the principle of parsimony, but we should distinguish an assumption
that is made in the interest of parsimony and that is not ruled out by evidence
from a conclusion that is forced by evidence.

Hooke (1989) makes what seems to me a critical point in contending that
while we know what should happen if only chance is involved, we do not have a
good idea of exactly what to expect if streak shooting actually exists; in his
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words, "we don't have a well-formulated hypothesis to test against the null hy-
pothesis" (p. 36). Also, the null-hypothesis testing that has been applied to
hot-hand data has been primarily, if not exclusively, rejection-support (RS) test-
ing as contrasted with acceptance-support (AS) testing. Normally RS testing is
appropriate when the null hypothesis represents what the experimenter does not
believe and expects to be able to reject, and rejection is to be taken as evidence
supportive of the experimenter's theoretical position. (See also Meehl's [1967,
1990,1997] distinction between strong and weak uses of statistical significance
tests.) AS testing is appropriate when the null hypothesis represents what the ex-
perimenter believes and acceptance of it would be taken as support for the exper-
imenter's view (Binder, 1963; Steiger & Fouladi, 1997). In RS testing, the
decision criterion is biased against Type I error (rejection of the null hypothesis
when it is true), while in AS testing, the criterion is biased against Type II error
(acceptance of the null hypothesis when it is false). Using RS testing is question-
able when one's intent is to show the null hypothesis to be true (i.e., to show the
hypothesis that there is such a thing as a hot hand to be false).

One basis for reluctance to accept the conclusion that the hot hand is illu-
sory in the absence of evidence that forces one to this conclusion is the im-
plausibility—to me at least—of the implied hypothesis that an athlete's
performance is precisely constant over time. It is too easy to think of plausi-
ble reasons why a player's (shooter's) performance (hit probability) might,
unlike the fair coin, differ from one time to another. These include general
health, fatigue, mental state, playing arena, teammate combinations, and op-
posing players. One might argue that the effects of such variables, especially
in combination, can be assumed to be random, and for a large enough sample,
perhaps they can; but this does not rule out the possibility that a player's hit
rate might be better than his average when playing, uninjured and well rested,
on his home court, with his favorite play maker on the floor, and against a
weak defender.

I suspect that the truth about the hot hand lies somewhere between the ex-
treme view that sees it whenever a player's short-term success rate is notice-
ably above his long-term average or he makes several baskets in a row and the
other extreme position according to which it never occurs. Believers in the
hot-hand phenomenon may be too quick to attribute any impressive sample of
shooting performance to it; nonbelievers may be too quick to rule out the possi-
bility that shooters may sometimes be genuinely better than they typically are.

Evidence that performance in sporting events sometimes is streaky comes
from a study by Gilden and Gray Wilson (1995). Using a "runs z score" as "a
measure of outcome clustering that is independent of both sequence length and
hit rate," these investigators found evidence of streaky performance in both
golf putting and dart throwing. In both cases, the probability of streaks ap-
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peared to be a nonlinear function of task difficulty, being greatest for interme-
diate difficulty levels and smaller or (in the case of dart throwing) not different
from chance with very easy and very difficult targets.

Waldrop (1995) has recently reported an analysis of some of the data con-
sidered by Tversky and Gilovich (1989a) that suggests that the question of
whether the hot hand is an illusion may be more difficult to answer than one
might have assumed. The data on which Waldrop focused were the 1980-1981
and 1981-1982 free-throw shooting records of nine regulars of the Boston
Celtics. The question of interest was whether there was any evidence in these
records of streak shooting in the first sense mentioned previously—the proba-
bility of a hit on the second of two shots being higher following a hit than fol-
lowing a miss. Tversky and Gilovich had concluded from their analysis of the
same data that there was no evidence that the outcome of the second shot de-
pended on that of the first.

Waldrop (1995) notes that one comes to different conclusions about the de-
pendencies if one examines the data on a player-by-player basis than if one
looks at them in the aggregate. Roughly half of the players did better on the sec-
ond shot if they missed the first one and the other half did the reverse, but none
of the differences is very impressive from a statistical point of view. When the
data are pooled over players, however, the probability that the second shot was
a hit is significantly greater if the first shot was a hit than if it was a miss.
Waldrop argues that basketball fans are more likely to have a representation in
memory that corresponds to the aggregate contingency table than a representa-
tion of a table for each individual player and that, therefore, their belief that the
second of two shots is more likely to be a hit if the first one was a hit should not
be considered unfounded, at least in the case of free throws. This does not jus-
tify the belief with respect to individual players, but does so with respect to a
team as a whole. (Waldrop also makes a statistical argument that several play-
ers did better on their second shot than on their first one, and argues that while
this outcome does not support the hot-hand hypothesis, it does count against
the hypothesis of independence.)

Waldrop's (1995) analysis involves a paradox—Simpson's paradox—that
is discussed in chapter 6. It is most readily illustrated in this context by focus-
ing, as Waldrop did, on the performance of Larry Bird and Rick Robey, the best
and worst free-throw shooters, respectively, on the team. As shown in Table 2.1
both Bird and Robey were somewhat more likely to make the second of two
free throws if the first was a miss than if it was a hit, but when their data are
combined, the opposite relationship holds. The reversal is accounted for in this
case by the fact that Bird has more impact on the combined table than does
Robey by virtue of taking more free throws and making a larger percentage of
them. It turns out that the differential weightings of the individual players' re-
sults has a similar effect when the data are combined for the whole team.
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TABLE 2.1

Frequencies of Pairs of Free Throws of Bird and Robey Individually and Combined

H—
M—
S

P(HIH)
P(HIM)

Bird

—H —M Z

251 34 285
48 5 53
299 39 338
251/285 = .881
48/53 = .906

Robey

—H —M Z

54 37 91
49 31 80
103 68 171
54/91 = .593
49/80 = .613

Combined

—H —M Z

305 71 376
97 36 133
402 107 509
305/376 = .811
97/133 = .729

My sense is that the tale of the hot hand has not yet been told in its entirety.
There can be no doubt that people see structure in events that have been gener-
ated by random processes and sometimes misinterpret that structure as evi-
dence of nonrandom effects. That all the apparent structure that is interpreted
as evidence of a hot hand or similar phenomenon is the result of random pro-
cesses is much less clear.

Nonaging Processes

Ernest Rutherford discovered radioactivity and introduced the concept of the
half-life of a radioactive atom at the turn of the 20th century. According to his
theory, the probability that an atom of a radioactive element will decay instan-
taneously differs for different elements but, for any given element, is constant
over time. The atom does not age; the probability that it will decay in the next
instant is constant and independent of how long it has been in existence. This
means that a fixed proportion of the remaining atoms of a substance will decay
in a fixed interval of time. It follows that the number of atoms of that substance
remaining will decrease exponentially with time, the rate of decrease depend-
ing on the substance involved.

A nonaging process is one for which the remaining "life expectancy," like
that of a radioactive atom, is independent of its current age. If its life expec-
tancy at age 1 was 17, its remaining life expectancy at 7, or 16, or 23 (assuming
it attains these ages) is still 17. In a statistical sense, it is no closer to death after
it has lived a long time than when it was born. Imagine a process the duration of
which is determined by the rolling of a fair die. For the sake of concreteness,
suppose the die is rolled every minute and the rule of existence of our process is
that it will terminate on the first roll of a 3. Inasmuch as the probability of roll-
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ing a 3 on a fair die is 1/6, the expected "waiting time" for the occurrence of a 3,
which is the reciprocal of the probability, is 6 rolls. So at the beginning of the
life of our imaginary process, its life expectancy is 6 minutes. Now suppose it
has already lived for 5 minutes, which is to say the die has been rolled 5 times
and has not yet come up 3. If it is a fair die, the probability of it coming up 3 on
the next roll is still 1/6 and consequently the life expectancy when the process
is 5 minutes old is still 6 minutes—6 additional minutes not counting those al-
ready lived. So we can say that the process is no more likely to expire soon after
having lived for 5 minutes than it was when it began. Obviously this argument
generalizes, so we can say that no matter how long the process has lasted, its re-
maining life expectancy remains constant.

Although I have only observational evidence on the matter, I believe this to
be a difficult idea for some people to accept. People who have trouble with the
idea of a nonaging process are likely to point out that if a process terminates
eventually it will do so at a particular point in time and it is nonsense to believe
that one does not get closer to that point as time passes. In the case of our exam-
ple, sooner or later the die will come up 3 and the process will terminate. In-
deed if many such processes are started they will last for different periods of
time, some for only a minute, a few for many minutes, but they will all termi-
nate, and after about 6 minutes on the average. When one considers a specific
process in retrospect, after it has terminated, one would not be inclined to say
that after it had lived for n minutes it was no closer to its demise than when it be-
gan. A process that lasted for 9 minutes, for example, was 9 minutes from death
when it began and only 4 minutes from death after it had existed for 5.

What has to be reconciled here are a probabilistic and a deterministic per-
spective. The deterministic perspective, which is easy to take in retrospect, lo-
cates events at specific points on a time line and therefore provides a basis for
talking about distances between these events as though they were known or de-
terminable. The probabilistic view focuses on what can be known with the in-
formation in hand. To say that a process is no closer to death at point B than at
A, B being a later point in time, is to say that nothing has happened to increase
the likelihood of its imminent demise, or to cause one's estimate of the addi-
tional time it is likely to live to decrease.

Which view is correct? I am not sure that one can claim that either of them is
correct in any absolute sense. One can look at the situation either way. To the
extent that one's behavior is to be influenced by the remaining life expectancy
of a nonaging process, however, only the probabilistic view makes sense, inas-
much as our knowledge of the past in this case gives us no clue as to what will
happen in the future. To put the matter in concrete terms, suppose that you are
engaged in a gamble regarding when a nonaging process will terminate. If,
over a series of bets, you consistently change your wager depending on how
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long the process has lasted, against an opponent who understands probability
theory, and in particular, the concept of a nonaging process, you will lose.

The possible informativeness of the passage of time has been a complicat-
ing factor in the design of certain types of psychological experiments in which
it is important that the participant's momentary expectation for the occurrence
of a stimulus be held constant. Suppose one wishes to determine the effect of
temporal uncertainty on reaction time to an auditory stimulus. In one condi-
tion—low temporal uncertainty—the signal is equally likely to occur at any
time during a 2-second interval; in another condition—high uncertainty—it is
equally likely to occur at any time during a 10-second interval. The problem is
that, in both cases, as time passes during the interval, the probability that the
signal will occur very soon increases; if, for example, 1.8 seconds of the 2-sec-
ond interval have elapsed and the signal has not yet occurred, one can be sure it
will occur during the next 0.2 second. The solution to this problem is to make
the waiting time nonaging, which means to keep the instantaneous probability
of signal occurrence constant over time. This can be done either by sampling
waiting times from an exponential distribution, or by quantizing time and let-
ting a computer decide with a constant probability, during each time quantum,
whether to present a signal at the end of that quantum (Nickerson, 1967;
Nickerson & Burnham, 1969). Temporal uncertainty can be manipulated in
this case by varying what the instantaneous probability is; the important thing
is not to let it change during a single experimental trial.

SUMMARY

Randomness is an elusive concept. Experts are not agreed on precisely what it
means or how to determine whether something is random or not. The term can
have different connotations as used by different people, or even when used by
the same person in different contexts. It is not clear that people who use it al-
ways know what they mean by it in specific instances. I venture to guess that
many people use the term freely without giving much thought to precisely how
they would define it if asked.

Despite such problematic aspects of the concept, the idea of randomness is
fundamental to the theory of probability. People who use it, as either writers or
readers, should understand its complicated and somewhat controversial na-
ture. They need to be aware of the different connotations it can be given and of
the various tests that have been prescribed for its presence. Familiarity with the
distinction between random processes and random products is especially im-
portant, and awareness of the some of the more common misunderstandings of
randomness and closely related concepts should be helpful.



CHAPTER

Coincidences

Of all the abuses of mathematics, of all the abuses of science generally, no single
phenomenon causes more misunderstanding than coincidences.

—Dewdney (1993, p. 40)

Strange coincidence, that every man whose skull has been opened had a brain!

—Wittgenstein (1953/1972, p. 28)

'Oincidences can be fascinating, entertaining, intriguing—and some-
times very informative. We are fascinated when we bump into someone from
our home town in a foreign city, when we learn that a new acquaintance has
three children with the same first names as our own, or when we hear from an
almost forgotten friend about whom we have just dreamed. Journalists some-
times entertain us with accounts of coincidental similarities between famous
persons. Parallels in the lives of John F. Kennedy and Abraham Lincoln, their
assassins and the details of their assassinations, have captured the attention
and imagination of several writers (Lattimer, 1966,1980; Russel, 1973; T. R.
Turner, 1993; Wrone, 1981):

Lincoln was elected in 1860, Kennedy in 1960. Both were deeply involved in the
civil rights struggle. The names of each contain seven letters. The wife of each
president lost a son when she was First Lady. Both Presidents were shot on a Fri-
day. Both were shot in the head, from behind, and in the presence of their wives.
Both presidential assassins were shot to death before they could be brought to

82
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trial. The names John Wilkes Booth and Lee Harvey Oswald each contain 15 let-
ters. Lincoln and Kennedy were succeeded by Southerners named Johnson. Ten-
nessee's Andrew Johnson, who followed Lincoln, was born hi 1808; Texan
Lyndon Johnson was born in 1908. ("Compendium of Curious," 1964, p. 19)

The writer of the Time magazine article from which this quotation was taken
pointed out that, in addition to the accurate correspondences, such as those
mentioned, many others have been produced by tweeking the facts just a bit.

To a list similar to the one that appeared in Time, Gardner (1967) added the
following observations:

Both the Federal Bureau of Investigation and the Secret Service, had they been
skilled in the prophetic aspects of numerology, would have been more alert on
the fatal day.

The digits of 11722 (November 22) add to 6, and Friday has six letters. Take the
letters FBI, shift each forward six letters in the alphabet, and you get LHO, the
initials of Lee Harvey Oswald. He was, of course, well known to the F.B.I. More-
over, Oswald has six letters. Oswald shot from the sixth floor of the building
where he worked. Note also that the triple shift of FBI to LHO is expressed by the
number 666, the infamous number of the Beast.

The Secret Service, an arm of the Treasury Department, likewise should have
been more alert. Two weeks before the assassination the Treasury Department
released a new series of dollar bills, a sample of which I enclose. [This is all pre-
sented by Gardner as a letter he received from the famous numerologist, "Dr.
Matrix."]

Observe that this series is designated by the letter K on the left. In 1913, half a
century earlier, when the Federal Reserve districts were designated, Dallas was
assigned the letter K, the eleventh letter of the alphabet. For this reason "Dallas,
Texas," where Kennedy was murdered appears beneath the "K." Dallas, Texas
has eleven letters. John Kennedy has eleven letters.

The serial number on this bill, as on all K bills, begins with K and ends with
A—"/Kennedy Assassination." Beneath the serial number on the right is "Wash-
ington, D.C.," the origin of the Presidents's fatal trip.

Below the serial number on the right, as well as above and below the serial num-
ber on the left, are two 11 's. Eleven, of course, is the month of November. The
two 11 's add to 22, the day of the assassination. To the right of Washington's pic-
ture is "Series 1963A," the year of the assassination, (pp. 45-47)

It is amazing indeed, is it not, that the FBI and the Secret Service could have
been so blind to the obvious pointers to the coming tragedy! Gardner's spoof is
good fun, but the "coincidences" and the interpretations Dr. Matrix makes of
them are not much more far-fetched than some that have been taken quite seri-
ously in other contexts by people with a numerological bent.
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WHAT IS A COINCIDENCE?

"And we are both widows too!" said Barbara's mother. "We must have been
made to know each other."

"I haven't a doubt about it," returned Mrs. Nubbles. "And what a pity it is we
didn't know each other sooner."

"But then, you know, it's such a pleasure," said Barbara's mother, "to have it
brought about by one's son and daughter, that it's fully made up for. Now, ain't
it?"

To this, Kit's mother yielded her full assent, and, tracing things back from ef-
fects to causes, they naturally reverted to their deceased husbands, respecting
whose lives, deaths, and burials, they compared notes, and discovered sundry
circumstances that tallied with wonderful exactness; such as Barbara's father
having been exactly four years and ten months older than Kit's father, and one of
them having died on a Wednesday and the other on a Thursday, and both of them
having been of a very fine make and remarkably good-looking, with other ex-
traordinary coincidences. (Dickens, 1840/1894, p 301)

My dictionary (Webster's New Collegiate) defines coincidence as "the occur-
rence of events that happen at the same time by accident but seem to have some
connection." Diaconis and Mosteller (1989) give a very similar working defi-
nition: "A coincidence is a surprising concurrence of events, perceived as
meaningfully related, with no apparent causal connection" (p. 853). Owens
(1992) describes a coincidence as an event that has no cause: "A cause ensures
that its effects are no coincidences—so whatever is a coincidence necessarily
has no cause" (p. 2), or as "an event which cannot be explained" (p. 17).

For purposes of this discussion, I would qualify these conceptions slightly.
First I want not to restrict the notion of co-occurrence or concurrence of events to
events that happen at the same time. The fact that Joseph Frederick Johnson's
full name is the same as that of his wife's maternal grandfather would probably
be considered a coincidence, according to common usage of the term, although it
does not involve the co-occurrence of events in a temporal sense. I will use the
term co-occurrence in what follows, but will mean to include by it events that are
seen as connected but do not necessarily occur at the same time. Also, the same
illustration makes the point that event is to be given a fairly broad connotation.

Second, the notion of an event that has no cause needs sharpening. Leaving
some of the strangeness of quantum mechanics aside, the prevailing view of
how things work in this universe includes the idea that nothing that happens
happens without a cause. Every event is embedded in a sequence of cause-ef-
fect relationships; it is a consequence of causes and becomes a cause in turn of
subsequent events. Perhaps we might say that each of the events that comprise
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a coincidence has a cause, but that the cause of one of them is independent of
that of the other. I run into a high school classmate in a restaurant in Tokyo; my
being at that spot at that time has a cause, as does his being there at that time,
but the causes are not related. We would say that for each of us there is a causal
explanation as to why he is there, but neither of these explanations sheds any
light on why the other person is there at the same time. It is in this sense that we
can say that our meeting was a matter of chance.

WHAT MAKES COINCIDENCES INTERESTING?

What makes a coincidence interesting? And what should do so? We have to rec-
ognize first that people undoubtedly differ in the degree to which they attend to
coincidences or find them fascinating. Paulos (1998) argues that differences in
the way people react to coincidences—whether they are willing to accept most
of them as insignificant or insist on always finding a meaning behind them—re-
veals something about their personalities and world outlooks. True or not, I sus-
pect that most of us find at least some of the coincidences we witness to be
sufficiently interesting to make us cast a thought or two in their direction.

Meaningiulness

All of us constantly witness very low probability co-occurrences, and pay them
no mind; they do not even register as coincidences in the usual sense of the
term. If someone points out to me that the co-occurrence of a blue jay landing
on the bird feeder outside my window and the radio beginning to play Claire de
Lune at the precise moment that I walked by the window on my way to get a cup
of coffee was very unlikely a priori, I would have to admit that that was so, but
normally I would not be surprised by such a co-occurrence—I would not even
notice it as an interesting coincidence because the co-occurring events bear no
meaningful relationship to each other in my mind. Our days are filled with such
meaningless co-occurrences that go unnoticed.

Perhaps the most obvious difference between coincidences that capture our
attention and those that do not is that in the former case the co-occurring events
are meaningfully related in the observer's mind in some way. The appearance of
a blue jay on the feeder outside one's window and the playing of Claire de Lune
on one's radio are not, under most circumstances, likely to be meaningfully re-
lated events in most people's minds, so such a coincidence goes unnoticed. In
contrast, the co-occurrence of the appearance of a blue jay on one's feeder and
the playing of Rhapsody in Blue, while no less improbable than the coincidence
of the blue jay and Claire de Lune, is much more likely to capture one's attention,
because the two events in this case are more likely to be related in one's thinking.
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Assumed Small Prior Probability

Presumably the smaller the retrospectively perceived a priori probability of
the co-occurrence, the greater the surprise when it occurs. Expected co-oc-
currences are not surprising, nor are co-occurrences that appear to have been
inevitable after the fact. Perceived probability is a function, in part, of the
number of ostensibly independent events that coincide (Hakohen, Avinon, &
Falk, 1981, reported in Falk, 1989): The discovery that two other people in a
small group had the same birthday as oneself, for example, would be more
surprising than the discovery that one did. As the definitions proposed by
Diaconis and Mosteller (1989) and by Owens (1992) suggest, a coincidence
is surprising, or continues to be surprising, only to the extent that one cannot
find a causal explanation for it. One's initial surprise at unexpectedly running
into several college classmates at a restaurant several decades after gradua-
tion would dissipate quickly upon learning that the happening was engi-
neered by one of the people gathering.

But though small a priori probability of occurrence seems essential if a coinci-
dence is to be interesting, it does not suffice to make it so. We witness coincidences
that have infinitesimally small a priori probabilities every day and think nothing of
them. My 2000 green Buick from Massachusetts arrives at a multibooth toll sta-
tion on an interstate highway at the same time as do a red 1997 Chrysler from
Montana, a silver 2002 Ford from Maine, a red 1992 Volvo from Connecticut, and
a white 2001 Toyota from Florida, surely a low-probability confluence of events,
but not one that anyone is Likely to consider worthy of notice.

There are other explanations also of why coincidences surprise and interest
us. Falk (1981-1982) suggests, for example, that when one experiences a coin-
cidence, one is likely to focus on the specific happening as such and not to per-
ceive it as one of a set of possible happenings any one of which would have
been equally surprising if considered in isolation. When unexpectedly running
into an old friend, for example, one is likely to focus on the low probability of a
chance meeting of that particular friend at that particular spot at that particular
time rather than on the fact that a chance meeting of some old friend at some
place at some time during one's life is perhaps highly probable, and that any
such meeting would be seen as unlikely when it occurs.

Personal Involvement

Falk (1989) and Falk and MacGregor (1983) obtained evidence that people
find it somewhat easier, or more natural, to perceive coincidences in the latter
way when they are experienced by other people than when experienced by
themselves. People express more surprise, for example, when a coincidence in-
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volves them than when a comparable, or even identical, coincidence involves
others. Falk was able to show that this is not simply a consequence of people se-
lecting own coincidental events to report that were subjectively surprising to
themselves but not to others. She found that even meaningless contrived coin-
cidences were perceived as more surprising when they involved oneself than
when they did not.

Given that co-occurrences that we perceive as interesting coincidences
capture our attention when we experience them, it is not surprising to find
that they tend to be remembered rather well (Hintzman, Asher, & Stern,
1978). Because they are remembered well, it may appear, in retrospect, that
one has experienced more of them than one might have expected to by
chance. This illustrates one way in which selectivity may play a role in mak-
ing attention-getting chance coincidences seem to be more common than
they are. Selectivity is also involved when we focus on low-probability
co-occurrences that are of special interest to us and ignore those (much more
frequent ones) that are not. And it may affect our impressions of the incidence
of such events in general because only those co-occurrences that are of spe-
cial interest to people who experience them get reported—the fact that person
X found himself sitting next to person Y (whom he did not know and in whom
he had no interest) in a theater in London on September 14,1986, is unlikely
to be considered noteworthy, despite the fact that the a priori probability of
this co-occurrence must be considered extremely low.

THE COMMONNESS OF SURPRISING COINCIDENCES

A tendency to drastically underestimate the frequency of coincidences is a
prime characteristic of innumerates, who generally accord great significance to
correspondences of all sorts while attributing too little significance to quite con-
clusive but less flashy statistical evidence. (Paulos, 1990, p. 35)

This quote from Paulos alludes to the fact that some coincidences may be much
more highly likely than is generally realized, simply on the basis of chance.
Consider, for example, the probability that within any modest-size group there
are two people who have the same birthday. Imagine a gathering of four people.
What is the probability that among these people there are at least two who cele-
brate their birthdays on the same day? Inasmuch as each person could have
been born on any of 365 days, there are 3654 possible arrangements of the four
birthdates. There are 365 !/(365 - 4)!, or 365 x 364 x 363 x 362, ways in which
the birthdates could be distributed so that no two are the same. So the probabil-
ity that at least two of the four people have the same birthday is 1 - [365 !/(365 -
4) !]/3654. In general, the probability that among n people at least two have the
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same birthday is 1 - [365!/(365 - n)!]/365". The answer for n - 4 is .016, not
very likely. However, for moderately large n the probability is much larger; it is
greater than .5 for n greater than 23.

Since it was first identified as an interesting phenomenon relating to prob-
ability theory, the chance coinciding of birthdays has received considerable
attention in the statistical literature. Diaconis and Mosteller (1989), who re-
view some of this literature, mention von Mises (1939) as perhaps the first to
discuss the phenomenon. They point out too that the problem has been gener-
alized in various ways and formulas have been developed to compute (or ap-
proximate) the probability that two or more of N people have the same
birthday plus or minus one day, the probability of k or more of N people hav-
ing the same birthday, and so on. B. Levin (1981) developed an algorithm for
computing the smallest number of people, N, required to ensure a probability
of at least 0.5 that at least k of them have the same birthday. Diaconis and
Mosteller give N ~ 41 (k - 1.5)3/2 as a function that approximates the values
produced by Levin's algorithm for k smaller than 20. According to Levin's
computation, one needs a group of 1,181 for the probability that 10 or more
people will have the same birthday to be greater than 0.5. For k = 10, Diaconis
and Mosteller's approximation of N gives 1,165.

When should coincidences be surprising? What about the kinds of coinci-
dences that were mentioned at the beginning of this section—learning that a
new acquaintance has three children with the first same names as one's own, or
hearing from an old friend about whom one has just dreamed? Each of these
events seems highly unlikely, and therefore surprising when it occurs. But
what we easily overlook when we think about such events is the very large
number of things that could occur in one's life, any one of which might be con-
sidered a surprising coincidence. The a priori probability that a specific one of
them will occur may be very small, but the probability that some one or more of
them will occur is very high; or to make the point the other way around, the
probability that no such events will occur is very low. When such an event does
occur, we are more likely to be impressed by the low a priori probability of that
particular event than by the high probability of the occurrence of some atten-
tion-getting low-probability event.

The point is that the fact that coincidences occur should not be surprising.
To the contrary, we should be amazed if they did not occur. The example of the
coinciding birthdays is but one of many that could be used to make the point.
The example serves also to sharpen an important distinction. The probability
that any two randomly selected people will have the same birthdays is very
small, less than .003, but as we have seen, the probability that some pair of per-
sons among a set of n people will have the same birthday is fairly large when n
is on the order of a dozen or so.
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Diaconis and Mosteller (1989) express the inevitability of low-probability
consequences with "the law of truly large numbers," according to which "with
a large enough sample, any outrageous thing is likely to happen" (p. 859). They
point out, for example, that if a once-in-a-million coincidence occurs to one
person in a million every day, on the order of 100,000 such occurrences a year
would be expected in a population of 250 million people. (A similar argument
was made by Alvarez [1965] in a letter to the editor of Science regarding para-
psychology.) On the same logic, one-in-ten-thousand or one-in-one-thousand
coincidences, any of which might seem remarkable from a narrow perspective,
would be very common from a broad one. The same logic can bring us to the
conclusion that any given individual is likely to experience some number of
such low-probability coincidences over the course of a lifetime. In being sur-
prised by the occurrence of specific low-probability events, one is making
what Falk (1981-1982) calls the selection fallacy: One attends to alow-proba-
bility coincidence after the fact and is surprised by it only because one does not
recognize that some such events are bound to occur.

In view of the high probability of low-probability co-occurrences, why are
we surprised when they happen? The answer that comes most immediately to
mind is that we are unaware, or forget, that the likelihood of such co-occur-
rences is high. As Gardner (1979) puts it, "Even mathematicians can forget that
if enough people doodle long enough with random sequences of digits, it is
highly probable that they will find highly improbable patterns. It is because
most people fail to grasp this basic notion that they are unduly impressed when,
out of the billions upon billions of possible ways coincidences can arise in
daily life, one does occur" (p. 25).

Despite the fact that we should be surprised if coincidences did not occur,
their occurrence can still be attention getting. A few days ago, I took a leisurely
meandering ride on my bike on a particularly pleasant afternoon. I noticed at
one point on the trip that my odometer was turning to 21 at precisely the mo-
ment that I was passing a roadside marker that read "mile 21." This was the
only marker I saw on the trip. If I were more superstitious than I am, I might
have read some significance into this coincidence. I am not that superstitious,
quite, nevertheless, the event was sufficiently attention getting to have been re-
tained as a memorable aspect of the trip.

CHANCE COINCIDENCES AND COMMON-
CAUSE COINCIDENCES

Some coincidences seem best considered chance events; others are of interest
because of the possibility that they are consequences of hidden relationships.
The coincidence of a motive, an opportunity, and lack of an alibi, for example,
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can figure significantly in a criminal investigation. Such coincidences beg for
an explanation. Believing that they happened by chance strains one's credulity.

The question of how to tell chance coincidences from coincidences that are
evidence of a common cause is not easy to answer. Presumably it makes sense
to look for a nonchance explanation of what appears to be a coincidence when
it is reasonable to suspect that the coincidental events are causally related in
some way. This criterion is quite subjective, and what one person may see as a
clue to a causal connection another may be willing to write off as nothing more
than a chance confluence of events.

Correspondences that can be perceived as chance coincidences are of little
interest beyond the fact of their existence. Consider, for example the following
facts. The Boer War ended in 1902 and the First World War began in 1914.
Nineteen hundred and fourteen happens to be the sum of 1902 and the individ-
ual digits that comprise that number: 1902 + 1 + 9 + 0 + 2=1914. The First
World War ended in 1919 and the Second World War started in 1939. Nineteen
hundred and thirty-nine happens to be the sum of 1919 and the individual digits
that comprise that number: 1919+1+9+1+9 = 1939. Having noted these co-
incidences, one has probably said all that needs to be said about them.

Or consider the fact that the 46th word of the 46th Psalm of the King James
Bible is shake, while the 46th word from the end of the Psalm is spear. This
conjunction might have gone unnoticed even by the ardent numerologists who
discovered it if it were not for the fact that the King James translation of the Bi-
ble was completed in 1610, the 46th year of Shakespeare's life. Only someone
who is committed to the idea that the Bible is full of coded messages and that
every numerical relationship to be found in it has some significance, or some-
one who believes that King James' translators took the liberty of planting a
cryptic tribute to the bard, is likely to make anything of it.

In Gulliver's Travels, Jonathan Swift has Laputan astronomers discover that
Mars has two moons, one of which orbits the planet in the direction of the planet's
rotation, making a complete revolution in about one third the time it takes the
planet to rotate on its axis. These discoveries of Swift's fictional astronomers are
remarkably close to the facts, but Swift wrote about 100 years before there existed
a telescope large enough to see the moons of Mars. The chance correspondence
between the rotation velocity of Mars and the orbiting speed of the satellite that or-
bits in the same direction is the more remarkable because this moon is the only
known satellite in the solar system that revolves about a central body faster than the
central body rotates. Velikovsky's explanation of this coincidence in Worlds in
Collision is that Swift learned of the Martian moons from ancient manuscripts that
recorded observations of the moons when Mars was close to the earth (Gardner,
1957). Gardner refers to the discoveries of Swift's Laputan astronomers as "per-
haps the most astonishing scientific guess of all time" (p. 30).
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There are many parallels between ancient Egypt and some of the pre-
colonial cultures of Latin America, such as the knowledge of embalming and
the building of pyramids. Some observers see such parallels as instances of dis-
coveries or developments that occurred independently at about the same time
in different parts of the world; others take them as suggestive evidence of com-
munication between cultures or the effects of a common influence.

Often it is very difficult to determine whether a coincidence is due "merely"
to chance or signifies some deeper relationship. And it can be hard to tell how
much effort making this determination is worth in specific cases. It is not sur-
prising therefore that particular coincidences are often interpreted differently
by different observers. There are many examples in science of coincidences
that have been sufficiently intriguing to some individuals to motivate years of
research dedicated to understanding their significance, while being of little in-
terest to, or dismissed as chance correspondences by, everyone else.
Polkinghorne (1988) notes the importance of perspective here and suggests
that what coincidences seem significant to us as individuals and motivate us to
seek explanations is likely to depend upon "the interpretative scheme with
which we approach the world" (p. 28).

COINCIDENCES IN SCIENCE

The noticing of coincidences has played an important role in scientific dis-
covery and the development of scientific theory. The ability to see obscure
connections—connections that most people miss—is believed by some to be
among the more important abilities a scientist can have. Isaac Newton's pos-
tulation of the universal law of gravitation has been attributed to his notice of
what was, at the time, a "very approximate, numerical coincidence," namely
the fact that the parabolic path of a thrown rock and the path of the moon's or-
bit about the earth are particular cases of the same mathematical object
(Wigner, 1960/1980). Apparent coincidences invite speculation in science as
elsewhere, and finding explanations for coincidences has often been a goal of
scientific research and theory building. The similarity of the eastern coastline
of South America and the western coastline of Africa invites consideration of
the possibility that the two continents were once joined. The fact that quarks
and leptons are similar in certain respects, including the apparent organiza-
tion of both in three groups, begs an explanation, and physicists are likely to
see such a correspondence as the hint of a deeper causal connection. When
the numbers 2.5029 and 4.669201 or their reciprocals keep popping up in
studies of mathematical chaos, one is led to suspect that there is something
special about these numbers in this context and that their frequent appearance
is not "just" coincidental.
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The distinction between coincidences in science that motivate search for a
causal connection and those that do not can be subtle. The relative diameters of
the sun and the moon and their relative distances from the earth (about 400-to-1
in both cases) are balanced in such a way that each body subtends about the
same visual angle (1 degree) and therefore they have almost exactly the same
apparent size to an observer on earth. (Although this coincidence has not moti-
vated a search for a causal connection, it has proved to be useful to science by,
for example, permitting the testing of a prediction of Einstein's theory of rela-
tivity during an eclipse of the sun.) The period of revolution of the sun on its
axis and the period of revolution of the moon about the earth both are about 28
days. These are examples of coincidental relationships revealed by science to
which scientists have attached no particular significance. They are, one might
say, curiosities, but not of the type that motivate most people to seek causal ex-
planations. In contrast, the fact that the orbits of the planets of our solar system
are, with one exception, all in about the same plane is too great a coincidence
for anyone to believe that there is not some causal connection and any theory of
the origin of the solar system that is to get serious consideration among scien-
tists must take this fact into account.

Commenting on the numerous regularities involving atomic weights and
other characteristics of the elements that had been pointed out by his fellow
chemists, Mendeleev quoted approvingly Strecker's (1859) observation that "it
is hardly probable that all the above mentioned relations between the atomic
weights (or equivalents) of chemically analogous elements are merely acciden-
tal" (Mendeleev, c. 1869/1956, p. 915). Mendeleev went on to produce the peri-
odic table of elements for which we remember him today. The history of science
provides many similar examples of "coincidences" that turned out, upon further
investigation, to be anything but coincidental in the usual sense of the term.

A particularly interesting illustration of the fact that advances in scientific the-
ory have sometimes provided new ways to view previously unexplained coinci-
dences relates to inertia and gravity. It had been known at least since the days of
Newton that the force of gravity on an object is proportional to the object's inertia.
Lederman (1993) credits Newton with being the first to recognize that the m of

F -ma,

that represents the inertial mass, the stuff that resists force, and the M in

F = G(M1M2)//?
2,

that represents gravitational mass, the stuff that exerts pull on another object,
are equal, or very nearly so. He refers to the equality of m and M, which are suf-



COINCIDENCES • 93

ficiently different entities that they should not have the same name, as "an in-
credible coincidence" that "tormented scientists for centuries," and notes that
Einstein incorporated it into his general theory of relativity (p. 96). Berlinski
(2000) points out that the concepts of inertial mass and gravitational mass per-
tain to different parts of Newton's system: "Newton's second law of motion
draws a connection between force, inertial mass and acceleration. There is no
appeal to gravitation. Newtons's universal law of gravitation, on the other
hand, draws its connection between force, gravitational mass and accelera-
tion. There is no appeal to inertia. Two different conceptions of mass; two dif-
ferent laws of nature" (p. 201).

Recognition of the dual role of mass was articulated in the principle of
equivalence, which refers to the equality of mass as a measure of resistance to
acceleration and as a source of gravitational attraction. Newton himself saw
the coincidence as remarkable and mysterious, and offered no explanation for
it. Einstein resolved the mystery by declaring gravity and inertia to be the same
thing and making this equivalence the center of the general theory of relativity,
according to which there is only one type of mass and it is a consequence of the
curvature of space.

These cases illustrate that attempting to account in a causal way for what
might appear, at first, to be chance coincidences has been a fruitful endeavor in
science. But one can find examples of attempting to account for coincidences
that are generally considered not to be science at its best. A well-known case in
point is that of the attention given, beginning in the mid- 19th century, to the great
pyramid of Egypt. Much of the fascination that modern observers have had for
this structure is due to certain mathematical relationships noted first by John
Taylor (1859) and shortly later by Charles Smyth (1865). Taylor and Smyth dis-
covered numerous intriguing coincidences in measurements they made—for ex-
ample, that the ratio of twice the pyramid's base to its height was roughly the
same as the ratio of the diameter of a circle to its circumference; that the ratio of
the pyramid's base to the width of a casing stone was 365, the number of days in a
year; and that the pyramid's height multiplied by 109 was approximately equal to
the distance from the earth to the sun. The discovery of these and many other cor-
respondences provided von Daniken (1969) a basis for arguing that the earth had
been visited by intelligent extraterrestrials in the past.

What is the critical difference between this work with pyramid measure-
ments and the events mentioned in connection with Newton, Mendeleev, and
Einstein? In each of the latter cases, a coincidence was noticed that seemed to
call for a search for a common physical explanation, and the explanations that
were proposed were subject to test by virtue of their predictive implications re-
garding observable phenomena. In the case of the pyramid measurements,
many relationships were considered and only those that were deemed to reflect
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interesting correspondences were given further attention. This kind of selectiv-
ity lends itself to underestimation of the probability that the coincidences noted
could be due to chance.

Gardner (1957), who describes this work, refers to Smyth's book as a clas-
sic of its kind illustrating beautifully "the ease with which an intelligent man,
passionately convinced of a theory, can manipulate his subject matter in such
a way as to make it conform to precisely held opinions" (p. 176). As Gardner
points out, a complicated structure like the pyramid provides a great many
opportunities for measurements of length and those measurements and the
results of calculations based on them are bound to coincide here and there
with numbers that are of interest for historical or scientific reasons, simply
because the set of numbers to be considered is so large. If one has the freedom
to pay attention only to those measurements or calculations that yield some-
thing of interest and ignore the great many that do not, one is pretty sure of
finding some correspondences by chance: "Since you are bound by no rules,
it would be odd indeed if this search for Pyramid 'Truths' failed to meet with
considerable success" (p. 177).

Kepler's Spheres

One of the better known examples of a coincidence that fired the imagination
of a great scientist is Kepler's discovery of a correspondence between the or-
bits of the planets of the solar system and the regular polyhedra. Since before
Plato it had been known that there are five such shapes: the tetrahedron (pyra-
mid; 4 triangular faces), the hexahedron (cube; 6 square faces), the octahedron
(8 triangular faces), the dodecahedron (12 pentagonal faces), and the
icosahedron (20 triangular faces). In Kepler's day there were only five known
planets in addition to the earth. Kepler was convinced that these "perfect"
forms held a key to a fundamental aspect of the solar system's design. He la-
bored to find the connection between the polyhedra and the planetary orbits,
and eventually he believed he had succeeded in doing so.

For each regular polyhedron, imagine two spheres, the largest sphere that
can be enclosed within the polyhedron and the smallest sphere in which the
polyhedron can be contained. For any given polyhedron the ratio of the diame-
ters of the inner and outer sphere is a constant; that is, it is independent of the
size of the polyhedron. This ratio differs however for the different polyhedra.
Kepler discovered that if the polyhedra are scaled in size and nested in a spe-
cific order in such a way that the inner sphere of one polyhedron coincides ex-
actly with the outer sphere of the next smaller one in the nesting, the ratios of
the diameters of the nested spheres approximate the ratios of the diameters of
the planetary orbits.
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Here is his own account of the connection he worked out and his elation
upon finding it, as quoted in Boorstin (1985, p. 310):

The earth's orbit is the measure of all things; circumscribe around it a
dodecahedron, and the circle containing this will be Mars; circumscribe around
Mars a tetrahedron, and the circle containing this will be Jupiter; circumscribe
around Jupiter a cube, and the circle containing this will be Saturn. Now inscribe
within the earth an icosahedron, and the circle contained in it will be Venus; in-
scribe within Venus an octahedron, and the circle contained within it will be
Mercury. You now have the reason for the number of planets.... This was the oc-
casion and success of my labors. And how intense was my pleasure from this
discovery can never be expressed in words. I no longer regretted the time
wasted. Day and night I was consumed by the computing, to see whether this
idea would agree with the Copernican orbits, or if my joy would be carried away
by the wind. Within a few days everything worked, and I watched as one body af-
ter another fit precisely into its place among the planets.

Kepler considered the fact that there are only five regular polyhedra to be the
reason why there were only six planets. He had, Butler (1970) suggests,
"thought that since there could only be five regular solids, thus disposed, he
had shown conclusively why there were six and only six planets, echoing
Bongo's view that numerological arguments reveal to us the 'why' of things"
(p. 87). The Bongo to whom Butler refers is Pietro Bongo, who wrote during
the 16th century on number symbolism, or number mysticism.

How surprised should we be by the correspondence that Kepler discovered?
Is this one of those coincidences that seems to demand an explanation in terms
of a common cause? We need to distinguish here between surprise at the fact
that Kepler thought there might be some connection between perfect solids and
planetary orbits and surprise at the "closeness of fit" that he found. Let us con-
sider first the question of how surprised we should be that Kepler was looking
for a connection between the solids and the orbits.

The regular polyhedra—variously known as the "Platonic solids," the "per-
fect solids," or the "cosmic bodies"—had been objects of great fascination
among philosophers since their discovery at least 2,000 years before Kepler
and they had figured prominently in explanations of natural phenomena among
the classical Greeks. The Pythagoreans, who thought the number of such fig-
ures was four (the dodecahedron had not yet been discovered), associated them
with the four primal elements—earth (hexahedron), air (octahedron), fire (tet-
rahedron), and water (icosahedron). By the time of Plato the dodecahedron had
been discovered and it represented to him the universe as a whole. It really is
not surprising that Kepler, with his mystical perspective, his propensity to see
beauty in regularity, and his firm conviction that the universe and all it con-
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tained were the perfect work of an intelligent architect, should think to look for
a correspondence between the five perfect mathematical objects that he knew
and the orbits of the planets that, to him, comprised the entire solar system.

Whether we should be surprised at the closeness of the correspondence (not
exact) between the ratios of Kepler's nested spheres and the ratios of the plane-
tary orbits is a different matter altogether. This is a question of statistical reason-
ing. How should we think about this question? The basic data of interest are two
sets of ordered ratios. One of these sets of ratios is derived from the diameters of
the planetary orbits, ordered from, say, largest to smallest. The first ratio in the
set is the ratio of the diameter of the largest orbit to that of the second-largest; the
second one is the ratio of the diameter of the second-largest orbit to that of the
third-largest; and so on. The second set is derived in an analogous way from the
diameters of the nested spheres containing the perfect solids. The first ratio is the
ratio of the diameter of the largest sphere to that of the next-largest sphere, and so
on. But which polyhedron should determine the largest sphere?

Here is a very important point. Five polyhedra can be ordered in 120 differ-
ent ways, so Kepler had a choice of 120 different nesting arrangements, each of
which would produce a unique set of ordered ratios against which to compare
the ratios derived from the planetary orbits. Did Kepler pick the one that pro-
duced the best fit? I presume that he did. We would be more impressed by the fit
that Kepler found if it had been produced by arranging the polyhedra in a natu-
ral order, say from most simple to most complex or vice versa. There seems to
be no rationale for the order that Kepler selected, except, presumably, the fact
that that order came closest to yielding the correspondence for which Kepler
was looking. Today this would not generally be considered acceptable form,
but probability theory and statistics were not established fields of mathematics
at the time Kepler did his work. The book in which Kepler advanced his ideas
about the correspondence between the planetary orbits and the perfect polyhe-
dra was published in 1596,61 years before Huygen's publication of the initial
work of Pascal and Fermat on probability and 67 years before the appearance
of Cardano's The Book of Games of Chance. And, as Devlin (2000a) points out,
"in seeking to understand the patterns of nature through the abstract patterns of
mathematics [he was] working within a tradition that continues to this day to be
highly productive" (p. 152).

Coincidences Between Mathematics ana Physics

According to a well-known theorem in number theory,
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The equation expresses the fact that the sum of the first n odd positive inte-
gers is equal to n squared. I mention this here in order to point out the corre-
spondence between this relationship and Galileo's discovery of the law that
relates the distance that a falling body travels to the duration of its fall.

An object falling under the force of gravity increases its speed of travel as it
falls. If we represent how far it falls during the first second after it is dropped as
1 dfs (distance in first second) and measure the distance traveled in each suc-
cessive second thereafter, we will find that it falls 1 dfs during the first second,
3 during the second, 5 during the third, and 2n - 1 during the nth. Inasmuch as
the sum of the first n odd integers equals n2, we can represent the relationship
between distance traveled and time as d = i2; where t is in seconds and d in units
of dfs. Usually the relationship between distance traveled and time is written as
d = kf, the k being necessary because the unit of distance used is not the dis-
tance traveled during the first unit of time. Galileo discovered this relationship
in the 16th century and demonstrated it in an ingenious way by rolling balls
down an inclined plane.

The point of interest in the present context is not the fact that Galileo made
this discovery, which is not to deny that it was a great discovery, but the fact that
the distance traveled by a falling object and the time it has been falling is such
an elegantly simple one. What do squares and falling objects have in common
that they should be describable, not approximately but precisely, in the same
terms? If we did not already know, thanks to Galileo, the relationship between
distance and time and were about to do his experiment for the first time, would
there be any reason to expect nature to behave in such a meticulously neat way?
Might we not be inclined to expect that the distance traveled during the second
second would be some noninteger multiple—say, 1.5314 ..., or 2.9273 ..., or
even 3.0001 ...—of that traveled during the first? But 3 exactly? More gener-
ally, is there anything that would lead us to expect that the distance traveled in t
seconds would turn out to be precisely proportional to z2?

In fact, we could convince ourselves, without making any measurements,
that distance traveled must increase with the square of time z/we started with
the assumption that a falling object picks up speed at a uniform rate, which is to
say that its acceleration is constant. On this assumption, the average speed of
the object during any interval of time is the average of its speed at the beginning
of the interval and its speed at the end of it. Given that the distance traveled dur-
ing any interval is simply the average speed during that interval times the dura-
tion of the interval, the assumption of a constant rate of change of speed allows
us to express the distance traveled during an interval as a simple function of the
speeds of the object at the beginning and end of that interval. Thus the distance
traveled during an interval of duration t, given a speed of sb at the beginning of
the interval and one of se at the end would be (sb + 5e



98 • CHAPTER 3

Suppose we arbitrarily divide time, conceptually, into successive intervals
such that the speed of the falling object will increase by 2 feet per second (fps)
during each interval. On our assumption of a constant rate of increase in speed,
these intervals would all be of equal duration. Thus over the course of the first
interval the speed, in feet per second, would go from 0 to 2, during the second it
would increase from 2 to 4, during the third from 4 to 6, and so on. The average
speed would be (0 + 2)/2 = 1 fps during the first interval, (2 + 4)/2 = 3 during the
second, (4 + 6)/2 = 5 during the third, and 2n -1 during the nth. Inasmuch as av-
erage speed is expressed in feet per second and duration is in seconds, seconds
disappear from the computation of the distance traveled during any given inter-
val, and that distance, in feet, is simply the average speed during that interval.
So the object travels 1 foot during the first interval, 3 feet during the second, 5
during the third, and 2n -1 during the nth. The total distance traveled by a fall-
ing object, from the moment it began its descent, would of course be the sum of
the distances traveled during the successive intervals, so after the first interval
it would have gone 1 foot, after two intervals 1 + 3 = 4 feet, after 3,1+3 + 5 = 9
feet, and, given that we know that the sum of the first n odd integers is n2, we
can see that the distance traveled during n intervals will be n2 feet.

So we have an explanation, of sorts, of the neatness of the relationship be-
tween the distance traveled by a falling object and time, and, in particular, of
the fact that distance traveled increases with the square of time. It is an explana-
tion at least in the sense that the relationship is somewhat less mysterious when
looked at this way, and does not even require empirical measurement for verifi-
cation. Given the assumption that speed changes at a uniform rate, it is clear
that the relationship must be of this form. But what about the assumption that
speed changes at a uniform rate? What gives us the right to make it? Why
should we assume, before we look, that nature will behave in this way? One
might say that changing at a constant rate is simpler than changing at a variable
rate, but it is not clear what that might mean, except that we find constant
change easier to think about and to describe than variable change. Surely na-
ture does not select its laws for our conceptual convenience. On the other hand,
no one yet has given a much better explanation of why mathematics—simple
mathematics—is as descriptive of the world as it is, or at least appears to be.

Let us consider another use of mathematics to describe a physical phenome-
non. Imagine a particle moving under gravity down a frictionless wire from
point A to point B, where point B is displaced laterally some distance from
point A. Determining what shape the wire must be in order to minimize the
time of travel is an old problem in mathematics and one that was considered not
only by Galileo (who thought the answer was an arc of a circle) but by such
other luminaries as Jacob and Johann Bernoulli, Newton, and Leibniz. The so-
lution is an inverted cycloid, which is the path traced by a point on the rim of a
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moving wheel. This seems at least as curious a coincidence as the one that has
squares and gravity in the same box. What in the world does the minimum-time
problem have to do with a point on the rim of a moving wheel? Why should
both yield precisely, again not approximately, the same curve? It turns out that
the same curve describes also the only path with the property that a particle
moving along it under gravity will take the same time to reach a given point in-
dependently of its starting point. The latter fact was discovered by Christian
Huygens a few years before the minimum-time problem had been solved. Is it
hard to imagine how Johann Bernoulli could speak of being "petrified with as-
tonishment" upon learning that the cycloid was the solution to both problems?

These examples are illustrative of countless coincidences that we find be-
tween mathematics and the physical world. Just to mention two others: We find
correspondences between the properties of triangles and the properties of
(sound-pressure, electromagnetic) wave phenomena and between the equations
that describe the curves obtained by slicing a cone at different angles (the conic
sections) and the trajectories of missiles on earth and of the heavenly bodies in
space. I suspect that we do not wonder much about such coincidences, that in-
deed it does not occur to us that there is here anything to wonder about. But what,
after all, do triangles have to do with sound-pressure waves? Or conic sections
with bodies moving through space? Why should an area of mathematics that was
developed to deal with three-sided figures or cones prove to be so useful in de-
scribing the behavior of vibrating air molecules or the meanderings of planets,
comets, and thrown rocks? Everywhere one looks in mathematics and science
one finds similar, and similarly surprising, correspondences.

Perhaps we should assume that the mathematics that we use in our everyday
lives has been shaped by our thinking in such a way as to ensure conformity
with our perception of the environment. But as Polkinghorne (1988) notes, this
assumption would not account for the surprising applicability of abstract math-
ematics to newly discovered aspects of the world. It "does not begin to explain
why highly abstract concepts of pure mathematics should fit perfectly with the
patterns of the subatomic world of quantum theory or the cosmic world of rela-
tivity, both of which are regimes whose understanding is of no practical conse-
quence whatsoever for humankind's ability to have held its own in the
evolutionary struggle" (p. 21).

One of the intriguing questions prompted by the fact that physical reality is
describable by simple mathematics is the question of whether reality is the way
it is because that is the only way it can be. Do falling objects cover a distance
that is proportional to the square of the duration of their fall because gravity
must work that way—because any other relationship would be physically im-
possible? If that is the case, what dictates this necessity? And if it is not the
case, why are such surprisingly simple relationships so common? The fact that
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the gravitational force between two objects varies precisely with the inverse of
the square of the distance between them may be seen as evidence of the sim-
plicity of natural law; the fact that the qualitatively different force that holds an
electron to an atomic nucleus—the Coulomb force—has the same inverse
square relationship is remarkable. Surely it is too much to believe that such
commonalities are coincidences that have no rational explanation.

Large-Number Coincidences

Accidental numerical relations between quantities as unconnected as the fine
structure constants for gravity and electromagnetism, or between the strengths
of nuclear forces and the thermodynamic conditions of the primeval universe,
suggest that many of the familiar systems that populate the universe are the re-
sult of exceedingly improbable coincidences.... Turning to the subject of cos-
mology—the study of the overall structure and evolution of the universe—we
encounter further cosmic cooperation of such a wildly improbable nature, it
becomes hard to resist the impression that some basic principle is at work.
(Davies, 1982, p. 75)

Among the coincidences that have increasingly attracted the attention of phys-
icists, astronomers, and cosmologists in recent years are several that involve
large, in some cases very large, numbers. Some of these large-number coinci-
dences, though interesting, have prompted little comment; others have caused
a great deal of speculation and debate.

An example of the first case is the coincidence between the gravitational en-
ergy in the universe and the universe's total mass: "When one adds up all the
mass in the observable portion of the universe, a very large number is obtained.
When one calculates the amount of negative gravitational energy that exists in
the same region of space, another large number is obtained. As far as we can
tell, the two numbers are about equal" (Morris, 1987, p. 141). Morris notes,
however, that although this is an intriguing coincidence, no conclusions have
been drawn from it.

A large-number coincidence that has puzzled physicists for many years in-
volves what would appear to be two completely independent ratios that turn
out to be almost identical. The ratio of the linear extent of the known universe
to the diameter of an atom is roughly the same as the ratio of the electromag-
netic force between an electron and a proton and the gravitational force be-
tween them. In both cases the ratio is roughly 1040. Although associated with
the names of Eddington and Dirac, this coincidence was apparently first
pointed out in 1919 by Hermann Weyl (J. A. Wheeler, 1986). (The first ratio is
sometimes expressed in terms of the Hubble time—about 1010 years—and the
"nuclear time," which is the time that light takes to travel a distance equal to the
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diameter of a proton. Davies [1982] gives 1041 as this ratio. If one uses the lin-
ear extent of the universe and the diameter of a proton for one ratio and the
gravitational attraction and electromagnetic repulsion between two electrons
for the other, one gets ratios closer to 1042 [Feynman, 1965/1989].)

These two ratios are sometimes referred to as the first and second cosmic
numbers, respectively. The fact that they are nearly equal is a surprising coinci-
dence, inasmuch as there is no reason to expect them to be related in any way.
And there is more. Whereas the second number is invariant, the first one
changes as the universe expands, so the mystery of the coincidence is deepened
by the fact that the numbers coincide at precisely the time that we happen to be
around to notice the fact. As if this were not mystery enough, Dirac pointed out
in the 1930s that the estimated number of particles in the observable universe is
approximately the square of the coincidental ratio. Coincidences involving
magnitudes of about 1040 are intriguingly common and have attracted the atten-
tion of both physicists and cosmologists. Discussions of several of them can be
found in Davies (1982) and in Barrow and Tipler (1988).

Other Coincidences

There are numerous other coincidences the significance of which has been the
subject of speculation and debate. An example is the coincidence between the
laws that relate strength to distance for both electromagnetic and gravitational
force. Although, as already noted, the electromagnetic repulsion between two
electrons is greater by at least 40 orders of magnitude than the gravitational at-
traction between them, these forces both vary inversely with the square of the
distance between the objects involved. To date, no one knows whether this co-
incidence is significant, but the joining of the forces of electromagnetism and
gravity within a single theoretical framework remains a major goal of physics.

The earth has many properties that contribute to its habitability by life as we
know it. These include its distance from the sun, the near circularity of its orbit,
the tilt of its rotational axis, the size and position of its moon, its tropospheric
ozone shield against ultraviolet radiation, its magnetic shield against poten-
tially lethal cosmic radiation, the abundance of oxygen in its atmosphere and
liquid water on its surface; the list is easily extended. Some people find it hard
to accept this constellation of unusual properties that makes the earth condu-
cive to life as purely coincidental and take it as evidence that the earth is, by de-
sign, a special place.

Taking the existence of the earth with all its properties as a given, there are
other coincidences that are fortunate from the point of view of its inhabitants.
A case in point is the fact that a human being happens to be about the right size
to have developed the use of fire for practical ends. A fire that is smaller than a
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small campfire is difficult to keep going because it is so easily extinguished,
and a much larger one is hard to keep under control: "Prometheus was just large
enough to feed the flame and keep from getting burnt" (Stevens, 1974, p. 25).

Another example is the coincidence involving the freezing temperature of
water, the fact that much of the earth has temperatures below this point for sig-
nificant portions of the year, and the curious fact that, unlike most liquids,
which contract upon freezing, water expands—not much, but enough to make
ice float. This is fortunate because, if ice sank, lakes would freeze solid in win-
ter—as the ice formed, it would sink to the bottom until the entire lake was a
solid block—and many would thaw only close to the top in the summer. This
would mean that much of the earth that is now habitable would not be, at least
by life forms with which we are familiar that depend on an abundance of liquid
water as a habitat.

When one considers the universe more generally, one also finds numerous
quite remarkable coincidences, some of which appear to be essential to the exis-
tence of life, and others of which seem to be required for the existence of any-
thing. These include the fact that gravity is at the right strength to permit the
formation of planets (Carter, 1974); several remarkable properties of water in
addition to its expansion upon freezing (Greenstein, 1988); the coupling of the
resonance between helium and beryllium, which enhances the production of be-
ryllium in red giant stars, and that between the reacting beryllium and helium nu-
clei with the carbon atoms that they form (if it were not for this unique double
matching of resonances there would be no carbon production and consequently
no carbon-based life; Barrow [1991] refers to this coincidence as "something
akin to the astronomical equivalent to a hole-in-one" [p. 95]); the fact that neu-
trons outweigh protons by just enough to permit the existence of hydrogen and
hence the existence of hydrogen stars, which, unlike helium stars, last long
enough for life to develop (Davies, 1982); the precise correspondence between
the expansive force of the big bang and the force of gravity (to within 1 part in
1060) at the "Plank time" of 1043 seconds after the big bang (Gribbin & Rees,
1989); the equivalence of the electrical charges of protons and electrons, which
differ dramatically in almost every other respect (if these charges were not equal
to an accuracy of one part in 100 billion, objects the size of human beings or
smaller could not exist; an even greater accuracy is required to permit the exis-
tence of much larger structures, such as the earth or the sun) (Greenstein, 1988);
the precise strengths of the strong and weak forces (small differences in either
would rule out the possibility of the universe as we know it) (Barrow & Silk,
1983; Davies, 1982; Gribbin & Rees, 1989). And so on.

I mention these "coincidences" to make the point of their existence, but I
will make no attempt here at an extensive discussion of what, to me, is a most
intriguing topic. Thoughtful and thought-provoking discussions of these and
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other coincidences that are essential to life as we know it, and in some cases to
the existence of a habitable universe or even any universe at all, can be found in
Roxburgh (1977), Davies (1982, 1983, 1988, 1992), Hoyle (1983), Polking-
horne (1986,1988), Barrow and Tipler (1988), Greenstein (1988), Gribbin and
Rees (1989), and Barrow (1990,1991,1992), among other places. Is the identi-
fication of such coincidences simply another illustration of selectivity of the
sort described earlier in connection with studies of the great pyramid, and are
the coincidences that are identified to be expected on the basis of chance if
properly viewed, or are they aspects of the universe that beg causal explana-
tion. I confess to leaning strongly to the latter view.

There can be no question about the fact that chance coincidences can be
made to appear to be more significant than they are by selectively focusing on
them after the fact and failing to take account of the high probability that some
such co-occurrences are bound to happen by chance. One might push this ob-
servation to the extreme of dismissing all coincidences that do not have obvi-
ous explanations as due to chance. This does not seem reasonable to me; in my
view, there is a point at which attributing a coincidence to chance taxes credu-
lity to a greater degree than assuming that there is a causal explanation to be
found. Where that point is depends in part, I suspect, on one's philosophical
and/or religious perspective as much as on anything else.

THE ANTHROPIC PRINCIPLE

We are one species among millions on an undistinguished planet circling an un-
distinguished star that travels along an undistinguished orbit in an undistin-
guished galaxy. But we must acknowledge that our place in the picture, however
small, is not insignificant, because it is we who make and remake the picture.
And the strongest and most persistent reason for doing so—for trying to under-
stand what the universe is really like—has always been the desire to understand
how we fit into it. (Layzer, 1990, p. 231)

The anthropic principle begins to look like a name for the repository in which we
set aside all the things that physics cannot yet explain.... The anthropic principle
is used to explain those things for which physics alone, we suspect, cannot pro-
vide an answer. It performs the role that less artful scientists in earlier ages as-
cribed unabashedly to a prime mover, or to God. (Lindley, 1993, p. 250)

As we look out into the Universe and identify the many accidents of physics and
astronomy that have worked together to our benefit, it almost seems as if the Uni-
verse must in some sense have known that we were coming. (Dyson, 1971, p. 59)

Davies (1982) refers to the discovery that many of the coincidences men-
tioned in the preceding section are necessary for our existence as one of the
most fascinating discoveries of modem science. Certainly it has prompted a
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great deal of thought and discussion among scientists and philosophers in re-
cent years. One outcome of this thinking that has received considerable atten-
tion is the anthropic principle or, as it is sometimes called, the anthropic
cosmological principle.

The term anthropic principle was used first by the British physicist Brandon
Carter in 1974. The basic idea has been elaborated by numerous others, nota-
bly G. J. Withrow and Robert Dicke. According to this principle, the very exis-
tence of human life constrains the universe. That is to say, given the existence
of observers, the universe must have certain properties that are prerequisite to
their existence. One statement of the principle is, "If some feature of the natural
world is required for our existence, then [inasmuch as we exist] it must indeed
be the case" (Greenstein, 1988, p. 46). Another similar expression of it is, "The
only things that can be known are those compatible with the existence of
knowers" (Greenstein, 1988, p. 47).

These assertions seem obvious, unlikely to provoke controversy, and not even
very interesting. To be sure, if the conditions that permit life and knowers to exist
did not hold, we would not be here to realize it; they must hold, given that we are
here. But does this observation constitute an explanation of anything? Does it
make the fact that the critical conditions do hold any less mysterious? For some
at least, it does not. As Gribbin and Rees (1989) put it, "To say that we would not
be here if things were otherwise... need not quench our curiosity and surprise at
finding that the world is as it is" (p. 2&5). Or as Davies (1992) argues, "The fact is
we are here, and here by grace of some pretty felicitous arrangements. Our exis-
tence cannot of itself explain these arrangements" (p. 204).

A universe that is compatible with the existence of knowers appears to be
extremely unlikely on a priori grounds, depending as it does on an impressive
number of apparently independent, but precise conditions. Our surprise comes
from the narrowness of the tolerances of the critical conditions, from the fact,
in other words, that if this or that constant differed from its actual value by the
tiniest amount, no universe containing knowers—indeed perhaps no universe
at all—could exist. The existence of the universe and our existence in it would
impress us less if they were known to be compatible with a wide range of con-
ditions. Why, we feel compelled to ask, did precisely the right conditions per-
tain, when the probability of them doing so by chance seems to have been so
infinitesimally small?

Weak ana Strong Forms of tne Principle

The anthropic principle has been stated in a variety of ways and means differ-
ent things to different people. A distinction is often made between weak and
strong versions of the principle. According to the weak anthropic principle
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(which is the interpretation given in the preceding paragraphs), life can exist
only in an environment that is habitable. From the fact of our existence, there-
fore, we can infer certain properties of the universe, namely those properties it
must have in order to permit our existence. For example, from the fact that we
are a carbon-based form of life, we can infer that the universe must be, say, be-
tween 10 and 20 billion years old.

The argument involves assumptions about the origins and life cycles of stars,
the synthesis of complex elements, the formation of the solar system, the evolu-
tion of life, and the times required for these processes, but the reasoning is rela-
tively straightforward and easy to follow. If the universe were much younger,
according to this argument, we would not be here, because there would not have
been enough time for carbon and the other heavy elements that are necessary for
human life to have been produced by the thermonuclear activity within the stars.
When it is much older, the stars that are necessary to sustain life will have burned
themselves out. We live during the only time relative to the universe's evolution,
so this argument goes, that is conducive to life. A similar line of reasoning can be
used to infer other properties that the universe must have.

The strong form of the anthropic principle holds that a habitable environ-
ment must exist; in Carter's words, "The universe must be such as to admit the
creation of observers within it at some stage" (quoted in Davies, 1982, p 120).
Davies points out that the strong anthropic principle, at least as articulated by
Carter, has a quite different philosophical basis than does the weak one:

Indeed, it represents a radical departure from the conventional concept of scientific
explanation. In essence, it claims that the universe is tailor-made for habitation, and
that both the laws of physics and the initial conditions obligingly arrange them-
selves in such a way that living organisms are subsequently assured of existence. In
this respect the strong anthropic principle is akin to the traditional religious explana-
tion of the world: that God made the world for mankind to inhabit (p. 120)

Using the theory of quantum mechanics as a point of departure, some scien-
tists have come to the position that the very existence of the cosmos and the
matter that comprises it depend on the act of observation and therefore the exis-
tence of an observer. This is a strong form of the anthropic principle indeed.
Greenstein (1988) has expressed this form of the principle in emphatic terms:
"Why .did the cosmos bring forth rife? It had to. It had to in order to exist" (p.
198). "Apart from observation ... the electron has no objective reality at all. It
has merely what might be called a set of potentialities, any one of which can be
called into being. It is the observation itself that brings the physical world into
existence" (p. 222). "Nothing exists unless it is observed" (p. 237).

Davies (1982) rejects the idea, which some interpretations of the strong
principle seem to entail, that observers are responsible for the creation of the
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universe they observe: "Special physical conditions may produce man, but
man can hardly be attributed the credit for establishing his own environmental
requirements" (p. 122). But he does see the possibility of some justification for
the strong principle in quantum mechanics: "Although the quantum observer
cannot be said to actually create his own universe in the conventional sense of
the word 'create,' an analysis of quantum measurement theory does open the
door to providing a plausible physical, as opposed to philosophical, justifica-
tion of the strong anthropic principle" (p. 122).

A problem with this form of the principle is that it seems to imply an infinite
regress. According to it, existence depends on the act of observation. But the
act of observation requires the existence of an observer. And the existence of
this observer depends, according to the principle, on an act of observation,
which requires another observer, and so on ad infinitum.

Is the Antnropic Principle Scientific?

Is the anthropic principle a scientific theory? Certainly it is a hypothesis about
the nature of reality that has been proposed by scientists. And the reason it was
advanced was to explain the numerous remarkable coincidences on which the
existence of the universe and ourselves appears to depend. It fails, however, to
meet the cardinal criterion of testability. It appears not to be falsifiable, in prin-
ciple. As Davies (1982) notes, it is hard to see how it can be used to make a test-
able prediction, "because any physical theory that is inconsistent with our
existence is manifestly incorrect anyway" (p. 129). Being compatible with any
conceivable experimental outcome puts it in the same category as all other the-
ories that explain everything and consequently explain nothing.

Pagels (1991) argues further that the anthropic principle has no influence on
the development of contemporary cosmological models. No knowledge, he
claims, has been gained as a result of its adoption, and most physicists and as-
trophysicists simply ignore it in the pursuit of their research: "I would opt for
rejecting the anthropic principle as needless clutter in the conceptual repertoire
of science" (p. 359). More emphatic dismissals of the principle can be found:
Gell-Mann (1994), for example, says, "That idea seems to me so ridiculous as
to merit no further discussion" (p. 212). There are, of course, many evidences
in the scientific literature that an idea that appears absurd to one knowledge-
able observer can be quite compelling to another.

What is one to make of all this? It will not do to say that one should take the
scientific view, because scientists are not of one mind on the issue. We should
note too that the motivation for the introduction of the anthropic principle was to
account for coincidences that are, at least from some perspectives, strongly sug-
gestive of design in the universe. In the words of the astronomer, Fred Hoyle, it
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all looks very much like a "put-up job." Commenting on the dependence of the
formation of carbon on closely corresponding resonances, Hoyle argued that a
"commonsense interpretation of the facts suggests that a superintellect has mon-
keyed with physics, as well as chemistry and biology, and that there are no blind
forces worth speaking about in nature" (quoted in Davies, 1982, p. 118). Some
scientists dismiss the idea of design in the universe out of hand. Some, as evi-
denced by this quote and others that could be cited, do not.

All we know about—all we can know about—is the universe in which we
live. Whether that is the only universe that exists, that ever has existed, that ever
will exist, we have no way of telling. The evidence that is available to us, or
rather our interpretation of that evidence, tells us that our universe is on the or-
der of 12 billion years old, give or take a billion or two, and finite in extent. One
can imagine ours to be one of an infinity of universes, the vast majority of
which came into existence under conditions other than the exquisitely bal-
anced ones that permit the development of life and knowers. On this view, the
fact that the parameters of our universe appear to be tuned precisely so as to ac-
commodate our existence is not particularly interesting; one would expect
such a combination of conditions to occur by chance many times—indeed an
infinite number of times—given an infinitely large sample, and the universe in
which we appear must be one of those for which they hold. One can also imag-
ine the universe in which we live to be all there is or ever was. On this view, the
fine-tuning of the parameters becomes very interesting indeed.

What one makes of the coincidences that are usually associated with the
anthropic principle is likely to depend strongly on one's general perspective on
the world and the presuppositions on which that perspective rests. An individ-
ual who believes that the world was brought into existence by an intelligent
Creator will see the coincidences that have been the focus of the preceding
paragraphs as the consequences of careful design. From this perspective, it is
not surprising, for example, that the basic constants need to be precisely what
they are in order to produce life: "It is just what one would expect if an im-
mensely wise God wished to produce a life-bearing universe, if the whole thing
was purposive" (K. Ward, 1996, p. 52). Ward argues that "it is not at all what
one would expect, if it was a matter of chance. Every new scientific demonstra-
tion of the precision of the mathematical structure needed to produce con-
scious life is evidence of design. Just to go on saying, 'But it could all be
chance' is to refuse to be swayed by evidence" (p. 52).

But one who believes that chance rules all may have no difficulty in attribut-
ing the coincidences to chance. One is unlikely to get much help from science
in deciding this issue, inasmuch as it is not, in principle, decidable by scientific
means. This is not to say that the choice of what to believe is a toss-up. One
must interpret and weigh the evidences as best one can. And when one does so,
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it becomes, as Davies (1983) puts it, a matter of what one finds it easier to be-
lieve. I confess to finding it easier to believe in a cosmic Designer than in the
idea that it all came about by chance. Indeed, precisely what having everything
ruled by chance might mean is not entirely clear to me. Chance, if it is to be
used as an explanatory construct, must be given a much more "deterministic"
connotation than is generally intended when the term is employed.

SUMMARY

Coincidences are ubiquitous. They capture our attention when they unexpect-
edly bring together presumably independent events that we find interesting or
meaningful in combination. Some coincidences are best considered chance
co-occurrences; others can be traced to common, or closely related, causes.
When noticed, coincidences often motivate search for causal explanation. Ef-
forts to find explanations can evoke or reinforce superstitious thinking; they
have also sometimes led to scientific discoveries. Certain remarkable coinci-
dences involving physical and astronomical constants have attracted the atten-
tion of cosmologists, among others, in recent years and speculation continues
regarding what they might mean.



CHAPTER

Inverse Probability

and the Reverend

Thomas Bayes

A. form of reasoning that has received a great deal of attention from philoso-
phers, mathematicians, and psychologists is based on theorems proposed by an
18th-century British cleric Thomas Bayes (1763) and the French astronomer
and mathematician Pierre Laplace (1774). Today Bayes's name is more
strongly associated with this development than is that of Laplace, who is better
known for his work on celestial mechanics culminating in a five-volume opus
by that title and his treatise on probability theory published in 1812; but
Todhunter (1865/2001) credits Laplace with being the first to enunciate dis-
tinctly the principle for estimating the probability of causes from the observa-
tions of events. Although the popularity of Bayesian statistics waxed and
waned—perhaps waned more than waxed—over the years, it has enjoyed
something of a revival of interest among researchers during the recent past, as
indicated by a near doubling of the annual number of published papers making
use of it during the 1990s (Malakoff, 1999).

In classical logic, given the premise "If P, then Q," one cannot argue from
the observation Q to the conclusion P; such an argument is known as "affirma-
tion of the consequent" and is generally considered fallacious. Nevertheless

109
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both in everyday life and in scientific reasoning, we do take the observation of
Q as evidence favoring the likelihood of P: If my hypothesis is correct (P), mix-
ing these two chemicals should produce a small explosion (Q); observing a
small explosion upon mixing the chemicals (Q) strengthens my confidence in
the correctness of my hypothesis. Most of us would probably agree, perhaps
with certain caveats, that that is as it should be.

Although Bayes is remembered for having quantified this idea, the idea it-
self, or something close to it, was probably around long before Bayes. McLeish
(1994) sees the logic that underlies Bayes 's rule in the reasoning represented in
the Talmudic law, as, for example, when a decision must be made as to whether
a child of a recently widowed and remarried woman is more likely that of the
deceased husband or the new one. Inasmuch as the baby was born 9 months af-
ter the death of the woman's first husband and 6 months after her remarriage,
either paternity is possible. The reasoning takes account of the probabilities of
full-term and premature births, as well as that of a woman showing signs of
pregnancy within 3 months of conception.

THE THEORY

Bayes formali zed his notion in what has sometimes been referred to as the "in-
verse probability theorem," which may be represented as follows:

k=\

where p(Hi I D) is the probability of Hypothesis i given the datum D (the poste-
rior probability of H), p(D I H.) is the probability of the datum D given Hypoth-
esis i (the probability of D conditional on H.), p(H) is the prior probability of
Hypothesis i (the probability ofH( before the observed datum D), and n is the
total number of hypotheses in the set. Because

the equation can be simplified as
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Sometimes, to make more explicit the interest in justifying reasoning from
effects to causes that motivated the original proposal of the inverse probability
theorem, it is expressed as

where C and E represent cause and effect, respectively. Conceptualizing the re-
lationship in terms of hypotheses and data gives it a somewhat broader conno-
tation than does conceptualizing it in terms of causes and effects, because the
hypotheses can include, but are not necessarily restricted to, causal hypotheses
and, similarly, effects are one type of data that can figure in Bayesian reasoning
but not the only one.

From Conditional Probabilities to Conditional Probabilities

Bayes's rule is nothing more nor less than a formula for computing a specific
probability given that specific other probabilities are known. It tells us how to
compute the probability of a hypothesis conditional on some data, if we already
know the probability of that hypothesis and all competing hypotheses in the ab-
sence of the data and, for each hypothesis, the probability of observing the data
in question conditional on that hypothesis. In short, one has to know quite a lot
about a situation in order to apply Bayes's theorem, or, if one does not know the
essential probabilities, one must make some assumptions or guesses about
them. Much of the contention about the application of Bayes's theorem in par-
ticular cases has to do with the question of the justifiability of assumptions or
guesses that are made.

The rule may be applied iteratively to accommodate a sequence of observa-
tions, in which case the value ofp(H{ I D) that results from any given computa-
tion becomes the />(//.) for the next iteration. Thus the following representation
is appropriate for the situation in which Bayes's theorem is to be used when up-
dating a posterior probability estimate with a sequence of observations:

where p(Hi I Dn) represents X//^) after the nth observation. To calculate X/^ '
Dj), the probability of H{ following the first observation, p(Hi I Z)n_j) in the
equation would be replaced withp(H), which represents the a priori, or prior,
probability of H{ — the probability of H{ before any observations are made.
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Likelihood Ratio

A concept that is often encountered in the Bayesian literature is that of the like-
lihood ratio. A likelihood ratio is the ratio of two conditional probabilities.

for example, is said to be the likelihood ratio of D given //. to D given H.. People
sometimes find it easier to estimate likelihood ratios than to estimate the un-
derlying conditional probabilities, and likelihood ratio estimates can suffice
for the application of Hayes's rule in some instances.

The likelihood ratio tells us nothing about the absolute sizes of the condi-
tional probabilities involved, but only about the size of one relative to the size
of the other. It does give a good indication, however, of how discriminating a
bit of evidence is with respect to the two hypotheses involved. When the ratio is
close to 1 , the observation does not help much in choosing between them; how-
ever, the more it deviates from 1 in either direction, the greater the credence it
gives to one hypothesis or the other. This feature of the ratio is usually said to
reflect the diagnosticity of the data. The greater the diagnosticity of any datum,
the more useful it is in helping us choose among candidate hypotheses.

Odds

Another important ratio in Bayesian reasoning is the ratio of the probabilities
of two hypotheses, which is usually referred to as the odds, and represented as

By Bayes's rule, the odds following the nth observation is given by
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Inasmuch as the last expression can be rewritten as

we have

If there is no ambiguity about the hypotheses involved, we may drop the
subscripts representing them and write simply

 Thus, to revise the odds so as to take into account a new observation, one
multiplies the existing odds by the likelihood ratio of the observation. In other
words, the odds for two hypotheses following the nth observation is simply the
product of the odds following the (n - l)th observation and the likelihood ratio
of the nth observation. So if one knows, or can estimate, the prior odds and the
likelihood ratio for a given observation, one can update the odds in light of the
observation without estimating conditional probabilities.

C. R. Peterson and Phillips (1966) suggested modifying the preceding equa-
tion by adding an exponent on the likelihood ratio,

so as to make the equation sufficiently flexible to be descriptive of actual per-
formance. When k = 1, the equation represents Bayes's rule; k < 1 indicates
conservative use of data (giving less weight to data than Bayes 's rule deems ap-
propriate) and k > 1 indicates overweighting of data. As will be noted in chapter
11, the more usual finding has been that of conservatism.

An essential aspect of many normative models of decision making under un-
certainty is the identification of an exhaustive and mutually exclusive set of hy-
potheses about the possible states of the world. Bayes's rule is a formal means of
revising the probabilities associated with such a set in the light of new evidence.
It states, in a quantitative way, the effect that an observation should have on the
strength of each of a set of hypotheses. Its use presupposes a set of exhaustive
and mutually exclusive hypotheses, H{, regarding the state of the world. Exhaus-
tive and mutually exclusive means that the set includes the true hypothesis and
that only one of the hypotheses is true. With each hypothesis there is associated a
nonzero probability, and these probabilities must sum to one.
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Assuming that one has identified an appropriate hypothesis set and has as-
signed to each hypothesis a prior probability of its being correct, what one then
must do in order to use the rule to extract information from an observation is es-
timate for each of the hypotheses the probability of the observation conditional
on that hypothesis, p(D I H ) . That is to say, one must estimate the probability
that that particular observation would be made, assuming that particular hy-
pothesis is true. With these estimated conditional probabilities in hand, appli-
cation of the rule is straightforward. The result is a set of posterior
probabilities, which may be thought of as the prior probabilities updated to
take into account the information extracted from the observation.

AN APPLICATION OF BAYES'S RULE

The following simple thought experiment illustrates how the process works.
Imagine three urns, each filled with black and white balls but in different pro-
portions. Specifically, suppose that the balls are 10%, 50%, and 90% black in
urns 1,2, and 3, respectively. Now suppose that you are told that one of the
three urns is to be selected at random, and balls will be drawn from it, one at a
time, and replaced after each drawing. You will be told the color of the ball that
was drawn on each occasion, and your task is to determine from which urn the
balls are being drawn.

This problem is ideally suited to a Bayesian analysis. There are obviously
three a priori hypotheses, and they constitute an exhaustive and mutually ex-
clusive set. Inasmuch as we have no reason to consider the selection of any one
of the urns to be more probable than that of any of the others, it makes sense to
assign .333 as the prior probability of each hypothesis. The conditional proba-
bilities are also straightforward. The probabilities of observing a black ball are
. 1, .5, and .9 for hypotheses 1,2, and 3, respectively, and of course the probabil-
ities of observing a white ball are the complementary set, .9, .5, and .1. So,
starting with the belief that each hypothesis is equally probable, suppose the
first draw produces a black ball. What effect does this observation have on the
strength of our various hypotheses?

Setting p(H) = .333 for all three hypotheses, p(D I #t) = .1, .5, and .9 for hy-
potheses 1 through 3, respectively, we apply the formula,

which, since the datum in hand is a black ball and there are three hypotheses to
consider, we will rewrite as
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We get, for the denominator,

and

The reader who is surprised to see that the posterior probability of the third
hypothesis is almost 10 times as large as the posterior probability of the first
hypothesis after the drawing of only a single ball is in good company. Most
people do not change their estimates as much as Hayes's rule indicates they
should as a consequence of observations; this is the well-known finding of con-
servatism in evidence evaluation that many investigators have described, about
which more later. Suppose that we draw a second ball and it too is black. The
denominator of our equation is now

so the posterior probabilities after the second observation then would be as
follows:



After the drawing of two black balls in a row the probability of the third hy-
pothesis is 84 times as great as the probability of the first. It should be clear that
if the first two balls to be drawn were white, the posterior probability of the Hy-
pothesis 1 would be .757 after the second draw and that of Hypothesis 3 would
be .009. Hypothesis 2 would be .234 in both cases. Of course, if instead of us-
ing urns with proportions of balls of one color as widely disparate as. 1, .5, and
.9, we used proportions like .48, .50., and .52, say, the effect of a small sample
of draws would be much less dramatic.

Now imagine that we draw first a black ball and then a white one. After the
first draw—of a black ball—the distribution of posterior probabilities will be
as in the first example, .067, .333, and .600 for Hypotheses 1,2, and 3, respec-
tively. After the second draw, this time of a white ball, they will be as follows:

p(H{ \B,W) = (.9)(.067)/(.287) = .210,

p(H2\ B,W) = (.5)(.333)/(.287) = .580,

p(H3\ B,W) = (.l)(.600)/(.287) = .210.

In keeping with our intuitions, drawing a ball of each color on two succes-
sive draws increases the posterior probability that the urn from which the balls
are being drawn is the one containing black and white balls in equal numbers,
and decreases the posterior probabilities of the competing hypotheses equally,
but not by enormous amounts. The reader will easily verify that the distribution
of probabilities following the drawing of a ball of each color would be the same
independently of whether the black or the white ball was drawn first. If this
were not the case, the outcome would so strongly violate our intuitions that we
would find it hard to take the rule seriously.

This example is very simple, in that there is no difficulty in determining what
the set of hypotheses should be and there is no problem in assigning values for ei-
ther prior or conditional probabilities. Most real-life problems are not this straight-
forward. Also there is really no need for human judgment in this example.
However, it is interesting to consider how closely the posterior probabilities that
people assign on an intuitive basis match those produced by application of Bayes's
rule even in comparably simple cases. Because of experimental results showing
people to be too conservative in their estimates of posterior probabilities (see later
discussion) some investigators have proposed that people should be relied upon to
make conditional probability judgments and that posterior probabilities should be
calculated—from these estimated conditionals—automatically.

A difficulty with this view is that when the conditional probabilities are known,
as in the previous example, there is no need for anyone to estimate them, and when
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they are unknown it is not clear how accurate people's estimates of them are. In
many instances, there is no alternative to estimates produced by people. In such
cases, people could be asked to estimate either conditional or posterior probabili-
ties. The opinion that people should be asked to estimate conditionals from which
posteriors can be calculated rests on the assumption that the greater ability of peo-
ple to estimate conditionals in situations in which they can be determined objec-
tively carries over to situations in which they cannot be so determined.

A tacit assumption throughout the foregoing discussion has been that the
observations—the data—used to update posterior probabilities are unambigu-
ous. The ball that is drawn from the urn is either black or white, and upon draw-
ing and observing it there is no question as to which is the case. Often in real
life the evidence to which one has access is not so assuredly reliable. The situa-
tion is more like that in which one gets information through a noisy channel;
one does not observe the ball directly, for example, but gets a report from an ob-
server who sometimes lies or makes a mistake.

Techniques have been proposed for taking account of the unreliability of
data in applying Bayes's rule (Gettys & Wilke, 1969; Schum & DuCharme,
1971; Schum, DuCharme, & DePitts, 1973; Snapper & Fryback, 1971; Steiger
& Getty s, 1972). They all involve introducing one or more terms in the compu-
tation to adjust the magnitude of the influence that a reported observation can
have in updating the probabilities of alternative hypotheses and they have the
effect of decreasing the diagnosticity of reported data. We will not consider
these techniques here, but it is important to understand that the need for them
arises because of the fact that Bayes's rule assumes reliable data and that as-
sumption often is not valid in real-life situations.

BAYESIAN DECISION MAKING

Structured approaches to decision making often require identification of the
possible states of the world, estimation of the probability of each possibility,
identification of the set of actions open to the decision maker, specification of
the outcome expected for each possible state-action pairing, the value (worth,
utility) of that outcome, and the application of a rule that selects the course of
action in accordance with a specific goal, such as maximization of expected
utility. The only part of this process that is distinctively Bayesian, in the sense
that it makes use of Bayes's rule, is the estimation of the probabilities associ-
ated with the possible states of the world, and even here it involves only the re-
vision of these probabilities in the light of newly acquired data; although it
requires that there be an exhaustive and mutually exclusive set of such possibil-
ities, it has nothing to contribute to the identification of the possibilities or to
the assigning of a priori probabilities to them.



118 • CHAPTER 4

In short, Bayes's rule is intended to help one determine, in the light of data,
how much one should revise one's beliefs about the hypotheses being enter-
tained. It does not tell one what those hypotheses should be in the first place or
what one should do, given any particular belief set. One may decide to act as
though a particular hypothesis were true if an analysis yields a posterior proba-
bility or likelihood ratio that exceeds some criterion value, but that decision
strategy is not dictated by Bayes's rule. And the criterion value should be deter-
mined by taking into account not only the benefit of acting as though the hy-
pothesis were true if it really is true, but also the consequences of other possible
outcomes, such as the cost of acting as though the hypothesis were true when it
really is not and the cost of acting as though it were false when it really is true.

Although Bayes's rule has the very limited role just described in the context
of decision making, the term "Bayesian decision making" has come to have a
considerably broader connotation, and sometimes is used to refer to the entire
decision process of which the updating of hypothesis probabilities is only a
part. Unfortunately, the term has lost a lot of precision as a consequence of this
broadening. Good (1983a, p. 20) once pointed out that the varieties of philoso-
phies that have been called Bayesian exceeds the number of professional statis-
ticians. He calculated the number of varieties (46,656) as all possible
combinations of 11 issues with respect to which Bayesian statisticians differ.
One conclusion that he drew from this observation is that some of the argu-
ments that are advanced against the Bayesian position are valid only against
some Bayesian position(s). Another implication of the observation is that to
say that one is a Bayesian is to reveal very little regarding what one believes
about reasoning under uncertainty.

Expository treatments of Bayesian decision making have been given by Ed-
wards, Lindman, and L. J. Savage (1963), Lindley (1965, 1971), Slovic and
Lichtenstein (1971), Phillips (1973), Novick and Jackson (1974), Fischhoff
and Beyth-Marom (1983), R. Jeffrey (1983), Howson and Urbach (1993), and
Hacking (2001), among many others.

THE JUSTIFIABILITY OF BAYES'S RULE

The deduction of the probability of causes from the probability of their conse-
quences is a game whose rules are such that no one can take part in it without
cheating. (Eddington, 1935, p. 126)

The question of whether Bayes's rule is descriptive of how people actually ap-
ply new data to the modification of their beliefs has received a great deal of at-
tention from researchers, and we will consider some of the experimental
results presently. Whether or not people behave like Bayesians, Bayes's rule
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has been promoted widely as a normative, or prescriptive, theory of how be-
liefs shouldbe, changed as a consequence of the acquisition of new data that re-
late to them. Not everyone who has thought about it has readily accepted this
view, however, and debates about what inverse probability, which is what the
rule is said to compute, really means go back to the time of Bayes.

Where Does One Find Prior Probabilities?

A problem perceived by Bayes (who never published his rule) was the need to
estimate prior probabilities. In order to apply the theorem, quantitative values
for prior probabilities must be assigned to the competing hypotheses under
consideration. In many practical situations, there is no objective way to deter-
mine prior probabilities, so if the rule is to be applied in these cases, subjective
probabilities must be used. In the absence of information that would justify
some other assumption, there seems to be no alternative to assuming that all
hypotheses are equally likely a priori. Today this might be justified on the
grounds that it is the assumption that maximizes a priori uncertainty, in the in-
formation-theoretic sense, and this seems appropriate for the situation in
which one has no basis for considering any hypothesis to be more or less likely
than any other. Bayes had trouble with the "uniform prior probability distribu-
tion" assumption, whereas Laplace did not.

One of the implications of the use of subjective estimates of prior proba-
bility distributions, when agreed-upon objective distributions are not known,
is that different individuals applying Bayes's rule to the same observations
will produce different posterior probabilities if their subjective estimates of
the prior probabilities differ. To people who consider probability to be a sub-
jective entity in any case, this poses no problem, because on the view that a
probability reflects nothing more than a state of mind—a degree of knowl-
edge or ignorance of the situation of interest—there is little reason to assume
equality among all observers in that regard. To one who wishes to give proba-
bility a more objective meaning, this feature of Bayes's rule is bothersome,
and the general applicability of the rule has been challenged by holders of a
frequentistic view of probability (Venn, 1888; von Mises, 1928/1957). Ed-
dington (1935) expressed a negative view of the use of subjective probabili-
ties in scientific calculations this way: "the most elementary use of the word
probability refers to strength of expectation or belief which is not associated
with any numerical measure. There can be no exact science of these non-nu-
merical probabilities which reflect personal judgment" (p. 113). Bunge
(1996), criticizes Bayesians for using probability—"or rather their own ver-
sion of it"—when confronted with ignorance or uncertainty: "This allows
them to assign prior probabilities to facts and propositions in an arbitrary
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manner — which is a way of passing off mere intuition, hunch, guess for sci-
entific hypothesis" (p. 103).

Sensitivity to Prior Probabilities

In view of the controversial status of the need, at least sometimes, to assign
subjective estimates to initial prior probabilities, we would like to know how
sensitive the Bayesian approach is to the values that the prior probabilities are
given. If the effect of the distribution of prior probabilities is invariably very
small compared to the effect of the application of the rule to new data, then one
would not have to worry much about the accuracy of the prior probability esti-
mates, at least for situations in which many observations, and updates to the
posterior distribution, are to be made.

We can get some feel for this issue by considering again the problem of de-
ciding from which of three urns balls are being drawn. Suppose that, for what-
ever reason, we started out believing that one of the urns, say the one with black
and white balls in the ratio 1 to 9, was very likely to be the one from which the
sample was to be drawn, so we assigned a prior probability of .8 to this urn and
.1 to each of the others. What would the posterior probabilities be after the
drawing of a single black ball?

Setting/?^) at .8 andp(//2) andp(//3) both at .1, and again letting p(D I HJ
- .1, .5, and .9 for Hypotheses 1 through 3 respectively, we get, for the denomi-
nator of our Bayesian formula

SO

 and

Now suppose we draw a second black ball
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so the posterior probabilities after the second observation would be:

p(Hl I B,B) = (.1)(.364)/(.518) = .070,

p(H2\B,B) = (.5)(.227)/(.518) = .219,

p(H^\B,B) = (.9)(.409)/(.518) = .711.

Thus the distribution of probabilities after the drawing of two successive
black balls is almost the same when we start with the a priori distribution of .8,
. 1,. 1 as when we start with the distribution .333, .333, .333. The full situation is
laid out in Table 4.1.

This illustration does not prove the point, of course, but it may make plausi-
ble the idea that given only a few observations, Bayes's rule is relatively insen-
sitive to prior probabilities, provided they are not very close to 0 or 1. The
reader may wish to experiment with various combinations of prior probability
distributions and observation sequences to get a better feel for how probability
distributions change in response to the acquisition of data.

Let us suppose, for the sake of discussion, that the problem of having to as-
sign initial prior probabilities subjectively is not a serious one when the situa-
tion is such that the initial estimates are to be updated many times as the
consequence of a series of independent observations, as in the example with
the drawing of balls from an urn, because a few observations will wash out the
effects of all but very extreme initial distributions in any case. Unfortunately,

TABLE 4.1

Posterior Probabilities of Each of Three Hypotheses About the Proportion
of Black Balls in an Urn After n Draws, Each of Which Produces a Black Ball

n 0

PCHj 1 Dn) .333

P(H2IDn) 333

P(H3 1 Dn) .333

Casel

1

.067

.333

.600

2 0

.009 .8

.234 .1

.727 .1

Case 2

1

.364

.227

.409

2

.070

.219

.711

Note. Hl: proportion of black balls = .l;H2: proportion of black balls = .5; #3: proportion of black
balls = .9. In Case 1, the prior probabilities for the three hypotheses are equal at .333; in Case 2, they are
.8, .1, and .1 for Hypotheses 1,2, and 3, respectively.
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any comfort we derive from this supposition does not apply to situations in
which only a single observation is to be made. There are many real-life, or
real-life-like, situations in which one has the results of a single observation and
wants to know what to make of them. A relatively reliable, but not infallible,
medical test has proved positive; what do I conclude from that regarding the
probability that I have the rare disease for which the test is diagnostic? An ac-
quaintance in whose judgment I have considerable, but not total, confidence
tells me that...; how seriously should I take this claim? Answering these ques-
tions within a Bayesian framework means revising prior probabilities in the
light of the observations, and inasmuch as there is only one observation in each
case, how the prior probabilities are estimated and what the estimates are are of
some importance.

BASE RATES AND PRIOR PROBABILITIES

Sometimes, as in the case of the ball-sampling problem described previously,
the appropriate prior probabilities are clear; often, however, they are not. A
conventional basis for estimating these probabilities, when the information is
available, is some measure of base rate, for example, the incidence of a disease
of interest in the population. The appropriateness of the use of base rates for
this purpose has been the subject of heated debate, although perhaps it is more
accurate to say that the argument has had less to do with whether base rates
should be used in this way than with the question of what base rates are appro-
priate in specific cases. The point is illustrated by reference to an article by L. J.
Cohen (1981), on the question of whether human irrationality can be experi-
mentally demonstrated, that was published along with commentary by several
other experts on the subject. The article and commentary are worth considering
in some detail, because they illustrate the considerable differences that can ex-
ist among the opinions of highly knowledgeable people regarding what consti-
tutes rational behavior in a given situation.

The Cab-Color Problem

L. J. Cohen (1981) focuses on two situations that are typical of those to which
Bayesian analysis is usually considered appropriate. The first is a problem at-
tributed to Kahneman and Tversky (1972a) that goes as follows. Eighty-five
percent of the taxi cabs in a given city are blue, and the remaining 15% are
green. A cab that was involved in a hit-and-run accident at night was identified
by a witness as green. Tests showed that the witness was able to distinguish a
blue cab from a green cab under night lighting conditions four out of five times.
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What is the probability that the cab involved in the accident was blue? The me-
dian probability estimate produced by the participants in the cited experiment
was .20. This result suggested to the investigators that the participants ignored
prior probabilities and based their estimates entirely on what they were told re-
garding the accuracy of the witness in identifying cab color.

According to one view, the correct answer is given by the formula

where p(5 1 g) is the posterior probability that the cab is Blue given that the wit-
ness said "green," p(g 1 5) is the probability that the witness would say "green"
given that the cab was Blue, and/?(#) is tne prior probability that the cab was
Blue. The prior probability distribution represents what one should consider
the probabilities to be if one did not have the testimony of a witness.

In fact, given the aforementioned statement of the problem, we cannot solve
this equation exactly because we do not know the value of p(g I fl) orp(g I G).
The problem statement tells us only that the witness could identify the correct
cab color four times out of five, but it does not tell us the conditional probabili-
ties of the two types of errors: saying "blue" when the cab was Green and say-
ing "green" when it was Blue. We will return to this point later. For now, if we
make the assumption that these conditional probabilities were equally likely,
and we use the 85-to-15 ratio of Blue-to-Green cabs as the basis for assigning
prior probabilities, p(B) = .85 and/?(G) = -15, then the computation is:

p(B I g) = (.2)(.85)/[(.2)(.85)+(.8)(.15)] = .177.29 = .59.

According to this computation, the posterior probabilities estimated by par-
ticipants in the cited study were low by a factor of about three.

In some experiments in which the same problem has been used, the experi-
menters have specified in the problem description that the conditional proba-
bilities, p(g I B) andp(b I G), were equally likely. Lyon and Slovic (1976), for
example, gave their participants the information about the witness's accuracy
this way: "The court tested the witness's ability to distinguish a blue cab from a
green cab at night by presenting to him film sequences, half of which depicted
blue cabs, and half depicting green cabs. He was able to make correct identifi-
cation in eight out of ten tries. He made one error on each color of cab" (p. 291).
Lyon and Slovic's results were very similar to those of Kahneman and Tversky
(1972) in showing people's estimates to be quite insensitive to prior probabili-
ties, as represented by the relative number of cabs of each color in operation.
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The situation may be represented in abstract form as in Table 4.2, the cells of
which are probabilities that sum to 1.0.

There are several probabilities represented by this matrix, and it is important to
keep the distinctions among them in mind. A, B, C and D are joint probabilities:

A: p(B&b), the probability the cab is Blue and the witness says "blue."

B: p(G&b), the probability the cab is Green and the witness says "blue."

C: p(B&g\ the probability the cab is Blue and the witness says "green."

D: p(G&g), the probability the cab is Green and the witness says "green."

E, the sum of p(B&b) and p(B&g), is the probability that a randomly se-
lected cab is Blue and F, the sum ofp(G&b) and/?(G&g), is the probability that
it is Green. G is the probability that the witness says "blue" and H the probabil-
ity that he says "green." Of greatest interest for present purposes are the follow-
ing conditional probabilities:

A/E: p(b I B), the probability the witness is correct given the cab is Blue.

D/F: p(g I G), the probability the witness is correct given the cab is Green.

A/G: p(B I &), the probability the witness is correct given he says "blue."

D/H: p(G I g), the probability the witness is correct given he says "green."

TABLE 4.2

Representation of the Cab Colors—Witness Report Problem

Cab Color

Witness Says "blue"

"green"

Column L

Blue

A

C

E

Green

B
D

F

Row I,

G
H

1.00

Note. Each cell entry, A, B, C and D, represents the joint probability of the cab being the color indicated
by the associated column and the witness reporting the color indicated by the associated row. Marginal
entries, E, F, G, and H, are row and column sums. (Note that B and G, as markers in the table, are not to be
confused with B and G standing for Blue and Green cabs in probability notation in the text.)
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Note that the unconditional probability that the witness makes a correct
identification is A + D, the probability that the cab is Blue and the witness says
"blue" plus the probability that the cab is Green andthe witness says "green."

Table 4.3 shows the situation defined by the conditions of Lyon and Slovic's
(1976) study, in which the prior probabilities of the cab being Blue and Green
were .85 and .15, respectively, and the probability that the witness's report was
correct was .8 irrespective of the cab's actual color. The conditional probabili-
ties of interest are represented here only implicitly; the probability that the wit-
ness says "green" given that the car is actually Blue,p(g I #), for example, is the
ratio of the joint probability of the car being Blue and the witness saying
"green," p(B&g), to the probability of the car being Blue, p(B&g) + p(B&b),
which is .177.85, or .2.

According to the conventional Bayesian approach to this problem, the prob-
ability that the cab was actually Blue, given that the witness said it was "green,"
is computed from the application of Bayes's rule, using the base rates .85 and
.15 as the prior probabilities of the cab being blue and green, respectively, and
applying the conditional probabilities of the witness to derive the posterior
probabilities, which represent the probability of the cab being a specified color
that takes both the prior probabilities and the observational data into account.
The computation, as was noted previously, gives All.29, or .59, as the poste-
rior probability that the cab was blue, given that the witness reported it to be
green. The situation is as shown in Table 4.3.

L. J. Cohen (1981) argues that .59 is not the correct answer to the question.
What this ratio represents, in his words, is as follows:

[It represents] the value of the conditional probability that a cab-colour identifi-
cation by the witness is incorrect, on the condition that it is an identification as
green. Jurors, however, or people thinking of themselves as jurors, ought not to

TABLE 4.3

The Analysis Shown in Table 4.2 With the Values Used in the Taxicab Problem
Discussed Earlier

Cab Color

Blue Green

Witness Says "blue" .68 .03 .71

"green" .17 .12 .29

.85 .15 1.00
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rely on that probability if they can avoid doing so, since reliance on it assumes
the issue before the court to concern a long run of cab-colour identification prob-
lems—whereas in fact it concerns just one problem of this type. Jurors here are
occupied, strictly speaking, just with the probability that the cab actually in-
volved in the accident was blue, on the condition that the witness said it was
green. And the latter probability is equivalent in the circumstances to the proba-
bility that a statement to the effect that the cab actually involved in the accident
was green, is false, on the condition that the statement is made by the witness. If
the jurors know that only 20% of the witness's statements about cab colours are
false, they rightly estimate the probability at issue as 1/5 without any transgres-
sion of Bayes's law. (p. 328)

Before turning to the second situation that L. J. Cohen (1981) considered, I
want to expand on the point that was made earlier: that the first problem, as
stated, does not have an unequivocal answer, because of the ambiguity of the
claim that the witness can distinguish blue cabs from green ones in 80% of cases.
What might this claim mean? Presumably it means that of all the responses the
witness makes when asked to identify the color of a cab that is either blue or
green, 80% are correct. What this does not tell us is whether, when the witness
makes a mistake, he is as likely to misidentify a blue cab as a green one. And this
is critical. Consider the three possibilities outlined in Tables 4.4,4.5, and 4.6.

In all three cases, we interpret the claim that the witness can distinguish blue
cabs from green in 80% of instances to mean that, when presented with cabs at
random in such a way that the probability of a cab being blue is .5 on each trial,
he identifies the colors correctly on 80% of the trials. In Case 1, we assume fur-
ther that the witness is as likely to make the one kind of mistake as the other. In
Case 2, we assume that he frequently misidentifies a Green cab as "blue," but
never misidentifies a Blue one as "green." In Case 3, we make the opposite as-
sumption. In all three cases the probability of a correct identification, all trials

TABLE 4.4

Case 1

Cab Color

Witness Says "blue"

"green"

Column L

Blue

.40

.10

.50

Green

.10

.40

.50

RowZ

.50

.50

LOO
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TABLE 4.5
Case 2

Cab Color

Blue

Witness Says "blue" .50
"green" .00

Column I .50

Green

.20

.30

.50

Row Z,

.70

.30

1.00

TABLE 4.6
CaseS

Cab Color

Blue

Witness Says "blue" .30
"green" .20
Column!: .50

Green

.00

.50

.50

RowZ

.30

.70
1.00

combined, is .8, but only in Case 1 is it true that the probability that the witness
is correct is .8 independently of whether he says "green" or "blue." The proba-
bility that he is correct, given that he says "green," is 1 .0 and .71 in Cases 2 and
3, respectively; the probability that he is correct, given that he says "blue," is
.71 and 1.0 in the same two cases.

If we plug the appropriate conditional probabilities from these matrices into
the Bayesian calculation and use .85 as the prior probability that the cab is blue,
we get as the posterior probability, in the three cases:

Case 1: p(fl I g) = (.2)(.85)/[(.2)(.85) + (.8)(.15)] = .177.29 = .59.

Case 2: p(B I g) = (0)(.85)/[(0)(.85) + (.6)(.15)] = 0.0.

Case 3: p(B I g) = (.4)(.85)/[(.4)(.85) + (1.0)(.15)] = .347.49 = .69.

Alternatively, if we accept Cohen's argument that "the fact that cab colours ac-
tually vary according to an 85/15 ratio is strictly irrelevant" to the estimate of the
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probability that the cab is Blue, given that the witness says it is "green," and use .5
as the prior probability, we get for the three cases, again using Bayes's rule:

Case l:p(B\g) = (.2)(.5)/[(.2)(.5) + (.8)(.5)] = .1/.5 = .2.

Case 2: p(B I g) = (0)(.5)/[(0)(.5) + (.6)(.5)] = 0.0.

Case 3: p(B I g) = (.4)(.5)/[(.4)(.5) + (1.0)(.5)] = .27.7 = .29.

L. J. Cohen (1981) argues that .2 is the correct answer, not because it comes
from the application of Bayes's rule, as in Case 1 as just listed, but on the basis
of its being the conditional probability of the witness saying "green" when the
cab is really Blue. As we have noted, this conditional probability is an assump-
tion that goes beyond what is given in the statement of the problem. Cohen un-
doubtedly realized the need for this assumption, because he mentioned that
Lyon and Slovic (1976) had made it explicit in an article that postdated
Kahneman and Tversky's original one.

Another conceivable, though perhaps less likely, interpretation of the claim
that the witness distinguishes blue cabs from green in 80% of cases is that he
does so when he encounters the two colors with the relative frequency with
which cabs of these colors appear around town, which is to say when 85% of
the instances he has to judge are blue and 15% are green. With this interpreta-
tion, we again can imagine three cases analogous to those described previously
(see Tables 4.7,4.8, and 4.9).

(Note: In Cases 5 and 6, I used the largest probabilities in the Blue and
"blue" and Green and "green" cells, respectively, that were possible with the
constraint that the overall probability of a correct identification stay constant at
.8. In Case 6, it was possible to have the probability of the Green and "green"
cell match the probability of the occurrence of a Green cab, thus making ̂ (cor-
rect I Green) = 1.0. In Case 5, it was not possible to have the probability of Blue
and "blue" equal the probability of the occurrence of a Blue cab, because any-

TABLE 4.7

Case 4

Cab Color

Blue

Witness Says "blue" .68

"green" .17

Column I. .85

Green

.03

.12

.15

RowZ

.71

.29
1.00
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TABLE 4.8
CaseS

Cab Color

Blue

Witness Says "blue" .80
"green" .05

Column I .85

Green

.15

.00

.15

RawZ

.95

.05
1.00

TABLE 4.9
Case 6

Cab Color

Blue

Witness Says "blue" .65
"green" .20

Column I .85

Green

.00

.15

.15

RowZ

.65

.35
1.00

thing greater than .8 in this cell would have made the overall probability of a
correct identification be greater than .8.)

Again, in all three cases the probability of a correct identification, all trials
combined, is .8, but the probability that the identification is correct conditional
on a particular identification response varies with the specifics of the cases.
The conditional probabilities of interest are as shown in Table 4.10.

Let us again calculate with Bayes's rule the probability that the cab was
Blue, given that the witness reported it to be "green," using the values assumed
in these three cases:

Case 4: p(B I g) = (.2)(.85)/[(.2)(.85) + (.8)(.15)] = .177.29 = .59.

Case 5: p(B I g) = (.06)(.85)/[(.06)(.85) + (0)(.15)] = .057.05 = 1.00.

Case 6: p(B I g) = (.24)(.85)/[(.24)(.85) + (1.0)(.15)] = .27.35 = .57.

It comes as no surprise, of course, that these probabilities are the comple-
ments of those of the last row in Table 4.10, inasmuch as the probability that the
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TABLE 4.10

The Probability of Being Correct, Conditional on Either of the Two Car Colors
or Either of the Two Reports, for Cases 4,5, and 6 Discussed Earlier

Case

P(correct 1 Blue)

P(correct 1 Green)

P(correct 1 "blue")

P(correct 1 "green")

4

.80

.80

.96

.41

5

.94

.00

.84

.00

6

.76

1.00

1.00

.43

cab is Blue, given that the witness says "green," is the complement of the prob-
ability that the witness is correct, given that he says "green." The correspon-
dence of the numbers simply shows that one gets the same result if one uses
Hayes's rule as one does when one obtains the probabilities directly by consid-
ering the appropriate outcome ratios.

The cases just considered illustrate that the claim that the witness can distin-
guish blue cabs from green ones in 80% of cases does not provide the informa-
tion needed to support an unqualified answer to the question of what is the
probability that the cab in the accident was Blue, given that the witness has
identified it as "green." One might acknowledge the legitimacy of these vari-
ous interpretations of the claim that the witness can distinguish blue cabs from
green ones in 80% of cases, but argue that the most natural interpretation is one
that assumes that the witness is equally as likely to identify a blue cab as green
as to identify a green one as blue, and that in the absence of evidence to the con-
trary, we should assume this to be the one that people naturally make. It seems
to me a reasonable working assumption, but it is important to recognize that it
is an assumption.

L. J. Cohen (1981) argues that "[t]he fact that cab colours actually vary ac-
cording to an 85/15 ratio is strictly irrelevant to this estimate [the estimate of
the probability that the cab was blue, given that the witness has said it was
green], because it neither raises nor lowers the probability of a specific
cab-colour identification being correct on the condition that it is an identifi-
cation by the witness" (p. 328), and he justifies this view on the grounds that
"[a] probability that holds uniformly for each of a class of events because it is
based on causal properties, such as the physiology of vision, cannot be al-
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tered by facts, such as chance distributions, that have no causal efficacy in the
individual events" (p. 329).

A conventional counter to this argument is that, given the assumption that
the probability that the witness will misidentify the color on a single trial is .2,
independently of whether the cab is actually blue or green, then a long run of
trials on 85% of which the cab is blue will produce the outcome represented by
Case 4. If we think of the experiment as a random one from that long run of
imaginary trials, and take the theoretical relative frequencies as indicative of
the momentary probabilities, then the numbers in the matrix associated with
Case 4 represent also the probabilities associated with that trial, and the correct
answer to the question of the probability that the cab was blue, given that the
witness said it was green is .59. Cohen argues that a relative-frequency concep-
tion of probability is not appropriate here, that probability in this case is better
viewed as a "causal propensity," the judgment of which does not rely on rela-
tive frequencies, and that the sought for probability is .2, the probability that
the witness makes an error.

I confess to not fully understanding Cohen's argument. It seems to me he dis-
misses the relevance of relative frequencies, but uses them all the same. He de-
nies the relevance of the relative frequencies of blue and green cabs in operation,
but he accepts the relative frequency with which the witness makes errors of
identification (Margalit & Bar-Hillel, 1981). And it is not clear to me how an er-
ror of identification qualifies as a causal propensity any more than does the rela-
tive numbers of cabs of different colors in operation. One can think of causes of
errors of identification (poor vision, poor lighting), but in what sense is the
causal connection between such factors and the problem greater than is the rela-
tive availability of cabs of specified colors for involvement in an accident?

In defending Cohen's analysis of the taxicab problem, Levi (1981) argues
that the percentage of the total population of cabs that are blue (or green) is not
relevant to the jurors' task; what they need to be told, he claims, is "the percent-
age of blue (green) cabs in the city involved in accidents" (p. 343). (See also
Niiniluoto [1981].) A good Bayesian, he argues, "should neglect the base rate
given in the example because it is useless for the purpose of determining sub-
jective probabilities" (p. 343). He notes too that when people have been told
that 85% of the taxicabs involved in accidents have been blue, they have not ne-
glected base rates.

I would agree that knowledge of the percentage of cabs of a specified color
that have been involved in accidents should count for more than knowledge of
the percentage of cabs of a specified color in the town's fleet. If told, for exam-
ple, that 75% of the cabs in town are green, but that 75% of the cabs that have
been involved in accidents have been blue, I would think the latter percentage a
more appropriate basis than the former for estimating the prior probability that
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a random accident will involve a blue cab. But the question is, if one does not
have the accident statistics and has only the population statistics, should one
use the latter or should one ignore them. It seems to me one should use them,
but that one should have less confidence in one's answer than would be justi-
fied if it were based on more situation-specific base rate data.

A Problem of Disease Diagnosis

Let us turn to the second situation considered by L. J. Cohen (1981) in his dis-
cussion of the possibility of demonstrating human irrationality. A patient suf-
fers from one of two diseases, A or B. Imagine yourself as that patient. Cohen
posits the following:

For a variety of demographic reasons disease A happens to be nineteen times as
common as B. The two diseases are equally fatal if untreated, but it is dangerous
to combine the respectively appropriate treatments. Your physician orders a cer-
tain test which, through the operation of a fairly well understood causal process,
always gives a unique diagnosis in such cases, and this diagnosis has been tried
out on equal numbers of A- and B-patients and is known to be correct on 80% of
those occasions. The tests report that you are suffering from disease B. Should
you nevertheless opt for the treatment appropriate to A, on the supposition
(reached by calculating as the experimenters did) that the probability of your
suffering from A is 19/23? Or should you opt for the treatment appropriate to B,
on the supposition (reached by calculating as the subjects did) that the probabil-
ity of your suffering from B is 4/5? (p. 329)

Cohen leaves no doubt of his answer to the question: "It is the former option
that would be the irrational one for you, qua patient, not the latter" (p. 329).

Note first that, as was true of the taxicab problem as presented, the descrip-
tion of this problem is, strictly speaking, inadequate to permit unequivocal
computation of posterior probabilities, whatever one's attitude toward base
rates. The problem is with the claim that the diagnosis "has been tried out on
equal numbers of A- and B-patients and is known to be correct on 80% of those
occasions" (p. 329). The statement is sufficiently vague to permit the interpre-
tation that 80% of the total number of diagnoses were correct without necessar-
ily assuming that 80% of the A-patients were diagnosed correctly and that 80%
of the B-patients were diagnosed correctly. The statement does not rule out the
possibility, for example, of an overall rate of 80% correct diagnoses, with 90%
of one type of patient being diagnosed correctly and 70% of the other being so.
As in the case of the taxicab scenario, one might be willing to assume that most
readers would interpret the claim as that of equal accuracy of diagnosis for both
types of patient, but it is important to recognize that that is an assumption and it
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is essential to the further analysis of the problem. I believe that a nontrivial
amount of the difficulty people have in dealing with questions of probability
stem from the imprecise use of language, and it therefore is better to err in the
direction of more-than-adequate precision than in the opposite one. In any
case, for the sake of further discussion, let us take the intent of the claim to be
that the probability of a misdiagnosis given the presence of disease A was the
same as that of a misdiagnosis given the presence of disease B and that it was .2
in both cases. Given this interpretation, we may represent the situation de-
scribed by Cohen as in Table 4.11.

The conventional Bayesian answer to the question of the probability that
you are suffering from Disease A, given that the tests indicate that you are suf-
fering from Disease B, which I will represent asp(A I b), is

p(A b) = (2)(.95) / [(2)(55) + (.8X-05)] =-19/23 =.83.

As noted earlier, L. J. Cohen (1981) rejects this answer, arguing that the
standard statistical method of taking the prior frequency into account would be
correct "if what one wanted was a probability for any patient considered not as
a concrete particular person, not even as a randomly selected particular person,
but simply as an instance of a long run of patients" (p. 329). But the individual
patient, concerned only about her own situation, Cohen argues, "needs to eval-
uate a propensity-type probability, not a frequency-type one, and the standard
stastical method would then be inappropriate" (p. 329). Cohen contends that
this view is not a repudiation of Bayesian analysis, but only of the assumption

TABLE 4.11

Joint Probability of the Disease State Indicated by the Associated Column
and the Diagnosis Indicated by the Associated Row

Disease State

Diagnosis "a"
"b"
Column L

A

.76

.19

.95

B

.01

.04

.05

RowZ

.77

.23
1.00
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that the prior probabilities are appropriately taken to be equivalent, in this case,
to the relative frequency of occurrence of the two types of disease in the popu-
lation. Cohen's analyses of the taxicab and medical-test problems evoked
much commentary, positive and negative.

The Issue 01 Relevance

L. J. Cohen's (1981) argument is that the appropriate application of Bayes' rule
requires that the prior probabilities be based on knowledge that is relevant to
the problem in hand, and that base rates may or may not meet this requirement,
depending on the particulars of the situation. This seems to me obviously true,
and easily illustrated. Consider the following situation. Kay is a bird-watcher,
and it has been established by experiment that she distinguishes ruby-throated
hummingbirds from Anna's hummingbirds with an accuracy of about 80%,
and is as likely to make the one kind of misidentification as the other. Suppose
it is known that ruby-throated hummingbirds are about 19 times as abundant as
Anna's hummingbirds (I do not know that to be the case, but made up the ratio
for the sake of the illustration). Kay has reported seeing an Anna's humming-
bird; what is the probability that she really saw a ruby-throated hummingbird?

The problem is structurally identical to the disease diagnosis problem dis-
cussed earlier, and if one uses the 19-to-l base-rate ratio as the best indication
of the prior probabilities of spotting each kind of bird, one gets the same an-
swer: .83. But does it make sense to use the 19-to-1 base rate ratio as the best in-
dication of the prior probabilities of spotting each kind of bird? As it happens,
ruby-throated hummingbirds are common in the eastern United States and rare
in the west, whereas Anna's hummingbirds are found primarily along the
southwest coast and rarely, if ever, in the east. If one knew this, and if one knew
that Kay was in California when she saw what she thought was an Anna's hum-
mingbird, one clearly would not fix the prior probabilities by the 19-to-l base
rate ratio. This base rate would be seen to be irrelevant to the question because
it does not reflect the probabilities of encountering birds of the specified types
in the particular locale in which the sighting occurred.

Now suppose that one knows (a) that ruby-throated hummingbirds outnum-
ber Anna's hummingbirds, in general, by 19 to 1, and (b) that the first species is
found only in the east and the second only in the west, but one has no hint of
where Kay was when she saw whatever she saw. What should one use as the
prior probabilities in this case? One might argue that the 19-to-l ratio is the
only relevant knowledge one has, and that, in the absence of any more case-
specific information, it should be used on the grounds that it represents the best
estimate one has of the ratio of the probabilities of random sightings of the two
types of birds. Or one might take the position that if Kay was in the east, what
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she saw was almost certainly a ruby-throated hummingbird, whereas if she was
in the west, it was almost certainly an Anna's hummingbird, and assuming one
has no basis for believing the one possibility to be more likely than other, one
should take the prior probabilities to be .5. Or, one might convince oneself that
the most reasonable thing to do is to set the priors somewhere between these
extremes, giving some weight to the fact that ruby-throated hummingbirds out-
number Anna's hummingbirds in the general population, but not as much as
one would if it could be assumed that the two species were uniformly distrib-
uted over the same territory. In short, I believe there is room for some judgment
here and that the argument that there is one and only one correct way to think
about this would be a difficult one to make.

If I understand Cohen's position, it is that some base rates are more compel-
lingly appropriate than others and that each case must be judged on its merits.
Base-rate statistics are more compelling, for example, when they are about
"causally relevant" features of the situation, which is to say when clear causal
connections can be made between membership in a class (counts of which de-
fine base rates) and events the posterior probability of which is in question. lb
fail to make such judgments, in Cohen's view, is to fail to recognize that all evi-
dence does not carry the same weight and that, therefore, it should not all be
given the same importance. Cohen makes the further claim that some evidence
can even be "weight reducing" (as opposed to "weight increasing") in the sense
of leading one to use base rates that, upon reflection, are deemed inappropriate.

I agree with this perspective in principle, but recognize that it allows for a
larger element of subjectivism in Bayesian reasoning than many people will find
appealing. It focuses on the importance of judgments of relevance; it puts the
burden on the individual to decide how much weight to give to any bit of evi-
dence that may pertain to a decision or estimate that is to be made. And the rules
for making such judgments are not entirely clear. Intuitions, as evidenced by the
range of opinions expressed by the commentaries on L. J. Cohen's (1981) article,
differ considerably. Moreover, it seems likely that they will continue to differ; it
is important to recognize that inasmuch as the probabilities in question are not
objectively determinable in most cases, who is right is, and will remain, a matter
of opinion. It is interesting, and a little sobering, to note how cocksure many of
the experts on different sides of the debate are that they are right.

Returning to the disease diagnosis problem, I find it hard to understand Cohen's
argument that, in the absence of a reason for suspecting a greater disposition to one
disease or the other in a particular case, one should assume oneself equally dis-
posed to both. My intuition tells me that, in the absence of any more specific infor-
mation relevant to my specific case, the knowledge that one disease is 19 times
more likely than the other in the general population should be taken as evidence
that is relevant to my own probable susceptibility. This I take to be the essence also
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of the position of Blackburn (1981), Krantz (1981), Mackie (1981), Sternberg
(1981), and Zabell (1981) among the commentators on L. J. Cohen's (1981) arti-
cle. I agree with Cohen that general-population statistics provide a less-than-ideal
basis for estimating prior probabilities of disease for a given individual, and that it
would be much better to be able to use statistics that are more specific to a subset of
the population that resembles the individual in question with respect to health-rel-
evant characteristics, but if the latter statistics are not available, it seems to me
wrong to ignore the former. They are admittedly "lightweight" evidence, and I
might be inclined to modify the 19-to-1 ratio in one or the other direction to the ex-
tent that I believed my self to differ from the average person in ways that might be
expected to impact susceptibility, but I would not ignore it.

It seems clear that it is important to identify the correct population to use for
base rates, and easy to get this wrong. The incidence of some disease in the
general population may be, say, 1 in 10,000, but that would be an appropriate
ratio to use to evaluate the effectiveness of a diagnostic screening test only on
the assumption that testing is done on a random subset of the entire population.
If the testing is done on a nonrandom subset—for example, of high-risk or
self-selected individuals—a different, and larger, ratio would be appropriate.

DIRECTIONALITY AND WEIGHT OF EVIDENCE

Especially in the context of probabilistic reasoning, theorists have distin-
guished between what might be called the directionality of evidence and the
weight of evidence. Peirce (1932), for example, stressed the importance of
both. As was noted in the foregoing discussion regarding the use of base rates
as estimates of prior probabilities, some contemporary theorists have argued
that in using base rates uncritically, without taking account of the strength of
the causal connection between membership in a base-rate class and the events
of interest, one, in effect, gives equal weight to evidence that should count for
little and to evidence that should count for much.

The distinction is an intuitively appealing one. Given that the evidence in
hand favors a particular conclusion, it seems right that the evidence should
count for more if it is seen as being highly relevant to the question and very reli-
able than if it is seen as being only marginally relevant or of dubious reliability.
At least our confidence in any conclusion drawn should, it would seem, be
greater in the former case than in the latter.

Something of this distinction is captured in the U.S. Army's prescription for
evaluating incoming tactical intelligence reports ("spot reports") independ-
ently as to probable accuracy of contents and reliability of source (Combat In-
telligence Field Manual, FM30-5). The effectiveness of the procedure and the
ability of personnel to make independent judgments of accuracy and reliability
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have been questioned (Baker, McKendry, & Mace, 1968; Samet, 1975a,
1975b), but the desirability of having some indication of how seriously a report
should be taken seems clear.

Is this intuition reflected in Bayes's rule? Does Bayes's rule take into account
weight of evidence? From one point of view the answer appears to be no. A given
conditional probability will have precisely the same effect in updating a prior
probability irrespective of the amount of evidence on which the prior is based.
Returning to the problem of deciding from which of three urns balls are being
drawn, suppose the posterior probabilities associated with the three possibilities
are/^, p2, andp3 after « draws. A white ball on the following draw will modify the
values of these probabilities by the same amounts, independently of the size of n.

There is another way to look at the situation however. Consider again a
Bayesian trying to decide from which of several equally probable urns, con-
taining black and white balls in different ratios, balls are being drawn. Any se-
quence of several drawings from a real urn containing balls in one of the
hypothesized ratios is very likely to have moved the posterior probability of the
correct hypothesis closer to 1 and those of the incorrect hypotheses closer to 0.
The weight of the evidence obtained from n drawings is reflected in the distri-
bution of posterior probabilities after that number of drawings has been made
in the sense that, for a given distribution of prior probabilities, the larger that n
is, the closer to 1 the posterior probability of the correct hypothesis is likely to
be. It is true that a particular distribution of posteriors will be changed by the
same amount by the drawing of a ball of a given color, irrespective of how that
distribution was derived, but one is unlikely to have the same distribution after
n draws as one had after, say, n/2 draws.

When one says that according to a Bayesian analysis the distribution of proba-
bilities over a set of hypotheses is thus and so, one has said all that is necessary to
continue the analysis; it is not relevant to know the number of observations on
which that distribution of probabilities is based. That distribution implicitly re-
flects the weight of whatever evidence was used to get it to what it is. One who
wished to argue that Bayesian analysis does not take weight of evidence into ac-
count can point out that a distribution of probabilities that was arbitrarily assigned,
or the result of pure whim, has exactly the same standing in the subsequent appli-
cation of Bayes' rule as one that is the result of several previous applications of it.
This is true, but the position also can be defended that when evidence is applied, its
weight is represented in the distribution that its application effects.

LIMITATIONS OF BAYESIAN REASONING

All good Bayesian statisticians reserve a little of probability for the possibility
that their model is wrong. (DeGroot, 1982, p. 337)
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The Bayesian approach to reasoning about probabilistic situations has much to
recommend it, and it is not surprising that it has received so much attention
from both philosophers and psychologists, or that it has been applied to practi-
cal advantage in many contexts. In part just because the approach is so attrac-
tive and useful in many ways, it is important to be aware of its limitations, of
which there are several.

In a discussion of these limitations a distinction should be made between
limitations inherent to the Bayesian approach and other limitations that may
result from the ways in which people apply it. With respect to the second type
of limitation, Fischhoff and Beyth-Marom (1983) identify a variety of poten-
tial sources of bias. According to their analyses, biases can affect about any as-
pect of the Bayesian approach, of which they identify seven: hypothesis
formation, assessing component probabilities, assessing prior odds, assessing
likelihood ratios, aggregating data, information search, and action selection.

This list suggests a fairly broad connotation of Bayesian reasoning includ-
ing, as it does, such activities as information search and action selection,
which, strictly speaking, are not distinguishing aspects of the Bayesian ap-
proach. Indeed, the only aspect of decision making that uses Bayes's theorem
directly is hypothesis evaluation—specifically, the updating of posterior prob-
abilities. Many of the biases that affect performance in a Bayesian deci-
sion-making context are not unique to this context, but may be found also when
decision making is done without reference to Bayes's rule (Krischer, 1980;
Politser, 1981). Here I will deal only with the question of limitations that are in-
herent to a Bayesian approach.

Conditions of Applicability

The main risk associated with Bayesian reasoning, as I see it, is the risk of ex-
pecting more of it than it can deliver. Bayes's rule was advanced to answer a
quite specific question: how to revise probabilities associated with existing hy-
potheses in the light of new data relevant to the truth or falsity of those hypothe-
ses. Given the conditions under which the rule is supposed to work, it appears
to do a very good job. Those conditions are restrictive, however, and often are
not realized in real-life situations.

The requirement of a well-structured problem in which one has an exhaus-
tive and mutually exclusive set of hypotheses about the possible states of the
world is perhaps the most obvious restriction. The assumption that one and
only one of those hypotheses is true does not allow for the possibility that none
of them is true, or that several of them are true, or partially so.

Inasmuch as the rule specifies only how to revise existing probability esti-
mates, one must begin by specifying prior probabilities if they have not already
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been specified. Prior probabilities for one problem may, of course, be posterior
probabilities of a preceding problem, and this process may be iterated many
times. But, as Rozeboom (1997) points out:

On pain of infinite regress, this process must have a non-Bayesian origin. And
there is no coherent credibility distribution assigning certainty to evidence e that
cannot be reached by conditionalization on e from some other coherent credibil-
ity distribution. So if a theory of rational belief can advocate no normative stan-
dards beyond Bayesian ideals, neither has it any grounds for preferring one
coherent allocation of posterior belief strengths compatible with our accumu-
lated data to another, (p. 345)

Rozeboom is quick to point out that this does not defeat the Bayesian per-
spective, but it does show the insufficiency of that perspective, in the absence
of additional principles, to justify belief acquisition.

If one has no rational basis on which to estimate prior probabilities, one
must do so arbitrarily. In the absence of any reason for believing otherwise, one
might assign equal probability to all the hypotheses under consideration, ac-
cording to the principle of insufficient reason, as first expressed by Jacob
Bernoulli, but, as Luce and Raiffa (1957) have pointed out, indiscriminate use
of this principle has led to many nonsensical results. Jaynes (1968) proposed
use of the principle of maximum entropy, according to which the assignment is
done in such a way as to maximize entropy without contradicting the available
prior information. One must decide too, how many hypotheses one should con-
sider and what they should be; Bayes 's rule provides no guidance for this task.

Extra-Bayesian Requirements

The modification of beliefs or opinions often involves changing hypotheses
rather than revising probabilities associated with existing hypotheses. Bayes's
rule prescribes how one is to function within a given problem structure—how
one is to apply new data to a given hypothesis set. The ability and willingness to
discard an existing structure in favor of one that better fits the facts have been
seen by some as defining characteristics of original thinking (Mackworth,
1965; Polanyi, 1963). Bayes's rule has no prescription for modifying problem
structure; it makes no provision for changing one's hypothesis set. One is not
precluded from deleting hypotheses from the set in hand or from adding hy-
potheses to it, but when any such change is made, the distribution of probabili-
ties over the set must be modified to take account of the deleted or added
hypotheses, and Bayes's rule does not prescribe how this is to be done.

Bayes's rule does not permit revision of a belief to which one attaches cer-
tainty—a belief that has a prior probability of 1 or 0. This may be all right if 1
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and 0 mean certainty in an objective or definitional sense, but not when they
represent subjective certainty. One can be certain but wrong. This aspect of
Bayes's rule complicates its application to juror decision making. If one under-
stands the "presumption of innocence" rule to mean that before hearing evi-
dence, one should consider the probability that one is innocent to be 1, then no
matter how incriminating the evidence seems to be or how much of it there is,
application and reapplication of Bayes's rule to it can produce only a posterior
probability of guilt of 0.

There is a certain degree of arbitrariness in the Bayesian approach as to what
constitutes a datum. Typically data are associated with the occurrence of ob-
servable events, but not all observable events that could conceivably have some
bearing on a hypothesis are necessarily considered. Moreover, the nonoccur-
rence of an event can also be informative, and this seldom is taken into account
in Bayesian analyses.

Bayes's rule does not tell one when to stop collecting data for the purpose of
evaluating a hypothesis set. Presumably one should cease collecting such data
when the cost of obtaining additional data is greater than the value of the infor-
mation one can reasonably hope to attain. A variety of criteria for deciding
when to stop collecting data have been proposed, but all are based on assump-
tions and arguments that are independent of Bayes's rule.

Finally, the posterior probabilities produced by Bayes's rule are only as
good as the prior and conditional probabilities from which they are computed.
It is possible to show that these can be quite good—a reasonable basis for deci-
sion making—in situations in which they can be determined objectively, which
typically means situations involving sufficiently many occurrences of events
of interest that relative frequencies can be taken as indicative of the probabili-
ties in question. But many of the real-life situations to which Bayesian reason-
ing might be applied involve one-of-a-kind or very-few-of-a-kind events, and
this precludes verification of assumed probabilities by relative frequency
counts; application of Bayes's rule in such cases requires a leap of faith, or at
least the assumption that because it works well in situations in which probabili-
ties can be equated with relative frequencies it will work equally well in situa-
tions in which they cannot.

ADVANTAGES OF BAYESIAN REASONING

By highlighting limitations of Bayesian reasoning, I do not mean to suggest
that the approach has no merits. To the contrary, I believe it to be very useful
when appropriately applied. I believe too that its usefulness is enhanced when
its limitations are recognized.
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The Discipline of Explicit Problem Representation

A major advantage of the use of Bayes's rule to evaluate hypotheses is the re-
quirement it imposes that all hypotheses of interest be explicitly identified
and that the application of data to the evaluation of any one of them must take
into account the implications of those data to competing hypotheses.
Bayesian analysis constitutes a method of applying data to the task of judging
the relative tenability of each of a set of hypotheses. It requires that more than
one hypothesis be under consideration and has nothing to offer to the individ-
ual who has only a single hypothesis in mind. This might be seen as a problem
inasmuch as it forces one who would use the approach to come with more
than one hypothesis to account for a situation of interest, but this is really an
advantage just because it does force one to consider possible alternatives to
what may be a favored point of view.

At the very least one must consider not only a hypothesis of interest, H, but
the complementary hypothesis, ~H, as well. This is an important discipline.
Much evidence indicates that a common failing in reasoning is to evaluate the
credibility of a hypothesis by considering the probability of observing some
specific data if that hypothesis were true, p(D I H), without considering the
probability of observing the same data if that hypothesis were false, p(D I ~H)
(Nickerson, 1998). The Bayesian prescription precludes this by requiring that
an exhaustive set of hypotheses be considered and that evaluation involve the
application of the same data to the entire set at the same time.

Relative Insensitivity to Initial Probabilities

Another advantage is the relative insensitivity of the distribution of poste-
rior probabilities to the distribution of prior probabilities, when the rule is
applied iteratively over a series of observations. This advantage applies, of
course, only when a series of observations is possible; however, the series
need not be very long.

I noted as a limitation of Bayes's rule the fact that it does not permit revi-
sion of beliefs to which one attaches certainty. Conversely, given prior
probabilities other than 0 or 1, the posterior probabilities can never attain 0
or 1. They can get arbitrarily close but never all the way. The latter feature
might be seen as a limitation by some, but it can also be seen as a benefit;
given that one starts with prior probabilities that are neither 0 nor 1, it pre-
vents one from getting to a point of no return, but leaves open the possibility
of a change of mind, no matter how confident one may have become that a
particular belief is true.
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Cumulative Use 01 Evidence in Hypothesis Testing

Many critics of conventional statistical significance testing argue that the use
of Bayes's rule is a preferred approach to the evaluation of hypotheses (Ed-
wards, Lindman, & L. J. Savage, 1963; Gelman, Carlin, Stem, & Rubin,
1995; Greenwald, 1975; Lindley, 1984; Rindskopf, 1997; Rouanet, 1996;
Rozeboom, 1960; Rubin, 1978). One argument in favor of this view is that the
use of Bayes's rule permits evidence to be applied simultaneously to a set of
hypotheses of interest, and not just to a null hypothesis and its complement.
And it yields an update of the probabilities of all the hypotheses, not just a bi-
nary decision with respect to a null hypothesis. Also, unlike conventional sta-
tistical significance testing, Bayes's rule represents a means of cumulating
the effects of evidence on the hypotheses of interest from a series of studies
conducted over time. In theory at least, it allows for the posterior probabili-
ties of one set of studies to be the priors for a subsequent one, and the process
can be iterated indefinitely. To date, this advantage seems not to have had a
large effect on experimental design.

SUMMARY

Bayes's rule or theorem is a prescription for a quantitative form of inductive
reasoning, or reasoning from effects to causes. It is sometimes known as the in-
verse probability theorem. More specifically, it is an equation for revising
probabilities to take account of new data. Although Bayes's rule has the limited
role indicated, the term "Bayesian decision making" is often intended to en-
compass all aspects of an approach to decision making that includes applica-
tion of the rule as a part.

The legitimacy of the rule has been questioned often and its popularity
among statisticians and other potential users has waxed and waned since its
formulation in middle of the 18th century, but it has many advocates and its
popularity appears to have been on the ascendancy over the recent past. Its ap-
plication is less controversial when the probabilities that are used in the equa-
tion are based on objective relative frequencies than when they reflect
subjective estimates.

Bayes's rule has both strengths and limitations. It can be used to good effect,
but its misapplication can lead to nonsensical results. It should not be applied
in a mechanistic fashion. As is true of any approach to statistical reasoning or
decision making, its effective use requires a generous dose of good judgment.



CHAPTER

Some Instructive Problems

JL robability lends itself to a variety of misinterpretations and misunder-
standings. Few people would have difficulty understanding, at least in a
practical sense, such statements as "The probability that a toss of a fair die
will result in a 5 is 1/6," and "The probability that the children in a five-child
family are all boys is 1/32." It is easy to describe fairly simple probabilistic
situations, however, that can confuse, at least momentarily, even people
with a considerable degree of mathematical sophistication. Usually careful
reflection on the situation suffices to clarify it. The first few problems de-
scribed in what follows are of this type.

There are also probabilistic reasoning problems on which people who are
very well tutored in statistics and probability theory have been known to dis-
agree. The last several problems described herein are representative of those
that may be in this category. It is my belief that the difficulties usually arise be-
cause of a lack of sufficient clarity and precision in the use of language and can
be resolved by a careful consideration of what could be meant by the problem
statement and how it is interpreted by each of the parties who disagree. Several
of these problems are discussed also by Falk (1993).

A SMALL WAGER

Imagine the following gamble. A coin is to be tossed repeatedly until one of the
two following sequences occurs: (A) head, head or (B) tail, head. Depending
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on which of these sequences occurs first either you or your opponent wins the
game. You are given your choice of which sequence is to be yours. Should you
have a preference for one over the other? In fact you should. The odds are 3 to 1
in favor of sequence B and this is so despite the fact that in a long series of
tosses each of these two sequences is equally likely.

Why should one prefer sequence B? Consider the four possible outcomes of
the first two tosses: HH, HT, TH, and TT. If the first of these occurs the game is
over and the player with sequence A wins. The game is also over if the third
event occurs and in this case the player with sequence B wins. Assuming a fair
coin, these events are equally likely and each occurs with a probability 1/4. If
either Events 2 or 4 occurs, the game proceeds, since neither of these is a win-
ning combination. But in both cases, it is now impossible for the combination
HH to occur before TH, because in each case the occurrence of the first head
will necessarily follow a tail and consequently terminate the game with a win
for the player who has sequence B.

This gamble illustrates how easy it is to overlook critical aspects of a proba-
bilistic situation and to jump to erroneous conclusions by making inferences
from simple situations to slightly more complicated ones without noticing the
complication. What is it that makes the illustrative gamble so easy to mis-
perceive? When one tosses a fair coin twice, the probability of getting a tail fol-
lowed by a head is precisely the same as getting two heads in a row. Now
imagine the following situation. A coin is to be tossed repeatedly and a record
kept of the sequence of heads and tails that is produced—TTHTHHHTHTT...
Suppose that this time we decide to enter this sequence at a random point, by
picking a number from a hat, say, and check the next two outcomes following
that point. If either of our two combinations is found, the game is over. If nei-
ther is found, we enter the sequence at another point, determined by the draw-
ing of another number from the hat, and again check the next two outcomes.
And so on. In this case, one should have no preference between HH and TH, be-
cause they are equally likely to be found, no matter how long the game goes on.

The situation described first is analogous to entering the sequence at a ran-
domly determined point, checking the first and second outcomes following
that point and, if neither of the game-terminating pairs is found, moving on to
check the second and third outcomes, then the third and fourth, and so on. The
second pair of outcomes in this case is not independent of the first, but has one
member in common with it. And given the rules of the game, that member is
necessarily a T, so inspection of the second and third outcomes can only yield
TH that will terminate the game with a win for B, or TT that will mean a repeti-
tion of the cycle.

This type of difference and the ease with which it is overlooked is the basis
of a wagering scam that can take a variety of forms. In one of them you are to
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make a wager with an opponent as to which of two three-outcome sequences
will occur first in a series of coin tosses, and your opponent, being polite, gives
you the opportunity of choosing first. As in the two-toss example just consid-
ered, some sequences have a better chance than others of occurring first in an
extended setof tosses, and if your opponent is aware of the differences and you
are not, you are likely to lose.

Suppose Jack and Jill are playing this game and Jack, on the assumption that
all possible sequences are equally likely, bets on HHH. Jill then, being smarter
than Jack, picks THH. These sequences are equally likely to occur on the first
three tosses, and each has probability 1/8 of doing so. However, if the game
goes beyond three tosses, Jill is sure to win. The only way that Jack can win on
the first three tosses is for there to fail to be at least one T among them, and
given the occurrence of a T, it becomes impossible for Jack ever to win, be-
cause THH must then occur before HHH can. So, THH will win over HHH
seven times in eight; or equivalently, the odds are seven to one in favor of THH.

It is easy to see the advantage of THH over HHH. In the cases of some of the
other sequence pairs the relative advantages of one over the other is not so obvi-
ous, but invariably one of the pairs does have an advantage. Here I will trace out
a hypothetical example for just a few steps to make the idea plausible. Suppose,
for example, that Jack had chosen HTH and Jill HHT. Which of them, if either,
has the advantage? One way to represent the situation is with a tree, each level
of which represents a toss of the coin. Figure 5.1 shows all 32 possible se-
quences of five tosses

Figure 5.2 is drawn so as to highlight the nine ways in which the game can be
terminated within five tosses, two after three tosses, three after four, and four
after five. Inasmuch as the probability of arriving at a particular point in this
tree as a consequence of n tosses is 1/2", the probability that this game would
terminate within five tosses is (2 x 1/23) + (3 x 1/24) + (4 x 1/25) = 9/16. The
probability that HTH would win within the first five tosses is 1/8 + 1/16 + 1/32

FIG. 5.1. All possible outcomes of five tosses of a coin.
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FIG. 5.2. All possible ways in which game can be terminated by the occurrence of
HHT or HTH within five tosses.

= 7/32, and the probability that HHT would win in the same number of tosses is
1/8 + 2/16 + 3/32 = 11/32; in other words, HHT would have had the advantage,
the odds in its favor being 11 to 7, or 1.57 to 1.00. It is obvious that the probabil-
ity that there will be a winner increases with the number of tosses that are al-
lowed; the reader may wish to verify that the extent to which the odds favor
HHT get better the longer the game is allowed to go on. The odds favoring
HHT are 1.69 to 1.00 if the game is allowed to go to 6 tosses and 1.92 to 1.00 if
it is allowed to go to 10.

This example perhaps suffices to make it intuitively clear that two triplets can
have the same probability of occuring in three tosses and yet one of them be
much more likely than the other to occur first in an extended series of tosses.
What is probably less intuitively clear, but no less true, is the fact, first noted by
Penney (1969), that given a specified triplet, there is always another triplet that
has an advantage over it in an extended series of tosses. In other words, if Jill un-
derstands the situation completely, she can always pick a triplet that is a better
bet than the one Jack picked, no matter what triplet Jack picked. Hombas (1997)
has presented a detailed analysis of the situation. Table 5.1 gives the results of his
analysis and shows for each possible combination of triplets chosen by two play-
ers, A and B, the probability that the triplet chosen by the second player to
choose, B, will occur before the one chosen by the first player to choose.

Player B's optimal strategy is to pick the triplet corresponding to the row
that contains the largest probability in the column corresponding to the triplet
picked by A. Suppose, for example, that A chooses TTH. Then B should
choose HTT, in which case the latter's chances of winning would be 3/4, or
odds of 3-to-l. If A chose either HHH or TTT, B could get his probability of
winning to 7/8, or odds to 7-to-1, by choosing THH in the former case and HTT
in the latter. A can limit B's potential advantage to odds of 2-to-l by choosing
HTH, HTT, THH or THT, but no matter what A chooses, B can ensure favor-
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TABLE 5.1

Probabilities That the Triplet Chosen Second by B Will Occur
Before the Triplet Chosen First by A

B
HHH
HHT
HTH
HTT
THH
THT
TTH
TTT

HHH
*

1/2

3/5
3/5
7/8
7/12
7/10

1/2

HHT

1/2
*

1/3
1/3
3/4
3/8
1/2

3/10

HTH

2/5
2/6

*

1/2

1/2

1/2

5/8

5/12

HTT

1/8

2/3
1/2

*

1/2

1/2

1/4
1/8

THH

5/12
1/4
1/2

1/2
*

1/2

2/5

2/5

THT

3/10
5/8
1/2
1/2
1/2
*

2/3
2/5

TTH

1/2

1/2

3/8

3/4
1/3
1/3
*

1/2

TTT

1/2

7/10

7/12

7/8

3/5
3/5
1/2
*

. After Hombas (1997).

able odds of at least 2-to-l. The solution represented in Table 5.1 illustrates a
type of intransitivity that can arise among probabilistic relationships. Note that
HHT beats HTT, which beats TTH, which beats THH, which beats HHT,
which is where we started. Other intransitivities involving probabilistic rela-
tionships will be noted in chapter 6.

THE KING'S FOLLY

There once was a king in a polygamous land who worried about the fact that
men and women were born in about equal numbers. This bothered him because
the ideal situation, in his view, was for there to be many more women in the
realm than men so that every man could have several wives. As it was, the men
who were successful in acquiring several wives were resented by those who
were not and this caused a lot of friction and strife. The king's predecessors had
solved this problem by periodically sending the men off to war, thus ensuring
that females would outnumber males in the realm by a large margin despite the
near-equal birth rates of the two genders.

This king had no taste for war, however, and believed there must be a more
humane way to accomplish his goal. After thinking about the problem for a
long time and consulting his advisers, he decided to issue a decree that any
family could have as many children as it wished until it produced its first boy,
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whereupon it was to cease and desist from further reproduction; having a child
after already having had a boy would result in banishment from the land. Fur-
thermore, to motivate families to keep having children as long as they were
producing girls, he provided a most generous monetary award upon the birth of
every female child. The king reasoned that his decree would guarantee that no
family in his realm would have more than one boy, and that his incentive policy
would ensure that many families would have more than one girl, and some
would have several.

The decree was issued and strictly enforced, and the awards were made
without fail. The king observed the results of his action for a few years with
great satisfaction. Considering only the children born after the issuance of the
decree, one could not find a family in the realm that had more than a single boy,
but one could find many families with two, three, four, or more girls. The king
was ecstatic to leam that in his realm of a few tens of thousands of people there
were a few families that had had as many as 10 girls before having to call it
quits because of finally having a boy!

So pleased was the king with how well his policy was working that he de-
cided to quantify the results so they could be reported to the people. He com-
missioned a census aimed at counting the number of boys and girls in the realm
that had been born since the issuance of the decree. To the king's dismay, the
count, and the recount, showed the number of male children born after the de-
cree to be about the same as the number of female children born during the
same time. Strict compliance with the decree had had no effect on the ratio of
male-to-female births in the realm, which had remained one-to-one.

Where had the king gone wrong in his thinking? It was true that an effect of
the decree was to guarantee that no family in the realm had more than one boy.
And it was the case that there were many families with more than one girl.
Where the king had gone wrong was in assuming that these effects were tanta-
mount to a larger number of female births than of male births.

I have not tried to determine in any very formal way whether most people
would share the king's surprise at the ineffectiveness of his attempt to increase
the ratio of women to men in his kingdom. The reactions of a few people to
whom I have told the story make me suspect that many people would do so. If
this conjecture is correct, a question that arises is whether there is an insight
that can make the situation clear.

Assume, for the sake of simplicity, that every family in the realm has as
many children as possible without violating the decree, and that the probability
that any random child will be a boy is exactly 1/2. One insight that may help
make the outcome plausible is that whereas every family will have one boy, one
half of all families—those who produce a boy as the first child—will have no
girls. Specifically, the distribution of girls over families in the realm will be as
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follows: One half of all families will have no girls, one half will have one or
more girls, one fourth will have two or more girls, one eighth will have three or
more, and, in general (l/2n)th will have n or more. As it happens, the number of
boys produced by having one boy in every family turns out to be about the same
as the number of girls produced by this distribution.

Mathematically, the result follows from the fact that

So, X families in the realm would be expected to produce X boys and

 girls.
The process may be clarified with a concrete illustration. Imagine 1,000

families, each producing a child, yielding a total of 500 girls and 500 boys. The
families that produced boys can have no more children, but each of those that
produced a girl the first time go on to have a second child; 250 of these produce
girls and 250 boys. We now have a total of 750 girls and 750 boys. The 250 fam-
ilies that had two girls go on to produce a third child, and so on. The king's de-
cree clearly had an effect on family structure in the realm. It ensured that no
family would have more than one boy, and that only parents who produced
strings of girls had sizable families. It had no effect, however, on the ratio of
girls and boys in the realm.

The reader who has difficulty with this story may wish to do an analogous ex-
periment. Consider a sequence of coin tosses to be terminated with the first occur-
rence of a head. Thus H is one such sequence, TH is another, TTH another, and so
on. Now toss a coin many times, keeping track of the sequences that occur. After a
few thousand tosses, you will find that about half of your sequences are one toss
long (H), about one quarter are two tosses long (TH), about one eighth three tosses
long (TTH), and, in general, about l/2n are n tosses long. Although many se-
quences have several Ts, none has more than one H. The total number of Hs and Ts
in all the sequences combined, however, will be about equal. This should be intu-
itively obvious from the fact that in any large number of tosses of a (fair) coin, the
number of heads should approximately equal the number of tails, and in conduct-
ing this experiment all one does is toss a coin a large number of times. Perhaps it is
clear from this example that there is no "contingent-termination" method that will
be generally effective in determining the percentage of outcomes of a given type
(say tosses of heads) of a random process.
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A SUBTLE DISTINCTION WITH UNSUBTLE IMPLICATIONS

In a certain town, the average family has three children; it follows that the aver-
age child in this town has two siblings. If you did not object to this inference,
you are probably in good company. It sounds right, but it is not. The number of
siblings that the average child in this town has is likely to be much greater than
two; it would be two only in the unlikely event that every family has three (the
average number) of children, in which case every child has two siblings. If
there is any variability in family size, the average child has more siblings than
does a child from an average-size family.

J. J. Jenkins and Tuten (1992) discuss this situation and note that the fact that
must be grasped to see through the puzzle is that the average child does not
come from the average family. Imagine that there are 10 families in this town, 5
of which have one child each and 5 of which have five each. In the aggregate the
10 families have 30 children, which gives us an average of 3 per family (al-
though in this example, there is no actual family that has the same number of
children as the "average family"). If each family had the average number of
children, three, each child would have two siblings. But each of the 5 children
in the 1-child families has no siblings, whereas each of the 25 children in the
5-children families has four siblings, so the number of siblings of the average
child is [(5 x 0) + (25 x 4)]/30 = 3.33.

One might object that language has been used a little loosely in this discus-
sion. What, after all, is an "average family" or an "average child"? Does it
make sense to speak of an "average family" in a situation, like our imaginary
one, in which no family in the population of interest is "average?" And one
could argue that "average child" should be taken to mean child from an average
family, although that is not the way this term was used in our example.

To be more precise, we could reword the original assertion as follows. In a
certain town, the average number of children per family is three; it follows
that the average number of siblings per child in this town is two. This infer-
ence is, of course, incorrect, and having just thought through the problem as
originally worded, we are likely to see that straightaway. Whether people will
generally be more apt to see the problem with the inference when stated in the
second, more precise, way than when stated in terms of average families and
average children will be left to the reader to check. My suspicion is that many
people will see no problem with the inference in either form, until it is
pointed out to them, but the second wording does have the advantage over the
first that its use of the terms "per family" and "per child" makes explicit the
fact that number that is used as the denominator to calculate the "average"
differs in the two cases.
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Failure to make this type of distinction can lead to the drawing of unwarranted
conclusions or present the opportunity for deception. Consider, for example, the
question of average class size in a school district, a question of considerable
practical interest to parents and school administrators in many towns. One is in-
clined to assume that the smaller the average class size, the better. The reason, or
at least a reason, for this assumption is the belief that a child is likely to get more
personal attention in a small class than in a large one. But it is important to recog-
nize that average number of pupils per class is not the same as average number
of classmates per pupil. Consider the two following situations. School District A
has 20 classrooms, each housing a class of 20 students, whereas District B has 5
classrooms with 5 students, 5 with 10, 5 with 25 and 5 with 40. Both districts
have an average of 20 pupils per class; however, the average number of class-
mates per pupil is 19 in District A and 33.4 in District B.

J. J. Jenkins and Tuten (1992) point out that the problem represented by the
average family-average child puzzle has important implications for the inter-
pretation of descriptive statistics . By way of illustration, they cite the following
example noted by D. S. Smith (1979): "The mean population of the 433 Mid-
western counties in 1900 was 36,853. The average person in the Midwest in
1900, however, had another 284,821 persons living in his county; a sample of
Midwestern counties would produce a poor sample of Midwesterners" (p. 85).
Jenkins and Tuten note too that the distinction has implications for sampling: If
one wants to select a representative sample of families, one generally will not
be assured of getting one by randomly sampling children. Moreover, they ar-
gue, the problem is a very general one: "The average churchgoer does not at-
tend the average-size church; the average person does not live in the average-
size household; the average club member does not belong to the average-size
club; the average rat pup is not from the average-size litter; ... In the most gen-
eral sense, we must be aware that the average individual classified by some sys-
tem will not be in the average-size class of that system" (p. 524).

KNOWING WHEN TO QUIT

It is an indubitable result of the theory of probabilities that every gambler, if he
continues long enough, must ultimately be ruined. (Peirce, 1956, p. 1337)

To illustrate the futility of gambling indefinitely, Peirce used the example of
the "Martingale," in which the player doubles her bet following every loss.
Starting with a bet of $ 1 , if she loses three bets in a row and wins the fourth, she
loses 1 + 2 + 4 or $7 and wins $8. Inasmuch as
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the player is assured in this game to make up any string of consecutive losses
with a single win, if she has enough money to last through the losing string. But
sooner or later she will encounter a sufficiently large loss that she will not have
enough money to cover it and thus will be ruined. And it does not matter how
much money she wins before the ruin, because just as she can recover all losses
with a single win, so can she lose all winnings with a single loss.

Peirce's illustration is not an argument against gambling per se, but against
continuous gambling with an opponent who has a much larger bank than you. It
applies to compulsive gambling with a well-financed gaming establishment,
unless you are rich enough to be the owner. It does not apply to the gambler
who is careful to gamble only against poorer opponents. Keynes 1921/1956)
makes this distinction explicit in a discussion of the importance of an adequate
bankroll in gambling, in which he notes that "the poorer a gambler is, relatively
to his opponent, the more likely he is to be ruined" (p. 1370). The moral that
Keynes extracts from this observation is "that poor men should not gamble and
that millionaires should do nothing else" (p. 1371).

The gambler who is free to specify the size of the wager on every bet and to
terminate the betting whenever he likes is—barring an urge to self-destruc-
tion—almost certain to win. Consider again the Martingale, in which every bet
is double the amount of the preceding one. Table 5.2 shows the results of a se-
quence of 30 (actual) tosses of a coin, given an initial bet of $1, a doubling of
the stake on each toss, and head (H) being defined as a win. The fourth column
shows the gambler's net gain or loss as the game proceeds. Note that the net is
always positive following the toss of a head and always negative following the
toss of a tail; this is because the absolute value of the net at any given point must
be smaller than the stake for the next bet.

To (almost) ensure winning in this situation all one needs to do is decide to
stop after tossing a head. One need not stop after the first head, of course, or
even after the first head following a run of tails, but one should stop before the
stake gets large enough that a loss could break one's bank. That is why I say "al-
most certain" rather than simply "certain"; there is always the possibility, how-
ever remote, of an initial sequence of losses long enough to wipe one out.
(There is also the problem of being unable to stop when a win on the next bet
would be so desirable even though a loss would be ruinous.) In the successive
doubling situation, the length of the sequence that would be required shortens
as the game goes on; indeed the stake gets very large very rapidly, so one can
easily get wiped out by a single loss if one lets the game go on too long. A single
loss is always more than large enough to wipe out all previous winnings; each
negative number in the table indicates the cumulative loss following the associ-
ated bet, net of any winnings along the way.



TABLE 5.2

Results of Hypothetical Sequence of Bets With a Doubling of the Stake on Each Bet

Bet # Stake

I 1

2 2

3 4

4 8

5 16

6 32

7 64

8 128

9 256

10 512

11 1024

12 2048

13 4096

14 8192

15 16,384

16 32,768

17 65,536

18 131,072

19 262,144

20 524,288

21 1,048,576

22 2,097,152

23 4,194,304

24 8,388,608

25 16,777,216

26 33,554,432

27 67,108,864

28 134,217,728

29 268,435,456

30 536,870,912

Toss

H

H

H

T

H

H

T

H

T

H

H

H

T

H

T

H

T

H

H

T

H

H

T

T

H

T

H

T

H

T

Net

1

3

7

-1

15

47

-17

111

-145

367

1391

3439

-657

7535

-8849

23,919

-41,617

89,455

351,599

-172,689

875,887

2,973,039

-1,221,265

-9,609,873

7,167,343

-26,387,089

40,721,775

-93,495,953

174,939,503

-361,931,409
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Here is a rather different problem having to do with deciding when to quit.
Imagine that you are a personnel manager of a company and you have the re-
sponsibility of hiring a new secretary for one of the company's departments.
Suppose there is a pool of N candidates from which you can make the selection
but that you must proceed according to the following admittedly somewhat un-
realistic rule. You can consider as many of the Af candidates as you wish, in ran-
dom order, but you must consider them one at a time and make a yes-no
decision with respect to each candidate before proceeding to the next one. In
other words, you get only one chance to consider a given candidate; after you
decide to pass a candidate and go on to the next one, you get no opportunity to
reconsider the candidate you passed. Assume further that you have no advance
information about the makeup of the candidate pool—all the candidates could
be terrible, all wonderful, or there could be any conceivable mix—and that you
get no information about individuals in it before considering them in turn. As-
suming you want to make the best possible choice, when should you stop con-
sidering candidates and select one?

It seems fairly clear that, given these constraints, it is not possible to ensure
that you will select the best candidate, but is there a rule that will maximize
your chances of doing so? Intuition may give conflicting signals here. On the
one hand, one might take the position that, inasmuch as the order in which the
candidates are to be considered is random, the best candidate is equally likely
to be any of them, so it makes no difference where you decide to stop. On the
other hand, one might reason that if one stops after considering only a small
subset, say 10%, of the candidates, the best choice is likely to be among the
90% not yet considered, and conversely if one considers 90% before selecting,
the best candidate is more likely to be among those already bypassed than
among those that remain.

There is a strategy that will maximize one's chances of making the best choice
(Ferguson, 1989; Gilbert & Mosteller, 1966). What one should do is pass the
first M candidates considered and then select the first candidate thereafter (if
there is one) that is better than the best among the first M. The trick is to deter-
mine what M should be; if Mis too small relative to N, the chances are that the se-
lection will be made too soon and the best candidate will be among those never
considered, whereas if it is too large, the chances are the best candidate will be
among the first M considered and passed. In fact the optimal choice of M is N/e,
which is to say that one should pass approximately 37% of the candidates and
then pick the first one (if there is one) who is better than any of those passed. It
turns out that if this strategy is followed, the probability that one will end up with
the best candidate is lie, or approximately .37; e pops up in the strangest places.

The fact that this strategy maximizes one's chances of selecting the best
candidate does not necessarily make it a rational strategy from all points of



SOME INSTRUCTIVE PROBLEMS • 155

view. One might question the wisdom of holding out for the best candidate un-
der these circumstances. If it should happen that the best candidate is among
the 37% passed, which will be the case with probability .37, then one will end
up with the last candidate in the pool, and the chances that this candidate will
be within the top 10% are only 1 in 10. The joint probability that the best candi-
date is among the 37% originally passed and that the final candidate (who must
be chosen by default) is not among the top 10% is (.37)(.9), or about .33. If the
best candidate is not among the 37% passed, the probability that that candidate
will be selected by the prescribed rule is about .59, so the probability that the
best candidate will not be selected, given that that candidate remains in the
pool after the first 37% have been passed, is about .41 and we cannot be sure
that the candidate who is selected in these cases will be among the top 10%.

The point is that if one takes as one's initial goal of selecting a candidate
who is much better than average, but not necessarily the best—if one attempts
to satisfice instead of optimize—one may be able to increase one's chances of
not being left with a really poor choice by selecting not necessarily the first
candidate who is better than any among the first 37% considered, but the first
one who is, say, above the nth percentile of that group, letting n start with a
value close to 100 immediately after 37% of the candidates have been consid-
ered and drop gradually as one gets closer to exhausting the pool. For alterna-
tive simple rules for solving the secretary selection problem, which require
considering far fewer than 37% of the candidate pool to establish the criterion,
and that outperform the 37% rule in terms of some desiderata (other than maxi-
mizing the probability of getting the very best), see Todd and Miller (1999).
This is only one of many illustrations that could be given that challenge the
wisdom of trying to optimize.

SIBLING GENDER

Some of the problems just described might be mildly surprising to people with
a good understanding of probability theory when they first think about them,
but they are unlikely to provoke any lasting debate, because the reasons why a
superficial analysis might produce the wrong answer are obvious on reflection.
Situations can be described, however, for which people who are familiar with
probability theory will disagree as to what the probabilities of specified possi-
bilities are. The following example is one of several discussed by Bar-Hillel
and Falk (1982): "Mr. Smith is the father of two. We meet him walking along
the street with a young boy whom he proudly introduces as his son. What is the
probability that Mr. Smith's other child is also a boy?" (p. 109). Bar-Hillel and
Falk report that two professors of mathematics, when given this problem, dis-
agreed as to whether the correct answer is 1/2 or 1/3.



156 • CHAPTER 5

The following problem appeared several times in the "Ask Marilyn" column
of Parade Magazine (Vos Savant, 1990a, 1990b, 1991):

Suppose you're on a game show, and you're given a choice of three doors. Be-
hind one door is a car; behind the others, goats. You pick a door—say, No.
1—and the host, who knows what's behind the doors, opens another door—say,
No. 3—which has a goat. He then says to you, "Do you want to pick door No. 2?"
Is it to your advantage to switch your choice? (Vos Savant, 1991, p. 12)

Publication of this problem, and of the answer proposed by Vos Savant (that it
is to your advantage to switch), stimulated a great deal of mail, much of it from
people with university- or graduate-level exposure to probability theory. Some
responders argued strongly for one position, some for the other. Responses often
indicated a great deal of confidence in the positions defended, and sometimes
showed disdain for the incompetence of anyone who could hold a different view.
Since its first appearance in Vos Savant's column, this problem—sometimes re-
ferred to as "the player's dilemma" and sometimes as "Monty's dilemma," after
Monty Hall, the longtime host of "Let's Make a Deal"—has been discussed by
several writers in the literature on probabilistic thinking (Falk, 1992; Gillman,
1992; J. P. Morgan, Chaganty, Dahiya, & Doviak, 1991a, 1991b; Selvin,
1975a,1975 b; Seymann, 1991; Shaughnessy & Dick, 1991).

Problems like those described by Bar-Hillel and Falk and by Vos Savant il-
lustrate in a particularly compelling way that probabilistic reasoning can be
tricky, even for people who are well versed in probability theory. What makes
these problems, and many others that could be considered, difficult may have a
complex answer. However, I want to argue that a major contributing factor is
the fact that statements of problems often are incomplete or ambiguous in the
sense that they admit of more than one interpretation, depending on assump-
tions that the reader may make about the situation described, possibly without
realizing he or she is making them, in the process of deriving an answer. I have
tried to make this possibility plausible by noting the assumptions that are im-
plicit in the different answers to the two problems just mentioned and to others
of a similar nature (Nickerson, 1996a). If this hypothesis is correct, one way to
reduce disagreements regarding solutions to probability problems among peo-
ple who are knowledgable about probability theory is to insist that the assump-
tions on which probabilities are calculated be made explicit. Two
probabilistically knowledgeable persons working on the same assumptions
should not produce different answers to the same problem.

Bar-Hillel and Falk's (1982) analysis of the sibling gender problem points
out the relevance of how the information that Smith has at least one son was ob-
tained and notes the need to make an assumption about the probability of meet-
ing Smith on the street with a boy if he happened to have one boy and one girl. If
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we assume that if Smith has a boy and a girl so that we are equally likely to find
him in the company of either—that the child we see with Smith was randomly
selected from the two he has—the correct answer is 1/2. In contrast, if we be-
lieved him to be sufficiently partial to boys that he would walk only with a son
if he has a boy and a girl, then the correct answer is 1/3. On the other hand if we
believe him to be partial to girls and willing to walk with a son only if he has no
daughter, the correct answer is 1 (Nickerson, 1996, Table 1).

Bar-Hillel and Falk (1982) argue that in the absence of evidence to the con-
trary, it seems natural to assume that a father of a son and daughter would be as
likely to be seen with one as with the other. This seems right to me, but the point
is that it is an assumption and should be recognized as such. The point is illus-
trated by consideration of another possible answer to the question, but one that
is justified only if a different assumption is made about the probability that a fa-
ther of a son and daughter would elect to walk with the son.

Bar-Hillel and Falk (1982) give the following argument as one that might be
used in support of the the answer 1/3. Given that Smith is the father of two chil-
dren, he must be the father of two boys, of two girls, or of one boy and one girl,
with probability 1/4,1/4, and 1/2 respectively. Discovering that at least one of
the children is a boy rules out the possibility of two girls and identifies the fam-
ily as a member of the subset of two-child families that have at least one boy,
and we know that about 1/3 of such families have two boys. So, one might con-
clude, the probability that the other child is a boy is 1/3.

Bar-Hillel and Falk (1982) point out that the conclusion is justified only if
another unstated assumption is made, namely that the family not only is a
member of the subset of two-child families that have at least one boy but that it
is a randomly selected member of that subset, which is tantamount to assuming
that all members of this subset are equally likely to be represented on the street
by a father and son. But this assumption would be reasonable only in a land
where fathers who had a son and a daughter would walk only with the son. In a
land where fathers with a son and a daughter are as likely to walk with one as
with the other, any family with two sons is twice as likely to be represented on
the street by a father and son as is any family with only one son.

THREE CARDS

Another problem that illustrates the ease with which people can be confused
by conditional probabilities involves three cards, one of which (RR) is red on
both sides, one of which (WW) is white on both sides, and one of which (RW)
is red on one side and white on the other. Imagine the following scenario. Per-
son A asks person B to shuffle the cards out of sight, pick one at random and
report the color of (only) one side. A cannot see the card and neither can you.
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B shuffles the cards, picks one and reports "red." A then notes that the card
obviously cannot be the white-white one, but that it could be either of the
other two. A then offers to bet $10 against 9 that the other side of this card is
red. Should you take the bet?

Assuming that B selected at random which side of the card to report, the
probability that you will lose if you play is 2/3. A has offered you abet in which
his expected gain is (2/3) x $9 - (1/3) x $10 = $2.67 (which, of course, is your
expected loss). It is true that in knowing that one side of the card is red elimi-
nates the WW card from consideration, but it does not follow that the card in
hand is equally likely to be either of the remaining two cards. The important
thing to see is that the RR card is twice as likely to show a red face, if picked, as
is the RW card. About two thirds of the college students to whom Bar-Hillel
and Falk (1982) gave a version of this problem judged the probability that both
sides of the card were red, given one side was shown to be red, to be 1/2.

Here is a way to think of the problem that may help make it less confusing.
Imagine that the six sides of the three cards are distinguishable by some way
other than their colors. To be specific, let us imagine that the sides are num-
bered 1 through 6, the sides of the red-red card being numbered 1 and 2, those
of the white-white card 3 and 4 and those of the red-white card 5 and 6. If a card
is drawn at random and placed on the table so a random side is up, then each
number is equally likely to be showing following a draw. Let the notation R:R2

indicate that the red-red card has been drawn and the side with the number 1 is
up. The situation is represented in Table 5.3. It should be clear from the table
that in two of the three equiprobable cases in which a red card is seen, the un-
seen side of the card is also red. So, given that the "up" side of a randomly se-
lected card is red, the probability that the "down" side is also red is 2/3.

The following are two variations on the three-card problem:

A: While blindfolded, you draw all three cards from a hat and place them in
a row on the table. When you are allowed to look at the cards you see that, left to
right, they are showing red, white, and white. What is the probability that the
hidden side of the leftmost card is red?

B: While blindfolded, you draw all three cards from a hat and place them in a
row on the table. When you are allowed to look at the cards you see that they are
showing two reds and a white. What is the probability that the hidden side of
the leftmost red card is red?

One way to solve these problems is to consider all possible outcomes of the
drawing of the three cards as represented in Table 5.4. The notation in this case
indicates the triplets of sides showing. Inasmuch as there are three cards, each
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TABLE 5.3

A Card (From Among Three Cards, Redj-Redj, White3-White4, and Red5-White6)
Is Chosen at Random and the Color of a Random Side of the Selected Card Is Seen

Card

R^
R2R1

W3W4

W4W3

R5W6

W6R5

X

r

1/6
1/6

0
0

1/6
0

1/2

Color Seen

w

0
0

1/6
1/6

0
1/6
1/2

5
1/6
1/6
1/6
1/6
1/6
1/6

1

of which has two sides, there are 23 ways in which the sides can be combined.
Each one of these combinations can occur in six different orders, so taking or-
der into account there are 48 equiprobable arrangements of the three cards. All
are listed in the table.

To see the answer to Question A, we note that 8 of the 48 possible arrange-
ments of cards show RWW, in that order. In all eight cases, the red face show-
ing is either R^ or R2 (never R5), and both R: and R2 have red on the opposite
side, so the answer is that the probability that the hidden side is red is 1. The an-
swer is obvious too if we note that if two white faces are showing, one must be
W3W4 and the other R5W6, from which it follows that the remaining card—the
one showing red—must be R^. This applies independently of the order in
which the cards are arranged.

Now consider Question B. Inspection of Table 5.4 will reveal that of the 48
equally probable arrangements, 24 have two reds showing and for 12 of these
the leftmost card showing red is red on both sides (Rj on one side and Rj on the
other), so the answer to the question is 12/24 or 1/2. Again, the answer should
be intuitively clear simply from consideration of the fact that if two reds are
showing, one of them must be RjRj and the other R5W6, and each of these is as
likely as the other to be the leftmost of the cards showing red. It should be clear
also that the answer would be the same if the question had been, given that
when you look at the cards, you see two reds and a white, what is the probabil-
ity that the hidden side of the rightmost red card is red.
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TABLE 5.4

All Possible Arrangements of the Six Sides of Three Cards, Taking Order Into Account

ACES AND KINGS

Another problem that has some features in common with those that have al-
ready been discussed prompted a series of articles in Philosophy of Science
some years ago (A. I. Dale, 1974; Faber, 1976; S. Goldberg, 1976; Rose, 1972).
The series is instructive, because it illustrates well how confusing relatively
simple probability problems can be even for people who are knowledgeable
about probability theory. The statement of the problem that precipitated the se-
ries was given by Copi (1968) in an introductory-logic text as follows:

Remove all cards except aces and kings from a deck, so that only eight cards re-
main, of which four are aces and four are kings. From this abbreviated deck,
deal two cards to a friend. If he looks at his cards and announces (truthfully)
that his hand contains an ace, what is the probability that both his cards are
aces? If he announces instead that one of his cards is the ace of spades, what is
the probability then that both his cards are aces? (These two probabilities are
nctfthe same!) (p. 433)

Copi (1968) gives 3/11 as the first probability and 3/7 as the second. Rose
(1972) accepts 3/7 as the correct probability for the second case and argues that
accepting this answer for that case commits one to acceptance of it for the first
case as well:

For if at least one of the cards in the hand is an ace, then either the hand contains
As (subscript = suit) or it contains Ah or it contains Ad or it contains Ac. But if the
hand contains As, the probability of two aces is 3/7 If it contains Ah, the probabil-
ity of two aces is 3/7. If it contains Ad, the probability of two aces is 3/7. And if it
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contains Ac, the probability of two aces is 3/7. Therefore, by constructive di-
lemma, the probabiltiy that both cards are aces is 3/7, even if no suit has been
mentioned, (p. 523)

Rose (1972) claims that:

The error of those who arrive at a probability of 3/11 when no suit has been men-
tioned lies in supposing that the various possible hands are equipossible, and
then noting that of the 22 hands containing at least one ace there are six contain-
ing two aces.... But the equipossibles are not the hands, for this is not one of
those standard questions about probability of a certain hand; what is distinctive
and crucial about the problem before us is the information that there is at least
one ace. And any one of the 28 aces that occur in the above array [Rose had listed
the 22 hands containing at least one ace, 6 of which contain two] could provide
just as much support for that information as could any of the other aces. Thus the
equipossibilities are the 28 aces in the above array of hands, and not the 22 hands
themselves; by the same token, the favorable outcomes here are those aces that
are accompanied by another ace, and not the hands in which there are two aces.
Therefore, since a total of 12 of the 28 aces are accompanied by another ace, the
probability that the hand contains two aces is 12/28 = 3/7, exactly the same as
when a suit was named, (p. 523)

Rose's (1972) analysis goes wrong, in my view, in two ways. First, it takes
Copi's (1968) statement of the problem as adequate to permit an unequivocal
solution, but it is not. We are not told under what conditions the friend to whom
the cards are dealt will announce (truthfully) that his hand contains an ace.
Rose's analysis assumes that the friend will announce that his hand contains at
least one ace whenever it does so. But this is an assumption that need not be
true. The friend might announce on the basis of some other rule—he might, for
example, be more inclined to announce having a king whenever he had at least
one king, in which case he would announce having an ace only when he had
two of them. Or he might use some other rule, or no rule at all, deciding
whether to announce having an ace or having a king—when he has one of
each—on the basis of momentary whim. The point is, in the absence of knowl-
edge of, or an assumption about, his reporting rule, the problem is not solvable.
In this regard, the situation is analogous to the coin-tossing and sibling gender
problems discussed above. A similar ambiguity applies to the case in which the
friend announces having the ace of spades; again, one must know, or make an
assumption about, the conditions under which he would announce this in order
to know what to make of that announcement.

But now let us make the assumption that the friend's rule is to report having an
ace whenever he has at least one ace. We might imagine that after dealing the
cards, you ask your friend to look at both of them and tell you whether or not at
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least one of them is an ace. What do we make of Rose's argument that the proba-
bility that the hand contains two aces, given that it contains at least one, is 12/28,
or 3/7? If we analyze this situation, we get the answer 3/11. There are 28 possible
two-card hands that can be dealt from eight cards; 6 will have two aces, 6 two
kings, and 16 will have one ace and one king. The entries in Table 5.5 show the
relative frequencies with which the friend will report holding an ace.

Each cell in the table represents the probability of the joint occurrence of the
hand indicated by the associated row label and the report indicated by the associ-
ated column label. Letting p(AA I a) represent the probability that there are two
aces, given that there is at least one ace (that the friend reports having an ace),
/?(AA&a) the probability of the joint occurrence of two aces in the hand and the
report of having an ace, and/?(a) the probability of the report of having an ace,

p(AA I a) =p(AA&a)/p(a) = (6/28)7(22/28) = 3/11.

In other words, the probability of there being two aces, given that there is
one ace, is the ratio of the number of hands having two aces (6) to the number of
hands having at least one ace (22).

Rose (1972) contends that this ratio is not the appropriate one for this prob-
lem. The argument goes as follows. If we consider only the 22 hands that con-
tain at least 1 ace, we see that there are 28 aces in those hands—12 of them in
the 6 hands that contain 2 aces each, and 16 in the hands that contain 1 ace and 1
king. The probability of there being two aces, given that there is one ace, is the
ratio of the number of aces in the hands containing two aces (12) to the number
of aces in the hands containing at least one ace (28).

Which of these analyses (if either) is correct? Clearly they cannot both be.
Imagine that the card game is played a sufficiently large number of times that
the relative frequencies of the various possible hands closely approximate

TABLE 5.5

The Rule Is to Report Having an Ace Whenever the Hand Contains at Least One Ace

Friend's Report

Hands ace

AA
AK
KK

I

6/28
16/28

0

22/28

0
0

6/28

6/28

6/28
16/28
6/28

1
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those predicted by theory and the assumption that all possible hands are
equiprobable on every deal. The proportion of hands that contain two aces will
be about 6/28; the proportion that contain at least one ace will be about 22/28;
and the proportion of those that contain at least one ace that contain two aces
will be about 6/22, or 3/11.

It is also true that about 12/28, or 3/7, of all the aces that are in hands con-
taining at least one ace (which is to say all the aces dealt) will be in hands that
contain two aces. But the conditional probability represented by these numbers
is the probability that an ace will be dealt into a hand containing two aces,
given that it is dealt at all. This is not the same as the probability that a hand
contains two aces, given that it contains one. The problem posed by Copi
(1968) has to do with the latter probability and not the former. The proof of the
pudding here is in the eating. The individual who believes that the probability
that a hand contains two aces, given that it contains one, is 3/7 and accepts bet-
ting odds consistent with this belief will lose money to one who bets in accor-
dance with the belief that that conditional probability is 3/11.

A. I. Dale (1974), like Rose, fails to note the ambiguity in Copi's statement
of the problem, and tacitly assumes that the friend announces that the hand
contains an ace whenever it contains at least one ace. This is seen in the asser-
tion that "Copi's question may equivalently be phrased as 'find the probability
that both cards are aces, given that at least one of them is an ace'" (p. 205). But
one of the main points I am trying to make in this discussion is that such a re-
phrasing of the problem requires the making of an assumption, and that the
overlooking of this fact is at the base of much of the misunderstanding about
conditional probabilities. But again, suppose we explicily make the assump-
tion that Rose and Dale both implicitly make.

A. I. Dale (1974) criticizes Rose's (1972) analysis on the grounds, in part,
that it considered the order of the cards in a hand to be irrelevant to the solution
of the problem: "The order is of supreme importance, and failure to recognize
this fact has, I think, been responsible for wrong solutions to both the problem
under consideration here and many others" (p. 204). Dale's analysis begins
with a listing of all 56 possible two-card hands, order being taken into account,
and proceeds with a consideration, by enumeration, of specific conditional
probabilities. The probability that the second card is an ace, given that the first
one is an ace, for example, is found by counting the number of instances of the
first card being an ace (28) and the number of those cases for which the second
card is also an ace (12) and taking the ratio, which, in this case, is 3/7. Similarly,
to find the probability that both cards are aces, given that at least one is, one
counts the number of hands that contain at least one ace (44) and the number of
those that contain two aces (12) and take the ratio, which is 3/11. (Although
this ratio was obtained by considering the full set of 56 hands, taking card order
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into account, the same 3/11 would be obtained by enumaration using only the
28 possibilities when card order is not taken into account.)

A. I. Dale (1974) attributes Rose's answer of 3/7 to the question of the prob-
ability that both cards are aces, given that one is, to "the failure to notice that the
event 'at least one card is an ace' is the union of the two mutually-exclusive
events 'exactly one card is an ace' and 'exactly two cards are aces'" (p. 205).
Dale goes on to argue as follows: "I do not think it is correct to regard any one
of the aces in the above array [Dale's listing of all 56 possible hands] as provid-
ing the same amount of support for the information that there is at least one ace.
That is, while the hand As, Kh, (say), provides a certain amount of support for
this proposition, the hand As, Ah does not provide more support, which is what
Rose seems to be claiming" (p. 205). I confess to not understand exactly what
is being said here, so I do not see it as a convincing account of Rose's miscalcu-
lation, though miscalculation I consider it to be.

Both Rose and Dale accept Copi's answer of 3/7 as the probability that the
hand contains two aces when the friend announces that he has the ace of
spades. We should note that this too involves an unstated assumption, namely
that the friend announces that his hand contains an ace of spades whenever it
does so. If, in those instances in which he held an ace of spades, he would
sometimes announce holding the other card, the probability of holding two
aces, given the announcement of holding an ace of spades, would not necessar-
ily be 3/7. What it would be would depend on the specifics of the conditions un-
der which the ace of spades would be announced.

In a commentary on the analyses by Rose and Dale, Faber (1976) puts his
finger on the crux of the matter on which this discussion has focused, namely
the indeterminacy of Copi's problem in the absence of knowledge, or an as-
sumption about, the conditions under which the friend (the player in Faber's
terms) announces that his hand contains an ace (or that it contains a specified
ace). "To calculate probabilities it is not enough to know," Faber argues, "that
there is at least one ace in the hand. We must also know how this evidence came
to light; that is we must know the rule by which the player decided what to an-
nounce" (p. 284). Faber considers three possibilities:

"Rule 1: The player chooses randomly which of the two cards to inform us
about."

"Rule 2: The player is obliged to announce an ace when he holds one, but is
free to specify the suit of either of two aces when two are present."

"Rule 3: The player must announce an ace if he holds one, and must specify
the spades ace in preference to another suit when two aces are present" (pp.
284, 285).
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Faber (1976) argues that the probability that the hand contains two aces
given that the player announces that it contains the ace of spades, or just that it
contains an ace, under each of these rules is as shown in Table 5.6.

Faber (1976) suggests that, in the absence of any hints from Copi (1968)
about the rule under which the friend in the original statement of the problem
was operating, it is reasonable to assume Rule 1, and he argues that under this as-
sumption, the two probabilities that Copi claims are different are really the same.

As I understand Faber's comments, he considers the situation in which
the player invariably announces holding a particular card by identifying
both its face and suit—ace of spades, king of hearts; he does not consider
the situation in which the player is free sometimes to announce holding an
ace (or a king) without naming the suit. The rules, as expressed earlier, do
not specify this constraint, but Faber's analysis suggests that this was the in-
tention. Moreover, the constraint is essential to preclude perverse but infor-
mative implementations of the rules, as expressed. For example, Rule 3,
would permit the player to announce having an ace, without reporting its
suit, whenever he holds only one, and to specify the ace of spades only when
he holds two aces, one of which is the ace of spades; this reporting rule
would, of course, provide useful information to an observer who knew it
was being used. In general, any implementation of the rules, as expressed,
in which the player decides, on the basis of a card's face, whether or not to
report its suit could be informative in a similar way. The following com-
ments are predicated on the assumption that the rules, as intended by Faber,
could be expressed as follows.

Rule 1: The player chooses randomly which of the two cards to inform us
about, and reports the face and suit of that card.

TABLE 5.6

Probability That the Hand Contains Two Aces, Contingent on What the Player
Announces, Under Each of Three Announcement Rules Accoring to Faber (1976)

Player Announces

The Ace of Spades An Ace Other Than Spades

Rule 1 3/7 3/7

Rule 2 3/11 3/11

Rule 3 3/7 3/11
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Rule 2: The player is obliged to announce an ace and its suit when he holds
one, and is to select which suit to report at random when he holds two aces.

Rule 3: The player must announce an ace, reporting its suit, if he holds only
one, and must specify the spades ace in preference to another suit when he
holds two aces, one of which is the ace of spades.

Recall that of the 28 possible hands (ignoring order), 6 have two aces, 6 have
two kings, and 16 have an ace and a king. It may help at this point to lay out the
hands to highlight these facts. This is done in Table 5.7. The hands that contain
the ace of spades are in bold print. We assume, of course, that all possible hands
are equally probable.

Under Rule 1, when the player gets a particular one of these hands, he is
equally likely to reveal the identity of either card. So when he gets an ace and a
king, he is equally likely to announce the one as the other, and when he gets two
aces, he is equally likely to name either suit. The probability of getting two aces
in hand is 6/28. In only three of such cases will one of the two aces be the ace of
spades, and on only 1/2 of those instances will the player announce "ace of
spades"; so the joint probability that the player's hand will contain two aces
and that he will announce "ace of spades," p(AA&"A"), is (3/28)( 1/2) = 3/56.
The probability that the hand will contain the ace of spades is 7/28 and, inas-
much as the player will announce "ace of spades" on half of such instances, the
probability that the player will announce "ace of spades," p("As"), is
(7/28)( 1/2) = 7/56. So the probability that the player has two aces, given that he
announces having the ace of spades, p(AA. I "As"), is

TABLE 5.7

All Possible Two-Card Hands (Ignoring Order) That Can Be Dealt
From a Deck Consisting of Four Aces and Four Kings

A.K., A.K, KsKd

A
8
Ac AsKd AdKd KsKc

AA \KS ACKS

AA
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"As") = XAA&"AS")/X"AS") = (3/56)/(7/56) = 3/7.

Now consider the probability that the player has two aces, given that he an-
nounces having an ace other than the ace of spades (still under Rule 1). Again
the probability of getting two aces in hand is 6/28. In three such cases one of the
two aces will be something other than spades, and in the other three both of
them will be. In half of the former cases and all of the latter, the player will an-
nounce an ace other than spades, so the joint probability that the player's hand
will contain two aces and that he will announce a nonspades ace,
p(AA&"Anot.s"), is (3/28)(l/2) + (3/28) = 9/56. The probability that the hand
will contain an ace other than spades is 1 8/28 ; in three of such hands both cards
are nonspades aces and in the remaining 15 only one is, so he will announce a
nonspades ace in three cases and in half of the other 15, which is to say the
probability that the player will announce a nonspades ace, p("Anot.s") is (3/28) +
( 1 5/28)( 1/2) = 2 1/56. So the probability that the player has two aces, given that
he announces having a nonspades ace, p(AA I "Anot s"), is

p(AA I "Ano,s") = XAA&"Anot;')/X'Au,t.s'') = (9/56)/(21/56) = 3/7.

A similar analysis of the implications of Rule 2 will show that the corre-
sponding probabilities are both 3/11. Consider first the case in which the
player announces "ace of spades." Given that the player is obliged to an-
nounce an ace when he has one, but is free (let us assume equally likely) to
specify the suit of either ace when two are present, the joint probability that
the player's hand will contain two aces and that he will announce "ace of
spades," is, as with Rule 1 (3/28)(l/2) = 3/56. Again, the probability that the
hand will contain the ace of spades is 7/28, but now the player will announce
"ace of spades" whenever the ace of spades is paired with a king and on half
of the instances when it is paired with another ace, so the probability that the
player will announce "ace of spades" is (4/28) + (3/28)(l/2) = 1 1/56. Thus the
probability that the player has two aces, given that he announces having the
ace of spades, is

XAA I "As") = /7(AA&"As")/p("As") = (3/56)/( 11/56) = 3/11.

Suppose, again under Rule 2, that the player announces having an ace other
than the ace of spades. The joint probability that the player's hand will contain
two aces and that he will announce an ace other than spades is (3/28) +
(3/28)(l/2) = 9/56. The probability that the hand will contain an ace other than
spades is 1 8/28; the ace of spades will be one of the aces in three of these cases
but not on the other 1 5, so the player will announce an ace other than spades with
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probability (15/28) + (3/28)(l/2) = 33/56. So in this case, the probability that the
player has two aces, given that he announces having a nonspades ace, is

XAA I "Anot.s") =p(AA&"Ano,s")/p("Ano,s") = (9/56)/(33/56) = 3/11.

Finally, let us consider Rule 3, which obliges the player to announce that his
hand contains the ace of spades whenever it does so. With this rule, the joint
probability that the player's hand will contain two aces and that he will an-
nounce "ace of spades," is 3/28. The probability that the player will announce
"ace of spades" is the same as the probability that the hand contains the ace of
spades, or 7/28. So the probability that the player has two aces, given that he
announces having the ace of spades, is

p(AA I "As") = /<AA&"As")//7("As") = (3/28)/(7/28) = 3/7.

Rule 3 is a bit more complicated when applied to those cases in which the
player announces some ace other than spades. This is because a listener who
knows the rule knows that when the player announces a nonspades ace, the other
card in the hand is not the ace of spades; if it were the ace of spades he could not
have announced the nonspades ace. The joint probability that the player's hand
will contain two aces and that he will announce an ace other than spades is 3/28.
Inasmuch as there are 15 hands that contain one or two aces, neither of which is
the ace of spades, the probability that he will announce an ace other than spades
is 15/28. So given rule 3 as expressed on page 166, the probability that the player
has two aces, given that he announces having a nonspades ace, is

XAA I "Ano,s") =p(AA&"Anot.s")//?("Anot.s") = (3/28)/( 15/28) = 1/5.

There are at least two other rules by which the player of the game described
by Copi (1968) could decide what to announce, both of which are plausible
possibilities of what Copi had in mind and are unambiguous:

Rule 4: The player must announce that he holds at least one ace if he does so,
without specifying its suit if he holds only one and without specifying the suit
of either if he holds two, and he must announce nothing else.

Rule 5: The player must announce the ace of spades if he holds it, and he
must announce nothing else.

With Rule 4, an observer always learns whether or not a hand contains at
least one ace; with Rule 5, one always learns whether or not it contains the
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ace of spades. With Rule 4, the joint probability that the player's hand will
contain two aces and that he will announce "at least one ace" is 6/28. The
probability that the player will announce "at least one ace" is the same as
the probability that the hand contains at least one ace, or 22/28. So the prob-
ability that the player has two aces, given that he announces having at least
one ace, is

p(AA I "at least one ace")
= /?(AA&"at least one ace")/p("at least one ace")

= (6/28)7(22/28) = 3/11.

With Rule 5, the joint probability that the player's hand will contain two
aces and that he will announce "the ace of spades" is 3/28. The probability that
he will announce "the ace of spades" is the same as the probability that the hand
contains the ace of spades, or 7/28. So the probability that the player has two
aces, given that he announces having the ace of spades, is

p(AA I "As") = p(AA&"As")//?("As") = (3/28)/7/28) = 3/7.

Perhaps these two probabilities represent the distinction that Copi (1968)
had in mind in claiming that the probability that both cards are aces is differ-
ent when the holder of the hand announces that one of the cards is an ace than
when he announces that one of them is the ace of spades; what was missing
from Copi's claim was a recognition that in order to determine the probabili-
ties, it is not enough to assume the card holder's report is truthful, but an as-
sumption must be made about the conditions under which he will make
various possible (truthful) reports. Faber's (1976) critique of Copi's claim
was justified in pointing this out, but the rules he articulated were themselves
somewhat ambiguous, and, given unambiguous restatements of them, his
anlysis to illustrate the effects of different possible reporting rules was not
quite right with respect to Rule 3.

In the article following that of Faber in the same journal, S. Goldberg (1976)
comments on the problem posed by Copi and on the earlier commentaries by
Rose, Dale, and Faber. Goldberg chooses to view Copi's problem as "most rea-
sonably formulated as simply asking us to compute the conditional probabili-
ties that both cards in the hand are aces, given that the hand contains at least one
ace, and then given that the hand contains the ace of spades" (p. 287). How we
come to know that the hand contains at least one ace, or that it contains the ace
of spades, "whether by announcement or otherwise, is irrelevant," Goldberg
argues, and raising this issue unnecessarily complicates the picture. It should
be clear from the forgoing that, given this interpretation of the problem, the an-
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swer is 3/11 in the former case and 3/7 in the latter. But should we accept this
interpretation? Failure to recognize that inferring the probability of an event
conditional on the report of some observation may require an assumption
about the conditions under which the report would be made—and that different
assumptions could justify different inferences—is precisely the point at issue.
And the literature provides many evidences that lack of clarity on this point can
lead to considerable confusion and debate.

S. Goldberg (1976) argues that "the two announcements in Copi's exercise
are most reasonably and simply interpreted as truthful affirmative responses to
the questions: 'Does the hand contain at least one ace?' and 'Does the hand
contain the ace of spades?'" (p. 287). (Rules 4 and 5 are designed to yield an-
swers to these questions.) This is an opinion, and perhaps one that many people
share, or would endorse if asked. But not everyone who has thought about the
problem shares this opinion, as the foregoing discussion illustrates. Moreover,
if what one wants to get at is people's understanding of the theory of probabil-
ity by seeing how well they can solve problems, the problems should be posed
in terms that are open to as little opinion-based interpretation as possible.
Copi's problem could easily be stated as:

Imagine the following situation. You have a deck of cards from which all but the
four aces and four kings have been removed. From this abbreviated deck, you
deal two cards, at random, to a friend. You then ask if the dealt hand contains at
least one ace, and your friend answers truthfully that it does; what is the proba-
bility that both her cards are aces? Now suppose you deal two cards, at random,
from the same eight-card deck, and this time you ask your friend whether the
hand contains the ace of spades. Again, assume she answers truthfully that it
does; what is the probability then that both her cards are aces?

This statement of the problem is not ambiguous, in my view, and an analysis
will readily show that the answer to the first question is 3/11, whereas the an-
swer to the second one is 3/7. But the literature is full of probability problems
that are posed in ambiguous terms. One can only assume that the ambiguity
generally has not been recognized as such by the problem posers, and the many
conflicting accounts of what the solutions are attest to the ease with which dif-
ferent interpretations are made.

TWO ACES AND A JACK

As a further illustration of how easy it is to state probability problems that are
indeterminate in the absence of assumptions beyond what is given in the prob-
lem statement, I offer the following from Gillman (1992):
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[Consider] a deck of four cards, two aces and two jacks, from which you are
dealt a hand of two cards. There are six possible hands, one of them consisting of
the two aces, so the probability you have both aces is 1/6. If it is given that the
hand contains an ace we have eh'minated the two jacks, and the probability for
both aces goes up to 1/5. But if it is given that you have the ace of hearts, then
your other card is either the ace of spades or one of the j acks, and the probability
that you are holding both aces is now 1/3.

Carrying this to the extreme, consider a two-card hand from a deck of three
cards, two aces and a jack. There are three possible hands, and the probability
that you have the two aces is 1/3. If you state that the hand contains an ace, I
smirk. But if we are given that the hand contains the ace of hearts, the probability
for both aces goes up to 112. At this point (if not long since) your friend enters the
picture with a "proof that the probability of both aces is 1/2, with or without any
condition: "You have an ace. Either it is the ace of hearts or the ace of spades. If it
is the ace of hearts, then as we have just proved, the probability of both aces is
1/2. If it is the ace of spades, then, similarly, the probability for both aces is 1/2.
So in either case, it is 1/2. So it is 1/2." It is easier to detect the flaw in this reason-
ing than to get your friend to understand it. (p. 6)

I think that, in the absence of an assumption, the situation is not as clear as
Gillman (1992) seems to suggest. The assumption that is required has to do
with the conditions under which we are given the knowledge that the hand con-
tains the ace of hearts. Did someone look at the hand and report that it con-
tained the ace of hearts? Were the rules of reporting such that we were sure to
have been informed of the presence of the ace of hearts if one were there? Or
did they permit the reporting of the ace of spades, instead of the ace of hearts, if
the hand contained both aces?

Focusing first on the three-card case, there are at least three plausible rules
to consider: (a) Select at random which card to report, and report its face and
suit, (b) report only whether or not the ace of hearts is in the hand, and (c) report
the suit of the ace when there is only one ace and the suit of a randomly selected
ace when there are two of them. The three situations are shown in Tables 5.8
through 5.10. The probability that the second card is an ace, given that we have
been informed that one of them is the ace of hearts is 1/2 with each of the first
two rules but 1/3 with the third. So again, the conditional probability that the
hand contains two aces, given the knowledge that it holds the ace of hearts de-
pends on what we assume about the rule by which that knowledge was ob-
tained. This is equally true in the four-card case. I will not work through
alternative possible assumptions, but perhaps it is apparent that the answer one
gets will differ depending on whether the assumption one makes assures that
the ace of hearts will be reported for all hands that contain it or permits the pos-
sibility that it will not, say by permitting the reporting of the ace of spades



TABLE 5.8

The Rule Is to Select at Random Which Card to Report

Card Reported

Hand
AHAS
AHJ
ASJ

£

AH

1/6
1/6

0

\n>

As
1/6

0
1/6

1/3

j

0
1/6
1/6
1/3

£

1/3
1/3
1/3

1

TABLE 5.9

The Rule Is to Report Only Whether or Not the Hand Contains the Ace of Hearts

Hand

AHAS

A^
ASJ

2

Yes

1/3
1/3

0

2/3

Report

No

0
0

1/3

1/3

j

1/3
1/3
1/3

1

TABLE 5.10

The Rule Is Always to Report the Suit of the Ace When There Is Only One Ace
and the Suit of a Randomly Selected Ace When There Are Two

Card Reported

Hand

AHAS

AHJ
ASJ

I

A,

1/6
1/3

0
1/2

As

1/6
0

1/3
1/2

X

1/3
1/3
1/3

1
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(rather than the ace of hearts) on some proportion of the cases in which the
hand contains both aces.

A similar argument applies to the four-card case in which it is "given" that
the hand contains an ace without anything being said about suit. Again what we
make of this depends on what we assume about the conditions for obtaining
this information. If we assume that we are told there is an ace whenever there is
at least one ace, the probability that there are two aces conditional on being in-
formed that there is one, is, as Gillman (1992) claims, 1/5. But if we assume
that when there is one ace and one jack, we are equally likely to be told that
there is one jack as we are to be told that there is one ace, the probability that
there are two aces, conditional on being informed that there is one, is 1/3. This
follows from the fact that we will be informed that there is an ace in all in-
stances in which the hand contains two, but in only half those of the four times
as many instances in which it contains only one.

Gillman was not insensitive to the issue that I have been trying to address.
The card problem was adapted from one described by Ball (1892) (now Ball &
Coxeter, 1987). Gillman (1992) used the term "given that" a hand contains
specified cards, rather than saying that someone has asserted that it does so, as
Ball had done, for the explicit purpose of avoiding the ambiguity I have been
claiming. To interpret an assertion, Gillman notes, it would be necessary to
know how one decided what to assert: "My present rule is that you are to state
whether your hand contains an ace" (p. 6). With that interpretation of "given," I
agree with Gillman's figures. Gillman also considers the possible rule, in the
case of the four-card problem, of reporting one of the cards at random and gives
1/3 as the probability of two aces conditional on knowledge of the presence of
one in this case.

Essentially the same problem (using aces and deuces of spades and clubs)
was discussed by Freund (1965), who argued that the problem as he found it—in
a book of mathematical puzzles by Gamow and Stern (1958)—was incomplete
and could not be solved, at least not "without smuggling in unwarranted assump-
tions" (p. 44). Freund identified as critical the question of how we come to know
that the hand in question (which in his scenario is held by an opponent) contains
at least one ace, or a specified ace. To put the problem in perspective, he proposes
imagining that a spy provides us with the required knowledge, and considers two
possible ways in which the spy gets information:

Case 1: The spy looks at our opponent's entire hand; either he reports
whether or not he sees (at least) one ace, or he also reports the suit (flipping a
coin to decide whether to report spades or clubs when he sees both aces in our
opponent's hand).
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Case 2: The spy has the chance to see only one card (randomly selected from
our opponent's hand) and he either reports whether or not it is an ace, or he also
reports the suit. (p. 29)

Here is Freund's (1965) analysis of Case 1:

If he merely reports that he sees (at least) one ace, we find ourselves in the first sit-
uation described above [elimination of the one hand that has no aces, leaving five
equiprobable hands]. Using Bayes' Rule it can easily be shown that the 5 remain-
ing hands have equal a posteriori probabilities and, hence, that the correct odds
are 4 to 1. If he also reports the suit, namely, that he sees the ace of spades, the use
of Bayes' Rule shows that the 3 remaining hands do not have equal a posteriori
probabilities. As a matter of fact, the a posteriori probability of the hand which
consists of both aces is only half of that of the other two remaining hands, and it
follows that the correct odds against our opponent having both aces are still 4 to 1.
The same argument applies also if the spy reports the ace of clubs, (p. 29)

I think this analysis is correct, given an unstated assumption that I will make
explicit. The wording "he reports whether ornothe sees (at least) one ace, or he
also reports the suit..." [emphasis added] makes it clear, in my view, that the
spy's rule is to report seeing an ace in all cases in which he does see at least one.
This precludes the possibility that, upon seeing an ace and a deuce, he will re-
port seeing the deuce and not report seeing the ace. And the proviso that, if re-
porting suits, the spy will flip a coin to decide which ace to report when he sees
two of them rules out the possibility of a bias in reporting suits when he has a
choice of which ace to report. So far, so good; but there remains an ambiguity
that needs to be resolved, and thus the need for a further assumption.

The assumption is needed because Case 1 can be interpreted in two ways.
One way to interpret it is as a description of two subcases: Case la, in which
the spy always reports only whether or not he sees (at least) one ace and does
not report the suit, and Case Ib, in which he always reports the suit of an ace if
he sees at least one, flipping a coin to decide which one to report when he sees
two (flipping the coin in private, of course, so as not to reveal by this act the
fact that the hand contains two aces). Given this interpretation of Case I,
Freund's (1965) analysis, I believe, is correct. However, another interpreta-
tion of Case I does not rule out the possibility that the spy sometimes reports
only whether or not he sees an ace without reporting the suit, and sometimes
reports both the presence of an ace and its suit (or the suit of a randomly cho-
sen one of them if he sees two).

This interpretation does not preclude the operation of an information-con-
veying bias such as would pertain, for example, if the spy reported seeing an
ace whenever the hand contained at least one ace and, for those hands that con-
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tained only one ace, reported the ace's suit only, or primarily, when it was the
ace of spades. This seems an unlikely interpretation, but it is a possible one, and
if the spy were motivated to give a deceptive, albeit accurate, report, this is one
way he could do it. In dealing with spies, it is well to be aware of all the possi-
bilities! So the correctness of Freund's (1965) analysis of Case 1 rests, I claim,
on an unstated assumption. The assumption could be that Case 1 is to be inter-
preted as two subcases, as described earlier, or it could be that the spy only
sometimes reports the suit of an ace in a one-ace hand, but his decision of when
to do so is independent of which ace the hand contains.

Given either of these assumptions, Freund (1965) is correct in giving 4 to 1
as the odds against the hand having two aces, given the spy's report that it has at
least one, or his report that it has the ace of spades. This may be easier to see in
the first instance than in the second. In the first instance, the spy is equally
likely to report seeing at least one ace in five of the six possible hands, only one
of which contains two aces, so the probability that the hand contains two aces,
given the report that it contains at least one, is 1/5. The instance in which the
spy reports the suit is slightly more complicated. Three of the six possible
hands contain the ace of spades, and one of these three contains two aces. The
important thing to notice is that, given that the spy is to flip a coin to decide
which ace to report when the hand contains two aces, he is only half as likely to
report the ace of spades for the two-ace hand as he is to report the ace of spades
for either of the hands that contain the ace of spades as the only ace, so the prob-
ability that the hand contains two aces, given that the spy reports that it contains
the ace of spades is (l/2)/[(l/2) • + ! + !] = 1/5, or, if you prefer,
(l/2)(l/6)/[(l/2)(l/6) + (l/6) + (l/6)] = l/5.Thel/6of the latter equation repre-
sents the a priori probability of each hand containing the ace of spades, and the
1/2 represents the fact that that ace would be reported for only half of the hands
that contain both aces.

Freund's (1965) analysis of Case 2 yields odds of 2 to 1 against the hand
having both aces, given the spy's report that the card he sees is an ace, and in-
dependently of whether he reports the suit of that ace. Case 2, as described by
Freund, is ambiguous in the same way as Case 1. One interpretation of it is as
two subcases: In Case 2a, the spy always reports only whether or not the card
he inspects is an ace; in Case 2b, he always reports whether or not it is an ace
and gives the suit if it is. (He may report the suit if it is not an ace as well; this
makes no difference.) An alternative interpretation leaves open the possibil-
ity that the spy sometimes reports only whether or not the card he sees is an
ace without reporting the suit, and sometimes reports both whether it is an ace
and its suit if it is. As in Case 1, the second interpretation does not rule out the
possibility of the spy making the probability of reporting the suit of an ace
contingent on which ace he sees. In Case 2, however, such a bias would not
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convey useful information; if the spy only sees one of the cards, his honest re-
port of whether or not it is an ace is informative with respect to the a posteriori
conditional probability that the other card is also an ace, but his report (or
lack of report) of that ace's suit is not.

The 2-to-l odds against the hand having both aces, given the spy's report
that the card he sees is an ace, or that it is the ace of spades, is easily seen if we
consider all 12 two-card hands that are possible when card order is taken into
account. Seeing only one card is equivalent to looking always at the first card
dealt (left) or always at the second card dealt (right). As shown in Table 5.11,
two out of six of the hands that have an ace in the left (right) position have one
also in the right (left) position. And one out of three of the hands that have an
ace of spades in the left (right) position have an ace in both positions, which is
what Freund's (1965) analysis claims.

SISTERS AND BROTHERS

The following problem was given to me in correspondence by Ruma Falk: "In
a large random sample of men and women, should we expect the men to have
more sisters than women? And for men to have more sisters than brothers?"
Falk's answer to both questions was no.

I am one of four children—two boys and two girls. My brother and I each
have one brother and two sisters; each of my sisters has one sister and two
brothers. It seemed obvious to me that, on average, men would have more sis-
ters than do women, as well as more sisters than brothers. My reasoning was
that this must be the situation in all families with an equal number of boys and
girls and that any departure from this rule in one direction among families with
more boys than girls would be balanced by an opposite departure among fami-
lies with more girls than boys.

Before writing Falk to tell her I thought her answer to the question—that
men are expected to have the same number of sisters as do women and the same
number of sisters as brothers—to be wrong, I decided to work things out for

TABLE 5. 11
All Possible Two-Card Hands Dealt From Four Cards (Aces and Deuces of Spades

and Clubs) Taking Order Into Account

DA D D
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several family sizes. The results of this exercise are shown in Tables 5.12,5.13,
and 5.14 for families with two, three, and four children respectively.

Each row of each table represents one of the possible combinations of males
and females in a family of the specified number of children. Column C indi-

TABLE5.12

Representing a Family of Two Children

D E F G

Males Females Families M'sBs M'sSs F'sBs F'sSs ACD ACE BCF BCG

2

1

0

0

1

2

1

2

1

1

0

0

0

1

0

0

1
0

0

0

1

2

0

0

0

2

0

0

2

0

0

0

2

TABLE 5.13

Representing a Family of Three Children

D E F G

Males

3
2

1

0

Females

0

1

2

3

Families

I

3
3
1

M'sBs

2
1
0
0

M'sSs

0
1
2
0

F'sBs

0

2

1

0

F'sSs

0
0
1
2

ACD

6
6
0
0

ACE

0
6
6
0

BCF

0
6
6
0

BCG

0
0
6
6

TABLE 5.14

Representing a Family of Four Children

D E F G

Males

4
3
2
1
0

Females

0

1

2

3
4

Families

1
4
6
4
1

M's&s

3
2
1
0
0

M'-ySs ,

0
1
2
3
0

F'sBt

0
3
2

1

0

r F'.y&

0
0
1
2
3

ACD

12
24
12
0
0

ACE

0

12

24

12

0

BCF

0

12

24

12

0

BCG

0

0

12

24

12
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cates the number of families, on average (from totals of 4, 8, and 16 in Tables
5.12 through 5.14, respectively), that would be expected to have that combina-
tion. This column contains, of course, the binomial coefficients. Columns D
and E give the number of brothers and sisters a male would be expected to have;
F and G give the same information for females. The four rightmost columns
give, respectively, for each combination of males and females in the family, the
numbers of brothers of males (ACD), sisters of males (ACE), brothers of fe-
males (BCF), and sisters of females (BCG).

Adding over rows (male-female combinations) shows the total expected
numbers of brothers and sisters to be the same for males and females. Con-
sidering all males in families of three children, 3/12, or 1/4, are in families of
three males (and so have two brothers), 6/12, or 1/2, are in families of two males
(one brother), and 3/12, or 1/4, are in families of one male (no brothers). So the
average number of brothers for males in families of three children is (l/4)(2) =
(1 /2)( 1) + (1/4)(0) = 1. Similar calculations show that the average number of sis-
ters for males (as well as brothers for females and sisters for females) in families
of three children is also (l/4)(2) + (1/2)(1) + (1/4)(0) = 1. The same analysis will
show equivelance for families of other sizes as well.

Another way to approach the problem is to ask: Given that one is a boy (girl)
in a family of n children, what is the expected number of brothers and the ex-
pected number of sisters he (she) will have? The possibilities for n = 2 are as
shown in Table 5.15, taking birth order into account.

The total number of boys represented in the table is four and the total num-
ber of brothers of boys [E boys x (bros/boy)] is two, so the expected number of
brothers per boy is .5. Similarly, the total number of sisters of boys is two, so
the expected number of sisters per boy in a family of two is also .5. These num-
bers are consistent with the expected number of siblings, which, of course,
must be one. The same figures hold for a girl in a family of two children.

TABLE 5.15

Possible Combinations of Brothers and Sisters in a Family of Two Chikiren,
Taking Birth Order Into Account

boys bros/boy sis/boy girls sis/girl bros/girl

BB
BG
GB
GG

2
1
1
0

1
0
0
0

0
1
1
0

0
1
1
2

0
0
0
1

0
1
1
0
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Expansion of Table 5.15 to represent families of three and four children
shows—no surprise now—that in a family of three, the expected number of broth-
ers per boy, and per girl, and the expected number of sisters per boy and per girl are
1.0 in all cases, and that in a family of four, the comparable expected number is 1.5
in all cases. Table 5.16 gives the details for a family of three children.

Having worked out these examples, I became convinced of the truth of
Falk's claim that males would have as many brothers as sisters and as many
brothers as would females, fortunately before sending off my letter to tell her I
believed her conclusion to be wrong. So instead I sent her this analysis; she,
with great diplomacy, pointed out to me that asking a boy or girl selected at ran-
dom from families of n children how many brothers or sisters he or she has is
essentially equivalent to asking a person selected at random from families of n
-1 children how many boys or girls it has, and that if one sees this equivalence,
such an analysis is not necessary. The reasoning is spelled out in Falk (1993,
pp.162-164) and Falk and Konold (1992).

SUMMARY

One might expect that when the theory was just beginning to be developed, being
surprised by results was not an uncommon experience, and that disagreement
among mathematicians as to how probabilities should be computed was not rare.
Several accounts of specific surprises and disagreements are recorded in the lit-
erature. One such account relates to the surprise of Chevalier de M6r6 upon
learning that although the probability of obtaining at least one six in four tosses

TABLE 5.16

Possible Combinations of Brothers and Sisters in a Family of Three Children,
Taking Birth Order Into Account

boys bros/boy sis/boy girls sis/girl bros/girl

BBB
BBG
BOB
GBB
BGG
GBG
GGB
GGG

3
2
2
2
1
1
1

0

2
1
1
1
0
0
0
0

0
1
1
1
2
2
2

0

0
1
1
1
2
2
2

3

0
0
0
0
1

1
1
2

0
2
2
2
1

1
1
0
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of a die is greater than 1/2, the probability of obtaining at least one double-six in
24 tosses of a pair of dice is not (Freudenthal, 1970). Apparently de Mere" had
reasoned that inasmuch as there are 36 possible outcomes of the toss of two dice
and 24:36 = 4:6, the probability of obtaining at least one double-six in 24 tosses
of two dice should be the same as getting at least one six in four tosses of a single
die (Falk, 1992). In fact the latter probability is .518 and the former .491.

The great 18th-century mathematician, D'Alembert, believed the probabil-
ity of producing at least one head in two tosses of a coin to be 2/3 rather than
3/4, on the grounds that the game is finished with the first toss when it produces
a head, which implies a sample space of three outcomes: H, TH, and TT; and he
maintained this position despite arguments of his contemporaries to the con-
trary (Todhunter, 1865/2001). D'Alembert's mistake, according to contempo-
rary views of probability, was in assuming these three outcomes to be
equiprobable when, in fact, the first is twice as likely as each of the others.
Other examples of differences in intuitions about probability among the early
developers or users of probabilistic concepts could be given.

Probability theory is now a well-established branch of mathematics, but stu-
dents, and perhaps even experts, still find some results surprising and counter-
intuitive, at least when first considered. The problems considered here
illustrate some of the subtleties that can be involved in probabilistic reasoning.
Other problems illustrating similar subtleties have been discussed by
Mosteller (1965) and Falk (1993). Difficulties in probabilistic reasoning are
also illustrated by situations that are sometimes referred to as paradoxes and
dilemmas, the subjects of the following chapter.



CHAPTER

Some Probability

Paradoxes and Dilemmas

PARADOXES

w,hat constitutes a paradox is, to some degree, a matter of semantics.
One dictionary definition is "a statement that is seemingly contradictory or
opposed to common sense and yet is perhaps true" (Webster's New Colle-
giate Dictionary); there are others. Paradoxes that proved to be so impor-
tant to the history of mathematics, especially during the early part of the
20th century, often involved self-contradictory statements, or what ap-
peared to be different but equally valid mathematical proofs leading to con-
tradictory conclusions.

Many problems involving probability theory have been described and dis-
cussed in the literature as paradoxes. Some of them can be resolved readily by
carefully analyzing the situations involved; others are less easily dispatched.
Sometimes the same problem is referred to by some authors as a paradox and
by others as something else. The problem of the inquisitive prisoner is a case in
point (for a description, see Nickerson, 1996); it has been called a paradox
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(Weintraub, 1988; Zabell, 1988), a dilemma (Mosteller, 1965), and an absur-
dity (Sze"kely, 1986).

I will not attempt a precise definition here. The following problems have
been called paradoxes, or are similar to others that have been so called. Readers
who feel that some of them are better described by other words should make
what they consider to be suitable substitutions in terminology.

Tne St. Petersburg Paradox

Possibly the most famous paradox involving probability theory is one de-
scribed by Nicholas Bernoulli in a letter to Pierre de Montmort who later pub-
lished it in a book on games of chance (Montmort, 1708). Its name comes
from the fact that Nicholas' cousin, Daniel Bernoulli, published his resolu-
tion of it (not universally accepted as a resolution) in the annals of the Acad-
emy of St. Petersburg in 1738.

The "expected value" of the outcome of a probabilistic event is said to be the
sum of the products of the values of each of the possible outcomes multiplied
by its probability of occurrence. In other words

where p. and V. are the probability and value, respectively, of the /th outcome.
Thus, if you stood to gain $1 by the toss of a head with a fair coin and $0 with
the toss of a tail, the expected value of a toss would be(.5x$l) + (.5x $0) or 50
cents. Presumably, if you were offered the chance to purchase this gamble, you
should consider any purchase price less than $.50 to be a good buy and any
price over $.50 to be a poor one.

Consider the following gamble. A fair coin is to be tossed until it comes
up head; that is to say the tossing will continue as long as the outcomes are
tails, the first head terminates the game, and when it occurs determines how
much you win. (As initially posed by N. Bernoulli to Montmort, the prob-
lem involved the tossing of dice, but shortly later Cramer restated the prob-
lem as a game of heads and tails [Jorland, 1987], and the latter version has
generally been discussed since then.) If the first toss is head, the game is
over and you receive $2. If a tail occurs first and then a head, you receive $4;
if a tail occurs twice before the first head, you receive $8; if three times,
$16, and so on, the amount you win doubling with each additional toss of a
tail; so if a head occurs first on the kth toss, you win 2k dollars. In general the
situation is as follows:
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Possibility

H

TH

TTH

TTTH

Probability

1/2

1/4

1/8

1/16

$won

2
4

8

16

T ... (k-1 times) H 1/2

What would you consider a reasonable price to pay for the opportunity to play
this game? The expected value of the gamble, being the sum of the products of all
possible winnings and their probabilities of occurrence, is, in dollars,

So if expected value were used as the index of reasonable price, a rational in-
dividual should be willing to pay a very great amount indeed to play this game.
Nevertheless, it probably would surprise no one to discover that when people
are asked what they would be willing to pay for the opportunity to take this
gamble, almost no one would give a very large sum.

Inasmuch as an infinite amount of money is a bit beyond the reach of any fi-
nite being, we might make the situation more realistic by limiting the number of
tosses allowed, say by agreeing to consider the game to be terminated either by
the toss of a head or with the nth toss (irrespective of what it is), whichever came
first; if the nth toss is a head, you win $2" and if it is a tail, you win nothing. (The
idea of limiting the number of tosses so as to avoid the need to deal with infinity
was suggested at least as early as 1777 by Georges Louis de Buffon [Todhunter,
1865/2001], who proposed that it be limited to 29 on the grounds that 229 would
exceed the amount of money that could be furnished by all of France.)

Suppose, for example, that we agreed to terminate the game either by the oc-
currence of a head or with the third toss, whichever came first. Now imagine
that you have an opportunity to play this game a very large number of times.
We would expect that about half of the games would be terminated by the first
toss, because it was a head; in all these cases you would win $2. About one
fourth of the games would be terminated by the second toss, and on these you
would win $4. The remaining one fourth of the games would be terminated



184 • CHAPTER 6

with the third toss, and you would win $8 on the one half of these that are heads.
So on any given game, you would win $2, $4, $8, or $0 and your average,
per-game, win—the expected value of the game—would be

(1/2 x $2) + (1/4 x $4) + (1/8 x $8) + (1/8 x $0) = $3.

Given the opportunity to play this game many times, you probably would be
happy to do so at any cost to you that is much less than $3 per game. At any cost
greater than $3 per game, you probably would not find it very attractive, be-
cause you would be almost sure to lose money in the long run. You might even
be willing to pay something close to $3 to play this game even if you could only
play it once, because you have three chances in eight of winning $4 or more,
and you might consider that to be a reasonable gamble.

Now suppose that we agreed that the game would be terminated either by
the toss of a head or by the 1,000th toss, whichever came first. The situation is
completely analogous to the simpler one, except that the expected value of the
game, in dollars, is

Theoretically, one should consider any cost of playing this game that is
much less than $1,000, say $800, to be attractive. However, it seems unlikely
that many people would be willing to pay more than a relatively few dollars to
play it. The probability is .5 that one would win only $2, and the probability
that one would win as much as $1,000 is only about .001. (Even in the St. Pe-
tersburg game, the probability is .5 that one will win only $2, and, as
Samuelson [1977] points out, the expected total number of coin tosses, n, per
game is only 2:

It is possible to win an extremely large amount of money in the game de-
scribed, but the probability of doing so is very small. If one agreed to pay any
sizeable fraction of the expected value of the game — for example, one half of
it, or $500 — one would be very likely to lose most of what one paid. And if one
paid this amount many times in order to play the game repeatedly, one would
be likely to accumulate a very sizeable loss. In theory, if one could play the
game infinitely many times, sooner or later a game would last long enough —
the string of successive tails would get long enough — to give one a win large
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enough to more than offset an accumulated loss. But the time that one might
have to wait before getting a win large enough to offset a cost of a size that is
very likely to accumulate could be very long indeed. In fact the chance of ever
getting ahead in this game in finite time is vanishingly small.

The number of dollars that the gamble permits to be won in a single game,
21000, or about 10300, is larger by roughly 220 orders of magnitude than the num-
ber of particles in the universe according to Eddington's famous estimate. Of
course, the probability that this amount will be won, 2~1000, is sufficiently close
to zero as to be indistinguishable from it by any measurement technique that
has been, or is ever likely to be, developed.

This all illustrates a point made by Allais (1979/1990) regarding the inapplica-
bility of the law of large numbers to small samples. "IfI am to participate in a long
series of games, but could be ruined early on, possibly even in the first round, it is
obvious that the justification of the rule of mathematical expectation by the law of
large numbers is invalid. There would be little consolation for me in the knowl-
edge that, had I been able to hold on, my winnings would probably have tended to
the value of their mathematical expectation" (p. 116, emphasis in the original).

The original St. Petersburg gamble involves an event that, by definition, has
an infinity of possible outcomes. The variations on the gamble considered pre-
viously have a finite number of outcomes, but as in the case of the original para-
dox, the expected value of each gamble is the sum of the products of the values
of the individual outcomes and their probabilities of occurrence. We could
think of each of the cases considered as the sum of many individual gambles,
each of which has an expected value of $ 1. The original paradox, for example,
can be thought of as composed of an infinity of independent gambles, the first
of which has the possible outcomes H and T and an expected value of $1 ob-
tained from adding the values of the two possibilities each multiplied by its
probability of occurrence: (1/2 x $2) + (1/2 x $0). The second gamble in the
composite can be thought of as having the possible outcomes TH, TT. The only
outcome in this gamble that pays off is the first, which pays $4 and does so with
probability 1/4, so the expected value is again $1. And so on.

When one buys a ticket for a lottery in which half of the income from the
ticket sales is to be used as the prize money, the expected value of a ticket, as-
suming the lottery is fair, can be no more than half its purchase price. The fact
that such gambles are purchased in abundance suggests that the component
gambles that make up the St. Petersburg paradox would be perceived by many
people as reasonable buys at something close to their expected values, or more.
Thus, given the chance to buy for $1 the individual gamble of, say,
TTTTTTTTTH, which has an expected value of $ 1, because it will pay $ 1,024
with probability 1/1024 and $0 with probability 1,023/1,024, many people
would undoubtedly take it.
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Whether everyone who would gladly spend $1 for this gamble would pay
$1000 for the opportunity to participate in the gamble 1,000 times is doubtful,
even though doing so would very considerably increase their chances of win-
ning at least once and would give them the possibility of winning several times.
(The probability of winning ($1,024) once or more in 1,000 independent tries
is about .62; the expected value is, of course, $1,000.) The deterrent is the fact
that there would also be a fairly good chance (about .38) of winning nothing
and consequently losing the entire $1,000 that was paid for the opportunity to
play. It is easy to see, intuitively, why one might be happy to purchase one, or a
few, of the individual gambles that comprise the St. Petersburg game for some-
thing close to, or even a bit more than, their expected values, while being un-
willing to pay a lot for all of them combined.

The St. Petersburg paradox has generated a great deal of discussion and de-
bate. A list of people who have written on the topic, from the 18th century on,
would include many of the better known names in the history of mathematics:
Buffon (1777), Condorcet (1785), Laplace (1812), Cournot (1843), Bertrand
(1889); Keynes (1921), and Samuelson (1960). An account of contributions of
these and other writers has been given by Samuelson (1977). Many resolutions
of the paradox have been proposed and I think it safe to say that there remain
differences of opinion as to what the proper resolution is, and even as to
whether there is one.

According to one view, the paradox is illusory: "The paradox of the Saint
Petersburg problem is that there is a paradox" (Jorland, 1987, p. 157). Jorland
says that the real puzzle is why it took 224 years for someone to acknowledge
that the infinite series involved is not summable so there is no expectation. He
credits Feller (1936-1937) with being the first to do this and to raise and an-
swer the question of whether there exists a fair stake for a game without expec-
tation. Jorland acknowledges that the discussion and debate engendered by the
St. Petersburg paradox has been "epistemologically very fertile. It led to the
substitution of the law of large numbers for the principle of insufficient reason
as the foundation of mathematical expectation and it raised the question of the
objective or subjective nature of probability depending on whether it applies to
single events" (p. 181). Despite Jorland's expression of surprise that the para-
dox was seen as a paradox for so long before Feller's work, he ends his discus-
sion of it by claiming that none of the solutions of it that have been proposed is
satisfactory.

Independently of the question of what the correct resolution of the St. Pe-
tersburg paradox is, or of whether there is one, there can be no question of the
fact that the paradox has stimulated a great deal of thinking about probabilistic
reasoning. Samuelson (1977), after having "defanged" the paradox with his
own resolution, pays it this tribute: "When you have defanged a paradox with
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the texture of the St. Petersburg puzzle, the problem does not disappear or fade
away into banality. As my Historical Notes [subsequent comments on the his-
tory of treatments of the paradox] illustrate, so many points were raised by
commentators on the problem that the St. Petersburg paradox enjoys an hon-
ored comer in the memory bank of the cultured analytic mind" (p. 36).

Expected Value and Most Likely Outcome

The St. Petersburg paradox illustrates in a particularly compelling way that the
expected value of a probabilistic outcome is not necessarily the value of the most
likely outcome. This distinction is seen in the following situation, from Paulos
(1992), which may be thought of as a modern analogue of the paradox. Consider
a volatile stock that each year, with equal probability, increases in value by 60%
or decreases by 40%. What is $1,000 invested in this stock likely to be worth in
100 years? Inasmuch as the average change in the stock's value is (+60 - 40)/2,
or 10%, the expected value of the $1,000 investment after 100 years is $1,000 x
1.110°, or $ 13,780,612; not a bad return. What your broker is less likely to tell you
is that, given the assumption that the stock is equally prone to increase (by 60%)
or decrease (by 40%) in any given year, the most probable scenario is that it will
increase in 50 of the 100 years and decrease in the other 50, and its final value in
this case will be $1,000 x 1.650 x 0.650, or $130.

One's initial reaction to such disparate numbers for expected value and most
probable outcome is likely to be that something must be wrong—that one of
the calculations must have been done incorrectly or that the reasoning must
have been based on some unstated faulty assumption. But where is the mis-
take? Is there something wrong with the idea of averaging the equally likely
60% gain and 40% loss to get a mean annual gain of 10%? Suppose you made
two $1,000 investments and gained 60% on one while losing 40% on the other
in the first year; your average gain per investment, (600 - 400)72 = 100 dollars,
would be 10%. But this is not analogous, one might argue, to the case in which
you have a gain of 60% followed by a loss of 40% (or vice versa) on the same
investment, in which case the total change is 600 - 640 = -40 (or -400 + 360 =
-40), which is -4%. Does this mean that using the average of the equally likely
percentage changes to calculate expected value of the imagined investment is
not legitimate?

In fact it is legitimate. To get a better intuitive feel for the situation, it may
help to trace the first few branches of the tree of possible histories of the invest-
ment. Table 6.1 gives, for each number of years 1 through 5, and 10, every pos-
sible outcome (combination of gains and losses) for the investment over that
number of years, the number of ways each outcome can be realized, the proba-
bility of obtaining that outcome, the value of that outcome, the product of the



TABLE 6.1
Possible Outcomes of a $ 1,000 Investment That Is Equally Likely to Increase

by 60% or Decrease by 40% per Year

Year
1

2

3

4

5

10

Outcome
IG
1L

2G
IG, 1L

2L

3G
2G, 1L
1G.2L

3L

4G
3G, 1L
2G, 2L
1G.3L

4L

5G
4G, 1L
3G,2L
2G.3L
1G,4L

5L

***

10G
9G, 1L
8G,2L
7G,3L
6G,4L
5G.5L
4G,6L
3G.7L
2G.8L
1G,9L

10L

No.
1
1

1
2
1

1
3
3
1

1
4
6
4
1

1
5

10
10
5
1

1
10
45

120
210
252
210
120
45
10
1

Prob. (P)
.500
.500

.250

.500

.250

.125

.375

.375

.125

.0625

.2500

.3750

.2500

.0625

.0313

.1563

.3125

.3125

.1563

.0313

.001

.010

.044

.117

.205

.246

.205

.117
.044
.010
.001

Value (V)
1,600

600

2,560
960
360

4,096
1,536

576
216

6,554
2,458

922
346
130

10,486
3,932
1,475

553
207
78

109,951
41,232
15,462
5,798
2,174

815
306
115
43
16
1

PxV
800
300

640
480

90

512
576
216
27

410
614
346

86
8

328
614
461
173
32
2

107
403
679
679
446
201
63
13
2

<1
<1

Exp. Value

1,100

1,210

1,331

1,464

1,610

2,593
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probability and the value of that outcome (which is the contribution of that out-
come to the expected value for the year), and the (approximate) expected value
for the year (the sum of these products for that year).

The expected value at the end of each of these years, obtained by adding up
all the possible outcomes weighted by their probabilities of occurrence, is the
same as we would get by using the standard compound-interest formula with
the interest set at 10%. The breakdown shows how the various possibilities
contribute to the expectation. It also gives a sense of how the most likely
(modal) outcome steadily decreases. At the end of 10 years, the most likely
value of the investment is $815, which represents a loss of $ 185, and 638 of the
1,024, or about 62%, of the equally-likely outcomes represent a loss of at least
that amount. Continuation of this analysis would show the expected value
growing increasingly rapidly, reaching $13,780,612 at the end of the 100th
year, whereas the value of the most likely outcome continues slowly to de-
crease, and the probability of a net loss remains always greater than .5.

Saying that the expected value of this investment after 100 years is
$13,780,612 is a little like saying that you and some celebrity had an average in-
come last year of $20,000,000; true, perhaps, but probably not very exciting
from your point of view. (I am making an assumption here about who is most
likely to read this book.) The expected value is skewed greatly by virtue of
low-probability outcomes of extremely high worth. Suppose that the stock were
to move in the same direction, either to increase or to decrease in value, every one
of the 100 years. The probability of either of these outcomes (assuming the di-
rection of change is random) is vanishingly small—(1/2)100 or approximately
one chance in 1030—but theoretically possible; the important point is that al-
though the two outcomes are equally probable, their impacts on the expected
value computation are very different in magnitude. Following 100 years of
steady 60% increases, the value of the stock would be $ 1,000 x 1.6100, or $2.58 x
1023, many orders of magnitude more than the net worth of all the businesses on
earth. Following 100 years of steady 40% declines, it would be worth $1,000 x
0.6100, or, for practical purposes, 0. The average of these outcomes is $1.29 x
1023, which is to say the positive scenario counts much more in the expectation
than the negative one, because the latter is bounded below by 0.

The probability of 100 consecutive moves in the same direction is so small
that neither of these possibilities has an appreciable effect on expected value;
however, the principle that the comparison illustrates pertains to other possibil-
ities of higher probability and thus of greater impact on the expectation. The
probability that the number of years that the stock gains in value will exceed by
a specified amount the number of years that the stock loses in value is the same
as the probability that the number of losing years exceeds by that amount the
number or gaining years; however the impact on expected value of an excess of
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gain years over loss years is much greater than the opposing impact of an equal
excess of loss years over gain years. The overall effect of this asymmetry is that
the expected value of the investment gives a highly distorted picture of what is
most likely to happen.

The counterintuitiveness of the compound interest example is due, at least
in part perhaps, to the easy-to-overlook nonequivalence of equal percentage
gains and losses. In particular, if one failed to think about it, one might assume
that an increase and decrease (or a decrease and increase) of a given percentage
offset each other so one ends up where one began, but of course that is not the
case. A loss of 50% offsets a gain of 100%, or conversely, it takes a gain of
100% to compensate for a loss of 50%. In our example, a loss of 40% more than
offsets a gain of 60%, so the greater the equal number of gains and losses of
these magnitudes the further behind one will fall. An investment that gains and
loses 50% in alternate years will lose 25% of its existing value every 2 years, so
at the end of n years it will be worth only .IS"*2 of its original value; $1,000 in
this case becomes $237 in 10 years. To satisfy my curiosity, I calculated the
losses that would exactly offset gains of specific magnitudes. The results, ex-
pressed in percentages, are shown in Table 6.2.

It does not follow from any of this that a decision to invest in a stock that is
expected to behave as the volatile one just described would necessarily be irra-
tional. Whether such an investment would make sense would depend on the in-
vestor's attitude toward risk. One might be inclined to invest in such a stock,
although hopefully not one's last dollar, on the grounds that even though the

TABLE 6.2
Magnitudes of Losses That Would Offset Specified Gains, All in Percentages

Gain Loss

10 09.1
20 • 16.7
30 23.1
40 28.6
50 33.3
60 37.5
70 41.2
80 44.4
90 47.4
100 50.0
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most likely outcome is that one would experience a modest loss, there is a very
good chance that one would realize a large gain. This is especially true if one is
permitted to decide when to liquidate the investment.

Here is an analogue of the volatile-stock story that may also help to put the
situation in perspective. Imagine that you are given the opportunity to partici-
pate in the following game. You are to put down $ 1 at the outset; this is your ini-
tial "investment" in the game. (If you prefer to imagine a larger investment,
simply multiply all the dollar figures in what follows by whatever you wish; an
investment of $ 1,000, for example, changes all the dollar figures by a factor of
1,000.) A coin is to be tossed 10 times. Every time the coin comes up heads, the
current value of your investment will be increased by 60% and every time it co-
mes up tails, the current value of your investment will be decreased by 40%.
Would you find this an attractive game to play? The expected value of your in-
vestment at the end of the game is $2.59 (representing a gain of $ 1.59); the most
likely value is about $0.82 (representing a loss of about 18 cents). You are more
likely to lose money than to make any (the probability that you will lose some
portion of the initial investment is about .62). The most you can lose is $1,
whereas it is possible to win a much larger amount (over $100 in the most ex-
treme case), and the chances of a relatively spectacular win are quite good; in
particular the probability of at least doubling your investment is about .38 and
the probability of increasing it by almost a factor of six is about .17. The proba-
bility of getting k or more heads in 10 tosses and the final value of the initial $1
investment for each value of k are given in Table 6.3.

In general, an excess of one type of outcome over the other (heads vs. tails in
this game, gain years vs. loss years in the original volatile-stock scenario) is
equally likely in both directions; for example, the probability of seven or more
heads is the same as the probability of seven or more tails—it is about. 17 in each
case. However, one stands to win a great deal more with seven or more heads
than one can lose with seven or more tails; in fact, given the outcome seven or
more heads, the expected gain is $9.87 ($10.87 expected value including the ini-
tial $ 1 investment), and the minimum is $4.80, whereas given the outcome seven
or more tails, the expected loss is about $0.91, and the maximum $1.

If we were to define the game as a sequence of 100 coin tosses, to correspond to
the original stock scenario, the asymmetry would become much more extreme.
Now the maximum possible (though extremely unlikely) gain would be $2.58 x
1020, whereas the maximum possible loss would remain at $1, the value of the orig-
inal investment. The most likely final value of the investment would be $0.13. As
with the 10-toss game, the probability is greater than .5 that the final value would
be less than $1, but the chances of realizing an enormous gain are quite good.

Table 6.4 shows the approximate probability of getting exactly k heads in 100
tosses and the value of the original $1 given k heads. (The gain in each case is the
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TABLE 6.3

The Probability of Getting Exactly k, and k or More, Heads in 10 Tosses
and the Resulting Value of $1, Given That a Toss of a Head Means a 60% Increase

and One of a Tail a 40% Decrease

k
0
1
2
3
4
5
6
7
8
9
10

Prob#
Heads = k

.00098

.00977

.04395

.11719

.20508

.24609

.20508

.11719

.04395

.00977
.00098

Prob#
Heads >k

1.000
.999
.989
.945
.828
.623
.377
.719
.055
.011
.001

Approx Value of$l
Given k Heads

<.01
.02

.04

.11

.31

.82
2.17
5.80

15.46
41.23
109.95

latter value minus $1 representing the original investment.) The gain associated
with k heads is the minimum gain, given k or more heads; remember that the
maximum loss is never greater than $1, in the situation we are considering.

Before turning to the table, it may be useful to recall that the formula for
computing the probability of exactly H heads in 100 tosses is

100

,100

i J. w i

Where represents the number of combinations of 100 things taken H at a
\H J

(»}time and the general formula for computing the number of n things taken r

at a time is
iV •

is —7 —. For large n, it is convenient to use Stirling's approxima-
r\(n-r)l

tion for the factorial, «! = e~"nn(27m)w, approximately. Alternatively, one can
use logarithms of factorials, often provided in books of mathematical tables at
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TABLE 6.4
The Probability of Getting Exactly k, and k or More, Heads in 100 Tosses

and the Approximate Value of $1 Resulting From k Heads, Given That a Toss
of a Head Means a 60% Increase and One of a Tail a 40% Decrease

k
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

Prob#
Heads = k

.07959

.07802

.07352

.06659

.05796

.04847

.03895

.03007

.02229

.01587

.01084

.00711

.00447

.00270

.00156

.00086

.00046

.00023

.00011

.00005

.00002

Prob#
Heads 2k

.540

.460

.382

.309

.242

.184

.136

.097

.067

.044

.028

.018

.011

.006

.003

.002
<.001
<.001
<.001
<.001
<.001

Value of$l
Given k Heads

.13

.35

.92
2.46
6.57

17.52
46.71

124.55
332.13
885.69

2,361.83
6,298.22

16,795.25
44,787.33

119,432.88
318,487.68
849,300.48

2,264,801.27
6,039,470.06

16,105,253.50
42,947,342.67

least for factorials up to 100! (The probabilities in the second column of the ta-
ble were calculated with logarithms; the use of Stirling's approximation would
have yielded very slightly larger values.)

The probability that 100 tosses will produce at least H heads is

100

p(k>H) =
Ik,
k=H\ K )
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and the value of the original $1 investment at the end of a game, given the oc-
currence of k heads, is

More generally, the final value of an original investment, or stake, of an
amount S, given the occurrence of k heads, Vsk, is

The gain (or loss) is, of course, simply V^ - 5.
Inspection of this table and a comparison of it with the table representing the

1 0-toss case should help provide a reasonably good intuitive grasp of the impli-
cations of participating in a game of the sort imagined. Consider first the
100-toss case. The expected value of the dollar investment at the end of the
game is $13,780.61 ; the most likely final value is $0.13. The probability that
the final value will actually by $0. 13 is about .08; the probability that it will be
$0.13 or less is about .54 (the same as the probability that it will be $0.13 or
more). The probability that the final value will be as great or greater than the
expected value of $13,780.61 is about .01. The probability that it will be less
than $1 — the probability that one will lose some amount of one's invest-
ment — is about .69. However, the probability is about .24 that the value will be
greater than $6, almost .1 that it will exceed $124, and almost 1 chance in a
thousand that it will be more than $800,000.

Obviously, if I were trying to convince you not to play this game, I would fo-
cus on the fact that you are much more likely to lose than to win — the odds
against your winning anything are better than 2-to-l — and that the most likely
outcome will leave you with only 13% or your original investment. If I were try-
ing to convince you to play, I would emphasize the fact that the most you can lose
is a dollar, and for the risk of that you are buying a very good chance of multiply-
ing your investment several-fold (about one chance in four of at least a 500%
gain), and a nontrivial chance of realizing a really spectacular windfall (one
chance in a hundred of growing your investment by at least a factor of 6,000).

Let us now compare the 100-toss and 10-toss versions of the game. Essen-
tially the arguments made about the possible outcomes of the 100-toss game
apply qualitatively to the 1 0-toss game as well, but the differences in probabili-
ties are instructive. Perhaps the most obvious difference in the two probability
distributions is the fact that an outcome that deviates from the most likely one
(one half heads) by a given percentage is much greater in the 10-toss than in the
100-toss game. The probability of getting 60% or more heads is about .38 in the
10-toss game and less than .03 in the 100-toss one; the probability of getting
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70% or more heads is about. 17 in the former case and only about 8 chances in
100,000 in the latter. The directions of these differences are not unexpected, of
course; they illustrate one implication of the well-known law of large numbers
according to which deviance of a given percentage is less likely in large ran-
dom samples than in small ones, but the magnitude of the differences may take
even some people who are familiar with the law by surprise. The disparity in
the likelihoods of outcomes that differ from the modal one by a given percent-
age is reflected in the payoffs associated with such outcomes. In the 10- and
100-toss games, the minimum final values of a $1 investment given 60% or
more heads are $2.17 and $2,361.83 respectively; for 70% or more heads, the
two respective numbers are $5.80 and over $42 million.

Now, if offered a chance to play either of these games, what is the rational
thing to do? In my view the answer is, it depends on one's attitude toward risk.
One might find both games attractive and be delighted to play either of them, if
given the opportunity, the rationale being that $1 is a small amount to risk for
the relatively good chance of winning much more than that. One might be less
enthusiastic if the minimum initial investment allowed were $1,000, because
one is much less sanguine about the prospect of losing this amount of money
even though the potential winnings are commensurately larger. If given the op-
portunity of playing either game as often as one wished, and terminating play
when one wished, one would find it attractive even for quite large stakes, be-
cause the likelihood of eventually winning more than enough to offset a series
of losses is very good.

Now suppose you were given the opportunity to play one of these games for a
specified number of times. The rules in this case are that in order to play at all,
you must play the specified number of times, no more and no less. The situation
becomes more interesting. Suppose, you were offered the opportunity to play the
10-toss game precisely M times, but, in addition to the $1 investment you were
required to make in each game, you had to pay a one-time participation fee. How
much, if anything, would you—how much should you—be willing to pay? I do
not propose to work out the details of this situation, but it will be interesting to do
a partial analysis of a few particular cases. Consider the case of M=5. How much
would you be willing to pay to play the 10-toss game five times?

It is easy enough to calculate the expected value of your total ($5) invest-
ment at the end of the five games; it is simply five times the expected value of
the $1 investment at the end of a single game, or $12.95; this represents an ex-
pected gain of $7.95. But as I hope the foregoing discussion has made clear,
this does not tell us all that we would like to know about what the more proba-
ble of the possible outcomes are. One thing we might do is calculate the proba-
bility of getting at least one win of a given size in a series of five games. Table
6.5 gives these probabilities. (Excepting the case of k = 0, the probabilities
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TABLE 6.5

Probability of Getting k or More Heads at Least Once in Five 10-Toss Games
and Approximate Value of $1, Given k Heads

k
0
1
2
3
4
5
6
7
8
9
10

Prob # Heads >kat least
Once in Five 10-Toss Games

1.000 (approx)
1.000 (approx)

1.000 (approx)

1.000 (approx)
1.000 (approx)

.992

.906

.611

.245

.053

.005

Approx Value of$l
Given k Heads

<.01
.02
.04
.11
.31
.82

2.17
5.80

15.46
41.23

109.95

given as 1 are not exactly 1, of course, but round off to 1 when carried to 5
places beyond the decimal point.)

Thus the probability of having at least one out of five games increase the
value of the initial investment by at least a factor of 5.8 is about .61 and the
probability of having at least one game increase the value by at least a factor of
15.46 is about .25. A similar analysis for some of the possible outcomes of five
100-toss games is given in Table 6. 6.

So the probability of having at least one game produce 55 or more heads
and, consequently, at least a 17-to-l return on the investment is about .64. The
probability that at least one game will produce at least 60 heads and therefore a
2,361-to-1 return is about .13.

It should be clear that these games become increasingly attractive the larger
the number of times one is permitted to play them. If one is permitted to play
the game 100 times, the probabilities comparable to those in the preceding ta-
ble are as as shown in Table 6.7.

In other words, the probability of having at least one game produce a
2,362-to-l return is about .94, and the probability of having at least one pro-
duce a return of over 300,000-to-l is a non-neglible .16. These figures might
make many people willing to pay a fair amount of money for the opportunity to
play the 100-toss game 100 times.
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TABLE 6.6
Probability of Getting k or More Heads at Least Once in Five 100-Toss Games

and Approximate Value of $ 1, Given k Heads

*
55
60
65
70

Prob # Heads >kat Least
Once in Five 100-Toss Games

.638

.134

.009

.000

Value of$l
Given k Heads

17.52

2,361.83
318,387.68

42,947,342.67

TABLE 6.7
Probability of Getting k or More Heads at Least Once in 100 100-Toss Game

and Approximate Value of $1, Given k Heads

k
55
60
65
70

Prob # Heads >kat Least
Once in 100 100-Toss Games

1.000(approx)
.944
.164
.008

Value of$l
Given k Heads

17.52
2,361.83

318,387.68
42,947,342.67

Comparison of the 1-game, 5-game, and 100-game scenarios illustrates that
the expected value of the outcome becomes increasingly meaningful the
greater the number of times the situation is to be encountered. When a gamble
is involved, one may do well to attach significance to the expected value if one
is permitted to make the bet many times, but one may wish to discount it con-
siderably, and give more weight to other considerations, like the distribution of
more likely outcomes, if one is permitted to make it only once or a few times.

In general, as Keynes (1921) and others have pointed out, expected value is
a more complex concept, psychologically, than its use in computations might
suggest. Mathematically, the expected value of a good worth $10,000,000 and
probability of .001 is $ 1,000 more than that of a good worth $ 10,000 and prob-
ability of .9. Many people would prefer the latter gamble to the former, how-
ever, and who is to say that this would be an irrational choice?
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Value and Utility

The St. Petersburg paradox generated a great deal of interest among early prob-
ability theorists and much debate about what would constitute an acceptable
resolution of it. Of particular importance for the subsequent development of
theories of decision making and rational behavior is the role it played in forcing
a distinction between monetary value and "utility," a distinction promoted by
Daniel Bernoulli (1738)—he used the terms "physical fortune" and "moral
fortune"—in his original attempt to resolve the paradox. Samuelson (1977)
credits Cramer (1728) as the originator of the idea of diminishing marginal
utility in a letter to Nicholas Bernoulli, and published by Daniel Bernoulli in
his 1738 paper. According to this idea, the utility to an individual of an increase
of a given amount in her fortune will vary inversely with the amount of wealth
she already has. Many of the proposed resolutions of the paradox were based
on this idea—which was often expressed as a concave relationship between
wealth and utility—and, in particular, on the assumption that increase in utility
diminishes essentially to zero as wealth increases indefinitely.

The distinction between value and utility was also used extensively by von
Neumann and Morgenstern (1953/1944) in their seminal work on decision the-
ory in its modern form. This distinction recognizes that what a specified amount
of money is worth to individuals depends on how much they have; to a person
who has only $1,000, the possibility of losing $1,000 presumably is much more
than 1,000 times worse than the possibility of losing $1, but this probably is not
the case for one whose net worth in measured in millions. Bernoulli assumed that
how much satisfaction—increase in moral fortune—one derives from a given
small increase in one's physical fortune is inversely proportional to the size of
one's physical fortune before the increase. This principle is incorporated in ex-
pected utility theory as the assumption that utility is a concave (looking up from
the abscissa) function of money (Pratt, 1964).

The relationship between money and utility is further complicated by the
recognition that the subjective value of a given amount of money may depend
not only on how much money one has to begin with but on whether the money
in question is a (real or potential) gain or loss. To the individual who has only
$1,000, the prospect of gaining another $1,000 is likely to be very attractive,
but the degree of happiness caused by this eventuality is unlikely to match the
degree of sadness that would accompany a loss of the same amount. In general,
it appears that losses have greater subjective value than gains of equal amounts
(Galanter & Pliner, 1974).

The St. Petersburg paradox and the variations on it considered earlier not
only illustrate the necessity of the distinction between monetary value and util-
ity, or between objective and subjective worth; they also demonstrate that the
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attractiveness of a possible venture with an uncertain outcome can depend not
only on the mathematical expectation of the outcome but on the entire proba-
bility distribution of possible outcomes. A distribution that is highly skewed—
with a great difference between mean and mode—represents a very different
situation from one that is symmetrical about its mean, and, as Allais (19797
1990) has pointed out, an attitude that takes account of the dispersion of psy-
chological values should not be considered irrational.

The stir that the paradox made and the rethinking that it caused of the mean-
ings of such foundational concepts as probability and expectation also illus-
trate the importance of intuitive notions of reasonableness as the final court of
appeals on questions of what shall pass for rationality and what shall not. Any
theory of rationality that prescribed that one should be willing to pay an infinite
amount of money, or even a large amount, for the opportunity to make the St.
Petersburg wager would be a strange guide for behavior indeed.

Zabell (1993) has argued that probability theory is useful precisely because
it does not correspond to our intuitions at all points; if it did, he says, we would
not need it. The point is well taken in the sense that our immediate and casual
intuitions when thinking about probabilistic events are often wrong, and a con-
sultation of probability theory can set them right. When, however, what the
theory has dictated has violated the intuitions of people who have thought
deeply and long about the issues, either the basis of the faulty intuitions has be-
come understood and the intuitions changed, or the theory has been modified
to be consistent with the intuitions that persist. Intuition is the final judge.

Bertrana & Paradox

A paradox attributed to Joseph Bertrand is a case in which there appears to be
more than one answer to a question of probability, depending on how one looks
at a situation. One form of the problem is to state the probability that a ran-
domly drawn chord of a circle is longer than a side of the circle's inscribed
equilateral triangle. In terms of Fig. 6.1, the question is, what is the probability
that a randomly drawn chord will be longer than the line AC. Here are three an-
swers and their rationales.

Answer 1:1/2. Aradius drawn perpendicular to AC is bisected by AC, which
is to say the length of the line from the origin to the point of intersection is r/2.
(This is easily proved.) Any chord whose perpendicular distance to the origin
is smaller than r/2 is longer than AC; any chord whose perpendicular distance
to the origin is larger than r/2 is shorter than AC. The probability that a ran-
domly drawn chord will have a perpendicular distance from the origin smaller
than r/2 is 1/2.
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What is the probability that a randomly
drawn chord will be longer than the
lineAC?

FIG. 6.1. Bertrand's paradox. Illustrating three possible answers to question of the
probability of a randomly drawn chord of a circle being longer than the side of an in-
scribed equilateral triangle.

Answer 2:1/3. Each end of the chord is equally likely to be anywhere on the
perimeter of the circle. Suppose one end is at A. Draw an inscribed equilateral
triangle with a vertex at A. The vertices of this triangle divide the circumfer-
ence into three equal arcs. The chord originating at A will be longer than a side
of the triangle if and only if it terminates on the arc opposite the triangle's ver-
tex at A. Inasmuch as it is equally likely to terminate anywhere on the perime-
ter, the probability that it will terminate on the arc opposite A is 1/3.

Answer 3:1/4. For a chord to be longer than AC its midpoint must lie within
the circle inscribed inside the inscribed triangle. The midpoint of a randomly
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drawn chord is equally likely to fall anywhere within the larger circle, so the
probability of it falling within the smaller circle is the ratio of the area of the
smaller circle to that of the larger, which is 1/4.

What is the resolution of this paradox? Is there one? Each of the answers to
the original question appears to have a legitimate rationale. Is one and only one
of them correct? Can they all be correct? And if so, what does this do to our ba-
sic ideas about what probability means? If a well-formed question of probabil-
ity can have two or more incompatible answers, is the theory of probability not
inconsistent and therefore of dubious value?

The difficulty here is similar in principle to the basis for confusion in some
of the problems discussed in the preceding sections. At the heart of it is the fact
that the statement of the problem does not provide enough information to let
one come up with an unqualified answer that is obviously correct. Specifically
what is missing is a definition of what is meant by "randomly drawing" a
chord, and this is critical because the concept is ambiguous.

Imagine that we decide to do an experiment in order to determine empiri-
cally which, if any, of the aforementioned answers to the Bertrand paradox is
correct. We propose to draw at random a very large number of chords and see
what percentage of them are longer than AC. This is a brute-force way to settle
the issue. But it turns out not to be that simple, because without first settling the
question of what it means to draw a random chord, we cannot proceed.

Suppose you were given the task of specifying the chords. How would you
go about guaranteeing that each chord is a random selection? Having just
thought about Bertrand's paradox, you might consider several possibilities.
Here are three rules that might come to mind.

Rule 1. Draw a number between 0 and r from a table of random numbers to
determine the perpendicular distance, d, of the chord from the center of the cir-
cle. Draw a second number between 0 and 360 to determine the orientation of
the chord with respect to the perimeter of the circle.

Rule 2. Draw a number between 0 and 360 from a table of random numbers
to determine the location of one end of the chord. Draw a second number be-
tween 0 and 360 to determine the location of the other end of the chord.

Rule 3. Draw a pair of numbers from a random number table, each be-
tween -r and r. Use the two numbers of each pair to represent the x and y coor-
dinates of a point on a square Cartesian grid superimposed on the circle.
(Some of the points—those near the comers of the square—will fall outside
the circle; ignore these points.) When a point falls within the circle, use it as
the midpoint of a chord.
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It should be clear that if Rule 1 is used, the experiment will yield Answer 1
and that Rules 2 and 3 will give Answers 2 and 3, respectively. Other rules
could be stated that would yield different results. None of these rules is correct
in an absolute sense; they represent different operational definitions of what it
could mean to select a chord at random. Without the degree of specificity ex-
pressed in these rules, the idea of selecting a chord at random is not sufficiently
precise to admit of only one interpretation. In short, if asked what odds you
would accept on a bet that a randomly drawn chord will be longer than AC, be-
fore answering you should ask what random process is to be used to determine
the chord that is to be drawn.

To be useful, the answer must describe a procedure. It is not enough to
specify, for example, that a point is to be selected at random to serve as the
midpoint of the chord. The selection process represented by Rule 3—which
is based on the use of Cartesian coordinates—will yield a chord longer than
AC with probability 1/4. One could just as well select midpoints by using po-
lar coordinates, selecting a rho value between 0 and r and a theta value be-
tween 0 and 360, and in this case, the probability that the midpoint would lie
within the inner circle—and thus the probability that the chord would be lon-
ger than AC—would be 1/2.

Is one of the possible interpretations more natural than the others? Can we
conceptualize a physical experiment that would make these kinds of qualifica-
tions unnecessary? What if we dropped rods, greater in length than the diame-
ter of the circle, onto the circle from some distance above it and noted the
chords that were formed by those rods that landed in such a way as to form
them? This does not really help because we would have to be specific about the
precise conditions under which the rods were to be dropped: where the center
of the rods would be relative to the center of the circle, what orientation they
would have, and so on.

One interpretation of what constitutes a randomly drawn chord is a chord
selected from all possible chords in such a way that every chord in the set of
possibilities has an equal chance of being the selected one. From this perspec-
tive, what we need to do to resolve Bertrand's paradox is determine what pro-
portion of all possible chords are longer than AC. But how are we to do this?
We cannot simply draw all possible chords and count them, because there are
infinitely many. (There are also infinitely many chords that are longer than AC,
and infinitely many that are shorter as well.)

To get around this problem, we could decide to quantize the space and con-
sider only some countable subset of all the possibilities, making the assump-
tion that the lengths of the chords in our subset will be representative of the
lengths of the chords in the total population. (This is a big assumption, but let
us make it, at least for the moment.) Now suppose we quantize the space by di-
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viding r, the radius of the circle into 100 units of equal length, and let a chord
with a given perpendicular distance from 0 have any one of 360 orientations
with respect to the perimeter of the circle. (These numbers are arbitrary and
their values do not affect the argument; I use 360 orientations simply because
we conventionally divide circles into 360 degrees.) Given this quantization,
any measurement along r must be expressed in terms of an integral number of
r/100 and angular measures must be to the nearest degree.

With these constraints, a specific chord can be at any of 100 perpendicular
distances from 0 and it can have any of 360 orientations with respect to the per-
imeter, so the total number of possible chords in the quantized space is 36,000.
It should be clear that precisely half of these, those for which the perpendicular
distance from 0 is less than .5r, are longer than AC. So we appear to have here a
vote in favor of Answer 1 as the correct one. But, in fact, there are more ways
than one to quantize the problem space, and the one we have just considered
happens to be a variant of Rule 1.

An alternative way to quantize the space is to divide the perimeter of the cir-
cle into 360 units of equal length, as before, and consider the total population of
chords to be all the chords that can be drawn between all possible pairs of per-
imeter points. There are (360 x 359)72 = 64,620 such chords. For a chord to be
longer than AC it must be drawn between perimeter points that differ by more
than 120 and less than 240 units. The number of chords in this subset is (360 x
120)72 = 21,600 or approximately one third of the total 64,620. This seems to
be a vote in favor of Answer 2. But again, this is because our quantization
scheme is a variant of Rule 2.

It will come as no surprise that we can base our quantization on a variant of
Rule 3 and get a count that favors Answer 3. In this case we divide the space in
terms of orthogonal equally spaced coordinates—we impose upon it a Carte-
sian grid—and let each point of intersection of two coordinates be the center
point of a chord. (Assume that the grid is sufficiently fine that there are lots of
points in the space.) For a chord to be longer than AC, its center must lie within
a circle of radius r/2 and it is clear from the way we have quantized the space
that about one fourth of all the points in it do.

So the decision to determine what percentage of all the chords that could
be drawn in a quantized space have a length greater than AC does not give us
an unequivocal answer to Bertrand's problem, because the answer we get
depends on how we decide to quantize the space. The point is, Bertrand's
paradox is a paradox because of the imprecision of language, or more spe-
cifically, because "randomly drawn chord" is an ambiguous term. Once one
is specific about which of several possible meanings is intended, there no
longer is a paradox. There is then one and only one correct answer, and ex-
periment will bear it out. Change the meaning of the term and the answer
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changes as well; there is now a different answer, but there is still one and
only one that is correct.

The problem of determining the probability that a randomly drawn chord of
a circle is longer than the side of the circle's inscribed equilateral triangle is
only one of the ways in which Bertrand's paradox has been exemplified. An-
other problem that is sometimes used to illustrate the paradox is the following
one, from Salmon (1974):

Suppose a car has traversed a distance of 1 mile, and we know that the time
taken was between one and two minutes, but we know nothing further about it.
Applying the principle of indifference, we conclude that there is a probability
of 1/2 that the time taken was in the range of 1 to 11/2 minutes, and a probabil-
ity of 1/2 that the time taken was in the range 1 1/2 to 2 minutes. A logically
equivalent way of expressing our knowledge is to say that the car covered the
distance at an average speed between 30 and 60 miles per hour. Applying the
principle of indifference again, we conclude that there is a probability of 1/2
that the average speed was between 30 and 45 miles per hour, and a probability
of 1/2 that the average speed was between 45 and 60 miles per hour. Unfortu-
nately, we have just been guilty of self-contradiction. A time of 1 1/2 minutes
for a distance of one mile is an average speed of 40, not 45, miles per hour. On
the basis of the same information, formulated in different but equivalent terms,
we get the result that there is a probability of 1/2 that the average speed is be-
tween 30 and 40 miles per hour, and also that there is a probability of 1/2 that
the average speed is between 30 and 45 miles per hour. Since it is not impossi-
ble that the average speed is between 40 and 45 miles per hour, the foregoing
results are mutually incompatible, (p. 94)

Is this a paradox or a faulty analysis? One might argue that it is the latter and
that the fault lies in the assertion that the two ways described in the problem
statement of expressing our knowledge of the situation are "logically equiva-
lent." Assuming that there is a probability of 1/2 that the time taken was in the
range of 1 to IVi minutes is not logically equivalent to assuming that there is a
probability of 1/2 that the average speed was between 30 and 45 miles per hour.
More generally, assuming the equiprobability of all possible times between 1
and 2 minutes is not equivalent to assuming the equiprobability of all possible
speeds between 30 and 60 miles per hour, because the relationship between
time taken and speed is curvilinear.

But now, given that all one knows about the situation is that a specific dis-
tance has been traversed within some time between specified limits, what is the
appropriate assumption to make? The equiprobability of all possible times?
The equiprobability of all possible speeds? Something else, say a "splitting of
the difference" between these two? Unless one has some reason for preferring
one assumption over the other possibilities, it is not clear this question has any
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correct answer. The important point, for present purposes, is that and i/one as-
sumes equiprobability of all possible times, one gets one answer, if one as-
sumes equiprobability of all possible speeds, one gets a different one, and there
is nothing mysterious or paradoxical about this; it follows simply from the re-
lationship between speed, time, and distance traversed.

Intransitivity Paradoxes

Psychologists have devoted a considerable amount of experimentation to the
determination of how people solve transfer-of-inference or linear-syllogism
problems of the following sort: Cheryl is taller than Pat, Phyllis is shorter than
Rose, and Pat is taller than Rose; who is the tallest? One question of interest
concerns the extent to which people make use of visual images or mental mod-
els in solving such problems.

In the case of this example, the order of the individuals named from tallest to
shortest is Cheryl, Pat, Rose, and Phyllis. Given that we know that Cheryl is
taller than Pat and that Pat is taller than Rose, we can infer with certainty that
Cheryl is taller than Rose. Transitivity of ordering relationships is the rule in
deterministic contexts. If A costs more than B and B costs more than C, then A
costs more than C; if X is heavier than Y and Y is heavier than Z then X is
heavier than Z.

Of course, any claim of having stated a rule is an invitation to find a
counterexample to it, which would show it not to be a rule after all. With re-
spect to the claim that transitivity of ordering relationships is the rule in deter-
ministic contexts, one might point out that the United States is to the west of
Spain, Spain is to the west of Japan, and Japan is to the west of the United
States. This seems to be a counterexample to our rule. Or if we imagine Tom,
Dick, and Jane holding hands in a circle, we could imagine Tom being to the
left of Dick who is to the left of Jane who is to the left of Tom. These
counterexamples to our rule make it clear that the rule, as stated, is not quite
precise enough. What I should have said is that transitivity of ordering relation-
ships is the rule with deterministic unidimensional variables.

What constitutes a unidimensional variable is not always obvious. Age,
weight, and height would probably be considered unidimensional variables by
most people, but what about intelligence, attractiveness, or leadership. If told
that pairwise comparisons had shown Sam to be taller than Pete, Pete to be
taller than Joe, and Joe to be taller than Sam, most of us would probably protest
that at least one of the measurements must have been wrong. But if told that a
poll involving pairwise comparisons had shown Sam to be a better leader than
Pete, Pete to be a better leader than Joe, and Joe to be a better leader than Sam,
we might be less certain that the poll was done poorly and somewhat inclined
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to wonder if there is something about the complicated concept of leadership
that would make such an outcome possible.

In fact, in the case of polling or voting situations, ordering intransitivities
can be obtained even apart from the assumption that what is being ordered is a
multidimensional variable. This has been known at least since Condorcet
(1785), who pointed out that if, in a three-way contest, one third of the voters
prefer A to B and B to C, one third prefer B to C and C to A, and one third prefer
C to A and A to B, then a majority prefers A to B, a majority prefers B to C, and
a majority prefers C to A. The possibility of such an outcome has been used to
support arguments against the use of voting schemes that allow voters only to
identify their first choice. But finding schemes that preclude such
intransitivities or other surprising outcomes has proved to be very difficult. For
a three-way contest, we might let each voter rank all three candidates in order
of preference. It is possible with this scheme, as with the one considered previ-
ously, to obtain an outcome in which A is preferred to B, B to C, and C to A.
This would be the case if each of the following orderings—A, B, C; B, C, A;
and C, A, B—was preferred by one third of the voters.

Intransitivities of this and other sorts are often encountered in voting situa-
tions (Arrow, 1963; Black, 1958; Brams, 1976; Brams & Fishburn, 1983). Ar-
row has shown that determining group preferences is a very tricky business and
that different voting structures, all of which have some plausible claim to being
democratic, can produce very different outcomes. In particular, he proved that
when individuals have preferences and these preferences are transitive, there is
no way to design a voting system that will simultaneously satisfy all of a small
set of properties that are generally recognized to be desirable for such a voting
system to have. As Cole (1997) observes, "It is easy to show ... that election re-
sults depend directly on the choice of voting system. Even when the preferences
of the voters don't change, they can choose different winners if they change the
details of the way they vote" (p. 101). Barrow (1998) concludes from a consider-
ation of intransitivity paradoxes that "a concept of rationality based on trasitivity
cannot be transferred from individuals to collections of individuals by means of
any reasonable rule for taking majority decisions" (p. 241), and further, that
"there is no reliable way of establishing rational collective choices" (p. 247).

One might suspect, upon learning of the possibility of such a strange out-
come as the one just described, that it has something to do with the fact that the
intransitive ordering does not reflect the preferences of a single person but is an
amalgam of many individual orderings. Surely, the preferences of a single per-
son must be transitive. If I say I prefer Sam to Pete and Pete to Joe, it must be
that I prefer Sam to Joe. But is it clear that that is so? Suppose I am trying to de-
cide which of three houses to buy, and I intend to base my decision on three
equally important factors: price, size, and location. Imagine that three
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houses—X, Y, and Z—are for sale, and, as it happens, my (transitive) prefer-
ence ordering is X, Y, Z with respect to price, Y, Z, X with respect to size, and Z,
X, Y with respect to location. At this point I will be unable to make a selection
among the houses, because each of them has placed first with respect to one
factor, second with respect to another, and third with respect to still another; it
appears to be a three-way tie. If I were to discover that any one of the houses is
no longer available, the selection between the remaining two would be easy,
because one member of any pair would be preferred with respect to two factors
and the other with respect to only one. But strangely, given a choice between X
and Y, I would prefer X; between Y and Z, I would prefer Y; and between X and
Z, I would prefer Z. Like an Escher staircase, X > Y > Z > X.

So an intransitive preference ordering situation is possible not only when the
preferences of different people are combined but also when only those of a single
person are involved. In both of the examples considered, however, the final pref-
erence ordering was obtained by combining other orderings; the difference was
that the component orderings were obtained from different groups of voters in
the first case and from the same individual in the second. Both cases may be
viewed as voting situations, with all the votes coming from the same person in
the second instance. We could still entertain the hypothesis that an intransitive
ordering can be obtained only as a result of combining individual orderings.

This hypothesis is shown to be false by the following probabilistic situation,
described first by the statistician Bradley Efron (Paulos, 1990). Assume we
have four dice, A, B, C, and D, of the following descriptions. A has 4 on four
faces and 0 on two; B has 3 on all faces; C has 2 on four faces and 6 on two; D
has 5 on three faces and 1 on the other three. Defining the winning die as the
one showing the higher number on a toss, it is easy to show that if we play an
extended game with each possible pair of these dice, A will win over B, B will
win over C, C will win over D, and in each case the winning member of the pair
will beat the other member two times out of three, on average. It would seem to
follow from the fact that A > B > C > D that A would win over C and D and that
B would win over D. In fact C will win over A five times out of nine, B and D
will break even, and—here is the most counterintuitive result—D will win over
A two times out of three.

Just to round out the picture, if all four dice are rolled at once, C and D will
each win one time in three, A will win two times in nine and B one time in nine
Considering all possible three-way combinations, the outcomes will be as
shown in Table 6.8.

So A is the winner among A, B, and C; D is the winner among A, B, and D; C
is the winner among A, C, and D; and B, C, and D are equals among them-
selves. The reader may find it difficult to get a crisp mental model of what is go-
ing on here, but it should be clear that the uncritical application of the
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TABLE 6.8

The Probability That Each Specified Die, Marked as Indicated in the Text,
Will Win When Rolled in the Indicated Three-Dice Combination

Probability of Winning

Combination

A B C
A B D
ACD
BCD

A

4/9
2/6
2/9
—

B

2/9
1/6
—
1/3

C

3/9
—
4/9
1/3

D
—
3/6
3/9
1/3

transitivity principle that works so well in many deterministic orderings of
unidimensional variables is not appropriate, although the temptation to apply it
may be great.

A simpler example of intransive dice has been described by Stewart (1997).
Imagine three dice, A, B, andC with faces as follows: (A) 3,3,4,4,8,8; (B) 1,1,
5,5,9,9; (C) 2,2,6,6,7,7. Tossing any two of these dice will yield one of nine
equally likely combinations. It is easy to see, by considering all possible combi-
nations, that when A and B are tossed B beats A (has a higher number) five times
out of nine, when B and C are tossed C wins five times out of nine, and when A
and C are tossed A wins five times out of nine. That is A > C > B > A.

Several related "nontransitivity paradoxes" are known (Blyth, 1972c;
Gardner, 1974, 1976; P. S. Savage, 1994; Steinhaus & Trybula, 1959). A very
readable account of some of them can be found in P. Hoffman (1988). One such,
involving the occurrence of triplets in coin tosses, was described in chapter 5.
The correspondence between this situation and Efron's paradox is seen if we let
TTH > THH indicate that TTH dominates THH in the sense that if Jack chooses
THH, Jill's chance of winning is guaranteed to be better than Jack's by the selec-
tion of TTH. From Table 5.1 it can be seen that, as we have already noted,

HHT > HTT > TTH > THH > HHT.

Simpson's Paradox

A paradox that has received some attention both from statisticians and from
psychologists is sometimes referred to as the reversal paradox and sometimes
as Simpson's paradox (Blyth 1972a, 1972b; M. R. Cohen & Nagel, 1934;
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Lindley & Novick, 1981; Simpson, 1951). In general terms the paradox con-
sists in the fact that two variables that are related in a certain way (positively or
negatively) at one level of analysis may have the opposite relationship when
analyzed at a different level.

The phenomenon is readily seen in analyses involving contingency tables.
Table 6.9 is an example from Hintzman (1980) that illustrates how a table that
is the sum of two other tables may show a relationship between the variables in-
volved that is opposite the relationship shown in each of the component tables.
The thing to note is that in the composite table (a + b\ P(X I Y) < P(X),
whereas in both of the component tables (a and b\ P(X I Y) > P(X).

Messick and van de Geer (1981) have shown that, given a conditional proba-
bility relationship of the form

it is always possible to partition the data with respect to some third variable, C,
such that

P(A I BC) > P(A I ~BC) ,

for all i, which is to say that reversability is always possible: "The consequence
of this result is to generalize the reversal paradox and to show that any ordinal
relationship between two variables can be 'reversed' by the introduction of a
third variable such that within each level of this third variable, the relationship

TABLE 6.9

The Composite Table Shows a Relationship Between X and Y That Is Opposite
From the Relationship Shown in Each of the Component Tables

P(X 1 Y)

PCX)

X
Y 20

~Y 60
Z 80

Table a

~X
0

20

20

20/20 = 1
80/100 -

Table b

£
20
80

100
.00
.80

X
20
0

20

~X
60
20
80

20/80 =
20/100 =

X
80
20

100

.25

.20

Table a +

X
40
60

100

~X
60
40

100
40/100 =

100/200 =

b
Z

100
100
200

.40

.50

Note. From Hintzman (1980), Table 1. Copyright 1980 by the American Psychological Association.
Adapted by pennission of the author.
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between the two original variables is precisely the opposite of the original rela-
tionship" (p. 588). They note too that the reversal process can be repeated (re-
storing the original relationship) with a further partitioning, and so on
indefinitely. The implication, they suggest, is that what the relationship be-
tween two variables is taken to mean should depend on the set of variables ex-
amined in its determination.

Messick and van de Geer (1981) make essentially the same observation
with respect to two-by-two contingency tables. Any such table can be decom-
posed into two additive tables in such a way that the direction of the relation-
ship in the original table is reversed in both subtables, provided only that the
original table contains no zero entries and has at least two observations in
each of the off-diagonal cells.

That Simpson's paradox is of more than theoretical interest is illustrated by
a study involving the question of gender bias in admissions to graduate pro-
grams at the University of California at Berkeley (Bickel, Hammel, &
O'Connell, 1975). In 1973, of all the students who applied to the various grad-
uate programs at Berkeley, about 44% of the men and about 35% of the women
were admitted. Given a total of 12,763 applicants (8,442 men and 4,321
women), the shortfall of women is highly statistically significant and would
seem to represent strong evidence of discrimination against women in the uni-
versity's admissions policy.

However, when the admissions data from each of the university's graduate
departments and interdepartmental graduate programs were examined in iso-
lation, there was evidence of a bias against women in only four of them, and
there was evidence of a bias against men in six. Given the results of this depart-
ment-by-department analysis, it is hard to see how the university as a whole
could be guilty of a bias against women in its admissions policy.

The explanation of the apparent discrepancy in the Berkeley data was that
departments to which women applied in the greatest numbers tended to accept
a smaller percentage of applicants than departments to which women were less
likely to apply. Bickel et al. (1975) suggested that an appropriate way to check
for bias on a university-wide basis would be to compare the overall number of
women accepted to the number expected on the assumption of no bias where
the number expected on the assumption of no bias is the sum of the number ex-
pected for each department and this number, for a given department, is the
product of three terms: the percentage of people applying to that department
who are women, the percentage of the people applying to that department who
are accepted, and the number of people applying to the department. In other
words, the expected number of women accepted by a department is taken to be
the number of people applying to the department weighted by both the percent-
age of that number who are women and the percentage who are accepted.
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How it is that evidence of a bias may appear with university-wide data when
such evidence does not exist at the departmental level may be more difficult to
grasp than the possibility of real bias at the departmental level being obscured
in aggregate university-wide data. Intuitively it is easy to see how, if each of
several departments had a bias against women and a roughly equal number had
a comparable bias against men, the combined data could show no bias at the
university-wide level.

The Berkeley data illustrate the possibility of coming to different conclusions
regarding some aspect of behavior—in this case the behavior of an institution
with respect to admissions—depending on whether one looks at the data set in
the aggregate or does a finer-grained analysis. But which of the two possibilities
is the correct one? E. Martin (1981) argues that "both are correct, that neither has
an a priori privileged status: they are but two aspects or views of the same thing,
just as latency and accuracy can be two measures made on a single process or
system. Thus neither a federal agency, say, nor a university is 'lying with statis-
tics ' when it cites one or the other result in defense of some position" (p. 372).

I agree that an argument can be made for both types of analysis, but find it
hard to see them as equally informative. The department-by-department analy-
sis is more informative, in my view, than is the analysis based on univer-
sity-wide data. This is seen in the fact that the results of the analysis of the
university-wide data are inferable from the results of the department-by-de-
partment analysis, but the converse is not true. I would argue further that an in-
dividual who was aware of the results of both types of analysis and cited only
the results of the university-wide analysis in order to support the charge of bias
on the part of the university would be guilty, if not of lying with statistics, at
least of being less than forthright in the use of informative data.

Hintzman (1980) argues that the possibility of Simpson's paradox makes
the results of many experiments on human memory that have relied primarily
on contingency-table analyses suspect, because relationships that have been
revealed at one level of analysis might have been reversed had analyses been
done at other levels. In response to this criticism of the way memory data have
often been analyzed, E. Martin (1981) claims that there is little, if any, empiri-
cal evidence that the results of memory experiments that have been analyzed in
two-by-two contingency tables are Simpson paradoxical. He does not say that
they could not be Simpson paradoxical, but, as I understand his position, only
that there is no empirical evidence that they, in fact, are.

Messick and van de Geer (1981) note that the reversal paradox can be stated
either in terms of conditional probabilities or in terms of correlations between
variables. In the latter case, the paradox consists in the possibility of having a
positive (negative) correlation between two variables while having a negative
(positive) correlation between the same varibles within each cell of a partition-



212 • CHAPTER 6

ing based on another variable. Messick and van de Geer point out further that,
stated in this way, the paradox is related, though not identical, to the problem of
illusory correlation (see chap. 9): "Such an illusory correlation can be sus-
pected to be present when two variables are found to be correlated statistically
but when the partial correlation between the variables with respect to a third
variable is of less extreme value, perhaps zero, or perhaps even reversed in
sign" (p. 584). They add the caution, however, that when the complete and par-
tial correlations have opposite signs, which, if either, correlation should be
considered illusory may depend on the specifics of the situation.

D. S. Wilson (1975) has shown how the reversal paradox could conceivably
have played a part in the development of altruism even if, as is generally as-
sumed, nonaltruistic individuals have a survival advantage over altruistic
members of the same group. If altruists and nonaltruists are unevenly distrib-
uted over "trait groups"—relatively many altruists in some groups and rela-
tively few in others—it could happen that altruists will have a greater survival
rate than nonaltruists in the population as a whole, even though the reverse re-
lationship holds for every trait group.

Simpson's paradox has been implicated by various investigators in other in-
teresting phenomena, such as paradoxes of preference (see Shafir, 1993), and
what has been referred to as the "hot-hand" illusion (see chap. 2). Other discus-
sions of Simpson's paradox may be found in Good (1972), Lindley (1972),
Winkler (1972), Messick and van de Geer (1981), S. H. Shapiro (1982), Wag-
ner (1982), and Sprent (1988). Falk and Bar-Hillel (1980) make the interesting
observation that a judicious redistribution of the U.S. population could in-
crease the average IQ in all 50 states; one can imagine other contexts in which
Simpson's paradox could be exploited to good cosmetic effect.

Paradoxes 01 Expectation

If you expect to be surprised, can you then be surprised? Is an expected surprise
a surprise? Is expecting the unexpected a contradiction in terms? Numerous
paradoxes have been described that relate to questions of this sort. Consider the
following one that is discussed at some length by Poundstone (1990).

A judge sentences a prisoner to hang at sunrise on one of the 7 days of the
following week and stipulates that the prisoner is not to know which day is to
be his last—the day of the hanging is to be a surprise. The prisoner's lawyer
convinces him that in concocting such a sentence, which was intended to keep
the prisoner in suspense, the judge has unwittingly ensured that the hanging
cannot occur at all. The argument goes as follows. The prisoner knows that the
hanging cannot take place on Saturday, the last day of the week, because, if it
did, it would not be a surprise—if he had survived through Friday morning, he
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would know that the fateful day would be the only one that was left. But, if he
cannot be hung on Saturday, then the effective last possibility is Friday. There-
fore, by the same reasoning as before, it cannot happen on Friday. And so on
through the remaining days of the week. The prisoner, of course, is delighted
by his lawyer's clever reasoning and puts his mind at ease, believing his life to
have been saved by the judge's blunder. On Tuesday morning he is escorted to
the gallows, to his great surprise. As Poundstone points out, if the prisoner ac-
cepts the impossibility of the order being carried out, then he can be hung on
any day and it will be unexpected.

If the judge had really wanted to keep the prisoner in suspense and ensure that
the passage of time would provide no information regarding the day of the hang-
ing, he could have sentenced him to a nonaging waiting time (see chap. 2.). He
could have had the jailor roll a die every morning and conduct the hanging on the
first day a toss yielded a three, say. With this sentence, the probability that a given
day is the prisoner's last does not change over time. He could hang on any day;
and indeed the probability that he will hang today given that he did not do so yes-
terday is 1/6 and remains so until the end. He will hang eventually, but the ex-
pected additional waiting time remains constant at lip, or 6, days, independently
of how many days have already passed since the sentencing.

Paradoxes of Confirmation

A widely held view, and one that seems to be consistent with common sense, is
that a case of a hypothesis is confirmatory of that hypothesis. According to this
view, the hypothesis that all crows are black is supported by the observation of
a black crow. This idea has been challenged. Good (19671983b) gives an ex-
ample of a situation in which a case of a hypothesis can be disconfirmatory
with respect to that hypothesis:

Suppose that we know that we are in one or the other of two worlds, and the hy-
pothesis, H, under consideration is that all the crows in our world are black. We
know in advance that in one world there are a hundred black crows, no crows that
are not black, and a million other birds; and that in the other world there are a
thousand black crows, one white one, and a million other birds. A bird is selected
equiprobably at random from all the birds in our world. It turns out to be a black
crow. This is strong evidence (a B ayes-Jeffreys-Turing factor of about 10) that
we are in the second world, wherein not all crows are black. Thus the observa-
tion of a black crow, in the circumstances described, uudermines the hypothesis
that all crows in our world are black, (p. 119)

Gardner (1976) gives other examples of observations that are logically
consistent with a hypothesis but that, nevertheless, would be likely to de-
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crease one's confidence that the hypothesis is true. The following example he
attributes to Paul Berent. Every observation of a man that is less than 100 feet
tall is confirmatory with respect to the hypothesis that all men are less than
100 feet tall. But suppose a man is found who is 99 feet tall. This too is a "case
of the hypothesis," but it is likely to (ought to) shake one's confidence in the
truth of the hypothesis.

Gardner (1976) notes that not only can cases that are consistent with a hy-
pothesis legitimately shake one's confidence in that hypothesis, it is possible
for them to show a hypothesis definitely to be false. Imagine a deck of 10 regu-
lar playing cards containing all the values from ace to 10. Suppose the deck is
shuffled and the 10 cards are placed facedown in a row. Let the hypothesis be
that no card with the value n is in the nth position of the row. Now suppose that
as the cards are turned over, one at a time from left to right, each of the first 9 is
confirmatory of the hypothesis (does not show the value that corresponds to its
position in the row) and none of them is the 10; one knows before turning over
the 10th card that the hypothesis is false, which is to say that the aggregate ef-
fect of the 9 confirmatory cases is disconfirmation.

These and other paradoxes of confirmation establish that a case of a hypothe-
sis is not necessarily confirmatory of that hypothesis. It is probably safe to as-
sume, however, that these are the exceptions that prove the rule and that in a large
majority of the real-life situations of practical interest, a case of a hypothesis can
be taken as confirmatory of that hypothesis—generally speaking, observation of
a black crow lends credence to the hypothesis that all crows are black.

Other Paradoxes

Many other paradoxes have been described. Some involve choices that are in-
consistent with axioms of decsion theory based on the idea that rationality dic-
tates the maximization of subjective expected utility. These include paradoxes
described by Allais and Ellsberg (Dawes, 1988). Whether choices that violate
such axioms are considered irrational depends, of course, on how binding one
considers a particular theory—more specifically, the axioms on which it is
based—to be. One must decide, in specific cases, which one finds more intu-
itively compelling, the axioms or the choices that violate them.

Summary

The study of probability paradoxes makes clear that probabilistic reasoning
can be difficult and reveals some of the factors that can make it so. Often at the
heart of a paradox is some ambiguity of terminology or some missing informa-
tion, without which the statement of the problem or the description of the situa-
tion is incomplete.
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Is there such a thing as a true—unresolvable—probability paradox? Or is
the appearance of paradox invariably attributable to ambiguity or incomplete-
ness in problem descriptions? Certainly some apparent paradoxes can be re-
solved this way. Perhaps they all can be?

DILEMMAS

One of the dictionary definitions of "dilemma" is "a problem seemingly inca-
pable of a satisfactory solution." For some dilemmas, the "seemingly" in this
definition seems an unnecessary qualification. "Sophie's choice" makes the
point. For such a case, perhaps the more appropriate definition, also from the
dictionary, is "a choice or a situation involving a choice between equally unsat-
isfactory alternatives."

Prisoner s Dilemma

Considerable attention has been given by mathematicians, economists, and
psychologists to the question of what constitutes rational behavior in dealing
with dilemmas, or apparent dilemmas. The prototypical situation that has been
studied, in numerous variations, is the "prisoner's dilemma," one version of
which goes as follows:

Two members of a criminal gang are arrested and imprisoned. Each prisoner is
in solitary confinement with no means of speaking to or exchanging messages
with the other. The police admit they don't have enough evidence to convict the
pair on the principal charge. They plan to sentence both to a year in prison on a
lesser charge. Simultaneously, the police offer each prisoner a Faustian bargain.
If he testifies against his partner, he will go free while the partner will get three
years in prison on the main charge. Oh, yes there is a catch ... If both prisoners
testify against each other, both will be sentenced to two years in jail.

The prisoners are given a little time to think this over, but in no case may either
learn what the other has decided until he has irrevocably made his decision. Each
is informed that the other prisoner is being offered the very same deal. Each pris-
oner is concerned only with his own welfare—with minimizing his own prison
sentence. (Poundstone, 1992, p. 118)

What makes this a dilemma is the fact that (a) each prisoner can reason that he
should testify against his partner on the grounds that his own sentence will be
smaller by 1 year if he testifies than if he does not, whether or not his partner testi-
fies—which is to say the strategy of testifying dominates that of not testify-
ing—and if one testifies and the other does not, the one who testifies will do very
well (whereas the one who refuses to testify will do very poorly) indeed, but (b) if
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both prisoners testify they both will do worse than they would have if both had re-
fused to do so. The situation may be represented by a two-by-two table showing
the outcomes for both prisoners of the four possible combinations of choices of
"not testifying" and "testifying" by each. The entries in each cell of the following
matrix show the "payoff to prisoner A and prisoner B, in that order, of these com-
binations; payoffs in this case are expressed as negative numbers, inasmuch as
they represent years in a jail sentence, which each prisoner would like to minimize.

B does not testify B testifies

A does not testify -1, -1 -3, 0
A testifies 0, -3 -2, -2

There are many variations of the prisoner's dilemma, but they all have the
same basic form. In general terms, we may think of the two options available to
each "player" as cooperation and defection. In all cases, the strongly preferred
outcome for a given player, say A, is the one that obtains when that player, A,
defects and the other, B, cooperates; however, both players prefer the outcome
that occurs when both cooperate over that that occurs when both defect. The
following matrix (from Poundstone, 1992, p. 120), in which the cell entries
represent positive payoffs, say in dollars, illustrates the general situation.

B cooperates B defects

A cooperates 2,2 0,3
A defects 3,0 1,1

One may think of the four possible outcomes in the following terms: "There is
a reward payoff (the $2.00 above) for mutual cooperation, which both desire
more than the punishment payoff ($ 1.00 above) both receive for not cooperating.
But both covet the temptation payoff ($3.00 above), the highly desirable out-
come of a single defection, even more than the reward. Both fear being the one
who doesn't defect and getting stuck with the sucker payoff (0 above)" (p. 120).

One explanation of why a player of this game might choose to cooperate de-
spite the fact that an analysis indicates that he should defect independently of
what he believes his opponent will do notes the possibility of confusing the sit-
uation represented by the preceding payoff matrix with that represented by the
following one:

B cooperates B defects

A cooperates 2,2 0,0
A defects 0,0 1,1
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In this case (which is not the prisoner's dilemma), A would reason that inas-
much as both he and his opponent will realize the greatest payoff if both cooper-
ate and that his opponent is likely to notice this also and choose to cooperate, he
should choose to cooperate. The suggestion is that A might erroneously apply
this reasoning to the preceding matrix, which does represent the prisoner's di-
lemma. It is true in the prisoner's dilemma case that the two players will realize
the greatest aggregate payoff if both cooperate, and that both are likely to realize
that, but if A makes the choice on the basis of thinking only this far about the situ-
ation, he runs the risk of B defecting and leaving him holding the (empty) bag. So
from a normative point of view, this would be a mistake of reasoning on A's part.
What is interesting is that both A and B will be the better for it if they both make
the same mistake. McCain (2000) argues that such mistakes could easily be in-
terpreted as evidence of altruism or of higher rationality. (Of course, the fact that
the choice of cooperation could be due, in some instances, to an incomplete or er-
roneous analysis of the situation does not rule out the possibility it could be due,
in other instances, to altruism or higher rationality.)

Investigators have studied both the case in which the same participants play
the same prisoner's dilemma game repeatedly an unspecified number of times,
and those in which they face the situation only once. This distinction is an im-
portant one, because in the latter case, the normative prescription is always to
defect, but in the former there is no guaranteed best choice and the effective-
ness of any particular strategy will depend on the strategy of the other player
(Nowak, May, & Sigmund, 1995). In the game of indefinite duration, one's be-
havior in any given instance may be determined in part by the intention of in-
fluencing the behavior of one's opponent in the future, or by that of punishing
uncooperative behavior in the past. The most reliable finding from studies in-
volving repeated play without a prespecified stopping point is that consistent
cooperative (competitive) play on the part of one participant tends to evoke the
same type of play on the part of the other (Axelrod, 1984).

This is a finding of some practical significance, from a social psychology
point of view, because it may provide some insight into the evolution of coop-
erative ("reciprocally altruistic") or competitive behavior (Boyd, 1988;
Trivers, 1971). A strategy that has proved to be remarkably effective in re-
peated-play prisoner's dilemma situations is the "tit-for-tat" strategy in which
the tit-for-tat player always selects the option (cooperate or defect) that was
chosen by the opponent on the preceding trial (Axelrod, 1980a, 1980b; Nowak
& Sigmund, 1992; An. Rapoport & Chammah, 1965).

The original and most frequently studied form of the prisoner's dilemma in-
volves only two players, but generalizations of it include communities in
which each player opposes several others, for example, nearest neighbors
(Lloyd, 1995). Axelrod (1984) has shown how mutual cooperation can emerge



218 • CHAPTER 6

from a cluster of individuals committed to reciprocity in prisoner's dilemma
situations even within a larger community of egoists (defectors), and how
"nice" strategies (strategies based on the principle of not being the first to de-
fect) can be stable in such communities. Hirshleifer and Rasmusen (1989) have
demonstrated how the possibility of ostracizing noncooperators can allow co-
operators to maintain cooperation in a repeated-play game. Cole (1997) takes
the relative effectiveness of nice strategies as an argument against equating
survival fitness with strength: "Just because the 'fittest' tend to survive ...
doesn't necessarily mean the 'fittest' are the strongest, or meanest, or even the
most reproductively profligate; the fittest may be those who learn best how to
use cooperation to their own ends" (p. 121).

Simulations of extended games with various strategies—tit-for-tat, generous
tit-for-tat (in which defection is occasionally responded to with cooperation),
win-stay lose-shift (in which a player sticks with the preceding choice if it
yielded a high payoff and switches if it yielded a low one)—have revealed the
possibility of the spontaneous emergence of cooperative behavior and its persis-
tence over time under certain conditions; transitions between predominantly co-
operative behavior and large-scale defection can be relatively abrupt, however,
and what causes them is not completely understood (Nowak et al., 1995).

Amnon Rapoport (1967) argues that when one can assume that one's own
behavior in a prisoner's dilemma game can influence the behavior of one's
opponent on subsequent trials, one may no longer have a true dilemma. This
is because the set of possible outcomes is no longer completely represented
by the original payoff matrix; a complete representation would have to take
account of the assumed influence on the opponent's play and the effects of
this on future payoffs. The dilemmatic character of the situation is most
clearly represented by the case in which the participants play the game only
once, so the possibility of influencing future behavior is not a complicating
factor—or, in the case, of repeated play, the dilemma is most stark if we con-
sider only the final time the participants must make a decision and they know
it to be the final time.

Poundstone (1992) contends that the absolute amounts of the payoffs in a
prisoner's dilemma situation are not critical, that it is necessary only that the
payoffs be ranked in a certain way and that the reward be greater than the av-
erage of the temptation and sucker payoffs. The latter condition is to rule out
the possibility that, in a series of prisoner dilemma games, players could win
more by taking turns defecting unilaterally than by adopting the cooperative
strategy in each game. Nozick (1993) challenges the idea that the relative
sizes of the payoffs should make no difference to a rational participant in a
prisoner's dilemma game. Contrast the following two situations (the num-
bers are from Nozick).
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B cooperates B defects

1000,1000 0,1001

1001,0 1,1

B cooperates B defects

A cooperates 3,3 -200,500

A defects 500, -200 2,2

These situations certainly appear to be quite different. Are they different in
ways that have implications for what constitutes a rational choice? Defection
dominates cooperation for each player in both cases, in the conventional sense
that defection gives A (B) a larger payoff independently of what B (A) does.
Are there other considerations that might lead a rational person to cooperate in
either case?

Nozick (1993) argues that cooperation is the rational choice in the first situ-
ation and, more generally, that "when the cooperative solution payoffs are very
much higher than the dominance ones, and when payoffs for the nonmatching
actions offer only slight gains or losses over these two, then we strongly will
think that cooperation is rational and will find that the dominance argument has
little force" (p. 53). In the second case, A risks a big loss by cooperating (if B
defects) and has the possibility of realizing a large gain by defecting (if B does
not), and the payoff is very little different if they both cooperate than if they
both defect. Assuming the parties are independent and have no knowledge of
each other's probabilities of action, the rational thing to do in this case, Nozick
contends, is to chose the dominating action (to defect).

I suspect that many people will agree that these two situations are indeed
different and that reasonable people are likely to react to them differently; one
can be sure, however, that not everyone who thinks about these things will see
it that way. One might be unwilling to consider the choice of cooperation as
necessarily rational in the first case, for example, because in selecting it one
runs the risk of ending up with the sucker payoff (if the other party defects). A
counterargument to this position might be that although getting stuck with the
sucker payoff could be irritating, the difference between the two payoffs for
one's own options, given that the other player defects, is too small to matter. (If
the numbers in the first of the two preceding tables do not permit this attitude,
probably some could be found that would.)

This example illustrates an aspect of the prisoner's dilemma situation that I do
not think has received as much attention as it deserves. Suppose I am A and I co-
operate whereas B defects, so B receives the "temptation" payoff of $ 1,001 and I
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get the "sucker" prize of $0. How I feel about this is likely to depend on my gen-
eral outlook on life. If I am a mean-spirited person, and can take no pleasure in
anyone's good fortune but my own—if my attitude is "If I can't have it, nobody
can"—I am likely to be upset, to feel unfairly treated by B who, after all, at the
cost of only $ 1 could have made me richer by $ 1,000. If, on the other hand, I am
able to take some genuine pleasure in other people's good fortune, I might get
some satisfaction from the fact that, given B's choice to defect, my choice to co-
operate made it possible for him to gain $ 1,000 at a cost to me of only $ 1. Indeed,
if I were that kind of person, I would probably have made the cooperative choice
even if I had known in advance that B would defect.

This type of consideration is, in a sense, off limits. An assumption underly-
ing the prisoner's dilemma, as the game is usually played, is that both players
are interested only in their own individual welfare; neither has any interest in
advancing that of the other. Indeed this assumption is essential to ensure that
the situation be a dilemma; if the players were permitted to be interested not
only in their own welfare but in that of their opponent as well, the choices, in
many cases, would not be problematic. This type of consideration is very rele-
vant to the application of the prisoner's dilemma to real-life situations; some
people do take a genuine interest, at least on occasion, in the implications of
their actions for the welfare of other people, even that of "opponents" in situa-
tions that one might be tempted to liken to the prisoner's dilemma. But such sit-
uations are not true prisoner's dilemmas, in the strict sense, even though they
may look like them, and the various theoretical treatments of behavior in pris-
oner dilemma situations do not apply to them.

Nozick (1993) argues that actions can have symbolic utilities that tend to be
overlooked in conventional payoff representations. In prisoner's dilemma situ-
ations, it may be, for example, that making the cooperative selection has such
symbolic utility for an individual: "It may stand for his being a cooperative per-
son in interaction with others, a willing and noncarping participant in doing
ventures of mutual benefit. Cooperating in this situation then may get grouped
with other activities of cooperation that are not embedded in Prisoner's Di-
lemma situations" (p. 56). He goes on to say:

To say all this about symbolic utility is to say that our responses to the Pris-
oner's Dilemma are governed, in part, by our view of the kind of person we
wish to be and the kinds of ways we wish to relate to others. What we do in a
particular Prisoner's Dilemma situation will involve all this and invoke it to
different degrees depending upon the precise (ratios of differences among)
utility entries in the matrix and also upon the particular factual circumstances
that give rise to that matrix, circumstances in which an action may come to
have its own symbolic meanings, not simply because of the structure of the ma-
trix, (p. 57)
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The point is that the prisoner's dilemma is an interesting and revealing rep-
resentation of a decision situation in the abstract, but that its application to
real-life problems is likely to be complicated by considerations that are diffi-
cult to capture in the representation.

In the conventional prisoner's dilemma game, neither player is permitted to
know the other player's choice before making his or her own. If one knew the
other player's choice before making one's own, there would be no dilemma for
the player in the know, and the game would not have generated the interest that
it has. However, some research on the effects of knowing the opponent's choice
before making one's own has revealed behavior similar in some respects to that
of the student who makes one choice when either of two conditions is known to
pertain but makes another choice when it is known only that one or the other of
the two possibilities pertain (Shafir, 1993). Shafir and Tversky (1992) found,
for example, that a quarter of the participants in their study defected when they
knew their opponent's choice, independently of what that choice was, but
made the cooperative response when they did not know their opponent's
choice. It is as though, they suggest, these people see the situation from the per-
spective of individual rationality when the opponent's choice is known and
from that of collective rationality when it is not.

A Related Problem

A decision problem that is similar in some respects to the prisoner's dilemma,
but is different in a crucial way is illustrated by the following payoff matrix,
from Dawes (1988, p. 179):

PlayerB

Player A Strategy 1

Strategy 1 0, 0
Strategy 2 0, 5

Although this problem is similar in structure to the prisoner's dilemma, it is
not a dilemma, at least in the sense that selecting the dominating strategy dif-
fers from the cooperative one. Strategy 2 dominates for both players, and if
both of them pick that strategy, they both maximize their payoff. What makes
the problem interesting is the fact that many people, when put in this situation,
pick Strategy 1 (McClintock & McNeel, 1966).

It appears that in this situation many people focus on the differences be-
tween the outcomes for the two players, and that they wish to avoid the possi-
bility of ending up with nothing while their opponent gets 5. By selecting
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Strategy 1, one guarentees that one's opponent gets nothing, and leaves open
the possibility of getting 5 oneself. Five is not as good as 6, but the combination
of 5 for oneself and 0 for one's opponent may be considered to be better than 6
for both. This seems a particularly ungenerous—not to say self-defeating—
perspective, but not an implausible one all the same. The idea that some people
are willing to pay a price in order to ensure that others do not get ahead of them
is hardly unthinkable, unattractive though it may be.

Dawes (1988) points out that the selection of Strategy 1 can be made consis-
tent with subjective expected utility theory if it is assumed that a player assigns
a negative value to the other's welfare. Thus, for example, if each of the num-
bers in the preceding table were replaced by the difference between it and the
other number in the same cell, as shown in the following matrix, then Strategy
1 becomes the dominating strategy for both players.

PlayerB

Player A Strategy 1 Strategy 2

Strategy 1 0,0 +5, -5
Strategy 2 -5,+5 0,0

An alternative to the assumption that people assign negative value to the
welfare of others, or to the welfare of others to the extent that it exceeds their
own, is the assumption that failure to select the dominating strategy in situa-
tions like those represented by the first matrix discussed in this subsection is at-
tributable, at least in some cases, to simple failure to understand the situation
well enough to know what the dominating strategy is.

There is also the possibility that people see the situation as a competitive
one, in which the objective is not to maximize one's own payoff but to do better
than one's opponent. To the extent that the goal is "winning"—in the sense of
amassing the most points—as it is in most game situations, then the selection
of Strategy 1 is rational and the second of the two matrices discussed in this
subsection is a more appropriate representation of the situation than the first. It
is interesting to reflect on the question of the extent to which we are inclined,
by nature or by cultural conditioning, to view situations as competitive that
might more productively be seen as opportunities for cooperation.

The Ultimatum Game

Another situation that bears some resemblance to the prisoner's dilemma and
the situation described in the preceding section is one that is sometimes re-
ferred to as the ultimatum game:
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Imagine that somebody offers you $100. All you have to do is agree with some
other anonymous person on how to share the sum. The rules are strict. The two of
you are in separate rooms and cannot exchange information. A coin toss decides
which of you will propose how to share the money. Suppose that you are the pro-
poser. You can make a single offer of how to split the sum, and the other per-
son—the responder—can say yes or no. The responder also knows the rules and
the total amount of money at stake. If her answer is yes, the deal goes ahead. If
her answer is no, neither of you gets anything. In both cases, the game is over and
will not be repeated. What will you do? (Sigmund, Fehr, & Nowak, 2002, p. 83)

According to some conceptions of rationality, the rational thing for the pro-
poser to do is to offer the smallest possible amount of money, $ 1, and the ratio-
nal thing for the responder to do is to accept that offer. In fact this not what
people do when put in this situation; the modal response typically is 50% of the
total, about two thirds of proposers offer between 40% and 50%; only a small
percentage (usually less than 5) offers less than 20% and such offers are often
rejected (Camerer & Thaler, 1995; A. E. Roth, 1995; Sigmund et al., 2002).

Although there is evidence of cultural effects on precisely how people play
this game (Henrich, 2000), in none of 15 small-scale societies investigated in one
study did people respond in the way that the assumption that behavior is deter-
mined exclusively by self-interest would predict (Henrich et al., 2001). Individ-
ual studies in such places as Ljubljana (Slovenia), Yogyakarta (Indonesia),
Tokyo, and several U.S. cities have corroborated the finding that mean offers by
proposers tend to be between 40% and 50% and low offers are frequently re-
jected (Henrich, 2000). An exception to this rule was found by Henrich (2000)
among the Machiguenga in the Peruvian Amazon, where offers averaged 20%
(the modal offer was 15%) and were almost always accepted. Another, but less
extreme exception, was reported by A. E. Roth, Prasnikar, Okuno-Fujiwara, and
Zamir (1991), who found that Israeli proposers offered only 36% (the modal of-
fer was 50%) but were likely (.71) to reject offers of less than 20%. Henrich in-
terpreted his results as a challenge to the assumption "that all humans share the
same economic decision-making processes, the same sense of fairness, and/or
the same taste for punishment" (p. 978).

Sigmund et al. (2002) interpret the typical finding as evidence that "real
people are a crossbreed of H. economicusandH. emoticus, a complicated hy-
brid species that can be ruled as much by emotion as by cold logic and selfish-
ness," and see it as a challenge "to understand how Darwinian evolution
would produce creatures instilled with emotions and behaviors that do not
immediately seem geared toward reaping the greatest benefit for individuals
or their genes" (p. 84). They see it also as evidence that people generally take
account of a coplayer's view of the situation and that they place a high value
on fair outcomes.
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Other accounts of what appears to be magnanimous behavior in the ultima-
tum game have questioned the players' understanding of the situation (e.g., the
fact that the game is to be played only once, when that is the case), or proposed
that the utility that some players are trying to maximize differs from the game's
payoff (Nowak, Page, & Sigmund, 2000). With respect to the latter proposal,
we should not overlook the possibility—high probability in my view—that
some people's utility functions include a genuine interest in the well-being of
others that cannot be reduced to pure self-interest.

When the same players play the game repeatedly for an unspecified number
of times, and any given player is sometimes the proposer and sometimes the re-
sponder, punishment of proposers who make low offers can modify their be-
havior in the direction of higher offers (Ostrom, Walker, & Gardner 1992).
Even if the situation is structured so that low proposers cannot be identified in-
dividually (and thereby acquire reputations), low offers may elicit punishment
reactions and these can be effective in increasing subsequent offers (Fehr &
Gachter, 2000). Generally, in the absence of the ability to punish free-riding in
public-goods experiments of the prisoner's dilemma or ultimatum game type,
cooperation deteriorates badly over time (Fehr & K. M. Schmidt, 1999); how-
ever, the credible threat of punishment for free-riding can eliminate or severely
reduce the practice.

Nowak et al. (2000) have shown by computer simulation that fairness (the of-
fer by proposers of much more than the minimum) can evolve within a commu-
nity of players, even when no two players interact more than once, if proposers
have a means of finding out what offers have been accepted or rejected by re-
sponders in the past, but that when they do not have this means, evolution pro-
motes low offers and low demands. As the authors put it, "When reputation is
included in the Ultimatum Game, adaptation favors fairness over reason" (p. 74).

In the aggregate the results of experimentation with the ultimatum game
(and other games that involve decisions regarding cooperation or sharing) sup-
port the idea expressed as a conjecture by Fehr and Gachter (2000) that "in ad-
dition to purely selfish subjects, there is a nonnegligible number of subjects
whp are (i) conditionally cooperative and (ii) willing to engage in costly pun-
ishment of free-riders" (p. 984). As evidence of the first point, Fehr and
Gachter cite work by Fehr, Kirchsteiger, and Riedl (1993) and Berg, Dickhaut,
and McCabe (1995), and as evidence of the second point work of A. E. Roth
(1995) and Fehr, Gachter, and Kirchsteiger (1997).

In applying the results of experiments of the type reviewed here to real-life
decisions, we should note too the possibility that some people's behavior may
be motivated, at least some of the time, by true altruism, by which I mean a gen-
uine interest in the welfare of others, independently of how their welfare re-
lates to one's own. There are ways, of course, to see altruism as basically
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selfish—people can, for example, get considerable gratification from public
recognition of acts of altruism. But many people also do altruistic things anon-
ymously, and though it is possible to see such acts as selfish also—one gets the
satisfaction of self-esteem—this seems to me tantamount to ruling out unself-
ish acts by definition.

Social Dilemmas

The prisoner's dilemma is seen as prototypical of all situations that are charac-
terized by the "temptation to better one's own interests in a way that would be
ruinous if everyone did it" (Poundstone, 1992, p. 126). Sociologists and econo-
mists have identified many situations in which when members of a group act in
their individual self-interest they appear to be acting against the best interests
of the group. Hollis, Sugden, and Weale (excerpted in A. Fisher, 1988) charac-
terize such situations in which enlightened self-interest is self-defeating as
those in which one's order of preferences is as follows:

1 You do X, others do Y.

2 You do Y, others do Y.

3 You do X, others do X.

4 You do Y, others do X. (p. 163)

They illustrate the distinction between individual and collective self-inter-
est by reference to public goods, which are goods that are supplied to all mem-
bers of a group if they are supplied to any of them: roads, public transportation
facilities, public radio broadcasts. People can avail themselves of such goods
whether they have contributed to the payment for them or not, so why would
anyone pay? X in this example stands for not paying and Y stands for paying.

The dilemma is that when, in such situations, everyone acts in one's self-
interest, narrowly conceived, no one benefits. The practical problem for the
species stems from the fact that life presents many situations in which behav-
ior that is beneficial to the individual who engages in it is disadvantageous to
the individual's community or to society in general, and may be devastating if
done on a large scale. Metaphors other than the prisoner's dilemma that have
been used in reference to such situations include the "social trap," which Platt
(1973) likens to a trap used to catch fish that makes it easy for the fish to enter
but very difficult for them to get out, and the "tragedy of the commons"
(Hardin, 1968). Dawes (1988) refers to such situations as "social dilemmas,"
which he defines as situations in which "each individual is confronted with a
choice between dominating and dominated strategies, and everyone involved
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prefers universal choice of the dominated strategies to universal choice of the
dominating ones" (p. 190).

In Hardin's (1968) tragedy-of-the-commons metaphor, a herdsman can re-
alize a substantial personal benefit at very little personal cost by adding an ani-
mal to his herd that is grazing on common land. The benefit that comes from
having an additional animal is his alone, whereas the cost, in terms of slightly
less grazing land per animal, is shared by all users of the common, so the herds-
man with the additional animal realizes a net gain. But of course every herds-
man sees the situation the same way, so with each person working in what
appears to be his own best short-term interest, they collectively ruin the land.

This is only one of many examples that could be give in which if everyone
shared the same expectations and acted on them chaos would result. Consider
the stock market and imagine what would happen if every trader expected the
same moves in a given stock, or the maket in general, at the same time. Every-
one would want to sell (buy) at the same time and consequently there would
be no one to buy (sell), so the system could not work. Another way to put this
is that if one finds a system that accurately predicts movements in the market,
it can be effective only so long as it is not generally known; if traders suffi-
cient in number to control the market learned of the system and used it to
guide their own behavior, their behavior would ensure that its predictions
would no longer be accurate.

A social dilemma of the commons-tragedy sort is likely to become highly
visible to the general public when the situation approaches the point at which
the collective demand on a resource seriously threatens to exceed the supply
soon, but it may remain relatively invisible before that time. What to do about
social dilemmas—how to get individuals to opt for dominated strategies, to act
as they would prefer that everyone acted, before they reach crisis propor-
tions—is a major societal challenge. The problem is difficult, in part, because
the immediate benefit is so much more salient to the resource consumer than is
the distrubuted cost (Crowe, 1969; Latane, Williams, & Harkins, 1979; Meux,
1973). Edney (1980) points out that concern about how to deal with commons
problems goes back to antiquity; he notes too, however, that such problems
have grown more extensive with the passage of time and the increasing size of
the world population.

Poundstone (1992) suggests that the only satisfying solution to prisoner's
dilemmas—of which social dilemmas are a type—is to avoid them. Good ad-
vice, no doubt, and perhaps, as he also suggests, that is what we are trying to do
with ethics, laws, and other social conventions that are designed to promote co-
operation or at least protect us from our own folly. M. Olson (1965) argues that
some form of coercion or inducement is essential to ensure behavior in the in-
terest of the common good in commons-tragedy situations, because the indi-
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vidual would be acting irrationally to pay a cost for a benefit knowing that
receiving the benefit was not contingent on doing so. Commons problems are
especially challenging to democratic societies, because of the conflict they
pose between protecting individual freedoms and safeguarding common assets
(Heilbroner, 1974; Ophuls, 1973).

One consequence that the enactment of laws and regulations can have is that of
transforming dilemmas into nondilemmas by, in effect, changing the payoff ma-
trix associated with action alternatives. The use of fines and other sanctions can
change previously dominating choices into dominated ones by attaching costs to
them that they did not originally have. In the classical prisoner's dilemma, enforce-
able threats and contracts are prohibited by definition, whereas in many, perhaps
most, real-life situations these are possibilities, and this fact is important to an un-
derstanding of how cooperative behavior can arise in situations that otherwise
would constitute social traps (Axelrod, 1984; Axelrod & Hamilton, 1981).

Discussions of social dilemmas often come to the basic question of what
constitutes rationality (Kahan, 1974). According to some conceptions of what
it means to be rational—for example, acting always in one's personal best in-
terest—coercion may offer the only feasible way to safeguard common assets
(M. Olson, 1965). It may be possible, however, to conceive of rationality in
such a way that makes behavior in the interest of the common good rational,
even when such behavior exacts an avoidable personal cost (Arrow, 1963;
Messick, 1973). The question of the relevance of social dilemmas to our con-
ception of rationality is an especially interesting one, because it raises reflec-
tion to a higher level of abstraction by forcing consideration of what, in view of
such dilemmas, constitutes a rational conception of rationality.

Edney (1980) suggests that a fruitful way of looking at the commons di-
lemma is as a conflict of human values, rather than as a conflict of rationalities.
The challenge to social psychology, he suggests, is to identify the values that
contribute to commons crises. Among those Edney mentions as worth investi-
gating, because they have already been implicated by one or another theory, are
the need for identity, stimulation, rank, and competition, survival and longev-
ity, equity, freedom of choice, and social power in the system.

To some, the protection of the commons has the force of a moral imperative.
The idea that one should do as one would have others do is a very old one, com-
mon to many religions, and still a forceful idea, even if honored more in word
than in action. From this perspective, free-loading on commons assets can be
viewed as a form of cheating, and morally reprehensible behavior (Brubaker,
1975). From this perspective it is easy too to see behavior that is protective of
common assets as rational even given amaximization-of-expected-utility stan-
dard of rationality, because personal respectability can be seen as an important
component of the utility that one is trying to maximize.



228 • CHAPTER 6

Another way of dealing with social dilemmas, or the prisoner's dilemma
more generally, which is hinted at in some of the foregoing discussion, is that
of cultivating the ability to take pleasure in advancing the well-being of people
other than oneself. I have in mind something more than generosity as enlight-
ened self-interest—the idea that one should be generous because one's behav-
ior toward others tends to evoke similar behavior toward oneself—although
that idea has much to commend it. I want to argue the desirability of being able
to get satisfaction from other people's successes per se. This is not the most
natural of tendencies, especially when the other people involved may be seen
as one's competitors in one or another way.

On the other hand, there is ample evidence that we have the capability to
empathize and to get immense satisfaction and enjoyment from seeing others
benefit, at least in certain situations, even when their benefit has no direct
benefit to ourselves. People do engage in deeds of altruism, often at consider-
able cost to themselves. Some even choose dominated, but corporately bene-
ficial, strategies in social dilemma situations (Hofstadter, 1983). The
question is how to increase people's ability or tendency to derive genuine
pleasure from contributing to the well-being of others. Of course, if a person
derives pleasure from contributing to the well-being of an "opponent" in a
prisoner's dilemma situation, the situation may no longer be a dilemma from
that person's point of view, because a matrix that took this pleasure into ac-
count might show the cooperative choice to be the dominating one. But per-
haps we could live with that.

An Infinitely Frustrating Dilemma

The prototypical ethical dilemma is a situation in which one finds oneself
forced to make a choice between alternative courses of action each of which re-
quires the violation of an ethical principle to which one is committed. This type
of situation is often illustrated by the case of the military leader forced to
choose between duty to family and duty to those he commands, under circum-
stances in which electing to fulfill one duty requires neglecting the other: Both
duties are morally binding and neglecting either of them constitutes moral fail-
ure, but the choice is forced. Moral dilemmas can also arise when only a single
principle is involved, as when, through no fault of one's own, one finds it neces-
sary to choose between which of two promises to keep when keeping one
means necessarily reneging on the other (Marcus, 1980).

Slote (1986/1990) has raised the question of whether rational dilemmas that
are analogues to these types of moral dilemmas are possible. He confesses to
being unable to think of one that fits the first model but gives the following
imaginary situation as an example of the second:
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Imagine a science-fictionalized fountain of youth with some very special prop-
erties. This fountain emits life-and-happiness-giving rays and can work for a
given person only once and at a certain precise moment. Depending on how far
from the fountain one is at the exact time when its rays bombard one, one will be
given additional days of life and happiness. Assume further that one is capable
of standing as close as one pleases to the fountain. For any n, one is capable of
standing I/nth of an inch away from the fountain, and if one stands I/nth of an
inch away one will receive n extra days of happiness (if one touches the fountain
all bets are off), (p. 470)

We should assume also that the individual who has to decide how close to
the fountain to stand wants to maximize the number of happy days of life. What
makes this a dilemma is the fact that no matter how close to the fountain one
chooses to stand one could have chosen to stand closer: "If it is irrational to do
one thing, when one has more reason to perform some alternative, when it
would have been better for one to have performed some definitely available al-
ternative, then one has, inevitably, acted irrationally in the circumstances just
mentioned. We have described a rational dilemma" (p. 470).

Slote (1986/1990) points out that the dilemma he describes is a dilemma
only from the perspective that rationality dictates that one attempt to maximize
the expected utility of one's decisions, or that one select the best of all possible
alternatives when faced with a choice. It is not necessarily a dilemma from a
satisficing point of view. For a satisficer it would be rational to take the attitude
that it suffices to get close enough to the wall to add many happy days to ones
life and that it is not necessary to try to add the maximum possible number. One
might even take the position that it is irrational to try to maximize when maxi-
mization is impossible, not only practically but theoretically as well.

Here is a variation on the situation described by Slote. Suppose you are
competing with several other people for some very highly desirable prize that
is to be given to the person who names the largest number. Each of you has only
one chance to name a number, and the winner takes all; there are no consolation
prizes. It seems reasonable to assume that the larger the number you name, the
greater is the likelihood that you will win the prize. But no matter what number
you name, one can always ask why you did not name a larger one.

It is not so clear that the satisficer's perspective works as well in this case as
in the preceding one; one cannot argue that a given large number will yield a
"good-enough" prize, because if it is not the largest number among those
named, it will yield no prize at all. The argument that it is not rational to try to
maximize when maximization is not possible also does not apply, because one
need not maximize anything in this case, one need only pick a number that is
larger than that picked by any of the other contestants. Perhaps this is not a di-
lemma from the perspective of a model of rationality that assumes one should
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maximize expected utility but that, like Good's (1983a) Type II rationality, dis-
counts utility by taking the labor and cost of calculations and thinking (or fret-
ting) into account.

Slote (1986/1990) considers this interpretation of his version of the di-
lemma: "The difficulty of standing at closer and closer distances thus ap-
proaches the limits of the agent's power and skill. In that case, an agent who
through great effort and concentration chose to stand at a distance so near
that it would have been very difficult (for him or for anyone else) to choose
to stand any nearer, may count as having chosen rationally, or at least not ir-
rationally" (p. 477). A similar argument may be applied to the task of nam-
ing a large number. Slote notes that this type of argument would not apply if
it could be assumed that standing nearer and nearer the fountain (or naming
a larger and larger number) need not get increasingly difficult, but this
seems implausible.

Problems like those represented by the prisoner's and other social dilemmas
continue to be debated by decision theorists and other social scientists and are
not likely to be resolved to everyone's satisfaction any time soon. As Moser
(1990) has pointed out, the debates involve important questions about the roles
of cooperation and causation in rational decision making. They also raise fun-
damental issues about human nature, not only regarding the question of what it
is but that of what we would like it to be.

Summary

Dilemmas are difficult decision problems, necessitating, as they often do,
choices between equally unsatisfactory (or in some cases equally attractive)
options. Some—social dilemmas—pit self-interest against the common good.
What constitutes rational behavior in dealing with dilemmas has been a ques-
tion of interest to many theorists and students of human reasoning. Certain
prototypical situations—notably various versions of the prisoner's dilemma-
have been intensively studied with the hope of gaining insights into the deter-
minants of competitive and cooperative behavior.

What one sees as rational behavior in many of the social situations that have
been studied is likely to depend on whether one conceives of rationality as en-
lightened self-interest in a fairly narrow sense, or one factors in the roles of
such variables as self-image and conscience, or one allows for the possibility
that a rational person might take a genuine interest in the welfare of other peo-
ple, independently of his or her own. In other words, what is perceived as a di-
lemma from one perspective may not be a dilemma as perceived from another;
a decision problem that is very difficult when assessed relative to one set of val-
ues may be very easy when assessed relative to another set.
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This is not to suggest that all dilemmas are easily resolved simply by getting
one's perspective right or that, in particular, social dilemmas are invariably re-
solved simply by developing a social conscience. Even the most magnani-
mously altruistic among us can be faced with choices that are very difficult
because of the options and uncertainties involved. The study of how people
deal with contrived dilemmas has yielded interesting and useful information
about competitive and cooperative behavior, but much remains to be learned
about how people deal with the dilemmas they encounter in life and how their
ability to resolve them effectively might be enhanced.



CHAPTER

7

Statistics

Statistics, more than most other areas of mathematics, is just formalized com-
mon sense, quantified straight thinking.

—Paulos (1992, p. 58).

r ew, if any, characteristics of the world are more apparent than variability.
We see it everywhere we look. There are, by some counts, tens of millions spe-
cies of living creatures in the world. When our focus is narrowed to a single
species, say our own, variability is still the rule. Excluding identical twins, no
two people look exactly alike and even twins can usually be distinguished by
people who know them well.

One of the ways in which we cope with diversity is through the process of
conceptual categorization. We group things that are similar in certain respects
into conceptual classes or categories, give these categories names and then, for
many purposes, respond to members of the same category—items with the
same name—as though they were identical. Even within categories, however,
there is much variability. Though all chairs are chairs, they differ greatly in
size, shape, color, and numerous other respects. All snow flakes are six-sided,
but no two of them, we are told, have precisely the same crystalline structure.
Whereas people share certain characteristics that define their humanity, they
differ in height, weight, age, intelligence, hair color, eye color, and countless
other less obvious respects.

232
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Statistics is the area of mathematics that helps us deal with variability in a
quantitative way. Compared to some areas of mathematics, such as geometry,
algebra, trigonometry and even analysis, statistics emerged as a distinct disci-
pline relatively recently. Since its development, however, its influence on
thinking in the social, biological, and physical sciences, as well as in the busi-
ness world and even in everyday life has been profound.

POLITICAL ARITHMETIC AND THE BIRTH OF STATISTICS

Early in the 19th century there was an explosion of interest in counting among
Western governments. Births, deaths, marriages, illnesses, church attendance,
suicides, and crimes of various sorts began to be tallied with great enthusiasm.
This is not to suggest that interest in such numbers was nonexistent before this
time. Sometime in the second millennium B.C. Moses had the Israelites
counted by tribe and found the number of males 20 years of age and older and
fit for military service to be 603,550 (Numbers 1:46). Caesar Augustus had a
census taken throughout the Roman empire at about the time of Jesus* birth
(Luke 2:1). A table of life expectancies is known to have been developed by a
Roman jurist named Ulpian around 225 A.D., and statistical sampling in rudi-
mentary form goes back at least to the 13th century (P. L. Bernstein, 1996).

Elementary demographic data—births and deaths of a populace—were
compiled in England by a merchant, John Graunt, in the 17th century and pub-
lished, with analyses and interpretative commentary (e.g., regarding causes of
death), in his Natural and Political Observations Made Upon the Bills of Mor-
tality. Others who built upon the work of Graunt included Edmund Halley's ap-
plication of demographic data to the valuation of annuities. Although annuities
had been sold for a long time, the basis for their valuation was less than ideal;
Bernstein says that Ulpian's tables were the last word on the subject for more
than 1,400 years. He notes that the policy in England was to sell annuities to ev-
eryone at the same price and that this continued until late in the 19th century,
despite Halley's work on the subject: "After publication of Halley's life tables
in Transactions [a newly established journal of the Royal Society] in 1693, a
century would pass before governments and insurance companies would take
probability-based life expectancies into account" (p. 87). The full title of
Halley's work was An Estimate of the Degrees of Mortality of Mankind, Drawn
From Curious Tables of Births and Funerals at the City ofBreslaw: With an At-
tempt to Ascertain the Price of Annuities Upon Lives. Todhunter( 1865/2001),
among others, credits this document with laying the foundation of a correct
study of the value of life annuities.

One of the motivating forces behind the burst of counting and tabulating ac-
tivities in the 19th century was a growing awareness of the need to address so-
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cial problems associated with the rapid growth of cities at the time. It was in
large measure from this interest in counting for social or political purposes that
statistics as a mathematical discipline eventually emerged: "Statistical laws
that look like brute, irreducible facts were first found in human affairs, but they
could be noticed only after social phenomena had been enumerated, tabulated
and made public. That role was well served by the avalanche of printed num-
bers at the start of the nineteenth century" (Hacking, 1990, p. 3).

By way of justifying his use of the term avalanche, Hacking points out that
in Germany alone, there were 410 statistical periodicals being published by
1860, whereas as of 1800 there had been essentially none. The tabulations pro-
duced by the counters during this period provided practically unlimited oppor-
tunities for subsequent workers to search for, and theorize about, statistical
regularities in real-world events. The tabulators were to subsequent theorists
what Tycho Brahe was to Kepler.

The information and the "political arithmetic" ("social mathematics,"
"moral statistics") that developed around these numbers reflected a desire to
provide a scientific basis for public policy and were used for a variety of gov-
ernmental purposes, especially to justify political or social reforms. The active
members of the early statistical societies were more likely to be politically ac-
tive than to be seriously interested in mathematics or natural science (Porter,
1986). Although eminent mathematicians were involved as well. Laplace
(1814/1951), for example, applied his calculus of probabilities to the "moral
sciences" and a variety of social issues; noting that average life expectancy in
France rose from about 28 at birth to about 43 for those who had already lived
beyond infancy, he argued the case for vaccination as one means of attacking
infant mortality. Gigerenzer et al. (1989) describe the development of statisti-
cal thinking in the 19th century as reflecting a mix of social and political views:
"Even in 1900, after the successful application of statistical reasoning to phys-
ics and biology, and the beginnings of a mathematical field of statistics, the
term still referred first of all to social numbers, and only by analogy to this
branch of applied mathematics" (p. 69).

Interest in tabulating and applying the results to the resolution of social
problems appears to have become somewhat weaker during the second half of
the 19th century than it had been during the first half. And little progress was
made in developing social statistics into a formal discipline during this time:
"Fifty years after the start of the era of statistical enthusiasm in the 1820s, the
same impressionistic and arbitrary eyeballing techniques were used to argue
for a positive or negative relationship between two variables. No permanent
cumulation in techniques of data collection and analysis had been made. Until
the twentieth century, this is typical of empirical social research everywhere"
(Oberschall, 1987, p. 113). "By the end of the [nineteenth] century,"
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Oberschall says, "moral statistics meant voluminous compilations of statisti-
cal data without an attempt to make sense of its contents in other than a superfi-
cial descriptive fashion" (p. 115).

But statistics did become a mathematical discipline in time, and its effect on
thinking extends far beyond political arithmetic. The work of Quetelet and
other early tabulators or "statists" called attention to the possibility of studying
and describing aggregate phenomena, and even of developing laws in terms of
which such phenomena might be understood, despite the unpredictability or
"unlawfulness" of the individual cases of which the aggregates were com-
posed. The ideas and methods that were developed were found to be useful in
diverse domains in addition to government and public policy, including espe-
cially insurance and biometrics, and eventually the physical sciences as well.
Statistics is one area of mathematics in which applications often spurred theo-
retical developments. Stewart (1989) points out that by the end of the 19th cen-
tury statistics had provided an alternative to differential equations as a basis for
describing many natural phenomena, but that despite this fact there was virtu-
ally no contact, at a mathematical level, between the two disciplines.

During the first half of the 20th century, mathematical statistics developed
rapidly and affected science profoundly. Scientists had been conducting exper-
iments long before this time, but before the 20th century the results of experi-
mentation were seldom reported very fully; instead, scientists typically
presented their conclusions and published data that "demonstrated" their truth.
The work of a few statisticians—notably Ronald Fisher—produced an ap-
proach to experimental design and data analysis that changed the way experi-
mental science was done (Salsburg, 2001).

Fisher's work had a profound effect on psychological research, especially
on the design of experiments and the interpretation of results. Statistical hy-
pothesis testing became the standard modus operandi. But during the latter half
of the 20th century, statistics began to affect the thinking of psychologists in
another important way. As Gigerenzer et al. (1989) put it

The view that the nature of human thought might be statistical calculation, or at
least, should be, arose at the same time as the view that sensory detection and
discrimination, perception, recognition from memory, and other cognitive pro-
cesses might involve statistical calculation.... All these statistical perspectives
emerged around 1960, shortly after statistics had been institutionalized as the in-
dispensable tool of the experimenter, (p. 216)

In physics, probabilistic and statistical ideas became important in two dif-
ferent ways; first, during the latter part of the 18th and the beginning of the 19th
century, in application to the treatment of errors of observation, and later, dur-
ing the latter part of the 19th century and early in the 20th, in theory construe-
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tion (Kriiger, 1987a). These ideas impacted theory construction first in
statistical mechanics and then in quantum mechanics. The application of sta-
tistics to biology was spurred by the rediscovery of Mendel's work on heredity
in 1900 (R. J. Berry, 1988). This application met with some resistance because
not only did Mendel's theory run counter to prevailing ideas about inheritance,
but the application of mathematics to biology was itself unacceptable to many
biologists of the day (Barber, 1961; Flammarion, 1890). In time, however, sta-
tistical analysis came to be seen as an indispensable tool for biologists, as well
as for science more generally. By the end of the 20th century, probability and
statistical ideas had permeated essentially all the sciences, hard and soft alike.
Perhaps nowhere is the usefulness of statistics in science more apparent than in
the intersection of astro- and particle physics, where the tenability of theories
of cosmology rest, in part, on the ability to estimate the frequency of very low
probability events (e.g., the splitting of a deuteron nucleus by a neutrino) by
applying statistical techniques to very large numbers of observations (Mac-
Donald, Klein, & Wark, 2003).

STATISTICAL REGULARITY OR THE LAW
OF LARGE NUMBERS

When dealt with in sufficient numbers matters of chance become matters of cer-
tainty. (Shaw, 1944/1956, p. 1525)

In some respects a crowd of phenomena is more easy to manage than a few indi-
viduals. For a certain order is generated by chaos. (Edgeworth, 1890, p. 471)

It is almost impossible to study any type of life without being impressed by the
small importance of the individual. (Pearson & Weldon, 1901, p. 3)

As we have seen, random does not mean unlawful, or even unpredictable.
Though one cannot reliably predict the outcome of a single toss of a fair coin or
a single roll of a fair die, one can confidently predict that the percentage of
heads in a large number of tosses will be close to .5 and the percentage of sixes
in a large number of throws of a fair die will be close to .167. The "transition
from uncertainty to near certainty" as we change our focus from individual
events to large aggregates of events is, as Ruelle (1991) puts it, "an essential
theme in the study of chance" (p. 5). It is because of such aggregate regularity
and predictability that we can talk about the "laws of chance."

Poly a (1954b) recognizes this fact in his reference to the theory of probability
as "the theory of certain observable phenomena, the random mass phenomena"
(p. 55), that are characterized by aggregate regularity despite the unpredictabil-
ity of individual happenings. Rainfall, for example, is a random mass phenome-
non: One can make reasonable predictions about how much rain will fall in a
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specified area during a specified time, given a shower of specified intensity, but
one cannot predict with any certainty where the next drop will fall.

The idea that regularities may be seen in the behavior of aggregations that
are not apparent in the behavior of the elements of which the aggregations are
composed grew out of observations of such regularities in the world. One of the
first such regularities to be noticed was the fact, discussed by John Arbuthnot
in 1710, that the ratio of male births to female births was consistently greater
than 1 by a very small amount. No one could predict with any consistency the
gender of children to be born on a case-by-case basis, but one could be quite
sure that if one checked a large number of births over a period of time the num-
ber of boys born would exceed the number of girls by a small percentage.

When people examined the statistical data that governments began gather-
ing in great quantities in the early 19th century, they noticed a number of other
constancies, some quite surprising. Quetelet (1829), for example, reported be-
ing shocked at the "frightening regularity" with which the same crimes were
committed year after year. Births, marriages, and deaths by age were also ob-
served to be astonishingly regular, and hence predictable, from year to year.
Studies of suicides revealed not only remarkable constancy in the overall rate
from year to year, but constancy in the relative frequency with which different
methods were used within a given location (a specific method was used with
different relative frequency in London and Paris, for example, but with close to
the same relative frequency from year to year in each place). Laplace
(1814/1951) even reported that the number of dead letters in the Paris postal
system was relatively constant from one year to the next.

Although statistical regularities were first noticed primarily in social and
behavioral data, once the idea of their existence had emerged, investigators be-
gan to look for them everywhere. And it appears that they found them wherever
they looked. The 19th-century work that was done on statistical regularity was
empirical in the extreme: "In the human and social arena, and more generally
in the whole domain of the nascent concept of statistical law, it was the
Baconian generalizes who did the work. They were ready and willing to pro-
duce 'laws' when they had no more theoretical understanding than Quetelet
had of Belgian lilacs" (Hacking, 1990, p. 62). (Quetelet discovered the law of
blooming lilacs, according to which lilacs in Brussels bloom when the sum of
the squares of the mean daily temperatures since the last frost totals 4264°C2.)

In addition to providing grist for the mills of future theorists, the enormous
quantities of data that were collected during the 19th century served some use-
ful functions. Regarding the effect of these data on public health, Hacking
(1987b) has this to say: "The marvels of modern medicine produce modest in-
creases in life expectancy that are peanuts compared to that coconut of an in-
crease provided by the sanitary movement and its band of well-meaning
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statisticians" (p. 51). Also noting its implications for public health and elemen-
tary education, Metz (1987) calls the statistics of the time "a social science for
practical men" (p. 340): "The formation of sanitary statistics as the major event
of the statistical movement and the development of a policy of public health
demonstrates the important role that ideological factors played in the transfor-
mation of statistics into a strategy of social amelioration" (p. 344).

An interesting statistical regularity is the inverse power law, according to
which some function of a variable varies inversely with a power of that variable.
An example of this type of relationship is the inverse square law proposed by Al-
fred Lotka (1926) as a description of the frequency distribution of scientific pro-
ductivity; he found that the number of scientists who produced n papers was
inversely proportional to n2. Price (1961) has suggested that an inverse-square-
law also describes the relationship between the quality of scientific papers (as in-
dicated by the number of times they are cited by other scientific publications)
and the number of such papers produced, which is to say that for every paper of
first quality, there are four of second rate, nine of third, and so on.

Another example of the same type of law was proposed by Pareto (1897) to
describe the function relating number of people having an income of size n and
n; in this case, using I(n) to represent the number of people with income of size
n, the relationship is approximately I(ri) = 1/n15. In a study of uses of a corpo-
rate electronic bulletin board, I found that the number of people who posted n
messages fell off roughly with T/2°~l, where T is the number of people who
posted at least one; this means that about half as many people posted two mes-
sages as posted one, about half as many posted three as posted two, and so on
(Nickerson, 1994). This is an example of the Poisson distribution where each
value of the variable is a constant multiple of the preceding value; it illustrates
the occurrence of statistical regularity in what might appear to be random be-
havior. The Poisson distribution has been found to be descriptive of behavior in
many contexts. When the number of instances in which n different scientists
have made the same discovery more or less simultaneously is plotted against n,
for example, a Poisson distribution is obtained (Merton, 1961). Distributions
of these types are reminiscent of the general inverse relationship found by Zipf
(1949) between the number of occurrences of something in the world and the
position of that thing in a list ordered by size.

The observed stability of statistical aggregates provided the foundation for
the "social physics," with its central concept of / 'homme moyen, or the average
man, that Quetelet established in 1831. It also provided an empirical basis for
the "law of large numbers," which was articulated by Poisson (1837) in refer-
ence originally "to the tendency for events frequently repeated and not too
closely dependent on one another—that is to say, virtually everything counted
by governmental statistical agencies—to occur in approximately constant
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numbers from year to year" (Gigerenzer et al., 1989, p. 40). The work of
Quetelet (1847,1848), Buckle (1857-1861), and others did much both to call
attention to the phenomenon of statistical regularity in human affairs and to
stimulate debate on its philosophical significance. Quetelet's critics believed
he sometimes saw regularities that did not exist (Porter, 1987), but his work
was exceptionally influential nevertheless. Oberschall (1987) describes his
writings this way: "If one skips the pages on celestial mechanics, the average
man, social physics, and the center of gravity, Quetelet's writings are filled
with a wealth of observations, comments, suggestions, and facts about crime,
marriage, suicide, and dozens of other topics, which are quite instructive.
Many must have enjoyed reading him for this reason and not because of his
philosophic and methodological pronouncements" (p. 112).

The law of large numbers, as the term is currently used by statisticians, has a
somewhat narrower connotation. It says that the larger the random sample, the
more closely the relative frequency of chance events will conform to the math-
ematical probability of those events. Stated slightly differently, it says that one
can make the difference between the theoretical probability of an event and the
relative frequency of that event arbitrarily small simply by making the sample
sufficiently large. Thus, given a fair die, for which the probability of rolling a
three is 1/6, the larger the number of times the die is rolled, the smaller the dif-
ference will be between the relative frequency of the occurrence of a three and
1/6. It is to be noted that the law does not say that the difference between the ac-
tual and predicted numbers of events will decrease—this difference is likely to
increase with sample size—it says only that the difference between the theoret-
ical probability and the obtained ratio will decrease.

It is not necessary to know why the law of large numbers works, or even to
consider the question, in order to use it to good effect. One may take it as a gen-
eral principle that has been found to be descriptive of the behavior of variables
in a large number of instances, and let it go at that. But of course, such regular-
ity begs an explanation. Why should regularity result from the combining of
many irregular events? Why should things be predictable in the aggregate
when they are completely unpredictable individually? Does the predictability
of human behavior in the aggregate have implications for beliefs about deter-
minism, free will, and moral responsibility?

The fact that the practical usefulness of statistics does not depend on having
answers to such questions does not make them uninteresting, and such ques-
tions have intrigued thinkers since the phenomenon of the regularity of aggre-
gations of irregular events was first noticed. Some have seen in statistical
regularity what Hacking (1987a) calls a "grim determinism" (p. 382). The
idea, promoted especially by Buckle (1857-1861) was anathema to social re-
formers because it implied the futility of efforts at social reform, and reform
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was a main interest of many of those who gathered or paid the most attention to
the numbers. The idea of statistical determinism was rebutted hard and often
and appears to have had little effect on efforts at social change.

The predictability—the aggregate regularity—of phenomena that result
from the combined behavior of very large numbers of component entities still
begs an explanation, whether the components are assumed to be predictable in-
dividually or not: "Events and actions such as births, deaths, marriage, and
crime manifest regular patterns in the aggregate. Yet these patterns result from
the uncoordinated activities and choices of a multitude of people, each pursu-
ing a private end, and not from an imposing design. How is such a spontane-
ously generated orderliness at all possible?" (Oberschall, 1987, p. 104). The
question has been asked countless times, and it remains as valid a question to-
day as when it was first asked.

Consider again that prototypical example of a chance process, a coin-tossing
experiment. Although the situation is sufficiently complex that prediction of the
outcome of any given toss is very difficult, we assume the outcome of the toss of
a fair coin is determined by the laws of physics. Why, in a very large number of
tosses, should the forces that determine the outcome of every toss balance them-
selves out so completely that each of the two possible outcomes occurs almost
exactly the same proportion of times? To say that the individual causal factors
are equally likely to change in one way as in another from toss to toss is little
help, because the question then becomes, why should this be so? And if the indi-
vidual event were not predictable in principle—if the outcome of the individual
toss were assumed to be a true fortuitous event, in Poincare's sense—we would
still have the question of why a large number of such events is so reliably
well-behaved in the aggregate. The lawfulness of chance is an enigma.

Several 17th- and 18th-century writers, including Arbuthnot (1710) and De
Moivre (1756/1962), saw aggregate regularities as evidence of design and the
work of a Designer. Here is De Moivre's conclusion on the matter:

As it is thus demonstrable that there are, in the constitution of things, certain
Laws according to which Events happen, it is no less evident from Observation,
that those Laws serve to wise, useful and beneficent purposes; to preserve the
steadfast Order of the Universe, to propagate the several Species of Beings, and
furnish to the sentient Kind such degrees of happiness as are suited to their State.

But such Laws, as well as the original Design and Purpose of their Establish-
ment, must all be from without: the Inertia of matter, and the nature of all created
Beings, rendering it impossible that any thing should modify its own essence, or
give to itself, or to any thing else, an original determination or propensity. And
hence, if we blind not ourselves with metaphysical dust, we shall be led, by a
short and obvious way, to the acknowledgment of the great MAKER and
GOVERNOUR of all; Himself all-wise, all-powerful and good. (p. 264)
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Regularities revealed through statistical research continued to evoke ex-
pressions of amazement by 18th- and 19th-century writers. Pointers to several
examples of them are given by Porter (1986). Even Galton, who would not
have agreed with De Moivre's conclusion, was greatly impressed with "the
wonderful form of cosmic order expressed by the 'Law of Frequency of Er-
ror,'" which he referred to as "the supreme law of unreason." He wondered, for
example, about why it is that successive generations of people are so alike in
the aggregate despite the fact that individual offspring typically differ consid-
erably from their parents: "Whenever a large sample of chaotic elements are
taken in hand and marshaled in the order of their magnitude, an unsuspected
and most beautiful form of regularity proves to have been latent all along. The
tops of the marshaled row form a flowing curve of invariable proportions; and
each element, as it is sorted into place, finds, as it were, a preordained niche, ac-
curately adapted to fit it" (from Natural Inheritance, quoted in Porter, 1986, p.
146). Such admissions of wonderment are less in evidence among 20th-cen-
tury writers. Is it because we have a more sophisticated attitude on the matter?
Has familiarity with the phenomena bred contempt? Could it be that our lack of
amazement is sometimes the consequence simply of a lack of thought?

The idea that statistical regularity is the result of design, or is maintained by
the Designer, was attacked by Nicholas Bernoulli, d'Alembert, and Poisson,
among others (Daston, 1987b), and it is not popular among modern theorists,
but it has not been replaced with a demonstrably more adequate explanation of
the regularity that is everywhere observed. Bernoulli claimed to have refuted
the argument as put forth by Arbuthnot, but his refutation consists in assuming
that the probability that a random birth will be a boy is 18/35 and showing that
his uncle Jacob's limit theorem (see chap. 1) implies that of a large number of
children born, the probability that the number of boys will lie between speci-
fied bounds can be stated with considerable precision. It does not account for
why the probability of a random birth being male should be 18/35. Often in dis-
cussions of statistical regularity chance is spoken of as a cause, but it is not at
all clear what it could mean for chance to be the cause of anything. In saying
that something is caused by chance, one is really only saying that something
has certain properties, such as statistical regularity.

There is something paradoxical, almost oxymoronic, about the idea of
"laws of chance." Chance events are, by definition, indeterministic, erratic, un-
predictable. It is a fact that events that are unpredictable individually can be
highly regular and predictable in the aggregate and it is this fact that underlies
reference to the laws of chance. But the aggregate regularity itself begs an ex-
planation. It is easy to delude ourselves into thinking that, by attributing statis-
tical regularity to the laws of chance we have explained it, when in fact we have
simply called it by another name.
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VARIABILITY AND "ERROR"

The observation of statistical regularities was critical to the development of
statistical thinking; so also, however, was the observation of variability. For
many purposes the variability that was observed, as for example in successive
measurements of the same thing, was considered a nuisance — something to be
minimized by careful measurement and compensated for after the fact by ap-
propriate analyses. A hint of the idea that variability represents an observa-
tional distortion of a Platonic reality is seen in the use of such terms as error
and deviation in its description.

Among the most important constructs relating to variability, from a histori-
cal perspective, was the "error curve," or what is referred to more commonly
today as the Gaussian or normal distribution or density function. Mathe-
matically, it is the curve defined by

( n )
f(x)= n )

V ' (ajtej

where n is the number of measurements and ji and a2 are their mean and vari-
ance respectively. It is descriptive, or approximately so, of a great many distri-
butions found in nature, a fact that Fourier (1819), among others, found to be
remarkable. It was applied to probability theory by de Moivre as the limit of the
binomial distribution,

n-k

The fact that it can be used to approximate the binomial distribution for large
n facilitates the estimation of probabilities that would be computationally te-
dious if not intractable with the binomial function and is a great convenience in
the practice of statistical hypothesis testing and decision making more generally.

Porter (1986) points out that the history of this curve is practically coexten-
sive with the history of statistical mathematics during the 19th century. He also
notes that although the curve originally was thought of as a representation of
error — it was used effectively by astronomers, along with the method of least
squares, to deal with the problem of variability in the measurement of astro-
nomical phenomena — it was reinterpreted as a law of genuine variation. Porter
refers to this reinterpretation as "the central achievement of nineteenth-century
statistical thought" (p. 91).
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The reinterpretation came about gradually by a process that in retrospect
looks like creative misunderstanding:

Once again the lead was taken by social thought, and in this matter its influence
on the natural sciences is demonstrable. The main line of development pro-
ceeded from Laplace to Quetelet to Maxwell and Gallon, and from the error of
mean values in demography as well as astronomy to the deviations from an ide-
alized average man to the distribution of molecular velocities in a gas and the in-
heritance of biological variation in a family. Ultimately, even the analysis of
error was transformed by this line of statistical thinking. (Porter, 1986, p. 91)

Thus over time, beginning perhaps with Quetelet's discovery that the "error
curve" was descriptive not only of measurements made by astronomers but also
of such natural variables as human height and other features, there developed an
interest in variability as a natural phenomenon in its own right. Around 1840,
Quetelet's focus began to shift from the stability of averages and rates to the way
variables are distributed. He was particularly intrigued by how often the distribu-
tion appeared to be similar to that of errors of observation (Gaussian) and in his
1848 book, Du Systeme Social et des Lois Que le Regissent (On the Social Sys-
tem and the Laws That Govern it), proposed the "law of accidental causes," to ac-
count for the regularity of distributions of all sorts (Le"cuyer, 1987).

Interest in variability per se, and especially in the variability of human traits
and abilities, was apparent in the work of Galton (1869, 1874, 1889) and his
lifelong focus on the exceptional as opposed to the commonplace. His study of
genius and his framing of the nature-nurture debate reflect this interest, and in
his autobiography, he explicitly acknowledges it: "The primary objects of the
Gaussian Law of Error were exactly opposed, in one sense, to those to which I
applied them. They were to get rid of, or to provide a just allowance for errors.
But those errors or deviations were the very things I wanted to preserve and to
know about" (Galton, 1909, p. 305). Murray (1987) identifies Fechner's use of
the equation for the normal distribution to estimate the variability in measure-
ments in psychophysical experiments on just noticeable differences as the first
application of probability theory in psychology.

The history of the development of statistical thinking—extensive accounts
of which are readily available (e.g., P. L. Bernstein, 1996; David, 1962;
Gigerenzer et al., 1989; Hacking, 1975,1990; Porter, 1986; Salsburg, 2001)—
presents a curious mix of discoveries of lawful regularities in the behavior of
large collections of unpredictable individual cases, frustrations arising from
the inability in certain situations to get precisely the same measurements on
different attempts to measure the same thing, the realization that certain distri-
butions are characteristic of a wide variety of natural phenomena, interest in
why things vary as they do, and the practical need for mathematical concepts
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and tools with which to deal with variability in an effective way. The purpose of
statistical hypothesis testing, about which more later, can be seen as that of dis-
tinguishing between variability (in one or more dependent variables) that can
be attributed to controlled variability (in one or more independent variables)
and that which cannot. In this context, error generally connotes the variability
in the first kind of variable that cannot be attributed to the variability in the sec-
ond kind, and it is sometimes divided into two types: sampling error (error aris-
ing from studying a sample that is not representative of the population of
interest) and measurement error (error that results from imprecision of a mea-
suring instrument) (Abelson, 1995).

USES OF STATISTICS

After the mid-nineteenth century, it became common to investigate collective
phenomena using what came to be called the statistical method, the method of
reasoning about events in large numbers without being troubled by the intracta-
bility of individuals. (Porter, 1986, p. 12)

Today statistics is a well-established area of mathematics with countless areas
of application. In the brief overview of the topic that follows, it will be conve-
nient to distinguish four specific purposes that statistics serves: description, es-
timation, hypothesis testing, and explanation.

Statistical Description

Two of the more fundamental ideas in statistics are those of a variable and a fre-
quency distribution. A variable is any measurable property that varies in a pop-
ulation. Height, for example, is a variable property of humans. Variables are
said to be distributed in certain ways. If we were to measure the height of every
person in the world and then construct a graph showing the number of people
whose height was between, say, 5 ft. and 5 ft. 1 in., those between 5 ft. 1 in. and
5 ft. 2 in., those between 5 ft. 2 in. and 5 ft. 3 in., and so on, when we had fin-
ished, extending the height measure in both directions sufficiently far to ac-
commodate the shortest and tallest people in the world, the resulting graph
would represent the distribution of the height of all people living in the world
today. This distribution would be more or less bell-shaped with its highest
point probably somewhere around 5l/2 feet.

Not everything is distributed like height of course. If we were to plot the dis-
tribution of family sizes, for example, showing the number of children in the
family, varying from 1 to, say, 20, on the horizontal axis and number of families
with that number of children on the vertical axis, we would find that the distri-
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bution would be quite asymmetrical. There would be many more families with
1 or 2 children than with 19 or 20.

If we were to plot the distribution of many variables, we would find that dif-
ferent variables give rise to distributions with different shapes. However, we
would also discover that certain shapes occur frequently, because there are a
few distributions that are descriptive of the ways in which many variables are
distributed in the world. Among the better known of these, in addition to the
gaussian, are the rectangular, the exponential, and the logistic.

Producing a picture of a distribution is an excellent way to answer a question
regarding how any particular variable is distributed. However, although pic-
tures are very useful for some purposes, they are less so for others. Statisticians
have developed concepts that can be used to describe distributions when one
wants to talk about them. These descriptions make use of properties or charac-
teristics of distributions called "parameters." A parameter of a distribution is a
number that provides some summary information about the distribution. The
mean, median, and mode are sometimes referred to as central-tendency param-
eters, because each of them conveys information about the center, more or less,
of the distribution. Other useful parameters include the standard deviation and
interquartile range, which, because they convey information about the shape of
the distribution and, in particular, about the degree to which it is narrow and
peaked as opposed to broad and relatively flat, are sometimes referred to as pa-
rameters of dispersion.

Measures of central tendency and of dispersion are very useful in describing
distributions. Thus, in answer to the question of how tall American men are,
one might point to a graph of the distribution of heights or, alternatively one
might say that this distribution is approximately gaussian, or "normal," and has
a mean of 68 inches and a standard deviation of 3 inches. To someone who un-
derstands elementary statistics, such a description conveys nearly as much in-
formation as does the actual distribution graph. Such a person understands that
a gaussian distribution has the approximate shape of a bell, symmetrical about
its mean, and that about 95% of all the cases are within plus or minus two stan-
dard deviations of the mean. In the case of our example, the description tells us
that the average height of an American man is 68 inches and that about 95% of
all American men have a height somewhere between 62 inches and 74 inches.
(The numbers in this example were made up for purposes of this illustration.)

A particularly useful fact relating to the normal distribution is represented
by what is known as the central limit theorem. According to this theorem, no
matter how a variable is distributed, if one draws a large number of random
samples of that variable and calculates the mean of each sample, one will find
that the distribution of the means will be normal. "Large number" in this con-
text is conventionally taken to be 30 or more, unless the underlying distribution
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is highly asymmetric, in which case it may have to be a bit larger for the ap-
proximation to be accurate. This is a remarkable theorem and one that finds
many practical applications in statistics.

Distribution parameters facilitate discussion about variables, but it is im-
portant to recognize that they convey less information about variables than do
the distributions themselves, in either graphical or equation form. Two distri-
butions with the same mean can differ with respect to dispersion; and even if
they have equal standard deviations, the variability may be determined in dif-
ferent ways.

The usefulness of statistics for purposes of description does not depend on
relating statistics to any theory of probability or chance or on any assumptions
about why natural variables are distributed the way they are. But one would
like to know why so many variables are distributed in ways that can be de-
scribed by simple mathematical functions. What determines how a variable is
distributed? Why are certain distributions so frequently seen in nature? What
accounts for instances in which two variables that appear to have no relation-
ship to each other are distributed in the same way?

Statistical Estimation

Often it is not practical or perhaps even possible to determine how a variable is
distributed in some population of interest. In that case, what we can do is deter-
mine how the variable is distributed in a subset of the population that is as-
sumed to be representative of the population as a whole. Such a representative
subset is referred to as a sample and measurements made on it are taken as esti-
mates of what those measurements would be if made on the entire population
from which the sample was drawn.

The use of statistics for purposes of estimation is a highly developed methodol-
ogy. There are well-tested procedures for ensuring that samples are indeed repre-
sentative of the populations from which they are drawn. Estimates of population
parameters typically are accompanied by statements of the margin of error of
those estimates; these statements (which are themselves estimates) often indicate a
range of values within which the true value is believed to be highly likely to lie. In
general, the precision of an estimate (narrowness of margin of error) and the confi-
dence expressed in it vary directly with the size of the sample on which the esti-
mate is based and inversely with the variability of the values in it.

Many socially significant decisions are made on the basis of actuarial sta-
tistics. Life insurance premiums are determined by life expectancy tables
that show how much longer people who have attained a specific age are ex-
pected to live, on the average. Academic and job placement decisions are
made, in part, on the basis of the relationship between performance on psy-
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chological tests and academic or on-the-job performance of large numbers of
individuals who have taken those tests and performed those jobs in the past.
Use of statistical reasoning is justified economically on the grounds that the
resulting decisions are better, in the aggregate, than they would be if such rea-
soning were not used. Calibrating life insurance premiums to average life ex-
pectancy means that the highest premium costs are borne by people whose
policies are likely to be cashed in within the shortest time. Careful use of
standardized tests for placement purposes presumably increases the relative
frequency of appropriate placements.

What is true of a population need not be true of any single member of it; thus
whereas, as of 1990, the average life expectancy of an American female at birth
was 78.8 years, relatively few American females who were born in 1990 will
live precisely 78.8 years. Though it is true that the incidence of automobile ac-
cidents is much higher for male teenage drivers than for all other drivers, it is
not the case that every male teenage driver is accident prone. Decisions regard-
ing individuals that are based on statistical data that are descriptive of the popu-
lation to which those individuals belong are often unfair to the individuals.
Does that make them irrational? The answer must depend, of course, on how
one defines rationality and applies the definition to this particular case.

A special instance of statistical estimation that can have important social
consequences is that of opinion polling. On the basis of the sampling of rela-
tively small numbers of people (often a few hundred) pollsters present esti-
mates of how the general populace, or some specified subset of it ( e.g.,
members of an ethnic group, a political party, an age category) feel, or what it
believes, about particular issues. There are many problems associated with
opinion polling that have little to do with statistics, not the least of which is the
sensitivity of the outcomes to the specific wording of the questions asked and
the consequent vulnerability of polls to manipulation, but there are many sta-
tistical concerns as well. The problem of representative sampling is a crucial
one, as is that of the possibility of samples being biased as a consequence of
participant self-selection. Many polls relate to matters about which not all peo-
ple are equally willing to express their personal feelings or beliefs; especially
when this is the case, there may be good reason to doubt that the opinions ex-
pressed by people who are willing to participate are representative of those of
people who are not (Moore, 1992).

Statistical Hypothesis Testing

The mathematical statistician has become a universal expert, whose specialty is
not so much a subject matter as a method of inference applicable to all subject
matters. (Gigerenzer et al., 1989, p. 69)
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Random sampling and random designs of experiments were introduced into sta-
tistics to achieve apparent precision and objectivity. I believe that the precision
attained by objectivistic methods in statistics invariably involves throwing away
of information. (Good, 1983a, p. 86)

The term "null hypothesis" has at least two connotations as applied to statisti-
cal testing. Usually it is intended to represent the hypothesis of "no differ-
ence" between two sets of data with respect to some parameter, such as their
means, or of "no effect" of an experimental manipulation on the dependent
variable of interest. Suppose one wished to know whether Europeans and
Asians differ with respect to how long they live. To approach this question
statistically one would compare representative samples of longevity data
from Europe and Asia. The specific question one would ask, by means of the
application of statistical procedures, would be whether the evidence justifies
rejection of the "null" hypothesis, typically represented by H0, that the two
samples of data were drawn from the same population. This may seem like a
strange way to describe the situation because it is obvious that the data are
from two different populations, one European and one Asian, but the ques-
tion that is being asked is if those populations differ with respect to the vari-
able of interest, namely longevity; the default—null—hypothesis is that they
do not differ in this regard. Statistical testing is used to see if the data warrant
rejection of that hypothesis, or whether it is more reasonable to consider them
the same population with respect to this variable.

"Null hypothesis" also sometimes has the more inclusive meaning of the
hypothesis the nullification of which, by statistical means, would be taken as
evidence in support of a specified alternative hypothesis. Given the latter con-
notation, the null hypothesis may or may not be a hypothesis of no difference or
of no effect (Bakan, 1966).

The distinction between these connotations is sometimes made by referring
to the former as the nil-null hypothesis or simply the nil hypothesis; usually the
distinction is not made explicitly and whether null is to be understood to mean
nil-null, as it almost always does, must be inferred from the context. In what
follows, "null hypothesis" will be used to indicate the hypothesis of no differ-
ence or no effect unless otherwise specified, and will be represented as H0.

Application of a statistical significance test to the difference between two
means usually yields a value of p, the theoretical probability that a difference of
the size obtained, or larger, would have been obtained from two samples of the
size of those used had they been drawn at random from the same population. A
"confidence level," usually designated as alpha, is specified to serve as a deci-
sion criterion and the null hypothesis is rejected only if the value ofp yielded
by the test is not greater than the value of alpha. If alpha is set at .05, say, and a
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significance test yields a value of/? less than .05, the null hypothesis is rejected
and the result is said to be statistically significant at the .05 level.

This logic of null hypothesis significance testing, as it is generally presented
in statistics texts, admits of only two possible decision outcomes: rejection (at
some specified level of confidence) of the hypothesis of no difference, and fail-
ure to reject this hypothesis (at that level). Given the latter outcome, all one is
justified in saying is that a statistically significant difference was not found;
one does not have a basis for concluding that the null hypothesis is true.

Inasmuch as the null hypothesis may be either true or false and it may either
be rejected or fail to be rejected, any given instance of null hypothesis testing
admits of four possible outcomes as shown in the following Table 7.1

There are two ways to be right: rejecting the null hypothesis when it is false
(when the samples were drawn from different populations) and failing to reject
it when it is true (when the samples were drawn from the same population).
And there are two ways to be wrong: rejecting the null hypothesis when it is
true and failing to reject it when it is false. The first of these two ways to be
wrong is usually referred to as a Type I error and the second as a Type II error.
Theoretically, the probability that a Type I error will be made, if the null hy-
pothesis is true, is given by the p value (criterion or confidence level) that is
used to reject the hypothesis (alpha). The probability of occurrence of a Type II
error, if the null hypothesis is false, usually referred to as beta, is generally
much larger than alpha, but not known precisely.

Null hypothesis significance testing (NHST) has been widely used in psy-
chological research since its invention and its use has been subject to intense
criticism for equally as long. Debate between critics and defenders of such test-
ing continues to the present time. I have reviewed the controversy elsewhere
(Nickerson, 2000), so will not do so again here, beyond noting some of the crit-
ics and defenders of NHST and listing in Table 7.2 some common misunder-
standings about it that have been pointed out in the literature.

TABLE 7.1

The Four Possible Outcomes of a Null Hypothesis Test

Truth State ofHn

Decision re HQ False True

Rejected Correct rejection Type I error
Not rejected Type II error Correct non rejection
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TABLE 7.2

Common False Beliefs About Null Hypothesis Significance Testing

p is the probability that the null hypothesis is true and that 1 - p is the probability
that the alternative hypothesis is true.

Rejection of the null hypothesis establishes the truth of a theory that predicts it to
be false.

A small p is evidence that the results are replicable.

A small p means a treatment effect of large magnitude.

Statistical significance means theoretical or practical significance.

Alpha is the probability that if one has rejected the null hypothesis one has made a
Type I error.

The value at which alpha is set for a given experiment is the probability that a Type
I error will be made in interpreting the results of that experiment.

The value at which alpha is set is the probability of Type I error across a large set of
experiments in which alpha is set at that value.

Beta is the probability that the null hypothesis is false, or the probability of making
a Type II error.

Failing to reject the null hypothesis is equivalent to demonstrating it to be true.

Failure to reject the null hypothesis is evidence of a failed experiment.

Critics of NHST include Bakan (1966), Brewer (1985), Chronbach (1975), J.
Cohen (1994), Dracup (1995), Falk (1986), Falk and Greenbaum (1995), Folger
(1989), Gigerenzer and Murray (1987), Grant (1962), Guttman (1977), Kirk
(1996), Lunt and Livingstone (1989), Lykken (1968), Meehl (1967), Morrison
and Henkel (1970), Oakes (1986), Pedhazur and Schmelkin (1991), Pollard
(1993), Rozeboom (1960), Sedlmeier and Gigerenzer (1989), Shaver (1993),
Shrout (1997), and B. Thompson (1996, 1997). Some critics have argued that
progress in psychology has been impeded by the use of significance testing, as it
is conventionally done, or even that such testing should be banned (Carver, 1978,
1993; Hunter, 1997; G. R. Loftus, 1991,1995,1996; Schmidt, 1992,1996). De-
fenders of NHST include Abelson (1995, 1997a, 1997b), Baril and Cannon
(1995), Chow (1987, 1988, 1989, 1991, 1996, 1998a, 1998b), Cortina and
Dunlap (1997), Cox (1977), Dixon (1998), Frick (1996), Giere (1972), R. J. Har-
ris (1997), Kalbfleisch and Sprott (1976), Mulaik, Raju and Harshman (1997),
D. Robinson and J. Levin (1997), Sohn (1998), Tukey (1991), W. Wilson, H. L.
Miller, and Lower (1967), and Winch and Campbell (1969).

Defenders of NHST testing generally acknowledge that it has limitations
and that it is subject to misunderstanding and misuse. They tend to believe,
however, that the major problem in its use is not inherent to the technique but
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lies in misapplications of it, or misinterpretations of the results obtained with
it. Abelson (1995,1997a), for example, defends the use of NHST, but contends
that it must be used judiciously, not as an unequivocal determinant of what is
worth reporting, but as a means of helping to justify claims that specific effects
were unlikely to have been obtained by chance. The worthiness of an experi-
mental finding, he argues, is determined by several considerations, including
the magnitude, generality, and interestingness of the effect. He contends, espe-
cially in Abelson (1995), that all statistics should be treated as aids to princi-
pled argument. Tukey (1991) argues that it is really the direction of an effect,
rather than the existence of one, that the t test helps decide, and that acquired
significance levels should be seen as a guide to whether an effect has been dem-
onstrated but not taken as the sole criterion.

The bottom line is that statistical testing cannot be done with complete ob-
jectivity without running the risk of obtaining nonsensical results. The impor-
tance of human judgment in the interpretation of experimental results—and of
the outcomes of statistical tests—has been stressed by many writers (Abelson,
1997a; Berger & D. A. Berry, 1988; Browne & Cudeck, 1992; J. Cohen, 1994;
Cortina & Dunlap, 1997; Falk & Greenbaum, 1995; Gigerenzer, 1993;
Huberty & Morris, 1988; Malgady, 1998). Statistical tests are tools that must
be used with care. Used judiciously, they can be a great help in making sense of
data, but they are easily misused, and by themselves they can never determine
whether a result is worthy of attention.

STATISTICAL EXPLANATION

The omnipresent hypothesis of randomness is an alternative to any other kind of
explanation. This seems to be deeply rooted in human nature. "Was it intention or
accident?" "Is there an assignable cause or merely chance coincidence?" Some
question of this kind occurs in almost every debate or deliberation, in trivial gossip
and in the law courts, in everyday matters and in science. (Polya, 1954b, p. 95)

There are laws of chance. We must avoid the philosophically intriguing question
as to why chance, which seems to be the antithesis of all order and regularity, can
be described at all in terms of laws. (W. Weaver, 1950, p. 44)

If one plots the frequency with which there have been zero, one, two, three,
four, or more than four outbreaks of war in a year, one gets a Poisson distribu-
tion. One gets the same type of distribution if one plots the frequency of years
having zero, one, two, three, four, or more than four wars coming to an end.
(The fact that one gets a similar distribution in both cases would be redundant if
all wars lasted the same amount of time, but they do not.) This is the kind of dis-
tribution one would expect if the initiation of war were a completely random
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event. It suggests, in effect, that the instantaneous probability of the outbreak
of war is constant over time.

L. F. Richardson (1956) notes that:

This explanation of the occurrence of war is certainly far removed from such ex-
planations as ordinarily appear in newspapers, including the protracted and crit-
ical negotiations, the inordinate ambition and the hideous perfidy of the
opposing statesmen, and the suspect movements of their armed personnel. The
two types of explanation are, however, not necessarily contradictory; they can
be reconciled by saying that each can separately be true as far as it goes, but can-
not be the whole truth, (p. 1258)

Does showing that the frequency of war outbreaks can be fitted with a Poisson
distribution constitute an explanation at all, and if so, what exactly does it explain?

The Poisson distribution describes a surprisingly large number of natural
phenomena. Kac (1983) gives an interesting illustration of the descriptive
range of this construct, involving deaths of Prussian soldiers by horse kicks
and the emission of alpha particles by a radioactive substance:

The proportion of consecutive time intervals of duration i (e.g., a week) during
which k soldiers are killed by horse kicks is approximately exp(-aT)(at)*r I k\.
Similarly, the proportion of consecutive time intervals of duration t (e.g., one
second) during which k particles are emitted is approximately exp(-at)(cti)k lk\
... By a proper adjustment of units (amounting to setting ai - at) the two sets of
data (one on soldiers killed, the other on alpha particles) will be difficult to dis-
tinguish, (p. 406)

There are many examples that could be given of natural phenomena—be-
havioral, social, and physical—certain characteristics of which are well de-
scribed by statistical constructs. We have already noted the numerous
statistical regularities discovered within the avalance of numbers produced by
19th-century counters and classifiers. To what extent should the identification
of a statistical regularity be considered an explanation of the statistically regu-
lar event? More generally, what are we to make of statistical explanations? Are
they really explanations? If they are not explanations, do they shed any light at
all on the phenomena they fail to explain? If they are explanations, how do they
relate to other types of explanations of the same phenomena? Are statistical ex-
planations and causal explanations complementary, or are they qualitatively
different and mutually exclusive ways of viewing the world?

Regression to the Mean

A widely recognized statistical phenomenon that is commonly referred to as an
explanation is the phenomenon of regression, or, as Gallon who first described
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it called it, "reversion," to the mean. It seems appropriate to begin a discussion
of statistical explanation with a consideration of it.

The children of exceptionally tall parents are likely to be shorter, on
average, than their parents, and the children of exceptionally short parents are
likely to be taller, on average, than their parents. Children of parents with
exceptionally high or exceptionally low intelligence are likely to have IQs
closer to the average. Such facts are often attributed to chance and considered
examples of the regression phenomenon of which Galton spoke.

In what sense does invocation of the concept of regression to the mean
constitute an explanation of these and similar phenomena? Despite the fact that
statistical explanation is usually distinguished from causal or physical
explanation, terms such as "chance," "random process," and "probabilistic
event" are sometimes given causal connotations. When regression to the mean
is invoked for explanatory purposes, there is often the hint of an assumption of
a force that draws the values of variables toward the mean much Uke the force
of gravity draws small masses toward large ones. What the term really means is
that one is likely to get a result when one samples (relatively) randomly from a
population that is different in a specified way from the result one gets when one
selects items from the same population that are known to be extreme or
atypical in some way.

Consider a normally distributed variable, say person height. If one were to
select several people from the end of this distribution representing the small
fraction of unusually tall individuals and compare their heights with those of a
random sample from the distribution, one would expect the heights of the
randomly sampled group to be shorter on average—more representative of the
distribution as a whole—than those of the people who were selected precisely
because of their exceptional height. The regression-on-the-mean explanation
of why especially tall parents tend to have children shorter than themselves
rests on the assumption that the children are a more nearly random sample from
the population than are the parents—by virtue of the fact that the parents, and
not their children, were selected on the basis of their height—and are therefore
likely to be more representative of the population as a whole. (The explanation
does not require the assumption that the children are a totally random group; on
that assumption, we would expect their average height to be very close to the
population mean, not just closer to it than the mean of their parents' height.)

The notion of regression to the mean can be used to account for many
phenomena. If one selects from all the mutual funds in the country the 10 best
performers over an arbitrary 5-year period and then looks at the performance of
the same 10 funds during the immediately following 5-year period, one will
invariably discover that the performance of these funds was much closer to
average during the second 5-year period than during the first one. I do not mean
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to suggest by this observation that the behavior of mutual fund managers is
totally random, but a case can be made for the assumption that the degree to
which fund performance is due to chance is much greater than the industry is
likely to be willing to admit (Malkiel, 1985). As P. L. Bernstein (1996) puts it

Over the long run, active investment managers—investors who purport to be
stock-pickers and whose portfolios differ in composition from the market as a
whole—seem to lag behind market indexes like the S&P 500 or even broader in-
dexes like the Wilshire 5000 or the Russell 3000. Over the past decade, for ex-
ample 78% of all actively managed equity funds underperformed the Vanguard
Index 500 mutual fund, which tracks the unmanaged S&P 500 Composite; the
data for earlier periods are not as clean, but the S&P has been a consistent winner
over long periods of time. (p. 297)

Conjecture: If one compares the performance of a large number of mutual
funds with that of the general stock market, as reflected in major indexes, over a
random short period of time, say 1 to 5 years, one will find that a modest percent-
age—say 10% to 20%—of the funds outperformed the indexes during that pe-
riod of time. And if one compares the same funds with the same indexes during
the immediately following period of the same duration, one will again find that a
modest percentage of the funds outperform the indexes. In both cases, if one
sorts the funds into categories depending on how much they gained (or lost) dur-
ing the period and plots the results as frequency distributions, one will find the
distributions to be approximately normal (gaussian) with means differing from
the means for the indexes by roughly the amount of what it costs the investor for
transaction and fund management fees. And if one checks to see how the funds
that outperformed the indexes during the first time period fared during the sec-
ond period, one will find that they are scattered more of less randomly over the
entire range of the second distribution. If one did the analysis here suggested—it
may well have been done many times, but I cannot point to references—and one
got the results I have imagined, one need not conclude that fund management is a
completely chance affair, but it would be hard to avoid the conclusion that
chance is at work to a nontrivial degree.

If one takes the batting averages of the 10 leading hitters among major-
league baseball players during the first month of the season and compares
those averages with the averages of the same 10 players during the final month
of the season, one is highly likely to find the second set of averages to be closer
to the league mean than the first. Similarly, if one compares the averages of the
10 leading players during the last month with the averages of the same players
during the first month, one again will find the latter set to be closer to the league
mean than the former. Each of these phenomena, among many others, can be
described as regression to the mean.
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Suppose that one claims to have a method by which one can increase
children's IQs. To demonstrate the effectiveness of this method, its developer
proposes to give a large number of school children an IQ test and then to use
this method with the lowest scoring 10% of the group—the "hardest cases."
Upon retesting after the intervention, the IQs of the students in this group prove
to be higher on the average than when initially measured, and the intervention
is declared a success. In fact, on the assumption that IQ measurements are
unreliable to some degree, which is to say that the score produced by a given
individual is likely to differ somewhat from one testing occasion to another, we
would expect the scores to be higher on the second testing for the same reason
that we expect exceptionally short parents to have children that are, on average,
somewhat taller than themselves. It is the regression-to-the-mean phenome-
non in another guise.

In general, regression to the mean can be expected whenever a set of val-
ues selected from one or the other end of a more-or-less normally distributed
variable is compared with a set that can be assumed to be more representative
of the entire distribution. The situation can be represented in the abstract in
the following way. Suppose we were to have 30 people each roll a die five
times (so the maximum score that one could receive would be five sixes or 30)
and we identify the three people with the largest scores, the top 10% of our
group, as the high-rollers. Now we repeat the process, have all 30 people
again each roll the die five times. We would be quite surprised if all the
high-rollers from the first pass retained their status on the second one. We
would expect, assuming the die is fair, that their scores would be closer to av-
erage on the second pass than they were on the first—and indeed as likely to
be below the mean as above it.

This illustration is a little extreme, because the cumulative score on five
rolls of a die is presumably a totally chance affair. We would like to believe that
performance in the financial world, on the baseball field, or in an
intelligence-testing situation bears some relationship to ability and is not
completely analogous to the tossing of a die. We can make the illustration more
realistic by assuming, let us say, three types of dice, A, B, and C. A has the
numbers 1 to 6 on its faces, B the numbers 2 to 7, and C, 3 to 8. Thus the
maximum five-toss totals for the three dice are 30,35, and 40, respectively. We
divide our 30 subjects into three groups and have each group use a different one
of the three dice. Now we have people who really differ in what we might think
of as "native ability." Those who are stuck with die A will surely do worse, on
average, than those who are fortunate enough to be rolling die C. Nevertheless,
if we repeat the experiment described in the last paragraph, we are very
unlikely to find that the three people who get the highest total scores on the first
five rolls all remain in the top 10% on the second five rolls.
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A number of researchers have shown how ignorance of the regression
phenomenon can lead to the development or strengthening of unwarranted
conclusions about the effects of various types of decisions. Imagine, for
example a group of people whose performance with respect to some measure
of merit is random; in particular, suppose that when performance is assessed
for a specified period of time, the measures have a normal (gaussian)
distribution. Now suppose that you, as the manager of this group reward (with
praise or a bonus) the people who score in the top 10% of the range and punish
(with criticism or a cut in pay) those who score in the bottom 10%. Suppose
further that what you do has no effect on subsequent performance. By the
principle of regression, we would expect that during the next performance
period, the people who were rewarded will perform more poorly and those who
were punished will do better. If you are not aware of this regression-based
expectation, you may well conclude that the changes in performance resulted
from your reward and punishment policy and come to the conclusion that
punishment is an effective motivator whereas reward has the opposite effect.

Or suppose, focusing only on the bottom end of the performance scale, you
decide after the first assessment to replace (or give special training to) the
workers who scored in the bottom 10%. You will find, again assuming your
actions have no effect, that the new (or now specially trained) workers will get
higher scores, in general, in a subsequent assessment, a fact that you might, if
you are unaware of the regression phenomenon, take as evidence of the
effectiveness of your management decision (M. D. Cohen & Marsh, 1974). In
most real-world situations it probably would not be reasonable to assume that
performance was due totally to chance; it is not unreasonable, however, to
assume that chance plays some role and that regression to the mean therefore
should not be completely ignored.

Statistical Versus Causal Explanations

Inexperienced researchers and laypeople alike usually overestimate the influ-
ence of systematic factors relative to chance factors. (Abelson, 1995, p. 7)

Regression to the mean will be satisfactory as a complete explanation only when
the distribution of the measures of interest around the mean can be assumed to be
due completely to chance. This is an assumption that fund managers, at least, are
not likely to be pleased to make with respect to mutual fund performance. Base-
ball players, at least those with high batting averages, probably are not more
willing to make it with respect to batting performance. One can, of course, be-
lieve that the value of a variable is due in part to chance and in part to other fac-
tors. So it is not necessarily unreasonable to look for deterministic factors that
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may be operative even when it may be assumed that there is reason to believe that
chance is having some effect. And, conversely, chance can be an influential fac-
tor even when there is reason to doubt that it is the only factor at work.

Major-league baseball players who win rookie of the year almost invariably
perform less well the year following that of their award (Nisbett, Krantz,
Jepson, & Kunda, 1983). On the assumption that chance plays some role in
determining the kind of performance that leads to selection of rookie of the
year, this may be viewed as an instance of regression to the mean. On the other
hand, it seems ungenerous, if not unreasonable, to assume that that perfor-
mance is totally due to chance. That being so, it is not unreasonable to attempt
to understand, in individual cases, precisely how performance changed and to
identify, when possible, nonchance factors that may have contributed to the
change for the worse.

Statistical and causal explanations are not necessarily mutually exclusive.
It is not impossible that one might be able to account for the same set of phe-
nomena in both ways and that the accounts would not be contradictory. When
this is possible the causal explanation is likely to be a deeper explanation than
the statistical one. For example, one may attribute to chance the fact that
roughly 50% of a large number of tosses of a fair coin come up heads, but if
one knew enough about the physics of the individual tosses, one might be
able to account for them on a toss-by-toss basis, without resorting to the con-
cept of chance. (Whether accounting for each individual outcome would con-
stitute also an explanation of why the proportion of heads in a large number of
tosses is close to .5 is another question.) Often, though not always, the need to
resort to probabilistic explanations reflects a lack of information that is, in
principle, obtainable and that would provide the basis for a causal explana-
tion. Statistical explanations should be resorted to primarily when determin-
istic causal explanations are either impractical or, as in the domain of particle
physics, perhaps impossible.

This is not to deny that people sometimes look for causal explanations when
it may be inappropriate to do so. One of the conclusions that Tversky and
Kahneman (1971) have drawn from studies of experimental psychologists' in-
tuitions about appropriate sample sizes in psychological experiments is that
experimenters rarely attribute a deviation from expectation in their results to
sampling variability; instead, they find causal explanations for the discrepan-
cies they observe. And because the experimenters tend to be satisfied with the
explanations they generate, they preclude themselves from having the oppor-
tunity to recognize sampling variation in action and consequently inappropri-
ate belief in "the law of small numbers" is not disconfirmed.

At the beginning of the discussion of the concept of regression to the mean, I
suggested that terms such as "chance," "random process," and "probabilistic
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event" are sometimes given causal connotations. And in the ensuing comments
I more than once alluded to chance as a causative agent. Exactly what might it
mean for something to be determined by chance? It sounds as though one is
imputing to "chance," whatever that is, the power to determine the outcomes of
events—not the outcomes of individual events, to be sure, but the aggregate
outcome of multiple events. Chance is being identified as the cause of the
aggregate outcome. This makes chance sound very deterministic, which
appears to be a contradiction in terms.

One might say that this is not correct, that all one is doing is describing
the outcome, not accounting for it, when one attributes it to chance. But
Hacking (1987b) notes that at one point in the evolution of statistical think-
ing, "it was an essential part of the doctrine of chances that there was always
an underlying causal structure. It was the task of the analyst to find that
structure," but that at a later point, "people became indifferent to that" (p.
53). According to the later view, statistical law became autonomous, which
is to say usable "to explain something else, without itself having to be re-
duced" (p. 53). This appears to make the question of what accounts for the
predictability of chance events—the lawfulness of chance—moot. I do not
find this completely satisfying. Chance, in my view, is a great mystery; I
doubt if anyone understands it very well.

Kriiger (1987b) also points out that acceptance of probability as an
explanatory construct was slow:

Although in the course of the nineteenth century, statistical practice and a corre-
sponding amount of probability theory spread rapidly through various disci-
plines, most scientists and philosophers remained opposed to taking probability
as fundamental or irreducible, or according it an explanatory function. Indeed,
that function appeared to imply the reality of possibilities or of indeterminate-
ness; hence to recognize it seemed to involve too high an ontological price. At
any rate, there is a time lag between the widespread use of statistics and proba-
bility on the one hand and the adoption of a probabilistic view of, or attitude to-
ward, reality (or parts of reality) on the other, (p. 60)

No less a figure than Kant insisted that nothing happens through blind
chance, which implies that all phenomena have deterministic explanations
even if one cannot discover what they are. According to this view, which dates
back at least to the classical Greek atomists (e.g., Leucippus and Democritus),
"chance is excluded not only from the domain of scientific concepts but also
from the world of events; laws of chance or probability theory cannot possibly
refer to reality" (p. 62). Kriiger points out that many 19th-century scientists
and philosophers considered it obvious that statistical regularities must have
deterministic explanations. He credits Maxwell with transforming what had
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been descriptive in social science and statistics into explanatory accounts of
observable phenomena like heat, flow, and diffusion.

That knowledgeable people can interpret its significance in quite different
ways is illustrated by the contrasting views of Monod (1972) and Polkinghorne
(1986). Monad takes the operation of chance in the processes of the world as
evidence of their meaninglessness. Polkinghorne views it as providing an
insight into the design of the world:

When I read Monad's book I was greatly excited by the scientific picture it pre-
sented. Instead of seeing chance as an indication of the purposelessness and fu-
tility of the world, I was deeply moved by the thought of the astonishing
fruitfulness it revealed inherent in the laws of atomic physics... the fact that they
have such remarkable consequences as you and me speaks of the amazing poten-
tiality contained in their structure. From this point of view the action of chance is
to explore and realize that inherent fruitfulness. (p. 54)

The "laws of chance" is the name we give to the fact that certain events that
are irregular and unpredictable individually are regular and predictable in the
aggregate. As an explanatory construct, chance, or the idea of the laws of
chance, raises the question of what an explanation is. What do we mean when
we say that the outcome of the toss of a coin is determined by chance? Or that
the laws of chance dictate that if a fair coin is tossed a large number of times, it
will come up heads on about half of the tosses? In what sense have we ex-
plained anything by such claims?

Perhaps we need to recognize levels of explanation. A concept that is used
as an explanatory construct at one level must be explained, if at all, at a deeper
level. I say "if at all" because instead of attempting to explain a concept, one
might opt to take it as a given—as a primitive of one's explanatory system. One
might elect, for example, to treat chance as such a construct—take it as a given
and decline to attempt to explain it in terms of more basic concepts. This does
not preclude one from studying how it works; it simply admits an inability, or at
least a disinclination to try, to determine why it works.

So if we accept the laws of chance, much as we accept the law of gravity, as
descriptive of a characteristic of the way things are, and let it go at that, we may
invoke the concept to account for events that we cannot account for
deterministically. We can, in other words, attribute to chance events or
outcomes that we cannot account for in a more traditional cause-effect way.
But we should recognize, it seems to me, that this is explanation at a less than
fundamental level. By defining random sampling as sampling in such a way
that every member of the population has an equal likelihood of being in the
sample, we can invoke the concept of regression to the mean, for example, to
account for a variety of phenomena. Such an explanation accounts very well
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for the phenomena, given the definition of random sampling, but it does not
explain why random sampling works.

Identification of Underlying Stochastic Processes

When a variable is distributed in some regular fashion—say in a way describ-
able by a simple mathematical function—one is prompted to look for some
process that would produce a variable with values matching that distribution.
And when one discovers two or more variables with the same or similar distri-
butions, one naturally wonders whether the values of those variables are deter-
mined by the same or similar underlying processes. The search for stochastic
processes that will yield values of variables that match specific distributions
has proved to be a fruitful line of investigation in probability theory and statis-
tics. The idea is illustrated by reference to a few simple processes that will pro-
duce specific distributions.

The variable of interest in the first example is the number of heads in 20 tosses
of a fair coin. This variable can take on any value from 0 to 20, inclusive. Sup-
pose we define an event as 20 tosses of the coin and an outcome as the number of
heads obtained in that event. Imagine performing a rather tedious experiment in
which we record the outcomes of a large number—say 10,000—of such events.
If we performed this experiment and graphed the results, we would have a distri-
bution of event outcomes very close to that shown in Fig. 7.1, which can be de-
scribed mathematically as a binomial distribution.

The second example involves rolling a fair die, which, by definition is
equally likely to turn up any of its faces. If we were to roll such a die a very large
number of times, we would find each of the values 1 through 6 coming up
roughly equally often. That means, if we were to plot the distribution of values
it would be approximately rectangular. Now suppose we rolled a. pair of fair
dice 10,000 times. What would we get as a distribution of sums! This
distribution, which would be a distribution of the values 2 through 12, would
look like that shown in Fig. 7.2.

There would be about twice as many 3's as 2's, because there is only one
way to roll a 2 (1 on each die) whereas there are two ways to roll a 3 (a 1 on the
first die and a 2 on the second or a 2 on the first die and a 1 on the second). There
would be about three times as many 4's as 2's because there are three ways to
roll a 4: 1-3, 2-2, 3-1. And so forth. We can extend this thought experiment
indefinitely by imagining rolling three, four, or any number of fair dice at a
time. What we would produce as a distribution of sums in any instance is easily
determined by figuring the number of combinations that will produce each
possible sum and the number of ways (permutations) in which one could get
each such combination.



FIG. 7.1. Expected number of events that would have N heads in 10,000 events in each
of which a coin is tossed 20 times. 

FIG. 7.2. Expected number of sums equal to S in 10,000 tosses of a pair of dice.
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The final example involves another coin-tossing exercise. In this case suppose
we defined an event as the number of successive heads tossed before the occur-
rence of a tail. That is, on each trial we would toss the coin until it came up tail, and
the value of the variable for that trial would be the number of heads tossed; the oc-
currence of a tail would terminate the trial. Obviously, this variable can take on any
integer value equal to or greater than 0. When we plotted the distribution of values
obtained in 10,000 trials we would expect to get a distribution approximately lie
that shown in Fig. 7.3 which can be described by the exponential function

 

FIG. 7.3. Expected number of times the first head will be preceded by N tails in 10,000 trials.
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where n, in this case, equals 10,000.
Given an understanding of how the aforementioned distributions are

generated, their shapes make intuitive sense. We would expect, before doing
the first coin-tossing experiment, for example, to end up with relatively many
outcomes with approximately equal numbers of heads and tails, and relatively
few with nearly all heads or nearly all tails. Similarly with the other
experiments, understanding the process by which the distributions are
generated leads us to expect the outcomes we would get. Why we should have
these expectations, and why they should be borne out, are interesting questions
to which I do not think we have the answers.

Many variables in nature are distributed in regular ways and sometimes it is
possible to describe what appear to be simple processes that will produce the
same distributions. Does the identification of such a process constitute an
explanation of why a natural distribution is what it is ? Showing that a particular
distribution could have been produced by a specified process is not equivalent
to showing that it was produced by that process. Moreover, when a distribution
can be assumed to have been produced by a specified process, the question
remains as to why the process has the properties it does.

Statistics in me Service of Argument

The purpose of statistics is to organize a useful argument from quantitative evi-
dence, using a form of principled rhetoric. (Abelson, 1995, p. xiii)

Good statistics involves principled argument that conveys an interesting and
credible point. (Abelson, 1995, p. 1)

The idea that the results of statistical tests should be used primarily as aids to
human judgment, and seldom if ever as definitive justification for accepting or
rejecting a hypothesis has been defended forcefully by Abelson (1995) in his
presentation of "statistics as principled argument." Abelson identifies five fac-
tors that, in his view, determine the persuasive force of a statistically supported
argument, and organizes them around the acronym MAGIC:

• Magnitude: "The strength of a statistical argument is enhanced in accord
with the quantitative magnitude for its qualitative claim" (p. 12). Larger ef-
fects are generally more persuasive than smaller ones, which is not to say
that small effects are never interesting or important. Abelson introduces the
idea of "causal efficacy," which he defines as effect size divided by "cause
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size," and according to which, "A large effect from a small variation in the
cause is the most impressive, whereas a small effect arising from an appar-
ently large causal manipulation is the most anticlimactic and disappoint-
ing" (p. 48).

• Articulation: "the degree of comprehensible detail in which the conclusions
are phrased" (p. 12). A more detailed conclusion (A > B > C) is more per-
suasive than a less detailed one (A, B, and C differ).

• Generality: "the breadth of applicability of the conclusions" (p. 12). Broad
conclusions, which are likely to require for support data from several re-
lated studies, are more persuasive than narrow conclusions, like those to
which single studies are usually limited.

• Interestingness: "for a statistical story to be theoretically interesting, it must
have the potential, through empirical analysis, to change what people be-
lieve about an important issue" (p. 13).

• Credibility: "the believability of a research claim" (p. 13). Credibility,
Abelson suggests, depends on both the soundness of methodology and the-
oretical coherence of the claim.

Abelson's (1995) book is a compelling elaboration of how statistics can be
used effectively to support judgment and reasoned argument, with emphasis
throughout on the principles noted previously. It documents numerous com-
mon misconceptions about statistical testing and many ways in which statistics
can be, and have been, used inappropriately and to the detriment of psychologi-
cal research. It is crammed with clear, practical, and often engagingly witty ad-
vice to statistics users, novices and experts alike: "Never flout a convention
just once. In other words, either stick consistently to conventional procedures,
or better, violate convention in a coherent way if informed consideration pro-
vides good reason for so doing" (p. 70). "Don't be overjoyed when your test
statistics come out whopping. Be suspicious" (p. 90). "Omnibus testing is like
playing the guitar with mittens on" (p. 105). "A wise general practice in the sta-
tistical treatment of complex data arrays is first to display them graphically ,
and do rough, simple quantitative analyses. These will give a feel for the poten-
tial meaning of the results; only then should you resort to complex refine-
ments" (p. 128). "It is a good idea for researchers themselves to conduct one or
two replications before getting too carried away by the force of their initial
claims" (p. 133). "One might say that isolated claims are not robust. Investiga-
tors who feel that their results march with full generality into the annals of sci-
ence are kidding themselves" (p. 149). "To be interesting, a result has to make
you think about the topic—or at least make you want to think" (p. 160). "Re-
search claims are regarded as guilty of obvious artifactual possibilities unless
these are explicitly and adequately dealt with" (p. 180).
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THEORIES OF STATISTICAL INFERENCE

Although some seminal suggestions regarding the use of statistics for inferen-
tial purposes had been put forth as early as the middle of the 19th century—for
example, the work of Gustav Radicke (Coleman, 1987)—what might be re-
ferred to appropriately as theories of statistical inference were not developed
until the 20th century. Gigerenzer and Murray (1987) point out that something
of an "inference revolution" occurred in psychology between 1940 and 1955,
as a consequence of which "inferential statistics" became indispensable for
psychologists. Unfortunately, as the same authors also note, many textbooks
that are used to teach students techniques of statistical analysis and experimen-
tal design present the material as though the theoretical underpinnings of sta-
tistical inference were noncontroversial. Often theory, let alone theoretical
controversy, is not even mentioned. Algorithmic procedures are given for cal-
culating various statistical quantities and for making tests of statistical signifi-
cance; follow the computational recipe, consult the appropriate tables, report
the results, and rest easy that science has been served. In fact, the development
of the theoretical underpinnings of statistical inference was full of controversy
and differences of opinion persist regarding some of the foundational issues.

Many people contributed to the development of mathematical statistics
during the early part of the 20th century. One who deserves special mention is
Karl Pearson. He is remembered primarily for the correlation coefficient that
bears his name, but his influence went way beyond this contribution. He
advanced the concept of a skew distribution, identified certain measures
(mean, standard deviation, symmetry, and kurtosis) as the important
parameters of a distribution, created the first goodness-of-fit test using the
chi-square statistic, and established—along with Francis Galton and Raphael
Weldon—Biometrika, which published primarily distribution measurements
on biological variables motivated by an interest in Darwin's then new theory of
evolution. Pearson is also remembered for the long-lasting feud between him
and another major figure in the statistical world of the early 20th century,
Ronald A. Fisher; the jury is still out on the question of who was the more
contentious of the two.

Three different schools of thought have defined much of the controversy
around statistics during the 20th century; one derives from the work of R. A.
Fisher, another from that of Jerzy Neyman and Egon Pearson (Karl Pearson's
son), and a third from the approach originally put forth by Thomas Bayes.
Gigerenzer et al. (1989; Gigerenzer & Murray, 1987) see each of these views as
"a considerable advance" over earlier ones, but they note that none of the three
has emerged as the clear winner, and that the issues on which they are divided
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are deep and fundamental: "The different schools often disagree fiercely about
basic issues, and value-laden words from ordinary speech such as 'efficient,'
'unbiased,' and 'coherent,' have been enlisted as names of central concepts in
the various theories. By implication, rival approaches are charged with
inefficiency, bias, and incoherence" (p. 90). The rivalry, sometimes acrimoni-
ous, among the pioneers, especially between Fisher and Karl Pearson, has been
described in some detail by Salsburg (2001). Salsburg's book recounts also the
contributions of other notables to the development of statistics as a
mathematical discipline.

The approaches of each of these schools are widely applied, those of Fisher
and Neyman-Pearson primarily in the experimental sciences and those of
Bayes more in economics and related disciplines. Fisherian and Neyman-
Pearson ideas about statistical inference have been extremely influential in the
development of methodology and especially conventions of experimental
design in psychology. The Bayesian approach has been studied widely by
psychologists as a normative model of everyday reasoning and decision
making and has motivated a great deal of experimentation designed to
determine the extent to which people naturally behave as Bayesians. The
Fisherian and Neyman-Pearson views are considered briefly in the next two
subsections; the Bayesian approach has already been discussed in chapter 4.
Curiously, Bayesian analysis has not been applied much to the interpretation of
experimental data, even by those who consider it a normative model of
reasoning and decision making.

Fisnerian Inference

The Fisherian approach, which was set forth in Statistical Methods for Re-
search Workers, first published in 1925, centers on designing experiments to
test the null hypothesis, the hypothesis that two samples were randomly drawn
from the same population. The statistical question that Fisherian significance
tests, such as the analysis of variance, are intended to answer is the question of
the probability of obtaining a difference between observed and hypothesized
data of a specified magnitude by chance. By convention, when the probability
of obtaining an observed difference by chance is determined to be less than a
specified criterion, say .05, the null hypothesis—the hypothesis that there is no
nonchance difference—is said to be rejected at a level of confidence defined by
that criterion. As already noted, the logic of the significance test is not univer-
sally accepted.

Gigerenzer et al. (1989) distinguish between ^substantive null hypothesis and a
statistical null hypothesis, and argue that it is only the latter that can be rejected by
a Fisherian significance test. The substantive null hypothesis is the hypothesis that
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an experimental treatment has had no effect; the statistical null hypothesis is the
hypothesis that two samples have been drawn from the same population. System-
atic errors in the design of an experiment could lead either to the rejection of the
statistical null hypothesis when the substantive null hypothesis is true or to failure
to reject the statistical null hypothesis when the substantive one is false. For this
reason, proceeding inferentially from the rejection of a statistical null hypothesis
to the acceptance of the hypothesis of a causal effect, a common practice in the in-
terpretation of the results of psychological experiments, is not as straightforward
as typically assumed (Gigerenzer & Murray, 1987).

It is conventional in the Fisherian approach to set a strict criterion of re-
jecting the null hypothesis; .05 is commonly used, as is .01. This means that,
given the assumptions on which the test rests, the probability of rejecting the
null hypothesis if it is really true is small (less than .05 or less than .01 for
these two criteria). It means also, however, that the probability of failing to
reject the null hypothesis if it is really false is likely to be quite large.
(Fisherians never speak of accepting the null hypothesis; the only two op-
tions one has are to reject it or to fail to reject it.) The rationale for putting this
kind of bias in the system is the assumption that, in the context of scientific
research of the kind for which statistical hypothesis testing is usually done,
failing to reject the null hypothesis when it is really false is a less objection-
able type of error than rejecting the null hypothesis when it is really true. This
bias is an analogue of the preference in law for failing to convict a guilty party
over convicting an innocent one. Fisher did not put as much stock in a single
experiment that yielded ap < .05 than have many of the subsequent users of
his ideas; he stressed the importance of replication arguing that a phenome-
non should be considered experimentally demonstrable when one knows
how to design an experiment so that it will almost always yield a statistically
significant result.

In a defense of the Fisherian approach to statistical inference, Macdonald
(1997b) notes that:

A low significance level does not require one to accept the presence of an effect.
One's acceptance can be influenced by such factors as the effect's importance,
its consistency with previous findings, its compatibility with one's existing be-
liefs and one's confidence in the researchers and in the study's methodology. In-
deed this acceptance can depend on aspects of the data of which the test takes no
account (e.g., inconsistencies within the data, overly good fits, unexplained pe-
culiarities, errors in other parts of the analyses, etc.). (p. 339)

Macdonald argues too, that, although Fisher rarely spoke of power—the
probability of rejecting the null hypothesis conditional on its being false—in his
writings, it does not follow that the notion is incompatible with the approach.
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Fisher himself appears to have been a colorful, strong-willed, brilliant
individual and his work probably had at least as much influence on the
development of inferential statistics as that of any other individual. His
interests were not confined to statistics and experimental design; he wrote
extensively and influentially on genetics as well (Salsburg, 2001; J. R. Turner,
1987), sandwiching his major work on this topic, The Genetical Theory of
Natural Selection, published in 1930, between Statistical Methods for
Research Workers, 1925, and The Design of Experiments, 1935. His
long-running feuds first with Karl Pearson and later with Egon Pearson and
Jerzy Newman are well documented (Box, 1978; Salsburg, 2001), although
seldom discussed in statistics textbooks.

Neyman—Pearson Inference

Jerzy Neyman was 37 years younger than Karl Pearson and a contemporary of
Karl's son, Egon. The Pearson of the Neyman-Pearson collaboration was
Egon. Neyman and E. Pearson's (1928a, 1928b, 1933) approach to statistical
inference can be seen as, in part, a reaction against what its proponents per-
ceived to be the overly one-sidedness of the Fisherian method of hypothesis
testing. Instead of posing questions that could be answered only in a yes-no
fashion—yes the null hypothesis is rejected, no it is not—the Neyman-
Pearson approach provides for the consideration of how the weight of evidence
contributes to the relative statistical plausibility of each of two competing hy-
potheses, one of which can be the null hypothesis.

Use of this approach involves not only articulating the hypotheses that are to
be considered but also specifying the criterion that will be used to make a
selection between them. One selects a decision criterion on the basis of the
relative benefits and costs of the various possible ways to be right or wrong—
deciding in favor of Hypothesis 1 when Hypothesis 2 is true, and so on.
Newyman and Pearson saw their approach to hypothesis testing as one among
other alternatives and stressed the need for users of statistical inference
techniques to exercise judgment regarding the appropriateness of specific
techniques to their own situations.

In somewhat oversimplified terms, Neyman-Pearson hypothesis testing
can be equated with either-or decision making, whereas the Fisherian
approach is better described as yes-no. Because of the either-or nature of the
former, when one of the hypotheses is the null it is possible to compute the
probability of both types of error and thus also power. So, unlike with Fisherian
testing, acceptance of the null hypothesis is a legitimate outcome in this case.

Macdonald (1997b) describes both the Fisherian and Neyman-Pearson
approaches to statistical inference as being "concerned with establishing that



STATISTICS • 269

an observed effect could not plausibly be accounted for by sampling error" (p.
334). When an achieved significance level—the probability of obtaining an
effect as extreme as the one observed—is sufficiently low, the hypothesis that
the obtained effect could plausibly be due to sampling error is rejected, and
rejection of this hypothesis entails also rejection of the hypothesis of a true
effect opposite in direction to that observed.

Bayesian Inierence

The Bayesian approach to hypothesis evaluation was discussed at length in
chapter 4. Suffice it to say here that this approach has not been applied widely
by psychologists to the analysis of the results of their experimental studies,
despite arguments advanced by many writers regarding the advantages of
such analyses (Edwards et al., 1963; Gelman et al., 1995; Good, 1983a;
Greenwald, 1975; Lindley, 1984; Rindskopf, 1997; Rouanet, 1996;
Rozeboom, 1960; Rubin, 1978).

Hybrid Inferential Statistics

Gigerenzer et al. (1989) review the debate between the followers of Fisher and
those of Neyman-Pearson (as well as those of Bayes) in some detail and note
that it has not ended. They note too the remarkable fact that li ttle hint of the his-
torical and ongoing controversy is to be found in textbooks that are used to
teach statistical significance testing to its potential users. The amalgamation of
ideas from different schools of thought that is commonly taught fails to do jus-
tice to the richness and complexity of their philosophical underpinnings and
promotes an uncritical and doctrinaire application of certain types of statistical
analyses as the sine qua non of good psychological science:

The need for personal judgment—for Fisher in the choice of model and test sta-
tistic; for Neyman and Pearson in the choice of a class of hypotheses and a rejec-
tion region; for the Bayesians in the choice of a prior probability—as well as the
existence of alternative statistical conceptions, were ignored by most textbooks.
As a consequence, scientific researchers in many fields learned to apply statisti-
cal tests in a quasi-mechanical way, without giving adequate attention to what
questions these numerical procedures really answer, (p. 106)

One must wonder why this state of affairs exists. Who has decided that
students, especially students who are preparing to do scientific research, have
no need to know about the philosophical disputes that have raged regarding the
justifiability of some of the fundamental tools that they are learning how to
use? Are students being "protected" from these controversies? Are instructors
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concerned that exposure to them would undermine students' confidence in the
efficacy of statistical inference? Are instructors reluctant to try to make sense
of them? Are they themselves unaware of them? Are Gigerenzer and Murray
(1987) correct in attributing the widespread belief among psychologists in the
"illusion" of a single statistical theory for valid inference from data to
hypotheses in part to self deception rooted in the strong desire to have such a
theory? "Psychologists seem not to wish to be cured of these illusions, for the
consequence would be the abandonment of the indispensable instrument and
hence the abandonment of the unification of psychological methodology
institutionalized by the inference revolution" (p. 25).

Gigerenzer et al. (1989) also note that significance testing, the rules of
which are based on an amalgam of the ideas of Fisher and Neyman-Pearson
that neither Fisher nor Neyman and Pearson would be likely to endorse, has
become almost the only statistical tool that is used in sociology and
psychology, and that in these fields other tools, such as confidence intervals,
the likelihood function, and Bayesian inference, have been given little
attention by comparison. They note too the strange incongruity in the fact that
many researchers who have done experimental studies of human reasoning
under uncertainty have concluded that their subjects are irrational because they
do not reason in accordance with Bayes' theorem, whereas they themselves use
Fisherian or Neyman-Pearsonian statistics or a mixture of them to test their
own hypotheses.

As institutionalized in university curricula and journal editorial policies, the
hybrid theory, as Gigerenzer et al. (1989) call the amalgam, with its sharp focus
on statistical significance testing has been a major determinant of how sociologi-
cal and psychological research is done: "In some fields, a strikingly narrow un-
derstanding of statistical significance made a significant result seem to be the
ultimate purpose of research, and non-significance the sign of a badly conducted
experiment—hence with almost no chance of publication" (p. 108). Support for
this view comes from a study by Sterling (1959) that showed that as of 1955
more than 80% of the articles in several leading psychology journals used signif-
icance tests to justify conclusions from the data. Gigerenzer et al. claim that as of
the late 1980s the figure was somewhere between 90% and 100%.

The point of this discussion is not to deny the usefulness of statistical
significance testing as a research tool. Used thoughtfully with an appreciation
of its limitations, it can be a powerful aid to extracting information from noisy
data. Used unthinkingly without an understanding of the assumptions on
which various tests rest and of the controversies that have surrounded some of
those assumptions, it can become a fetish and an impediment to scientific
advance. Statistics texts typically do make a distinction between statistical and
theoretical or practical significance, but the dominance of statistical
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significance testing as an experimental paradigm has obscured this distinction
in practice. The purpose of research is to further our understanding of how the
world works, not just to discover statistically significant differences, and only
to the extent that the discovery of such differences really serves the larger
purpose does it contribute anything of worth to the enterprise.

Noting that early psychologists took physics as their model for an
experimental science, Gigerenzer (1987) raises the interesting question of why
they did not follow the lead of quantum theory, and proposes the answer that
"quantum theory seemed to violate two ideals connected with the struggle for
certain knowledge: determinism and objectivity" (p. 12). Probability, he
argues, was pressed into the service of these ideals through the way in which
statistics was applied to the drawing of inferences from experimental data:
"Probabilistic thinking was used as a means toward objectivity in the classical
sense of separating the experimenter from his knowledge. Such was the role of
inferential statistics as a mechanization of the experimenter's inference from
data to hypothesis" (p. 12).

The amalgamation of the ideas of Fisher and Neyman-Pearson into the
hybrid form of statistics that is generally taught in psychological experimental
design texts is seen as integral to maintaining the objectivity of psychology as
an experimental science:

The connection I shall draw between the kind of inferential statistics established
in psychology and objectivity is based on the following observations: (1) There
was a single dominant theory of inferential statistics that (2) was taught anony-
mously (i.e., without indication of its multiple and sometimes contradictory
sources) as "truth" per se. (3) Problems stemming in part from the fact that the
theory was spliced together from theses different sources went unacknowl-
edged, (4) alternative theories were neglected, and (5) this dominant hybrid the-
ory was institutionalizedby editors of journals and internalized by authors as the
one "true" path to experimental knowledge (and therefore toward publication).
(Gigerenzer, 1987, p. 12)

Determinism could coexist with probabilistic thinking during the first half
of the 20th century, Gigerenzer argues, because "probabilistic thinking was
enlisted in the service of determinism" (p. 15). The appearance of objectivity
was promoted by eliminating the need for the experimenter's judgment
through the application of mechanical statistical procedures to the interpreta-
tion of data; statistics became "a means for the mechanization of inductive
inference" (p. 25). Neglecting to acknowledge the controversial history of
statistics and the existence of approaches alternative to the one that was almost
universally taught were essential to the maintenance of this appearance, in
Gigerenzer's view.
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The amalgam, or hybrid theory, could of course be exactly right. The fact
that neither Fischer nor Neyman and Pearson would own it as his, or their, own
does not necessarily make it wrong. Indeed, given the sharp differences of
opinion between Fisher on the one hand and Neyman and Pearson on the other
regarding how statistical inferences should be made, it would not be surprising
if a theory that stood the test of time turned out to show the influence of both
views but to not be totally consistent with either. A theory of statistical
inference should be judged on its merits and not on its historical pedigree.
Critics of the hybrid view generally would argue, I believe, that not only is this
view not completely consistent with Fisher's theory or that of Neyman and
Pearson, but that it also does not have a self-consistent theoretical foundation
of its own.

Signal Detection Theory

A strong argument could be made for the idea that the single most important in-
sight that has ever been expressed about decision making is the recognition that
in most choice situations there are more ways than one to be wrong not all of
which are equally palatable to the decision maker. Perhaps the most well-known
illustration of this principle was Pascal's famous wager, which goes roughly as
follows: God exists or He does not. Reason cannot decide the issue. One must
wager. One can bet that God exists or that He does not, and in both cases one can
be right or wrong. Suppose that one bets that God exists. If one is right, one gains
infinitely much; if one is wrong one loses little. Suppose that one bets that God
does not exist. If one is right, one gains little; if wrong, one loses infinitely much.
Clearly, Pascal argued, one should bet that God exists.

It is doubtful if any other wager, actual or proposed, has generated as much
commentary and debate as this one. Many variants of Pascal's wager, in which
the possible outcomes are not so disparate as those expressed by him but that
still represent greatly differing levels of desirability, have been constructed
since Pascal's time. The point of all of them is to demonstrate that the way one
wishes to "bet" on an uncertain outcome is likely to be determined not only by
how likely one believes the various thinkable outcomes to be but also on the
anticipated satisfaction or regret associated with betting correctly or
incorrectly (selecting an outcome that does not occur) in the various possible
ways. The wager illustrates in an intuitively compelling way that there can be
more to rationality in uncertain choice situations than simply making
selections so as to maximize the probability of being correct.

This insight has had considerable influence in experimental psychology
through the application of the statistical theory of signal detection (D. M.
Green & Swets, 1966; Swets, 1964; Tanner & Swets, 1954). In its basic form



STATISTICS • 273

the theory deals with the problem of detecting signals in noise; the observer's
(detector's) task is to say whether an observation interval contains only noise
or a signal as well. Fundamental to the theory is a sharp distinction between the
sensistivity of the observer and the criterion that the observer uses to determine
whether to report that a signal is present.

The situations to which signal detection theory was originally applied were
designed so that an observer could not increase the probability of reporting the
presence of a signal when one had actually occurred without also increasing
(by a different amount) the probability of reporting the presence of a signal
when one had not occurred. In order to attain a desired probability of reporting
a signal when it was really present (the probability of a "hit"), one had to settle
for accepting also some nonzero probability of reporting a signal when it was
not present (the probability of a "false alarm").

Such situations are very common in life; in order to capture more of the real
signals, one has to be willing to pick up also more false alarms. Or to look at it
from another perspective, the decision problem becomes that of deciding what
kind of a compromise one is willing to strike between failing to capture real
signals on the one hand and incorrectly counting nonsignals as signals on the
other. A "signal," as the word is being used here, could be a literal signal, as in
the context of a sonar operator trying to decide whether a signal emitted by a
ship has occurred in a background of acoustic noise, or it could be a figurative
one, as when we treat the outcome of a diagnostic test as a possible signal for
the presence of a specific disease.

The problem of the covariation of hits and false alarms is illustrated clearly
in the case of medical diagnosis. Many disease symptoms are continuous in
nature—a high temperature, for example, is often symptomatic of illness, but
temperature can vary continuously over a considerable range and it is
impossible to select a point on this continuum such that all higher temperatures
occur only in the presence of disease and no lower ones ever do. Thus if one
uses temperature as an indication of disease, wherever one places the divide
between "normal" and "abnormally high" temperatures, there are likely to be
some healthy people with a temperature above this point and some sick ones
with a temperature below it. (For purposes of this illustration, I am ignoring
that an abnormally low body temperature also can indicate a medical problem.)
In order to decrease the percentage of healthy people whose temperature is
above the "abnormally high" criterion, we can raise that criterion, but in so
doing we have to accept the fact that we will also increase the percentage of
sick people whose temperature reading will fall below it; conversely to
decrease the percentage of sick people whose temperature will fall below the
criterion, we can lower it, but in doing this we also increase the percentage of
healthy people whose temperatures will be classified as abnormally high.
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The problem is very common and because signal detection theory pro-
vides a quantitative means of dealing with it, the theory has found applica-
tion in a great many contexts (Swets, 1986; Swets, Dawes, & Monahan,
2000a, 2000b). By quantifying what can be expected given what is known
or assumed about the nature of the "signal" that one is trying to detect and
the sensitivity of the detection process, it can help one decide on a decision
criterion that takes into account both of the types of mistakes that can be
made. In the case of the medical illustration, if temperature were the only
symptom one had on which to base a diagnosis of a particular disease
(which of course it is not), where one would set the criterion for "abnor-
mally high" would depend in part on the relative seriousness of the two pos-
sible kinds of mistake—judging a healthy person to be sick and judging a
sick one to be healthy.

AMBIGUITY IN STATISTICAL ASSERTIONS

The word ambiguity sometimes has a specific technical meaning in the con-
text of decision theory, which is illustrated by a comparison of the two fol-
lowing situations. Situation 1: You are to draw a marble from a bag that you
know contains an equal number of red and blue marbles. Situation 2: You are
to draw a marble from a bag that you know contains either all red marbles or
all blue marbles, but you have no reason to suspect that either possibility is
more likely than the other. In either case if asked the probability of drawing a
red marble, you would undoubtedly say .5. And if faced with the necessity of
making some important decision on the basis of the color of the marble you
got on a single draw, it would seem that you should be equally willing to draw
from either bag, inasmuch as the degree of uncertainty regarding the outcome
of a draw is the same in both cases.

Nevertheless, the situations are not identical. In the first case, you know the
proportion of marbles of each color in the bag; in the second case, you do not.
As it turns out, people are not always indifferent to these two situations. In the
jargon of decision theory, the second situation is said to be not only uncertain
but ambiguous, the term ambiguity having come to represent, in this context, a
specific type of uncertainty (Einhorn & Hogarth, 1985; Ellsberg, 1961; Frisch
& Baron, 1988; Gardenfors & Sahlin, 1983). People often show a preference
for situations in which the probabilities are known as opposed to those in which
they are ambiguous in this sense, and this preference sometimes leads to be-
havior that appears to violate certain widely recognized axioms of rational
choice (Ellsberg, 1961).

In what follows I am using ambiguity in its familiar connotation of having
more than one interpretation or, more loosely, being obscure. Some statistical as-
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sertions that are ambiguous in this sense are ambiguous by design, their ambigu-
ity is intended to serve some purpose; others are unintentionally ambiguous.

To illustrate a possible intentional use of ambiguity: If I wish to convince
you of the durability of a particular foreign-made car, I might tell you that 90%
of all such cars sold in the United States in the last 10 years are still on the
highway. In fact, this claim says very little to the individual who thinks about it;
in particular it does not tell one how long these cars have survived, even on the
average. The assertion does not rule out the possibility that 90% of the cars of
this make sold in the United States in the past 10 years were sold during the past
year. The ambiguity can serve the purposes of the promoter of this make of
vehicle very well however, if the average listener accepts the claim uncritically
and, even better, misinterprets it to mean that 90% of all these automobiles are
on the highway 10 years after they were purchased.

I received in the mail recently an advertisement from a major fertilizer dis-
tributor for a lawn treatment package with that distributor's product. Across
the cover page in large print was the question: "Did you know that 92% of
what liquid lawn care services apply to your lawn is water?" This is a classic
example of the use of statistical innuendo. Let us assume that the claim is
true; I have no reason to doubt that it is. It tells us nothing about the effective-
ness of liquid lawn care services or whether they are better or worse than al-
ternative approaches of comparable cost. It is quite possible that, given the
chemicals that are used, 92% water is precisely the right mix. (I am not, of
course, claiming that it is the right mix, but only that it could be.) Presumably
the designer of this advertisement intended that the reader draw the conclu-
sion that a liquid lawn service is a poor value relative to the alternative the ad-
vertisement is promoting, but the claim that it is 92% water provides no
objective support for that conclusion. The lawn care advertisement is repre-
sentative or many advertisements that use numbers in suggestive but com-
pletely uninformative ways.

Incidence statistics can be presented in various ways, depending on the
perception one wishes to create. Sprent (1988) notes, for example, that in 1985
the number of road deaths per 100,000 population was about 9.1 in the United
Kingdom and that the corresponding number for the United States was larger
by about a factor of 2. On the other hand, when road deaths are reported per
vehicle mile, the U.S. number is smaller than that of the U.K. Promoters of
travel packages on opposite sides of the Atlantic would have different
preferences as to which way this comparison is made.

If one wished to support the idea that coal mining had become safer during
the period 1950 to 1970, one might point out that the number of accidental
deaths per ton of coal decreased over that time. If one wished to make the case
that coal mining had become a riskier vocation, one might note that the number
of accidental deaths per employee increased. Both claims are true. Because
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mining became increasingly mechanized, the number of miners it took to pro-
duce a fixed amount of coal decreased over that period so it is possible for the
number of accidental deaths per unit of product to go down while the number
per working miner goes up (Crouch & R. Wilson, 1982).

Even when one uses the same set of numbers as the basis for reporting
percentages or ratios, one may still be able to create quite different impres-
sions depending on how one elects to report them. Dawes (1988) makes this
point with reference to the reporting of the effects of smoking on health.
One comparison involved 44.8 deaths per thousand among smokers and
21.1 per thousand among nonsmokers. If one wants to emphasize the detri-
mental effect of smoking, one is likely to report the death rate to be over
twice as high among smokers as it is among nonsmokers: 44.8/21.1 = 2.12.
However, if one wants to play down the effect of smoking, one might com-
pare survival rates and point out that smokers are almost 98% as likely to
live as are nonsmokers: 955.2/978.9 = .976. Many situations provide oppor-
tunities for reporting proportions or percentages in more than one way,
thereby making it possible to create quite different impressions, depending
on the representation one chooses.

Consider a case that led Dewdney (1993) to title a book on innumeracy
and "math abuse" 200% of Nothing. An ad for high-tech energy-efficient
light bulbs and fixtures promised a 200% savings on energy resulting from
the substitution of flourescent bulbs requiring 35 watts for incandescent
ones requiring 100 watts. Most readers would probably agree that a reduc-
tion from 100 to 35 should be considered a savings of 65/100, or 65%,
which is to say that if one wants to express a savings as a percentage, one
should express it as a percentage of what the amount was before the reduc-
tion. The writer of the ad apparently chose to express the savings as a per-
centage of what the amount became after the reduction: 65/35, or roughly
200%. The latter sounds much more impressive, to be sure, but, as Dewdney
points out, given the (presumably) conventional connotation of percentage
saved, this would lead most readers to conclude that the effect of burning
the fluorescent bulb would be not only to save all the energy consumed by
the incandescent bulb but to generate as much again. This particular ap-
proach to making percentages seem more impressive than they really are
Dewdney refers to as "percentage pumping."

We should note, however, that percentage calculations can be confusing for
reasons other than the deviousness of advertising techniques. If I had $ 100 and
gained or lost $10, we would say, I think, that I had gained or lost 10% of my
original wealth. In fact, as already noted, the loss of a given magnitude may be
perceived as larger than a gain of the same amount, because the former equals a
larger fraction of the remaining wealth than does the latter. This sort of consid-
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eration led Daniel Bernoulli (1738) to distinguish between fortune physique
and fortune morale, the former being the objective value of one's fortune and
the latter its subjective worth.

A common formulation of the problem of solid waste in the United States is
that 50% of all landfills now in use will close down within 5 years. As it hap-
pens, the same observation could have been made 20 or 30 years ago because
most landfills are designed to be used for only about 10 years (Rathje, 1989).
From the fact that half of those currently in use will be closed within 5 years
nothing follows regarding how many areas will be in use at the end of that time.
The number could be smaller than it currently is or it could be much larger.
What may appear to follow, in the view of a reader who does not think deeply
about the number, is that landfill areas are becoming scarce and that 5 years
hence there will be only half as many as there are now.

One often sees in the reporting of sports news, items of the general form
"such and such a team has won 8 of its last 10 games." Or "so and so has made
the finals in three of his last four attempts." One can be reasonably sure when
encountering such claims that the count started with a success. The truth of the
assertion that such and such a team won 8 of its last 10 games does not rule out
the possibility that the assertion that the team won 8 of its last 20 games is also
true. The habit of reporting small-sample statistics in this way gives a some-
what misleading picture. A run of 8 wins in 10 tries may or may not be impres-
sive, depending on how the sample was selected. Certainly it would be much
more impressive if it were selected randomly than if one decided to start the
count with a win, or worse, with a run of wins.

Often the reporting of the accuracy of diagnostic tests is ambiguous: Con-
sider, for example, the claim that a particular test is 90% accurate. Does this
mean: (a) given the disease, the test shows positive with a probability of .9, (b)
given a positive test result, the disease is present with a probability of .9, (c) 90 %
of all the test results, positive and negative, are accurate, or (d) something else.
The differences among these possibilities can be substantial. Moreover, even if
one knows which of them is intended, the situation may still be unclear. Tables
7.3 and 7.4 show two quite different situations, both of which are consistent with
a claim of 90% accuracy in the first sense mentioned previously. Similar exam-
ples could be constructed relating to each of the other senses. For Tables 7.3 and
7.4 it is assumed that the disease has an incidence of 1 in 10,000 in the popula-
tion. In the first example, the probability that the test shows (falsely) positive
when the disease is absent is set at .01; in the second, it is set at .001.

In the first of these hypothetical examples, the probability that the disease is
present, given a positive test result on a randomly selected person, is

p(D IP) =p(D&Pyp(P) = .000097.01 = .009,
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TABLE 7.3

Results Expected With a Diagnostic Test That Correctly Detects 90% of the Cases
of Disease and Erroneously Shows Positive on 1% of the Cases of No Disease

Test Result Ground Truth

Disease (D) No Disease (~D)

Positive (P)
Negative (~P)

.00009

.00001

.00010

.01000

.98990

.99990

.01009

.98991
1.00000

Note. Assumed incidence is 1 in 10,000. Cell entries are joint probabilities, assuming the test is
administered to a large random sample of the population.

TABLE 7.4

Results Expected With a Diagnostic Test That Correctly Detects 90% of the Cases
of Disease and Erroneously Shows Positive on .001% of the Cases of No Disease

Test Result Ground Truth

Disease (D) No Disease (-D)

Positive (P)
Negative (~P)

.00009

.00001

.00010

.00100

.99899

.99990

.00109

.99891
1.00000

Note. Assumed incidence is 1 in 10,000. Cell entries are joint probabilities, assuming the test is
administered to a large random sample of the population.

about 9 chances in 1,000, or approximately 1 in 100. In the second case, the
probability that the disease is present, given a positive test result on a randomly
selected person, is

.000097.001 = .09,

or almost 1 in 10. In both cases, remember that the test is 90% accurate in the
sense that, given the presence of the disease, it returns a positive result 90% of
the time. However, a random person getting a positive result would have only
about one chance in a hundred of having the disease in the first case and about 1
chance in 10 in the second. (Of course people who get tested for a particular
disease usually are not randomly selected from the population, but get the test
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because they have some reason to suspect they might have the disease, and
these numbers would not apply to such nonrandom samples.) These examples
illustrate the importance of false-positive rates, especially given low-incidence
conditions, in interpreting the outcomes of diagnostic tests. They also serve as
a reminder that ambiguities in the way test accuracy is reported lend them-
selves to erroneous conclusions of various sorts.

Statistical results can also be ambiguous, or meaningless, because of un-
certainty about the way in which the samples on which they are based were
selected. If there is a possibility that a statistical claim is based on a sample
that was selected in a biased way, the claim cannot be taken to be representa-
tive of the general population to which the sample belongs. The results of
polls in which the respondents are self-selected are highly suspect, for exam-
ple, because people who voluntarily respond to a poll on a specific issue can-
not be assumed to be a random sample from the population of potential
respondents and therefore representative of the population as a whole with
respect to the issue involved.

The general moral of this story is that statistical assertions are very often
ambiguous, and sometimes even meaningless, and their ambiguity or lack of
meaning may go undetected if they are interpreted uncritically without an
effort to understand alternative interpretations they could have. Promoters
know rather well how to exploit ambiguous statistical claims. The kinds of
ambiguous claims that are sometimes made with the intent to mislead can also
be made in good faith and an unawareness of their ambiguity. The challenge to
the reader or listener to detect the ambiguity is the same in both cases, although
one may feel rather differently toward the originator of an ambiguous
statement that was intended to deceive than one does toward an individual who
speaks ambiguously from statistical naivete".

In a very readable little book that does not require a grounding in mathematics
to be appreciated, Huff (1954/1973) has described numerous ways in which sta-
tistics—in the sense of the presentation of facts and figures—can be used, inten-
tionally or unintentionally, to mislead. More recently, Gilovich (1991) has done
so as well in a book with the delightfully ambiguous title How We Know What Is-
n't So. Other writers who have provided useful and highly accessible discussions
of how statistics can be misused or misunderstood include Jaffe and Spirer
(1987), Paulos (1990), and Dewdney (1993).

STATISTICS AS A THEORY OF MIND

The idea of sampling is an essential element for making sensible decisions; in-
deed, it may be the basis of thought itself. (J. Cohen, 1957, p. 128)
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Statistics appeared on the psychological scene in a major way first, following
the work of Fisher and of Neyman and Pearson, as a tool for making inferences
regarding the meaning of the outcomes of experiments. Perhaps because this
application of statistics was seen to be very successful, psychologists began to
use statistical inference procedures as metaphors for how people make deci-
sions in daily life. Gigerenzer and Murray point to the application of the statis-
tical theory of signal detection to human sensory and perceptual processes
(Green & Swets, 1966; Swets, Tanner, & Birdsall, 1961; Tanner & Swets,
1954) as an especially noteworthy example of the fruitful use of this metaphor.

Gigerenzer and his colleagues (Gigerenzer & Murray, 1987; Gigerenzer et
al., 1989) have suggested that psychologists have a tendency to make meta-
phors of mind based on tools and instruments that they find useful. Especially
notable examples of such "tools-to-theories" transactions have involved statis-
tics and computers. These metaphors, both of which emerged around 1960,
have had a major impact on the subsequent history of psychological research.
Not only did they provide conceptual models for perceptual and cognitive phe-
nomena and frames of reference within which the phenomena can be viewed,
they helped determine the kinds of research questions that were asked.

According to Gigerenzer and Murray (1987), as a consequence of the
application of signal detection theory to the study of sensation and perception,
and related work:

[The mind, at least in certain functional contexts,] was now pictured as a statisti-
cian of the Neyman and Pearson school. The processes of "inference," "decision,"
and "hypothesis testing" were freed from their conscious connections and seen as
unconscious mechanisms of the brain. Thus, uncertainty, in the sense of uncertain
inferences and decisions, became an essential feature of cognitive processes, and
computation of distributions and likelihoods, random sampling and power analy-
sis became the mind's way of coping with this uncertainty, (p. 60)

Problems were constructed so that they could be answered by calculating proba-
bilities, means, variances, or correlations.... The new vocabulary for under-
standing human reasoning was the vocabulary of the statistician; the new
elements of thinking were numbers (probabilities), and the process of thinking
itself was explained by statistical operations such as calculating likelihood ra-
tios. The theoretical questions asked by experimenters, the problems posed to
the subjects, and the explanations sought all reflected the fascination with prob-
ability and statistics, (p. 147)

Although the mind-as-statistician metaphor was applied initially in psy-
chology primarily to the study of sensory and perceptual processes, its do-
main of applicability was soon extended to include more cognitive processes
as well. In recent decades it has prompted much effort to determine the abili-
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ties and limitations, the strengths and weaknesses, of people when faced with
problems that require reasoning under uncertainty. The performance of par-
ticipants in experiments is compared with ideal or normative performance, as
defined by a specific theory of how such reasoning should be done. As has al-
ready been noted, researchers or interpreters of this research have not always
recognized, or at least acknowledged explicitly, that the normative models
against which human performance is judged are often themselves matters of
dispute among statisticians and probability theorists.

When theoretical models have been used as normative standards against
which to compare human performance, performance usually has been shown to
deviate from the norms—to be suboptimal—in certain ways. Much of the effort
of researchers in this area has been devoted to determining or demonstrating pre-
cisely how people's reasoning under uncertainty commonly deviates from what
the normative models prescribe and explaining why it does so.

SUMMARY

There can be little doubt of the power of statistical methods for making infer-
ences when they are thoughtfully applied with a clear understanding of their
limitations and the assumptions that underlie them. But the cautions that have
been raised by various writers (Abelson, 1995; Gigerenzer et al., 1989; Good,
1983a) about the dangers of applying these methods in cookbook fashion and
the temptation to gloss over the complexity of the ideas in the interest of simpli-
fying instruction or assuring the noncontroversial nature of a science's pre-
dominant methodology cannot be ignored.

Psychology, and other disciplines that make equally heavy use of statistical
inference techniques, would be better served if the training of students seeking
advanced degrees in the field put much more emphasis on the logic and
frequently debatable assumptions that underlie the statistical procedures that
have been developed for inferencing and less on the mechanics of the
procedures themselves. Such training should include a thorough acquaintance
with the history of probability theory and the philosophical questions that
center on the concept of chance. Among the accounts of various aspects of this
history and of many of the relevant issues are those of David (1962), Hacking
(1965, 1975, 1990), Porter (1986), Gigerenzer and Murray (1987), Kriiger,
Daston, and Heidelberger (1987), Kriiger, Gigerenzer, and M. S. Morgan
(1987), Gigerenzer et al. (1989), and Salsburg (2001).

Training in statistics should also provide a perspective in which its use in
hypothesis testing and decision making is viewed as one among other avenues
to discovery. Macdonald (1997b) has characterized psychology as "a mix of
evidence and theory held together by arguments" (p. 344). This seems right to
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me. The results of statistical tests are among the evidences from which
arguments can be constructed, and they can be persuasive when used
appropriately, but they are by no means the only ones, and when used
inappropriately can be worse than no evidence at all.

In short, people who use statistics in their work to describe data sets or to
make inferences need to understand their tools, the rationales on which they
are based, and the assumptions that justify their use in particular instances. But
it is not only people who use statistics in their work who benefit from
knowledge of the subject. One must have some acquaintance with basic
statistics if one is to read the newspaper comprehendingly, if one is to avoid
being taken in by scams that capitalize on statistical naivete, and if one is be an
effective decision maker in an uncertain world.



CHAPTER

8

Estimation ana Prediction

I

We cannot regard an action as rational unless it computes the probabilities.

—Hacking (1987b, p. 52)

n the preceding chapters, much attention has been given to a variety of topics
relating to probability theory and statistics and relatively little to the results of
research on how, and how well, people think about probabilistic matters. The
results of some research have been discussed, but empirical studies have not
been the major focus. Beginning with this chapter, attention shifts to research,
its results, and the interpretations those results have been given.

Probabilistic or statistical reasoning has been studied in a variety of contexts
including clinical diagnosis (Meehl, 1954), management decision making (R.
V. Brown, Kahr, & C. R. Peterson, 1974), flood probability estimation by flood
plain residents (Slovic, Kunreuther, & White, 1974), experimental design
(Brewer & Owen, 1973), weather forecasting (Murphy & Winkler, 1974,
1977), climate change (National Academy of Sciences, 1983), accident analy-
sis (C. H. Green & R. A. Brown, 1978; Slovic, Fischhoff, & Lichtenstein,
1978), election outcome predictions (Black, 1958; I. Fischer & Budescu,
1994), among many others. The review of this research here is not intended to
be exhaustive, but it is extensive and the studies considered are intended to be
broadly representative of the work in the field.

283
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If people were more capable of estimation and simple calculation, many obvious
inferences would be drawn (or not), and fewer ridiculous notions would be en-
tertained. (Paulos, 1990, p. 17)

The ability to estimate has not received the attention it deserves in education. It
is an extraordinarily useful ability. Evidence that this is beginning to be real-
ized is perhaps seen in one of six major recommendations in the 1980 agenda-
setting report of the National Council of Teachers of Mathematics: "Teachers
should incorporate estimation activities into all areas of the program on a regu-
lar and sustaining basis, in particular encouraging the use of estimating skills
to pose and select alternatives and to assess what a reasonable answer might
be" (p. 7). The importance of estimation skills has also been stressed by the
Curriculum Framework Task Force of the Mathematical Sciences Education
Board (1988). Although estimates can be made of many types of variables—
for example, quantities, magnitudes, durations—here attention is limited to
probabilistic or statistical variables.

Estimates of Central Tendency ana Variability

When asked to observe a set of numbers and to estimate some measure of cen-
tral tendency, such as its mean, people are able under some conditions to pro-
duce reasonably accurate estimates (Beach & Swensson, 1966; Edwards,
1967; C. R. Peterson & Beach, 1967), although systematic deviations from ac-
tual values have also been reported (N. H. Anderson, 1964; I. P. Levin, 1974,
1975). When the numbers whose means are to be estimated have been pre-
sented sequentially, effects both of primacy (influence of the first few numbers
in the sequence) (Hendrick & Costantini, 1970) and of recency (influence of
the last few numbers) (N. H. Anderson, 1964) have been obtained. For skewed
distributions, estimates of means are likely to be biased in the direction of me-
dians (C. R. Peterson & Beach, 1967).

People's ability to estimate variability has been studied but less extensively
than their ability to estimate means. One focus of interest has been how per-
ceived variability depends on the mean around which the variability occurs.
Some investigators have reported results suggesting that perception of a distri-
bution's variability is not influenced by the distribution's mean (I. P. Levin,
1975; Pitz, Leung, Hamilos, & Terpening, 1976). Others have found the two
estimates to be related systematically. Estimates of the variability of a set of
numbers have been noted to decrease as the mean of the set increased and the
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(absolute) variability remained the same; in other words, variances of the same
magnitude around a small mean and around a large mean appeared larger in the
former case (Beach & Scopp, 1968; Hofstatter, 1939; Lathrop, 1967). There is
some question as to the extent to which this relationship reflects a true mis-
perception as opposed to a confusion of variability in absolute terms with vari-
ability relative to a mean. A standard deviation of 20 pounds in the distribution
of weights of 100 freight cars seems a good bit smaller than a standard devia-
tion of 20 pounds in the distribution of weights of 100 people, even though in
absolute terms it is not. It could also stem, at least in part, from the linguistic
convention of making the interpretation of such words as small and large con-
tingent on the context in which they are used, so what may be happening is
analogous to when we consider a particular horse to be small or a particular dog
large, even though in absolute terms the former is larger than the latter.

Given a variable set of values, one's perception of its variability may depend
somewhat on the manner in which one becomes aware of the set. The variance
is likely to be perceived as larger, for example, if the values are presented in
random order than if they are presented in a regular ascending or descending
order (Lathrop, 1967). More information on work that has been done on the es-
timation of sample statistics and on proposed models of the process by which
estimates are made can be found in C. R. Peterson and Beach (1967), Pollard
(1984), and Busemeyer (1990).

Estimating Relative Frequencies of Events

Relative frequencies of events often are perceived relatively accurately
(Attneave, 1953; Carroll, 1971; Jonides & Jones, 1992; C. R. Peterson &
Beach, 1967; Vlek, 1970; Zacks, Hasher, & Sanft, 1982), though not always
(Fisk & Schneider, 1984). Several aspects of people's memory for frequency
of occurrence, including the fact that it appears to be influenced little if at all
by intention (Flexer & Bower, 1975; Hasher & Chromiak, 1977; Howell,
1973) led Hasher and Zacks (1979) to suggest that frequency information is
stored in memory automatically. The same investigators have reviewed nu-
merous studies that appear to support this view (Hasher & Zacks, 1984). In
addition to its independence of intention, other aspects of memory for fre-
quency that they cite as confirmatory of its automaticity include the lack of
effects of training or feedback (Hasher & Chroniak, 1977; Zacks et al.,
1982); the lack of sizable individual differences due to such factors as moti-
vation and intelligence (D. Goldstein, Hasher, & Stein, 1983; Lund, Hall, K.
P. Wilson, & Humphreys, 1983; Zacks et al., 1982), and the relative
invariance of frequency memory with age (D. Goldstein et al., 1983; Hasher
& Chromiak, 1977; Hasher & Zacks, 1979).
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Several factors have been identified, however, that appear to be able to bias
estimates in one or another way. Some of these have to do with how estimates
are obtained. Estimates people produce of the frequency of occurrence of spe-
cific events in their own experience, for example, appear to be influenced by
the way questions are framed. In one experiment, participants who were asked
how many headaches they experienced per week gave larger estimates when
the response alternatives provided for them were expressed as 1-5, 5-10,
10-15, ... than when they were expressed as 1-3, 3-5, 5-7,... (E. F. Loftus,
1979). This result seems very strange indeed. How could the response scale
convey, or even appear to convey, any information to a person regarding the
number of headaches he or she had experienced? One possibility is that the
scale that is provided is interpreted by people as the range of frequencies re-
ported by the general population and is used to locate themselves on a contin-
uum depending on whether they consider their own headache history to be
extreme in either direction or somewhere in the middle of that range.

There is some evidence that estimates of the frequency with which some
event (e.g., showing of a picture) has recently occurred can be increased
(not necessarily made more accurate) by instructing people to imagine the
occurrence of the event several times (M. K. Johnson, Raye, Wang, & J. H.
Taylor, 1979; M. K. Johnson, T. H. Taylor, & Raye, 1977). This result seems
similar to the finding that the act of imagining oneself experiencing a par-
ticular event can increase one's tendency to believe that one will actually
experience that event (Gregory, Cialdini, & Carpenter, 1982). Forcing one
to focus one's attention on an event appears to have the effect of increasing
one's tendency to remember (or imagine) the event occurring in the past or
to expect it to occur in the future.

Some work on frequency perception has focused on questions of how fre-
quency is encoded and stored in memory and, in particular, on the level of orga-
nization at which storage occurs (Jacoby, 1972; Kellogg, 1981)—whether, for
example, the frequency of occurrence of letters and words presented in an ex-
periment is stored at the level of the individual letters (from which word fre-
quency might be inferred) or at the level of words (from which letter frequency
might be inferred) or both (S. J. Hoch, Malcus, & Hasher, 1986). Another focus
has been on the role that attention plays in frequency perception and reten-
tion—is it necessary for an event to be attended to in order for its frequency of
occurrence to be perceived and retained (Hasher & Zacks, 1979; Hintzman,
1986; Zacks, Hasher, & H. S. Hoch, 1986). One obstacle to getting a clear an-
swer to this question, despite considerable experimentation, is the difficulty of
defining precisely what constitutes a perceptual event (Johnson, Peterson,
Yap, & Rose, 1989). For present purposes, it suffices to note that the results of
research generally support the conclusion that people are quite sensitive to fre-
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quency of occurrence and can accurately distinguish between different fre-
quencies under a variety of conditions.

Estimating Time ana Costs

The problem of estimating how long it will take and how much it will cost to
complete some task is a very common one in our society. Contractors must pre-
pare time and cost estimates when bidding on projects. Local, state, and na-
tional government agencies must make similar estimates when allocating
public resources to programs competing for the same funds. All of us, as indi-
viduals, estimate, for our own planning purposes, how long it will take us to do
specific things and, in some cases, what the costs will be.

How good are we at making such estimates? The answer to this question has
important implications for our individual and corporate lives. Especially inter-
esting and potentially significant is the possibility of systematic biases in the
way estimates are made and consistent errors in the results. If we are strongly
inclined to underestimate, or to overestimate, the time and/or money that will
be required to complete specific tasks, it should be helpful, for practical pur-
poses, to know that. And if we do tend consistently to err in one direction, we
would like to have an explanation of the fact.

A front-page article in the September 11, 1994, issue of the Boston Globe,
entitled "The Big Dig," reports progress on the Third Harbor Tunnel project in
Boston as of that time (Sennott & Palmer, 1994). Described in the article as
"the largest public works project in America," the Big Dig involves 7.5 miles of
construction including a tunnel providing access from south Boston under the
Boston Harbor to Logan Airport. Estimates of the cost of the project grew, after
the project was under way, from $360 million in 1976 to $7.74 billion in 1994.
The latter estimate was the official one as of the date of the article, but the writ-
ers noted that, unofficially, officials were acknowledging that the ultimate
costs were likely to be higher, perhaps as high as $ 10 or $ 12 billion. Official es-
timates of completion dates were 1998 as of February 1991,2001 as of March
1992, and 2004 as of February 1993. A front-page article in the February 2,
2000, issue of the Boston Globe reported that Big Dig officials had just an-
nounced a $ 1.4 billion jump in the costs, bringing the then officially estimated
total to $12.2 billion (Palmer, 2000); the same article gave early 2005 as the
completion date, and described the project as being "roughly on track to be
completed on time." The September 2001 summary report of the Oversight
Coordination Commission of the Central Artery/third Harbor Tunnel Project
(www.state.ma.us) gives $14.475 billion as the then current estimate of the to-
tal cost and a "substantial completion" date of 2004. (This report gives $2.3 bil-
lion as the initial cost estimate, made in 1984.) Some of the cost escalation is
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because the scope of the project increased very considerably over the years,
some because of unanticipated complications encountered in the process of
construction, and some because the reported figures do not correct for infla-
tion, but even taking these factors into consideration, the history of this project
is a graphic example of how very easy it is to underestimate by very large
amounts cost and time-to-completion for complex projects.

The Third Harbor Tunnel project is far from unique with respect to its history
of upward revisions of cost and time-to-completion estimates. Similar observa-
tions could be made about numerous major programs and projects. According to
Gibbs (1994), time and cost estimates are chronically too low in major software
development projects: "Studies have shown that for every six new large-scale
software systems that are put into operation, two others are canceled. The aver-
age software development project overshoots its schedule by half; larger projects
generally do worse" (p. 86). Pfleeger (1991) has made similar observations. One
gets the impression from the news media that cost and time overruns (underesti-
mates) are the rule in the government contracting world, if not in the world of
project planning more generally; and, it would seem, the more complex the pro-
ject, the greater the underestimation is likely to be.

But is this impression correct? It could be that the perception that overruns
(and underestimates) are the rule rather than the exception is a misperception
of the facts. Such a misperception could arise in a variety of ways. Perhaps
overruns are more likely to be reported by the news media than are projects that
finish on time and within budget. Even if this were not the case, it could be that
reports of overruns, especially those that involve large amounts of money and
some evidence or hint of scandal capture our attention and linger in our memo-
ries more than do reports of projects without these characteristics. Granted the
possibility of the greater visibility and memorability of projects that exceed
time and cost estimates than those that finish within time and on budget, I sus-
pect that underestimation is a more common occurrence than overestimation.

I do not mean to single out contractors here as poor estimators of how long it
will take to accomplish specific projects. My guess is that most of us are in this
boat. I know from experience that when I estimate how long it will take to finish
this book, I should make the best estimate of which I am capable, at least double
it, and then not be surprised when, in fact, it takes considerably longer than that.
My estimates of how long it will take to complete some personal chore seem al-
most invariably to miss the mark significantly on the low side; at least I am more
keenly aware of misses of this type than of those of the opposite one.

Some research has been done on the question of how well people predict the
time it will take them, or someone else, to perform a specified task. The results
of this research support the notion that people generally underestimate how
long it will take them to perform a specific task themselves, or they overesti-
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mate how much they can do in a given time (Buehler, Griffin, & McDonald,
1997; Buehler, Griffin, & M. Ross, 1994,1995; Byram, 1997; Hayes-Roth &
Hayes-Roth, 1979; Kidd, 1970), and this despite the fact that producing a spe-
cific estimate of how long it will take to complete a task may motivate one to
complete the task within that time thus helping the estimate to become a
self-fulfilling prophecy (Sherman, 1980). And underestimates sometimes per-
sist despite efforts to improve them with debiasing techniques (Byram, 1997;
Newby-Clark, M. Ross, Buehler, Koehler, & Griffin, 2000).

Interestingly, it appears that people are less likely to be overly optimistic
when predicting the time it will take someone else to perform a task than when
predicting how long it will take themselves to do so; they seem more likely to
consider the possible effects of intrusions in the former case (Buehler et al.,
1994; Newby-Clark et al., 2000). However, experts in the performance of a
task may find it easy to underestimate how long it will take novices to do the
same task (Hinds, 1999).

Assuming that there is a general tendency to underestimate, what might ac-
count for it? One possibility that should not be overlooked is that of the opera-
tion of motivational factors. Inasmuch as contractors typically bid for jobs and
contracts are awarded to low bidders, any tendency they have to underestimate
time and costs might be attributed, at least in part, to the incentive the bidding
process provides to do so. Those who submit bids that take into account the
high probability that not everything will go exactly as planned are likely to find
themselves eliminated from the competition by others whose bids are based on
much more optimistic, if less realistic, projections. Of course, if the bidis bind-
ing in the sense that the contractor must deliver what is promised for the esti-
mated cost, this is a very risky strategy, but as it happens, in many contracts
time overruns carry no penalty and cost overruns often are collectable, so the
risk associated with underbidding may not be great.

Motivational factors could be involved in individuals' estimates as well as in
those of corporate entities. Estimating a relatively long time to perform a task
might be seen as an admission of lack of competence, for example, in which
case one might be inclined to lower one's best estimate of how long a task will
take, as opposed, say, to raising it. On this hypothesis, we underestimate how
long it will take ourselves to do something because we tend to believe that we
are more capable or more efficient than we really are, and we are more likely to
underestimate how long it will take us than to underestimate how long it will
take someone else, because we see ourselves as more capable and efficient than
our peers. The latter idea is consistent with numerous other self-serving biases
that research has revealed, such as the tendency to consider ourselves to have
more positive and fewer negative character traits than our peers (Alicke, 1985),
to be more fair-minded (Liebrand, Messick, & Wolters, 1986; Messick,
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Bloom, Boldizar, & Samuelson, 1985), less prejudiced (Fields & Schuman,
1976; O'Gorman & Garry, 1976), better equipped for academic success or
marital happiness (Kunda, 1987), and better-than-average with respect to lead-
ership ability (College Board, 1976-1977).

Another possible determinant of chronic underestimation is the difficulty
we have in generating exhaustive lists of the members of vaguely defined sets
(and/or overestimating the exhaustiveness of the lists we produce when we at-
tempt to do so). In estimating the time required to complete a task, one is likely
to imagine performing the task, which probably means going over it step-by-
step in one's mind estimating the duration of each step. This process can go
wrong and lead to an underestimate in either of two ways. First, one may over-
look one or more steps. This possibility seems intuitively more likely than that
of imagining extra steps that are not required. Second, in estimating the dura-
tion of any given step, one may overlook things that could go wrong or fail to
think of complicating factors that could increase the time required to perform
it. Again this possibility seems more likely than the offsetting one of factoring
in to one's estimate complications and problems that do not arise. It appears
that when people imagine how a future project may go, they typically do not
imagine the various ways in which it might go wrong (Buehler et al., 1994).
Providing people with an explicit list of what can go wrong may improve esti-
mates in some cases (Engle & Lumpkin, 1992).

Evidence that people typically overestimate the probability of conjuctions
of independent events and underestimate the probability of disjunctions
(Bar-Hillel, 1973; L. J. Cohen, Chesnick, & Haran, 1971,1972) also can help
account for any general tendency to underestimate the time required to com-
plete a task, especially a complex one. If a task is to be completed in minimum
time, all of the several subtasks must go right (estimating the probability of
their doing so is estimating the probability of a conjunction of events) and it
must be that almost none of the possibilities for something to go wrong materi-
alizes (estimating the probability of one or more of these events happening is
estimating the probability of a disjunction). If one is motivated to minimize es-
timates of time and costs, one is likely to do so for each of the subtasks. What is
easy to overlook is that even if the probability of a delay-causing problem is
small in each case, the probability that such a problem will occur in at least one
of the components can be large. The assumption that everything will proceed
as planned and that no contingencies will arise has been called by Kahneman
and Tversky (1979b) the planning fallacy.

Another conjecture relating to task-time estimation is the following: When
working on a nontrivial task that is spread over a significant period (say
months), if one is asked at various times to estimate what percentage of the task
has been completed, one is more likely to overestimate the percentage com-
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pleted and to underestimate what remains to be done than the reverse. This con-
jecture rests on the assumption that we are likely to be more keenly aware of the
details of the finished aspects of a task than of those of the remaining ones; we
can call the former to mind because we have recently experienced them, but the
latter are not so readily identified because we have to rely on our imagination to
identify them.

A similar explanation can be given to the finding that people tend to remem-
ber better their own contributions to a group effort than the contributions of
other members of the group, and therefore are likely to exaggerate the relative
size of their own contributions (Brenner, 1973,1976; Johnston, 1967; M. Ross
& Sicoly, 1979). Such a bias may be accounted for by a form of the availability
principle. One is bound to be more aware of the details of one's own work on a
collaborative task, especially with respect to those aspects of the effort that are
covert, than of the details of the work of one's collaborator(s). In recalling a
project, one is likely to have available more information pertaining to one's
own efforts than pertaining to the efforts of others, other things being equal.

Kxpressing Degree 01 Uncertainty

The problem of assessing people's intuitions regarding statistical or probabilistic
variables is complicated by the fact that the terms that are commonly used to ex-
press degrees of uncertainty—"likely," "probable," "credible,"—and their com-
plements, sometimes with qualifiers—"somewhat," "very," "extremely"—are not
necessarily given the same connotations by all users, or even by the same user in
different contexts (J. Cohen, Dearnaley, & Hansel, 1958; E. M. Johnson, 1973). So
it is not always clear how such terms should be associated with probabilities, odds>
or other concepts with precise quantitative connotations.

How the qualitative terms that people spontaneously use to express judg-
ments of uncertainty or probability relate to quantitative expressions of proba-
bilities has been the subject of some research (Beyth-Marom, 1982; Wallsten,
Budescu, Rapoport, Zwick, & Forsyth, 1986). There is some evidence that
people may assess situations differently if asked to use numerical estimates of
probability than if asked to express their assessments in qualitative terms
(Teigen, 1988; Windschitl & Wells, 1996).

Experimenters have often, though not always, attempted to deal with the
problem of terminology by explicitly giving the qualitative terms that are to be
used in specific studies numerical meanings, but it is not always clear that peo-
ple have followed the prescriptions. Some have asked people to express judg-
ments directly in terms of probabilities or odds, but for many people these
concepts are not familiar and it is not safe to assume that they are always used
as intended.
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People who get probability estimates from experts for use in risk assessment
or policy analysis have developed approaches to probability elicitation in-
tended to enhance the accuracy of the estimates obtained (M. G. Morgan &
Henrion, 1990). These approaches have limited effectiveness, however, and it
is not unusual for experts in the same field to produce quite different probabil-
ity estimates especially when the probabilities being estimated cannot be
checked objectively. Various methods have been proposed for aggregating the
estimates of experts in order to derive a single best composite estimate for use
in decision making or policy setting. Typically these methods involve averag-
ing the estimates, possibly after weighting the individual estimates to reflect
different degrees of expertise of the individuals who have produced them.

PREDICTING OUTCOMES OF PROBABILISTIC EVENTS

Some people make predictions, either explicitly or implicitly, in the perfor-
mance of their jobs. Weather forecasters come immediately to mind as exam-
ples of people who are obliged to make explicit predictions on a daily basis.
Stock brokers and investment advisers make predictions, at least implicitly, in
advising investors regarding what and when to buy and sell. So do physicians
in deciding which of several possible courses of treatment has the best pros-
pects of success. Contractors must estimate the time and resources that will be
needed to perform jobs on which they wish to bid; arriving at such estimates in-
volves, at least implicitly, taking into account the probabilities of various con-
tingencies arising. How good are the experts at predicting probabilistic events?
Are they better than the rest of us? Or do they suffer the same difficulties and
biases, and to the same degree?

Weather forecasters as a whole appear to be quite good at estimating the
probability of rain, which is to say that it rains on about X% of the days for
which forecasters predict an X% chance of rain (Murphy & Katz, 1983). The
relatively high degree of accuracy in this case may be due to forecasters work-
ing within a system that rewards them for candor and provides them with con-
stant feedback regarding the accuracy of their previous estimates (Henrion &
Fischoff, 1986). How good experts in other areas are on predicting probabilis-
tic outcomes is not so clear.

The Gambler's Fallacy

Possibly the best known misconception that relates to the ability of people to
predict probabilistic events is the gambler's fallacy. This concept was dis-
cussed in chapter 2. It suffices here to recall that it is the belief that a run of suc-
cessive occurrences of one type of random event (e.g., a run of heads in coin
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tossing) will make an additional occurrence of that event less likely, or that
when a sample of ongoing random events shows a "deficit" of one type of
event, the probability of the imminent occurrence of that event is increased.
This fallacy has been known for a long time and has been demonstrated in
many experiments.

Probability Matching Analogues

An experimental situation that has been widely used to study predictive behav-
ior involves giving a person the task of predicting, on each trial of the experi-
ment, the outcome of a probabilistic event, such as the color of the next flash of
a light that has been flashing different colors, say red and green, on an irregular
schedule. In this situation, people often predict a particular event, say "red,"
with about the same relative frequency as its actual occurrence and, as a conse-
quence, end up with a smaller percentage of correct predictions than they could
have obtained by simply predicting the more frequently occurring event on ev-
ery trial (Estes, 1964; Kintsch, 1970; Meyers, 1976). If, for example, the light
were flashing red on a random 70% of the trials, predicting red on 70% of the
trials would result in a success rate of approximately (.7 x .7) + (.3 x .3) = .58,
whereas predicting red on every trial would ensure a success rate of .7.

Analogous forms of suboptimal behavior have been observed in a variety of
contexts in which people would do well to make all-or-none choices but use
some other strategy instead. Even experienced poker players may make this
mistake. Lopes (1976), for example, found that the sizes of the bets that players
were willing to place increased in proportion to their subjective probability of
winning. This is a suboptimal strategy. At least in the long run, the expected
gain is maximized by betting the minimum possible amount whenever one be-
lieves one has a less than even chance of winning and the maximum possible
amount whenever one believes one's chances of winning are better than even
(N. H. Anderson, 1979).

Arkes, Dawes, and Christensen (1986) had people judge, on the basis of the
number of A's that specific students had received in three courses, whether or
not those students had graduated with honors. Participants were shown for
each possible number of A's (0-3) the percentage of students receiving that
number who graduated with honors. A minority of the students who received 0
or 1 A graduated with honors, whereas a majority of those who received 2 or 3
A's did. The percentages were such that participants who followed the rule of
guessing honors for all students who had received 2 or 3 A's and not honors for
all who had received 0 or 1 would have been sure of getting about 70% correct,
and they were given this information. Many participants did not use this rule,
however, and consequently got fewer than 70% correct.
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This was especially true of those participants who had been explicitly en-
couraged to try to do better than 70% by being "extremely observant" and of
those who had been motivated by the promise of a monetary reward for espe-
cially high performance. Those who were told that even experts could expect to
do no better than 70% on the task and that people who tried to do better would
actually do worse were more inclined to use the simple binary rule. Arkes et al.
(1986) interpreted their results as demonstrating that an increased incentive to
do well can cause a decrease in performance on a probabilistic judgment task.
Such a finding is especially thought provoking in view of the fact that high mo-
tivation characterizes many of the circumstances under which professional di-
agnoses (say for medical or psychological purposes) are performed.

It will not escape notice that in this experiment use of the simple strategy
of saying yes if the student has 2 or more A's makes the task trivially simple,
and perhaps boring. One might decide to try to beat the odds (to do better than
the 70% that is guaranteed by use of the two-or-more-A's-equals-yes rule),
realizing that the probability of doing so is small. What one gains by this de-
cision is participation in a real gamble with a long-shot chance of beating the
odds; what one gives up is participation in a boring game. There is some evi-
dence that even in casino gambling situations people may be motivated by the
desire not only to win money, but to engage in interesting or exciting games
(Keren & Wagenaar, 1985).

In a second experiment, Arkes et al. (1986) had people attempt to choose
from among three candidates the baseball player who won the "most valuable
player" award in the National League each year from 1940 to 1961 (excluding
a few years in which pitchers won the award). Four items of information were
provided for each candidate for each year: batting average, number of home
runs, number of runs batted in, and standing of the player's team at the end of
the year. All participants were informed that in about 75% of the cases choice
of the player whose team finished highest in the standings would be correct.

Those who were only moderately familiar with baseball tended to make use
of this fact and selected the player solely on the basis of his team's standing;
those who were highly familiar with baseball did not follow this simple rule.
The former participants did better than the latter as a group, although they ex-
pressed less confidence in their choices. Arkes et al. (1986) characterized the
moderately knowledgeable participants as slightly underconfident and the
highly knowledgeable ones as seriously overconfident, and noted that one of
the dangers of overconfidence is the assumption that no assistance is needed to
assure good decisions.

On the basis of a review of studies involving prediction in probabilistic situ-
ations, Meyers (1976) concluded that it is extremely difficult to get people to
follow strictly an optimal strategy. One factor that may contribute to the failure
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of people to adopt optimal strategies in probabilistic prediction tasks is the pos-
itive reinforcement they receive on those trials on which their predictions
prove to be correct. If it is true that people pay more attention to their successes
than to their failures, then every time one makes a correct prediction, one's be-
havior, whatever it is, is reinforced. When one "probability matches" in proba-
bilistic prediction tasks, one can get a fair amount of reinforcement and that
may be enough to sustain the behavior. Indeed, as may be seen from Table 8.1
in the two-alternative situation, the difference between the guaranteed percent-
age correct with an optimal strategy and the expected percentage correct with a
matching strategy is not enormous even at its maximum, when the probabili-
ties of the two events are .75 and .25, and it is quite small when the probabilities
of the two events are either very different or nearly the same.

This line of reasoning gets some support from the finding that item-by-item
feedback on the outcomes of probabilistic choice tasks sometimes results in
poorer performance than complete lack of feedback (Arkes et al., 1986;
Hammond, Summers, & Deane, 1973; Schmitt, Coyle, & King, 1976). Feed-
back may encourage people to focus on individual trials and to make each pre-
diction contingent on the outcome of the immediately preceding trial, using
some simple strategy such as "stay with same prediction following successful
trial, change prediction following an unsuccessful one." Such a strategy would,
of course, result in probability matching. It also may be, as Dawes (1979) has
suggested, that people feel compelled to try to account for all of the variance in
such tasks even though it is not possible to do so.

It could also be that college students participating in probabilistic prediction
experiments are unwilling to use optimal strategies, and clinicians resist using
algorithmic approaches to diagnosis, for the simple reason that, in both cases

TABLE 8.1

Guaranteed and Expected Success Rates for Optimal and Matching Strategies,
Respectively, in Two-Alternative Event Prediction Tasks

Strategy

Alternative Probs

.557.45

.657.35

.757.25

.857.15

.957.05

Optimal

.55

.65

.75

.85

.95

Matching

.505

.545

.625

.745

.905

Difference

.045

.105

.125

.105

.045
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decision by formula takes the challenge out of the task. Parenthetically, we
should note that when the two events are equally probable, .57.5, there is no op-
timal strategy; the expectation is for a .5 success rate no matter what sort of pre-
diction strategy one uses. There is some evidence, however, that many people
believe that one should be able to do better than chance when trying to predict,
say, the outcomes of tosses of a coin—that performance should improve with
practice and be impaired by distractions (Langer & J. Roth, 1975).

Predictions ana Preferences

Our passions, our prejudices, and dominating opinions, by exaggerating the prob-
abilities which are favorable to them and by attenuating the contrary probabilities,
are the abundant sources of dangerous illusions. (Laplace, 1814/1951, p. 160)

Suppose you are to enter a lottery in which the probability of winning is .1.
Should you care whether the. 1 represents there being one winning ticket in 10,
10 winning tickets in 100,100 winning tickets in 1,000,... ? As long as 1 ticket
in every 10 sold is a winner (and wins the same amount), what should it matter
how many tickets are sold? It appears that many people do have a preference
for a larger number of tickets and winners, for a fixed probability of winning.
Kirkpatrick and Epstein (1992) demonstrated this, for example, with an exper-
iment in which people who were to win a prize if they drew a red bean from a
bowl preferred to draw from a bowl that contained 100 beans 10 of which were
red than from a bowl containing 10 beans 1 of which was red. Denes-Raj and
Epstein (1994) found that some people even preferred to draw from a bowl that
contained 100 items, from 5 to 9 of which were red, than from a bowl contain-
ing 10 items, 1 of which was red; these people actually preferred the situation
that provided the lower probability of winning.

When a compound event is composed of two or more independent compo-
nent events, the probability of the compound event is the product of the proba-
bilities of the component events, and the order of occurrence is irrelevant. That
order of event occurrence in such cases may not be seen as irrelevant was
shown by an experiment by Rowen (1973) in which participants were required
to choose one of two mutually exclusive actions both of which had the same
probability of success. However, both actions were composed of two inde-
pendent steps, the probability of success of which differed. Participants tended
to select the action composed of steps the first of which had the greater proba-
bility of success.

In most laboratory studies of the ability of people to predict probabilistic
events, the events are of no great consequence or intrinsic interest to the par-
ticipants. We can probably safely assume that, for the most part, people have



ESTIMATION AND PREDICTION • 297

no strong preference for the occurrence of one of the possible events over that
of the other. Presumably they want their predictions to be as accurate as pos-
sible, because making correct predictions is their task, but, apart from this
consideration, whether the red light comes on more frequently than the green
one is of little concern.

In many real-life situations involving probabilistic events, we care a lot
about outcomes and strongly prefer some of the possibilities over others. We
care, for example, about how likely we are to end up as a highway fatality sta-
tistic, about the probability that the global temperature really is on the rise,
about the prospects of an improved economy, maybe even about the likeli-
hood that the weather will be good tomorrow. Do our preferences for particu-
lar outcomes over others affect our ability to estimate the probabilities of
uncertain events? And if so, how much of an effect do they have, and what is
the nature of that effect?

Sundstrom, Lounsbury, DeVault, and Peele (1981) took opinion polls of
people living in a small community near the planned site of one of the world's
largest nuclear-power plants as of 1980. They related their results to an expec-
tancy-value attitude model that assumed one's attitude toward some object, in
this case the power plant, is a simple sum of the possible positive and negative
consequences of the object's existence each multiplied by the individual's ex-
pectation of its occurrence. The results supported such a model inasmuch as
expressed attitudes reflected people's opinions about the relative probabilities
of positive and negative consequences of the plant's existence. People did not
give equal weight to all possible consequences, however, but tended to over-
weight some and underweight others. The correlation between the degree to
which one liked or disliked a potential consequence and its estimated probabil-
ity of occurrence was high, suggesting that the two judgments were not inde-
pendent. In a very different context, Babad and Katz (1992) showed that soccer
fans were likely to overestimate the probability that their favorite team would
win a specified game.

The idea that how desirable, or undesirable, one considers an event to be
may affect one's estimate of the probability of its occurrence finds consider-
able support in the experimental literature (S. J. Hoch, 1985; Irwin, 1953;
MacCrimmon, 1968; Marks, 1951; Slovic, 1966; Weinstein, 1980). When
asked to predict cards drawn at random from packs containing cards represent-
ing different payoffs, people often tend to overestimate the likelihood of draw-
ing the more desirable cards (Irwin, 1944, 1953; Irwin & Snodgrass, 1966).

There is also some evidence that people tend to overestimate the probability
of an event to which then- attention has been directed—a focal event. Gibson,
Sanbonmatsu, and Posavac (1997) found that people were more likely to bet on a
national basketball team they had been instructed to imagine winning than to bet
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on any of a set of competing NBA teams. These investigators see this behavior as
an example of the more general finding of selective hypothesis testing whereby
people tend to overrate the likelihood of a hypothesis that they are considering
relative to those of competing hypotheses that could be considered.

Lotteries

Laplace (1814/1951) argued that people who play at lotteries generally do not
understand the odds against their winning: "They see only the possibility by a
small stake of gaining a considerable sum, and the projects which their imagi-
nation brings forth, exaggerate to their eyes the probability of obtaining it; the
poor man especially, excited by the desire of a better fate, risks at play his ne-
cessities by clinging to the most unfavorable combinations which promise him
a great benefit" (p. 161). Laplace also pointed out that the player's exaggera-
tion of the prospects of winning is bolstered by the publicity that winning re-
ceives and that losing does not: "All would be without doubt surprised by the
immense number of stakes lost if they could know of them; but one takes care
on the contrary to give to the winnings a great publicity, which becomes a new
cause of excitement for this funereal play" (p. 161).

Do people who play lotteries really understand the odds against their win-
ning? Probably not. Certainly promotions of lotteries, including those run by
the state, are not designed to stress the fact that almost everyone who plays
loses. Publicity that follows drawings invariably focuses on winners. Seldom,
if ever, does one hear or read of the many people who, week after week, put
money that they can ill afford to lose into the black hole of a public lottery in the
unrealistic hope of striking it rich.

Would people play lotteries if they did understand the odds? Perhaps some
who now do so would not, but undoubtedly many would. No matter what the
odds, and how well they are understood, one can always take the position
"Someone has to win, and my chances are as good as anyone else's."

Is this a rational position? If one defines rationality in terms of the maximiza-
tion of expected value, it clearly is not. Lotteries are designed to generate income
for the entities (state, organization) that run them, which means that the payout to
the winner(s) must be less (and typically is considerably less) that what is taken
in from participants. It follows that the expected value of a ticket (the product of
the amount that would be won and the probability of winning) must be less (and
it typically is considerably less) than its cost. So when one buys a lottery ticket
for $ 1.00, one, in effect, pays $ 1.00 for something with an expected value of, per-
haps, 50 cents. Not very rational behavior from an expected-value point of view.

But one might argue that this is a much too simple-minded assessment of the
situation. It completely ignores the value of the pleasure one gets from playing
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the game. People spend money all the time on activities from which they have
no expectation of a monetary return (movies, concerts, roller coaster rides,
trips around a golf course). Like many activities, playing the lottery has enter-
tainment value, win or lose.

Compulsive gambling is not a new phenomenon, but as state lotteries have
become increasingly common, it appears to have become an increasingly no-
ticeable and troublesome problem with societal ramifications. It is a bit ironic
to hear enticing promotions of state-run lotteries and public-service announce-
ments of state-sponsored clinics for compulsive gambling nearly juxtaposed
on the airways. It would be good to know more about how people's tendency to
be overconfident of their ability to beat the odds, especially when bolstered by
lopsided reporting or lottery outcomes, contributes to this problem.

Sample-Size Intuitions

Researchers have focused on both the question of whether the law of large
numbers—which refers in this context to the tendency of large random sam-
ples, but not small ones, to resemble the populations from which they were
drawn—is reflected in the intuitions of people untrained in statistics and on
that of the extent to which people, such as research psychologists, who have
had such training make statistical decisions that are inconsistent with it. Evans
(1989) points out that this research has concentrated on the isssue of whether
people overestimate the power of small samples and that little, if any, attention
has been given to the question of whether people understand the diminishing
returns to be obtained from ever-increasing sample size. This is unfortunate, he
suggests, because "optimal decision behavior requires one to sample suffi-
ciently but not excessively" (p. 34).

Among what appear to be faulty intuitions that have been observed about
probabilistic events is the expectation for small samples to resemble too pre-
cisely the populations from which they are drawn. For example, it has been
claimed that when people are asked to predict a sequence of tosses of a fair
coin, the proportion of heads in arbitrary short segments of the sequences they
produce tends to be closer to .5 than would be expected according to probabil-
ity theory (Tune, 1964). Tversky and Kahneman (1971) refer to the intuitions
behind such judgments as the "law of small numbers," according to which
small samples are assumed to be highly representative of the populations from
which they are taken. (See also Wagenaar, 1970, 1972.)

During the first couple of weeks of a major-league baseball season, the lead-
ing batting average is likely to be between 400 and 500. By the end of the sea-
son it is almost certain to be under 400. An interpretation that is sometimes put
on this fact is that batters get worse or pitchers improve as the year wears on. A
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more plausible account recognizes that small samples are more likely than
large ones to produce deviant numbers. This explanation could be tested by
computing batting averages over 2-week periods throughout the season. On
the sample-size hypothesis, one would not expect the leading 2-week average
to decrease systematically over the year. Of course there may be systematic
trends superimposed on the sample-size effect, but the point is that even in the
absence of such trends the sample-size effect would be expected to yield the
observed decrease in the leading average, when that average is computed on a
steadily increasing sample size.

Kahneman and Tversky (1972) have observed that people often do not take
sufficient account of sample size when estimating probabilities for which sam-
ple size is a relevant consideration. The following problem illustrates the point:

A certain town is served by two hospitals. In the larger hospital about 45 babies
are bom each day, and in the smaller hospital about 15 babies are born each day.
As you know about 50 percent of all babies are boys. The exact percentage of
baby boys, however, varies from day to day. Sometimes it may be higher than 50
percent, sometimes lower.

For a period of one year, each hospital recorded the days on which (more/less)
than 60 percent of the babies born were boys. Which hospital do you think re-
corded more such days? (p. 443)

Of those participants who selected one hospital or the other (they were also
allowed to indicate indifference between them) about half selected the one
with the larger number of births. The result appears to indicate a lack of under-
standing of the fact that large deviations from a mean, in percentage terms, are
more likely in small samples than in larger ones.

Several subsequent studies have shown that people's performance on such
problems can be quite sensitive to the way in which they are worded (Bar-Hillel,
1979; Evans & Dusoir, 1977; C. L. Olson, 1976), and this raises the possibility
that what is sometimes attributed to faulty statistical intuitions could be due, at
least in part, to a failure to comprehend the problem as given. Evans and Dusoir
(1975) found, for example, that when participants were asked which of the two
hospitals described previously was more likely to have a day on which all babies
born were boys, and were forced to select one or the other, 85% selected the
smaller hospital. When asked directly whether an accurate result was more
likely to come from a statistical estimate based on a small sample or on a large
one, nearly all parcipants correctly indicated the large sample.

Some research psychologists who have had formal training in statistics and
experimental design believe that a sample randomly drawn from a population
will be similar to the population in all important respects (Tversky &
Kahneman, 1971). This leads to the expectation that two randomly drawn
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small samples from the same population will be more similar to the population
and to each other than sampling theory would predict, and to such errors of sta-
tistical reasoning as overestimation of the replicability of results from a single
experiment and failure to consider the possibility that unexpected results could
be due to sampling variability. In general, it appears that people often are un-
aware of or ignore the importance of the validity of the information on which
predictions are based and are unaware that in the case of low validity, predic-
tions should be regressed toward some central tendency measure such as the
mean (Kahneman & Tversky, 1973).

L. J. Cohen (1962) has reported evidence that the statistical power of many
psychological experiments is extremely low, which means that by using small
samples experimenters run a high risk of failing to detect effects that are real,
which is to say, they risk failing to reject the null hypothesis when it is false.
Tversky and Kahneman (1971) obtained evidence on this issue by asking pro-
fessional psychologists a variety of questions regarding the design of studies
intended to replicate or check previously obtained experimental results. In
general, the sample sizes the respondents specified for replication studies were
sufficiently small to guarantee a large percentage of failures to find effects that
were there to be found. In Tversky and Kahneman's words, the believer in the
law of small numbers "gambles his research hypothesis on small samples with-
out realizing that the odds against him are unreasonably high" and in "evaluat-
ing replications, his or others, he has unreasonably high expectations about the
replicability of significant results" (p. 109).

Somewhat in contrast to the evidence that indicates the existence of an intu-
itive law of small numbers, there is also evidence that people have some sensi-
tivity to the importance of sample size in statistical reasoning and are able to
apply this sensitivity in a discriminating way (C. R. Peterson, DuCharme, &
Edwards, 1968). Expressed confidence in estimates of the mean or variance of
a set of numbers tends to increase (confidence intervals decrease) as the sample
size increases (Bar-Hillel, 1979; DuCharme & C. R. Peterson, 1969; C. R. Pe-
terson & Beach, 1967). People seem to understand also that one needs a larger
sample to justify a generalization about a characteristic that is likely to be
highly variable in the population than to justify a generalization about a char-
acteristic that is likely to be more constant (Evans & Pollard, 1985; Nisbett et
al., 1983). (Understanding of this principle does not preclude stereotyping,
which can rest on underestimation of within-group variability with respect to
specific characteristics.) How likely people are to use the law of large numbers
effectively in reasoning depends, in part, on whether the situation about which
they are reasoning seems to be governed by chance effects to a substantial de-
gree (Jepson, Krantz, & Nisbett, 1983). For example, people are less likely to
believe that a small sample of a slot machine's behavior is representative of its
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long-term behavior than to believe that a small sample of an athlete's perfor-
mance is representative of his or her general ability.

It appears also that people are more likely to use the law of large numbers
when the events involved are highly "codable" than when they are not (Kunda
& Nisbett, 1986a; Nisbett et al., 1983). To be codable in this context means
roughly to be counted easily or to have features or aspects that are easily
counted. Kunda and Nisbett use sports activities as examples of codable
events. A basketball game has associated with it many events that can be
counted, such as number of baskets, rebounds, or assists per player. Social be-
havior is not likely to be so easily coded. Kunda and Nisbett suggest also that
people are more likely to use the law of large numbers for familiar domains and
problem types than for unfamiliar ones, which may be because more familiar
events tend to be more codable.

Population-Size Intuitions

By comparison with the research that has been done on intuitions regarding
sample size, relatively few studies have addressed the question of intuitions
about population size or, more specifically, about sample-to-population ratio.
The few relevant studies that have been reported suggest that people tend to be-
lieve that the larger the population, the larger the sample that is needed to repre-
sent it adequately, or, conversely, that small samples are likely to be more
appropriate for smaller populations than for larger ones (Bar-Hillel, 1979; Ev-
ans & Bradshaw, 1986); Evans and Bradshaw's participants selected popula-
tion size as the most important of several variables as determinants of how
many batteries should be sampled from a truckload of either 10,000 or 20,000
to decide whether the entire load satisfied a statistical acceptance criterion.
Some readers may be surprised to learn that, within broad limits, the adequacy
of a sample is independent of the size of the population from which it is drawn.

"Within limits" is an important qualification here, because it is not the
case that population size is never relevant to the question of adequate sample
size. A random sample of modest size that almost exhausts the population
from which it is drawn is likely to represent its population somewhat better
than a random sample of equal size drawn from a much larger population. In
general, however, in situations in which random sampling makes practical
sense, the sample will be a relatively small proportion of the population, and
in these cases what constitutes a sample size that is adequate to provide an es-
timate of a parameter with a given level of expected accuracy is essentially in-
dependent of the size of the population. A random sample of 1000, for
example, is likely to provide as accurate a representation of a population of
100,000 as of a population of 10,000.
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L. J. Cohen (1982) makes a distinction between confidence and weight, and
argues that confidence is determined strictly by sample size but that weight is de-
termined by sample-to-population ratio. Confidence, according to Cohen's anal-
ysis should depend on the proportion of random samples that resemble (within
specified limits) their parent populations with respect to some measure of inter-
est, and this is strictly a function of sample size, at least for samples that are small
relative to their populations. In contrast, weight or strength of evidence reflects,
at least in part, whatever legitimate reasons one has to assume that the sample is
not biased in any way, and one way to increase the probability that it is not is to
increase the fraction of the total population it contains. Again, this is easiest to
see in the case of samples that are relatively large fractions of their parent popu-
lations; there simply are fewer opportunities for bias with a sample that contains
90% of its population than with one that contains 10% of its.

RISK ASSESSMENT, COMMUNICATION, AND PERCEPTION

Risk assessment has to do with assigning probabilities to future events that
people would like, if possible, to avoid; it refers to the work that professionals
do in attempting to quantify specific risks. Risk communication involves vari-
ous methods for conveying information about risks. Risk information is com-
municated sometimes by experts, but also sometimes by nonexpert members
of the press. Risk perception is subjective and personal; the same risk (in terms
of incidence statistics) may be perceived very differently by different individu-
als. A lack of correspondence between specific risks as assessed by profession-
als and as perceived by the public has been seen as the source of considerable
trouble (Hance, Chess, & Sandman, 1988).

Some of the risks that concern people have to do with events—automobile
accidents, heart attacks, strokes—that have occurred many times in the past.
In these cases, actuarial data are useful in assessing risks. Some risks must be
assessed independently of frequency data or estimates, because they relate to
events that have never happened in the past, such as the risk of a global nu-
clear war or the risk of the world population becoming catastrophically large.
Many risks also are difficult to quantify because of a lack of knowledge of a
fundamental nature; the effects of long-term exposure to many (perhaps
most) chemicals that are used in various industrial, agricultural, medical, and
military contexts, for example, are not known (Shodell, 1985). In some in-
stances, relevant events have occurred, but not sufficiently often to provide a
stable statistical basis for predicting their likelihood in the future. In other
cases, such as the controversial question of the risk of cancer from indoor ra-
don, the relatively few studies that have been done have yielded conflicting
results (Horgan, 1994).
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Attempts to quantify risks for which frequency data do not exist, even when
made by experts, can disagree by large amounts (Hammond & Marvin, 1981;
Lowrance, 1976). Apparently experts disagree with respect to the relative im-
portance of various factors that, in combination, determine the magnitude of a
specific risk. There is some evidence that the interjudge variability can be re-
duced by the use of structured analytic judgment processes, but whether
greater interjudge agreement means more accurate judgments in those cases in
which there is no independent objective check on accuracy is not clear.

Risk assessments are often performed for the purpose of guiding the formu-
lation of policy aimed at avoiding actions that are likely to create major prob-
lems for the future, or at identifying actions that could improve future outlooks
from a risk-assessment perspective. Such assessments influence legislation,
regulatory policies, strategic defense planning, research activities, investment
decisions, and many other aspects of our corporate and individual lives. The
history of efforts to assess and manage risk has been engagingly told by P. L.
Bernstein (1996).

Few attempts at risk assessment in modem times have received more atten-
tion than those associated with the nuclear power industry. Following numer-
ous studies, the Nuclear Regulatory Commission (NRC) established design
objectives that specified acceptable risk from nuclear-power plant operation in
quantitative terms. Specifically, it stated as an objective that the risk to an indi-
vidual in the vicinity of a nuclear-power plant of being killed as a consequence
of a reactor accident should not exceed one 1 Oth of 1 % of the sum of the risks of
being killed by other accidents to which members of the U.S. population are
exposed (Nuclear Regulatory Commission, 1986).

This is a strict standard of safety. In 1990, an estimated .037% of the U.S.
population died of accidental causes, including no one, I believe, from a nu-
clear-power plant accident (M. Hoffman, 1991). Assuming this figure is rela-
tively constant from year to year, the NRC standard, if met, means that the
probability that an average citizen in the vicinity of a nuclear-power plant dy-
ing as the result of a power plant accident in a given year should not exceed
.000037%, which corresponds to a probability of .00000037, or less than 1
chance in a million. If one 10th of the U.S. population lived "in the vicinity of a
nuclear-power plant," which it does not, this would give an expectation of
about 9 deaths per year, on average, from nuclear-power plant accidents.

To put this in perspective, one must remember that the annual death toll in
the United States from motor vehicle accidents is approximately 40,000. Ac-
cording to Bartecchi, MacKenzie, and Schrier (1995), smoking-related ill-
nesses accounted for more than 400,000 of the more than 2,000,000 deaths in
the United States in 1990, and for more than one quarter of all deaths among
people aged 35 to 64. Given such numbers, why, one might ask would anyone
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object to the building of nuclear-power plants; why are people who are con-
cerned about risks to human life not putting their energies into protesting the
manufacture of automobiles or cigarettes—demonstrated killers—rather than
into the building of nuclear plants? The situation is, of course, more compli-
cated than the numbers suggest—objections are based not only on concern
about immediate effects of possible accidents but on long-range problems as-
sociated with storage and disposal of radioactive material. A major uncertainty
that no one knows how to resolve to everyone's satisfaction is that of how to en-
sure that the NRC's probabilistic "one 10th of 1%" objective has been met.

Policy often must be formulated without the benefit of objective data on
which to base estimates of probabilities because such data simply do not exist.
There is no alternative in such cases to that of relying on the judgments of people
who, by virtue of training or experience, seem to be in the best position to have
opinions that should carry weight. Of course, the problem of deciding whose
opinions should carry weight is itself a matter of judgment, as is the problem of
deciding who should make this decision, and so on. But policy analysts do not
concern themselves about the risks of infinite regresses and they manage to cope
with uncertainties primarily through reflection, dialogue, and consensus build-
ing. As M. G. Morgan and Henrion (1990) point out, policy analysts and policy-
makers seldom have the luxury to be fastidiously scientific in all respects, the
need for policy decisions is gated by events that occur on their own schedule and
that do not wait for opinions to be verified by experimental results.

Risk assessment and perception have been the focus of considerable psy-
chological research (Apostolakis, 1990; Fischhoff, Lichtenstein, Slovic,
Derby, & Keeney, 1981; Fischhoff, Sverson, & Slovic, 1987; McCormick,
1981.) The results from several studies show that the perceived relative riski-
ness of various situations does not correspond closely to the actual riskiness of
those situations, at least as reflected in incidence statistics (Slovic, Fischhoff,
& Lichtenstein, 1979.) It also appears to be the case that the general public's
perception often differs from that of experts with respect to specific risks (P. A.
Bell, J. D. Fisher, Baum, & Greene, 1990; Burton et al., 1978; Kempton, 1991;
Slovic, Flynn, & Layman, 1991; Weart, 1988).

The question of the reasonableness of the attitudes of the general public
about risks for which frequency data do not exist is complicated by disagree-
ment among experts as to what the risks really are. Consider, for example, the
question of global warming. Some experts believe the possibility that the aver-
age temperature of the earth is being raised as a consequence of the accumula-
tion of greenhouse gases in the atmosphere to be among the more serious
long-term threats that humankind faces (Bolin & Doos, 1986; R. E. Dickinson
& Cicerone, 1986; Houghton & Woodwell, 1989; Kerr, 2000). Others have
taken the position that the evidence of a real threat is weak and that the risk has
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been greatly overstated (Seitz, Jastrow, & Nierenberg, 1989). Debate on the is-
sue continues (Roberts, 1989; White, 1990), and policy decisions must be
made long before it is likely to be resolved by the acquisition of enough data to
make the long-term trend crystal clear.

Perception of the Relative Seriousness of Specific Risks

In one study of risk estimation, both physicians and college students overesti-
mated the risk of death from various specified diseases, although the physicians'
estimates were more nearly accurate than those of the students (J. J. J.
Christensen-Szalanski, Beck, C. M. Christensen-Szalanski, & Keopsell, 1983).
For both groups, estimates were directly related to the frequency with which the
diseases had been encountered. The investigators concluded that experts and
nonexperts probably use similar thought processes to make frequency estimates
but that they differ with respect to their exposure to the estimated events.

A specified risk is likely to be perceived the more serious the larger the num-
ber of deaths or critical injuries that could result from a single incident (C. H.
Green & R. A. Brown, 1978). Also the frequency of sensational causes of death
(homicide, tornado) tends to be overestimated, whereas that of more mundane
causes (asthma, diabetes) is typically underestimated (Lichtenstein, Slovic,
Fischoff, Layman, & Coombs, 1978). These findings may be attributable in part
to the greater memorability of incidents affecting many people at one time in at-
tention-getting ways and of events with sensational causes, and they may rest in
part also on the tendency of the news media to give greater coverage to these
types of events (Combs & Slovic, 1979). Suggestive evidence that people's esti-
mates of the relative frequency of various causes of death are influenced by the
amount of media coverage given to them may be seen in the fact that accidental
death is likely to be estimated to be more frequent than death from stroke, al-
though the reverse is true in fact (Slovic, Fischoff, & Lichtenstein, 1976).

Reporting by the media of information regarding risks tends to focus on
newsworthy events—often catastrophic incidents such as the 1986 nu-
clear-power plant meltdown in Chernobyl or the 1984 toxic-chemical release in
Bhopal. It is not necessary to deny the importance of such events to observe that
media focus on them can help foster inaccurate beliefs about the relative magni-
tudes of various threats to the environment. The perceived risk of nuclear con-
tamination increased considerably, for example, following the Chernobyl
incident (Midden & Verplanken, 1990; Renn, 1990; van der Pligt & Midden,
1990; Verplanken, 1989). More generally, the public's attitudes about various
man-made health hazards—for example, possible carcinogens—appears to be
highly correlated with their frequency of mention by the media, which often is at
variance with the views of the scientific community (Rothman & Lichter, 1996).
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It may be that rare events receive more publicity than frequent events in part be-
cause of their rarity, and that they consequently come to be seen as more common-
place than they are. Paulos (1990), who makes this point, notes that sensational-
istic events—terrorist kidnappings and cyanide poisonings—are given a great deal
of media coverage, often of a highly emotional sort, whereas more mundane trage-
dies, such as the 300,000 deaths per year from smoking in the United States
alone—"roughly the equivalent of three fully loaded jumbo jets crashing each and
every day of the year"—are given little attention by comparison.

The effect of media attention is also illustrated by the crash of the Hindenburg
in Lakehurst, New Jersey, in 1937. This incident effectively brought to a halt the
use of zeppelins as a means of transportation and interest in developing the tech-
nology it represented, despite the fact that the 36 people who lost their lives in
this tragic event were the only people to die as the result of a mishap during 20
years of commercial airship travel (McPhee, 1973/1992). Only very recently,
more than half a century after the disaster, is interest in zeppelin-type airships of
transportation being revived (Hangenlocher, 1999).

The history of lighter-than-air aircraft stands in rather striking contrast to
that of steamships. More than 3,000 people were killed as the result of explo-
sions of steamship boilers between 1816 and 1851. (Burke [1966] gives an ac-
count of how the commonality of such explosions gradually changed the
public's attitude, and that of their elected representatives, about governmental
regulation of private enterprise.) One must assume that the fact that the
Hindenburg incident was captured on film as it happened, and was widely pub-
licized immediately following its occurrence and for years thereafter, had
much to do with the association of disaster with this type of air travel in the
public's mind and with the abrupt change of attitude regarding lighter-than-air
aircraft as a means of transportation.

Extensivesness of media coverage undoubtedly is a major factor in shaping
public opinion about the relative seriousness of various risks. It seems unlikely,
however, to be the whole story. It does not account, for example, for the finding
that experts commonly overestimate both the dangerousness of events and the
frequency of occurrence of dangerous events in psychiatric contexts (Ennis &
Litwack, 1974; Steadman & Cocozza, 1974; Ziskin, 1975). Sensational, emo-
tion-evoking events are more likely than more bland events to capture our at-
tention when they occur and our imagination when they do not, and to be
remembered in either case.

Irrelevant Influences on Risk Estimations

Direct evidence that frequency estimates are sometimes influenced by factors
that are independent both of the actual frequency of occurrence and of fre-
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quency of exposure to media reports comes from a study of mood effects by E.
J. Johnson and Tversky (1983). Participants were given descriptions of indi-
vidual deaths due to various diseases, natural disasters, accidents, and crimes.
These descriptions were written as short newspaper stories, and contained no
information about prevalence. Participants were then asked to estimate the
number of annual fatalities due to specific causes. Data were also collected on
the interest, quality of writing, and mood evoked by each story. The investiga-
tors were particularly interested in how risk assessment would be influenced
by the stories' affective effects. They found a strong generalized effect of in-
duced mood on frequency estimates (all perceived risks affected approxi-
mately equally) and no hint of local effects (effects unique to the specific risk
identified in the story) or a generalization gradient (with risks being affected in
proportion to their similarity to the specified risks). Johnson and Tversky repli-
cated the effect for nonfatal risks and for positive affect, and found that per-
ceived risks were generally reduced. They concluded that the mood induced by
brief reports has a large and pervasive impact on estimates of the frequency of
risks even when the risks being judged are unrelated to the cause of the mood.

Mood effects on judgment have been observed in contexts other than risk as-
sessment, as conventionally understood (Bower, 1995). People tend, for exam-
ple, to judge their own behavior, attitudes, and abilities more positively when
in a good mood than when in a bad one (Forgas, Bower, & Krantz, 1984;
Sedikides, 1992). Estimates of success on a completed task may vary with the
mood one is in when the estimate is made, better moods being associated with
higher estimates of success. Such findings leave open the question of cause and
effect—a better mood could induce higher estimates, or a higher estimate
could improve one's mood, or both one's mood and one's estimate could be, at
least in part, results of one's actual performance on the task.

There is some evidence of a general tendency for people to underestimate their
personal vulnerability to various types of risk, or at least to estimate their own vul-
nerability to be less than that of their peers (Weinstein, Klotz, & Sandman, 1988;
Weinstein, Sandman, & Roberts, 1991). Or, to state this type of bias in positive
terms, people have been shown to be optimistic about their own futures relative to
their expectations regarding the futures of others (Weinstein, 1980, 1982, 1983,
1984,1987,1989; Weinstein & Lachendro, 1982). It appears that we tend to con-
sider specified positive and negative events to be, respectively, more and less likely
to happen to us than to happen to someone else (Bauman & Siegel, 1987; DeJoy,
1989; Dunning, 1993; W. B. Hansen & Malotte, 1986; D. M. Harris & Guten,
1979; Linville, Fischer, & Fischhoff, 1993; Perloff & Fetzer, 1986; Robertson,
1977; Svenson, 1981; Zakay, 1983,1984).

As already noted, automobile drivers tend, on average, to consider them-
selves to be safer than the average driver (Svenson, 1981; Svenson, Fischhoff,
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& MacGregor, 1985); they also consider their chances of being involved in an
accident to be lower as a driver than as a passenger (Greening & Chandler,
1997; McKenna, 1993; McKenna, Stanier, & Lewis, 1991). More generally,
people tend to be more optimistic about events they perceive to be under their
control than about those they consider not to be (Budescu & Bruderman, 1995;
DeJoy, 1989; P. Harris, 1996; Hoorens & Buunk, 1993; Zakay, 1984). People
launching new businesses typically estimate their chances of success to be
high, despite evidence that the majority of small businesses fail within a few
years of establishment (Cooper, Woo, & Dunkelberg, 1988). People some-
times discount the seriousness of a medical risk if they have reason to believe
themselves to be especially susceptible to it (Ditto, Jemmott, & Darley, 1988;
Ditto & Lopez, 1992; Jemmott, Ditto, & Croyle, 1986; Kunda, 1987). Such
egocentric biases can also be affected by mood, so that people are likely to see a
rosier future for themselves, and others, when in a happy frame of mind than
when in a sad one (W. F. Wright & Bower, 1992).

Risk Perception Versus Risk Acceptability

Some people willingly, even enthusiastically, engage in risky behavior. Ac-
cording to Press (1975) about one third of the U.S. population lives in the two
regions where the risk of major earthquakes is greatest, and people live there
without taking any special precautions to prevent or minimize damage from
earthquakes, should they occur. Of course, many of the people who live in areas
where the risk of earthquakes is relatively high may be unaware of the nature of
this risk or, if they are aware of it, may feel unable to do much about it. But
some people also attempt to cross oceans in rowboats, go over Niagara Falls in
barrels, drive cars in races at excessively high speeds, or voluntarily engage in
other types of behavior for which the high risk can hardly be in doubt.

The distinction between engaging in risky behavior in the full realization of
the risks involved and engaging in that behavior in ignorance of, or having
grossly underestimated, the risks is one of some practical significance. Con-
sider, for example, the case of drivers who engage in risky behavior—by driv-
ing too fast, driving while drinking, following leading vehicles too closely,
passing with insufficient forward vision, failing to use seat belts, driving un-
safe vehicles,... How one would go about trying to modify the risky behavior
in any particular case would depend on whether one assumes that the driver is
unaware of the magnitude of the risk that is being taken or that the driver is fully
aware of the risk that is being taken and is taking it willingly. The first possibil-
ity calls for finding a way to make the driver aware of the risk that is being
taken; the second requires something more than provision of this knowledge,
which the driver already has.
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Factors Affecting the Acceptability of Risks

Hallman and Wandersman (1992; see also Wandersman and Hallman, 1993),
who have taken the position that people's responses to environmental threats are
predictable and not as irrational as they sometimes appear to be, note that those
responses are determined not only by the perceived likelihood of a threat being
realized, but also by a variety of other factors. People are likely, for example, to
find a risk that is voluntarily taken to be more acceptable than a risk of equal
magnitude that is involuntarily imposed (Fischhoff, Slovic, & Lichtenstein,
1978; Starr, 1972). Risks that are under individual control, fairly distributed
among a population, natural, familiar, detectable, well understood by science,
and ethical are more acceptable than risks that are under governmental control,
unfairly distributed, artificial, exotic, undetectable, or unethical.

Responses to perceived risk appear to be affected by personal values
(Brody, 1984; Office of Technology Assessment, 1987), which, in turn are in-
fluenced by the social and cultural contexts in which people live (Bradbury,
1989; Covello & B. B. Johnson, 1987; Vaughn & Nordenstam, 1991). Citing
the distinction made by Hance et al. (1988) between hazard factors, which are
those usually measured objectively if possible, and outrage factors, which tend
to be more social, political, or ethical in nature, Wandersman and Hallman
(1993) suggest that people are likely to be concerned (or outraged) by a risk
surrounded by outrage factors even if its probability of realization is low. Other
investigators who have emphasized the predictability of the perception of and
response to risk include Vlek and Stallen (1980), Baum, Fleming, and Singer
(1983), and Cvetkovich and Earle (1992).

When assessing the acceptability of future, especially far-future, risks, it
seems appropriate to discount them to some degree just because they are in the
future, and many things can happen to modify or nullify them—one has no guar-
antee, after all, of even being alive at any future date. The evidence suggests that
people do discount the future in the sense of attaching greater importance to
present costs and benefits than to costs and benefits that could be realized at a fu-
ture time. Possible future calamities are perceived as less serious the further in
the future their possible occurrence is considered to be. Although it is hard to
quantify the problem, it appears that people find it easy to overdiscount the fu-
ture. Thus they satisfy immediate wants by incurring future debt that they are un-
able to pay» they smoke and use other addictive drugs with apparent lack of
concern for the long-term risks to their health, and they often fail to incur modest
immediate costs (health check-ups, insurance) in the interest of protecting
against serious future problems (Klatzky & Messick, 1995; Platt, 1973).

In the context of economic decision making, there appears to be a general
preference for risk aversion, the prevalence of which Kahneman and Tversky
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(1979b) have referred to as "perhaps the best known generalization regarding
risky choices" (p. 263). Risk aversion appears to hold generally, especially
when one's choice is between positive alternatives, but risk seeking is often ob-
served when the alternatives between which one must choose are both nega-
tive, as, for example, when one's choice is between a sure loss and a gamble
involving a possible loss of greater magnitude and a possible gain (Fishburn &
Kochenberger, 1979; Markowitz, 1952; Shafir & Tversky, 1995). Kahneman
and Tversky (1979b) attribute the preference for risk aversion in the domain of
gains and for risk seeking in the domain of losses to the same psychological
principle—the overweighting of certainty. However, it is not just that certainty
is desirable, they suggest, but that certainty increases the aversiveness of losses
and the desirability of gains.

Risk aversion for choices among positive alternatives and risk seeking for
choices among negative alternatives are both incorporated in "prospect the-
ory," developed by Kahneman and Tversky (1979b). According to this theory,
the decision maker's focus is on the gains and losses that could be realized as a
consequence of the decision and not on the decision maker's final state of
wealth; and losses of specific amounts have a greater effect on subjective value
than do gains of the same amount. This aspect of the theory might be accounted
for by the fact that a gain of a specific amount is a smaller proportion of one's
resulting total wealth than is a loss of the same amount: A gain of $25 on $100
is one fifth of one's resulting total of $125, whereas a loss of $25 from $100 is
one third of one's remaining total of $75.

Buff on, in his "Essai d'Arithmetique Morale," published in 1777, also ar-
gues that a loss of a given amount is perceived as larger than a gain of the same
amount: If one stakes half one's wealth on a gamble, one stands to increase
one's wealth by one third and to decrease it by one half. Curiously, to justify the
one third in this argument, he divides the gain by the resulting total wealth, but
to justify the one half, he divides the loss by the original wealth. As Todhunter
(1865/2001) points out, the argument would be even stronger if he divided by
the resulting wealth in both cases (as do Kahneman and Tversky).

Prospect theory has proved to be predictive of behavior in many probabilis-
tic choice situations (Kahneman & Tversky, 1979b; Shafir & Tversky, 1995).
The asymmetric relationship between the subjective values of gains and losses
is known as loss aversion. This relationship has important implications in a va-
riety of contexts. Shafir and Tversky (1995) point out, for example, that a me-
diator of a dispute could increase the chances of obtaining an agreement by
framing concessions as bargaining chips rather than as losses.

On the average, groups are inclined to take riskier decisions than individu-
als, and individuals are likely to be willing to accept greater risk when partici-
pating in a group decision-making process than when making decisions on
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their own (Bern, Wallach, & Kogan, 1965; R. D. Clark, 1971; Kogan &
Wallach, 1967; Wallach & Kogan, 1965). This finding has been referred to as
the "risky-shift" phenomenon, and may be a special case of participation in
group discussion moving people to more extreme positions than they other-
wise would express (Myers & Lamm, 1976).

On the basis of several studies of risk-taking behavior, Slovic (1972) has
concluded that a propensity for risk taking is probably not a situation-inde-
pendent character trait. One's tendency to take risks in one situation has proved
not to be a good predictor of one's willingness to do so in qualitatively different
situations. Whatever the explanation for different propensities for risk taking,
it can be argued that from the point of view of rationality, one's attitude toward
risk must be taken as a given. Allais (1979/1990) puts it this way: "It is ac-
cepted that a rational individual's scale of psychological values may differ
from the monetary scale, and that he may have a greater or lesser propensity for
safety or for risk. There seems to be agreement that this is an issue of psychol-
ogy and not of 'rationality'" (p. 121).

Risk Communication

Inasmuch as both governmental policies and personal decisions often are made
in response to perceived risks, it is of some importance that reliable data re-
garding risks be communicated in a way that will be correctly understood by
the policy formulators and decision makers. In view of the considerable evi-
dence that many people have difficulty in dealing with probabilistic concepts,
finding effective ways to present risks to the general public is a challenge, and
recognized as such (Allen, 1987; Hance et al., 1988; National Research Coun-
cil, 1989). The point is made by reference to the Three Mile Island incident.
The information immediately forthcoming from various sources was inconsis-
tent and confusing (Goldsteen, Schorr, & Goldsteen, 1989). Lack of confi-
dence in communication from government officials is indicated by the flight of
about 200,000 people from the area following the issuing of a gubernatorial ad-
visory that pregnant women and preschool children living within 5 miles of the
plant (an estimated total of about 3,500 people) might want to evacuate and that
everyone living within 10 miles should consider staying indoors (Erikson,
1990). On the other hand, overreaction is not the invariable response to risk.
Many people refused to leave the vicinity of Mt. Saint Helens before its erup-
tion in May 1980 (Saarinen, 1980), and people do elect to live in areas where
risks of natural disasters are relatively high.

Several investigators have attempted to compare exposure to each of a vari-
ety of risks on a common metric, such as amount of decrease in one's life ex-
pectancy (B. Cohen & Lee, 1979; Sowby, 1965; R. Wilson, 1979). Slovic,
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Fischoff, and Lichtenstein (1981/1986) note that whereas such comparisons
may serve a useful educational purpose, they fail to capture the complexity of
people's attitudes toward risks that are affected by numerous variables, such as
the degree to which a risk is controllable or avoidable, the potential it has to as-
sume catastrophic proportions, and the threat it poses to future generations.
The same investigators take the position that appropriate presentations of fac-
tual material within a comparative framework can do much to counter mis-
perceptions and misestimates and to put risks in a more accurate perspective.
People are more likely to see data regarding risks to be relevant to them person-
ally if the data are framed in terms of personal risk than if presented as popula-
tion statistics (L. Jeffrey, 1989; Sharlin, 1986).

Need for Better Understanding of Risk Assessment,
Communication, and Perception

A better understanding of how risks are assessed and communicated is of some
practical urgency, because policy decisions are often made for the explicit pur-
pose of decreasing the risks of future catastrophes. To the extent that the actual
risks differ from what they are perceived to be, actions that are taken in the in-
terest of avoiding or decreasing them may be ineffective or dysfunctional
(Gould et al., 1988). Our ability to anticipate risks associated with technologi-
cal developments of various sorts in the past has not proved to be great; the
need to do better in this regard becomes ever more urgent as the potential of
technology for both good and ill continues to increase.

Of special concern is the question of how to assess risks of events for which
frequency data do not exist. How, for example, does one assign a probability to
the possibility of the accidental development and release of a lethal virus from
genetic experimentation? Or to the intentional contamination of a city's water
supply by a terrorist organization? Or to the finding of a cure for cancer? There
seems to be little alternative to reliance on the opinions of experts, and this can
be disconcerting when experts' opinions differ greatly on what the probabili-
ties are. We can require that experts make the basis of their opinions explicit,
and usually they are more than willing to do so in some detail. It is up to us then
to judge which of the rationales that are put forth in defense of various posi-
tions that are taken that we find most persuasive. Making this judgment can be
very difficult, of course, if we lack the background knowledge that is necessary
to understand the rationales that are offered.

Probabilities can be represented graphically in a variety of ways. Unfortu-
nately none of these representations appears to be able to compensate for a
lack of familiarity with probability (Ibrekk & M. G. Morgan, 1987). People
who have not had a nontrivial amount of exposure to probabilistic concepts
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seem to find it difficult if not impossible to think in these terms. Even intro-
ductory college courses in statistics and probability do not always suffice to
ensure that people who have completed them will do appreciably better than
people who have not on problems that require probabilistic reasoning many
years after their training.

When we are dealing with the problem of understanding risks for the purpose
of setting public policy, there is a responsibility, I want to argue, both on the part
of experts to make the rationales for their opinions as accessible to a lay public as
they can, and on the part of lay people to make an effort to obtain the knowledge
that is necessary to understand the issues. When experts hide their rationales for
their opinions behind technical jargon that is accessible only to their colleagues,
if to them, they do not deserve to be taken seriously by the general public. On the
other hand, it is not clear that one who is unwilling to make any effort to under-
stand an issue can legitimately claim a right to have an opinion on it.

Because the same risk can appear to be different when reported in different
ways (Slovic, 1987; Tversky & Kahneman, 1981), the question of how best to
report risks is an important one. In the absence of a demonstration that a partic-
ular method of reporting invariably promotes better understanding than do al-
ternative methods, an approach that has been recommended is that of
expressing a given risk in more than one way (R. Wilson & Crouch, 1987).

Do people want to understand the risks they face as individuals? One sus-
pects that this question has a complicated answer and that we do not know yet
what it is. There is some evidence that, at least in the context of health and med-
ical problems, many people desire reliable information about their risks
(Alfidi, 1971; Weinstein, 1979). On the other hand, there is evidence too sug-
gesting that people may sometimes avoid medical examinations when they
have reason to expect them to produce bad news (Klatzky & Messick, 1995).
The discovery of the gene for Huntington's chorea made it possible to deter-
mine whether individuals have the gene, but not all who have reason to suspect
that they might have it elect to find out for sure.

SELF-EVALUATION

Many things depend on people's subjective assessment of what they know and
do not know: whether they volunteer for certain roles or tasks, whether they seek
further practice or instruction, and whether they instill confidence in others, as
well as the answers they give to questions from superiors and subordinates and
the affect they induce on others by facial expressions and body language.
(Jacoby, Bjork, & Kelley, 1994, p. 57)

The ability to reflect on one's own thought processes is a fascinating ability and
one that we do not understand at all well. We know that we have this ability,
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however, and we use it in a variety of ways. We can make judgments and then
make judgments of those judgments. We can estimate the likelihood of a speci-
fied event and then rate our confidence in the estimate. We can assess what we
know on a particular subject relative to what there is to know.

This is not to claim that we can do these things well or that the self-evalua-
tion judgments we make are necessarily accurate. Such judgments must have
an accuracy greater than chance, or they would not be worth making, but it
would be surprising if they were highly accurate, given the introspective basis
on which they are made. Some of these judgments may even be a bit paradoxi-
cal. Consider, for example, the problem of assessing how much one knows rel-
ative to what there is to know about a given subject. In order to make such an
assessment, one must not only know what one knows about the subject, but in
some sense one must also know what there is to know—which is to say one
must know what one does not know—in order to make the comparison.

Psychologists have done numerous experiments in which people have been
asked to express their degree of confidence in various types of judgments that
they themselves have made. Interest in the topic goes back at least to the early
decades of the 20th century (Hollingsworth, 1913a, 1913b; Lund, 1925; Trow,
1923). One purpose of confidence-judgment studies has been to investigate
how confidence, or degree of certitude, relates to a variety of more objective
variables, such as the probability that a judgment made with a given level of
confidence is correct.

When participants in experiments have expressed confidence as probability
estimates or as ratings that can be transformed—with some plausible assump-
tions—into probability estimates, it has often been possible to compare these
probability estimates with performance on the primary task, determining for
each confidence estimate what percentage of the judgments on the primary
task to which that estimate was assigned were correct. Plots of actual percent-
age correct against percentage correct "predicted" by the confidence estimates
have been referred to as calibration curves; perfect calibration is represented
by the unit line, which indicates that for any given confidence estimate, X, the
proportion of all the judgments with that estimate that were correct was X. Cal-
ibration curves have been plotted by numerous investigators for judgments ob-
tained under a wide variety of conditions (J. F. Yates, 1990,1994).

Several different measures of performance that can be derived from confi-
dence estimates of the type used in calibration studies have been defined. Three
are over/underconfidence, calibration, and resolution. The following defini-
tions are from Lichtenstein and Fischhoff (1977):
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where N is the total number of respon ses, nt is the number of times the response
rt was used, ct is the proportion correct for all items assigned probability rf and
Tis the total number of different response categories (confidence levels) used.

Calibration = — ̂ jjT nt (rt - ct) ,
™ t=i

Resolution = — ]JT nt (rt - c)

where c is the overall proportion correct.
As Lichtenstein and Fischhdff (1977) point out, Equation 1 is the difference

between the mean confidence (expressed as the probability of being correct)
and overall proportion correct; obviously, the smaller the number, the better. A
problem with Equation 1 as an indication of calibration is that, because it uses
signed differences, overconfidence for some items or persons can counterbal-
ance underconfidence for others, thus giving an indication of accurate confi-
dence that could be misleading. A possible answer to this problem, which has
been proposed by Adams and Adams (1960) and Oskamp (1962), is to use the
absolute values of the differences; another is Equation 2, which was proposed
by Murphy (1973). Either gives an indication of how close the calibration
curve is to the unit line (which represents perfect correspondence between con-
fidence and performance); the latter weights larger differences proportionately
more than the former. Equation 3, also proposed by Murphy, provides an indi-
cation of the degree to which differences in confidence are predictive of com-
mensurate differences in proportion correct; it increases with the slope of the
confidence-correctness function (being close to 0 when this is relatively flat)
and it can be thought of as a measure of sensitivity.

A fourth measure also proposed by Murphy (1973, 1974) and mentioned by
Lichtenstein and Fischhoff (1977),

Knowledge = c(l - c),

contains no representation of confidence, but provides a measure of correct-
ness that is of interest primarily because, when combined with the measure of
calibration defined by Equation 2 and the negation of the resolution score de-
fined by Equation 3 it yields one of a class of what have been identified as
proper, or admissible, scoring rules" (Shuford, Albert, & Massengill, 1966),
discussed briefly in chapter 10. We should note that the preceding equation is 0
when either all the answers are correct or none of them is and increases as the
proportion correct gets closer to 0.5.
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Overconliaence

We're so often cocksure of our decisions, actions, and beliefs because we fail to
look for counterexamples, pay no attention to alternative views and their conse-
quences, distort our memories and the evidence, and are seduced by our own ex-
planatory schemes. (Paulos, 1998, p. 55)

Probably the broadest generalization that comes out of calibration studies and
other investigations of judgments of judgments is that people tend to express a
higher degree of confidence in their judgments than is justified by the accuracy
of those judgments when they involve quantitative variables such as probabili-
ties. Calibration studies have generally shown overconfidence to be a more
common failing than underconfidence (Alpert & Raiffa, 1982; Arkes &
Harkness, 1983; J. J. Christensen-Szalanski & Bushyhead, 1981; Einhora,
1980; Einhorn & Hogarth, 1978; Fischhoff, 1982; Fischhoff & Slovic, 1980;
Kelley & Lindsay, 1993; Lichtenstein & Fischhoff, 1977; M. G. Morgan &
Henrion, 1990; Paese & Feuer, 1991; Pitz,1974; Ronis & F. Yates, 1987;
Slovik, Fischhoff, & Lichtenstein, 1977; Vallone, Griffin, Lin, & L. Ross,
1990). Reviews include Lichtenstein, Fischhoff, and Phillips (1982), Wallsten
and Budescu (1983), O'Connor (1989), and Keren (1991). The finding that
overconfidence in one's judgments is the rule has serious practical implica-
tions because, as Baron (1998) has pointed out, people are more likely to take
extreme actions on the basis of views in which they have great confidence than
on the basis of those for which they have reservations.

Much of the evidence of overconfidence comes from experiments in which
people have answered general-knowledge questions—questions pertaining to
the type of information found in almanacs or books of facts—with a forced-
choice format and have, for each answer, expressed their confidence that it was
correct, but overconfidence has been observed in other contexts as well. Retro-
spective judgments of comprehension of expository text have been observed to
be higher than justified (Glenberg & Epstein, 1985; Glenberg, Sanocki, Ep-
stein, & Morris, 1987; Glenberg, Wilkinson, & Epstein, 1982), as have expres-
sions of confidence in predictions of future events over which one is assumed
to have some degree of control (S. J. Hoch, 1985). Fischhoff and Slovic (1980)
asked people to perform a variety of difficult or nearly impossible tasks—iden-
tification of the nationalities of people on the basis of samples of their hand-
writing, projection of stock price activity, prediction of horse race outcomes—
and found that people's performance typically was not as good as their confi-
dence indicated they thought it would be. Griffin, Dunning, and L. Ross (1990)
showed that people tend to be overconfident of their ability to predict either
their own behavior or that of others in specified situations. People's assess-
ments of how well they know some subject matter appear not to be very indica-
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live of how well they will do on an exam on the subject (Cull & Zechmeister,
1994; Mazzoni & Cornoldi, 1993).

Experts have also often been found to be overconfident when assessing their
own knowledge in their areas of expertise. When asked to predict the outcomes
of their own cases, attorneys, for example, appear to be overconfident in the ag-
gregate, in the sense of being apt to express confidence of obtaining outcomes
better than those they actually obtain (E. F. Loftus & Wagenaar, 1988;
Wagenaar & Keren, 1986). Other professionals who have been found to be
overconfident when making judgments in their own areas of expertise include
physicians (Faust, Hart, & Guilmette, 1988; Lusted, 1977), psychologists
(Oskamp, 1965), and engineers (Kidd, 1970). Experts appear to do better when
there is a reliable basis for statistical prediction, such as when predicting
bridge hands (Keren, 1987) or betting odds for horse racing (Hausch, Ziemba,
& Rubenstein, 1981).

People, including experts, also tend to be overconfident of their ability to es-
timate failure rates of system components. When asked to specify one failure
rate that they would expect only 5% of components to exceed and another that
they would expect only 5% of components to fall below, they typically pick
values that are insufficiently extreme (Lichtenstein, Fischhoff, & Phillips,
1977). Kahneman and Tversky (1973) refer to the confidence that people feel
for highly fallible judgments as the "illusion of validity." Apparently experts
are not immune from this illusion (Nuclear Regulatory Commission, 1978;
Slovic, Fischhoff, & Lichtenstein, 1981).

Kuhn, Weinstock, and Flaton (1994) have demonstrated a connection be-
tween confidence in a decision and the approach that one takes in reaching it.
They found that some participants (satisficers) in a mock jury trial tended to
use evidence selectively in order to build up a single view of what had hap-
pened, whereas others (theory-evidence coordinators) considered more than
one possibility and attempted to evaluate all of them in light of the accumulat-
ing evidence. A particularly thought-provoking aspect of their results is the
fact that those participants who took the former approach had greater confi-
dence in their decisions than did those who took the latter.

Lichtenstein and Fischhoff (1977) found the tendency toward overconfi-
dence to be especially pronounced when people made judgments regarding
which there was little objective basis for accuracy (e.g., whether drawings
were made by Asian or European children) and for which accuracy was close
to chance. Calibration and resolution in this case were also poor. The same in-
vestigators found that providing people with some task relevant knowledge de-
creased overconfidence and improved calibration and resolution, but that when
knowledge was very high (so that more than about 80% of the questions were
answered correctly) underconfidence sometimes became the rule.
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They concluded that it is not the case that people who know more know
more about how much they know, in general, but rather that confidence appears
to be most predictive of what one knows at intermediate levels of knowledge;
when one knows very little, confidence is likely to be too high, whereas when
one knows a lot (gives correct answers on a large majority of the questions) it is
sometimes moderately too low. Their results over a series of experiments seem
also to be consistent with the conclusion that resolution is somewhat less af-
fected by changes in the difficulty of the task than are under or overconfidence
or calibration. Making the question-answering task easier or more difficult, for
example, appears to have the effect of moving the entire correctness-confi-
dence curve up or down rather than changing its slope.

One account of why people tend generally to be overconfident in their an-
swers is that once having identified a plausible answer to a question or scenario
for the future, they fail to consider possible alternative answers or scenarios
(Griffin et al., 1990; S. J. Hoch, 1985; Shaklee & Fischhoff, 1982). A closely
related hypothesis is that when one has produced a tentative answer to a ques-
tion, people find it easier to bring to mind evidence in support of that answer
than evidence against it (Graesser & Hemphill, 1991; Koriat, Lichtenstein, &
Fischhoff, 1980). This account links the tendency to be overconfident of one's
answers with the idea of a pervasive confirmation bias (Nickerson, 1998). The
bias is expressed in this case as a tendency to bring to mind information that
will confirm the answer one has produced and to overlook information that
would count against it. This is similar to the explanation suggested by Nisbett
and L. Ross (1980) of why people may persevere with a belief even after learn-
ing that the information on which the belief was based was fictitious: after hav-
ing formed the belief they sought and found independent data to corroborate it.

Another suggestion, not necessarily in conflict with this one, is that a major
factor contributing to confidence in an answer is the speed (Nelson & Narens,
1990) and/or ease (Kelley & Lindsay, 1993) with which the answer comes to
mind. Nelson and Narens found a correlation between confidence and speed of
answering even when the answers were incorrect, although for a given speed,
confidence was higher for correct than for incorrect answers. V. L. Smith and
H. H. Clark (1993) also found that when people were able to answer a question,
the higher the confidence in the answer, the more quickly it was produced.

Kelley and Lindsay (1993) manipulated ease of access by exposing poten-
tial answers, some correct and some incorrect (but plausible), to questions be-
fore asking the questions. Prior exposure increased the speed with which
participants produced those answers and their confidence in them when they
used them, in both cases. This was true even in a condition in which none of the
items on a preexposed list was a correct answer to the subsequent question and
participants were informed of this and told to ignore the list during the ques-
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tion-answering phase of the experiment. The fact that they appeared to be un-
able to avoid the influence of prior exposure on feelings of confidence was
taken as strong evidence that confidence is based in part on the ease with which
answers, right or wrong, come to mind.

Griffin and Tversky (1992) make a distinction between strength (extreme-
ness) of evidence and weight (predictive validity) of evidence and hypothesize
that people tend to focus primarily on the former and make some—but typi-
cally insufficient—adjustments in response to the latter. This hypothesis leads
to the expectation that overconfidence will be the rule when strength is high
and weight low, whereas underconfidence will prevail when the opposite is the
case. Griffin and Tversky argue that this hypothesis can reconcile the apparent
discrepancy between the finding of conservatism in the updating of posterior
probabilities in Bayesian decision making (Edwards, 1968) and the finding
that people often make radical inferences on the basis of small samples
(Tversky & Kahneman, 1971). Conservatism or underconfidence has typically
been found, they suggest, when people have been exposed to large samples of
data of moderate strength, and radicalism or overconfidence has generally
been observed in situations involving moderately strong effects based on small
samples; so both phenomena follow, according to this view, from the domi-
nance of evidentiary strength over weight.

Numerous studies have shown that medical diagnoses based on case statis-
tics tend to be more accurate than those based on clinical judgments, and that
despite this fact clinicians typically have greater confidence in their own judg-
ments than in those derived statistically from incidence data (Dawes, 1976).
Studies yielding predictions from case statistics that are at least as good as, and
usually better than, those from judgments of experts include those of Dawes
(1971), Wiggins (1981), Wedding (1983), Leli and Filskov (1984), Meehl
(1986), among many others. A simple formula developed by L. R. Goldberg
(1965, 1968) distinguishes neurotics from psychotics on the basis of Minne-
sota Multiphasic Personality Inventory scores with 70% accuracy. The fact that
70% is greater accuracy than any group of clinicians had attained on this task
did not suffice to convince clinicians to use the formula instead of their own in-
dividualized approaches (Arkes et al., 1986). One study of the way clinicians
score projective tests showed 18.5% of them using standard procedures and
81.5% using their own individualized procedures (Wade & T. B. Baker, 1977).

Although the quality of decision making has not always been found to in-
crease with the quantity of relevant information available to the decision
maker (L. R. Goldberg, 1968; Hayes, 1964), confidence may increase with
the amount of information available even when accuracy does not. Clini-
cians' confidence in their judgments about cases, for example, has been ob-
served to increase with the amount of information on which the judgments
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were made even when the accuracy of the judgments did not improve
(Oskamp, 1965; Ryback, 1967).

Allwood and Granhag (1996) found that the accuracy or realism of confidence
judgments improved when people were asked to evaluate the extent of their
knowledge in the area of a question they were about to be asked. These investiga-
tors interpreted this result as at least suggestive evidence that people's evaluations
made them more aware than they otherwise might have been of the limitations of
their knowledge in the specified areas. An interesting aspect of Allwood and
Granhag's results is that participants judged their knowledge to be more nearly
comprehensive for broadly defined domains than for narrowly defined ones.

Confidence, or degree of certainty, has usually been expressed in calibration
studies as a rating on a linear scale (e.g., a 7-point scale anchored at one end by
"certainty" and at the other by "pure guess"). Sometimes, however, people
have been asked to estimate odds, the ratio of the chance that a particular situa-
tion pertains to the chance that it does not. The most extreme examples of over-
confidence have been found in these cases. Fischhoff, Slovic, and Lichtenstein
(1977) had people judge which of each of several pairs of causes of death was
the more prevalent, and express their confidence in each judgment in terms of
the odds that it was correct. Subjects tended to give odds that were way out of
line with their primary task performance especially with the easiest compari-
sons: Odds given for comparisons on which the participants were right 90% to
95% of the time ranged from 10,000:1 to 1,000,000:1. One possible explana-
tion for such unrealistic numbers is that the participants lacked a clear under-
standing of what "odds" means. A lecture on probability and odds caused a
reduction in the use of such extremes but did not eliminate it. Slovic et al.
(1977) also found that people tended to be overconfident when asked to judge
the odds that their answers to general-knowledge questions were correct. It ap-
pears that overconfidence is the rule in calibration studies independently of
whether confidence is expressed with probabilities or with odds (Hazard & C.
R. Peterson, 1973; Seaver, von Winterfeldt, & Edwards, 1978).

Reducing Overconiiaence

Investigators have explored various ways of trying to reduce the overconfidence
that people express in their judgments (Arkes, Christensen, Lai, & Blumer,
1987; Griffin et al., 1990; May, 1986; Sniezek, Paese, & Switzer, 1990). With a
two-alternative choice task, Koriat et al., (1980) got people to make confidence
judgments that were more appropriate for their performance by having them list
reasons for and against each alternative before choosing their answer and ex-
pressing their confidence in it. The tendency toward overconfidence was also di-
minished by having people identify an argument against their answer, after



322 • CHAPTER 8

choosing the answer but before making the confidence judgment. Other studies
in which people have been asked to evaluate or justify their views, especially
when the evaluation includes providing reasons against one's own position, have
yielded a reduction in confidence (Fischhoff, 1977; S. J. Hoch, 1984, 1985;
Tetlock & Kim, 1987). Being forced to consider multiple construals of situa-
tional details has also been shown to reduce overconfidence in one's predictions
of one's own future behavior in specified situations (Griffin et al., 1990).

Although such results encourage the belief that the tendency to be overconfi-
dent can be countermanded, to some degree, numerous attempts to reduce over-
confidence that have met with very limited, if any, success testify to the
persistence of the tendency and the difficulty of reducing it (Ferrell & McGoey,
1980; Fischer, 1982; Fischhoff &MacGregor, 1982;Seaveretal., 1978). Simply
informing people of the tendency and asking them to avoid it appears not to work
(Lichtenstein & Fischhoff, 1980). Lichtenstein and Fischhoff demonstrated that
training-induced improvements in calibration may fail to generalize strongly to
probability assessment tasks different from those used in the training situation.

Some data suggest that professional weather forecasters tend to be well cali-
brated, at least with respect to their weather predictions (Murphy & Winkler,
1971,1974,1977; Winkler & Murphy, 1968) and this has been attributed to the
fact that they receive relatively constant and immediate feedback regarding the
accuracy of their predictions, which is the kind of information that makes
learning feasible. It should be noted too, however, that weather forecasters typ-
ically do not express confidence in their judgments about the weather, they
make probabilistic predictions about the weather per se. That is they do not
typically say "It is going to rain tomorrow, and my confidence is .9 that that
prediction is correct"; they are more likely to say "The probability that it will
rain tomorrow is .9." One might argue that these amount to the same thing, but
not everyone will necessarily be convinced that that is the case.

There is at least suggestive evidence that overconfidence in judgments tends
to be less when the judgments are accompanied by choices or consequential
decisions than when they are simply expressions of opinions on which no ac-
tion is taken (Kahneman & Lovallo, 1993; Paese & Sniezek, 1991). There are
indications also that the poor calibration that some studies have reported could
have been due, at least in part, to the use of written materials that were appro-
priate for a reading comprehension level beyond that of the participants (C. A.
Weaver & Bryant, 1995; Weaver, Bryant, & Burns, 1995).

Bases for Overconndence

Studies of Bayesian decision making have shown that people often overesti-
mate the completeness of the sets of hypotheses provided about the possible
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states of the world (Fischhoff et al., 1978; Gettys, S. D. Fisher, & Mehle, 1978;
Mehle, Gettys, Manning, Baca, & Fisher, 1981). Given this tendency, the use
of previously prepared check lists in decision-making situations would appear
to have some merit, and there is evidence that decision making can be im-
proved in this way (de Dombal, Leaper, Horrocks, Staniland, & McCann,
1974). Users of electronic document searches often overestimate, sometimes
by large amounts, the percentage of the relevant documents that a search has
returned (Blair & Maron, 1985; MacGregor, Fischhoff, & Blackshaw, 1987).
These and similar results are suggestive of a general tendency to overestimate
the completeness of lists that are presented to us for various purposes.

Such a tendency can help explain, at least in some cases, the common find-
ing of overconfidence in judgments of various types. If I can think of only two
or three possible hypotheses to account for some event and I believe my short
list to be relatively complete, when in fact it is not, I might judge the probability
that my favored hypothesis is correct to be quite high, on the assumption that it
is one from a small number of possibilities; whereas if I realized that it was re-
ally one from a large number of possibilities, my confidence in its correctness
might be considerably lower.

Gettys et al. (1978) have proposed essentially this account of the finding
that people tend to be overconfident of the probable adequacy of stated hypoth-
eses: People not only fail to generate some plausible hypotheses because of
memory failure or lack of knowledge, but they judge the set of hypotheses they
have before them (produced from memory or provided by someone else) to be
more complete than it is because they overlook the limitations of their own
knowledge and memory. In other words, they discount hypotheses they have
been unable to generate by ignoring the possibility there may be some.

A tendency to overestimate the completeness of lists can be seen as itself a
manifestation of overconfidence. In estimating any set to be more complete
than it really is, one is, in effect, taking the fact that one cannot think of mem-
bers of the set that are not included in the enumeration as evidence that they
do not exist: If many do exist, one has overestimated either one's knowledge
of the set or one's ability to retrieve from memory the information retained
there. In either case, one has shown more confidence in one's cognitive re-
sources than warranted.

Overconfidence in one's own judgments may be a consequence, in part, of
the fact that judgments that are made outside the laboratory are typically made
for the purpose of choosing among action alternatives, and such choices often
have the effect of precluding the possibility of obtaining certain types of evi-
dence that would show them to have been poor ones, if they were. Inasmuch as
decisions often rule out the possibility of discovering what the consequences
of different choices would have been, the decision maker may not get the kind



324 • CHAPTER 8

of feedback that would be expected to shape a more accurate model of one's
judgment ability over time.

Gigerenzer (1991b, 1994) argues that the "overconfidence bias," as de-
scribed earlier, is not really a bias, at least as it relates to some interpretations of
probability. Proponents of a frequentistic interpretation of probability, the
dominant interpretation since the middle of the 19th century, would not, he
suggests, recognize the meaningfulness of the application of probability to sin-
gle events. Subjectivists, on the other hand, would accept the applicability of
probability to individual events, but would not necessarily hold that the proba-
bility one assigns to an event should be determined by its relative frequency of
occurrence. In short, according to Gigerenzer, "A discrepancy between confi-
dence in single events and relative frequencies in the long run is not an error or
a violation of probability theory from many experts' points of view. It only
looks so from a narrow interpretation of probability that blurs the distinction
between single events and frequencies fundamental to probability theory"
(199 Ib, p. 89). From the point of view of a dyed-in-the-wool frequentist, inas-
much as probability theory is (only) about relative frequencies, and does not
apply to single events, "no statement about confidences can violate the laws of
probability" (1994, p. 153).

Gigerenzer (1991b; see also Allwood & Granhag, 1996; Keren, 1991) also
reports results obtained by him and his colleagues that suggest that people do
not equate level of confidence with expected relative frequency, despite the ex-
perimenter's instruction to do so. When they asked people to report their level
of confidence in the correctness of each of many general-knowledge questions,
they obtained the usual overconfidence result; when they asked the same peo-
ple to estimate the percentage of several sets of such questions they had an-
swered correctly, the overconfidence result was not obtained—in this case, the
estimates were quite accurate. The way to make the overconfidence effect dis-
appear, Gigerenzer argues, is to eliminate "the experimenter's normative con-
fusion between single events and frequencies" (p. 90). Again, "the discrepancy
between mean confidence and relative frequency of correct answers, known as
'overconfidence bias,' is not an error in probabilistic reasoning. It only looks
that way from a narrow normative perspective, in which the distinction be-
tween single-event confidence and frequencies is blurred. If we ask our sub-
jects about frequencies instead of single-event confidence we can make this
stable phenomenon disappear" (Gigerenzer, 1993, p. 300).

This is a testable conjecture. Whether it holds for all observations of over-
confidence is not clear. Even if it does, asking about frequencies is not the same
as asking about confidence. And the question remains why people often ex-
press confidence that is higher than appears to be warranted by their perfor-
mance. If degree of confidence does not map onto probability of being correct
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in a straightforward way, the question becomes: Exactly what does expressed
confidence signify?

Confidence ana Judgment Diniculty

One would like to believe that a specific level of expressed confidence in a
judgment could be taken as a reliable indication of the probability that the judg-
ment was correct, independently of the context in which the primary judgment
and the confidence judgment were obtained. Confidence judgments would be
more useful if their predictive significance was invariant across judgmental sit-
uations than if they meant one thing in one context and something else in an-
other. Unfortunately, the evidence indicates that their significance does vary
with situational factors; in particular, the degree of overconfidence that people
express tends to increase with the difficulty of the questions asked; when the
questions are very easy—as evidenced by a high percentage of correct answers
on the primary task—overconfidence may cease to be the rule and under-
confidence may be found (Lichtenstein & Fischhoff, 1977). This has been
called the "hard-easy" effect.

In one study (Nickerson & McGoldrick, 1963), college students tried to
identify which of four specified states of the United States is the largest in
area. For each of a large number of such items, they also expressed their con-
fidence on a 5-point scale, ranging from pure guess to certainty, that their an-
swer was correct. Three sets of questions were used, representing three levels
of difficulty. The easy set contained only items for which the largest of the
four states was considerably larger than the next largest (at least 20 ordinal
positions when states were ordered in terms of size); the difficult set con-
tained only items for which the maximum difference between the largest and
next largest state of any four was relatively small (not more than 5 ordinal po-
sitions); and the remaining set contained a mix of items from these sets plus
many of intermediate difficulty.

The probability that an answer would be correct increased with the degree
of confidence expressed in it; however the rate of increase was very slight for
the difficult set of questions, greater for the easy set, and greatest for the mixed
set. Of greatest relevance to this discussion is the fact that, as a predictor of per-
formance on the size-judgment task, a given expression of confidence meant
quite different things with the different sets. In particular the lowest confidence
level ("pure guess") was associated with close-to-chance performance (about
29% correct) with the difficult set and with much better than chance perfor-
mance (about 53% correct) with the easy set. Similarly, highest confidence
("certainty") was associated with about 34% correct with the difficult set and
with about 76% correct with the easy set.
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In a second study (Nickerson & McGoldrick, 1965) only the mixed set of
items was used—to ensure a large range of difficulty—and the way in which
confidence judgments were assigned by participants who performed well on the
size-estimation task was compared with how they were assigned by those who
performed poorly. For both groups the probability that an answer would be cor-
rect increased monotonically with the degree of confidence expressed in it; the
rate of increase in performance with increased confidence was about the same
for both groups, but for any given level of confidence the probability that the an-
swer associated with it would be correct was considerably higher for the high
performance group than for the low. If the confidence rating scale that was used
is interpreted as an equal-interval scale anchored at 0 and 1 so the ratings can be
interpreted as estimates of probability of being correct, both groups tended to be
overconfident of their answers (answers were less likely to be correct on average
than indicated by the probability estimates) and the low-performance group was
considerably more overconfident than the high-performance group (members of
this group tended to use lower confidence ratings, but not sufficiently much
lower to reflect their much poorer primary-task performance).

One explanation that has been proposed of overconfidence in general and the
hard-easy effect in particular starts with the assumption that people tend to be
quite well calibrated in the sense of being good judges of their knowledge as it re-
lates to situations they are likely to encounter in everyday life. Probabilistic judg-
ments in everyday—"natural environment"—situations are based on cues that
are generally effective indicants of the true state of affairs (the cue that one city is
north of another is a generally effective indicant that it is probably colder than the
other as well). Because of the nonrandom way in which general-knowledge
questions are sampled for use in studies of calibration, the cues that work in
real-world contexts may be misleading in the experimental situation and partici-
pants' reliance on them will result in an appearance of overconfidence in some
cases (Juslin, 1993, 1994). Whether people are well calibrated with respect to
real-life judgments is an empirical question that deserves further study.

Artiiactual Contributions to Over- ana Unaerconiiaence

Juslin (1993) argues that if people are well calibrated to their natural environ-
ment, a minimum requirement for the observation of good calibration in the
experimental situation is that the questions that people are to answer, and with
respect to which they are to judge the probability of the correctness of their an-
swers, are selected in such a way as to ensure that cues that are valid in the natu-
ral environment remain valid in the experimental situation. He contends that
certain strategies that are commonly used to select items for use in experiments
more or less ensure that the knowledge that is valid in participants' natural en-



ESTIMATION AND PREDICTION • 327

vironment will be less valid in the experimental situation; more specifically,
the argument is that such selection strategies typically result in sets of items for
which cues leading to wrong answers are "overrepresented" relative to their
commonness in the natural environment, and that this is especially so for rela-
tively difficult items. The hard-easy effect can be an artifact, he suggests, of
the partitioning of items into different difficulty categories after the fact on the
basis of performance on the primary task. Supporting this explanation are the
results of experiments showing good calibration for items selected at random
from a set assumed to be representative of the natural environment
(Gigerenzer, Hoffrage, & KleinbSlting, 1991; Juslin, 1993,1994). A counter-
example is given, however, by Griffin and Tversky (1992). Also the Nickerson
and McGoldrick (1963) study mentioned earlier, which showed the hard-easy
effect, did not involve partitioning the items into different degree-of-difficulty
categories on the basis of performance on the primary task.

A common finding in revision-of-opinion studies with a Bayesian paradigm
was that people revise opinions on the basis of new data less than they should,
according to the Bayesian prescription. They are said to be too conservative in
their treatment of new data. As a consequence of this tendency, the (posterior)
probabilities that people assign to events tend differ less from the prior proba-
bilities than they should with application of Bayes's rule. One might say that
the subjective posterior probabilities produced in these studies represent
underconfidence. (It must be said that, from an alternative perspective, the
finding might be interpreted as overconfidence in one's prior probability, or
overconfidence in an existing opinion.)

Erev, Wallsten, and Budescu (1994) address this apparent conflict in the lit-
erature directly and demonstrate that it is possible to get evidence either of
overconfidence or of underconfidence from the same data set, depending on
how it is analyzed. They note that Bayesian experiments showing conserva-
tism in the use of new data (underconfidence) have typically focused on sub-
jective probabilities as a function of known objective probabilities, whereas
calibration experiments have typically considered objective probabilities as a
function of expressed subjective probabilities. They show that it is possible
with a single data set to get the appearance of underconfidence with the first
type of analysis and that of overconfidence with the second type (see also Erev,
Bornstein, & Wallsten, 1993), and, with a log-odds model of how confidence
in a judgment might be determined, they show that even one whose judgments
are neither over- nor underconfident can appear to be either if the decision cri-
terion includes a random error term.

Erev et al. (1994) do not conclude that all evidences of over- or under-
confidence are artifactual. Such a conclusion is unwarranted, they argue, in
view of the fact that the magnitudes of both over- and underconfidence can be
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varied systematically and that, for both types of analysis, the effects sometimes
invert. Nevertheless, the demonstration that the same data set can be made to
appear indicative of either overconfidence or underconfidence, depending
only on how it is analyzed, is a powerful reminder of the need for care in the in-
terpretation of experimental results. Erev, Wallsten, and Budescu argue that
how one should look at judgment data depends on what is being asked:
"Conditionalize on the event state (or on probability when it can be independ-
ently defined) when the research is aimed at understanding the underlying cog-
nitive processes themselves. Conditionalize on response when the focus is on
accuracy. In either case, the performance measure will not be fully understood
without incorporating notions of error" (p. 526).

Contraction Bias

A common finding in calibration studies, when confidence is expressed or can
be interpreted as estimates of probability of being correct, is that the lowest lev-
els of confidence tend to be lower than the actual probability of being correct,
whereas the highest levels tend to be higher than the actual probability of being
correct (Adams & Adams, 1960;Fischoffetal., 1977;Lichtensteinetal., 1982;
Nickerson & McGoldrick, 1963,1965). This result may be seen as represent-
ing a type of contraction bias, suggesting, as it does, better performance than
expected when confidence is low and poorer performance than expected when
confidence is high.

People often display what has been called a contraction bias when judging
physical magnitudes (Poulton, 1982), whereby they tend to overestimate rela-
tively small magnitudes and underestimate relatively large ones. There is some
evidence also of a sort of contraction bias involving judgments of the frequency
of events, and especially of risky events, the tendency being to overestimate the
frequency of the lower-frequency events and to underestimate that of the higher-
frequency ones (Attneave, 1953; Braithwaite, 1975; Lichtenstein et al., 1978).
Lichtenstein et al. found, for example, that when asked to judge the frequency of
death from various causes, people tended to overestimate low-frequency causes
and to underestimate high-frequency ones. Among the factors identified by the
investigators as possible causes of consistent misestimates are differences in
amount of exposure to specific causes, and differences in the memorability of
particular events.

In all of these cases, there is the possibility of a statistical artifact. Consider
confidence ratings. When people use extremely high confidence levels, say
1.0, any variability can only bring the actual probability of being correct down,
because it is impossible to be more than 100% correct. In other words, it is dif-
ficult to do better than one expects when one expects one's performance to be
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nearly perfect. A slightly different, but similar, argument can be made with re-
spect to the low end of the confidence scale. Consider all those judgments for
which people have expressed minimal confidence, indicating that their perfor-
mance on the primary task should be at a chance level. Suppose that people dif-
fer slightly in the strictness with which they apply a criterion for deciding that
they have absolutely no knowledge that is relevant to the judgment and that
their judgment is a. pure guess. (This supposition could apply across people or
to a given individual across judgments.) Any variability of this sort would be
expected to result in judgments assigned minimal confidence to be correct with
a probability somewhat greater than that expected by chance.

It may be easier to see this if one oversimplifies the situation and considers
the judgments for which minimal confidence is expressed as falling into two
categories: those that are truly pure guesses and those based on some amount of
information, however small. The probability of correctness of the pure guesses
should vary around chance, but that of the judgments in the other category
should vary about something greater than chance; the two categories in combi-
nation should also be somewhat above chance.

Perhaps when the possibility of statistical artifacts is taken into account
there remain nonartif actual results of the sorts described—low estimated prob-
abilities underestimating performance, and high estimated probabilities over-
estimating performance and tendencies to overestimate the frequency of
low-frequency events and to underestimate the frequency of high-frequency
events, but before that conclusion can be drawn, the possible artifacts need to
be given due consideration.

The Hyperprecision Effect

Not all studies of confidence have had people express confidence level by
giving confidence or degree of certainty ratings or probability estimates.
Pitz (1974) had college students indicate their degree of uncertainty about
the population of each of 23 countries in the Americas in the following way.
For each country a participant was to provide two numbers such that, in his
or her opinion, the true population was equally likely to be (a) less than the
smaller number, (b) greater than the larger, or (c) between the two. If partic-
ipants had an accurate understanding of their own uncertainty about the
populations involved, we would expect the true population to be in each of
the "tertiles" about one third of the time. In fact on only about 16% of the tri-
als did the true population fall between the two numbers given, which sug-
gests that the participants typically believed they could bracket the true
value more narrowly than they could in fact do so. Pitz referred to his result
as the "hyperprecision effect."
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In another study described by Pitz (1974) in which the tertile estimation pro-
cedure was used, the hyperprecision effect was also obtained when partici-
pants estimated populations or the heights of well-known buildings, but not
when they estimated the ages of well-known people. In the last case, the center
tertile included the true age 47% of the time, which is to say, people underesti-
mated their ability to bracket these values, or overestimated their degree of un-
certainty. Pitz attributed this result to the greater store of knowledge that
people possess about people's ages. In fact the result does not really tell us that
the participants knew more about ages than about populations and building
heights; it tells us only that they knew more about ages, and less about popula-
tions and building heights, than they thought they did.

Pitz (1974) mentions also unpublished data obtained by Alpert and Raiffa
showing a hyperprecision effect. In this case participants were asked to esti-
mate the 1 st and 99th percentile values for various quantities and gave numbers
that typically bracketed the correct value about 50% of the time rather than
98%. In the aggregate, the results of these studies suggest that one is more
likely to overestimate than to underestimate how precisely one can specify dis-
tribution percentiles, and this is consistent with the common finding of over-
confidence in other types of judgment tasks.

SUMMARY

The abilities to estimate and to predict are valuable skills. The focus of this
chapter has been on statistical estimation and prediction. This is a small piece
of the broader topic that would include estimation, or prediction, of a variety of
physical or temporal variables, but it is an important part inasmuch as many of
the practical contexts in which the skill is needed are probabilistic in nature.

Research results suggest that people are reasonably good at estimating mea-
sures of central tendency of distributions and relative frequencies of events,
and less good at predicting the time and resources that will be required to per-
form specified tasks. Estimates of time and costs typically err on the low side.
One factor that appears to contribute to this problem is the ease with which
people assume, perhaps unwittingly, that everything will go according to plan
(overestimation of the probability of the conjunction of successes) and that
nothing will go wrong (underestimation of the probability of the disjunction of
possible problems).

Predictions of the outcomes of probabilistic events are subject to a number
of misconceptions and biases. Perhaps the best known misconception is the
gambler's fallacy. Predictions often are influenced by preferences—people
tend to overestimate the likelihood of occurrence of what they wish to occur.
Arguably this tendency makes lotteries appear more attractive than they
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might appear if people clearly understood the odds against winning. Predic-
tions can also be influenced by intuitions about sample size and population
size and how the two relate.

Opinions about the relative seriousness of various risks are shaped not only
by the objective probabilities with which feared events occur, but also by irrel-
evant factors such as the publicity that events of different sorts receive. Also the
acceptability of specific risks is determined not solely by the seriousness of the
consequences of the occurrence of a feared event, but by factors such as one's
sense of control of the risky situation (driver vs. passenger in a car), and
whether exposure to the risk is voluntary or imposed. Determining how to
communicate information about specific risks in such a way as to evoke appro-
priate action is an important research objective.

Evaluations of one's own estimation or prediction capability or performance
frequently prove to be too generous, which is to say, people's expression of con-
fidence in the accuracy of their own judgments often tend to be higher than their
performance warrants. There is some evidence that people evaluate their own
performance more accurately when they judge it in terms of percentage of an-
swers correct than in terms of confidence on an answer-by-answer basis. Finding
ways to improve people's ability to assess their own capabilities and perfor-
mance more accurately is another continuing challenge for research.



CHAPTER

Perception 01 Covariation

and Contingency

estimates of the degree to which variations in two variables are coupled
have been investigated under several topics, including covariation, co-occur-
rence, contingency, correlation and joint probabilities. Here I will use these
terms as they were used in the studies cited, without making distinctions
among them, but will tend to use covariation as the default generic term.

The ability to detect covariation is widely recognized to be an important
one for any creature. As Alloy and Tabachnik (1984) put it, "Information
about the relationships or covariations between events in the world provides
people and animals with a means of explaining the past, controlling the pres-
ent, and predicting the future, thereby maximizing the likelihood that they
can obtain desired outcomes and avoid aversive ones" (p. 112). Several ex-
perimental tasks have been used to study the estimation of covariation. These
include inspecting graphical representations of the relationship between two
variables (correlation scatterplots), inspecting series of number pairs, in-
specting full or partial two-by-two contingency tables, and looking for evi-
dence of covariation in case records (e.g., looking for the coupling of
smoking and lung cancer in medical records).

Some investigators have questioned whether people untutored in statistics
have an abstract concept of contingency or correlation (L. J. Chapman & J. P.

332
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Chapman, 1967; Crocker, 1981;H.M. Jenkins &W.C. Ward, 1965;Shaklee&
Tucker, 1980; Shweder, 1977; Smedslund, 1963). Shweder (1977) suggests
that people's estimates of co-occurrence in their own experience are more
strongly dependent on resemblance or semantic similarity than on actual fre-
quency of co-occurrence. He suggests that people not only base judgments of
what goes with what on resemblance but that they seem unable to make use of
frequency information or to reason correlationally. On the other hand, Nisbett
and L. Ross (1980) note that, although laboratory studies indicate that people
are not very good at detecting covariation, they nevertheless adapt well in so-
cial contexts that seem to require the ability to detect covariation with consid-
erable accuracy. This, they suggest, requires an explanation. This does not
invalidate the results of laboratory studies, but it does suggestion caution in ex-
trapolating those results to real-world contexts.

Several investigators have studied the ability of people to estimate the corre-
lation between series of number pairs and found it to be quite good (Erlick &
Mills, 1967; Jennings, Amabile, & L. Ross, 1982). Such estimates tend to be
more accurate when the correlations are positive than when they are negative
(Erlick & Mills, 1967) and the errors that are made are typically in the direction
of conservatism, which is to say in that of underestimating the strength of the
relationship (Beach & Scopp, 1966; Jennings et al, 1982).

BIASED FOCUS

The relationship between two variables, A and B, is often represented by show-
ing, in a table, the frequencies of occurrence of all four possible combinations
of the presence or absence of each variable. An example of such a table, some-
times referred as a contingency table, is shown as Table 9.1.

Covariation in Contingency Tables

When people are asked to estimate the strength of the relationship between two
variables based on information in two-by-two contingency tables, they often

TABLE 9.1

Illustrating the Tabular Representation of the Contingency Between A and B

A Present A Absent

B present A and B Not-A and B
B absent A and not-B Not-A and not-B
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give too much weight to the cell representing the positive state of both vari-
ables (A and B) and pay too little attention to the other cells (Arkes & Harkness,
1983; Crocker, 1981; Doherty & Falgout, 1986; Einhorn & Hogarth, 1978; H.
M. Jenkins & W. C. Ward, 1965; Kuhn, Phelps, & Walters, 1985; C. R. Peter-
son & Beach, 1967; Schustack & Sternberg, 1981; Shaklee & Mims, 1982;
Shaklee & Tucker, 1980; Smedslund, 1963; Wasserman, Dorner, & Kao,
1990). The general finding is illustrated by a study by Smedslund in which a
group of nurses reviewed a set of clinical cases in which a specific symptom
sometimes co-occurred with a particular diagnosis. The set of cases selected
for review included all four possible combinations (symptom-disease, symp-
tom-no disease, no symptom-disease, no symptom-no disease) but the actual
correlation between symptom and disease was zero. The nurses reported the
correlation to be positive, however, on the strength of their observation that the
symptom often co-occurred with the disease.

The cell of a two-by-two contingency table that tends to get the most atten-
tion—the one that represents cases in which both of the variables of interest
occurred—is typically referred to as the "plus-plus" cell; the other three cells
represent cases in which one or both of the variables failed to occur. With re-
spect to this terminology, it is important to note that "plus-plus" need not re-
fer to a specific cell (e.g., upper left) of a contingency matrix, but rather to the
combination of variables on which the individual focuses. This is illustrated
by an experiment by Crocker (1982) in which some participants were asked
to judge whether practicing the day before a tennis match related to winning
and others were asked to judge whether such practice related to losing. Both
groups were asked which cells of the two-by-two contingency table that
showed the frequencies of all combinations of practicing-not practicing and
winning-losing would provide information useful for their task. The group
focused on winning was most interested in the cell representing the combina-
tion of practicing and winning; the one focused on losing wanted to know
about the cell representing the combination of practicing and losing. Both
showed the plus-plus bias, but what constituted the plus-plus cell differed for
the two groups.

Focusing on the plus-plus cell of a contingency table, while completely ig-
noring the other three cells, is an extreme form of biased focus and not very
representative of behavior. What is more typical is an undue emphasis on the
plus-plus cell and insufficient attention to the other cells. Attention typically
has been unequally distributed among the remaining cells, with the two cells
representing the presence of one or the other of the variables receiving more
than the one representing the absence of both (Arkes & Harkness, 1983;
Schustack & Sternberg, 1981; Shaklee & Mims, 1982). The strategy of focus-
ing primarily on the plus-plus cell and paying insufficient attention to the oth-
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ers was noted by Inhelder and Piaget (1958) and interpreted by them as an
indication of immature judgment.

None of this is to suggest that all the cells of a two-by-two contingency table
are equally important and always deserving of equal weight in any attempt to
judge the strength of relationship between two variables. How much weight
one should give to the various cells of such a table depends, to some degree, on
the assumptions on which one is working. J. R. Anderson (1990) shows by a
mathematical analysis, for example, that the minus-minus cell should carry as
much weight as the plus-plus cell only if it can be assumed that the prior proba-
bility of the effect in question occurring in the presence of the cause in question
is equal to the prior probability of that effect not occurring in the absence of
that cause. Thus, according to Anderson, the fact that people tend to focus on
the plus-plus cell when attempting to determine the strength of relationship be-
tween two variables represented in a two-by-two contingency table is not com-
pelling evidence that they are behaving irrationally; "the critical issue is what
prior model is adopted in a rational analysis" (p. 160).

That being said, it must be noted that the consensus among investigators
who have studied this situation appears to be that the degree to which people
focus on the plus-plus cell and ignore or discount the others is not usually justi-
fied and typically leads to estimating the strength of relationship between two
variables to be stronger than the data indicate it to be. Focusing on the plus-plus
cell in two-by-two tables is sometimes seen as one of several examples of the
difficulty people have in using disconfirming information.

How misleading a focus on the plus-plus cell can be depends on the nature
of the relationship between the variables involved. If the variables are highly
correlated, such a focus is not likely to lead one to conclude that they are not. It
is easy to imagine circumstances, however, in which this focus could result in
the conclusion of a strong relationship when one does not exist. This asymme-
try helps account for the fact that this type of focus typically leads to an overes-
timation of the strength of the relationship between the variables involved.

It should be clear that by ignoring, or paying too little attention, to cells
other than the plus-plus cell, one is extracting much less information about the
possible relationship between A and B than a contingency table provides. Sup-
pose that A is a necessary cause of B (or that B is a sufficient cause of A). In that
case we would expect to find no occurrences of not-A and B. Or if A were a suf-
ficient cause of B (or B a necessary cause of A), we would expect no occur-
rences of A and not-B. If A were a necessary and sufficient cause of B (or B a
necessary and sufficient cause of A), we would expect to see entries only in the
plus-plus and minus-minus cells. Conversely, if we observed one of these pat-
terns, we would have grounds for suspecting a causal relationship of the asso-
ciated type: if, for example, we observed a table with sizeable numbers in all
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cells except not-A and B and a zero in that one, we might begin to suspect that A
was a necessary cause of 5. None of these possibilities would be noted, how-
ever, if we focused only on the plus-plus cell.

Leaving aside the question of a possible causal relationship between A and
B, the plus-plus cell by itself cannot tell us as much as there is to learn from the
table about the degree to which the two variables covary. The higher the posi-
tive correlation between them, the more we expect to see the observations con-
centrated in the plus-plus and minus-minus cells; the higher the negative
correlation, the more they would be concentrated in the two remaining cells.
Inhelder and Piaget (1958) suggested that in judging the strength of contin-
gency between two variables people may focus on the difference between (a)
the sum of the plus-plus and minus-minus cells and (b) the sum of the remain-
ing two cells: the larger the difference, the stronger the contingency. We should
note that the difference can be either positive (indicating a positive correlation)
or negative (indicating a negative one).

Covariation Among Events

However effective or ineffective people are at estimating correlations from
two-by-two contingency tables, performance on this task tells us little about
their ability to detect covariation among the events that may be represented in
such tables. The little evidence there is on the ability to detect covariation
among events suggests that at least when those events are arbitrarily paired
stimuli such as number pairs, the ability to detect small to moderate correla-
tions (less than about .6) is not very good (Jennings et al., 1982). It also appears
that the tendency to ignore information represented by some of the cells of a
contingency table is even greater when the information is presented sequen-
tially and one must rely on memory to integrate it than when it is provided all at
once in tabular form. More generally, people seem to be better at estimating
contingency relationships when they receive the information in summary form
than when they receive it serially on an instance-by-instance basis (W. D. Ward
& H. M. Jenkins, 1965). If, when estimating the degree to which two events are
correlated, people typically focus on instances in which the events co-occurred
and overlook or disregard cases in which one occurred but not the other, they
will overestimate the strength of the correlation. C. R. Peterson and Beach
(1967) have suggested that this is in fact what people do.

The foregoing discussion has noted the tendency of people to do the equiva-
lent of focusing on only one cell of a two-by-two contingency matrix when
judging, either explicitly or implicitly, the strength of the relationship between
two variables. Gilovich (1991) argues that this represents more than a bias that
characterizes the behavior of individuals and that it reflects a tendency that can
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be observed in the media's reporting of news as well. More generally the claim
is that various factors conspire to ensure that not all of the types of information
represented by the cells of the contingency matrix are equally likely to come to
our attention in the normal course of events, so it is incumbent on us, as individ-
uals, to do some digging if we wish to get the full picture in specific instances.

EXPECTATIONS AND CAUSE-EFFECT ASSUMPTIONS

Expectation plays an important role in the perception of covariation, and has
been identified by several investigators as a source of bias in covariation or con-
tingency judgments (Crocker, 1981; Nisbett & L. Ross, 1980; C. R. Peterson,
1980). Covariation is especially difficult to detect when it occurs between vari-
ables that are not expected to be related; in contrast, when a relationship is ex-
pected, confirming instances may be given undue weight whereas discontinuing
instances are overlooked or discounted (L. J. Chapman, 1967; L. J. Chapman &
J. P. Chapman, 1967,1969). Belief that a contingency exists can have the effect
of increasing the chances that one will find evidence that tends to confirm the re-
lationship and decrease the chances of obtaining evidence against it. This is one
of many manifestations of a bias toward seeking confirming rather than
disconfirming evidence of an existing belief (Nickerson, 1998).

That estimates of the degree of contingency between variables represented
in a two-by-two table can be affected by the perceived causal connection be-
tween the variables was shown by Ajzen (1977), who varied the labels on ta-
bles and found that the more causally connected the two variables appeared to
be, the higher the degree of estimated contingency for a given set of numbers.
Other studies showing that the perceived degree of contingency can be
changed by simply changing the labeling of the rows or columns of a table in-
clude those of Allan and H. M. Jenkins (1980) and Beyth-Marom (1982).

In a review of work on covariation detection, Alloy and Tabachnik (1984)
reject the idea that people do not have an abstract concept of contingency, but
concede that in the absence of certain mitigating factors they do frequently
misjudge event relationships in systematic ways. They cite numerous experi-
mental studies showing how biases might occur in making covariation judg-
ments. They argue that people's assessment of covariation is influenced by
both expectations and data or situational information. When expectations are
strong and situational information weak, expectations exert the greater influ-
ence; when expectations are weak and situational information strong, the re-
verse is true; when both expectations and situational information are strong,
either of two possibilities pertain. If expectations and situational information
are consistent, one sees the covariation they both indicate; when they are in-
consistent, expectations often prove to exert the greater influence. In the latter
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case, one is faced with what has been called a cognitive dilemma (Metalsky &
Abramson, 1981) and evidence suggests that people tend to be biased in the di-
rection of their initial expectations, but this tendency can be overridden if the
situational information is sufficiently salient or compelling.

Alloy and Tabachnik (1984) summarize the conclusions that they believe
can be drawn from empirical work on covariation perception this way:

Perhaps, then, the most concise summary of the empirical work on covariation
detection is that judgments of covariation are relatively accurate when people
lack strong beliefs about the event relationship in question or when the situa-
tional information concerning the objective correlation between the events is
congruent with people's preconceptions about the event relationship. When ob-
jective data and preconceptions are incongruent, judgments of covariation are
frequently erroneous and biased in the direction of initial expectations, (p. 123)

This view has been challenged (Goddard & Allan, 1988) and defended (Al-
loy, 1988); it seems safe to say that precisely how good people are at detecting
covariation and the conditions that determine the accuracy with which they do
so remain subjects of debate.

ILLUSORY CORRELATION

You can find perfect correlations that mean nothing for any three people and
three characteristics, and in general for any N people and N characteristics....
Thus we tend to overestimate our general knowledge of others and are con-
vinced of all sorts of associations (more complicated variants of "more shy, less
intelligent") that are simply bogus. By failing to adjust downward our multiple
correlation coefficients, so to speak, we convince ourselves that we know all
manner of stuff that just isn't so. (Paulos, 1998, p. 27)

An illusory correlation is a perceived correlation between variables that are not
correlated in fact; the term is also applied sometimes when the variables in
question are correlated, but the perceived correlation is materially higher than
the actual one (Allan & H. M. Jenkins, 1980; Crocker, 1981; D. L. Hamilton &
Gifford, 1976; D. L. Hamilton & Sherman, 1989; H. M. Jenkins & W. C. Ward,
1965). Evidence suggests that people are likely to perceive correlations that do
not exist when their prior expectations of such correlations are high (Camerer,
1988; L. J. Chapman & J. P. Chapman, 1967,1969; Golding & Rorer, 1972; D.
L. Hamilton, 1979). L. J. Chapman (1967) originally showed that the fre-
quency with which words have been paired in experimental situations tends to
be overestimated for pairs of words that have a strong associative relationship
or are distinctive (e.g., unusually long). In the original study, participants also
reported spurious correlations between features in clinical diagnoses of "pa-
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tients" (e.g., suspiciousness) and features in person-drawings (e.g., peculiar
eyes) the patients had made.

Nisbett and L. Ross (1980) summarize the Chapmans' work on illusory cor-
relation by saying that "reported covariation was shown to reflect true
covariation far less than it reflected theories or preconceptions of the nature of
the associations that 'ought' to exist" (p. 97). The Chapmans stress the impor-
tance of the role of semantic associations as a source of beliefs about
covariation and covariates.

Behavioral Patterns and Personality Traits

A form of stereotyping involves believing that certain unusual behaviors are
more common among people who are members of a specific group than among
those who are not. There is a perceived correlation between group membership
and behavior. Such perceived correlations can be real, but they also can be illu-
sory. One possible explanation of their occurrence is that unusual behavior by
people in distinctive groups is more salient and easily remembered than similar
behavior by people who are not members of those groups (Feldman, Camburn,
& Gatti, 1986; D. L. Hamilton, Dugan, & Trolier, 1985). Illusory correlations
can be the basis of stereotyping (D. L. Hamilton, 1981),

Estimates of the degree of correlation among personality traits appear
sometimes to be based on the perceived similarity among the traits (Shweder &
D'Andrade, 1980). Some assumed correlations may have little better basis
than the belief that the variables involved should be correlated. One might be-
lieve on this basis, for example, that job satisfaction is highly correlated with
job performance, but after reviewing more than 70 studies, laffaldano and
Muchinsky (1985) concluded that the correlation between job satisfaction and
job performance is only about .15.

Several investigators have been interested in the question of how accurately
people estimate the consistency of human behavior, which is a form of
covariation or correlation. Studies have produced mixed results, showing
sometimes highly accurate estimates and at other times highly inaccurate ones.
Expectations of high correlations among the behaviors of different individuals
in similar situations or among behaviors of the same individual at different
times in similar situations may be based on causal theories of behavior that as-
sume that similar situations evoke similar response patterns, at least for the
same person at different times and possibly for different people as well. The as-
sumption regarding consistent behavior across people sometimes is limited to
people with common personality traits or dispositions. Some investigators
have argued that people typically overestimate the degree to which behavior in
different situations can be predicted from trait variables. They would claim, for
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example, that the extent to which a friendly individual's behavior is consis-
tently friendly or a hostile individual's behavior is consistently hostile is less
than is generally believed. This misperception is known as the "illusion of con-
sistency" (Jennings et al., 1982; Mischel, 1968; Mischel & Peake, 1982; D. R.
Peterson, 1968).

Kunda and Nisbett (1986b) did a series of experiments on estimating behav-
ioral consistency and got a wide range of outcomes. Their interpretation of
their results emphasizes the role of three factors as determinants of accuracy of
correlation estimates in the social world: (a) familiarity with the data, (b)
codability of the data, and (c) whether the data to be correlated were drawn
from distributions of the same kinds of events. The first two of these factors had
been identified by other investigators; the third was noted for the first time as a
result of Kunda and Nisbett's experiments.

As to why the third factor is important, Kunda and Nisbett (1986b) specu-
late that "correlations among variables coming from distributions of the same
type are much easier to assess because in this case each pair of observations in
and of itself contains information, namely, the distance between the two obser-
vations, that can be used to assess the correlation" (p. 218). Thus, for example,
when two people are asked to evaluate the same academic course, using the
same evaluation metric, the distance between their evaluations can be taken as
some indication of the degree of correlation between the judgments. In con-
trast, if one is trying to estimate the degree of correlation between students'
evaluation of a course and their performance in the course, the two evaluation
metrics are not directly comparable, so an inference from the comparison to the
correlation estimate is less straightforward.

Kunda and Nisbett (1986b) argue that this hypothesis helps account for the
fact that people sometimes produce fairly accurate estimates of correlations
among sets of numbers or among sets of readings of pointers on identical dials
(Beach & Scopp, 1966; Erlick & Mills, 1967; J. C. Wright, 1962). And they
suggest that when the three factors mentioned do not hold, people, including
those trained in statistics, often greatly overestimate the degree to which an in-
dividual's typical social behavior can be predicted from a knowledge of that
person's behavior on a given occasion.

Kareev (1995a, 1995b) notes that the sampling distribution of the most
common measure of correlation, Pearson's r, is skewed when a correlation ex-
ists, and the more so the smaller the sample. As a consequence, the correlation
one sees in a small sample is likely to be larger than that of the population from
which the sample was drawn. Kareev argues that the limited capacity of work-
ing memory ensures that the samples people pay attention to will necessarily
be small and therefore increase the chance that people will detect correlations
that exist, at the expense of an increase also in false alarms. This amplifying ef-
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feet of focusing on small samples could contribute to illusory correlation by
making correlations appear to be larger than they actually are. Kareev notes the
possibility that the working memory limitations of children may actually facil-
itate their detection of covariations and regularities that are the basis for the
recognition of categories and causal relationships.

Cause—Eiiect Relationships

The phenomenon of illusory correlation is related to that of illusory cause-ef-
fect relationships. How one can come to believe in a cause-effect relationship
that does not exist was nicely illustrated in an experiment by Schaffner (1985).
People were asked to try to encourage a hypothetical student to arrive at school
on time (8:30) by praising or criticizing the student's day-to-day behavior as
appropriate. Participants typically praised the student when he arrived early
and reprimanded him when he arrived late. As a result of the experience, most
participants believed that reprimands had been more effective than praise in ef-
fecting the desired behavior.

In fact, the hypothetical student's behavior was independent of the positive
and negative reinforcement provided by the participants, having been deter-
mined by computer before the experiment began. Because the predetermined
arrival times varied symmetrically around 8:30, a late arrival was more likely
to be followed by an earlier one than by a later one, and an early arrival was
more likely to be followed by a later than an earlier one, simply as a matter of
regression to the mean. Consequently if a participant invariably rewarded early
arrival with praise and punished late arrival with a reprimand, the reprimands
would more often be followed by improvement than would praise, thus leading
subjects to conclude that reprimands were more effective than praise in bring-
ing about the desired behavioral change.

PROBABILITIES OF CONJUNCTIVE
OR DISJUNCTIVE EVENTS

By definition the probability of the joint occurrence of two independent events
is the product of the probabilities of the individual events. If the probability of
event A is p(A) and that of event B is p(B), the probability of the joint occur-
rence of A and B, usually written p(AB\ is the product of the individual proba-
bilities, p(A)p(B). The probability of the joint occurrence of two non-
independent events, A and B, is defined as

p(AB)=p(A)p(B\A),



342 • CHAPTER 9

or as

where p(B I A) is the probability of the occurrence of B, given the occurrence of
A. (This formula is applicable to either independent or nonindependent events,
because when A and B are independent p(B I A) = p(B) and p(A I B) = p(A).)

Overestimates 01 Conjunctions

People typically overestimate the probability of the joint occurrence of inde-
pendent events relative to the given or estimated probabilities of the individual
events (L. J. Cohen et al., 1972; Fleming, 1970; Wyer, 1974). This bias may be
related to the tendency to base estimates of correlation between two events on
the cases in which those events do co-occur and to pay too little attention to
those in which they do not (C. R. Peterson & Beach, 1967).

There is some evidence that people also tend to overestimate the probability
of the joint occurrence of nonindependent events. When, for example, law stu-
dents were asked to estimate the probabilities of compound, not necessarily in-
dependent, events associated with fictitious criminal-case material, their
estimates of p(AB) were higher than they should have been relative to their esti-
mates of p(A) and p(B I A) (Goldsmith, 1978).

Underestimates of Disjunctions

Overestimation of the probability of conjunctions of events (relative to the prob-
abilities of the conjuncts) is logically similar to underestimation of the probabil-
ity of disjunctions. In the first case, one's judgment of the probability that both of
two events will occur is too high relative to the probabilities of each of the events
separately; this is tantamount to underestimating the probability that at least one
of the events will not occur. In the second case, one's judgment of the probability
that at least one of two events will occur is too low relative to the probabilities of
the events separately, and this is the same as overestimating the probability that
both will not occur. Given several independent events of known probability, peo-
ple typically underestimate the probability that at least one of them will occur (L.
J. Cohen, Chesnick, & Haran, 1971, 1972; Tversky & Kahneman, 1974).

As noted in the preceding chapter, a tendency either to overestimate the
probability of the joint occurrence of events or to underestimate the probability
of the disjunction of events can have significant practical implications. Con-
sider for example the problem of estimating the likelihood of all the steps in
some sequential process being executed with no serious difficulties. The prob-
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ability of the entire process being run off smoothly is the probability of the con-
junction of each of the individual processes being executed without difficulty;
the probability that the process will experience some difficulty is the probabil-
ity of the disjunction of problematic individual steps.

In this example, both the tendency to overestimate the probability of a con-
junction of events and the tendency to underestimate a disjunction lead to an
overestimation of the probability that the entire process will be problem free,
or conversely underestimation of the probability that it will experience some
difficulty. These types of biases will cause trouble whenever the objective is to
estimate the probability of success when success depends on the conjunction
of two or more events. As noted in chapter 8, this may help account for why it is
so easy to underestimate the time required to complete complex tasks (or the
tendency to overestimate the probability of being able to finish such tasks in a
specified time). We may simply assume that everything will go right and ne-
glect to consider what may be a fairly high probability that at least one thing
that will cause a delay will go wrong.

THE CONJUNCTION FALLACY

A special case of overestimation of the probability of the joint occurrence of
events involves what has become known, variously, as the conjunction fallacy,
the extension fallacy, or the compound-probability fallacy. It is axiomatic that
the probability of a conjunction of two events can be no greater than the proba-
bility of the less probable of the individual events. Thus, if the probability of A
is .5 and the probability of B is .4, the probability of the conjunction of A and B
cannot exceed .4. This is analogous to the rule that the intersection of two or
more sets can be no larger than the smallest of the sets involved. Although most
people would presumably agree with the conjunction rule, as it is called, there
are circumstances under which they tend to make judgments that violate it.
When asked to judge the probabilities of conjunctions and the probabilities of
their constituents, people sometimes judge the joint probability to be higher
than the probability of the less probable constituent event (L. J. Cohen,
Cheswick, & Haran, 1972; Kahneman & Tversky, 1982a; Slovic et al., 1976; J.
F. Yates & Carlson, 1986).

Commonness 01 the Conjunction Fallacy

The conjunction fallacy is especially common, even among people trained in
statistics and probability, when the conjunction is more "representative" of a
class than is one of the constituents. Here is an example given by Kahneman
and Tversky (1984) of how the fallacy works. The following personality sketch
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is read to a listener: "Bill is thirty-four years old. He is intelligent, but unimagi-
native, compulsive, and generally lifeless. In school, he was strong in mathe-
matics but weak in social studies and humanities." Listeners are asked to rank
order a set of statements about Bill from most to least probable. Among the set
of statements used are the following three: (a) "Bill is an accountant"; (b) "Bill
plays jazz for a hobby"; and (c) "Bill is an accountant who plays jazz for a
hobby" (p.297). The description of Bill had been constructed so as to be repre-
sentative of an accountant and unrepresentative of a person who plays j azz for a
hobby. Most participants considered it more likely that Bill was an accountant
than that he played jazz for a hobby and, in accordance with the conjunction
fallacy, they considered it more likely that he was an accountant who played
jazz for a hobby than that he played jazz for a hobby. That is to say, Sentence (c)
was considered less likely to be true than (a), but more likely than (b).

This, of course, violates the rules of probability and is easily seen to be falla-
cious by viewing the problem as one of class membership. The class of all people
who play jazz as a hobby includes, as a subclass, the class of all accountants who
play j azz as a hobby. One is a member of the former (more inclusive) class by vir-
tue of being a member of the latter, so the probability of being in the former class
cannot be smaller than the probability of being in the latter. Osherson (1995)
calls judging the latter probability to be smaller than the former an example of
probabilistically incoherent reasoning and argues that the representativeness of
category instances plays a key role in determining when it will occur.

The conjunction fallacy has been described as an instance of "scenario think-
ing" (Dawes, 1988); the lower-probability conjunction of conditions or events
constitutes a more plausible scenario, as a whole, than does one or a subset of
them. Dawes illustrates the idea by contrasting the two following event se-
quences: (a) an alcoholic tennis star wins a major tournament 8 months after be-
ginning to drink a fifth a day, and (b) an alcoholic tennis star begins drinking a
fifth a day, joins AA a month later, quits drinking, and wins a major tournament 8
months following the beginning of his drinking bout. The second sequence may
be seen as more likely than the first, even though it is implicitly encompassed by
the first, because it provides a plausible account of how the tournament win
could occur despite the drinking problem. Scenario thinking, Dawes suggests,
has the effect of overestimating the probabilities of scenarios that come readily
to mind and underestimating the probabilities of those that do not.

Evidence of the conjunction fallacy has been obtained in a number of stud-
ies using similar types of problems. Another example from Kahneman and
Tversky (1982a) that has been widely cited in the literature involves the fol-
lowing description: "Linda is 31 years old, single, outspoken, and very bright.
She majored in philosophy. As a student, she was deeply concerned with issues
of discrimination and social justice, and also participated in anti-nuclear dem-
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onstrations" (p. 126). Statistically naive participants were asked to judge the
likelihood that specific claims were true of Linda: for example, Linda is a
teacher in an elementary school; Linda works in a bookstore and takes yoga
clas ses;... Among the claims were the following two: (a) Linda is a bank teller,
and (b) Linda is a bank teller who is active in the feminist movement. A major-
ity of the participants judged the second of these claims to be more probable
than the first. Even graduate students who have had training in statistics often
considered (b) to be the more probable. Again it is clear that, at least from a
purely statistical point of view, this is the wrong choice because it violates the
rule that the probability of the conjunction of two events cannot be greater than
the probability of the less probable of the constituent events.

Is the Conjunction Fallacy a Fallacy?

Although the strength of the conjunction fallacy has been shown to vary con-
siderably with the specifics of the task (Morier & Borgida, 1984; J. F. Yates &
Carlson, 1986), it is sufficiently common that the question naturally arises as to
whether it may have some functional basis. Is there a point of view from which
the selection of Alternative (b) in the foregoing example might be considered
reasonable? Note that the information provided about Linda in this problem is
totally irrelevant to the selection of the more probable of the two statements.
Statement (a) is more probable (more accurately, not less probable) than State-
ment (b) by virtue of the conjunction rule, independently of any information
provided in Linda's description. However, it seems not unreasonable of partici-
pants in psychological experiments to assume that the information that is being
given to them in problem-solving situations is relevant to the problem they are
asked to solve. In this case, most of the information provided about Linda is, by
intention, the type of information that would be useful for distinguishing activ-
ists in the feminist movement from nonactivists but not for distinguishing bank
tellers from non-bank tellers. One might say the experimental approach is to
lead the participant down a garden path. Perhaps some people select (b) on the
assumption that the experimenter would not provide them with irrelevant or
misleading information.

It is easy to imagine being given the kind of information about Linda in this
example in a nonlaboratory situation in which one was being asked to judge the
probability that she was active in the feminist movement, whereas it is much
less easy to imagine being given this information if one were being asked to
judge whether she was a bank teller. If one were being asked to decide whether
she was a bank teller, one would expect to be given information that was more
relevant to that decision. The fact that people erroneously select Alternative (b)
when presented with this problem may be less than compelling evidence that



346 • CHAPTER 9

they are poor statistical reasoners; it may be that they interpret the question ac-
cording to certain rules of language usage that work in everyday conversation
if not always in the psychology laboratory. If the point were to determine
whether people understand and can apply the conjunction rule one might ask
them to judge which of the two statements, (a) or (b), is the more probable
without providing the garden-path information about Linda or indeed any in-
formation about her at all.

Kahneman and Tversky (1982a) make essentially this point in one of their
discussions of this and similar findings. They cite the "cooperativeness princi-
ple" by which the listener in a conversation is entitled to assume that the
speaker is trying to be informative (H. H. Clark & E. V. Clark, 1977; Grice,
1975; Searle, 1975). They note that people are likely to assume that the princi-
ples that apply to everyday conversations apply also in the experimental labo-
ratory, which is to say they are likely to assume that the information provided
them by the experimenter in problem-solving situations is relevant to the task
that is to be performed; if it were not, according to the cooperative principle,
the experimenter would not provide it. Macdonald (1986; Macdonald &
Gilhooly, 1990) makes a similar argument, and raises the question whether,
given the conventions of everyday conversation, participants in these experi-
ments are wrong to see the phrasing of questions as providing information.
Other investigators have also argued that what have sometimes been taken as
evidence of illogicality in dealing with Linda-like problems may have more to
do with linguistic conventions (Dulany & Hilton, 1991; Politzer & Noveck,
1991; Slugoski & A. E. Wilson, 1998).

The idea that people take the phrasing of questions as informative gets
strong support from the fact that participants in Tversky and Kahneman's
(1983) experiment considered it more likely than not that Linda was a feminist
bank teller. As Macdonald and Gilhooly (1990) argue, the probability that a
randomly chosen woman would be a feminist bank teller is surely very small.
One explanation of the relatively high probabilities that the participants as-
signed to Linda's being a feminist teller, they contend, is that the question itself
suggests that there may be reason to believe that she is.

L. J. Cohen (1982), among others, takes the position that the performance of
people in these situations can be seen as reasonable behavior, depending on
what we assume people understand their task to be. Perhaps they take their task
to be to assess the believability of a story about a person cast in terms of the
causes or effects of the collections of features constituting their profiles, rather
than as that of estimating the relative frequencies of different kinds of people:

One has to take into account not just the meanings of sentences in which instruc-
tions to subjects are formulated but also the implications of uttering them. So
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when asked for the probability of a particular single event subjects may well in-
fer that what is wanted is an estimate of the believability of that event's occur-
rence as an apparently isolated event, which could well be lower than the
believability of the occurrence of a particular causal sequence containing the
event. If, on the other hand, subjects are asked specifically for the probability of
the single event's occurrence whether in isolation or within the particular se-
quence, it would be very surprising indeed if they then went on to declare the
particular sequence's occurrence to be even more probable, (p. 264)

L. J. Cohen (1982) argues that with respect to questions of conservatism in
the use of data, the gambler's fallacy, and the conjunction fallacy, investiga-
tors have chosen to impute a mathematical fallacy to their subjects rather than
to impute to them an element of doubt as to whether the experimental situa-
tions in which their performance was studied constituted perfect games of
chance. He takes the strong position that "no protocols could confirm the
view that laymen are inherently prone to overestimate the probabilities of
conjunctions or underestimate those of disjunctions, since it is quite clear
that when the task is unambiguously presented lay subjects are capable of re-
sponding in accordance with correct mathematical principles in regard to the
Pascalian probability both of a conjunction (Beach, 1966) and of a dis-
junction (Beach & [C. R.] Peterson, 1966)" (p. 265).

Another possible account of the conjunction fallacy with problems like the
Linda-bank teller one, which I will refer to as the "filling-in" hypothesis, might
invoke a convention of language interpretation along the following lines.
Given the two statements, (a) "Linda is a bank teller," and (b) "Linda is a bank
teller who is active in the feminist movement," a reader or listener might inter-
pret (a) as "Linda is a bank teller who is not active in the feminist movement." I
am not arguing that one should interpret the statement this way, but it does not
seem to require much of a stretch of the conventions of language use to imagine
how one might do so. It would be unusual in an everyday situation to contrast
the likelihood that Linda is a bank teller who is active in the feminist movement
with the likelihood that she is a bank teller; it would not seem strange, however,
to contrast the likelihood that she is a bank teller who is active in the feminist
movement with the likelihood that she is a bank teller who is not active in this
movement. If one puts this interpretation on (a), then judging the probability of
(b) to be greater than the probability of (a) is not an example of the conjunction
fallacy, because, given this interpretation, the set referenced by (b) is not a sub-
set of that referenced by (a); the two sets are disjoint.

This possibility gets some indirect support from a comment by Dawes
(1988) in the context of a discussion of one of Tversky and Kahneman's
(1983) studies. Kahneman and Tversky had given medical internists the fol-
lowing problem:



348 • CHAPTER 9

A fifty-five-year-old woman had a pulmonary embolism (blood clot in the lung).
How likely is it that she also experiences:

• dyspnea [shortness of breath] and hemiparesis [calf pain]
• pleuritic chest pain
• syncope [fainting] and tachycardia [accelerated heart beat]
• hemiparesis
• hemoptysis [coughing blood]. (Dawes, 1988, p. 130)

Dawes (1988) notes that "on the average, 91% of the 32 internists ques-
tioned believed that the combination of a probable symptom (in this case
dyspnea) and the improbable one (in this case hemiparesis) was more likely
than the improbable symptom alone" (p. 130). What I want to call attention to
is the ambiguity of this statement. "The improbable symptom alone" could
be taken to refer to the improbable symptom (hemiparesis), whether or not
accompanied by the more probable symptom, or it could be taken to mean the
improbable symptom by itself, which is the improbable symptom in the ab-
sence of the more probable one. These two interpretations are quite different
and a conjunction fallacy is implicated only in the case of the former one, be-
cause, given the latter interpretation, the two sets—(a) dyspnea and
hemiparesis and (b) hemiparesis alone—are disjoint. The ambiguity of the
terminology in this description of the outcome of an experiment lends cre-
dence to the possibility that participants in the experiment could have been
confused by the same type of ambiguity.

Appeal either to the cooperativeness principle or to the filling-in hypothesis
helps us see how people could be led to overlook the simple set-subset relation-
ships involved in the situations described previously, but neither seems to ap-
ply as readily to another result obtained by Tversky and Kahneman. In this
case, one group of participants was asked to estimate the frequency of
seven-letter words with "n" in the next-to-last position, and a second group was
asked to estimate the frequency of seven-letter words ending in "ing." Inas-
much as the first set includes the second it cannot be the smaller of the two.
Nevertheless, estimates of the "ing" set were reliably larger than estimates of
the "n_" set. One might object to treating this result as an example of the con-
junction fallacy, inasmuch as the same participants did not make both esti-
mates. On the other hand, if the estimates the two groups produced are taken as
indications of what people generally believe about the sizes of these two sets,
we must conclude that the subset is generally believed to be larger than the
more inclusive set from which it is drawn.

The final example relates to the conjunction fallacy in an unusual way and
was also reported by Tversky and Kahneman (1971). In this case, research psy-
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chologists found a single experimental result that strongly supported an hy-
pothesis to be more compelling evidence than the same result combined with
another that provided weak, but still positive, support for the hypothesis. It ap-
pears that the weight of the strong result was diminished by being coupled with
the weak one, even though the conjunction of strong and weak positive results
is less likely to occur by chance than is a strong positive result alone.

Gigerenzer (1991b, 1993,1994) argues that the "conjunction fallacy," as
commonly described, is not really a fallacy, at least in the eyes of a probabil-
ity theorist of the frequentist school. The argument is similar to that used to
discount the overconfidence effect (see chap. 8). Frequentists, Gigerenzer
contends, do not recognize the meaningfulness of the application of proba-
bility to single events, so the question of the probability that a person fitting
a given description is a member of a specified profession has no answer:
"What is called the 'conjunction fallacy' is a violation of some subjective
theories of probability, including Bayesian theory. It is not, however, a vio-
lation of the major view of probability, the frequentist conception" (1991b,
p. 92). "From the frequency point of view, the laws of probability are mute
on the Linda problem, and what has been called a conjunction fallacy is not
an error in probabilistic reasoning—probability theory simply doesn't ap-
ply to such cases. Seen from the Bayesian point of view, the conjunction fal-
lacy is an error" (1993, p. 293).

In any case, it appears that when problems like those described earlier are
phrased in frequentistic terms—for example, how many out of 100 people fit-
ting Linda's description are (a) bank tellers (b) bank tellers and active in the
feminist movement?—the conjunction fallacy is much less likely to occur
(Fiedler, 1988; Hertwig & Gigerenzer, 1994). Gigerenzer (1994) argues that,
this being the case, "instances of the 'conjunction fallacy' cannot be properly
called reasoning errors in the sense of violations of the laws of probability. The
conceptual distinction between single-event and frequency representations
suffices to make this allegedly stable cognitive illusion largely disappear" (p.
144). And, Gigerenzer notes, the conjunction fallacy is not the only cognitive
illusion to which this argument applies.

CONDITIONAL PROBABILITIES

The probability of A conditional on B, often represented as p(A I B), is the
probability that A is true, given that B is true. According to the probability cal-
culus p(A I B) =p(A & B)/p(B), which is to say the probability that both A and
B occur, divided by the probability that B occurs. If A almost always occurs
when B does, the conditional probability is high; if B more often than not oc-
curs without A, the conditional probability is low.
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Dimculties in Conaitionalizing

Conditional probability, though simple in concept, proves difficult sometimes to
apply in specific situations. Consider, for example, the following problem from
Falk (1979,1983). An urn that contains four balls—two white and two black—is
shaken vigorously and two balls are drawn from it, blindly and without replace-
ment. Falk found that when students were asked what the probability is that the
second ball is white, given that the first one is white, p(W21 Wj), they tended to
get the correct answer, 1/3. However, when asked what the probability that the
first ball to be drawn was white, given that the second one is white, pCWj IW2),
they had difficulty in seeing that the same answer is correct. To see that the two
situations are comparable, consider the following two problems: What is the
probability that the third ball drawn is white, given that the first and second ones
were white, p(W31 Wj&W2)? and What is the probability that the first ball drawn
was white, given that the second and third ones are white, p(W, I W2&W3)?

The determination of conditional probabilities in practical situations is often
very difficult. In part, this is because, as Edwards et al. (1963) argue, all probabil-
ities can be seen as conditional probabilities. Conventionally Bayesians distin-
guish between the prior probability of a hypothesis, /?(//), and the posterior
probability of that hypothesis after the receipt of some data that has relevance for
ii,p(H I £>), and treat only the latter as conditional. Edwards et al. point out that
the prior probability really is conditional as well as the posterior: "Thus, p(H) is
the probability of the hypothesis H for you conditional on all you know, or knew,
about H prior to learning D; and p(H ID) is the probability of H conditional on
that same background knowledge together with D" (p. 199).

Essentially the same point can be made with respect to any probability, at
least if one equates probability with degree of belief. Rozeboom (1997) puts it
this way: "According to statistical theory, probabilities in a mathematically
structured system thereof are always conditional on one or another configura-
tion P of population-defining properties variously described as preconditions,
background constraints, local constancies, or other phrases similarly
connotating limitation" (p. 386). Usually, the many conditions that underlie
any particular statement of probability are not made explicit—it is not clear
that all of them could be—and in many cases perhaps they are not recognized
as conditions. For example, the statement that the probability of obtaining head
on the next toss of a coin is .5 is conditional on the coin being fair, the laws of
physics not changing before the toss, the tosser not being adept at influencing
the outcome, there being no magic or telekinesis at work, and so on. Most such
conditions, we would say, go without saying. Often, however, the failure to rec-
ognize a material conditionality of a probability and to factor it into a computa-
tion can lead to erroneous results.
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The importance of correctly identifying conditional probabilities is readily
seen in the context of diagnostic decision making. In medicine, for example, it is
essential that a clear distinction be made between the probability of a specific
symptom or test result being observed conditional on the presence of a particular
disease and the probability of a particular disease being present conditional on
the observation of a specific symptom or test result. Treating both variables as bi-
nary, Table 9.2. shows the possible combinations of test result and disease state.

The probability of a positive test result conditional on the presence of the
disease, p(T +1D +), is known as the sensitivity of the test; the probability of the
presence of the disease conditional on a positive test result, p(D + I T +), is
known as the predictive value of the positive test, and it is the latter that the phy-
sician usually wants to know (B. K. Holland, 1998). If the table entries are fre-
quencies or joint probabilities,

T +D +
p(T +| D +) = 7 r -. r-,
n I ) (T+D+) + (T-D+)

and

T +D +P(D+T+)=
(T +D+) + (T +D-)

It is easy to see that these probabilities can be greatly different and that con-
fusing them could have unfortunate consequences. Other conditional probabil-
ities of interest that can be computed from the table, p(T-1D-) andp(D -12"-),
represent, respectively, the specificity of the test, which is the probability that
the test is negative conditional on the disease being absent, and the predictive
value of a negative test, which is the probability that the disease is absent con-
ditional on the test being negative. B. K. Holland (1998) discusses therelation-

TABLE 9.2

The Possible Combinations of Test Result (T) and Disease State (D),
Treating Each Variable as Binary

Disease

Test Result Present Absent

Positive T + D+ T + D-
Negative T - D + T-D-
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ships among sensitivity, specificity, and the predictive values of positive and
negative tests. An understanding of these relationships is critical to appropriate
application of the results of clinical tests in medicine.

We should note too that, as indicated in chapter 4, the likelihood ratio is the
ratio of p(T+1D +) top(T+1D -) (although in the notation of chap. 4, D was
used to represent data whereas here it is used to represent disease, which is
equivalent to //in the earlier notation) and the diagnosticity of the test would be
indicated by the degree to which that ratio differs from 1.

Transposed Conditional Probabilities

A distinction betweenp(A 1 f f ) andp(B I A) is one that many people fail to make
(Bar-Hillel, 1974; Kahneman & Tversky, 1973). The tendency to see these two
conditional probabilities as equivalent, which Diaconis and Freedman (1981)
call the fallacy of the transposed conditional, bears some resemblance to the
widely notedpremise conversion error in syllogistic logic (Henle, 1962). Vari-
ous explanations of the failure to distinguish between them have been pro-
posed. One suggestion is that they are special cases of a general tendency to see
relationships as symmetrical (Tsal, 1977). Baron (1988) raises the possibility
that some of the apparently irrational behavior of people on Bayesian reason-
ing tasks stems from a confusion of P(A I #) with P(B I A).

The possibility of transposition in reasoning about conditional probabilities
has been noted by several writers (Bar-Hillel, 1984; Wyer, 1977; Wyer & Srull,
1989). It gains credence from experimentation by Sherman, McMullen, and
Gavanski (1992), who asked people to make conditional frequency estimates
of the sort, "Of 100 randomly chosen men, how many prefer blue rather than
brown?" and "Of 100 randomly chosen people who prefer blue rather than
brown, how many are men?" People were more likely to give evidence of a
transposition error in the latter case than in the former. Sherman et al. argue that
people have ready access to an appropriate sample space from which they can
mentally draw a useful sample when the conditioning event is a natural cate-
gory (men) but not when it is an unnatural category (people who prefer blue).
When the conditioning event is of the latter type, they are likely to invert the
problem and base their estimate on the use of the more natural category.

Lack of precision in the reporting of conditional probabilities is often the
basis of ambiguous claims about the effectiveness of diagnostic tests. As noted
in Chapter 8, the report of an overall accuracy level can mean many different
things, and the statistical results of testing can be very sensitive to the way peo-
ple to be tested are sampled (e.g, whether they self-select because they con-
sider themselves at risk), and this is especially so in the case of diseases that
have unusually low incidence in the population. Accuracy figures should be re-
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ported as conditional probabilities, and the basis of selection for testing should
always be made explicit, if confusion is to be minimized.

SUMMARY

The ability to detect covariation is widely recognized as an important one, but
the extent to which people manifest this ability has been questioned by many
researchers. Some have contended that in the absence of specific training
most people lack the ability to think in correlational terms; others have ar-
gued that many of the experimental results that support this conclusion have
been obtained in laboratory situations that are not adequately representative
of the kinds of real-life problems for which the detection of covariation
would be advantageous.

A common finding of laboratory studies of covariation perception has been
that, when presented with contingency data of the kind that can be represented in a
two-by-two table showing the four possible combinations of the presence or ab-
sence of two variables of interest, people tend to focus too much attention on, or
give too much weight to, the cases in which both variables occur— the "plus-plus"
cell of the contingency table—and tend to neglect or discount those in which one
or both variables are absent. This bias of focus is said to lead often to an overesti-
mation of the strength of the relationship between the variables of interest.

Prominent among the variables that researchers have identified as determi-
nants of the perceived degree of covariation are expectations and preexisting
beliefs about cause-effect relationships. Given the same statistical data, per-
ceived degree of covariation tends to be greater when the covariation is consis-
tent with expectations and especially when people believe there to be a cause-
effect relationship between the variables involved.

Considerable research has focused on the phenomenon of "illusory correla-
tion," which is a perceived correlation between variables that are not correlated
in fact, or a perceived correlation that is materially higher than the actual one.
Much of this work has centered on perceived correlations between or among
personality traits and patterns of behavior or on perceived consistency of be-
havior over time.

Some studies have revealed common tendencies to overestimate the prob-
abilities of conjunctions of events and to underestimate the disjunctions of
events, relative to estimates of the probabilities of the component events.
Such tendencies can help account for what appears to be a common predilec-
tion to undue optimism in predicting the time or effort that will be needed to
complete a specific task.

Possibly the most extensively studied phenomenon involving the percep-
tion of covariation is what is widely referred to as the "conjunction fallacy." Al-
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though the probability of the conjunction of two events cannot be greater than
the probability of the more probable of the two, it appears that in many contexts
people are likely to violate this principle when judging the likelihood of con-
junctions. The phenomenon has stimulated much research and theorizing. De-
bate continues as to whether it represents a genuine reasoning fallacy or simply
a reflection of the recognition of certain linguistic conventions.

Dealing with conditional probabilities appears to be problematic for many
people. A common confusion is between the probability of A conditional on B
and the probability of B conditional on A. This type of confusion is analogous
to a confusion often made in logic in which "If A then 5" is sometimes seen as
equivalent to "If B then A." The confusion can be aggravated by the ambiguous
reporting of conditional probabilities, as, for example, when a diagnostic test is
said to have a specified level of accuracy, without clarification of precisely
what that means.



CHAPTER

10

Choice Under Uncertainty

Simply characterized, rational decision making consists in one's choosing the
best member from the set of available alternatives.... The central question for a
theory of rationality concerns, of course, how someone is rationally to assess the
available actions in a decision-situation.

—Moser (1990, pp. 2, 3)

A satisficer is concerned with doing well enough, while an optimizer is con-
cerned with doing the best it can.

—Goodie, Ortmann, J. N. Davis, Bullock, and Werner (1999, p. 327)

PRELIMINARY DISTINCTIONS

icice or decision-making situations—"choice" and "decision making"
are used synonymously here—can be classified in several ways. One basic dis-
tinction that has been made is between "yes-no" and "forced-choice" situa-
tions. The latter type is usually taken to be the prototypical model of decision
making; the problem here is to choose one from among several alternative
courses of action. However, the "yes-no" case is not uncommon in operational
contexts in which the decision maker has only a single action possibility and
the problem is to decide whether to not to take it (Mintzberg, 1975; Peters,
1979). Of course, the "yes-no" situation can be seen as a special case of

355
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"forced-choice," namely that in which the choice is forced between taking the
one possible action or declining to do so.

Outcome Certainty or Uncertainty

Another fundamental distinction relates to the degree to which the outcome of
a choice is known in advance. At one extreme is the case in which the outcome
is known with certainty: The choice is between A and B, and what one chooses
is what one gets. The only problem here is deciding which of the alternatives
one prefers. In contrast is the case of risky decision making or decision making
under uncertainty, in which the outcome of a choice is known only
probabilistically.

Making choices under uncertainty is difficult because one must take into ac-
count not only what one's preferences are but the fact that they are not assured
of being realized in any case. How to measure and deal with uncertainty in de-
cision-making situations has been, and continues to be, a major focus of deci-
sion-making research. If a situation is uncertain, one is effectively using more
information if one takes account of that uncertainty than if one ignores it, and
in some instances, the expected detrimental effect of ignoring uncertainty can
be substantial (M. G. Morgan & Henrion, 1990).

The case of incompletely known outcomes can be subdivided into two sub-
categories, reflecting different degrees of knowledge about the decision con-
text. On the one hand are those instances in which the decision maker knows
the available action alternatives and their outcomes, given hypothesized states
of the world, and can assign probabilities to the states of the world, thus permit-
ting probabilistic inferences regarding consequences of action selec-
tions—these instances represent what is called decision making under risk of
measurable uncertainty. In contrast are those cases in which the decision
maker does not know the possible states of the world even probabilistically,
and so cannot infer probabilistically the consequences of action selections.
These cases are referred to as decision making under unmeasurable uncer-
tainty (Knight, 1921; Moser, 1990). Sometimes uncertainty (unqualified) is
used to refer to unmeasurable uncertainty in contrast to risk. More often, I
think, it is used more generically to connote both kinds of uncertainty, thus
subsuming risk. Most of the research that has been done on decision making
with incompletely known outcomes has involved decision making under risk
or measurable uncertainty, according to this distinction, but the distinction has
not been sharply maintained in the literature and research has often been de-
scribed simply as involving decision making under uncertainty without quali-
fication as to the type of uncertainty involved. The distinction is not
emphasized in this book.
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Utility ana Value

It is apparent that one franc has much greater value for him who possesses only a
hundred than for a millionaire. (Laplace, 1814/1951, p. 22)

Daniel Bernoulli is generally credited with being the first to realize that the de-
sirableness of money or of anything with cash value does not necessarily in-
crease linearly with the amount involved. The intuitive compellingness of this
insight is seen in the observation that the amount of pleasure one would derive
from an unexpected windfall of a fixed amount of money is likely to depend on
how much money one has already; a gift of $ 1,000 is likely to be a much greater
cause of celebration for a person who is broke than for one who already has $ 1
million salted away.

Bernoulli questioned the reasonableness of considering irrational the be-
havior of a pauper who, finding a lottery ticket known to be worth, with equal
probability, either 20,000 ducats or nothing, decides to sell it for 9,000 ducats,
1,000 ducats less than its expected value. It was this type of situation that led
Bernoulli to make a distinction between cash value and utility (or moral worth)
and to speculate that the utility of an individual's wealth increased as the loga-
rithm of its cash value. Laplace made much of this distinction between, in his
terms, fortune physique wdfortune morale. A preference for certain outcomes
over uncertain outcomes with greater expected value has been found many
times since Bernoulli made this observation, and not only among paupers
(Allais 1979/1990; Kahneman & Tversky, 1979b).

P. L. Bernstein (1996) refers to the idea that utility is inversely related to the
worth of what one already possesses as one of the great intellectual leaps in the
history of ideas. The hypothesized decelerating rate of increase in utility with
increasing cash value has the interesting consequence that negative utility of a
loss of a given value will be greater (in absolute terms) than the positive utility
of a gain of the same value. Bernstein puts it this way: "The logical conse-
quence of Bernoulli's insight leads to a new and powerful intuition about tak-
ing risk. If the satisfaction to be derived from each successive increase in
wealth is smaller than the satisfaction derived from the previous increase in
wealth, then the disutility caused by a loss will always exceed the positive util-
ity provided by a gain of equal size" (p. 112).

MODELS OF DECISION MAKING

There have been many theoretical treatments of decision making (Howard,
1966; Kahneman & Tversky, 1979b; Keeney & Raiffa, 1976; Raiffa, 1968;
Raiffa & Schlaifer, 1961; L. J. Savage, 1954; von Neumann & Morgenstern,
1953; von Winterfeldt & Edwards, 1986; Watson & Buede, 1987). (Poundstone
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[1992] refers to von Neumann and Morgensterns's Theory of Games and Eco-
nomic Behavior as "one of the most influential and least-read books of the twen-
tieth century" [p. 41].) And numerous models of human choice behavior have
been developed. Hogarth (1987) distinguishes among seven such models, three
of which (a linear model, an additive-difference model, and an ideal-point
model) are considered compensatory models because they recognize the possi-
bility of trade-offs between choice dimensions, and four of which (a conjunctive
model, a disjunctive model, a lexical-graphic model, and an elimination-by-as-
pects model) are considered noncompensatory because they do not recognize
such trade-offs. Deciding which of these or other models is most descriptive of
human choice behavior is difficult because some of them make the same predic-
tions about performance while assuming different underlying processes.

The problem of trade-offs arises when in order to increase the attractiveness
of a decision alternative with respect to some property or dimension, one must
decrease its attractiveness with respect to another. The Federal Drug Adminis-
tration's (FDA) responsibility for deciding how long to test a new drug before
approving its clinical use illustrates the problem: The longer a drug is tested,
the more accurately its effects, including problemsome side effects and effects
arising from interactions with other drugs, can be determined, but the longer it
is tested the longer it remains unavailable to people who could benefit from its
use. Under pressure to accelerate its approval process, the FDA has introduced
regulations that are intended to make drugs available relatively quickly at an
acceptable risk of approving some drugs that later prove to be ineffective or
deleterious (Kessler & Feiden, 1995). What constitute fast enough and accept-
able levels of risk are matters of continuing debate.

Berl, Lewis, and Morrison (1976) attempted to compare the adequacy of sev-
eral models of riskless choice as applied to the problem of college selection by pro-
spective students. The models they considered were additive weighting (Edwards
& Tversky, 1967), satisficing (Simon, 1955), and lexicography (Coombs, 1964;
Luce, 1956; Tversky, 1969). The additive weighting model produced somewhat
more accurate predictions of choices than did the alternative models. However,
Berl, Lewis and Morrison, in keeping with several other investigators, preferred to
view the additive weighting model as a black box that predicts choices rather than
as a description of how the choices are made. They cite evidence that when people
believe themselves to be using an additive weighting model, they tend to overesti-
mate the number of factors used (Shepard, 1964) and to give estimates of weights
on the factors that differ from those that best reproduce their decisions (Dawes &
Corrigan, 1974; Slovic & MacPhillamy, 1974).

Much work has been done on the development of normative models of
choice and decision making. Some of that work has already been mentioned in



CHOICE UNDER UNCERTAINTY • 359

this book, especially in the context of the discussion of Bayesian reasoning.
Numerous tutorials, reviews, and anthologies are available to the interested
reader, including Luce and Raiffa (1957), Howard (1968), North (1968),
Raiffa (1968), R. V. Brown, Kahr, and C. R. Peterson (1974), Dawes and Corri-
gan (1974), M. F. Kaplan and Schwartz (1977), Slovic et al. (1977), Hammond,
McClelland, and Mumpower (1980), Einhorn and Hogarth (1981), Arkes and
Hammond (1986), von Winterfeldt and Edwards (1986), Dawes (1988),
Dowie and Elstein (1988), Berger (1997), and Hammond (2000).

Normative approaches to decision making under risk often involve concep-
tualizing the decision situation in terms of a set of states of the world that could
conceivably hold and a set of decision alternatives, assigning probabilities to
the possible states of the world, assigning a value (utility; gain-loss) to each of
the possible combinations of states of the world and decision alternatives, and
then selecting an alternative according to some goal. The situation may be rep-
resented abstractly by a matrix, with one dimension (say the rows) indicating
the possible, or hypothesized, states of the world, and the other (the columns)
indicating the action alternatives or options available to the decision maker.
Each cell entry in the matrix indicates the relative desirabilty—the utility—to
the decision maker of the outcome that would result if the associated action al-
ternative were selected and the associated state of the world pertained. In the
following representation, for example, Utj represents the desirability to the de-
cision maker of the outcome resulting from the choice of Action Alternative j if
the real state of the world is as indicated by Hypothesis i.

Action Alternatives

A2 A3 ... A.

Hypothesized
States
Hi un u12 u13 ... uaj ... uln
H2 U21 U22 U23 ... U2J ... U2n

H3 U31 U32 U33 ... U3j ... U3n

Hi Uu U0 U13 ... Uy ... Uta

The hypothesized states of the world are assumed to be an exhaustive and mu-
tually exclusive set, which is to say that it is assumed that one and only one of
them pertains. Associated with each hypothesized state, H? is a probability, p(H)
and the assumption of an exhaustive and mutually exclusive set means that these
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probabilities sum to 1, ̂  /?(#,) = 1. The set of action alternatives also is as-
c=l

sumed to include all there are and the decision maker can choose only one of
them. The values of the individual cells can be expressed in any consistent units
to reflect the relative desirability to the decision maker of the possible outcomes.

Many normative models of decision making begin with this representation
and provide algorithmic rules for selecting an action alternative so as to realize
some goal, which could be to maximize one's expected utility, to minimize
one's maximun possible loss, or to accomplish something else. The goal one
selects is likely to depend on such factors as the stakes, one's willingness to ac-
cept risk, whether one expects to make many decisions or only one, and one's
general outlook. It is clear from the representation, however, that major chal-
lenges to the decision maker are those of identifying what the action alterna-
tives and possible states of the world are, assigning probabilities to the latter,
and quantifying preferences (utilities) for the various possible outcomes. The
preceding representation of decision making is often seen in discussions of
Bayesian reasoning; what Bayes's rule (see chap. 4) provides is a way of using
newly acquired evidence to modify an existing distribution of probabilities
over the hypothesized states of the world, or to update, in other words, the
probabilities associated with the various hypotheses in the light of new data
that relate to them.

MAXIMIZATION OF EXPECTED UTILITY

Once the theory of probability has been taken for granted, the principle of maxi-
mizing the expected utility per unit time [or rather its integral over the future,
with a discounting factor decreasing with time, depending on life expectancy ta-
bles] is the only fundamental principle of rational behavior. (Good, 1983a, p. 9)

Maximization of expected utility is one of the goals that can be used to guide
choices, given the analytic approach described previously. Some theorists,
like Good (1983a), have taken the strong position that the principle of maxi-
mizing expected utility, in one or another form, is the only defensible guide
for rational action. Expected utility theory has been widely interpreted not
only as a normative theory of rationality, but also as a descriptive theory of
how people actually behave or at least wish to behave (Arrow, 1971; Fried-
man, 1953; Friedman & L. J. Savage, 1948). On the other hand, the use of
subjective utility in models of choice is not without critics: "Rational choice
models make heavy use of both subjective utilities and subjective probabili-
ties, as well as of the simplistic hypothesis that selfishness is the only motiva-
tion of human behavior. Not surprisingly, none of these models fits the fact.
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Hence, although at first sight they look scientific, as a matter of fact they are
pseudoscientific" (Bunge, 1996, p. 104).

Despite the usefulness of the principle of maximization of expected utility
and its popularity among economists, it has problems, some of which have
been known for a long time. There seems to be a growing consensus among in-
vestigators of decision-making behavior that the classical view of decision
making, which promotes maximization of expected utility as a goal, and analy-
sis of the situation into possible world-states and action alternatives, is not de-
scriptive of the way most decisions are actually made, including decisions with
significant stakes that are made under conditions that would permit an analytic
approach. As Beach, B. Smith, Lundell, and Mitchell (1988) put it, "Whatever
else may have been learned in thirty-five years of behavioral decision research,
the primary lesson must be that expected utility and its theoretical accoutre-
ments provide an unsatisfactory description of decision-making at the individ-
ual level" (p. 17). If behavior that maximizes expected utility is taken as the
norm for rationality, then there seems no alternative to the conclusion that peo-
ple behave irrationally more often than not, which is to say that, as a descriptive
model of human behavior, maximization of expected utility misses the mark
(Miller & Starr, 1967). In fact, the adequacy of expected utility theory as a nor-
mative model of rationality has also been the subject of some debate (Beach et
al., 1988; Krantz, 1991; Sahlin, 1987; Shafer, 1986).

Keynes (1921/1956), for example, rejects the idea that "in order to obtain... a
measure of what ought to be our preference in regard to various alternative
courses of action, we must sum for each course of action a series of terms made
up of amounts of good which may attach to each of its possible consequences,
each multiplied by its appropriate probability" (p. 1363). His rejection of this po-
sition is based in part on the grounds that not all the assumptions that underlie it
are justified, and in part also on the grounds that not only probabilities but the
weight of evidence on which they are based should be taken into account:

If, therefore, the question of right action is under all circumstances a determinate
problem, it must be in virtue of an intuitive judgment directed to the situation as
a whole, and not in virtue of an arithmetical deduction derived from a series of
separate judgments directed to the individual alternatives each treated in isola-
tion. We must accept the conclusion that, if one good is greater than another, but
the probability of attaining the first less than that of attaining the second, the
question of which it is our duty to pursue may be indeterminate, unless we sup-
pose it to be within our power to make direct quantitative judgments of probabil-
ity and goodness jointly, (p. 1364)

Keynes questions the assumption that goods and probabilities can be com-
bined multiplicatively in a straightforward way:
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Is it certain that a larger good, which is extremely improbable, is precisely equiv-
alent ethically to a smaller good which is proportionately more probable? We
may doubt whether the moral value of speculative and cautious action respec-
tively can be weighed against one another in a simple arithmetic way, just as we
have already doubted whether a good whose probability can only be determined
on a slight basis of evidence can be compared by means merely of the magnitude
of this probability with another good whose likelihood is based on completer
knowledge, (p. 1366)

The difficulty is compounded by the fact that what is to be maximized ac-
cording to the maximization-of-expected-utility model is a number that is the
product of two terms, one an indicant of uncertainty and the other an indicant
of worth, each of which can be treated as either an objective or a subjective
variable. One can use as an indicant of uncertainty either an objective measure
of probability, say a relative-frequency statistic, when available, or a subjective
measure, like the decision maker's personal belief regarding what is or is not
likely to be the case. Similarly, as an indicant of worth, one can use something
as objective as monetary value, or something more subjective—utility—that,
like subjective probability, can vary from person to person in the same situa-
tion. Moreover, models of decision making can be constructed by combining
the objective and subjective forms of each variable in any of the four possible
ways (Coombs, Bezembinder, & Goode, 1967). Although things would be
greatly simplified if models could be based on the use of objective measures
for both variables, there has long been a strong consensus among decision the-
orists that such models are neither appropriate as prescriptions for behavior nor
descriptive of how people actually behave.

The Quantification of Expectation and Utility

One major difficulty is that of quantifying expectation. When an event is to be
determined by some random process that is understood by the decision maker
(e.g., toss of a coin, roll of a die) or when relative-frequency data are available,
there is a way to link expectations to objective measures of probability, but
things become more vague and abstract when the events of interest are of the
type that have never occurred in the past (nuclear war between superpowers,
exhaustion of fossil fuel reserves), so they have no relative frequency of occur-
rence, or that cannot occur many times in the future so that even imagined rela-
tive frequencies make dubious sense. It is not clear what expectation means in
such cases and how it should be quantified. It has been argued that many
real-life decision situations are unique events to those who face them, and that
therefore decision makers are rightfully more interested in the question of pos-
sibilities than in that of probabilities; the idea of probability is meaningless, the
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argument goes, when applied to one-of-a-kind events (Gigerenzer, 1987;
Shackle, 1958/1967).

At least as serious as the problem of quantifying expectation is that of deter-
mining what people value in specific situations—the problem of measuring
utility. It can be very difficult to demonstrate that an attempt to maximize util-
ity is not being made in any particular case, because one can always ascribe
utility to some aspect of the situation that has the effect of making the individ-
ual's behavior rational by definition. This is similar to the possibility of defin-
ing action that is consistent with one's perceived self-interest as action that one
elects to take, which makes unselfish action impossible in principle. One can
make relationships "vacuously true," to use Buchanan's (1978) phrase, by defi-
nition, but in doing so one makes them uninteresting.

Consider again, for example, the results from "probability-matching" ex-
periments in which people often behave in what appears to be an irrational way.
In the simplest version of this experiment, the task is to predict on each of a se-
ries of independent trials which of two chance events—say a red or a green
light—will occur on that trial, and one's earnings for a session depend on how
many predictions are correct. As already noted, the strategy that will maximize
the expected number of correct predictions in such a situation is to predict al-
ways the more frequent event; as soon as it becomes clear that the red light, say,
occurs more frequently than the green one, one should, from that point on, al-
ways predict red. But people typically do not do this. Instead of adopting the
strategy that would maximize the number of correct predictions, they tend to
predict the more likely event with about the frequency of its occurrence.

On the face of it, probability-matching behavior seems to be irrational, at
least from the point of view of maximization of expected utility; we might ra-
tionalize it, however, by ascribing a high utility to keeping the situation inter-
esting for the participant. To select the same alternative on every trial might
make the situation unacceptably boring to some people, even though this
would maximize their expected earnings. Given that the amount of money in-
volved usually is small, the satisfaction of "playing the game" in an interesting
way may more than offset the small amount of earnings that one gives up in or-
der to do so. That the playing of the game, or the act of gambling, has no intrin-
sic utility is typically considered an assumption that is essential to the
application of expected utility models to human behavior, but the assumption
is questionable in many cases.

Or consider again the individual who buys a ticket in a lottery; to be specific,
let us say a $ 1.00 ticket in a lottery in which there is one chance in 2,000 of win-
ning $1,000. Is such an individual acting irrationally by paying $1.00 for a
ticket representing an expected value of $0.50? An affirmative answer gives no
value to the act of participating in the gamble. It fails to recognize that one
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might consider the thrill of playing to be worth a dollar even though one recog-
nizes the chance of winning to be small. From this perspective, what one
bought with one's dollar is not simply a 1 -in-2,000 chance of winning $ 1,000,
but a bit of excitement and pleasure. Death-risking, daredevil feats can be seen
as rational if one recognizes the utility to the risk taker of the thrill itself, not to
mention the reinforcement (money, fame, adulation) that success could bring.

As one method for measuring utilities, von Neumann and Morgenstern (1953)
proposed the use of a technique that presents the decision maker with an option be-
tween a certain situation (e.g., present state of health, present job, known amount
of money in the bank) and a gamble, one possible outcome of which is highly de-
sirable (cure from a serious disease, much better job, large gain from financial ven-
ture) whereas the other is highly undesirable (death, loss of job, financial ruin).
The probability of the undesirable outcome is assumed to be the complement of
the probability of the desirable outcome, and one's task is to adjust these probabili-
ties until one is indifferent to the choice between the certain situation and the gam-
ble. The more one likes the certain situation, the higher the probability of the more
desirable outcome must be before one will prefer the gamble.

If the utilities of the outcomes of the gamble are known or can be inferred,
this procedure provides a means of inferring from them the utility of the certain
state. In theory, the number obtained should not depend on the composition of
the gamble because the decision maker's positioning of the indifference point
will take into consideration the utilities of the possible outcomes. In fact, how-
ever, changing the gamble can affect the derived utility (Llewellyn-Thomas et
al.,1982/1988; Tversky & Kahneman, 1981).

Moreover, as it happens, people often show a preference, like Bernoulli's
pauper, for a guaranteed gain of a specified amount over a gamble with a higher
mathematical expectation. For example, given the choice between receiving
$800 for sure, and an 85% chance of winning $1,000 coupled with a 15%
chance of winning nothing, most people prefer the sure thing over the gamble,
even though the expected value of the gamble ($850) is greater than the value
of the sure thing. Kahneman and Tversky (1984) refer to the phenomenon as
the certainty effect. This preference can be seen as rational from a maximiza-
tion-of-expected-utility perspective by giving some negative utility to risk.
(The point that a small sure thing may be preferred to an uncertain outcome
with a very large expected value is made by the extreme example of the St. Pe-
tersburg paradox, which is discussed in chap. 6.) A similar preference may be
seen when one's choice alternatives include no sure thing. When one's choice
is between a low-probability alternative with a high value and a high-probabil-
ity alternative with a lower value, one may well prefer the second option even if
the expected value (or utility) is higher for the first one (Lichtenstein & Slovic,
1971, 1973; Tversky, Sattath, & Slovic, 1988).
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The preference for the $1.00 lottery ticket that has an expected value of
$0.50 is not an example of this generalization, because in this case the value of
the dollar in hand exceeds the expected value of the ticket, but it too illustrates
the need for the distinction between value and utility; one who believes that
people always attempt to maximize expected utility would argue that although
the value of one dollar is greater than the expected value of the ticket, the utility
of a dollar is less than the expected utility of the gamble in the utility systems of
those who would prefer the ticket.

This all seems intuitively reasonable. Most of us probably would agree that
neither expected monetary value nor actual monetary value, when it is known, is
necessarily an accurate indication of what something is worth to us personally.
Moreover, we are not surprised to discover that a wilingness to pay X dollars for a
certain amount of some good is not compelling evidence that one would be will-
ing to pay 2X dollars for twice as much of the same good; if I am traveling with-
out a refrigerator, I may gladly pay the going price for as much ice cream as I can
comfortably eat, but I am unlikely to be interested in buying twice as much even
at considerably less than twice the price. So the distinction that decision theorists
make between monetary value and utility is an easy one to accept intuitively. Un-
fortunately, whereas monetary value typically is relatively easy to specify, utility
is not. In order to see whether an individual's behavior is consistent with an at-
tempt to maximize expected utility, one must know what the individual really
values and that may be very difficult to determine, except by inference from
one's choice behavior, and that is what utility theory is intended to predict.

One view of the maximize-expected-utility principle is that it is appropriate
only for a long-range perspective, which is to say, if one makes decisions so as
to maximize expected utility one can be reasonably sure of maximizing actual
utility, but only in the long run. People often take a relatively short-range view,
however, and attach considerably more importance to what they think will hap-
pen soon than to what they anticipate in the future. This is known as discount-
ing the future, and the discount rate sometimes appears to be a rather steep
function of time.

Tne Principle of Invariance

A basic assumption underlying expected utility theory is that people's utilities
are constant and that different methods of measuring them will give the same
results. In particular, preferences should not depend on the way in which the al-
ternatives are described (assuming accurate and understandable descriptions)
or on the way the preferences are elicited (Tversky & Kahneman, 1981). This
is known as the principle of invariance, the two aspects of which are referred to
as description invariance and procedure invariance.
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The finding that neither description invariance nor procedure invariance
holds (Fischhoff, Slovic, & Lichtenstein, 1980; Kahneman & Tversky, 1979b)
has been seen as strong evidence against the adequacy of expected utility the-
ory as a descriptive account of human choice or decision making. It has also
motivated interest in the idea that preferences may sometimes be constructed,
rather than only being revealed, as a consequence of the attempt to make them
explicit (Slovic, 1995).

Consider a gamble in which one alternative, A, offers a high probability of a
modest win and a low probability of a considerably larger loss, and the other al-
ternative, B, offers a low probability of a large win and a high probability of a
small loss. Depending on the amounts involved, people will sometimes express a
preference for A, if given a chance to make one or the other wager, but will state a
higher price for B if asked how much they would charge to sell either opportunity
to someone else (Lichtenstein & Slovic, 1971,1973). This type of failure of the
principle of invariance, which is referred to as preference reversal, has received
considerable attention both from psychologists and from economists since it was
first reported, and several explanations of it have been offered (W. Goldstein &
Einhorn, 1987; Grether & Plott, 1979; Lichtenstein & Slovic, 1971; Loomes &
Sugden, 1983; Schkade & E. J. Johnson, 1989; Slovic, 1995; Slovic &
Lichtenstein, 1983; Tversky, Slovic, & Kahneman, 1990).

Tversky et al. (1988) suggest that people may approach the task of choosing be-
tween pairs of options of the kind that have been used to demonstrate preference
reversal in a different way from that in which they approach the task of matching
pairs so as to make them equal in value. In the first case, they argue, people are
likely to make qualitative comparisons, selecting the alternative that is prefered
when one considers primarily the feature or attribute that is deemed most impor-
tant. The matching task, they suggest, is likely to evoke a more computational ap-
proach that attempts to take more than a single attribute into account and to do so in
a quantitative way. The two approaches are not guaranteed to yield the same pref-
erences, so the hypothesis is compatible with the fact that reversals occur.

Whatever its explanation, the phenomenon of preference reversal can be
used to make people function as money pumps (Berg, Dickhaut, & O'Brien,
1985). It is a problem for any theory that assumes that people have fixed prefer-
ences that just need to be revealed, as does traditional expected utility theory.
Efforts to discredit or explain away the phenomenon in the interest of protect-
ing the integrity of expected utility theory as a description of human choice
have not been very successful (Slovic, 1995).

Utility Maximization ana Goals

Optimality can only be determined within a specific frame of reference; what
is optimal relative to one value system may be far from optimal relative to an-
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other. The individual who values honor above life, for example, will have a dif-
ferent utility function in certain risky decision situations than will one whose
values dictate the goal of survival at any cost. What is optimal as judged by a
utility function that takes into account only monetary and equally objective
factors may be suboptimal when such intangibles as personal satisfaction and
peace of mind are added to the equation.

Considering such subjective variables complicates the application of quanti-
tative models to the evaluation of choices or choice behavior, because these vari-
ables are difficult to quantify, but to ignore them runs the risk of leaving out of
consideration factors that may be among the most important to the decision
maker, and consequently of representing the real situation inaccurately. This is a
very important point, especially as it relates to the problem of judging the ratio-
nality of people's behavior. If A's behavior appears to be irrational to B, in the
sense that A is not maximizing expected utility, it may be because B's model of
A's utility function is incorrect and, in particular, that B does not understand the
importance to A of certain subjective variables that are private matters.

The maximization-of-expected-utility model allows for differences in indi-
viduals' utility functions, so one might argue that these concerns do not reflect
limitations of the model per se but of the ways in which it is applied. But the
ways in which individual differences in utility functions are accommodated
can come close to defining utility as whatever it is that one is trying to maxi-
mize. Some theorists have argued that even the utility that a given individual
assigns to a given decision outcome should be considered a random variable,
thus allowing different preferences among the same alternatives at different
times (Becker, DeGroot, & Marschak, 1963).

The conception of rationality as optimal behavior assumes one's objec-
tives as given—given that one's goal is X, then rational behavior vis-a-vis that
goal is defined as Y. The conception provides no insights on the question of
what constitutes rationality in the selection of top-level goals. Simon
(1983/1990) makes this pointin observing that the theory of maximization of
expected utility finesses completely questions of origins of values or accu-
racy of facts: "At best, the model tells us how to reason about fact and value
premises, it says nothing about where they come from" (p. 195). Simon ar-
gues also that application of the theory in the real world would be impossibly
difficult for mere mortals without resort to drastic simplifying assumptions:
"Human beings have neither the facts nor the consistent structure of values
nor the reasoning power at their disposal that would be required ... to apply
SEU [subjective expected utility] principles" (p. 197). Efforts to make deci-
sion models that are based on the idea of maximation of expected utility more
descriptive of human behavior have had the effect of making the models ever
more complex. Of course the fact that a complex model can describe or pre-
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diet human behavior, if it can, does not mean that people actually carry out
the same computational steps as does the model.

Closely related to the fact that expected utility theory takes one's goals as
given is the assumption that people know what their values are that relate to
specific choices even when they have not had occasion to make them explicit.
As we have already noted, this is an assumption that not everyone is willing to
make. Arrow (1990) puts the matter this way: "The question may be raised how
we can possibly know about hypothetical choices if they are not actually made.
This is not merely a problem of finding out about somebody else's values; we
may not know our own values until put to the crucial test" (p. 340). One might
add that the choices that people make in situations simulated in the psychologi-
cal laboratory are not necessarily reliable indications of what people would do
if faced with the same choices in nonlaboratory situations where the stakes are
significant and the consequences real. This is not to suggest that participants in
experiments deliberately behave differently than they would in real-world situ-
ations, but rather that what they do in the laboratory reflects what they think
they would do outside it, whereas what they would really do could be quite dif-
ferent, and there is no way for them or the experimenter to know for sure, short
of observing their behavior in the real-world situations of interest.

A different type of limitation of the principle of maximization of expected
utility as the primary standard of rationality has been noted by Gauthier
(198671990). He points out that one who invariably behaves in such a way as to
maximize the expected utility for every choice and is known to do so is likely to
be excluded from participating in certain situations that require cooperation:

The important point in our argument is that one's disposition to choose affects
the situations in which one may expect to find oneself. A straightforward
maximizer, who is disposed to make maximizing choices, must expect to be ex-
cluded from cooperative arrangements that he would find advantageous. A con-
strained maximizer may expect to be included in such arrangements. She
benefits from her disposition, not in the choices she makes, but in her opportuni-
ties to choose, (p. 330)

One might argue that the essential difference between the straightforward
maximizer and the constrained maximizer is that the latter simply evaluates
utility in a broader frame of reference than does the former. But pressed to its
limits, this argument would allow the interpretation of all behavior as consis-
tent with an effort to maximize expected utility—broadly conceived—over a
lifetime, making the notion uninteresting if not tautological.

The point was made earlier that the goal one selects in any specific decision
situation is likely to depend not only on the specifics of the situation but on more
abiding factors such as one's willingness to accept risk and one's general outlook
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on life. Good (1983a) argues the importance of the latter factor by pointing out
that the mimimax strategy (the strategy of minimizing one's maximum possible
loss, which is an alternative to maximizing expected utility or gain) is an ultra-
conservative one, reasonable if, and only if, the least favorable initial distribution
is reasonable according to one's body of beliefs. The minimax solution assumes,
he suggests, that we live in the worst of all possible worlds. Whether or not one
accepts this assessment, it is clear that the minimax strategy will produce sub-
optimal results in many situations. If one used it to guide one's investment deci-
sions, one would do relatively well—less poorly than others—only when almost
all investments were doing poorly. When most investments were doing reason-
ably well, this strategy would leave one far behind the norm.

ALTERNATIVES TO EXPECTED UTILITY THEORY

The view that maximizing expected utility "is the only fundamental principle
of rational behavior" (Good, 1983a, p. 9) has been a popular one among econo-
mists and decision theorists, but it is not the only one that can be held, and it
does not lack critics (Kreps, 1990). Some people find it reasonable to hold that
the deliberate choice of an action that is known not to be the best possible
choice for oneself is not irrefutable proof of irrationality. Slote (1985,1986),
for example, defends the position that moderation in one's desires—a feeling
of being well enough off and a failure to seek to be better off, even when being
better off is within one's reach—is not necessarily grounds for concluding that
one has lost one's senses. A counter to this position is that when one appears
deliberately to choose something that is known, by the chooser, to be less con-
sistent with the chooser's best interests than another option not chosen, the
problem is in our understanding of the chooser's utilities; if we understood
what the chooser's values really are, we would see that the choice does, in fact,
represent an effort to do what is in the chooser's best interest, in the chooser's
view. But again, this makes the maximization of expected utility correct by def-
inition, and therefore an uninteresting principle.

Simon's (1955,1957) proposed alternative to expected utility theory is what
he calls the theory of bounded rationality. The bounded rationality that Simon
describes is not an optimizing rationality but a gets-by rationality. It is the kind
of rationality that yields good-enough results to support the survival, or even
the prosperity, of the species, but not to ensure the best possible choice in all
situations; and—this is perhaps the most important point—it is manageable by
creatures with the cognitive and computational limitations of human beings.
This rationality rests on capabilities for focusing attention, for generating al-
ternatives for action, for acquiring facts about the environment, and for draw-
ing inferences from those facts.
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Kahneman and Tversky (1979b) have developed a theory of choice behav-
ior, which they call "prospect theory," that is intended to deal with some of the
shortcomings of expected utility theory. According to this theory, the choice
process is composed of two phases: an early editing phase and a subsequent
evaluation phase. During the editing phase the possible decision outcomes, or
prospects, may be modified in certain ways so as to increase the ease with
which a selection among them can be made. For example, if two competing
prospects are identical in some respects and different in others, the ways in
which they are identical may be disregarded, or "canceled," for purposes of
comparison and selection. When the choice is made it is made not between the
prospects per se but between the edited representations of the prospects. More-
over a choice situation is encoded in the decision maker's thinking in terms of
what can be gained or lost as a consequence of a decision rather than in terms of
the decision maker's final state of wealth or welfare, and, although the idea is
not unique to prospect theory, Kahneman and Tversky note that losses tend to
loom larger than gains of the same amounts. The editing phase is assumed to be
context sensitive, so the same prospect could be edited in different ways when
encountered in different contexts.

When the editing phase has been completed the decision maker evaluates the
edited prospects and picks the one with the highest value. Value here is assumed
to be determined by two scales: a weight, which is somewhat analogous to prob-
ability in expected utility theory but—being somewhat less constrained—not
equivalent to it, and the subjective value or worth of the prospect. Thus con-
ceived, prospect theory is able, in Kahneman and Tversky's view, to accommo-
date some of the ways in which human decision making typically violates the
axioms of expected utility theory. Prospect theory is qualitatively similar to ex-
pected utility theory; its greater descriptive flexibility comes from the use of
weights that are not strictly probabilities and the assumption that outcome values
are determined by changes rather than by final states.

A strong case that many decisions are dictated by certain intuitive principles,
or rules of thumb, that appear to be widely honored has been made by Baron
(1998): "Do no harm," "maintain the status quo," "do not go against nature," "be
loyal to your group," and so on. Such rules, Baron notes, often work well, but
they become problematic when they are elevated to the status of principles that
should never be violated. Slavish adherence to the "do-no-harm" principle, for
example, would effectively rule out many, if not most, actions that might be
taken to accomplish objectives that are universally recognized as desirable, be-
cause almost all such actions are likely to have negative effects for someone. A
more reasonable principle—and perhaps one that is often intended by advocates
of "do no harm"—is "try to keep the negative consequences within acceptable
bounds." In this respect these principles are like other rules of thumb, or
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heuristics; they are useful as long as they are recognized for what they are, but
can become bothersome when their limitations are not borne in mind.

The term heuristic is used in two somewhat different ways in the psychological
literature. Sometimes it connotes a strategy or rule of thumb that is used to ad-
vantage in solving problems for which algorithmic solutions are either not
known or impractical. The solutions that are obtained are not assumed to be op-
timal, but they are can be good enough and they can be effected with limited re-
sources: "Simple heuristics can provide good solutions without a great deal of
complex general purpose calculation" (Goodie et al., 1999, p. 340). This use of
the term is similar to that found in the literature on computer science and artifi-
cial intelligence where a heuristic is a prescription for action that is not guaran-
teed to work but is judged to be likely to do so.

The second way in which the term is used in the psychological literature is to
connote reasoning strategies that often tend to lead the reasoner astray. Evans
and Bradshaw (1986) have this connotation in mind when they refer to a heu-
ristic as a theoretical construct that has been proposed to explain reasoning bi-
ases, or ways in which reasoning deviates systematically from the dictates of a
normative statistical theory. Klahr (1976) likens heuristics of this type to "cog-
nitive illusions," which are "compelling even when we know of their existence
and can explain their source" (p. 245).

Kahneman andTversky (1972b, 1973,1982a; Tversky & Kahneman, 1973,
1974,1983) have identified several heuristics that people appear to use when
making judgments that call for probabilistic or statistical reasoning. The better
known and more thoroughly studied of these are the availability, representa-
tiveness, and anchoring-and-adjustment heuristics. Whether these reasoning
strategies should be considered heuristics in the first (beneficial) or second
(detrimental) sense, or possibly both, is a question to which we will return. I
note here that Kahneman (2000) takes exception to the widely held notion that
people who do research on heuristics and biases are interested primarily in
demonstrating human irrationality and argues that the greater interest is in "un-
derstanding the psychology of intuitive judgment and choice" (p. 682).

Availability

"Availability" is the name that Kahneman and Tversky (1973) gave to the heu-
ristic that people use when they estimate the frequency of a class, or the likeli-
hood of an event, on the basis of the ease with which they can bring examples or
occurrences to mind. Kahneman and Tversky point out that availability can be
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a useful clue to relative frequency, because the relative frequency with which
an event has been encountered is one of the determinants of its availability in
memory; it is a fallible clue, however, because it is not the only such determi-
nant. Availability may be affected also by such factors as vividness, concrete-
ness, recency of activation, emotional quality, and other characteristics that
enhance memorability (Billings & Schaalman, 1980; Shedler & Manis, 1986;
S. E. Taylor, 1982), so its use can also lead to reasoning errors. In short, the
availability heuristic can be expected to work well when the primary basis of
availability is frequency of occurrence and to work less well when it derives
from other factors; the problem is that its basis in specific instances usually is
not clear. Much of the research relating to the use of the heuristic has focused
on situations in which availability is likely to be influenced strongly by one or
more factors other than relative frequency.

The use of the availability heuristic seems to account well for findings like
the following ones reported by Kahneman and Tversky (1973). When people
were asked to estimate the proportion of male or female names on a list of ce-
lebrities they had just read, their estimates were influenced by the relative
fame of the people on the list. In particular, they tended to overestimate the
representation of the gender which had the more famous names on the list,
which, presumably, were the names they could more readily recall. In an-
other example, people estimated the number of different 2-person commit-
tees that can be formed from 10 people to be greater than the number of
different 8-person committees that can be formed from the same group. Al-
though the number of possible committees is the same in both cases, the hy-
pothesized explanation for the larger estimate in the two-person case is that
two-person committees are easier to imagine than eight-person committees
and are therefore judged to be more numerous.

Evidence regarding the importance of availability to likelihood estimates
has been reported by S. J. Hoch (1984), who had people generate reasons why a
future event might or might not occur. Some participants generated pro reasons
first and then con, whereas others did the reverse. In both cases they generated
more reasons of the type they were asked to produce first, and produced them
more quickly. When asked to estimate the likelihood of the event, people's esti-
mates tended to be consistent with the type of reason (pro or con) they had pro-
duced first. It appeared that the act of generating the initial list inhibited some-
what the generation of the second one and also tended to establish the partici-
pants' opinion on the matter. Increasing the length of the delay between the
generation of the pro and con lists diminished the interference and increased
the influence of the second list.

Availability seems to account also for the fact that when asked to judge the
size of the set of English words that begin with a specified letter, relative to the
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size of the set of words that have that letter in the third-letter position, people
tend to judge the set with the specified letter in the first-letter position to be the
larger, even when there are many more words in the other set (Tversky &
Kahneman, 1973). Presumably people can search memory more effectively
when looking for words with a specified letter in first-letter position than when
looking for words with that letter in third-letter position, and the greater avail-
ability of first-letter words supports the judgment that there are more of this
class in the language.

The availability heuristic may be involved in a variety of other findings relat-
ing to systematic biases in estimation tasks. It could help account, for example,
for why, when husbands and wives were asked to estimate the percentage of fam-
ily activities (including unpleasant activities such as arguments) for which each
spouse was responsible, the importance of each person's role was estimated
higher by him or herself than by his or her spouse, or for why basketball players
judged members of their own team to have been more responsible than members
of the opposing team for critical plays in their games (M. Ross & Sicoly, 1979).

It appears also that people tend to overestimate the extent of their own contri-
butions to tasks that they perform collaboratively with others (M. Ross & Sicoly,
1979). Honest misjudgments of this type are easily accounted for by the avail-
ability principle. One is bound to be more aware of the details of one's own work
on a collaborative task, especially with respect to those aspects of the effort that
are covert, than of the details of the work of one's collaborators. In recalling a
project, one is likely to have available more information pertaining to one's own
efforts than pertaining to the efforts of others, other things being equal.

Use of the availability heuristic has been considered one of the reasons why
people often misestimate the frequencies of risky events; events that tend to be
memorable, and hence available, tend to be perceived to occur with relatively
high frequency (Slovic et al., 1981/1986). It also can help account for the com-
mon finding that people often tend to be overconfident of their own hypothe-
ses. If, when generating hypotheses regarding the cause of an observed effect,
people fail to think of some of the plausible alternatives to those they favor, the
probabilities they assign to the latter are likely to be inappropriately high. Peo-
ple tend to produce less-than-complete sets of hypotheses and overestimate the
likelihood of the hypotheses they produce (Fischhoff, Slovic, & Lichtenstein,
1978; Mehle, 1982; Mehle et al., 1981).

Representativeness

According to another hypothesis put forth by Kahneman and Tversky (1972b),
people decide such questions as whether an object belongs to a specific cate-
gory, or whether an event was generated by a specific process, on the basis of
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the degree to which the object or event is seen to be representative of objects in
the category or events generated by the process. The subjective probability of
an event or a sample, they argue, is "determined by the extent to which it: (i) is
similar in essential characteristics to its parent population, and (ii) reflects the
salient features of the process by which it is generated" (p. 430). An object or
event can be representative of a category or process in a variety of ways
(Tversky & Kahneman, 1983).

The idea has been applied not only to statistical reasoning but to categoriza-
tion or classification more generally. Whereas natural categories were once de-
fined by unique or distinguishing features, theorists today are more inclined to
conceptualize them in terms of most-representative members (E. E. Smith &
Medin, 1981; E. E. Smith, Osherson, Rips, & Keane, 1988). Representative-
ness, or typicality, is revealed by both direct ratings and indirect behavior indi-
ces, such as the time required to make a decision regarding category member-
ship and the reliability with which such decisions are made. Members of a cate-
gory that are more highly representative of the category are identified as mem-
bers more rapidly and accurately than are members that are less
representative—closer to the category's edges.

The representativeness heuristic has been invoked to account for some of
the findings that have been described in connection with the "conjunction fal-
lacy" (see chap. 9). The description of Linda, for example, might be said to be
more representative of the class of feminist bank tellers than of that of bank
tellers more generally. And, according to the hypothesis, use of the representa-
tiveness heuristic would lead one to select the more specific description over
the more general one. The evidence seems to be that in many circumstances in-
formation that describes an individual as highly representative of a class has
more influence on people's decisions regarding class membership than does
base-rate information.

Kahneman and Tversky have also given a representativeness account of the
fact that people are likely to judge the sequence of coin tosses HHTHTT to be
more probable than the sequence HHHTTT, and much more probable than
HHHHHH, despite the fact that all three sequences are equally probable. The
explanation that invokes representativeness is that people expect even small
samples selected at random from a large population to have the characteristics
of the population from which they were drawn—this is one manifestation of
the (fallacious) law of small numbers—and the first sequence is seen to be
more representative of what one expects in a random sample of coin tosses than
are the second and third.

Representativeness has been proposed as an explanation of why people of-
ten ignore or discount base rates in decision making, as in the widely discussed
case of the blue and green cab problem, (see chap. 4.) This use of the concept
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has been criticized by Gigerenzer et al. (1989) on the grounds that it does little
more than substitute one name of the phenomenon for another:

The phenomenon is called base-rate neglect because people's judgments vary
wi\hp(D\H) but not with p(H), and this is explained by saying that people use a
representativeness heuristic, which means that they use information of the type
p(D\H) and notp(#). That is, neglect of base rates is explained by neglect of base
rates. Probability theory has encompassed all. And the two concepts p(H) and
p(D\H), from which the posterior probability is calculated, now serve as the vo-
cabulary for both the phenomena and the explanations, (p. 224)

Gigerenzer and Murray (1987) claim that, inasmuch as representativeness
is generally synonymous with likelihood, in attributing base-rate neglect to the
use of a representativeness heuristic, one is, in effect, simply claiming that peo-
ple use likelihoods instead of prior probabilities when updating probabilities.
This may be true, they argue, but the question remains as to why they do so and
use of the terminology of representativeness does not answer it.

Anchoring and Adjustment

It appears that people often make quantitative judgments by taking a tentative
value as a point of departure and then making adjustments to it. Sometimes the
starting point, or anchor, as it has been called, may be provided by someone
else, or by some aspect of the context in which the judgment must be made. The
primary finding of numerous experiments investigating the use of this heuristic
is that when people are given an anchor, they typically adjust their judgments in
the right direction but by an insufficient amount (Carlson, 1990; G. B. Chap-
man & E. J. Johnson, 1994; Slovic & Lichtenstein, 1971). It is as though they
give more credence to the anchor than it deserves.

A demonstration of anchoring and (insufficient) adjustment is reported in
Tver sky and Kahneman (1974). One group of participants was asked to state
the probability that the population of Turkey was greater than 5 million and an-
other group was asked to state the probability that the population of Turkey was
less than 65 million. Later, when each group was asked to estimate the popula-
tion of Turkey, the median estimate for the first group was 17 million and that
for the second group 35 million. Given that the only known relevant difference
between the groups was the fact that they were exposed to different numbers
when asked the first question, it seems reasonable to conclude that that differ-
ence was instrumental in determining the difference in their subsequent esti-
mates. In anchoring-and-adjustment terms, we might say that the initial
numbers provided by the experimenter served as the anchors for the partici-
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pants' subsequent estimates and the differences between the initial numbers
and the estimates themselves constituted the adjustments that were made.

Without contesting the appropriateness of this terminology, we can note
that using the initial number provided by the experimenter as an anchor for the
subsequent population estimate could be a sensible thing for one to do. Sup-
pose one had no idea what the population of Turkey is. It would not be unrea-
sonable to assume that, in order to make the first problem difficult, as they
might be expected to do, experimenters would choose numbers fairly close to
the actual population of Turkey. On this line of reasoning, people who came to
the experiment with no idea of Turkey's population might do worse than take
the number provided by the experimenter as a default point of departure when
asked to produce an estimate.

A similar point could be made with respect to a finding by Lichtenstein et al.
(1978). In this case people were asked to estimate the frequency of fatalities as-
sociated with each of 40 causes of death in the United States. Some, who were
told by the experimenters that there are about 50,000 highway fatalities each
year, gave much higher estimates than did others, who were told that there are
about 1,000 deaths due to electrocution. Again, individuals who came to the
experiment without any clear idea about the frequencies of deaths from acci-
dental causes might have taken the numbers provided by the experimenters to
be "typical" in some sense.

The same rationalization of people's behavior is not so easy to apply to an-
other experiment of Tversky and Kahneman's (1974), however, in which stu-
dents were asked to estimate the number of African countries in the United
Nations. In this case, after making an initial estimate, the students watched a
roulette wheel being spun, and were asked, first, if the number they had esti-
mated was above or below that which the wheel generated and, second, to give
a new best estimate. The final estimate was affected by the number produced
by the wheel, even though students actually saw the wheel spin and presum-
ably knew that it was a random process.

In still another experiment, Tversky and Kahneman (1974) asked two
groups to estimate the product of a series of numbers quickly. One group saw
the sequence 1x2x3x4x5x6x7x8 , and the other 8x7x6x5x4x3x2x1 .
Both groups gave estimates that were erroneously low, but the estimates of the
first group were substantially smaller than those of the second. An account of
these results in terms of anchoring and adjustment would assume that both
groups estimated a partial product of the first few terms and, using that as an
anchor, made adjustments to accommodate the remaining terms. The underes-
timation by both groups could be attributed to insufficient adjustment; the fact
that the first group underestimated by a larger amount than the second follows
from the first group starting with a smaller anchor. Anchoring and adjustment
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in this context seems like a perfectly reasonable way to approach the problem;
the difficulty appears to be not with the process but with a lack of accuracy at
the various steps.

Anchoring and (insufficient) adjustment has also been used to account for
the finding, already noted, that when people know the probabilities of two in-
dependent events, they often overestimate the probability of the conjunction of
those events and underestimate the probability of the disjunction (Tversky &
Kahneman, 1974). In the case of the conjunction, the argument is that the an-
chor is the probability of one of the events and the adjustment (downward) for
the conjunction is too small. In the case of the disjunction, the anchor again is
the probability of one of the events and the adjustment (upward) for the
disjunction is again too small.

Another possible example of anchoring and adjustment involving estima-
tion comes from a study by Lopes and Ekberg (1980). When evaluating gam-
bles (relative to "sure thing" alternatives) people made the judgments some-
what faster when the amount to be won was presented before the probability of
winning, as opposed to the reverse. This was interpreted as suggesting that the
gambles were evaluated by using the value of the amount to be won as an "an-
chor" and then adjusting this down to reflect the probability of winning.

A final example of what might be viewed as a case of anchoring and adjust-
ment is a considerably more troubling one. It involves a study by Hamil, T. D.
Wilson, and Nisbett (1980), in which people were shown one of two videotaped
interviews of an actor posing as a prison guard. In one of the interviews the
"guard" was compassionate and appeared to be interested in prisoners' rehabili-
tation; in the other he was verbally abusive of prisoners and showed little interest
in their well-being. Subsequent testing of the participants showed that their be-
liefs about prison guards in general had been strongly influenced by the video-
tape viewings, even when they had been told that the guard they had seen on tape
was exceptionally humane (or inhumane) and not representative of guards in
general; when asked to estimate attitudes typical of prison personnel on a variety
of issues, participants estimates appeared to have been influenced as much by the
expressed opinions of guards who had been characterized as extreme as by those
who had been characterized as typical. This result suggests that opinions and at-
titudes may sometimes be anchored by information we receive even when there
is reason to believe that information to be distorted or biased in some way.

Other studies that have found evidence of adjustment from an anchor include
those of Cervone and Peake (1986), H. L. Davis, S. J. Hoch, and Ragsdale
(1986), E. J. Johnson and Schkade (1989), and Schkade and E. J. Johnson
(1989). Dawes (1988) points out that the most common anchor we have—and
we always have it—is the status quo. Perhaps this is why we find it easier, usu-
ally, to imagine variations on existing themes than radically new themes.
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Anchoring and adjustment may be seen in contexts other than those in-
volving statistical reasoning in the usual sense. People who deal in an-
tiques, objects of art, memorabilia, and other goods the prices of which are
not established by the dynamics of mass production and competition be-
tween producers of nearly identical products in the marketplace understand
the principle very well. When the dealer is the seller, the point of departure
for dickering is the initial asking price. The unsophisticated buyer is likely
to consider a purchase at a large (say 25%) discount from the asking price to
be a bargain, but this involves the assumption that the asking price was rea-
sonable. If the object involved is unique or relatively so, it may be very diffi-
cult to determine what is "reasonable" in an objective way, and the dealer
who intuitively understands the anchoring and adjustment principle does
well to begin with a high price. (When the dealer is the buyer, dickering
starts with the initial offer, and the same principle holds in reverse; in this
case, the dealer does well to begin with a low price and make the seller feel
good by raising it by some significant fraction.)

I have argued that anchoring and adjustment may play a role determining
our assumptions about what other people know on particular subjects
(Nickerson, 1999,2001). In this case the anchor is what one knows, or thinks
one knows, oneself. This anchor serves us well for the most part, but often the
adjustment that is made to take account of individual differences in knowledge
is too small and the result is that we overestimate the probability that a person
has a particular bit of knowledge that we ourselves have and effective commu-
nication is impeded.

Whatever conclusion one draws regarding the adequacy of the anchor-
and-adjustment explanation for many of the results that have been obtained
in experiments on reasoning under uncertainty, the evidence of the reality of
the phenomenon is compelling. An important practical implication of the
demonstration of its existence is the clear revelation that the answers one gets
to questions can depend very much on precisely how the questions are posed.
This is perhaps something that everyone knows in a qualitative way from per-
sonal experience, but it is useful to have such striking evidence of the effect
and indications of the nontrivial magnitudes it can reach in specific cases.

Usually the phenomenon of anchoring and adjustment is treated as a type of
bias in reasoning and an example of one of the many ways in which thinking is
less than completely rational. G. B. Chapman and Bornstein (1996) make the
important point, however, that in many cases, the anchor provides information
that is relevant to the reasoner's task. And even when it does not, if participants
in experiments assume that it does, they may be applying a principle that gener-
ally holds in normal discourse (Grice, 1975).
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How Effective Are These Heuristics?

All heuristics make us smart more often than not, and all heuristics—by mathe-
matical necessity—induce weighting biases. (Kahneman, 2000, p. 683)

There can be little doubt that people use the types of heuristics identified by
Kahneman and Tversky when making judgments and decisions about statisti-
cal or probabilistic variables. As Tversky and Kahneman (1974) point out,
these principles simplify the task of reasoning about uncertain situations and,
in general, are quite useful. They frequently yield correct conclusions or at
least conclusions that are correct enough for the practical demands of the mo-
ment. However, as Tversky and Kahneman also point out, they "sometimes
lead to severe and systematic errors" (p. 1124).

Ratelli-Palmarini (1994) puts the case more strongly:

We have come to see that our minds spontaneously follow a sort of quick and
easy shortcut, and that this shortcut does not lead us to the same place to which
the highway of rationality would bring us. Few of us suffer from any illusion that
the summary paths taken by our intuitions and approximations would lead us to
exactly the same point to which reason and exact calculation might have brought
us. But we do delude ourselves into thinking that we are thereby brought to a
neighboring area, one that is close enough, (p. 143)

It seems clear that the use of the kinds of heuristics being considered some-
times yields judgments and decisions the rationality of which appears dubious
at best. What should we conclude about them in general? Is their use stark evi-
dence of human irrationality? Should we try, through the educational system,
to teach students not to use them?

We do not know how pervasively these heuristics are used outside the psy-
chological laboratory. Several investigators have questioned whether that use
is really very extensive, and not all are convinced that the types of problems
and problem contexts that have been used to study them in the laboratory are
representative of those that people typically encounter in daily life (L. J. Co-
hen, 1981; Dennett, 1981; Lopes, 1982; Macdonald, 1986).

We also do not know if, when they are used outside the laboratory, they typi-
cally work well or poorly. Many of the experimental situations in which they
have been studied have been carefully designed to demonstrate how they can
lead one astray. But how representative are these contrived situations with
those people typically encounter in everyday situations? One of the criticisms
of laboratory demonstrations of cognitive illusions is that experimenters some-
times get the appearance of irrational behavior only by violating widely ac-
cepted principles of normal discourse in their structuring of problem scenarios.
If heuristics of the type considered here are used extensively, and their use typi-
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cally results in faulty judgments and decisions, why have they survived?
Would we not expect grossly ineffective approaches to judgment and decision
making to become casualties of natural selection over time?

One can make a case for the practical utility of these heuristics, at least under
certain conditions. As already noted, availability might be expected to be corre-
lated with relative frequency and therefore often to serve as an effective clue to rel-
ative frequency in statistical reasoning. The correlation is not perfect, of course,
and availability is known to be affected by factors other than relative frequency, so
its use as an indicant of relative frequency can lead to reasoning errors; but it is at
least conceivable that availability is a sufficiently reliable indicator of relative fre-
quency to ensure the availability heuristic's usefulness in many contexts.

J. R. Anderson (1990) has pointed out that the utility of any heuristic ap-
proach to a cognitive problem should be evaluated in terms of the expected
value of the consequences of applying it. To borrow the example he uses to
make the point, the tendency that some people have not to believe an argument
if the arguer appears not to believe it is normatively irrational, inasmuch as the
validity of an argument does not depend on the beliefs of the one who advances
it, but it is possible that people who use this heuristic are less likely to accept an
invalid argument than those who do not.

Gigerenzer (1991; Gigerenzer & Murray, 1987) has criticized the use of the
Kahneman and Tversky heuristics to account for errors in probabilistic reasoning
on several grounds. First, he argues that many of the "errors" that they are invoked
to explain are not really errors, or are so only from a particular narrow and chal-
lengeable interpretation of probability. Second, he sees the heuristically based ex-
planations, in several cases at least, as little more than redescriptions of the
phenomena they are intended to explain. Third, he dismisses the heuristics consid-
ered previously as useful explanatory constructs for much the same reason that
Popper (1959) dismissed the theories of Marx, Freud, and Adler, namely, their ex-
cessive versatility: These heuristics, in his words, "are largely undefined concepts
and can post hoc be used to explain almost everything" (p. 102).

My opinion regarding heuristic approaches to intellectually demanding
tasks is that they are valuable to the extent that they (a) work acceptably well in
most of the important situations in which they are applied, and (b) make signif-
icantly lighter demands on one's cognitive resources than alternative ap-
proaches that would give more precise or more consistently correct results.
What one gains by using heuristics is computational simplicity, the ability to
address complex problems with only modest effort; what one gives up is preci-
sion and guaranteed statistically optimal results. Is this a reasonable trade?

I doubt if it is possible to answer this question in any very conclusive way.
We can, however, reflect on the question and on what some partial answers
might be. It is conceivable, for example, that the trade is worth it in the sense
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that the ratio of the benefit derived from the use of heuristics to the cost of their
use is greater, when integrated over all situations in which they are used, than
would be the ratio of the benefit derived from the use of more exact approaches
to the cost of their use. It also could be that heuristics work well enough in situ-
ations that really matter to offset their ineffectiveness in less important situa-
tions. Both of these possibilities could be seen as adaptive.

The question arises, if a heuristic procedure is effective in some situations and
not in others, why is it not applied only in situations of the former type. There are
at least two plausible answers to this question. The first challenges the tacit as-
sumption on which the question rests. There may well be examples of heuristics
that are used to advantage on some occasions by some people and avoided in fa-
vor of more exact methods on other occasions by the same people. We do not
know that this is not the case. A second plausible answer addresses those cases in
which a heuristic procedure is used more or less invariably, assuming there are
such. Invoking again notions of benefits and costs, one might assume that what is
to be gained by deciding on a case-by-case basis whether use of the heuristic is
likely to yield acceptable results or a more precise approach is called for is not
worth the cost of being constantly faced with the need to make this decision.

This is all conjectural, but some conjecture is probably required to see the
use of heuristics from a sufficiently broad perspective. The evidence is com-
pelling that situations can be designed in which people apply heuristics and, as
a consequence of doing so, form judgments, draw conclusions, or make deci-
sions that are suboptimal in specifiable ways. When viewed in isolation, such
applications of heuristics are likely to be taken as instances of irrational behav-
ior, but when viewed from a broader perspective these applications might be
seen as exceptions to the general usefulness of the procedures involved.

None of this is to deny the possibility of making people more aware of the
benefits and limitations of heuristic thinking and more discriminating in the
use of specific heuristic rules. Presumably not all heuristics are equally effec-
tive, relative to any measure of effectiveness that might be applied, and specific
heuristics are applied to better advantage in some situations than in others. It is
hard to believe that a more extensive and explicit knowledge of the advantages
and limitations of heuristic thinking and of specific heuristic rules could be
detrimental to one's rationality and it is easy to see how it might increase the ef-
fectiveness with which one could meet intellectual challenges in general.

PROBABILISTIC MENTAL MODELS
AND ANOTHER VIEW ON HEURISTICS

Gigerenzer (1991,1993) and his colleagues (Gigerenzer et al., 1991) have pro-
posed a theoretical account of how people reason about uncertain situations
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that combines the concept of mental models with the assumption that people
naturally distinguish between frequencies and other meanings of probability.
According to the theory, people deal with uncertain situations by constructing
probabilistic mental models (PMMs) of them: "A PMM is a generalization of
the particular problem, and consists of a reference class of objects and a net-
work of probability cues" (Gigerenzer, 1991b, p. 104). Gigerenzer and col-
leagues have also engaged in a program of research aimed at identifying simple
("fast and frugal") heuristics that take advantage of the structure of information
in the environment and lead to fast and relatively accurate decisions with a
minimum expenditure of cognitive capital (Gigerenzer & Todd, 1999a).

Probabilistic Mental Models

To illustrate the operation of a PMM, Gigerenzer uses the general-knowledge
question: "Which city has more inhabitants? (a) Heidelberg, (b) Bonn." To de-
rive an answer to this question—assuming one did not know the answer but had
some knowledge of German cities—one would generalize Heidelberg and Bonn
to a reference class, such as all German cities, and number of inhabitants to a net-
work of probability cues that might include such specifics as whether one city,
but not the other, has a professional soccer team or is a state capital. Probability
cues differ in degree of validity and one's perception of a cue's validity is based
on learned frequencies of co-occurrence. A judgment regarding a question like
the one relating to Heidelberg and Bonn would be made on the basis of having
found one or more applicable probability cues (not all cues relevant to city size
would be applicable to a given pair of cities) and one's confidence in it would de-
pend on the subjective validity of the cue(s) activated. Because "PMM theory
postulates cognitive mechanisms that work well given limited knowledge, lim-
ited attention, and limited computational capacities" (p. 301), it is seen by
Gigerenzer (1993) to be a model of "bounded rationality" of the sort described
by Simon (1955). The process mentioned produces good, but not necessarily op-
timal, performance; it is therefore a satisficing process in Simon's sense.

Gigerenzer invokes the PMM hypothesis to account for the fact that peo-
ple give conflicting responses when asked to estimate the probability that an
answer to a particular question is correct and when asked to estimate the per-
centage of the last, say 50, questions they have answered correctly. He sug-
gests that the PMMs that people construct in the two situations differ in
critical ways. In particular, in the former case the target variable, reference
class and probability cues are determined by the subject of the question,
whereas in the latter the target variable is "number of correct answers," the
reference class may be similar testing situations, and the probability cues
may be performance results in those situations.
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A particularly interesting prediction that Gigerenzer (1993) makes from PMM
theory is that limited knowledge may sometimes provide as good a basis for judg-
ment as more extensive knowledge. He argues the plausibility of this prediction
with the following illustration. Consider the task of judging for each of 100 pair-
ings of the 75 largest cities in a country which is the larger. Suppose the same peo-
ple—let us say a group of German students—are asked to perform this task once
with pairs of German cities, with which they are likely to be highly familiar, and
once with pairs of U.S. cities, about which they are likely to know much less. In
making the judgment with respect to any given pair of German cities, several prob-
ability cues are likely to be accessible, some of which may point to one of the cities
as the larger and others of which may point to the other. When dealing with any
given pair of U.S. cities, one is likely to have fewer cues available; in some cases
familiarity—whether or not one has heard of the city—may be the only one. If the
available cue is highly indicative of relative size, however, it may be as useful as
would a large set of conflicting cues in helping one make the right choice.
Gigerenzer is able to show that, given some plausible assumptions about cue ac-
cessibility and validity, it would not be surprising to find the German students do-
ing as well at this task with U.S. cities as with German ones, and he reports some
data collected with colleagues showing that a group of German participants did es-
sentially equally well with German and U.S. cities on this task.

Fast ana Frugal Heuristics

The idea that sometimes lack of knowledge can be advantageous by actually in-
creasing the probability of selecting the correct item among two or more alterna-
tives considered has been pursued experimentally by Gigerenzer and colleagues.
D. G. Goldstein and Gigerenzer (1999) describe the results of experiments
showing that basing choices on simple recognition can be an effective strategy in
dealing with situations in which one knows little or nothing about the alterna-
tives, but recognizes (only) one among them. This heuristic is domain specific,
Goldstein and Gigerenzer caution, working only in domains in which recogni-
tion is correlated with the property with respect to which the choice is to be
made. It works in the case of selecting the foreign city among two or more alter-
natives that has the largest population, presumably because the greater the popu-
lation of a city, the greater the probability that one has heard of it.

In a particularly thought-provoking study, Borges, D. G. Goldstein,
Ortmann, and Gigerenzer (1999) showed that investments in stocks selected
solely on the basis of recognition of company names outperformed stock port-
folios selected on the basis of conventional criteria, in some cases by experts.
The investigators conclusion that "In general it seems that the greater the de-
gree of ignorance, the better it is for picking stocks" undoubtedly needs some
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qualification; else we would all be millionaires, but their account of how lack
of knowledge can be beneficial in specific situations is instructive.

Gigerenzer and D. G. Goldstein (1999) consider several heuristics for de-
ciding when to stop searching for cues on which a selection might be made in a
choice situation and then making the selection. Suppose several cues are avail-
able regarding the property of interest; cues to the size of a European city, for
example, might include whether it has a soccer team, whether it is a national
capital, whether it is home to a university,... If the cues can be ordered in terms
of their correlation with the property of interest, one often may do quite well by
relying solely on the single best cue among those one knows about. It works
best if, when the cues are ordered in terms of their importance, each cue is more
important than any combination of the less important cues (Martignon &
Hoffrage, 1999). Gigerenzer and Goldstein call this heuristic Take the Best,
and they present data showing that it can be about as effective as standard sta-
tistical analyses, including multiple regression (which require much greater
computational capability) in specific instances.

Other studies of the effectiveness of fast and frugal heuristics and single-rea-
son decision making—and especially of the Take the Best heuristic— are re-
ported by Czerlinski, Gigerenzer, and D. G. Goldstein (1999), Martignon and
Hoffrage (1999), Martignon and Laskey (1999), and other contributors to
Gigerenzer and Todd (1999b). Heuristics are described for estimating quantities
(Hertwig, Hoffrage, & Martignon, 1999), categorizing objects (Berretty, Todd,
& Martignon, 1999) or actions (Blythe, Todd, & Miller, 1999), searching for a
mate (Todd & G. F. Miller, 1999), and investing by parents in their offspring (J.
N. Davis & Todd, 1999). The general idea promoted by these investigators is that
people generally reason by availing themselves selectively of the contents of a
toolbox of ecologically rational simple heuristics that are effective despite mak-
ing limited demands on memory and computational resources. The heuristics in
the toolbox have been adapted over time and they are retained because they
work—in some cases as well as, or even better than, formal procedures that re-
quire significant computational resources. Different tools are suited to different
situations and it is important that there be a match between a tool that is selected
and the structure of the situation in which it is to be applied. A major challenge
for this line of research is that of identifying the conditions under which specific
tools should be used (Luce, 2000) and of safeguarding against applications that
can have the opposite of the desired effect (Margolis, 2000).

SOME POTENTIAL PITFALLS

Several variables that can influence the effectiveness with which people make
judgments about probabilistic events have been identified by researchers. Be-
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cause the effects of these variables usually, though not always, are detrimental,
at least as observed in psychological laboratories, I am discussing them under
the loose rubric of potential pitfalls. "Potential" is a considered qualifier in this
heading, however, because in at least some of these cases, what can lead to the
pit in one context can be an effective strategy in another.

Framing Effects

According to Kahneman and Tversky (1984), "all analyses of rational choice
incorporate two principles: dominance and invariance. Dominance demands
that if Prospect A is at least as good as Prospect B in every respect and better
than B in at least one respect, then A should be preferred to B. Invariance re-
quires that the preference order between prospects should not depend on the
manner in which they are described" (p. 343). Kahneman and Tversky review
several evidences that the requirement of invariance is often violated by human
choice behavior. In particular, the, preferences that people have in choice situa-
tions may be determined by the way in which the options are presented or
"framed," even when the framing has no effect on the choice outcomes. The
following alternative framings of a problem, from Kahneman and Tversky
(1984), illustrate the point:

Problem: Imagine that the U.S. is preparing for the outbreak of an unusual Asian
disease, which is expected to kill 600 people. Two alternative programs to com-
bat the disease have been proposed. Assume that the exact scientific estimates of
the consequences of the programs are as follows:

Frame 1: If Program A is adopted, 200 people will be saved. If Program B is
adopted, there is a one-third probability that 600 people will be saved and a
two-thirds probability that no people will be saved. Which of the two programs
would you favor?

Frame 2: If Program C is adopted, 400 people will die. If Program D is adopted,
there is a one-third probability that nobody will die and a two-thirds probability
that 600 people will die.

Kahneman and Tversky (1984) found that 72% of 152 people who were
given the first version of this problem selected Program A, whereas 78% of 155
people who were given the second version selected Program D. The same type
of result was obtained with sophisticated participants as with naive ones, and
even when the same people responded to both representations within a period
of a few minutes. Kahneman and Tversky's explanation invokes the notion that
people tend to be risk aversive when thinking in terms of gains and risk seeking
when thinking in terms of losses. The first representation of the epidemic prob-
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lem formulates the outcomes of the alternative programs in terms of two possi-
ble gains relative to a reference point in which 600 people are expected to die.
The second representation provides options expressed as losses relative to a
reference point in which no one dies.

This is a compelling demonstration that preferences among decision out-
comes are determined not only by what the outcomes are, but by the way in
which they are represented. The result has been replicated in other studies not
only when the differently framed choices were given to different groups of
people, but also when the same people were given both types of frames
(Dawes, 1988). However, before accepting without reservation the conclusion
that people's preference for a given outcome changes as a function of how that
outcome is described, we would like to feel sure that they believe that an out-
come described in different ways is indeed the same outcome. In the aforemen-
tioned case, we would want to be convinced that people believed the outcomes
of A and C (and of B and D) would be the same. Without this assurance, we
cannot rule out the possibility that the their choices were determined by what
they thought the outcomes would be, as opposed to being influenced by how
identical outcomes were expressed.

The intent of the experimenters was to frame precisely the same prob-
lem—present precisely the same information—in different ways. The assump-
tion is that the assertion "200 people (out of 600) will be saved" is equivalent to
the assertion that "400 people (out of 600) will die." As Macdonald (1986)
points out, however, such assertions, as they are used in everyday language,
may not be seen as conveying exactly the same information. In many contexts,
a guarantee to save 200 people could be taken as a guarantee to save at least
200. If more than 200 were saved, the guarantor would have been seen as keep-
ing his promise, whereas, if less than 200 were saved he would not. Similarly
the assertion that 400 people will die could be taken as a threat to 400 lives at
least. If the language used in the problem is interpreted this way, then A and C
are not equivalent and do not describe equally desirable choices: "Subjects
may see themselves as comparing an uncertain result with either a clearly posi-
tive one (A) or a clearly negative one (C)" (p. 24). If linguistic ambiguities of
this sort play some role in determining people's choices, we still might want to
describe the effects as framing effects, but we would have to acknowledge the
possibility that framing effects result, at least in part, from the fact that differ-
ent frames may lend themselves to linguistic interpretations that are not equiv-
alent in meaning. Others have also argued this possibility (Berkeley &
Humphreys, 1982; Kiihberger, 1995).

Even if the role of linguistic ambiguities were not an issue in interpreting the
framing effect described, it is not clear that the people's behavior in this situa-
tion should be considered irrational. J. R. Anderson (1990) points out that, al-
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though Kahneman and Tversky's (1984) theory of problem framing accounts
for the choices their subjects made, there is little reason to consider those
choices irrational; inconsistent behavior should not be considered evidence of
irrationality in a situation in which there is no good reason to be consistent, and
no rational model would prescribe a consistent preference between choices
with equivalent outcomes. Anderson notes also that in some other choice situa-
tions in which framing effects have been found, the stakes riding on the choice
have been small. Inconsistent behavior in such instances, he argues, may con-
stitute evidence against rationality in the normative sense, but make a weak
case against it in the adaptive sense.

Different ways of presenting essentially the same information can have
different effects on those to whom the information is given. The relative at-
tractiveness of different medical procedures, for example, differs for both
physicians and patients depending on whether the probable outcomes are
described in terms of mortality or survival (McNeil, Pauker, Sox, &
Tver sky, 1982) and on precisely how the degree of uncertainty regarding
the outcome is expressed (Teigen & Brun, 1999). In betting situations,
choices vary depending on whether a particular gamble is expressed in
terms of probability of winning or probability of losing (I. P. Levin, D. P.
Chapman, & R. D. Johnson, 1988; I. P. Levin et al., 1986; I. P. Levin, R. D.
Johnson, Russo, & Deldin, 1985). Lobbyists for the credit card industry
have shown a sensitivity to framing effects in arguing that price differences
between cash and credit purchases be expressed as cash discounts rather
than credit card surcharges (Thaler, 1980).

How such results should be interpreted depends in part on the confidence
one can have that the two forms of a given message have been equally under-
stood by those to whom they were given. The point is illustrated by an experi-
ment in which people were either (a) informed that over a period of 50 years of
driving (about 40,000 trips) the probability of being killed is about 1 in 100 and
that of experiencing at least one disabling injury is about 1 in 3 or (b) given the
equivalent information by being told that there is one fatal accident for every
3.5 million person trips and a disabling injury for every 100,000 person trips.
Those in the former group responded more favorably to the use of seat belts
than did those in the latter (Slovic et al., 1978). Perhaps most people would find
the first message somewhat easier to relate to their personal chances of having
a serious accident, simply because it is phrased explicitly in those terms. Simi-
lar questions of comprehension can be raised about many of the studies in
which presumably the same information was conveyed in two different ways.

Toda (1963) has argued that subjective probability is, in effect, defined by
the technique that is used to measure it. This argument gets some support in the
finding that the way people are asked to give probability estimates affects the
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estimates they produce (Damas, Goodman, & C. R. Peterson, 1972; Herman,
Ornstein, & Bahrick, 1964; Pitz, 1974; Seaver et al, 1978).

A powerful effect of question wording was obtained by Fischhoff and
MacGregor (1983) (reported also in Fischhoff, Slovic, & Lichtenstein, 1982,
and in National Research Council, 1989, Appendix C ). When asked to esti-
mate the lethality rate from influenza people estimated about 393 deaths per
100,000 influenza cases. When told that about 80 million people have influ-
enza in a normal year and asked to estimate the number of those cases that
would end in death, their average estimate was 4,800, which is equivalent to
only about 6 deaths per 100,000. Here, too, one might assume that in telling
people how many cases of influenza there are in an average year, one is provid-
ing information that they might consider relevant to the rate estimate; applying
the rate of 393 per 100,000 to a total case number of 80 million would produce
an estimate of more than 300,000 deaths, which might seem implausibly high.

There is abundant evidence that public opinions, as reflected by the results
of polls, can vary considerably depending on the way in which questions are
framed (Moore, 1992; Payne, 1952; Wheeler, 1976). Even the degree of satis-
faction with one's life that one expresses can depend on the range of options
provided (Parducci, 1974). Especially problematic is the use of words that can
have a variety of connotations. It is hard to know, for example, what to make of
the results without knowing how people interpret such terms as possible and
doubt. Some people may apply possible only to events that they consider to be
somewhat likely, whereas others may apply it to those they consider even re-
motely conceivable; similarly, doubt can connote anything from fairly strong
disbelief—"Tom believes that Elvis is ah've and well, but I really doubt it"—to
recognition of the remote possibility of being wrong—"I am convinced this is
the right thing to do, although I confess to a lingering doubt."

The Endowment Effect

It is fairly easy to get people to make what appear to be inconsistent choices un-
der uncertainty. An example from Thaler (1980; 1983/1986) will make the
point. Thaler (1983/1986) describes the following three situations:

Risk Situation 1: While attending the movies last week you inadvertently exposed
yourself to a rare, fatal disease. If you contract the disease, you will die a quick and
painless death in one week. The chance that you will contract the disease is exactly
.001—that is, one chance in 1000. Once you get the disease there is no cure, but
you can take an inoculation now which will prevent you from getting the disease.
Unfortunately, there is only a limited supply of inoculation, and it will be sold to
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the highest bidders. What is the most you would be willing to pay for this inocula-
tion? (If you wish, you may borrow the money to pay at a low rate of interest.)

Risk Situation 2: This is basically the same as situation 1 with the following
modifications. The chance you will get the disease is now .004—that is, four in
1000. The inoculation is only 25 percent effective—that is, it would reduce the
risk to .003. What is the most you would be willing to pay for this inoculation?
(Again, you may borrow the money to pay.)

Risk Situation 3: Some professors at a medical school are doing research on
the disease described above. They are recruiting volunteers who would be re-
quired to expose themselves to a .001 (one chance in 1000) risk of getting the
disease. No inoculations would be available, so this would entail a .001 chance
of death. The 20 volunteers from this audience who demand the least money
will be taken. What is the least amount of money you would require to partici-
pate in this experiment? (p. 163).

Thaler reports that people to whom he has presented these situations typi-
cally give median responses of about $800 in Situation 1, $250 in Situation 2,
and $ 100,000 in Situation 3. There is a sense in which what one is buying in the
first two cases is the same, namely a reduction of .001 in the likelihood of con-
tracting a disease, which is equivalent to what one is selling in the third situa-
tion. People's responses here certainly appear to be inconsistent. In particular,
comparing the responses to Situation 3 with those to Situations 1 and 2, we see
a very large difference. In Thaler's (1983/1986) words, "this implies that atyp-
ical individual would refuse to pay $5,000 to eliminate a risk, and would refuse
to take $5,000 to accept the same risk. How can $5,000 be both better and
worse than bearing some risk?" (p. 164).

It appears from these results that people are not willing to pay as much to de-
crease an existing risk as they require to be compensated for accepting a new risk
of comparable magnitude. Thaler refers to this phenomenon as the "endowment
effect," the idea being that people demand more money to give something up
than they are willing to pay to acquire it. The effect has been observed in other
contexts than that just described (Kahneman, Knetsch, & Thaler, 1990).

To illustrate the endowment effect in a situation that does not involve risk,
Thaler poses the following decision situation: "Suppose you won a ticket to a
sold-out concert that you would love to attend, and the ticket is priced at $15.
Before the concert, you are offered $50 for the ticket. Do you sell? Alterna-
tively, suppose you won $50 in a lottery. Then a few weeks later you are offered
a chance to buy a ticket to the same concert for $45. Do you buy?" According to
Thaler many people say they would neither sell for $50 in the first case nor buy
for $45 in the second. A practical implication that is suggested by the endow-
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ment effect is that people may be willing to work harder to hold on to some-
thing they have than to acquire it in the first place. Or to put it in other words,
having acquired something, people may be very reluctant to give it up, even if
they did not greatly desire it originally.

We have already noted that people often express a preference for a gam-
ble with a relatively small potential payoff and a relatively large probability
of winning over one with the same expected payoff but composed of a larger
potential payoff and smaller probability of winning. That is they opt for the
larger probability of winning. If given the chance to sell either gamble,
however, the same people are likely to demand a higher price for the second
one than for the first (Grether & Plott, 1979). One account of this apparent
inconsistency is that when the focus is on winning versus losing, people an-
chor on the probability of success, whereas when the focus is on selling,
they anchor on monetary amounts, and use of the anchor-and-adjustment
heuristic in the two cases yields different results because it starts from dif-
ferent points (Dawes, 1988).

An endowment effect of sorts is easy to understand in intuitive terms in
some contexts. I have a small collection of antique wood-working tools. There
are a few tools in that collection that I would be unwilling to sell even if offered
considerably more than I believe to be their fair market value, but I did not pay
more than what I considered their fair market value to be when I acquired them,
and if I did not already have them, I would be unlikely to do so now. The value
of these tools to me is determined, in part, by the fact that while in my posses-
sion they have become to me more than objects. They represent memories of
successful treasure hunts with my wife and of many pleasant hours spent learn-
ing about their functions, working with them, and admiring the craftsmanship
that produced them. Some have special significance because of unusual places
or circumstances in which they were found.

I suspect that most of us, if asked, would be able to identify things we
possess that have value to us by virtue of the fact that we possess them. We
would be unlikely to be willing to sell them for some specified amount of
money that is greater than what we would be willing to pay for them if we
did not possess them already. In fairness to those investigators who have
seen the endowment effect as evidence of an irrational inconsistency in
choice behavior, I think that instances of personal possessions that have
come to have special significance to their owners are not the types of enti-
ties for purchase and sale they have had in mind. My point is that one can
easily think of circumstances under which it seems reasonable and not sur-
prising that the desire to hold on to something one has is greater than the de-
sire to acquire it in the first place; I am not prepared to argue that this
asymmetry is reasonable in all cases.
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Admissible Scoring Rules

Considerable attention has been given by researchers to the fact that some of
the techniques that have been used to get probability estimates from people
have the property that it is not in one's best interest to report one's real subjec-
tive probabilities. The problem is illustrated by the following situation. Imag-
ine a test composed of two-alternative forced-choice questions. Suppose that,
instead of selecting one of the alternatives in each case, the task is to state, for
each alternative, one's subjective probability that it is correct. (Assume that
one and only one of the alternatives is correct in each case, so one's subjective
probabilities for each pair of alternatives must sum to 1.0.) Suppose that when
the test is scored, the score received for each item is the amount placed on the
correct alternative, or some linear function thereof. Thus, for example, if a
probability of .8 had been assigned to the correct alternative on Item 1 and one
of .4 to the correct alternative on Item 2, .8 and .4 would be credited respec-
tively for these items, or, in any case, twice as much for the first item as for the
second. It is easy to show that, given this scoring rule, one should not assign
numbers to the alternatives in such a way as to reflect one's true beliefs about
their probabilities of being correct; rather one should assign 1.0 to any alterna-
tive whose probability one considers to be greater than .5, and 0 to any whose
probability one considers to be less than .5. (For those one considers to be ex-
actly . 5, one could assign .5 or either 1.0 or 0 on the basis of a toss of a coin.)

To see why the "all-or-none" strategy is better than that of weighting the al-
ternatives according to one's real subjective probabilities, consider all those
cases in which one believes the probability of a given alternative is .7. If .7 is as-
signed to those alternatives, then one expects to have assigned this value to the
correct alternative 70% of the time and to the wrong alternative the remaining
30%. Thus, one's expected average score for this subset of items is (.7)(.7) +
(.3)(.3), or .58. On the other hand, if 1.0 is assigned to all those items that one
believes to be correct with probability .7 and 0 to those one believes to be cor-
rect with probability .3, one's expected average score for these items is
(,7)( 1.0) + (.3)(0) or .70. One does better in the latter case. (The situation corre-
sponds to the one discussed relative to probability matching in chap. 8.)

Several scoring rules have been invented that have the property, sometimes
called the "matching property," that one maximizes one's expected score when
one reports one's true subjective probabilities. These rules, which have been
referred to as "admissible probability measures" and as "proper scoring rules,"
have been the subject of both theoretical and empirical investigation (de
Finetti, 1962; Good, 1952; Roby, 1965; Shuford, Albert, & Massengill, 1966;
Toda, 1963). I will describe briefly one such rule—the spherical-gain rule—to
illustrate the concept.
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According to the spherical-gain rule, described by Roby (1965), one's score
on any question (in a multiple-choice test item for which one and only one an-
swer is correct) is the number assigned to the correct alternative divided by the
square root of the sum of squares of the numbers assigned to all the alterna-
tives; that is,

where Sj represents the score received for the jth question on the test, jc;. k the num-
ber that the student assigns to the kth alternative for the jth question, and xjc the
number assigned to the correct alternative for that question. (The rule gets its
name from the fact that the assignments of numbers to n alternatives can be rep-
resented as vectors in an n-dimensional space and interesting interpretations can
be given to various properties of the vectors, such as length and orientation.)

Imagine, for illustrative purposes, the situation represented in Table 10.1. It
should be obvious that 0 < 5; < 1. The score will be 0 if 0 has been assigned to the
correct alternative (as in A above); it will be 1 if 0 is assigned to every alterna-
tive except the correct one (as in B). A "pure guess" in which the same nonzero
number is assigned to all alternatives (as in C) will result in a small, but not 0,
score. (This feature reflects the idea that knowing that one does not know is

TABLE 10.1

Question: Which of the Following U.S. Presidents Served Two Nonconsecutive Terms?

I.James Madison

2. Grover Cleveland

3. William Harding
4. John Adams

5. James Buchanan

(The correct answer is #2.)

Hypothetical answers:

A.

Scores

1 0 B.
2 0
3 0
4 5
5 0

0.00

I O C .
2 10
3 0
4 0
5 0

1.00

1 1 D.
2 1

3 1
4 1
5 1

0.45

1 0
2 7
3 0
4 6
5 2

0.74
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preferable to believing that one knows when one really does not.) Answer D
represents a case in which one can rule out two alternatives and is able to ex-
press differential confidence about the remaining three. The score in this case
rewards the test taker for the partial knowledge displayed.

In general, the larger the number placed on the correct alternative relative to
the numbers assigned to the other alternatives, the larger the resulting score.
More important, one maximizes one's expected score if (and only if) one as-
signs numbers to the alternatives in accordance with one's true beliefs regard-
ing their relative chances of being correct. Consider again the two-alternative
case mentioned earlier in which one believes that the probability that a particu-
lar alternative is correct is .7. As noted previously, given a linear scoring rule,
one's best strategy is to put all one's bet on the most likely alternative, in this
case the one with subjective probability .7. If one bet in accordance with one's
beliefs one's expectation would be .58, whereas if one put all one's bet on the
most likely alternative, it would be .70.

To simplify the illustration of what happens with the spherical-gain rule, let
us assume that the total points one uses equals 10 (any other number would do
as well). With the spherical-gain rule, one's best strategy is to bet strictly in ac-
cordance with one's true beliefs. If one put all one's bet on the alternative one
considered to be most likely correct, the one with probability .7 in our example,
the expected gain would be

whereas if one bet in accordance with one's true beliefs, placing .7 of one's bet
on the .7 alternative and .3 of it on the other one, one's expectation would be

The superiority of scoring rules that have the matching property over those
that do not have it is indisputable from a mathematical point of view; however,
the relevance of this distinction to much of human probabilistic reasoning is
debatable. The evidence that people behave very differently when scoring
rules are admissible than when they are not is thin, and in many, if not most, of
the real-life situations in which probabilistic reasoning is required, outcomes,
which are controlled by nature, do not demonstrably have the matching prop-
erty in any case. The use of such scoring rules for test administration is an inter-
esting possibility, however, especially when tests could be administered under
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computer control so that test takers could get immediate feedback that might
help them develop a good understanding of the advantages of honestly reflect-
ing their true belief states in their answers. Admissible scoring rules have other
characteristics that could be exploited to advantage in providing much
finer-grained feedback to teachers regarding the knowledge states of students
and classes in the aggregate than do the results of conventionally administered
multiple-choice tests.

The Illusion of Control

One way to run a lottery is to permit players to purchase tickets with preas-
signed numbers. Another is to permit the ticket buyers to specify the numbers
they wish to play. There is some evidence that players find the second approach
more to their liking than the first. In one study, in which a lottery was conducted
by drawing names of professional football players from a bag, participants
who selected the name of a player valued their tickets about four times as much
as did participants who were assigned a name at random (Langer, 1975).
Langer's explanation of this difference was that the ability to choose gives one
an illusion of control.

Apparently people believe—or at least act as though they believe—that
their chances of winning are greater when they select an item that is to be part
of a random draw than when they are assigned one. We know that many people
who play lotteries do not choose random numbers, but resort to a variety of
methods for selecting what they hope to be lucky ones. Given Langer's (1975)
findings, we would have to judge as highly rational the behavior of lottery op-
erators who have opted to permit ticket buyers to select their own numbers, be-
cause such lotteries should entice more players than those in which the player
has to take whatever happens to be on the next available ticket.

Paulos (1998) describes an interesting way in which feedback from lotteries
can provide information that can be interpreted, erroneously, as evidence that
players stand a better chance of winning if they pick their own numbers than if
they accept numbers picked by machine. Consider a lottery that has only two
players, and the winner is selected by a random drawing of a number between 1
and 10. Suppose that player A always plays her favorite number, say 7, whereas
B plays a different number each time. Over many games, A and B will win with
about equal frequency, but the number 7 will be the winning number more often
than any other number; 7 is the winning number on all of the 50% of the games
that A wins, whereas on the other 50% of the games, which B wins, the winning
numbers are distributed over the entire range, so no one number is winner for B
on more than a small percentage of the games. If, in a large lottery, many of the
people who pick their own numbers stay with the same number week after week,
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whereas machine-picked numbers vary randomly over all the possibilities, it can
happen that hand-picked numbers have a higher probability of winning than do
machine-picked numbers, whereas individual players who hand pick their num-
bers do not have a higher probability of winning than do those who buy numbers
picked by machine. Paulos points out that, in an analogous way, it can happen
that "any situation having many outcomes, one of which is conventionally fa-
vored by the society at large, will seem to generate the conventionally favored
outcome more frequently than chance would suggest" (p. 184).

Some people, including, perhaps especially, those who gamble, make a dis-
tinction between chance and luck (Keren & Wagenaar, 1985; Wagenaar &
Keren, 1988; Wagenaar, Keren, & Pleit-Kuiper, 1984). Luckis seen as acausal
agent that sometimes overrules the effects of chance. Good luck, for example,
might be credited with an unexpected run of wins in a game of chance, such as
roulette. A run of losses is attributed to bad luck. Belief in luck in this context
can be reinforced by the tendency to underestimate the probability of relatively
low-probability chance events, such as several successive tosses of heads on a
coin. Inasmuch as the probability of alternations is typically overestimated
whereas that of repetitions is underestimated (Budescu, 1985; Falk, 1981; Falk
& Konold, 1997; Kubovy & Gilden, 1990; Lopes & Oden, 1987; Am.
Rapoport & Budescu, 1992), a run demands an explanation as a non-chance
event, and the idea of luck satisfies that demand. Belief in luck can give one a
false sense of control over the situation: It supports the assumption that contin-
uing to play when luck is with one, and quitting when it is not, improves one's
chance of winning.

Falk (1991) points out that beliefs in the "hot-hand" phenomenon and in
luck are analogous in interesting ways:

You only have to exchange these two terms with each other and you get the same
story. People believe that one cannot force luck to happen. One should wait till
luck appears and know how to utilize it wisely. By the same token, a hot hand
cannot be summoned at will, but once a player is "hot" it is important for players
on the team to pass the ball to that player (and for the opposition to watch him
closely). In both contexts, people are confronted with random sequences of wins
and losses and their attention is drawn to the subjectively overlong runs. Far
from adjusting their concept of what could happen by chance, they now invoke
an interpretation in the form of "luck" or "hot hand." The gambler's fallacy in
perception of randomness thus appears in different disguises and surely it does
so in many other contexts, (p. 217)

The illusion of control has been hypothesized to be responsible to some de-
gree for the fact that people often tend to be overconfident of their predictions
about future events over which they believe themselves to have some degree of
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control (Griffin et al., 1990; S. J. Hoch, 1985); attorneys, for example, are
likely to predict trial outcomes that are better than those they actually get (E. F.
Loftus & Wagenaar, 1988; Wagenaar & Keren, 1986), and people generally ap-
pear to be more optimistic about events that are perceived to be under their con-
trol than about those that are not (Budescu & Bruderman, 1995; DeJoy, 1989;
P. Harris, 1996; Hoorens & Buunk, 1993; Zakay, 1984). The idea is that the de-
gree of control that people have over the anticipated events or performance typ-
ically is less than they think they have and their confidence in their predictions
is based on what they think they have (Alloy & Abramson, 1979; Bradley,
1981; Dickinson, Shanks, & Evenden, 1984).

Closely related to the idea of illusion of control is the question of the will-
ingness or reluctance to take responsibility for uncertain events. Can anyone
doubt that most of us are more willing to take credit for decisions that turned
out well than for those that turned out poorly, independently of the quality of
the decisions as judged strictly in terms of the information available at the time
they were made? Good decisions can, of course, turn out poorly and poor deci-
sions can turn out well. Nevertheless, decision makers are usually rewarded
positively or negatively on the basis of the outcomes of the decisions they have
made. People who make poor decisions that, because of unanticipatable
events, turn out to have desirable consequences are likely to be seen as astute
decision makers and to reap rewards that are commensurate with the desirabil-
ity of the outcomes. Similarly, people who make excellent decisions that, again
because of unforeseeable circumstances, turn out to have undesirable effects,
are likely to feel fortunate if the worst personal consequence is lack of recogni-
tion for the high quality decisions they made.

The Force of Personal Experience

People are much influenced in their probabilistic thinking by vivid personal
accounts of individual concrete cases, often more than by dry summaries of ab-
stract incidence statistics, even though the latter may be a more reliable basis
for prediction than the former. One possible reason for the force of personal ex-
periences is that we remember them better than things we have learned about
secondhand. If we remember them better, they are likely to be more available
than other information for reasoning tasks for which they are relevant. It is also
possible that we have more confidence in personal experiences than in infor-
mation we acquire in other ways; we know the experiences occurred whereas
believing what we read or hear requires an element of faith. The tendency to
generalize from very small samples can be seen as illustrating the force of per-
sonal experience, because the small samples from which such generalizations
are made often are samples that one has experienced directly, and consequently
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they are easier to call to mind than the larger samples that one might have expe-
rienced but did not.

SUMMARY

Choosing—selecting among alternatives—is a ubiquitous human activity.
Choices frequently must be made with uncertain knowledge of what their conse-
quences will be. The idea of making choices under uncertainty in such a way as
to maximize expected utility has been central to normative theories of decision
making for a long time—the distinction between utility and monetary value hav-
ing been recognized at least since the 18th century. However, much research has
shown that people often make choices in ways that appear not to be dictated by
the intention to maximize expected utility. Recognition of this fact has motivated
efforts to construct theories or models of choice behavior that are descriptive of
the choices people actually make under conditions of uncertainty.

Well-known theoretical treatments of choice behavior that are intended to
be descriptive of how people actually behave include Simon's (1955, 1957)
theory of bounded rationality, Kahneman and Tversky's (1979b) prospect the-
ory, and Gigerenzer's (1991b, 1993) theory of probabilistic mental models.
Much recent research, pioneered by Kahneman and Tversky (1973; Tversky &
Kahneman, 1974), has focused on the identification and assessment of a vari-
ety of heuristic strategies that people use in making choices under uncertainty.
Evidence indicates that although the use of strategies that simplify choices of-
ten yields undesired outcomes, it also can sometimes be very effective in pro-
viding satisfactory solutions to complex problems with limited cognitive effort
(Gigerenzer & D. G. Goldstein, 1996; Gigerenzer & Todd, 1999a).

Research has focused also on the identification of specific variables that can
affect choice behavior for better or worse, and especially the latter. The discov-
ery of the importance of framing effects—that preferences among decision
outcomes are determined not only by what the outcomes are, but by the way in
which they are represented—is illustrative of this work. Numerous other fac-
tors that can influence choice under uncertainty have been identified and ex-
perimentation continues on what has proved to be an exceptionally interesting
and fruitful line of inquiry.
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11

People as Intuitive

Probabilists

We develop subjective concepts of probability which permeate and guide our
thoughts and actions.

—Cohen (1957, p. 128)

Applying probabilities and statistics is much more a matter of grasping the situ-
ation, constructing informal arguments, and building comprehensive narratives
than of substituting numbers into formulas.

—Paulos (1998, p. 82)

In general, we cannot expect good quantitative statistical intuitions, nor even
good qualitative intuitions, for probability questions of a son that do not arise in
ordinary experience. But we would expect good intuitions to the extent that prag-
matic conditions in the world would provide the required tuning to experience.

—Margolis (1987, p. 164)

PEOPLE AS BAYESIAN REASONERS

.uch of the research that falls under the general rubric of intuitive statis-
tics has had to do with the ways in which people process probabilistic data.
How are beliefs about the world formed or modified as a consequence of the re-
398
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ceipt of data that are relevant to those beliefs but insufficient to demonstrate
their truth or falsity conclusively? More specifically, research has focused on
how data of a probabilistic nature are used to modify beliefs in situations for
which Bayes's rule would be an applicable belief-revision tool.

It is of more than passing interest that two of the more extensive lines of inves-
tigation appear to have led to opposite conclusions regarding a fundamental
characteristic of human beings as processors of probabilistic information. On the
one hand is a body of research that suggests that people are overly conservative
in their use of probabilistic information and tend not to revise existing beliefs as
much as they should in the light of newly acquired data. On the other hand are
numerous experiments that support the idea that people are relatively insensitive
to "base-rate" information when making probability judgments and tend to base
those judgments almost entirely on newly acquired "case-specific" data. In what
follows, I shall first describe representative findings from both of these lines of
research and then consider the question of how to reconcile them.

Conservatism in Probabilistic Judgments

One of the earliest and best documented findings regarding how well people
do, relative to what Bayes's rule says they should do, in extracting information
from data is that when people estimate posterior probabilities p(H ID)—when
they attempt to revise estimates of the probability that some particular hypoth-
esis is true upon receiving data that relate to that hypothesis—they tend to re-
vise their previous estimates in the appropriate direction but not by sufficiently
large amounts (Donmell & DuCharme, 1975; Edwards, 1968; Edwards,
Lindman, & Phillips, 1965; Messick & Campos, 1972; Navon, 1978; C. R. Pe-
terson & Beach, 1967; C. R. Peterson & DuCharme, 1967; C. R. Peterson & A.
J. Miller, 1965; C. R. Peterson, Schneider, & A. J. Miller, 1965; Phillips & Ed-
wards, 1966; Phillips, Hays, & Edwards, 1966; Am. Rapoport & Wallsten,
1972; Slovic & Lichtenstein, 1971). This result has been described as evidence
of people's conservatism as Bayesian information processors.

People tend, according to this view, to extract less information from data
than is there to be extracted. Another way to say this is that people require more
evidence than does an ideal Bayesian process to arrive at a given level of cer-
tainty regarding which of several competing hypotheses is true. If one begins
by assuming that each of several possibilities is equally probable, the effect of
this type of conservatism is to keep the estimator at all times closer to the condi-
tion of maximum uncertainty (equally likely alternatives) than is appropriate,
which means that at any given time the estimate of a posterior probability will
be too low for high probabilities and too high for low ones, relative to what
Bayes's rule would produce.
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Conservatism in the estimation of posterior probabilities has been described
as the primary finding of Bayesian research (Slovic et al., 1977). It was this
finding that prompted Edwards (1965) and others to propose that probabilistic
information-processing systems should use human experts to provide esti-
mates of data conditional upon hypotheses, p(D I //), for each of the hypotheses
under consideration and to have machines generate posterior probabilities,
p(H ID) in accordance with Bayes's rule, using the conditional probabilities
provided by the experts as inputs.

Why should conditional probabilities be easier to estimate accurately than
posterior probabilities? One possibility is that it is easier to think in terms of
contingencies in the direction of D given H (or H, therefore D) than in that ofH
given D, because we find it more natural to reason from cause to effect. It may
be more natural in medicine, for example, to think in terms of the probability
that one has a particular symptom if one has a particular disease, because the
symptom is perceived as a consequence of the disease and not the reverse.

In addition, formal training programs may reinforce any tendency to think
intheD-given-//, orif-//-then-A direction. Consider medicine again. Medical
students are taught what to expect by way of symptoms, given a specified dis-
ease. Less often are they encouraged to think in terms of the various diseases
for which a particular symptom could be a sign. One suspects this may be true
of teaching also in other areas, say electronic or automotive troubleshooting, or
criminal investigation.

Though most of the studies of posterior probability estimation have yielded
evidence of conservatism and have been consistent with the idea that human
estimators are better at estimating p(D I H} \hanp(H I D), there have been some
exceptions. Occasionally when the hypothesis set has been small and the envi-
ronment frequentistic, people have produced posterior probability estimates
that were more extreme than those produced by the application of Bayes's rule
(Southard, Schumn, & Briggs, 1964). Messick and Campos (1972) found that
conservatism can be diminished by encouraging people to think of probability
as reflecting the ratio of favorable-to-total possible outcomes rather than
strength of belief. Other studies that cast doubt on the generality of the finding
of conservatism in the estimation of posterior probabilities include Howell
(1966), R. J. Kaplan and Newman (1966), and Schum, I. L. Goldstein, and
Southard (1966).

Conservatism, as represented by the results of the studies that have found it,
could be the consequence of an overweighting of the importance of prior prob-
abilities or, what amounts to the same thing, from an insensitivity to the
diagnosticity of incoming sample data; although it appears not to be the case
that people are totally insensitive to diagnosticity (Devine, Hirt, & Gehrke,
1990; Skov & Sherman, 1986; Snapper & C. R. Peterson, 1971; Trope &
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Bassock, 1982,1983). It could be due to inappropriate application of Bayes's
rule. And it could stem in part from a (not necessarily unreasonable) unwilling-
ness of people always to assume that the data selections are determined com-
pletely by chance (L. J. Cohen, 1982).

Another possibility is that people discount evidence to compensate for the fact
that it often is unreliable in real-world situations. One might argue that people
should not discount evidence in laboratory situations in which the data are unam-
biguous and completely trustworthy, but it is conceivable that they do so as a gen-
eral rule and that that habit serves them well in most of the cases they encounter in
the everyday world. The effect of the various normative approaches that have been
developed to deal with data that are known, or assumed, to be unreliable is to dis-
count evidence, thus moving probability updates in the direction of conservatism.
When people have been asked to make updates on the basis of data of different
specified degrees of reliability, they have tended to be overly conservative with
highly reliable data, and to become less conservative as reliability is decreased,
sometimes approaching optimality for intermediate degrees of reliability, and be-
coming insufficiently conservative for especially low ones (E. M. Johnson, 1974;
E. M. Johnson, Cavanagh, Spooner, & Samet, 1973; Schum et al., 1971).

Which of the various possibilities, or combination thereof, accounts for the
phenomenon is not clear, despite the considerable attention that has been given
to this question (Fischhoff & Beyth-Marom, 1983). Almost from the beginning
of work on Bayesian decision making, there have been proponents of the view
that conservativism results from miscalculation of conditional probabilities as
well as for the alternative view that people can calculate, or estimate, the condi-
tional probabilities well enough, but they misapply the theorem as a whole. To
the extent that one attributes the finding of conservatism to computational dif-
ficulties, as distinct from the overweighting of prior probabilities or the
underweighting of updating information, one may question whether conserva-
tism is quite the right concept to apply.

Base Rates

A prior probability distribution, in the Bayesian approach to statistical reason-
ing, is a representation of what the situation was believed to be before a specific
piece of information became available; it means prior with respect to that piece
of information. Similarly, posterior means after that particular information be-
came available. The difference between the prior and posterior distributions
reflects the impact the piece of information in question had on the Bayesian as-
sessment of the situation.

It should be clear from the computation involved in producing a posterior
distribution that the probabilities that summarize what one knows about a situ-
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ation before receiving a new item of information remain relevant after the fur-
ther specific information is received. Bayes's rule is a prescription for
combining the new information with the old so as to update one's probabilistic
assessment of the situation; this prescription does not disregard the old infor-
mation but rather uses it as the point of departure for establishing a revised
view. The same bit of new data will yield different posterior distributions given
different prior distributions.

Prior probabilities and base rates are not conceptually identical—probabil-
ity, as we have seen, can have more than one connotation, but base rate is
clearly a frequentistic concept, which refers to the frequency, or relative fre-
quency, of some event as an actuarial fact. Many theorists hold that prior proba-
bilities should reflect base rates when the latter are known. Thus, if it is known
that 80% of the taxicabs in some town are green, the prior probability that a ran-
domly encountered cab will be green should be considered .8, according to this
view. Of course, base rates often are not known by individuals who find them-
selves in situations where knowledge of them would be useful, and when that is
the case, they can hardly be faulted for not using them. Laboratory studies of
base-rate neglect typically have provided the relevant base rates, either directly
or indirectly; base-rate knowledge regarding real-world events has been seen
as an important aspect of what it means to be an expert (J. F. Yates, 1982).

People Often Ignore or Discount Base Rates

Numerous experiments have yielded results that suggest that, upon receipt of
specific information about a probabilistic situation, people tend to rely on it
alone and to ignore, or underweight, prior probabilities, as represented by base
rates, more or less completely (Bar-Hillel, 1980; Bar-Hillel & Fischhoff, 1981;
Borgida & Brekke, 1981; J. J. Christensen-Szalanski & Beach, 1982; Grether,
1980; Lyon & Slovic, 1975,1976). Contrary to the Bayesian prescription, the
new information seems to supplant the old entirely, or nearly so. Failure to give
due weight to base rates has been viewed as a particularly well documented and
pervasive manifestation of the shortcomings of people as intuitive statisticians.

On the face of it, the results of many experiments seem to support the idea
that people do indeed give inadequate weight to base rates in their estimates of
posterior probabilities. There is some question as to whether participants in ex-
periments always understand what the probabilities used in these problems
mean and whether they may confuse, say, the probability of a witness's report
conditional on the actual color of a cab with the probability that a cab was a
given color conditional on the witness reporting that color (Baron, 1988). This
is a worry and dictates caution in the interpretation of results. On the other
hand, the finding that people tend to ignore, or severely discount, base rates in
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such problems is a robust one. It has been obtained with a variety of problems
and has proved to persist despite efforts by experimenters to increase the sa-
liency of the base rates in several ways.

Hammerton (1973), for example, used a disease-detection problem like those
discussed in chapt. 7 in which the following information was pertinent. A partic-
ular diagnostic test will give a positive result with a probability of .9 when ap-
plied to a person who has the disease; when applied to a person who does not
have the disease, the same test will give a positive result with a probability of .01 .
About 1% of the population has the disease. Mr. Smith has been tested and the
test result shows positive. What is the probability that Mr. Smith has the disease?

Letting p(H I D) andp(D I H) represent, respectively, the probability of hav-
ing the disease (Hypothesis) given a positive test result (Data) and the proba-
bility of getting a positive test result given one has the disease, Bayes's
computation is

or

p(H I Z>) = (.9)(.01)/[(.9)(.01) + (.01)(.99)] = .476.

Hammerton's participants judged the probability to be closer to .9, apparently
giving far more weight to the results of the test than to the population base rates.

Of course use of .0 1 as the prior probability that Smith has the disease (and .99
as the prior probability that he does not) is justified only on the assumption that
Smith was randomly selected for testing — that, in other words, the prior proba-
bility that he has the disease is accurately reflected by the incidence of the dis-
ease in the general population. The plausibility of this assumption is dubious at
best in most real-life situations; people usually get tested for a specific disease
because there is some reason, other than the fact that the disease exists within the
general population to which they belong, to suspect that they may have it.

One cannot rule out the possibility that people apply their understanding of
this fact in the experimental situation. If it were possible to determine for dis-
eases with known incidences of occurrence in the general population what pro-
portion of the individuals who get tested for those diseases have them, it would
be surprising if the latter proportions were not considerably greater than the
former. This raises the following question. Suppose one has a diagnostic test
for a particular disease, which turns out to be positive, and one wishes to calcu-
late in a Bayesian fashion the posterior probability that one has the disease.
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What should be used as the appropriate base-rate or prior probability? The rate
of incidence of the suspected disease in the general population? Its rate among
people who, for whatever reason, have taken the test? Its rate among people
who take the test for reasons similar to one's own? One's own pretest estimate
of the probability of having the disease? Something else?

Complications of this sort can often be identified in experimental problems
involving courtroom, medical, or other situations of which people have certain
knowledge or expectancies in addition to what they obtain from the experi-
mental protocol. The following problem, used by Lyon and Slovic (1976),
seems to avoid these complications:

A light bulb factory uses a scanning device which is supposed to put a mark on
each defective bulb it spots in the assembly line. Eighty-five percent of the light
bulbs on the line are OK; the remaining 15% are defective. The scanning device
is known to be accurate in 80% of the decisions, regardless of whether the bulb is
actually OK or actually defective. That is, when a bulb is good, the scanner cor-
rectly identifies it as good 80% of the time. When a bulb is defective, the scanner
correctly marks it as defective 80% of the time. Suppose someone selects one of
the light bulbs from the line at random and gives it to the scanner. The scanner
marks this bulb as defective. What do you think is the probability (expressed as a
percentage) that this bulb is really defective? (p. 292)

It is hard to think of knowledge or expectancies obtained outside the experi-
mental situation that would get in the way of a clear understanding of this prob-
lem or discount the relevance of the base rate of defective bulbs. Explicit
mention in the statement of the problem of random selection from the popula-
tion should call attention to the base rate and ensure its salience. Nevertheless,
the results obtained with this problem were essentially identical to those ob-
tained with the cab and disease-diagnosis problems. For some participants,
Lyon and Slovic (1976) used the light bulb problem with 80% scanner accu-
racy (as in the previous problem statement); for others they used 50% and for
still others 20%. In all cases, the median estimate produced by the participants
matched the specified accuracy of the scanning device independently of the
base rate. And performance was not affected when the base rate of defective
bulbs was changed from 15% to 1 %. These results provide strong evidence that
people are indeed relatively insensitive to base rates when they have condi-
tional-probability data in hand.

Numerous other studies have corroborated the conclusion that people tend
to ignore or to discount base rates when case-specific information is available
(Cassells, Schoenberger, & Grayboys, 1978; Eddy, 1982; Hammerton, 1973;
Landman & Manis, 1983; Meehl & Rosen, 1955; Pollard & Evans, 1983). This
has proved to be so even when the case-specific information provided has been
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designed to be totally irrelevant to the task at hand (Kahneman & Tversky,
1973). Nisbett, Borgida, Crandall, and Reed (1976) give several examples of
the power of case studies to persuade, and of the impotence of base rates
against them. Apparently many people do not believe that base rates are rele-
vant to probability judgments, or at least not universally so.

There is some evidence that people give insufficient weight both to popula-
tion base rates and to what might be considered personal base rates (frequen-
cies of past personal experiences of specific types) when predicting future
personal behavior (Buehler, Griffin, & Ross, 1994; Kahneman & Tversky,
1973; Nisbett & Borgida, 1975; Osberg & Shrauger, 1986). This may help to
account for the fact that we find it so easy to underestimate the time it will take
us to do specific tasks, despite the experience of having frequently underesti-
mated in the past (Buehler, Griffin, & Ross, 1994; Hayes-Roth & Hayes-Roth,
1979; Kidd, 1970).

The neglect or discounting of base rates has often been taken as evidence of ir-
rationality, at least insofar as rationality is represented by probability theory, and
Bayes's rule more specifically. This interpretation can be challenged, however,
even granting that base rates are indeed neglected, at least under some condi-
tions. One problem with it, pointed out by Gigerenzer (1991b, Footnote 2) is that
the terms "base rate" and "prior probabilities" are often used interchangeably in
the psychological literature, but, as already noted, they are not synonymous.
Prior probabilities are what are expressed in Bayes's rule; base rates, among
other considerations, may be used as the basis for estimating these probabilities.
In the absence of any other relevant knowledge of the situation, one might make
the prior probabilities equal to the base rates, but often other knowledge is avail-
able and when that is the case it should not be ignored. Macdonald (1997a)
points out that naturally occurring events can be classified in many ways and, be-
cause different subsets having different probabilities can be identified, random-
ness may be impossible to establish. Moreover, because randomness does not
have a single universally agreed upon meaning, "even when it is stated that an
event has been randomly sampled, randomly could be interpreted as haphaz-
ardly and the event could still be described as having been selected from any
number of populations each with a different base rate" (p. 778)

But Not Always

Thus the evidence is strong that people often discount or ignore base rates. I
want to turn now to some evidence that people do not always do so, but before
doing that we should note a methodological problem that complicates the in-
terpretation of some studies of base-rate use. Sometimes it is not possible to de-
termine from data whether participants in a Bayesian information-processing
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experiment were behaving in accordance with Bayes's rule or not, because it is
not clear what assumptions they made to fill in essential information missing
from problem descriptions. A critical assumption underlying the application of
Bayes's rule is that each observation is randomly and independently selected
from the entire set of hypothesized possibilities. When what constitutes that set
is not clear, the base rates will be ambiguous, and in order to judge the rational-
ity of people's estimates, one must know what assumptions they have made to
resolve that ambiguity.

But leaving that problem aside, let us accept as fact that people often fail to
pay much attention to base rates when reasoning about uncertain events. The
point to be made now is that they do not always do so. There are certain condi-
tions under which base rates are utilized and it appears to be possible to in-
crease the chance that they will be taken into account in other cases as well.
Base rates are used, for example, when case-specific information is not pro-
vided, which is to say when the base-rate information is all one has (Kahneman
& Tversky, 1973). It is important to bear in mind, however, that even irrelevant
case-specific information can swamp base-rate information, in some circum-
stances; apparently having no case-specific information and having some are
quite different situations, psychologically, independently of how useful or use-
less the case-specific information may be.

When case-specific information is available, base-rate information may be
used more appropriately if it is obtained from experience in real-world situations
than if it is provided verbally in laboratory situations (J. J. Christensen-Szalanski
& Bushyhead, 1981). It has been suggested that, in general, one is more likely to
use appropriate statistical reasoning when the statistical characteristics of the sit-
uation are objective and relatively apparent than when they are more subjective
or obscure (Jepson et al., 1983; Nisbett et al., 1976).

Even in laboratory situations base rates may be used if the information that
is critical to their relevance is sufficiently salient. For example, in one experi-
mental paradigm that has been used, a person is told the relative sizes of profes-
sion A and profession B, given some biographical information about an
individual, and asked to estimate for each of the professions the probability
that the individual is a member of it. The usual finding is that people pay less at-
tention to the information regarding the relative sizes of the professions—the
base-rate information—than they should, according to Bayes's rule, and more
to the biographical, or case-specific, information. It is important to note that
the base-rate information is relevant here only on the assumption that the indi-
vidual whose profession is being judged was randomly selected from the popu-
lation that includes the combined sets of the two professions. Gigerenzer, Hell,
and Blank (1988) have shown that when the validity of this assumption is made
salient by having people draw the biographical descriptions from an urn in
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which the two professions are represented in the specified proportions, the
base-rate information is not ignored.

Other experimenters have been able to increase people's use of base rates by
making their random sampling from a population salient (R. D. Hansen &
Donoghue, 1977; Wells & Harvey, 1977) or by having them experience the sta-
tistics of a situation by witnessing a series of incidents, one at a time (J. J.
Christensen-Szalanski & Beach, 1982; Schlotterbek,1992). Fischhoff, Slovic,
and Lichtenstein (1979) found they could improve the use of base-rate infor-
mation by giving the same participants several versions of a word problem that
were identical, excepting for base rates; presumably the saliency of the
base-rate information was assured by this design.

There is also evidence suggesting that base rates are likely to be used when
they are expressed in sufficiently concrete terms (Mam's, Dovalina, Avis, &
Cardoze, 1980), when they are expressed as frequencies (50 out of 1,000)
rather than as probabilities or percentages (.05 or 5%) (Cosmides & Tooby,
1990; Gigerenzer, 1993,1994; Gigerenzer & Hoffrage, 1995), when their rele-
vance to a particular question is made clear (Brekke & Borgida, 1988), and es-
pecially if there is an apparent causal relationship between them and the cases
of interest (Ajzen, 1977; Bar-Hillel, 1980; Tversky & Kahneman, 1978).
When the taxicab problem is recast so that .85 and .15 represent the proportion
of accidents involving blue and green cabs respectively, rather than the propor-
tion of blue and green cabs on the road, the base rates are more likely to be
taken into account (Bar-Hillel, 1980,1983,1984). When the statement of the
taxicab problem provides the information that 85% of the cabs on the road are
blue and 15% are green, use of these numbers as base rates requires the as-
sumption that the probability that the cab involved in the accident in question
was blue (green) is exactly the same as the proportion of all city cabs that are
blue (green), which is tantamount to assuming that the probability that any
given cab will be involved in an accident is independent of its color. This seems
a reasonable default assumption in the absence of information to the contrary,
but it is an assumption. Bar-Hillel's result suggests that people may fail to
make this assumption in the absence of explicit instructions to do so.

Although the data clearly demonstrate that people may become more sensi-
tive to base rates if they explicitly engage in random sampling, or perhaps are
helped in some other way to think in frequentistic terms, they do not support
the conclusion that base-rate neglect can always be eliminated in this way
(Camerer, 1990; Griffin & Tversky, 1992). Gigerenzer (1991b) also cautions
that simply telling people that cases were randomly sampled may not suffice to
convince them of that, especially in instances in which random sampling
would not be expected in the real-world situations the experimental scenarios
are intended to represent.
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Base rates have been taken strongly into account also when problems that
are isomorphic with some that have shown base-rate neglect are explicitly
framed as games of chance (Ginossar & Trope, 1987). It appears too that base
rates can be made more salient through training people to pay attention to them
(J. J. Christensen-Szalanski & Beach, 1982), or by motivating them to do so by,
for example, having them—in the blue-green cab scenario—play the role of a
lawyer for one of the cab companies (Ginossar & Trope, 1987).

Gavanski and Hui (1992) found that people showed a high degree of sensi-
tivity to variations in base rates when the relevant sample spaces for judgments
corresponded to natural-kind categories, but not when the relevant sample
spaces were not natural-kind categories. Natural-kind categories are catego-
ries in terms of which people spontaneously partition the world and are to be
distinguished from categories that may be defined for special purposes but are
not commonly used by people in their everyday experience. Gluck and Bower
(1988) had people classify people as having either a rare or common disease on
the basis of consideration of a set of symptoms; classifications were sensitive
both to the rarity-commonality of the disease (base rates) and to the relative
likelihoods (likelihood ratio) of the symptoms given the disease.

Results from another study suggest that base rates are used in making estimates
of covariation significantly more if they relate to causal factors than if they relate to
noncausal factors, even though equally valid predictions can be made in both cases
(Ajzen, 1977). People who were told that students who spend more than 20 hours
per week studying have higher grade-point averages than students who spend less
than 20 hours used that base-rate information in evaluating information about
cases to predict grade-point averages; in contrast, people who were told that stu-
dents who lived more than 20 miles from campus had better grades than those who
lived closer placed less weight on information about distance of commute, even
though it presumably could have been as useful in making predictions. A causal
connection between study time and grade-point average is easy to imagine,
whereas one involving distance of home from campus is not so easy to see.

People also show some intuitive sensitivity to base rates in comments and
attitudes about low-probability events. Nisbett et al. (1983) point out, for ex-
ample, that the statement "I can't understand it; I have nine grandchildren and
all of them are boys" would not be perceived as strange by most people, but
substitute three for nine in that sentence and it might be. The student who fails a
test is likely to be less upset if three quarters of the class failed it than if nearly
everyone passed it. But granted that people sometimes show a sensitivity to the
relevance of base rates, they often do not, and it is this fact that many investiga-
tors feel requires explanation.

A practical problem in applying base rates in everyday reasoning is that of
figuring out what they are. Often it is very difficult, if not impossible, to do this,
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or even to determine what would constitute a reasonable assumption in that re-
gard. Even if one can identify the populations the relative sizes of which are the
critical data, the relative sizes may not be known and what to assume about
them may not be clear. When relevant numbers are available, they may be am-
biguous. As we have already noted, for example, learning that a particular test
that is used for medical disgnosis is 90% accurate does not suffice, because
90% accuracy can have a variety of meanings not all of which imply the same
base rates. Moreover, one cannot always take reported base fates at face value.
It is easy to find examples of grossly inaccurate reports of base rates in public
media and, as J. R. Anderson (1990) points out, this fact might account, to
some degree, for the tendency of people in psychological experiments to take
those that they encounter in that context less seriously than they might.

Theorists do not agree regarding exactly how base rates should be taken into
account in estimating prior probabilities. Many appear to assume that prior
probabilities should be equated with base rates when the latter are known. But
others do not make this assumption (Levi, 1983; Okasha, 2000). Okasha makes
the important point that whether or not one uses base rates for prior probabili-
ties is not, strictly speaking, a Bayesian issue. Bayes's rule has to do with how
one should use data to modify prior probabilities; it does not specify how the
prior probabilities are to be determined.

Reconciling Conservatism ana Base-Rate Discounting

At first glance, conservatism and base-rate discounting—the ideas that people
generally give insufficient weight to newly acquired data in revising preexist-
ing probability estimates and that they usually ignore or take too little account
of base rates—appear to be mutually contradictory. If we knew only that they
were guilty of the one crime, we would expect them to be innocent of the other.
Indeed, one of the earliest explanations proposed for the finding of conserva-
tism in Bayesian decision making was that people put too much emphasis on
base rates and consequently do not extract from newly acquired data all the in-
formation they contain (Edwards, 1968).

Gigerenzer et al. (1989) point out this apparent inconsistency in the results
of two lines of experimentation and characterize it as something of an embar-
rassment to psychological research: "The question of why people seemed to be
conservative during the 1960s and anti-conservative after 1970 has not yet
been answered, if only because it was almost never posed. It should be very dis-
turbing that established facts suddenly do an about face. But the new facts were
instead enthusiastically received as revelatory of underlying mental heuristics,
and the opposite facts largely ignored as too old to be true" (p. 219). Fischhoff
and Beyth-Marom (1983) note that the line of research on conservatism was
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"quietly abandoned" without establishing the roles played by the several fac-
tors that had been hypothesized to account for it, and attribute the cessation of
activity on this question partly to the discovery of base-rate neglect, which they
see as the antithesis of conservatism.

In any case, the finding of base-rate neglect seems to be inconsistent with
the idea, which has considerable experimental support, that people often are
very reluctant to modify beliefs they hold even when they receive quite strong
evidence that modification is justified (Nickerson, 1998). However, there is a
difference between the typical experimental situations in which conservatism
and base-rate discounting have been studied that may help to show the incon-
sistency to be in appearance only. In the former case, people usually are given a
distribution of probabilities, or something more or less equivalent to this, that
is claimed to represent what is known about the situation before any data are
obtained. Assuming they accept this distribution for what it is represented to
be, the task then is to revise an existing belief state in the light of the data that
are subsequently acquired. In the typical base-rate study, one is given base-rate
information and case-specific information at the same time, and it may not al-
ways be apparent to the participant that the base-rate information represents
what one should believe about the situation before processing any case-spe-
cific data. In other words, it may be less clear in this instance that the case-spe-
cific data are to be used to revise a preexisting belief state.

The difference is sharpened considerably when we compare the conserva-
tism that relates to the modification of meaningful beliefs that people actually
hold with the neglect of base rates as that phenomenon is observed in labora-
tory situations. Base rates typically have been supplied by the experimenter
and have involved variables of no special interest to participants beyond their
relevance to the experiment. It perhaps should not surprise us to learn that peo-
ple's behavior with respect to experimenter-provided base rates that have little
to do with meaningful beliefs that they hold does not give an entirely unequivo-
cal indication of how they are likely to treat data that relate to personal beliefs
that they have formed and possibly held for a considerable time.

Consensus Information

The failure of people to give due weight to base-rate information when making
judgments about category membership has a parallel in the way people tend to
discount consensus information when ascribing causes to human behavior. In
this case when asked to predict the behavior of individuals in specified situa-
tions, people sometimes tend to ignore available information regarding typical
behavior of people in those situations in the past. The finding is illustrated by
an experiment by Nisbett and Borgida (1975).
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These investigators informed people of the results of two earlier experi-
ments, one by Nisbett and Schachter (1966) in which participants were asked
to take as much electric shock as they could stand, and another by Darley and
Latane (1968) in which participants witnessed what appeared to be a fellow
participant in an adjacent experimental cubicle having a seizure. Nisbett and
Borgida's subjects were also shown taped interviews with individual partici-
pants in the earlier experiments or were shown written descriptions of their
backgrounds and personalities and were asked to guess how the individuals be-
haved in the earlier experimental situations. Some of Nisbett and Borgida's
subjects were informed of the actual behavior of the participants in the earlier
experiment, as a group. The predictions of individual behavior were not
strongly influenced by the information about their aggregate behavior; those of
the subjects who had that information were similar to those of the subjects who
did not have it, and in neither case did they match the actual behavior very
closely. Also, the knowledge that most participants in the Darley and Latane
experiment had not offered to help the person who appeared to be having a sei-
zure did not make Nisbett and Borgida's subjects less likely to blame the indi-
vidual participants in the earlier experiment for their failure to help.

Nisbett et al. (1976) equate consensus information with base-rate infor-
mation, the difference being that consensus information is base-rate infor-
mation about behavior, rather than about category membership. Attribution
they see, however, as a more complicated and less direct inference than a
prediction. They contrast the difference between the two inferential pro-
cesses this way:

Kahneman and Tversky ask their subjects to produce a rather direct and uncom-
plicated chain of inference: "If the majority of the members of the population
belong to a particular category, then odds are the target case does also." Their
subjects fail to make such an inference. In the attribution research we have been
discussing, a still more elaborate chain of inference is requested: "If the majority
of the members of a population behave in a particular way, then the situation
must exert strong pressures toward that behavior, and therefore it is
unparsimonious to invoke personal idiosyncrasies to account for the behavior of
the target case if his behavior is modal." (p. 124)

Inasmuch as there is evidence, which Nisbett et al. review, that people fail to
apply behavioral base rates to predictions about target cases, the question of
why people ignore consensus information in making attributions reduces, in
their view, to the question of why they disregard base-rate information in gen-
eral. The topic of attribution—especially in the form of the question of how
people attribute effects to causes—has received a great deal of attention from
researchers; the role of base rates is but one aspect of this interest.
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Gigerenzer (1994) makes the thought-provoking observation that although
psychologists have tended to take the neglect of base rates by participants in
psychological experiments as evidence of irrationality, experimenters them-
selves typically have ignored base rates in their own testing of hypotheses; and
have not seen the inconsistency in their behavior in this regard. A large major-
ity of statistical tests that are reported in the psychological literature—that
which deals with base-rate neglect included—are significance tests of the
Fisherian type, which do not take base rates into account.

Primacy Effects

Intuitively we would expect that, given n items of information that are relevant
to some conclusion that is to be drawn or decision that must be made, a rational
process for integrating those items of information should be insensitive to the
order in which they are considered. Bayes's rule has this property: n observa-
tions that are used to update a distribution of probabilities over a hypothesis set
will have the same combined effect independently of the order in which the ob-
servations are made.

The conclusions that people draw and the decisions they make often are not
insensitive to the order in which the data that helped determine those conclu-
sions or decisions were obtained (Pennington & Hastie, 1988; Walker,
Thibaut, & Andreoli, 1972). In particular, information that is acquired early in
the process often is given more weight than that acquired later. C. R. Peterson
and DuCharme (1967), for example, had people sample a sequence of colored
chips and estimate the probability that the sequence came from an urn with a
specified distribution of colors rather than from a second urn with a different
distribution. The sampling was arranged so that the first 30 trials favored one
urn and the second 30 favored the other so that after 60 trials the evidence was
equally strong (or equally weak) for both. People tended to favor the urn indi-
cated by the first 30 draws, which is to say that the evidence in the first 30 draws
was not counterbalanced by the evidence in the second 30 even though statisti-
cally it should have been. This is one illustration of what has been called a pri-
macy effect. There is other evidence that how data influence one's evaluation of
hypotheses can depend on when they are obtained in the hypothesis evaluation
process (Chenzoff et al., 1960; H. C. A. Dale, 1968).

Studies have revealed a number of related effects. They all might be consid-
ered primacy effects in the sense that information that is processed early—or,
perhaps more accurately, opinions that are formed from information that is
processed early—seem to be given inappropriately great weight. These effects
are discussed under such rubrics as persistence, commitment, and confirma-
tion bias, and they may not all have the same basis.
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The primacy effect is of considerable practical importance as it relates to judi-
cial reasoning. Jurors are admonished not to form opinions as to the guilt or inno-
cence of a defendant until all of the evidence has been presented and they have
had a chance to deliberate about it. Complying with this admonition requires an
ability to repress any tendency to form an initial opinion on the basis of partial in-
formation. Whether jurors can do this effectively is a matter of some doubt (G. P.
Kramer, Kerr, & Carroll, 1990). Results of mock trial experiments indicate that
mock jurors often come to favor a particular verdict early in the trial process
(Devine & Ostrom, 1985; Weld & Danzig, 1940; Weld & Roff, 1938), and that
they typically do reach at least a tentative verdict in their own minds before the
deliberation process begins (Hastie, Penrod, & Pennington, 1983).

Additional Considerations

Demonstrating that a participant in an experiment has actually made use of
Bayes's rule in solving a problem is complicated by the fact that one can some-
times get a non-Bayesian answer to a posterior probability question that would
be close to the answer provided by application of Bayes's rule. Hoffrage (2000)
points out, for example, that the AR rule (the hit rate minus the false-alarm rate)
can sometimes yield answers close to those obtained from appli cation of Bayes's
rule. The AR rule has been found to be used sometimes by physicians and medi-
cal students and has been promoted as the correct way to estimate the covariation
between two dichotomous variables (McKenzie, 1994).

Gigerenzer and Hoffrage (1995) argue, and present evidence, that people
are more likely to reason in accordance with Bayes's rule if the pertinent infor-
mation with which they have to deal is presented in frequency terms rather than
as probabilities. People naturally think in terms of frequencies, they contend;
the ability to think in probabilistic terms is a relatively recent and somewhat ac-
ademic acquisition.

The question of whether Bayes's rule should be considered an appropriate
norm against which to judge human reasoning, or more generally, that of what
does constitute an appropriate norm, continues to be a matter of debate (L. J.
Cohen, 1977, 1981; Gillies, 1973; Glymour, 1996; J. M. Harris, 1981; Mac-
donald, 1986). Non-Bayesian analyses generally can be applied to situations
for which a Bayesian analysis is considered appropriate by proponents of a
Bayesian approach. Gigerenzer et al. (1989), for example, have analyzed the
taxicab problem (discussed in chap. 4) in terms of Neyman-Pearson statistics.
Birnbaum (1983) has done so in terms of signal detection theory. As
Gigerenzer et al. point out, concluding that people are irrational on the grounds
that their behavior deviates from a particular normative model requires the as-
sumption that that model is the only one that could constitute an appropriate
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norm. In the case of the taxicab problem and its various analogues, it seems that
there are more models than one that could serve this function, so the most one
can say of people's behavior is whether or not it is consistent with a particular
view of what constitutes rational behavior in that situation.

But, given several alternative normative models, how is one to select among
them? Should one be free to be a Bayesian on Mondays and Tuesdays, a
Neyman-Pearson statistician on Wednesdays and Thursdays, and a Fisherian
the remainder of the week? Each of the major schools of statistical reasoning
has something to recommend it; and each has some very competent proponents
who understand not only the theory they espouse, but the others as well. It may
also be true, however, that many people who are irrevocably committed to a
particular view are not familiar with the alternatives. Rationally deciding
among alternative views requires some familiarity with all of them and of the
assumptions on which they are based; one may well conclude that one view is
more appropriate under some circumstances and another under others, but
without a knowledge of the alternatives, it is not clear how arational choice can
be made. And in any case, ultimately one must decide what assumptions one is
willing to make, and for this one has nowhere to go but one's intuitions.

THE VERDICT REGARDING STATISTICAL INTUITIONS

It is time to try to come to some conclusions. How good (or bad) are our intu-
itions regarding things probabilistic? According to several reviews of the experi-
mental literature on failures in inductive reasoning, including Nisbett and L.
Ross (1980), Einhorn and Hogarth (1981), Kahneman, Slovic, and Tversky
(1982), Gilovich (1991), and Piatelli-Palmarini (1994), our reasoning under un-
certainty or about statistical variables is subject to a variety of cognitive illusions
and systematically goes wrong in numerous ways. Principles and relationships
that are said often to be violated or ignored include the law of large numbers, the
principle of regression to the mean, and the base-rate principle. To be sure, some
investigators have presented evidence that people often do apply statistical prin-
ciples effectively in dealing with problems for which statistical reasoning is ap-
propriate (Jepson et al., 1983; Nisbett, Krantz, Jepson, & Fong, 1982; Nisbett et
al., 1983), but, on balance, as Goldman (1986) notes, the work of the recent past
on probability judgments appears to have been interpreted by most of those who
have done or reviewed it as evidence of human irrationality.

With respect to the quality of probability judgments, G. N. Wright and Phil-
lips (1980/1986) make a distinction among normative goodness, substantive
goodness, and calibration. According to this distinction, normative goodness
and substantive goodness reflect, respectively, conformity to the axioms of
probability theory and consistency with what is known about the topic of judg-
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ment (Winkler & Murphy, 1968), and calibration refers to the degree to which
judged events occur with a relative frequency that corresponds to their judged
probability of occurrence (Lichtenstein et al., 1977). The adequacy of human
reasoning has been clallenged in all these respects.

Slovic et al. (1976) argue that, as intuitive statisticians, we have some seri-
ous deficiencies of a relatively fundamental sort: "The experimental results in-
dicate that people systematically violate the principles of rational decision
making when judging probabilities, making predictions, and otherwise at-
tempting to cope with probabilistic tasks" (p. 169). They go on to say:

Most of the discussions of "cognitive strain" and "limited capacity" that are de-
rived from the study of problem solving and concept formation depict a person
as a computer that has the right programs but cannot execute them properly be-
cause its central processor is too small. The biases from availability and anchor-
ing certainly are congruent with this analogy. However, the misjudgment of
sampling variability and the errors of prediction illustrate more serious deficien-
cies. Here we see that people's judgments of important probabilistic phenomena
are not merely biased but are in violation of fundamental normative rules. Re-
turning to the computer analogy, it appears that people lack the correct programs
for many important judgmental tasks, (p. 173)

Pennington and Hastie (1993) give the following litany of the ways in which
human uncertainty assessment has been shown to be inconsistent with one or
more of the traditional probability calculi:

For example, the subjective probabilities of complementary hypotheses have
been found not to sum to one (Edwards, 1962; Einhorn & Hogarth, 1985; [L.
B.] Robinson & Hastie, 1985; Schum & [A. W.] Martin, 1980; van
Wallendael, 1989; van Wallendael & Hastie, 1990); if certainty about one hy-
pothesis increases, certainty about alternate hypotheses may remain con-
stant; increase or decrease ([L. B.] Robinson & Hastie, 1985; Schum & [A.
W.] Martin, 1980); hypotheses held with subjective certainty zero are fre-
quently "revived" (Schum & [A. W.] Martin, 1980); the subjective certainty
attached to a conjunction of events is frequently overestimated relative to the
optimal combination of the component uncertainties (Bar-Hillel, 1973;
Goldsmith, 1978); indeed, the subjective certainty attached to a conjunction
of events may be assessed to be greater than the certainty of one or more of
the component events (Leddo, Abelson, & Gross, 1984; Tversky &
Kahneman, 1983); subjective certainty assessments may be too high under
conditions where there is a high similarity between the pattern of evidence
and a known standard, or when there is high internal consistency of the evi-
dence even though the evidence is known or thought to be unreliable (Saks &
Kidd, 1980; Schum, DuCharme, & DePitts, 1973; Schum & [A. W.] Martin,
1982; Tversky & Kahneman, 1974). (p. 213)
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Nisbett and L. Ross (1980) contend that those studies that have supported
the idea that people are rather good at intuitive statistics have tended to use
"highly impoverished stimuli" (p. 74) and that biases are more likely to be seen
when the stimuli that are used are "more interesting and more complex, when
the boundaries of the relevant stimulus domains are less clear, and when recall,
imagination, or inference provide the basis for the subjects' estimates" (p. 74).

Some assessments of our capabilities as probabilistic reasoners are damn-
ing indeed. Piattelli-Palmarini's (1989) is one case in point: "We know that our
uneducated intuitions concerning even the simplest statistical phenomena are
largely defective" (p. 9). S. J. Gould's (1993) is another: "Nothing is more un-
familiar or uncongenial to the human mind than thinking correctly about prob-
abilities" (p. 280).

On the brighter side, several writers have argued either that human intu-
itions about probability are more sound than the more pessimistic assessments
of experimental results suggest or that many of the apparent failures of proba-
bilistic reasoning in the laboratory may not be indicative of how people per-
form when they face less contrived real-world situations that require
probabilistic reasoning. Some have pointed out characteristics of many labora-
tory experiments that limit the generalizability of some of the conclusions that
have been drawn from their results to real-world situations of interest. Ayton et
al. (199la), for example, argue that "a large number of experiments purport-
edly showing that humans are illogical or poor intuitive statisticians may be ex-
amining performance on inappropriate tasks.... It remains possible that,
within the usual naturally occurring framework for human induction, perfor-
mance is highly successful" (p. 227).

Nisbett et al. (1983) argue that people do possess and use inferential intu-
itions that resemble formal statistical procedures, and that they do so effec-
tively at least under certain conditions. They present evidence for the
hypothesis that whether people use appropriate statistical reasoning depends
on such factors as the clarity of the sample space and the sampling process,
whether the reasoner recognizes the role of chance in the situation of interest,
and whether there is a cultural or subcultural prescription to reason statistically
about the events in question.

Holland, Holy oak, Nisbett, and Thagard (1986) suggest that people are
likely to reason more statistically—to generalize less strongly from extreme
events, to be less inclined toward causal explanations when outcomes are dif-
ferent on superficially similar occasions—when reasoning in domains in
which variability and randomness are relatively easy to assess and to reason
less statistically in domains in which such assessments are more difficult to
make. This is one of the ways in which the inferential thinking one does about a
domain is affected by one's factual knowledge of the domain.
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Jepson et al. (1983) found that people are more likely to give statistical an-
swers for problems the probablistic nature of which is relatively obvious (e.g.,
problems dealing with lotteries) than for problems whose probabilistic nature
is less apparent. Such findings have led Nisbett and his colleagues to conclude
that people possess intuitive and abstract versions of statistical rules, which
they refer to as "statistical heuristics." Failure sometimes to use such rules is
seen as resulting from failure to encode problems in such a way as to evoke the
rules or as a consequence of the evocation of competing heuristics (Fong,
Krantz, & Nisbett, 1986; Nisbett et al., 1983).

Perhaps the most serious criticism that has been made of the work on intuitive
statistics and, in particular, of the numerous studies that have been used to sup-
port the general conclusion that people are poorly calibrated and tend to be over-
confident of their judgments, is that the great majority of these studies have been
done with college students as participants who have been asked to make judg-
ments on matters about which they are not highly knowledgable or for which
they have little or no intrinsic interest. The applicability of findings from these
studies to people making judgments in their areas of expertise has been chal-
lenged (J. J. Christensen-Szalanski & Beach, 1984; Hogarth, 1975; Pitz, 1974).
Apparently, when people make many motivated judgments of a similar type in
situations that provide them with feedback as to the accuracy of those judgments
(e.g., weather forecasting or contract bridge), they can become very well cali-
brated (Keren, 1987; Murphy & Winkler, 1977; Wallsten & Budescu, 1980). On
the other hand, there is evidence that professionals can be poorly calibrated even
when making judgments in their fields (Dawes, 1988; L. R. Goldberg, 1959). It
appears that overconfidence is likely to be an occupational hazard in fields that
are not sufficiently objective or well developed to provide practitioners with un-
ambiguous feedback regarding the accuracy of specific judgments within them.

Gigerenzer (199 Ib) challenges the widely held idea that people are not gen-
erally competent intuitive statisticians and questions the validity of much of
the experimental evidence from which this idea has received support. In partic-
ular, he objects to the practice of treating one prescription for reasoning under
uncertainty as though it were the only legitimate way to proceed:

Good judgment under uncertainty is more than mechanically applying a for-
mula, such as Bayes's theorem, to a real-world problem. The intuitive statisti-
cian, like his professional counterpart, must first check the structure of the
environment (or of a problem) in order to decide whether to apply a statistical al-
gorithm at all, and if so, which.... There is no good (applied) probabilistic rea-
soning that ignores the structure of the environment and mechanically uses only
one (usually mathematically convenient) algorithm, (p. 106)

With respect to Bayes's theorem in particular, Gigerenzer (1991b) points
out that its successful application depends on several structural assumptions:
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"independence of successive drawings, random sampling, an exhaustive and
mutually exclusive set of hypotheses, and independence between prior proba-
bilities and likelihoods" (p. 107). If one is to apply Bayes's theorem appropri-
ately to real-world problems, one must make judgments regarding whether
situations of interest have the assumed characteristics, and such judgments
must draw on one's knowledge of the world and on inferences or conjectures
that can be made therefrom.

In short, the literature on probabilistic reasoning is conflicted. On the one
hand are the numerous studies that ostensibly have shown that people often rea-
son poorly when thinking about probabilistic or statistical situations, and that
even people who are knowledgeable with respect to statistics often do not apply
that knowledge appropriately to practical problems. On the other hand are those
studies that show that many people trained in statistics do make appropriate use
of their knowledge and that even people without such training often apply rela-
tively sound intuitions to probabilistic and statistical problems, and claims that
many of the results that have been taken as evidence of faulty probabilistic intu-
itions could be interpreted in ways that are less denigrative of human rationality.

It should not escape our notice that the claims that people often give evi-
dence of poor statistical intuitions and that they often give evidence of sound
statistical intuitions are not mutually exclusive; they both could be correct.
Moreover, it is not impossible that some people who have been schooled in
probability theory and statistics typically apply appropriately what they have
learned and that others do not, or that the same individuals, learned with re-
spect to these disciplines, sometimes apply what they have learned effectively
and sometimes fail to do so.

Irrationality or Lack ot Mathematical Knowledge?

Goldman (1986) questions whether the results of experiments on probability
judgments really constitute evidence of irrationality. He notes the controversial
nature of the interpretation of probability statements and uncertainty as to what
should be considered normative principles of probability judgment. Though ac-
knowledging the value of probability theory and statistics as intellectual tools
and methods, he questions whether competence with these tools should be a re-
quirement for rationality: "Probability theory is a branch of mathematics, like
other branches of mathematics. Failure to have learned or mastered other
branches of mathematics is not normally taken as a shortcoming in rationality.
Nor is the failure to recognize every concrete application of such branches. By
parity of treatment, it would be wrong to view every deficiency in grasping or ap-
plying probability theory as a specimen of irrationality" (p. 316).

To press the point, Goldman (1986) notes that the modern concept of proba-
bility began to be clarified only in the 17th century, and was not axiomatized
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until the 20th century. It is hardly surprising, he argues, if untrained people
should find it difficult to arrive at an adequate conception of probability by
themselves. Goldman is careful to note that he is not arguing that people are na-
tively rational in matters of probability, only that the question cannot now be
answered and, in particular, that experimental results showing that people of-
ten violate the prescriptions of probability theory in their reasoning are not
compelling evidence of irrationality.

On the question of what would constitute irrationality in this context, Goldman
(1986) suggests that it would have to be a defect in basic processes as distinct from
failure to have mastered certain intellectual tools, and that the defective processes
would have to be reasoning processes as distinct from, say, memory retrieval pro-
cesses. Regarding in particular the processes that yield "erroneous" probability
judgments of the type demonstrated by numerous investigators over the past few
years, whether these processes should be considered irrational depends on how re-
liably they produce correct judgments considering all the situations in which they
are typically applied. It is at least conceivable that these processes are usually reli-
able in situations less contrived than those often used in experiments.

There is also a question of what it means to understand probability and the
principles underlying statistics. Paulos (1998) makes a distinction between
formal facility with these concepts and an understanding of them at an intuitive
level. One may become very adept at games of chance—poker, bridge—giving
evidence of having acquired the ability to make choices that are prescribed by
the probabilities of the various possible outcomes, without being able to ver-
balize the principles on which one is operating in mathematical terms.

The Question of Criterion

In most studies that claim to have demonstrated human errors, biases, and short-
comings, no argument is given to explain why the statistical rule is rational, nor
is rationality independently defined. (King, 1992, p. 179)

Any claim of irrationality presumes some standard with which the behavior that
is considered to be irrational is compared and found wanting. In the case of sta-
tistical or probabilistic thinking, a standard that has generally been applied in the
Western world, although with some waxing and waning of popularity over time
(Martignon & Laskey, 1999), is probability theory, and in particular, probability
theory as developed from the formulations of such 17th-century thinkers as
Pascal and Fermat; judgments or decisions are said to be irrational when they are
inconsistent with what "Pascalian" probability theory prescribes.

A forceful argument against the conclusion that people generally exhibit ir-
rationality in the sense of being at odds with probability theory has been made
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by Gigerenzer (1991b, 1994). The argument rests on the claim that there is no
single normative theory of probability that is recognized as such by all mathe-
maticians who work in this area. There are rather several views of what proba-
bility means and of what the basic tenets of a normative theory should be, so the
worst that can be said about any particular judgment is that it is irrational ac-
cording to this or that theory of probability, but what is irrational according to
this theory may be exactly right according to that one.

Gigerenzer (199 Ib) argues that much of the psychological literature on cog-
nitive illusions and biases ignores this fact, that it assumes the existence of an
unequivocal normative theory, and that the theory it treats as definitive is not
considered as such by all major probability theorists:

What is called in the heuristics and biases literature the "normative theory of
probability" or the like is in fact a very narrow kind of neo-Bayesian view that is
shared by some theoretical economists and cognitive psychologists, and to a
lesser degree by practitioners in business, law, and artificial intelligence. It is not
shared by proponents of the frequentist view of probability that dominates to-
day's statistics departments, nor by proponents of many other views; it is not
even shared by all Bayesians.... By this narrow standard of "correct" probabilis-
tic reasoning, the most distinguished probabilists and statisticians of our cen-
tury—figures of the stature of Richard von Mises and Jerzy Neyman—would be
guilty of "biases" in probabilistic reasoning, (p. 87)

More generally, Gigerenzer et al. (1989) have been critical of the elevation
by psychologists of probability theory "as a mathematical codification of ratio-
nal belief and action in uncertain situations" (p. 226). They point out that, un-
like the 18th-century probabilists who had been willing to revise their
mathematics to fit better the dictates of common reason when they ran into the
St. Petersburg problem, "the twentieth-century psychologists had come so to
revere the mathematical theory of probability and statistics that they instead in-
sisted that common reason be reformed to fit the mathematics" (p. 226).

The objective of research on probabilistic reasoning should not be to attempt
to explain the difference between people's judgments and "normative" perfor-
mance as represented by a particular Bayesian prescription, Gigerenzer (1991b)
argues, but rather to explain people's judgments. More progress will be made, he
suggests, by viewing competing statistical theories as the bases of competing ex-
planatory models than by pretending that statistics speaks with one voice:

The history of probability theory, with all its changes in the interpretation of
probability, in the meaning of "descriptive" and "normative," ... should warn us
to be cautious in using one formal method as the norm, against which such judg-
ments are denigrated as irrational, independent of their content and context. A
rational mind may be more than the kind of intuitive statistician who mechani-
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cally applies the same formula (be it expected utility, Bayes' theorem, or some
other) to all contents and in all contexts. But such a rational mind is much harder
to define. (Gigerenzer et al., 1989, p. 232)

A similar position is taken by L. J. Cohen (1981), who not only distin-
guishes among several normative theories of probability, not all of which de-
rive from the seminal work of Pascal and Fermat, but argues that the
establishment of a normative theory does not prove that theory to be appropri-
ate for judging the probabilistic reasoning of people in everyday life:

It is one thing to establish one or more probabilistic interpretations for the calcu-
lus of chance, and quite another to show that the resultant theory applies to some
or all of the probability judgments that are made in everyday reasoning. In order
to discover what criteria of probability are appropriate for the evaluation of lay
reasoning we have to investigate what judgments of probability are intuitively
acceptable to lay adults and what rational constraints these judgments are sup-
posed to place on one another, (p. 319)

L. J. Cohen (1982) contrasts the "Preconceived Norm Method" with the
"Norm Extraction Method" as approaches to the interpretation of experi-
mental data about probability judgments. An investigator using the precon-
ceived norm method "tacitly assumes that the problem-task set to his or her
subjects is correctly soluble only in terms of some academically well-re-
garded conception of probabilities that he or she has in mind. The investiga-
tor therefore evaluates the subjects' performance for correctness or
incorrectness by a technique of assessment or estimation that is appropriate
to this mode of conception" (p. 251). Underlying the norm extraction
method is the assumption that "unless their judgment is clouded at the time
by wishful thinking, forgetfulness, inattentiveness, low intelligence, im-
maturity, senility, or some other competence-inhibiting factor, all subjects
reason correctly about probability: none are programmed to commit falla-
cies or indulge in illusions" (p. 251). According to this view, the purpose of
experimentation is not to find out how people's reasoning deviates from the
prescriptions of preconceived norms but to discover the conceptions of
probability they apply to problems of specific types:

In short, the Preconceived Norm Method assumes a standard conception of
probability, imputes its acceptance to the subjects, and hypothesizes either
faulty programming or temporary causes of malfunction in order to account for
estimates that are erroneous in terms of that conception: the Norm Extraction
Method hypothesizes about the subjects' conception of probability and their
mode of assessing it, on the assumption that unless affected by temporary or ad-
ventitious causes of error their judgments are correct, (p. 252)
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This is not to say that people cannot contradict themselves or make invalid
deductions. But when they do these things, the norms they violate, Cohen ar-
gues, can be discovered from their own intuitions.

L. J. Cohen (1979) rejects, in particular, the idea that Pascalian probability
theory is the only legitimate framework within which to reason about uncertain
predictions. He argues that one normative alternative to the Pascalian formula-
tion that is widely used in science can be traced to the writings of Francis Ba-
con. Cohen argues further that before one can legitimately classify an instance
of reasoning about probability as fallacious, one must know the theoretical
framework within which the reasoning is being done. What would be consid-
ered fallacious from a Pascalian perspective would not necessarily be seen as
fallacious from a Baconian point of view. Many of the alleged demonstrations
of human fallibility in probabilistic reasoning are unconvincing, Cohen ar-
gues, because they assume a particular perspective—the Pascalian one—that
people may not always use. Pascalian and Baconian judgments may differ
from one another in any particular circumstance, which is not to say that at
least one must be wrong. Neither, he contends, implies the falsity of the other.

The idea that two different judgments of probability regarding the same sit-
uation could both be right may be difficult for the reader to accept. I find it hard
to accept. Could we not settle the issue in favor of one or the other judgment—
or possibly against both of them—by doing an appropriate experiment? If the
probability of a specified outcome of an uncertain event is Pp and PB, according
to the Pascalian and Baconian views, respectively, let us simply observe the
event a large number of times and determine the proportion of instances on
which the specified outcome occurs. But, at best, this works only for events of
the sort that can be observed a large number of times, and many of the events
about which we wish to reason probabilistically are not this type. Even when it
is possible, both in theory and in practice, to observe an event many times, what
it means to say that the probability of a specified outcome on a specific occur-
rence of that event is thus and so is a debatable question. When I say that I be-
lieve that the probability that the toss of a fair die will produce a three with
probability 1/6,1 am sure I mean that I believe that three will come up on ap-
proximately 1/6 of a large number of tosses. But suppose that the die is to be
tossed just once. What I mean by saying that I believe the probability that it will
come up three on that toss is 1/6 is not quite so clear.

L. J. Cohen (1970,1977) has developed the Baconian view of probability in
some detail. According to this view, probability has to do primarily with judg-
ments of the "inductive reliability of generalizations," and is focused on the in-
ductive establishment of causal laws. Cohen argues that the experimental
method of modern science is essentially Baconian in that it seeks to establish
the inductive reliability of generalizations, which we commonly refer to as sci-
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entific laws. The Anglo-American legal system also endorses Baconian rea-
soning, in Cohen's view, by virtue of its commitment to adjudication on the
basis of the totality of the case-specific evidence that is before the court. No
court, he suggests, would convict a person in a civil suit solely on the grounds
that he belongs to a group over half of the members of which are known to have
committed the crime of which he is accused (base-rate information). He points
out too that if, in criminal cases, the injunction on jurors to assume a defendant
is innocent until proven guilty is interpreted as the assignment of zero as the
prior probability of guilt, then a guilty verdict within a Pascalian-Bayesian
framework is impossible, because in this system prior probabilities of zero in-
evitably produce posterior probabilities of zero, independently of what the
conditional probabilities are. None of this is to argue that Pascalian probabili-
ties cannot enter into forensic reasoning, but only that cases can seldom be de-
cided on the basis of them alone.

Many of the experimental findings that have been interpreted as evidence
of fallacious reasoning—application of the representativeness heuristic, for
example—may be seen as fallacious, Cohen argues, if one assumes that rea-
soners were working within the framework of Pascalian probability but not if
they were approaching the problems from a Baconian perspective. As to
which perspective reasoners should use in specific instances, Cohen argues
that the charitable thing for experimenters to do is to assume that participants
in their experiments are at least as rational as themselves and to interpret their
performance on probabilistic reasoning tasks in whichever ways do not re-
quire the assumption that they are reasoning fallaciously: "One hypothesis
which seems to fit the available evidence is that people inexpert in statistical
theory tend to apply Baconian patterns of reasoning instead, and to apply
these correctly whenever they have an opportunity to make the probability in
question depend on the amount of inductively relevant evidence that is of-
fered" (L. J. Cohen, 1979, p. 397).

In short, Cohen argues that many uncertain situations can be assessed
from either a Pascalian or a Baconian point of view, that neither perspective
is always clearly more appropriate than the other, and that before one can le-
gitimately classify an instance of probabilistic reasoning as fallacious, one
must know which perspective the reasoner is taking. Cohen allows that
there are situations in which a particular view is correct and the alternative
is not—the Pascalian view is the only appropriate one, for example, when
the statement of a problem makes it clear that the probabilities involved are
equivalent to long-term percentages or relative frequencies—and he argues
that the evidence that people characteristically reason fallaciously in such
cases is not compelling, which is not to deny that certain types of fallacies
may be fairly common.
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One of the more common criticisms of research focused on the identifica-
tion of common biases in probabilistic thinking, or on ways in which such
thinking commonly violates normative principles, is that the situations investi-
gated sometimes are contrived so as to ensure that the application of heuristics
or principles that are effective in everyday life will be inappropriate in the ex-
perimental context (Ayton et al., 199la, 1991b; Goldman, 1986; Winkler &
Murphy, 1973). Moreover, what may appear to be an irrational bias in one con-
text may be functional in another. For example, the negative-recency bias (see
chap. 2) would be a useful bias to have in any context in which it is important to
be able to detect nonrandomness in sequences and the most likely form that de-
partures from randomness take is that of excessive repetitions or an excess of
repetitions is more important to detect than an excess of alternations (Lopes,
1982). Navon (1978) notes ways in which the behavior that is typically consid-
ered evidence of excessive conservatism in Bayesian decision experiments can
be beneficial in real-world contexts.

Uncertainties About Task Perception

In psychological experiments it is important to distinguish two tasks: the
one the experimenter intends for the participants to perform, and the one the
participants actually perform. One hopes the two are identical, or at least
very similar, but there is room for doubt in many instances. Unfortunately, it
is usually simply assumed that participants perceive the task as does the ex-
perimenter and the results are interpreted without consideration of the pos-
sibility that this is not the case. It may be that experimenters are sometimes
unaware of the possibility that a task could be perceived differently from
the way they perceive it, but if it can be and even a small percentage of the
participants do perceive it in an alternate way, this could invalidate conclu-
sions drawn from the results.

The point is illustrated by some experiments on the perception of random-
ness. Failure to specify whether sampling is to be with replacement or without
leaves open the possibility of participants operating on either assumption, and
to the extent that some of them make the assumption that is inconsistent with
that made by the experimenter, the results are likely to be misinterpreted. The
importance of this point is demonstrated by an experiment of Winefield (1966)
in which he showed that the usual negative-recency effect was not obtained in a
card-guessing task when participants witnessed the reinsertion of each drawn
card into the deck before the deck was shuffled and the next card drawn. The
sensitivity of people's performance of probabilistic reasoning tasks to differ-
ences in instructions, including sometimes fairly subtle ones, should give
pause in the drawing of conclusions about human reasoning foibles on the ba-
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sis of performance of tasks when there is any question of how participants
might have perceived those tasks.

There is also the problem that different participants can sometimes interpret
the same instructions differently. There is some evidence, for example, that
when asked to estimate the probability of a cause given an effect in experi-
ments on diagnostic judgment—say the probability of a rare disease given a
specific symptom—they have actually estimated the probability of the effect
given the cause (J. R. Anderson, 1990). According to Eddy (1982), even physi-
cians commonly confuse the probability of a disease state given a positive di-
agnostic test result with the probability of getting a positive test result given
that the patient has the disease for which the test is intended to be diagnostic.
This shows a lack of statistical sophistication, but it is not clear whether it re-
flects only a terminological confusion or a deeper reasoning problem.

Some of the errors that people make in estimating correlations, contin-
gencies, and other statistical relationships also may be due to a misunder-
standing of the problem on which they are working. Problems can be stated
in more or less straightforward or obscure ways and some of the situations
that have been used in experimental studies have been contrived for the pur-
pose of making it especially easy for people to blunder in one way or an-
other. But even when instructions are intended to be straightforward and
clear, they sometimes can be ambiguous or incomplete. This is seen by
some researchers to have been especially problematic in studies of proba-
bilistic reasoning (Bar-Hillel & Falk, 1982; Falk, 1992; Margolis, 1987;
Nickerson, 1996).

Difficulties stemming from the ambiguity of problem statements are com-
pounded by the fact that ambiguities are typically not recognized as such. So-
cial psychologists speak of an assimilation effect in reference to the finding
that when people encounter ambiguous information they interpret it in terms of
the concept that is most accessible at the time (Schwarz, 1995). This effect has
often been observed in social contexts in which people have been primed to see
ambiguous behavior in either one of two ways (e.g., persistent or stubborn,
friendly or hostile) (Wyer & Srull, 1989). The typical finding is that people in-
terpret the behavior in the primed way and fail to see the alternative interpreta-
tion as a possibility.

Bases of Erroneous Statistical or Probabilistic Thinking

The ambiguity of many of the situations used to study probabilistic reasoning
in the laboratory notwithstanding, the evidence seems sufficient to warrant the
conclusion that many people, including people with post-high school educa-
tion, either lack the ability to do even quite elementary statistical reasoning, or
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are disinclined to make the effort necessary to apply what they know about
probability and statistics to the problem of reasoning under uncertainty.

In some cases, inability to deal effectively with problems of probability and sta-
tistics appears to stem from a lack of understanding of some of the basic principles
that define these disciplines. The following examples illustrate the point.
Pollatsek, Konold, Well, and Lima (1984) had college students estimate (a) the
mean of a random sample of 10 scores consisting of 9 unknown scores and 1
known score that differed substantially from the population mean and (b) the mean
of the 9 unknown scores. About 40% of the subjects gave the population mean as
the answer in both cases. When undergraduates were asked to judge whether the
rate of teenage pregnancies was changing at a hypothetical high school, they
tended to base their judgments solely on changes in the number of pregnancies and
to ignore changes in the school population, unless population size was made
highly salient in the statement of the problem (Silka & Albright, 1983).

Pollard and J. T. Richardson (1987) suggest that difficulties with condi-
tional probabilities could stem in part from the assumption that a syllogistic
form that is valid with deterministic statements is necessarily valid also when
used with probabilistic statements. They illustrate how this assumption could
get one into trouble with the following examples:

If H then not D

D

Therefore, not H

and

If H then not very likely D

D

Therefore, not very likely H.

The first of these forms is a valid modus tollens argument. The second form
looks fine, but that it is not valid is easily seen by the following instantiation of it:

If this person is an American, this person is a not very likely to be a member of
Congress

This person is a member of Congress

Therefore, this person is not very likely to be an American.

This confusion is often seen in misinterpretations of the/? values obtained in
the results of null-hypothesis significance testing (Nickerson, 2000). According
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to the theory behind null-hypothesis testing, if the null hypothesis is true, one is
unlikely to obtain ap value as small as .05, but the obtaining of ap as small as .05
is often taken as evidence that the null hypothesis is unlikely to be true:

If H0 is true then one is not very likely to get p < .05

p<.05

Therefore, H0 is not very likely to be true

Errors to which the gambler's fallacy would be expected to give rise appear
to be based, in some cases at least, on misconceptions about what a random se-
quence or a noncontingent relationship is (C. R. Peterson, 1980). Peterson ar-
gues that participants in psychological experiments sometimes fail to perceive
noncontingent events as noncontingent because the expectations they bring to
the experiment preclude the assumption that what is occurring is random.
When one does not make the assumption that the process that is determining
the outcome of an uncertain event is completely random, then it is questionable
whether what is usually deemed an instance of the gambler's fallacy is appro-
priately considered a fallacy (L. J. Cohen, 1982); moreover, in many experi-
mental situations what are represented to participants as random processes are
really not random.

Gilovich (1991) also argues that some of our reasoning difficulties stem
from the strong tendency we seem to have of perceiving even random events
and patterns as having some degree of structure: "Our difficulty in accurately
recognizing random arrangements of events can lead us to believe things that
are not true—to believe something is systematic, ordered, and 'real' when it is
really random, chaotic, and illusory" (p. 21). This tendency is exacerbated by
the fact that once we believe a phenomenon exists we are very good at invent-
ing reasons for why it should exist.

People untutored in probability theory may fail to understand that the
probabilities of a set of mutually exclusive possibilities cannot total more
than 1 or that the elimination of some of the alternatives from among such a
set has implications for the probabilities associated with the remaining alter-
natives . When told, in one study of statistical reasoning, that a certain one of a
few suspects in a murder mystery was not the culprit, participants tended to
fail to revise the probabilities assigned to the remaining suspects (L. B. Rob-
inson & Hastie, 1985).

Sometimes it is difficult to tell whether inappropriate decisions based on the
probabilities of outcomes from random sampling are better attributed to faulty
intuitions regarding fundamental aspects of probability theory or to an inabil-
ity to compute or estimate what the probabilities of specific outcomes are. This
comment applies, for example, to the finding of L. J. Cohen and Chesnick
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(1970) that some people prefer a lottery in which they draw 1 ticket from a pop-
ulation of 10 tickets to the opportunity to have as many as 20 draws (with re-
placement) from a population of 100 tickets.

Evans (1989) argues that what appears to be faulty reasoning under uncer-
tainty results in part from faulty intuitions, but more from a generally passive
approach to reasoning, whereby people tend to consider only what is explicitly
brought to their attention. Even correct intuitions, he suggests, are readily
overpowered by irrelevancies when the latter are made salient by the way in
which problems are posed to them. This view is compatible with Baron's
(1985, 1988) attribution of faulty reasoning to insufficient search. In both
cases, lack of effort—as distinct from lack of knowledge—is seen as a major
cause of poor reasoning. That performance on many tasks used in psychologi-
cal experiments may elicit less-than-maximum effort by the participants is a
highly plausible possibility. That students who participate to satisfy a course
requirement, or to obtain extra credit, or even for cash payment will invariably
make a best effort on tasks in which they may have little or no intrinsic interest
is an assumption that is perhaps too easily made uncritically. This is not to sug-
gest that all experimental tasks fit this description for all participants, but cer-
tainly many do, and that suffices to make one cautious about generalizing the
results of many experiments to situations in which people are highly motivated
to do their best on tasks because they have a meaningful stake in the conse-
quences of their performance.

Although it is perhaps somewhat ironic to look to psychological experi-
ments for evidence of this assertion, a number of studies have shown that the
amount of effort participants devote to the analysis and interpretation of infor-
mation presented to them depends, at least in part, on the degree of their per-
sonal involvement with the issues to which the information pertains (Chaiken,
1980; Harkness, DeBono, & Borgida, 1985). Highly involved people appear to
process messages and arguments at a deeper level and more extensively than
less involved people, who are likely to be influenced by relatively superficial or
surface features (Borgida & Howard-Pitney, 1983; Petty & Cacioppo, 1979;
Petty, Cacioppo, & Goldman, 1981; Showers & Cantor, 1985).

As Harkness et al. (1985) point out, assuming some modest correlation be-
tween complexity of information-processing strategies and the quality of the
outcomes of those strategies in natural task environments, it makes sense for
people to use more complex strategies when they are more involved—when
they have more at stake. These investigators demonstrated a relationship be-
tween involvement and complexity of strategies used in a study in which data
about a potential dating partner were processed by participants, some of
whom were told they would actually be dating the individual several times
and some of whom were not given this expectation. Although the highly in-
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volved participants in this study used more complex strategies than did the
less involved participants to analyze contingency data, the most common ap-
proach among them was not the normatively optimal one. Harkness et al. note
that the tendency for uninvolved participants to use easy and superficial strat-
egies can be seen as an indication of rationality—as evidence of mindfulness
in deciding when to be mindless: "Suboptimal performance on a trivial task
may be a marker of intellect" (p. 32).

In short, investigators have identified many possible bases of what appears to be
faulty reasoning under uncertainty. I say what "appears to be faulty reasoning" be-
cause some of the bases that have been suggested might better be considered
misperceptions, limitations of knowledge, or failures of motivation than of faulty
reasoning per se. Causes that have been suggested include confusion about what
one has been asked to do in an experimental situation, insensitivity to such basic
distinctions as that between frequency and relative frequency, lack of understand-
ing of certain critical concepts such as those of randomness and contingency, fail-
ure to understand that the probabilities of an exhaustive set of mutually exclusive
possibilities must sum to 1, computational limitations, misapplication of heuristic
rules, and a tendency to approach problems too passively and hence to fail to make
the effort necessary to exploit one's reasoning capabilities fully.

The Battle of Intuitions

Much of the research that has been reviewed in this book has focused on ways
in which probabilistic reasoning appears to go astray. But the judgment that
any particular instance of reasoning is faulty presupposes one has a standard
against which to make that judgment. As Larkey et al. (1989) put it, "Attrib-
uting error in reasoning about chance processes requires at the outset that you
know the correct model for the observations about which subjects are reason-
ing. Before you can identify errors in reasoning and explain those errors as the
product of a particular style of erroneous reasoning, you must first know the
correct reasoning. It is much easier to know the correct model in an experimen-
tal setting than in a natural setting" (p. 30).

A general conclusion that has been drawn from the work that has been con-
sidered here is that people's intuitions about probability and related con-
cepts—chance, randomness, covariation—are faulty. However, what to make
of this conclusion is called into question by the fact that highly knowledgeable
people disagree, rather strongly on occasion, as to what should be considered
fallacious and faulty and what should not (L. J. Cohen, 1979, 1980;
Gigerenzer, 1994; Kahneman & Tversky, 1979a).

What is clear is that there is no escaping appeal to intuition. When the intu-
itions that underlie the probabilistic reasoning of participants in experiments
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are judged to be faulty by the experimenters, those judgments are themselves
based on other intuitions about probability—the experimenters' intuitions, in-
formed by one or another school of thought that represents the intuitions of
other scholars. And not all writers have the same intuitions in this regard.

We should not forget the essential role that intuition played in the develop-
ment of probability theory in the first place. As Daston (1987b) puts it: "Be-
cause its practitioners understood probability theory as a mathematical
codification of good sense, the right answers to these questions were those
that seconded the intuitions of reasonable men" (p. 298). And again, "When
mathematical results clashed with the practice of reasonable men, the eigh-
teenth-century probabilists consistently rearranged or modified the mathe-
matics to reconcile the two" (p. 298). Or, as Gigerenzer et al. (1989) put it,
probability theory was meant by its developers to capture, not to correct, rea-
sonable intuitions.

In chapter 1 of this book, we noted the way Pascal and Fermat sharpened
their respective intuitions in attempting to converge on a solution to the prob-
lem on which they were working that they would both consider correct. Daston
(1987b) refers to the St. Petersburg paradox to illustrate how intuitions could
be modified as a consequence of grappling with problems: "If the conventional
solution of the St. Petersburg problem ran counter to the judgment of reason-
able men, probabilists reexamined their definitions of expectation. In the
minds of eighteenth-century mathematicians, there did not exist any theory of
probabilities disembodied of subject matter" (p. 298).

So where does this leave us? To what do we as individuals appeal when
we try to judge the merits of the differing—and mutually incompatible—
points of view defended by the experts? We have no place to go but to our
own intuitions. We have no choice but to accept those arguments that we
find most intuitively compelling. But this is as it should be. If we are ratio-
nal creatures, we, each of us individually, and not the experts, are responsi-
ble for our individual beliefs.

This does not mean that all possible views are equally correct, or that dia-
logue and debate are pointless. What one finds intuitively compelling can
change as a consequence of the acquisition of information and exposure to new
views and arguments in their support. But it does mean that the only legitimate
defense that I can offer for holding a particular view at any given time is that /
find that view to be the most consistent with the evidence at my disposal as
judged by my own intuitions. If I adopt a belief about something of which I
have little direct knowledge because it represents what certain experts believe,
the decision to do so is my responsibility, and I must appeal to my intuitions—
hopefully informed by some evidence of the competence and integrity of the
experts in question—in making it.
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EFFICACY OF EDUCATION AND TRAINING

Some of the studies reviewed here have been taken as evidence that even peo-
ple who have had considerable exposure to probability theory and statistics,
sometimes at postgraduate levels, reason poorly, on occasion, about random
variables and processes. It does not follow, of course, that education and train-
ing are to no avail with respect to improving people's ability to reason under
uncertainty; the fact that people who have had instruction in a particular disci-
pline do not always behave in ways that are consistent with what they were
taught is not compelling evidence that the teaching of that discipline is futile.

Several investigators have noted differences in the way people from differ-
ent cultures assess probabilities and think about uncertain events (Phillips & G.
N. Wright, 1977; G. N. Wright & Phillips, 1980/1986; Wright et al., 1978).
These differences are not well understood. They do constitute evidence, how-
ever, that if there are any universal culture-free intuitions about probabilistic
processes, there are also aspects of our conceptions of probability and its mani-
festation in the world that are learned, either by covert assimilation of view-
points that are prevalent in one's culture or as a consequence of overt efforts to
teach and inform.

What is the evidence with respect to the efficacy of instruction in probability
and statistics relative to the quality of reasoning about matters probabilistic
and statistical? What is known about the effectiveness of various approaches to
the teaching of probabilistic and statistical reasoning? Has research shown that
there are better techniques to improve reasoning under uncertainty than those
being used?

One evidence of the effectiveness of instruction is the fact that even unex-
ceptional students today are able to solve probabilistic and statistical problems
that baffled accomplished mathematicians of previous centuries, thanks to the
availability of a codified body of theory that can be taught. It is easy for us for
whom this theory is available to overlook the fact that many problems that are
quite simple from today's perspective were very difficult for people who did
not have the benefit of the theory. Even the intellectual giants sometimes had
difficulties with what today would be seen as relatively straightforward prob-
lems. Leibniz, for example, in his Dissertatio de Arte Combinatoria, which
was published in 1666, gave the probability of tossing a 12 with two dice as
equal to the probability of tossing an 11, the argument being that both numbers
can be partitioned into two numbers between 1 and 6 in one and only one way
(12 can be partitioned into 6 and 6, and 11 into 5 and 6) (Todhunter, 1865/2001,
p. 48). What Leibniz overlooked, of course, was the fact that with a pair of dice,
11 can be obtained with a 5 and 6 in two ways (5 on the first die and 6 on the sec-
ond, or vice versa) whereas 6 and 6 can be obtained in only one. We would not
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expect this kind of error to be committed today by anyone who had studied, and
understood, basic combinatorics.

In his extensive review of work on probability theory from the time of Pascal
to that of Laplace, Todhunter (1865/2001) gives many examples of the intu-
itions—and calculations—of eminent mathematicians that were later shown to
be wrong. Perhaps the most striking example of a distinguished mathematician
several of whose ideas about probability have attracted attention because of their
untenability is D'Alembert. Todhunter says of him, "This great mathematician is
known in the history of the Theory of Probability for his opposition to the opin-
ions generally received; his high reputation in science, philosophy, and literature
have secured an amount of attention for his paradoxes and errors which they
would not have gained if they had proceeded from a less distinguished writer" (p.
258). D'Alembert believed, for example, that the larger the number of consecu-
tive tosses of heads with a coin, the larger the probability of tails on the next
throw (he was not the only mathematician of note to believe this); that the proba-
bility of getting a head at least once in two tosses of a coin was 2/3 (although the
strength of this belief appears to have diminished somewhat over time); that the
outcome probabilities associated with tossing a coin n times are different from
those associated with the tossing of each of n coins once.

Todhunter (1865/2001), who was unsparing in his exposure of what he
deemed suboptimal reasoning, incorrect computation, and obscure exposition
by the major contributors to probability theory through the early 19th century,
saved his most scathing assessment for Condorcet:

We must state at once that Condorcet's work is excessively difficult; the diffi-
culty does not lie in the mathematical investigations, but in the expressions
which are employed to introduce these investigations and to state their results: it
is in many cases almost impossible to discover what Condorcet means to say.
The obscurity and self contradiction are without any parallel, so far as our expe-
rience of mathematical works extends; some examples will be given in the
course of our analysis, but no amount of examples can convey an adequate im-
pression of the extent of the evils. We believe that the work has been very little
studied, for we have not observed any recognition of the repulsive peculiarities
by which it is so undesirably distinguished, (p. 352)

Despite this assessment, Todhunter devotes 60 pages to a discussion, often
critical, of Condorcet's work, which is approximately the same as he devotes to
the work of both Montmort and De Moivre and about 10 pages more than he
gives to that of Laplace. His parting shot regarding Condorcet: "Condorcet
seems really to have fancied that valuable results could be obtained from any
data, however imperfect, by using formulae with an adequate supply of signs
of integration" (p. 410).
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To the extent that inappropriate reasoning under uncertainty is due to a lack
of understanding of certain basic probabilistic and statistical concepts, this
should be correctable by instruction. Even a small amount of training has been
shown to be effective, for example, in reducing the incidence or degree of illu-
sory correlation (L. J. Chapman, 1967; Waller & Keeley, 1978). Nisbett and his
colleagues have presented evidence that formal training in statistics has a posi-
tive effect on the quality of reasoning that people do on probabilistic and statis-
tical problems (Nisbett, Fong, Lehman, & Cheng, 1987; Nisbett et al., 1983).

The teaching of probability and statistics should, I believe, have a high
priority throughout the educational process, and perhaps especially during
relatively early years. Throughout life it is necessary to reason about uncer-
tain events, to make decisions when the information one has about the con-
sequences of specific choices among one's alternatives is incomplete and
probabilistic. A prerequisite of rational behavior in such situations is some
understanding of probability and statistics and an ability to think in these
terms. Inability to think probabilistically necessitates thinking in polar, di-
chotomous terms and maintaining oversimplified views of natural and so-
cial phenomena. Misconceptions about probabilistic events that appear to
be quite pervasive and difficult to correct among adults might be prevented
if students were taught to think in probabilistic terms while their thinking
patterns are still in the formative and more fluid stages of development. I am
aware of no evidence that probabilistic thinking is beyond the grasp of
grade school students.

I have already noted that Nisbett et al. (1983) have presented evidence for
the hypothesis that whether people use appropriate statistical reasoning de-
pends on such factors as the clarity of the sample space and the sampling pro-
cess, whether the reasoner recognizes the role of chance in the situation of
interest, and whether there is a cultural or subcultural prescription to reason
statistically about the events in question. Cultural and subcultural prescrip-
tions presumably derive largely from educational institutions and practices.
Probabilistic or statistical reasoning is unlikely to be pervasive in a society un-
less it gets the emphasis it deserves in the society's educational system.

SUMMARY

People are able to estimate statistical properties of events moderately well,
but the accuracy of these estimates can be influenced by irrelevancies and bi-
ases of various sorts.

People have intuitions about the probabilities of events. They recognize
some things, say a family of six children being all girls, to be less probable than
others, say a family of four girls and two boys. These intuitions work fairly well
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in many everyday contexts; they are not very precise, however, and people gen-
erally would not be able to provide a detailed explicit rationale for them.

It is not difficult to construct situations in which people's intuitions will be
misleading. This is especially true of situations that are described with words
that have technical meanings that differ from the common meanings of those
words as they are used in everyday speech.

Lack of understanding of basic concepts such as randomness or event inde-
pendence can support the gambler's fallacy in its various forms and related mis-
conceptions. Failure to make a clear distinction between specific events and
events with specific properties can cause confusion about event probabilities.

In many situations, people tend to extract less information from observa-
tions than there is to be extracted, according to Bayes's rule, and modify exist-
ing beliefs less than they should in the light of new evidence. On the other hand,
they also sometimes appear to attach too much weight to case-specific infor-
mation and to discount the importance of base rates. These results, both of
which have much experimental support, are, at least on the surface, somewhat
inconsistent with each other and remain to be reconciled fully.

What role base rates should play in probabilistic reasoning, and how to deter-
mine what the appropriate base rates are in any given situation are difficult ques-
tions. Some of the work on base-rate neglect has not been sufficiently sensitive to
this fact and has proceeded as though the answers were obvious and unequivo-
cal, but the controversy surrounding the issue makes it clear that they are not.

When probabilistic information is acquired piecemeal over a period of time,
the decisions that people make on the basis of that information, or the conclu-
sions they draw from it, are not independent of the order in which the informa-
tion is obtained. The information that is acquired early can contribute to the
shaping of an initial tentative conclusion that then influences the interpretation
of the information that is subsequently acquired.

Precisely how alternatives are worded, or framed, can influence the selec-
tions people make when asked to choose between events that can be specified
only in probabilistic terms. Some of this influence may be attributable to the
fact that certain expressions are commonly construed to have a meaning in ev-
eryday discourse that differs from the meanings intended in the experimental
situations. Beliefs about the probable outcomes of uncertain events can also be
influenced by illusory assumptions of personal control over chance events.
Memorable personal experiences or vivid accounts of the personal experiences
of others can easily have greater influence on people's beliefs about probabilis-
tic events than dry statistical summaries of large bodies of data.

People have some appropriate intuitions about sample size—an approxi-
mate notion of the law of large numbers, for example—but these intuitions are
not very precise and they appear to be overridden easily in specific instances.
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Predictions about probabilistic events also can be influenced by people's pref-
erences for some events over others.

Estimations of covariation or contingency are often distorted by a propen-
sity to focus on instances of co-occurrence of the events of interest and to ne-
glect to give adequate consideration to those occasions on which one of the
events occurs without the other. The tendency to see correlations where they do
not exist or to overestimate the strength of a contingency relationship has been
recognized in the phenomenon of illusory correlation.

People often overestimate the probability of the conjunction of two or more
events and underestimate the probability of event disjunctions. Estimates of
the probability of the conjunction of two or more events sometimes violate the
principle that the conjunction of events cannot be greater than the probability
of the least probable component event. This conjunction fallacy is especially
likely to occur when the conjunctive event in question is more representative of
the conjunctive set than of the smaller of the component sets.

People appear to rely on a variety of heuristic rules for reasoning about
probabilistic events. These rules appear to work quite well in many of the
probabilistic reasoning situations that people face in everyday life. It has been
possible to design situations in the laboratory in which the same heuristics lead
people to respond in ways that would be considered irrational if viewed in iso-
lation. The question of whether the use of these heuristics is rational when
viewed in the larger context that takes one's total life experience and human
cognitive limitations into account is a matter of debate.

People's limitations in dealing with probabilistic situations appear to derive
from several sources including lack of knowledge of certain concepts and prin-
ciples that are basic to probability theory, computational or capacity limita-
tions, overreliance on simplified rules of thumb that work well in some but not
all contexts, and motivational failures that result in people underperforming
their capabilities because of lack of effort.

Some of these limitations would seem to be addressable by education and
there is evidence that training in probability theory and statistics can improve
the quality of reasoning under uncertainty, especially if that training is de-
signed to exploit and sharpen the intuitions about probability and statistics that
people appear to have even in the absence of training.

To the extent poor reasoning under uncertainty that has been observed in the
laboratory is a motivational problem reflecting an unwillingness to make the
effort necessary to reason well, education is likely to be only a partial answer.
And any educational process that fosters the idea that people can reason well
without effort, about either probabilistic events or anything else, is helping to
perpetuate an unfortunate myth.



CHAPTER

12

Concluding Comments

I ambling, the drawing of lots, and other activities that today we associate
with chance go back to antiquity. Whether the ancients had a concept of chance
that was very close to what is generally meant by chance today is questionable.
The use of chance devices for purposes of divination suggests that users, at least
sometimes, believed the outcomes to be revealing of otherwise hidden truths:
Was the accused party guilty or not? Would the king's army prevail in battle?...

As a mathematical discipline, probability theory is a relative late-comer;
historians of mathematics usually mark its beginning in the middle of the 17th
century, with the work of Blaise Pascal, Pierre de Fremat, and some of their
contemporaries. It was axiomatized only early in the 20th century as a conse-
quence of the work, primarily, of Andrei Kolmogorov. Today well-formed
probability problems generally can be solved straightforwardly with the appli-
cation of the probability calculus, as laid out, for example, by William Feller
(1957, 1966). The usefulness of probability theory has been established be-
yond doubt in numerous contexts and its impact on the sciences, especially
during the 20th century, has been profound.

Despite these facts, the philosophical question of what probability and
closely related entities like chance and randomness really are remains a matter
of debate. All these terms have been given a variety of connotations, so being
explicit about what is intended in specific contexts can help avoid confusion
and misunderstanding. Whatever chance is, it is not the antithesis of lawful-
ness, as the predictability of chance events in the aggregate attests. Probability

436
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paradoxes and dilemmas of various sorts provide interesting opportunities to
study probabilistic reasoning, and have sometimes played important roles in
the development of theories of choice behavior under uncertainty.

Statistics, which began as a strictly descriptive discipline—a means of dealing
with variability, especially in demographic data—evolved over time into an indis-
pensable tool for all the sciences, hard and soft. It is widely used for both descrip-
tive and inferential purposes and, like any powerful tool, is subject to misuses and
abuses of various sorts, either by intent or from an inadequate understanding of the
assumptions on which specific statistical procedures are based.

How good are people's untutored intuitions about probability, chance, ran-
domness, and closely related concepts? Certainly they are far from perfect.
There are numerous examples in the literature of probabilistic intuitions of
even prominent mathematicians that have proved to be wrong. And the evi-
dence that people in general often misjudge probabilities, sometimes system-
atically, is strong. A variety of errors of judgment involving probabilistic
situations that appear to be commonly made have been identified; the gam-
bler's fallacy in various guises, illusory correlations, the conjunction fallacy,
overconfidence in one's own judgments on probabilistic matters, and the con-
firmation bias are cases in point. Others could be mentioned. Confusions in-
volving conditional probabilities—failure to distinguish correctly what is
conditional on what—have often been reported.

It is also the case, however, that some experimental results that have been
widely taken as evidence of faulty probabilistic reasoning can be interpreted in
other ways. Probability problems can very easily be stated incompletely or am-
biguously. The incompleteness or ambiguousness may go unnoticed, and dif-
ferent people may unwittingly make different assumptions about the
statement's intended meaning—and arrive at different problem solutions.

Research on how people make choices under uncertainly has revealed fre-
quent departures from the predictions, or prescriptions, of normative models
that assume that choices are driven by the objective of maximizing expected
utility. Behavioral data have led to the development of alternative accounts of
how people make choices under uncertainty that emphasize the use of specific
heuristic strategies that work effectively in many contexts but that yield unde-
sirable consequences in others; precisely what those heuristic strategies are
and the conditions under which they are effective are matters of continuing re-
search. An unresolved issue is the extent to which many of the findings with
choice tasks in the laboratory generalize to real-world situations of interest.

In sum, as intuitive statisticians, people are neither at a total loss nor remark-
ably facile. They evidence some sound intuitions even without training, but
they also typically display a variety of misconceptions about probabilistic vari-
ables, and problems requiring a more than superficial understanding of proba-
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bility theory are likely to cause significant difficulties. Training in probability
theory and mathematical statistics tends to improve probabilistic reason-
ing—it would be surprising and disheartening indeed if this were not so—but
there are probability problems that can be difficult even for experts, who some-
times disagree regarding what the solutions are. In the final analysis, we are all
pushed back to our intuitions, informed by training or not; we can accept only
what we find plausible. But a motivating premise of this book is that plausibil-
ity that rests on familiarity with the development of probabilistic thinking over
the centuries, with various perspectives that have been offered in recent times,
and with a body of experimental work on the topic is to be preferred to plausi-
bility that rests on uninformed intuition alone.
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hot-hand phenomenon and, 76
small samples and, 301
statistical, 266-267
substantive, 266-267

Null hypothesis significance testing
(NHST), 249-251,426-427
common false beliefs, 250
hot-hand data and, 77

o

Objective probability, 30, 31, 34
vs. subjective, 31

Objectivity, 271
Observer

anthropic principle and, 105-106
reaction to coincidences, 85-87, 91
role in perception of randomness,

58-59

role in signal detection theory, 273
Odds, inverse probability and, 112-114
Opinion polling, 247
Opinions, anchoring and adjustment and,

377
Ordering relationships, 205-207
Outcome certainty, 356
Outcome of interest, 41,44
Outcomes

most likely, 187-197
representation of, 386-387

Outcome uncertainty, 356
Outrage factors, risk and, 310
Overconfidence, 315-316, 317-321,417,

437
artifactual contributions to, 326-328
bases for, 322-325
reducing, 321-322

Overconfidence bias, 324
Overestimation, 288-289, 290-291

of conjunctions, 342

Papers of the Imperial Academy of Sci-
ences in Petersburg, 12

Parade Magazine, 156
Paradoxes, 181-215
Bertrand's, 199-205

of confirmation, 213-214
of expectation, 212-213
inquisitive prisoner, 181-182
intransitivity, 205-208
of lawfulness of chance, 28
of preference, 212
Simpson's, 78, 208-212
St. Petersburg, 182-199, 364,430

expected values, 187-197
most likely outcomes, 187-197
value and utility, 198-199

Parameters, 245-246
Parameters of dispersion, 245
Parsimony, 76
Particle physics, probability and, 16
Partitioning of space, testing for random-

ness and, 62-67
Pascal-Fermat correspondence, 4-10
Pascalian probability theory, 421-422
Pascal's wager, 272
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Percentage pumping, 276-277
Perception

of frequency, 285-287
of randomness, 71-72
risk. See Risk perception

Permutations, vs. combinations, 10
Persistence, 412
Personal involvement

coincidences and, 86-87
decision making and, 396-397
probabilistic judgment and, 428

Personality traits, correlation and,
339-341

Pharoaon, 13
Philosophy of Science, 160
Physical fortune, 198
Physical magnitudes, judging, 328
Physical possibility, vs. metaphysical, 22
Physical probability, 24, 30, 31, 34,45
Physical sciences

probability and, 15-16
statistics and, 235-236

Physical symmetry, 22, 38
Physics

coincidences with mathematics,
96-100

determinism in, 28
probability and, 16
quantum mechanics, 16, 28, 35, 38-39,

236
social, 238
statistics and, 235-236

Planetary orbits, regular polyhedra and,
94-96

Planning fallacy, 290
Platonic solids, planetary orbits and,

94-96
Plausibility, 22-23
Player's dilemma, 156
Plus-plus cell, 334-336
Poisson distribution, 238,251-252
Policy analysis/decisions

accuracy of estimates and, 292
risk assessment and, 305, 313-314

Political arithmetic, 233-236
Polling, 206-207

framing effects, 388
opinion, 247

Polyhedra, planetary orbits and regular,
94-96

Population-size intuitions, 302-303, 331
Possible, 388
Posterior probabilities, 117, 350

base rates and, 402-403
Bayes's rule and, 138,140
conservatism in estimating, 400

PPMs (probabilistic mental models),
381-383

Preconceived norm method, 421
Predicted randomness, vs. discovered,

66-70
Prediction, 292-303

gambler's fallacy, 292-293
lotteries, 298-299
population-size intuitions, 302-303
preferences and, 296-298
probability matching analogues,

293-296
sample-size intuitions, 299-302
vs. attribution, 411

Preference reversal, 366
Preference(s)

paradoxes of, 212
prediction and, 296-298, 330

Premise conversion error, 352
Primacy effects, 284, 412-413, 434
Principle of equivalence, 92-93
Principle of insufficient reason, 139,186
Principle of invariance, 365-366
Principle of maximum entropy, 139
Prior probabilities, 350

base rates and, 122-136,409
in Bayesian reasoning, 401-405
cab-color problem and, 122-132
coincidences and, 86
disease diagnosis and, 132-134
finding, 119-120
relevance and, 134-136
sensitivity to, 120-122

Prisoner's dilemma, 215-221
related problem, 221-222

Probabilistic judgment/reasoning, ix-x,
19, 23-24,414-430
bases of erroneous probabilistic think-

ing, 425-429
conservatism in, 399-401
effect of education on, 431-433
as evidence of irrationality, 418-419
quality of, 414-430
rationality and, 418-424
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Reformation/Counter-Reformation
and, 2-3

uncertainty regarding task perception,
424-425

use of intuition in, 429-430,438
Probabilistic mental models (PPMs),

381-383
Probabilistic reasoning problems

aces and kings problem, 160-170
average family-average child puzzle,

150-151
coin toss, 143-147, 149,179-180
die toss, 180
king's folly, 147-149
Martingale, 151-153
secretary selection problem, 154-155
sibling gender problem, 155-157
sisters and brothers problem, 176-179
three card problem, 157-160
two aces and a jack problem, 170-176

Probability
aleatory, 31,32
Baconian, 422-423
Bayesian, 25
conditional. See Conditional probabili-

ties
connotations of, 22-25
defining, 17-30
determinism and, 25-28
development of

de Moivre and, 11-12
deterrents to, 2
early theorists, 10-14
games of chance and, 1-4,13
Montmort and, 11
Pascal-Fermat correspondence and,

4-10
statistics and, 21

education in, 431-433,435
epistemological, 31
as explanatory concept, 258
frequentist view of, 32-33, 119-120
gambling sense of, 22-23
inductive, 31, 35
intuition and, 24,199
judgmental, 34-35
judgments of, 23-24, 34-35
limit theorem of, 12, 13
logical, 24
mathematical, 22,29-30

objective, 31
Pascalian, 421-422
physical, 24
plausibility and, 22-23
posterior. See Posterior probabilities
practical applications, 14-17
prior. See Prior probabilities
randomness and, 80
rules and, 29
as state of mind, 20,23
statistical, 22
subjective, 24, 31, 119, 387-388
uncertain knowledge and, 37-39
vs. degree of confidence, 22

Probability calculus, 436
Probability matching analogues, 293-296
Probability-matching experiments, 363
Problem of points, 9-10
Problem statements, ambiguity in, 425
Procedure invariance, 365-366
Processes, random, 59-60
Production, of randomness, 71-72
Products, random, 59-60
Propensity, 22

semantics, 25
Proper scoring rules, 391-394
Prospect theory, 311, 370
Psychological experiments, design of, 81
Psychology

hybrid inference and, 270
signal detection theory and experimen-

tal, 272-273
statistical hypothesis testing and, 235
statistical inference and, 265, 266,

281-282
Public goods, social dilemmas and,

225-228
Public health statistics, 237-238
Public opinion, framing effects and, 388
p values, 426-427
Pyramids, coincidence and, 93-94

Q
Quantum mechanics, 16, 28, 35, 38-39,

236
Question wording, 346

framing effects, 388
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R

Radicalism, 320. See also Overconfi-
dence

Radioactive decay, 15-16,79
Raffling, 13
Random mass phenomena, 236-237
Randomness, 54-81

defining, 55-59
event independence and, 72-81
perceiving structure in, 427
perception of, 71-72,424-425
processes, 59-60
production of, 71-72
products, 59-60
quantitative theories of, 2
testing for, 59, 60-70

as contingent property, 61-66
predicted v$. discovered random-

ness, 66-70
vs. irregularity, 41

Random sampling, base rates and, 407
Rational choice models, 360-361
Rational dilemma, 228-230
Rationality, 199

bounded, 382
of decision making behavior,

363-364, 367-368
social dilemmas and, 227
statistical rule and, 419-424
subjective expected utility and, 214
theory of bounded, 369
use of heuristics and, 379
use of superficial strategies and,

428-429
Reality, meaning of mathematical de-

scription of, 99-100
Reason, principle of insufficient, 139
Reasonableness, 199
Reasoning

circle of, 39
passive approach to, 427-428
probabilistic. See Probabilistic

judgment/reasoning
Recency effects, 284
Reciprocally altruistic behavior, 217
Rectangular distribution, 245
Recursive formula, 58

Reformation, probabilistic thinking and, 2-3
Regression to the mean, 252-256,414
Regularities, as result of design, 240-241
Rejection-support (RS) testing, 77
Relative frequency, 31,34-35, 38,45

availability and, 372, 380
in cab-color problem, 131
confidence and, 324
estimating, 285-287
probability and, 23

Relevance, as issue in Bayesian analysis,
134-136

Religion, anthropic principle and, 105-106,
107

Representativeness, 373-375
Representative sampling, 247
Researches into the Mathematical Principles

of the Theory of Wealth (Cournot), 16
Research results, interpretation of, 283. See

also Estimation; Prediction
Resolution, 315, 316
Responsibility for uncertain events, 396
Reversal paradox, 208-212
Rgveda Samhita, 2
Risk

acceptability of, 309-312
endowment effect and, 389-390
estimation of, 50-51
normative models of decision making un-

der, 358-359
reporting, 314

Risk assessment, 292, 303-304, 331
psychological research on, 305
understanding, 313-314

Risk aversion, 310-311
Risk communication, 303, 312-314
Risk estimation, 307-309
Risk information, 303
Risk of measurable uncertainty, 356
Risk perception, 303, 313-314, 331

psychological research on, 305
of relative seriousness of specific risks,

306-307
vs. risk acceptability, 309

Risky-shift phenomenon, 311-312
Rules

admissible scoring, 391-394
Bertrand's paradox, 201-202
in cards problems, 164-169, 171-173
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probability theory and, 29

s
Saliency, base rates and, 407,408
Sample/sampling, 246

average and, 151
bias in, 279
error in, 244, 269
representative, 247

Sample size, 257
generalizing from small, 396-397
illusory correlation and, 340-341
intuitions regarding, 299-302, 331,

434
law of large numbers and, 185

Sample-to-population ratio, 302-303
Sanitary statistics, 237-238
Scenario thinking, 344
Science

coincidences in, 91-103
Kepler's spheres, 94-96
large-number coincidences,

100-101
between mathematics and physics,

96-100
See also Physics

Science, 89
Scientific determinism, 26
Scientific thinking, probability and, 16
Second cosmic number, 100-101
Secretary selection problem, 154-155
Selection fallacy, 89
Selectivity

coincidences and, 87
randomness and, 69-70

Self-evaluation, 314-330
confidence and judgment difficulty,

325-326
contraction bias, 328-329
hyperprecision effect, 329-330
overconfidence, 315-316, 317-321,

326-328
artifactual contributions, 326-328
bases for, 322-325
reducing, 321-322

underconfidence, 315-316, 326-328
Self-interest, in ultimatum game, 223-225
Semantics

betting, 25
frequency, 25

Sibling gender problem, 155-157
Signal detection theory, 272-274, 280,

413
Significance test, 266, 270-271
Simpson's paradox, 78, 208-212
Single-reason decision making, 384
Sisters and brothers problem, 176-179
Skewed distribution, 265, 284
Social context, response to risk and, 310
Social dilemmas, 225-228, 230. See also

Prisoner's dilemma
Social numbers, 233-234
Social physics, 238
Social statistics, 233-235
Social trap, 225, 227
Sociological research, hybrid inference

and, 270
Space

quantizing, 201-204
randomness and partitioning of, 62-67

Spherical-gain rule, 391-393
Sports, hot-hand phenomenon, 73-79
St. Petersburg paradox, 182-199, 364,

430
expected values and, 187-197
most likely outcomes, 187-197
value and utility and, 198-199

Stakes-division problem, 3,4-10
Standard deviation, 245
States of mind

probability as, 23
probability statements and, 20

States of the world, normative models of
decision making and, 359-360

Statistical artifacts, 326-329
Statistical description, 244-246
Statistical determinism, 239-240
Statistical heuristics, 417
Statistical hypothesis testing, 235, 244,

247-251. See also Hypothesis testing
Statistical judgments, 23
Statistical Methods for Research Workers

(Fisher), 266, 268
Statistical null hypothesis, 266-267. See

also Null hypothesis
Statistical probability, 22

vs. judgmental, 30-39
Statistical regularity, 236-241
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determinism and, 26-27
Statistical thinking, bases of erroneous,

425-429
Statistics, 437

ambiguity in statistical assertions,
274-279

birth of, 233-236
education in, 431-433,435
error, 242-244
law of large numbers. See under Laws
probability theory and, 21
sanitary, 237-238
social, 233-235
statistical explanation, 251-264

identification of underlying sto-
chastic processes,
260-263

regression to the mean, 252-256
in service of argument, 263-264
vs. causal, 256-260

statistical inference theories, 265-274
Bayesian inference, 269
Fisherian inference, 266-268
hybrid inferential statistics,

269-272
Neyman-Pearson inference,

268-269
signal detection theory, 272-274

as theory of mind, 279-281
use of, 244-251

statistical description, 244-246
statistical estimation, 246-247
statistical hypothesis testing,

247-251
variability, 242-244

Status quo, anchoring and, 377
Stereotyping, 339
Stirling's approximation, 193
Stochastic processes, 260-263
Strategy, difficulty in convincing people

to use optimal, 293-296
Streaky performance, 74-79
Structure, discovery of, 62-70, 427
Subjective expected utility theory, 222
Subjective probability, 24, 30, 31, 34,

35-37, 387-388
application to single events, 324
Bayes's rule and, 119-120
vs. objective, 31

Substantive goodness, 414-415

Substantive null hypothesis, 266-267
Summa de Arithmetic, Geometria et

Proportionalita (Paccioli), 3
Symbolic utility, 220

Take the Best heuristic, 384
Task perception, uncertainty regarding,

424-425
autological probability, 24
Taxicab problem, 122-132, 374-375,407
Temporal uncertainty, 81
Tertile estimation procedure, 329-330
Testing, for randomness, 60-70. See also

Hypothesis testing
Theorems, probability functions, 29
Theorie Analytique des Probabilites

(Laplace), 14
Theory of bounded rationality, 369
Theory of Games and Economic Behavior

(von Neumann & Morgensterns), 358
Thermodynamics, second law of, 42-43
Third Harbor Tunnel project, 287-288
Three cards problem, 157-160
Time, estimating, 287-291
Time magazine, 83
Tit-for-tat strategy, in prisoner's dilemma,

217-218
Tools-to-theories transactions, 280
Trade-offs, decision making and, 358
Tragedy of the commons, 225-226, 227
Transactions, 233
Transfer-of-inference problem, 205
Treize, 13
Triangles, wave phenomena and, 99
Two aces and a jack problem, 170-176
Two-by-two contingency tables, 210
200% of Nothing (Dewdney), 276
Type I error, 77, 249
Type II error, 77, 249
Type II rationality, 230

u

Ultimatum game, 222-225
Uncertainty, 291-292, 356
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Underconfidence, artifactual contributions
to, 326-328

Underestimation, 288-291
of disjunctions, 342-343
motivating factors, 289-290
of personal risk, 308-309

Unidimensional variables, 205-206
Uniqueness, 46-48
Unmeasurable uncertainty, 356
Unpredictability, randomness and, 55, 56,

72
Utility, 357

maximization of expected, 360-369,
437

quantification of, 362-365
rationality and subjective expected,

214
symbolic, 220
vs. value, 198-199, 357, 365

V

Vaccination, probability theory and, 15
Value(s)

decision making and, 368, 369
response to risk and, 310
social dilemmas and, 227
V5. utility, 198-199, 357, 365

Variability, 232,242-244
estimates of, 284-285

Variables
contingency relations between,

333-337

distribution of, 244-246
illusory correlation, 338-341
multidimensional, 206
unidimensional, 205-206
See also Covariation

Variance, analysis of, 266
Variation

chance, 33
law of genuine, 242-243

Verisimilitude, 22
Voting, 15, 206-207

w
War, occurrence of, 251-252
Water, coincidence and properties of, 102
Wave phenomena, triangles and, 99
Wealth, utility and, 198, 357
Weather forecasting, 292, 322
Weight of evidence, 136-137, 320
Whist, 13
Win-stay lose-shift strategy, in prisoner's

dilemma, 218
Within limits, sample size and, 302
Worlds in Collision (Velikovsky), 90

Yes-no situations, 355-356
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