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CHAPTER 1

Introduction

1.1 Theory, Modeling, and Implementation

This book tries to give a balanced representation of the theoretical foundations of
mathematical finance, especially derivative pricing, state-of-the-art models, which are
actually used in practice, and their implementation.

In practice, none of the three aspects—theory, modeling, and implementation—
can be considered alone. Knowledge of the theory is worthless if it isn’t applied.
Theory provides the tools for consistent modeling. A model without implementation
is essentially worthless. Good implementation requires a deep understanding of the
model and the underlying theory.

With this in mind, the book tries to build a bridge from academia to practice and
from theory to object-oriented implementation.

1.2 Interest Rate Models and Interest Rate
Derivatives

The text concentrates on the modeling of interest rates as stochastic (undetermined)
quantities and the evaluation of interest rate derivatives under such models. However,
this is not a specialization! Although the mathematical modeling of stock prices
was the historical starting point and interest rates were assumed to be constant, some
important theoretical aspects are significant only for stochastic interest rates (e.g. the
change of numéraire technique). So for didactic reasons it is meaningful to start with
interest rate models. Another reason to start with interest rate models is that interest
rate models are the foundation of hybrid models. Since the numéraire, the reference
asset, is most likely an interest-rate-related product, a need for stochastic interest
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rates implies the need to build upon an interest rate model; see Figures 1.1 and 1.2.
We will do so in Chapter 29, Nevertheless, the first model studied will be, of course,
the Black-Scholes model for a single stock, after which we will move to stochastic

interest rates.

Figure 1.1. Hybrid Models: The numéraire, the reference asset in the modeling of
price processes, is most likely an interest rate product. This choice is not mathemat-
ically necessary but common for almost all models. Interest rate processes are the
natural starting point for the modeling of price processes.

Black-Scholes Model

Equity Hybrid LIBOR Market Model

Figure 1.2. The Black-Scholes model may be interpreted as a hybrid model with
deterministic interest rates. The solution of dB(t) = rB(t)dt is B(Q) exp(r 1), i.e. it is
deterministic and given in closed form. Thus the interest rate component is trivial.
Within a LIBOR market model the interest rate is a stochastic quantity. This also
changes properties of the stock process.
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1.3 About This Book
1.3.1 How to Read This Book

The text may be read in a nonlinear way, i.e., the chapters have been kept as free-
standing as possible. Chapter 2 provides the foundations in the order of their depen-
dence. The reader familiar with the concepts of stochastic processes and martingales
may skip the chapter and use it as reference only. To get a feeling for the mathe-
matical concepts, one should read the special sections Interpretation and Motivation.
Readers familiar with programming and implementation may prefer Chapter 13 as an
illustration of the basic concepts.

The appendix gives a selection of the results and techniques from diverse areas
(linear algebra, calculus, optimization), which are used in the text and in the imple-
mentation, but which are less important for understanding the essential concepts.

1.3.2 Abridged Versions

For a crash course focusing on particular aspects some chapters may be skipped.
What follows are a few suggestions in this direction.

1.3.2.1 Abridged version “Monte Carlo Pricing”

Foundations (Chapter 2) — Replication (Chapter 3)
— Black-Scholes Model (Chapter 4)
— Discretization / Monte-Carlo Simulation (Chapter 13)

1.3.2.2 Abridged version “LIBOR Market Model”

Foundations (Chapter 2) — Replication (Chapter 3)

— Interest Rate Structures (Chapter 8) — Black Model (Chapter 10)
— LIBOR Market Model (Chapter 19)

— Instantaneous and Terminal Correlation (Chapter 21)

— Shape of the Interest Rate Curve (Chapter 25)

1.3.2.3 Abridged version “Markov Functional Model”

Foundations (Chapter 2) — Replication (Chapter 3)

— Interest Rate Structures (Chapter 8) — Black Model (Chapter 10)
— The Density of the Underlying of a European Option (Chapter 5)
— Markov Functional Models (Chapter 27)
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1.3.3 Special Sections

The text contains special sections giving notes on interpretation, motivation, and
practical aspects. These are marked by the following symbols:

1
I
|
]

s i i 5

Interpretation:  Provides an interpretation of the preceding topic.
Casts light on purposes and practical aspects. <|

Motivation: Provides motivation for the following topic. Sometimes
notes deficiencies in the previous results. <l

Further Reading: Suggested literature and associated topics. <

Experiment: Guide for a software experiment where aspects of the
preceding topic can be explored. <j

Tip:  Hiws for practical use and software implementation of the
preceding topics. <l

1.3.4 Notation

We will model the time evolution of stocks or interest rates with random variables
parametrized through a time parameter ¢. Such stochastic processes may depend on
other parameters like maturity or interest rate period. We will separate these two
different kinds of parameters by a semicolon—see Figure 1.3.
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Maturity
Observation time
r State
F(T; t, w) F(T; 1) F(T) F
Value Random Stochastic Interest Rate
Variable Process Curve

Figure 1.3. On the notation.

1.3.5 Feedback
Please help to improve this work! Please send error reports and suggestions to
Christian Fries <email@christian-fries.de>.

Thank you.

1.3.6 Resources

In connection with this book the following resources are available:

o Interactive experiments and exercises: (
http://www.christian-fries.de/finmath/applets —
q —
e Java™ source code:
http://www.finmath.net/ Jam\fa

e Figures (in Color): The figures in this book are reproduced in black and white.
The original color figures may be obtained from
http://www.christian-fries.de/finmath/book

e Updates: For updates and error corrections see
http://www.christian-fries.de/finmath/book/errata
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CHAPTER 2

Foundations

2.1 Probability Theory

Definition 1 (Probability Space, o Algebra):
Let Q denote a set and # a family of subsets of Q. ¥ is a o-algebra if

1.0eF.
2. FeF = Q\Fe¥F.
3. Fl.F3,F3,... € F = QF,—e?—'.

The pair (Q, F) is a measurable space. A function P : ¥ — [0, 00) is a probability
measure if

1. P@) =0, P(Q)=1.
2. For Fy, F2, F3,... € ¥ mutually disjoint (i.e. i # j = F;NF; = 0), we have
P(U F,«J = > P(F).
=1 i=1

The triple (Q, ¥, P) is called probability space (if instead of 1 we require only
P(0) = 0, then P is called measure and (Q, ¥, P) is called measure space). 1
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Interpretation: The set Q may be interpreted as the set of elementary
events. Only one such event may occur. The subset F C ) may then
i be interpreted as an event configuration, e.g. as if one asked only for a
specific property of an event, a property that might be shared by more
than one event. Then the complement of a set of events corresponds to the negation
of the property in question, and the union of two subsets F, F; C Q corresponds to
combining the questions for the two corresponding properties with an “or”. Likewise
the intersection corresponds to an “and”: only those events that share both properties
are part of the intersection. A g-algebra may then be interpreted as a set of properties,
e.g., the set of properties by which we may distinguish the events or the set of
properties on which we may base decisions and answer questions. Thus the o--algebra
may be interpreted as information (on properties of events).
Thus a probability space (Q, 7, P) may be interpreted as a set of elementary events,
a family of properties of the events, and a map that assigns a probability to each
property of the events, the probability that an event with the respective properties will
occur. <)

1
|
| ! |
|
1

Since conditional expectation will be one of the central concepts, we remind the
reader of the notions of conditional probability and independence.

Definition 2 (Independence, Conditional Probability):
Let (2, 7, P) denote a probability space and A, B € .

1. We say that A and B are independent, if
P(A N B) = P(A) P(B).

2. For P(B) > 0 we define the conditional probability of A under the hypothesis B

as
P(AN B)

PB) J

The Borel o-algebra B(R) or B(R") plays a special role in integration theory. We
define it next.

P(A|B) :=

A

Definition 3 (Borel o-Algebra, Lebesgue Measure):
LetneNanda; < b; (i = 1,...,n). By B(R") we denote the smallest o-algebra for

which
(a1,b1) X -+ X (ap, by) € BR").

B(R") is called the Borel o-algebra. The measure A defined on B(R") with

A(@1,b1) % - X (an, b)) = [ [bi - @)
i=1

is called a Lebesgue measure on B(R"). J

10
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Remark 4 (Lebesgue Measure): Obviously the Lebesgue measure is not a proba-
bility measure on (R", B(R")) since A(R") = oo. It will be needed in the discussion of
Lebesgue integration and we give the definition merely for completeness.!

Definition 5§ (Measurable, Random Variable): 7
Let (Q,F) and (S, S) denote two measurable spaces.

1. Amap T : Q — § is called (¥, S)-measurable if?
T'(A)e F forallA e S.
T : Q- S isa(F,S)-measurable map we write more concisely

T:(Q,F)—(S,S).

2. A measurable map X : (Q,F) — (S,8) is also called a random variable. A
random variable X : (Q,F) — (S,S8) is called a n-dimensional real-valued
random variable if S = R" and S = B(R").

.

We are interested in the probability for which a given random variable attains a
certain value or range of values. This is given by the following definition.

Definition 6 (Image Measure): 1

Let X : (Q, F) — (5,8) denote a random variable and P a measure on the measure-
able space (Q, ). Then

Px(A):= P(X"'(A)) VYAeS

defines a probability measure on (S, S), which we call the image measure of P with
respect to X. g

1 Interpretation: A real-valued random variable assigns a real value

: | (or vector of values) to each elementary event w. This value may be
i J' interpreted as the result of an experiment, depending on the events. In
our context the random variables mostly stand for payments or values

of financial products depending on the state of the world. How random a random
variable is depends on the random variable itself. The random variable that assigns
the same value to all events w exhibits no randomness at all. If we could observe

! The Lebesgue measure measures intervals (n = 1) according to their length, rectangles (n = 2)
according to their area, and cubes (n = 3) according to their volume.
2 We define THA) 1= (0 € Q| T(w) € A).

11
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only the result of such an experiment (random variable), we would not be able to say
anything about the state of the world w that led to the result.

The image measure is the probability measure induced by the probability measure
P (a probability measure on (2, ¥)) and the map X on the image space (S, S).

The property of being measurable may be interpreted as the property that the
distinguishable events in the image space (5, S) are not finer (better distinguishable)
than the events in the preimage space (€2, 7). Only then it is possible to use the
probability measure P on (L2, F) to define a probability measure on (5, S), see

ﬁ%’ NG ‘ -

Q F X Z

Figure 2.1. Illustration of measurability: The random variables X and Z assign
a gray value to each elementary event w, . ..,wio as shown. The o-algebra F is
generated by the sets F1 = {w, wz, w3}, F2 = {w4, ws, we), F3 = {w1,..., w10} The
random variable X is measurable with respect to F, the random variable Z is not
measurable with respect to F .

Exercise: Let X be as in Definition 6. Show that
XA 1AeS)

is a o-algebra. What would be an interpretation of X~!(4)?

Motivation: We will now define the Lebesgue integral and give an
interpretation and a comparison to the (possibly more familiar) Riemann
integral.

The definition of the Lebesgue integral is not only given to prepare
the definition of the conditional expectation (Definition 15). The definition will also
show the construction of the Lebesgue integral and we will later use similar steps to
construct the It6 integral. <

12
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Definition 7 (Integral, Lebesgue Integral): 1
Let (Q, ¥, u) denote a measure space.

1. Let f denote a (¥, B(R))-measurable real-valued, nonnegative map. f is called
an elementary function if f takes on only a finite number of values ay, . . ., a,.
For an elementary function we define

n

d = i A,‘
fﬂ fl) du(w) = ) ap(A)

i=1
where A; := f~'({a;}) (= A; € F)? as the (Lebesgue) integral of f.
2. Let f denote a nonnegative map defined on €, such that a monotonically

increasing sequence (uy)ren of elementary maps with f := sup u, exists. Then
keN

f f(w) dp(w) := sup f ur(w)du(w)
Q keN JQ

is unique and is called the (Lebesgue) integral of f.

3. Let f denote a map on € such that we have for f* := max(f,0) and f~ :=
max(—f, 0), respectively, a monotone increasing sequence of elementary maps
as in the previous definition. Furthermore we require that fQ f*du < oo, Then
f is called integrable with respect to ¢ and we define

e fgf*du—fnf‘du

as the (Lebesgue) integral of f.

J

Remark 8 ( f f(x) dx, f f() dr): If the measure y is the Lebesgue measure p = A
we use the shortened notation

dAa =: dx.
fA (0 dA) fA £ dx

In this case Q = R" and we denote the elements of Q by latin letters, e.g. x (instead of
w). If the elements of () = R have the interpretation of a time we usually denote them
by .

* We have (@ — },a; + 1) € BR) by definition. Then {a;} = A (a; = §,0,+ 1) € B®).

13
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Theorem 9 (measurable < integrable for nonnegative maps): For a non-negative
map f on Q) a monotone increasing sequence {u)ren Of elementary maps with f =
SUPe Ui exists if and only if f is F-measurable.

Proof: See[l], §12. Ol

Interpretation:  To develop an understanding of the (Lebesgue)
integral we consider its definition for elementary maps:

n

fg f)duw) = Y ap@A), A= fda.

i=1

The Lebesgue integral of an (elementary)
map f is the weighted sum of the function val-
ues g; of f, each weighted by the measure p(A;)
of the set on which this value is attained (i.e.,
A; = [T dai})).

If in addition we have p(Q) = 1, where Q is

I
a2 [ 2. 03 the domain of f, then the integral is a weighted
Iiiiéiﬁ -dj.- er 03 average of the function values g; of f.
For a real-valued (elementary) function of a
real-valued argument, e.g., f : [a,b] = R, and

the Lebesgue measure, the integral corresponds to the naive concept of an integral as
being the sum all rectangles given by

[y
|

5=74

base area (Lebesgue measure of the interval) x  height (function value)

which is also the concept behind the Riemann integral.
Part 2 and 3 of Definition 7 extend this concept via a limit approximation to more
general functions. 4

Excursus: On the Difference between Lebesgue and Riemann
Integrals*

The construction of the Lebesgue integral differs from the construction of the Riemann
integral (which is perhaps more familiar) in the way the sets A; are chosen. The
Riemann integral starts from a given partition of the domain and multiplies the

4 An understanding of the difference between the Lebesgue and Riemann integrals does not play a major
role in the following text. The excursus can safely be skipped. It should serve to satisfy curiosity, e.g.,
if the concept of a Riemann integral is more familiar.

14
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Riemann Integral Lebesgue Integral

Y

2« 0.3
4 04

1

k —_—
: =
2

Figure 2.2. Lebesgue integral versus Riemann integral.

size of each subinterval by a corresponding functional value of (any) chosen point
belonging to that interval (e.g., the center point). The Lebesgue integral chooses the
partition as preimage f“({a,-}) of given function values a;. In short: the Riemann
integral partitions the domain of f, the Lebesgue integral partitions the range of f. For
elementary functions both approaches give the same integral value; see Figure 2.2. For
general functions the corresponding integrals are defined as the limit of a sequence of
approximating elementary functions (if it exists). Here, the two concepts are different:
In the limit, all Riemann integrable functions are Lebesgue integrable, and the two
limits give the same value for the integral. However, there exist Lebesgue integrable
functions for which the Riemann integral is not defined (its limit construction does
not converge).

B

Definition 10 (Distribution):
Let P denote a probability measure on (R, B(R)) (e.g., the image measure of a random
variable). The function

Fp(x) := P((=00,x))

is called the distribution function® of P. If P denotes a probability measure on
(R™, B(R™)) the n-dimensional distribution function is defined as

Fp(xi,...,x) := P((—00,x1) X -+ X (=00, x,,) ).

5 We have (—oo, x) € B(R) since (—co, x) = U2 (x — i, x), see Definition 1.
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The distribution function of a random variable X is defined as the distribution function
of its image measure Py (see Definition 6). J

Definition 11 (Density): 1
Let Fp denote the distribution function of a probability measure P. If Fp is differen-
tiable, we define
P(x) = aﬁF P(x)
x
as the density of P. If P is the image measure of some random variable X, we also
say that ¢ is the density of X. )

Remark 12 (Integration Using a Known Density/Distribution): To calculate the
integral of a function of a random variable (e.g., to calculate expectation or variance),
it is sufficient to know the density or distribution function of the random variable. Let
g denote a sufficiently smooth function and X a random variable on (Q, 7, P); then
we have

f sX(w)) dP(w) = f g(x) dFp,(x) = f g(0$(x) dx,

Q —00 —00

where Fp, denotes the distribution function of X and ¢ the density of X (i.e., of Py).
In this case it is neither necessary to know the underlying space €, the measure P,
nor how X is modeled (i.e., defined) on this space.

B

Definition 13 (Independence of Random Variables):
LetX : (QF) > (5,8 and Y : (Q,F) - (S,S) denote two random variables. X
and Y are called independent, if for all A, B € S the events X~ '(A) and Y !(B) are
independent in the sense of Definition 2. a

Remark 14 (Independence): Fori = 1,...,nlet X; : Q — R denote random
variables with distribution functions Fy, and let Fix,  x,) denote the distribution
function of (Xy,...,X,) : @ — R". Then the X; are pairwise independent if and only
if

Fox x)(Xt, .., %) = Fx,(x1) ... Fx,(x,).

Definition 15 (Expectation, Conditional Expectation):
Let X denote a real-valued random variable on the probability space (Q, 7, P).

1. If X is P-integrable, we define
Ef(X) := f Xdp
Q

as the expectation of X.

16
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2. Furthermore, let F; € ¥ with P(F;) > 0. Then

P N e 1
EF(X|F) = D fF iXdP

is called the conditional expectation of X under (the hypothesis) F;.

-

Theorem 16 (Conditional Expectation®): Let X denote a real-valued random
variable on (Q, #, P), either nonnegative or integrable. Then we have for each o-
algebra C C ¥ a nonnegative or integrable real-valued random variable Xc on Q,
unique in the sense of almost sure equality,7, such that X, is C-measurable and

VCeC : f Xc dP = f XdP, ie., EP(X|C)=EF(XcIC).
C C

We will discuss the interpretation of this theorem after giving a name to X¢:

Definition 17 (Conditional Expectation (continued)): 1
Under the assumptions and with the notation of Theorem 16 we define:

1. The random variable X is called the conditional expectation of X under (the
hypothesis) C and is denoted by

EP(XIC) := Xc. 2.1

2. Let Y denote another random variable on the same measure space. We define:
EP(X1Y) := E(Xlo(Y)), (22)

where o (Y) is the o-algebra generated by Y, i.e., the smallest o-algebra, with
respect to which Y is measurable, i.e., o(Y) := o(¥Y “1(8).

Interpretation: First note that the two concepts of expectations from
Definition 15 are just special cases of the conditional expectation defined

1
I
' in Definition 17, namely:

( ]
N
o Let C=1{0,Q}. Then E(X|C) = X¢ where Xc(w) =E(X) Vwel.

6 See [2), Chapter 15
7 A property holds P-almost surely if the set of w € Q for which the property does not hold has measure
zero.

17
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E(X | F) ifweF
EX|Q\F) ifweQ\F’

with E(X) = P(F) E(X|F) + (1 - P(F)) E(XIQ\ F)

The conditional expectation is a random variable that is derived from X such that
only events (sets) in C can be distinguished. In the first case we have a very coarse C
and the image of Xj; contains only the expectation E(X). This is the smallest piece of
information on X. As C becomes finer, more and more information about X becomes
visible in X,c. Furthermore, if X itself is C-measurable, then X and X|¢ are (P-almost
surely) indistinguishable.

e For C = {0, F,Q\ F,Q} we have Xc(w) = {

X c E(X|C)

Figure 2.3. Conditional expectation: Let the o-algebra C be generated by the sets
C) = {w, w2, w3}, Cy = {wy, ws, we}, C3 = {wr, ..., w0}

In this sense C may be interpreted as an information set and X|¢ as a filtered version
of X. If it is only possible to make statements about events in C, then we can only
make statements about X which could also be made about X|¢, see Figure 2.3. <l

2.2 Stochastic Processes

Definition 18 (Stochastic Process): 7
A family X = {X, | 0 <t < oo} of random variables

X (Q,F)—=(S,S)

is called (rime continuous) stochastic process. If (S,8) = (R4, B(RY)), we say that
X is a d-dimensional stochastic process. The family X may also be interpreted as a
X:[0,00)XxQ — §:

X(t, w) = X (w) Y (t, w) € [0, 00) X Q.
If the range (S, S) is not given explicitly, we assume (S, S) = (R?, BR)). 4

18
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o | Interpretation: The parameter ¢ obviously refers to time. For fixed
|t €]0,00) we view X(#) as the outcome of an experiment at time ¢. Note
9 J' that all random variables X(¢) are modeled over the same measurable
space (€2, 7). Thus we do not assume a family (€, ;) of measurable
spaces, one for each X;. The stochastic process X assigns a path to each w € Q: For a
fixed w € Q the path X(-, w) := {(t, X(t, w)) | t € [0, )} is a sequence of outcomes of
the random experiments X; (a trajectory) associated with a state w. Knowledge about
w € § implies knowledge of the whole history (past, present, and future) X(w).
To model the different levels of knowledge and thus distinguish between past and
future, we will define in Section 2.3 the concept of a filtration and an adapted process.

<
Definition 19 (Path): 1
Let X denote a stochastic process. For a fixed w € Q the mapping ¢ — X(t,w) is
called the path of X (in state w). a

A

Definition 20 (Equality of Stochastic Processes):
We define three notions of equality of stochastic processes:

1. Two stochastic processes X and Y are called indistinguishable if

2. A stochastic process Y is a modification of X if

PX,=Y)=1:VY0<t<oo.

3. Two stochastic processes X and Y have the same finite-dimensional distribu-
tions, if

Vn: ¥V0<y<h<---<tpb<oo: YAEB(ESH:
P((X;,.... X)) €A) = P((Y;,...,Y,) € A).

)

Remark 21 (On the Equality of Stochastic Processes): While in Definition 20.3
only the distributions generated by the processes are considered, Definitions 20.1
and 20.2 consider the pointwise differences between the processes. The difference
between 20.1 and 20.2 will become apparent in the following example:

Let Z : (R,BR)) — ([-1,1]1,8([-1, 1]) be a random variable on (Q,F,P) =
R,B,1)and r — X(1) := t- Z be a stochastic process.8 Let P({Z € A}) = P({—-Z € A)})

8 An interpretation of this process would be the position of a moving particle, having at time O the
position 0 and the random speed Z.

19
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VAeB(-1,1])and P{Z = x}) =0V x € [-1, 1], e.g., an equally distributed Z.
Furthermore let V (¢, w) € [0,00) X R

X(t,w) fort+w

, Yo (t, w) = —-X(t, w).
-X(t,w) fort=w 20t w) )

Yi(t,w) := {

The Y, is a modification of X, since Yi(z) differs from X(r) (for fixed 1) only
on a set with probability 0. However, X and Y; are not indistinguishable, since
PXO=Y@ : YO<t<o) = % (the two processes are different on 50% of
all paths). Y, is neither indistinguishable nor a modification of X, but due to
P({Z € A}) = P({Z € —A}) YA € B([-1, 1]) it fulfills condition 3 in Definition 20.

To summarize, condition 1 in Definition 20 considers the equality of the processes
X, Y, condition 2 in Definition 20 considers equality of the random variables X(¢),
Y (1) for fixed ¢, and condition 3 in Definition 20 considers the equality of distributions.
In our applications we are interested only in the distributions of processes.

2.3 Filtration

Definition 22 (Filtration): 0
Let (Q, ) denote a measurable space. A family of o-algebras {F; | ¢ > 0}, where

FCF CF forO<s<t,

is called a filtration on (Q, F). a

Definition 23 (Generated Filtration): 1
Let X denote a stochastic process on (2, 7). We define

FX =0(X;;0<5<0)
:= the smallest o-algebra with respect to which X is measurable V s € [0,7].

-

Definition 24 (Adapted Process): 1
Let X denote a stochastic process on (€, ¥) and {7} a filtration on (Q, ). The
process X is called {#;}-adapted, if X is #;-measurable for all z > 0. J

20
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Figure 2.4. [llustration of a filtration and an adapted process.

I am 1 Interpretation: In Figure 2.4 we depict a filtration of four o-algebras

F - I . . . .
: '+, with increasing refinement (left to right). The black borders surround
' i I the generators of the corresponding o-algebra. If a stochastic process
L J

maps a gray value for each elementary event (or path) w; of Q (left),

then the process is adapted if it takes a constant gray value on the generators of the
respective o-algebra. If at time ¢, the process assigns to wy the same dark gray as to
ws, then the process is adapted, otherwise it is not.

By means of the conditional expectation (see Theorem 16 and the interpretation of
Figure 2.3) we may create an adapted process from a given filtration {F; | ¢ > 0} and
an ¥ -measurable random variable Z:

Lemma 25 (Process of the Conditional Expectation): Let {7, | r > 0} denote a
filtration F; € F; € ¥ and Z an ¥ measurable random variable. Then

X(®) =EZI|¥F)

is a {#,}-adapted process.

This lemma shows how the filtration (and the corresponding adapted process) may
be viewed as a model for information: The random variable X(¢) in Lemma 25 allows
with increasing ¢t more and more specific statements about the nature of Z. Compare
this to the illustrations in Figure 2.1 and 2.3. <
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The concepts of an adapted process only links random variables X(¢) to o-algebras
F; for any ¢. It does not necessarily imply that the stochastic process X (interpreted as
a random variable on [0, c0) X Q) is measurable. A stronger requirement is given by
the following Definition.

Definition 26 (Progressively Measurable): 1

An (n-dimensional) stochastic process X is called progessively measurable with
respect to the filtration {#3} if for each T > 0 the mapping

X:([0,TIxQ, B8(0,T1®F)) — R,BR")
is measurable. g

Remark 27: Any progressively measurable process is measurable and adapted. Con-
versly a measurable and adapted process has a progressively measurable modification;
see [20].

Another regularity requirement for stochastic processes is that of being previsible:

Definition 28 (Previsible Process): 1

Let X denote a (real-valued) stochastic process on (Q,F) and {F;} a filtration on
(Q, 7). The process X is called {F,}-previsible, if X is {F,}-adapted and bounded with
left continuous paths. J

2.4 Brownian Motion

Definition 29 (Brownian Motion): 1

Let W : [0, 00) x Q — R” denote a stochastic process with the following properties:
1. W(0) = 0 (P-almost surely).
2. The map t > W(z) is continuous (P-almost surely).

3. Forgiven fy < f; < - - < 1, the increments W(#;) — W(tp), ..., W(ty) — W(t—1)
are mutually independent.

4. For all 0 < s < t we have W() — W(s) ~ N(O, (t — s)I,,), i.e., the increment
is normally distributed with mean O and covariance matrix (¢ — s)I,,, where I,
denotes the n X n identity matrix.

Then W is called (n-dimensional) P-Brownian motion or a (n-dimensional) P-Wiener
process. J

We have not yet discussed the question of whether a process with such properties
exists (it does). The question for its existence is nontrivial. For example, if we want to
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replace normally distributed by lognormally distributed in property 4 in Definition 29
there would be no such process.” If we set s = 0 in property 4, we see that we
have prescribed the distribution of W () as well as the distribution of the increments
W(r) — W(s).

Remark 30 (Brownian Motion):  Property 4 is less axiomatic than one might
assume: The central requirement is the independence of the increments together
with the requirement that increments of the same time step size ¢ — s have the same
nonnegative variance (here ¢ — s) and mean 0. That the increments are normally
distributed is more a consequence than an requirement, see Theorem 31. This theorem
also gives a construction of the Brownian motion.

LMY

wW(t)
A

M

w - (path)

Figure 2.5. Time discretization of a Brownian motion: The transition AW(T)) :=
W(Ti11)-W(T;) from time T; to Ty, is normally distributed. The mean of the transition
is 0, i.e., under the condition that at time T; the state W(T;) = x* was attained, the
(conditional) expectation of W(T 1) is x*: E(W(Ti) | W(T;) = x*) = x*.

1 Tip (Time-Discrete Realizations): In the following we will often

| consider the realizations of a stochastic process at discrete times 0 =

! I To < Ty <--- < Ty only (e.g., this will be the case when we consider
’ the implementation). If we need only the realizations W(T;), we may
generate them by the time-discrete increments AW(T;) := W(T,,) — W(T}) since from
Definition 29 we have W(T;) = Y.i_{, AW(T}), W(T) := 0. See Figure 2.4. <

9 Note that the sum of two (independent) normally distributed random variables is normally distributed,
but the sum of two lognormally distributed random variables is not lognormal.
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2.5 Wiener Measure, Canonical Setup

The following theorem gives a construction (or approximation) of a Brownian motion.
It defines the Wiener measure and shows that the properties of a Brownian motion are
less axiomatic than one might assume from Definition 29; rather they are consequences
of independence.

Theorem 31 (Invariance Principle of Donsker (1951); see [20] §2): Let (Q,F, P)
denote a probability space and (Yf);.;l a sequence of independent identically dis-
tributed random variables (not necessarily normally distributed!) with mean 0 and

variance 0> > 0. Define §¢ := 0 and S := Z']‘.zl Y;. Let X" denote a stochastic
1

e

process defined as the (scaled) linear interpolation of the S;’s at time steps of size
1
X'#) = ——=((t-n—=[t-nDSpnper +({£- 0] + 1 = 2-1)S 1)),
o \n

where [x] denotes the largest integer number less or equal to x.

A path X"(w), w € Q, defines a continuous map [0, o) — R and X" is (Q, F)
(C([0, )), B(C(]0, 0))))-measurable!®. Let P" denote the image measure of X"
defined on (C([0, o)), B(C([0, 0))). Then we have:

e {P,}2, converges on (C([0, o)), B(C([0, )))) to a measure P* in the weak

sensell.

e The process W defined on (C([0, o)), B(C([0, 0)))) by

W(t, w) := w(t)
is a P* Brownian motion.
Proof: See [20] §2. 0j
Definition 32 (Wiener Measure): 1
The measure P* from Theorem 31 is called Wiener measure. J

Definition 33 (Canonical Setup):

The space
(C(10, 00)), B(C([0, 0)), P7)

10 With C([0, o0)) denoting the space of continuous maps [0, ) +— R endowed with the metric of
equicontinuous convergence d(f,g) = X7, 7',7 lf’;i{ﬂ) with d,(f, 8) = supggc, 1f(t) — ()] (then
(€([0, )), d) is a complete metric space) and B(C([0, =))) denoting the Borel o-algebra induced by
that metric, i.e., the smallest o-algebra containing the d-open sets.

11" A sequence of probability measures {P, };2.| converges in the weak sense to a measure P*, if f faprP, >

f f dP* for all continuous bounded maps f : Q — R.
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(as defined in Theorem 31) is called the canonical setup for a Brownian motion W
defined by W(t, w) := w(?), w € C([0, o0)). 4

Remark 34: A more detailed discussion of Theorem 31 may be found in [20]. A
less formal discussion of properties of the Brownian motion may be found in [13].

2.6 Ito Calculus

Motivation: The Brownian motion W is our first encounter with an
important continuous stochastic process. The Brownian motion may
be viewed as the limit of a scaled random walk.> If we interpret the
Brownian motion W in this sense as a model for the movement of a
particle, then W(T') denotes the position of the particle at time T and W(T+AT)-W(T)
the position change that occurs from 7 to T + AT; to be precise, W(T') models the
probability distribution of the particle position.

The model of a Brownian motion is that position changes are normally distributed
with mean 0 and standard deviation VAT. Requiring mean 0 corresponds to requiring
that the position change has no directional preference. The standard deviation VAT
is, apart from a constant which we assume to be 1, a consequence of the requirement
that position changes are independent of the position and time at which they occur.

To motivate the class of Itd processes we consider the Brownian motion at discrete
times 0 = Ty < Ty < - -+ < Ty. The random variable W(T}) (position of the particle)
may be expressed through the increments AW(T}) :== W(T;.) — W(T):

r
|
|
|
L

i—1
W(T;) = > AW(T)).
=0

Using the increments AW(T;) we may define a whole family of discrete stochastic
processes (Figure 2.6). We give a step by step introduction and use the illustrative
interpretation of a particle movement: First we assume that the particle may lose
energy over time (for example). Then the increments may still be normally distributed
but their standard deviation no longer will be \/Tj,,l —T;. Instead it might be a
time-dependent scaling thereof, e.g., el T;+1 — T; where the standard deviation
decays exponentially. Multiplying the increments AW(T';) by a factor gives normally

12 In a (one-dimensional) random walk a particle changes position at discrete time steps by a (constant)
distance (say 1) in either direction with equal probability. In other words, we have binomial distributed
Y; in Theorem 31.
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Figure 2.6. Brownian motion: Paths of (a discretization of) a Brownian motion

X(tw) A

Figure 2.7. Paths of (a discretization of) a Brownian motion with time-dependent
instantaneous volatility.

distributed increments with arbitrary standard deviations. Thus we consider a process
of the form

i-1
X(T) = ) a(THAW(T)),
j=0

where in our example we would use o(T) := e T (Figure 2.7).

Next we consider the case where the particle has a preference for a certain direction,
i.e., a drift (Figure 2.8). This is modeled by increments having a mean different from
zero. The addition of a constant y to a normally distributed random variable with
mean zero will give a normally distributed random variable with mean g. We want
4 to be the drift per time unit and allow that 4 may change over time. Thus we add
u(T;) (T;4y — T;) to the corresponding increment over period T to Tj,p. If we also
consider the starting point to be random, modeled by a random variable X(0), we then
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X(t,w)

Figure 2.8. Paths of (a discretization of) a Brownian motion with drift.

consider processes of the form
i1
X(TH = XO) + Z T T = T)) +o(T)AWT)
S————

—
J =IAT,

Normal distributed with mean u(T;) AT; and
standard deviation o«(T;) \/AT;

ie.,

X(Tj) = X(T)) = T (Tj1 = Tj) +0o(T)) AW(T)).
—_——
=i ATI'

Our next generalization of the process is that the parameters u(7T';) and o(T;) could
depend on the paths, i.e., are assumed to be random variables. This might appear
odd since then one could create any time-discrete stochastic processes.'> However, it
would make sense to allow the parameters u(T';) and/or o(7T';) (used in the increment
from X(T;) to X(T;,1)) to depend on the current state of X(7';) as in

X(Tj) - X(T)) = X(Tj)(Tj, —T)) +0(T)) AW(T)).
N— e N———
= AX(T/) = ATj

Here we would have w(T)) = w(T;, X(T))) = X(T)), i.e., a drift that is a random
variable. It is an important fact that the drift for the increment from T to T, is
known in T;. More generally, we allow i and o to be stochastic processes if they are
{F:}-adapted.'*

BIf T, — S(T)is an arbitrary time-discrete stochastic process, we set o°(T;) = 0 and (T;) :=
(ST 1) = S(T;))/(Tjs1 — T;) and have X(T;) = S(T;).

14 The increment AW(T ) is not Tr/-measurable. It is only Fr el -measurable. The requirements that
u(Tj)is Trj-measurable excludes the example in footnote 13.
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The continuous analog to the time-discrete processes considered above are Itd
processes, i.e., processes of the form

T T
X(T) = X(©) +f u(e) de + f o(r) dW(r), (2.3)
0 0

ie.,

T T
X(T)-X(©0) = f u()dr + f o(t) dW(n)
0 0

and as a short-hand we will write

dX(1) = u(Hdt + o(OHAW(@).

While the df part of (2.3) may be (and will be) understood pathwise as a Lebesgue
(or even Riemann) integral, we need to define the dW(¢) part (as we will see), the 16
integral.® <

2.6.1 It6 Integral

In this section we define the It6 integral fST [, w) dW(t, w). We do not present the
mathematical theory in full detail. For a more detailed discussion of the It6 integral
see, e.g, [13, 20, 21, 27].

Definition 35 (The Filtration {7;} generated by W): 1
Let (Q, 7, P) denote a probability space and W(¢) a Brownian motion defined on
(Q,F, P) (e.g., by the canonical setup). We define F; as the o-algebra generated by
W(s), s <t, i.e., the smallest o-algebra, which contains sets of the form

k
(w3 W(t1,w) € Fy,..., Wt w) € Fi,) = (| W)™ (Fy)

i=1

for arbitrary t; < t and F; C R, F; € B(R) (j < k) and arbitrary k € N. Furthermore
we assume that all sets of measure zero belong to ;. Then {#;} is a filtration which
we call the filtration generated by W. a

Remark 36: W is a {¥;}-adapted process.

15 The dW(¢) part may not be interpreted as a Lebesgue-Stieltjes integral through ¥ f(r W) - W(t)),
T; € {tj, tj+1], since t > W(z, w) is not of bounded variation. Thus the limit will depend on the specific
choice of 7; € [1;,1411]; see Exercise 7.
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Definition 37 (Itd Integral for Elementary Processes): E
A stochastic process ¢ is called elementary, if

b)) = D () L0,

jENU{0}

where {t; | j € N U {0}} is a strictly monotone sequence in [0, 00) with £y := 0 and
{e; | j € N U {0}} a sequence of 7—',j-measurable random variables and 1(,].,,1.” | denotes
the indicator function'6.!”

For an elementary process we define the It6 integral as

j(; ¢(1, w) dW() - Z ej(w) (W(tj.1, w) - W(tj, w)),

jENU{0)

fo &(t, w) 15, () dW(?).

T
f o(t, w) dW()
N

.

Remark 38 (On the One-Sided Continuity of the Integrand): In some textbooks
(e.g., [27]) the elementary integral is defined using the indicator function 1, ,,,) in
place of 1,1 For continuous integrators, as we consider here (W(z)), it makes no
difference which variant we use. However, if jump processes are considered (see, e.g.,
[29]), and also with respect to the interpretation of the integral as a trading strategy
(see page 62), our definition is the better suited.

Lemma 39 (It6 Isometry): Let ¢ denote an elementary process such that ¢(:, w) is
bounded. Then we have

T 2 T
E[( f P, ) dW(t))] = E[ f o1, ) dt].
N N

Definition 40 (It6 Integral): K
The class of integrands of the It6 integral is defined as the set of maps

fi[0,0)x Q- R,
for which

1. fis a B8 x F-measurable map,

16 We define 1¢;,4,,1(t) = 1,if £ € (tj,2;+1] and = O else.
17 Note that by this definition every path is elementary in the sense of Definition 7.
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2. fis an F;-adapted process,

3. f is P-almost surely of finite quadratic variation, i.e., we have
E[ [ f(t, ) df] < co.

If f belongs to this class, then there exists an approximating sequence {¢,} of elemen-
tary processes with

T
EP [f (f(tf w) - ¢n(t, w))Z dt] - 0 (for n— 00),
s
and the I16 integral is defined as the (unique) L, limit

T T
f ft,w)dW() = lim f ¢, (¢, w)dW(z).
s n—oo Js

.

Remark 41: For a proof of the statements made in this definition (e.g., the existence
and uniqueness of the limit), see [27].

2.6.2 1t6 Process
Definition 42 (Itd Process): h

Let o denote a stochastic process belonging to the class of integrands of the 1t6
integrals (see Definition 40) with

i3
P(f O'(T,w)zdr<oo\/t20) =1
0

and u an {¥,}-adapted process with

t
P(f Iﬂ(f,w)ldr<oo\/tzo) = 1.
0

Then the process X defined through

X(t,w) = X(O,a))+fu(s,w) ds+fo-(s,w) dW(s, w),
0 0

where X(0, -) is (Fo, B(R))-measurable is called td process (Remark: X is F;-adapted).

A

This definition is generalized by the m-dimensional Brownian motion as Defini-
tion 43.
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Definition 43 (It6 Process (m-factorial, n-dimensional)®): 0
Let W = (Wy,...,W,)" denote an m-dimensional Brownian motion defined on
(QF,P).Leto;;(i=1,...,n j=1,...,m) denote stochastic processes belonging
to the class of integrands of the Itd integral (compare Definition 40) with

!
P(f cri,j(r,w)zdmoo\ftzo) =1, i=l...,nj=1,...,m,
0
and u; (i = 1,...,n) an {¥,}-adapted process with
!
P(f l,u,-(T,w)IdT<oth20) =1, i=1,...,n
0

Then the (n-dimensional) process X = (X|,... , X7 with X(0, ) being (Fy, B(R™))-
measurable and

[ m !
Xi(t,w) = X;(0,w) + f Hi(s, w) ds + Z f oij(s,w)dW(s,w), (i=1,...,n),
0 o1 Jo

is called (n-dimensional) (m-factorial) It process."* We will write X in the shorter
matrix notation as

X(t,w) = X(O0,w) + f u(s,w)ds + f o(s,w) - dW(s, w),
0 0

with

X[ Hi gL e Oim

Xn Hn Oul -+ Onm

Remark 44 (It6 Process, Differential Notation): For an It6 process

T T
X(T,w) = X(0,w) + f u(t, w) de + f o(t,w) - dW(t, w),
0 0

as defined by Definitions 42 and 43 we will use the shortened notation

dX(t, w) = p(t, w) dt + o(t, W) - AW(t, w).

18 Compare [27], Section 4.2
19 The dimension n denotes the dimension of the image space. The factor dimension m denotes the
number of (independent) Brownian motions needed to construct the process.
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The stochastic integral

f ’ X(1)dY ()

n
was defined pathwise for integrators Y that are Brownian motions (dY = dW) and for
integrands X belonging to the class of integrands of the 1td integral. We extend the
definition of the stochastic integral to integrators that are Itd processes.

Definition 45 (Integral with Ité6 Process as Integrator): 1
Let Y denote an Itd process of the form

dY = pdt + odW

and X a stochastic process such that X(#)u(¢) is integrable with respect to ¢ and X(#)o(z)
is integrable with respect to W (). Then we define

fy 73 iy
f X(HdY@ := f X(Ou(r)y de + f X(Oo(t) dW(s).

t 131 n

As in Remark 44 we will write

X(@® dY(®) = X(Ou(t) dt + X(6)o(r) dW(2).

2.6.3 It6 Lemma and Product Rule

Theorem 46 (It6 Lemma (One Dimensional)?®): Let X denote an It6 process with
dX(r) = pdt + o dW.
Let g(1, x) € CX([0, ] X R). Then
Y(r) = g(t, X(0)
is an Itd process with

16°¢

_ % ] 1% 2
aY = ZX@) dr+ SO XO) dX + 32X @0% 24

where (dX)? = (dX) (dX) is given by formal expansion using

drdr =0, drdW =0,
dWdr =0, dW dW = dr,

20 Compare [27], Section 4.1.
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ie.,

(dX)? = (dX) (dX) = (udz + cdW) (udt + odW)
=2 drdt+podtdW + g o dW dt + o2 AW dW = o2dr

Theorem 47 (Itd LemmaZ!): Let X denote an n-dimensional, m-factorial Itd process
with
dX(r) = udt + o dW.
Let g(1,x) € C*([0,00] X R R)), g = (g1,....84)". Then
Y(r) == g(t, X(1))
is an d-dimensional, n-factorial It process with
ar = B xapars Y 2o, xa0) axo
ot P (9x,-

1 P

2 | 8x,~xj

(1, X() (dXi(r) dX (1)),

where dX;(r) dX;(z) is given by formal expansion using

drdt =0, drdw; = 0,
dW; dr = 0, dW,-de={%t i:j .

Theorem 48 (Product Rule): Let X, Y, and X,, ..., X, denote Itd processes. Then
we have

1. dXY)=YdX+Xdy+dxdy
N N N N N
2. d[ﬂ xi] = > [ | Xedxi+ ) [ | % axiax;
i=1 i=1 k=1 i,j=1 k=1
k#i j>i k#i,j

Proof: We prove only 1 since 2 follows from 1 by induction. We apply the Itd
lemma to the map

g RxRxR - R, glt,x,y) i=x-y.

21 Compare [27], Section 4.2.
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We have
% _, o _ o _
ar ox dy
% _ og*
ax? ?
ag2 _ agz
dxy dyx
and thus

dXY) = digX,Y))=YdX+XdY +dX dY.
al

Theorem 49 (Quotient Rule): Let X and Y and Yy,...,Y, denote 1td processes
where, Y > ¢ for a given ¢ € R. Then we have

(X) ) {[d_X dvy dx d_Y+(d_Y)2]

Y X Y X Y

Y{x v X Y

1 1 1
N N N N
1 1 —dY; dy, dy;
o dll5)- 15 2 S

Lemma 50 (Drift Adjustment of Lognormal Process): Let S(¢) > 0 denote an It0
process of the form

dS(®) = uHS@) dt + oS () dW(),
and Y(¢) := log(S(5). Then we have

dy () = (u@) - %a’z(t)) dt + o(r) dW(r).

Proof: See Exercise 8. ]|
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" e ' Interpretation: The Itd lemma and its implications such as

Lemma 50 may appear unfamiliar. They state that a nonlinear func-

2] tion of a stochastic process will induce a drift of the mean. This may be

- seen in an elementary example: Consider the time-discrete stochastic

process X(¢;) constructed from binomial distributed increments AB(¢;) (instead of

Brownian increments dW(r)), where AB(z;) are independent and attain with proba-

bility p = % the value +1 or —1, respectively. Assuming X(#y) = 10, we draw the
process

X(tiy) = X(5) + AB(1)

in Figure 2.9 (left), i.e., AX(t;) = AB(t;). This process does not exhibit a drift. We
have

X(#) = EX(tie) 1 F2)-

In other words: In each node in Figure 2.9 the process X attains the mean of the values
from the two child nodes.

X(tipq) = X(t) + AB(L) Y(t) = fX() = X()?

X(t,w) Ar Y(t,w) 4

10 D 16---- 100

\

Figure 2.9. Non-linear functions of stochastic processes induce a drift to the mean.

As in Figure 2.9 (right) we then consider the process Y(¢;) = f(X(t;)) = X(¢;)*. This
process exhibits in each time step a drift of the mean of +1. One can easily check that
the increments of the process Y are given by

Y(ti) = Y(t) + 1 + 2X(t:) AB(%;)
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(check this in Figure 2.9). This corresponds to the result stated by 1t6’s lemma (see
Theorem 46 with g(z, x) = f(x) = x?). Indeed we have

Y(ti1) = (X(t1))* = (X(0) + AX (1))

= X(1;)? + AX(t;)* + 2X(1;) AX(1;)

= Y(t;) + AB(1;)* + 2X(t,) AB(t,)

=Y({) + 1 +2X(t;) AB(1,)

10? i)

=Y+ __j;(X(ti)) (AX(1))* + _f(X(ti)) AX(1).

2 dx Ox
Obviously we may interpret It6 formula (2.4) in [t6’s lemma as a (formal) Taylor

expansion of g(X + dX) up to the order (dX)*. For the continuous case the higher
order increments are (almost surely) 0. For the discrete case this is not the case. For
example, consider (X(¢,) + AX (#;))? in the example above. <|

2.7 Brownian Motion with Instantaneous
Correlation

In Definition 29 Brownian motion was defined through normally distributed incre-
ments W(r) — W(s), t > s having covariance matrix (¢ — s)/,. In other words, for
W = (Wy,...,W,) the components are one-dimensional Brownian motions with
pairwise independent increments, i.e., for i # j we have that W;(¢) — W;(s) and
W (1) — W;(s) are independent (thus uncorrelated).

We define the Brownian motion with instantaneously correlated increments as a
special [td process:

Definition 51 (Brownian Motion with Instantaneous Correlated Increments):
Let U denote an m-dimensional Brownian motion as defined in Definition 29. Let
fiji=1,...,n, j=1,...,m) denote stochastic processes belonging to the class of
integrands of the It6 integral (see Definitions 40 and 43) with

!
P(f ﬁ,j(r,w)2d7<oov;zo)= 1, i=1,...,n,j=1,...,m,
0

furthermore let

fi® o fim@®
F@ =i, .. fm) = : :
Jo1® o fum(D)
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27. BROWNIAN MOTION WITH INSTANTANEOUS CORRELATION

denote an n X m matrix with
m
foj(t) =1, Vi=1l,...,n
J=1

Then the Itd process
dW() = F(2) - dU(2), w0 =0

(see Definition 43) is called m-factorial, n-dimensional Brownian motion with factors
finj=1,....,m. With R := FFT we call R the instantaneous correlation and W a
Brownian motion with instantaneous correlation R. F is called the factor matrix. 4

= ! Interpretation:  For simplicity let us consider a constant matrix
v F =(f1,..., fn). Then we have for time-discrete increments
v . AW(T) = F - AU(T) = i AUI(T) + - + fu AUWTH).  (25)

Note that AU;(Ty) and AU ;(Ty) are independent. They may be interpreted as
independent scenarios. If w is a path with AU(T}; w) # 0 and AU (T}; w) = O for
j # I, then we have from (2.5) that AW(T; w) = f; AU(Ty; w), i.e., on the path w
the vector W will receive increments corresponding to the scenario f; (multiplied
by the amplitude AU(T}; w)). If, for example, f; = (1,...,1)7, then the scenario
corresponds to a parallel shift of W (by the shift size AU, (T})).

Our definition of a factor matrix does not allow arbitrary scenarios since we require
that Z;f‘z . fi,zj(t) =1,i.e., that R := FFT is a correlation matrix. By this assumption
we ensure that the components of W; of W are one-dimensional Brownian motions in
the sense of Definition 29.

By means of the factor matrix F we may interpret the implied correlation struc-
ture R in a geometrical way. The calculation of F from a given R is a Cholesky
decomposition.

We will make use of this construction in the modeling of interest rate curves
(Chapter 19: LIBOR Market Model). Here the interpretation of the factors is given by
movements of the interest rate curve. The possible shapes of an interest rate curve
will then be investigated (Chapter 25)). The question of how to obtain a set of factors
or reduce a given set of factors to the relevant ones is discussed in Appendices B.2
and B.3. <
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2.8 Martingales

Definition 52 (Martingale): B
The stochastic process {X(1), F; ; 0 < t < oo} is called a martingale with respect to
the filtration {F,} and the measure P if

X; = EXX(t)|F;) P-almostsurely, Y0 <s<t<oo. (2.6)

If (2.6) holds for < in place of =, then X is a called submartingale. If (2.6) holds for
> in place of =, then X is called supermartingale. J

Lemma 53 (Martingale It6 Processes Are Drift-Free): Let X denote an It process
of the form
dX = pudt+o0dW under P

with EP(( fOT o?(t) dt)l/z) < co. Then we have

X is a P-martingale © u=0 (.e., X is drift-free).

2.8.1 Martingale Representation Theorem

Theorem 54 (Martingale Representation Theorem?2): Let W) =
(Wi(0), ..., W,(£))T denote an m-dimensional Brownian motion, 7; the corresponding
filtration. Let M(¢) denote a martingale with respect to ¥, with fQ IM(D]? dP < oo
Mt20).

Then there exists a stochastic process g (with g(¢) belonging to the class of inte-
grands of the Itd integral) with

f
M) = M) + f g(s) dW(s) P-almost surely, ¥ 1 > 0.
0

22 Gee [27], Section 4.3 and [20], Theorem 4.15.
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2.9 Change of Measure

Definition 55 (Measure with Density): 7
Let (22, F, P) denote a measure space and ¢ a P-integrable nonnegative real-valued
random variable. Then

O(A) := f¢ dP
A

defines a measure on (Q, ), which we call measure with density ¢ with respect to P.

-

e

Definition 56 (Equivalent Measure):
Let P and Q denote two measures on the same measurable space (Q, 7).

1. Qis called continuous with respectto P & (P(A)=0= Q(A)=0YA € F).

2. Pand Q are called equivalent & (P(A)=0o Q(A)=0VYA € F).

-

Theorem 57 (Radon-Nikodym Density): Let P and Q denote two measures on a
measurable space (€2, 7). Then we have

Q is continuous with respectto P < ( has a density with respect to P.

Proof: See[l]. oj
Definition 58 (Radon-Nikodym Density): T
If Q is continuous with respect to P, then we call the density of O with respect to P
the Radon-Nikodym density and denote it by 32. J

Theorem 59 (Change of Measure (Girsanov, Cameron, Martin)): Let W denote
a (d-dimensional) P-Brownian motion and {¥,} the filtration generated by W fulfilling
the usual conditions™. Let Q denote a measure equivalent to P (w.r.t. {F;}).

1. Then there exists a {F,}-previsible process C with

ol ! _l ! 2
Ef;ﬁ = exp(j(; C(s)dW(s) 2](; |C(s)} ds). 2.7

23 Given a complete, filtered probability space (Q, F, {F; It € [0, T]}, P), the filtration {F; |t € [0, T}}
satisfies the “usual conditions”, if it is right-continuous (i.e., F; = NesgFr+e) and Fo (and thus F; for
every t € [0, ¢]) contains all P-null sets of ¥ .
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2. Let T > 0 fixed. Reversed, if p denotes a strictly positive P-martingale with
respect to {F; | ¢ € [0, T]} with EP(p) = 1, then p(¢) has the representation
(2.7) and defines (as a Radon-Nikodym process) a measure Q = Q7 which is
equivalent to P with respect to ¥, given by

Q(A) :

Il

fp(T) dpP VYA € Fr. (2.8)
A

In any given case

O

!
W) — f C(s)ds 2.9)
0
is a Q-Brownian motion (with respect to {#;}) (and for # < T in the second case).

Remark 60 (Change of Measure-Change of Drift): Equation (2.9) may be
written as

dW(@) = —C@) dt + dW() (2.10)

and we see that the change of measure (2.7) corresponds to a change of drift (2.10).
The second case has a restriction on a finite time horizon T, which will be irrelevant
in the following applications.

Remark 61 (Radon-Nikodym Process): Note that

ot) = exp( f C(s) dW(s) — f IC(s)P ds)
0 2o

is a P-martingale. From this we have that for A € 7,

Q(4) = f p(T)dP = E* (14 p(T)) = E"(E” (1a p(T) | 7))
A

n

= EP(LLEF (D) | 7)) = B (14 p0) = fA p(1) dP.

on (Q, F)).

Thus, p defines a process of consistent Radon-Nikodym densities %—% I pe

Exercise: (Change of Measure in a Binomial Tree): Calculate the probabilities (the
measure) such that the process Y depicted in Figure 2.9 is a martingale.
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29. CHANGE OF MEASURE

. | Interpretation: The form of the change of measure (2.7) may be
i motivated via a simple calculation and derived for a time-discrete Itd

¥ | Dprocess

I
|
|
|

AX(Ty) = p(T) AT; + o(Ty) AW(T)

by elementary calculations.

At first: Let Z denote a normally distributed random variable with mean 0 and
standard deviation o on a probability space (2, ¥, P). Under which measure will
Z be normally distributed with mean ¢ and standard deviation o-? The density of a
normally distributed random variable with mean ¢ and standard deviation ¢ is

[ ! exXp ( (Z _ C)z )
Z - .
mO- 20'2

Thus we seek a change of measure % such that

1 (z-c)? dQ 1 2\ dQ
- dz = dQ = —=dP = -] =d
o P ( 202 ) ¢ =40 = 5 2vro P\ T202) ap ¢
N —
%:desired density under Q %§=known density under P =7
With

(z-c)? 22 =2z + ¢ 2 cz— 1
N TP a4 202 T P T2 | P T2

it follows that the desired change of measure is

oz — L2
o _ exp( N ] @2.11)
g

dP

This corresponds to the term in (2.7).
To illustrate this we consider the time-discrete process

AX(T) = uf(T) AT; + o(T;) AW(T;) under P.
Under which measure is X a (time-discrete) martingale? We have

Xisa Q-martingale & u2(T) = 0 o E%AX(T)|F7) = 0

1
Q — . =
o E ((T(Ti)AX(T,) | 7—},.) 0.
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CHAPTER 2 FOUNDATIONS

First consider a single increment: The random variable

;A X(T;) = MAT + AW(T))

a(Ty) o(Ty)

is (under P) normally distributed with mean “((?)) AT; and standard deviation VAT;.

For the conditional (!) expectation under Q we have

1 u(Ty)
o _* _ _ )
E ( (T)AX(T)]'}‘T) = AT; + EQAW(T) | Fr,)

Then

of_1 )
E ( S X197 =

if ESQAW(T)) | F7,) = C(T;) AT; where C(T;) = —% (we correct for the drift).

Given the considerations above we have to apply a change of measure

oy _ g’

aplar, = €XP (C(Ti) AW(T;) - EC(Ti) AT,»)

for the time step AT; (apply (2.11) with Z = AW(T;), ¢ = C(T;) AT; and o = AT)).
This is just the change of measure needed to make the increment AX(7}) drift-free.

Since the increments AW(T;) are independent, we get the change of measure for the

process X from Ty to T,, by multiplying the Radon-Nikodym densities, i.e.,

nl n-1
1 2
L dP ar, 1 exp (C(Ti) AW(Ty) - EC(Ti) AT,')
ol -1 (2.12)
= exp (Z C(T;)) AW(T) - Z C(T;)? AT]
i=0

i=0

The change of measure #‘ will make all increments AX(T;) drift-free for i =

0,...,n- 1. Dueto the 1ndependence of the increments AW(T;), we obtain indepen-
dence 0f the dP'AT and thus

EQ(AW(T,-))=EP[AW(T ]—[—% ]:ﬂE”(l 3—1%”.) ( W(T)——‘ )
J#i /

The term (2.12) is a discrete version of (2.7). To some extent we have just proven a
version of the change of measure theorem for time-discrete Itd processes.
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29 CHANGE OF MEASURE

The term —C(¢)? dt in (2.7) (or —C(T;)* AT; in (2.12)) may also be motivated as
follows: The random variable do

Z(t) = —
0= 3pls,

represents a density of the measure Q| with respect to the measure Plg,. Since Q|
should be a probability measure we must have

Olr(Q) = EP7(Z(1)) = 1 (2.13)

and with Z(0) = 1 this follows if Z is a martingale. Thus the drift correction —C (1?2 dt
follows from Lemma 50 because Z is a lognormal process. <
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2.10 Stochastic Integration

In the previous sections the following integrals were considered:

Maps:

]
. f f(@) dt Lebesgue or Riemann integral.
l Integral of a real valued function with respect to .

Random Variables:

. f Z(w) dP(w) Lebesgue integral.
a Integral of a random variable Z with respect to a
measure P (cf. expectation).

Stochastic Processes:

. f X(t,w)dP(w) Lebesgue integral.
Q Integral of a random variable X(¢;) with respect to a
measure P; see Figure 2.10.

1)
. f X dr Lebesgue integral or Riemann integral.
f The (pathwise) integral of the stochastic process X
with respect to .

12
. f X(1)dwW() 1t6 integral.
f The (pathwise) integral of the stochastic process X
with respect to a Brownian motion W

The notion of a stochastic integral may be extended to more general integrands
and/or more general integrators. For completeness we mention:

Definition 62 (Integral with Respect to a Semimartingale as Integrator): 1

Let Y denote a semimartingale (see Remark 63) of the form
Y(1) = A(t) + M(0),

where A(?) is a process with locally bounded variation and M(#) a local martingale.
Let X(r) denote a previsible process. Then we define

sz(t) dy() = fZX(t) dA(r) + sz(t) dM().

4 I n

]

Remark 63 (Stochastic Integral): The class of processes (integrands) for which we
may define a stochastic integral depends on the properties of the integrators (and vice
versa). For continuous integrators (as the Brownian motion) the integrands merely
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/ X (11, 0) dP(w)
L/ L2

X(t,w) &

— .
W4 |] X (1)dW (1)[w)]
L0 |

-~ Y

Figure 2.10. [Integration of stochastic processes.

have to be adapted processes. To allow more general integrators one has to restrict to
a smaller class of integrands, e.g., previsible processes. Compare Example 4.1 and
Remark 4.4 in [13]. For more detailed discussion of the stochastic integral see [5],
§5.5, and (especially for more general integrators) [13], §4, and [20], §3.

Further Reading: On stochastic processes: As introduction, see [27,
25]. For an in-depth discussion, see [20, 29, 31]. <|

r 1
| |
| |
| I
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2.11 Partial Differential Equations (PDEs)

We consider partial differential equations only marginally. In Section 7.2.2 we
derive the Black-Scholes partial differential equation. The bridge from stochastic
differential equations (SDE) to partial differential equations (PDE) is given through
the Feynman-Kac theorem below.

2.11.1 Feynman-Ka¢ Theorem

Theorem 64 (Feynman-Kac¢): Let X denote a d-dimensional Itd process, X =
(X1, ..., Xy), following the stochastic differential equation (SDE):

dX;(1) = pi(t, X) dt + o7i(1, X) dW2(r)  on [0, T] under Q.

Furthermore let V denote the solution of the parabolic partial differential equation
(PDE):

0 onlxQ

d d
v awv 1 vV
m + Zﬂi(h x)é_x_~ + 2 Z vij{t, x)m
i=1 ! ij=1 i)
V(T,) = ¢() onR?
with y; ; = o0 p; ; and dWi(r) AW (1) = p; ; dt.

Vi1, x) = EX(¢X(T) | X(1) = x) for (1, x) € [0, T] x R? (2.14)

Remark 65 (Solving Backward in Time): Note that the PDE solves V backward
in time. V is given at the final time T and the PDE described V for t < T. The
meaning of this will become apparent in the following interpretation, however; to
fully understand the interpretation in our context the knowledge of the next chapter is
helpful.

Interpretation: A stochastic differential equation decribes how a

,  stochastic process X changes from X(t) to X(T). The change is the

¥ | increment AX = f,T dX—a random variable. The increment decribes
how values change and give the probability for such a change.

If we now look at a stochastic process that is a function of X, say V(r) = V(t, X(¢)),
then It6’s lemma allows us to derive the stochastic differential equation for V, i.e., we
have a formula for dV. The change from V(¢) to V(T) is the increment AV = ft 4 dv,
and again the increment decribes how values change and give the probabilities for
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2.11. PARTIAL DIFFERENTIAL EQUATIONS (PDES)

such a change. However, the probabilities do not change. If X moves from X(¢) = x to
X(T) = y with some (transition) probability density ¢(z, x; T, y), then V moves from
V(t, x) =: uto V(T,y) =: v with the same (transition) probability density ¢(z, x; T, y).

So for V just the attained values change. The underlying transition probabilities are
the ones of X. These are, of course, just the direct consequences of our assumption
that V is a function of X. This assumption “splits” the definition of the stochastic
process V into two parts: The transition probabilities are given by X. The values that
are attained are given by (¢, x) — V(¢, x).

Now, if we consider the function V to be the conditional expectation operator
in (2.14), then it is not surprising that there is a rule of how to calculate V(¢) from
V(T') using the coeflicients of the SDE of X, because these coefficients essentially
contain the transition probabilities of X. This rule for calculating V is a partial
differential equation.

The theorem makes two restrictive assumptions on the process V, namely:

e V(1) is a function of some underlying state variables X(r), and
e V(?) is the conditional expectation of V(T).

However, as we will learn in the next chapter, under suitable (and meaningful)
assumptions, all the stochastic processes describing the prices of financial derivatives
will fulfill these assumptions. Thus, the theorem allows us to derive the price of a
financial derivative V as a function of some other quantity X through a PDE, given
we know that function at some future time 7. For financial derivatives, the time T
function V(T') is often known (e.g., for a call option on X we know that at time 7 its
value is max(X(T) — K, 0)). Solving the PDE gives the function V(0) from V(7). If
today’s value xy := X(0) of X is known, then the function V(0) gives today’s value of
V as V(0, xp). <

Further Reading: In [34] a short proof of the Feynman-Ka& theorem
| . is given. The instructive books of Wilmott, e.g., [40], give, besides an
[ introduction to mathematical finance, an overview on PDE methods.

- The numerical methods for pricing derivatives by PDEs are discussed,
e.g., in [10, 35, 40]. <
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2.12 List of Symbols

The following list of symbols summarizes the most important concepts from Chap-

ter 2:
Symbol Object Interpretation

w element of Q State. In the context of stochastic processes:
path.

Q set State space.

X random variable Map which assigns an event/outcome (e.g., a
number) to a state. Example: the payoff of a
financial product (this may be interpreted as a
snapshot of the financial product itself).

X stochastic process Sequence (in time) of random variables (e.g.,
the evolution of a financial product (could be
its payoffs but also its value)).

X, X, stochastic process evalu-  See above.
ated at time ¢ (= random
variable)
X(w) stochastic process eval-  Path of X in state w.
vated in state w

w Brownian motion Model for a continuous (random) movement
of a particle with independent increments (po-
sition changes).

F o-algebra (set of sets) Set of information configurations (set of sets
of states).

{F|t=>0} filtration F, is the information known at time ¢.
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CHAPTER 3

Replication

Nowadays people know the price of everything
and the value of nothing.

Oscar Wilde
The Picture of Dorian Gray [38]

3.1 Replication Strategies

3.1.1 Introduction

We motivate the important principle of replication by considering the simplest finan-
cial derivative, the forward contract. Consider the following products:

A (Forward Contract on Rain): At time 7'} > 0 the amount of rain fallen R(T)
is measured (in millimeter) at a predefined place and the dollar amount

A(T) = (R(T)-X)- ;;

is paid. Here, X denotes a constant reference amount of rain.

B (Forward Contract on IBM Stock): At time 7 > 0 the value S(7) of an
IBM stock is fixed and the dollar amount

B(Ty) := (S(Th) - X)

is paid. Here, X denotes a constant reference value.
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These products may be interpreted as a guarantee or insurance.! The product A is
a weather derivative, the product B is an equity derivative. What is a fair value for
the product A and the product B? What do we expect to pay in T (today) for such a
guarantee?

Consider the product A: It appears that the determination of its fair value requires
an exact assessment of the probability of rain at time 7. So let Ry, : Q — R denote
a random variable (rain quantity at time 7, modeled over a suitable probability
space—for w € Q the Ry, (w) denotes the quantity of rain that falls in state w. Then,
the random variable A(T) := Ry, — X defines the payoff of product A. We wish to
determine the value A(Ty) of this product at time T5.

For the trivial case of a single-point distribution, i.e.,

Rr,(w) = R* = const. YweQ,

i.e., the amount of rain at time 7 is R* with probability 1; in other words: It is certain
that in 7 the amount of rain falling is R*. Then product A pays at time 7' the amount
A* := R* — X with probability 1. In this case, the product corresponds to a savings
account. Let P(Ty) denote the value that has to be invested at time T (into a savings
account) to receive in T (including interest) the amount 1 (=: P(71)), then product A
pays in Ty the value A* times the value of P. Since A is equivalent to A* times P, we
have
A(To) = A™ P(Ty)

(we assumed that the interest rate paid is independent of the amount invested, i.e., the
interest is proportional to the amount invested). With P(T) = 1 this may be written

as
ATy A

P(To)  P(Ty)’

For the (quite unrealistic) case of a one-point distribution (i.e., a deterministic pay-
ment) we may derive the value of the product A by comparing it to the value of
another product with deterministic payoff (the savings account).

In the general case, where a probability distribution of R(T';) is known, it is ques-
tionable that we can replace the value -ﬁ% by, e.g., the expectation—

ATo) » E (A(Tl))
P(Ty) P(T))

! The product B is a guarantee to buy the stock § at time Ty for the amount X, since the product B pays
the difference required to buy the stock at its value S(7'1). The product A is an insurance against a
change in rain quantity, which would be sensible for the operator of an irrigation system supplying
water to farmers. If he suffers from a loss of earnings during a rainy season, he gets paid back a quantity
proportional to the rain fallen.
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31 REPLICATION STRATEGIES

—if so, this would imply that the risk (e.g., the variance of A(T'})) does not influence
the value. Since product A is an insurance against the risk of variations in rainfall,
this appears to be nonsense.

Product B is very similar to product A. Instead of the amount of rain R(T) the
value of a stock S(T;) determines the payout. The considerations of the previous
section apply accordingly. However, for B it is possible to determine its value in
Ty = 0 independent of the specific probability distribution of S (T):

In time T we take a loan with fixed interest rate such that the amount to be repaid
at time T is X. This loan pays us in Ty the amount X P(T; To).2 In addition we
acquire the stock at its current market price S (7). In total we have to pay in T the
amount

V(To) = S(To) - XP(Ty; To). (3.1

At time T this portfolio (stock + loan) (replication portfolio) will have the value
V(Ty) =8(T) - X,

i.e. it matches exactly the value of the product B at time 7.

Ty T
buy stock : Stock __ sell stock
pay 5(Ty) : " receive S(Ty)
borrow money : Loan _ i redeem loan
receive X - P(T) ¢ " ipay X-1
-z
pay Portfolio receive

S(Ty) - X-P(Ty) : 1 S(Ty) - X

Figure 3.1. Buy and hold replication strategy.

Thus, we have found a strategy (replication strategy) to construct a portfolio for
which its value in 7 matches our product B exactly. This property is fulfilled in any
state w € Q independent of the probability distribution of S (7). Furthermore, the
cost to acquire the portfolio in Ty, i.e., V(Ty), is known. As a random variable B(T)

2 We denote here by P(T; To) the amount paid by a loan in Ty, which has to be repaid in 7} by the
amount | =: P(T}; T}) and such a loan is acquired X times. See Section 1.3.4 on the notation P(T; Tp).
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is indistinguishable from V(7). Thus we have (valuing on a fair basis) that the price
B(Ty) of product B is equal to the cost of the portfolio V(Ty). To determine V(Ty) it
is only required to know foday’s price for the stock and today’s price for a loan (see
Equation (3.1)).

The replication strategy used in this example is called buy-and-hold since all parts
of the product required for replication are bought at time 7;. See Figure 3.1.

The essential difference between product A and product B is that for product B the
guantity that carries the uncertainty (the stock) can be bought. In other words, it is
possible to buy (and sell) “risk”. We assume that we may buy and sell parts of stocks
(and other traded products) in arbitrary (real-valued) quantities.

The key for the construction of the replication portfolio is that:

e It is possible to express today’s value of a deterministic future payment, and
thus there is a vehicle to transfer a deterministic future payment to an earlier
time: P(T;t) is a traded product.

e It is possible to buy or sell the underlying (the risk carrier) at any time in any
quantity: S (7) is a traded product.

It is a surprising consequence of the construction of a replication portfolio that:

o The real probabilities do not enter into the current value of the replication
portfolio.

Our strategy is to construct a portfolio at time T and wait until time T (buy-and-
hold strategy). Obviously this kind of strategy may be refined by restructuring the
portfolio at other times. Dynamic (infinitesimal) restructoring will allow the replica-
tion of arbitrary (continuous) payouts, given that the underlying random variables
(the underlyings) are traded products. It is this condition that prevents the replication

of product A: We cannot buy or sell the random variable “rain”.

Consider again the equation
B(Ty) =Ep( B(T) )
P(T1;Ty) P(T; T

This equation would reduce the pricing (i.e., the calculation of B(Ty)) to the calculation
of an expectation. The equation holds if

S(Ty) =Ep( STy )
P(T(;To) P(Ty;T))

3 Under certain conditions it would be possible to replicate product A: If there were a company whose
stock value is perfectly correlated to the amount of rain falling, then the product may be replicated
using stocks of that company. Of course, such a stock will only exist in some approximate sense, but
then it might be possible to replicate product A in an approximate sense.
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Obviously this equation cannot hold in general (or only the expectation of S(T)
would enter into the pricing and we would be ignorant of any risk). However, it is
possible to change the measure such that the corresponding equation holds, i.e., there
is a measure Q such that

S(To) :Eq( S(Ty) )
P(Ty; Ty) P(Ty;T))

A change of measure is indeed an admissible tool when considering replication
portfolios since—as we have seen—the real probabilities (the measure P) do not enter
into the calculation. To motivate this important concept let us consider the following
(simple) example.

3.1.2 Replication in a Discrete Model

3.1.2.1 Example: Two Times (7, 7;), Two States (w;, w;), Two Assets
(S,N)

Let S and N denote stochastic processes defined over a filtered probability space
(), F, P, F,) with Q = {w, w,}. Here §(¢, w) denotes the value of a financial product
S and N(z, w) denotes the value of a financial product N. We consider two points in
time Ty (present) and T (future). We assume that S and N are traded at these times.
Let the filtration be given by Fr, = {0, Q) and Fr, = {0, {wi}, (w2}, Q}, i.e., in Ty it is
not possible to decide which of the states w., w, we are in, but in 7', this information
is known. Assume that the processes S and N are {F,}-adapted, i.e., in Ty we have
STy, w1) = STy, wz) and N(Ty, wy) = N(Tp, w»). So, independent of the (unknown)
state, the products have a defined value in Tg.

Given a derivative product (with the stochastic value process V) depending in T
on the attained state w;. We seek to determine the value of V in Tj. Our setup is
illustrated in Figure 3.2.

To have the derivative product V replicated by a portfolio, we seek a, 8 such that

V(T1,w1) = aS(T, wy) + BN(T, wy),

(3.2)
V(T1,w2) = aS(T1, w2) + BN(T1, wy).
This system of equations has a solution (a, 8) if
S(Ty, w)N(T1, w3) # S(Th, w2)N(T, w1). (3.3)

With this solution the value of the replication portfolio (and thus the cost of replication)
is known in Ty, and thus the “fair” value of the derivative product V in T} as

V(To) = aS(To) + BN(Tp). (34)
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S(Ty, wy)
w, V(T,, wy)
e N(T,, wy) i

p= PHas, })
S(Ty)
V(T,) -0
¢ |rN¢T_:_,]J <
1 ‘D""=-P.(i5{12])
\ Sf]’ll w,) i \
w, N(T, ) (T, wy
L T,

Figure 3.2. Replication: The two-times two-states two-assets example.

As before, the probabilities P({w1}), P({w,}) do not enter into the calculation of
the cost of replication and thus V(7). Let us investigate now whether V(7) may
be expressed in terms of an expectation. Assume that N # 0 and consider (3.2),
(3.3), and (3.4) for N-relative prices. Equivalent to (3.2), (3.3), and (3.4) the portfolio
satisfies in Ty:

V(T\,w))  S(Ty,wr) V(Ty,wy) STy, wr)

= + = + 3.5
N o0 - “N(Tnon) NTron  “NTnap TP O
with the solvability condition being
SThw) | STw)
3.6
NT o0 © N(Thwn) (3.6)
and in Ty we have
V(To)  S(Ty)
= + 8. 3.7
NTo ~ “NToy T 37
Obviously we have
V(T (V) ) S(To) (sm) )
- E i = E Fr,).
N(To) (N(Tl)' Ty NTy - P\

Now let ¢ € R such that

S(To) _ STy, w) =g STy, wy)
N(To) ~ I NTy, 1) Y NTw)
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S(To)  S(T),w2)
N(Ty) N(T,w)
S(T,wi)) ST, wr)
N(Ty,w) NTy,w)
(cf. (3.6)). If in addition to (3.6) we have

0<g<l, (3.8)

then QV({w1}) := ¢, Q¥({w,)}) := 1 — ¢ defines a probability measure, and under Q¥
we have

S(To) _ v (ST .
NTo E ( : ITTO), ie.,

V(To) _ EQN(V(TI)

N(To) N(TY) |7“'TO) . (3.9)

So instead of calculating the parameters (a, ) for the replication portfolio we may
alternatively calculate the measure QV, i.e., the parameter g. At first it appears to be
equally complex to calculate QY as it is to calculate the replication strategy. However,
determining Q has a striking advantage: The calculation of Q" is independent of
the derivative V, but the pricing formula (3.9) is valid for all derivatives V. If Q¥ has
been determined once, all derivatives V may be priced as a QV-expectation.

In Equations (3.5) to (3.9) we have considered N-relative prices, i.e., the value of
any product V was expressed in fractions of N, i.e., by % Aslong as §' # 0, we may
repeat these considerations with S -relative prices, i.e., we have

V(T\,w1) _ N(Ty, w1) VT, w) _ L N(Ty, wy)

Sl S Rl VA = 3.10
SThon - “PSTheon  SThen  CTPSThan (3.10)

with the same (a, 8) and we obtain the same value for the replication portfolio V(TY),
namely

V(Ty) _ N(Ty)
S(To) —a+'BS(TO)' (3.11)
If we determine the measure @, such that
N(Ty) o (N(TD) VT o (V(Tl) )
S(To) - E (S(TOITTO)’ ie., —S(To) = E S(Tl)lﬁ“ , 3.12)

then the measure Q° is different from Q" - we have for example

N(Ty) NIy, w2)
S(Ty) ST, w)
N(T\,w) N(T,w)’
ST, w1) ST, w)

Q¥ (fw ) =
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Plwyb = 1y P2y Pay
Plw,l) = pyy - Pyy - (1-p34)

etc.
S(Ty, wy)
i N{Tl-“‘IJ ViTw @)
P =pyr-e
p “Tpay P3; —@
e . .
S(Ty) Try-e
V(Ty) N(Ty) . 3

I '
“"K.<rﬁﬁ Tp-e
= Pis @
Pn-‘oqz'_':;_. ST, wg) V(T.. o)
N(T ., wg) 1358

P
o

To T T, Ty

Figure 3.3. Replication: Generalization to multiple states.

However, the measure Q5 also allows us to calculate the value of all derivatives V as
a Q5 -expectation via (3.12).

We conclude this section with some remarks:

e Under the measure Q" the relative price % is a martingale: This is the defining

property for the measure QV.

e Under the measure Q" the relative price % of any replication portfolio V is a
martingale:* This allows the calculation of the price of V as QV-expectation of
N-relative payout.

¢ The choice of the product that functions as reference (numéraire) is arbitrary
(as long as it is nonzero). The measure Q, under which any numéraire-relative
replication portfolio becomes a martingale, depends on the chosen numéraire.
This makes it possible to change the numéraire measure pair (N, QV), e.g., if
this simplifies the calculation of the expectation.

¢ It is necessary to consider relative prices, such that

- Q" is independent of V,
- Q" is a probability measure, i.e., QV(Q) = 1.

4 This follows since the replication portfolio is a linear combination of martingales and the expectation is
linear.
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Exercise: Change of Measure

1. Reconsider the above under the numéraire S, calculate QS and show, that
QN # QS .

2. Instead of relative prices consider absolute prices, i.e., choose as numéraire 1
and determine the measure Q' for which

V(Ty) = E¥ (V(T)IFT, ).

Show that Q! depends on the specific V(T) and is thus not universal for all
replication portfolios.

In case we wish to replicate a payoff X(T), which depends on multiple states

w1, .. ., Wy, then the above may be extended either by considering multiple time steps
Ty,T,,..., T,y =T (dynamic replication) or multiple assets N, Sy, ..., S,-1—see
Figure 3.3.
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3.2 Foundations: Equivalent Martingale Measure

3.2.1 Challenge and Solution Outline

/1 Motivation: According to the previous example, the evaluation of a

,  product through the value of a corresponding replication strategy may

| be given as the Q" -expectation of the N-relative price (where N denotes
the chosen reference asset—the numéraire).

How can we determine the measure QV, given that we know the price processes
under the real measure P? Note that under the measure QV, the N-relative prices are
martingales, i.e., as Itd processes they are drift-free (Lemma 53)—this is the defining
property of Q¥—, and a change of measure P — Q" implies a change of drift for Itd
processes (Theorem 59).

Thus, if we know the price processes under the real measure P (i.e., given a
“model”), first we can derive the N-relative price processes under the real measure P
by using the quotient rule. Then we can derive the equivalent martingale measure Q"
from the change of drift by using Girsanov’s theorem (Theorem 59) (see Figure3.4).

Surprisingly, in our applications we never need to calculate the equivalent mar-
tingale measure: Since we know the processes under Q" (we know their drift under
Q" and only the drift changes under a change of measure), we know the conditional
probability densities under QV, and these are enough to calculate expectations (see
Definition 10).

What remains is to clarify under which conditions a given payoff function may be
replicated and under which conditions an equivalent martingale measure exists. In
this chapter we give a short overview of the corresponding mathematical foundations.
In our later applications we will not discuss the existence of the equivalent martingale
measure. <

Problem Description

Given: M = {X;,...,X,}, where X; denotes price processes under the (real) measure
P, and a contingent claim (payoff profile) V{7, where V) is a #7 measurable random
variable.

Wanted: Price indication, i.e., the value V(f) of V(D at time 1 < T, especially V(0),
where V is a {¥,}-adapted stochastic process.
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32 FOUNDATIONS: EQUIVALENT MARTINGALE MEASURE

Solution (Sketched)

o Choice of numéraire: Let N € M denote a price process that may function as
reference asset (numéraire). Without loss of generality let N = X.

o Existence of a martingale measure for N-relative prices: By Theorem 74
there exists a measure QV, such that % is a martingale with respect to F;,
Yi=1,...,n

o Definition of the (candidate) of a value process of the replication portfolio:
Define

— vy r
Vi) :=N®OE (N(T)’T)

Then 1‘\//8 is a QV-martingale with respect to F; (tower law).

e Martingale representation theorem gives trading strategy: Since the pro-

cesses % = %,---,%) and % are martingales under QV, there exists a
¢ = (¢1,...,d,) such that
Vi _ V) f (X (s) )
= 3.13
vo - 8o T P NG (3.13)

(Martingale Representation Theorem).

e The portfolio process ¢ may be chosen to be self-financing by setting

Vi X; & X;
@(t)::% Zf"”()d(N((s))) Zqﬁ,()%))
j=2

Note: d(%) = d(%) =0, i.e., (3.13) holds unchanged.

e The portfolio process ¢ describes a replication portfolio for VD We have
n n T
VD =3 6i(TXAT) = ), $i(0Xi(0) + f $(s) - dX(s).
i=1 i=1 0

e The evaluation does not require explicit determination of the replication portfo-
lio: V(1) is the value of the replication portfolio at time ¢ and we have

V() va
N_(t_) = E¢ (WIT) (3.14)
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Real Measure

dS=pdr + o dw
AN=jedr + c2dWS

Ité Lemma

Martingale Measure

S\ _(m mwS ppoo
d(N)_(N NN N T

)

- d (§)=ﬂdw,‘?” _ oS et
+ Dawp -9 S qwp i NN
Nl el
Girsanov-Theore
"Cls)d LM e(s)pa
> m_expucm W“}'EL C(s)] r)

We(r) = wP(r) —L’C(sm

Pricing

v(T.}=E”(vrTz)-f,—g:—;- %L |9‘r,) -

Brini
HERG

Vin)

/ N(Ty)

\J

s V(D)
=K (N{Tx)lﬁ')

v(T;) = E2" (vm},””?’w:,_)

N(T2)

Figure 3.4. Real measure versus martingale measure.
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3.2.2 Steps toward the Universal Pricing Theorem

We will now list the central building blocks of risk-neutral pricing, towards the
universal pricing theorem (3.14):

e Trading strategies and characterization of self-financing of a trading strategy—
in the sequel in Numbers 66 to 72.

o Equivalent martingale measure, to obtain a trading strategy from the martingale
representation theorem, as a candidate for the replication strategy—in the sequel
in Numbers 73 to 74.

o Replication of given payoff functions and universc#l pricing theorem followed
by definition of a martingale process ¢ EQN(% | #¢) for the given payoff

function V7 —in the sequel in Numbers 76 to 79.

This program is found in this order in most of the literature, some being less technical
([3]), some being more technical ([5, 27]). We will usually sketch the theory without
technical proofs but include references to the literature.

Basic Assumptions (Part 1 of 3)
Let M ={X;,...,X,} denote a family of (Itd) stochastic processes, defined over the
filtered probability space (Q, F, P, {F;})
m
dX; = /1? dr + ZO’,’J de,
=1

where {F;} is (the augmentation of) the filtration generated by the (independent)
Brownian motions W; and the coefficients 4% and o fulfill the integrability conditions

T T m
f I,u?(s)l ds < oo f ZIO',‘J‘(S)IZ ds < o P-almost surely.
0 0 3

The elements of M are price processes of traded assets (M represents the market).
We consider these only up to a finite time horizon T and thus furthermore assume

F =77
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3.2.2.1 Self-Financing Trading Strategy

Definition 66 (Portfolio, Trading Strategy, Self-Financing): 1

1. An n-dimensional {F;}-progressively measurable process ¢ = (¢, ..., ¢,) with
T T m
f |¢,-,u]f’ (s)|ds < o0 f Zlqﬁ,-a,-,j(s){z ds < o P-almost surely
0 0 =5
Jj=1

is called portfolio process or trading strategy.

2. The value of the portfolio ¢ at time ¢ is given by the scalar product
Vo(t) = ¢(0) - X()) = ), gi(DXil1).
i=1

The process V; is called wealth process of the portfolio ¢.

3. The gain process of the portfolio ¢ is defined by

! n t
Go(t) := fo O GEDY fo $i(1) - dXi(7).
i=1

4. The portfolio process ¢ is called self-financing, if
Vo) = Vy(0) + Gy() YV t €0, T] P-almost surely, 3.15)

Le.,
dV, = ¢ - dX. (3.16)

-

Remark 67: The integrability condition in 1 of Definition 66 ensures that the It6
integral ﬁ; #(s) - dX(s) exists.

™ Interpretation: We interpret (X, |i = 1,...,n} as a family of stock
price processes and ¢(1) := (¢1(?), . .., (7)) as a stock portfolio, i.e., ¢;
denotes the number of stocks X; in the portfolio.

The relation (3.16) may be interpreted as follows: A change in the
portfolio value V,; comes only from changes in the stocks X, as if the portfolio
remained unchanged, i.e., we hold a portfolio of ¢ stocks and gain over df the amount
¢-dX.

The interpretation of condition (3.16) becomes clear if we consider the time-discrete
variant of a self-financing strategy:

[ 1
| |
| |
| |
J
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e At time T; there exists a ¢(7;) of the products X(T;). Its value is Vo(T)) =
¢(Ty) - X(T).

e At time T; the products X are traded at prices X(7;) and the portfolio is re-
arranged in a self-financing manner. The portfolio changes by A§(T;) =
&(Ti11) — &(T;). This change does not imply a change in value:

AKT) - X(T) = 0. 3.17)

e Over the interval AT; := T;, — T; the value of the products X changes by
AX(T;) := X(Ti1) — X(T;). The value of the portfolio thus changes by ¢(T.1) -
AX(T;), i.e. the value then is ¢(T;y1) - X(Tis1).

¢ For the value change of the portfolio we thus find

AVy(T)) = ¢(Tiv1) - X(Tiv1) — $(T) - X(T1)
= ¢(Tir1) - AX(T) + Ap(T) - X(T7) .
————

=0 by (3.17)
This corresponds to the continuous case:
dV¢ = ¢ . dX

Note that this interpretation is consistent with the definition of the elementary
It6 integral, see also Remark 38.

e (and so on.)

Remark: We will discuss this time-discrete variant of a trading strategy (which does
not result in a complete replication) in Chapter 7. <

3.2.2.2 Relative Prices

Definition 68 (Numéraire):
A price process N € M is called numéraire (on [0, T]) if

BP({N(H>0|Vt<T}) = 1.
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Basic Assumptions (Part 2 of 3)

For the remainder of this chapter we assume that X, is a numéraire and we will use the
symbol N := X,. Furthermore we require that the chosen numéraire is such that the
integrability condition formulated in Definition 66 is equivalent to the corresponding
1ntegrab111ty condltlon under the normalized system of the relative price processes
—( ) i.e., with
dX = gdt+adw

we require that for all {F}-progressively measurable ¢ = (¢o,...,0,), ¢ =
(0, ¢2’ R v¢n)

T
f l@(s) - u(s)| + ||¢(s)-0'(s)||§ ds < oo P-almost surely,
0

T
f B(s) - A(s)] + 11B(s) - ()5 ds < oo P-almost surely.
0

Remark 69 (Assumptions on the Numéraire): We pose an additional as-
sumption on the numéraire, namely that the integrability condition can be equiv-
alently formulated with respect to the normalized system %, i.e., the relative
price processes. In many cases this follows from a more specific choice for
the numéraire, e.g., for a locally riskless numéraire dN = r(®)N(t) dr or for
dN = HON() dr + 2721 o1, ;(ON() dW; with bounded oy ;. Thus, in many works the
requirement on the normalized system does not appear in this form since it is implied
by the specific choice of the numéraires.

Lemma 70 (Condition of Self-Financing Is Invariant under a Move to Relative
Prices): Let ¢ = (¢y,...,¢,) denote a portfolio. Then we have

dv, = Z¢,dX . d— Zq),d—.

i=1

In other words, ¢ is self-financing if and only if
Vs - X,
d— = i d
N =20

Proof: Let

v, = > ¢ dX;. (3.18)
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1 1 1 X;
dXi (N +d(ﬁ))+de(N) = dﬁ
Vs _ 1 1 1
dﬁ = dV¢ . (ﬁ + d(—)) + V¢ d(ﬁ)
(318) 1
qu,dx (—+d(N)) Z¢,X d( )

[ SR
= ;“"‘dﬁ‘;“w'

Conversely we have from

Then we find from

n
X.
= cd— .
Z}]qﬁ 5 (3.19)
with d% (N +dN) + & dN = dX;, that
V¢ Vs Ve
dvy = d{oN|=d= (V+dN)+ 2 dN

X; X:
G.19 Z g1 A (N +dN) + Z 615 AN
i=1 i=1

= i ¢; dX;.
=1

al

Remark 71: Note that due to the choice of the numéraire, ¢; does not enter into the
sum over d%. We will use this in the following lemma to construct a self-financing
replication portfolio.

The move to relative prices makes it possible to construct a self-financing portfolio

from a partial portfolio ¢, . .., ¢, which fulfills for a given process V the relation
V < X;
d— = ; d=. 3.20
5 }; ¢ d% (3.20)

Note that in (3.20) V stands for an arbitrary process, not limited to Vj (the value
process of the portfolio). This process becomes the value process of a self-financing
portfolio by the following choice of ¢; (replication):
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Lemma 72 (S~elf-Financing Strategy for Given Partial Portfolio and Given Initial
Value): Let ¢ = (¢2,...,¢,) be {F;}-progressively measurable and such that

f IB()A(s)| + lig(s) - F(s)ll> ds < oo P-almost surely.
0

Then we have that ¢ = (¢, ..., ¢,) where

Y X\ _ <, X
$1() -N(O)+Zf¢< )d(N(s)) ;m N (3.21)

defines a self-financing strategy with V4(0) =

Proof: In order to show that ¢ is self-financing it is sufficient to show that
(Lemma 70)
Vo < X
d— = ;qb,- a3 (3.22)
From Equation (3.21) it follows (note that % =1and d% = 0) that
X Vo f Xi(s)
Zm Yo = VO Z #i(5) | 5

and thus (3.22). The initial condition V4(0) = V; follows from setting ¢ = 0. gl

The relation (3.20) would follow from the martingale representation theorem if
the corresponding processes were martingales. It thus becomes natural to ask for a
measure under which the relative prices % become martingales.

3.2.2.3 Equivalent Martingale Measure

Definition 73 (Equivalent Martingale Measure): 7
Let N denote a numéraire. A probability measure QV defined on (Q, F) is called
equivalent martingale measure with respect to N (equivalent N-martingale measure)

(on M), if
1. Q" and P are equivalent, and

2. the N relative price processes 3 % (i=1,...,n) are F;-martingales with respect
to Q.
|
Theorem 74 (Equivalent Martingale Measure, Existence and Uniqueness): Let
X Xan s
=(%,..., %) with }
dX = gdt+4&-dw().
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Suppose that there exists a progressively measurable process C : [0, T] x Q — R*"!
such that [ IC()I? ds < oo and

pg=¢a-C A X P-almost surely on [0, T] x Q.
Let Z(r) := exp(J; C(s) - dW(s) - 1 [IIC(s)I? ds.
1. (Existence) If EF (Z(T)) = 1 then the measure QV defined through

o

), = Z() (3.23)

is an equivalent martingale measure.

2. (Uniqueness) If further the process C defined in (74) is unique, then QV is the
unique equivalent martingale measure.

Remark 75 (State Price Deflator): If EF (Z(7)) < 1, then (3.23) does not define a
Radon-Nikodym process of a probability measure. Then it is not possible to define
an equivalent martingale (probability) measure through (3.23). However, it is still
possible to define a universal pricing theorem through

V() P v

—= =E"|—Z(T .

N() N(T) @ | 7

The process % is called state price deflator.

3.2.2.4 Payoff Replication

Given the existence of an equivalent martingale measure, we can define a self-
financing trading strategy replicating a given contingent claim v,

Definition 76 (Admissible Trading Strategy): 1
A self-financing trading strategy ¢ is called admissible if

V¢ > -K
for some finite K. 4

q

Definition 77 (Attainable Contingent Claim, Complete):
Let T > 0. A Fr-measurable random variable V7 is called attainable contingent
claim (or replicable payoff) if there exists (at least one) admissible trading strategy ¢
such that

Vy(T) = VD,
The market M is called complete if any contingent claim (payoff function) is attainable
(replicable). 4
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Basic Assumptions (Part 3 of 3)

Using the martingale representation theorem on EQN( % l F:) we find a representation

§-dw?". In order to find the replication portfolio ¢ such that § - dW®" = §.d% =
¢-6-dW?" we need to solve -G = 8. We assume that for any 0, j(;T II?)(s)Hg ds < oo,
there exists a @, j(;T ||9(s)|l§ ds < oo such that

$-5 = 0.
What follows is

Theorem 78 (Self-Financing Replication Portfolio of a Given Payoff Function):
Let Q" denote an equivalent martingale measure and V™ a given payoff function
v 12
N

(contingent claim) with EZ" (| ) < oo. Furthermore let

(T)
V() := N(n) EY (V— [ 7—“,).

From that it follows that % is a QV-martingale. Furthermore let ¢,, ..., ¢, be as in
the martingale representation theorem, i.e.,

Voo, X

For the portfolio ¢ = (¢1, ..., ¢,) let ¢; be chosen as in Lemma 72 with V,4(0) := V(0).
Then ¢ is a self-financing replication portfolio of V; i.e., we have

Vi) = V¢ = Z¢,X,
i=1

In other words, V7 is an attainable contingent claim.

Proof: That % is a QV-martingale follows immediately from the definition and the

tower law’. From the definition of the martingale measure, % are QV-martingales
and the martingale representation theorem gives the existence of ¢, . .., ¢, with
1% < X;
ay = 209y

Choosing ¢; as in Lemma 72 will make ¢ self-financing.

3 See Exercise 2 on page 479
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For the value process V,, we find from Lemma 70 that

Vo - X;

_? _ (A=

Voo Ly

and thus d%¢ = d¥, so together with V4(0) = V(0)
N N ¢

V) = Vo) = ) ¢ dXi.
i=1

ol
Since the definition of the martingale measure Q" was totally independent of V we
have

Theorem 79 (Risk-Neutral Valuation Formula, Universal Pricing Theorem):
Let ¢ denote an admissible self-financing trading strategy and QY an equivalent

. . o . Vo(T) (2
martingale measure with respect to the numéraire N with EY' (|NL((TT7) ) < oo. Then

V¢,([)_ Q¥ V¢(T)
o (N(T) |¢’)' (329

69



CHAPTER 3. REPLICATION

3.3 Excursus: Relative Prices and Risk-Neutral
Measures

3.3.1 Why relative prices?

In our simple example from Section 3.1.2, using time-discrete processes with discrete
states, it became apparent that the useful martingale measure may be chosen indepen-
dently of the payoff function only if we consider relative prices. However, looking
at the continuous time theory from Section 3.2.2, the consideration of relative prices
seems to be less motivated. To motivate the relative prices we repeat steps of the
continuous time theory by considering absolute prices:
Let
dX; :;1,-dt+cr,-dWlP, i=1,...,n

denote the price processes of n traded assets. We assume that o; > 0, V i. The
processes are given under the real measure P. Since o; > 0, we have from Girsanov’s
theorem that there exists a measure Q' such that the processes are Q'-martingales,
1.e.,
Q.
dXj=oydW7, i=1,...,n

If VT denotes a given payoff function, then
v = EX (VD | F) (3.25)

is a Q'-martingale, and from the martingale representation theorem we get the exis-
tence of a portfolio process (¢1, . .., $,) with

dv() = Z ¢; dX;.
i=1

At this point we have to ask ourselves whether (¢, ..., ¢,) is a self-financing
replication portfolio, i.e., whether

Vi) = i o Xi.
=1

Without this identity V(r) — V(0) is just the gain process of the trading strategy

(¢1""7¢)l)'6 ae
The key in the construction of the self-financing replication portfolio was the ability

to use one asset as storage, here, e.g., X;. We divided by this asset and applied the

6 Recall the definition of self-financing: The required condition is d(X7_, ¢;X;) = X7, ¢; dX.
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representation theorem only to the remaining n — 1 processes §—f, - i—] After that
we could use ¢, to ensure self-financing since §—: (= 1) did not carry any risk (see

Lemma 70). So:

¢ If we use the representation theorem on (X1, . .., X,,), we find a representation of
the gain process, but it is not clear if the portfolio (¢, . .., ¢,) is self-financing
and replicating.

o If we use the representation theorem on (X,,...,X,) and set ¢; through
Lemma 70, then the portfolio (¢, . ..., #,) is self-financing, but it is not clear if
the portfolio replicates V7,

In order to construct a self-financing replicating trading strategy there has to be
an asset that (locally) does not carry any risk. The n processes X|, ..., X, have to
be driven by n — 1 Brownian motions, i.e., the n — 1 processes X—f, e f—? have to be
driven by n — 1 Brownian motions.

We consider price processes as before, however now let oy = 0 and, e.g., u; = r X
with » > 0 and X;(0) > 0. In this case X, corresponds to the value of a riskless
(o) = 0) asset with continuously compounded interest rate r:

dX; =rXyde, ie., Xi() = Xj(0) exp(re).

Obviously, there exists no measure under which X; would be a martingale. The
product is riskless, i.e., X| is not stochastic and the expectation is thus independent of
the probability measure. To make all processes martingales via a change of measure
we have to move to relative prices. Dividing all processes by N := X we have )7(vl =1,
which trivially is a martingale (under any measure). The remaining processes % are
either risky (i.e., with nonzero volatility) or martingales (i.e., if they are riskless they
are constant), since the presence of a riskless N-relative process with drift different
from 1 would imply arbitrage.’

1t is not necessary to chose the riskless asset as numéraire. We could have divided
by any asset. Either % is stochastic (i.e., has nonzero volatility) and can be turned

into a martingale by a change of measure, or % is drift-free.’

7 If there were two riskless assets with different local rates of return, then we could construct a portfolio
with zero initial cost having a positive payout with probability 1. This portfolio is constructed by
buying the high yield asset and financing this by (short) selling the low yield asset.

8 This statement does not hold globally, it holds locally.
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Interpretation:  The transformation to relative prices corresponds

7 to the transformation of the riskless rate of return (drift) to 0. This

. corresponds to the change of the frame of reference in physics. Since
- there is only one riskless asset, there is only one measure under which

all processes become martingales. With this measure we can use the martingale
representation theorem to derive the universal pricing theorem. <

3.3.2 Risk-Neutral Measure

For each numéraire N there usually exists a different equivalent martingale mea-
sure QV. As risk-neutral measure we denote the equivalent martingale measure QP
corresponding to the (locally) riskless asset B with

dB =r Bdt.

The name risk-neutral measure stems from the following considerations: Under the
measure Q% we have for any financial asset § that % is a martingale. Thus, relative to
B, S does not have any additional drift. So under Q¥ the asset S has the same local
rate of return as the riskless asset B, i.e., we have (written as a lognormal process)

dS =rS dt+o S dw?¥.

If Q2 had been the real measure, then this would imply that the real local rate of return
of § would be the same as B. In such a market all assets would have the same local
rate of return, namely r, independent of their risk o. In other words: On average, the
market participants are neutral with respect to risk; they are neither risk-affine nor
risk-averse.

In general one would expect that under the real measure all risky assets (o > 0)
have a local rate of return, i.e., drift, > r, since investors like to get rewarded for the
risk they take. There are, however, counterexamples: For a lottery the expected payoff
is usually much less than the initial investment, since the lottery pays out only a part
of the total investments.
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CHAPTER 4

Pricing of a European Stock
Option under the Black-Scholes
Model

We assume here that interest rates are deterministic and that a bank account exists
which may be used to invest or draw cash at a continuously compounded rate r(t), i.e.,
the investment of B(0) = 1 in ¢t = 0 evolves as

dB() = r(t) B(¢) dt,
1.e.,

B(@) = exp ( f r(T) d‘r) “.1)
0

(here r denotes a known real valued function of time, not a random variable). Further-
more we assume that the stock S (¢) follows

ds(r) = ,uP(t)S dt + (1) S(1) dWP(t) under the real measure P, (4.2)

(if o is a constant, then o is called Black-Scholes volatility). The measure P denotes
the real measure. Let K € R. We wish to derive the value V(0) of the contract paying

V(T) = max(S(T)-K,0)

int=T.

We use the techniques from Chapter 3 (the following steps will be repeated similarly
in other applications): As a numéraire N(?), i.e., as reference quantity, we choose the
bank account N(f) := B(f). From Theorem 74 we have the existence of a measure QV,

S

equivalent to P, such that N and 1—‘\/,—2% are both martingales.! From Theorem 59 S is

!By V(t) we denote the value of the replication portfolio consisting of S(z), B(¢) such that V(T') =
max(S(T) — K,0).
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CHAPTER 4 PRICING OF A EUROPEAN STOCK OPTION UNDER THE BLACK SCHOLES MODEL

given QV with a changed drift, i.e.,
as@ = @O S@dr + o SO dW¥ (1 under QV,
(where w2 denotes a QV-Brownian motion).? From the quotient rule 49 we find

200 gy di + o) dWE ()] - —g—)[r(t) di]

@ () dt+ o) dW O] df]

(a6) = 0
Bw) = BO
_so
B(r)

B(t) [r(t) de][r(2) d¢]

and by formal expansion, see Theorem 46:

= Zgi [@® (1) - r(t) dt + o(t) AWY (1)]  under Q.

From Lemma 53 it follows that ,uQN(t) = r(t). For the process Y := log(§) we then
have by Lemma 50

d(log(S () = (r(t) - %Uz(t)) dt + o) dW¥ () under QY,

i.e., log(S(T)) has normal distribution with mean j := log(§(0)) + 7T — —0'2T and

standard deviation & VT , where we define 7 and & as®

__1fT d) __1T2d
r_-T-(Or(t)t (r_(TfO(r(t)t)

That the distribution of log(S (7)) is normal follows from the definition of the It6
process: By

1/2

d(og(S () = (r(t) - %O’z([))dl‘ + O'(I)dWQN(t)

2 Since B has no stochastic component, i.e., does not depend on the path parameter w € Q, (4.1) holds
under QN , 100,

3 Often the model is considered with a constant (time independent) rate r and a constant volatility o
In this case we have 7 = r and & = ¢. This and the shortening of notation are the reasons that we
introduce the averaged quantities 7 and &.
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we have just stated that

T

T
log(S(T)) = log(S(0)) + f r(t)—%ol(t) dr + f o(t) dW?' (¢
0 0

T
log(S(O))+FT—%a"2T + f o(dW? ()
0

1
log(S(0)) + ¥T — E&ZT +aw¥ ().

We thus know the dynamics of S () and B(f) and more importantly the distribution
of S(T’) under the measure Q" . Furthermore we know that the value of V(0) satisfies

&0) = @ (Y_(Q)
B(O) B(T))’

thus (with B(0) = 1, B(T) = exp(FT))

M) _ 1 (max(S(Tz - K, 0))
B(T) exp(¥T)
= exp(—FT) E¥ ( max(S (T) - K, 0))

= exp(—7T) E¥'( max(exp(log($ (T))) - K, 0))

V(0) = B(0) EY" (

and since log(S(7T')) is normally distributed with mean j and standard deviation & NT

= exp(—*T) Im max(exp(y) — K,0) —\/__gb(y \/i)

where ¢(x) := ﬁ exp(—x?/2) denotes the density of the standard normal distribution.
The above integral may be represented as

V(0) = S(0)P(d,) — exp(—FT)KD(d_), 4.3)

where ®(x) := \/_ foo exp(—7) dyandd, = - \/_[log(s(o)) +7T + %—].4

4 We denote the cumulative normal distribution function by ®. In some books, especially in connection
with the Black-Scholes model, it is denoted by N (which we usually use for the numéraire). Instead of
d;, d_ one often uses the symbols d, d».
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To derive this formula we consider for given X, u, o € R (o > 0)

f max(exp(y) — K, 0) — ¢(y a_'u)dy

_ (" 1 - #)2)
= -K _
L g(K)(CXP()’) ) o eXP( 297 |
Lo <y—u>2)
= - d
V2no Lg(K) exp0) exp( 202 Y
1 * - )
- K - dy.
V2o ~[l(‘)g(l() P ( 202 Y

Itis

1 f © - u)z)
exp(y) ex (— d
V2no Jogk) P 202
1 n (v —p)? - 202y)
= exp|-——————| d
V2ro Jiogk) ( 20?2 Y

with (y — u)? = 202y = (y = (u + 02))* = 2uo? — o*

] e _ 2\}2 1
= f exp(_w_ +,U+ __0-2) dy
log(K) 2

V2ro 202
! ! z)f“’ ( (y—(u+ffz))2)
= explu+ zo exp|-————— | dy
V2no ( 2 log(K) P 202
and with the substitution == (’”‘r )iy

_ L[ ) 4
= -—\/: plu + = o) exp —E y.

Similarly we have with the substitution £¥ - y

1 foo ( (y _ “)2) 1 foo yz
K exp|———=5—|dy = —=K exp|-=1| dy.
V2o Jiog(K) 2072 Var  J e )

Defining

CI)(x)'——l—fX ex (—ﬁ)d
IRV U Y e
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we thus get from

L]‘mex (—y—z)d =d(-x)
Var Jo TP

that

fw max(exp(y) — K, 0) ;_tp Y—H

00

dy
2) (# +0? - 10g(K))

t\)|>—a A

B K(D(u—logm))‘
(o8

= exp (,u +

Remark 80 (Implied Black-Scholes Volatility): From Equation (4.3) and the
definition of d, we see that under the model (4.2) the price of an option depends on
S(0), 7, and & only (apart from product parameters like 7 and K). The parameter

—(lfT 2tdt)
=\7 00'()

is called the Black-Scholes volatility, while o(¢) is called the instantaneous volatility
of the model (4.2). The Black-Scholes volatility is the square root of the average
instantaneous variance (which is the square of the instantaneous volatility)°.

For fixed S (0), 7 the pricing formula (4.3) is a bijection

/2

Q

G- V()
[0, 00) — [max(S (0) — exp(-FT)K,0), S(0)]

and thus we may calculate the Black-Scholes volatility corresponding to a given price
V(0). This volatility is called the implied Black-Scholes volatility.

3 Note: The variance of the sum of two independent normally distributed random variables is the sum of
their respective variances.
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CHAPTER 5

Excursus: The Density of the
Underlying of a European Call
Option

Lemma 81 (Probability Density of the Underlying of a European Call Option):
Let S denote a price process and N a numéraire on the probability space (R, B(R), QV).
Let K e Rand Ty < Ty £ T;, where T| denotes a fixing date and T, a payment date
of a European option with payout

VK, T>?) := max(S(T)) — K,0).

Let us further assume that the numéraire N has been chosen such that N(T;) = 1.
Then we have for the (risk-neutral) probability densityl @scr(s) of S(T1) under QV

) = 1 8°V(K,Ty)
Psanls) = gy TTaxz ey
ie.,
8*V(K, Ty) dQ¥

KL N(To) ¢sr(K) = F({w :S(w) = K.

Remark 82 (Application): We may apply Lemma 81 to European stock options
(T = T, and N(t) = exp(r (T} — 1)), see Chapter 4, or to caplets, see Chapter 10.

If a model is given (e.g., as a “black box” through some pricing software) and if the
model allows the pricing of arbitrary European options, then we can use this lemma to

! To be precise, @s(1,)(s) is the conditional probability density, conditioned on 77, . For simplicity we
assume that 7, = {0, Q} and write EQN(-) for EQN(- 1FT,)-
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CHAPTER 5 EXCURSUS: THE DENSITY OF THE UNDERLYING OF A EURDPEAN CALL OPTION

infer the probability distribution of S(T’) created by this model. This allows for some
simple model tests: If the probability density is O in any region, then the model should
be discarded if these regions play any role in the pricing. If the model exhibits regions
with negative probability density, then the model is not arbitrage-free. It is easy to set
up interpolatory models that fail when tested by this lemma. See Chapter 6.

Proof: Under the measure QV, N-relative prices are martingales. Thus we have

VK To) _ EQN(V(K; Tz))

N(T()) N(TZ)
ie.,
N V(K;Tz)
. — Q .l
V(K;Ty) = N(T)) E ( NCT,) )
= N(To) f max (S (T1; w) - K, 0) dQ"(w)
Q
= N(T())f max(s—K,O) ¢S(T1)(s) dS,
and thus
a lea)
6—KV(K; To) = N(Ty) j:m—llo,oo)(s—K)fﬁsm)(S) ds
= N(Tp) f —dscr)(s) ds,
K
ie.,

2

0
B—K;V(K; To) = N(Ty) ¢s(K).

ol

As a direct consequence we have

Lemma 83 (Prices of European Options Are Convex): Prices of European options
are a convex function of the strike.

Further Reading: The original article containing Lemma 81 is [52].
It will play role in the interpolation of option prices, i.e., for the implied
volatility surface, and in the definition of a Markov functional model;
see Chapters 6 and 27. <l
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CHAPTER 6

Excursus: Interpolation of
European Option Prices

Insufficient facts always invite danger.

Spock
Space Seed, stardate 3141.9 (Wikiquote)

6.1 No-Arbitrage Conditions for Interpolated
Prices

We consider the price V(K; 0) of a European option with payoff max(S(T') — K, 0) as
a function of the strike K. We assume S (T) > 0. Let P(T; 0) denote the value of the
zero-coupon bond with notional 1.! From Lemma 83, the mapping

K > V(K)

(we write shortly V(K) for V(K;0}), which maps a strike K to the corresponding
option price V(K) (for fixed, given maturity T and notional 1), has to satisfy the
following conditions:

e V(0) = P(T;0) S(0) (since S(T) > 0),

e V(K)=V() - P(T;0) K for K < 0 (since S(T) > 0),
i.e., Vis linear for K <0,

o lim V(K) =0,

! See Definition 97 on the definition and Section 1.3.4 on the notation P(T’; 0).
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¢ =~ > 0 (from Lemma 81), i.e., V(K) is convex.

"\

eev

Figure 6.1. Arbitrage-free option prices for European options (payoff max(S(T) —
K, 0)) with strike K < Ky or K| < K < Ky or K > K»; assuming that two option
prices V(K}) > V(K3) (for K; < K3) are given.

Given strikes K, < K3 and corresponding option prices V(K}) and V(K,), re-
spectively, we find geometric conditions for the possible (arbitrage-free) strike-price
points (K, V(K)). The price points ¢ = (Kj, V(K1)) and d = (K3, V(K3)) as well as
a=(-1,V(0) - P(T;0)), b = (0, V(0)), and e = (0, V(K>)) define lines ab, bc, cd, and
de which are boundaries of the set of admissible strike-price points. As depicted in

Figure 6.1 we have:

e For K < K| < K3:
V(K) 2 V(0)- P(T;0) K (K, V(K)) 2 ab).

VK) 2 VIKDE—g + V) F - (K, V(K)) > cd).

VK) < V(0) +(V(K) - VO)£- (K, V(K)) < bo).
e For K| < K < Ky:

VIK) 2 V(Ko)+ (VK) - VO) £ (K, V(K)) > Bo).

VK) > V(K>) (K, V(K)) > de).

VK) < VIK)geg + VI B (K, V(K)) < cd).
e For K| < K; < K:

VK) > VKD + V) p = (K, V(K)) 2 cd).

V(K) < V(K3) ((K, V(K)) < de).
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6.2 Arbitrage Violations through Interpolation

In this section we give some examples to show that simple interpolation of prices or
implied volatilities may lead to arbitrage.

6.2.1 Example 1: Interpolation of Four Prices

Consider a stock S with a current value of §(0) = 1.0 and a European option on §
having maturity T = 1.0 and strike K, i.e., we consider the payoff

max(S (1.0) - K, 0).

Assume that for strikes K = 0.5,0.75, 1.25, and 2.0 the following prices are given:

| i | Strike K; | Price V(K;) | Implied Volatility o(K,) ]

1 0.50 0.5277 0.4
2 0.75 0.3237 04
3 1.25 0.1739 0.6
4 2.00 0.0563 0.6

The given implied volatility is the o of a Black-Scholes model with assumed interest
rate (short rate) of r = 0.05. Note, however, that we start with given prices which are
model-independent.

We will now discuss several “obvious” interpolation methods applied to this data.
One approach consists of the interpolation of prices, the other approach consists
of the interpolation of implied volatilities and calculating interpolated prices from
the interpolated volatilities. These interpolations are not model-independent. The
interpolation method itself constitutes a model. This is obvious with the second
approach, where a model is involved in the calculation but also applies to the first
approach. From Lemma 81 we have that the interpolation method constitutes a model
for the underlying’s probability density. It does not model the underlying’s dynamics.

6.2.1.1 Linear Interpolation of Prices

In Figure 6.2 we show the linear interpolation of the given option prices. The prices do
not allow arbitrage, which is obvious from the convexity of their linear interpolation.
However, the linear interpolation of prices has severe disadvantages: The linear
interpolation of option prices implies a model under which the underlying may not
attain values K # K;; the corresponding probability density is zero for these values.
For values corresponding to the given strikes K; a point measure is assigned: see
Figure 6.2, right. In addition the corresponding implied volatilities look strange.
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Interpolated prices Interpolated volatlities Probability density
0.50 1.2E-1
0.401 >, 0.60 .. 1.0E-14
@ | = = .
2 0.301 EOSDJ E?.SE:
(=% - "
0 QU-i o | 2 5.0E-2
| 0.401 2.5E-2
0.10 1 | JL
Y | U I S 0.0E0 {——=—o——oro |
0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00
strike strike underlying value

Figure 6.2. Linear interpolation of option prices.

6.2.1.2 Linear Interpolation of implied Volatilities

In Figure 6.3 we show the linear interpolation of the corresponding implied volatilities
(center), while the corresponding prices are recalculated via the Black-Scholes formula
(Ieft). The linear interpolation of implied (Black-Scholes) volatilities may lead to

Interpolated prices Interpolated volatlities Probability density

0.50 2.5E-2

0.40 > 0.60 o
@ ] —
9 0.30 % 0.50 s B2
% 0.20 E S

> 0.40 -2.5E-2
0.10
0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00
strike strike underlying value

Figure 6.3. Linear interpolation of implied volatilities.

prices allowing for arbitrage: At the edges K = 0.75 and K = 1.25 we have a point
measure, the measure for §(T') = 1.25 being negative. Thus the implied measure is
not a probability measure; see Figure 6.3, right. From Lemma 81 we have: There is
no arbitrage-free pricing model that generates this interpolated price curve.

On the other hand, linear interpolation of implied volatilities also has a nice
property: If the given prices correspond to prices from a Black-Scholes model, i.e., if
the implied volatilities are constant, then, trivially, the interpolated prices correspond
to the same Black-Scholes model.
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6.2.1.3 Spline Interpolation of Prices and Implied Volatilities

To remove the disadvantage of degenerated densities (i.e., the formation of point
measures) as it appears for a linear interpolation, we move to a smooth (differen-
tiable) interpolation method, e.g., spline interpolation. Figure 6.4 shows the spline
interpolation of the given data. The upper row shows the spline interpolation of the
option prices. The lower row shows the spline interpolation of the implied volatilities.
Using (cubic) spline interpolation the probability densities are continuous functions.

Interpolated prices Interpolated volatlities Probability density
0.50
5.0E-3

0.40 > 0.80 -
[ = -~
2 0.30 = &
c T 0.50 S 2.5E-3

0.20 s -]

0.40
0.10 1 0.0E0
0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00
strike strike underlying value
Interpolated prices Interpolated volatlities Probability density
ik

1.507 5.0E-3

0.40 = .60 .
@ = =
S 0.30 £ 0.50 2 2.5E-3
% 0.20 H S

: > 0.40 1

0.10 | 0.0E0

0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00
strike strike underlying value

Figure 6.4. Spline interpolation of option prices (upper row) and implied volatilities
(lower row).

However, it shows large regions with negative densities (Figure 6.4, right), thus the
density is not a probability density and arbitrage possibilities exist. The strike-price
curve is not convex (Figure 6.4, left).

A spline interpolation of prices generates negative densities, because the spline
interpolation of convex sample points is not convex.

6.2.2 Example 2: Interpolation of Two Prices

The example from Section 6.2.1 of a linear interpolation of implied volatilities may
suggest that the problem arises at the joins of the linear interpolation, i.e., the behavior
at K; = 0.75 and K3 = 1.25. One could hope that a local smoothing would solve this
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problem. Instead we will give an example showing that a linear growth of implied
volatility may be inadmissible alone, although the interpolated prices are admissible.

We consider two prices V(K3) > V(K3). The monotony ensures that these two
prices alone do not allow for an arbitrage.

6.2.2.1 Linear Interpolation for Decreasing Implied Volatilities

Consider the following prices:

| i | Strike K; | Price V(K;) | Implied Volatility o(K) |
2 0.75 0.4599 0.9
3 1.25 0.0018 0.1

The implied volatility decreases with the strike K. Figure 6.5 shows the linear
interpolation of the implied volatilities (center). The density (see Figure 6.5, right)

Interpolated prices Interpolated volatlities Probability density
0 SfJ-l 1.00 1.5E-2
0.40 4
. > 0.75 - 1.0E-2
@ 0.30 = =
2 | 5 0.50 B .
a 0.20 ° % 5.0E-3
>
0.10 923
0.0E0
0.00 0.00 or—"rorr——+— r—p
0.75 1.00 1.25 0.75 1.00 1.25 0.75 1.00 1.25
strike strike underlying value

Figure 6.5. Linear interpolation for decreasing implied volatility.

shows a large region with negative values: thus it is not a probability density. The
reason is a decay of the implied volatility too fast.

Conclusion: An arbitrarily fast decrease of implied volatility is not possible.

6.2.2.2 Linear Interpolation for Increasing Implied Volatilities

For the example of increasing implied volatility we consider the following prices:

[ i | Strike K; [ Price V(K;) | Implied Volatility o(K;) |
2] 075 0.2897 0.2
3] 125 0.2532 0.8
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Interpolated prices Interpolated volatlities Probability density
0.50 1.5E-2 1
0.40 0.75
= 1.0E-2 -
@ 0.30 = =
o - w
c I3\_/521 5 0.50 e
& 0.20 4 = @ 5.0E-3
= °
| 0.0E0
0 00 L——— : — S = — e |
0.75 1.00 1.25 0.75 1.00 1.25 0.75 1.00 1.25
strike strike underlying value

Figure 6.6. Linear interpolation for increasing implied volatility.

Figure 6.6 shows the linear interpolation of the increasing implied volatilities.

At first sight the density implied by the linear interpoiation of the implied volatilities
exhibits no flaw (positive, no point measure). However, it is not a probability density.
The integral below the segment is larger than 1. That this is inevitable is obvious from
the price curve. The price curve is convex (and thus the density positive), but not
monotone. The arbitrage is obvious, since the option with strike 1.0 is cheaper than
the option with strike 1.25. If the prices should converge to 0 for increasing strike,
then it is inevitable that the convexity will be violated. Thus it is inevitable that the
density will exhibit a region with negative values beyond the interpolation region
(this, however, will make the integral of the density to 1).

Conclusion: An arbitrarily fast increase of implied volatility is not possible.

6.3 Arbitrage-Free Interpolation of European
Option Prices

The examples of the previous sections bring up the question for arbitrage-free interpo-
lation methods.

Every arbitrage-free pricing model defines an arbitrage-free interpolation method,
if it is able to reproduce the given prices. However, this insight is almost useless,
since:

e Most models are not able to reproduce arbitrarily given prices exactly.

— The Black-Scholes model (Chapter 4) and (in its simplest form) the
LIBOR market model (Chapter 19) allow, by the choice of their volatility,
the perfect fit for only one European option per maturity.
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— Extended models (e.g., models with stochastic volatility) allow for a
calibration to more than one option price per maturity. They often do this
in an approximative way, i.e., the residual error of the fitting is minimized,
but not necessarily 0. However, this may also be a desired effect, since
such a fitting is more robust against errors in the input data.

o Extended models that fit more than one option price per maturity usually require
great effort to find the corresponding model parameters. These models are
intended for the pricing of complex derivatives (which justifies the effort), but
not primarily as an interpolation method to price European options. Examples
of such model extensions are stochastic volatility or jump-diffusion extensions
of the LIBOR market model, [23].

¢ Some models even require a continuum of European option prices K — V(T K)
as input. Then they require an interpolation. An example for such a model is
the Markov functional model; see Chapter 27.

Thus, special methods and models have been developed to specifically achieve
the interpolation of given European option prices. Often they reproduce given prices
only approximately in the sense of a “best fit”—they are not an interpolation in the
original sense. The construction of an (interpolating or approximating) price function
(T,K) — V(T, K) of European option prices with maturity 7' and strike X is called
modeling of the volatility surface.

Definition 84 (Volatility Surface): 1
Given a continuum (7, K) — V(T K) of prices of European options with maturity 7
and strike K. Let o(7T, K) denote the implied volatility of V(T, K), i.e., the volatility
for which a risk-neutral pricing with a lognormal model dS = rSdr + (T, K)S dW,
S(0) = Sy (Black-Scholes model) will reproduce the prices V(7T, K). Then (T, K)
(T, K) is called volatility surface. a

The modeling of a volatility surface may be viewed as important postprocessing
of market data. On the other hand it may be viewed as an integral part of the pricing
model. A detailed discussion of volatility surface modeling is beyond the scope of
this little excursus and we restrict ourself to citing a few methods:

Further Reading: An introduction to the volatility surface is given
by Gatheral [15].

[ The mixture of lognormal approach [54] uses the fact that if the
probability density ¢s(7) of the underlying S(7T') is given as convex

sy = Zn:/li(ﬁu-,,, i/l,- =1, >0
P i=1

combination
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of lognormal densities ¢, then the price of a European option is given as a convex
combination (using the same weights A;’s) of corresponding Black-Scholes formulas.?
In some cases this allows for a choice of the ¢,,’s and 4;’s that exactly reproduces
given option prices. However, the method is not able to reproduce arbitrary arbitrage-
free prices.

Fengler [64] applies a cubic spline interpolation with an additional shape constraint
to given option prices. This leads to an arbitrage-free smoothing algorithm for the
implied volatility.

The SABR model [75] is a four-parameter model (o, @, 8, p) for European interest
rate options (the underlying is an interest rate; see Chapter 8). It reproduces given
prices only approximately, but models a more realistic behavior of the dependency of
the volatility surface from the spot value of the underlying. <

T 1 Experiment: Athttp://www.christian-fries.de/finmath/
L | applets/OptionPricelInterpolation.html several interpolation
[ I methods may be applied to a user-defined configuration of European op-
k tion prices. The figures in this chapter were produced with this software.

<

2 This follows directly from the linearity of the integral with respect to the integrator dQ = ¢(S) dS.
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CHAPTER 7

Hedging in Continuous and
Discrete Time and the Greeks

7.1 Introduction

The evaluation theory we have presented so far relies on the possibility of replicating
a financial derivative by a portfolio of traded assets (replication portfolio) and a
self-financing strategy.

If we assume a perfect replication, we can evaluate a derivative product without
explicitly deriving the replicating strategy. This is made possible by the introduction
of the equivalent martingale measure and the universal pricing theorem. However,
in practice, the price calculated by this risk-neutral valuation theory makes sense
only if the corresponding replication is conducted. Thus, it is necessary to explicitly
determine the replication portfolio in order to do the replication.

In the first part of this chapter we will show that the replication strategy may be
derived from the risk-neutral valuation surprisingly simply.

Depending on the state space modeled, the following basic requirement has to hold
in order to replicate arbitrary payoff functions:

o To replicate arbitrary payoff functions modeled over a continuous state space,
it is in general necessary to trade continuously and in infinitesimal amounts of
the underlyings. The existence of such a replicating trading strategy is ensured
by the martingale representation theorem, see Theorem 54.

o To replicate arbitrary payoff functions modeled over a finite, discrete state
space, it is only necessary to trade at discrete times. However, the number of
traded assets (underlyings) has to match the number of possible state transitions
over one time step, see Section 3.1.2.
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Both modelings (continuous or discrete replication) do not represent reality exactly:
on the one hand it is not possible to trade continuously in infinitesimal amounts; on
the other hand the number of possible states is usually much larger than the number
of traded assets.'

Apart from the question of how to derive the replication strategy for time-continuous
trading, we are especially interested in the replication when trading takes place at
discrete points in time only. In this case, which is closer to reality, a complete
replication is not possible. A residual risk remains.

Definition 85 (Hedge): 1
A replication portfolio (almost) replicating a derivative product and thus, if considered
together with the derivative product neutralizing (reducing) the total risk, is called a
(partial or incomplete) hedge. The corresponding trading strategy is called hedging.

4

First we will derive the delta hedge, delta-gamma hedge, and vega hedge from the
risk-neutral evaluation theory (Section 7.2). We will then transfer these hedges to
the case of trading in discrete time, these being incomplete hedges, and analyze the
residual error (Section 7.4).

The Bouchaud-Sornette method (Section 7.5) determines the replication portfolio
that minimizes the residual risk. The residual risk has to be measured in the real
measure P. There is a real risk of a loss due to incomplete hedging. The real measure
is no longer irrelevant since a complete replication is no longer possible.

7.2 Deriving the Replications Strategy from
Pricing Theory

Let M :={S¢,S1,...,5,] denote a set of Itd price processes, representing a complete
market of traded assets. Let the process N = S be a numéraire and Q" the corre-
sponding martingale measure. Let ¢ - V(f) denote the price process of a derivative
product, i.e.,

_ o (VD )
V@) = NOE (———N (T)|7-', .

We assume that the value of the derivative product V can be written as a function
of (¢,S50(), S 1(8),...,S,(0),ie., we have

V(@) = V(£,S50(2),S1(D),....5.(1). 7.1)

! At a stock exchange the prices that can be attained by a stock are in fact discrete.
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If V(r) is given by an evaluation theory—i.e., an analytic formula or pricing
algorithm—as a function of the underlyings, then the self-financing replication port-
folio

(@) = do()So(®) + 41(DS1() + -+ - + Gu(D)S (1) (1.2)

with [1(r) = V(r) (replication) may be determined as follows:
The property that I1 is self-financing may be written as (see Definition 66)

dll(r) = @o(®) dSo + ¢1(1) dS1(1) + - - - + Pu(#) dS 4 (1) = Z #; dS;.
Furthermore we find from It6’s lemma (Theorem 47) applied to (7.1)

2
dV()_wd des wds,dsj.

2440508 — !
=(..) dt

From dI(¢) = dV(¢) (replication), we find ¢y, . . . , ¢, by comparing coefficients. It is

av 6V 6V
¢o(t)~—((’)), B1(1) = (’) ) = (t) (1.3)
n 2
WO 44 13 2VO 4645, 0. (7.4)

ot 2 449898 —
=(..) dt

Conclusion: Under a model, which permits the evaluation of V through a martin-
gale measure and universal pricing theorem, i.e. without explicit construction of the
replication portfolio, the replication portfolio may be calculated a posteriori from the
partial derivative of the price after the underlyings.

1 Interpretation: Comparing coefficients of dV and dIT we find Equa-
. tions (7.3) for the replication portfolio process ¢. The partial differential

. . equation (7.4) is just a reformulation that
i

V() = V(5,$00),51(1), ..., S (D)

is the value process of a self-financing portfolio in the coordinates
So(®),S1(D,...,5.(®). Equation (7.4) may be used together with the final
condition

V(T,So(T), S1(T),....,854(T)) =

to determine V(¢) for ¢ < T from the given payoff profile V7. This is the entry point
to the pricing of derivatives by partial differential equations; see Section 2.11. <«
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7.2.1 Deriving the Replication Strategy under the
Assumption of a Locally Riskless Product

The ansatz V(1) = V(£, S (1), S 1(t), . . ., S »(¥)) is just one possible way of interpreting
V as a function of the underlyings. It is a specific choice of the coordinate system
leading to very natural equations for the portfolio parameters and the partial differ-
ential equations for V. If N = § is locally risk-free, we may easily give V in the
coordinates (7, S 1(¢),...,5,()) alone. A special case which we consider now: Let
N = § denote a locally risk-free numéraire, i.e., assume that the process N (i.e., So)

is of the form
ON

dN = —ds, 7.5
o (7.5)
i.e., we assume that dN does not have a dW-component. 2 For N > 0 (N is a numéraire)
we have r := 2180
N 61 N
N = - dr 05( )N dr = rN dt. (71.6)

We assume that, for a given N, V(r) is given as a function in the coordinates
(t,81(0), . ..,S,(t)) and denote this function by V again, i.e.,

V() = V(£,S1(1),...,S (D). .7

In other words: N is no longer a modeled free quantity.3

If V(T) is given in this from, we may derive the self-financing replication portfo-
lio (7.2) with II(z) = V(¢) as follows: From It6’s lemma (Theorem 47), applied to
V(t, 5100, ...,8 () we have

V() S0 1 & 82V

V() = —2dr+ Y —2 dS; ds; ds;
WO =579 2., "2 Laasias; L0
- =(...) dt

With dII(¢) = 7, ¢; dS; = dV(¢) (self-financing of II, replication of V) we find
&0, - . ., ¢, by comparing the coefficients of df and dS;, i > 1 as

v oV
&) = a5, én(t) = as,
N, Ve . 1 V() (7.8)
by grdt = =5~ dt "2 435, a5, B9

=(..) dr

2 The property is local, since %’;’ may very well be stochastic. An example would be dN = rN dt, as it

was considered for the Black-Scholes model in Chapter 4.
3 An example is the Black-Scholes model, where N(f) = exp(r #) and r is a fixed model parameter.
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The equation for ¢y seems unnaturally complex when compared to the equation for
&1, ..., ¢,. This is a consequence of representation (7.7), which we had assumed for
V; see Section 7.2.3. However, since the portfolio is self-financing, it is not necessary
to calculate ¢, from (7.8); ¢ follows from the condition of self-financing portfolios.

7.2.2 Black-Scholes Differential Equation

Writing % = alog(N)N =: rN the equation for ¢ in (7.8) becomes
soroNg dr = 0 g Ly VO o i
0 Er 2440505, — 2
=(...) dr
Since

¢oN+Z¢, i = goN + Zaav;’)s

i=1

5 ovV(t
soN = V=Y Z0s,

i=1

we also have

and denoting the instantaneous correlations by p; ;, i.e., dS; dS; = oo p;; dt we
arrive at

av(t ov(t 50Vt
0 ()Z Os, 2 5, (;S) Ciripi = HOV(D).

This is a variant of the Black-Scholes partia] differential equation in the coordinates
(t9Sl"'-7Sn)'

7.2.3 Derivative V() as a Function of Its Underlyings S ;(¢)

The representation of the portfolio process components ¢; as a partial derivative of
V as well as the partial differential equation for V depend of course on the chosen
coordinate system of the underlyings. Instead of comparing coefficients of dS;, i > 1
and dr (as above), in general, it is possible to compare the coefficients of dr and the
differentials of the driving Brownian motions dW,.

To illustrate that we have just considered a change (or rather substitution) of
coordinates, let us reconsider V written in the two different coordinate systems above,
ie,

V() = VU, So(1), S 1(2), . . ., S n(D))
V@) = Vi, $1),....5.(0).
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With Sy = N and dN(#) = r(t)N(¢) dt (this assumption makes it possible to replace
the dependence on §¢ by a dependence on #) it is

Vi, S, 8 = VU N@), S, .., S ),

thus
oVt _ gVl GVl oN gy N
T o

o - o T oN ot

ie.,

A% ON vl

o e T o
Together with dS; dS; = 0if i = 0 or j = 0 in (7.4) this gives
av(t)n+1 n 62Vn+l(t)
dt ——= d5;dS; = 0
a V72 Z o595, 25195
b= =(.) dt
v () 8PV
dr - —d ds;ds; =0
ot % 21 8,08, = 21

=(.)y dr

6V"(t) aV"(z) 1 & 3Vr) _ .
()Z Si+3 24 5,05, = TOVIO- (9

7.2.3.1 Path-Dependent Options

Our assumption that V(¢) is a function of S;(#) excludes path-dependent options.
However, our considerations may be easily extended to the case of path-dependent
options by writing V as a function of the corresponding path quantities. For example,
considering a path-dependent option of the form

V(@) = V(t,S(t),f S dr)
0

with ,
I(r) = f S(t)ydr
0
we derive P 6V(t) V)
t t
= —= —d/
dv(r) = 6 dr + 35 ds + 3
and substitute dI(r) = S(¢) dz. For the replication portfolio we thus get
_ oV, S, 1)
N T
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7.2.4 Example: Replication Portfolio and Partial
Differential Equation of a European Option under a
Black-Scholes Model

As an illustration we reconsider these calculations for a simple model, the Black-
Scholes model, with price processes N for the savings account and S for the stock:

dN(1)
ds(

rN(r) dt, NO) =1,
uS (@) dr + oS (2) dW(r), SO)=S§

Il

For a European option with strike K and maturity 7', i.e. Payout max(S(T) — K, 0)) Z
V(T), the Black-Scholes-Merton formula (4.3) for the value V at time ¢ is

V(t,5@) = S(OHP(d.) —exp(—F(T — 1)KD(d_),

where
1 S®\ FUT - 1)
dy = ———|log| — |+ KT - 1) £ —————|.
* &«/(T—t)[og( K) HT =1 2
See (4.3) in Chapter 4.

This gives V as a function of f and S (¢), since r is seen as constant and thus N(¢)
is known as a deterministic function of t. With N(¢) = exp(r t) we may write V as a
function of (¢, N(¢), S (1)), namely

Vi, N0, S@®) = S(HDd,) — N(t)1~v(—T—)—(I)(d_) (7.10)

where

-2 _
d, = S N(T))ia'(T t)].

T =D [Og(m K
Itis
v 1 K 1 1

= Od)+S dy ——— = Nt} () ———
0] (ds) + S(O( )S(t) — (t)N(T)¢( )S(t)o- —

= O, +
( )+S()0'\/_ (S(t)¢(d) N(t) —p(d_ ))

1 1
= Ody)+ =——=|S d.)-N
( )+S(t)0'\/7-"_ ( (D¢(d,) - N(©)

N(T)

N(T)¢(d‘)) '
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With
1
#¢d,) = C exp(—idi)
S NI 2 FUT- FHT-1)?
= C exp {—log(ﬁ) %) ileg(% @) T+ =
204T - 1)
F S MDY, Fa-n?
= Cexp illo (m K )_lOg(N(t) K ) ++
2 °\S(0) N(T) 26T — 1)
2 4 2
(g el 2
S(t) N(T) P 2527 = 1)
we get
S() N(T)
d)=——>—~-
W) =50 Tk P
and thus
v —q>(d)+L 1 SORds) ~ N K oo | = o
osm T SOoVT -1 ' N 2| T Ve

=0
Similarly, we can derive

o __K
ON(t)  N(T)

To sum up, we have V(t, N(¢), S (1)) = do(t)N(t) + ¢1(£)S (¢) with

D(d_).

K
$o(®) = "N Od-),  ¢i(1) = D(d.).

Indeed, we might simply have read off the representation of the replication portfolio
from (7.10).
For the function

V(t,n,s) = s®d,) — nid)(d_)

N(T)
with
1 s N(T) aXT - t)]
dy = —— - + .
&V(T—t)[log(n K )+ 2
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itis

2 2
?dmi‘zv(;’)dsz aigstdS %'Z ;)dS as =0
dNdN =0
ot 2 35 0s '

See Exercise 10. Furthermore, the final condition
V(T, N(T), s) = max(s — K,0)

holds.

7.2.4.1 Interpretation of V as a Function in (1,5)

For the Black-Scholes model, the classical way is to write V as a function of ¢ and
S (¢) only. In this case we get (see (7.8))

_ vV
T as
av() ) Sza V@)

N_
dor Y +2” 852

1 = ®(d.)

In addition we have from V = ¢gN + ¢S

$oN =V —¢15
which brings us once again to the Black-Scholes partial differential equation

PV = r¢o(t)N(t) +r¢1S (1)

BV 2
(t) 2826 140) . é)V(t)S
“or 2 08?2 as

and thus

ov(ny oV ., 20 V(1)

— V.

o Tras St 7 e <

Definition 86 (Delta Hedge): B
This choice of the replication portfolio given in Equations (7.2) and (7.3) is called
Delta hedge. 4
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Interpretation: Considering the derivative product V as a function
of the underlyings S, then the portfolio IT given by the delta hedge is the
local linear approximation of V; see Figure 7.2. For a fixed path w the
map f — S (¢, w) is almost surely continuous (a property of Itd processes)

and on that path we have V(T) = fOT dv = fOT dIl. This corresponds to the main

theorem of ordinary calculus: f(T) = [ df = [ f/(1) dr (e.g. for differentiable f).

This illustrates why the portfolio I1 is only required to coincide with V upon their first

s vati : .ev _an
derivative by §, i.e., the so-called delta: 35 = 3¢. <l

7.3 Greeks

The partial derivatives of the value V() of a derivative product upon product- or
model-parameters are important quantities. They describe how the product reacts to
infinitesimal changes and are essential for the construction of the replication portfolios.
These quantities are usually denoted by Greek letters and therefore called Greeks.
Here we give definitions of the most important Greeks:

Definition 87 (Delta): 1
The first-order partial derivative of the price of a derivative product with respect to
the underlyings is called delta. It is the first-order sensitivity of the derivative product
to price changes of the market-traded assets (or market quotes). a

Definition 88 (Gamma): 1
The second-order partial derivative of the price of a derivative product with respect to
the underlyings is called gamma. It is the second-order sensitivity of the derivative
product to price changes of the market-traded assets (or market quotes). a

Definition 89 (Vega®): R
The first-order partial derivative of the price of a derivative product with respect to
the underlyings log-volatility is called vega. It is the first-order sensitivity of the
derivative product to log-volatility changes of the market-traded European options. 4

Definition 90 (Theta): R
The first-order partial derivative of the price of a derivative product with respect to
time is called theta. It is the first-order sensitivity of the derivative product to time. 4

Definition 91 (Rho): 1
The first-order partial derivative of the price of a derivative product with respect to the
interest rate (r) is called rho. It is the first-order sensitivity of the derivative product
to a change in interest rate.

4 Vega is not a Greek letter.
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The definition of rho is only used for models with nonstochastic interest rates. For
interest rate derivatives (evaluated under a model of stochastic interest rates), as will
be considered in the later chapters, the interest rates are underlyings and rho is just a
delta. a

7.3.1 Greeks of a European Call-Option under the
Black-Scholes Model

Given the Black-Scholes model with price processes for the savings account N and
the stock S':

dN() = rN(t) dt, NQ©O) =1,
dS(f) = pS@) dt + oS @) AW(r), S(0) = S,

consider a european stock option with payout max(S(T) — K,0)) < V(T). From
Chapter 4 the price V(0) of the option under this model is given by the Black-Scholes-
Merton formula (4.3):

V(0) = So®(d.) — exp(—rT)KD(d-),

where

(D(x)'zifx ex (—y—2)d
= Vor Jw p 5 y

1 S(0) o’T
d:t = 0-—\/? [10g(7)+rT:t le

Thus, the price is a function of S¢, r, K, o, and T'.
From the Black-Scholes-Merton formula we may derive the Greeks analytically.
They are given in Table 7.1.

and

7.4 Hedging in Discrete Time: Delta and
Delta-Gamma Hedging

If a delta hedge is applied continuously, then it achieves a perfect replication. At
any time, the portfolio V — I is neutral with respect to infinitesimal changes in the
underlyings S ;. However, if the delta hedge is applied only at discrete times z, i.e.,
the portfolio process (¢o, @1, . . ., dn) is kept constant on time intervals [, #;1), then
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Greek Definition  within the Black-Scholes model
ov
Delta (A — =dd
elta (A) 35, (d,)
2 ’
Gamma (') 6_\; = M
985 Soo VT
7% ,
Vega — =S, VT®'(d.)
o
Theta (©) —Z—‘T/ - S"c;(/dj)a rK exp(—rT)®(d_)
i)'
Rho (p) a = KT exp(—rT)d(d_)
r

Table 7.1. Greeks within the Black-Scholes model.

the replication is no longer exact.> While in continuous time

v N AV(1) 1 & V@
dV(r) = —Z dr+ » —2dS; +
0= ot 43S, 2 — 3S; S

ds; ds,

Si+ dr +
o 2 = 089S ;

Zavu) V() 1 < 8*V(@) ds. ds
i A

=0

is exact by It6’s lemma (and (7.4)), we have for the time-discrete case (AV = V(¢ +
A — V(D)

V(@) = AV(D) 1 & V@
AV(t) = —= At + i+ = AS; AS; (7.11)
ot £4 S, 2’ as; 6S,H(T
# !

V() 1~ 0%V(p)
B Z ASi+ 2 = 38, S

(ASiAS;—y;; AD +hot,  (7.12)

#0

5 See also the discussion of self-financing (Definition 66).

104



7.4 HEDGING IN DISCRETE TIME: DELTA AND DELTA-GAMMA HEDGING

where y; is given by dS; dS; = y,; df and h.o.t. = O(|Atf, 1At AS ,|AS ;). For
comparison, for the replication portfolio we have in the time-discrete case

ATI(P) = Z ¢; AS.. (7.13)
=0

Assuming we have an exact replication at time t (V(f) = I1(2)), then there is no choice
for the replication portfolio ¢ such that AV(r) = AIl(z) in general. An exact replication
at time ¢ + At is not guaranteed.

To ensure that the replication portfolio is self-financing, we have to reformulate the
requirement in the time-discrete setting. Trading at discrete times #; the self-financing
property is

3 (@it = dit-)S (20 = 0,
i=0

This may be ensured, e.g., by the choice of ¢y according to
1 n
Go(te) = golt-1) — S0 Z (¢i(tx) ~ Gi(te-1))S itr) (7.14)
=1

(we have S # 0 since we assumed that S is a numéraire). While in continuous time
V may be replicated exactly with a self-financing portfolio, there is a choice whether
¢ is chosen to reduce the replication error or ¢ is chosen to keep the portfolio
self-financing.

The restriction to a self-financing portfolio leads to an error propagation of the
replication error via (7.14); see Section 7.4.2.

7.4.1 Delta Hedging

A delta hedge determines the replication portfolio such that the delta of the replication
portfolio IT matches the delta of V. In other words, the delta of the replication error
V — I is zero. The replication error is first-order insensitive to movements of the
underlyings. If we consider the requirement of self-financing to be ensured by the
choice of ¢, then we chose

IV(t)

¢i(ty) = 35,

do(te) = doltr—1) —

1 n
Sote) ; (¢i(1) — $it-1))S ilti) | -
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For the error AV(¢) — AII(t) we get from (7.12) and (7.13)

av(n) 1 = 82V

AV(t) — AIl(t) = ( ¢,) = (AS; AS j —y;; A +hot.

Z NS 2 by d8;0S ~
and with ¢; = a(;;(t) fori #0

av(n 1 v PV
- A i .0.1.,
(6S0 ¢0) So+ 2 65 25 (AS; AS ; —v;; AD +h.ot
#0

where h.o.t. = O(Af%,|At AS |, |AS ).

7.4.2 Error Propagation

The choice of ¢y at time ¢ = 0 is determined by the initial condition I1(0) = V(0)
and at later times t = &, k = 1,2, ... by the requirement for a self-financing trading
strategy:

D BiIS 1) = ) $ilti-DS (ko). (7.13)
i=0 i=0

This results in an error propagation. Assuming that at time #, the replication error due
to the previous choice of ¢;(f_1) is V(&) — 2 ¢:i(ti-1)S i(tx) =: e(tr), then we have
with

n av n
v =Y S, e = Y aws i (7.16)
i=0 ¢ i=0

and ¢;(ty) = % for k # 0 (delta hedge), such that

vt

35, ¢0(tk))

e(ty) = V(1) - Zas,(tk 08t "= Vi) - Tl ‘”6)(

Thus the requirement for a self-financing portfolio implies

ov 1
do(t) = —(’) - (Vi) - T,

This shows how the replication error at time #; is propagated over the time step At by
the requirement for a self-financing strategy through ¢y.
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Summarizing, we have for the delta hedge

) ASy 1 ol A40)
AV() ~ ALl = (V) - TI)—= + 2 £465, 65,

(AS; ASJ —Yij Af) + ho.t.,

#0

where h.o.t. = O(|At]%, |At AS |, |AS ).

7.4.2.1 Example: Time-Discrete Delta Hedge under a Black-Scholes
Model

We consider a Black-Scholes model with the notation as above. For the replication
portfolio ¢o(H)N(f) + ¢1(£)S (f) we have

oV 1 S o2
(1) = S0 —CD(O_ — [log(—k—)+r(T—t)+ 5 )

We use this choice to trade within the replication portfolio at discrete times #,
k =0,1,.... The size of the “cash position” is chosen such that the portfolio remains
self-financing, i.e.

LoV 1 S(1) o
d1(te) = St (D(O_ — [log( X )+V(T—fk)+—2—

1
do(t) = ——(pt- 1IN + d1(1-1)S () — 1 (1S (1)
N(t)

At time 75 = 0 the portfolio is set up according to the option value known from the
evaluation formula:®

1
Polto) = N—(m—)(V(to)—m(to)S ().

Figure 7.1 shows the result of a weekly delta hedge.

6 Eventually, the initial investment in the replication portfolio is not sufficient, see Figure 7.1, right.
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Hedge Portfolio versus Payoff

1.0 jj r T y
Delta Hedge (weekly) Delta Hedge (weekly) ///
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Figure 7.1. Samples of the value of the replication portfolio using weekly delta
hedging. The market (N, S) follows a Black-Scholes model dN(t) = rN(t) dt, dS (1) =
pS (@) dt + oS (r) dW() with (N(0),S(0)) = (1.0,1.0), r = p = 0.05 and () = 0.5.
We aim to replicate the payout X(T) = max(S(T) - K,0) with K = 1.0and T = 6.0
(line). The replication portfolio I1 = ¢gN + ¢S is chosen according to a delta hedge
at times t, = k X 51—2 Shown are the realized values I1(T) (dots) over S(T). In the
figure on the left the delta hedge uses the correct model parameters. In the figure
on the right the portfolio is constructed assuming a volatility of 0.4 (instead of 0.5).
As a result the option value is underestimated and the replication portfolio is set up
without enough initial value, such that at maturity T = 6.0 the mean of the replication
portfolio is systematically below the option payout. In addition, the variance of the
replication portfolio is increased, since the delta hedge used is wrong.
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7.4.3 Delta-Gamma Hedging

Motivation (The Delta Hedge Again): A delta hedge (Figure 7.2)
applied in time-discrete steps At; = ;. — t; is not exact since the
option value is, in general, a nonlinear function of the changes of the
underlyings AS; = S i(t;,1) — Si(t;). However, the replication portfolio
is linear in the underlyings.

For motivation reconsider a mar- _As(t)
ket consisting of a stock S and V.4
some other numéraire asset N (as
in the Black-Scholes model) and a :
derivative product V as a function
of (1,5): V = V(1,5). At fixed §
time ¢;, V will be a nonlinear func- ’_/%
tion S — V(¢,,S) of S in general. :

St w) S

LVt S)

M=@yN+d, 8
(linear in S)

\/

However, the replication portfolio
IMT=¢oN + ¢S is linear in S. Lo-
cally, for a fixed point §(¢;, w) the Figure 7.2. Delta hedge.
replication portfolio may match the

value and the first derivative in S (the delta) of V: For infinitesimal changes dS the
infinitesimal changes of derivative (dV) and replication portfolio dIT agree. If the
movements of § are within in a larger (noninfinitesimal) range AS (¢;), then derivative
and replication portfolio may deviate significantly. <

The error given by the only linear approximation of the derivative product may
be reduced by adding products to the replication portfolio which are themselves
non-linear, e.g., options. This is possible if such products are traded and may be used
for replication: Some standardized options are traded in sufficient quantities and may
be used to replicate derivative products that are not traded in liquid quantities. An
example of such a case would be options traded at standardized maturities, which
could be used to build a replication portfolio for an option with a nonstandard maturity
(and/or strike).

We consider a portfolio consisting of §¢,5,...,S, and additional (derivative)
products Cy,...,Cy,

(1) = ¢o(DSo(1) + - - - + BuD)S (1) + Y1 (DC () + - - + Y (DCa(1)
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Assuming that, like V(T'), the C;(¢)’s may be written as functions Cy(t,Sg,...,S,) of
the §;’s, we have for the replication portfolio I1(¢) instead of (7.13)

AT = Y 4 A+ Y i Ay
i=0 k=1
n " 50, LIYoR
= & V| AS; — A
Z(;( +; "asiJ +;¢”‘ ar

+ii¢’k Gy AS AS; + hot.

PCy
AS; + Zlkz;wk 3505, (AS; AS; —v;; AD) +hout.

Il
—
§
%

S

QJ
L’A
\_/

where again h.o.t. = 0(|At]2, At AS ], IAS ,-|3). Let us compare this with the expansion
of V from (7.12):

oV 1 <& PV
AV = s, A5t 2 £495.55,

i=0

(AS; AS] = %Yij At) + h.o.t.

#0

If the portfolio process (¢, . . ., @n, ¥1, - .-, ¥m) solves the equations

N8 ve = >’V il 7.17)
£igs.05,"F = as;es;  TIT o '
ac av
it ask‘” - o i=1,....n (7.18)

then the residual risk is AV(¢) — All(r) = O(lAtlz, |At AS ], |AS ,-I3). To neutralize the
gamma of a derivative product V it requires at most as many hedge derivatives Cy, as

2
partial derivatives asfa—a‘fg i < j=0,...,n(gamma) are nonzero. It requires at most
1

m = n{n — 1)/2 additional derivative products.

Remark 92 (Linear Product, Static Hedge): If a derivative product V is a linear
function of the underlyings, then the delta hedge replicates the product globally.
In this case, not only is a gamma hedge unnecessary (gamma and all higher order
derivatives are zero), but the dynamic adjustment of the replication portfolio is not
required. In this case the hedge is called static and the derivative product is called
linear product.
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7.4.3.1 Example: Time-Discrete Delta-Gamma Hedge under a
Black-Scholes Model

We consider a Black-Scholes model with the notation as above. Let C; denote an
option with maturity 7* and payoff profile max(S(T*) — K*,0). We aim to replicate
an option V with maturity T < T* and payoff profile max(S(T') — K,0). We allow
trading at discrete times 0 =15 < 1; <

For the option V to be replicated we have

2
av(n) Aty + V) AS (1) + ;56‘/(2&)

AV = — £
+ O(AL %, 1AL, AS ()], 1AS (1)P).

(AS (1))*

For the replication portfolio IT we have

ATI(t) = do(t) AN(t) + ¢1(t) AS (8 + i (#) AC(l‘k)
(fk)

= ¢o(1) AN(1) + ¢1 (1) AS (1) + ¢ ()

9C
+ 1 (t) ()AS(tk) !lll(tk)2 6S(2k)

+ 0<|Atk|2, |ALe AS (8], 1AS (2)P).

(AS (1))*

For the replication portfolio II(7) = ¢o(H)N(t) + ¢1()S (¢) + ¥ (HC(r) we find

L av 1 0 o
¢](t) = 6S—(t) = (I)(o_ [l ( )+r(T—t)+7]).

We chose this to trade within the replication portfolio at discrete times #;. The size
of the *“cash position” is chosen such that the portfolio remains self-financing, i.e.,

2
o) = 5o — o fiog () -1+ T
a Iy

aS(t) T - K 2
1
Po(t) = ——(Po(ti-))N(t) + d1(te-1)S (1) — D1 (1S (1))
N()

At time 1y = 0 the portfolio is set up according to the option value known from the
evaluation formula.’

dolto) = (V(fo) $1(20)S (1))

7 Eventually the initial investment into the replication portfolio is not sufficient; see Figure 7.1, right.
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Hedge Portfolio versus Payoff
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Figure 7.3. Samples of the value of the replication portfolio using monthly hedging:
delta versus delta-gamma hedge.

Hedge Portfolio versus Payoff
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Figure 7.4. Samples of the value of the replication portfolio using weekly hedging
with wrong interest rate.
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7.5. HEDGING IN DISCRETE TIME: MINIMIZING THE RESIDUAL ERROR (BOUCHAUD-SORNETTE METHOD)

-». ' Interpretation (Role of the Hold Period Ar): The delta hedge

neutralizes the first-order error in S'; the delta-gamma hedge neutralizes

8 the first- and second-order errors in § (Figure 7.3). The residual error
of the delta-gamma hedge is of the order

O(AL?, 1At AS . 1AS ).
A question arises:
e Why is the error in Af not considered?

First, the answer is given in the interpretation of the hedge strategies: They aim to
minimize the risk in the underlyings S;, i.e., the dependence of V(¢) — I1(z) on S;(¢).
The interpretation is that the length of the hold period At is not known a priori. In
our considerations we thus assume Ar — 0. Then the residual error is O(AS 1.2) for the
delta hedge and O(AS ?) for the delta-gamma hedge.

Furthermore: An error in AS ; is stochastic, i.e., a risk. An error in At is determinis-
tic. If the hold period At is known a priori, then the error in Af may be compensated for
if the portfolio is not required to match the derivative value initially, i.e., I1(0) = V(0).
The derivative value V(0) corresponds to the replication portfolio for infinitesimal
hold periods Ar — 0. We will consider a known hold period At > 0 in Section 7.5. «|

7.4.4 Vega Hedging

As in the delta-gamma hedging, where in addition to a hedge of the option’s delta a
hedge of the option’s gamma is considered, we may consider further dependencies

of the pricing function. If the dependence on the log-volatility of the underlyings,
av
(90',‘

ie. for dS; = 1;S; dr + 0;:S; dW,, is neutralized, then this called vega hedging.

7.5 Hedging in Discrete Time: Minimizing the
Residual Error (Bouchaud-Sornette Method)

The delta hedge transfers the optimal trading strategy for trading in continuous time
to the time-discrete case, for which the strategy is not necessarily optimal. A more
adequate calculation of a risk minimizing trading strategy may be derived from the
residual risk: We look for a trading strategy that minimizes® the residual risk. This is
the idea of the method of Bouchaud-Sornette [49]. Since for the time-discrete case
the replication portfolio does not give an exact replication, we have yet to clarify in
which sense a replication portfolio is optimal, i.e., in which norm the hedge error

8 In contrast to neutralizes.
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Hedge Portfolio versus Payoff
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Figure 7.5. Value of the replication portfolio without rehedging. The replication
portfolio is set up in t = 0.0 corresponding to a delta- or delta-gamma hedge and kept
fixed until option maturity T (model and option parameter are as in Figure 7.1).

is measured. The optimal replication portfolio derived from this criterion is not
necessarily identical with the replication portfolio of the delta hedge and depends on
the norm that is used to measure the residual risk.

At time T a payoff profile V(T') has to be replicated as closely as possible by a
replication portfolio ¢ — II(f)|,=r. We consider the mean squared error, i.e., the
variance of V(T) — TKT):

Var(V(T) — TI(T)).

We also wish to minimize the variance in a conditional sense and repeat the required

definitions and a lemma:

Definition 93 (Conditional Variance): 1

Let C C ¥ denote two o-algebra and X an ¥ -measurable random variable over a
probability space (Q,P,F). Then

Var(X|C) := E(X?*IC) — (E(X|C))?
is the conditional variance of X under C. 3

Remark 94 (Conditional Variance): The conditional variance is a C-measurable
random variable.
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Lemma 95 (Conditional Variance): Let C C ¥ denote two o-algebras, X an
F -measurable random variable and Y a C-measurable random variable over the
probability space (Q, P, ¥ ). Then

Var(X + Y|C) = Var(X|C).

Proof: The proof is elementary. From E(X - Y|C) = Y - E(X|C) and E(Y?|C) = Y?
we get

Var(X + Y | C) Déf' E(X + Y)2 1Oy -(EX+Y]| C))2
E(X?|C)+2E(X Y |C)+EX?|0C)
~E(X|C)?-2EX|C)E(Y [C) - E(Y |C)?

E(X? | C) + 2V BEXHCY + W — E(X | C)* - 2V BT - ¥
E(X?|C)-E(X|C)* = Var(X|0C).

ol

LetO =1y <1 <---<t, =T denote a time discretization and ¢(t) = (¢g, ..., d,)
a portfolio process II(z) = (1) - S(1) = X1, ¢:()S i(r), with piecewise constant ¢;,
i.e., we assume that trading takes place only at discrete times (¢;(r) = ¢;(z;) for
tj<t< lj+]).

7.5.1 Minimizing the Residual Error at Maturity 7

Trading Strategy: At time f; the self-financing portfolio ¢(z;) is chosen such that the
residual risk 1s minimized, 1.e.,

Var(V(T) - 1KT) | F,,) — min,

where {F;} denotes the filtration generated by S'.

To simplify notation let Sy := P(T) denote the bond with maturity T, i.e., the
financial product that guarantees a payment of 1 attime T, P(T) : t — P(T;1) with
P(T;T) = 1. This product will later lay the foundation for the theory of interest rates;
see Definition 97 in Chapter 8. It is not required that one of the products is the Bond
with maturity T, but it simplifies the notation since

V(T) B H(T))
So(T)  So(T)

Var(V(T) - TIT)) = Var(

and instead

m—1

T(T) = TI0)+ ) é() AS (1).
=0
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We may equivalently write

(T o) "< -
IKT) = (1) _ 0) +ZZ¢i(n>AS’(”)

T ST So0) LA So(n)
0) <% Sit)
so<0>+,;;¢(") So(t)

—note that ¢ does not enter in the last sum. Thus ¢y may be chosen such that the
condition of self-financing is fulfilled and ¢;, i > | determines the “optimal hedge”.

With the notation § = SE_ we have
0

m—1
V(T) = TIT) = V(T)=TI0) = ) ¢(t) - AS (1)
=0
k-1
= V(T) - TI0) - ) ¢(t) - AS (1)
=0

m—1
= > gty AS(0) - i) - AS (1)
I=k+1

and with Lemma 95

Var(V(T) - TKT) | F,)

m—1
Var [V(T) - Z () - AS (1) — plt) - AS (1) | 7‘]}

I=k+1

m—1
Var(V(T) - Z o) - AS (1) | ﬂ}

I=k+1

m—1
—-2-Cov (V(T) - Z o1 - AS (1), p(t) - AS (1) | 7’1)

I=k+1

+ Var (g(t) - AS (1) | F5,) -

Finally we get from

Ead)(tk)Var(V(T) - [ F) = 0
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the equation for ¢(#;)

B(t) - Cov(AS (1) , AS(8) | F) - (1)
L » - (7.19)
—Cov(V(T) - ) ¢(t)- AS(0), AS) | F3,) = 0.

I=k+1

7.5.2 Minimizing the Residual Error in Each Time Step

The strategy described in Section 7.5.1 focuses at each time f; on the minimization of
the residual risk at maturity 7. An alternative trading strategy is to require at each
time #; that the residual risk at time #,; 1s minimized by the choice of the portfolio
&(t).

Var(V(te.1) — Ites 1) | F4) — min.

Obviously (consider the last time step k = m — 1 in (7.19)) the equation for ¢(#;)
then follows as

(1) - Cov(AS (1), AS (8)IF7,) - ¢()T — Cov(V(tei1), AS (@)l F7,) = O.

Remark 96 (Measure): The measure under which the minimization, and thus the
covariance in (7.19), has to be considered is the real measure P. A consideration
under a martingale measure essentially corresponds to a measuring of the risk under a
different norm.

Experiment: At http://www.christian-fries.de/finmath/
applets/HedgeSimulator.html a hedge simulator can be found.
There, in a Monte Carlo simulation, paths t — (N(t, w), S(f, w)) are
generated corresponding to a given model. Along each path a self-
financing trading strategy is applied to a replication portfolio. At maturity T the value
of the replication portfolio is compared to the option value V(T'). It is possible to
choose the model parameters assumed in the construction of the replication portfolio
independent from the model parameters, which determine the evolution of the market.
A mismatch in the parameters results in an increased residual risk (see Figure 7.1). «|
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Interest Rate Structures,
Interest Rate Products, and
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7.5 HEDGING IN DISCRETE TIME: MINIMIZING THE RESIDUAL ERROR (BOUCHAUD-SORNETTE METHOD)

Motivation and Overview - Part Il

Part III will consider the interest rate structures and the analytical pricing of interest
rate derivatives. The methods for pricing financial products may roughly be classified
into three groups. These are

e Model-independent analytic pricing: The financial product can be separated
into a portfolio of traded assets. The value of the derivative product is then given
by the value of the portfolio. The portfolio represents a replication portfolio,
i.e., a static hedge.

¢ Model-dependent analytic pricing: The replication of the financial product
requires dynamic hedging, i.e., a continuous adjustment of the portfolio, and
thus requires a model for the underlying stochastics. The value of the replication
portfolio depends on the model. However, the product and the chosen model
are simple enough to derive an analytic pricing formula.

e Model-dependent numeric pricing: The replication of the financial prod-
uct requires dynamic hedging and thus requires a model for the underlying
stochastics. The value of the replication portfolio depends on the model. The
complexity of the product or of the model requires a numerical calculation of
the price.

In Chapter 8 we will define some elementary products and interest rates. In Sec-
tion 9.1 simple interest rate products will be presented which allow model-independent
analytic pricing. Here, the corresponding pricing is discussed right after the definition
of the product. In Section 9.2 we define some simple options. In Chapter 10 and 11 we
will show how to derive some analytic pricing formulas using some simple standard
models. In Chapter 12 more exotic options will be presented, for which pricing
requires generally numerical methods.

Numerical pricing methods and complex pricing models will be considered in
Parts IV and V.
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CHAPTER 8

Interest Rate Structures

8.1 Introduction

In previous sections we have considered a one-dimensional stochastic process as the
underlying, representing a stock for example. We will now turn to the modeling of
interest rates and later the pricing of interest rate derivatives. Interest rates potentially
offer a richer structure than a single stock, since at each time ¢ we have to consider an
interest rate curve F(T;t), T > t instead of a scalar stock price S (¢).

Let F(T;t) denote the interest earned on an investment made over the period
[t, T], if the contract is written at the beginning ¢ of the period, i.e., we assume that
N (1 + F(T;t) (T — 1)) is the amount one receives at time 7, if one invests the amount
N at time ¢, and the contract is fixed at the beginning of the period, i.e., in ¢.! For
different times T, < T, two such interest rates F(7T;¢) and F(T;;t) may be different,
the reason being the different interest earned on the two subperiods [¢, )] and [T}, T2},
e.g., if interest rates are expected to rise or fall in future. Thus, if one decomposes the
time axis into small interest rate periods [T}, Ti;1] and defines

HF(T )(Te—1) =0 (1+L(To, T1; 10(T1=T0))-. . .-(1+L(Ti—1, Ti; XTu—Tk-1)), (8.1)

then it is rational to represent each interest rate L(T;, T:,1; ) by its own stochastic
process. Here we assume Ty = 7 and L(T;, T;.1; t) denotes the interest rate earned over
the period [T}, T;.] as given by a contract which is fixed in .2 See Figure 8.1. It is
common to have interest rate derivatives that depend on more than one interest rate
and in this sense depend on the movement of the whole curve.

! We will comment below on the fact that the contract may be fixed at an earlier time than the start of the
interest rate period.

2 Equation (8.1) represents the relationship between interest earned over the period [¢, T¢] and interest
eamed from smaller subperiods, including compounding. Since all rates are fixed in time ¢, the
difference is only interpretation. Thus the two sides in (8.1) must agree.
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Figure 8.1. Modeling an interest rate curve by a family of stochastic processes.

8.1.1 Fixing Times and Tenor Times

If the interest rates F(T;; t) for periods [¢, T;] for i = 1, ..., k are known, then we can
derive from Equation (8.1) the rates for the subperiods [T;_;, T;]. It is

LT, Tt =

| ( L+ F(Tan(T - ) _1), 8.2)

Ti-Tia \1+ F(T_;0(Tiey — 1)

The rate L(T;_;, T;; t) is the interest rate for the future period T;_,, T;, that has been
derived from the interest rate curve as of time r. The interest rate has been fixed at
time ¢, i.e., the stochastic process is evaluated in ¢. The time ¢ is the simulation time
of the stochastic process; it thus determines that the random variable L(T;_;, T;; f) has
to be (at least) ¥,-measurable. The times 7; mark the start and the end of the periods.
The period structure {7y, T4, ..., Tk} is also called the tenor structure.

8.2 Definitions

All of the following random variables and stochastic processes are assumed to be
defined over the same probability space (2, ¥, P). As the building block of all interest
rates we define the bond:

Definition 97 (Bond>): R
Assume that a guaranteed payment of a unit currency* 1 in time T, is a traded product
at any earlier time ¢ < T, and its value in state w € € is uniquely determined by (¢, w).

3 The term defined is the zero-coupon bond (there are no intermediate payments (coupons) until maturity).
We give the trivial extension to a coupon bond in Definition 108.
4 See Remark 134.
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The value of this product is called the price of the T, bond as seen in (¢, w) and will
be denoted by P(T3;t, w). It defines a stochastic process on [0, T>] which we denote
by P(T3) :

P(T2):[0,T2] xQ — R.

r - T Interpretation: The value of the bond P(T,;t, w) is the amount we
| : . have to invest at a given time f and a given state w to receive 1 in T5. Thus
i ' for a (riskless) investment of 1 at time ¢ we get a guaranteed payment of
1/P(T5;t, w) at time T, because we simply buy 1/P(T5; t, w) times the

bond. Note that we assume that all products may be traded in arbitrary fractions and
that the price is unique, the same for selling and buying. Thus P(73; ¢, w) not only

implies the interest earned on an investment, it also implies the interest to be paid for

a corresponding loan. <
Definition 98 (Forward Bond): E
Let 0 < Ty < Ty < o0. As forward bond we denote the stochastic process
P(T>)
P(T\,Ty) := ———,
PR
defined on [0, Ty]. a1
" m, ' Interpretation: The forward bond P(T,,T,;t) corresponds to the
| O . amount that has to be invested at time T'; to receive a guaranteed payment
' @ | of 1in T, if that contract is finalized at time ¢ in state w. To receive

[ in T, one has to invest P(T,;¢) in t. This investment is financed by
borrowing until T, i.e., we borrow P(T5;¢) 1/P(T; 1) times the value of a P(T) bond
(compare Figure 8.2).

It is important to understand that P(T[, T,; t) is not the value of a forward bond at
time t. The value of that contract is simply 0. What is denoted by P(T|, T,;¢) is the
amount that has to be paid in T'| as part of a contract written in ¢. The subject of the
contract is a bond which lies forward in time.

Obviously we have P(T,;t) = P(t, T»; 1). <

Often the bond (or forward bond) will be represented by a rate (or forward rate).
However, the interest rate that corresponds to a bond depends on how we think
of interest earned, e.g., if compounding, i.e., interest paid on interest received, is
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T, Bond o
IP(TM) 1 l
t T >
P(Tz;t)
T, Bond (scaled) P(Ty;r)
P(Tz;t) J
IP(Tz;t) 11’(7};:)
t T ]
T, Bond
IP(Tz:t) 1
t I} —
I
T, — T, Forward Bond
P(Tz;t)
* P(Ty;e) |1
‘ T, ) >

Figure 8.2. Cash flow for a forward bond.

considered. Thus, there are many different definitions of interest rates. For that reason
we see an interest rate as a derived quantity. We define some interest rates.

Definition 99 (Forward Rate ((Forward) LIBOR)): 1
Let T; < T,. The (forward) LIBOR’ L(T;,T,) is defined by

Py 1 .
P(Ty) ~ P(T,Ty) 1+ L(T1, T2) (T2 = Th),

1 KT -PT2)

(T, T5) :=
T T2) = o by

4

5 LIBOR = London Inter Bank Offer Rate. The acronym LIBOR is often used for a rate following
Definition 99, because the interbank rate follows this convention.
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Definition 100 ((Continuously Compounded) Yield): 7

Let T < T;. The (continuously compounded) (forward) yield #(T'}, T>) is defined by
P(Ty) 1
P(Ty) P(T,T2)

=:exp(r(T), T2) (T2 — Ty)),

ie.,
_ —log(P(T),T2))  log(P(Ty)) — log(P(T1))
Ty, T7) = =- .
T, — T T, —T;
.}
Definition 101 (Instantaneous Forward Rate): 1

The instantaneous forward rate is defined by

f@&,T):= le”\“r L(T, Ty; 1).

It may be interpreted as the interest rate for the infinitesimal period [T, T +dT]. &

Remark 102 (Instantaneous Forward Rate): We have

. . 1 P(T;0~-P(Ty1)
t,T)= lim L(T,Ty;t)= 1
s Tzlglr (T, 120 Tzl{,nr P(Ty; 1) T, -T

_ 1 OP(T;1) _6log(P(T;t))
P 6T oT ’

Definition 103 (Short Rate): 1
Let t > 0. The short rate r(¢) is defined by

. a
o) = lim (. T50) = = ~ 1og(P(T; t))’T:t

OP(T;1)
___ar _ _OPT;n
P = aT =

-

Remark 104 (Short Rate): Note that in Definitions 99, 100, and 101 we define
families of stochastic processes, while the short rate from Definition 103 is a single,
scalar stochastic process.

The short rate is a limit of the spot forward rate (LIBOR) and the yield. We have

=1l t,T;) = lim L Db,
r(t) Tlr\ntr(, 3] im ()]
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This short rate is the interest rate for the infinitesimal period [z, + d¢], as seen in 2.

Remark 105 (Forward Forward): The term “forward” is used ambiguously: In
Definitions 99 and 100 we define stochastic processes for interest rates, i.e., for a
given observation time t we define L(T', T»; t) and r(T'), T»; ¢) as rates for the period
[Ty,T,] as seen in ¢. If T| > ¢, then these rates are called “forward” (i.e. forward
LIBOR, forward yield), since the rate is associated with a future period, lying forward
in time. If 77 = ¢ we would use the attribute “spot” instead.

However, on the other hand, the rate L(T, T»; T;) (note f = T) is often denoted as
forward rate, since it is an interest rate for an interval up to T,. This is in contrast to
the short rate, which is defined for an infinitesimal period. Being precise, terms like
“forward forward rate” should be used.

There is a similar ambiguity for volatilities. The term forward volatility may
be interpreted as the volatility of a forward rate or as a volatility of some process
considered at a future period in time.

Remark 106 (Interest Rate Models):  The various definitions of interest rates
(as stochastic processes) are the starting point for the corresponding interest rate
modeling. The corresponding models are listed in Table 8.1.

| Interest Rate | Model
Forward rate L LIBOR market model — Chapter 19
Instantaneous forward rate f HIM framework — Chapter 22
Short rate r Short rate models — Chapter 23

Table 8.1. Interest Rate Models.

Although the models above do not model the bond prices directly, we view zero-
bond prices as the basic building blocks.

Remark 107 (Bond Prices as a Function of Interest Rates): The bond prices
may be calculated from the interest rates. We have

P(T;0) = exp(—r(t, T; (T - 1))
T
P(T;1 = exp(—f f@, 7 dr)

n—1
[ [0+ LT Tais (Tt =TT fort=To<Ty << T, =T
i=0

P(T;1)
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The short rate is an exception. Here the reconstruction of bond prices is possible
only if the short rate process is known under the equivalent martingale measure QY
corresponding to the numéraire N(f) := exp ( fot r(t) d‘r). Then we have

T
P(T;1) = EY (exp(— f ) d‘r)[?",)

t

] Tip (Discount Factors as a Basic Market Data Object): We
consider the price of zero bonds as given and view interest rates as
derived quantities. It is natural to take this view in the implementation
as well. If we want to provide information on market interest rates

through a class®, then we store internally a discretization of the bond price curve

J = P(T;;0) (also called discount factors). The class then provides the various interest

rates under various conventions through methods. This design reduces the errors of

misinterpretation of the stored data (especially if more than one developer works on
the class), since the data stored is free of market conventions and the convention used
to calculate the rates is explicit in the implementation of the corresponding method.

This also reduces the documentation overhead for the data model.

DiscountFactors DiscountFactor

discountFactors maturity
value

getDiscountFactor{double maturity)
getForwardRate(double periodStart, double periodEnd, double periodLength)
getYield(double maturity)

Figure 8.3. UML diagram: The class DiscountFactors internally stores discount
factors and provides various interest rates through corresponding methods.

A problem of this design is that discount factors are usually not the quantities
that are observable in the interest rate market. The market quotes the prices of
various different interest rate products (e.g., futures or swaps), from which discount
factors have to be calculated. This calculation is called bootstrapping. Under some
conditions, it might be useful to store the original market data. One such application
is the numerical calculation of partial derivatives with respect to a change in these
input prices.’ <

6 See Chapter 30.
7 The importance of the partial derivative with respect to the price of an underlying has been discussed in
Chapter 7.

129



CHAPTER B INTEREST RATE STRUCTURES

8.3 Interest Rate Curve Bootstrapping

Since bootstrapping of discount factors from market prices involves the inversion of a
pricing formula, we have to discuss the interest rate products and their pricing. We
will do so in Chapter 9 but give an anticipatory abstract description of the bootstrap
algorithm here:

Let0 =Ty < Ty < T, <...denote a time discretization. For given discount factors
df; = P(T;;0), j=0,1,...,i, we assume the existence of an interpolation function
df(dfy,-...df; 1), having the property that an additional sample point beyond 7; will
not change the interpolation in t < T}, i.e.,

df(dfo,....dfs0) = dfdfo,....dfndfuist)  Vt<Ti Vi=1,23,....

Let Vimarke‘ denote given market prices of interest rate products for which the price
may be expressed as a function V; of the discount factorsin < Tj, i.e.,

Vi=Vi({ldf® |t < Ti}).

We further assume that the discount factor d f(T;) enters into the pricing, i.e., let
7]

m V; # 0. Then the bootstrap algorithm is given by:

induction Start (7y):
e dfy :=df(Ty) = P(Ty;0) = P(0;0) = 1.0.

Induction Step (T,_, — T)):

e Calculate df; := df(T;) such that, using the discount factor interpolation, we

have ’
Vi({df(dfp,....dfi;t) [t < Ty} ) = vmeke (8.3)

In some cases Equation (8.3) may be directly solved for df;, especially if it does not
depend on the interpolation method used. Normally, a numerical solution is possible
(see Appendix B.4).8

8.4 Interpolation of Interest Rate Curves

We consider, as before, a family of bond prices T+ P(T'; 0), i.e., the discount factor
curve, as the basic representation of the interest rate curve. If the prices df; := P(T;;0)

8 If interest rates are positive, a simple interval bisection like the Golden Section Search works, since
df; €10,dfi1}.

130



85 IMPLEMENTATION

are known for times 0 = Ty < T} < T, < ..., we seek a meaningful interpolation
method to calculate interest rates for subperiods. The interpolation method should
fulfill two basic requirements:

e The interpolation method should be sufficiently smooth, at least continuously
differentiable. This is desirable because the calculation of an interest rate
corresponds to a finite difference, i.e., converges to a derivative for decreasing
period lengths.

o The interpolation method should preserve the monotonicity of discount factors,
i.e., if we have monotone decreasing sample points, then the interpolation
should be a monotone decreasing curve.

The following additional requirement is also desirable:

o If the sample points correspond to a set of constant rates, then their interpolation
should give constant rates. In other words, the interpolation of sample points
from a flat interest rate curve should be flat (where flat means flat with respect
to a rate).

The linear interpolation of bond prices fulfills the second, but neither the first, nor
the third requirement. The linear interpolation of forward rates fulfills the first and
third requirement, but not necessarily the second. A simple interpolation method,
which is also popular in practice, is the linear interpolation of the logarithm of the
discount factors, i.e., the linear interpolation of r(0,T;) T;:

Tj+1 -1 t—T j

-log(df(T)) + - log(df(T ;1))

d 1) =¢ex _— _— .
0 p(Tm T; Tjn-T; )

This interpolation fulfills the second and the third requirement.
A more complete discussion of various interpolation methods for interest rate
curves may be found in [76].

8.5 Implementation

We extend the design of the DiscountFactors class of Figure 8.3 by an interpolation
algorithm and a bootstrap algorithm, see Figure 8.4.

If the interpolation method is realized as part of the getDiscountFactor()
method, and if the methods which calculate interest rates from discount factors
(like getForwardRate() or getYield()) only use getDiscountFactor() (and
not the internal data model), then the interpolation method is available in all derived
interest rates once it has been implemented in getDiscountFactor () 9

9 This is one reason for encapsulation of the internal data model, which should only be accessible to a
small set of methods (even within the same class!).
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The bootstrapper is then realized through one additional method
appendDiscountFactor (ProductSpecification productSpec, double
marketPrice), where productSpec contains the description of the financial
product for which an additional discount factor has to be calculated from the given
market price marketPrice.

DiscountFactors DiscountFactor

discountFactors maturity
value

getDiscountFactor{double maturity)
getForwardRate(double periodStart, double periodEnd, double periodLength)
getYield(double maturity)

appendDiscountFactor{DiscountFactor discountFactor)
appendDiscountFactor(ProductSpecificaton productSpec, double price)

Figure 84. UML Diagram: The class DiscountFactors internally stores dis-
count factors and provides various interest rates through corresponding methods.
The method appendDiscountFactor(ProductSpecification productSpec,
double marketPrice) implements one induction step of a bootstrap algorithm.
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Simple Interest Rate Products

So far we have defined a single interest rate product, the zero-coupon bond P(T).
In the following, we give the definitions of some basic interest rate products. Many
definitions use Definition 99 of the forward rate (which, of course, is based on the
definition of the zero bond).

9.1 Interest Rate Products Part 1: Products
without Optionality

9.1.1 Fix, Floating, and Swap
We define a trivial generalization of the zero bond:

Definition 108 (Coupon Bond): 1
A coupon bond with coupons C;, i = 1,...,n— 1 and tenor structure T;, i = 1,...,n
and maturity T, pays

ifi+l<n

0
Ci(Tin—-T) + o in T
1 ifi+l=n

(n — 1 payments). a

Theorem 109 (Value of a Coupon Bond): The coupon bond consists of n — 1
guaranteed payments with different payment dates. Clearly, the value of the coupon
bond as seen in t < T is given by

n—1

D Ci (Tt = T) P(Tie1;0) + P(Tyi0). ©.1)

i=1
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Remark 110 (Dirty Price, Clean Price, Accrued Interest): The value of a coupon
bond as given by Equation (9.1) is called dirty price. The dirty price is sometimes
split into two parts, called the clean price and accrued interest.

If T1 <t < Ty, i.e., the bond is evaluated within the first interest rate period, then
the accrued interest is defined by

t—T,;
T,-T

Remember that in Definition 109 it is assumed that t < T,. A(Ty, Ty;¢t) is called
accrued interest. Dirty price and clean price are now related through

A(T,, Ty 1) =

Ci (T, -Ty).

n—}
D Ci (Tiy = T)) P(Tigs 1) + P(Tyi1),
i=1

Peiean(t) = Ppiny(t) — A(T1, T251).

The accrued interest represents the fraction of the future coupon payment that relates
to the past fraction of the period. This stems from the interpretation of the coupon
payment as equally distributed. The price of a bond is often quoted only by its clean
price.

The decomposition in clean price and accrued interest may appear useless, since
upon trading their sum, i.e., the dirty price, has to be paid. However, quoting the
clean price has an advantage: The clean price evolves continuously in ¢ across period
end dates, while the dirty price exhibits a jump at the end of a period, due to the paid
coupon.

Ppiny ()

The zero bond P(T; ¢) is the time ¢ value of a guaranteed payment of 1 in 7. It
thus represents a fixed interest rate payment. A product with variable interest rate
payments is the floater.

Definition 111 (Floater): B
LetT;, i = 1,...,n denote a given time discretization (a tenor structure). A floater
with notional N pays

N LT, Tig:T) (Tiw) =T inTyyy
fori=1,...,n—1(n— 1 payments). a
Theorem 112 (Value of a Floater): At time 1 < T, the value of a floater (as in
Definition 111) is given by

n—1
VEloater(!) = N LT, Tis1;0) (Tigy = T)) P(Tisy3 1)
i=1

N (P(Ty) = P(T})).
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Proof: Variant 1 of the proof: From the definition of the forward rate we have for a
single payment of the floater in time T}

Def. L P(T;T) - P(Ti 3 T))

FIoater(T"‘*l) =N L(T” UnE T) (THI a T) P(Ti+1; Ti)

This payment is an Fr,-measurable random variable. The interest rate of Vl’:lome]r was
fixed in T; and is no longer stochastic when observed on [T}, T;;]. As seen in 7; the

value of this payment is thus a multiple of P(T;,1; T;), namely
Vitoaer TD) = ViroaerTis1) PTic1; To) = N (P(Ti; T)) — P(Tii; T))).

Thus we see that the time 7; value of the floater is given by a portfolio of bonds. The
time ¢ value of this portfolio is known. Thus we have

Vioaer®) = N (P(Ti; 1) = P(Tis13 1)) = N LT, Tit; ) (Tist = T2) P(Tin13 0.

This is the value of a single floater payment. The claim follows by summation over i.

Variant 2 of the proof: We have to value FIoater(T,ﬂ) Choose N(t) = P(T;,y;1) as
numéraire and let QV denote a corresponding martingale measure. Then N(T,,1) = 1
and

Vl

Floater

N Oder( Tiv1) N o
= N(t) E2 F}V(‘T 1)1 17'7) N@®) EY (Vi Tic) | F)

- NG E? (N P(TiT) - P(Tu; T) 17‘7)
P

P(Ti ;T
P(TI’T) P(Tl+17T)
N(TH) IT)
Tl’t) P(Tl+]9t)
N(1)
=NPT = P(Ti:0) = N LT, Ti; ) (T — T3) P(Tiy3 1)

=NOEY [N

=N N

This is the value of a single floater payment. The claim follows by summation over i.

il
Definition 113 (Floating Rate Bond): 1
LetT;, i =1,...,ndenote a given time discretization (a tenor structure). A floating

rate bond with notional N pays

0 ifi+l<
N LT T T) (T =T + N L 2 7S iy,
1 ifi+l=n
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N
-N NeLAT /N-L-AT /N<L-AT /N-L-AT
T4 T, Ty

Figure 9.1. Cash flow of a floater with exchange of notional N.

fori=1,...,n—1(n— 1 payments). 4

The value of a floating rate bond is N P(T'), because it is just the sum of a floater
(value N P(T'|))— N P(T3)) and a zero-coupon bond with maturity T, (value N P(T>)).

Interpretation: Definition 111 considers only the coupon payments

| | of a floater. Normally an exchange of notional takes place at the begin-

¥ | ning and end of the product: A payment of —N is made in T (receive

notional) and a payment of N is made in 7, (pay notional). Since from

Theorem 112 the value of the pure coupon payments is N P(T) — N P(T,), the value
of a floater with exchange of notional is 0.

Figure 9.1 shows a cash flow diagram for a floater with exchange of notional.
At time T the notional N is invested over the period [T}, T;] with an interest rate
L(Ty,T; T)), fixed at the beginning of the period. In T, the interest is paid and the
notional N is reinvested over the following period (with a newly fixed rate). At the
end T, the interest for the last period is paid together with the notional. <

As shown, there are two different ways to derive the value of the floater. The first
method uses the fact that the payment N L(T;, Tix1; T;) (Tiv1 —T3) 1s an Fr,-measurable
random variable paid in ;.. Thus, its value as of time T is given by multiplication
with P(T;,; T;). Since this value could be expressed as a portfolio of bonds, we know
its time ¢ value. Essentially, we derive a replication portfolio for each cash flow. The
second method considers relative prices and applies Theorem 79.

In this context, the time 7; is called fixing date and the time T}, is called payment
date.

Definition 114 (Fixing Date, Payment Date): 1
Let T, > T and Vr (T») be an Fr,-measurable random variable defining a payment
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made in T,. Then T is called fixing date and T is called payment date of Vy (T5).
See also Figure 9.2. 4

Lemma 115 (Moving the Payment Date): Let ¢t > 7. The value of a payment
Vr,(T2) with fixing date T, and payment date T, corresponds to the value of a payment
of Vr,(Ty) P(Ty;t) in t for t < T, and the value of a payment of Vr, (1) P(+T2) in t for
t>Ts.

Proof: The first part follows as in the proof of Theorem 112; the second part follows
from exchanging ¢ and 7. ol

F1, - measurable

l t—— fixing date

V
EY (|7
N(T>)
evaluation date

I' payment date

Figure 9.2. Fixing date, payment date, and evaluation date.

Remark 116 (On the Additivity of Cash Flows with Different Payment Dates):
The value of a financial product or a single cash flow depends on its evaluation time,
the time we select to observe it. Two payments with the same payment date may
be added to create a single one. For two payments with different payment dates a
summation is not meaningful. To calculate the total value of several products or
cash flows at time ¢ we have to move all cash flows as in Lemma 115. However,
Lemma 115 applies only to times ¢ larger than the fixing dates. The lemma is not
applicable for times before the fixing date. Here, a risk-neutral evaluation has to be
performed.

Relative prices behave differently: Relative prices are additive (independent of the
fixing date). Let Vr, denote an Fr,-measurable random variable defining the value of
a financial product in time T5. Then we have
e Fort < Ty: EQN( N‘:TTIZ) 1 7—",) is the N(t)-relative value of Vr, at time ¢. This

follows from Theorem 79.

VT[

Vi P(Ti0) . .
e Fort>T;: EQN(-N(—T;) IT,) =V EQN(ﬁ IT,) = % is the N(¢)-relative

value of Vr, at time ¢. This follows from Lemma 115.
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The additivity of relative prices follows from the linearity of the expectation operator.

Definition 117 (Swap (Payer Swap)): K
A swap is an exchange payment of fixed rate for a floating rate. Let0O =Ty < T} <
T, <--- < T, denote a given tenor structure. A swap pays

N (L(T;, Tp1;T) = S) (Tiy = T) inTiy

fori=1,...,n—1(n— 1 payments), where S; € R denotes the fixed swap rate and
L(T;, T;.1; T;) denotes the forward rate from Definition 99, and N denotes the notional.
The swap defined here is a payer swap; see Definition 118. g

Definition 118 (Payer Swap, Receiver Swap): K
The swap defined in Definition 117 with payments

N (LT, Tiy; T) = S) (Tis1 = T)  in T
is called payer swap. In contrast, the swap with reversed payments
N (S - LT, Ti; T3) (Tisr = T3)  in Ty

is called receiver swap. The term payer/receiver indicates whether the holder of the
swap has to pay the fixed coupon (it enters negative) or receives the fixed coupon (it

enters positive). 4
Definition 119 (Floating Leg, Fixed Leg): 1
The payments of a swap may be decomposed into
NLT:,Ti; Ty (Tisy = Ti)  inTiyy 9.2)
and
NS (Tis1 =T inTiy,. 9.3)
The payments (9.2) of the variable rates are called floating leg; the payments of the
constant rates (9.3) are called fixed leg. a

Theorem 120 (Value of a Swap): At time ¢t < T the value of a swap is given by

n—1

Vswap(D) = N 3 (LT, Tovi;0) = $9) (Tt = T) P(Tia3 ).
i=1

Proof:  The swap consists of a floater (floating leg, (9.2)) and fixed payments
—N S; (T;y; — T;) in T4 for which their time ¢ value is the corresponding multiple of
P(T;;1;t). The claim follows by applying Theorem 112 to the floating leg. (mft
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Remark 121 (Swap Rate): Let 7y,...,T, be a given tenor structure. Consider a
swap as in Definition 117. The par swap rate S (in t) is the unique rate for which a
swap with §; := § has the time ¢ value 0, i.e., the total time ¢ value of the payments

N (LT, T3 T) = S) (Tis1 — T inTyy

is 0. Since the time ¢ value of such a swap is given by

n—1
N (LT, Tis1;0=8) (Ti = T) P(Ti15 1),

i=1

then
¢ _ 2O LT T 0T —T) PTus) _ PT;0 - P(Twi0)
Yin (Ti = T0) P(Tiani 1) S5 Ty = T) (T3 0)
Definition 122 (Par Swap Rate): 1
Let Ty < T < --- < T,. The par swap rate (often just called swap rate) S(T1,...,T,)
is defined by
P(Ty;t)— P(T,;t
S(Ty,....Tut) = n_l( n0 =PIt
2 (T =T P(Tis150)
Jd
! ] Interpretation:  Since the par swap rate is the rate for which a
R i corresponding swap has value 0, we may see the par swap rate §; ; :=
¥ | S(T.....T)) as some mean of the forward rates Ly, k = i,...,j— L.
~ Indeed, the par swap rate S;; is a convex combination (and thus a
weighted average) of the forward rated Ly, k = i,..., j — 1 as shown in the following
lemma. <)

Lemma 123 (Swap Rate as Convex Combination of the Forward Rates): Let
T; < Tis1 < --- < Tjdenote a given tenor structure. Then we have

1 j-1
S,',j = ayly, with a >0, Zak =1.
i k=i

<.

x
1l

The weights o, are given by

P(Tir1) (Tre1 — Tw)
TV P(T0) (T = T)

The weights are stochastic.
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Proof: With P(Ty ) (Trs1 — T1) Ly = P(T) — P(Ty.1) we have

-1

P(Tii XTir1 — Ti) L = P(T;) = P(T),

.

L

x~
1

and thus

5 P(Te))(Tewr = Ti) P(T;) - P(T})
Z Jol L= =Sij

-1
k=i 12_] P(T1) Ty = Ty) JE P(Tp1) (T = Tp)
al

Interpretation (Usage of the Terms Bond and Swap): The
{ . terms bond and swap are also used in a much broader sense than given.
@ | A financial product with coupon payments and final notional payments

" at maturity is called a bond. A financial product where coupon payments
are exchanged (and no notional is paid) is called a swap. The terms are used indepen-
dently of the specific structure of the coupons. A coupon may be a constant (fix), a
variable rate (float), or a complex function of one or more interest rates (structured).
In the latter case, the coupon is called a structured coupon, and the corresponding
bond and swap are called structured bond and structured swap.

A swap may be interpreted as a portfolio of a bond long (i.e., with positive cash
flow) and a bond short (i.e., with negative cash flow), where the two notional payments
cancel. In Section 12.2.1 we will consider the relationship between bonds and swaps.
<

9.1.2 Money Market Account

If we invest at time Ty = 0 a unit currency over the period [Ty, T, ], then we receive
at Ty the amount 1 + L(Ty, T; To) (T} — Ty). If this amount is reinvested for another
period and if this process is continued for periods [T}, T;,] with j = 1,2,..., then
we have at time 7; a value of

i—1
[ [0+ LT Ty 7)) (T = Ty, 9.4)
j=0

Equivalently, we may write this with the instantaneous forward rate as

i-1

Tj1 -l
ﬂexp( . T, d‘r) :exp(Zf
j j=0

J=0

T 41

(T, dr) . 9.5)
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If we consider a continuum of infinitesimal periods, i.e., we consider continuously
compounding with the short rate, then the corresponding value will evolve as

B(t) = exp (f (1) dr). 9.6)
Ty

Definition 124 (Rolling Bond): 1
The financial product

m(t)

R(t) = P(Tiiye138) | [(1#+ LTy Tjs T (Tjr = T))),

j=0
where m(t) ;= max{i : T; <1}, is called (single period) rolling bond. 4
Definition 125 (Savings Account, Money Market Account): 1

The financial product B in (9.6) is called savings account or money market account.

|

_ | Interpretation: The financial product B has to be interpreted as an
R | idealization (like the short rate itself), since infinitesimal periods are an
i ' idealization.

‘ Note that (9.4) and (9.5) are equivalent, whereas B(T;) does not co-
incide with the value of (9.4) generally. The expressions (9.4) and (9.5) depend on
the choice of the periods and if evaluated in 7;, they are Fr,_ -measurable random
variables, whereas B(T;) is Fr,-measurable only. <
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9.2 Interest Rate Products Part 2: Simple
Options

9.2.1 Cap, Floor, and Swaption

Definition 126 (Caplet): a
A caplet is an option on the forward rate (LIBOR) and pays

Veaplet(T2) = N max (L(T,T2;T1) - K, 0) (T, —T1) inT, 9.7
where K is the strike rate, L(T, T;t) the LIBOR, and N the notional. Payment date
and fixing date 0 < T} < T, coincide with the LIBOR period [T}, T;]. a
Definition 127 (Cap): 1

A cap is a portfolio of caplets. Let0 =Ty < T < T, <--- < T, denote a given
tenor structure. A cap pays

N max (L(T;, Ti; T — K, 0) (Tiy =T in Ty 9.8)

fori=1,...,n—1(n— 1 payments), where K; are the strike rates, L(T;, T;,1; T;) are
the LIBOR rates, and N denotes the notional. a

Remark 128 (Floorlet, Floor): If in (9.8) or correspondingly in (9.7) the payoff is
N max(K; = L(T;, Tix13T)) , 0) (Tisy = Ty)  inTiyy,

then the product is called floor or floorlet, respectively.

Remark 129 (Caplet, Cap): The name caplet (and thus cap) seems counterintuitive.
A cap is usually an upper bound, a floor a lower bound. Indeed, the payoff

(L1 := min(L, K)
is called capped and the payoft
[Llk := max(L, K)

is called floored. The counter-intuitive name caplet for (9.7) stems from its application
as a swap that exchanges a floating rate L against a capped coupon [L]¥:

L —[L}¥ = max(L - K,0),
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—[L1¥ = —L + max(L - K, 0).

If we have the obligation to pay a variable interest rate (—L), buying a cap (+ max(L —
K, 0)) will cover the risk of an increasing interest rate, i.e., the payment is capped
(~[LI¥). The cap is the product one has to buy to have floating payments capped.

Definition 130 (Swaption): 7
A swaption is an option on a swap. Let Viy,p(¢) denote the time ¢ value of a swap as
defined by Definition 117. Then the value of a swaption (with underlying Viyap) is
given by the payout

szaption(Tl) .= max (szap(Tl) P O) inTy.

Definition 131 (Digital Caplet): E
A digital caplet pays

Vaigial(T2) = N WL(T1, T2;T1) - K) (T2 = T1) in Ty,

where K is the strike rate, L(T', T,;t) is the LIBOR, N denotes the notional and 1
denotes the indicator function (with 1(x) := 1 for x > 0 and 1(x) := 0 else). 3

Lemma 132 (Digital Caplet Valuation, Call-Spread): For the value Vggiai(K, 0)
of a digital caplet with strike K we have

4]
Vdigital(K; 0) = _ﬁ Vcaplet(K; 0).

The approximation (see Figure 9.3) of the differential using finite differences

Vcaplet(K +60) - Vcaplet(K -€0)

Vaigia(K; 0) = — e
is called call spread.
Proof: The proof follows the lines of the proof in Lemma 81. O

!'See (7], p. 12.

143



CHAPTER 9 SIMPLE INTEREST RATE PRODUCTS

Payoft B 4

4
N T
0 K Underlying

Figure 9.3. Call spread approximation of a digital option by two call options.

9.2.1.1 Example: Option on a Coupon Bond

Consider the option to receive at 7'} a coupon bond in exchange for a notional payment.
A coupon bond with tenor structure T;, i = 1,.. ., n, coupons C; and maturity T, pays

0 ifi+l<n .
Ci(Ti —T) + . in 7.
1 ifi+l=n

The time ¢ value of a forward starting coupon bond with an initial notional payment |
in T] is
n—1
Vewdconbra(t) = Y Ci (Tt = T) P(Ti138) + P(T31) = P(T31),
i=1
fort < Ty; see (9.1). Since P(Ty; 1) — P(T,; 1) is the value of a floating rate bond, see
Definition 113; this is just a swap

n-1
= DUCi = LT3, Tie13 ) (Tier = T) P(Tis131).
i=1
Consequently, an option on a forward starting coupon bond is just a swaption.

9.2.2 Foreign Caplet, Quanto

Definition 133 (Foreign Caplet): E
A foreign caplet is a caplet in a foreign currency. From the domestic investor’s point
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of view it pays
N max (Z,(Tl, T:T)) - K, 0) (T, - T;) FX(Ty) inTs,

where K € R is the strike rate, L(T1, T»;1) is the foreign LIBOR, FX(T,) is the
exchange rate, and N denotes the notional in foreign currency.” a

Remark 134 (Units): It is useful to consider units, just as one would do in physics. A
domestic bond P has the unit of one domestic currency, [P} = dom. Interest rates have
the dimension E#’ e.g., for the forward rate (LIBOR) we have [L(T}, Tiv1) (Tiy1 —
T)] = 1, since it is the quotient of two bonds. The unit of the stochastic process FX
is [FX] = df"T':‘, i.e., FX(¢) is the time ¢ value of a foreign currency unit in domestic
currency. In Definition 133 we have [N] = for. For the following product it is crucial

to consider units.

Definition 135 (Quanto, Quanto Caplet): 1
A quanto is a financial product for which a payout will be converted from a foreign
currency to a domestic currency without use of the exchange rate. Instead of FX() it
uses 1 dfoTT or another conversion factor (the quanto rate) fixed a priori.

Let 0 < T} < T, denote fixing and payment date, respectively. A quanto caplet
pays
. - d
N max (KT, T T) - K, 0) (T = T) I in T3,
for
where K is the strike rate (dimension —=), L(T, T»; ) is the foreign LIBOR (dimen-

time

sion ﬁ), and N denotes the notional in foreign currency. 4

Further Reading: An introduction to the basics of interest rates
products may be found in [4] (in German). <

2 FX = Foreign eXchange.
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CHAPTER 10

The Black Model for a Caplet

We consider a caplet as defined by Definition 126 as an option on the forward rate
L, := (T, T,) for given times 0 < T} < T5.

The Black model for the valuation of a caplet postulates a lognormal dynamic of
the underlying LIBOR!

dLi() = (P OL () dt + o()Li(t) dWE(D), o(t) > 0, under P. (10.1)
We seek the price V(0) of the payoff profile
V(Ty) = max (Li(T\) - K) (T2 - T1),0),

where L; (T, - Ty) := P(T})/P(Ty) — 1, i.e,, Ly = Ly(T}, T) denotes the forward rate
(the (forward) LIBOR) of the period [T}, T»]. Without loss of generality we assume
that the notional is 1. We choose the T,-bond as numéraire:

N@) = P(Ty; 0).

This choice of the numéraire is the crucial trick in the derivation of a risk-neutral
pricing formula. Since
Lo 1 (P(T1) ) _ 1 P(Ty) - P(T»)
| = ——— - =
(T, = Ty) \P(T?) (T, -Ty) P(T)
_ i (P - PT)
N )

L, is the N-relative price of a traded asset.? From Theorem 74 we have the existence
of an equivalent martingale measure QV such that all N-relative prices of traded

! The lognormal process is often written in the form %‘% =P () dt + o(t) AWE ().

2 The traded asset is the portfolio —— (P(T|) — P(T2)) consisting of 77— fractions of a T;-bond
(T-T1) (T2-Ty)
(long) and T,-bond (short).
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assets are martingales. Thus L, is drift-free (see Lemma 53), i.e.,
dLi(t) = ()L (1) dW?' (1),  under QV.

For the process Y := log(L;) we have from Lemma 50 that
1
d(log(Li () = —EO'(t)z dt + o(t) dw (s),

i.e., log(L{(T)) is normally distributed with mean log(L,(0)) — %&ZT and standard

S oL T .
deviation & VT, with & := (% j;) o?(t) dt)l/ 2; see Section 4.
For the option value we now have

V(T2) = max (L(Ty) — K) (T» = T1),0) in T,

and from N(7T,) = 1 we have®

VO) o (VT ) _ per
o= (N(Tz)m)—l«: (V(T2) | Fo)
- E? (max((Li(T1) - K) (T> — 11),0) | Fy)

ie.,
V(0) = P(T2;0) EX" (max (L (T)) - K),0)) (T> - T)).

Knowing the distribution of L; under Q" this expectation may be represented as

V(0) = P(T2;0) [Li(0)D(d,) - KD(d)] (T2 - T)), (10.2)
where
O(x) := —i— fx ex (—y—z)d
: Vo J e p ) y
and

. log(&2) + 1677,
k4 a__\/ﬁ s

see Chapter 4. Equation (10.2) is termed Black formula (for caplets).

Remark 136 (Implied Black Volatility): Similar to Remark 80 in Chapter 4 we
have: Equation (4.3) gives us the price of the option under the model (10.1) as a
function of the model parameter &. In this context & is called the Black volatility.

3 This is the point where the specific choice of numéraire comes in handy for the second time.
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Taking the other model and product parameters (r, K, T\, T,) as constants, the pricing
formula (10.2) represents a bijection:

a - V(0)
[0, 00) — [P(T>;0) max(L(0) — K,0), P(T,;0) L(0)].

The & calculated for a given price V(0) through inversion of the pricing formula is
called the implied Black volatility.

Lemma 137 (Price of a Digital Caplet under the Black Model Dynamics): The
price of a digital caplet under the Black model is

Viaigital(K; 0) = N P(T2;0) ©(d-) (T2 — Th),

where

and
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CHAPTER 11

Pricing of a Quanto Caplet
(Modeling the FFX)

In this chapter all quantities related to a foreign currency are marked with a tilde ().
Let 0 < Ty < T, denote fixing and payment date, respectively. The payoff profile of a
quanto caplet is given by

3 d
V(T) = max (L(Ty, To T - K , 0) (T2 - T1) 1% inT,,

where K is the given strike rate and L(Ty, T 0) is the foreign forward rate. The
notional and quanto rate are assumed to be 1.
We assume a lognormal dynamic for the foreign LIBOR, i.e., we model it as'

dL(t) = pF (L) dt + oz (1) L(r) AWE ().

11.1 Choice of Numeéraire

If we choose the foreign T»-bond converted to domestic currency, i.e., P(T2; OFX(1),
as numéraire, then from

I PT)-BT) 1 PTOFX(0) - PT)FX()

LT, Tt = - = _
120 = T, =By - T B(T)FX(1)

(see Chapter 10) we find

dL(r) = op(HE(r) dWs(r)  under QP FX,

U We write L for L(T}, T2).
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Remark 138 (Foreign Market, Cross Currency Change of Numéraire): Note
that the foreign LIBOR is not a martingale with respect to Q77?, since we are based
in the domestic market. For the domestic investor the foreign bond P(T;) is not a
traded asset, but the foreign bond converted to domestic currency P(T)) FX is a traded
asset. Although we have

dl(r) = oz (1)L(z) dW5(r) under QP(TZ),

we cannot use this change of measure, since P(T5) is not a traded asset and thus not a
numéraire in the domestic market. Choosing the domestic bond P(T>) (a traded asset)
as numéraire, we generally have

dL() # oy ()L(0)(t) dW3(r) under QPT?).
Since the payoff profile of the quanto caplet is
i d
V(T = max (L(T1, T, T) K, 0) (T, ~ Th) 1o in T,
for

it is advantageous to know the dynamics of I(T'|, T,) under the measure Q") the
domestic T, terminal measure. Choosing P(T,) as numéraire, the numéraire is 1 at
payment date and will not show up in the expectation operator above. This trick has
already been used in Chapter 10, where we were lucky that additionally the underlying
was a martingale under this measure.

By the change of measure from Q73 FX) to QT2 we have a change of the drift;
see Theorem 59 (Girsanov, Cameron, Martin), i.e.,

dL(r) = pPT(OL(t) dt + o (DLE dWL (0 under Q7T

In other words, the dynamics of the underlying is known under the measure
QPT FX® - From the shape of the payoff function a change of numéraire from
P(T;t) FX(t) to P(T;1), thus a change of measure from QP70 FX() o QPT:) jg
desirable. We thus define:

Definition 139 (Forward FX Rate): 1
Let 0 <t < T. The forward FX rate FFX(T) is defined as
(T,
FFX(T;t) = —(—’—t)FX(t).
P(T; 1)

-

Remark 140 (Forward FX Rate): The forward FX rate (also known as FX
forward) is a relative price of two domestic traded assets. It is dimensionless, since
[(T; 1] =1 for, [P(T;1)] = 1 dom and [FX()] = 1 990, 1t is a Q77 martingale.

for
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11,1, CHOICE OF NUMERAIRE

We assume lognormal dynamics for FFX(T3), i.e.
dFFX(T21) = orrx(DFFX(T2;8) WS (2)  under QT2

Since

i 1 P(T)-P(T,) P
2
1 (P(T) - P(T2))FX(1)

T, -T, P(T,)

is a P(T,)-relative price of domestic traded assets (namely a portfolio of foreign
bonds), we have that (T, T») FFX(T>) is a martingale under Q"2 i.e.,

Drift®""? (I(T,, T2) FFX(Ty)) = 0. (11.1)
On the other hand

dL FFX+ LdFFX +dLdFFX
FFX LpP™ dr + FFX Loy dwl™
+ FFX Loerx dW,™ + FFXorrx dW) ™ oL awi™,

d(L FFX)

and assuming an instantaneous correlation p(f) for dW; T2 and de (T2)

= FFX i(UlP(TZ) +poprxop) dt + o AWET? + orppy dWZP‘TZ)) .
From (11.1) we thus find
W) = —p(Ho prx(Do (1),
We now know the dynamics of L under Q™
dL = ~p(Dorrx (Do (L) dt + o (DL(2) AW T(1)

and (as in Chapter 10) we know the distribution of (T, T;) (under Q¥"2)) is lognor-
mal with

T
log(L(T)) ~ N(log(Z(O))— fo PO XD () &t~ 3T . 5 T)

7).

GIT, &

o

=N (log (L(0) e B porerrri ary _

N —
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where

1 T
T j(; o-%(t) dr (mean variance).

Altogether it follows an (adjusted) Black formula, where in contrast to the Black
-~ ~ T
formula from Chapter 10 L(0) is replaced by L(0) e~ kb P or) &t The factor

)
91

o b POTEEX Do) &

is called the quanto adjustment.
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CHAPTER 12

Exotic Derivatives

We have already introduced some simple interest rate derivatives. In this section we
give a selection of so-called exotic derivatives. The name “exotic” does not mean that
these derivative products are of less importance. With respect to evaluation models
the converse is true: The value of exotic derivatives usually depends on a multitude of
model properties, which may not even play a role in the pricing of simple derivatives.
An example is the time structure ¢ — o () of the volatility in the Black-(Scholes)
model (4.2), (10.1): Its distribution over time does not play a role in the pricing of a
European option, only the integrated variance enters into the pricing formula. It will,
however, play a role for the pricing of a Bermudan option.

Thus, in this sense we may view certain prototypical properties of exotic derivatives
(e.g., having more than one exercise date) as test functions for prototypical properties
of (complex) models (e.g., the term structure of volatility).1

12.1 Prototypical Product Properties

The list of exotic interest rate derivatives we give in Section 12.2 does not claim to be
complete or representative. It is exemplary for prototypical product properties and
for applications of the pricing models and methodologies which we will discuss later.
We focus a bit on more recent products, where we will discuss the relationship of
prototypical product properties to models and their implementation.

Some product properties, like path dependency or early exercise characterize a
whole class of products. To evaluate a product of the respective class, the object
path, i.e., the history, for path dependency and conditional expectation for early

! To clarify the meaning of this sentence we remind the reader that a digital option may be used to extract
the model-implied terminal distribution function of its underlying; see Chapter 5. Thus digital options
may be viewed as test functions of a model’s terminal distributions.
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exercise are central. The path dependency is best represented in a path simulation
(forward algorithm). The conditional expectation is best represented in a state lattice
(backward algorithm). See Table 12.1.

Furthermore, some models have a preferred mode of implementation, i.e., as path
simulation or as state lattice. Whether a model can be implemented on a state lattice

is often decided by its Markov dimension; see Table 12.2.

Thus, prototypical product properties impose requirements on model and imple-

mentation.

| Prototypical Product Property

Model Requirement / Implementation

Early exercise/bermudan,
low Markov dimension

Backward algorithm,
coarse time discretization
— state lattice/tree, Section 13.3

Early exercise/american,
low Markov dimension

Backward algorithm,
fine time discretization
— PDE, Chapter 14

Path Dependency,
high Markov dimension

Forward algorithm
— path simulation, Section 13.1

| Path dependency,
model: low Markov dimension,;
product: high Markov dimension

Path simulation through a lattice
— Section 13.4

Early exercise,
high Markov dimension

Forward algorithm
with estimator of conditional expectation
— Chapter 15

Path dependency,
low Markov dimension

Backward algorithm
with extension of state space
— Chapter 16

Table 12.1. Prototypical product properties and corresponding model requirements

and implementation techniques.

[ Model

| Property

Short rate models

(— Chapter 23)

Low Markov dimension

Market models

(— Chapter 19)

High Markov dimension

Markov functional models

(— Chapter 27)

Low Markov dimension

Table 12.2. Markov dimension of some models.
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12.2 Interest Rate Products Part 3: Exotic
Interest Rate Derivatives

Motivation (“Why Exotic Derivatives?”): A simple European
option with payoff max(L(T) — K, 0) may be interpreted as an insurance
against an increase of the interest rate L(T"). In case of an increasing
interest rate it pays the corresponding compensation.

To interpret an exotic derivative, e.g., one with payoff

C; fL(T)<KVj<i andi+ 1 <n
C +1 if L{(T;_) < K < I(T)) ori+l=n
0 else.

as an insurance is not intuitive. The payoff above constitutes a coupon bond which
matures if L(7T;) exceeds the rate K. Such a structure is usually offered with an
above-average coupon C| and below-average coupons C;, i > 1.2 Thus, this product
is appealing if the investor would like to receive a high initial coupon (this could be
done with a standard coupon bond) and at the same time expects that the interest rate
will rise faster than the market predicts. Since the coupon bond will mature early if
interest rates rise, the lower than average coupons C;, i > 1 do not take effect. Thus,
in this case, the investor would have a coupon bond with an above-average coupon.
Since the investor takes the risk that he will receive lower than average coupons if
interest rates do not rise, the product will be much cheaper than a standard coupon
bond paying a coupon C; and maturing early. The investor is financing the initial
above-average coupon by taking the risk of losing his bet on rising interest rates. He
is a risk taker. The product is appealing to the investor since he has a different view
on the future than the market (i.e., the average).

Exotic derivatives interpreted as an investment usually link a guaranteed high initial
payment with a risky structure, which extracts the favorable case of the investor’s
market view.

An exotic derivative may both reward for taking risk as well as cover risk (in the
sense of an insurance). Both interpretations jointly exist. For example, the structure
above has an insurance against total loss of investment. The worst-case scenario is a
coupon bond with below-average coupons. <

2 A similar structure is given by the target redemption note.
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12.2.1 Structured Bond, Structured Swap, and Zero
Structure

Exotic interest rate options mainly come in two different forms: as a (structured) bond
or a (structured) swap. The products bond and swap are closely related. For a given
(coupon) bond we may define a swap, such that the swap together with a floating rate
bond replicates the coupon bond. We consider this relationship first for the trivial
case of a simple coupon bond, then for the more tricky case of a zero-coupon bond.
All coupons may be structured coupons.

A structured bond is a bond for which the coupons C; are arbitrary complex
functions of interest rates or other market observables.? In this case the coupons are
called structured coupons. A corresponding swap exchanges the structured coupon
payments of the bond by coupon payments of a corresponding floating rate bond; see
Figures 12.1 and 12.2. Taking the swap and the floating rate bond (which just pays
the current market rate on the notional) together, we may hedge the structured bond.
For the values of the products in T we thus have N1 + Viuap = Viond-

The structured bond and its (hedge-)swap are separate products, since they are
often offered by separate institutions.*

Zero Structures

Besides (structured) coupon paying bonds, another common type of bond is that for
which the coupon is accrued instead of paid. Then, as for the zero-coupon bond, there
will be a single payment at maturity; see Figure 12.3, right. An accruing product
is called a zero structure. A bond with accruing coupons is sometimes called a
zero-coupon bond.

For an accruing zero-coupon bond we may define a corresponding swap too. To
do so we consider the following (equivalent) representation of the bond: At the end
of each coupon period the notional and the period’s coupon is paid. The amount
defines the new notional for the following period and is reinvested (this corresponds
to accruing the coupon); see Figure 12.3, left. The swap is then defined such that
it exchanges the structured coupon (on the various notionals) by a corresponding
coupon with a given market rate.

The swap will then allow to build up the bond’s payment at maturity using the
starting notional invested at market rates; see Figure 12.4.

For the valuation in T we again have

Ny + szap = Vionds (12.1)

3 Common coupons are options on interest rates, e.g., a guaranteed minimum rate in the form of
C; = max(L(T;), K), or even coupons which depend on the performance of one or more stocks, in
which case the bond would be a hybrid interest rate product.

4 E.g., a mortgage bank and an investment bank.
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Coupon Bond N,=N,=N
p j=N=N;
< N o o
—~ o ) g
=z 2 z ~ N 2
+ + + © © +
=z z | = = z z I = I =z
T, T, T, T, T, T, T, T,

Figure 12.1. Cash flows for a coupon bond. Left: with imaginary exchange of
notionals at the end of each period; right: with effective cash flow only.

Swap
U\ KJN 4 U'vu
—~ X ~ 5 el
E . E E o o o
=z zZ 2 2 = = 2 =z
. g -

Ny L,
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—
NJ
+ N, Ly
N, oL, :

N, +N,- L,
Ny, + N, L,

¢

Figure 12.2. Cash flows for a swap whose fixed leg corresponds to the coupon bond
in Figure 12.1. Left: with imaginary exchange of notionals at the end of each period;
right: with effective cash flow only.

where the swap is interpreted as payer swap, i.e., it pays C; — L;. That Equation (12.1)
holds, follows iteratively by considering a single period: The notional N, is invested
at the market rate like a floating rate bond. The floating rate bond pays Ny + Ny L; in
T,. The swap exchanges the coupon N; L, for the structured coupon. Thus we have
Ny + Ny C; =: N; which is the notional N, which is used for the same construction
for the following period.

Such a construction is especially meaningful if the zero-coupon bond may be
canceled at the end of a coupon period. In this case it would pay the accrued notional
up to this period. For a cancelable bond the swap has the same cancellation right and
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Zero Coupon Bond (Accruing Structured Coupon)

™
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Figure 12.3. Cash flows for a zero coupon bond. Left: with imaginary exchange of
notionals at the end of each period; right: with effective cash flow only.
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Figure 12.4. Cash flows for a swap whose fixed leg corresponds to the zero coupon
bond in Figure 12.3. Left: with imaginary exchange of notionals at the end of each
period; right: with effective cash flow only.
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is canceled simultaneously.’

We repeat the notions structured bond and structured swap in a definition, although
these definitions differ only in one minor aspect from the ones for coupon bond
or swap, respectively: the coupon C; may be an arbitrary r,, , -measurable random

i+l

variable.
Definition 141 (Structured Bond): 1
Let0=Ty < T, <T; <---<T, denote a given tenor structure.

Fori = 1,...,n— 1 let C; denote a (generalized) interest rate for the periods

[T, Tiv1], respectively. Let C; be an 7, ,-measurable random variable.
Furthermore let N; denote a constant value (notional). The structured bond pays

0 (#n)

N Ci(Tiy) =T)) + N;
( +1 ) {1 (i=n—1)

in T;,1. The value of the structured bond seenint < T, is

n—1
Ny Coe (Tre1 — T
Vond(T1, ..., Tust) = N(EY' |y A=k kel T8 Nyt P(T,; ).
Bona(T' ) = N() (; NS |5€) + Noot P(Ta1)
|
Definition 142 (Structured Swap (Structured Receiver Swap)): 1

Let0 =Ty < Ty <T,<---<T, denote a given tenor structure.
Fori = 1,...,n — 1 let C; denote a (generalized) interest rate for the periods
[T;,T;:1], respectively. Let C; be an 7, -measurable random variable.

Furthermore let s; denote a constant interest rate (spread) and N; a constant value
(notional). The structured swap pays

Xi =N (C; — (LT, Tio; Ti) + 5) (Tis1 = To).

in T;.1. The value of the structured swap seenint < T is

-
kZl N(Ty+1) ]

Vswap(T1, ., Tus 1) = N(t) EY'

4

Remark 143 (Structured Coupon): By C; we denote an arbitrary, generalized
interest rate. In general it will be a function of L(T}, Tx.) with fixing date T;, and
thus even 7r,-measurable. We allow that the generalized interest rate C; depends on

5 Other arguments for this construction are reduction of default and market risk.
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events within the period [T, T;,1] and requires Fr,, -measurability only. An example
of C; is a constant rate C; = const., the forward rate C; = L(T;, T;,1; T;), or a swap

rate C; = S(T;,..., Ti; T)).

Remark 144 (Zero Structure): The swap in Definition 142 is called zero structure,
if the notional N; if given by

N,'+1 ZZN,'C,'(T,'+1—T,‘) i=1,...,n—1.

Remark 145 (Structured Payer Swap/Structured Receiver Swap): The swap
defined in Definition 142 is a receiver swap. A swap with reversed payments

Xi =N (LT, Tis1s T+ 5) = Ci) (T = T)

is called structured payer swap. See Definition 118.

12.2.2 Bermudan Option

Definition 146 (Bermudan): B
A financial product is called Bermudan if it has multiple exercise dates (options), i.e.,
there are times 7; at which the holder of a Bermudan may choose between different
payments or financial products (underlyings). a

A more formal definition of the Bermudan option, anticipating the result that the
optimal exercise is to choose the maximum of the exercise and nonexercise value, is
given in the following definition:

Definition 147 (Bermudan Option): 1
Let {T;};=1,.» denote a set of exercise dates and {Vinden,i}i=1,..» @ corresponding set of
underlyings. The Bermudan option is the right to receive at one and only one time T;
the corresponding underlying Vipgen; (With i = 1, ..., n) or receive nothing.

At each exercise date T, the optimal strategy compares the value of the product
upon exercise with the value of the product upon nonexercise and chooses the larger
one. Thus the value of the Bermudan is given recursively

Voerm(Tis - - o - T3 T2) := max( Voerm(Tivts - - T T0) 5 Vnden i(T3) ),
————

Bermudan with Bermudan with Product
exercise dates exercise dates received upon
Ti. .., Tn Tistsonns Tn exercise in T;

where Vierm(Th; T) = 0 and Vyugen i(T;) denotes the value of the underlying Vinderi.i
at exercise date T;. a
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An example is given by the Bermudan swaption. Here the option holder has the
right to enter a swap at several different times. The optimal exercise strategy chooses
the maximal value from either the swap or the Bermudan with the remaining exercise
dates.

9

Definition 148 (Bermudan Swaption):

Let0 =Ty < T < Ty < --- < T, denote a given tenor structure. The value
VBermswpt(T'1, - . ., T To) of a Bermudan swaption seen at time Ty is defined recur-
sively by

VBermSwpt(Tia cers Tn; Ti)

(12.2)
1= max (VBermSwpt(TiH e I3 Th) VSwap(Ti, o T3 ),

where Veermswot(Tr; Tr) 1= 0 and Vsyap(T5, . .., T3 T;) denotes the value of a swap
with fixing dates 75, ..., T, and payment dates 7|, ..., T, seen in T;. Furthermore,
with a given numéraire N and a corresponding equivalent martingale measure Q"

VBermSwpt(Ti+] seees Tns Tiy) I F: )
N(T;1) )

Vaermswpt(Tis1s - - -» Tu3 Ti) = N(T;) E¥" (
(12.3)

-

Interpretation: The Bermudan swaption Veermswpt(Tn-1, ) is sim-
ply a swaption (option on a swap) and since the swap has only a sin-
gle period [T, T,] it is actually a caplet. The Bermudan swaption
Veermswpt(Tn—2, Tn-1, T,,) is an option which allows a choice in time 7,_»
between a swaption (with later exercise date) or a (longer) swap. Thus it is an option
on an option. Iteratively the Bermudan swaption is an option on an option (on an
option, etc.).

Taking the underlying swap as the defining object, we see that the Bermudan
swaption Veermswpi(7T1, - .., T») can also be interpreted as an option either to enter at
times Ty, ..., T,_1 a swap with remaining periods up to 7, or to wait. Options with
multiple exercise times are called Bermudan. Options with a single exercise time are
called European. <

&

-
|
]
|
|

Remark 149 (Bermudan Swaption): It is key to the evaluation of the Bermudan
swaption that by Equation (12.3) we have at each exercise date T; an evaluation
of a derivative product. For this the conditional expectation has to be calculated.
Depending on the model and the implementation, the calculation of conditional
expectations may be nontrivial. In Chapter 15 we give an in-depth discussion on how
to calculate a conditional expectation in a path simulation (Monte Carlo simulation).
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e e e e e 0
: : Swap(T,,Tg)

=
;I

1 T2 T3 T4 T5 TS

Figure 12.5. Bermudan swaption.

12.2.3 Bermudan Callable and Bermudan Cancelable

We will now define a product class that generalizes the structure of a Bermudan
swaption.
Definition 150 (Bermudan Callable Structured Swap®):
Let0 =Ty < T <T, <--- < T, denote a given tenor structure.

Fori = 1,...,n — 1 let C; denote a (generalized) interest rate for the periods
[T;, Tir1], respectively. Let C; be an 7, -measurable random variable.

Furthermore let s; denote a constant interest rate (spread), N; a constant value
(notional) and

Xi =N (Ci = (UT;, Tis) + 5) (Tigy — T)).

Let Viynded (T, - . ., Tw; Ti) denote the value of the product paying X, in Ty, fork =
i,....n—1,seenin T;. If N denotes a numéraire and Q¥ a corresponding equivalent
martingale measure, then

Xk
N(Ty,

n-1
Vunderl(T[s cees Tn» TI) = N(Tl) EQN [Z 1) lTT,J . (12‘4)
k=i +

The value of a Bermudan callable swap with structured leg C;’ is recursively
defined by

VBermCaII(Tia sy Tn; Ti)

(12.5)
:= max (Veermcal (Tis15 - - -» T3 T) » Vinden(Ti, - - -, T3 T1)),

6 Compare [89].
7 On the naming see Remark 154.
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where Veermcan(Tn; T,,) 1= 0 and

VeermCal(Tis15 -+ » T3 Tis1)
N(Ty1)

Viermcan(Tis1 - - Tu; Tp) = N(T;) EQ' ( ITT,). (12.6)

4

Remark 151 (Bermudan Callable, Structured Leg): For C; = S; = const. the
product defined in Definition 150 is a Bermudan swaption.

The payments (cash flows) X; consist of some part N; C; (T;,; — T;) which is called
the structured leg and another part N; (L(T;, Ti+1) + si) (Ti+1 — T;) which is called the
floating leg.

The underlying Vingen(Ti,...,T,) 1S a swap swapping the rate C; against
L(T;, Ti»\) + sy, with fixing dates T, . .., T,_| and payment dates T;, 1, ..., T,.

To evaluate a Bermudan option we need to calculate at most two conditional
expectations (12.4), and (12.6) at each exercise time 7;. Under the assumption of
optimal exercise these two values are linked by (12.5), going backward from exercise
date to exercise date. In Chapter 15 we give an in-depth discussion of the calculation
of conditional expectation in a path simulation (Monte Carlo simulation).

The Bermudan swaption (or a Bermudan callable) allows an (possibly structured)
swap to be entered into at one single time of predefined times 7. In contrast to this,
the Bermudan cancelable swap allows the cancelation of the underlying swap at one
single time of the predefined times 7.

Definition 152 (Bermudan Cancelable Swap):
With the notation from Definition 150 let

Xi
N(Ts1)

Vcoupons(Ti; T;) = N(T) EQN( |7:T;)-

the value of the coupon payments (cash flows) for the period [T}, T;, 1], seenin T;.
The value of a Bermudan cancelable with structured leg C; is recursively defined
by

VeermCancel(Tis - - -, T3 T))
= max (Vcoupons(Ti; 1)) + Vermcancet(Tix1s - > T3 Ti) 0),

where Veermcancel(Th; Ty) := 0 and

VeemCanee(Tiatnr o Tt T) = N(TD) EQN (VBermCancel(Ti+1 oo Iy Tigp) | TT,') )

N(Ti.1)
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Remark 153 (Bermudan Cancelable): With the notation from Definitions 150
and 152 we have

VBermCancel(T s+« - Trs Ti) = Vundgen(Tiy oo, Ty Ti) + VBermCaI]Payer(Ti’ e T T,
(12.7)
where ViermcaiiPayer denotes a Bermudan callable with reversed sign in the underlying.
The right to cancel the structured swap Vnqen corresponds to the right to enter such a
structured swap with reversed cash flow.
Likewise we have

VBermCall(Ti, cees Tn; Ti) = VunderI(Tis s Tn; Ti) + VBermCancelPayer(Tiv R Tn; Ti),
(12.8)
where VBermCancelPayer denotes a Bermudan cancelable with reversed sign in the under-
lying.
From this we conclude that the problem of evaluating a Bermudan cancelable
corresponds to the problem of evaluating a Bermudan callable—and vice versa.

Remark 154 (Bermudan Callable): Our definition of a Bermudan option is a
general one: For each exercise date the corresponding underlying can be specified
arbitrarily. The Bermudan callable is a special variant of a Bermudan option, where
the underlyings share the same cash flow after exercise.® The Bermudan callable is
the right to enter a financial product at some later time. The Bermudan cancelable is
the right to terminate a financial product at some later time. Bermudan callable and
Bermudan cancelable are counterparts in the sense of Equation (12.7).

For (structured) bonds it is usually the case that the issuer (i.e. the party that pays
the coupons) has the right to cancel the bond.? Due to relationship (12.7) it is the case
that the issuer of a bond having the right to cancel the issued bond essentially has a
callable bond. Therefore the use of the words callable and the call right are often
used where our definition would seem to point to a cancelable contract.

12.2.4 Compound Options

A compound option is an option on an option. Popular are a European call option
on a European call option, a call on a put, a put on a call, and a put on a put. The
compound option is closely related to the Bermudan option with two exercise dates.
The compound option may be viewed as a special variant of a Bermudan option.

As for the Bermudan option, the evaluation of a compound option requires the
evaluation of an option at a future time (the exercise date of the first option). The

8 Qur definition of a Bermudan callable is the same as, for example, in Piterbarg [89].
9 Upon cancelation the notional is repaid.
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methods used for the pricing of Bermudan options can thus be applied to the evaluation
of compound options as well.

12.2.5 Trigger Products

For a Bermudan option and a Bermudan cancelable the exercise criterion is given by
optimal exercise: The option holder chooses the maximum value. Thus the recursive
definition of the product value uses the maximum function on the values of the two
alternatives nonexercise and exercise. For a trigger product the exercise is given by
some criterion, the trigger, which does not necessarily represent an optimal exercise.
An example of such a product is the autocap, which we will define in Section 12.2.6.4,
or the following target redemption note.

12.2.5.1 Target Redemption Note

Definition 155 (Target Redemption Note): 1
Let0 =Ty < T < T, <---<T, denote a given tenor structure.

Fori = 1,...,n -1 let C; denote a (generalized) interest rate for the periods
[T;, Tis1], respectively. Let C; be an 7, -measurable random variable.

Furthermore let N; denote a constant value (notional). A target redemption note

pays
N; X; in T

with
X = Cl fori= 1,
T | min(C L K- 3E G fori> 1
+{1 for 3l < K <= ¥4 Crori=n,

(structured coupon)

redemption
0 else. ( ption)

(target coupon guarantee).

N max(0, K — 22:1 C) fori=n
0 else.

d

Remark 156 (Target Redemption Note Coupon): The rule that defines the coupon
C; in Definition 155 may vary, and Definition 155 is only the framework of the product.
With a coupon, e.g., like

Ci= K-a L,‘ (Ti+l - T,) fori> 1. (129)

the product is also called variable maturity inverse floater (VMIF). We will consider
structured coupons in Section 12.2.6.
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Interpretation: The holder of a target redemption note receives the
. . coupon C; until the sum of the coupons has reached K|, the target coupon.
@ | If the accumulated coupon exceeds the target coupon (Zf(:l Cr >=K),

" then the difference between the target coupon and the notional is paid.
After this no coupon payments will be made. The structure is canceled if the target
coupon has been reached. If the target coupon has not been reached over the full life
time of the product, then the difference between the target coupon and the notional is
paid at maturity.

Thus, the target redemption note guarantees the payment of a coupon K and the
redemption of the notional. What is uncertain is the time of payment and the maturity,
and thus the yield of the product. The yield of the product depends on when the
condition

i i—1
ch - K and ch <K (12.10)
k=1 k=1

is fulfilled.

It is normal to have an above-average initial coupon C;. The life time of the product
varies between T and T, giving yields between K/T, and K/T,. An investor would
buy this product if he assumed that the condition (12.10) would be fulfilled early,
such that the yield of the product (is expected to be) above average.

An example of a target redemption note, actually offered in 2004, is

C,':7.5%—2L,‘ (T,‘+1 —T,') fori> 1.

Here the option holder profits from the product if the interest rates L; decline faster
than expected (and thus the product will be redeemed early). <|

12.2.6 Structured Coupons

In the previous definitions we have defined the structured bond (Definition 141), the
structured swap (Definition 142), the Bermudan option (Definition 150), the Bermudan
cancelable (Definition 152), and the target redemption note (Definition 155) without
specifying the coupons C;. We now refine our definitions by defining some of the
most common structured coupons C;. In the respective definitions we only give the
characteristic that describes the coupon. The characteristics defined in the following
exist for bonds and swaps and for Bermudan callable and Bermudan cancelables
alike. For example, we define a coupon of a CMS spread product and the name of the
corresponding Bermudan callable swap as a Bermudan callable CMS spread swap.
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12.2.6.1 Capped, Floored, Inverse, Spread, CMS

Definition 157 (Capped Floater): 1
A product as in Definition 141, 142, 150, or 152 with

Ci := min(L(T;, Tis1) + s ¢:)
is called a capped floater. Here c; denotes a constant (cap). a

Definition 158 (Floored Floater): n
A product as in Definition 141, 142, 150, or 152 with

Ci := max(L(T:, Tis1) + s, fi)
is called a floored floater. Here f; denotes a constant (floor). 4

Definition 159 (Inverse Floater): 1
A product as in Definition 141, 142, 150, or 152 with

Ci = min (max (k; — L(T;, Tin), i), ¢i)
is called an inverse floater. Here f; < ¢; (floor, cap) and k; are constants. 1

Definition 160 (Capped CMS Floater): 1
A product as in Definition 141, 142, 150, or 152 with

Ci == min(S i jom + 55, Ci),

where s;, ¢; denote constants (spread, cap) and S, 1, = S(T4, ..., i) denotes a
swap rate as in Definition 122, is called a capped CMS'° floater. The rate S, is
called constant maturity swap (CMS) rate since the maturity relative to the period start
T, is constant (T}, — T; is constant, 1.e., independent of ¢), assuming an equidistant
fenor structure. g

Definition 161 (Inverse CMS Floater): K
A product as in Definition 141, 142, 150, or 152 with

C,‘ = min (max (k, — S,",'+m,f;') s C,') N

where k;, fi, ¢; denote constants (strike, floor, cap) and S;;m = S(Ti,. .., Tizm)
denotes a swap rate as in Definition 122, is called an inverse CMS floater. 4

10 CMS stands for constant maturity swap, i.e., the maturity of the underlying swap relative to the swap
start (T;+, — T;) is constant. For simplicity we assume here that the tenor structure is equidistant.
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Definition 162 (CMS Spread): 1
A product as in Definition 141, 142, 150, or 152 with

C; = min (max (S-l

ii+m;

2
- S[‘[+m29ﬁ) 1) Cl) ’

where f;, ¢; denote constants (floor, cap) and S;jim, = S(Tis- ., Tiom,)s Siiam, =
S(T,...,Ti.m,) denotes a swap rate as in Definition 122, is called a CMS spread.

L

12.2.6.2 Range Accruals

Definition 163 (Range Accrual): 1
Let t;x € [T, T:i+1) denote given observation points for the period [T}, Ti+1). Fur-
thermore let K; and b,( < bf’ denote given interest rates (constants). A product as in
Definition 141, 142, 150, or 152 with

I ¢ ,
Ci:=K; . Z Ly oy (Lties tige + AT 134)) - in Ty
k=1

is called a range accrual. Here AT; := Ti — T, a1

Interpretation: The interval [b!, b"] describes an interest rate corridor.
| i Itis calculated how often the reference rate L(z, t+AT;; t) stays within this
@ | corridor at the times #;;. The product pays the corresponding fractional

~ amount of the rate K; at the end of the period.
Since the interest rate corridor may be chosen as a function of the period i, the
product makes it possible to profit from a specific evolution of the rate. <

12.2.6.3 Path-Dependent Coupons

Definition 164 (Snowball/Memory): 1
A product as in Definition 141, 142, 150, or 152 with

C; = min(max (Ci—; + X, fi), ci),
is called snowball, where X; is some coupon as in Definitions 157 to 163 and f;, ¢;

denote constants (floor, cap) and C;_; denotes the coupon of the previous periods with
Co =0. 4
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Example: A coupon
C; = min(max (C; . + ki — L(T;, Tii1), f3) . ci)

is called an inverse floater memory.

Definition 165 (Power Memory): 7
With the notation from Definition 164 the coupon

C,‘ = min (max (O’C,'_l + X[, ﬁ) , C,')
is called a power memory (for a # 1). 4

Remark 166 (Snowball, Path Dependency): The snowball is called a path-
dependent product, since its coupon depends on the previous coupon, i.e., on the
history.

Definition 167 (Ratchet Cap): T
The ratchet cap pays in T},

Xi=N max (L(T;, Ty 3T — Ki, 0) (Tis1 — T7)
for times T4, ...,T,, where

K =min(Ki_y +R, L(T;,Tis1;T)) fori>1

and K, R denote constants (strike and ratchet), L(T;, T;.y; T;) denote the forward rate
(LIBOR), and N denotes the notional. a

Remark 168 (Ratchet Cap): The ratchet cap has an automatic adjustment of the
strike K;. Since the adjustment depends on past realizations, the ratchet cap is a
path-dependent product.

12.2.6.4 Flexi-Cap

The flexi cap comes in two variants: As an autocap with a simple (automatic) exer-
cise criterion and as an chooser cap with an assumed optimal exercise (like for the
Bermudan). Both caps have in common that the maximum number of exercises is
limited.
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Definition 169 (Autocap): 1
Let nmaxex € N. An autocap pays in Ty

if{{j: j<iand X; > O}| < npaxex:

Xi =N max (L(T;, Tis1;T1) — Ki, 0) (T = Ti)
or else:

X;:=0

for times T,,...,T,, where K; denotes the strike rate, L(T;, T;,1;T;) denotes the
forward rate (LIBOR), and N denotes the notional. The autocap pays in the same way
as a normal cap as long as the number of past (positive) payments is below nmaxex. -

Definition 170 (Chooser Cap): E
Let nmaxex € N. A chooser cap pays in Ty

if {j: j<iand X; > 0}| < npaxex and payment is chosen:

Xi =N max (L(T;, Tis1;T) ~ Ki, 0) (Tipy = T))

otherwise:

X,' =0
for times Ty,...,T,, where K; denotes the strike rate, I(T;, T;,1;T;) denotes the
forward rate (LIBOR), and N denotes the notional. a

Remark 171 (Autocap): The autocap is a path-dependent product, since at a future
time the number of exercises allowed depends on the history. It is also a trigger
product, since the exercise is not optimal, but triggered by a simple trigger. The
corresponding optimal exercise is given by the chooser cap.

Remark 172 (Chooser Cap (Backward Algorithm)):  Since the option holder
chooses to exercise optimally, we have that the value V(C';l";“ggé;T“T”)(To) of the chooser
cap is given by

V("Ex,Ti,Tn)(Ti) — max (Xi + V("Ex_l»TiHan)(Ti)) , V(”Ex»TiHsTn)(Ti))’

Chooser Chooser Chooser

where
Xi =N max (LT, Tiy1;TH) - Ki, 0) (T = T))
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and
V("Ex,Tan)(Tn) =0, V(O’T“T")(T,') =0,

Chooser Chooser

T:.Tn . . .
where V&Egéser )(Tk) denotes the value of a chooser cap with at most ngy exercises in

Ti,...,T,, seenin T.

Remark 173 (Chooser Cap as Bermudan): A chooser cap with nyyex = |
exercises is a Bermudan cap.

12.2.7 Shout Options

Definition 174 (Shout Option): 3
Assume that a financial product pays an underlying S (¢*) at time T, i.e., ¢ is the fixing
date and T the payment date. The owner of the financial product has a shout right
on the underlying, if the holder of the right can determine once at any time ¢ with
T, <t < T, < T the fixing date ¢* as t* := t. The holder determines by shouting that
the underlying should be fixed. J

Remark 175: While for an American option or a Bermudan option, e.g., on S (#)— K,
the fixing date and the payment date are both determined upon exercise, i.e., S (") — K
is paid in ¢*, for a shout option the fixing date is determined upon exercise, while the
payment date stays predefined.

Theorem 176 (Value of a Shout Right): A shout right on a convex function of a
submartingale (under terminal measure) is worthless.

Proof: Let T denote the payment date of f(S(#)), where ¢ is fixed as ¢ = t* by
shouting. For the chosen numéraire N we assume N(T) = 1 (terminal measure). Let
f be convex and S a submartingale under QV. Then we have:

S < ES(T) 1 F) (submartingale property)
= FS@®) < B ST | Fo) (Jensen’s inequality)
= E(f(S) | F1,) < E(f(S(T)) | Fr,) (tower law)

E(flf}i;f))) |TT0) < E(% |7:T0) (terminal measure).

IA

IA

Thus, to maximize the value, the option holder will always exercise the shout right at
t=T,. Oj
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12.3 Product Toolbox

The terms used in the previous section, like capped, inverse, ratchet, etc., describe
properties of the payoff function. In practice the terms are used less strictly and the
name of a product corresponds to its mathematical definition only loosely. Here mar-
keting aspects are more important. Key product features are, nevertheless, indicated
by the name of a product.

Table 12.3 gives a rough idea of some of the most common terms used to denote
properties of the product or payoff function.

| Experiment: Athttp://www.christian-fries.de/finmath/
- | applets/LMMPricing.html several interest rate products can be
' . priced, among them a cancelable swap. The model used is a LIBOR
- market model implemented in a Monte Carlo simulation. <

Further Reading: An overview of exotic derivatives can be obtained
. from the customer information service of some investment banks or the
I term sheets of the products. They contain descriptions of the product
" and definitions of the payoffs, similar to the definitions in this chapter,
as well as a short discussion of product properties.
Zhang’s book [43] presents some of the most important exotic options, in particular,

exotic equity options. <

174



123 PRODUCT TOOLBOX

Attribute

Product Property

Bond (a.k.a. Note)

Receive coupons. At maturity receive the notional.
See Definition 4]

Swap

Exchange coupons (usually against float).
See Definition 142

Bermudan option

Receive an underlying at one of multiple exercise dates.
See Definition 146

Bermudan cancelable

Cancel product (e.g. bond or swap) at one of multiple cancela-
tion dates. See Definition 152

Target redemption

min(C; , K— Z};ll C,) with cancelation and notional redemption
at (12.10) (trigger). See Definition 155

Chooser Receive an underlying at some of multiple exercise dates.
See Definition 170

Attribute Payoff Function

LIBOR / floater Ci=LT.,Tu;T)

CMS C; is swap rate with constant time to maturity

Capped min(C; — K;, ¢;)

Floored max(C; - K, f)

Inverse K, -C;

Spread Ccl-c?

Ratchet Ki=min(K._; + R, C)

Snowball C(T;) = C(Ti-) + Ki — L(T))

Range accrual

K; ,,L, P Vgt ) (Lltiis tix + AT 14))

Table 12.3. Product Toolbox: Common attributes and their representation in product
property and payoff function.
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123 PRODUCT TOOLBOX

Motivation and Overview - Part IV

In Chapter 4 we presented the Black-Scholes model of a stock S and a riskless account
B:

dS() = FOS @) dr + o (H)S (1) dWE (),
dB(t) = r())B(?) dt.

In Chapter 10 we presented the corresponding Black model for a forward interest rate
Ly = (T, Ta):

dLy(0) = lEOLi(0) At + o (L) AWE(®), o(r) > 0.

Using these models we could derive analytic pricing formulas for the corresponding
European options. An obvious generalization of these models consists in modeling
multiple stocks, e.g.,

dS (1) = pf (S () dt + oy(1)S i(£) dWF(n),
dB(t) = r(H)B(t) dr,

respectively, a model for multiple forward rates, e.g., L; = L(T;, Ti1) for Ty < Ty <
... with, e.g.,

dL(t) = pF(OLi(t) dt + odHLi(t) dWF(®), o(t) > 0.

This model is called the LIBOR market model].

Such models may then be used for the evaluation of complex derivatives, e.g. a
spread option, where the payout depends on two or more forward rates. The pricing,
i.e., the calculation of the expectation EQN(% | Fo), where N is a chosen numéraire
and Q" is a corresponding martingale measure, often requires a numerical method,

e.g., a Monte Carlo integration

v (V(T) 1 < (T, wp)
QY A\ J ~ =
E (N(T) [TO) n Z N(T, w))

i=1

for a sampling w),...,w,. Here, ¥ and N denote approximations of V and N,
respectively, since the corresponding Monte Carlo samples are generally generated
for an approximating model, namely a time-discrete model.

In Chapter 13 we start by examining the approximation of time-continuous stochas-
tic processes through time-discrete stochastic processes. We then consider the approx-
imation of the random variables by a Monte Carlo simulation or a discretization of
the state space.
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CHAPTER 12 EXOTIC DERIVATIVES

These discretizations allow us to calculate (approximate) expectations and thus
derivative prices. It turns out that within the discrete setup some calculations are
difficult. In a Monte Carlo simulation the calculation of a conditional expectation is
nontrivial. A conditional expectation may be required in the pricing of Bermudan
products; see Chapter 15. In a discretization of a state space the calculation of path-
dependent quantities is nontrivial. Path-dependent quantities appear in path-dependent
options; see Chapter 16.

The treatment of complex models, like the LIBOR market model, will be given in
Part V.
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CHAPTER 13

Discretization of Time and State
Space

In this chapter we present methods for discretization and implementation of It6
stochastic processes. We give an integrated presentation of path simulation (Monte
Carlo simulation) and lattice methods (e.g., trees). Finally, we show how both methods
can be combined; see Section 13.4.

Throughout our discussion of the discretization and implementation we will repeat
some of the terms from Chapter 2, e.g., path, o-algebra, filtration, process, and
F.-adapted. Thus, this chapter will also serve as an illustration of some of the
mathematical concepts from Chapter 2.

The discretization and implementation should not be seen as a minor additional step
after the mathematical analysis and it should not be underestimated. The discretization
and implementation allow us a second look, possibly providing further insights into a
model.!

In Figure 13.1 we give an overview of the steps involved in the discretization and
implementation of It6 processes.

13.1 Discretization of Time: The Euler and the
Milstein Schemes

As a first step we shall consider the discretization of time and present the Euler scheme
and the Milstein scheme.

! Indeed, it is common in mathematics to prove analytical results as a limit of a numerical, i.e., discrete,
procedure.
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Discretization Implementation

Time-Continuous It6 Process

dAX (1) = p(t. X(t) dt + o(t, X(t)) dW(t)

Discretization of Time
~ Euler Scheme
- Milstein Scheme

L
Time-Discrete Ité Process Path Simulation

> - Monte Carlo Simulation
AX(H) = plty, X () At + olt, X(t)) AW (t,) - Weighted Monte Carlo

Discretization of State Space

\J

Time-Discrete Itd Process Lattice
with Discrete State Space - Binomial Tree
- Lattice

A

AX(H) = pult, X(t) &t + a(t, X(6)) AB(t)

~

Backward Algorithm

Lattice with Path Simulation

Backward & Forward Algorithm

Figure 13.1. Discretization and implementation of It0 processes
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13.1. DISCRETIZATION OF TIME: THE EULER AND THE MILSTEIN SCHEMES

13.1.1 Definitions

Definition 177 (Euler Scheme): 7
Given an Itd process

dX(0) = u(t, X(1)) dt + o(t, X()) dW(2),

and a time discretization {£; | i = 0,...,n} with0 = #5 < ... < t,, then the time-discrete
stochastic process X defined by

Rt = X(0) + p(t, X)) At + o1, X(1)) AW (1)
is called an Euler scheme of the process X (where A¢; := t;41 — t; and AW(;) =

W(ti1) — W()). 4

! Interpretation (Euler Discretization): The Euler scheme derives
O . from a simple integration rule. From the definition of the Itb process we
@ | have

fis] Lis1
X(tin) = X(t) + f u@, X)) dr + f o(t, X(1)) dW(z).
1A 4
Obviously, the Euler scheme is given by the approximation of the integrals

f UL X@) dr ~ f T X)) d = s, X(6) A

i i

f " o, X)) dWG) ~ f " o, X)) AW = ot X(1) AW,

<

The following Milstein scheme improves the approximation of the stochastic
integral de.

Definition 178 (Milstein Scheme): 1
Given an Itd process

dX(t) = u(t, X)) dr + o(t, X(2)) dW(1),

and a time discretization {; | i = 0,...,n} with0 = 1y < ... < 1,,, then the time-discrete
stochastic process X defined by

X(ti1) = X(1) + p(t, X)) At + o, X(5)) AW(1)

+ %cr(t,',f((t,-))a’(t,-,)?(t,~))(AW(t,~)2 - At)
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is called a Milstein Scheme of the process X (where At; := t;;) — t; and AW(¢,) :=
W(tis1) - W(t) and o’ := & o). y

Remark 179 (Milstein Scheme): The Milstein scheme gives an “improvement”
only if o depends on X.

Let us consider another discretization scheme:
Definition 180 (Euler Scheme with Predictor-Corrector Step): 1
Given an Itd process

dX(t) = u(z, X(1)) dr + o(t, X(2)) dW(p),

and a time discretization {t; | i = 0,...,n} with0 =1y < ... < t,,, then the time-discrete
stochastic process X defined by

- ~ 1 - - -
X(ti1) = X(t) + i(ﬂ(ti,X(ti)) + (i, X)) AL + o8, X(1) AW(E)
with

X*(ti) = X(&) + pt:, X)) At + o1, X)) AW(t)

is called an Euler scheme with predictor-corrector step of the process X (where
At =t — t; and AW(L) = W(tie) — W(). a

Interpretation (Predictor-Corrector Scheme): The predictor-
| | . . .
X ; . corrector scheme improves the integration of the drift term f dt, not

] ' of the stochastic integral f dW. Instead of approximating the integral
f[ "' 1u(t, X(1)) dt by a rectangular rule u(#;, X(1;)) At; the method aims to
use a trapezoidal rule. With a trapezoidal rule the integral f: VI'V” u(t, X(¢)) dr would be

approximated as %(,u(t,-, X)) + p(tivq, X(tir1))) At;. Since the realization X(7;,) and
thus u(t;. 1, X(#;+1)) is unknown, it is approximated by an Euler step X*(#..1) (predictor
step) and the trapezoidal rule is applied with this approximation. This corresponds to
correcting X*(#;,1) (corrector step). We have:

- - ~ 1 ~ -
X(ti1) = X (tie1) — (i, X(1)) Aty + E(.u(ti’ X)) + pltinr, X™(1:01))) At

- 1 B _
= K (t) + 5 Wt X Ga01) = i, X(1))) Aty (3.1

correction term
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Tip (Implementation of the Predictor-Corrector Scheme):
: Note that for an implementation formula (13.1) is more efficient than
! the two Euler steps in the original Definition (180) of the scheme. The
- " second Euler step is replaced by a correction term applied to X*(#;,1)
and requires only the additional calculation of p(#;s1, X)) <}

The schemes presented give a time-discrete stochastic process X such that X(1;) is
an approximation of X(#;). An in-depth discussion of numerical methods of approxi-
mating stochastic processes can be found in [21].

13.1.2 Time Discretization of a Lognormal Process
Consider the process
dX = u(t, X(0)X () dt + o(O)X(t) dW(2), (13.2)

where (¢, x) — u(t, x) and t — o(r) are given deterministic functions. With Lemma 50
we have

dlog(X) = (u@t, X(1)) — %02(1)) dt + o(r) dW (). (13.3)

In the following we discuss several possible time discretizations of the process X. The
discussion is of special importance since the Black-Scholes model, the Black model,
and the LIBOR market model are all of the form (13.2).

13.1.2.1 Discretization via Euler Scheme
The Euler scheme for the stochastic differential equation (13.2) is given by
X(ti) = X(0) + p(ti, X@)X (1) At + ()X (1) AW()).

The random variables X(7) generated by this scheme differ from the random vari-
ables X(¢) of the time-continuous process by a discretization error X(f) — X(). This
discretization error might be relatively large. Take, for example, the even simpler
case of a vanishing drift 4 = 0. Then X)) is normally distributed, while X(#;) is
lognormally distributed. Note that X can attain negative values, while X cannot (this
follows from (13.3)).

13.1.2.2 Discretization via Milstein scheme

One way of reducing the discretization error is to use the Milstein scheme (Defini-
tion 178):

~ ~ - 1 ~
X(tiv1) = X(5) + (u(t:;, X)) — EO'(Ii)z)X(ti) Ay,

+ o (t)X(t) AW(t) + %o(ti)sz(t.o AW ().
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13.1.2.3 Discretization of the Log Process

A much better discretization than the two previous schemes is given by the Euler
discretization of the It6 process of log(X). The Euler scheme of (13.3) is given by

log(X(ti41)) = log(X(#)) + (u(t:, X (1)) - %(f(t,-)z) At +o(t) AW(),  (13.4)
and applying the exponential we have
X(tie1) = X(t;) exp ((u(s:, X(1)) - ';‘O'(ti)z) Ati + a(t;) AW(1)).
Using this scheme will give a lognormal random variable X(z;).

13.1.2.4 Exact Discretization

For the special case where y does not depend on X, e.g., if X is a relative price under
the corresponding martingale measure and thus even drift-free, then we can take the
exact solution as a discretization scheme. We then have

X(tiv1) = X(1;) exp ((u; - %U,-z) At; + o AW(1y), (13.5)

1 fiv] 1 1is]
i = KZ]; u(t) dr, o= \/A_t, j; o?(1) dr.

13.2 Discretization of Paths (Monte Carlo
Simulation)

where

Consider the time-discrete stochastic process
X(tie1) = X(1) + p(ti, X(1) Aty + o (8, X(1:)) AW (@), (13.6)

This is an Euler scheme. The considerations below apply to any other discretization
scheme. Furthermore, we do not apply a tilde to the process X since we are only
considering the time-discrete process, and so do not have to distinguish it from the
original time-continuous process.
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13.2.1 Monte Carlo Simulation

The random variables AW(t;) of the respective time steps are mutually independent;
see Definition 29. At every time step #; a random number is drawn according to the
distribution of AW(1;), (i.e., a vector of random numbers if AW(z;) is vector valued),
which we denote by AW(#;, w;). Then

X(ti, wj) = X(ti, wy) + p(ti, X(4, w))) At + o (t;, X(4, wj) AW (T, w))

determines the process X on a path, which we denote by w;. Here AW(s;, w;) and
AW(t,w)) (i # k) are independent random numbers, following the definition of
the Brownian motion. If we follow this rule to generate paths wy, . .., Wp,,,,, Where
AW(t, w)) and AW(t;, wy) (j # k) are independent, then we say that the set

(Xt w) 1i=0,1,..., Miimes; £ =0,1,... vnpaths}

is a Monte Carlo simulation of the process X.
/o\ w1y

\\/:: (D3

w;

Wy

T T T T T T
Tg Ty Tp Tg T4 Tg

Figure 13.2. Monte-Carlo Simulation

An approximation of the expectation of some function f of the X(#;)’s is then given
by

Fpaths 1
EF(f(X0)s ., Xt ) | o) ~ Zf(X(to,m,»,...,X(znm,w,-»(—).
-

f Rpaths

The generation of random numbers is discussed in Section B.1.

13.2.2 Weighted Monte Carlo Simulation

A generalization of the procedure is to generate the random numbers AW(t;, w;) not
according to the distribution AW(z;), which means that all paths w; are generated with

187
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nonuniform weights p; (Z;":“;"“ pj = 1). In this case we call the simulation weighted

Monte Carlo simulation. For the expectation we have

Mpaths

EPFX(t0), - Xtnge ) | F) ~ D, pif Xt @1)s - Xy @7))-
i=1

J

To summarize, the Monte Carlo simulation consists of the time-discrete process X
in (13.6), represented over a discrete probability space (2, ¥, P), where

Q={w,...,0, ) CQ  F=clwllj=1...npun) Plw})=p;

13.2.3 Implementation

Figures 13.3 and 13.4 show an example for an object-oriented design. The figures
follow the Unified Modeling Language (UML) 1.3; see [28].

The generation of a Monte Carlo simulation of a lognormal process is realized
through the abstract base class LocNorMALProcess. The class defines abstract methods
for initial conditions, drift, and volatility. A specific model has to be derived from this
class and implement the three methods. The abstract base class LoGINorRMALPROCESS
provides the implementation of the discretization scheme, using the methods for
initial conditions, drift, and volatility.

The calculation of the Brownian increments, i.e., the random numbers, is given by
an additional class: BRowNIANMOTION.

LogNormalProcess
Br Motion
getProcessValue(timelndex, component)
getinitialValue{component) getBrownianincrement(timelndex, path, factor)
getDrift{timeindex, component)

getFactorLoading(time, component, factor)

Figure 13.3. UML Diagram: Monte Carlo simulationflognormal process.

13.2.3.1 Example: Valuation of a Stock Option under the
Black-Scholes Model Using Monte Carlo Simulation

Consider the model from Chapter 4, the Black-Scholes model: We have to simulate
the process

dS() = rOS(O dt + ()OS dWF(H  under the measure QV, S(0) =S,
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together with the numéraire

dN(t) = r(t)N() dt, NO)=1,

which is not stochastic here. For this example we have to set X = (X, X;) = (S, N)
in the previous section. We choose r and o constant and apply the Euler scheme to
fog(S), following Section 13.1.2.3:

S @) = 5) exp (7~ 507) At -+ AW(), S(0) = So,
N(@ti) = N(@) exXp (r Ati), N@©O) = 1.

In this example the time discretization does not introduce an approximation error,
because we are in the special situation of Section 13.1.2.4. If wy,..., Wy, ATE paths
of a Monte Carlo simulation, then we have for the price V of a European option with
maturity #; and strike K

1 PZ max (S (%, w;) — K, 0)

V() ~ N(O) NGO

Rpaths =

We can extend the object-oriented design from Figure 13.3 to derive the class
BrackScroLEsMobpEL from the abstract base class LogNormMaLPRrocEss. The class
BrackScHoLesMopeL implements the methods providing the initial value (returning
S(0)), the drift (returning r), and the factor loading (returning ). In this context the
factor loading is identical to the volatility.? In addition the class implements a method

that returns the corresponding numéraire.

13.2.3.2 Separation of Product and Model

The evaluation of a derivative product, in our case a simple European option, is
realized in its own class StockOptioN. This class does not communicate directly with
the BrackScHoLesMobeL. Instead it expects an interface MoNTECARLOSTOCKPROCESS-
MopbeL and the model implements this interface.

The interface MonTEC ARLOSTOCK PROCESSMODEL means that the stock model makes
the stock process and the numéraire available to the stock product as a Monte Carlo
simulation. All corresponding Monte Carlo evaluations of stock products expect this
interface only. All corresponding Monte Carlo stock models implement this interface.
This produces a separation of product and model. The model used to evaluate the
products may be exchanged for another, as long as the interface is respected.

We will use this principle in the object-oriented design of the LIBOR market
model, a multidimensional interest rate model. There we will reuse the classes
BrownianMorioN and LLocNorMALPROCESS; see Section 19.6.

2 In a multi factor model the factor loading is given by the square root of the covariance matrix.
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LogNormalProcess
B ianMotion

getProcessValue(timelndex, component) :
getinitialValue(component) getBrownianincrement(timelindex, path, factor)
getDrift(timeindex, component)
getFactorLoading(time, component, factor) B e

BlackScholesModel

«interface»
MonteCarloStockProcessModel
getinitialValue(component)
getDrift(timelndex, component) . :
getFactorLoading(time, component, factor) getProcessValue(timelndex, componentindex)
gell eValue( )

]
I
|

] StockOption BermudanStockOption
maturity exerciseDates
strike notionals
strikes
getPrice(monteCarloStockProcessModel) getPrice(monteCarloStockProcessModel)
. e

Figure 13.4. UML Diagram: Evaluation under a Black-Scholes model via Monte
Carlo simulation.
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13.2.3.3 Model-Product Communication Protocol

In designing a Monte Carlo simulation, one of the first steps is the design of the core
data objects representing the realizations of the stochastic process. These are the data
objects that are sent from the model to the product (via call to a method of the model).
They define the communication protocol between model and product.

If we think of a more complex model, e.g., a model for a family of forward rates
(LT, Tix)|i=0,1,2,...,n— 1}, as given by the LIBOR market model, then the
product needs access to a whole family of stochastic processes to process it.

The question we would like to briefly address here is how these data should be
stored and in what order it is usually accessed and processed. Of course, the favored
solution may vary with the specific application, so we shall remain on a fairly general
level. More specifically we would like to consider the order in which data objects are
aggregated. For example: Is it better to store a family of stochastic processes, each
being a family of one-dimensional random variables (parametrized by simulation
time), each being a set of realizations on a path, i.e.,

{{{Xl(tj’a)k)lk:()’l’zs}lJ:Oa1927-)|l:O, 1927-~~}9

or would we rather store a family of sample paths (with path index k) of a function of
t; (with time index j) each being vector values (with component index i), i.e.,

Xty ) 1i=0,1,2,..31j=0,1,2,.. }[k=0,1,2,...}. (13.7)

Examples of such data objects are a family of forward rates X; := L(T;, Ti4 ), e.g., as
modeled by a LIBOR market model, or a set of stock price processes X;, for example,
as underlyings of a basket.

One is tempted to believe that for a Monte Carlo simulation the paths wy, are totally
independent objects and thus that it would be reasonable to have the index k on
the top-most level of aggregation/parametrization, as is the case in (13.7). Indeed,
this would make it easy to parallelize the processing since the algorithm could be
called with different subsets of paths. However, this is only possible for simple (say
European) options.

The solution we recommend is to aggregate the data (from outer to inner objects)
as a family of random variables parametrized by ¢;, each random variable being
a vector consisting of one-dimensional random variables parametrized by i, each
one-dimensional random variable being represented by a vector of evaluations on
sample paths parametrized by k, i.e.,

WL(T, Tiys tjyw) | k=0,1,2,..31i=0,1,2,..}1j=0,1,2,...}.

In other words: We build our data object or array (from inner to outer) as follows:
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Core Object: Random Variable The core object is a one-dimensional random
variable evaluated on given sample paths,

X = X(wr),

defining a vector of realizations X:.= {(x1,...,xm)". There are two major reasons for
using this vector as a basic object:

e Product payoffs are functions of the underlyings, i.e., functions operating on
random variables. This makes it possible to define the functions as functions
acting on vectors (vector arithmetic), which greatly increases the readability
of the code. Loops over the paths are hidden inside the methods acting on the
random variable objects. For example, the payoff of an option max(Sr — X,0)
would appear as such in the code while the pathwise evaluation is hidden in the
implementation of the max-function.

o For Bermudan options it is necessary to calculate conditional expectations. To
do so, one needs access to the realizations on other paths, e.g., when using
the regression method (see Section 15.10.1). To some extent, the pricing of
Bermudan options breaks the naive parallelization of pricings through subsets
of sample paths. See the discussion of the foresight bias in Section 15.9.

Aggregation 1: Vector of Random Variables of Same Simulation Time
When simulating multiple stochastic processes, like, for example, a basket of underly-
ings or a family of forward rates, access to the whole family for a fixed simulation
time ¢ is normally required. So on the next aggregation level the basic object thus is a
vector of random variables sharing the same measurability property,

X; where X; is F;-measurable.

This makes sense since we often build a new stochastic process by defining its time
t value as a function of the time ¢ value of other stochastic processes. We give two
examples:

e At time ¢, the value of a basket of stocks is the sum of the underlyings § ’T
e At time ¢t the swap rate is a function of forward rates L;(z).
Aggregation 2: Time-Discrete Stochastic Process Aggregating these vec-

tors of random variables over all simulation times is finally the complete description
of the Monte Carlo simulation.
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Storage, Access, and Processing To summarize, we say that for most appli-
cations the storage should be allocated as a three-dimensional array

double[1[][] process;
where

double[] randomVariable = process[simulationTimeIndex][processIndex];

results in a reference (!) to a vector containing the sample paths of a random variable
X(t;). If basic functionalities are implemented as methods acting on random variables,
then we may work directly with this reference. It may be convenient to define this as
a class, eventually endowing it with additional information, e.g.,

class RandomVariable {
double time; // Filtration time (if used for stochastic processes)
double[] realizations;

}

Remark 181 (Counterexample):  There are applications where other storage
layouts are advantageous. Path-dependent products such as Asian or lookback options
usually require the application of a function to a path (parametrized by ¢;). In such
cases it may be convenient to work with (13.7).

Remark 182 (Performance and Readability of the Code): The storage layout
has an impact on the performance. Usually a large number of paths (10,000-100,000)
for a few stochastic processes {1-100) given at a modest number of time discretization
points {50-500) are considered. Therefore, it is sensible to use the random variable
as the core object so that one needs to allocate only a few objects containing large
continuous blocks of memory (which is more efficient than doing it vice versa) and
one can optimize core methods which iterate often.

Last but not least, the entire mathematical theory is built on random variables as the
central modeling entity. Thus, using random variables as core objects will improve
the readability of the code. Whenever code is developed as a collaborative effort, this
should be considered as a top priority.

13.2.4 Review

Through the Monte Carlo simulation we can evaluate simple and pure path-dependent
products. The Monte Carlo evaluation of derivatives where an expectation has to be

3 Consideration of a large single (one-dimensional) array and working on it might be the most efficient
implementation, but it will make it difficult to comply with basic principles of object-oriented design
(like data hiding) and will most likely make the code difficult to maintain and extend.
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calculated that is conditional to a future time #; is nontrivial, e.g.,
E(X(t) | F,)

fort; > £ > t0.* Why this is nontrivial becomes apparent when we consider the
filtration:

In a path simulation in general no two paths will have a common past. The reason
is that the number of possible states X(#;) is much higher than the number of paths
that are simulated. If no two paths have a common past, then we have the following
filtration:

F F forallt; > 1

1

and

Fo = Q.

The calculation of a condition expectation in a Monte Carlo simulation is not straight-
forward, since no suitable time discretization of the filtration ,, of X is given.> The
filtration of the Monte Carlo simulation depicted in Figure 13.2 is given by

'é

For the path simulation depicted in Figure 13.5 the filtrations are not all the same.
The filtration is given by

oc({{w1, w2}, {ws}, {ws, ws, wel}),
, = o({{wr1}h {w2}, {ws), {wa), {ws, wel}),
o({{w ), {w2), {ws), {wal, {ws), {wel}),

To achieve a time discretization of the filtration, we restrict the possible values of
X in each simulation time step. We thus assume a discretization of state space.

4 Such a conditional expectation would be necessary for the evaluation of a Bermudan option.
5 In Chapter 15 we will present special methods for the evaluation of conditional expectation in a Monte
Carlo simulation.
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Figure 13.5. Monte Carlo simulation.

13.3 Discretization of State Space
13.3.1 Definitions

Instead of the time-discrete process

X(tiv1) = X(t) +p(ti, X(1)) Aty + 0(8;, X(1;)) AW ()
we will consider the time-discrete process

X(tin1) = X(t;) + plt, X (1)) At + 08, X (1)) AB(1:), (13.8)

where the increments AB(t;) are random variables that take only a finite number of
values and are mutually independent. According to Theorem 31 we can choose the
AB(#) such that in the limit Az; — 0 we recover a Brownian motion, i.e., for X we
recover the original time-continuous process.

Using the increments AB(t;) the process X from (13.8) can take on only a finite
number of values too:

X(t) € {x) 1j=0,..,n,5 i =0,..., Neimes}-
We denote this set as a lattice. Let
{P{]Jz [j1=0,.c,m5 ja=0,...,m1 5 i=0,..., Atimes — 1},

denote the transition probabilities of the AB()’s, i.e., p/"”* := P(X(tis1) = x* |X(1;) =
x! ;). Depending on the probability distribution assumed for the AB(1;), the matrix of

transitional probabilities (p’ b ”) ;. from 1; to £, is sparse. For a binomial tree, i.e.,
binomial distributed AB(t;)’s, in each row only two entries are nonzero.
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Figure 13.6. Lattice.

In the given situation of a discretized state space, it is far more efficient to store
transition probabilities than to simulate all possible paths. For example, the lattice
in Figure 13.6 exhibits 9 states at each of the 4 time steps. In this lattice there exist
9% = 6561 paths; however, there are only 9+ 3 x 92 = 252 transition probabilities. The
amount of memory needed to store all paths grows exponentially with time, whereas
the amount of memory needed to store all states and transition probabilities shows
only linear growth over time.

If we use binomial distributed increments AB(t;), then we obtain a binomial tree.
Figure 13.8 shows the paths that can be distinguished in the binomial tree depicted in
Figure 13.7.

L
X7- Wy
X6 }(ﬂ
Xe | — W, Wa, W
5 A~ ): 21 W3 Wy
X4 “‘“/x_ -';)’\‘a
X3 “\m{' /"ws- Wg, Wy
X, -
: . \‘,U_JS
T T T T ™ T
To T, T, T3 Ty Ty
Figure 13.7. Binomial tree Figure 13.8. Paths of the binomial tree
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13.3. DISCRETIZATION OF STATE SPACE

For the binomial tree the filtration is no longer trivial. It exhibits a hierarchy of
refinements. For the binomial tree in Figure 13.7 the filtration is given by

Fr = 10,0},
7—~t| = 0'({{&)1 s Wy, W3, (1)5}, {(,L)4, wWe, W17, wg}})9
Fr = o({{lwr, w2k, (w3, ws), {ws, we), {ws, wsl}),

Fry = o({{w}, {wa), {ws), {wa}, {ws}, (we), (w7}, {ws})),

i.e., in addition we have a suitable time discretization of the filtration. This allows for
a calculation of conditional expectations.

13.3.2 Backward Algorithm

Given a lattice we may calculate the conditional expectation of a function f of X(#,1),
condition to X(#;) = x;' as

iy

EP(F(X(ta)) | (X () = 5] D) > D pl fO2)

h=1

A step-by-step application finally gives the expectation EF(f(X(t;1)) | {X(t0) = x.}).
Assuming that X(ty) = const. = x}o, i.e., that the lattice has a single state in #g, this
corresponds to

EF(f(X(141)) | F(t0)).

This procedure is called backward algorithm. If we consider the case of a numéraire
N and a derivative product V given at time ¢, as a function of the states X(t;.1), then

we find
Vi) e Vit x)

7_ ~ Z Juja T Tl (13.9)
N, x! N(tir, X))

_1 tiv1
Thus, financial products which are functions of the states X(¢;) are evaluated in a
lattice by storing the numéraire-relative prices at the nodes xfi[ and calculating the
N-relative value in node x,’ ' via (13.9). The transition (13.9) is also called roliback.

13.3.3 Review
13.3.3.1 Path Dependencies

If a lattice with states x; and transition probabilities p/'*”* is set up, we are able to

calculate (certain) condmonal expectations. However, it is nontrivial to calculate
path-dependent products, i.e., financial products that not only depend on the current
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CHAPTER 13 DISCRETIZATION OF TIME AND STATE SPACE

state of the underlying but also on the history (the paths). The backward algorithm
carries information from the future backward in time but cannot consider information
from the past. In contrast the Monte Carlo simulation is a forward algorithm that
carries information forward in time.

13.3.3.2 Course of Dimension

A further problem of lattices becomes apparent for vector values processes X. The
number of possible transitions (and thus the amount of transition probabilities that
must be stored) grows exponentially with the dimension of the vector X, and already
for dimensions like 3 or higher the numerical calculation of the rollback (13.9) is
critical with respect to the resources required (CPU time and memory).

13.4 Path Simulation through a Lattice: Two
Layers

To calculate a path-dependent product in a lattice we may create a Monte Carlo
simulation according to the state-discretized process (13.8). This may be depicted as
a “Monte Carlo simulation through a lattice” or a second Monte Carlo layer laid over
the lattice. See Figure 13.9.
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Figure 13.9. Lattice with overlain Monte Carlo simulation

: ' Further Reading: An in-depth discussion of numerical methods to
| approximate stochastic processes is to be found in [21]. <1f
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CHAPTER 14

Numerical Methods for Partial
Differential Equations

The Feynman-Ka¢ Theorem creates the link to partial differential equations (PDEs).
The calculation of an expectation, i.e., the pricing of a derivative, becomes equivalent
to the solution of the PDE:

ou & ou a &Fu

-+ it x)— + 6 xX)——— = 0 uf IxQ

ar LM SR ; YDy oy, a

i=

wT,r) = &) on R4,

Endowed with the pricing PDE we can apply the proven numerical methods for the
solution of partial differential equations, like finite differences and finite elements.
In the context of PDEs, the binomial or trinomial tree is just a special variant of a
finite difference method (namely an explicit Euler scheme). On the other hand, PDE
implementations are just a special version of lattices.

The field of numerical methods for partial differential equations is huge. In this
book we focus more on Monte Carlo methods, which, to some extent, have a much
broader range of application. Here is a brief reference to some literature.

Further Reading: Numerical methods for partial differential equa-
tions in the context of mathematical finance may be found in Giinther and
Jiingel [17], Seydel [32], and Wilmott [40]. A discussion of the imple-
mentation of the Cheyette model’s PDE is given in Kohl-Landgraf [84].

<
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CHAPTER 15

Pricing Bermudan Options in a
Monte Carlo Simulation

15.1 Introduction

Let us first consider the simple case of a Bermudan option Ve (T, T2) with two
exercise dates only (Figure 15.1): The option holder has the right to receive an
underlying Vgen,1 in 71 or wait and retain the right to either receive an underlying
Vundert.2 In T or receive nothing. Put differently, the option holder has the choice of
receiving the underlying value Viynger,1(T1) or the value of an option Vpion(71) on
Vunden2(T2). The Bermudan may be interpreted as an option on an option. In Ty the
optimal exercise is given by choosing the maximum value

max(Vunden(T'1), Vopion(T1)), (15.1)

where (having chosen a numéraire N)

Voption(TZ)
W |7 )
max(vunderl,Z(TZ), 0)
N(T)

Vaption(T1) = N(T)) E¥' (

= N(T}) EQ”( |Trl). (15.2)

is the value of the option with exercise in T,, evaluated in 7.

Thus, to evaluate the exercise criterion (15.1) it is necessary to calculate a con-
ditional expectation. The calculation of a conditional expectation within a Monte
Carlo simulation is a nontrivial problem. The two main issues are complexity and
foresight bias, which we will illustrate in Section 15.5 and 15.6. In the following
section we will present methods to efficiently estimate conditional expectations and/or
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exercise exercise
date date
Q (Hold) & o —
Underlying — Underlying —
| ] T >
To T Ts

Figure 15.1. A simple Bermudan option with two exercise dates.

the Bermudan exercise criterion within Monte Carlo simulation. The application to
the pricing of Bermudan options is exemplary. The methods presented are not limited
to Bermudan option pricing.

15.2 Bermudan Options: Notation

Reconsider the general definition of a Bermudan option (see Definition 146). Let
{T}iz1...n denote a set of exercise dates and {Vynder,i}i=1,..» @ corresponding set of
underlyings. The Bermudan option is the right to receive at one and only one time T;
the corresponding underlying Viynden,; (With i = 1,...,n) or receive nothing.

,,,,,

At each exercise date T;, the optimal strategy compares the value of the product
upon exercise with the value of the product upon nonexercise and chooses the larger
one. Thus the value of the Bermudan is given recursively

Woerm(Tis - » Ty T) = max( Voerm(Tis1, .., T3 T3) Vunderl,i(Ti) )) (15.3)
————

Bermudan with Bermudan with Product
exercise dates exercise dates received upon
Ti.... Ty Tivts.-s T, exercise in T;

where Vierm(Ty; Ty) 1= 0 and Vipgen :/(T;) denotes the value of the underlying Vinger,i
at exercise date T;.
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152 BERMUDAN OPTIONS. NOTATION

15.2.1 Bermudan Callable

The most common Bermudan option is the Bermudan callable'. For a Bermudan
Callable the underlyings consist of periodic payments X; and differ only by the start
of the periodic payments. The value of the underlying then becomes

n—1

X
Vanderd(T) = Vandert(Tis ., T Ti) = N(T) EX [Z i) Iﬁ]
(+

k=i

Here X; denotes a payment fixed in T} (i.e., F7,-measurable) and paid in Ty.;. This
is the usual setup for interest rate Bermudan callables. Other payment dates are a
minor modification; they simply change the time argument of the numéraire. For the
value upon nonexercise we have as before

Vberm(Ti+l9 e Tn; Ti+1)

N(TiH) | 7__Ti -

Voerm(Tis s> Tus To) = N(THEY (

If the value of the underlying cannot be expressed by means of an analytical
formula, two conditional expectations have to be evaluated to calculate the exercise
strategy (15.3).

15.2.2 Relative Prices

Since the conditional expectation of a numéraire-relative price is a numéraire-relative
price, the presentation will be simplified by considering the numéraire-relative quanti-
ties. We will therefore define

Vunderl,i(Tj)
N(T))

Vberm(Tis LR Tn; T})
N(T))

>

Vunderl,i(Tj) = and Vberm,i(Tj) =

thus we have
Vberm,n = O,
Voerm,ir1(T;) = EQN(Vberm,m(Tm) [ F1.)s
Voermi(T:) = max (Veerm.ir1(T3) » Vinden ((T1)),
and in the case of a Bermudan callable

n—1

Vandeni(T;) = E¥' [Z X (T | fr,-] where X(Ti,1) =
k=i

X
N(Tiy)

! See Remark 154 on the naming Bermudan callable.
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CHAPTER 15 PRICING BERMUDAN OPTIONS IN A MONTE CARLO SIMULATION

The relative prices are marked by a tilde.

Remark 183 (Notation): The processes t = Vinger{f) and t = Ve i(£) are 75
conditional expectations of Vunderl,,-(T,-) and Vberm,,-(T,-), respectively, and thus mar-
tingales by definition. The time-discrete processes i = Vingerl i(T0)s i = Voermi(Th)
consist of different products at different times and are thus not normally time-discrete

martingales.

15.3 Bermudan Option as Optimal Exercise
Problem

A Bermudan option consists of the right to receive one (and only one) of the under-
lyings Vinder,; at the corresponding exercise date T;. The recursive definition (15.3)
represents the optimal exercise strategy in each exercise time. We formalize this
optimal exercise strategy:

For a given path w € Q let

T(w) := min{T; : Voermis 1 (Ti, w) < Vunden (T, w)},

and

. . 1 if T; > T(w)
n:{l,....n—1} xQ — {0, 1}, n(z,w).—{o else.

The definitions of 7 and 7 give equivalent descriptions of the exercise strategy: T(w)
is the optimal exercise time on a given path w; n(-, w) is an indicator function which
changes from O to 1 at the time index i corresponding to 7; = T'(w). The boundary
o{n = 1} of the set {n = 1} is termed the exercise boundary. It should be noted that
n(k) is Fr,-measurable.

15.3.1 Bermudan Option Value as Single (Unconditioned)
Expectation: The Optimal Exercise Value

With the definition of the optimal exercise strategy 7 (or 1) it is possible to define a
random variable which allows the Bermudan option value to be expressed as a single
(unconditioned) expectation. With

U(Tl) = Vunderl,i(Ti) i=1,...,n

denoting the relative price of the i-th underlying; upon its exercise date T; we have
for the Bermudan value

Vberm(TO) = EQ (O(T) ! TTO)'
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154 BERMUDAN OPTION PRICING—THE BACKWARD ALGORITHM

For the Bermudan callable we may alternatively write

n—1

Voerm(To) = E¥| )" Re(Tier) k) | Fr, |
k=1

The random variable U(T') can be calculated directly using the backward algorithm.
We will look at this in the next section and conclude by giving U(T) a name.

Definition 184 (Option Value upon Optimal Exercise): A
Let U be the stochastic process whose time ¢ value U(?) is the (numéraire-relative)
option value received upon exercise in f. Let T be the optimal exercise strategy. The
random variable U(T), where

U(T)[w] 1= U(T(w), w)

is the (numéraire-relative) option value received upon optimal exercise. The
(numéraire-relative) Bermudan option value is given by E2(U(T) | Fr,)- 2

Thus the value of Vierm(T1, . .., T,) can be expressed through a single expectation
conditioned to Ty and does not need an expectation conditional to a later time to be
calculated, if we have the optimal exercise date 7'(w) (and thus (-, w)) for any path
w. ’

Remark 185 (Stopped Process): The random variable U(T') is termed a stopped
process. U is a stochastic process and 7 is a random variable with the interpretation
of a (stochastic) time. Furthermore T is a stopping time; see Definition 197. Here the
stochastic process U is the family of underlyings received upon exercise, parametrized
by exercise time, and T is the optimal exercise time. Thus U(T) is the underlying
received upon optimal exercise. All quantities are stochastic.

15.4 Bermudan Option Pricing—The Backward
Algorithm

The random variable J(T) can be derived in a Monte Carlo simulation through
the backward algorithm, given the exercise criterion (15.3), i.e., the conditional
expectation. The algorithm consists of the application of the recursive definition of
the Bermudan value in (15.3) with a slight modification. Let:

Induction start:

Un-f—l

[
e
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Inductionstepi+1 —ifori=n,...,1:

7. — 0”" if Vunderl,i(Ti) < EQ(U,'H |7:T,')
l Vunderl,i(Ti) else.

From the Tower law? EQ(U;,1|%7,) = EXVoerm,i+1 (T)IF7,) by induction and thus
Voerm(T1. - -» T To) = EX(U\|F7,) (15.4)

and U, = U(T) with the notation from the previous section.

Interpretation: The recursive definition of U; differs from the recur-
sive definition of Vyerm (T;). We have

0. = Ui if Vinder(T;) < EQU111F7,)
l Vunderl,i(Ti) else,
and
- EC(Voermiot T IFT)  if Vingent (Ti) < EQ( Ui 1F7,)
Vberm,i(Ti) =4~
Vunderl,i(Ti) else.

There is a subtle but crucial difference. While both definitions give the Bermudan op-
tion value (through application of (15.4)), the definition of U, requires the conditional
expectation operator only to calculate the exercise criterion.

Since a Monte Carlo simulation requires advanced methods to obtain an (often not
very accurate) estimate for the conditional expectation, it is important to reduce their
use.

Note that Vbermy,-(Ti) is Fr,-measurable by definition as a 7, conditional expectation,
while all U; are at most Fr,-measurable since they are defined pathwise from ¥7,-
measurable random variables Vyagens(Tx) fori < k < n. <

The pricing of a Bermudan option may thus be reduced to either the calculation of

conditional expectations or to the calculation of the optimal exercise strategy 7T

As a motivation, in Sections 15.5 and 15.6 we will look at two methods which are
not suitable for calculating conditional expectations.

2 See Exercise 2 on page 479.
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155 RESIMULATION

15.5 Resimulation

Let us consider the simplified example of a Bermudan option as given in Section 15.1.
If no analytical calculation of the conditional expectation (15.2) is possible and if
Monte Carlo is the numerical tool for calculating expectations, the straightforward
way to calculate the conditional expectation is to create in 7; a new Monte Carlo
simulation (conditioned) on each path—see Figure 15.2. This leads to a much higher
number of total simulation paths needed.

W(t,w) 4

Figure 15.2. Brute-force calculation of the conditional expectation by (pathwise)
resimulation.

If one considers more than one exercise date (option on option on option. .. ), this
method becomes particularly impractical. The required number of paths, i.e., the
complexity of the algorithm and thus the calculation time, grows exponentially with
the number of exercise dates. This creates the need for efficient alternatives.

simulation requires further measures since the path simulation does not

Ex) : offer a suitable discretization of the filtration. <

Ir ™ 7 Interpretation: The calculation of conditional expectation in a path
|
|

15.6 Perfect Foresight

If one refuses to use a full resimulation and sticks to the paths generated in the original
simulation, then one effectively estimates the conditional expectation by a single path,
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namely by

EQ(V(T2) | T!) N V(Tz)'
N(T») N(T?)

Basically, this is a limit case of the resimulation where each resimulation consists of a
single path only, namely the one of the original simulation. If this estimate is used
in the exercise criterion, the exercise will be superoptimal since it is based on future
information that would be unknown otherwise.

The exercise criterion at time 7| may only depend on information available in 77,

i.e., on Fr,-measurable random variables. The estimate % is not Fr, -measurable.

For an illustration of the superoptimality, consider the simulation consisting of
two paths; see Figure 15.3. Both paths are identical on [0, 7], i.e., Fr, = {0,Q} =
{0, {w,, w2}}.  We consider the option V to receive either S(T() = 2 at time T
or §(T,) € {1,4} at a later time T,. The random variable n : Q — {0, 1} denotes
the exercise strategy for T: It is 1 on paths that exercise in T, otherwise 0. With
perfect foresight the superoptimal exercise strategy is T(w;) = T, T(w2) = Ty,
i.e.,, n{wy) = 0, n(wz) = 1, and an average value of V(Ty) = %(4 +2) = g will be
received. Note that then 77 is not F7, -measurable. The exercise decision is made in
T, with knowledge of the future outcome. If we restrict the exercise strategy to the
set of F7,-measurable random variables, we either get (4 + 1) = 3 using n = 0 or
1(2+2) = 3 using 5 = 1. Thus the optimal, F7,-measurable (and thus admissible)
exercise strategy is n(w;) = nlw,) = 0.

PGw.h = 0.5
Pw,}) = 0.5

S(t,w)

Figure 15.3. lllustration of perfect foresight.

Perfect foresight is not a suitable method for estimating conditional expectation
and calculating the exercise criterion.
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15.7. CONDITIONAL EXPECTATION AS FUNCTIONAL DEPENDENCE

15.7 Conditional Expectation as Functional
Dependence

Let us reconsider the calculation of the conditional expectation through brute-force
resimulation as described in Section 15.5 and depicted in Figure 15.2. On each path of
the original simulation a resimulation has to be created. These resimulations differ in
their initial conditions (e.g., the value S(7;) in a simulation of a stock price following
a Black-Scholes model, or the values L;(7';) in a simulation of forward rates following
a LIBOR market model). The initial conditions are ¥r, -measurable random variables
(known as of 7). Thus the conditional expectation is a function of these initial
conditions (and possibly other model parameters known in 7). If it is known that
the conditional expectation is a function of an Fr, -measurable random variable Z (we
assume here that Z : Q@ — R? with some d), we have

V(Tz) N V(T2)
EY =EQ Z|; 15.5
(N(m |77 T (132
see Figure 15.4.
7, Continuation versus Exercise Value (pathwise)
477 OB = slo s ot sl s el i S i,/ S S
2.21 (Zw), 7 Ty;w)) ;

2.01 s a -
Each dot represents a Pair\ . E(V(T,)124) = f(Z)
1.8 5 Z

of the predictor and the . %

1.5 realized value.
2

1.0
0.8
0.5
0.2
0.0 1
- 0.2 1

0]
g y(r,)

..(the value of the underlying)

¥
e

Realized Option Value upon Hold

:
|
-02-9/1 o6 01 02 03 04 05 06 07 08 097

~ Exercise boundary  predictor Value upon Exercise
given by the intersection
of the two curves

Figure 154.  Predictor variable versus realized value (continuation value): A
diagram showing the path value of the predictor variable Z(w;) and the path value of
V(T wy) = X/E%zli The conditional expectation is a function of Z dividing the cloud
of dots.
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Interpretation:  If the random variable Z is such that F7, is the
| . smallest o field with respect to which Z is measurable (i.e., we have
'L i Z7YB[RY)) = Fr,), then Equation (15.5) is merely the definition of

~an expectation conditioned on a random variable. If, however, the
conditional expectation on the left hand side (i.e., -1‘\%) is known to be measurable
with respect to a smaller ¢ field (e.g., because its functional depends on a smaller
set of random variables), then it might be advantageous to use the right-hand side
representation. This representation is also useful for deriving an approximation, e.g.,
if the functional dependence with respect to one component of Z is known to be weak

and thus neglectable.

Example: Consider a LIBOR market model with stochastic processes for the
forward rates Ly, Ly, ... L,. In T} we wish to calculate the conditional expectation of
a derivative with a numéraire-relative payoff that depends on L,,..., L; only (e.g.,
on a swap rate). While the filtration #7, is generated by the full set of forward rates
Li(T\), Ly(Ty),...L,(Ty) it is sufficient to know L,(T),..., Li(T) to describe the
conditional expectation (i.e., the conditional value of the product). <|

We will now describe methods that derive the functional dependence of the condi-
tional expectation from a given set of random variables.

15.8 Binning

In a path simulation the approximation of E2 (;ﬁ%; | Z) will be given by averaging all

paths for which Z attains the same value. For the simple example in Figure 15.3 this
would remove the perfect foresight since S (T1)~'(2) = Q. In general the situation will
be such that there are no two or more paths for which Z attains the same value—apart
from the construction of the unfeasible resimulation. Thus this approximation will
show a perfect foresight.

An improvement is given by a binning method, where the averaging will be done
over those paths for which Z lies in a neighborhood (bin). If the quantities are
continuous, we have

V(T,) V(T>)
o RASE2 ~ EQ
E (N(Tz) |Z) [w] = E (N(Tz) |z € UE(Z(w))),

where U(Z(w)) = {y | |IZ(w) — yIl < €}.
Instead of defining a bin U (Z(w)) for each path w, it is more efficient to start with
a partition of Z(€2) into a finite set of disjoint bins U; ¢ Z(£2). The approximation of
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the conditional expectation

will then be given by

Wi(t,w)

Figure 15.5. Calculation of the conditional expectation by binning: Neighboring
paths, i.e., paths which belong to the same bin, are bundled. The bins are defined by
means of the Fr,-measurable predictor variable Z. The figure shows the special case
Z =W(T)).

Example: Pricing of a Simple Bermudan Option on a Stock

We illustrate the method in a simple Black-Scholes model for a stock S. In T,
we wish to evaluate the option of receiving Ny (S(T'\) — K) in T} or receiving
N, max(S(T>) — K5, 0) at later time T» (where Ny, N, (notional), K;, K, (strike) are
given). The optimal exercise in 7'} compares the exercise value with the value of the
T; option, i.e.,

N; max(§(T3) — K,,0)
o[ M2 2
E ( N(T>) ITT')'

From the model specification, e.g., here a Black-Scholes model
dS() =rS@®dr + oS @) dW), N(1) = exp(r 1),

it is obvious that the price of the T, option seen in T is a given function S (7)) and
the given model parameters (r, o). Thus it is sufficient to calculate
EQ(NZ max(S(T7) - K3,0
N(T?)

|S(T1>).
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In this example the functional dependence is known analytically. It is given by
the Black-Scholes formula (4.3). Nevertheless we use the binning to calculate an
approximation to the conditional expectation. If we plot

N> max(S (T», w;) - K,0)

N(T>)
N e—’
Continuation Value Underlying

as a function of S(T, w;)

we obtain the scatter plot in Figure 15.6, left. For a given S (7)) none or very few
values of the continuation values exist. An estimate is not possible or else exhibits a
foresight bias. For an interval [S| — €, S| + €] with sufficiently large € we have enough
values to estimate

EQ (N2 max(S (T2) - K»,0)
N(Ty)

|S(T1)€[SI—E,S|+6])

which in turn may be used as an estimate of

EQ (Nz max(S(T2) — K»2,0)
N(T>)

lS(T1)=S,).

In Figure 15.6, right, we calculate this estimate for §| = 1 and € = 0.05.

15.8.1 Binning as a Least-Square Regression

Consider the binning again: As an estimate of the conditional expectation

EC¢ (1‘\/122)) | Z(w)) we calculated the conditional expectation

V(T2)
N(T?)

H;:= EQ( |z € U,-) (15.6)

given a bin U; with Z(w) € U;.
For the expectation operator E an alternative characterization may be used:

Lemma 186 (Characterization of the Expectation as Least-Square Approxima-
tion): The expectation of a random variable X is the number / for which X — 4 has
the smallest variance (i.e., L>(Q2) norm).

Proof: Let X be a real-valued random variable. Then we have for any # € R
E(X - h)?*) = EX*) -2 EX) h+ h* = f(h).

Since f" =0 & h = E(X)and f” = 1 > 0, we have that f attains its minimum in
h = E(X). For vector-valued random variables this follows componentwise. The same
result holds for conditional expectations. oj
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Exercise versus Continuation Value & Binning

1.0
0.9 -
0.8 1
0.7 1
0.6 1
0.5 1
0.4 -
0.3 1
0.2 1
0.1 1
0.0 . : . - o I : ; = !
0.0, 0.2 0828 1812 TEY c e 50 100 150 200
Exercise Value Frequency

Continuation Value

Figure 15.6. The continuation value as a function of the underlying (spot value) and
the calculation of the conditional expectation by a binning

Using Lemma 186 we can write (15.6) as a minimization problem:

V(T») : : vy
Q —H. = Q — .
E ((N(Tz) H’) |2¢ U’] = Bk ((N(Tz) G) |2¢ U’]'

For disjoint bins U, this may be written in a single minimization problem for the
vector (H;)i=1,..:

of (YT _ Y ) oo SEe[(Y@ Y .
ZE [(N(Tz) H) |zeu —giléQZE N G| |zeu|. 157

This condition admits an alternative interpretation: H; represents the piecewise con-
stant function (constant on U;) with the minimal distance from 1‘\2?; in the least-square
sense.

Let H be the space of functions H : Q — R being constant on the bins Z~' .2
Let H € H with H(w) := H, for w € Z~'(U;). Then (15.7) is equivalent to

Q V(TZ)_ : .0 V(Tz)_ 2
y ((N(Tz) H| |z) = mink®|| Gy =6 12 (15.8)

3 Note that the bins U; were defined as subsets of Z(€2), whereas here we consider H as a function on €.
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Equation (15.8) is the definition of a regression: Find the function H from a
function space H with minimum distance to 1‘\/122)) in the Ly norm. Binning is just a
special choice of functional space:

Lemma 187 (Binning as L, Regression): Binning is an L; regression on the space
of functions being piecewise constant on U;.

15.9 Foresight Bias

Definition 188 (Foresight Bias (Definition 1)): 1
A foresight bias is a superoptimal exercise strategy. a

A foresight bias arises due to a violation of the measurability requirements: If the
exercise decision in 7T} is based on a random variable which is not #7,-measurable, the
exercise may be superoptimal, i.e., better than if based on the information theoretically
available (77,). If we use the same Monte Carlo simulation to first estimate the exercise
criterion and then use this criterion to price the derivative, we will definitely generate
a foresight bias. In this case the foresight bias is created by the Monte Carlo error of
the estimate, which is in general not F1,-measurable. The existence of this problem
becomes obvious if we consider a limit case of binning where each bin contains a
single path only. Here we would have perfect foresight.

If our exercise criterion at time 7 uses only #7,-measurable random variables, then
there is—in theory—no foresight bias. If, however, the exercise criterion is calculated
within a Monte Carlo simulation, the Monte Carlo error of the calculation represents
a non-F7,-measurable random variable; thus it induces a foresight bias. In this case
we can give an alternative definition for the foresight bias:

Definition 189 (Foresight Bias (Definition 2)): 1
The foresight bias is the value of the option on the Monte Carlo error. a

As the number of paths increases the foresight bias introduced by binning converges
to zero since the Monte Carlo error with respect to a bin converges to zero.

A general solution to the problem of a foresight bias is given by using two inde-
pendent Monte Carlo simulations: One to estimate the exercise criterion (for binning
this is given by the H; corresponding to the U;’s), the other to apply the criterion in
pricing. This is a numerical removal of the foresight bias. In {67] an analytic formula
for the (Monte Carlo error-induced) foresight bias is derived. It can be used to correct
the foresight bias analytically.
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15.10 Regression Methods—Least-Square
Monte Carlo

Motivation (Disadvantage of Binning): The partition of the state
space Z(Q) into a finite number of bins results in a piecewise constant
approximation of the conditional expectation. An obvious improvement
would be to approximate the conditional expectation by some smooth
function of the state variable Z.

The considerations in Section 15.8.1 suggest a simple yet powerful improvement
to the binning: The function giving our estimate for the conditional expectation is
defined by a least-square approximation (regression). <|

15.10.1 Least-Square Approximation of the Conditional
Expectation

Let us start with a fairly general definition of the least-square approximation of the
conditional expectation of random variable U.

Definition 190 (Least-Square Approximation of the Conditional Expectation): "
Let (Q, F, Q, {#3}) be a filtered probability space and V an ¥+, -measurable random
variable defined as the conditional expectation of U:

V=EYU |77,
where U is at least  -measurable. Furthermore let ¥ := (Y, ..., Y,) be a given ¥, -
measurable random variable and f : R” x R a given function. Let Q* = {wy, ... wy,}

be a drawing from Q (e.g., a Monte Carlo simulation corresponding to Q) and
" = (ai,...,aq,) such that

U = f(Y, a0 = mﬂinIIU - Y, Dl

where ||[U — f(¥, a*)l[fz(gt) = i(U(wj) ~ f(Y(w)),a"))?. We set

J=1
VLS = f(¥, ).

The random variable V5 is F7, -measurable. It is defined over Q and a least-square
approximation of V on Q. 4

The approach of Carriere [59], Longstaff and Schwartz [86] uses a function f with
g = p and

P
fOuL..Lypar,.. . ay) = Zaiyi,
i=1
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such that o* may be calculated analytically as a linear regression.

Lemma 191 (Linear Regression): Let Q" = {wy,...,w,} be a given sample space,
V:Q">Rand Y :=(Y,...,Y,): Q" — R” given random variables. Furthermore
let

SO L ypan, . ap) = Za[yi.

Then we have for any o* with X" Xa* = XTv
IV = f(¥. a0 = min IV = f(¥ @l

where
Yi(w) ... Yplw) Viwy)
X = " vi= :
Yl (wm) cee Yp(wm) V(wm)

If (XTX)~! exists, then &* := (X"X)' X Tv.

Proof: See Appendix B.5. ol
Definition 192 (Basis Functions): B
The random variables Y1, ..., Y, of Lemma 191 are called basis functions (explanatory
variables). J

15.10.2 Example: Evaluation of a Bermudan Option on a
Stock (Backward Algorithm with Conditional
Expectation Estimator)

Consider a simple Bermudan option on a stock. The Bermudan should allow exercise
attimes T\ < T, < ...T,. Upon exercise in 7; the holder of the option will receive

N; (S(T) - K)

once, but nothing if no exercise is made.

We will apply the backward algorithm to derive the optimal exercise strategy. All
payments will be considered in their numéraire-relative form. Thus the exercise
criterion is given by a comparison of the conditional expectation of the payments
received upon nonexercise with the payments received upon exercise.

Induction Start: r > T,. After the last exercise time we have

e The value of the (future) payments is U,.; = 0
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Induction Step: t =T;,i=n,n—1,n-2,...1. InT; we have

e In the case of exercise in T; the value is

_ N«S(T)) - K;
Vunderl,i(Ti) = ——(_'1(\/(—7)15'—_)' (159)

e In the case of nonexercise in T; the value is Vot (T;) = E¥(U;1 | F7,). This
value is estimated through a regression for given paths w, ..., Wy:

— Let B; be given (fr,-measurable) basis functions.* Let the matrix X
consist of the column vectors Bj(wy), k = 1,...,m. Then we have

Vhold il Tiy w1) Uiri(w))
: ~X-xX"-x)-x". : . (15.10)
Vhold i (T W) Uiri(wm)

o The value of the payments of the product in 7; under optimal exercise is given
by
U‘ o Vunderl,i(Ti) if Vhold,i(Ti) < Vundcrl,i(Ti)
YO else.

Remark 193: Our example is of course just the backward algorithm with an explicit
specification of an underlying (15.9) and an explicit specification of an exercise
criterion, here given by the estimator of the conditional expectation (15.10).

15.10.3 Example: Evaluation of a Bermudan Callable

Consider a Bermudan callable. The Bermudan should allow exercise at times T <
T, <...T,. Upon exercise in 7; the holder of the option will receive a payment of X;
in Ti,q, i.e., the relative value X;(Tiy;) 1= ﬁ

We will apply the backward algorithm to derive the optimal exercise strategy. All

payments will be considered in their numéraire-relative form.

Induction Start: r > T,,. After the last exercise time we have

e The value of the (future) payments is U, =0.

4 Suitable basis functions for this example are | (constant), S(7;), S(T,~)2, S(T1)3, etc., such that the
regression function f will be a polynomial in S (7).
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Continuation versus Exercise Value (pathwise)

2.5
2.2 1
2.0 1
1.81
1.51
121
1.0 1
0.8 1
0.5 1
0.2 1
0.0 1
- 0.2 1

Realized Option Value upon Hold

.02-01 00 01 02 03 04 05 06 07 08 09
Predictor Value upon Exercise

Figure 15.7. Regression of the conditional expectation estimator without restriction
of the regression domain: We consider a Bermudan option with two exercise dates
T, = 1.0, T\ = 2.0. Notional and strike are as follows: Ny = 0.7, N, = 1.0, K; = 0.82,
K> = 1.0. The model for the underlving S is a Black-Scholes model with r = 0.05 and
o = 20%. The plot shows the values received upon exercise depending on the values
received upon nonexercise in T1. Each dot corresponds to a path. The regression
polynomial gives the estimator for the expectation of the value upon nonexercise. It is
optimal to exercise if this estimate lies above the value received upon exercise. The
regression polynomial is a second-order polynomial in §(T)).
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Continuation versus Exercise Value (pathwise)

2.5 1
2.2
2.0 1
1.8 4
1.51
1.2
1.0 4
0.8 1
0.51
0.2 1
0.0 1
-0.21

Realized Option Value upon Hold

-02-01 00 01 02 03 04 05 06 07 08 009
Predictor Value upon Exercise

Figure 15.8. Regression of the conditional expectation estimator with restriction of
the regression domain: Parameters as in Figure 15.7. The regression polynomial is a
second-order polynomial in max(S(T) — K1, 0). Thus, values where S(T1) — K, <0
are aggregated into a single point. For the product under consideration this is
advantageous since for S(T|) — K| < O exercise is not optimal with probability 1.
This restriction of the regression domain increases the regression accuracy over the
remaining regression domain. Compare with Figure 15.7.
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Continuation versus Exercise Value (pathwise)

2.5 - ; SRR e S R R ey AT e ST

2.2 1
2.0 1
1.8 1 .
1.5 1 . e
121 X :
1.0 1
0.8
0.5 1

Realized Option Value upon Hold

-02-01 00 01 02 03 04 0'.5 0',6 0'.? u'.B 0.9
Predictor Value upon Exercise

Continuation versus Exercise Value (pathwise)

2.5 4 L e S ST o

2.2 1 [
2.0 1
1.8 1 .
1.5 1
1.2
1.0 1
0.8 1
0.5 1
0.2 1
0.0 1
=l

Realized Option Value upon Hold

02-01 00 01 02 03 04 05 06 0.7 0.8 0.9
Predictor Value upon Exercise

Figure 15.9. Regression of the conditional expectation estimator using a polynomial
of fourth (above) and eighth (below) order in max(S(T)) — K;,0). Parameters as
in Figure 15.7. A polynomial of higher order shows wiggles at the boundary of the
regression domain. However, only a few paths are affected by the wrong estimate.
Restricting the regression domain may reduce the errors (compare the left end of the
regression domain with the right end).
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Induction Step: t =T;,i=n,n—1,n-2,...1. InT; we have
e In the case of exercise in T; the value is

n—1
N X
Vinder,i(T7) 1= B¢ (k:i N(Tll;l) I TTi].

This value is estimated by a regression for given paths wy, ..., Wy:
Let B}. be given (F7-measurable) basis functions. Let the matrix X'
consist of the column vectors B}(wk), k=1,...,m. Then we have

2 X(w))
Vanden {Ti» 1) N(Tis1, w1)
. ~ Xl '(Xl,T_Xl)—l 'XI’T‘

Vunderl,i (T, wm) = Xk (wWm)

=i N(Tk+17 wm)
(15.11)

e In the case of nonexercise in T; the value is Vioiq(T;) = EX(Uiy( | 7). This
value is estimated by a regression for given paths w1, ..., Wy:

Let B(} be given (F7,-measurable) basis functions. Let the matrix X°
consist of the column vectors B(,).(wk), k=1,...,m. Then we have

Vhoudi(Ti» 1) Uini(w))
: ~ X0 (xOT-x%H'. x0T :
Vaod,i(Ti» W) Uie1(wm)
e The value of the payments of the product in T; under optimal exercise is given
by
n-1
X, . 3
~ fV iTi<Vuner'Ti
0, = | 24 NTior) if Vhoia, (T7) dert (1)
Ui else.

Remark 194 (Bermudan Callable): The modification to the backward algorithm
to price a Bermudan callable consists of the use of two conditional expectation
estimators: one for the continuation value and (additionally) one for the underlying.
As before, the conditional expectation estimators are used only for the exercise
criterion (and not for the payment).
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Remark 195 (Longstaff-Schwartz):

e The estimator of the conditional expectation is used in the estimation of the
exercise strategy only.

o The choice of basis functions is crucial to the quality of the estimate.

Clément, Lamberton, and Protter [60] showed convergence of the Longstaff-
Schwartz regression method to the exact solution.

15.10.4 Implementation

MonteCarloConditionalExpectationLongstaffSchwartz

setBasisFunctionsEstimator(RandomVariable[] basisFunctionsEstimator)
setBasisFunctionsPredictor(RandomVariable[] basisFunctionsPredictor)

getConditionalExpectation(RandomVariable randomVariable)

Figure 15.10. UML Diagram: Conditional expectation estimator. The method
setBasisFunctionsEstimator sets the basis functions which form the matrix
X. The method setBasisFunctionsPredictor sets the basis functions which
form the matrix X*. These are the same basis functions as for X, but possibly
evaluated in an independent Monte Carlo simulation (to avoid foresight bias). The
method getConditionalExpectation calculates the regression parameter a* =
XT-X)"'- X" v from a given vector v and returns the conditional expectation
estimator X* - &” of v. See Lemma 191.

The Longstaff-Schwartz conditional expectation estimator may easily be imple-
mented in a corresponding class, independent of the given model or Monte Carlo
simulation—see Figure 15.10. This class contains nothing more than a linear regres-
sion, but the methodology may be replaced by alternative algorithms (e.g., nonpara-
metric regressions).

As pointed out in the discussion of the backward algorithm, it is not normally
necessary to explicitly calculate the exercise strategy in the form of T or 7. It is
sufficient to calculate the random variables U; in a backward recursion. Since finally
only U, is needed to calculate the price of the Bermudan option, the U;’s may be
stored (updated) in the same vector of Monte Carlo realizations.

222



15.10. REGRESSION METHODS—LEAST SQUARE MONTE CARLO

15.10.5 Binning as Linear Least-Square Regression

We return once again to the binning. In Section 15.8.1 it turned out that binning may
be interpreted as least-square regression with a specific set of basis functions: The
indicator variables of the bins U, which we denote by

1 forweU;

15.12
0 else. ( )

hi(w) = {

We now give an explicit calculation using the linear regression algorithm with the bin
indicator variables as basis functions.

Continuation versus Exercise Value (pathwise)

2.5 1 il g —|

2.2 i
2.0
1.8 4
1.51
1.2
1.0
0.81
0.51
0.2
0.0 1
- 0.2

Realized Option Value upon Hold

.02-01 00 01 02 03 04 05 06 07 08 09
Predictor Value upon Exercise

Figure 15.11. Binning using the linear regression algorithm with piecewise constant
basis functions: We use 20 bins (basis functions). Each bin consist of approximately
the same number of paths. Model and product parameters are as in Figure 15.7.

Let w; denote the paths of a Monte Carlo simulation and X the matrix (%(wy)), j col-
umn index, k row index. Since the U;’s are disjoint, we have X'x = diag(my,...,mp),
where m; is the number of paths for which 4 ;(w;) = 1. Thus we have for the regression
parameter

1 1
o =X"-x)"! -XT-v=diag(—,...,—)-XT-v.
n my

223



CHAPTER 15 PRICING BERMUDAN OPTIONS IN A MONTE CARLO SIMULATION

It follows that the regression parameter gives the expectation on the corresponding
bin: i
ajza—.ka for j=1,...,p.

J )’kEUj

15.11 Optimization Methods

Motivation: In the discussion of the backward algorithm it has be-
come obvious that the conditional expectation estimator is needed to
derive the optimal exercise strategy only. Since a suboptimal exercise
will lead to a lower Bermudan price, the optimal exercise has an alter-
native characterization: It maximizes the Bermudan value. A solution to the pricing
problem of the Bermudan thus consists of maximizing the Bermudan value over a
suitable, sufficiently large space of admissible® exercise strategies. <

I
|
|
|
L

15.11.1 Andersen Algorithm for Bermudan Swaptions

The following method was proposed for the valuation of Bermudan swaptions by
Andersen [44]. We thus restrict our presentation to the evaluation of the Bermudan
callable and use the notation of Section 15.10.3. In [44] the method appears less
generic than the Longstraff-Schwartz regression. However, one might reformulate the
optimization method in a fairly generic way. As the optimization is a high dimensional
one, the method then becomes less useful in practice.

The exercise strategy is given by a parametrized function of the underlyings

Il(/l) = f(vunderl,i(Ti’ U)), ey Vundcrl,n—l(Tiv w), /1),
where we replace the optimal exercise
Vandger (T < E% (Ui | F7,)

by
1) > 0.

Here the function f may represent a variety of exercise criteria, e.g.,

Ii(w, ) = Vunderl,i(Tis w)— A (15.13)

5 By an admissible exercise strategy we denote one that respects the measurability requirements. As we
noted, a violation of measurability requirements, i.e., a foresight bias or even perfect foresight, will
result in a superoptimal strategy. The Bermudan value with a superoptimal strategy is higher than the
Bermudan value with the optimal strategy; however, superoptimal exercise is impossible.
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We assume that I; is such that it may be calculated without resimulation, i.e., we
assume that the underlyings Viqen j(T;) are either given by an analytic formula or
a suitable approximation. For example, this is the case for a swap within a LIBOR
market model. If we use the optimization method within the backward algorithm, it
now looks as follows:

Induction Start: r > 7,,. After the last exercise time we have

e The value of the (future) payments is U, = 0.

Induction Step: t=T;,i=n,n—1,n-2,...1. InT; we have
e In the case of exercise in T; the value is Vinger (T7)
o In the case of nonexercise in 7; the value is Vi1 (T;) = E¥(Ujyy | F7,). This
value is estimated through an optimization for given paths wy, . .., w,,:

Ii{(d,w) = f(vunderl,i(Ti; w),..., Vunderl,n—l (T, w), A).

O/ w) = {Vﬁundeﬂ,,-(m if 14, w) > 0

vl else.

Voermi(To, ) = B0 | F7,) =~ $§0,»(4,wk)

A* = arg max (% 3 U4, wk))
1 %

¢ The value of the payments of the product in 7; under optimal exercise is given
by
- V. (T it 1A, 0 -
Ui(w) := {~underl,( ) LAY w) > } = U1, w).

Uit else

The exercise strategy is estimated in 7; by choosing the A* for which [; gives the
maximal Bermudan option value. This is done by going backward in time, from
exercise date to exercise date.

15.11.2 Review of the Threshold Optimization Method
15.11.2.1 Fitting the Exercise Strategy to the Product

Let us apply the optimization method to the pricing of a simple Bermudan option on
a stock following a Black-Scholes model. This shows that a too simple choice of the
exercise strategy will give surprisingly unreliable results.
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The simple strategy (15.13) fails for the simplest type of Bermudan option. Con-
sider the option to receive

Ni(S(T) - Ky)

in T, or receive
max(No(S(T2) — K3),0)

in T, where—as before—N; and K; denote notional and strike and S follows a Black-
Scholes model. This gives us an analytic formula for the option in 7; and thus the
true optimal exercise. Figure 15.12 shows an example where the optimization of the
simple strategy (15.13) gives the value of the Bermudan option.

1.50 - [ L0.470
g |
= 1.251 I \ L0.468
> , \
€ 4004 £ 0.465 2
2 W S
[= 8
O 0.75 1 \A\\n likaagl
. ' N - 0.460 €
S 0.50 { | e &
© | r0.458
% 0.251 |
' L 0.455
0.00 ’ : L . : : : .
0.0 1.0 2i0. - 00 4l0 20 fL3 0 R e a0
Spot Threshold

— exercise (1. option) — continuation (2. option) — Bermudan

— exercise criterion given by threshold

Figure 15.12.  Example of the successful optimization of the exercise criterion
(intersection of the two price curves, left). The graph on the right shows the Bermudan
option value as a function of the exercise threshold A.

A small change in notional N; and strike K; changes the picture. If both are smaller
than N, and K>, respectively, we obtain two intersection points of the exercise and
continuation value. In 7 it is optimal to exercise in between these two intersection
points. Our simple exercise criterion cannot render this case. Optimizing the threshold
parameter A shows two maxima: the value of the two European options “exercise
never” and “exercise always”. Both values are below the true Bermudan option value;
see Figure 15.13, right.
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1.50 1
L 0.525
S 1.25 ' L 0.500
s L 0.475 O
= 1.00 4 '9.
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— } 4]
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0.0 1.0 20" 0.0 10 2.0 ‘30NEE6 5D
Spot Threshold

— exercise (1. option) — continuation (2. option) — Bermudan

exercise criterion given by threshold

Figure 15.13. Example of a failing optimization of the exercise criterion (intersection
of the two price curves, left). The graph on the right shows the Bermudan option
value as a function of the exercise threshold A.

The conclusion of this example is that the choice of the exercise strategy has to
be made carefully in accordance with the product. But this remark applies to some
extent to any method.

15.11.2.2 Disturbance of the Optimizer through Discontinuities and
Local Minima

The Monte Carlo Bermudan price calculated from the backward algorithm is a discon-
tinuous function of the exercise criterion. The Bermudan price jumps if the exercise
criterion I(w, A) changes sign for a given path w. The price jumps by the difference
of exercise value and continuation value. Even in the case of an optimal exercise
criterion (i.e., 1 = Ay,4) We see a jump in price since even then exercise value and
continuation value will generally be different (at optimal exercise, only the expected
(1) continuation value equals the exercise value).

As a function of A, the price will not only exhibit discontinuities, but also small
local maxima induced by them; see Figure 15.12, right. These may prevent the
optimizing algorithm from finding the global maxima.
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However, if there are a sufficient number of paths, the local maxima appear only
on a small scale. The jumps in price will be of the order O(%), where n denotes
the number of paths. Thus with a robust minimizer one would rarely encounter this
problem. For example, consider the case that the limit function (for n — o) would
satisfy an estimate of the form Vi — V(1) > C(1 - Amax)?, 1.€., without the Monte
Carlo discontinuities no other local maxima or saddle point would exist. Then a
bisection search on the disturbed function will miss the true maxima only by the order
of a jump O(2).

15.11.3 Optimization of Exercise Strategy: A More General
Formulation

There is a trivial generalization of the optimization method considered in Sec-
tion 15.11.1:

o The exercise criterion will be given as a function of arbitrary #7,-measurable
random variables.

e The exercise criterion will be given as a function of a parameter vector A € R¥,

Thus we replace the “true” exercise criterion used in the backward algorithm
Vandert (T7) < EX(Uis1 1 97,)

by a function
Ii(/l’ (IJ) = f(Bi,l(w)7 DR} Bi,m((’-))5 /l),

where B; | is a set of F7,-measurable random variables and 1 € R*.

15.11.4 Comparison of Optimization Method and
Regression Method

The difference between the optimization method and the regression method becomes
apparent in Figures 15.7 to 15.9. While the regression method requires the regression
functions to give a good fit to the conditional expectations across the whole domain
of the independent variable, the optimization method only requires that the functional
I;() captures the exercise boundary. In Figures 15.7 to 15.9 the conditional expecta-
tion estimator is a curve, but the exercise boundary is given by two points only (the
intersection of the conditional expectation estimator with the bisector).

Thus the optimization method can cope with far fewer parameters than the regres-
ston. On the other hand, as noted in the example above, it is far more important that
the functional is adapted to the Bermudan product under consideration.
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It is trivial to choose the map 7;(1) such that the optimal A* give the same or a better
value than the least-square regression. If B; ; denote the basis functions used in the
least-square regression for exercise date T;, we set

LAy, ..., ) = (4B + -+ + 4t Bi ) — Vunden,i(T5)-

Then for A = o*, where o is the regression parameter from the least-square regression,
the exercise criterion agrees with the one from the least-square regression. This result
however is rarely an advantage of the optimization method since in practice a high
dimensional optimization does not represent an alternative.
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15.12 Duality Method: Upper Bound for
Bermudan Option Prices

Motivation: So far, the ansatz to evaluate a Bermudan option has
been to estimate the exercise strategy, i.e., the stopping time 7. If this
estimate is itself a stopping time, i.e., no foresight bias is present, then
the evaluation with the estimated exercise strategy gives a lower bound
for the true value of the Bermudan option. The stopping time 7 maximizes the option
price; all other stopping times give lower prices because they are subobtimal. In
order to decide if the given lower bound is sufficiently close to the optimal value, a
corresponding upper bound would come in handy. <}

In this section we present a method that gives, in the limit of a vanishing Monte
Carlo error, an upper bound for the Bermundan option value. The upper bound itself
converges to the true option value as a given space of test functions converges to the
whole space. Putting aside the Monte Carlo error, together with the lower bound
methods, Sections 15.8 to 15.11.1, we then obtain an interval for the true value of the
Bermudan price.

The method was introduced by Rogers [93], Haugh and Kogan [77], and originally
by Davis and Karatzas [62].

15.12.1 Foundations

Let us review some foundations.

A

Definition 196 (Supermartingale):
The stochastic process {X,, 7, ; 0 <t < oo} is called a supermartingale with respect
to the filtration ¥, and the measure P, if

Xy, > E(X;|F,), P-almostsurely, YO0<s<t<oo.

Definition 197 (Stopping Time (Time-Discrete Process)):
LetT : Q — {Ty,...,T,} denote a random variable. T is called a stopping time if

{T=T}eFr. (15.14)
4
Remark 198 (Stopping Time): Equivalent to (15.14) is
{T <Ti} e ¥r, (15.15)
since Fr, C Fr, forT; < T,.
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' Interpretation: A stopping time may be viewed as the mathematical
; : representation of an exercise strategy of a Bermudan option. If for a
i : given path w, T(w) = T; denotes the time at which an event occurs
- (e.g., the decision to exercise an option), then (15.15) constitutes the
requirement that the decision is based on information that is available on or before
T.—expressed through the Fr,-measurability.
The condition (15.15) precludes a foresight bias. Compare Section 15.6°. <

Given a stochastic process and a stopping time, we may construct the stopped
process:

Definition 199 (Stopped Process): 1
Let X denote a stochastic process and T a stopping time. The process X7 given
through X stopped in T, is defined by

X(t, w) t < T(w)

X', w) = {
X(T(w),w) t2zT(w).

4

with X for times before the stopping time. For times on or after the
' @ | stopping time the stopped process takes the constant value of X at the
' ~ stopping time. It is stopped. This is similar to what happens for the
(relative) price of a Bermudan option. Before the exercise date, the option value is
stochastic. Upon exercise the value is frozen to the value upon exercise. <

: Interpretation: On every path w the stopped process X7 coincides

Definition 200 (Snell Envelope): 1
Let Z denote a time-discrete adapted process and U defined by

UT,) = Z(Tyw,
U(T:) = max(Z(Ty), E(U(Tis) | F1,)-

The process U is called Srnell envelope of Z. J

Lemma 201 (Snell Envelope): The Snell envelope of Z is the smallest supermartin-
gale which dominates Z.

Theorem 202 (Doob-Meyer Decomposition): Let U denote a (time-discrete)
supermartingale. Then there exists a (unique) decomposition

U(Ty) = M(T)) - A(T)),

6 For the example discussed in Section 15.6 T(w) = T(wy) = Ty and T(w) = T(wy) = T> are both
stopping times (check!), however, the superoptimal exercise strategy T(w;) = T, T(w2) = T2 isnot a
stopping time.
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where M is a (time-discrete) martingale and A is a (time-discrete) previsible nonde-
creasing process (i.e., A(Ti_1, w) < A(T}, w)) where A(Ty) = 0.

Proof:
M(T) = M(T;_) + U; — EWU; | Fr._,), M(Ty) = U(Ty),
AT =AT )+ Uy —EW; | F7.,), A(Ty) = 0.

ol

15.12.2 American Option Evaluation as Optimal Stopping
Problem

We repeat the Bermudan option evaluation as optimal stopping: Let 0 = Ty < T <
<o+ < Ty Let Vypger(T3), i = 1,..., n— 1 denote a sequence of F7,-measurable random
variables, giving the value of financial products at time 7;. We define recursively

N(T;)
N(Ti1)

Voerm(T2) = Max(Vangen (T7), X (Voerm(Tia1) | Fr.),

where (N, Q") denotes a given numéraire-martingale measure pair. Furthermore let

Vunder](Ti) VB(T‘) — Vberm(Ti)

VoI = =gy N(T)

denote the corresponding N-relative prices, i.e.,

V() := max(Viy(T)), E¥ (Va(Ti11) | 7).

Theorem 203 (American Option Price—Dual Formulation (Time-Continuous
Version)): Let
Vamer(O) = sup E(VU(T) , %)
T stopping time
Then
Vamer(0) = inf E( sup (Vy(t) — M(0) | Fo),
MeH,

0<t<T

where H(’) denotes the set of all martingales M with sup |[M(¢)| € L;(Q) and M(0) =
0<i<T
0.

Since we consider only the evaluation of Bermudan options, i.e., options a finite
number of exercise dates, we give a time-discrete version of Theorem 203:
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Theorem 204 (Bermudan Option Price—Dual Formulation (Time-Discrete Ver-
sion)): Let
Ve(T:) := max(Vu(Ty), E(Ve(Tis1) | F1,))-

Va(To) = inf E(max(Vy(T;) ~ M(T) | Fo), (15.16)
MeH, Ti

where Hé denotes the set of all (time-discrete) martingales M with

M(Ty) =0
M(T;) = BE(M(Ti )T T,) M(T;) € Li(L)

and mTax(VU(T,-) — M(T))) has to be understood pathwise, i.e.,
mTaX(Vu(Tf) - M(T))w] = mTaX(VU(T,-, w) — M(T;, w))

(and not as a maximum over all stopping-times).

Remark 205 (On Theorem 204):  First, it is worth noting that in Theorem 204
the maximum is applied pathwise. If the pathwise maximum is applied to Vger
then maxr,(Vyngen (7)) gives the value of a perfect foresight. As we will show in
Lemma 206, a foresight error is precluded by the martingale M.

The expectation in (15.16) is conditioned to Fr, = Fp only, i.e., it is not required
to calculate a conditional expectation at a later time. However, the expectation has
to be minimized over all martingales M. This is as complex as the calculation of the
optimal exercise strategy (by maximizing over all stopping times 7). But Theorem 204
indeed gives an upper bound for the value of the Bermudan option:

N(O) )

Vberm(TO) < EQN(mﬁX(Vunderl(Ti) N M(TI) | 7:0)

M e H],
N(Ty)

and this upper bound may be arbitrarily close to the option price Vierm(T9) if M is
suitably chosen.

Lemma 206 (Eliminating Foresight):
Let Vy(T;), Vg(T;) be as before, i.e.,

Va(T)) := mTaX(Vu(Ti), E(Ve(Tiw) | F1,))s (15.17)

and M as in the Doob-Meyer decomposition of Vg(T;)

M(To) := 0,
M(T;) := M(T;-0) + Va(T)) ~ E(Va(Tin1) | F7.). (15.18)
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Let TP : Q — {Ty,...,T,} denote the (optimal) stopping time given by
T (w) := min{T; : Vy(T;,w) > E(V(Tj1) | Fr)lwl}

(this implies Vg(Ty) = E(Vy(T°") | F7,)).
Then we have (pathwise!)

mTa_x(VU(TJ-, w) - M(Tj,w)) = V(TP (w),w) — M(T™, w).

Proof: We give the proof only with (15.17) and (15.18). Let w € €. By definition
we have

Ve(T;,w) = E(Vp(T 1) | F7)lw] for T; < T°"(w) (15.19)

Ve(T;, w) > E(Vg(T ;1) | Fr)lw] for T; > T*"(w) (15.20)
and

Vp(T;, w) = Vy(Ti, w) for T; = T (w). (15.21)

1. For T; = T (w) and T; < T; we have
o W(Ti,w)— M(T;,w) = Va(Tj, w) — M(T;,w)
o Va(Ti1,w) - M(Tj1,w)
= Va(Trr ) - M(T; w) - VaFrr@) + EVa(Tj, 0) | F1)lw]
= Va(T),w) - M(T,w)
o W(T),w)~M{T;,w) 2 Vy(T;,w) - M(T;w)
and thus for 7; < T;:
VU(TJ-, w)-M(T; w) < Vu(Ty, w) - M(T;, w).
2. For T; = T°?(w) and T; > T; we have
o W(Ti,w) - M(T;,w)
Vu(Ti, w) = M(Tiv1, ) + VB(Tji1, w) = E(V(Tj1) | F7,)[w]

= Va(Ti,w) = M(Tir1, w) + VB(Tjy1, w) = E(Va(T 1) | Fr))w)
> VB(THl,(x)) - M(T,‘+|,CU)

] VB(T_,', a)) - M(Tj, w)
= ‘N/B(Tj, a)) — M(Tj+1,u)) + VB(TJ'+],U)) - E(VB(Tj-H») | 7:T,)[('U]
> Va(Tjer,w) = M(Tjy,, w)

o Vp(Ti1,w)— M(Tjh1,w) 2 VW(Tj,w) - M(Tjy, w)
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and thus for 7; > T;

V(T w) - M(Ti,w) > V(T w) ~ (T}, w).
Thus, for all T

Vu(Ti, w) = M(Ti,w) 2 V(T w) ~ M(Tj, w).

ol

Remark 207 (Foresight Bias): Lemma 206 shows that the martingale M eliminates
the foresight bias. We have

Vu(T) = M(T) = Vu(T)) - M(T)) YT,
however, in general

V(™) # Vu(Ty) VYT,

Lemma 208 (Optimal Stopping): It is

E(Vu(T) | F7,) = E(rnTaX(VU(Tj)"M(Tj))|7:T(,)-

Proof: Itis

Def, TP -
= E( sup V(D) IFr)

T stopping—time
=E(  sup V(T -M(T)|Fr,)
T stopping—time

La_206 E(max V() - M(T)) | 77,)

E(Vu(T™) | Fr,)

ol

15.13 Primal-Dual Method: Upper and Lower
Bound

The calculation of the exercise strategy and from it the price of the Bermudan option
via an (approximation) of the conditional expectation is called primal. The calculation
of the exercise strategy via the stopping time through Section 15.12 is called dual.
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With the result from Lemma 206 we can combine both methods. From Theorem 204
and Lemma 206 we have

Va(To) = E(mTaX(Vu(Ti) - M(Ty) | Fo), (15.22)

with
M(T;) := M(Ti-) + U; - E(U; | F7, ) M(Ty) = U(Th). (15.23)

The conditional expectation in (15.23) can be estimated with a primal method. If
the conditional expectation has already been estimated in a calculation of the lower
bound or the Bermudan option price, then (15.22) immediately gives a corresponding
upper bound.

Compare also [45].

Further Reading: The discussions in [16], [18], and [53] consider
Monte Carlo methods for derivative pricing in general. In [60] the
convergence of the regression methods is proven. The optimization
method for Bermudan swaptions is given in [44], and a primal-dual
method is given in [45]. The discussion of the foresight bias is found in [67]. <

Experiment: At http://www.christian-fries.de/finmath/
applets/BermudanStockOptionPricing.html the evaluation of a
Bermudan option on a stock following a Black-Scholes model may be
studied. There is a choice of different evaluation methods. <
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CHAPTER 16

Pricing Path-Dependent Options
in a Backward Algorithm

A backward algorithm, e.g., as given by a model implemented as a lattice, allows the
calculation of the conditional expectation

v V(T;)
V(Tie1) = N(Tiy) E2 (W |Tr,]),

and thus defines induction steps 7; — 7,_; backward in time. Path-dependent
quantities cannot be considered directly. One way of allowing for path-dependent
quantities in a backward algorithm is to eliminate the path dependency by extending
the state space.

16.1 State Space Extension

Let V denote a product whose time T; value depends on a quantity C; given by an

update rule
Ci= f(T;,Ci-1, X)),  Cp = constant, (16.1)

were X; is a random variable that is a function of the time T; values of the model
primitives, i.e., non-path dependent. Thus X; and hence C; are ¥, measurable.
Equation (16.1) constitutes the path-dependency of C;; it may not be written as a
function of the time 7; values of the model primitives. It depends on the past since it
depends on the previous value C;_.

To remove the path-depency in V we add C; as an additional state. We consider the
time 7 value of V as a function of C;

V(T = V(T Cy, i=01,...,n
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CHAPTER 16 PRICING PATH DEPENDENT OPTIONS IN A BACKWARD ALGORITHM

Then backward algorithm is:
e Given V(T;,C)).
e Apply the update rule to define
V(T Ci1, X)) = V(Ti, f(Cie1, Xi)) (16.2)

e Define
(T, Ciy, X;)

. . = . Q"
V(Ti-1,Ciy) := N(Ti-) E ( N(T)

| ﬁ,). (16.3)

Note that conditional to F7,_, the state C;_ is a constant.

interpretation (State Space Extension): The method is called
state space extension because the discrete stochastic process T; —
C(T}) = C; can be interpreted as an additional state of the model
and (16.1) defines the evolution of this process. Seen over this extended
space the product is non-path dependent. <

16.2 Implementation

In order to implement the state space extension we discretize the additional state
random variables C; into k; state values

Ciefcit,....cix )
For the implementation of the update rule (16.2) an interpolation has to be used,
e.g., a linear interpolation
V(Ti,cior o Xi) =
Sfleimp X —c¢ Ciswr = fCimt js Xix1)

il;
- : V(T cige1) + : V(Ty, cip)s
Cili+1 — Cily Citi+1 — Ciyy

where [; is such that ¢;;; < f(ci-y Xi) < Cigpr1-
Then the conditional expectation (16.3) is calculated for each state realization ¢;—y ;
giving V(Ti -y, cic11)s -+ s V(Ticy, cimi )-

Remark 209:  For some products the value V(7;,¢) is linear in ¢. In such cases
two states are sufficient and the approximation of the update rule by the linear
interpolation is exact. Examples are zero structures, where the additional state is the
accrued notional; the value of the future cashflow is linear in the notional.
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16.3 Path-Dependent Bermudan Options

The state space extension can be used in any pricing code that uses a backward
algorithm. It is not limited to models implemented on a lattice, although this might
have been suggested by the word “extension”. A state space extension can also be
used to consider path-dependent quantities in a backward algorithm in a Monte-Carlo
simulation, e.g., for the pricing of path-dependet bermudan options in Monte-Carlo.

Combining the Bermudan’s optimal exercise (15.3) with the state space extension
the backward algorithm is

o Given Vierm,iv1(T1, Ci), Vinder.i(Ti, Ci).

o Apply the update rule to define

1l

Voermis 1 (Tr, Cict, X0 = Voermis 1 (Tis f(Cizt, X)) (16.4)
Vinden T, Cic1, X)) 1= Vnden i Tis f(Cizy, Xi)).

e Apply the optimal exercise for exercise date 7; to define

Voerm (T Ciz1, Xi) := max (Voermis1 (T Ciz1, X0) , Vanden(Ti, Cim1, X)) ).
—_—

Bermudan with Bermudan with Product
exercise dates exercise dates received upon
Ti,..., T Tistyoons T, exercise in T;
e Define

Voermi(Ti, Cicts Xi)
N(Ty)

Voerm,i(Ti=1, Ci=y) = N(T_)) EY |7:T,'_| .

[ I Tip: Here, the application of the update rule is performed before
i | the application of the optimal exercise. However, the two steps may
! I be interchanged. If one adds a state space extension to the Bermudan
: " pricing it may appear more natural to apply the update rule after the
optimal exercise has been applied. However, this will likely introduce numerical
problems. If we consider

Voermi(Ti» Ci) = max (Voerm i+1(Tis C1) . Vindert il T )
and then apply the update rule

Voermi(Tis Cio1, X)) := Voermi(Tis f(Ci1, X)),
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it is difficult to implement an accurate interpolation of the update rule since ¢ —
Voermi(T1, f(c, X;)) is not a smooth function in ¢ (the max() will introduce kinks).
On the other hand, in (16.4) the update rule is applied to the conditional expectation
of the previous backward induction step, which is usually a smooth function of the
states. <l

16.4 Examples

We illustrate the method of state space extension for the valuation of a snowball/mem-
ory (Definition 164) and for the evaluation of a flexi-cap (Definition 169).

16.4.1 Evaluation of a Snowball in a Backward Algorithm

A snowball/memory pays a coupon C; in T, which depends on the previous coupon.
The coupon C; is given by an update rule

Ci= f(T;,Cio1, X))

with an F7,-measurable X; (the index), i.e., C; is path-dependent.

We add the value of the coupon C; as an additional state and write the product value
as a function of this state.

The backward induction from 16.1 gives the product value V(T, Cy) as a function
of the initial (or past) coupon Cy, which is known.

Remark 210 (In Arrears Fixing): Note that we assumed that the index X; is a
function of the time 7; values of the model primitives and thus 7,-measurable. If the
index X;_; is a function of the time 7; values of the model primitives, i.e., fixed in
arrears, then the additional state variable is the value of the previous coupon.

16.4.2 Evaluation of a Autocap in a Backward Algorithm
An autoccap pays at time T;,; the amount
Xi =N max(L(T}) = K;, 0) (Tis1 — T))

) 1 ifl{{j:j<iand Li(T;) = K; > O} < npmaxex
0 else,

where Li(¢t) := L(T;, Ti11; 1) denotes the forward rate for the period [T}, T4 ] seen in
t<T,.
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As a function of the processes L; the payoff X; is path-dependent since the payoff
function is not given by the random variables L;(T;) alone, but also by the past
realizations of the processes Ly (entering though L;(T)), j < i).

We extend the model by the stochastic process
) :Q—1{0,...,n-1},
we {L(T)-K>0|T;<t, j=1,....n—1}|.

Given L;, n the payoffs X; are a function of the realizations L;(T"), n(T;):

boif 7I(Tj) < NmaxEx

Xi:=N max(L(T) - K, 0) (T = T)) { 0 else
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CHAPTER 17

Sensitivities (Partial Derivatives)
of Monte Carlo Prices

17.1 Introduction

The technique of risk-neutral pricing, i.e., the change toward the martingale mea-
sure, allows us to calculate the cost of a (self-financing) replication portfolio, to be
expressed as an expectation. The determination of the replication portfolio itself is
not necessary. However, once a pricing formula or pricing algorithm (e.g., a Monte
Carlo simulation) has been derived, the replication portfolio can be given in terms of
the partial derivatives of the price with respect to current model parameters (like the
initial values of the underlyings).' The partial derivatives of the price with respect to
the model parameters are also called sensitivities, or Greeks. They are important to
assess the risk of a financial product; see also Chapter 7.

For complex products, like Bermudan options, an analytic pricing formula is usuaily
not available. The pricing has to be done numerically. Under a high-dimensional
model, like the LIBOR market model, the numerical method of choice is usually a
Monte Carlo simulation. Given that, we will investigate the numerical calculation of
sensitivities (partial derivatives) of Monte Carlo prices.

The simplest way of calculating a derivative is by applying finite differences.
Unfortunately, this can lead to a Monte Carlo algorithm giving unstable or inaccurate
results.

! Note that all market parameters enter into model parameters via the calibration of the model.
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17.2 Problem Description

Let us consider a pricing algorithm that uses Monte Carlo simulation to calculate the
price of a financial product as the expectation of the numéraire-relative value under
an equivalent martingale measure Q:

V(T)
- Q
Vi) = Nw) E ( N Iﬂ,).

We are interested in the calculation of a partial derivative of V(#p) with respect to some
model parameter, e.g., the initial values of the underlying (— delta), the volatility (—
vega), etc.

Since we treat this problem as a general numerical problem, not necessarily related
to derivative pricing, we do not adopt a specific model but use a notation that is
slightly more general. To fix notation, let us restate Monte Carlo pricing first.

17.2.1 Pricing using Monte-Carlo Simulation

Assume that our model is given as a stochastic process X, for example an Itd process
dX = pudt+ o - dW()

modeling our model primitives like functions of the underlyings (e.g., financial
products (stocks) or rates (forward rates, swap rates, FX rates)). For example, for
the Black-Scholes model we would have X = (log(S5), log(B)). Let X*(¢;) denote an
approximation of X(#;) generated by some (time) discretization scheme, e.g., an Euler
scheme:

X'(ti) = X°(t) + )AL + o) - AW(E)

or one of the more advanced schemes®. We assume that our financial product depends
only on realizations of X at a finite number of time points, i.e., we assume that the
risk-neutral pricing of the financial product may be expressed as the expectation
(with respect to the pricing measure) of a function f of some realizations Y :=
(X(10), X(t1), ..., X(1,,)). This is true for many products (e.g., Bermudan options). If
these are approximated through the realizations of the numerical scheme, we have

E(f(N1F,) = EFO) | F) = EFUXW0), X)), ... X)) | Fy).

Here f denotes the numéraire-relative payoft function.

2 For alternative schemes see, e.g.,[21,70]
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The Monte Carlo pricing consists of the averaging over some (often equidistributed)
sample paths w;, i = 1,...,n:

. 1 <
E(f(Y)IF,) = E(f(Y)IF,) = ;Zf(Y*(w,-)).
i=1

To summarize: We have two approximation steps involved: The first one approx-
imates the time-continuous process by a time-discrete process. The second one
approximates the expectation by a Monte Carlo simulation of #n sample paths. This
is the minimum requirement to have the pricing implemented as a Monte Carlo
simulation.

17.2.2 Sensitivities from Monte Carlo Pricing

Assume that 6 denotes some model parameter’ or a parametrization of a generic
market data movement and let Y, denote the model realizations dependent on that
parameter. Let us further assume that ¢y, denotes the probability density of Yy. Then
the analytic calculation of the sensitivity is given by

0 0
FgE S [ 1) = = | f0)dr () dy-

R™

While the payoff f may be discontinuous, the density in general is a smooth function
of 6 in which case the expectation E(f(Yy)|F},) (the price) is a smooth function of 6,
too. The price inherits the smoothness of ¢y,.

The calculation of sensitivities using finite differences on a Monte-Carlo-based
pricing algorithm is known to exhibit instabilities, if the payoff function is not smooth
enough, e.g., if the payoff exhibits discontinuities as for a digital option. The difficul-
ties arise when we consider the Monte Carlo approximation. It inherits the regularity
of the payoft f, not that of the density ¢:

. 1 ¢
E(f(YIF,) = = D f(Yolw).
i=]

So while E(f(Yy)|F;,) may be smooth in 6, the Monte Carlo approximation
E(f(Yy)IF,) may have discontinuities. In this case a finite difference approxima-
tion of the derivative applied to the Monte Carlo pricing will perform poorly.

17.2.3 Example: The Linear and the Discontinuous Payout

The challenge in calculating Monte Carlo sensitivities becomes obvious if we consider
two very simple examples:

3 So for delta @ is an initial value X(0), for vega 6 denotes a volatility, etc.
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17.2.3.1 Linear Payout

First consider a linear payout, say
JX(T)y=aX(T)+b.

The (discounted) payout depends only on the time T realization of X (as one would
have for a European option). Let Yp(w) := X(T, w, ), where 6 denotes some model
parameter. The partial derivative of the Monte Carlo value of the payout with respect
to B is

n

1 0
E(f(Ye)ITrU Z o/ (@) = Z a 2 Yalw).

Obviously the dccuracy of the Monte Carlo approximation depends on the variance of
ay = only. When z; Yg(a),‘) does not depend on w;, then the Monte Carlo approximation
glves the exact value of the partial derivative, even if we use only a single path.

17.2.3.2 Discontinuous Payout

Next, consider a discontinuous payout, say

if X(T)>K
else.

sexay =1
o
Analytically we know from Y, = Yo + or SEh+ O(h?) and

aY, 0
EX(f(Your) | F) = Q({Yo > K= ——h- O(hz)}) = f , ¢y, () dy
a0 k-2 ho(2)

that
6Y9

.1
lim B2 (Vo) | F) = EX o) | Fu)) = on(K) 57
However, the partial derivative of the Monte Carlo value of the payout is

3 . v é . .
SR, = - Z a5/ (o(@)) = 0 assuming that Yy(w;) # K for all i

Thus, here, the partial derivative of the Monte Carlo value is always wrong.
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17.2.4 Example: Trigger Products

The two simple examples above suggest that a finite difference approximation of a
Monte Carlo price works well if the payout is smooth, but fails if the payout exhibits
discontinuities. The problem becomes a bit more subtle if we consider products
where the discontinuous behavior is just one part of the payout which, in addition,
may also be of more complex nature. Consider, for example, the autocap. For
given times T',..., T, the autocap pays at each payment date 7;,; the payout of a
caplet max (I(T;, T;115T;) — K; . 0) (Tix1 — T;), but does so only if the number of
nonzero payments up to 7 is less than some ryaxex. This latter condition represents a
trigger which makes the otherwise continuous payoff discontinuous; see Figures 17.1

and 17.2.
1y
@ || o) || © |
!
! ' I 0 |
|  Fa T > || T T g
Tob Th T2 T3 || To Ty T2 T3 || To Ty T T3 |

Figure 17.1. The payoff of an autocap paying a maximum of two out of three caplets,
considered under a parallel shift of the interest rate curve (black line). The strike
rate is depicted by a dot, a positive payout is marked in dark gray: In scenarios (a)
and (b) the first caplet does not lead to a positive payout while the second and third
caplet do generate a positive payout. The shift of the interest rate curve from (a) to
(b) changes the payout continuously. In scenario (c) the first caplet leads to a positive
payout. Since the autocap is limited to two positive payouts the payout of the third
caplet is lost as soon as the first caplet pays a positive amount. Thus, from scenario
(b) to (c) the payout of the autocap changes discontinuously.
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Price impact of a shift of the interest rate curve (shift from -0.00010 to 0.00010)
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Figure 17.2. The value of an autocap as a function of the shift size of a parallel
shift of the interest rate curve. Using only a small number of paths, a small shift
does not lead to a change of the exercise strategy. The price change is driven by the
sensitivity of the underlying caplets. Thus, for small shifts one might be tempted to
call the sensitivity stable. For a larger shift the exercise strategy changes on some
paths, leading to a jump in payoff.

248



17.3. GENERIC SENSITIVITIES: BUMPING THE MODEL

17.3 Generic Sensitivities: Bumping the Model
The finite difference approximation calculates the sensitivity by

d _ EGYernlF ) = EGfF(Yon)lT5)
%E(f(YH)W:m) ~ %h .

This brute-force finite difference calculation of sensitivities is sometimes referred to as
bumping the model. Bumping the model has a charming advantage: If you keep your
model and your pricing code separated (a design pattern one should always consider),
then you may implement a generic code for generating sensitivities by feeding the
pricing code with differently bumped models. In other words:

Once the pricing code is written, all sensitivities are available. (17.1)

It seems as if you get sensitivities almost for free (i.e., without any effort in modeling
and implementation) and the only price you pay is a doubling of calculation time
compared to pricing. However, it is known that applying such a finite difference
approximation to a Monte Carlo implementation will often result in extremely large
Monte Carlo errors. Especially if the payout function of the derivative is discontinuous,
this Monte Carlo error tends to infinity as / tends to zero. And discontinuous payout
is present whenever a trigger feature is present.

Sensitivities in Monte Carlo are known as a challenge. Numerous methods have
been proposed for calculating sensitivities in Monte Carlo, among them the likelihood
ratio [55] and the application of Malliavin calculus [22], which has attracted increased
attention recently [65]. These methods improve the robustness of sensitivities but
require more information.

It appears as if the measures you have to take to improve Monte Carlo sensitivities
will lose the advantage (17.1) of bumping the model. Later, we will present a method
(which is also an implementation design pattern) that makes it possible to calculate
sensitivities through bumping the model while providing the accuracy and robustness
achieved by the likelihood ratio or Malliavin calculus approach. The method is
essentially a likelihood ratio reconsidered on the level of the numerical scheme.

There are basically two different methods for calculating sensitivities in Monte
Carlo:

o The pathwise method, which differentiates the payout on every simulation path;
see Section 17.5

e The likelihood ratio method, which differentiates the probability density; see
Section 17.6.
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Numerically, these two methods may be realized as:
e (Traditional) finite differences; see Section 17.4.
e Finite differences applied to a proxy simulation scheme.

However, a proxy simulation scheme is a much more powerful design; see Chapter 18.
It is also possible to mix the two approaches by considering a partial proxy simulation
scheme; see Section 18.2.

In the following we will present the different methods for calculating sensitivities
in Monte Carlo simulations. Each section starts with a short description of the
approximating formula and gives the method requirements and properties as bullet
points. We assume that a Monte Carlo pricing algorithm has been implemented and
we mention only requirements additional to the pricing.
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17.4 Sensitivities by Finite Differences

The finite difference approximation is given by

I

o 1
%EQU(YQ) | Fr) E(EQ(f(YM) | o) = EQf(Yoon) | )

14

1 . .
57 B o) | ) = B (Vo) | F7,))

151
= - Z 57 Warn@)) = f(Yarn(@i))

Requirements

@ No additional information from the model SDE* X

@ No additional information from the simulation scheme X*(¢;,;)

& No additional information from the payout f

@ No additional information on the nature of 8 (= generic sensitivities)

Properties

© Biased derivative for large h due to finite difference of order
© Extremely large variance for discontinuous payouts and small h (order h~")

The most important feature of finite differences is their genericity. Once the pricing
code has been written, all kinds of sensitivities may be calculated.

For smooth payouts, the finite difference approximation converges to the derivative
for & — 0. Thus, if the payout is smooth, small shift sizes 4 are favorable. Using
large h the approximation of the derivative is biased.

For discontinuous payouts, as # — 0 the finite difference of the Monte Carlo
price does not converge to the derivative of the Monte Carlo price. The reason is
that for discontinuous payouts the Monte Carlo approximation (n — o) and the
approximation of the derivative (& — 0) are not interchangeable.

For discontinuous payouts finite differences with a fixed, small shift size # perform
poorly. The contribution of a discontinuity to the sensitivity may be calculated ana-
lytically. It is the jump size multiplied by the probability density at the discontinuity.
Finite differences resolve this contribution only through those sample paths which
fall into a neighborhood around the discontinuity, having the width of the shift size.
Thus, if the shift size is small, the discontinuity is resolved by a few points, ultimately
resulting in a large Monte Carlo error. For discontinuous payouts large shift sizes

4 SDE: stochastic differential equation.
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are preferable. However, if the shift size is large, the derivative becomes biased by
second order effects (if present).

Since finite difference does not require anything more than a given pricing algo-
rithm, we are tempted to apply it to any product for which a Monte Carlo pricing may
be calculated. If the product exhibits discontinuities in the payout, the finite difference
approximation tends to be unreliable, and a careful analysis of the Monte Carlo error
for a given shift size 4 has to be performed.

17.4.1 Example: Finite Differences Applied to Smooth and
Discontinuous Payout
Let us consider a finite difference approximation of the partial derivative for the case

of the linear payout f(X(T)) = a X(T) + b from Section 17.2.3.1. We have

0 1
%EQ(f(Ye) | F2) ﬂ(EQ(ﬂYM) | Fo) — EQ(f(Yoor) | 7))

14

1 A
v 5 B Woun) | Fy) = EXf (Yo | 72,))

IR

= =3 = (fXarn(@) = f(Youh(@))
n o 2h

= 12 L Vo) — Vo))

- " £ a " o+ Wi 6-n\Wj)),

which is a good approximation, if ZYs(w) ~ (Youn(w;) ~ Ye_n(w;)). This is
usually the case, and throughout this chapter we assume that the model is such that its
realizations Yg(w;) are smooth in the model parameters 6.

For the discontinuous payout f(X(7T)) = 1 if X(T) > K and f(X(T)) = O else,
considered in Section 17.2.3.2, we have

2

J 1
%EQ(f(Ye) | Fry) E(EQ(f(YMl) | Fu) — EXf(Yon) | F2))

1 . N
~ (B fFoun) | Fo) = BEUFFooi) | )
2h
1 &1
= =3 (fYan(@) — (Ko@)
n 2h

L& 1 if Ypu(w) < K < Youp(w))
= - Z 1=l i Yen@) > K > You(w)
=1 0 else.
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This is a valid approximation, but it has a large Monte Carlo variance, since the true
value is sampled by 0 and ﬁ occurring in the appropriate frequency. If 4 gets smaller,
then we have to represent the true value by a sampling of 0 and a very large constant.

Simplified Example: Assume for simplicity that Yy is linear in 6, i.e., we have
You = Yo + ay,, h and thus

1
2h
JFon(w) = fFgp(wi)) _ |21
2% - 7 if Yo_n(w;) > K > You(w;)
0 else.
sign (%")
= 2h
0 else.

if Yo_n(w;) < K < Youi(w;)

if Yo(w;) € [K — €, K + €]

where € := '%| h. For the probability we have

0Yy

- Qe [K—eK+e)) ~ dr(K)2e = by, (K) ]

In other words: We are sampling the partial derivative of the expectation by a binomial
experiment:

ion (e
51gn( 60)

7 with probability g and 0  with probability 1 — g

The expectation of this binomial experiment is

Yy
Slgn : aY
#qw(l—cp ~ o) 5.

which is the desired analytic value for the finite difference approximation as & — 0.
The variance of the binomial experiment is

1Y .
(5;1) qg(l-q) ~ ¢YH(K) (l—q)— = O(E)’

which explodes as 1 — 0.
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17.5 Sensitivities by Pathwise Differentiation
The pathwise differentiation method is given by

17]
L)1 7,) = f A¥@.6) 0@) = | 2 f(V(0.0) 2@
aY %) Y
f £ 0,0y o 4w = EQ(f ey 2 Iﬂ.)

smooth ¢y 40 Y (w;, 0
Pt g (f(Y(O)) ()Iﬁ,)— Zf(Y( w;, 6 -L

Requirements

© Additional information on the model SDE X

@ No additional information on the simulation scheme X(7;,1)

© Additional information on the payout f (derivative of f must be known)
© Additional information on the nature of 6 (= no generic sensitivities)

Properties

& Unbiased derivative.
& Discontinuous payouts may be dealt with (interpret f’ as distribution; see
below).

The pathwise method requires the knowledge of the derivative of the payout f” and
the derivative of the process realizations with respect to the parameter 6, i.e., ME%"‘H—).
It is thus only applicable for a restricted class of models and model parameters, where
B_)j(ac;,_,ff) may be calculated analytically.

It seems as if a discontinuity in the payout cannot be dealt with, since we require
S to exist. However, the impact of a discontinuity can be calculated analytically; see
Section 17.5.2.

It is a major disadvantage of the method that it requires special knowledge of the
payout function and of model realizations.

17.5.1 Example: Delta of a European Option under a
Black-Scholes Model

We consider a Black-Scholes Model:
S
B(1)

it

1, B
S(0) exp(rr- 50’ t+ 0 W), S = (17.2)

B(0) exp(r1).
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In this case we have, e.g.,
0 S (T)
—S(T .
0Sg () = 5o 0
Using the notation above, our model primitive is X = (S, B). We assume that the
payout of our derivative depends on Y = X(T) = (S(T), B(T)) only, i.e., we are
considering a European option. Then we have

9 o
XE (FSTNIF)

S
EC (f’(S(T)) iy ff)

14

ST
(f ST Q 7',0)

S(T wi)

= —Zf(S(T w)

17.5.2 Pathwise Differentiation for Discontinuous Payouts

In case that the payout f exhibits discontinuities the pathwise method may be applied,
provided that f allows for a decomposition

= g+ ) el (Y(®) >y,
with g being smooth. In this case we have

. 0 0
%EQ(fma))lﬁ,) - = f f(¥(@,0) dQw) = | = f(¥(@.6) dQw)
Q Q
8Y(9)

| TTO)

smooth ~y 140 ay (e
R E ( (O% J[ ﬁ,) D) ()lm,) L

dY(w, 8
- f F(¥w,0) - (‘" ) 4Q(w) = EQ(f’(Y(H))

See [83, 94] for examples of how to use pathwise differentiation with discontinuous
payouts (there in the context of n® to default swaps, CDOs>).

3 CDO: Credit Default Obligation.
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17.6 Sensitivities by Likelihood Ratio Weighting

The pathwise method diflerentiates the path value Y(6) of the underlying process
realizations Y. Provided there is a probability density ¢y of Y(0) we may write
the expectation as a convolution with the density. The likelihood ratio weighting
[16, 53, 55] is then given by

9 o g _ 9
%E (f(Y©o) | ) %Lf(Y(w,g)) dQ(w) = 30 jl;"f()’) by (y) dy

I

a%fﬁy(e)()’) 0
} SO W dry(y) dy = EX(f(Y) w(®) | F4,)

. 1 &
EA () wO) | F7) = —Zf(Y(wf)) w(l, w;),
h i=1

R

where

(@) o BOOTO)
C dre(Y()

Requirements

© Additional information on the model SDE X (— ¢yg)

@ No additional information on the simulation scheme X(¢;,)

@ No additional information on the payout f

© Additional information on the nature of 6 (= no generic sensitivities)

Properties

@ Unbiased derivative.
& Discontinuous payouts may be dealt with.

The likelihood ratio method requires no additional information on the payout func-
tion. This is an advantage compared to the pathwise differentiation. However, it
requires that the density of the model SDE’s realizations X(r) is known and, further-
more, that its derivative is known analytically with respect to the parameter 6. This is
rarely the case and thus a major drawback of the method.

The likelihood ratio method does not require the payout to be smooth. The method
works very well for calculating the impact of a discontinuity in the payout. However,
the method has its problems with smooth payouts: The Monte Carlo error of the
approximation using likelihood ratio is larger than the Monte Carlo error of the finite
difference approximation. We give a simple example of this effect next.
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17.6.1 Example: Delta of a European Option under a
Black-Scholes Model Using Pathwise Derivative

Let us look again at a European option using the Black-Schloes model (17.2). Since
B is deterministic, we need to consider the probability density of S. Since log(S (7))
is normally distributed (see Chapter 4), we have for the density of S(T)

Paidinorm. (57 (10g(s) + H(T) = 35(T)* ~ 10g(S 0)))

Psry(s) = ,
S

where Pgd.norm.(X) = ﬁ exp(—x?/2) is the density of the standard normal distribu-
tion.

Thus, the delta of a European option with (numéraire-rebased) payout
f(S(T), B(T)), calculated by the likelihood ratio method, is given by

sa=psr)(S(T))

EQ| £(S(T), B(T
f(S(T), B(T)) b5 ST)

| %o|-

17.6.2 Example: Variance Increase of the Sensitivity when
using Likelihood Ratio Method for Smooth Payouts

For some smooth payouts, the likelihood ratio method may perform less accu-
rately than the pathwise method (Section 17.5) or its finite difference approximation
(Section 17.4). A simple example illustrates this effect: Consider constant payout
f(S(T), B(T)) = b. Then, the likelihood ratio method gives the delta of this option as

as(, 75, 9s (T)(S(T))
ésr(S(T))

f=b=const.
= b —_— Y d
Lasofﬁsm(s) s

EC [f(S(T), B(T) —————— ] ff(s B(T) 5 ¢sm(f)d9

and indeed (using substituation y = log(s), dy = %ds) we see that the delta is zero:

7] 1
= fas Dstd.norm. (0_\/_()’+r(T)‘—O'(T) _log(SO))) dy = 0.
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The Monte Carlo approximation is

a5 s (S ()

EQ T), B(T
S, BT ds(S(T))

| 7o

S T.w) 1  oS(T,w)
BT Zb.L__

1 n
~ - S(T,w;), B(T)) - - )
n;f( @ B SysTon ~ n #S (T, )

i=1

which is in general nonzero. It is an approximation of zero, having some variance.
On the other hand, note that the pathwise method and even a finite difference
approximation thereof would give a delta of zero with zero Monte Carlo variance.

17.7 Sensitivities by Malliavin Weighting

The Malliavin weighting [22, 65] is similar to the likelihood ratio method: The
sensitivity is expressed as the expectation of a weighted payout function:

0
%EQ(f(Y(H)) | F) = EXS(Y(O) wO) | Fz,)

I

. 1 &
E2(f(Y(8) w(O) | Fry) = ~Zf(Y(6‘,wi)) w(b, w;).
n i=1

Requirements

© Additional information on the model SDE X (— w)
@ No additional information on the simulation scheme X(#;,)
@ No additional information on the payout f

© Additional information on the nature of 6 (= no generic sensitivities)

Properties

@ Unbiased derivative.

@ Discontinuous payouts may be dealt with.

Benhamou [47] showed that the likelihood ratio corresponds to the Malliavin
weights with minimal variance and may be expressed as a conditional expectation of
all corresponding Malliavin weights (we thus view the likelihood ratio as an example
of the Malliavin weighting method).
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However, here the weights are derived directly through Malliavin calculus, which
makes this method more general and applicable even if the density is not known. The
derivation of the Malliavin weights requires in-depth knowledge of the underlying
continuous process X and it is heavily dependent on the nature of 6.

17.8 Proxy Simulation Scheme

The proxy simulation scheme defines a design of a Monte Carlo pricing engine that
has the remarkable properties that the application of finite differences to the pricing
will result in likelihood ratio weighted sensitivities without actually the need to know
the density ¢ analytically. Thus it combines the robustness of likelihood ratio or
Malliavin weighting with the genericity of finite differences.

Since the proxy simulation scheme method is not solely devoted to the calculation
of sensitivities, it will be discussed in Chapter 18. Here, we will summarize the key
properties.

The Monte Carlo sensitivity under a proxy simulation scheme is given by

4

1
E(EQ(f(Y*(G + ) | Fy,) - EQFY @ - ) | Fo,)
a 1
= 36 ). [0 35 @rem®) — dre-n() dy
o) 3Dy (¥) — Py-o-n(»)
R™ dr-(y)

o L AP @) w8 + o) = w6 = ho o).
n 2h

8 o
%E (fEn | F4)

¢y-(y) dy

—see Section 18.1 for a definition of Y° and Y*.

Requirements

@ No additional information on the model SDE X

© Additional information on the simulation scheme X*(t;+1), X°(#;41)

@ No additional information on the payout f

@ No additional information on the nature of (= generic sensitivities)

Properties

© Biased derivative (but small shift 4 possible!).
& Discontinuous payouts may be dealt with.
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CHAPTER 18

Proxy Simulation Schemes for
Monte Carlo Sensitivities and
Importance Sampling

In this chapter we describe the proxy simulation scheme technique as it is given
in {66, 69, 70].

18.1 Full Proxy Simulation Scheme

We take the notation of the previous chapter (see Section 17.2 and 17.3) and consider
two time-discrete schemes for the stochastic process X:

X e X)) i=0,1,2,... time discretization scheme of X
— target scheme

X° i X(t;) i=0,1,2,... any other time-discrete stochastic process
(assumed to be close to X*)
— proxy scheme

Let Y = (X(r1),....X(tw)), Y = (X*(11),....X"(4p)), Y° = (X°(11),..., X°(tm)).
Let ¢y-(y) denote the density of Y° and ¢y-(y) the density of Y*. We require

Vy: o' (y) = 0 = ¢ (y) = 0. (18.1)
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18.1.1 Pricing under a Proxy Simulation Scheme

Using the additional scheme X° the pricing of a payout function f is now performed
in the following way: We have EQ(f(Y(0)) | Fu) = EQ(f(Y*(0)) | ¥1,) and furthermore

ER(f(Y*(9) | F+)

I

fg JY(w,8) dQw) = [R SO ¢ro») dy

Foy 2re) oy = B w®) | T,
R ¢Y° (y )

Il

where w(6) = ———f;;f’g?.

For the Monte Carlo approximation this implies that the sample paths are generated
from the scheme X° while the probability densities are corrected toward the target
scheme X*.

18.1.1.1 Basic Properties of a Proxy Simulation Scheme

e For X° = X" we have w(f) = 1, and in this case the proxy simulation scheme
corresponds to the ordinary Monte Carlo simulation of X*.

e The proxy scheme X° and thus its realization vector Y° are seen as being inde-
pendent of 8. This has important implications on the calculation of sensitivities;
see Section 18.1.3.

e The requirement Yy : ¢"'(y) = 0 = ¢"(y) = 0 corresponds to the non-
degeneracy condition of the diffusion matrix as it appears in the application of
the likelihood ratio and Malliavin weights. However, here this requirement is
far less restrictive since we are free to choose the proxy scheme X°.

18.1.2 Calculation of Monte Carlo Weights

For the most common numerical schemes the densities ¢*", ¢~ and thus the Monte
Carlo weights may be calculated numerically. Consider, for example, the schemes

Xty + @) Ay + @) - T - AU,
Xo@t) + @) Ay + () - TO() - AUW),

Target scheme:  X*(#;11)

Proxy scheme:  X°(t;+1)

where X denotes an invertible volatility matrix and I denotes a projection matrix, the
factor matrix which defines the correlation structure R = ITT.

262
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Assume for simplicity that zX' (¢;) depends on X*(#;) only (and similar for x* (¢;))
(this holds for the Euler scheme), then we have for the transition probability densities:

¢X*(ti’X?;[i+l»X;ﬂ+])
1

L
= aman P (‘—”2 o (WPFTETG, - X - ) At,»))z)
i i

X° .
¢ (ti’ X,?, i1, on.;.])

_ 1 o— o o— o ° °
= QA" eXp(_z T RN R e T ) At,-))2),

where we used the factor decomposition (PCA' T = F. VA where A =
diag(4,,. .., 4,,) are the nonzero eigenvalues of I - I’ T
Then the proxy scheme weights are given by

LN, X501, X5, )

w(tis) l7, :1_[ Ve S -
' =k ¢ (tj7Xj’tj+l7Xj+l)

18.1.3 Sensitivities by Finite Differences on a Proxy
Simulation Scheme

Applying a partial derivative with respect to some model parameter 6 to a pricing
under a proxy simulation scheme gives

X

1
E(EQ(f(Y*(O +h) | Fi) = ER(F(Y* (0 - ) | F2))
0 1
= 2 N fo) E(fﬁy'(mh)()’) = by - () dy
3= (By-oem () = By-o-n ()
%
R" 7o) Pr-(y)

LS O @) 508 + ) = w6 = o).
n < 2h

& 0 o
%E fx ey 1)

¢y-(y) dy

1

In other words, setting up the pricing using a proxy simulation scheme, apply finite
differences to the pricing will result in an approximation of the likelihood ratio rather
than an approximation of the pathwise differentiation.

! See also Section 19.4.3.3 and Appendix B.3.
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Requirements

@ No additional information on the model SDE X

© Additional information on the simulation scheme X*(#;.1), X°(t;+1)

@ No additional information on the payout f

@ No additional information on the nature of 8 (= generic sensitivities)

Properties

© Biased derivative (but small shift 4 possible!).
& Discontinuous payouts may be dealt with.

We noted above that additional information on the simulation scheme is required,
that is, the densities of the two schemes. Note, however, that we require these
densities to set up the pricing algorithm. For the sensitivity calculation no additional
information is needed. Note also that the required densities are densities of numerical
schemes, which can usually be calculated from known transition probability densities
(see Section 18.1.2).

18.1.4 Localization

If the payout function f is smooth, then ordinary finite differences perform better than
the weighting techniques. The latter shows an increase in Monte Carlo variance of
the sensitivity. This effect is not only visible for smooth payouts f, but also for large
finite difference shifts.

A solution that has been proposed in [65] is localization. Here the weighting is
applied only to a region where the payoft is discontinuous.

Let g denote the localization function, i.e., a smooth function 0 < g < 1 such that
g = 1 at discontinuities of f. Consider the decomposition

f=U0-9f +gf.

We define the pricing of the payout f as
E(f(Y)IF,) = E( —g(¥") f(Y)IF,) + E(g(Y°)f(Y°) z—: |7‘70)-

In other words; we use a pricing based on a proxy simulation scheme for g f and a
pricing based on direct simulation for (1 — g) f.

It should be noted that localization is carried out by a redefinition of the payout.
The product is split into two parts, where one is priced by a direct simulation scheme
and the other is priced by a proxy simulation scheme method. This allows us to
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implement localization on the product level, completely independent of the actual
simulation properties. In addition, localization does not reduce the ability to calculate
generic sensitivities.

In Section 18.3 we will consider a slightly different variant of localization, which
uses information of the payout to modify the numerical scheme.

18.1.5 Object-Oriented Design

The proxy scheme simulation method may in part also be viewed as an implementation
design. In Figure 18.1(a) we depict the object-oriented design of a standard Monte
Carlo simulation where a change in market data results in a change of simulation path.
In Figure 18.1(b) we contrast the proxy scheme simulation method where a change in
market data results in a change of Monte Carlo weights.

In practice, we propose that the model driving the generation of the proxy schemes
paths is calibrated to market data used for pricing while a market data scenario used
for sensitivity calculation, i.e., by bumping the model, only impacts the Monte Carlo
weights. A method should be offered to reset the proxy simulation’s market data to
the target simulation’s market data.

18.1.6 Importance Sampling

The key idea of importance sampling is to generate the paths according to their
importance to the application, not according to their probability law, and in doing
so, adjust toward their probability by a suitable Monte Carlo weight (the change of
measure).

Using a proxy simulation scheme, the paths are generated according to the proxy
scheme while a Monte Carlo weight adjusts their probability toward the target scheme.
Actually, once the proxy simulation scheme framework has been established, the
Monte Carlo weights are calculated automatically from the two numerical schemes.

Thus, choosing the proxy scheme such that it creates paths according to their
importance to the application is a form of importance sampling. It has the advantage
that specifying a suitable process might come easier than calculating the optimal
sampling and the corresponding Monte Carlo weights.

18.1.6.1 Example

Let us look at the pricing of an out-of-the-money (OTM) option under a lognormal
model (like the Black-Scholes model or the LIBOR market model):

Log Euler scheme:  log(X)(#;+1) = log(X)(t;) + u(t) At; + o AW(t))
OTM option: max(X(T) - K, 0),
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InputData InputData
Market Data 8+h Market Data 8-h
Model Simulation Product
Calibrated Model Equally weighted
Parameters ’.
Paths of Simulation Sch r
aths of Simulation Scheme z f(Y(wl)) 3 1/rl
| Price | | Price |
Sensitivity as Finite
Difference

(a) Standard Monte Carlo Simulation

| InputData | InputData
Market Data 8+h Market Data 8-h
Model Simulation Product
Calibrated Model Monte Carlo weights
Parameters L=
Paths of Proxy Scheme
> S f(Y(w)) - w,

Proxy Model
Model Parameters
T —————” . T

[ Price | [ Price |
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(b) Proxy Scheme Monte Carlo Simulation

Figure 18.1. Object-oriented design of the Monte Carlo pricing engine: We depict
the impact of a change of different market data scenarios 6+ h and 8 — h on the pricing
code of a standard Monte Carlo simulation and a proxy scheme simulation.
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where X(0) = Xy and K >> X. The drift of the model is determined by the specific
pricing measure. However, in our application we would prefer that the mean of X(T)

be close to the option strike K rather than being close to exp(log(Xo) + fOT u() de). To
achieve this, simply use a proxy scheme with artificial drift:

log(K) — log(Xo)
T
Target scheme:  log(X)(tj+1) = log(X)(t;) + u(?) At; + o AW(t))

Proxy scheme:  log(X)(t;.)) = log(X)(¢;) + At; + o AW(1))

This will bring the paths to the region that is important for the pricing of the option,
while the proxy simulation scheme framework automatically adjusts probabilities
accordingly. Figure 18.2 shows a comparison of the distribution of Monte Carlo prices
obtained from direct simulation compared to the prices obtained from importance-
adjusted proxy scheme simulation.

Importance Sampling using Proxy Simulation Scheme
0,20 - - — - o " -— -

Frequency
o
o

0,000100  0,000125

0.00_ 1 1] (AN Pliild
0,000000 0,000025 0,000050 0,000075
Prices

¥ Standard Euler Scheme
Proxy Scheme with Importance Adjusted Drift

Figure 18.2. Importance sampling using a drift-adjusted proxy scheme. The example
was created using a LIBOR market model to price a caplet with strike K = 0.3, the
initial forward rate being Xy = L;(0) = 0.1.
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18.2 Partial Proxy Simulation Schemes

The (full) proxy simulation scheme method requires the density of the target scheme
realization to be zero if the density of the proxy scheme is zero; see Equation (18.1).
In other words, it is required that the paths simulated under the proxy scheme comprise
all paths possible under the target scheme. If the property is violated, then the Monte
Carlo expectation using the weighted paths of the proxy scheme will leave out some
mass. This limits the application of the full proxy simulation scheme. For the
calculation of sensitivities the limitation means that we cannot calculate the sensitivity
with respect to all possible perturbations.

However, in order to improve the calculation of sensitivities of trigger products it
is not necessary to keep all underlying quantities rigid (as for a full proxy simulation);
it is sufficient to keep the quantity that induces the discontinuity rigid. This gives rise
to the notion of a partial proxy simulation scheme [69].

Let K denote the unperturbed scheme and K* some perturbation of K°, e.g., a
scheme with different initial data. We will call K the reference scheme and K* the
target scheme.

The usual procedure of bump-and-revalue for computing Greeks would simulate

paths of K* having Monte Carlo weight % The proxy simulation schemes would
1

simulate paths of K* using Monte Carlo weights 2 gﬁ Instead, here we consider a

third scheme K', the (partial) proxy simulation scheme where paths are such that the
pathwise values of some (but not all) components of K' (or a function thereof) agree
with the corresponding pathwise quantities under K°.

18.2.1 Linear Proxy Constraint
Let I1(#;) denote a projection operator of rank k. Let v(#;) be defined as
() = (-T@)™" - (- K () = - K2(t0), (18.2)
where (IT- T'(#;))~" is the quasi-inverse of I1 - I'(#;), i.e., v is the solution of
T KO(01) = T+ (K" (ti1) = IT@)W(#)]l, — min. (18.3)
We define the k-dimensional partial proxy scheme K" as:

K'(t9) 1= K" (1),

1 * (18.4)
K (1) = K (i) = T(t) - v(1).

The scheme K has the following properties:

e It coincides with K° on the k-dimensional submanifold defined by I, ie.,
I1-K'(t;) = I1- K°@).
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e It is given through a mean shift v(¢;) on the Brownian increment AW(¢;) of the
target scheme K*.

Consequently, the Monte Carlo weight of the partial proxy scheme is given by
_ M K )t K (1))
oK (1, KM (1); 11, K (1:41))

In the case of a linear proxy constraint, the mean shift v(z;) is T,,.-measurable.2 Then,
using simple Euler schemes, the transition probabilities are

¢ (1 K (1) 1101, K (t101) = 6% (0, W), 11, W(tis1)),
¢F (11, K (@ 11, K (101)) = 6" (1 W), i, Witia)) = v(1).
From this we can derive w(t;) as a simple analytic formula; see Section 18.2.4.2.
We would like to note that in (18.3) we may replace the projection operator by a

general nonlinear function, if necessary. We will discuss this case in Section 18.2.3
and we will consider this case in our example in Section 18.2.7.

w(t;)

(18.5)

18.2.2 Comparison to Full Proxy Scheme Method

The full proxy simulation scheme introduced in Section 18.1 corresponds to K' = K°.
Thus, it is a special case of Equations (18.2) and (18.4) if IT is the identity and if

Lv(t) = K* (i) = K2(ti1) (18.6)

has a solution v(t;) (not only in the sense of a closest approximation). If, however,
(18.6) has no solution, v(¢;) from (18.2) still defines a valid mean shift for the scheme
K*. The scheme K' will be the closest approximation to K° fulfilling the measure
continuity condition with respect to K*.

A major advantage of the partial proxy scheme is that the projection IT may be
chosen such that (18.2) has an exact solution with respect to the submanifold defined
by I, so K and K° coincide on a k-dimensional submanifold. We will make use of
this in our example in Section 18.2.6.

18.2.3 Nonlinear Proxy Constraint

An obvious (and commonly required) generalization is to replace the linear projection
operator I by a general, possibly nonlinear function f : R" — R¥ and define v(z;) as
the solution of

Fltivr, KOtinn)) = fltir, K™ (ti01) = T(@t) - v(1,)). (18.7)

2 We will later consider the general case of nonlinear proxy constraints and ¥;,,, -measurable mean shifts;
see Sections 18.2.3 and 18.2.4.
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Thus we have f(ti.1, K%(t;11)) = f(tiv1, K'(t:11)). An example of an application of
this generalization is a LIBOR market model, where f represents a certain swap rate
or function of swap rates (e.g., a CMS spread’). The condition will then ensure that
the path values of the swap rate(s) are the same under K° and K.

18.2.3.1 Linearization of the Proxy Constraint

While a constraint like (18.7) will be the general application, its numerical implemen-
tation may be expensive since one has to solve the nonlinear equation on every path
in every time step. However, if K*(t;;1) is a small perturbation of K°(t;, ), we may
linearize Equation (18.7). In other words we would set

= f(K(tiw) (18.8)

Note that the proxy simulation method is constructed such that a finite difference us-
ing small perturbation will remain stable, i.e., K*(#;;) may be chosen to be arbitrarily
close to KO(t;1).

18.2.3.2 Finite Difference Approximation of the Nonlinear Proxy
Constraint

The linearization (18.8) of f may still result in relatively large computational costs,
because the projection operator has to be calculated on every path. Note that we
linearize around K°(t;+1, ). Thus the quasi-inverse of I1I" has to be calculated on
every path in every timestep. If we want to implement a faster calculation of the mean
shift v(f;, w;), we can calculate an approximate solution of (18.7) by guessing the
directional shift #(z;) and finite differences to determine the shift size.

Assume we knew that the directional shift ¥(z;) does not lie in Kernf'I". Then for
some € > 0 calculate

1
Aoy f = ;(f(tm, K*(tie1) — € T(t) - 9(8) — fltir1, K2(t:41))) (18.9)

and set
T v(t) = (Aiesy)™" - (1) (18.10)

in the definition of the partial proxy scheme K' (18.4).

This solution has the desirable property that its implementation allows the constraint
function f to be specified exogenously by the user; this constraint function may vary
with the application.

3 CMS: constant maturity swap; see Section 12.2.6.1
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Example: If K is the log of the forward rates under a LIBOR market model and f
is a swap rate, i.e., we would like to keep a swap rate rigid, then we can achieve this
by modifying the first factor. This corresponds to ¥(;) = (1,0,...,0). From (18.9)
we can calculate the impact of a shift of the first factor on the swap rate; from (18.10)
we can calculate the required magnitude of this shift (it is a scalar equation with a
scalar unknown vy (;)).

We will consider a constraint like (18.7) next. In our benchmark application, a
trigger option on an index like a CMS swap rate is considered under the LIBOR
market model.

18.2.4 Transition Probability from a Nonlinear Proxy
Constraint

18.2.4.1 The Proxy Constraint Revisited

There is subtle but crucial detail in the definition of the mean shift v(z;): It is defined
by comparing K*(fis1) to K(t:41):

St K1) = fltien, K*(fi00) = T(@) - v(5), (18.11)

not by comparing K*(¢;) to K%(,). Thus, in general, v(t;) is a ¥, -measurable random
variable, but not ; ,-measurable.* If we would define v(t;) through

i1, KO = fltir, K* (1) = T(t) - v(1)),
then it is not guaranteed that
Ftivt, K1) = fltio1, K (8101) = T - (1))

holds, after the drift and the diffusion from ¢; to t;, has been applied. To account for
the drift we could define v(#;) through

Fltirt, KOW) + 10)AL) = ftir, KTt + 7 ()AL = T(1) - v(8;)), (18.12)

which makes v(t;) a F,-measurable random variable, but there is still no guarantee
that the proxy constraint holds after the diffusion has been applied. However, it will
be the case for linear constraints.

From this consideration it becomes obvious that for the linearization of the proxy
constraint, we would have to linearize around K°(z;,;) and not around K°(t,). As a
solution of this linearization v(¢;) will be 7, -measurable only.

4 In the following we will say w(t;) is ¥y, -measurable only, if it is ¥, -measurable but not 7 -
measurable.
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If the mean shift v(#;) is defined by (18.11) as an 7, ,-measurable random variable,
it means—using Euler schemes—that v(¢;) depends nonlinearily on the increment
AW(t;), and the formula for the corresponding transition probability involves inverting
this dependence. Here are two examples.

18.2.4.2 Transition Probabilities for General Proxy Constraints

If the proxy constraint on time #; is linear, then it may be realized by an -
measurable mean shift v(¢;). In this case the calculation of the transition probabilities
that form the Monte Carlo weight leads to very simple formulas. From (18.5) we find
that for an ¥, -measurable mean-shift

= (e = (1)) + 1
wity = | exp [——— , (18.13)
’1(:11 2 Al‘,’

where x; 1= AW ().

If the mean shift v(z;) is only 7, -measurable, then it is still possible to obtain a
simple analytic formula for the transition probability; however, this formula requires
the differentiation of the functional dependence of v(#;) on the increment AW(z;).

Consider the general case where the mean shift v(7;) depends on the Brownian
increment AW(t)), i.e.,

v(t;) = vit;, AW(Y)).

Define ¥ = g(x) := x — v(t;, x). Obviously we have

(9v(t,,x)) 4 o 2E®) det (%)
#(x)

Here x denotes the (realization of the) Brownian increment AW and ¢ denotes its
probability density. Evaluating functions of ¥ = g(x) corresponds to pricing under the
partial proxy scheme K'; evaluating functions of x corresponds to the pricing under
the target scheme K*. From (18.14) we can read off the Monte Carlo weights for the
pricing under the scheme K' as

Ny, x)\ - (i — vk +
ox ) ]_I xp (_ 2 Ay ’

X~g( X)

$(x) dx #(g(x)) de t( dx)dx. (18.14)

w(t;) = det (1 - (18.15)

k=1
where x; 1= AW(¢).

Obviously this result is not limited to the case of Euler schemes. The only require-
ment with respect to the scheme is that it is generated by the Brownian increments
AW(t) (e.g., as for a Milstein scheme). We summarize our result in a theorem.

Lemma 211 (Partial Proxy Simulation Scheme): Let K*(1;),i =0, 1,2, ..., denote
a numerical scheme generated from the Brownian increments AW(zr,), i =0, 1,2, ...
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(target scheme), i.e.,
K*(tiv1) = K'(ti1, K (1), AW(1;) — v(1)

Let K°(), i = 0, 1,2,... denote another numerical scheme, also generated from the
Brownian increments AW(¢;) and close to K*.
For a given function f (the proxy constraint) let v(¢;) denote a solution of

FCits K (G, KX, AW(E) = v(0) = f(tiar, K (1141))
and—assuming a solution exists—define the scheme K' by
K'(ti1) 1= K (11, K7 (0), AW(1) = (1)),

Then the Monte Carlo pricing under the scheme K* is, in the Monte Carlo limit,
equivalent to the pricing under the scheme K' using the Monte Carlo weights [] w;
with w; given by (18.15).

We call the scheme K' the (partial) proxy scheme satisfying the proxy constraint
Fin, KN (i) = [, KOti)

18.2.4.3 Example

Since we desire an implementation that is both generic and fast, we would like to
discuss a special case, sufficiently general for all our applications and simple enough
to give direct formulas for the transition probabilities:

Assume that w(#;) is linearly dependent on the increment AW(t,), i.e.,

v(t) = Al) - AW() + b(t),
with A and b being ¥,-measurable. Then we have for the mean-shifted diffusion
AW@) —v(t) = (1 - A@) - (AW() - b(1).

Thus the corresponding transition probability is normally distributed with mean b(t;)
and standard deviation (1 — A(t;)) VAr;. Note that if the target scheme is a small
perturbation of the reference scheme, then A(#;) is small and (1 — A(#;)) is nonsingular.

So here, the ¥, -measurable mean shift is given by an ¥, -measurable mean shift b
and a scaling of the “factor” AW. We will make use of this in our next example: A
proxy constraint stabilizing the calculation of vega, the sensitivity with respect to a
change in the diffusion coefficient.
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18.2.4.4 Approximating an 7,  -measurable Proxy Constraint by an
7. -measurable Proxy Constraint

To allow rapid calculation of the transition probability we propose to approximate the
proxy constraint (18.11) by (18.12). Thus v(#;) is an #,,-measurable mean shift and
the ratio of the transition probabilities is given by (18.13).

In addition we propose to linearize this constraint around K O+ ,uo(t,-) At;, defining
the linear proxy constraint by IT := f’(KO(ti) + ,Llo(l‘,') Ar).

All of our benchmark examples are based on the approximative constraint (18.12)
or its linearization.

18.2.5 Sensitivity with Respect to the Diffusion
Coefficients—Vega

If we consider only an ¥, -measurable mean shift applied to the Brownian increment
AW(t;), then the method is not applicable to the calculation of a sensitivity with
respect to the diffusion coefficient I'(t;)—a.k.a. vega. The reason is simple: There is
no ¥,-measurable mean shift that will ensure that the proxy constraint holds at #;;,
after a different (¥, -measurable) diffusion has been applied—not even if the proxy
constraint is a linear equation. Neglecting the Brownian increment, as suggested
in Section 18.2.4.4, is a step in the wrong direction, since we are interested in the
sensitivity with respect to the diffusion coefficient.

Of course, in our general formulation (18.11), an ¥, -measurable mean shift
applied to the diffusion AW(#;) will ensure that the proxy constraint holds at time ¢,,;,
even if the diffusion coefficient has changed. However, to obtain a simple formula
for the transition probability and thus the Monte Carlo weight w(z;), it is helpful to
take an alternative view to the problem: The idea is similar to what is done in the case
of a full proxy scheme (see [70]): We modify the diffusion of the proxy scheme to
match the diffusion of the reference scheme and calculate the corresponding change of
measure. In other words, we use the unperturbed diffusion coefficient for the (partial)
proxy scheme. This adjustment is made prior to the calculation of the mean shift v(z;)
for the corresponding proxy constraint, which will correct additional differences in
the drift, if any.

From the previous section it is clear that this is equivalent to specifying an ¥, -
measurable mean shift, being linear in the Brownian increment AW(#;).

18.2.6 Example: LIBOR Target Redemption Note

We are going to calculate delta and gamma for a TARN® swap. The coupon for the
period [T}, T;4 1] is an inverse floater max(K -2 L(T;, Ti41), 0) and it is swapped against

5 TARN: target redemption note; see Section 12.2.5.1.
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floating rate L(T;, T;,,) until the accumulated coupon reaches a given target coupon.
If the accumulated coupon does not reach the target coupon, then the difference to the
target coupon is paid at maturity.

Thus the coupon of the TARN is linked to a trigger feature, similar to the digital
caplet. However, here, the trigger depends on more than one rate, so it is not sufficient
to set up a proxy constraint for a single forward rate, unlike for the digital caplet.

Our unperturbed scheme is the LIBOR market model with the initial yield curve,
evolving the log-LIBOR with an Euler scheme. The natural perturbed scheme is then
the same, except for a different initial condition. We will use the following proxy
constraint:

LT, Tist) = LT Ti) Vie T, T)),

for all periods of the model to obtain the preferred proxy scheme. The constraint is
realized by a mean shift of the diffusion of the first factor, and since the forward rate
follows a lognormal process, we have v = (v{,0,...,0) with

log(LY(T;, Tjo13 1) = log(LN(T}, Tji15 1)
fij '

Vi) =

where f| ; denotes the j-th component of the first factor. We assume here that f; ; # 0.
A nonzero factor loading exists as long as the forward rate L(T;, T;,() has a nonzero
volatility. The results can be improved if the factor having the largest absolute factor
loading is chosen (factor pivoting).

Figure 18.3 shows the delta and gamma of a TARN swap for different shift sizes of
finite differences applied to standard resimulation and partial proxy scheme simulation.
For this example the interest rate curve was upward sloping from 2% to 10% and for
the TARN we took K = 10% and a target coupon of 10%.

With small shifts the variance of the delta and gamma calculated under full reevalu-
ation increases and the mean becomes unstable, while the mean for delta and gamma
calculated under partial proxy scheme remains stable and the variance small. For
increasing shift size full re-evaluation stabilizes, but higher order effects give a signifi-
cant bias. Very high shift increases the Monte Carlo variance of the likelihood ratio
and thus increases the variance of the delta and gamma calculated under the partial
proxy scheme simulation.
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Gamma of TARN Swap (5000 paths)

00 50 10,0 150 20,0 250 30,0 35,0 40,0 450 50,0
shift in basis points

Figure 18.3. Dependence of the TARN gamma on the shift size of the finite difference
approximation. Finite difference is applied to a direct simulation (dark gray) and to a
(partial) proxy scheme simulation (gray). Each dot corresponds to one Monte-Carlo
simulation with the stated number of paths. The red and green corridors represent the
corresponding standard deviation.

The proxy scheme simulation shows no variance increase for small shift sizes while
giving stable expected values for the sensitivity.

18.2.7 Example: CMS Target Redemption Note

Next we will kook at a target redemption note with a coupon max(K — 2 I(T}),0),
where the index /(T) is a constant maturity swaprate, i.e., I(T;) = §;;.4(7;) with

PT)
S,y = P(T;) — P(T: 1) _ P(Tiv1)
Litk — -1 - _ P(T;,
(Tt = TOP(Tj)) — SA Ty — T )

TN+ LT = T)) - 1
T = TH I+ LT = T)

I=j+1

The swap rate §;;.4(¢) is a nonlinear function of the forward rate curve L(r),
j=1,...,i+k—1 which we denote by §:

Siik(@®) =S, ..., Lig—1(2).

From the proxy simulation scheme we require S under L' to match S under the
reference scheme LY. Our proxy constraint is therefore

SN, Ly @) = SEXD..... Lo ().
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We solve this equation by modifying the first factor, i.e., in each time step ¢; we
determine a single scalar v;(z;) such that

S(Lij1) +vi(t) fris o Ll (i) + i) fiivi-1)

(18.16)
= SUtjsr)s- . LY (tj1)

and define Lll (l‘j.,.]) = L:-f(qu,]) + V](fj) fl,i~
To simplify and speed up the calculation, we (numerically) linearize Equa-
tion (18.16) and get an explicit (first-order) formula for v;; see Equation (18.10).

18.2.7.1 Delta and Gamma of a CMS TARN

The result of the calculation of delta and gamma is depicted in Figure 18.4. Using the
simple linearized proxy constraint we see a small increase in Monte Carlo variance
for the gamma with very small shifts.

Gamma of CMS TARN Swap (5000 paths)
B e S

T

00 50 10,0 150 20,0 25,0 30,0 350 40,0 450 50,0
shift in basis points

Figure 18.4. Dependence of the CMS TARN gamma on the shift size of the finite
difference approximation. Finite difference is applied to a direct simulation (dark
gray) and to a (partial) proxy scheme simulation (gray). The proxy constraint used
was a simple (numerical) linearization of (18.16).

The linearized constraint remains stable for small shifts. However, using a few
Newton iterations on the linearization solves the nonlinear constraint and further
improves the result for the gamma; see Figure 18.5.
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Gamma of CMS TARN Swap (5000 paths)
5.00 —— : :

0,00 ¢
-5,00

-10,00

gamma

-15,00
-20,00
-25,00

0,0 50 16.0 15;.0 26.0 25,0 30,0 35,0 40,0 45,0 50,0
shift in basis points

Figure 18.5. Dependence of the CMS TARN gamma on the shift size of the finite
difference approximation. Finite difference is applied to a direct simulation (dark
gray) and to a (partial) proxy scheme simulation (gray). The proxy constraint is given
by applying a few Newton iterations to the (numerical) linearization of (18.16).

18.2.7.2 Vega of a CMS TARN

We will calculate the vega of a CMS TARN, i.e., the sensitivity of the CMS TARN
with respect to a parallel shift of all instantaneous volatilities. The result is depicted
in Figure 18.6. For medium and large shift size the vega calculated from finite
differences applied to a partial proxy is similar to the vega calculated from finite
differences applied to direct simulation. However, note that for very small shift sizes
(around 1 bp), the vega calculated from finite differences applied to direct simulation
converges to an incorrect value and that this result occurs with a very small Monte
Carlo variance.

The reason for this effect is that the shifts are too small to trigger a change in
the exercise strategy. Hence, the vega calculated is the sensitivity conditional on no
change in exercise strategy, which is of course a different thing; see Section 17.2.4.

This effect is also present for delta and gamma and for all trigger products, but it
has not been visible in the figures so far due to the scale of the shift sizes and the
number of paths used there.
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Vega of CMS TARN Swap (5000 paths)

0,20%
0,10%
0,00%
-0,10%
g -0.20%
-0,30%
-0,40%
-0,50%
-0,60%
00 10 20 30 40 50 60 7,0 80 90 100
shift in basis points

ega

Figure 18.6. Dependence of the CMS TARN vega on the shift size of the finite
difference approximation. Finite difference is applied to a direct simulation (dark
gray) and to a (partial) proxy scheme simulation (gray). The proxy constraint was
given by applying a few Newton iterations to the (numerical) linearization of (18.16).

18.3 Localized Proxy Simulation Schemes

18.3.1 Problem Description

Let us consider an asset or nothing option on some underlying S. The asset or nothing
pays
vy - {S(T) ifS(T) > K
0 else.
in time T, where T is the maturity and K is the strike. Let us assume that our model
implies S(T) > 0.

Due to the discontinuous payout it seems best to calculate sensitivities using a
likelihood ratio method, or - speaking of proxy simulation - to apply a (partial) proxy
simulation scheme with a proxy constraint keeping S (T') rigid.

However, for K — 0 the payout of V is V(T') = S$(T) and thus smooth. In this case
a likelihood ratio method would give extremely noisy results and it is best to calculate
sensitivities using the pathwise method.

In Figures 18.7, 18.8 we look at the delta and gamma calculated using direct
simulation (pathwise method) or proxy simulation (likelihood ratio method) for a
digital caplet with strikes at the forward and away from the forward.
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Delta of Digital Caplet with strike at 10% (5000 paths)

0.0 5:0 16.0 15',0 26.0 25,0 SE.LO 35.0 40.0 45.0 50.0
shift in basis points

Delta of Digital Caplet with strike at 2% (5000 paths)
2.00% 1

1.00% -
0.00% -
-1.00% 1

Vﬁ

-2.00% -
-3.00% 1
-4.00% 1

0.0 5}.1 10.‘0 15..0 20..0 25..0 36.0 35..0 40.0 45.0 50.0
shift in basis points

Figure 18.7. Delta of a digital caplet calculated by finite difference applied to direct
simulation (dark gray) and to a partial proxy scheme simulation, internally using
the likelihood ratio method (light gray). The forward of the model is at L(0) = 10%.
If the the strike K is close to the forward (left figure, K = L(0) = 10%) then the
partial proxy scheme (likelihood ratio method) remains stable for small shifts, while
the direct simulation (pathwise method) becomes unstable. If the strike K is far from
the forward (right figure, K = 2%, L(0) = 10%) then the partial proxy scheme falls
short of the direct simulation due to the huge Monte-Carlo variance introduced by

the likelihood ratio.
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Gamma of Digital Caplet with strike at 10% (5000 paths)

00 50 10.0 150 20.0 25.0 30.0 35.0 40.0 45.0 50.0
shift in basis points

Gamma of Digital Caplet with strike at 2% (5000 paths)

gamma
o
8

-5.00 it
0.0 50 100 15.0 20.0 250 30.0 350 40.0 45.0 50.0
shift in basis points

Figure 18.8. Gamma of a digital caplet calculated by finite difference applied to
direct simulation (dark gray) and to a partial proxy scheme simulation, internally
using the likelihood ratio (light gray). For gamma the proxy simulation scheme is the
method of choice in both cases, K = L(0) = 10% and K = 2%.
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18.3.2 Solution

The idea we present here is to use the likelihood ratio method for those paths w for
which the underlying is close to the discontinuity, while using the pathwise method
elsewhere. In other words: we mix the pathwise and likelihood ratio method on a
per-path and time-step basis.®

Surprisingly, this may be achieved by a simple modification of the partial proxy
simulation scheme method, namely through the introduction of a (product dependent)
localization function.

Since the location of the discontinuities of a payout is, naturally, known a-priori, it
is straightforward to define the localization function as part of the pricing code.

We also suggest an object oriented design that allows the retention of much of the
separation of model and product. The model provides a method such that the product
can set the localizer before the pricing starts.

18.3.3 Partial Proxy Simulation Scheme (revisited)

We repeat the definition of the partial proxy simulation scheme method.

18.3.3.1 Reference Scheme and Target Scheme

Let a model be given in the form of a stochastic process Ky. For example an It6-
Process
dKy = u(t,0)dt + o(1,6) - dW (18.17)

with initial data K4(0), defined over a filtered probability space (Q,F,{F, |t €
[0,T]}, Q) where Q denotes the pricing measure associated with some numéraire
N. Here 6 is any model parameter for which we would calculate a sensitivity,
ie. %EQ( f(Kg)I?"O)l o0’ where f denotes a numéraire relative payout.

Let 0 =t; <t <...denote a time discretization and

(K°(t)1i=0,1...)

a given time discretization scheme of the model K. We call K° the primary scheme.
Furthermore let
{K*(t)1i=0,1..)

denote a time discretization scheme for the model Ky. We call K* the target scheme.
See Section 13.1 on the time discretizaton of SDEs and Monte-Carlo simulation.

6 The results obtained from using a localized proxy simulation scheme for the test cases in Figures 18.7,
18.8 are shown in Figures 18.9, 18.10 of Section 18.3.7.
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18.3.3.2 Transition Probabilities

We assume that the discretized prozess obtained from the discretization scheme is
Markovian, such that we may define the transition probility density for the increment
AK*(t;) as a function of K*(t;), K*(t;+1). We will denote the transition probability
density of AK*(#;) by

oty ) x=K't), y=K()

(and correspondingly for AK°(¢;) and all other schemes considered).

18.3.3.3 Proxy Constraint and Proxy Scheme

Let f : I X R* — R* denote a given function, the proxy constraint, fulfilling the
following assumption:
Foranyt; €l,i>0
f, K°(1)) = f(u, KP (1) (18.18)
has a solution K?(t;) such that the transition probability densities of AK*(¢;) =
K*(ti1) = K* (1), AKP (1) = KP(1;41) — KP(1) fulfill

oK Gyt ) =0 = Kty t0=0  VYixy (18.19)
where
KP(1g) = K'(to) = Ky(0).

In other words: Equation (18.18) implicitly defines a scheme K”(z;) which coincides
with K°(t;) on the manifold defined through the proxy constraint, but allows a measure
transformation to the scheme K*(#;,).

In the special case where v(t;) := AK"(t;)—AKP(1;) is Fr,-measurable, the transition
probability of K” may be given as a modification of the transition probability of K*,
easing calculation, In this case it is

5 Uty tinx) = X (rytnx—v) | x=KP(®), y = KP(ti1).
For the general case where v(¢;) depends on K*(#;,;), K°(t;+1) we may also derive a
simple formula for ¢*”.
18.3.3.4 Calculating Expectations using a Proxy Simulation Scheme

For the calculation of expectations we use the simulation scheme K? in place of
- . . K‘ .
K™ and perform a change of measure, i.e. a weighting by ;’W For the expectation
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operator we have

EX(f(K*(t0), K*(11), ... K* ()| F,)

n=1 ,g*
o8 (t;, KP(1); tiv1, KP(ti11))
= EQ| f(KP(to), KP(1)), ..., KP(1,)) -
SN0, KA, KD D¢’<"<r,-,Kﬂ(z,->;z,-+1,1<ﬂ(r,»+1)>

e |-

(18.20)

This is immediately clear using the integral representation of E2 with the above
densities.

18.3.3.5 Example: Euler Schemes

For illustrative purposes, we will assume that K° and K* are Euler schemes for 1td
processes, differing only in the model parameters (initial value, drift and diffusion
coefhicients), i.e.

K°(tis1) = K°(t) + p°(1)AL; + T2 () AW(Y),  K°(0) = Ko(0)
K*(ti1) = K'(0) + 1 (0)A + T (0)AW(),  K*(0) = Ky(0).

Let
K?(ty) := K*(t).

Let u(t;) denote the solution of
i1, K2(ti)) = flti, K7 (1) + AK™(0) = T(t) - u(t), (18.21)
- implicitly assuming it exists. Then we define
KP(ti1) = KP() + AK™ (1) = T(#) - ult), (18.22)

i.e. with v(t;) = AK*(t;) — AKP(¢;), u(t;) solves I'(t;) - u(t;) = v(t;). The scheme K” has
the following properties:

e It coincides with K° on the k-dimensional sub-manifold defined by f(f+1, ),
ie. _f(t,'+1, Kp(t[+]) = f(ti+l7 Ko(tHl))-

e It is given by a mean shift u(z;) on the Brownian increment AW(z;) of the target
scheme K*. The change in transition probability is thus trivial to calculate.
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18.3.4 Localized Proxy Simulation Scheme

Let K° and K* be as above. Let f : I x R" — R¥ denote a given function, the proxy
constraint. Let g : / X R” — [0, 1] denote a given function, the localization function.
We define the localized proxy simulation scheme by induction. Let

KM (t0) = K" (1)
For 1; € I, i > 0 we assume that
fQiet, K°(i0)) = f(tir, KP2() + AKP (1))
has a solution AK?(¢;). Then we set

KPo(0) = KPP + g1y, K°) - AKP(8) + (1 — g(tin1, K°)) - AK* (1))

. ) (18.23)
= AK™(t;) + g(tir1, K°) - v(1),

where v(t;) = AK*(t;) — AKP(t;) - as above. We assume that f, g allow a solution
KP(1,,1) such that the transition probability densities of AK*(t;) = K*(t;11) — K*(t;),
AKPAC(y = KPdoc(r, )y — KPloc(r) fulfill

KUyt =0 = K (Gntnx) =0 Vixy. (18.24)

The function g is called the localization function. The localized proxy simulation
scheme has the following properties:

e At times t;;| and paths w where g(t,,1, K°(w)) = 1, the value of f applied to the
realization K7°°(t,,, w) coincides with the value of f applied to the realization
K°(t;41, w) of the primary scheme. In other words, at g = 1 the quantity f stays
rigid.

e Attimes t;;; and paths w where g(#;,1, K°(w)) = 0, the increments of AKPoc(s,)
coincide with the increments of AK™(#;) (as would be the case for a perturbation
of a simulation scheme using the pathwise method).

We assume that the localization function g is such that there is a change of measure
allowing us to write an expectation of a function of K* as an expectation of a function
of Kp,l()c'

There is a subtle point in the definition of the localized proxy simulation scheme:
In (18.23) the localization function depends on K°, thus it does not depend on the
model parameter 6. This makes the localization more robust, e.g. if the localization
function is not smooth. Note: In most applications the localization function at time
tiv will depend on K°(#;41), i.e. g(tiv1, K°) = g(ti+1, K°(#;+1)) in (18.23), but it is also
possible to have a localization function that depends on past realizations g(;41, K°) =
gt Kl = 0,...,i + 1}) (a target redemption note is such an example).
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18.3.5 Example: Euler Schemes

As in 18.3.3.5 let us assume that K° and K™ are Euler schemes for It6 processes,
differing only in the model parameters (initial value, drift and diffusion coefficients),
ie.

K1) + p* (i)Ar + T ()AW(), - K°(0) = Ko(0)
K1) + 15 (A + T @AW (), K7(0) = Ko(0).

KO(IiH)
K*(tir1)

Let
KP(19) = K*(t9).

Let u(#;) denote the solution of the proxy constraint
S, K@) = fltir, KP(6) + AK* (5) = T(@) - u(1), (18.25)
- implicitly assuming it exists. Then we define
KP(ti1) = KP(6) + AK" (1) = T(0) - g(tivn) - ulty). (18.26)
The scheme K7/ has the following properties:

e At times #;,; and on paths where g(#;,1) = 1, it coincides with K° on the
k-dimensional sub-manifold defined by f(ti.1,-), i.e. f(ti1, KP(ti11)) =
f(tiﬂ s Ko(tiﬂ))-

e It is given through a mean shift g(z;,1)u(¢;) on the Brownian increment AW(z;)
of the target scheme K*. The change in transition probability is thus trivial to
calculate.

18.3.6 Implementation

It may seem that the implementation of the localized proxy simulation scheme is
difficult and resource intensive. First, the partial proxy simulation scheme K? is
defined only implicitly by the proxy constraint. Second, K7¢ is calculated as an
interpolation of K” and K*. So all in all it appears as if we are required to do four
simulations.

However, for the standard Euler scheme at least, the localized proxy simulation
is just a simple modification to a standard Monte-Carlo simulation, where a product
calculates the required mean shift v(t;) and provides it to the model. It may be
implemented in an object oriented design using just a small amount of additional
code. It will not be required to calculate K* or K” explicitly.
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18.3.7 Examples and Numerical Results
18.3.7.1 Localizers

We investigate two simple localization functions. The first based on a piecewise
constant function

1 for |x| < €.
hin(x, €1,6) = l;'%:: fore < x| < e.
0 for x| > .
The second being a smooth variant
1 for |x| < €.

h X £l * = —
. p(x €,6) {exp (_% (L?T;l)z) for ) < |l

In our numerical experiment we found virtually no difference between the use of Ay
versus hex,. However the choice of the localization domain given by e, € is relevant.

18.3.7.2 Model

As our model SDE we consider a standard LIBOR market model, see Chapter 19.

18.3.7.3 Example: Digital Caplet

We consider a LIBOR market model L = exp(K) with K as in (18.17). The proxy
constraint is
L,c')+1(ti+1) = L,I')+1(ti+l)-

We use the localization function

8ltivt) = gltiv1, LY, (tix)) = hin(Li, (tis1) — K, €1, &) iftiy1 =g,
gltic)) = 0 else.

where 1 is the exercise date of the option, K its strike and L7, (;+1) is the LIBOR rate
calculated from the reference scheme K°.

Numerical Results

We perform a numerical calculation with the simplified model data L(0) = 10%,
o = 20% and the drift u being chosen as the risk neutral drift under terminal measure.

Using €) = 1%, e, = 2% (which is a good, but not the optimal choice) we obtain
the results shown in Figures 18.9, 18.10. The localized proxy simulation scheme
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beats all competing methods (direct simulation (pathwise methods) or partial proxy
(likelihood ratio method)) for options with strikes both at the forward and distant from
the forward. It also gives much better results than the (non-localized) partial proxy
simulation scheme for gamma.

18.3.7.4 Example: Target Redemption Note (TARN)

We consider a more sophisticated example: a target remption note with a structured
coupon. The target redemption note matures (and pays back the notional) if the
cumulated coupon hits a pre-defined target coupon. In contrast to the digital caplet:

o The trigger criteria is (in general) path dependent, e.g. a cumulated coupon.

¢ The discontinuity is given by a change in maturity (chosen from a discrete set
of observation dates). Thus almost all paths will exhibit a discontinuty.

As a consequence, the definition of a localizer is slightly more complex. The localizer
itself will be path-dependent.

We give a short definition of the TARN, see also [91]: Let 0 = Ty < T} <
T> < ... < T, denote a given tenor structure. Fori = 1,...,n— 1 let C; denote a
(generalized) “interest rate” (the coupon) for the periods [T}, T}y ], respectively. We
assume that C; is a ¥7,-measurable random variable (natural fixing). Furthermore let
N; denote a constant value (notional). A target redemption note pays

N; - X; at Ti1,
where
C fori=1,

' i-1 ) (structured coupon)
min(C; ,K - Y Cy) fori>1
k=1

i-1 i
1 for }; Cy <K <=3 Cyori=n, .
k=1 k=1 (redemption)

0 else.

i
max(0, K- Y C fori =
( kgl 2 ten (target coupon guarantee).
0 clse.

The payoft of the target redemption note contains the discontinuous (digital) part

i-1 i
1 for ), C, <K <=3} Cy,
k=1 k=1

0 else.
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Delta of Digital Caplet with strike at 10% (5000 paths)

g 2.00%

1.50%

1.00%

00 50 10.0 150 20.0 250 30.0 35.0 40.0 45.0 50.0
shift in basis points

Delta of Digital Caplet with strike at 2% (5000 paths)

-1.20% -

-1.30% -

g -1.40%

-1.50% A

-1.60% . . v v e - v
00 50 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0

shift in basis points

Figuve 18.9. Delta of a digital caplet calculated by finite difference applied to direct
simulation (dark gray), to a partial proxy scheme simulation (light gray) and to a
localized proxy simulation scheme (gray). The initial forward rate of the model is at
10%. If the the strike K is close to the forward rate (left figure) then the partial proxy
scheme (likelihood ratio method) remains stable for small shifts, while the direct
simulation (pathwise method) becomes unstable. If the strike K is far away from the
forward rate, the partial proxy scheme falls short of the direct simulation due to the
huge Monte-Carlo variance introduced by the likelihood ratio.
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Gamma of Digital Caplet with strike at 10% (5000 paths)

0.0 50 10.0 150 20.0 250 30.0 350 40.0 45.0 50.0
shift in basis points

Gamma of Digital Caplet with strike at 2% (5000 paths)

0.0 50 100 150 20.0 25.0 30.0 35.0 40.0 45.0 50.0
shift in basis points

Figure 18.10. Gamma of a digital caplet calculate by finite difference applied to
direct simulation (dark gray), to a partial proxy scheme simulation (light gray) and to
a localized proxy simulation scheme (gray). As in Figure 18.7, considering different
strikes shows that one or the other methods prevails.
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18.3.7.5 Proxy Constraint and Localizer for the Target Redemption
Note

A pathwise payoff of the TARN depends discontinuously on the cumulated coupon
i

> Cy. Consequently the proxy constraint is

k=1

i-1
fW =Y CT)+Ci)  VTiy<t<T:
k=1

Let

denote the time T; trigger level. K;_; is T;_;-measurable, so conditional to F, , itisa
constant. Then the localizer is given by

g(t) = hexp(Ki—l - Cl(t)9 €, 62)'

Numerical Results

Figure 18.11 shows some numerical results comparing direct simulation, partial proxy
simulation and localized proxy simulation for a TARN, calculating Gamma.

Further Reading: The (full) proxy simulation scheme method was
instroduced in [70]. The partial proxy simulation scheme method is

found in [69]. The localized partial proxy simulation scheme method
is found in [66]. <l
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delta

0,0 5.0 100 150 20,0 25
shift in basis points

Gamma of CMS TARN Swap (5000 paths)
50,00 EeframeraT oy

25,00

0,00

gamma

-25,00

-50,00 ¢

0,0 5:0 1l.'.i,EI 1!';.0 26.0 25(
shift in basis points

Figure 18.11. Delta and Gamma of a target redemption note (the coupon is a reverse
CMS rate) calculated by finite difference applied to direct simulation (dark gray), to
a partial proxy scheme simulation (light gray) and to a localized proxy simulation
scheme (gray). Direct simulation produces enormous Monte-Carlo variances for
small shift sizes. The method is useless. The partial proxy simulation scheme shows
an increase in Monte-Carlo variance if the shift size is large. The localized proxy
simulation scheme is an improvement on the partial proxy simulation scheme and
shows only small Monte-Carlo variance for large shifts. Note: The localizer used is
not the optimal one.
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18 3. LOCALIZED PROXY SIMULATION SCHEMES

Motivation and Overview - Part il

Up until now we have been considering models of a single scalar stochastic process
and options on it: The Black-Scholes model for a stock S, or the Black model for a
forward rate L. The true challenge in evaluation of interest rate products lies in the
modeling of the whole interest rate curve (instead of a scalar) and in the evaluation of
complex derivatives, which depend on the whole curve.

Historically the path to modeling the interest rate curve started with the modeling
of the short rate, from which we may calculate the whole interest rate curve; see
Remark 104. The initial motivation for considering the short rate derived from the
wish to model a scalar quantity, thus to be able to apply familiar numerical methods
from stock models, e.g., binomial trees.

For didactic reasons we are not going to present things chronologically. Instead,
we consider the LIBOR market model first. It is a high-dimensional model, which
discretizes the interest rate curve into a finite number of forward rates. It is highly
flexibly due to its huge number of free parameters. It will allow us to study model
properties like mean reversion, number of factors (Chapter 25), instantaneous volatil-
ity, and instantaneous and terminal correlation (Chapter 21). Despite its presumed
complexity, the LIBOR market model is essentially a very simple model: It is nothing
more than the simultaneous consideration of multiple Black models under a common
measure. So we are carrying on from Chapter 10.

For the short rate models the modeled quantity is the short rate, a quantity not
directly observable. Here we model quantities which are observable as market quotes,
like the LIBOR or the swap rate. The class of models that model quantities which are
directly observable on the market are called “market models”. We will look at the
LIBOR market model first.
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CHAPTER 19

LIBOR Market Model

The pure and simple truth
is rarely pure and never simple.

Oscar Wilde
The Importance of Being Earnest [39].

We assume a time discretization (tenor structure)
0=T0<T1 <~'-<T,,.

We model the forward rates L; := L(T;, T;,,) fori = 0,...,n - 1; see Definition 99.
This represents a discretization of the interest rate curve, where the continuum of
maturities has been discretized.!

The LIBOR market model assumes a lognormal dynamic for LIBORs L; :=
UT:, Tisr), ie.?

LA
dL’((;)) = yf(dr + oty dWF(@e)  fori=0,...,n— 1, under P, (19.1)
i

with initial conditions
Li(0) = L;p, with Lig € [0,00),i =0,...,n -1,
where W,].p denote (possibly instantaneously correlated) P-Brownian motions with
AW/ () dW; (1) = p; (1) dt.

Leto;: [0,T] = Rand p;; : [0, 7] — R be deterministic functions and y; the drift as

In practice it is normal to model semiannual or quarterly rates 7| — 7; = 0.25 and to consider these
up to a maturity of 20 or 30 years, giving 80 or 120 interest rates to model.
2 We denote the simulation time parameter of the stochastic process by 7.
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Motivation: Equation (19.1) is a lognormal model for the forward
rates L;. If we consider only a single equation, i.e., fix i € {1,...,n— 1},
it represents the Black model considered in Chapter 10: Equation (19.1)
is identical with Equation (10.1). If we change the measure such that L;
is drift-free (see Chapter 10), we see that the terminal distribution of L; is lognormal.

Thus, the LIBOR market model is equivalent to the consideration of # Black models
under a unified measure.

As was discussed in Chapter 10, to evaluate a caplet under this model it is not
relevant that o; is time dependent (we have assumed time dependency of o in
Chapter 10 for didactical reasons). However, for the value of complex derivatives
the time dependency matters. A further degree of freedom introduced in (19.1) is the
instantaneous correlation p; ; of the driving Brownian motions. For the value of a
caplet the instantaneous correlation is insignificant (indeed, it does not enter in the
Black model). For the evaluation of swaptions the correlation of the forward rates is
significant.

For further generalizations of the model, consider nondeterministic o, i.e., stochas-
tic volatility models. In this case the terminal LIBOR distributions no longer cor-
respond to the Black model ones, which is, of course, intended. Equation (19.1) is
to be seen as a starting point of a whole model family. The model (19.1) has been
chosen as the starting point, because (historically) the lognormal (Black) model is
well understood, especially by traders.? 4

Remark 212 (Interest Rate Structure): Equation (19.1) models the evolution of
the LIBOR L(T}, T;;,). Without further interpolation assumption, these are the shortest
forward rates that can be considered in our time discretization (fenor structure). The
equation system (19.1) thus determines the evolution of all bond prices with maturities
T; and all forward rates for the periods [T}, Ty ], since

PT) 17 P@T)

P(To) | P(Tp1)

1+ LT, Te)(T —T)) =

k-1
- ]—[(1 + L(T;, Tjs1))(Tje1 = T))).
J=i

To shorten notation we write 6; := Ty — T;, i = 0,...,n — 1 for the period length.

3 Caplet prices are quoted by traders by the implied Black volatility. This is, of course, just another unit
of the price, since the Black model is a one-to-one map from price to implied volatility.
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19.1 Derivation of the Drift Term

As in Chapters 10 and 11, our first step is to choose some numéraire N and derive the
drift under a martingale measure QV. If the processes have been derived under the
martingale measure QV, then the (discretized) interest rate curve may be simulated
numerically and a derivative V may be priced through V(0) = N (O)EQN(%ITTO) (see
Chapter 13).

We fix a numéraire N. Let the assumptions of Theorem 74 hold such that there
exists a corresponding equivalent martingale measure Q" such that N-relative prices
are martingales. From Theorem 59 under Q" the process (19.1) has a changed drift,
namely

dL(2)

Q¥ QY :
T = A Od 4 c@dWE @ fori=0,.n-1. (19.2)

19.1.1 Derivation of the Drift Term under the Terminal
Measure

We fix the T,-bond N(f) = P(T,; {) as numéraire. From Theorem 59 under QF7 the
process (19.1) has a changed drift:

L _ @™ har v o aW®™ 0 foriz=0...n—1.  (193)
Li(n
We need to determine u?mm. The martingale measure Q¥7») corresponding to N(¢) =
P(T,; 1) is also called terminal measure (since T, is the time horizon of our time
discretization).
As in Chapter 10, we will construct relative prices with respect to P(T,,) and obtain
equations from which we will derive the drifts 1;. From Definition 99

M PT) _ PT) .
I_I(l+6kLk) P(Tk+1) BT fori=0,...,n—1. (19.4)

=i

P(Ty)
TRTLp

Since we have a P(T,)-relative price of a traded product on the right-hand side
in (19.4), we have for the drifts:

n-1
]_[(1 +&LY|=0

Drift
QP[Tn
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We apply Theorem 48 and obtain V i = 0, . . .

n~1 n-1

n-1
d(l—[(l + 6kLk)J
k=i

j=i k=i

,n—1

n—1 n-1

DI a+aL sz, + Yo Ta+6Los;dL; s dr,

Ji=i k=i

k#j I>j k#jl
n~1 -1 n—-1
6; dL; 6,dL; &,dL,
= 1+ 6Ly R B
D( ek Z Z::il+6ij 1461,
1>
-1
6,dL; §/dL;
= 1+ 6 Ly) L )
n( e Z Z 1+6,L; 1+61L
j= Iz j+1
I<n~1
SinceVi=0,...,n—1
n—1
Drift B(l +6kLk)] =0 (19.5)
it follows thatVi=0,...,n—1
n—1
. d;dL; 6;dL; §,dL
Zant Ul et B s B (19.6)
QP(Tw} l+(5ij eyt 1+6ij 1+ 6L
I<n-1
andthusV j=0,...,n—1
| 64 §;dL; &, dL,
Drift | —/— + ) = 0. (19.7)
QP 1+(5ij = l+5ij 1 +6,L
I<n-1
If we now use
Q( n) QP(Tﬂ)
dL = j,u d[+LO'J dW and dLj dL[ZLjL/O'jO'ij,[ dt

in (19.7), then we have

QPm 6;L; o;L; 1L,
: + —_— =0,
S 1;1 IFoL; T+aL; 77

I<n—1
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ie.,
QP OLy(1)
) y=- —— 0 Hp; . .
G ,>Z oL T OTpi (19.8)
> j+1
I<n—1

The procedure above may be summarized as follows: To derive the n drifts we
write down n independent traded assets as a function of the model quantities. By
considering the drifts of their relative prices, we obtain n equations for the drifts of
the modeled quantities.

19.1.2 Derivation of the Drift Term under the Spot LIBOR
Measure

We fix the rolled over one period bond as numéraire, i.e., the investment of 1 at time
Ty into the T,-bond and after its maturity the reinvestment of the proceeds into the
bond of the next period, i.e., in T'; the reinvestment in the 7;.;-bond. It is

m(t)+1 m(t)

N = PO [ ] g = PTwos0 [ [+ LT op. - (199)
=1 Jo -l =0

P(T, ;T;)
= LY (s L (T 06
P T, ) ( J~t(Tj=1)8,1)
where m(r) := max{i : T; <t}and 6; := Tj; — T;. The corresponding equivalent

martingale measure Q" is called the spot measure.

As before, we consider the processes of N-relative prices of traded products (from
which we know that they have drift O under QV). We consider the N-relative prices of
the bonds P(T;). Itis

m(t)

P(Ti 0 P(Ti;n _
- 5 EO[(l +Li(T;))6,)"

Nt P(Tupi;

m(t)

i—1
- ﬂ (1+Ljns;)~" ]_[(1+L,(T,)5_,-)—1, (19.10)
j=m(n)+1 =0
thus
i—1
Drift ﬂ (1+Lk6k)"|=0. (19.11)
k=m(t)+1
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Since

i—1 m(t)
d[ [ a+Lwey ]_]<1+L1<Tj>6j>“]
=0

j=m(t)+1
i—1 m(t)

= d( 1_[ (1+Lj(r)5j)—‘] ]—[(1+L,(Tj)6j)“,
Jj=0

J=m()+1

we consider

i-1
1
d
[ l—-[ 1 +6kLk]

k=m(0)+1
=l i1 1 —6j dL] N 63 dLJ dL]
1+ 6L \(1+6,L)?  (1+6,L;)

JEm)+1 k=m(n)+1
k#j

i-1 i1 1 8, dL; 6? dL; dL; 6, dL, 67 dL, dL,
1+6L \(A+6;L)  (1+8L)° )\N(L+6L)*  (1+6L)

+

J=m(+1 k=m()+1
I<j kil

_ - 1 o -6,dL; + & dL; dL N ¢ %4l -5dly
k=m(t) I+ 6kLk JEm(n+1 1+ 6ij (1 + 6ij)2 Jl=m{t)+] 1+ 6ij L+ 6ILI
i<j
o . 2 [_ 5dL; Zf: 6;,dL; & dL, ]
k=m()+1 L+ 6Ly J=m(0+1 L+ 6ij l=m(n)+1 L+ 6ij T+aly

With (19.11) wehave Vi=0,...,n— 1

’i orie |89k, Loos,dL; 6 dL
QN

e (1+9;L)) it (1 +06;L) (1+6,Ly)
andthus VY j=0,...,n-1
Drife| —2 4 o _ody  adn | 0. (19.12)
o |(+oiL) " A (1+6,L) (1+38iL)
If we now use
dL; = L® dr+ Lio; dW; and dL; AL = LiLiojopjy dt
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19.1. DERIVATION OF THE DRIFT TERM

in (19.7), then we have*
v 8L L 5L 6L
Q J J 1
- 74 -+ 74 ——— oo =0,
| 61LI ]:mz(t;+ll (5ij 1+ 6L

J
Q¥ _ oiLi(t) A '

19.1.3 Derivation of the Drift Term under the 7,-Forward
Measure

Exercise: (Drift under the T-forward measure) Consider

P(Tn), 1< Ty
N(t) = m()+1 1
P(Tupe1:0) —_—, t>Ty
jgl P(T;;Tj-1)

where m(t) ;== max{i : T, < t}.
1. Give an interpretation of N(1) as traded product.

2. Derive the drift of the model (19.1) under the Q¥ measure with the numéraire
N.

Solution:

k=1

oLy .
[Jj(t):— Z 1+§,L,O-jalpj’l forj<k-1 andr<T,

I=j+1
=10 forj=k—-1 andr<T;

J
oLy .
i) = ,Z,; mo-jo-lpj,, forj>k and r < T}

wi(t) = Tiop)) fort > Ty.

I=m(1)+1

1L
1+ 6L

4 Since the coefficient of df equals 0.
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19.2 The Short Period Bond P(7,,)+1; 1)

Fort ¢ {Ty,...,T,} neither the numéraire N(¢) of the terminal measure nor the
numéraire of the spot measure is not fully described by the processes L;(z). The
unspecified bond P(T,+1; t) occurs in both numéraires. We will now discuss the
relevance of P(T (413 1)

19.2.1 Role of the Short Bond in a LIBOR Market Model

For the modeling of the forward rates L;(t) := L(T;, Tis;;1) on the tenor periods
[T:,Tis1],i =0,...,nthe specification of P(m(t)+ 1; ) is irrelevant. For the derivation
of the corresponding drift terms it was not relevant to specify the stochastic of
P(T+1; 1), since the term canceled for the relative prices considered.

Conversely, the LIBOR market model does not describe the stochastic of the short
bond P(T+1; 1), since it is not given as a function of the processes L;(7).

19.2.2 Link to Continuous Time Tenors

The specification of the short bond P(T,,+1;t) becomes relevant if the model has
to describe interest rates of interest rate periods which are not part of the tenor
structure. The specification of P(m(¢) + 1; 1) will determine how the fractional forward
rates L(T,,T,;t) with Ty ¢ {Ty,...,T,} andfor T, ¢ {Ty,...,T,} will evolve (see
Section 19.5). It is the link from a model with discrete tenors (LIBOR market
model) to a model with continuous time tenors (Heath-Jarrow-Morton framework).
In the special case where P(m(z) + 1; ) has zero volatility, the LIBOR market model
under spot measure coincides with a Heath-Jarrow-Morton framework with a special
volatility structure under the risk-neutral measure (see Section 24.2).

19.2.3 Drift of the Short Bond in a LIBOR Market Model

Within the LIBOR market model there is no constraint on the drift of P(m(t) + 1;1),
because in P(L;V'(’f)-b'—) the term cancels out. The relative price % is always a
martingale for any choice of P(mm(t) + 1;1). This might come as a surprise, but we
have already encountered this behavior: In the Black-Scholes model the drift r of
B(t) is a free parameter, because it is the drift of the numéraire. The parameter r is
determined by calibration to a market interest rate. In a short rate model the drift is a
free parameter. It is determined by calibration to the market interest rate curve; see
Chapter 23. Here, similarly, P(m(r) + 1; f) determines the interpolation of the initial

interest rate curve.
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193 DISCRETIZATION AND (MONTE CARLO) SIMULATION

The trivial fact that the numéraire-relative price of the numéraire, i.e., %, is

always a martingale plays a role in Markov functional models. There, the numéraire
is postulated to be a functional of some Markov process.

19.3 Discretization and (Monte Carlo) Simulation

In this section we will discuss the discretization and implementation of the model.
Let us therefore assume that the free parameters oy, p; j, and Lig (i, j = 1,...,n) are
given. Together with the drift formula obtained in the previous section the model is
fully specified. Section 19.4 will then discuss how the parameters L;o, o, p; ; are
obtained.

19.3.1 Generation of the (Time-Discrete) Forward Rate
Process

As discussed in Chapter 13, we choose the Euler discretization of the 1t6 process of
log(L;). From Lemma 50 we have

d(og(L{(1)) = (/1Q 0 - o- 2(n) dt + o) dWQ 1) (19.13)
and the corresponding Euler scheme of (19.13) is
log(Li(t + At)) = log(L(t)) + (ui(t) - —a' 2(1) At + (1) AWi(1). (19.14)
Applying the exponential gives us the discretization scheme of L; as

Lt + A = L) exp ((y,-(t) - %(r;"(t)) At + oi() AW,(t)). (19.15)

In the special case that the process L; is considered under the measure Q"7+, i.e.,

P(Tiry) . . e e .
Q ' (t) = 0, and that the given o(f) is a known deterministic function, we may use

the exact solution for a discretization scheme:

1
Li(t + Ar) = Li(t) exp (—50‘72(& t+ A At + (8t + Ar) AWi),

where

1 1+At
gi{t,t+ Aty = A f 0'1.2(‘1') dr.
t
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In the case where L; is not drift-free, we choose instead of (19.15) the discretization
scheme

Li(t + At) = Li(t) exp|u(t) — %a‘-f(t,t+At)2) At + gt t + At) AWi(t)) (19.16)

(we write L in place of L, although (19.16) is an approximation of (19.1)). The
diffusion dW is discretized by exact solution; the drift dt is discretized by an Euler
scheme. The discretization error of this scheme stems from the discretization of
the stochastic drift y; only. This discretization error results in a violation of the no-
arbitrage requirement of the model (the discretized model does not have the correct,
arbitrage-free drift). Methods which do not exhibit an arbitrage due to a discretization
error are called arbitrage-free discretization; see [73]).

The volatility functions ¢; are usually assumed to be piecewise constant functions
on [T}, T;,1), such that &4(z, £ + Ar) may be calculated analytically. Itis &(¢, t + Af) =
ai(1).

19.3.2 Generation of the Sample Paths

Equipped with the time discretization (19.16), realizations of the process are cal-
culated for a given number of paths w;, wy, ws, . ... To do so, normally distributed
random numbers AW;(¢;)(wy), correlated according to R = (p; ;), are generated (sece
Appendices B.1 and B.2). These are used in the scheme (19.16). The result is a
three-dimensional tensor L;(¢;, wy) parametrized by

i : Index of the interest rate period (tenor structure),
J : Index of the simulation time,

k : Index of the simulation path.

19.3.3 Generation of the Numéraire

Given a simulated interest rate curve Li(t;, wy), we can calculate the numéraire. Of
course, we have to use the numéraire that was chosen for the martingale measure
under which the process was simulated (form of the drift in (19.13)). For the terminal
measure we would calculate

n-1
N(Tnw) = | |0+ LT 00) (T = T)7".
J=i
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Note: The numéraire is given only at the tenor times ¢ = T3, since for t # T; we
did not define the short period bond P(Ty+1: 1.5 An interpolation is possible; see
Section 19.5 and [96].

19.4 Calibration—Choice of the Free Parameters

We are now going to explain how the free parameters of the model can be chosen.
The free parameters are

o the initial conditions L;y, i=0,...,n—-1,
¢ the volatility functions or volatility processes6 T, i=1,...,n-1,
o the (instantaneous) correlation p; ;, Lhj=1,...,n—-1.

The determination of the free parameters is also called calibration of the model.

: i/j. Motivation (Reproduction of Market Prices versus Historical
| 7 Estimation): With the LIBOR market model we have a high-
' / I dimensional model framework. The main task is the derivation or
' * estimation of the huge amount of free parameters. Two approaches
are possible:

¢ Reproduction of Market Prices: The parameters are chosen such that the
model reproduces given market prices.

¢ Historical Estimation: The parameters are estimated from historical data, e.g.,
time series of interest rate fixings.

It may be surprising at first, but the second approach is not meaningful, being in
the context of risk-neutral evaluation. The model is considered under the martingale
measure Q" and its aim is the evaluation and hedging (!) of derivatives. An expec-
tation of the relative value under the martingale measure corresponds to the relative
value of the replication portfolio. This replication portfolio has to be set up from
traded products, traded at current (!) market prices. If the model did not replicate
current market prices, then it would not be possible to buy the replication portfolio of
a derivative at the model price of the derivative. The model price would inevitably be
wrong.

This remark applies to all free model parameters. In practice, however, it may be
difficult or impossible to derive all parameters from market prices. This could be

3 See Section 19.2.
6 The parameters o; may well be stochastic processes. In this case o is called a stochastic volatility
model.
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because for a specific product no reliable price is known (low liquidity). It could also
be that a corresponding product does not exist. This is often the case for correlation-
sensitive products from which we would like to derive the correlation parameters. If a
parameter cannot be derived from a market price, a historical estimate becomes an
option. If in such a case complete hedge is not possible, the residual risk has to be
considered, e.g., by a conservative estimate of the parameter.

For the LIBOR market model a parameter reduction is usually applied first, based
on historical estimates of rough market assessment. An example of such parameter
reduction is the assumption of a family of functional forms for the volatility o;(r)
or the correlation p; ;(¢). The remaining degrees of freedom are then derived from
market prices. <

19.4.1 Choice of the Initial Conditions
19.4.1.1 Reproduction of Bond Market Prices

Let PMakel(T)) € (0, 1] denote a market observed (i.e., given) price of a T;-bond. If

we set
PMarket(Ti) _ PMarket(TiH )

Lip:= ,
w0 PMaY(T )T ivy ~ Ti)

then the model reproduces the given market prices of the bonds PM**t_ This is
ensured by the model having the “right” drift and it is independent of the other
parameters.

19.4.2 Choice of the Volatilities
19.4.2.1 Reproduction of Caplet Market Prices

We assume here that the ¢;’s are deterministic functions (i.e., not random variables or
stochastic processes). The forward rate L; follows the It process

dL;(t) = ,u;Q(t)Li(t) dt + oi(0)Li(1) dWlQ(t) under Q := QV.

Thus the model corresponds to the Black model discussed in Chapter 10. Under
QFT+1) we have u?mm) = 0, the distribution of L;(T;) is lognormal, and there exists
an analytic evaluation formula for caplets. The only model parameters that enter the
caplet price are Lo(T;) and

1/2

el
Bk Model _ (_ f Uiz(,)d,) ‘ (19.17)
i Ti Jo
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194 CALIBRATION—CHOICE OF THE FREE PARAMETERS

If the market price VMaket of a caplet on the forward rate Li(T;) is given, then the

Caplet,i
corresponding implied Black volatility o-P Mt

Equation (10.2). If then o7(¢) is chosen such that

may be calculated by inverting’

U?lack.Model — O_?Iack,Market,

(19.18)

then the model reproduces the given caplet price V&;ﬁg‘, A possible trivial choice is,

e.g., oi(r) = oprckMakety ¢
Remark 213 (Caplet Smile Modeling): The fact that the LIBOR market model
calibrates to the cap market by a simple boundary condition is one reason for its initial
popularity. However, since the model restricted to a single LIBOR is a Black model,
the implied volatility does not depend on the strike of an option. Thus, in this form,
the model may calibrate to a single caplet per maturity only. It cannot render a caplet
smile yet.

To remove this restriction one can extend the model by a local or stochastic volatility
or jump-diffusion processes [8]. For an overview on smile modelling in the LIBOR
market model see [23].

19.4.2.2 Reproduction of Swaption Market Prices

If the correlation R = (p; ;) is given and fixed, then we influence swaption prices
through the time structure of the volatility function 7 — ¢;. We consider swaptions
that correspond to our tenor structure, i.e., option on the swap rates:

S(T,‘...,T_/;T,'), 0<i<j§l’l.

From the definition of the swap and swap rate it is obvious that the price
of a corresponding swaption with exercise date on or before T; and peri-
ods [T, Tis1],...,[Tj-1,T;] depends only on the behavior of the forward rates
Li(®),...,Lj_i(¢) until the fixing t < T;; see Figure 19.1.

If we discretize the volatility function corresponding to the tenor structure and

define
LR
o= m—— (T(t)df) ,
o (TM—TI fT :

the price of an option on the swap rate S(7},...,T;; T;) depends only on oy, for
k=i,...,j—landl=0,...,i—1.

7 For inversion of a pricing formula we may use a simple numerical algorithm. For the Black for-
mula (10.2) the price is increasing strictly monotone in the volatility.
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7))

1 Tz Tag T T

Figure 19.1. Swaption as a function of the forward rates: The
swap with periods [T;,Til,...,[T;-1,T;] is a function of the forward rates
L(T;, Tis1; Ty, ... . LTy, T T)) (all with fixing in T;). The corresponding swap-
tion depends only on the joint distribution of these forward rates. Under our model,
with given initial conditions L,y and correlation R = (p; j), the swaption price depends
onai(t),...,o (), t € [0,T;] only. The dynamic of these forward rated beyond the
t > T; and all other forward rates do not influence the swaption price.

This allows an iterative calculation of o ; from given swaption market prices:

Fori=1,...,n—1:

Forj=i+1,...,n:

Calculate o1 from the price of an option on S(7;,...,T; Ty
by considering the already calculated o, withk =4,...,j— 1 and
[ =0,...,i- 2 from the previous iterations.

To derive o;_1;_; from the market price Vg‘v‘ggggn(ﬂ, ..., T;) we have to invert the

mapping

Tj-tim1 = VisosionTis - Tj)-
In principle this mapping may be realized by a Monte Carlo evaluation of the swaption.
To allow for faster pricing, and thus faster calibration, analytic approximation formulas
for swaption prices within a LIBOR market model have been derived; see also

Section 19.4.5.

Remark 214 (Bootstrapping): The above procedure of calculating a piecewise
constant instantaneous volatility from swaption prices is called volatility bootstrap-

ping.

Remark 215 (Review: Overfitting): The calculation of a piecewise constant volatil-
ity function o; ; from swaption prices bears the risk of an overfitting of the model.
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Note that if this procedure is applied, then we accept completely the validity of every
single given swaption price, i.e., that the prices are of sufficiently good quality with
respect to topicality (fixing time of the price) and liguidity. If not all prices are of the
same quality, then some have to be interpolated, smoothed, or corrected by hand. In
this case, the calibration problem has been replaced by an interpolation problem. If the
interpolation and maintenance of the market data is not done with care, a calibration
that fits to these prices exactly may be useless. See, for example, Chapter 6.

In addition, the bootstrapping of the instantaneous volatility from swaption prices
does not allow for a weighting of the swaption prices according to their importance.

A solution to this is the reduction of the free parameters by a reduction of the family
of admissible volatility functions with consequent loss of the perfect fit.

19.4.2.3 Functional Forms

To reduce the risk of overfitting, the admissible volatility functions may be restricted
to a parametrized family of volatility functions. For example, a functional which is
empirically motivated by the historical shapes of the volatility and which is common
in practice is

o) :=(@a+b(T;—1) exp(—c(T; — 1)) +d.

Given a functional form, the calibration of the model consists of a selection of
(liquid) market prices of caps and swaptions and an optimization of the remaining
parameters (e.g., a, b, ¢, d above) to fit the model prices to the market prices.

For a detailed discussions of a robust calibration to cap and swaption prices we
refer to the literature, especially [7, 30].

19.4.3 Choice of the Correlations
19.4.3.1 Factors

We assumed in (19.1) a model in which (potentially) each forward rate L; is driven by
its own Brownian motion W;. The model is driven by an n-dimensional® Brownian
motion

Wo

W
W =

Wn—l

8 An n — 1-dimensional Brownian motion is sufficient here, since we can choose Wy = 0, because the
forward rate Ly is not stochastic. It is fixed in Ty = 0. Formally we achieve this by setting o9 = 0.
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The effective number of factors, i.e., the number of independent Brownian motions,
that are driving the model is determined by the correlation

pij(t) dr = dW(1) dW (1)

By an eigenvector decomposition (PCA, principal component analysis) of the correla-
tion matrix R = (p; ;)i j=1..» We may represent dW as

dW() = F() dU (1),

where U := (Uy,...,U,)" and Uy,..., U,, denote independent Brownian motions
and F = (f; ;) denotes a n X m-matrix. In other words, we have

AW, = D fis0dU0,  pijD) = ) i) - fa(0).
k=1

J=1

A proof of this representation is in Appendix B.2. Note that here we can have m < n.
The columns of the matrix F are called factors.

19.4.3.2 Functional Forms

A full rank correlation matrix R is hard to derive from market instruments. As before
a common procedure is to reduce the family of admissible correlation matrixes R.
One ansatz consists of functional forms, for example

pi () = exp(—a - |T; = T]). (19.19)

19.4.3.3 Factor Reduction

The specification of the correlation matrix as a functional form is usually followed by
a reduction of the number of factors. This is done in what is known as factor reduction
(PCA). There only the eigenvectors corresponding to the largest eigenvalues of R are
considered, and a new correlation matrix is formed from these selected factors. For a
discussion of the factor reduction see Appendix B.3.

The advantage of the factor reduction is that afterwards only an m-dimensional
Brownian motion has to be simulated (and not an n-dimensional Brownian motion).
Often n > 40 is required (e.g., a 20-year interest rate curve with semiannual periods),
however, often m < 5 is sufficient. The choice of the actual number m of factors
depends on the application; see Chapter 25.
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19.4.3.4 Calibration

The correlation model, e.g., the free parameter a in (19.19), may be chosen such that
the fit of model prices to given market prices is improved. Alternatively, it may be
chosen to give more realistic interest rate correlations.

It should be stressed that we calibrate the instantaneous correlation, i.e., the cor-
relation of the Brownian increments dW, and not the terminal correlation, i.e., the
correlations of the distribution of the interest rates at a fixed time. We will consider
the relation of the two in Chapter 21.

We have seen that we may calibrate to the swaption matrix solely by the spec-
ification of the time-structure of the instantaneous volatility of the LIBORs. The
time-structure of the instantaneous correlations of the LIBORs will allow to calibrate
correlations of the swaprates with different tenors. In other words: The terminal
covariance of swaprates may be calibrated by the time-structure of the instantaneous
covariance of the LIBORs. Thus is makes sense to consider the instantaneous LIBOR
covariance as the free model parameter. We do so in Section 19.4.4. For an approxi-
mation giving the terminal covariance of swaprates in terms of the time-structure of
the instantaneous covariance of the LIBORs see Section 19.4.5.

19.4.4 Covariance Structure

In the previous sections we considered volatility and correlation separately. This is
not necessary, as both can be considered together in the form of the correlation matrix
(00 p; ;). Thus the calibration problem consists of the calculation of the (market
implied) covariance matrix (or covariance matrix function).

Defining the parametrized functional forms for volatility and correlation, e.g., as
o) =(a+b(T;— D) exp(—c(T; =) +d, p;jt):=exp(-a|T;-Tj)

reduces the number of degrees of freedom of the covariance model and thus the possi-
ble number of products for which an exact fit is possible. This might be a desirable
feature, e.g., to avoid an overfitting. A disadvantage is the lack of transparency of
the parameters. To derive the parameters numerical optimization has normally to be
used, e.g., the minimization of a suitable norm of the error vector of some selected
product prices as a function of the model parameters. The optimization of volatility
parameters and correlation parameters may occur jointly, i.e., we consider a functional
form of the covariance structure.
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19.4.5 Analytic Evaluation of Caplets, Swaptions and
Swap Rate Covariance

To calculate the calibration error we need to calculate the corresponding model
prices. Since a numerical calculation of the model price (e.g., by a full Monte Carlo
simulation) is time consuming, and since the optimization requires many calculations
of model prices, there is a need for fast analytical pricing formulas for specific
calibration products.

19.4.5.1 Analytic Evaluation of a Caplet in the LIBOR Market Model

The analytic evaluation of caplets in the LIBOR market model is provided by the
Black formula (10.2) using (19.17) to calculate the Black volatility.

19.4.5.2 Analytic Evaluation of a Swaption in the LIBOR Market Model

The analytic evaluation of swaption in the LIBOR market model is possible only by
an approximation formula. An approximation formula can be derived by expressing
the volatility of the swap rate as a function of the volatility and correlation of the
forward rates. Assuming a lognormal model for the swap rate, which is already an
approximation, we can then apply the Black formula for swaptions.” Corresponding
approximation formulas may be found in [7].

An approximation formula for swaption prices can be derived as follows:

Let0 =Ty < T, <...denote the tenor structure for the forward rates. Consider a
swaprate

Def. 122 P(T,; 1) — P(Ty; 1)
(T, - Ty - P(T0

J+

Sap® = S(Tiy..., Tyi )

associated with the swap tenor 7, = T;, < ... < T;, = T}. In other words we assume
that the swap tenor is a subset of the forward rate tenor, but it is allowed to be coarser.

From the definition of the swap rate it is clear that the swap rate S, can be seen as
a function of Ly = L(Ty, Ti+1) withk = a, ..., b — 1, see also Lemma 123, Using It6’s
Lemma we write the swap rate process as

b-1 =1
(9Sab 1 o Sab

LAl + 5 Y 4 dL,dL
£19L, T 2 4 ALOL

(.0 de

dSqp(1) =

9 Assuming lognormal processes for the forward rates, the swap rate is not a lognormal process in
general.
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ie.,
b-1 EQL—S" b b-1
dS.p(d = (..)dt + Sap C—dLy = (A + Sap ) wilndLy
= Sab k=
=a =a
b—1 "
= () + Sap ) wOLOEDAWT
k=a
where )
_Sab o
oLy »
= = = 10g(Sap).
Wy S, oL, 0g(S4p)

If the swap rate follows a lognormal model
dS.p(0 = (..)dr + Sap(00s,, () dW(@).

then the price of the corresponding swaption is given by the Black formula using the
swaption’s Black volatility &, where

2 [ L
9 = — t) dr.
Tab Ta L O—S”'b( )

Note that o-§ , () dr s just the relative quadratic variation

(dSa,b(t))(dSa,b(t)) - o2 (.
Sap(®) J\ Sap®) -

In other words: If the relative quadratic variation of the swap rate is non-stochastic,
we can calculate the swaption price from the Black formula. From the above we see
that under a LIBOR Market model

ds, ds, L
( s:(g))( Sa;’(ff;)) - k;wk(r)wl(t)Lk(t)Lz(nrrk(t)cr,(r);m(r) dr.

Since wi()w (1)L ()Li(t) is stochastic the swap rate has a stochastic relative quadratic
variation and thus stochastic log-volatility. Consequently the Black swaption formula
does not hold. In order to apply the Black swaption formula we use the approximation

ds, ds, cal
( - :((r;))( - b”((t?) ~ Y OO L)L) (O) (1)
a a ki=a
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i.e., we freeze the random variable w;L; to its initial value. Then we can calculate an
approximation to the model swaption price using Black’s swaption formula and the
approximated integrated relative quadratic variation

b-1

1 (T
= Zwk(O)Lk(O)WI(O)Ll(O)T_ f (Do (Dpe(r) dt. (19.20)
0

kil=a a

The weights wy are given as

J
Wi = Elog(Sab)

O o T =P
oLy ernz_l] P(Ti/+1) . (Tiﬁ] - Tl/)

3 m—1
= L [log(P(T)_P(Tb))_log(ZP(Tz,+|) (T, - T,,))]

Jj=1

o (PT) = PTy) X7 5 P(T) - (T = Ty)
P(T,) - P(T) X P(TL) (T =Ty

1
Together with

T T, o
g ) = {_P(Til”)' Lty i >k
j+1 0

— P(T;
oLy ( otherwise

we find with [(k) := min{/| i; > k} (the index /(k) marks the first swap period [T}, T}, ]
which contains the forward rate period [T, Ti+11)

B ( P(Ty) N Z; o PTiy) - (T, — Tif)) ) Tir1 ~ Ty
P(T) = P(Ty)  $m P(T;, )Ty, =Ty 1+ LTt = T)

With the swap annuities

m—1
= Y P(T,. ) (Ti, —Ty)

=l
this can be simplified to
- ( P(Ty) N Al(k).m) Ty — T
k : .
P(T,) - P(Ty) Al L+ LTy — 1)
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19.4 CALIBRATION—CHOICE OF THE FREE PARAMETERS

The last equation allows the efficient calculation of the weight w;(0) in our approxi-
mation formula.
We summarize the result:

Theorem 216 (Analytic Approximation of Swaptions under a LIBOR Market
Model (Hull & White 1999)): Within a LIBOR market model an analytic approxi-
mation of the swaption price is given by the Black formula for swaptions using the
Black volatility &2 , with

b1
G2, 0 = " wil0) FiTa) vi(0), (19.21)
kl=a
where
Ta
Yiu(Tg) = f o (Do (Dpi,(2) dt
0
and

Vi =

dlog(S.p) _ ( P(Ty) N Al(k).m) - LTy =T
dlog(Ly) P(T,) - P(Ty) Alm 1+ Li(Tre1 — T1)

—T;)) and I(k) := min{/|i; > k}.

J+1

with Ay, = 3750 P(T;,,) - (T,

Interpretation: The term

r
|
|
|
L ‘

is the integrated instantaneous covariance of the log forward rates. Defining the

1
|
[
[
J

Ta
¥i(Ta) = f) oo (Hpi () dt
(

62, T, = v(0)"Cw0),

where v = (wuLq, ..., wpLp). The vector v is the gradient of log(S ) in log(Ly)-
coordinates:
% log(Sa,b) _ (910g(S a,b)

d
= L, = —1 S L, = = .
Ve = wily 3L, 0g(S a.p) Ly ilog(Lk) log(Ly)

The approximation we made is
3log(Sap) _ Olog(Sap)
dlog(Ly) - dlog(Ly) =0

i.e., we linearize the log-swap rate log(S , ;) as a function of log(Ly) around log(L.(0)).
<
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CHAPTER 19. LIBOR MARKET MODEL

19.4.5.3 Analytic Calculation of Swap Rate Covariance in the LIBOR
Market Model

In the same way we obtain an approximation for the integrated instantaneous swap
rate covariance under a LIBOR market model. Considering two swap rates S, with
tenor T, =T; <...<T;,, =Tpand S 4 withtenorT, =T; <...<T; =T, we
have

" (dS as(0)) (St TS e S
[ (5252 o = [ X200 a0 o o a

k=a I=c

b-1 d-1

D7 0) 7T v, (0),

k=a l=c

1

where
Seo . 0log(Sap) 5., 0log(Sca)

T Glogo T T Talog(ly
The swap rate covariance may then be used in analytic pricing formulas for CMS
spread options, i.e., a payout

max (S ,5(T) — S .o(T) — K,0).

See [7] for the derivation of an analytic pricing formula. This allows to calibrate the
LIBOR market model to CMS spread options.

The calibration to caplet, swaptions and swap rate covariance/cms spread options
completely determines the instantaneous covariance structure of the LIBOR market
model.

Tip (Efficient Implementation of the Swaption Approxima-
tion): To calibrate a LIBOR market model to swaptions we use a
multi-dimensional optimizer minimizing the distance of the model swap-
tion prices (given through the swaption approximation) from given
market prices as a function of LIBOR covariance structure (o0 p; ;). This makes it
necessary to repeatedly calculate the swaption approximation for different values of
o0 ;p;,;. The followings two observations are helpful to improve the performance of
the calibration:

[
|
I
I
L N

e For each swaption the weights v;(0) need to be calculated only once since they
do not depend on the LIBOR covariance structure (0 ;p; ;). They only depend
on the interest rate curve L;(, which does not change during the calibration
(we assume that the model is already calibrated to the interest rate curve by the
choice of L; ).
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19.5. INTERPOLATION OF FORWARD RATES IN THE LIBOR MARKET MODEL

o The integrated instantaneous covariance of the log forward rates (19.21) needs
to be calculated only once per iteration since it does not depend on the swaptions.
This will improve the performance if there are many swaptions with overlapping
tenors, thus sharing a portion of the integral (19.21).

|

19.5 Interpolation of Forward Rates in the LIBOR
Market Model

Motivation: An implementation of the LIBOR market model (e.g,
as Monte Carlo simulation) allows us to calculate the forward rate
L(T;, Ty; t;) for interest rate periods [T;, Ti], T; < Ty and fixing times
;.19 Using these rates, we can evaluate almost all interest rate derivatives
that can be represented as a function of these rates.

The discretization of the simulation time {#;} determines at which times we may
have interest rates fixings. The discretization of the tenor structure {7;} determines for
which periods forward rates are available and, since the numéraire is only defined at
t = T}, it determines at which times we may have payment dates. The tenor structure
imposes a significant restriction since a change of the tenor structure is essentially a
change of the model.

In practice, we desire to calculate as many financial products as possible with the
same model. First, the aggregation of risk measures, i.e., of sensitivities!! of products
to the sensitivity of a portfolio, is correct only if the product sensitivities have been
calculated using the same model. Second, the setup of a pricing model (calibration,
generation of Monte Carlo paths) usually requires much more calculation time than
the evaluation of a product, i.e., it is possibly efficient to reuse a model.

Thus, it is desirable to know how to calculate from a given LIBOR market model
the quantities L(T*,T¢; 1) for T°,T¢ ¢ {Ty,T),...,T,} (unaligned period) and/or
t ¢ {ty,t1,...,t,} (unaligned fixing). <

r
I
I
I
L

19.5.1 Interpolation of the Tenor Structure {7}

Let us look at how to interpolate the tenor structure. We will derive an expression for
LT, 1 tyfor T° ¢ (To, Ty, ..., Ty} andfor T¢ ¢ {Ty, Ty,..., Ty} Let T* < T°.

10 1n a Monte Carlo simulation the rates carry, of course, an approximation error of the time discretization
scheme.

1T A sensitivity is a partial derivative of the product price with respect to a model- or product-parameter
(e.g., volatility or strike).
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CHAPTER 19 LIBOR MARKET MODEL

The forward rates L(T*, T¢; t) may be derived from corresponding bonds P(T; ).
We have
P(T*;1)

1+ (T TS0 (T ~-T% =
( ) ( )= paen

For arbitrary T > ¢ the bond P(T;¢) is given by

w1
S = Q
P(T;H) = N(H E ( N |7-‘,).

The definition of the numéraire of the LIBOR market model shows that the specifica-
tion of the short period bond P(T +1; 1) 1s sufficient (and necessary) to determine all
bonds P(T'; 1) and thus all forward rates.!?

19.5.1.1 Assumption 1: No Stochastic Shortly Before Maturity.

We assume that P(T,41; 1) is an Fr, , -measurable random variable, i.e., the bond
has no volatility at time f with T,y < < Tyny41, 1.€., shortly before its maturity. In
other words, t = P(T,+1; 1) is a deterministic interpolation function of quantities
known at the period start T,,,. In this case for the bond with maturity ¢, seen at time
s with Ty € 5 <1 < Tpyp+1 We have

1
P(t;s) = NG)E¥ [— | 7,
(t;5) = N(s) (N(z) |f)
P(Tpui+131) 1
= N(s) EQN( Ts) (19.22)
N(@) P(Tm(t)+l;t)|
= N(s) EQN(P(TmmH;t)' ) 1 _ P(Tye1s 8)
N(@) ) P(Twers 1) P(Tppsrs 1)
Especially for s = Ty
P(Tiyir; T
Pt Ty = Lot Teo) (19.23)

P(Tryryr15 1)

Thus we see that (under Assumption 1), the interpolation function t = P(t; Tyy))
(interpolation of the maturity ¢) is derived directly from the interpolation function
t = P(T o415 1) (interpolation of the evaluation time #) and vice versa. The functions
are reciprocal.

12 Note that the considerations on interpolation given in this section do not assume a LIBOR market
model. They are valid in general.
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19.5.1.2 Assumption 2: Linearity Shortly Before Maturity.

If the chosen interpolation function T +— P(T; T,) is linear, then the interpolation
of bond prices P(T’; s) seen in s < T,y is linear too. This follows directly from the
linearity of the expectation:

(19.24)

b = wio e (AT )

N(T sy
In this way the linear interpolation takes a distinct role. With P(T ) Try) = 1

and P(Tyuiyi 13 Tingy) = (1 + L1, (Toney) (Tne1 — Ty))™" the linear interpolation of
t = P(t; Ty follows as

P To) = =000 pg o To) + T (et T
Tyt — Ty Tiy1 — Ty
4 Ly (To) (Tgye1 = 1)
T U+ Ly (T Tyt = Toni)”
(19.25)

The corresponding interpolation for the short period bond P(T 415 8) is thus with

(19.23): |

1+ Ly, (Tonin)) Ty = 1)
Applying (19.24) to the (in ¢) linear interpolation (19.25) we find for all s < Ty,

P(Tm(t)+] 3=

Pit;s) 1+ L1, (8) Ty = 1)
P(T iy ) 1+ Ly, (8) Tt = Tmin)”

and thus
P(t; 9)

P(Tm(r)+l 3 8)
From (19.22) we have for T,y < s <t

1+ L, (Tony)) (Tonys1 — 1)
1+ Ly, (Twin) (Tongyet = 8)

= 1+ L7, (8) (Thper ~ .

P(t;s) =

We summarize this result in a theorem.

Theorem 217 (Interpolation of Forward Rates on Unaligned Periods): Given a
tenor structure Ty < Ty < T, < ---. For all ¢ let the short bond P(T,)+1; t) be given
by the interpolation

1

P(T,ne1:t) = .
T2 1) 1+ Ly, (Te)) Tyt — 1)

(19.26)
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Then we have for arbitrary ¢t < T with k = m(¢), [ = m(T)

P(Ti) P(T;0)
P(T)) P(Tp;1)

l

i
P(T;0) = P(Teesn) [ ]
j=k+1

1 1

= 1 L * T+ —T ’
T+ LT T -0 L T30 @ -1y O T = 1)

where t* = min(¢, T)). For Ty < T, with Ty < T, < Ty, and T, < T, < T;,y we have

P(Ty;0)  P(Tan

P(T,;t)  P(Trist)

P(Ti;1) P(Tpas0)
P(Tivi31) P(Tei)

1+ (T, T;0) (T, ~Ty) =
i=k+1
1
L+ L") (Try = To)
(19.27)

i
= (1+ L(t") (Ts1 = T))) n (I + Li0) (Tixy = T1)

i=k+1
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196 OBJECT-ORIENTED DESIGN

19.6 Object-Oriented Design

Figures 19.2 and 19.3 show an object-oriented design of a Monte Carlo LIBOR market
model. The following important aspects are considered in the design:

¢ Reuse of implementation

e Separation of product and model
¢ Abstraction of model parameters
e Abstraction of calibration

We will describe these aspects in the following.

LogNormalProcess

BrownianMotion
getProcessValue(timelndex, component)
getinitialValue(component) getBrownianincrement(timelndex, path, factor)
getDrift(timelndex, component)
T —

getFactorloading(time, component, factor)

SimpleLIBORMarketModel

«interface»
Ab LIBORMarketModel

getinitialValue{component)
getDrift(timelndex, component)
getFactorLoading(time, component, factor)

getLIBOR(timelndex, liborindex)
getNumeraire(timeindex)

)

]

i
Bond Caplet
maturity maturity
strike

getPrice(AbstractLIBORMarketModel model) getPrice(AbstractLIBORMarketModel model)
e

Figure 19.2. UML Diagram: Evaluation of LIBOR-related products in a LIBOR
market model via Monte Carlo simulation.

323



CHAPTER 19. LIBOR MARKET MODEL

19.6.1 Reuse of Implementation

For the Monte Carlo simulation of the lognormal process we use the same classes
as in the example of the Black-Scholes model; see Figure 13.4. To do so the classes
BrownianMortioN and LocNorMaLProcEss were from the beginning designed for
vector-valued, i.e., multifactorial processes, although the Black-Scholes model does
not require it. Improvements to the classes BRownianMortion and LoGNorRMALPROCESS
will result in improvement of both applications.

19.6.2 Separation of Product and Model

The interface ABsTRACTLIBORMARKETMODEL defines how LIBOR-related products
communicate with a Monte Carlo LIBOR model. Through this interface the model
serves to make the process of the underlyings (the forward rates) and the numéraire
available to the product as a Monte Carlo simulation. All corresponding Monte
Carlo evaluations of interest rate products expect this interface. All corresponding
Monte Carlo LIBOR models implement this interface. This realizes a separation of
product and model. The specific LIBOR market model is realized through the class
SmprLELIBORMAaRKETMoDEL. Model extensions may be introduced without the need
to change classes that realize LIBOR-related Monte Carlo products.

19.6.3 Abstraction of Model Parameters

The model parameters, i.e., the covariance structure, are encapsulated in their own
classes. The model parameter classes implement a simple interface LIBORCovari-
ANCEMOoDEL. A specific covariance model (i, j, 1) & v, j(f) = oi()o j(1)p; ;(¢) is realized
through a class that implements the interface LIBORCovariancEMonpeL. This class is
then served to the model. The interfaces are designed such that (i, j, ) — v, ;(#) may
be stochastic.'* See Figure 19.3.

This abstraction of model parameters makes it easy to exchange different modelings
of covariance, i.e., volatility and correlation.

: . Warning: In cases where the covariance structure is modeled by
[ i volatility and correlation, it seems reasonable to define corresponding
: ' interfaces LIBORVorLatiLIryMobeL and LIBORCORRELATIONMODEL. A
simple class LIBORCovariaNcEMODELFROM VOLATILITYANDCORRLEATION calculates the
factor loadings and covariances from given volatility and correlation models. See
Figure 19.4. However, the separation of volatility and correlation into their own classes
will bring some disadvantages for a joint calibration and general covariance modeling.
The corresponding code may become overdesigned. The design in Figure 19.4 would

13 A stochastic volatility model would result in a stochastic covariance model.
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SimpleLIBORMarketModel LIBORCovarianceMode!
getinitialValue(component) getCovariance(time, component1, component2)
getDrift{timelndex, component)
getFactorLoading(time, component, factor) getFactorLoading(fime, component, factor)

getFactorl oadingQuasilnverse(time, factor,component)

setCalibrationData(calibrationData)

LIBORC i ModelX XX

getCovariance(time, component1, component2)

getFactorLoading(time, component, factor)
getFactorLoadingQuasilnverse(time, factor,component)

Figure 19.3. UML Diagram: LIBOR Market Model: Abstraction of model parame-
ters.

make sense if one wished to explore many combinations of different volatility and
correlation models. <

19.6.4 Abstraction of Calibration

The abstraction of model parameters allows for the abstraction of calibration. The
algorithm calibrating the covariance model is clearly a part of the covariance model.
Thus each covariance model object can carry calibration data (e.g., market data)
that, once set, is used to calibrate the model. The calibration data themselves may
be anything from given correlation and volatility parameters to a list of products
with associated target values. A generic calibration for parametric models may be
implemented in an abstract class defining the properties of parametric covariance
models; see Figure 19.5.

Experiment: At http://www.christian-fries.de/finmath/
applets/LMMPricing.html several interest rate products can be
priced using a LIBOR market model. <

P e

1
]
I
|

J
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CHAPTER 18 LIBOR MARKET MODEL

Further Reading: The original articles on the LIBOR market model
are [50] and [88]; for the calibration of the LIBOR market model see [7,
30]; for the arbitrage-free discretization see [73]; for the interpolation
of forward rates see [96]. The evaluation of Bermudan options in Monte
Carlo is considered in Chapter 15; see also [44, 45].

We will use the LIBOR market model as foundation for further investigations
into general interest rate model properties. In Chapter 21 we will investigate the
instantaneous correlation p; ; and volatility o; and their effect on terminal correlation.
In Chapter 25 we will investigate the influence of mean reversion and multifactoriality
on the shape of interest rate curve. <l

e A
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[ SimpleLIBORMarketModel

LIBORCovarianceMode!

getinitialValue{component)
getDrift(timelndex, component)
getFactorLoading(time, component, factor)

getCovariance(time, component1, component2)

getFactorLoading(time, component, factor)
getFactorloadingPsydolnverseftime, factor,component)

setCalibrationData(calibrationData)

LI

getCovariance(time, component1, component2)

getFactorLoading(time, component, factor)

getFactorLoadingPsydolnverse(time, factor,component)

LIBORVolatilityModel

LIBORCorrelationModel

getVolatility(time, component)

getCorrelation(time, component!, component2)

LIBORVolatilityModelXxx

LIBORCorrelationModelXxx

getVolatility(time, component)

getCorrelation(time, component1, component2)

Figure 19.4. UML Diagram: LIBOR market model: Abstraction of model param-
eters as volatility and correlation. Introducing separate classes for volatility and
correlation has some disadvantages for joint calibration and general covariance
modeling. The design above might be considered overdesigned.
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SimpleLIBORMarketModel LIBORCovari; Model
getinitialValue(component) getCovariance(time, component1, component2)
getDrift(timelndex, component)
getFactorLoading(time, component, factor) getFactorLoading(time, compaonent, factor)

getFactorLoadingQuasilnverse(time, factor,component)

setCalibrationData(calibrationData)

LIBORC: I ModeiP: ic
getParameters()
setP. (parameters)

LI35RCnvatiancellndaWolHumpAnﬂCanxpDecg}‘_

getCovariance(time, component!, component2)

getFactorLoading(time, component, factor)
getFactorLoadingQuasilnverse(time, factor,component)

getParameters()
P ]

satFarar p )

Figure 19.5. UML Diagram: LIBOR market model: Abstraction of model parame-
ters: Parametric covariance models.
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CHAPTER 20

Swap Rate Market Models

Motivation: The LIBOR market model postulates as lognormal dy-
namic for the forward rate L; := L(T;, T;,1). In other words, each single
forward rate follows a Black model. This allows an easy calibration
of the LIBOR market model to caplet prices. We only have to fulfill
condition (19.18).

If, however, swap options (i.e., swaption or swaption-related products like Bermu-
dan swaptions) are in the focus, then a model that simulates the swap rate directly
might be a better choice.' If, for example, the swap rate follows a lognormal process,
then the corresponding swaptions may be calibrated by a simple condition involving
the implied Black-volatility of the swap rate. <

Instead of a lognormal dynamic for the forward rate L(T;, T}, ), which is the starting
point of the LIBOR market model, we postulate here a lognormal dynamic of the
swap rate:

P(Tin - P(Ty; D)
T T =T P(Tjast)

Six(®) :=8(T;,Ti; 1) = k> i (20.1)

Since the set of swap rates defined for a given tenor structure Ty < Ty < --- < T},
is a two parametric family of ((n — 1) n)/2 rates which are related by functional
dependencies, a meaningful dynamic can be given only for a subset of swap rates.’

When choosing a system of swap rates S, for which we wish to specify the
dynamics, we have to take care that the system is neither overdetermined nor, with

! Later, we will explain why a forward-rate-based model might be the choice even for swap-rate-related
products; see Remark 219.

2 For example, the swap rate S ;.4 is a function of the swap rates S, ;.2 and S;;2,+4, which in turn
are functions of the swap rates S, ;.1,...Si+3+4. The swap rates with one period are forward rates
Li =81
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Co-sliding: Siminirkyy 1=0,1,...,n—-1

Co-terminal: S, i=0,2,...,n—-1

Table 20.1. Co-sliding and co-terminal swap rates

respect to the given tenor structure, underdetermined. The system of rates has to
consist of n swap rates since on the tenor structure 0 = Tp < 7y < --- < T, we have n
degrees of freedom in terms of bond prices.

Two common variants are given by the set of co-sliding swap rates and co-terminal
swap rates; see Table 20.1. When specifying co-sliding swap rates, it is necessary
to close the system. Our definition achieves this by first considering the swap rates
S i+ With k periods (co-sliding, i < n — 1 — k) and starting with i = n — k we consider
co-terminal swap rates.

If the selection of swap rates is made, we model each §;; from the selection as a
lognormal process:

ASix(t) = L OSiw() dt + o (DS k() AW] (1) under P, (20.2)
with initial conditions
Six(0) = Sizo.

! Interpretation: The modeling of co-terminal swap rates is a suitable
| choice if, e.g., we have to price Bermudan swaptions, which have these
|
J

7]

I
|
|
|
N

swap rates as underlying. The modeling of co-sliding swap rates is a
suitable choice if we have to price products relying on swap rates with
constant time to maturity (CMS rate?). <

20.1 The Swap Measure

If we consider the definition of the swap rate in (20.1), it is apparent that §; is a
martingale under the martingale measure Q" corresponding to the numéraire
k=1
N@) = ATy,..., Ty 1) = (Tj+1 —Tj) P(Tj+1;t), k>i t<Ty. (20.3)
=i

3 See Definition 160.

330



202 DERIVATION OF THE DRIFT TERM

The right-hand side in (20.3) is a portfolio of zero bonds and thus a traded product
and the swap rate is the N-relative price of a traded product.

Definition 218 (Swap Measure, Swap Annuity): T
The equivalent martingale measure Q¥ corresponding to the numéraire N in (20.3) is
called swap measure corresponding to the swap rate S(7,. .., T;). The expression
on the right-hand side in (20.3) is also called swap annuity. a

The numéraire is, so far, defined for ¢t < T}, only, since at ¢t = T}, the first bond
P(T;,,) is at its maturity and we have to specify how its payment has to be reinvested.*
A continuation of the numéraire definition to t > T,,| can be given by a reinvestment
into the next swap annuity. This is the analog to the numéraire (19.9) of the spot
measures. Fori = 1,...,k — 1 we have

i1
ATy, ..., Ti; Ty
N[:AT,-,...,T;t 4
() ( )] j|:]| AT, ., Tis Tier)

Ti1 £t<T;

where Ty := 0. The swap rates we are considering here are co-terminal. Of
course, we may consider co-sliding swaps in a similar way, using the swap an-
nuities A(T}, ..., Tj4; ). The corresponding numéraire of reinvestment in co-sliding
swap annuities, i.e., a rolling co-sliding swap annuity then is

i1
AT, ..., T3 Ti)
Ny =AT;, ..., Tt )
() =A¢ ki) DA(Tiju-,TﬁHk;TjH)

Ty <t<T,.

For k = i + 1 this corresponds to (19.9).

20.2 Derivation of the Drift Term

For the swap rate market model we have multiple sets of swap rates, which may be
modeled and (as in the LIBOR market model) multiple possible choices of numéraires.
This section does not give a detailed derivation of the drift terms. The derivation is
done similarly to the derivation of the drift in the LIBOR market model by expressing
a martingale through the elementary swap rate processes S ;. If for example Ay is

. . . A
the numéraire, we consider the Q*/-martingale (S, j /sz)'

4 The reinvestment determines the evolution of the numéraire for ¢ > Tj.: For example, if we compare
: 11 1 K ; e : 1
the investment of the paid | in P Parts of a T-bond with the investment in P T parts of

a Tyy1-bonds, then the evolution of the numéraire will differ by the evolution of the T forward rate,

. P(Ty:1) PT) 1L T 130 (Tya = T)
e, by the factor per o5 | BT T = ToLTTon T T =T
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20.3 Calibration—Choice of the Free Parameters

20.3.1 Choice of the Initial Conditions
20.3.1.1 Reproduction of Bond Market Prices or Swap Market Prices

If we set ¢ to the preset time in the definition of the swap rate (20.1), i.e., t = 0
following our convention, then we get an equation relating today’s bond prices to
today’s swap rates S;,(0), and the latter are just the initial conditions of the chosen
swap rate processes. Thus the initial conditions of the processes are given by (20.1)
with 7 = 0 and today’s bond prices, i.e., today’s interest rate curve.

Although we regard the family of zero bonds as the natural description of the
interest rate curve and we see swap rates and swap prices as derived quantities, it is
in this case natural to calculate today’s swap rates directly from today’s swap prices
(assuming they are given). In this case the initial conditions are given by today’s swap
prices. With this choice, the model will reproduce these prices.

20.3.2 Choice of the Volatilities
20.3.2.1 Reproduction of Swaption Market Prices

The calibration of the model to swaption prices is analog to the calibration of the
LIBOR market model to caplet prices. Let the dynamic of the swap rate S, be given
by (20.2). Furthermore let o-f,ia“k’Ma'ke‘ denote the market prices of an option on S ;;
given as implied Black-volatility. If we calculate

Black Model 1rh 2
ack,Model __ 2
O—i,k = (?‘ f O—i,k(t) dt) ,
i JO

then the model reproduces the given swaption market prices if

a_fllack,Model — O_E]lack,Market‘

This statement is trivial since, if we consider only a single swap rate S ; , then (20.2)
is a Black model for this swap rate, and under this model the implied volatility is
defined by inverting the pricing formula. The inversion of the pricing formula is what
a calibration should achieve.

Remark 219 (LIBOR Market Model versus Swaprate Market Model): The
question of whether one should choose a LIBOR market model or a swap rate market
model seems to depend on the application only, to be precise, on whether the model
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203 CALIBRATION—CHOICE OF THE FREE PARAMETERS

should calibrate to caplets or swaptions—and whether or not one sees a lognormal
forward rate or a lognormal swap rate as a realistic model.

Therefore, the criterion that defines the choice of the model thus is the quality of
the model calibration to the specific application.

However, the swap rate market model has a disadvantage compared to the LIBOR
market model: If we calculate a forward rate L; in a swap rate market model, then the
forward rate tends to suffer from numerical instabilities. Conversely the calculation
of a swap rate from forward rates in a LIBOR market model is generally much more
stable.

r 1 Interpretation: The reason lies in the representation of the swap rate
: : as a convex combination of the forward rates. From Lemma 123 we
' @ | have
L ' J

j-1 il

Sij= oL, with o/ >0 and Yo =1,

k=i k=i

with
i P(Tyr1) - (T — Ty)
@ =

. YU P(Tiat) - (Tian — Ty

If we calculate a forward rate L; from (e.g., co-terminal) swap rates S ;,, we have

1 1
Li = —2Sin— = Sivtas)

i i
1 1 1

e (Sin=Shi) 4| — = —— S

(lllvn Ln ! n a{‘n al'f‘l,n i 14
i 7 l
Assuming for simplicity /)" = ——, which is with 37/ @' = 1 plausible®, then we

have

n—1

|
rEE P

=i
Li=nm—i—=1)(Sin~Siin)+Siin

Si,n

This shows:

5 In general both assumptions cannot hold, and it is necessary to modify the models with respect to their
distribution assumption. Such a modification of the model is called smile modeling.
6 Indeed we have

| _PTu)Tia =T (1,
a:}” P(Ti XTis) =T

i+1,n
¢;




CHAPTER 20. SWAP RATE MARKET MODELS

o The calculation of a swap rate S, , from forward rates L, corresponds to the
calculation of an average (rate)—the swap rate can be interpreted as an integral
of the forward rates. Errors in L are averaged and thus smoothed. The variance
of an unsystematic error is reduced.

o The calculation of a forward rate L; from swap rates S ,, S;+1, consists of a
finite difference term—this part of the forward rate may be interpreted as a
derivative. The calculation of a difference is very sensitive to errors in the swap
rates (e.g. small jumps) and the error is scaled up by the factor (n — i — 1) for
n large and i small. Thus forward rates for short periods in a model of long
period swap rates have a tendency to numerical instability.

<|

Tip:  If there is no strong reason for a swap rate market model, a
generic LIBOR market model with calculation of the corresponding
swap rates from forward rates is preferable. This provides a single, thus
consistent, model for multiple applications (products), which allows the
aggregation of risk parameters (delta, gamma). The difference in the distributional
properties is often negligible (see [7]). <

Further Reading:  The original article on the swap rate market
model is [81]. <
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CHAPTER 21

Excursus: Instantaneous
Correlation and Terminal
Correlation

In this chapter we will use the LIBOR market model to discuss the influence of
instantaneous volatility and instantaneous correlation on option prices. Although our
study is based on the LIBOR market model, the intuition gained from our experiments
is universally valid.

We will experiment with different (extreme) parameter configurations, and we will
see how a single-factor model in which all interest rates L(T;, T;,1) move (instanta-
neously) perfectly correlated may, however, exhibit at time ¢ > 0 (terminal) perfectly
decorrelated random variables L(T;, T j,1; ), L{Ty, Tyr 15 1)

We will start by repeating some basic concepts.

21.1 Definitions

Definition 220 (Covariance, Correlation):
Let X, Y denote two (numeric) random variables, X = E(X), Y = E(Y). Then

Cov(X,Y):=E(X-X) - (Y - 7))

is called the covariance of X and Y, Var(X) := Cov(X, X) is called the variance of X

and _ _
E(X-X)-(Y-Y))

VVar(X) - vVar(Y)

is called the correlarion of X and Y. J

Cor(X,Y) =
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CHAPTER 21. EXCURSUS! INSTANTANEOQUS CORRELATION AND TERMINAL CORRELATION

Let L =(L,,...,L,) denote an n-dimensional m-factorial 1t process of the form
dL; = p; dt + o; dW;, where dW; = Zfi,k du, 21.1)

k=1

and Uy denote independent Brownian motions. Furthermore, let f;; be such that

R = (,Di,j(t))[’j:l YYYY w (thkfjk]

is a correlation matrix (i.e., )., flzk = 1). We have
<dW(),dW(t) > = Rdt.

Definition 221 (Instantaneous Covariance, Instantaneous Correlation): 1
With the notation above we call p; ; defined by

pij(t) = [Z fi,kfj,k]

k=1 ij=1,..n

the instantaneous correlation of the processes L; and L;, and we call o0 p; ; the
instantaneous covariance of the processes L; and L;. 4

Definition 222 (Terminal Covariance, Terminal Correlation): 7
With the notation above we call pfj”“ defined by

pzj""(z) 1= Cor(Li(n), Li(t)

the terminal correlation of the processes L; and L;. Correspondingly we call ¢t
Cov(L;(#), L (1)) the terminal covariance of the processes L; and L;. a

21.2 Terminal Correlation Examined in a LIBOR
Market Model Example

We are considering a LIBOR market model with semiannual tenor structure 7; := 0.5 i
and investigating the behavior of the two rates Ly = L(5.0,5.5) and L, = L(5.5,6.0).
Under the numéraire N = P(T|,) = P(6.0) we have for the dynamic of these rates
(see (19.3), (19.8))

dL(t) = p()L(t)dt + o;(1)Li(1) dWlQN(t) (i=10,11) (21.2)
ol (t
Hio = _]_J::S]—:Ifl)—(t_) o10(t) o11(1) p1o11(8), o1 =T, =Ty
= 0.
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21 2. TERMINAL CORRELATION EXAMINED IN A LIBOR MARKET MODEL EXAMPLE

If we neglect the drift (i.e., set u;9 = 0) and assume a constant instantaneous covari-
ance 0190 11P10.11 = const., then it follows from (21.1) that the terminal correlation
is

PO = pon V.

As one might have expected, the terminal correlation is given by the choice of the
instantaneous correlation. In this case, to achieve a terminal correlation different
from zero we need at least a two-factor model. Figure 21.1 shows a scatter plot
for a one-factor and a five-factor model' of the interest rates Lyo(¢), Li1(7) at time
t =T =5.0.

20%
18%
15% A
12% A
10% A
8% 4
5% 4 :
2% A
0%

LIBOR(5.5,6.0)

0% 5% 10% 15% 20%0% 5%  10% 15%  20%
LIBOR(5.0,5.5) LIBOR(5.0,5.5)

Figure 21.1. The two (adjacent) rates Ly = L(5.0,5.5) and Ly; = L(5.5,6.0) in a one-
and a multifactor model for constant instantaneous volatility oy(t) = o, (t) = const.
In a one-factor model both random variables are perfectly correlated (left). In a
five-factor model both random variables show a correlation different from 1. This is a
consequence of the instantaneous correlation p\p,11 being different from 1.

21.2.1 Decorrelation in a One-Factor Model

It is possible to achieve a terminal de-correlation for processes which have perfect
instantaneous correlation. Consider

0 >0 fortr<?2.5, 0 =0 forr<?2)5, 213)
a o .
"N=0 forr>25, 150 forr =25,

! The exact model specification is: Lig = 0.1, o = 0.1, and pi.j = exp(=0.5|i — j]), followed by a factor
reduction as given in Section B.3. For the five-factor model we have pig ;1 = 0.94.
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20%
18% -
15% 1
12% A
10% A
8% A
5% A
2% 4

LIBOR(5.5,6.0)

0,

o T T T T T T
0% 5% 10% 15% 20%0% 5% 10% 15% 20%
LIBOR(5.0,5.5) LIBOR(5.0,5.5)

Figure 21.2. The two (adjacent) rates Lig = L(5.0,5.5) and Ly; = L(5.5,6.0) in
a one-factor model. Left: The two random variables exhibit a correlation close to
0 (perfect decorrelation). Right: The two random variables exhibit very different
variances. The covariance is close to zero since the variance of Ly, is close to 0.
Both scenarios are the consequence of a very special choice for the instantaneous
volatility.
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21.2. TERMINAL CORRELATION EXAMINED IN A LIBOR MARKET MODEL EXAMPLE

i.e., the processes receive the Brownian increment dW(¢) at different times #; thus the
increments received are independent. Since in this case we have pjg = y;; = 0in
(21.2), the two random variables L;¢(5.0), L;1(5.0) are given by

1
log(L10)(5.0) = —50”'%0 2.5 + 710 (Wi0(2.5) = Wip(0))

1
log(L“)(SO) = —56'%1 25 + 6’11 (W11(50) et W“(25)),

a1 (25 5 2 _ (S0
where 77}, = 5= b oD dr and 77 = 33 Ls oD dr.

Since, even for a one-factor model, the increments (W(2.5)— W(0)), (W(5)-W(2.5))
are independent, L¢(5.0), L;;(5.0) are independent as well; see Figure 21.2, left.

21.2.2 Impact of the Time Structure of the Instantaneous
Volatility on Caplet and Swaption Prices

The previous example of the decorrelation of the rates Lo, L;; in a one-factor model
shows the importance of the time structure of the instantaneous volatility for the
(terminal) distribution of (Lo, Lq;) at time ¢ = 5.0. Now we will look at the corre-
sponding caplets and a swaption with maturity 5.0 and payment dates 5.5, 6.0, which
is dependent on Ljg and L;:

. _ Caplet Caplet Swaption
Scenario 07i(1) PIL 5055 5560 5060
1 0.1 1.0 0.26% 0.26% 0.51%
2 0.1 094 0.26% 0.26% 0.50%
3 as in (21.3) 1.0 0.26% 0.26% 0.36%
4 0.7exp@.NT;—1) 1.0 0.26% 0.26% 0.27%

Table 21.1. Caplet and swaption prices for different instantaneous correlations and
volatilities.

In all scenarios we have fOT[ o(t)* dr = 0.05 for i = 10, thus all caplet prices are

the same.”

Figures 21.1 and 21.2 are generated with these parameters.

T;
2 We have f(b exp(—c(T;— t)))2 dr = g—i(l —exp(=2¢T)). For T; = 5.0, b = 0.7, ¢ = 4.9 we thus have
0

fOT' ai()? dr = 0.05(1 — exp(—49)) =~ 0.05 (1 - 5 x 1072%) ~ 0.05.
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CHAPTER 21. EXCURSUS INSTANTANEOUS CORRELATION AND TERMINAL CORRELATION

21.2.3 Swaption Value as a Function of Forward Rates

To interpret these results we analyze the dependency of the swaption value from the
rates Lo, L.
For the value of a swaption Vswapiion(7T0) with fixed swap rate (strike) K we have

max(S (T;) - K, 0) A(T;
Vwapion(To) = Nmﬁ@”( ( ;an ( )|fn)
with
n—1
ATy = ) (Tjo1 = THP(T;15T)) (swap annuity)
=i
_ T
S(T) = %—Q (par swap rate).
With the numéraire N = P(T,) we have
A(T; A(T; P(T i;T})
( ) _ ( ‘ ) Z(Tﬁl L1 44)
N(Ty)  P(T, Ty P(Tm T)

- Z(T,H T) ﬂ (1 + Ly(T)(Tisr = To)

k=j+1
and
AT)  1=PTuT) _TT0i 1 o s
SONTS = Fr —D(1+L,<T,)(T,+1 ) -1,
ie.,
- S(T;) - K) A(T;
Vowapton(To) = P(Tw: To)ES ( ax(%ﬂnﬁ)
with

ST =KV AT) v o 1 rors T -
T - ];[(1 + L(T)Tj = T)) = 1

n—1 n—1
—K Y (T =T [ [0+ Ll@(Tear = T,

=i k=j+1
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21.2. TEAMINAL CORRELATION EXAMINED IN A LIBOR MARKET MODEL EXAMPLE

If we apply this to the special case of a swaption with a two-period tenor
{T;,....,T,} ={To,T\1,T12} = {5.0,5.5, 6.0}, we get

(S(Ti)—KA(Ti) )
ax| —————,0

P(T,; Ty
= max((1 + Lig ATY1 + Ly; AT) — K(AT(1 + Ly AT) + AT),0)
=max((Lig — K) AT + (Lj; = K) AT + Li,(Lio — K)X(AT)?),0). (214)

From (21.4) we can derive the following observations for the value of the swaption:

e If L, (T\o) = K, then the value of the swaption corresponds to the value of a
caplet paying max(Ljo — K, 0). If L}, has at time T no or small variance and
if L1(To) is close to K, then the value of the swaption is close to the value of
a caplet with payoff max(Ly — K, 0).

o Neglecting the term L (T g)(L1o(T10) — K)(AT)?, which is justified for small
rates and short periods AT, and considering thus only

(Lio(T19) = K) AT + (L11(T10) = K) AT = (L1o(T10) + L11(T10) - 2K) AT,

we see that the option price is determined by the variance of Lo(T10) + L11(T'10)-
For this we have

Var(Lio(T10) + Li1(T10))
= Var(Lo(T10)) + Var(L1(T10)) + 2 Cov(Lio(T10), L11(T10)).

e From the previous we know that the option value is maximal for pTSr[“l (Tyo) =
1 and minimal (even 0) for pngr?‘] (T\p) = -1 (still neglecting the term

Li1(T10)(L1o(T10) — K)AT?).

From these remarks the results in Table 21.1 become plausible. In scenario 4 the rate
L1,(T)o) has a negligible small variance (compare Figure 21.2, right). The swaption
value is close to the caplet value. The caplet on the period [T, T12], however, has
the same price as in the other scenarios, since the high instantaneous volatility for
t € [Ty9, T11] will give the rate L;;(Ty)) the required (terminal) variance.

While for the swaption the rate L;;(T9) is relevant, for the caplet it is the rate

Li(Tho).

Experiment: The influence of the instantaneous volatility and in-
stantaneous correlation on terminal correlation, caplet and swaption
prices may be investigated at http://www.christian-fries.de/

.
]
l
. finmath/applets/LMMCorrelation.html. <

A e
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21.3 Terminal Correlation Is Dependent on the
Equivalent Martingale Measure

The terminal correlation is dependent on the martingale measure and thus the
numéraire used. The whole (terminal) probability density is, of course, measure
dependent; see also Lemma 81 in Chapter 5. Thus an interpretation of terminal
correlation and other terminal quantities should be made with caution.

How the chosen martingale measure influences the terminal distribution, especially
the terminal correlation, may easily be seen in a LIBOR market model. Consider the
processes L; = L(T;, Tiv1) and Ly = L(T4 1, Tiya), i.€., two adjacent forward rates,
under the martingale measure Q”7*) corresponding to the numéraire P(T,) (terminal
measure). It is

6ij(t) 1 2 QPTw
leg(L,) = - m O'j(f)O'j(t)p,',j(I) dr + ‘2‘0','(0 dt + o (1) th .
i<j<n =
. 0;Li(1)
With dK (1) := ————— dr we thus have
1+ 6J'Lj(t)
dlog(Ly) = 0 (= Tipizer dKiny = L 05pistj 0Kj +foi(r) di + aw?™")
P(Tn)
dlog(Livt) = o1 = |2, o ipist,j 9K + 1oy de +dWET).

The terminal correlation is influenced by the common drift term 3, .., dK; and
this influence can be increased arbitrarily through the factor o; in front of K;. If and
how this term is present depends on the chosen martingale measure: Forn = i + 2
the sum is empty and the term is = O, for n > i + 2 the term is > 0. In theory it
might be possible that L; and L;,; appear almost perfectly correlated under QF7+)
and perfectly uncorrelated under QP72),

21.3.1 Dependence of the Terminal Density on the
Martingale Measure

How the chosen martingale measure influences the terminal distribution function is
shown in the following examples. In Figure 21.3 we look at the density of a forward
rate under a one-factor LIBOR market model with constant instantaneous volatility,
equal for all rates. Under different martingale measures (spot measure, terminal
measure) the distribution is slightly different. If, however, the volatility of the other
rates is increased, then, depending on the chosen martingale measure, the distribution
will change, see Figure 21.4. As before, the change in the distribution function stems
from the drift of the LIBOR market model.
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21.3. TERMINAL CORRELATION IS DEPENDENT ON THE EQUIVALENT MARTINGALE MEASURE

Terminal distribution of L(5.0,5.5) seen at t=5.0 (fixing)

2.5% 1
2.0% 1

1.5% 1

Frequency

1.0% 1

0.5% 1

0.0% A ™ T - !
-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

Log of Forward Rate

& Terminal measure T=20.0 & Terminal measure T=10.0

A Terminal measure T=5.5 Spot measure

Figure 21.3. The terminal distribution function of a forward rate under different
martingale measures. Shown is the rate 1(5.0,5.5) upon its fixing at t = 5.0. All
rates are simulated in a one-factor LIBOR market model with constant instantaneous
volatility o = 10%.

1' ': Tip (Terminal Quantities Independent of the Martingale Mea-
I , sure): In place of martingale measure-dependent quantities, like the
'L J' terminal distribution of the terminal correlation, we can define mean-

ingful alternatives. The implied (Black) volatility is an example of a
martingale measure-independent quantity. Apart from the scaling with the square
root of the maturity VT, it corresponds to the terminal standard deviation under the
T+ -forward measure. If, for example,

dlog(L;(0) = (...) dt + oi(r) dWi(D)
dlog(L;(®) = (...)dt+ o () dW,(®)

are given processes, then the integrated instantaneous covariance
T

T
j; dlog(Li(t)) dlog(L;(t)) = fo o) j(Op j(¢) dt

is independent of the chosen martingale measure.> It would correspond to the covari-
ance of log(L;(1)) and log(L;(?)), if both were martingales. <

3 This is clear because a change of martingale measure is a change of drift only.
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Terminal distribution of L(5.0,5.5) seen at t=5.0 (fixing)

3‘0% S —

2.5% 1

2.0% 1

1‘50& E

Frequency

1.0% 1

0.5% 1

0.0% - T v
-4.0 -3.5 -3.0 -2.9 -2.0 -1.5 -1.0 - 0.5 0.0

Log of Forward Rate

& Terminal measure T=20.0 @ Terminal measure T=10.0
A Terminal measure T=5.5 Spot measure

Figure 21.4. The terminal distribution function of a forward rate under different
martingale measures. Shown is the rate L(5.0,5.5) upon its fixing at t = 5.0. In
contrast to Figure 21.3 the rates L(T;, Ti1) for T; < 5.0 are simulated differently.
They are simulated with a high volatility of 150%. All other rates are simulated as in
Figure 21.3 with volatility o = 10%. The change of the simulation of the other rates
has an significant impact on the distribution of 1(5.0,5.5) under the spot measure.
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CHAPTER 22

Heath-Jarrow-Morton Framework:
Foundations

The Heath-Jarrow-Morton (HIM) Framework [78] postulates an It process as a
model for the instantaneous forward rate!:

df(t,T) = oF(t,T) dr + o(1, T) - AWP(1)

fO,T) = fo(T)
for 0 <t < T, where WF' = (WF,...,WE) is an m-dimensional P-Brownian mo-
tion with instantaneously uncorrelated components.” Furthermore we assume that
ot,T) = (1t T),...,on(t,T)) and aF(t, T) are adapted processes.

In case of its existence, let Q denote the risk-neutral measure, i.e., the martingale

measure Q = QF corresponding to the numéraire B with

B(t) := exp (j(; f(1r,7) d‘r) = exp (j; r(tr) d‘r), (22.2)

where r denotes the short rate—see Definition 103.
Girsanov’s theorem (Theorem 59), gives the process (22.1) under Q as

df(r,T) = &%, T)dr + o (1, T) - dAWQ(0),
J0,T) = fo(T).

Equation (22.3) represents a family of stochastic processes parametrized by T,
which give a complete description of the interest rate curve: From Definition 101 we
have

(22.1)

It

(22.3)

_3log(P(T; 1)

f@.T)= 3T

! Definition 101 on Page 127.
2 Le., that dW" - dW = I dt. See Section 2.7.
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i.e. (using P(t;1) = 1)

T
P(T;1) = exp (— f f, ‘r)d‘r) .
14
Apart from the requirement that the processes are It processes, we do not consider
a specific model or its implementation. A specific model would be given if we had
specified the form of (1, T) — o(t, T). With a specific choice of (¢, T) (22.3) may
become a known short-rate model or the LIBOR market model; see Chapter 24.

In this chapter we will discuss the no-arbitrage conditions of (22.3) and discuss
how other models fit into this framework.

22.1 Short-Rate Process in the HUIM Framework

The specification of the families of processes f(:, T) implies a process for the short-
rate r. We write Equation (22.3) in integral form:3

f@. Ty = fo(T) +f a(s, T)ds +f o(s, T)-dW(s). (22.4)
0 0

With T — t we find for the short-rate r(f) := lTn\n f(t,T) that
!
! !
r(t) = f(e,t) = fol) + f a(s,t)ds + f o(s,t) - dW(s), (22.5)
0 0
and thus the short-rate process is in differential notation given as

dt
(22.6)

dr(t) = [%]%O-a) +al(t, 1) +fg—%(s, Hds+ f%;(s, t)-dW(s)
0 0

+o(t,1)-dW(z).

Remark 223 (Notation): Equation (22.6) follows from (22.5) by differentiating
with respect to ¢. Since ¢ enters into the second argument of « and o, we have to
calculate the partial derivative of o and o with respect to their second argument. In
accordance with the notation in (22.1) we denote the partial derivative of a with
respect to its second argument by %% and the partial derivative of o with respect to its

second argument by g—‘T’. Likewise we denote the (partial) derivative of f; with respect

to its argument by ZLT”.

3 We are dropping the superscript QF on the drift a and the diffusion W for a while.
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22.2 The HJM Drift Condition

Theorem 224 (Heath-Jarrow-Morton—HJM Drift Condition): For the family

of bond price processes P(T) the following holds: The B-relative price @ is a

QB-martingale, if and only if

T T T
far(s,S)dS = Ef o(s,§)dS f o(s,S)" dS.

From this we have: All bond price processes of the bond curve T +— P(T) are
QB-martingales, i.e., the model is arbitrage-free, if and only if

T
T = o, T)- f o, )T dr VT. (22.7)
t
Equation (22.7) is called the HIM drift condition.*

Proof (of the HJM Drift Condition): Let T denote a fixed maturity. With B(z) =
exp ( f(; r(s) ds) and P(T;t) = exp (— ft T f(@@,8)ds ) it follows for the B-relative price
of the bond P(T) that:

P(T;0)

B S SRX@)  wih X0 =- f f(t,8)dsS - fo r(s) ds.

From (22.4) and (22.5) follows

T ‘
X(t):—f f(t,S)dS—fr(s)ds
tT 0T ! T t
—f fO(S)dS—f far(s,S)dst—f fa'(s,S)-dW(s)dS
t t 0 t 0
—ffo(S)dS—f fua(s,u) dsdu—f fua(s,u)-dW(s) du.
0 0 Jo 0 Jo

4 Note that o is a row-vector, i.e., (22.7) involves a scalar product.
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With [7 [ dW(s)du = [} [* du dW(s) and the interchange of the integrals this is

T ! T t T
=—f Jo(§)dS —f f a(s,§)dS ds—f f o(s,$)dS - dW(s)
t 0 Jt 0 Jr
- f fo(S)dS - f f afs,u) duds — f f o(s,u)du - dW(s)
OT 0 , s ; 0 t.v .
= —f fo(S)dS —f f a(s,S)dS ds—f f o(s,85)dS -dW(s)
0 0 s 0 K]

=X(O)+fA(s) ds+f2(s)-dW(s),
0 0

thus
dX(t) = A dt + Z(0) - dW(D),

where

T
X(0)=~J; Jo($)ds,

T
A(s):—f a(s,S)ds,

T
2(s) = —f o(s,§)dS.

Let the B-relative price of P(T) be a martingale under Q?, i.e., the process
exp(X(#)) is drift-free. From It6’s lemma we have dexp(X(#)) = exp(X(¢)) dX(¢) +
1 exp(X(1) dX(1) dX(1), i.e.,

1
dexp(X(2)) = exp(X(1)) - ((A(t) + EZ(:)Z(t)T) dr + X(p) - dW(t)) .
That exp(X(?)) is drift-free thus implies A(?) + %Zl(t)Z(t)T =0,1ie.,

T 1 T T
f at,S)dS = Ef o(t,S)dS - f o(t,5)" ds.
t t t

If this equation is valid for all T, we get by differentiation 5‘37 the HIM drift condition

T
ait,T) = ot,T)- f o(t,5)'dS.

ol
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Interpretation (Bond Volatility): The expression X{f) =

v - ft ! o(t,5) dS corresponds to the volatility of the bond price process
. ¥ | P(T)attime ¢ (bond volatility), since we have

]

dP(T;t) = d(B(t)exp(X(1))) = B(r) dexp (X(1)
B(1) exp (X() (dX () + % dX(r) dX(1)

P(T;0 ((...)de+ Z(2) - dW(@)
P(T;0 (L.)de + P(T; ) () - dW().

<

Motivation (Embedding other Models): If an interest rate model
is arbitrage-free and if the processes of the instantaneous forward rates
f(-,T) are It6 processes, then the model has to fulfill the HIM drift
condition (22.7). Thus, these interest rate models may be derived as a
special case of the HIM framework. Since the volatility structure (¢, T) — o(t,T)
and the initial conditions f(0, T') are the only free parameters of the HIM framework,
this embedding of arbitrage-free interest rate models can be achieved by choosing the
HIM volatility structure and the initial interest rate curve. We will show in Chapter 24
how short-rate models and the LIBOR market model can be interpreted as special
HIM volatility structures. <
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CHAPTER 23

Short-Rate Models

23.1 Introduction

At a fixed point ¢ in time the short rate is given by

_BP(T; 3]

r(t) ;= 3T rer

See Definition 103. Thus r : ¢ — r(¢) is a real-valued stochastic process. We make
the following assumptions:

1. Given is a model for r (short-rate model), e.g., in the form of an It6 process
dr = uF(t,r) dt + o(t,r) dWF (1),  1(0) = r, (23.1)
where P denotes the real probability measure.

2. The continuously compounding money market account B(t),
f
dB(t) = r(t)B(t)dt, B(0) =1, ie., B() =exp ( f r(t) dr),
0

is a traded asset.!

3. Corresponding to the numéraire N(¢) = B(t), there exists a martingale measure
Q = Q2 equivalent to P.

! The short-rate 7 is, as an interest rate for an infinitesimal period dz, an idealized quantity. Correspond-
ingly the product B is an idealized quantity: The continuous reinvestment of an initial value of 1 over
infinitesimal periods [¢, t + df] with rate r(r).
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CHAPTER 23. SHORT RATE MODELS

From Girsanov’s Theorem? the process of r under Q is
dr = p ¢, r)y dr + o(t, 1) AWR(r), r(0) = ro, (23.2)

with ,uQ(t, ry = yF(t,r) + C(r). Since under Q all B-relative prices of traded assets are
martingales, all bond prices are given by

T
P(T;1) = B()EY (% | 7—',) =E% (exp (— f, r(t) d-r) 1 ?,) .
From the bond prices P(T'; ) we can calculate all derived quantities such as forward
rates or swap rates; see Section 8.2. Thus, the short-rate model (23.2) gives a complete
description of the interest rate curve dynamic.

Short-rate models were and are popular, since the underlying stochastic process r
is one-dimensional (i.e., scalar valued). Thus many techniques that are known from
the modeling of (also one-dimensional) stock price processes can be used (e.g., finite
difference implementations). Depending on the specific model (i.e., the form of u
and o), analytic formulas for bond prices or simple European interest rate options
may be derived, similar to the Black-Scholes formula for European stock options
under a Black-Scholes model.

Instead of specifying the model (23.1) of the short-rate process under the real
measure P and applying the measure transformation to Q, it is usual to specify the
model (23.2) directly under Q and calibrate given model parameters.

23.2 The Market Price of Risk

Consider a bond with maturity 7. Under a short-rate model its price process P(T) :
t — P(T;1) is a function of (¢, r(¢)) and if Itd’s lemma is applicable, we have®

dP(T) = o&(t, HP(T) dt + or(t, r)P(T) dWF (1), (23.3)

where the price process is considered under the real measure P.

Let P(T)) and P(T,) denote two bonds with different maturities 7} # T». We
construct a portfolio process (¢, ¢1) for a self-financing portfolio of B and P(T),
which replicates P(T,). The portfolio process (¢o, ¢1) has to satisfy the following
equations:

¢0B + ¢\ P(T\) = P(T>) (“replicating”) (23.4)
d(¢oB + ¢1P(T1)) = o dB + ¢; dP(T)) (“self-financing”). (23.5)

2 Theorem 59 on page 39.
3 At this point, it is not obvious that [td’s lemma is applicable, especially if the functional dependence of
P(T; 1) from (1) is sufficiently smooth. However, for the short rate models presented this is the case.

) 3 1,28
. L P(Ty+pu £ PT)+ § 02 25 P(T) 2 B(T)
From Itd’s lemma we then have ay = o o o 27 o and o1 = {;;(T) = 0'% log(P(T)).
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From (23.4) we find dP(T>) = d(¢oB + ¢, P(T)) and with

d(goB + $1P(T1)) “Z” (dorB + ¢105, P(T))) di + piorr, P(T)) AWF (1)

dP(Ty) ®2Y oF P(T) di + o1, P(T5) AW (1),

we have, by comparing coefficients,

a7, P(T2) = ¢orB + ¢1a, P(T)) (23.6)
o, P(T2) = 107, P(T1). (23.7)
While (23.7) and (23.4) uniquely determine the portfolio process (¢g, ¢1), (23.6) is

a consistency condition for r, @y, and a7,. If (23.6) were violated, then the model
would not be arbitrage-free. We rewrite the consistency condition (23.6) as:

© & P(T2) = ¢or B+ o, P(Ty)
& % P(T2) = ¢orB+¢yrP(T)+ ¢ (aF, —r) P(T1)
£ oF, P(Ty) = r P(Ty) + ¢ (aF, — r) P(T})
e (@, = r) P(Ty) = ¢ (af, —r) P(TY)
@ oy, —r _ o - r
or, or,

It follows that there exists a AT such that for all bond price processes
dP(T) = a&(t,r) P(T) dt + o (t, r) P(T) dWZ ()

we have
P
ay—r
u = A5

or

Since o is the local rate of return of the bond, we may interpret AF as the local excess
return rate over r per risk unit or.

Definition 225 (Market Price of Risk): 1
af-r

The quantity A¥ := - which is independent of T, is called the market price of risk.

J
If we consider the bond price process

dP(T) = «2()P(T) dt + o (HP(T) dW(z)
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under the measure Q, it is obvious that ag = rfor all T, since all B-relative prices are
Q-martingales. Thus, under Q the price of risk A2 = 0. It follows that

/1?:/lQa'T+r=O+r=/lP0'T+r—/lP0'T=p]§—/lP0'T,

and we find that market price of risk A¥ appears in the change of drift to the measure
Q, i.e., we have C(¢) = —AF o in Theorem 59.

Definition 226 (Risk Neutral Measure): 1
Let r(¢) denote the short rate. The martingale measure Q? corresponding to the
numéraire B(r) = exp ( fﬂt r(t) dr) is called the risk-neutral measure. Ny

Remark 227 (Risk-Neutral Measure): The continuously compounding money
market account B is locally risk-free, since the process dB(f) = r(¢)B(¢) dt does not
exhibit a dW(¢) term. However, r(r) may be stochastic. If r were not stochastic, then
B would be globally risk-free.

23.3 Overview: Some Common Models

Table 23.3 gives a selection of the most common short-rate models.

Name Model

Vasicek Model dr = (b -ar)dt+ o dWQ
Hull-White Model dr = (¢(t) — ar) dt + o () dwe
Ho-Lee Model dr = a(r) dt + o(r) dWQ
Dothan Model dr = ardt + or dwQ

Black-Derman-Toy Model ~ dlog(r) = ¢(f) dz + o(t) dWQ
Black-Karasinski Model dlog(r) = (¢(t) — alog(r)) dt + o(r) AW®

Cox-Ingersoll-Ross Model ~ dr = (b — ar) dt + o(t) vr AW

Table 23.1. Selection of Short-Rate Models

The Hull-White model is sometimes called extended Vasicek model. The Vasicek,
Hull-White, and Ho-Lee models allow for negative short rates. The Black-Derman-
Toy (BDT) and Black-Karansinski (BK) models use a lognormal process, and the
Cox-Ingersoll-Ross model uses a square-root process. Neither of these two processes
allow for negative rates.*

4 This result holds for the time-continuous process. A time discretization of the process may allow for
negative rates. See, for example, Section 13.1.2.
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23.4 Implementations

23.4.1 Monte Cario implementation of Short-Rate Models

A short-rate model gives a description of the dynamics of the short rate. To obtain a
complete interest rate curve at a given simulation time ¢, we have to calculate the bond
prices from (23.1) as conditional expectation. To calculate a conditional expectation
in a Monte Carlo simulation numerically requires additional, numerically expensive
methods; see Chapter 15. To obtain a Monte Carlo simulation of the full interest rate
curve from a Monte Carlo simulation of the short rate, analytic formulas for bond
prices are indispensable. The popularity of short-rate models is thus partly due to the
need for a simple and efficient implementation.

For a fast calibration to a given interest rate curve it is also required to calculate
bond prices analytically.

23.4.2 Lattice Implementation of Short-Rate Models

If the short-rate model is Markovian in low dimensions, then it is best to implement
the short-rate model on a lattice, allowing for a backward algorithm.> Depending
on the model, implementations using binomial or trinomial trees or general finite
differences for PDE’s are used. See [35] for a detailed discussion.

Further Reading: Bjorg’s book [6] contains a discussion of short-
rate models with affine term structure. Tavella and Randal’s book [35]
gives an introduction to finite difference methods, as well as applications
to interest rate models. <|

5 See Section 13.3.2.
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CHAPTER 24

Heath-Jarrow-Morton Framework:
Immersion of Short-Rate Models
and LIBOR Market Model

You're going to find that many of the truths we cling
to depend greatly on our own point of view.

Obi-Wan Kenobi / George Lucas
Star Wars: Episode VI (Wikiquote).

24.1 Short-Rate Models in the HIM Framework

The Heath-Jarrow-Morton (HIM) framework

df(t,T) = a(t, T)dt+ 0, T)-dW()

(was 22.3)
FO.T) = fo(T)
implies the short-rate process
of; ( d t d
0 o4 o
dr)=| =B +a(t,)+ | (s, 0)ds+ | —(5,0)dW(s)|ds
0 [M() (1.1 OfaT( ) of"T( ) dW(s) (vas 226,

+o(t, 1)-dW(),

both under the measure Qf—see Equations (22.3), (22.4), (22.5), and (22.6). The
short-rate model is thus given by the specific choice of the HIM volatility structure
o(t, 1) (— short-rate volatility) and initial conditions fy (— short-rate drift).
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24.1.1 Example: The Ho-Lee Model in the HJM Framework

Consider the simple case of a constant volatility function
o(t,T) = o = const.
From (22.7) we have o(¢,T) = o ftT ocdr=02(T -1, ie.,

df,TY = (T =D dt+ o dW(),  fO,T) = fo(T).

]
+f0'dW(s)
T=t 0

For the short rate it follows that

r@t) = f(t,0 = fo(t) + f o (T - s5)ds
0

= folt) + %O'th +oW(p),

ie.,

dr(f) = (%(r) + 0'2t) dr + o dW().

Using the notation from the Ho-Lee model, dr(r) = ¢(r) dt + o dW (1), itis

dfo

E(’) + ot (24.1)

P(1) =

Interpretation: Equation (24.1) allows a calibration of the Ho-Lee
model to a given curve of bond prices P(T') by setting

_ d* log(A(T))

7 (Do

&) =
With this choice the model reproduces the given bond prices.
If we consider the interest rate curve fr (T) := f(71,T; + T), T = 0 at a later time
T; > 0, then from

dfn
dT

(1) +0t = (T +1) = ?TQ(T, + 1) +0'2(T1 +1),

we find that fr,(t) = fr,(0) + fo(T1 + 1) — fo(O) + o> (Ty 1 + 31%).
So to summarize, the model reproduces all bond prices, but in the evolution the
interest rate curve gets steeper and steeper—a rather unrealistic behavior. |
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24.1.2 Example: The Hull-White Model in the HIM
Framework

Consider the case of an exponential volatility function
oct,T)=ce® T, (a>0).

Then we have %(:,T) = ~a 0 e "™ = —a (1, T). For the drift u(t) of the
short-rate process dr(?) = u(t) dt + o(1, 1) dW(t) we get

uny 2 fo(t)+a(t 0+ f L f 9 .1y dW(s)
o o 0T
= f°(z)+a(z t)+f——(s t)ds—fatr(s,t)dW(s)
0
(223 %(t)+ar(t t)+f a—(s,t) ds—ar(t)+afo(t)+faa(s,t) ds,
0 oT 0

ie.,
dr(t) = (¢(t) — ar(t)) dt + o dW(1)
with

() = ﬁ(t) +a fo(t) + a(t,t) + f 6—a(s, Hds+ f a-a(s,t)ds.
o OT 0

With the HIM drift condition (22.7) it follows that (2, T) = o e T~ (] —
e @ T = g2 L(gmaT=0 _ g=2a (T- and thus

(1) = %(t) +a fo(t) + a(t, 1) +f a—a(s, 1) ds+f aa(s,t)ds
o OT 0

= ——fg(t) +a fo(d) + f ole 2 79 gs

fo(z) +a fol) + —(1 e,
Altogether we have

2
dr(t) = (%(r) +a fo(f) + g—a(l —e 2N — gr(] dt + o AW(D).

Note that this equation allows a calibration of the Hull- White model to a given curve
of bond prices. From the bond price curve we can calculate 22 =T (t) +a fo(o).
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Interpretation (Mean Reversion): The derivation of a Hull-White
model from a Heath-Jarrow-Morton model gives an important insight
! @ | totherelevance of the time structure of the volatility function:

A volatility function of the instantaneous forward rate f(z, T'), which is
exponentially decaying in (T — t) (time to maturity), i.e.,
o(t, T) = exp(—a(T — 1)), corresponds to a mean reversion term for the short-rate
process r(¢) with mean reversion speed a.

Correspondingly, this effect is visible in the LIBOR market model; see Chapter 25.
<l

24.2 LIBOR Market Model in the HUM Framework
24.2.1 HJM Volatility Structure of the LIBOR Market Model

In the specification (19.1) of the LIBOR market model dW denoted the increment of
a n-dimensional Brownian motion with instantaneous correlation R. In the specifica-
tion (22.3) of the HIM framework dW denoted the increment of an m-dimensional
Brownian motion with instantaneous uncorrelated components. To resolve this con-
flict we employ the notation of Section 2.7: Let U denote an m-dimensional Brownian
motion with instantaneous uncorrelated components and W denote an n-dimensional
Brownian motion with dW(¢) = F(¢) - dU(¢), i.e., the instantaneous correlation of W
is R := FFT. Consider the HIM model

df(,T) = % T)dt + o1, T) - dU)
FO0, Ty = fo(T)
with dU = (dU,,...,dU,,). From

T
P(T;1) = exp (—f f@, 1 d‘r)

(see Remark 102) it follows that the forward rate L;(¢) := L(T;, Ti4;t) is given by

(24.2)

I

(T 1) o

I+ Li(t) AT; =
P(Tii151)

= exp ( f dT) .

Note that for X(¢) := ff’“ f(t,7) dr we have by the linearity of the integral that
dX = fTT”' df(t, t)dr, thus we find from It6’s lemma that within the HIM framework
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the process of the forward rate L;(¢) is
1
dL;(t) AT; = dexp(X) = exp(X) (dX + de dX)
T,H T:+l
= exp( fa, T)dT) [f (df@t, 7)) dr
T, T;

1 Tis1 Tis1
+5 f df@,m)dr f (df(,m) dr]
2 T, T

i i

= (1 + L(t) AT)) [(A(t) + %Z(r) IO A+ T dUQ]

where A() = [ o2, 1) dr and 30 = [ (2. 7) dr.
; : T1+l
dL;(1) = M ((A(t) + %Z(t) YO dt+f o(t,7)dr dUQ(t)).
T;

AT;
(24.3)
We will now choose the volatility structure such that (24.3) corresponds to the
process of a LIBOR market model: Let W = (W, ..., W,)" denote an n-dimensional
Brownian motion as given in Section 2.7.

dW() = F(r) - dU(0), with correlation matrix R := FF",
ie.
F
dWi(t) = Fi(t) - dU(1), with F =|
Fy
Let the volatility structure be chosen as

(24.4)

(i) - T ot Fi(t) fort < T,
' 0,...,0) fort> T,

where i is such that 7 € [T}, T;,1). Then we have

1+ L) AT;

Tr+|
AT, j; o, 7)dr-dU =

i

Li(t) oy(t) dWi(t) fort < T},
0 fort > T,

The forward rate then follows the process

dL; = p¥ (OLi(o) dr + (L) dWi(o),
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where
1 A T,‘H 1 T,'+| T1+l
+ Li(t) AT;
,uiQB = L—,(t)(—i—T,—_ fa’Q(t,T)dT+§fc’(t,T)dT‘fo'(t,T)T dr|.
T; T; T;

Interpretation (LIBOR Market Model as HJM Framework with
; 7 Discrete Tenor Structure): Apart from the factor % (24.4)
. gives the volatility structure o (¢, T') of f(¢, T) as piecewise constant in 7.
' The factor L;(¢) results from the requirement to have a lognormal process
for L;. The factor m results from the discretization of the tenor structure. This
shows that the LIBOR market model can be interpreted as HIM framework with
discrete tenor structure. In the limit AT; — 0 the factor l_+L—,(lTZ_T_, vanishes and we
obtain (apart from the restriction to a lognormal model) the HIM framework. <

24.2.2 LIBOR Market Model Drift under the Q? Measure

The HIM drift condition states that
. T
A T)=00T)- f o(t,7)"dr.
t

Since for fixed ¢, o(¢, T) is a piecewise constant function in T—namely constant on
[T,', T,'+1)..., we have for T € [T,‘, T,‘_,_])

i-1
o¥(,T) = o, T) |06, Twyes =)+ Y o, TNTAT; + (1, T)(T = T))

j=m(ty+1

=0
where m(f) := max{i : T; <t}. Thus we have
i—1

1
PG T)TAT; + 5ot T)TAT; .

j=m(t)+1

Ti+l
f ¥ (t,7)dr = o(t, T;) AT; -
T;

With
oL oLj
1+ L AT, 1+ L, AT,

a@t,T) o, T)" =
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we find

Tisy Tix Tis1

1+ L,(t) AT; 1
u?B = —ﬁ—' fa/QB(t, 7)dr + 3 f(r(t, ) dr- fo(t, )" dr
T, T, T,

1 + L) AT; o;L; AT; il O'ij AT] - o;L; AT;
L) AT; 1+ L; AT; 1+L; AT,”Y " T+ L; AT,

jEm{t+1

_ 1+ Li(t) AT; o;L; AT; i O'ij AT] _
T TLG AT, 1+L AT 1+L,; AT,

J=m)+1

_ i O'ijATj
"(”[ 2 [+L; AT, )

j=m(H+1

Interpretation:  Surprisingly, we find that the drift under Q” is
identical to the drift under the spot LIBOR measure (see Section 19.1.2)
| . | m(t)

N@) = PTuayer: 0 | [(1+ LA(T) AT, (was 19.9)
=0

The reason is simple: Under the assumed volatility structure the numéraires B(f) and
N(¢) are identical. To be precise, it is the assumption

ot, TYy=0 for Tm(f) <t<T< Tm(t)+l (24.5)
which implies that the two numéraires coincide. By this the HIM drift implies
@V, T) =0 for Twy <t <T < Tpsi

and thus for Ty < T < Trgyar:
15 !
F@.T) = f(Tpi, T + W - W .
=0} =0

From f(t,T) = f(Tiy), T) we have

B(B;:lzt)) - exp ( Tm(r) f(T’ T)dT) - exp (»[;m(l) f(Ti, T)dT)

P(Tpo+13) N
P(T 15 Trury) N(T )’
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with B(0) = N(0) = 1, i.e., B(t) = N(?). <
We will summarize this result as a theorem:

Theorem 228 (Equivalence of the Risk-Neutral Measure and the Spot LIBOR
Measure): Given a tenor structure 0 = Ty < T < --- < T,,. Under the assumption
that the T;,,-bond P(T.1; ) has volatility Oon ¢ € [T;, T, ] foralli = 0,1,2,..., we
have

B(t) = N(@)

for B(¢) as in (22.2) and N(¢) as in (19.9).

Proof: The claim follows from the considerations above, since the assumption in
the theorem is equivalent to (24.5). ol

24.2.3 LIBOR Market Model as a Short Rate Model

In Section 24.2.1 we have given the volatility structure for (¢, 7) — f(t,T) under
which the forward rates L; evolve as in a LIBOR market model. Since the short rate is
given as r(f) := limp~, f(¢, T), the volatility structure also implies a short-rate model.
Furthermore, the numéraire B(¢) = exp ( for () dr) is fully determined by the short
rate, thus the short-rate process under Q? gives a complete description of all bond
prices (and all derivatives):

sf 1
N = Q
P(T;1) = BG)E (B(T)|7~”,).

The short-rate process r implied by the volatility structure (24.4) generates a LIBOR
market model. The short-rate process under Q7 is given by (22.6):

t

! QB .,
dr(t):[afo(t)+aQB(t,t)+ f da (s, ) ds + f ‘;L;(s,z) dwd (s)) dt

aT aT
0 0

+ar(t, )W (1),
(was 22.6)

The drift of this short-rate model is, as a function of {r(s)|0 < s < 7}, path-dependent.
Only in high dimensions, namely as a function of {L;(#)|i = 0, ..., n}, will the model
be Markovian (i.e., the drift is no longer path-dependent).
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CHAPTER 25

Excursus: Shape of the Interest
Rate Curve under Mean Reversion
and a Multifactor Model

In this chapter we are considering the influence of model properties like mean rever-
sion, number of factors, instantaneous correlation, and instantaneous volatility on the
possible future shapes of the interest rate curve.

As in Chapter 21, which discussed the relation of instantaneous correlation and
instantaneous volatility to the terminal correlation, our goal is to develop an un-
derstanding of the significance of the model properties rather than looking at them
rigorously in abstract mathematical terms. We thus pose the question of how the
interest rate curve differs qualitatively under different model configurations.

25.1 Model

As a model framework we will use the LIBOR market model. Due to its many
parameters it gives us enough freedom to play with. We will restrict the set of
parameters and concentrate on three (important) parameters that are sufficient to
create the phenomena we are interested in.

Let us restrict the model to a simple volatility structure, namely

ogi(t)=0" exp(—a(T; - 1) (25.1)

with o* = 0.1 and a = 0.05. We will choose an equally simple correlation model,
namely dW; dW; = p; ;dt with

pij = exp(—r|T; — Ty)). (25.2)
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To this correlation model we apply a factor reduction (principal component analysis);
see Appendix B.3. The number of factors is the number of independent Brownian
motions (effectively) entering the model; see Definition 51. Upon a factor reduction
the m largest eigenvalues of the correlation matrix are determined. Together with the
corresponding eigenvectors a new correlation matrix is constructed, having at most
m nonzero eigenvalues. This process guarantees that the resulting correlation model
defines a valid correlation matrix.

We simulate under the terminal measure and start with an initially flat interest rate
curve L;(0)=0.1,i =0,1,2,....

To summarize, our model framework consists of three degrees of freedom which
will be varied in our analysis (see Table 25.1).

| Parameter | Effect |

a Damping of the exponentially decaying,
time-homogenous volatility

r Damping of the exponentially decaying in-
stantaneous correlation

m Number of factors extracted from the corre-
lation matrix

Table 25.1. Free parameters of the LIBOR market model considered.

25.2 Interpretation of the Figures

Figures 25.1, 25.2, 25.3, and 25.4 show 100 paths of a Monte Carlo simulation of
the interest rate curve. The simulation was frozen at a fixed point in time ( = 7.5 in
Figures 25.2, 25.3, and 25.4 and 7 = 17.5 in Figure 25.1). To the left of this point the
forward rates L;(T;) are shown, each upon their individual maturity—this is a discrete
analog of the short rate. To the right of this point the future forward rate curve L;(¢) is
drawn.

The figures differ only in the parameters used to generate the paths. The same
random numbers are used, thus the simulated paths depend smoothly on a and r.

To improve the visibility of the individual paths, each path is given a different color,
where the hue of the color depends smoothly on the level of the last rate L,(1)." This
makes it very easy to check if the interest rate curves are parallel or exhibit some
regular structure; see Figure 25.2.

! The choice of the last rate is arbitrary.
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253 MEAN REVERSION

25.3 Mean Reversion

We will consider the example of a simple one-factor Brownian motion (p; ; = 1, i.e.,
r = 0). Figure 25.1 shows the simulated forward rates for different parameters a in
Equation (25.1).

LIBOR Market Model forward rate curves LIBOR Market Model forward rate curves
5, = 20% 1

forward rate
forward rate

00 50 100 150  20. 00 50 100 150 20
time (fixing date of forward rate) time (fixing date of forward rate)

LIBOR Market Model forward rate curves LIBOR Market Model forward rate curves

18% 1
15%
12% 1
10%

forward rate

forward rate
SR I

00 50 100 150 20 0.0 50 100 150 20.
time (fixing date of forward rate) time (fixing date of forward rate)

Figure 25.1. Shape of the fixed rates L;(T;) and the interest rate curve for different
instantaneous volatilities (corresponds to different mean reversion) frozen at time
t = 17.5 using a one-factor mode. We used a = 0 (upper left), a = 0.05 (upper right),
a = 0.10 (lower left) and a = 0.15 (lower right). For interpretation see Section 25.3.

From the derivation of the Hull-White model from the HIM framework it became
obvious that an exponentially decreasing volatility structure of the forward rate
corresponds to a mean reversion of the short rate; see Section 24.1.2. We rediscover
this property qualitatively here. Figure 25.1 shows 100 paths of a Monte Carlo
simulation of a LIBOR market model with different values for the parameter a: a = 0,
a = 0.05 in the upper, and a = 0.1, a = 0.15 in the lower row (left to right). Observe
the fixed rates L;(T}) left from the simulation time. They may be interpreted as a direct
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analog of the short rate. In Figure 25.1 it becomes obvious that with an increasing
parameter a the paths develop a tendency to revert to the mean (mean reversion).

25.4 Factors
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Figure 25.2. Shape of the interest rate curve with different factor configurations,
seen at time t = 1.5: One, two, three, and five factors (from upper left to lower right).
For interpretation see Section 25.4.

Figure 25.2 shows a Monte Carlo simulation with the parameters above and varying
numbers of factors m. The possible shapes of the interest rate curve are given by
combinations of the factors parallel shift, tilt, bend, and oscillations with increasing
frequencies; see also Figure B.1.




255 EXPONENTIAL VOLATILITY FUNCTION

25.5 Exponential Volatility Function

LIBOR Market Model forward rate curves LIBOR Market Model forward rate curves

Y IR -1 20%
18% 4 | 18%
o 15%1 { P 15% 1
C 12% 1 49 T 129%
- . -
s 10% = 10%
2 8% Z e
2 | 2
5% I 5% 1
2% | 2% 1
1
0% ' 0% T + 4
0.0 5.0 10.0 15.0 20. 0.0 5.0 10.0 15.0 20
time (fixing date of forward rate) time (fixing date of forward rate)

LIBOR Market Model forward rate curves LIBOR Market Model forward rate curves

20% 1 20% 1 s e —r—
18% 18%
© 15% ® 15%
S 12% e 12%
o o
5 10% = 10%
g % Z 8%
2 £
5% 5%
2% %
0% + v T 1 0% v - |
0.0 5.0 10.0 150  20. 0.0 5.0 10.0 15.0  20.0
time (fixing date of forward rate) time (fixing date of forward rate)

Figure 25.3. Shape of the fixed rates Li(T;) and the interest rate curve with different
instantaneous volatilities (corresponds to mean reversion) at time t = 7.5 in a one-
factor model (upper row and lower left) witha = 0.0, a = 0.05and a = 0.1 and a
three-factor model (lower right) with a = 0.1. For interpretation see Section 25.5.

As in Figure 25.1 we consider the Monte Carlo simulation under different parame-
ters a. First a = 0, a = 0.05, and a = 0.1 in a one-factor model (r = 0,m = 1), and
last a = 0.1 in a three-factor model. We are observing this at simulation time 1 = 7.5
and concentrate here on the section right of the simulation time, i.e., the interest rate
curve L;(¢) for j > m(r).

Itis apparent that the curve {L;(t) | j > m(t)} shows a shape similar to an exponential
in j, depending on the parameter a; see Figure 25.3, lower left (@ = 0.1) to the right
of the simulation time. If we consider a one-factor model (as used in the figure), we
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Li(t) = L;(0) exp{fo ui(r)dr + "jo‘ 0‘5(‘1’) dr W(t)].

For a fixed point in time ¢ (and a state (path) w) the interest rate curve shows the
following dependence on j:

j Li0) exp ( f Hi(T, W) d‘r) exp [k f o‘?(‘r) d‘r]
0 )

where k ;= W(¢, w).
For the volatility structure (25.1) particularly, we find

f oi(r) = f exp(-2a(T; - 7)) dr
0 0

1
= %( exp(=2a(T; - 1)) — exp(—2a(T; — 0)))

have

1
=5 (exp(2a t) = 1) exp(-2aT))

14
i~ L;j(0) exp (f 1T, w) dT) exp (l~c exp(—aTj)), (25.3)
0

where £ = k /2 (expa 1) - 1).

The drift fotp (1, w) dr is monotone increasing in j; see Equation (19.8). This
explains the shape of the interest rate curve in Figure 25.3, upper left. With increasing
parameter a the interest rate curve is multiplied by the double exponential (25.3) with
increasing steepness. This explains the shape of the interest rate curve in Figure 25.3,
upper right and lower left. Only the addition of more driving factors allows for a richer
family of possible curves. If the parallel movement (level) remains the dominant
factor, then the shape (25.3) still dominates the interest rate curve, Figure 25.3, lower
right.
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25.6 Instantaneous Correlation
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Figure 25.4. Shape of the fixed rates Li(T;) and the interest rate curve with different
instantaneous correlations, seen at time t = 7.5. We used a correlation matrix with
(all) 40 factors and r = 0.01 (upper left, high correlation), r = 0.1 (upper right) and
r = 1.0 (lower left, high de-correlation). In the lower right we used a correlation
matrix with r = 1.0 (the same as in lower left), but reduced the number of factors to
three. For interpretation see Section 25.6.

We fix a slightly decreasing volatility structure (25.1) with a = 0.1 and vary the
parameter r of the correlation function (25.2). We do not apply a factor reduction,
thus keep all 40 factors. The parameter » = 0.01 corresponds to an almost perfect
correlation of the processes. Thus the possible shapes of the curve are almost parallel;
the curve is very smooth since we started from a smooth (namely flat) curve. If the
correlation parameter is increased to r = 1.0, then the distribution of rates within the
curve is almost independent. See Figure 25.4, upper left, upper right, and lower left.
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It should be noted that this (terminal) decorrelation is also achievable under r = 0.01
by an appropriate choice of the volatility structure; see Chapter 21. The instantaneous
decorrelation introduces an additional terminal decorrelation. The statement that a
model with perfect instantaneous correlation exhibits perfect terminal decorrelation
of the forward rates is wrong.

Finally we have chosen in Figure 25.4, lower right, the parameter r = 1.0 again (as
for the lower left with strong decorrelation) but have applied a reduction to the three
largest factors. It is obvious that this strongly reduces the possibility of decorrelation.
The three factors only allow that the beginning, the middle, and the end of the curve
attain different values. Adjacent rates are still on similar levels.

Experiment: At http://www.christian-fries.de/finmath/
applets/LMMSimulation.html a simulation of an interest rate curve
with the model framework above is to be found. The parameters may be
chosen at will to study the different shapes of the interest rate curve. <
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CHAPTER 26

Ritchken-Sakarasubramanian
Framework: HJM with Low
Markov Dimension

26.1 Introduction

' Motivation: The LIBOR market model is, with respect to the flexi-
4, bility of the modeling, much more advanced than the short-rate models
' discussed in Chapter 23. Under the LIBOR market model all forward
- rates are modeled directly. Their volatility and correlation structure may
be specified directly.

Like all models which derive from the HIM framework, the LIBOR market model
may be interpreted as a short rate model; see Section 24.2.3. In this formulation the
price that has to be paid for its modeling flexibility becomes apparent: The model is
non-Markovian in the short rate. The drift is path-dependent. Only by the addition of
all forward rates does the model become Markovian. Since a Markovian representa-
tion thus requires a high-dimensional state space, a numerical implementation on a
lattice cannot be achieved.!

On the other hand, all the short rate models that were discussed in Chapter 23 were
one-dimensional Markov processes.

If we now reconsider the derivation of the short rate models and the LIBOR
market model from the Heath-Jarrow-Morton framework, then the question arises:
What is the HIM volatility structure that results in a model, i.e. short rate, being a
low-dimensional Markov process?

! For an implementation using a lattice the complexity, i.e., the requirements on memory and CPU time,
grows exponentially in the Markov dimension.
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One answer to this question was given by Cheyette [61], Ritchken and Sakarasub-
ramanian [92], and others. <|

26.2 Cheyette Model

Let Q denote the risk-neutral measure, i.e., the equivalent martingale measure corre-

sponding to the numéraire
!
NQ@) = exp( f r(r) d‘r).
0

Consider an HIM framework
dfe,T) = a¥e, Tydt + o e, T) AW
fO,T) = f(T)

with a special volatility structure

(was 22.3)

o(t,T) = gt) KT), (26.1)
where g : [0, T*] — R\ {0} denotes a deterministic function and 4 : [0, T*] X Q — R"
an m-dimensional Markov process.
Remark 229 (Separability of Volatility): The property (26.1) is called separability
of volatility.

Theorem 230 (Cheyette Model (Single Factor)): Given an HIM dynamic with
the special volatility structure (26.1). Then the short-rate process is given by

() = f(0,0)+ X(), (26.2)
where
dX() = (Y (@) - k@OX(0)) dt + n(r) dW(p), X(0) = 0,
dY() = (7 (1) - 2 Y (1)) dt, Y(0) = 0, (26.3)
and ,
@) = o) =g k), K@) = _5; ((tt))

Remark 231 (Cheyette Model):  The representation of the short rate by Equa-
tions (26.2) and (26.3) gives a complete model of the interest rate curve, since the
numéraire depends on r alone.
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26.3. IMPLEMENTATION: PDE

The interest rate model (26.2), (26.3) is called the Cheyette model.

Remark 232 (Markov Dimension): Within the Cheyette model the short rate r(r)
is a function of X(f). The increment dX of X(r) depends on X (), ¥(¢), and A(z). If
h is deterministic, then Y is deterministic too, and the Markov dimension is 1; the
time ¢ state of the model is represented by state variable X(¢). If A(¢) is a function of
X(2) (Jocal volatility), then Y is stochastic via the link to X through n, and the Markov
dimension is 2; the time ¢ state of the model is represented by the state variable
(X(1), Y(1)). If h is a stochastic process such that A(¢) is not a function of (X(?), Y (1))
(stochastic volatility), then the Markov dimension of 4 has to be added; the time ¢ state
of the model is represented by the state variable (X(¢), Y(#)) and the state variables of
h(n).

26.3 Implementation: PDE

If the Markov dimension is low (say < 2), the model is an ideal candidate to be
implemented using PDE methods. See [84] for an in depth discussion of the PDE
implementation of the Cheyette model.
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CHAPTER 27

Markov Functional Models

27.1 Introduction

¥ European options and the probability distribution function (or probability
density) of the underlying (under the martingale measure). If we consider
a European option on some underlying, say the forward rate L; :=
L(T;, Tiy1; T;) (ie., a caplet), then Lemma 81 allows us to calculate the probability
density of L; from the given market prices. It seems as if this allows perfect calibration
of a2 “model” to a continuum of given market prices. However, the terminal distribution
alone does not determine a pricing model. What is missing is the specification of
the dynamics, i.e., the specification of transition probabilities, and, of course, the
specification of the numéraire. This is the motivation for the Markov functional
modeling. There we postulate a simple Markov process, e.g., dx = o(¢) dW(¢) for
which the distribution function ¢ — P(x(T) < ¢) is known analytically. Then we
require the underlying L; to be a function of x(7;). Let us denote this function by g;,
i.e., let Li(w) = g;(x(T;, w)) for all paths w. If the functional g; is strictly monotone,
then with K = g;(£):

Fr(K):= P(L; < K) = P(gi(x(T)) < K)
= P(x(T) < &) =t Fury(&) = Fxy(g; ' (K)).

With a given distribution function Fy, of L; (e.g., extracted from market prices through
Lemma 81), the choice of the functional g; allows the calibration to the distribution of
L;, while the process x (and the sequence of functionals {g;}) describe the dynamics.
To achieve a fully specified pricing model we further require the specification of
the numéraire as function of the Markov process x. To achieve this we may use
Theorem 79, if

I Motivation: From Chapter 5 we have a relation between the prices of
4
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CHAPTER 27 MARKOV FUNCTIONAL MODELS

¢ x is given under the equivalent martingale measure Q and
e x generates the filtration.
<

Given a filtered probability space (R, B(R), Q, {#;}). Consider a time discretization
0=Ty<T| <--- <T,. Financial products beyond T, are not considered.

Let + +— N(t) denote the price process of a traded asset, which we choose as
numéraire and let Q denote the corresponding equivalent martingale measure. Then
for any replicable asset price process V(¢) (see Definition 73 and Theorem 79)

VT) _ o (V('m
N(T) N(T)

7).

In particular for every zero-coupon bond P(T}), paying 1 in T}

PTuT) o

NT) (N(T)'TT)
Qvf_ 1

P(T;;T)) = N(T) E (N(T)|TT)

Let x denote an F;-adapted stochastic process with
dx(t) = o(t) dW(s), x(0) = xp.

The filtration should be generated by x. On this space we consider time-discrete
stochastic processes, namely those for which their T; realization is a function of
(x(Ty), ..., x(T;)), for all i. We particularly consider processes for which their time
T; realization is a function of x(7;) alone (i.e., independent of the process’s history).

27.1.1 The Markov Functional Assumption (Independent of
the Model Considered)

We assume that the time T realization of the numéraire process is a function of x(7}),
i.e.,
N(T;,w) = N(T;, (T}, w)), (27.1)

where we use the same letter N for the (deterministic) functional & — N(T}, £).
Then, for any payoff V(T}) that is itself a function of x(T}) for some k, the value
process V(T;) for i < k is

V(Ty)
N(T)

V(Ty, x(Ty)

V(T) = N(T) E( N(Tr, X(T2))

ITT,) = N(T,-,x(T,-))E( |a<x(Ti))).
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Thus, the time T; realization of the value process V(7)) is also a functional of x(7}),
which we denote by the same letter V. The functional & — V(T},£) of the value
process is

V(Ty, x(Ty))

R (T = &),
NT x| T f})

& N(T;,8) E(

Note: The Markov functional assumption (27.1) may be relaxed such that the

numéraire is allowed to depend on x(Ty), ..., x(T;)). This relaxation is used in the
LIBOR Markov functional model in spot measure.

27.1.2 Outline of This Chapter

In Section 27.2 we consider a Markov functional model for a stock (or any other
non-interest-rate-related (single) asset). In Section 27.3 we will then consider a
Markov functional model for the forward rate L(T;, Ty, 1; T;), which may be viewed as
a time-discrete analog of the short rate. Both sections are essentially independent of
each other. In Section 27.4 we will discuss how to implement a Markov functional
model using a lattice in the state space.

27.2 Equity Markov Functional Model

27.2.1 Markov Functional Assumption

Consider a simple one-dimensional Markov process, e.g.,
dx(t) = o) dAW(r), x(0) = xo, (27.2)

where ¢ is a deterministic function and W@ denotes a Q-Brownian motion. Without
loss of generality we may assume xy = 0. Equation (27.2) is the most simple choice
of a Markovian driver process. We will consider the addition of a drift term to (27.2)
in our discussion of model dynamics in Section 27.2.5.

Let S (¢) denote the time ¢ value of some asset for which we assume that we have a
continuum of European option prices. Let x and S be adapted stochastic processes
defined on (Q, Q, ¥;), where {F;} denotes the filtration generated by we,

We assume that the time ¢ value of the asset S is a function of x(¢), i.e., we assume
the existence of a functional (7, £) — S(z, &) such that

St,w) = S, x(t, w)),

where the left-hand side denotes our asset value at time ¢ on path w, and the right-hand
side denotes some functional of our Markovian driver x, which we ambiguously name
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S. We allow some ambiguity in notation here. From here on § will also denote a
deterministic mapping (the functional)

(t,&) - §.6).

It will be clear from the arguments of S if we speak of the functional (¢, &) — S(,&)
or of the process t = S (7).
For t; < t, we trivially have that

S{1y) S(f)
VL EQ .
NG (S(tz) |(ﬁ')

We now postulate that Q is the equivalent martingale measure with respect to the
numéraire S and that a universal pricing theorem holds for ali other traded products,
i.e., that their S relative price is a Q-martingale.

This implies that the zero-coupon bond P(T; t) having maturity T and being ob-

served in ¢ < T fulfills
P(T;t) 1
=E¢— .
S0 (S(T) T’)

Using the functional representation of S we find that P(T;¢) is represented as a
functional of x(¢) too, namely

(t,6) = P(T:n)

with
PT:0E) _ oo

566 ~F STy | MO =¢ })- 273)

27.2.2 Example: The Black-Scholes Model

Let us assume a Markovian driver with constant instantaneous volatility o(f) = 0.
For the Black-Scholes model we have

S(1,€) = S(0) exp (rt+ %a'zBst + % .f), (27.4)

where og denotes the (constant) Black-Scholes volatility. Plugging this into (27.3)
we find

P(T;1,8) = exp(=r(T - 1)),

so that interest rates are indeed deterministic here.
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272 EQUITY MARKOV FUNCTIONAL MODEL

This is the Black-Scholes model: From the definition of the Markovian driver we
have (lr x(t) = W(z) and thus

S(t, x(1)) = S(0) exp (r t+ %cr%st +ops W)).

In other words, the Q dynamics of S is'

dS(s) = rS(t)dt + oagS(n) dr + opsS (1) dAWR(e).
Introducing a new numéraire

dB(t) = rB(r) ds, B(0) =1
we find for the change of numéraire process % that

d% = opsS (1) dr + opsS (D) AW

For 3 to be a martingale under Q? it has to be dW2(r) = dw< — o3 dr and thus

rS()dr + ops S AW (1),
r B(1) dt.

ds(n
dB(1)

Note: dW2(r) is a Q-Brownian motion, where Q is the equivalent martingale measure
. , . . B . . .

with respect to the numéraire S, while dW<' (¢) is a Q®-Brownian motion, where Q?

is the equivalent martingale measure with respect to the numéraire B.

27.2.3 Numerical Calibration to a Full Two-Dimensional
European Option Smile Surface

As for the interest rate Markov functional model we are able to calculate the function-
als numerically from a given two-dimensional smile surface. Our approach here is
similar to the approach for the one-dimensional LIBOR Markov functional model
under spot measure [71]. Consider the following time 7' payout:

ST if S(T K
v k1) = 50 1 SIT> (27.5)
0 otherwise.

! Note that Q is the equivalent martingale measure with respect to the numéraire S .
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Obviously

1 if S(T)>K

V(T,K;T) = max(S(T) - K,0)+ K
0 else,

i.e. the value of V is given by the value of a portfolio of one call option and K digital
options, all having strike K. This is our calibration product.
27.2.3.1 Market Price

Let 6gs(7, K) denote the Black-Scholes implied volatility surface given by market
prices. Then the market price of V is

kel K2 0) = S(0)D(d,) — exp(~rT)KD(d_)

call option part

+ Kexp(-=rT) (d>(d_) +5(0) \/Tqa'(d+)w)

0K

digital part
dops(T, K)

= S(0)®(d,) + KSO) VT®'(d,) T

where

O(x) := % j_: exp(

27.2.3.2 Model Price

log(2RB@y 4 152 (T, K)T
Fes(T, K)VT '

2
—%) dy and d, =

Within our model the price of the product (27.5) is

ST, x(T)) Lis (T xry>k)
S(T)

S(0) EQ (IIS(T,X(T))>K] | (x(0) = xo})-

vmoel(T K;0) = S(0) EQ( | (x(0) = xo})

]

Assuming that our functional (7, &) — S (T, ¢) is monotonely increasing in £, we may
write

VT, K 0) = S(0) B¥(Ljxryow) | X(0) = x0}), (27.6)

where x* is the (unique) solution of S(7, x*) = K. Note that (27.6) depends on x*
and the probability distribution of x(T') only and that x(T") is known due to the simple
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form of our Markovian driver. It does not depend on the functional S! Thus for given
x* we can calculate

V(T x*,0) = S(0) E{(Ljurysrey | {X(0) = x0}).

27.2.3.3 Solving for the Functional

For given x* we now solve the equation
Vmarket(T, K*; 0) - Vmodel(T’ x*; 0)

to find S(T, x*) = K* and thus the functional form (7, &) — S (T, &). This can be done
very efficiently using fast one-dimensional root finders, e.g., bisection or Newton’s
method; see Section 30.3 and Appendix B.4.

27.2.4 Interest Rates
27.2.4.1 A Note on Interest Rates and the No-Arbitrage Requirement

Functional models for equity option pricing have been investigated before; see,
e.g., [57] and references therein. However, the approach considered there chooses
deterministic interest rates and the bank account as numéraire. As suggested in
Section 27.2.2, this will impose a very strong self-similarity requirement on the
functionals (which is fulfilled by the Black-Scholes model). Such models may
calibrate only to a one-dimensional submanifold of a given implied volatility surface;
see [58]. For the Markov functional model this follows directly from (27.3). Assuming
that the Markovian driver x is given and that the interest rate dynamic P(T;1,£) is
given, we find from (27.3) that

P(T;t,8)
EC (S<T,;(T)> | {x(0) = f})

So once a terminal time 7 functional £ + S (T, £) has been defined, all other function-
als are implied by the interest rate dynamics P and the dynamics of the Markovian
driver.

Sticking to prescribed interest rates, the only way to allow for more general func-
tional is to violate the no-arbitrage requirement (27.3) or change the Markovian driver.
The latter will be considered in Section 27.2.5.

Sté) =

27.2.4.2 Where Are the Interest Rates?

Our model calibrates to a continuum of options on S. We do not even specify
interest rates. This is not necessary, since the specification of the interest rates is
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already contained in the specification of a continuum of options on §. Consider
options on §(T), i.e., options with maturity 7. First note that from a continuum
K > vmakel(T K 0) of market prices for call option payouts:

ymarkel (7 K3 T) = max(S(T) - K, 0)

call

we obtain prices for the corresponding digital payouts

1 S(IY>K

Vmarket(T’ K; T) —
0 else

digital

by

0
Vi (T, K3 0) = = VEI(T, K; 0).

Thus the value of the zero-coupon bond with maturity 7 is

d
im — ymarket 7 g (). 27.7)

P(T;0) = [1(1{? Vmarkel(T’ K;0) = _11(\0 JK el

0 digital
Note that this argument is model-independent.
Within the functional model, Equation (27.7) holds locally in each state. Given
that we are at time ¢ in state x(¢) = £, we have for the corresponding bond
: del .
P(T;t,&) = Il(u\% Viigia (1> K3 1,6).
From this it becomes clear why specifying interest rates would represent a violation
of the no-arbitrage requirement.

In the next section we show that the model-implied interest rate dynamics are likely
to be undesirable. However, as is known from interest rate hybrid Markov functional
models [71], it is possible to calibrate to different model dynamics by changing the
Markovian driver x.

27.2.5 Model Dynamics
27.2.5.1 Introduction

Markov functional models calibrate perfectly to a continuum of option prices, i.e.,
to the market-implied probability density of the underlying; see Chapter 5 and [52].
Indeed, the functional (¢, &) + S (¢, &) is nothing more than the transformation of the
measure from the probability density of x(¢) to the market-implied probability density
of the underlying 5 (#).

2 This is precisely the reason why the model in [57] allows for arbitrage.
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While calibration to terminal probability densities is a desirable feature, it is not
the only requirement imposed on a model, specifically if the model is used to price
complex derivatives like Bermudan options. Here the transition probabilities play a
role, i.e., the model dynamics. The most prominent aspects of model dynamics are:

¢ Interest Rate Dynamics: For an equity Markov functional model the joint
movement of the interest rate and the asset has to be analyzed. It is possible
to calibrate to given interest rate dynamics by adding a drift to the Markovian
driver; see Section 27.2.5.2.

o Forward Volatility: This is the implied volatility of an option with maturity 7'
and strike K, given we are in state (1, &), i.e.,

max(S (7, x(T)) - K,0)
S(T)

S(t,€) EQ( | {x() = f}).

Obviously it will play an important role for compound options and Bermudan
options. The forward volatility may be calibrated by changing the instantaneous
volatility of the Markovian driver; see Section 27.2.5.3.

¢ Auto Correlation/Forward Spread Volatility: The autocorrelation of the
process S impacts the forward spread volatility. This is the implied volatility of
an option on S(73) — S(7,) with maturity T, given we are in state (¢, £), i.e.,

max(S (T2, x(T2)) = S(T1, x(T1)),0)
§(T2, x(T2))

S(t,&) E® ( | (x() = f}).

Markov functional models allow limited calibration to different model dynamics
by changing the dynamics of the Markovian driver x. For our choice

dx = o(f) dAW()

we can change the autocorrelation of x by choosing different instantaneous volatility
functions o. Since the calibration of the functionals is scale invariant with respect to
the terminal standard deviation &(¢) of x(¢), the calibration to the terminal probability
densities is independent of the choice of o. See the Black-Scholes example in
Section 27.2.2 for an example of this invariance.

Time Copula

The specification of the autocorrelation of x (through o) is sometimes called time
copula [57], since it may be specified through the joint distribution of (x(z,), x(#2)).
For this reason similar functional models are sometimes called copula models, a
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term that is more associated with credit models, where joint default distribution is
constructed from marginal default distributions.

In addition to a specification of the instantaneous volatility, the Markovian driver
may be endowed with a drift.

Time-Discrete Markovian Driver

We assume a given time discretization {0 = fyp < #; < < ...} and consider the
realizations x(¢;) of the Markovian driver x given by increments Ax(t;) = x(2;,) —
x(t;). It is natural that a practical implementation of the model will feature a certain
time discretization. Thus, speaking of calibration of a specific time-discretized
implementation, it is best to consider the Markovian driver given by an Euler scheme
(as in Equations (27.8) and (27.9))

x(tin1) = x(t) + p(ti, x(1)) Aty + o (1, x(1:)) AW ().

27.2.5.2 Interest Rate Dynamics
Example: Black-Scholes Model with a Term Structure of Volatility

Let us first assume that the Markovian driver is given by
x(tin1) = x(t) + 0 AW(@). (27.8)

Consider a term structure of Black-Scholes implied volatilities, i.e., let ps(t;) denote
the implied volatility of an option with maturity #;. With the simple Markovian driver
(27.8), the corresponding functionals that calibrate to these options are
1 9 t;
S (1, &) = S(0) exp (V 5+ 55’Bs(ti)2f + ZB_S—() f),

i

where 57 := 1 370 0% At
W1thm thls model a stochastic interest rate dynamic is already implied. From (27.3)
we find

Plti13 1,8) = S(6,6) EY | (2 f})

(S(tm, x(tiz 1))

L 2 o} - 2
= exp | =7 (tiy = 1) = 5| Tos (i) |lin = —5— At | = aps(t)" &
i+1
_(J'Bs(tm) a ('TBs(ti)) 6},

Titl i
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If the volatility of the Markovian driver x decays faster than the implied Black-Scholes
volatility, then the interest rate will move positively correlated with the stock. If the
volatility of the Markovian driver x decays slower than the implied Black-Scholes
volatility, then the interest rate will move in a negatively correlated way.> If we choose
the instantaneous volatility of x such that &; = ags(#;),

P(tip151;,8) = exp(=r (tisy — 1)),

i.e., we have recovered a model with deterministic interest rates. Reconsidering the

case of a continuous driver dx = o(f) dW(t), we see that for 1 fot o(1)? dr = Fgs(r)?
the functionals above define a Black-Scholes model with instantaneous volatility o

However, we do not need to sacrifice the instantaneous volatility of x to match the
interest rate dynamics. A much more natural choice is to add a suitable drift to the
Markovian driver x. Consider a Markovian driver x such that

x(tiz1) = x(t;) + a;x(t;) At; + o; AW(E), x(tg) = x¢ = 0. (27.9)

Note that the x(#;)’s are normally distributed with mean 0 (assuming xy = 0) and
standard deviations y; vz; where

2 2 2
Yiprlivl = ’}/it,'(l + @; Ati)+0',~ At;.

Together with the functionals

S(t,8) = S(0) exp (r 1+ poms()’ + T é—‘),
S(tiv1,6) = S(0) exp (r tis1 + %5'Bs(ti+1)2 + @}S/—F%Ll) f)
we have
e = s VB L ey =
P(tini3 1) = S(t, &) E ( S | (xe) 6})
1 2 ol - 2
= exp|—r At = S (Tps(tiv1)” [t = —— Ali| = Tps(t)” 1)
i+1
_(&Bs(tm)(l +a; Aty — &Bs(ti)) f]
Yi+l Yi
1f_ » % 2 - 2
= exp|—r At — 5| Faslliv)” (1 + @i Af)” = Tps(t)” 1
i+1
_(5'Bs(ti+1)(1 oy At — 5’Bs(ti)) 5}.
Yi+1 Yi

3 Note that on average the interest rate is still r.
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Choosing «; such that

0 t; 9 t
¢ +1)(1 +a; Aty — Tas(ti)
Yi+l Vi

=0 (27.10)

we have
P(tic3 1,8 = exp(=r (i1 — 1)).

Interestingly, the Markov functional model (27.9)—(27.10) does not necessarily
need to be a Black-Scholes model having the Q®-dynamics:

rS(t) dt + ops(®) S() AW (),
rB(t) dt,

ds(n
dB()

(27.11)

where Ggs(t;)* = % j(;' os(t)? dt. The two models are not the same, although their
terminal probability densities (European option prices) and their interest rate dynamics
agree. The difference lies in the forward volatility, which may be changed for the
Markov functional model by the instantaneous volatility of x. Only for o(t) = ogs(t)
we have the dynamics (27.11). In this case the ¢; in (27.10) will be zero, i.e., we are
in the situation of the previous example.

Calibration to Arbitrary Interest Rate Dynamics

Within the no-arbitrage constraints, it is possible to calibrate the model to a given
arbitrary interest rate dynamics by choosing the appropriate drift. To do so, we have
to find u(t;, €) such that

S, 8)

S(tiet, X(te1)) l {x(t) =& — (4,6 Ati}) .

P(tis1:1,8) = E‘Q(

This can be done numerically by means of a one-dimensional root finder. The
functional S (z;;1) has to be recalibrated in every iteration.*

27.2.5.3 Forward Volatility

The calibration to European option prices (Section 27.2.3) and joint movements of
asset and interest rates {Section 27.2.5.2) still leaves the instantaneous volatility o
of the Markovian driver x a free parameter. It may be used to calibrate the forward
volatility, i.e., the volatility of an option; conditionally we are at time ¢ > O in state £.

4 The procedure is the same as in the calibration of the FX forward within the cross currency Markov
functional model, [71].
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Example: Black-Scholes Model with a Term Structure of Volatility

Consider the simple Black-Scholes-like example from Section 27.2.5.2. For simplicity
we consider a Markovian driver without drift, i.e.,

X(tip1) = x(t;) +o; AW(L).
together with functionals

S,€) = S(0) exp(rt + ;chs(t,) t 4 5 O—BS(I’) £

i

calibrating to European options with implied volatility agg(t;).>

Then we have that the standard deviation of the increment x(f;) —x(#;) is &, V(tx —
), where - Y5-I o2 As;. Tt follows that the implied volatility of an option with

maturity tk, glven we are in state (#;, £), is

t, tk

Bs(t)
tk

Thus a decay in the instantaneous volatility of the driver process will result in a
forward volatility decaying with simulation time ¢#; (for fixed maturity #,).
Example: Exponential Decaying Instantaneous Volatility

Consider the case of a time continuous Markovian driver dx = o+(f) dW with decaying
instantaneous volatility

o(t) = exp(—a t), a+0.

Then

R -1
Ty 1= dt = \|—— —2aty) - —2at))).
On,n \/l‘z s fr. a(t) \/Za(tz — tl)(eXp( a ty) —exp(=2a ty))

Assuming functionals

S(t,g) = S(O) exp(r. t+ %O-BS(I)zt'F &L(t) é:)

a(0,1)

the forward volatility for an option with maturity 7, given we are in t, is

o, T)  _ T exp(—2at) — exp(-2aT)
Tes(D) oy = oD \/T—t 1~ exp(—2aT)

5 As before we use the notation a' =1 2’} 2. At
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27.2.6 Implementation

The model may be implemented in the same way as is done for a one-dimensional
Markov functional LIBOR model. The basic steps for a numerical implementation
are (Figure 27.1)

o Choose a suitable discretization of (¢, x(2)), i.e., set up a grid (¢, x; ;).

e For each x* = x; ;:
- Calculate V™4 (T, x*; 0).
— Find K* such that V™7, K*;0) = V™&I(T, x*;0).
- Set S(x;;) ;= K".

See Section 27.4.

27.3 LIBOR Markov Functional Model

We postulate that the forward rate viewed on its reset date (fixing) may be given as a
function of the realization of the underlying Markov process x:

The forward rate (LIBOR)
1= P(Tye1; Ti)
P(Tyr1; Ti) Ty — Ti)
(seen on its reset date T}) is a (deterministic) function of
x(Ty), where x is a Markov process of the form

dx=o()dW underQV,  x(0) = x,.

L(Ty) = Li(Ty) =

(27.12)

At that point we leave the choice of the numéraires N and the corresponding martingale
measure Q open. We will make this choice now, and depending on this we obtain a
Markov functional model in terminal measure (Section 27.3.1) or in spot measure
(Section 27.3.2).

27.3.1 LIBOR Markov Functional Model in Terminal
Measure
We choose as numéraire the T,-bond N := P(T},). The measure Q should denote the

corresponding martingale measure (terminal measure). From assumption (27.12) we
have:
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Lemma 233 (Numéraire of the Markov Functional Model under Terminal Mea-
sure): The numéraire N(T;) = P(T,; T;) is a (deterministic) function of x(T,), i.e.,
N(T}) = N(T;, x(T)). For the functional & — N(T;, &) we have the recursion

N(T,, &) =1
-1

N(T;, &) = [EQ( | (x(T) = §}) (I + LT3, §)XTis1 = T1))

N(Tisy, x(Ti1))
(27.13)

Remark 234 (Notation for the Functionals): Here and in the following we denote
the functionals by the same symbol as the corresponding random variables they are
representing. In the equation

N(T;) = N(T;, x(T}))

the N(T;) on the left-hand side denotes the random variable; on the right-hand side
& — N(T;, &) denotes a function. If we used different symbols it would reduce the
readability of the following text. The difference between the two will be obvious from
the additional argument £ or x(7;) in its place.

Proof: Since Q is the corresponding martingale measure we can use the pricing
theorem. Thus for the zero-coupon bond P(T}) (maturity in Ty)

P(Ty, Ty _ v

NT) ¢ (N(Tk)lﬂ)
LTy — Qvf__*

P(Ty;T;) = N(T)E ( N |ﬂ,)

Since the process x generates the filtration {#7,} and since x is Markovian, it is
sufficient to know the F7,-measurable random variable P(T; T;) on the set {x(T;) = £}.
Thus the bond P(T}) seen at time 7; may be given as a function of x(T;), namely as
P(Ty; T;) = P(Ti; Ti, x(T;)) with

P T,6) = N(T,&) EQ( |{x(T,~)=§}). @7.14)

N(Ty, x(Ty))
Since (compare Definition 99)

P(T;; T) 1
1+ L(T)(Tis1 = T) := - ,
(TH(Tis1 ) P(T;y; T P(Tiy;Ty)
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we have

1 y
N x| = f})] :

U+ L(T;, €XTivy - T)) = {N(T,-,,a EQ(

and thus (27.13). ol

With N(T,)) = P(T,; T,) = 1 we have from (27.13) a recursion to determine the
functionals N(T;, &) from the functionals L;(T;, £).

With the specification of the numéraire the model is fully described. The functionals
& > Li(T;, &) are the free quantities that may be used to calibrate the model.

27.3.1.1 Evaluation within the LIBOR Markov Functional Model

As preparation for the discussion of the calibration of the model we consider the
evaluation of a caplet and a digital caplet using the LIBOR Markov functional model.
Valuation of Caplets within the LIBOR Markov Functional Model

Let 7; denote the fixing and T;, | the payment date of caplet with notional 1 and strike
K. Then for its value Veapie(To) in the LIBOR Markov functional model

_ o [max(L{Ti, x(T)) - K, 0) Tix = T))
Vcaplel(TO) - N(TO) E ( N(Ti+[,-x(Ti+l) I {

= N(To) E¥(max(L(T;, x(T?)) = K, 0) (Tis1 = T))
- P(Ti1; T, X(T)) | {x(To) = xo}),

x(Tp) = Xo})

(27.15)

where

P(Tis13 T8 = EQ( | (x(T) =§}).

1
N(Ti1, x(Ti1)

Valuation of Digital Caplets within the LIBOR Markov Functional Model

Let 7; denote the fixing and T, the payment date of digital caplet with notional 1
and strike K. Then for its value Vyigiai(7T0) in the LIBOR Markov functional model

WL(T;, x(T) ~ K) (Tis1 — T))
N(Tisy, x(Ti11))

N(To) EXAUAT;, X(T1)) = K) (Tiss = T2
« P(Tiy1; Tis x(T2)) | {x(To) = xo}),

Viigital(To)

I

N(To) EQ( | (x(To) = xo})

(27.16)
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where

_ 1
P(Ty 15T, €) = EQ(m [ {x(T) = €)).

A detailed description of how the given expectations may be numerically calculated,
i.e., how to implement the model, is given in Section 27.4.

27.3.1.2 Calibration of the LIBOR Functional

The LIBOR functionals may be derived from the market prices of caplets. One
possibility is to give a parametrization of the functional and optimize the parameters
by comparing the model prices to given market prices. Another possibility is to derive
the functional pointwise from a continuum of given market prices. For this we have
to know the market prices of the caplets with periods [T}, T;;)] and strikes K € [0, co).
If the prices are known only for a finite number of strikes K;, then we require a
corresponding interpolation of the caplet prices. This is nontrivial; see Chapter 6.

Calibration of Parametrized LIBOR Functionals

If we assume a parametrized functional form for L(7};), then we can calculate the
model prices of caplet on L(T;) from a known functional for N(T;,). This allows us to
optimize the parameters of a parametrized functional form to achieve the replication
of given market prices. Thus we have the following backward induction:

Induction start:

o N(T,)=1.

Induction step (7;,; — T}):
o Calculate P(T;,1;T1, &) = EQ(g—tg—; | (x(T)) = &).
e “Optimize” L(T;) by comparing (27.15) with given market prices.
e Calculate N(T;) from L(T;) and P(T;,; T;) via (27.13).

If L(T;) should be almost lognormally distributed, then a good starting point for the
parametrization is an exponential. In [26] the following parametrization is discussed:

Li(¢) = expla + b¢ + c(¢ — d)*).
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Calibration of Discretized LIBOR Functionals (Pointwise)

The evaluation of a digital caplet allows us to calculate the value L(T};, x*) of the
functional for an arbitrary point x*. We make the following additional assumption:

The LIBOR functional ¢ — L(T;,€) is

. . o (27.17)
strictly monotone increasing in £.

With this assumption we can provide a simple algorithm to derive the functional L(T;)
from a given curve of caplet market prices.® We assume that for any T; and any strike
K we have a market caplet price Veqpie (T}, K Ty).” Then we can calculate all digital

caplet prices V(‘i‘i‘;{t';‘(Ti, K*;Ty). We have

d
Vet (T2 K: To) = = VEse(T:, K: To). (27.18)

Let x* denote a given state point. We wish to derive the functional & — L(T}, §),
i.e., K* := L(T;, x*). The model price V;‘;’S;‘(Ti, K*; To) for a digital caplet with strike
K* is given by

Vaigial(To) = N(To) EX(UL(T;, x(T})) - K) (Tivy — T))
- P(Ti1; Ti, X(T))) | {x(To) = 0}),
= N(To) E¥(L((T) = x*) (Tip1 = T)
P(Ti1; T, x(T))) | {x(To) = 0}),

(27.19)

thus, from the monotony assumption (L(x(T})) > K & x(T;) > x*) it follows that the
product may be evaluated without the knowledge of the LIBOR functional L(T;). We
thus write in brief Vé?gi?:ll(Ti’ x*; Ty). By solving the equation

Vil (Ti, K3 To) = Vet (Ti x™3 To) (27.20)
to K we obtain K*, i.e., L(x"), for the given x*. Compare Figure 27.1.

The LIBOR functional obtained from this procedure replicates the given market
price curve of the digital caplets and thus the market price curve of the caplets. Using
backward induction we can calibrate the model to caplets of different maturities:

6 See also the considerations in Chapter 5, where we showed how to derive the probability density of the
underlying from market prices of European options.

7 A complete price curve is usually not available. It has to be constructed by interpolating on given
market prices. This interpolation procedure has to be understood as part of the model; see Chapter 6.

394



27 3. LIBOR MARKOV FUNCTIONAL MODEL

State x

Price V A

Figure 27.1. Calibration of the LIBOR functional L(x) within the Markov functional
model: For a given x* we calculate the model price of a digital caplet with strike
K* = L(x") (payoff profile in black). This is possible without knowing the functional
L. For the given model price V(x*) (gray surface) we find the corresponding strike
K™ by looking it up on the (inverse) of the market price curve K — V(K) (left graph).
This determines the LIBOR functional x — L{(x) (right graph).

395



CHAPTER 27 MARKOV FUNCTIONAL MODELS

Induction start:

o N(T,) = 1.

Induction step (T;,, — T)):
o Calculate P(Ti, 13 Ti, &) = E®(gm—ter— | 1x(T)) = ).

¢ For any given {x;}:

— Calculate the model price Vé‘i‘;’i‘f:l'(T,-, x*; Tp) from (27.19).

— Calculate K* = L(x*) from (27.20) and (27.18).

¢ If required, calculate an interpolation from sample points x*, L(x*) obtained in
the previous step.

e Calculate N(T;) from L(T;) and P(T;y; T;) through (27.13).

27.3.2 LIBOR Markov Functional Model in Spot Measure

In this section we will discuss the Markov functional model under the spot measure,
i.e., we choose the money market account as numéraire and present an efficient
calibration method for this model. By money market account numéraire we mean
(cf. [24, 81])
i-1
N(T) = [ [+ LT T = To), (27.21)
k=0
which is the value of repeated reinvestments of the initial value N(0) = 1 in the
shortest bond in our time discretization {7, ..., Tx}. Asin Section 27.3 we make the
assumption:

The forward rate (LIBOR)
1 = P(Thi15T)
P(Tys1; Ti) (T — 1)
(seen upon its maturity T}) is a (deterministic) function of
x(Ty), where x is a Markovian process given by

dx = o(r) dW under Q¥,  x(0) = x,.

L(Ty) = L(Tw) =

(27.12)

Note that this does imply that the numéraire N(T}) given in (27.21) is not a function of
x(Ty) alone. Here the numéraire N(T;) is path-dependent, i.e., it is given as a function
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of X(T()), X(T1 ),. e x(T,-_| )Z

i1
N(Ti; x(To), x(Th), ..., x(Ti-y)) = n(l + L(Tp; x(T )T sy — Ty, (27.22)
k=0

and Fr, -measurable. In contrast to this, for the Markov functional model under
terminal measure the numéraire N(T;) was a function of x(7;) alone (i.e., not path-
dependent and #7,-measurable, not 7,  -measurable).

27.3.2.1 Calibration of the Markov Functional Model under Spot
Measure

The calibration procedure of the Markov Functional model under the terminal measure
was presented in Section 27.3.1.2. It seems as if the feasibility of the calibration
process is tied to the choice of the terminal measure as it induced a simple backward
induction for the LIBOR functionals. The LIBOR functionals were calculated by the
pricing of digital caplets which simply involved expectations of indicator functionals
(i.e., half-integrals over given distributions).

We will show that the calibration procedure of the Markov functional model under
the spot measure is given by a simple forward induction for the LIBOR functionals.
They are calculated by the pricing of a portfolio of a caplet and digital caplets.
This involves only a simple half integral over the given distribution and a known
expectation step.

27.3.2.2 Forward Induction Step

We assume that the LIBORs L(T;) for T; < T; and thus N(T;) have already been
calculated and present the induction step T; — T;,1.8 Together with N(0) := 1 this
gives the calibration procedure as a forward-in-time algorithm. Let Vr,(T:) denote the
time 7 value of a product with a time Ty, value V. (Ti.1; L(T;)) depending on L(T;)
only (e.g., the value of a caplet or digital caplet with fixing date T; and payment date
T:.1). Then the value of this product is

Vr. Ti+ ;L T[
Vr,(0) :N<0)E( i LT)) | r)

(1 + L(T)(Tivy — THN(T)

On the right-hand side, we take the expectation of a function depending on L(T;)
and N(T)). As the numéraire N(T;) is known from the previous induction step; the
functional form of L(T;; x(T};)) is the only unknown in this equation and it may be
used to calibrate the functional form & — L(T;; £) to given market prices.

$ Note that N(T;) depends on L(T ) for T; < T; only.
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27.3.2.3 Dealing With the Path Dependency of the Numéraire

The path dependency of the numéraire (27.22) implies that (conditional) expectations
have to be calculated time step by time step using

Vr,(Ty) Vr(T-1)
E - | = E{——
(N(Tk) |TT’) (N(Tk—l) lTT’)

where

E(Vi(To | F7...)

VriTie1) = 17 LT )Ty — Tit)

The need for the time step by time step calculation of conditional expectations
(induced by the path dependency of the numéraire) seems to be a major computational
bottleneck, when compared to the Markov functional model in terminal measure.
However, we will discuss in Section 27.3.3 the fact that 7, conditioned expectations
may be calculated fast using a single scalar product with precalculated projection
vectors.

27.3.2.4 Efficient Calculation of the LIBOR Functional From Given
Market Prices

The LIBOR functional are now derived from the model pricing formula of a portfolio
of a caplet and digital caplets. Consider the following payout function:

Vi (Tt L(T)) = { oI =T B L= KZ0 pidin T,

(27.23)
This is a digital caplet in arrears or equivalently the portfolio of 1 strike K caplet and
K + gL strike K digital caplets. Given market prices of caplets, we have market
prices for the digital caplet in arrears for any strike K; see [71]. Its model price is
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given by

mod B Vr. k(Tix1)
Vric(To) = E( N(Ti1) |77T°)

3 E( Vi k(Tis1)
T\ + LTy x(TH)(T vy — Ti) N(TY)

(HMEJUD—K)NG)|ﬁh)
N’

| TTO)

Fr,_,-measurable

E(E(WL(T, x(T:) - K) | F1,.) ~= | F )
N(T)

where 1 denotes the indicator function with 1(R) = 0if R<Oand I{R) = 1ifR> 0
and & — L(T;, &) denotes the functional form of the LIBOR, assumed to be increasing.
If x* is such that

LT,x")=K (27.24)

we have

Vi x(Tic)) = EQUUT;, x(T) = K) | (Ti-1, )

E((T) = x") | (Ti-1,€))
j: ¢ — & o (Ti-1, T))) dn.

This reduces the model price to an integral over the indicator function(al) and then
taking the expectation E (%%;—:; | TTU). The latter is known from the previous calibra-
tion steps from 7,_; back to Ty. It is implemented efficiently as a scalar product with
a precalculated projection vector.’

The calculation of the functional form L(T;; £) thus involves the calculation of
model prices as outlined above for suitable discretization points x* and calculating
the corresponding strikes K by inverting the market price function. This determines
L(T;, x*) using (27.24).

The calibration step is as simple as it was under the terminal measure: Model
prices of calibration products are evaluated by a half-integral together with a known
expectation step and matched with the market price function. Here, the half-integral
only represents a slightly different product.

Often a certain measure is chosen to simplify the pricing of a given product
(e.g., the Black 76 caplet pricing formula (10.2) is best derived under the terminal
measure associated with the caplet’s payment date). Here this technique is reversed
by considering a certain product with a simple (model) pricing formula under a given

° We will discuss this aspect of the implementation in the next section.
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measure. The suitable product for the terminal measure is the digital caplet while the
digital caplet in arrears seems the best choice for the spot measure.

27.3.3 Remark on Implementation

Given a certain functional &£ — f(£) and a lattice time and state discretization
{xralk=1,....m} cx(T;,Q) =R, 0<j<n,

where mo = 1, x7, = x9. The expectation of f(x(T;;,)) conditional on state x(T;) =
Xr,x 1s given by

f F(E) $& = xg,4;57°) dE, (27.25)

where ¢(-;7) is the density of the normal distribution with variance a2 =

fTT'“ (1) dr. The approximation of this integral within the lattice is given by

a numerical integration based on sampled values f; := f(xr,x). We represent this
integration by
AT (fiaees fun)Ts (27.26)

i

where A;’*‘ is a linear operator given by a m; X m;, matrix. Defining
{

Apt = Ag - A (27.27)

the large time expectation step
E(f(x(Tiv1) | {x(To) = x0})

is represented numerically by A;:]*'. The matrix multiplication with A;:’)*‘ is fast as

A;;*‘ is a row vector.

27.3.3.1 Fast Calculation of Price Functionals

In the model calibration and the application of the model to derivative pricing ex-
pectations of numéraire relative prices have to be calculated. For a given time T},
functional V we have to calculate

TV

—_ L =2
Ny €T ) A (27.28)

L VIO =

It is advantageous to view £ - WTIH_f) - $(& — x1,4; 6%) as a convolution kernel and
directly precalculate the numerical approximation of the (linear) operator V — I[V].
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273 LIBOR MARKOV FUNCTIONAL MODEL

Redefining the A;’“ in this sense, we are able to numerically calculate large time-
step expectations

E(V(Tm)

N(Ti+l) | 7:TU)

even for the path-dependent numéraire (27.22) by a single scalar product of the

projection vector A;:)*‘ with the sample vector (V(xr,,,1),..., V(xr, )). The vectors

i+15Mix ]

A;:)*‘ may be precalculated iteratively in each forward induction step.

The elements of projection vector A;’;' are Arrow-Debreu like prices.

27.3.3.2 Discussion on the Implementation of the Markov Functional
Model under Terminal and Spot Measure

It appears that the precalculation of the large time expectation step is only necessary
to cope with the path-dependent numéraire in the spot measure Markov functional
model. However, in our experience the precalculation of projection vectors by means
of the iteration (27.27) is advantageous even for the terminal measure variant as it
will prevent numerically inconsistent ways of calculating the large time expectation.
Numerical approximation errors will lead to significant differences between iterated
expectation and single, large time-step expectations, thus violating the tower law'?.
By enforcing the calculation of large time-step expectations by iterated expectations
the tower law will by definition be valid in the model implementation. It might seem
as if the iteration (27.27) will then lead to a propagation of numerical errors. Indeed
the terminal distributions are much less close to a normal distribution, but exact
sampling of the terminal distribution is not crucial and the calibration quality of the
discrete model will not suffer.

27.3.4 Change of Numéraire in a Markov Functional Model

Having presented Markov functional models under different measures, it is natural to
ask how the functionals relate, i.e. under what conditions a functional calibrated in
one measure may be reused in the other.

Let N, M be two numéraires. Then for any traded asset V:

VT) o (V(TiD)

Ny E (N(Ti+l) lﬂ")

V(T) QM(V<T,~+1> ) QM(V<T,~+1>N<T,-+1) )
—— =E =E .
M(T)) M(THI)'?T' N(T,-H)M(TM)l n

10 The tower law is the equation of iterated expectation, i.e., E(E(Z | F7,) | F1.) = E(Z | F7) for T; < T ;.
J i i J
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Thus
w [ V(Tis1) N(Tir) M(T;) V(Tiv1)
Q =
(N(T,-+1) M(T;11) N(T) m) (N(T,+1) |¢)
——
=:C(T,Tis1)
i.e.,
V(TH-]) _ QN V(THI)
(N(THI)C(T,,T,H)WT) E (N(TM)M) (27.29)

We want to see this in the light of a Markov functional model and thus require that
all three quantities V, N, and M are functions of a (scalar) time-discrete Markovian
stochastic process x(f). For illustration purposes we additionally assume that the
functional of V under Q¥ is the same as V under Q" and that

XTi) = x(T) + o (THAW(T;, Tiyy) under QV,
x(Ti1) = x(T) + w(T;, (THAT; + o (THAW(T;, Tiyy) under Q¥

where AT; := (T — T;)—it will become clear below that this assumption cannot
hold in general. Under these assumptions we find from (27.29)!!

v (V(Tisy) v [ V(Ti1)
Q T . ) |- g .
(N(TM) C(T;, Tiar) | X(T3) + p(x(T})) AT,) =E (N(TM) | x(T,)),
ie.,
N V(T,'+1) N V(TH-I)
A RACLI 3 = o (i) . . ,
(N(T,'+1) CTo T | X(TI)) . (N(Ti+1) ) + p((TD) AT’)‘

(27.30)
Equation (27.30) is valid for all traded assets V.!?> Choosing V(T;) & 1 (a bond),
we see that Equation (27.30) determines u(x(7;)) from the change of numéraire
integration kernel C'3. With y fixed we see that (27.30) cannot hold for general
functionals V. This is clear from Girsanov’s theorem: Over a discrete time step a
change of numéraire will introduce a change in the conditional probability density,
which cannot be just a shift of the mean as in general ft At u(t) de is not F;-previsible.

(Girsanov’s theorem states that the conditional probability density changes by an
infinitesimal shift of the mean (the drift adjustment) over an infinitesimal time step.

!l We assume here that the two measures are identical on Fr;, 1., [Ti, Tix1] s the first time interval where
the change of numéraire applies. This is not a restriction, for example, the argument applies to the first
time step [To, 71].

12 Equation (27.30) is just a discrete version of Girsanov’s theorem.

13 Note that C(T;, Ti1) is Fr.. ,-measurable but not Fr,-measurable.

i+l
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274 IMPLEMENTATION: LATTICE

Therefore, in a discrete time model it is usually not possible to perform a change
of numéraire by means of an adapted change of the drift (if it is done, it is an
approximation).

Thus we have to relax our assumptions to either

o the drift u is path-dependent, i.e., we consider
dx = u(t, x)dt + o(r) dW resulting in

T;
x(T) = x(Ti_y) + f ult, x())y dt + o(T;-)) AW(T;_,,T;) under QM, or

-t

e the functional V is different under Q" and Q.

The first will work because it is simply the proposition of Girsanov’s theorem.

As we do not want such a path-dependent drift in the driving process, we choose
the second approach. Then we can fit terminal (!) distributions of V by means of a
change of the functional form. Under the changed numéraire one has to recalculate
the functional form V¥,

Note that a recalculation of the functional forms is not a change of numéraire in the
strict sense. The functional forms may be used to match the relevant terminal, but not
the transition, distributions under QN and QM . As a result prices of some products,
e.g., Bermudans, may differ. The two models are not "equivalent”.!*

This can already be seen for the Markov functional model under the terminal
measure. Two such models with different time horizons T,, < T, are not equivalent
over the common time interval [0, T,,,].">

27.4 Implementation: Lattice

Consider an implementation which relies on functionals discretized in the state
space (in contrast to parametrized functionals). In addition to the time discretization
{0 =Ty <--- < T,} we consider a discretization of the state space

xij€x(T)QY=R j=1....m; i=0,....n (27.31)

14 This problem also exists in Monte Carlo simulations. For example, the Euler discretization of the
LIBOR market model’s SDE dL;(1) = p;(£)L;(t) dr + o(£)L;(¢) dW(¢) exhibits different discretization
errors for different measures; see also Section 13.1.2. For the Monte Carlo simulation this problem can
be solved by arbitrage-free discretization techniques [73] or by reducing the size of the discrete time
step At.

151t is a charming aspect of the spot measure Markov functional model that it does not exhibit this
dependence on the time horizon (since there is no time horizon at all).
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For any given time discretization point 7; and any given space discretization point x* =
x; j, we calculate the model price of the digital caplet Vé’l‘gl‘fgl'(T,-, x*; Ty) and calculate
from it the value of the LIBOR functional L(T7, x; ;) and from there the numéraire
functional N(T7;, x; ;). It remains to specify how we interpolate the functionals £
L(T;, &), € = N(T;,¢) for € # x; ; and calculate the conditional expectations, i.e., how

we perform the numerical integration

1 * 1
e | W =) = [ g e

¢~ /1)

EQ

where ¢(& -y, o) = ex (— ) denotes the (transition) probability density
o CXP

of x(Ti) — X(T,')lx(T,.)zﬂ with o; := (j;.’ ! 0'2([) dt)]/z.

27.4.1 Convolution with the Normal Probability Density

A main part of the implementation of the model is the numerical integration, i.e., the
convolution of a functional with the density of the normal distribution:

EQ (f((Tiu)) | X(T) = xi3)) = f FOE-xpo)de=1  (27.32)

with ¢(é —p,0;) = \/_ exp(—(‘f W’ ). In the literature one can find many methods

for numerical integratlon Since f is given only at the state space sample points
(lattice) {x;y14]j = 1,...,m;}, but the density ¢ is given analytically, it is natural to
make use of this.

27.4.1.1 Piecewise Constant Approximation

Let X141 = Htin P24 denote the center point of the interval [Xiy1 4, Xi+14+1] and
let fi := f(x;+14)- Then an approximation of the integral / from (27.32) is given by

x>
i

n

I~ fe (CDX,:jvﬂ'i (xi+l,k+%) - q)X,.,,O', (xi+l,kf%))’
1

=~
1l

where O, ,(x) = ﬁ Xm &€ — pu,0) dé. For the cumulative normal distribution function

@, there are very accurate approximations using rational functions.
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ox; f(T3,%) - @(x-x; )
°
°
°
° o e e
Xo,0= 0 o e e
° X, e
. ey
Xin, Xy, e
To T T, T3 -

Figure 27.2. Calculation of the conditional expectation (numerical integration)
within a “lattice”.

27.4.1.2 Piecewise Polynomial Approximation

If we approximate the integrand f by a piecewise polynomial, then we have to
calculate integrals of the form
ha
E" € — x5, 0) dE.

I

These may be given recursively in terms of the cumulative distribution function .
We have

Lemma 235 ( Convolution of a Monomial with the Normal Distribution Func-
tion!® ):

hy hy
) E" (¢ - o) dE =p ) E (¢ - po) dE

hy
+m=1) | & ¢E-po0)de

hy

- P o - o]

16 Compare [26].

405



CHAPTER 27. MARKOV FUNCTIONAL MODELS

Proof: FormeN

L ol 32

1,¢- 16—\ —(& -
— (m _ l)fm—Z exp (_E(%)Z) + {_-m—l exp (__ (6___/'_1) ) (§ ﬂ)

2\ o o?

e ool HE) - Senl )

o o? o

B met 1(§—py
v et 5 ()

ie.
el 4652

e onl HEH) ol 1652

o
0 2 pom—1 1 (f —H )2
T exp( s\ X
The claim follows after multiplication with ﬁ and integration f;}'z d¢. ol

To calculate the interpolating polynomials many different methods may be used
(e.g. cubic spline interpolation). The Neville algorithm gives a simple recursion by
which we can calculate a piecewise polynomial interpolation function.

Lemma 236 (Neville Algorithm—Piecewise Polynomial Interpolation Function):

Let x; denote given sample points and f; the corresponding values. If Fiy, ., is a

polynomial of degree k| + k; interpolating the points (x;, f;), j =i —kj,...i + ka, i.e.,
Fi—kl,i+k2(xj) = fj forj =i—ki,...i+k,

then

(€ = Xic) Ficgy 1,k +10E) + (Kinkor1 — &) Ficky ivky
Xitky+1 = Xi—k;

Fig itk +1(6) =

defines an interpolating polynomial of degree k; + k, + 1 for the points (x;, f;),
j=i=ky,...,i+k + 1. With the trivial interpolating polynomial F;; = f; having
degree 0, induction gives a construction of the desired interpolating polynomial.

Proof: A polynomial of degree k; +k;+1 is uniquely determined by k| +k; +2 points.
The claim follows then by induction, evaluating the approximations polynomial
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Fi_k,i+ko+1 at the sample points x;,4,+1, Xi—, and the sample points which are common
10 Figyt1ivhor1 and Fi g i, ol

The algorithm is called the Neville algorithm. The polynomial Fi_y, i, (x;)
will then be used as an interpolating polynomial on the interval x;, x;,;.!” Using
Lemma 235 the corresponding integral part is calculated.

The interpolation function is (for degree > 0) continuous, but is not differentiable
at the interval bounds, as would be the case with a cubic spline interpolation.

27.4.2 State Space Discretization

The rule for choosing the state space discretization points x; j, j = 1,...,m; (the
lattice) for the realization of the Markovian driver x(7;) has a major impact on the
accuracy of the model.

27.4.2.1 Equidistant Discretization

A simple rule gives an equidistant discretization of the interval [x; min, Xi.max ], Where
the interval has been chosen such that the neglected area (—co, X; min) U (X; max, ©0) sup-
ports only a small probability measure Q(x(7;) € [X; min» Ximax]) = €; see Figure 27.3.
The bounds x; min, Ximax May be derived from the definition of the process x, e.g., in
terms of the standard deviation of x(7T;:

1/2

T
- o 2
Ximax = —Ximin = k04, 0= ( f o (1) dt)
0

The factor & has to be chosen sufficiently large (e.g. k > 3).
Instead of an equidistant discretization one may choose the interval [x; j, x; j+1]
such that all intervals support the same probability mass, i.c.,

1-¢

Qxij < X(Ty) < xi 1) = mi—1

Further Reading: The LIBOR and swap rate Markov functional
model in terminal measure is discussed in [13, 26] as well as in the
original article [79]. A LIBOR Markov functional model in spot measure
is discussed in [71]. A hybrid cross currency Markov functional model
is discussed in [63, 68, 71]. <|

__.._,
ey R |

17 1t is natural to choose the sample point symmetrically, i.e., use k» = k; + 1.
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Figure 27.3. State space discretization for the Markov functional model: A simple
rule to choose the discretization points x; ;.
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CHAPTER 28

Credit Spreads

28.1 Introduction—Different Types of Spreads

First, we wish to clarify that there are essentially two different concepts of “spreads”.

28.1.1 Spread on a Coupon

We have already encountered the term spread in the definition of some products.
There, a spread was an additional fixed rate added to the floating rate to form the
coupon, e.g., as in

Ci=LT;,Tisy) + s,

where s; is a constant—the spread; see Section 12.2. The spread is paid as part of
the floating leg. It may be interpreted as a periodic fee. Usually the spread is chosen
such that the deal is at par when issued, i.e., for (structured) swaps the spread is
chosen such that the swap’s value is 0, for (structured) bonds the spread is chosen
such that the bond’s value is 1, which would relate the spread to market parameters.
Nevertheless, this type of a spread is a static feature of the product. It is determined
when the product is issued and does not change over the lifetime of the product.

28.1.2 Credit Spread

The credit spread has a different origin than the spread on a coupon: It is a market
parameter derived from market prices (like interest rates). Apart from the fact that it is
derived (e.g., bootstrapped) from (specific) market products, it is product independent.
To introduce the credit spread we will consider the defaultable zero-coupon bond in
the following section.
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CHAPTER 28. CREDIT SPREADS

However, in some situations it is possible to express a credit spread in terms of
a spread on a coupon. Actually, for zero-coupon bonds, there is a transformation
which is almost linear. Thus, the two notions of a spread may be related, which,
unfortunately, may give rise to misunderstandings. It is important to understand that
the original definition of a credit spread (as a market parameter) is different from a
spread on a coupon (as a static product feature).

28.2 Defaultable Bonds

We started our consideration of interest rates with the definition of the zero-coupon
bond. We viewed the zero-coupon bond as the fundamental (atomic) interest rate
product and all other interest rate quantities (forward rate, short rate, swap rate,
coupon bond, floater, etc.) could be expressed in terms of zero-coupon bonds. The
continuum of zero-coupon bonds gives a complete representation of the interest rate
curve; see Section 8.2.

The zero coupon bond P(T'; ¢) represents the value of a guaranteed payment of unit
1 in time 7, seen in time ¢. However, in reality the guarantee of the payment of 1 may
be limited. For example, if the issuer of the bond goes bankrupt, he does not repay
the value or only a fraction of it. The financial term used for this case is that the issuer
defaults. Let PY(T;t) denote the time t-value of a zero coupon bond that carries a
default risk, paying 1 in T in case of nondefault. The default event may accure any
time in (¢, T).

Remark 237: Since each issuer (obligor) might carry his individual default risk,
each issuer defines a unique continuum of defaultable bonds, e.g., P¢US-GOV_ pdiBM
etc. In the following, P? denotes a defaultable bond of some fixed (yet unspecified)
issuer. In reality all bonds are defaultable and the (nondefaultable) zero-coupon bond
is an idealization.

A continuum of defaultable bonds T +— P(T';f) allows us to define all the asso-
ciated rates, as we considered for the nondefaultable case in Section 8.2. This will
give rise to the definition of the defaultable forward rate, the defaultable short rate,
the defaultable instantaneous forward rate, etc.

Definition 238 (Defaultable Instantaneous Forward Rate): 1
For fixed t let T + P%(T;¢) denote a family of defaultable bonds with maturities
T > t. Assume that T — P3(T; ) is differentiable in 7. We define

o
T = —o7 log(PX(T; 1))
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as the defaultable instantaneous forward rate. From the definition we have

T
Pd(T;t)zexp(— f Fa () d‘r).

)

We are interested in the relation of the defaultable quantities to the nondefaultable
quantities. We start by defining the default intensity. For an interpretation see below.

Definition 239 (Default Intensity, Credit Spread): 7
For fixed  let T +— PY(T;1t) denote a family of defaultable bonds with maturities
T > . Assume that T — PY(T; 1) is differentiable in 7. We define

A, T) = f4. T) - f¢,T)

as the default intensity or credit spread. From the definition

T
PNT;1) = P(T;1) exp(— f A, T) d‘r),

1e.
PUT; 1) r
= - A(t, vy dr].
) exp( j; (t,7) T)
|
r . 1 Interpretation (Default Probability, Survival Probability, In-
" | tensity): Obviously the value of a bond which carries a default risk is
! i | less than or equal to the value of a (nondefaultable) zero-coupon bond,
: " je., we have
PXT;¢)
PA(T; 1) < P(T; e, 0< — <1
(T;0) <P(T;0, e, < B S
The term 22 has an intuitive interpretation: It may be viewed as the probability of

P(T:0)
survival in (¢, T). Consequently A(z, -) is just the intensity of an exponential distribution.
If exp (— j; ’ Alt, 1) dT) is the survival probability, then 1 — exp (— ft T AL, 7) d‘r) is the
default probability, where—in this interpretation—default means that the bond pays
0. The parameter A is called the default intensity. The default intensity A has the
(physical) unit . It is the rate at which defaults occur. The inverse 1 has the
(physical) unit time. It is the average survival time. Note that the expectation of a

random variable having exponential distribution is %
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There is one important aspect here which one may easily overlook. The survival

probability
PAT;n) 4
m = €Xp (— \[ At, 1) dT)

is not the real survival probability. It is the market implied probability from the price
of a defaultable bond. It is the probability we should use as a pricing measure if we
hedge default risk by trading in defaultable bonds. We will comment again on this
point later. <

28.3 Integrating Deterministic Credit Spread into
a Pricing Model

A model which models one or more additional credit spread curves may become
quite complex. Note that so far it is possible that 7 — A(-, T) is a stochastic process.
Because the credibility of an issuer varies uncertainly, it is natural to assume stochastic
intensities.

However, if we make the simplifying assumption that the intensity is a deterministic
function, then it is straightforward to endow all models discussed so far with the
ability to handle defaultable quantities.

Assume a general (nondefaultable) pricing model with numéraire N and equivalent
martingale measure Q = QV, modeled over the probability space (€2, 7). Then the
value of a nondefaultable zero coupon bond is given by

1
) = Q
P(T;t) = NOE (N(T) Tt),

and the time ¢-value of a payoff V(T) paid in T is

oy o( V(D)
P(T;f) = NOE (N(T) | 7).

If Q is the pricing measure of a pure nondefaultable model (i.e., default events
are not considered under Q, i.e., falsely have probability zero), then we may simply
correct for it by multiplying by the survival probability. The value of a defaultable
bond is given by

A = of 1 _fr
PYT;t) = N E (N(T) exp(~ | A dr | 7).
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(check!) and the time t-value of a defaultable payoff V¢(T) paid in T thus is

v4T) !
dep) = Q -
Vi) = N E (N(T) exp( I /l(t,r)dr) |7—”,).

Essentially we split the probability space into the nondefaultable part (pricing measure
Q) and the default part (survival probability exp (— ft r At, 1) d‘r)). In a more rigorous
treatment we would have introduced the product measure.

28.3.1 Deterministic Credit Spread

If the credit spread is nonstochastic, to be precise, an Itd process with zero volatility,
then this implies that A does not depend on ¢.

Lemma 240 (Nonstochastic Credit Spread): If

P T, T K T
d(P((T;tt))) = d(exp(—]; AL, 1) d'r)) = E(exp(-[ A, 1) dr)) dt, (28.1)

then A does not depend on ¢, i.e.,

A, Ty = AT).

Proof: The proof starts with a useful little trick: By our assumption the stochastic
process t > exp (— ft ! AL, 1) dT) has zero volatility. Thus, the theorem of Girsanov

implies that a corresponding change of measure does not change the process—there
is no change of drift since there is no diffusion. So considering (28.1) under the
T-terminal measure Q77" we immediately obtain

0 T
E(BXP(_I AL, T) dT)) = 0.
From that, with

a T T T a
E(CXP(_ j; Alt,7) dr)) = exp(— j; A(t, ) dT) (/l(t, 1) - I E/l(t, T) dr)

we find
T 9
A0 - | =, =0,
()Iat(tr)dr 0
€.,

i
Ale,1) = f Ay dr VT
, ot
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The right-hand side does not depend on 7. Consequently the left-hand side does not
depend on T. Differentiating with respect to 7', we find the integrand on the right-hand
side to be zero:

d
—At,T) =0 VT.
56T =0

In other words, A does not depend on . ol

" gm, | [Interpretation (The Default Event—Recovery Rates): There is
| :-'_' ; a somewhat surprising aspect of our consideration of the default risk
'L B : so far: We did not specify the nature of the credit event itself. Usually,

- when a (risky) bond defaults, then it pays some fraction of the original
notional called the recovery rate. So far we did not consider if and how much recovery
a defaultable assets pays. We did not even consider the nature of the credit event itself.
Is it a total default at a single point in time or a gradual process?

If we only want to evaluate payments made by counterparties with credit risk, i.e.,
where the corresponding zero-coupon bond has a value different from the nonrisky
zero-coupon bond, then these aspects are irrelevant. The credit event itself (e.g., the
recovery rate) has to be modeled only if a financial product relies on the nature of
the credit event (e.g., a guaranteed compensation of the loss (as for a Credit Default
Obligation (CDO))).

In this sense, we once again stress that the intensity A is not the intensity of the true
default probability (whatever the true default is). It is the equivalent intensity under
the assumption of defaults (modeled as poisson events) with zero recovery, implied
(!) by market prices. Like the equivalent martingale measure, it is a calculational tool
rather than a real quantity. <

28.3.2 Implementation

Implementing deterministic credit spread into a given pricing model turns out to be a
minor modification of the discounting. Given two curves of zero-coupon bond prices:

T - P(T;0), nondefaultable zero-coupon bonds,
T+— Pd(T; 0), defaultable zero-coupon bonds,
calculate the credit spread curve
1 PYT;0)
T):=-=1 .
=TT Og( P(T;0) )

From this, calculate the forward credit spread as

(T, Tr) :=

T oT, (s(T) T2 = s(T) Ty)
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for T, < T,. A defaultable cash flow to be received in T, evaluated as seenin T} < T,
is then adjusted by the factor
exp(—s(T, T2) (T2 = Th)).
In other words, while the time ¢ relative value of nondefaultable cash flow X; to be

made in 7 is given by
X;
Q| 2
(N(Ti) |7:)-

the time ¢ relative value of a defaultable cash flow X; to be made in T; is

QY { - N (T: —
(N(Ti) exp (=s(t, T) (Ti — 1) |7'7)-

This can be implemented by replacing N(T;) by N(T;) exp(+s(T;) T)), i.e.,

PY(T;;0)

N(T;) isreplacedby N(T)) m)—

(28.2)

in the application of the universal pricing theorem (i.e., discounting) for all defaultable
cash flows.

Interpretation (Seeing (28.2) as an Exchange Rate or as an
Interest Rate): The modification in (28.2) is similar to an exchange
rate. For example, if one needs to price foreign cash flows using a model
with a domestic numéraire, then one does so by exchanging the foreign
cash flow into domestic currency using the exchange rate at payment date 7T}, then
discounting in the domestic model and converting back to foreign currency with the
inverse of the exchange rate.

The same is happening here. At payment date a defaultable cash flow is being
interpreted as nondefaultable. The corresponding conversion factor is 1, since at
payment date the amount of the cash flow is indeed the same. Then the cash flow is
discounted in the nondefaultable model and converted back to a defaultable quantity.

The exchange rate is ';:((TT' ;’)), the value of a defaultable time T; cash flow in terms of a
nondefaultable time T; cash flow.

This “exchange rate” depends on the maturity of the cash flow. So actually it is
more similar to an interest rate and the interpretation of A(¢) as an (additional) interest
rate is even more striking: Assume that we are under the risk-neutral measure, i.e. the
numéraire is N(r) := exp( f(; r(7)dr). Then (28.2) will replace N(f) by exp( for r(t) +
Ardr). <

r 1
| |
| |
| |
L J
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CHAPTER 28. CREDIT SPREADS

28.4 Receiver’s and Payer’s Credit Spreads

All future cash flows of a (nonforward starting) bond have the same direction: The
holder of the bonds receives coupons until maturity and notional upon maturity. If
the bond is forward starting, then the holder pays notional to the issuer upon start, in
which case there is also a future cash flow from the holder to the issuer. For a swap
the direction of the cash flow depends on the fixing and may vary for each period. If
the cash flow is positive, the holder receives the cash flow from the issuer. If the cash
flow is negative the holder pays its absolute value to the issuer.

Obviously, receiver and payer may have different credit spreads, i.e., different
default risks. Let A" denote the receiver’s credit spread and AP the payer’s credit
spread. Let X denote an Fr-measurable random variable modeling a defaultable cash
flow in 7. If Q¥ denotes the nondefaultable pricing measure corresponding to the
nondefaultable numéraire N, then the time #-value of the defaultable time T-cash flow
X is

max(X,0) _ [y gr , MInX0) _ 7oy ar 7;).
N(T) N(T)
For a financial product consisting of multiple (potential) cash flow we have to calculate
the net exposure consisting of the present cash flow and the value of the future product.
Let X; denote an F1,-measurable random variable modeling a defaultable cash flow

in T;. Then Vi \(T}) denotes the time T; value of the defaultable cash flow X; for
j 2 i+ 1. Then we have the backward induction

VITL) o (max(X; + VE (T),0) T
NT) N(T;) ex"(‘fn_,“’) d’)

min(X; + Ve, (T;),0) ( [ roa ) |7 ]
+ - ) .
N(T) exp - T)dr Tio)

N(@t) EY (

(28.3)

i

Interpretation: For products with multiple cash flow (i.e., periods)

with possibly different signs, the pricing is thus given as a backward

1
|

& |
|

J

;
|
|
|
L

b algorithm like that for the pricing of Bermudan options. Using two
different spread curves on a swap immediately results in a Bermudan
pricing algorithm. <

Remark 241 (Netting): There are usually netting agreements between counter-
parties such that upon default the outstanding debt is calculated across a portfolio and
only the net debt is under default. When this is done, the pricing Equation (28.3) needs
to be considered on a portfolio level, which requires that all products are evaluated
using the same model and within the same simulation.
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284 RECEIVER'S AND PAYER'S CREDIT SPREADS

28.4.1 Example: Defaultable Forward Starting Coupon
Bond

Recall that the value of a forward starting coupon bond with an initial notional
payment 1 in T is

n—1
ViwdcpnBnd (£) = Z Ci(Ti) = T) P(Ti150) + P(Tys0) — P(T1;0),

i=1

which is identical to a swap

n-1
= Y (Ci= LT3, Tiar; ) (Tt = T)) P(Ti15 1)
i=1

see Section 9.2.1.1.
If we consider defaults, then the time 7' value of the cash flows received after T is

n—1 Tiv
VionpndTD) = > CiTims = T) P(Tisti1) exp (— [ e dr)
i=1 1

Ty
+ P(T.; 1) exp(—f AP(1) dr).
T,

Together with the initial cash flow at time T, the time t-value of the defaultable
forward starting coupon bond is

exp(= [ @) dr) i V(T > 1,

Ve sconpnd® = (Veupna(TD=-DP(T131)
fwdCpnBnd CpnBnd exp (_ f’ T A1) d‘r) else.

For V&, acpnna(T1) We have
n-1
Viwcpmpna(T) = . Ci (Tiey = T)) PP(Tops Ty) + PP(Ti0) - 1,
i=1

which is identical to

n—1
= Z(Ci — LY(T;, Tis1; TV) (T — T) PYP(Ti1; 1), (28.9)
=1
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CHAPTER 28. CREDIT SPREADS

where

T;
PY(T; Ty) = P(Ti;Ty) exp(— AP(r)dr) and
T
Pd.P(T,.T)
dper. T, . oy = - Vet
LT, Tiwi; T1) (T = T)) PO T T))

Note that (28.4) is a swap where both counterparties share the same default probabili-
ties.

28.4.2 Example: Option on a Defaultable Coupon Bond

Consider an option on the defaultable coupon bond with exercise date 7. Since the
option is exercised if and only if Vgpan 4(T1) — 1 > 0its value is

o (max(Ve . (T)-1,0) T,
Vemnion() = N E? ( N exp (—ff o dT)]‘

Consequently, the value of an option on a defaultable coupon bond corresponds to
exp (— ft h AP(1) d'r) times the value of a (nondefaultable) option on the defaultable

swap. Note that due to the optionality A" does not enter the valuation.

It appear as if this allows to derive an adjusted Black formula using only implied
volatilities of the (nondefaultable) swap rates. However, the implied volatilities refer
to swaptions paying a constant coupon C; = C in each period. If these coupons
are weighted by the survival probability, then, effectively, we have an option on a
weighted sum of different swap rates.! Thus, the pricing of an option on a defaultable
swap (or bond) requires additional information on the correlation of the swap rates.

Further Reading: The setup of two spread curves is identical to
considering a market where the interest rate for borrowing is different
from the interest rate for lending. For a thorough treatment of the
underlying theory see [12]. <

el M W R
i el

! See Exercise 11.
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CHAPTER 29

Hybrid Models

In this chapter we introduce several kinds of hybrid models. A hybrid model is a
model that models multiple (different) assets in a single unified model. In general
one combines several well-known models into a single unified model. Since different
models usually come under different pricing measures, the essence of a hybrid model
is the question “How do these models look under a common pricing measure?”. So
apart from the prerequisite that the models be compatible, the construction of a hybrid
model is just a change of measure.

In this sense, we have already encountered the basic technique required for a
hybrid model in the discussion of the LIBOR market model: There we wrote down
multiple individual Black models (Chapter 10) and asked ourself how they look under
a common pricing measure. The result was the LIBOR market model.

29.1 Cross-Currency LIBOR Market Model

For two currencies, “domestic” and “foreign”, we model the interest rate curves, each
with a LIBOR market model, as was discussed for an interest rate curve in a single
currency in Section 19.

In addition we model the foreign exchange rate FX(f). In Chapter 11 we presented
the pricing of a quanto caplet by modeling the FX forward as a lognormal process.
Here the spot exchange rate FX(¢) is modeled directly, also as a lognormal process.
Let FX(t) denote the amount (in domestic currency) that has to be paid by a domestic
investor at time ¢ for one unit of foreign currency (for). Thus, FX(¢) has the (physical)
unit [FX(r)] = Ldom,

We assume that for the chosen numéraire N that there exists a corresponding
equivalent martingale measure QV. By the change of measure theorem (Girsanov
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CHAPTER 29. HYBRID MODELS

theorem, 59) the modeled quantities are again lognormal processes under QV, i.c.,

dL(t) = L,(t) u;(6) dt + Li(t)oi(t) dW,QN(t), O<i<n-1)
dFX() = FX() 1™ (1) dr + FX@0™ (1) dWZ, (1)
AL = L () dt + LGy dWE 1) O <i<n-1),

with initial conditions
Li(0) = L;p, FX(0) = FXo, Li(0) = L.

As before, this is the starting point for

o Determination of the drift terms y;, %, and ji; for a chosen numéraire N(¢)
using the Q"-martingale property of N-relative prices.

¢ Determination of the initial conditions L; o, F Xy, L; ¢ using the bond and foreign
bond prices observed at time ¢ = 0.

e Determination/choice of the volatility and correlation to reproduce given option
prices.

29.1.1 Derivation of the Drift Term under Spot Measure

As numéraire we chose the rolled over one period bond we had already made use of

in Section 19.1.2:
m(t)

N = P(Toiye: 0 [ [0+ LT 6,
j=0
where m(t) := max{i : T; £t},0; := T;,,—T;. We will now derive the corresponding
processes (i.e., the drifts) under the corresponding equivalent martingale measure Q"
the spot measure.

29.1.1.1 Dynamic of the Domestic LIBOR under Spot Measure

For the drift u; we have, exactly as in Section 19.1.2

o1Li(0)

1+—(5114160-i (Do (OpiD).

() =

l=m(n)+1

This is the already known LIBOR market model in domestic currency.
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29.1. CROSS-CURRENCY LIBOR MARKET MODEL

29.1.1.2 Dynamic of the Foreign LIBOR under Spot Measure

We derive the drift j1;(f) of the foreign LIBOR by considering financial product

from the foreign market. The foreign bond P(T, ), converted to domestic currency,
P(Ti13t) FXQ)

i.e. P(T:,)) FX is a traded asset for the domestic investor. Thus, N is a
QV-martingale:' i
Drift(—P(Ti+' aiki X(’)) =0 (29.1)
Qv N(@)
Likewise 5 .
L B(T;,) FX = I = PTie) oy (29.2)

Tin—T;
is a traded asset for the domestic investor, because it is a portfolio of (foreign) bonds
converted to domestic currency. Thus,

Drift(li P(Tiv1;0) FX(t)) -0
Q' N@®)
From the product rule we find
- P 0) FX(0)
_ PTaun FX@) - - (P FX@
= N0 di; + L; d(_—N(t) ) (29.3)
= [(P(Tis ) FX()
+ dLl d (_—N([) )

P(Ti1n FX@©

) by comparing drift terms.

from which we derive fi; after calculation of d
We have

d(f’(T,-H;t) FX(I)) _d B(Tne151) n;’:m(r)ﬁ-l 1+ Zj(t)‘sj)_1
N P(Tmw+130) - TT'R0 (1 + LATS))

FX(I)].

Remark 242 (Interpolation of Bond Prices): At this point we encounter an inter-
esting difference to the single currency LIBOR market model (see Section 19): While

. . P(T st . ..
for the case of the domestic currency the corresponding term FET"]%:T? vanishes, it is
mif)+1
P(Tm(l)+

necessary to provide an interpretation of Wm:g See also Section 19.2.3.

!'In the view of the domestic investor the foreign bond is not a traded asset. Only after conversion to
the domestic currency by the applicable conversion rate FX(t) does the product become tradable for
the domestic investor. This is also apparent from the fact that relative prices are dimensionless: While

BTy FXQ@) Py
N

is dimensionless, we find that =52 has the (physical) unit L for

1 dom*
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CHAPTER 29. HYBRID MODELS

We have not yet defined the value of the short period bonds P(T,1;t) and P(Ti,1;0
fort# T;,j=0,1,2,.... We do this now and define for T; <t < Tj,;:
P(Tiie130) 1= (1 + Loy (Do) Ty = 1)
P(Tonyr3 1) = (1 + Liy(Tne)) Ty = )™

This concludes the definition of the numéraire.

From this we find

P(Tpe13t) ﬁ(l + Lin)(Trn) Tmiye1 — t))dt
P(Tupi1; ) O\ + Loy (Tiiy) Ty = D)

i.e., the term ﬁg’*' D has no diffusion part dWfor T; <t < Tjyy. This is sufficient for

the following derlvatlon The specific form of the dr1ft does not need to be known.
Indeed, it would be sufficient to require that P(T;,1;¢) and P(T;.1: 1) have zero

volatility, i.e., no diffusion part, in the short period ¢ € (T}, T1]. No specific inter-

polation is required. The zero volatility assumption for P(T;, ;) and P(Ti1;:0) on

t € (T}, Ti+1] closes the definition of the LIBOR market model for all r € {Ty, T, .. 2.2
Continuing with the derivation of the drift, we have

d P(Ti1;0) FX(I))
0

_ g PTinsn) M- (1+ Ls;)" FX0)

P(Tioi; D) TT74 (1 + LT ))s;)
_ BT FX() o
=(.)dr N Z — Ma,dw 10

J=m(D+1
P(Ti,150) FX(1)
N(1)
If we plug this into (29.3) and compare drift terms (the coefficients of dr) we get,
together with (29.1) and (29.2),

"X (1) WS, (1),

_ P10 FX@) L0 (1) + 0

N(1)
B(Ti1:0) FX() - ! §;L; . Q2 () i
+ ——————— L(n{ - a6 AW () dW (1)
N@) ( j_%+ll+6ij J

+ ot dWQ (1) dW X(z))

2 See [24].
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29.1. CROSS-CURRENCY LIBOR MARKET MODEL

Denoting the interest rate correlation within the foreign currency by p; ;, i.e.,
AW (1) dW (1) = i) e

and denoting the correlation of the foreign currency and the foreign exchange rate by
OiFxs 1.€.,
~ QN QN
dW; () dW, (1) = prgx(nde,

gives

~ _ i 61'1:](0 A (R s FX i
B = Tro Ly O 0puD = &0 Opre.

j=m(n+1

29.1.1.3 Dynamic of the FX Rate under Spot Measure

For a given t € [Ty, Tiugry+1) consider the foreign bond with maturity 7, —the

next possible maturity in our tenor discretization. Converting it to domestic currency

FX() P(Twae13)

its N-relative value is a martingale. Furthermore we have

N()
P(Tougyi150)
A FX({t) ————
(Fx N )
m(r) =
Def. N P(Tm(r)ﬂ )]
VT + LT)s,) d (FX(t) omorh T
g S P(Tnn+1:1)
P(Tyerst
= arx(p PdnoiD N(E)t;’ )
m(t) =
O (P(Tppe130)
+ Fxon] la +L-(T-)6~)—(————
!;-0[ e ot P(Tm(l)H;t)
- BT 3 [ PTwps1i)
Def. N P(Tm(t)+l ; [) P m()+ 1 t) Ot \ P(Tgys13t)
= dFX({t) —— + FX(t ~
( ) N(t) ( ) N([) P(Tm(rwl:t)
P(Tgye130)
and thus
3 { P(Tins13t) »
FX([) o (P(Tmzr:+l2’)) d ] P(Tm(t)-H ) l)
= ——— = — 10 —_—
H PTwye1:8) ot P(T,,,(,)H )]
P(T 130}
P(Tpin+13t
_ 19_10 (~( 0)+1 ))'
ot P(Tm(t)+1 5 I)
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CHAPTER 29 HYBRID MODELS

The drift u"*(¢) thus depends on the chosen interpolation of the bond prices; see
Remark 242. However, for its use in an implementation via a time discretization
scheme it is not necessary to calculate the corresponding derivative after ¢, since
only the integrated drift enters the time discretization scheme. For the integral

fTT”' uFX(f) dr we have
T P(Tii1; T; P(T;.1; T P(Ti1; T,
f ,UFX(t)dt o (~( +1» 1+l))_10 (~( +1s z)) = —lo (~( i+1s z))
T, P(Tis15Ti1) P(Ti Ty P(Ti 13Ty
I 1+ LT, Tin; T))
1+ (T, Tir; T))'

Il

i.e., it is independent of the interpolation of the bond prices. See also Section 29.3.3.

29.1.2 Implementation

We will discuss the impiementation together with the equity hybrid LIBOR market
model in Section 29.3.3.

29.2 Equity Hybrid LIBOR Market Model

In Chapter 4 we introduced the Black-Scholes model for a (single) stock. The stock
S was modeled as a lognormal process:

dS@) = BFOS@ dr + S 0S () dWSF(r)  under the real measure P.

We had assumed interest rates to be nonstochastic and constant and the chosen
numéraire was then B(¢) := exp(r ). Under the corresponding martingale measure
Q? we could then derive an analytic formula for the price of a European stock option.

The pricing of products exhibiting optionalities related to both stock and interest
rates requires joint stochastic modeling of the stock and the interest rates. If we chose
as the interest rate model the LIBOR market model and as the stock process model the
Black-Scholes model, then the construction of the joint model is simply the derivation
of the drifts under a common measure.

29.2.1 Derivation of the Drift Term under Spot-Measure

As before, we choose as numéraire the rolled over one period bond:

m(t)

N@) = P(Tupes | [+ LAT) 6,

j=0

where m(t) :=max{i : T; <t} ando; :=T;; - T;.
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29.2.1.1 Dynamic of the Stock Process under Spot Measure

The stock S is a traded asset, thus % is a martingale under the equivalent martingale
measure Q". From the product rule we have

1 1 1
d(§)=ds —isd[=]+dsd[=].
N N N N
For T; < t < Ty, let the bond price P(T,; t) defined (interpolated) as in Remark 242,

ie.,
P(Tio10) i= (1 + LTy (Tiy = 1) for Ty <1 < Ty,

In this case

(o8
——
|-
——
|

1 m(t)

) [P(Tm<,>+1;r) | H(l " L"(Tf)é")]
] m(t)

) d(P(me;r) EO[(I +L’(T’)‘5")]

m(t)
=d [(1 * Lt(To) T = 0) - | ] + Lj(T_,ad,«)]
Jj=0
m(t)
= "Lm(r)(Tm(t)) dr 1_[(1 + LI(TJ)(SI)
Jj=0
_ Lm(r)(Tm(I)) ¢ l
1+ Lm(t)(Tm(r)) i (Tm(r)+1 - t) N

0 1
== log (1 + Lyyo(Twr) - (Tongyer — 1)) dt v

Remark 243 (On the Numéraire Process #): Under the assumption that N(¢) does
not have a diffusion (i.e., dW) term, which is the case for the above definition of the
short period bond, then d (%) = ( (%ﬁ) dz. Nothing else has been calculated above.

See also Remark 242.

Assuming that N does not have a diffusion (i.e., dW) term, dS d (%) = (0 and from
Driftgy () = 0 we find

S
0= =+

S
— +0,
N N

0
a log (I + Lm(l)(Tm(t)) (Tm(t)+l - t))
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thus
s 0
i = r log (1 + Lut)(Toury) (Tingye1 — 1))

4

_ Lo/ (Tin) (294
1+ Lyy(Toiy) (Toniyer = 1)

I . 1 Interpretation (Comparison to the Dynamic of the Black-
: ; : Scholes Model):  Using the numéraire B(¢) := exp(r - 1) used in
IL i JI the Black-Scholes model (see Chapter 4) we had derived the drift of

the stock process under the martingale measure Q7 as i’ Q@ =y Equa-
tion (29.4) is simply a discrete (and stochastic) version of this drift: For the average
drift over one period [T}, Ti41]

1 me S.oN (t) dr
— l/l *
T =T Jr,

log(1) — log(1 + L{(T})) (Tiy — T1))

_ _log(l + Li(T) (Tivs — T))
T = T;
and for infinitesimal period lengths T;,; — T; we find—see Definition 103—that
—log(lt + L{T))) (Ti1) = T)))
—
T = T; Tin1—T;

Ty = 15,

ie.,

$.QY 5.Q°8
t e R
©we o M

<

29.2.2 Implementation

We discuss the implementation together with the previously discussed cross-currency
LIBOR market model in Section 29.3.3.

29.3 Equity Hybrid Cross-Currency LIBOR
Market Model

The models given in Sections 29.1 and 29.2 may be combined. This is now trivial
since the numéraire and thus the martingale measure are the same in both models.
Thus we have a unified model for interest rates, foreign exchange rates, foreign
interest rates, and equity. We will now add the model of a foreign stock. Let § denote
another stock process, modeling a stock from the foreign market, i.e., the process §
has the dimension (currency unit) 1for.
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293 EQUITY HYBRID CROSS CURRENCY LIBOR MARKET MODEL

29.3.1 Dynamic of the Foreign Stock under Spot Measure

We assume that the foreign stock § follows a lognormal process
dS@ = ,ug FoS@ dr + S 0OS@) dWSE@e) under the real measure P.

As in Sections 29.1 and 29.2, we chose as numéraire N(f) := P(T 15 1) I_['"(')(l +
Li(T;)-6;). As for the cross-currency LIBOR market model, the foreign %tock S has
to be converted to domestic currency to be a traded asset for the domestic investor.
That is, FX - § is a traded asset and the N-relative price £%5 a Q¥-martingale. From
the product rule

FX-§ L1 . 1 - 1
d( )zd(FXS)N+FXS-d(ﬁ)+d(FXS)d(N)

and
d(FX-8)=dFX-S + FXdS +dFX dS.

With the definition of the numéraire from Remarks 242 and 243
1 d1 1 o 1
dl=|={=—=1}dt= —1 dr
(N) (M) (N o "g( ))

FX-S)

and thus

Drift (
Qv

- % ( i + o™ dWE () oF () awd OHQIOg(;’))

If we denote the instantaneous correlation of the stock process S and the foreign
exchange rate process FX by pFXS’ i.e., we have dW X(t) dWQ (t) = prys de, then

we get with Driftgy (£55) =

G 0 I $
e e~ og( ) (0 Dppys ).

With

P(T,, 3
aay = 2 og(w)
o P(Tm(t)Jrl ) t)
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and

0 lo Ly_ 9 lo ( !
ot g N - or £ P(Tm(,)+1; 1)
we get

5 ]
1 = o Log(B(Tuyrts 1) = 0 (00 (Do (1)

a - -
=% log (1 + Ly (Tuny) (Tuiya1 — t)) - Xty (Dppyx s (D).

29.3.2 Summary

Under the numéraire

m(t)

N@) = P(Tsn) | [+ LT - 6,
=0

where m(t) := max{i : T; < ¢}, and the assumption that N(¢) does not have a diffusion
part, as would be the case for

P(Tisy; ) = (1 + L(T) (Tiy — 1))

~ B _i } forT; <t < Ty, (29.5)
P(Ti1;0) := (1 + L(T) (Tys1 = 1)

the dynamic of the equity hybrid cross-currency LIBOR market model under the
corresponding martingale measure QV (spot measure) is given by

dL() = L) -y d+ Lo dw¥ @),  fori=0,...,n-1,
dFX(1) =FX(t) - u" X (1) dt+ FX()T () de;(t),

AL = L@-ayd+ Loan dW¥ @,  fori=0,...,n-1,

dS=SE*nde SO awd @,

BSn= SoOSod+ @@ dW?N(t),
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293 EQUITY HYBRID CROSS CURRENCY LIBOR MARKET MODEL

where

oLy
Hi = Tiopils
I=m(e)+1 L+aLy

6L FX
(1) Z —&:0pi; — Fio T (OpiFxs
=+ 1 + 6ij

7] P(T,ne1:t
ﬂFX([) Y lOg( ~( (H+1 ))’
o1 P(Triye13 D)

ad
wi(n) = o log(P(Tirye15 1)),
. a - ) .
©(t) = 57 108P (T 1) = XD Oppxs(t).

If we choose for P(Tn+1; 1) and P(Tm(,)ﬂ ; 1) the interpolation given in (29.5), then
it follows that

0 1+ Zm Tm Tn —t
Xy =2 log( O (Tmn) T ))’
(9[ 1 + Lm(t)(Tm(t)) (Tm(r)+l - t)
. ad 1
S
n=+lo ( )
H0 = 0t B\ T+ Lo o) s = 0
~ 8 1 ~
S FX
win= —IOg( = )—cr O Oprxs @
ot 1+ Lm(r)(Tm(t)) (Tm(t)+l - t) Fxs

29.3.3 Implementation

Due to the many state variables, i.e., the high Markov dimension, it is natural to
consider an implementation to be path simulation (Monte Carlo simulation). The
first step toward an implementation is the discretization of the simulation time ¢ by
suitable discretization scheme. Since the processes are lognormal processes, we use
the Euler scheme for the log process; see Sections 13.1 and 13.1.2.3.

The discretization of the interest rate processes L; has been presented in Sec-

tion 19.3, the interest rate processes of the foreign currency rates L; are discretized
likewise. For FX we find

FX(t+ AD
1+ At 1 1+AL
= FX(@®) exp(f wf Xy - EO'FX(T)2 dr +f (1) dWFX(T))

= FX(1) exp ((p”‘(t) - %&”‘(1)2) At + X (1) AWTX (z)),
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with AWFX(#) := WX + A1) — WF¥(#) and

l 1+Ar
@ = f X ar

t+At
- FX(t) \/ f ()'FX(T)Z dr.

If we especially choose the time discretization of the Monte Carlo simulation to
match the zenor structure Ty, T, T, . . ., then we have

FX(T;,) = FX(T)) exp( Xy AT, - %‘FX(T)Z AT; + &"™X(T) AWEX(T, ))

with AT; =T,y = T; and AWFX(T,') = WFX(TH)) - WFX(T,‘) and

Tini

1T 1 14 L(T) - (Tosy — 1)
_FX FX i\ L i+
T) = — dr = — 1
pET) = a | = o Og(1+L,»(Tf)-(T,»+1—r)
_ Llo (] + L(T) - (Tiy _Ti))
AT, S\ 4 I(T) (T, =T

—FX 7 FX(+)2
\/ATf otX(1)? dr.

This Euler discretization is exact. The discretization of the processes S and S follows
likewise. With “discrete drift term”

t=T;

S 1
2Ty = ﬁl‘)g(] + Li(T) (T — T3,

Tl+] =
= T)) - f X0 (Dppys (1) dr.

S 1
=S
T,‘ =
o (Ty) AT, .
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CHAPTER 30

Object-Oriented Implementation
in Java™

From early on, we wanted a product that would
seem so natural and so inevitable and so simple,
you almost wouldn't think of it as having been
designed.

Jonathan lve
iPod™ Design Team, Apple Computer [37]

30.1 Elements of Object-Oriented Programming:
Class and Objects

First we define the two concepts class and object.

Definition 244 (Class):
A class consists of

o A description of a data structure.

e A description of a set of functions, the methods that act on the data structures
and other data (given as arguments). The description of the methods consists of

— A description of the calling convention of the methods, the interface; see
Section 30.1.3 and Definition 247.
— A description of how the method (function) actually acts on the data, the

implementation.
]
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Definition 245 (Object): 1
We say that X is an object of the class K, if

¢ X provides memory to store data according to the structure (layout) described
by K and

o the methods described in K may be applied to the data in X.

In this case, K is also called the type of X. a

1 Interpretation: A class is the blueprint of an object, while an object
.|| isareal instance of the class.
ﬁ J' Considering how classes and objects are realized in a computer, it
becomes apparent that an object X of class K merely stores the data
according to the storage layout in K, while the algorithms (code) that operate on X
are given by K. The class is a description of the storage layout and the functionality,
while the object represents the corresponding data record. The definition of a class
exists only once, while the object of a class (data records) may exist multiple times.
Class and object distinguish between logic (code) and data. Obviously, the logic, i.e.,
the class, has to know the layout (structure) of the data.

To illustrate the relation of classes and objects some authers use an analogy like,
e.g., human is a class while the specific individual “Christian Fries” is an object
of the class Auman. Such analogies do not hold very far. For example, it does not
become apparent that an object is just a data storage, disfunctional without the class
and that the code, i.e.; the algorithm that acts on the data exists only once, namely
inside the class. However, each individual has its own experiences (data) and patterns
of (re-)action (code processing experiences).

That the code is stored only inside the class also becomes apparent in the memory
requirements: If we add a data field to a class and create 100 objects (instances) of
this class, then, of course, this consumes 100 times the memory of the new data field.
If a new method is added to a class, then its code is stored only once and the memory
requirement is totally independent of the number of objects created.

As well as the data described in the class, an object carries another data item,
namely its type. This rype specifies the class of the objects. Thus there is a link
back from the object to the class and thus to the methods that may be invoked on the
objects’ data. <

r
|
|
|
L

30.1.1 Example: Class of a Binomial Distributed Random
Variable

Let B denote a binomial distributed random variable defined over a probability space
(Q, F, P) with Q = {w], w;}. Probability space and random variable may be charac-
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terized by three values by, b2, p € R:

B(w)) = by, P(wy) = p,

(30.1)
B(wy) = by, Plwy)) =1-p.

Equation (30.1) describes the class of “binomial distributed random variables” while
the random variable C with

Clw)= 1, Plw;) =05,

(30.2)
Clwy) = -1, P(wy) = 0.5,

is a (specific) object, i.e., an instance of the class “ binomial distributed random
variable”. Of course, operators that may be applied to this random variable have to be
defined only on the class level. For example, the calculation of the mean is defined by

E°(B) = deP = pBw)+(1—=p)Blw) = pbi+(1-p)by.  (30.3)
Q

That E(C) = 0.5 X 1.0 + 0.5 x (—1.0) = 0.0 follows from (30.3).

In Java™ a corresponding class could look as follows: The class definition starts
(after a comment) with the description of the data layout, here valuel, value2 and
pobabilityOfStatel for by, by, and p, respectively.

Listing 30.1. BinomialDistributedRandomVariable: A class for binomial dis-
tributed random variables

package com.christianfries. finmath.tutorial.examplel;

/’:.‘n-
* @author Christian Fries
* @version 1.0
vy
class BinomialDistributedRandomVariable {

private double valuel;
private double value?2;
private double probability0fStatel;

followed by the constructor

S
* This class implements a binominal distributed random variable
* @param valuel The value in state 1.
* @param value2 The value in state 2.
* @param probabilityOfStatel The probability of state 1.
w/
public BinomialDistributedRandomVariable(double valuel, double value2,
double probabilityOfStatel) {
this.valuel = valuel;
this.value2 = value2;
this.probabilityOfStatel = probability0fStatel;
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CHAPTER 30 OBJECTORIENTED IMPLEMENTATION IN JAVA™

and the description of the method getExpectation.

* @return The expectation of the random variable

public double getExpectation() {
double expectation = probabilityOfStatel * valuel
+ (l-probabilityOfStatel) * value2;
return expectation;
}
}

30.1.2 Constructor

The constructor of a class is a (special) method that is called upon the instantiation
(construction) of an object (there may be many different constructors and then it is
possible to choose which constructor is called). With a constructor it is possible to
do additional initializations beyond the allocation of the memory—in our case the
initializations are setting the value of b;, b,, and p.

The code of the above constructor of the class
BinomialDistributedRandomVariable may be confusing: The arguments
of the constructor have the same names as the data fields of the class. This is allowed
and is often used for data initialization in constructors, but it is dangerously confusing
in other methods with longer code. In this case the corresponding name always
denotes the argument of the constructor (or method). To access the data field with the
corresponding name the prefix this. has to be added. So the constructor above sets
the data fields of the object to the values given by the arguments.

30.1.3 Methods: Getter, Setter, and Static Methods
30.1.3.1 Calling Convention, Signatures

The calling convention of a method is the name of the methods together with the list of
its argument types, i.e., the calling convention defines which name and argument type
have to be used to call a method. The list of argument types is called the signature
of a method. Two methods of the same name but with different signatures are seen
as different methods. Providing another method with the same name but a different
signature is called overloading the method.'

! Within a class there cannot be two methods with the same name and the same signature. The return
value may not be changed by overloading.
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30.1.3.2 Getter, Setter

If the data fields of an object are made accessible, then they may be accessed through
objectName.dataFieldName, i.e., they may be read or modified. The access to
the data fields of an object may be allowed or denied; see also data hiding in Sec-
tion 30.2.1.

After an object has been constructed data fields may still be changed by means of
methods. We may set the data or get the data. Methods that do this are called setter or
getter. It is a convention that all getter methods start with the prefix get and all setter
methods start with the prefix set, both followed by a name of the entity they modity,
starting with a capital letter.

We add a setter for the value of b; to the class definition:

* @param valuel The value of state 1.

public void setValuel(double valuel) {
this.valuel = valuel;

3
I

The method only changes the state of object and thus does not return a value. This is
indicated by the keyword void.

30.1.3.3 Static Methods

Methods that do not require knowledge of the data fields of an object, i.e., that do
not read or modify data from an object, are called static methods. Put differently, the
method does not need an object; it is sufficient to have the class definition.

Definition 246 (Static Method): 1
A method of class K which keeps objects of the class K invariant and is independent
of its data is called static. A static method is also called a class method. a

In Java™ method is declared static by the keyword static.

To apply the (nonstatic) method to data we (have to) create objects. A corresponding
code, demonstrating how to work with object of the toy class above by doing some
tests is given in the main method?.

public static void main( String args[] ) {

/S
!

* Test of class BinominalDistributedRandomVariable
7

Svstem.out.println("Creating.random_variable.");

2 The main method may be called from outside without requiring a corresponding object. It is static.
Thus (especially since it does not require the existence of an object) it may function as a possible entry
point to a program.

439

26
27
28

30
31



CHAPTER 30. OBJECT-ORIENTED IMPLEMENTATION IN JAVA™

BinomialDistributedRandomVariable randomVariable =

new BinomialDistributedRandomVariable(1.6,-1.0,8.5);

double expectation = randomVariable.getExpectation();
System.out.println("Expectation_is:." + expectation);

System.out.println("Changing.value_of_state_l_ to.8.4.");
randomVariable.setValuel(0.4);

expectation = randomVariable.getExpectation();
System.out.println("Expectation_is:." + expectation);

In

BinomialDistributedRandomVariable by using the keyword new (reserv-

line

33 we create a new  object of

// Create object

the

type

ing the memory corresponding to the data layout) followed by the specification of the
constructor to use (note that the constructor is essentially a method having the same
name as the class) (right side of =). The result is stored in an object reference of type
BinomialDistributedRandomVariable (left side of =).

I e e il

Further Reading: In [11, 36]: primitive types, object references,
static methods (the keyword static), return values (the keyword void),

the main method, comments, and the JavaDoc standard.

<

30.2 Principles of Object Oriented Programming:
Data Hiding, Abstraction, Inheritance, and
Polymorphism

30.2.1 Encapsulation and Interfaces

To access the data of an object there are two possible ways: One is to provide two
(or more) methods that allow us to read and modify the data, i.e. getters and setters

are implemented. In our example class BinomialDistributedRandomVariable
we provide an example of this for the data field probabilityOfStatel:

Vi

Listing 30.2. Getter and setter

* @return Returns the probability of state 1.

71

public double getProbabilityOfStatel() {

return probabilityOfStatel;

}

S

* @param probabilityOfStatel The probability of state 1.

*y
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public void setProbabilityOfStatel (double probability0fStatel) {
this.probability0fStatel = probabilityOfStatel;
}

The use of these methods could look as follows:

BinomialDistributedRandomVariable randomVariable =
new BinomialDistributedRandomVariable(1.6,-1.6,0.5);

// Get probability of state 1
double p = randomVariable.getProbabilityOfStatel();
System.out.println( "Current.value_of_ p.is:." + p);

// Change probability of state 1 to 6.3
randomVariable.setProbabilityOfStatel(8.3);

Another possiblily is to use the direct access to the corresponding data field:

BinomialDistributedRandomVariable randomVariable
new BinomialDistributedRandomVariable(1.0,-1.0,0.5);

// Get probability of state 1
double p = randomVariable.probabilityOfStatel;
System.out.println( "Current_value_of_p._is:." + p);

// Change probability of state 1 to 6.3
randomVariable.probabilityOfStatel = 6.3;

The last variant works without special methods.? It is the direct access to the internal
data of the object.

This kind of access to the data structure appears to be more convenient for both the
developer who does not need to implement special getter and setter methods as well
as for the user of the class. Direct access to the internal data structure of a class has
to be allowed explicitly. To allow direct access to a data field the keyword public
has to be used:

class BinomialDistributedRandomVariable {
public double valuel;

public double value2;
public double probabilityOfStatel;

30.2.1.1 Encapsulation

Hiding the internal data structure and implementation and thus denying direct access to
the data structure is called encapsulation. The fundamental advantage of encapsulation

is that the data structure and the way the methods process that data may be changed.

Users of the class, having access to methods on the objects only, may be left untouched
by such changes. From “outside” the class behaves as before.

The advantage of encapsulation may be illustrated with the very simple example of
a binomial distributed random variable. We give two examples.

3 As long as access to the data is allowed, in Java™ this is done by adding the keyword public before
the data.
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Example of Encapsulation: Offering Alternative Methods: Like the getter
and setter for the probability P({w,}) of the state w; we offer a getter and setter for
the probability P({w,}) of the state w,:

* @return Returns the probability of state 2.

public double getProbabilityOfState2() {
return 1.0 - probabilityOfStatel;

}

S @param probabilityOfState2 The probability of state 2.
w s

public void setProbabilityOfState2(double probabilityOfState2) {
this.probability0OfStatel = 1.8 probabilityOfState2;

1

Previously, the state w; was distinguished by the methods available (only its prob-
ability p could be read) and the probability of the state w, was a derived quantity
P({lw,}) = 1 — p. Now both states are equally represented. How the properties of
a binomial distributed random variable are represented internally, i.e., how the data
is stored, cannot be inferred from outside. It is possible to change the data layout
and keep the specification (behavior) of the methods unchanged by adapting their
implementation.

Example of Encapsulation: Performance Improvement by Adding a
Cache to the Internal Data Modell: The data model described in Listing 30.1
consists of B(w;) (valuel), B(w-) (value2) and P({w,}) (probabilityQfStatel).
As a consequence we have to calculate the expectation as

E(B) := p (B(w) + (1 = p) B(wy)) = p (B(w1) = B(wy)) + Blwy).

This is done by the method getExpectation(). If this method is called very often,
we may improve performance by calculating the result once and storing it in a cache.
We add a data field mean as cache
class BinomialDistributedRandomVariable {

private double valuel;

private double valueZ;

private double probabilityOfStatel;

private double mean; // Cache for the mean
which is updated to the mean by the method updateMean

private void updateMean() {

mean = probabilityOfStatel * wvaluel + (l-probabilityO0fStatel) * value2;
}
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In addition we add a call to updateMean () at the end of the constructor as well as at
the end of any setter modifying the state of the object, i.e., modifying the data. This
ensures that the field mean contains the valid mean. The method getExpectation
does not do any calculations but merely returns the value from the cache mean:

* @return The expectation of the random variable

puﬁlic double getExpectation() {
return mean;
b

A multiply call to getExpectation does not result in a multiple calculation of the
(same) mean.

Obviously, the user must not gain access to the field mean of a corresponding mean.
This would be fatal. The lines

BinomialDistributedRandomVariable randomVariable =
new BinomialDistributedRandomVariable(1.6,-1.6,0.5); // Create object

randomVariable.mean = 0.2;

would put the object randomVariable into an inconsistent state. The user must
neither assume the existence of a cache nor manipulate it. Thus both mean and
updateMean are declared private. All other data fields also have to be declared
private. If they are changed, then mean has to be recalculated. This is ensured by
adding a call to updateMean to any setter. A direct manipulation of the data fields
would disable this.

30.2.1.2 Interfaces

The advantage of encapsulation is that the internal data layout may be changed if
required. By adapting the implementation of the methods which is also hidden it is
ensured that the methods offer the same functionality as before. For the user of (the
objects of) a class it is only relevant to know the calling convention of the methods,
the interface.

Definition 247 (Interface): 7
The description of the calling convention of methods is called the interface. Similar
to Definition 244 an interface consists of

e A description of the calling convention of a set of functions, the methods.
Definition 248 (Encapsulation): 1
If a class offers its functionality only through an interface, then we call the class
encapsulated. This is called encapsulation. 4

An example of an interface for an discrete real-valued random variable, i.e., a
real-valued random variable defined over a space Q = {wy, ..., w,}, 1S given by:
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Listing 30.3. DiscreteRandomVariableInterface: Interface description of a
discrete random variable

* Created on §4.12.2004

* (c) Copyright Christian P. Fries, Germany.
* Contact: email@christian-fries.de.

package com.christianfries.finmath.tutorial.randomVariables;

foe

This is the interface for a discrete real valued random variable.

* @author Christian Fries
*y

public interface DiscreteRandomVariableInterface {
int getNumberOfStates();
double getProbabilityOfState(int statelIndex);
double getValueOfState(int statelIndex);

double getExpectation();
double getVariance();

Further Reading: In [11, 36]: The keywords public, private,
and protected for data fields and interfaces. 4|

e Al

30.2.2 Abstraction and Inheritance

Interface and class are two extremes and something in between may be considered,
namely classes in which some methods have an implementation, while others are
given only through their calling convention (i.e., as an interface). Methods for which
the implementation is not yet specified are called abstract methods.

An example may be given by considering the interface
DiscreteRandomVariableInterface above: The implementation of ex-
pectation and variance may be added without the knowledge of the internal data
layout of the class. It is possible to add a partial implementation.*

Listing 30.4. DiscreteRandomVariable: Abstract base class for a discrete random
variable

S

* Created on 05.12.2004

* (c) Copyright Christian P. Fries, Germany.
* Contact: email@christian-fries.de.
*

4 An abstract class does not need to have any data layout.
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package com.christianfries.finmath.tutorial.randomVariables;

o

@author Christian Fries

public abstract class DiscreteRandomVariable
implements DiscreteRandomVariableInterface
{
public double getExpectation() {
double expectation = 0.0;
for(int stateIndex=0; stateIndex<this.getNumberOfStates(); stateIndex++) f{
expectation += this.getValueOfState(stateIndex)
* this.getProbabilityOfState(stateIndex);
}

return expectation;

}

public double getVariance() {
// Calculate second moment
double secondMoment = 0.0;
for(int stateIndex=0; stateIndex<this.getNumberOfStates(); stateIndex++) {
double value = this.getValueOfState(stateIndex);
secondMoment += value * wvalue * this.getProbabilityOfState(stateIndex);
i

// Calculate expectation
double expectation = this.getExpectation();

// Return variance
return secondMoment - expectation*expectation;

(o

To define a class which provides an implementation to the interface
DiscreteRandomVariableInterface is is only necessary to extend the class
DiscreteRandomVariable with the implementations of the remaining abstract
methods. This is possible in an elegant way by specifying that the new class should
inherit the already defined properties from DiscreteRandomVariable. By doing
so we may define a (new) class for the binomial distributed random variable:

Listing 30.5. BinomialDistributedRandomVariable:  derived from
DiscreteRandomVariable

/’.}
* Created on 05.12.26004
-
* (¢) Copyright Christian P. Fries, Germany.
* Contact: email@christian-fries.de.
*
/
package com.christianfries.finmath.tutorial.randomVariables;

/nn
* @author Christian Fries
* @version 1.0
#
class BinomialDistributedRandomVariable extends DiscreteRandomVariable {
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double valuel;
double value2;
double probabilityOfStatel;

class ChangeOfMeasureException extends Exception {
String cause;

/**
* @param cause The reason for this exception.

*

public ChangeOfMeasureException(String cause) {
super (cause);
this.cause = cause;
}
}

,’n#
* This class implements a binominal distributed random variable
*
* @param valuel The wvalue in state 1.
* @param value2 The value in state 2.
* @param probabilityOfStatel The probability of state 1.
27
public BinomialDistributedRandomVariable(
double valuel, double value2, double probabilityOfStatel) {

this.valuel = valuel;

this.value2 = value2;

this.probabilityOfStatel = probabilityOfStatel;
}

public int getNumberOfStates() {
return 2;
}

public double getProbabilityOfState(int stateIndex) {
if (stateIndex == §) return probabilityOfStatel;
else return 1.0 - probabilityOfStatel;

}

public double getValueOfState(int statelndex) {
if (stateIndex == ) return valuel;
else return value2;

}

public void changeMeasureToMatchGivenExpecation(double expectation)
throws ArithmeticException, ChangeOfMeasureException {

// Check if we have anything to do
if (expectation == this.getExpectation()) return; // Noting to do here

// Check if change of measure is possible (random variable is stochastic)
if (valuel == value2)
throw new ArithmeticException("Random.variable_is_not.stochastic.");

// Calculate candidate for new measure
double guasiProbability = (expectation - value2) / (valuel - value2);

if (gquasiProbability < ® || quasiProbability > 1)
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throw new ChangeOfMeasureException("Given_.expectation.out_of..range.");

// Check if change of measure is possible
probabilityOfStatel = gquasiProbability;
1
}

Inheritance is not limited to the implementation of abstract methods, i.e., inheriting
from abstract classes. It is also possible to inherit from a class (not necessarily abstract)
and to extend this class by a new data layout, new methods, or new implementation
of existing methods.

Definition 249 (Inherited Class): 7
Let A and B denote classes. B is called inherited from A, if B implements (at least) the
interface of A. B is also called derived class. A is called base class, also superclass.

If class B is inherited from A, then all objects of type B are simultaneously objects
of the type A; they are polymorph; see Definition 251. a

A convenient element of inheritance is the possibility of using the implementation
of the base class by default. If the derived class does not provide an implementation
for a base class method, then the implementation is inherited from the base class. To
be precise, a call to a method on an object of the derived class is routed automatically
to the base class object if the derived class does not provide an implementation. The
method then works on the data fields of the base class object.

Definition 250 (Overwriting (a Method)): 1
Supplying a new implementation to a method of a base class in a derived class is
called overwriting the method. 4

30.2.3 Polymorphism

The property that objects of a derived class are of multiple types is very important.
Since the derived class implements the interface defined by the superclass, objects
of the derived class’s type may be used equally well in all applications of base class
objects. This is possible and meaningful because these objects may simultaneously
be seen as objects of type A (type of the super class) and as objects of type B (type of
the derived class). We say that these objects are polymorph.’ If a base class is itself a
derived class, then objects of the derived class have all types of all base classes.

Definition 251 (Polymorph): 7
An object is called polymorph if it is of multiple type and behaves according to its
derived type, even if it is used in a context (originally) expecting a base class. 4

3 Objects are polymorph, i.e., of multiple types, not classes.
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The importance of polymorphism becomes apparent in the method call of polymor-
phic objects. Method calls on polymorphic objects use what is called late binding.
There a method call on a polymorphic object is routed to the implementation of the
derived class even if the call is invoked in a context originally expecting a base class.

Remark 252 (Interface, The Message Paradigm): The concept of an interface is
a central concept of object-oriented programming. Inheritance is to some extent only
a short way of saying that a class offers a superset of the interface of another class,
where the shortening is that for methods that do not have an implementation in the
derived class the implementation in the base class is used as a proxy.

For inheritance (in Java™) there is also the concept of the type of an object (and
thus the concept of polymorphism). In Java™ it is possible that two objects of two
different classes providing methods with identical calling conventions, i.e., providing
the same interfaces, are not interchangeable in their use since they are of different
types. If this additional restriction (fype safety) is left out, then the only characteristic
of a class is the interface provided. The calling convention of a method is often
interpreted as a “message which may be received by an object”. Some programming
languages do not have the concept of type safety and distinguish objects only by the
messages they may receive. Nice examples are Smalltalk and Objective-C.

Further Reading: The Java™ keywords private, protected,
public, void, static, final, implements, extends, package, and

|

|
I importin [11, 36]. <
|
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30.3 Example: A Class Structure for
One-Dimensional Root Finders

We consider the problem of finding a root® of a function f : R — R. The algorithm
for seeking the root is realized in a class that does not know the special shape of the
function. Instead we realize a question-answer pattern: In each iteration the class
proposes a value x (through a getter) for which it awaits the function value to be
set, i.e., the class questions the function value f(x) for a (chosen) x and develops a
strategy for approaching the solution from the answers.

30.3.1 Root Finder for General Functions
30.3.1.1 Interface

Such a class has to provide a method that returns the suggested point x (double
getNextPoint ()) and a method that receives the corresponding value f(x) (void
setValue(double)). Together with some methods for controling the iteration
(counting, accuracy achieved) we have to provide the following interface:

Listing 30.6. RootFinder: Interface for a one-dimensional root finder

* Created on 30.605.2004

* (c¢) Copyright Christian P. Fries, Germany.
* Contact: email@christian-fries.de.

package net.finmath.rootFinder;
* This is the interface for a one dimensional root finder
implemented as an question-and-answer algorithm.
* @author Christian Fries

A
public interface RootFinder {

* @return Next point for which a value should be set
* using <code>setValue</code>.

public double getNextPoint();

S
* @param value Value corresponding to point returned

* by previous <code>getNextPoint</code> call.

public void setValue(double value);

6 xis aroot of fif f(x) = 0.
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* @return Returns the numberOfIterations.
o~
public int getNumberOfIterations();

7
* @return Best point optained so far
L4
/

public double getBestPoint();

S

* @return Returns the accuracy.
* /
public double getAccuracy();
/:}:}

* @return Returns the isDone.
pﬁglic boolean isDone();

We still have no data layout and no specific implementation. RootFinder only
describes the interface. Obviously, a class implementing a root finder according to
this interface has to have some storage on the current state of the search (say a data
field for the current x) to derive a strategy for seeking the root. Which strategy is
used (the implementation) and which information is needed for the strategy (the data
layout) is not required in order to use it. It is sufficient to know the interface. Thus
we may write a method that tests a given RootFinder against some test function f
without actually having a specific class implementing the RootFinder:

Listing 30.7. Test for RootFinder classes

public static void testRootFinder (RootFinder rootFinder) {
System.out.println(“"Testing." + rootFinder.getClass().getName() + ":");

// Find a solution to x°3 + x"2 + x + 1 = 0
while(rcotFinder.getAccuracy() > 1E-11 && !rootFinder.isDone()) {
double x = rootFinder.getNextPoint();

// Our test function. Analytic solution is -1.6.
double y = x*x*x + x*x + x + 1;

rootFinder.setValue(y);

}

// Print result:
DecimalFormat formatter = new DecimalFormat("6.80E86");

System.out.print("Root......:."+formatter.format(rootFinder.getBestPoint())
AT

System.out.print("Accuracy..:."+formatter. format(rootFinder.getAccuracy() )
2l i I

System.out.print("Iterations:."+rootFinder.getNumberOfIterations() +"\n");
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30.3.1.2 Bisection Search
A simple root finding algorithm is the bisection search.

Definition 253 (Bisection Search): 0
Given a continuous function f : R +— R and xj, x; with f(x;) f(x2) < 0. The
sequence

X; + X
———, for f(xi-1)- f(x) <0
S R T R
2 )
is called bisection search. a

The class BisectionSearch realizes this algorithm by implementing the interface
RootFinder. A corresponding code is given in Appendix D.1.

30.3.2 Root Finder for Functions with Analytic Derivative:
Newton’s Method

Some root finding methods, like the Newton method, require knowledge of the
derivative f’ = % The “search strategy” of the Newton method is

S
f(x)

Xi+1 = Xi

30.3.2.1 Interface

Obviously a corresponding class has to implement a slightly mod-
ified interface. Instead of a method setValue(double value)
the interface RootFinderWithDerivative provides a method
setValueAndDerivative(double value, double derivative).

30.3.2.2 Newton Method

The class NewtonsMethod implements the interface RootFinderWithDerivative
using a Newton method. For the Newton method the corresponding implementation
looks as follows:

Listing 30.8. NewtonsMethod: Implementing the RootFinderWithDerivative
interface

/ﬂi
* @param value
y The value corresponding to the point returned by previous
<code>getNextPoint</code> call.
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* @param derivative
The derivative corresponding to the point returned by previous
<code>getNextPoint </code> call.

oy

public void setValueAndDerivative(double value, double derivative) {

if(Math.abs(value) < accuracy)
{
accuracy Math.abs(value);
bestPoint = nextPoint;

}

/4 Calculate next point
nextPoint = nextPoint - value/derivative;

numberOfIterations++;
return;

30.3.3 Root Finder for Functions with Derivative
Estimation: Secant Method

30.3.3.1 Inheritance

The power of inheritance and interfaces becomes apparent in the following realization
of the secant method. The search strategy of the secant method is

S

X=X

Xit1 = X

From that, two aspects become apparent:

e The secant method is a Newton method with an estimate for the derivative:
F(x) = Led=fxi )
{ ~ .

X=X

¢ In each iteration the secant method only required knowledge of the function
value f(x;) for the proposed point x;.

For the class, these properties translate to:

e The secant method extends the class NewtonsMethod by an estimator for the
derivative.

o The secant method implements the RootFinder interface.

Thus, a corresponding class would look as follows:
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Listing 30.9. SecantMethod: Implementing the RootFinder interface

/ﬂ

* Created on 19.02.2004

*

* (c) Copyright Christian P. Fries, Germany.

* Contact: email@christian-fries.de.

24
package net.finmath.rootFinder;
/ L 2

This class implements a root finder as auestion-and-answer algorithm using
the secant method.

@author Christian Fries
@version 1.1

% B & % % %

*/
public class SecantMethod extends NewtonsMethod implements RootFinder {

// We need a second guess for the inital secant
double secondGuess;

// State of the solver

double currentPoint; // Actually the same as NewtonsMethod.nextPoint
double lastPoint;

double lastValue;

’/9*
* @param firstGuess
Li The first guess for the solver to use.
* @param secondGuess
. A second guess for the solver to use (different from first guess).
i
public SecantMethod(double firstGuess, double secondGuess) {
super (firstGuess);
this.secondGuess = secondGuess;
}

public double getNextPoint() {
// Ask NewtonsMethods for next point and rember it as current point
currentPoint = super.getNextPoint();
return currentPoint;

}
/#*
* @param value
— The value corresponding to the point returned
* by previous <code>getNextPoint</code> call.
*

public void setValue(double value) {
// Calculate approximation for derivative
double derivative;
if (getNumberOfIterations() == 8) {
/* Trick: This derivative will let Newton's method
* propose the second guess as next point
=y
derivative = value / (secondGuess - currentPoint);
} else {
derivative = (value - lastValue) / (currentPoint - lastPoint);

}

453



CHAPTER 30. OBJECTOHIENTED IMPLEMENTATION IN JAVA '™

/ Remember last point

lastPoint currentPoint;

lastValue = value;
super.setValueAndDerivative(value, derivative);

return;

* @param value
The value corresponding to the point returned by previous
<code>getNextPoint </code> call.

* @param derivative

" The derivative corresponding to the point returned by previous
<code>getNextPoint </code> call.

public void setValueAndDerivative(double value, double derivative) {
// Remember last point
lastPoint = nextPoint;
lastValue = value;

super.setValueAndDerivative(value, derivative);

return;

}

Remark 254 (SecantMethod): Note that in our implementation of the secant
method we stored the current point x of each iteration in a field currentPoint. This
is not necessary, as we could have used the field nextPoint from the base class
NewtonsMethod. However, then we have to make the field visible to the derived
class.” Using the additional field currentPoint makes the derived class independent
of the data model of the base class (but also a bit less efficient since the point is stored
twice).

30.3.3.2 Polymorphism

The class SecantMethod shows how polymorphism works. Objects of the class
SecantMethod are simultanecously objects of the class NewtonMethod, since
SecantMethod inherits from NewtonMethod and thus offers the corresponding
interface. Thus the class SecantMethod not only implements the interface
RootFinder but also implements the interface RootFinderWithDerivative
as a Newton method. It is truly polymorphic. With respect to the interface
RootFinderWithDerivative behaves like a NewtonMethod (by routing calls to
the base class); with respect to the interface RootFinder it implements the secant

71t would be sufficient to declare the field protected, a weaker form of public making it visible only
to derived classes.
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method. That the class SecantMethod may act like a NewtonMethod is not surpris-
ing: We did not change any method of the interface of the base class (no method has
been overwritten). This is also apparent in out test program Listing 30.10, testing all
the root finders; see Listing 30.11.

Remark 255 (Inheritance: Specialization and Extension):  The construct “B
inherits from A” is often interpreted as “B is an A”. For example, “a discrete random
variable is a random variable” or “a binomially distributed random variable is a
discrete random variable”. The motivation for this “mnemonic trick” is the conception
that the derived class B is a specialization of the base class A. This interpretation may
help us to design a class hierarchy, but it is not universal. For example “the secant
method is a Newton method” appears to be wrong. The use of “... extends...” in
place of “... isa(n)...” is much more universal. For example: “The secant method
extends the Newton method by an approximation for the derivative” makes sense.
And in Java™ the corresponding keyword is extends.

We test the implementation of our root finders with the class TestRootFinders.
Since there are only two different interfaces we have to write only two different test
routines:

Listing 30.10. Test for RootFinder and RootFinderWithDerivative classes

* Created on 602.12.2004

* (c) Copyright Christian P. Fries, Germany.
Contact: email@christian-fries.de.
* /
package net.finmath.rootFinder;

import java.text.DecimalFormat;

* @author Christian Fries
:‘/
public class TestRootFinders {
public static void main(String[] args) {
System.out.println("Applying.root_ finders. to.x 3_+.2%y 2 +.x_+_.1.=008\n");

System.out.println("Root_finders_without_derivative:");
System.out.println("-------ommm e bl

RootFinder rootFinder;

rootFinder = new BisectionSearch(-10.6,16.0);
testRootFinder (rootFinder);

rootFinder = new RiddersMethod(-10.0,16.0);
testRootFinder (rootFinder);

rootFinder = new SecantMethod(2.6,10.68);
testRootFinder (rootFinder) ;
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System.out.println("");

System.out.println("Root_finders_with._..derivative:");
System. ont printin@ssersa fudsna st e s R e )

RootFinderWithDerivative rootFinderWithDerivative;

rootFinderWithDerivative = new NewtonsMethod(2.0);
testRootFinderWithDerivative(rootFinderWithDerivative);

rootFinderWithDerivative = new SecantMethod(2.0,16.6);
testRootFinderWithDerivative(rootFinderWithDerivative);
}

public static void testRootFinder(RootFinder rootFinder) {
System.out.println("Testing." + rootFinder.getClass().getName() + ":");

// Find a solution to x°3 + x"2 + x + 1 = 0
while(rootFinder.getAccuracy() > 1E-11 &&% !rootFinder.isDone()) {
double x = rootFinder.getNextPoint();

// Our test function. Analytic solution is -1.0.
double y = x*x*x + x*x + x + 1;

rootFinder.setValue(y);

}

// Print result:

DecimalFormat formatter = new DecimalFormat("0.86E60");

System.out.print("Root......:."+formatter. format(rootFinder.getBestPoint())
b el

System.out.print("Accuracy..:."+formatter. format (rootFinder.getAccuracy() )
= G e ED

System.out.print("Iterations:."+rootFinder.getNumberOfIterations() +"\n");

}

public static void testRootFinderWithDerivative(
RootFinderWithDerivative rootFinder) {
System.out.println("Testing." + rootFinder.getClass().getName() + ":");

// Find a solution to x°3 + x°2 + x + 1 = 0
while(rootFinder.getAccuracy() > 1E-11 && !rootFinder.isDone()) {
double x = rootFinder.getNextPoint();

double y = x*x*x + x*x + x + 1;
double p = 3*x*x + 2%*x + 1;

rootFinder.setValueAndDerivative(y,p);

}

// Print result:
DecimalFormat formatter = new DecimalFormat("®.88E66");

System.out.print("Root......:."+formatter. format(rootFinder.getBestPoint ()
L S I

System.out.print("Accuracy..:."+formatter. format(rootFinder.getAccuracy() )
)

System.out.print("Iterations:. "+rootFinder.getNumberOfIterations() +"\n");
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Listing 30.11. Output of the test 30.10

Applying root finders to x'3 + 2%*y"2 + x + 1 =

Root finders without derivative:

Testing net. finmath.rootFinder.BisectionSearch:

15

Root......: -1,80E00 Accuracy..: 9,89E-12 Iterations: 43
Testing net.finmath.rootFinder.RiddersMethod:

Root......: -1,80E80 Accuracy..: 3,33E-16 Iterations: 22
Testing net.finmath.rootFinder.SecantMethod:

Root......: -1,00E80 Accuracy..: 0,00E00 Iterations:

Root finders with derivative:

Testing net.finmath.rootFinder.NewtonsMethod:

Root......: -1,80E88 Accuracy..: 1,33E-15 Iterations: 180

Testing net.finmath.rootFinder.SecantMethod:

Root......: -1,80E00 Accuracy..: 1,33E-15 Iterations: 10
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30.4 Anatomy of a Java™ Class

In Figure 30.1 we show (part of) a Java™ class with the most important elements.

Before the declaration of the class the name of the packet to which the class belongs
is specified. The full class name is the concatenation of the packet name and the class
name and it should be unique. To achieve this, the packet name is often derived from
the Internet address of its creator.

This is followed by the specification of other classes used in the declaration of this
class by means of the keyword import followed by the full class name.

The declaration of the class starts with the keyword class followed by the class
name and introduced by the keywords extends and implements the optional speci-
fication of a base class and the implemented interfaces. If the specification of a base
class is missing, then java.lang.Object is used as a base class. Thus all objects
inherit directly or indirectly from java.lang.Object.

Following is the declaration of the data layout by a list of data fields, also called
attributes. An attribute is defined by the specification of its type (primitive types, like
double, int, etc., or a class) and its name. To determine its visibility (encapsulation)
it may be preceded by the keywords private, protected, or public. Without such
a keyword the visibility private is assumed.

The remainder of the class declaration consists of the declaration and implementa-
tion of the constructors and methods. The method name is preceded by the type of the
return value (or void for a method without return value). This may be preceded by
further keywords (visibility: public, private; declaration as class method: static;
prevention of overwriting: final). A constructor is a method for which the name
corresponds to the class name. It is public and has no return value (the keyword
void is missing, however).?

8 Actually, the object created should be viewed as the return value of the constructor.
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package com.christionfries.finmath.tutorial.exampleZ; 3Cka e name
import net.finmath. fdml.rootFinder.RootFinder; imported (used) classes
import net.finmath. fdml.rootFinder.NewtonsMethod;

,4 comment in JavaDoc format

. r as auestion-and-answer algorithm using
* the secant metl
.

base class implemented interfaces

* Bauthor Christian Fries
* Bversion 1.0
*/

public class SecantMethod extends NewtonsMethod implements RootFinder {

double secondGuess;
double lastPoint; (-—‘ data model / attributes of the class l
double lastValue;

s
* Eparam guess
. initial guess where the solver will start

*/
public SecontMethod(double firstGuess, double secondGuess) {
super(firstGuess);

%
this.secondGuess = secondGuess; ‘ call of a constructor of the base class l
|

| f 103on135u0>] | jopow eaep]

attribut of the class | argument of the method (here the constructor’

The value corresponding to the point returned by previous
<code>getNextPoint</code> call.

.
* @param derivative comment in JavaDoc format
* The derivative corresponding to

<code>getNextPoint</code> call.

public void setValue(double value) { g
~
=

double nextPoint = this.getNextPoint(); &

w

// Calculate approximation for derivative o

double derivative = derivativeApproximation(nextPoint, value); E-
| 5

¢/ Reemper: last potnt call to a local method —

lastPoint = nextPoint;

lastValue = value;

super.setValueAndDerivative(value, derivative);

return;

} e of the return value Lo’

private double derivativeApproximation(double point, double value) { 3
[e]

double derivative; S

2

// Calculate approximation for derivative “»
if (getNumberOfIterations() == @) {

derivative = value / (secondGuess - point); 3

1 else { 5

derivative = (value - lastValue) / (point - lastPoint); o

1

return derivativef return value
}

Figure 30.1. Anatomy of Java™ class.
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30.5 Libraries

A major advantage of Java™ is its rich set of class libraries, which may easily be
incorporated due to their unique package name and clear interfaces and often coming
with a JavaDoc documentation. Not only are basic data management classes like
collections available but also numerical libraries with algorithms from linear algebra,
statistic and stochastic.

30.5.1 Java™ 2 Platform, Standard Edition (j2se)

The packets java.* of the Java™ 2 Platform, Standard Edition, offer basic function-
alities, especially for the management of lists, strings, and files.

Packet(s) ...: java.*

Manufacturer :  Sun Microsystems

Source ......: http://java.sun.com/j2se/

Licence .....: free, see http://java.sun.com/j2se/

30.5.2 Java™ 2 Platform, Enterprise Edition (j2ee)

The packets javax.* of the Java™ 2 Platform, Enterprise Edition, provide function-
alities for the graphical user interface Swing and Internet communication.

Packet(s) ...: javax.*

Manufacturer :  Sun Microsystems

Source dotfill: ~ http://java.sun.com/j2ee/

Licence .....: free, see http://java.sun.com/j2ee/

30.5.3 Colt

The Colt library offers in the packets cern.colt.* functionalities from linear alge-
bra (matrix multiplication, matrix inversion, eigenvector decomposition) and in the
packets cern. jet.* functionalities from stochastics (random number generators,
distribution functions).

Packet(s) ...: cern.colt.*, cern.jet.* cern.clhep
Manufacturer :  Wolfgang Hoschek.
Copyright (c) 1999 CERN - European Organization for Nuclear

Research.
Source ......: http://dsd.1lbl.gov/-hoschek/colt/
Licence .....: The packets cern.colt®, cern. jet*, cern.clhep are free for

commercial use, see http://dsd.1bl.gov/-hoschek/colt/
license.html.
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30.5.4 Commons-Math: The Jakarta Mathematics Library

Manufacturer :  Various (Open Source), The Apache Software Foundation.

Source ......: http://jakarta.apache.org/commons/math/

Licence .....: Apache License, http://jakarta.apache.org/commons/
license.html.

30.6 Some Final Remarks

30.6.1 Object-Oriented Design (OOD)/Unified Modeling
Language (UML)

Two key advantages of object-oriented programming are the modularization of the
solution of a problem by encapsulation and abstraction and the reuse and extensibility
of the solution of a problem by inheritance and polymorphism. Clean interfaces allow
the independent development, refinement, and optimization of parts, independent both
in time and personal.

Working out an object-oriented solution starts with the definition of the interfaces.
These should provide an efficient communication of the objects. The design of the
interfaces (and from that the classes) is called object-oriented design (OOD) [14]. For
the design of more complex solutions a graphical language may be used (a convention
of symbols): the unified modeling language (UML) [28].

Further Reading: On the object-oriented design: Design patterns
in [14], and UML in [28]. <

g R
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APPENDIX A

A Small Collection of Common
Misconceptions

In a one-factor model a flat interest rate curve stays flat (a
steep curve stays steep, an inverse curve stays inverse)

This assumption is wrong with respect to multiple aspects. If the diffusion part
(o dW) only allows a parallel movement of the interest rate curve, then the shape of
the interest rate curve at a future time is given by the initial interest rate curve, the
parallel movements of the interest rate curve, and the drift. The drift will change
the shape of the interest rate curve. For example, a flat interest curve becomes steep
under a one-factor LIBOR market model. In addition, a time structure of volatility
allows parts of the movements of the interest rate curve to be independent. See also
Chapter 25.

Specifying an interest rate model as short-rate model
imposes a restriction. A short-rate model is incomplete
since it models the short rate only

This is wrong. Under the martingale measure QFf with numéraire B(r) =
exp (for r(t) d‘r) all bonds are given by P(T;t) = EQB(B(T)‘I | 7). Thus, in the-
ory, the bond price curve T — P(T';1), i.e., the interest rate curve, may be derived
from the short-rate dynamics under the measure Q. The short-rate dynamic gives
a complete description of the interest rate curve dynamic. Conversely, any HIM
model may be written as a short-rate model (this holds also for the LIBOR Market
Model). However, the drift may then be path-dependent. The possible shapes of the
interest rate curve are restricted, imposing special requirements on the model (e.g.,
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the assumption of a Markov property of the short-rate process). See also Section 22.1.

An . factor model may be implemented in a lattice with »
space dimensions

This is not necessarily the case. The amount of state space dimension necessary is the
Markov dimension of the model, i.e., the number of state variables that are required
to give the model as a Markov process. The Markov dimension may be significantly
higher than the number of driving Brownian motions. Examples are given by the
LIBOR market model and the Cheyette model.

In an rn-factor (Monte Carlo) model the option value at time
¢t > 0 can be described by an n-dimensional state vector
(e.g., when pricing a Bermudan option by regression
methods)

This is not necessarily the case. The reasoning corresponds to the previous consid-
erations regarding the meaning of the number of factors. Also consider the counter-
example from Figure 21.2, that a one-factor model may generate at maturity forward
rates that are completely independent.

The LIBOR market modell exhibits no mean reversion

It is not reasonable to expect a mean-reversion term in the process for the forward
rates, since the drift of the forward rates is given by the no-arbitrage requirement
(martingale property). In this context, the property of being mean reverting makes
sense only for the short rate. In a LIBOR market model the short rate may indeed
exhibit a mean reversion. This is determined by the specific volatility structure of the
forward rates. See also Section 25.3.
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Tools (Selection)

B.1 Generation of Random Numbers

This section will consider the generation of (pseudo-)random numbers and shows
how to construct a Monte Carlo simulation from these. There are numerous methods
to generate random numbers and Monte Carlo simulations and a discussion of the
various aspects of the quality of random numbers will not be discussed. We will give
only an example based on the Mersenne twister. However, the methods presented are
sufficient for most applications.

B.1.1 Uniform Distributed Random Variables
B.1.1.1 Mersenne Twister

A very popular (and also very good) random number generator for [0, 1]-
equidistributed random numbers is the Mersenne twister (MT 19937). The random
number generator has a period length of 2'%°*7 — 1, i.e., the random numbers generated
repeat for the first time after 2'°°37 samples. The random numbers are aiso equidis-
tributed in high dimensions (up to 623); see [87]. Based on the MT 19937 we may
thus generate an n-dimensional stochastic process by drawing » sequential random
numbers in each time step to calculate the increments of the stochastic process.'

Many libraries contain an implementation of the MT 19937. For the most popular
languages it is available as source code.

! See also the remark at the end of Section B.1.5.
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B.1.2 Transformation of the Random Number Distribution
via the Inverse Distribution Function

If Z is an [0, 1]-equidistributed random variable and ® a cumulative distribution
function, then X := ®~'(Z) is a random variable with a distribution given by ®. If
a random number generator for equidistributed random numbers is given (e.g., the
Mersenne twister), then we draw realizations Z(w;), i = 1,2, ... and obtain from
@~ 1(Z(w;)) realizations of X. Thus, in addition to an [0, 1]-equidistributed random
number generator, we only require an inverse distribution function.

B.1.3 Normal Distributed Random Variables
B.1.3.1 Inverse Distribution Function

The density of the standard normal distribution is ¢(x) := \/% exp( - %), the

(cumulative) distribution function is ®(x) := f_ xoo @) d¢. The algorithm described
in [97] gives an approximation ®~' of ®~' with a relative error of

(&1 - @Y

<1071,
1+|D

B.1.3.2 Box-Muller Transformation

The Box-Muller transformation transforms two independent [0, 1]-equidistributed
random numbers into two independent normally distributed random numbers.

Lemma 256 (Box-Muller Transformation): If z; and 7, are two independent
[0, 1]-equidistributed random variables, then

X1 :=pcos(f), x; :=psin(d)

with p := {/-2log(z;) and 6 := 27z, two independent normally distributed random
variables with mean 0 and standard deviation 1.

B.1.4 Poisson Distributed Random Variables
B.1.4.1 Inverse Distribution Function

The cumulative distribution function of the Poisson distribution is ®(1) := 1 —
exp (— f(; Alt) dt), where A denotes the intensity. If A is constant then

_log(1 - 2)
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If g is the probability that an event will occur in the interval [T, T»] and if A is
constant, then
_log(1 —¢)

T, ~T

A=

B.1.5 Generation of Paths of an n-Dimensional Brownian
Motion

Let Ty < T <--- < T, denote a given time discretization. We wish to generate
the realization of an N-dimensional Brownian motion W := (W}, ..., W,) on sample
paths wy, . . . wy. For a single path we have to draw # - m random numbers. To generate
the n - m-tuples we use the Mersenne twister and apply a transformation.

Let {z;};=1.2.... denote the sequence of [0, 1]-equidistributed random numbers drawn
distributed random variables. If normalDistribution.nextDouble() is a method
returning a new element of the sequence {®~'(z;)}i=1 »... upon each call, then a time-
discrete Brownian motion is generated by the code in Listing B.1.

i T Tip (Generation of Paths of Time-Discrete Stochastic Pro-
. cesses): The Mersenne twister is equidistributed in 623 dimensions.
How well this property is preserved in higher dimensions is not clear.
For an n-dimensional Brownian motion with independent increments,
we have first the requirement that the increments are derived through a transformation
of independent equidistributed random variables. For this reason it is advisable to
generate the random numbers of the n increments of the n-dimensional processes in a
sequence (i.e., as an n-tuple). Furthermore we have the requirement of the temporal
independence of the m increments of the stochastic process, here the increments
AW(T;) := W(T;41) — W(T;) of the Brownian motion. Thus, a path w corresponds to
the realization of an n - m-dimensional random variable, here

(AW T j=1.. .ni=1

In other words, if we have to generate paths of an n-dimensional process with m
time steps, then we draw an n - m-tuple for every paths. This requires the random
number generator to create the desired distribution in » - m dimensions. Thus, the
high dimension of the Mersenne twister is of interest to our application. With the
Mersenne twister we may, e.g., generate a 7-dimensional process with 89 time steps
(7 x 89 = 623).2

Thus, the order of the loops in Listing B.1 has been chosen deliberately. <

2 Not all 623 dimensions have to be used, although in this example this would be the case.
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3 % % 3 % % OB N 3B

%

Listing B.1. Generation of an n-dimensional Brownian motion

This class represents a multidimensional brownian motion W = (W(1),...,W(n))
where W(i),W(j) are uncorrelated for i not equal j.

Here the dimension n is called factors since this brownian motion is used to
generate multi-dimensional multi-factor Ito processes and there one might
use a different number of factors to generate Ito processes of different
dimension.

@author Christian Fries
@version 1.1

i
|pub11c class BrownianMotion {

double[][][] brownianIncrement ;

double[] timeDiscretization;

int numberOfFactors;
int numberOfPaths;
int seed;

Pl

* Lazy initizialization of brownialncrement.
* Synchronized to ensure thread safty of lazy init.
74

private synchronized void doGenerateBrownianMotion() {

if(brownianIncrement != null) return; // Nothing to do

// Create random number sequence generator
AbstractDistribution normalDistribution
= new Normal(®,1, new MersenneTwister64(seed));

// Allocate memory
brownianIncrement = new double[timeDiscretization.length-1][numberOfFactors
] [numberOfPaths];

// Precalculate square roots of deltaT
double[] sqrtOfTimeStep = new double[timeDiscretization.length-1];
for(int timeIndex=8; timeIndex<timeDiscretization.length-1; timeIndex++) {
sqrtOfTimeStep[timeIndex] = Math.sqrt(timeDiscretization[timeIndex+1]-
timeDiscretization[timeIndex]);
1

// Set increments
for(int path=0; path<numberOfPaths; path++) {
for(int timeIndex=0; timeIndex<timeDiscretization.length-1; timeIndex++)
{
double sqrtDeltaT = sqrtOfTimeStep[timeIndex];
// Generate uncorrelated Brownian increments
for(int factor=8; factor<numberOfFactors; factor++) {
brownianIncrement [timeIndex][factor][path]
= normalDistribution.nextDouble() * sgrtDeltaT;
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Further Reading: For the generation of random numbers, especially
in the context of Monte Carlo simulations and derivative pricing, see [18].
Background information on the Mersenne twister and references to
18 source code and libraries may be found in the Wikipedia article
“Mersenne twister”, http://en.wikipedia.org/wiki/Mersenne_twister. <«|

r
|
|
|
L

B.2 Factor Decomposition—Generation of
Correlated Brownian Motion

Lemma 257 (Factor Decompeosition): Let R = (p; ;)i j=1... denote a given correla-
tion matrix. Thus R is symmetric and positive semidefinite. This implies that R has
real eigenvalues 4; > --- > A, > 0 and that a corresponding orthonormal basis of
eigenvectors vy,. .., v, of R exists, i.e.,

A 0
Av: VRV=D:=|¢o . ¢ | where V = (vi,...,v,),
0 Ay
and R = VDVT aswellas V'V = 1.
Let Uy, ..., U, denote independent Brownian motions, U := (U, ..., U,)". Then
W with

AW := (dW,,...,dW,)T := VVD dU
is an n-dimensional Brownian motion with
< dW,dW; >= p; ; dt.
With F := (v; VA,,...,v, VA,) we thus have dW = F dU.

Proof: Obviously, a correlation matrix is symmetric and thus its eigenvalues are all
real. If R is the correlation matrix of the random variable vector X = (X{,...,X,)”
with Var(X;) = 1 and E(X;) = 0, then R = E(X - X7). If v; denotes the eigenvector
corresponding to the eigenvalue 4;, then

2
E(IXTvill,) = EGTX-XTvi) = v/ Rvi = Alvill},

and thus ,
E(IXTv;
A= ( ‘;“12) S
lvill?
Thus, R is positive semidefinite and dW := V VD dU is well defined. o
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B.3 Factor Reduction

Using the construction of correlated Brownian motion discussed in Section B.2, we
may reduce the number of relevant factors (i.e., the number of nonzero eigenvalues),
while keeping the correlation structure close to the original correlation structure. Let
R, V, D be as in Section B.2 and m < n. Using

(fir-onf) = F = VD, fi=(fi)L,

define
fii

F = (f;'r)izl ..... m = (fjr,) (Zk fk)]/Z’

=1 ’ fjrt =

i.e. the n x m matrix F" is calculate from the n X m matrix (v; VA, ..., v VAn) by
re-normalizing the n rows.
Let Uy,..., U, denote independent Brownian motions, U := (U|,...,U,;)". Then
W defined by
dW = (dW,,...,dW,)" = F" dU

is an n-dimensional m-factorial Brownian motion.
The factor reduction corresponds to a pricipal component analysis followed by a
renormalization of the components.

Remark 258 (Factor Reduction): The magnitude of the absolute value of the
eigenvalue of A; represents the importance of the corresponding factor f;. It may be
used to decide upon the number of factors to use. A simple example is given by the
limit case of perfect correlation p; ; = 1. The corresponding correlation matrix has one
eigenvalue n corresponding to the eigenvector (1,..., 1) and an n — 1-fold eigenvalue
0 corresponding to the orthogonal space. This implies that the dynamic of the n-
dimensional Brownian motion may be explained by a one-dimensional Brownian
motion (one factor).

In Figure B.1 we depict a reduction to the first three factors for the case of a high
correlation p; ; = exp(—0.005 * |i — j|). However, if many factors with relatively high
weight (eigenvalues) are neglected, then the factor reduction has a significant impact
on the correlation structure (see Figure B.3) as well as on the shape of the remaining
factors (see Figure B.2).

. Experiment: The impact of a factor reduction on the correlation
) . matrix may be studied for different correlation structures at
http://www.christian-fries.de/finmath/applets/
FactorReduction.html. <
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Figure B.1. Factor reduction in the case of high correlation: The factors f; (eigen-
vectors) of the correlation matrix p; ; = exp(—=0.005 * |i — j|) (left} and a reduction to
the three factors having the largest eigenvalues (right).
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Figure B.2. Factor reduction in the case of low correlation: The factors f; (eigenval-
ues) of the correlation matrix p; ; = exp(=0.1 * |i — j|) (left) and a reduction to the
two factors having the largest eigenvalues (right).
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Figure B.3. Factor reduction in the case of low correlation: The original correlation
matrix p; ; = exp(=0.1 % [T; = T}|) (top) and the correlation matrix corresponding to
the reduction to two factors (bottom). This case corresponds to the factor reduction
in Figure B.2.

474
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B.4 Optimization (One-Dimensional): Golden
Section Search

Given a function f : [a, b] — R. Furthermore let 4 € (0, 1) and my = da + (1 — )b
such that f(mg) < min{f(a), f(b)}. Then the sequence {m;}°, defined by the following
algorithm converges to a local minimum of f (and thus to a global minimum on [a, b],
if f is strictly convex on [a, b]):

Iteration start:

ap = a, my = Ada + (1 — b, by :=b.
Iteration step:

o If b, — m; > m; — a;, then set z := Am; + (1 — A)b;, and

div) =4 aiy] =m;
if fim) < f(z): ] M1 =my else: { myy .

=z
by =z bisi = b;

o If b; — m; < m; — a;, then set 7 := Aa; + (1 — D)m;, and

Ayl =4 Ayl =2
if f(2) < f(m): < miyy =z else: { myy =m; }.

by =my b,y = b

f(x) f(x)

Figure B.4. Golden section search.

The algorithm places a point (z) into the larger of the two intervals [a, m], [m, b] and
from the resulting three intervals it rejects the one that is adjacent to the larger value
of f(m), f(2); see Figure B.4.

For the division ratio A the value
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is optimal in the following sense: In the worst case, in which the algorithm rejects the
smaller interval and retains the larger interval at every iteration step, then the value
A= 3*2—‘/5 will result in the fastest convergence rate. Since this ratio is the golden

section, the algorithm is called the golden section search.

B.5 Linear Regression

Lemma 259 (Linear Regression): Let Q* = {w,...,w,]} be a given sample space,
V.:Qr > RandY:=(Y,...,Y,) : Q" — R givenrandom variables. Furthermore
let

f(y],...,y,,,a],...,ap) = Zaiy,».
Then for any o* with X" Xe* = XTv

W —f, e = H}liH IV = f(Y, lyans

where
Yilw) ... Yplwi) Viwy)
X = : : R V= :
Yilwn) ... Yplwn) Viwy)
If (X"X)~! then o* := (X'X)"'X"v. The Y),...,Y, are called basis functions or
explanatory variables.
Proof: We have to solve the minimization problem

gla) =V - f(Y,a)lIiz(Qw) =(v-X-a) -(v—X-a) - min.

The quadratic function on the right-hand side attains its minimum where the partial
derivatives with respect to a; are zero. We have

9
9 _oxT . (v-X-0)=2X"v-X"X-0)
da
and thus 5
.o xv=XX a
Jda

ol

Further Reading: An extensive discussion of regression methods is
given in [9]. <
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B.6 Convolution with Normal Density

Lemma 260 (Integration of exp(a - X), X Normally Distributed): Itis

2
f exp(a x) ¢(x;y,0) dx
hy

_ [(D(hz—(y+a0'2))_q)(h1 _(y+a0-2))]exp(ay+ azrrz)’
o

o 2

aro 202
f_‘ ; @(£,0,1) d¢ denotes the distribution function of the normal distribution. In
particular:

where @& u,0) = L exp(—(‘f_“ )2) denotes the density and ®(x) :=

~ 2 2
f exp(a x) ¢(x;y,0) dx = eXp(ay+ %_)

00

Proof: Itis

1y 75 _
f exp(a x) ¢p(x;y,0) dx ! f exp(a x) exp (—%(xa_—y)z) dx
/

2 2no Jn
2

I f”z ( L(x—yy\
exp ax——(—) dx.
2no Jhn 2\ o

Since

2

(x2 -2xy+ y2 - 2a0* x))
= exp —L (x2 - 2x(y + a(rz) + yz))

(

X - 2x(y + ac?) + (v + ac?)? = 2ac?y - az(r4))

202
= exp ——}—( 2 —2x(y+a0'2)+(y+a0'2)2) explay + @
202 2
(v + ao)) 2 2
- exp(_%ﬂ) exp(ay+ a;— )
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it follows that

hy
f exp(a
hy

x) ¢(x;y,0) dx

o f’” exp[-F U +ad))?
\/ﬂo— 20'2
h2

h

P(x;y +ao’, o) dx exp(

)
+)

2 2

+_
ay 3

)

ol
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Exercises

In this appendix we give a small selection of exercises. The points are a rough
indication of the complexity of the solution.

Exercise 1 (Probability Space, Random Variable [15 points]): Let (Q,F, P)
denote a probability space and X : Q — R a random variable.

1. Give an example of a (false) modeling €2, 7, X of some random experiment,
such that X is not (¥, B(R))-measurable (give the definition of the mathematical
objects and their interpretation).

2. Now let X be (¥, B(R))-measurable.

a) Show that
{X'(4) 1A € BR))

is a o-algebra and a subset of 7 (sub-c-algebra of 7). Give a possible
an interpretation of the object?

b) Show that
Px(A) := P(X"}(A)) VA € B(R))

defines a probability measure (the image measure).

Exercise 2 (Conditional Expectation [20 points])!: Let X denote an ¥ -measurable
(numerical) random variable and G a o-algebra with G € F (i.e., G is a sub-o-algebra
of F). Prove the following properties of the conditional expectation:

1. If X is a G-measurable random variable, then E(X|G) = X (P-almost surely).
2. If X > 0, then E(X|G) > 0.

I See [41].
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3. (Tower Law) If H is an o-algebra with H c G, then E(E(X|G)|H) = E(X|H).

4. (Taking out what is known) If Z is a bounded G-measurable random variable,
then
E(ZX|G) = ZE(X|G). (C.1

Exercise 3 (Distribution Function [10 points])®>: Let X : Q — R denote a random
variable and F the distribution function of X, i.e., F(x) := Px((—o0, x)). Show that:

1. F is left continuous, i.e., F(x) = limy ~ F(x + h).

2. If g : R — R is measurable with E(|g(X)|) < oo, then

E(g(X)) = f g(x) dF(x),

where the integral is interpreted as the Lebesgue-Stieltjes integral (see [27]).

Exercise 4 (Brownian Scaling [10 points])®: Let W denote a Brownian motion
and ¢ > 0. Show that with

W) = %W(czt)

W is also a Brownian motion. Are the two processes W and W equal in any sense
(cf. Definition 20)?

Exercise 5 (Quadratic Variation [10 points])*: Let X denote a continuous stochas-
tic process®. For p > 0 let the p-th variation process be defined as

<X, X >? (t,w) := lim Z X (s 1, 0) = X(tga1, 0P,
Ar—0

<t

oo

where {1;}72, is a strictly monotone sequence with fy = 0, limy_o t; = oo, At =
supy ltxs1 — fl. The process < X, X > is called the fotal variation of X and the
process < X, X >:1=< X, X >@ is called the quadratic variation of X.

Let W denote a (one-dimensional) Brownian motion.

2 See [27].

% See [27].

4 See |27].

5 A continuous stochastic processes is a stochastic process for which each path is a continuous function
in time.
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1. Show that
<W,W>(t,w) =t P-almost surely.

2. Show that
<WWw >1 (t,w) = oo P-almost surely.

Note that these properties hold pathwise for almost all paths and not only just in an
averaged sense.

Exercise 6 (Itd Integral [10 points])®: Show by direct use of the definition of the
16 integrals that

L[ 1w =T W)~ [ W d,

2. fOT W dW(n) = 1 W(T)* - fOT W(r) dW().

Exercise 7 (Stratonovich Integral [10 points])’: Let T := {fy,--- ,1,} with
0=1 <t <--<t, =T denote a decomposition of the interval [0,T] and
AT™ := sup; |t; — t;_1| its fineness. Furthermore let f : [0, T] X © — R be of the class
of integrands of the Ité integral (on [0, T1]) and t — f(¢, w) continuous for (almost) all
w. Then

T n
j(; [, ) dW(t, w) = A}(inl;ll();f(tj—l’w)(W(tj,w) - Wt w))

is in Ly(P) (proot?). The Stratonovich integral is defined correspondingly as

AT® S0

T n
j{; f(t,w)odW(t,w) = lim Z f(tj_%, w)W(tj, w) - W(tj_ 1, w))
j=1

with ¢ ; . Calculate

— Lol
-3 T 2

1
2

I | W(t,w) o dW(1, ) and

2. [T Wit w) o dW(t,0) ~ [ W(t,w) dW(1, w).

6 See [27].
7 See [27].
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Solution: It is

n

T
f W(t, w) o dW(t,w) = lim W(t w)W(t, w) — W(tj_y, w))
0

ATI~0 4 i3
and
W, 1, )W), w) = Wtjo1, w))
Wl W) - W) + Wy, o)Wy, @) = Wiy, o)
= SOV 0) + Wiy, o)Wt @) - Wy, 0)
3 W 5.0) = Wity Wity 0) = Wit o)
+ 3OV )~ W1, )Wy, ) = Wity )
F3 OV 0) + Wit DOV 0) = Wity 0)
= %(W(r,-,w)2 - W(tr@)) + %(W - Wt 0))
3 V@) = W @)W1, 0) = Wty 0)
#3 V111 0) = W, )Wty ) = Wity 1, 0)
= Wit - W1, 00)
W03 = Wity )+ 3 (W) = W1, )
Thus, from
A}jﬂog(waj,w)— W(t,_y, @) = A}fn‘l“o Y (W(t__ w) - W(tj-1, w))?
we have

T
f W(t, w) o dW(t, w) = %W(t,,,w)z.
0

Exercise 8 (Itd Product Rule, Ité6 Quotient Rule [15 points]): Use the Itd formula
and prove
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1. The product rule: Let X and Y denote It6 processes. Then

dXY) = YdX+XdY +dXdY

2. The quotient rule: Let X and Y denote It6 processes, ¥ > ¢ for some ¢ € (0, o).

Then
d(X) _ X(dx _dv _(dX)(dy\ (dry
v/ T vix v \x/\vy Y
3. The drift adjustment of a lognormal process: Let S (f) > 0 denote an It6 process
of the form

dS(t) = w®S @) de + o (0)S (r) dW(2),

dY(n = (u(r) - %#(z)) dr + o (1) dW(p).

Exercise 9 (Martingale: It6 Formula [15 points])sz Use the It6 formula and show
that the following processes are F,-martingales:

1. X(1) = exp(31) cos(W(1))
2. X(1) = exp(31) sin(W(1))
3. X(1) = (1 + W()) exp(—31 — W(t)),

where W(r) denotes a one-dimensional Brownian motion.

Exercise 10 (Black-Scholes Partial Differential Equation in the Coordinates 1,
N(1), S (1) [20 points]): Show that the function

Vit,n,s)) = s®d,) - N(T)
with
d = (9 N(T)) "2(T—t)]
“ 7 v(r——f K )*

and ®'(x) = p(x) = C exp(—-x2 /2) solves the partial differential equation

2
ov(r) dr + 16 V()

2 _
or 3595 ¢ =0

8 See [27].
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with the final time condition

V(T,N(T), s) = max(s — K, 0).

Exercise 11 (Black 76 Formula for Swaption [30 points]): let 7, < --- < T,
denote given times. Let Viyap denote s swap as in Definition 117 with constant
swapratesS; = K,i=1,...,n—=1(Ty,..., T, are fixing dates and 75, ..., T, are
payment dates). Let S denote the corresponding par swap rate as in Definition 122
(cf. Remark 121). Derive the formula for the value Viuupiion Of an (European) option
on Viwap (with exercise date T'y), assuming the S has lognormal dynamics

dS(®) = (S dt+ oS (1) dW(r) under P.

Hint: First rewrite the value of the swap Vi,,p as a function of § and K by
transforming cash flow: (T, T:y) — K = (L(T;,Tix1) — S) + (S — K); note the
definition of §. Then consider the value of the swap at exercise date of the option, i.e.
Viwap(T1) and try to choose a suitable numéraire (compare with the evaluation of a
caplet). Say why the numéraire chosen is a traded product.

Solution (sketched): From Definition 117 a swap pays

(LT, Tivi; T) =S (T =T inTipy. (C2)
Let ¢ < T). The value of the payment (C.2) in ¢ is

(LT3, Tisrs T)) = Si) (Tivi = Ti) P(Ti131).

Thus, the value of the swap in ¢ is given by

n-1

Vawap(f) = Z (LT, Tiws T =S (Tiwy = T3) P(Tisy5 1),

i=1
By Definition 122 the par swap rate is given by

P(Ty;1) = P(T,;0)
"N Ty = T)) P(Tisrit)

S par() 1=

so that

=
|

(LT3 Tian: T = Spar(®)) (Tiws = Ti) P(Tyr31) = 0.
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Thus

n—1

Viwap(t) = Z (LT, Tiv1;T) = S3) (T —T) P(Ti1: 1)
=1
n—1

= > (LT Ters T) = Spuelt)) (Tiwr = To) P(Tia51)
i=1

n—1

+ 2 (Sl = 85) (Tiay =Ty P(Ti130)

i=1

n—1
= (Spud) = 1) (@it = T P(Ti13 ),
i=1

For a swap with §; = K this implies

n-1

Vowap(D) =(S par(t) — K) Z(T"” —T) P(Tir130)

i=1

Z(Spar(t) ~- K) AQ@),

EXERCISES

where A(r) 1= Y (Tie1 = Ti) P(Tie130) is called swap annuity. Since A(f) > 0 we

i=1
have for the value of the option on this swap

szap[inn(t) = maX(Spar(t) - K,0) A(1).

Now chose A as numéraire. Under the corresponding martingale measure Q4, S is an
A-relative price, thus a martingale and thus dS (r) = o(£)S (r) dWQA(t). The evaluation
formula for a swaption now follows as in the derivation of the Black formula for a

caplet.
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APPENDIX D

Java™ Source Code (Selection)

D.1 Java™ Classes for Chapter 30

Listing D.1. BinomialDistributedRandomVariable: A toy sample class to illus-
trate the concepts of “classes”, “data” and “methods”.

package com.christianfries.finmath.tutorial.examplel;
'd &
/!
* @author Christian Fries
* @version 1.6
*/
class BinomialDistributedRandomVariable {

private double valuel;
private double value2;
private double probabilityOfStatel;

)/:{:r
* This class implements a binominal distributed random variable
* @param valuel The value in state 1.
* @param value2 The value in state 2.
* @param probabilityOfStatel The probability of state 1.
»
public BinomialDistributedRandomVariable(double valuel, double value2,
double probabilityOfStatel) {
this.valuel = valuel;
this.value2 = value2;
this.probability0OfStatel = probabilityOfStatel;
}

public static void main( String args[] ) {
J*

* /

Test of class BinominalDistributedRandomVariable

System.out.println("Creating.random,variable.");
BinomialDistributedRandomVariable randomVariable =
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}

new BinomialDistributedRandomVariable(l1.6,-1.8,0.5); // Create object

double expectation = randomVariable.getExpectation();
System.out.println("Expectation,is:." + expectation);

System.out.println("Changing.value_of_state_l,.to.0.4.");
randomVariable.setValuel (6.4);

expectation = randomVariable.getExpectation();
System.out.println("Expectation.is:." + expectation);
}

’,‘ii
* @param valuel The value of state 1.
wy

public void setValuel(double valuel) {
this.valuel = valuel;

}

/tk
* @return Returns the probability of state 1.
o'

public double getProbabilityOfStatel() {
return probabilityOfStatel;

}

/\?i—
* @param probabilityOfStatel The probability of state 1.
371

public void setProbabilityOfStatel(double probabilityOfStatel) {
this.probabilityOfStatel = probabilityOfStatel;

}

/di
* @return Returns the probability of state 2.
L4

public double getProbabilityOfState2() {
return 1.0 - probabilityOfStatel;

}

/h*
* @param probabilityOfState2 The probability of state 2.
-

public void setProbabilityOfState2(double probabilityOfState2) {
this.probabilityOfStatel = 1.0 - probabilityOfState?2;

}

’/*P
* @return The expectation of the random variable
e
public double getExpectation() {
double expectation = probabilityOfStatel * valuel
+ (l-probabilityOfStatel) * value2;
return expectation;
}
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Listing D.2. BisectionSearch: Root finder implementing the RootFinder-
interface using the bisection method.

[+
| * Created on 16.02.2084
&*
! * (c) Copyright Christian P. Fries, Germany.
#* 411 rights reserved. Contact: email@christian-fries.de.
s
| package net.finmath.rootFinder;

*

This class implements a Bisection search algorithm,
implemented as a question-and-answer search algorithm.

/

@author Christian Fries
@version 1.1

= % 5 % 5 %

| s
public class BisectionSearch implements RootFinder {

// We store the left and right end point of the intervall
double[] points = new double[2]; // left, right
double[] values = new double[2]; // left, right

/t
* State of solver
£
double nextPoint; // Stores the next point to return by getPoint
[ 0
| dnt numberOfIterations = 0; // Number of iterations
double accuracy = Double.MAX_VALUE; // Current accuracy of solution
/fﬂl'

* @param leftPoint left point of search interval
* @param rightPoint right point of search interval
*
public BisectionSearch(double leftPoint, double rightPoint) {
super();
points[8] = leftPoint;
points[1] = rightPoint;

| =
boolean isDone = false; // True, if machine accuracy has been reached
[

nextPoint = points[6];

accuracy = points[1]-points[8];

}

;t?
* @return Best point optained so far
d

public double getBestPoint() {
// Lazy: we always return the middle point as best point
return (points[1] + points([8]) / 2.0;

}
/n-i
[ * @return Next point for which a value should be set using <code>setValue</
code>.
[
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public double getNextPoint() {
return nextPoint;
}

‘/tﬂ
* @param value Value corresponding to point returned by previous <code>
getNextPoint </code> call.
i
public void setValue(double value) {
if (numberOflterations < 2) {
‘/##
#* Initially fill values
*
values[numberOfIterations] = value;

if (numberOfIterations < 1) {
nextPoint = points[numberOfIterations + 1];

} else {
nextPoint = (points[l] + points[®]) / 2.0;
!,Jit
* @todo Check if values[#]*values[1] < 0 here
r
1
else {
){ﬂaﬁ'
* Bisection search update rule
2
if (values[1] * value > 8) {
'j,
* Throw away right point (nextPoint is the point corresponding to
value)
*/
points[1] = nextPoint; // This is not yet the nextPoint.
values[1] = value;
} else {
/’i
* Throw away left point
L7
points[0] nextPoint; // This is not yet the nextPoint.

values[8] = value;
}

// Calculate next point (bisection)
nextPoint = (points[1] + points[8]) / 2.6;

// Savety belt: check if still improve or if we have reached machine
accuracy
if(points[1]-points[8] >= accuracy) isDone = true;

// Update accuracy
accuracy = points[l1]-points([8];
}

numberOfIterations++;
return;
}

'fii
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}

D1

* @return Returns the numberOfIlterations.
o

public int getNumberOfIterations() {
return numberOfIterations;

}

/‘Q'W
* @return Returns the accuracy.
7

public double getAccuracy() {
return accuracy;

}

/,ﬂ
* @return Returns the isDone.
*

public boolean isDone() {
return isDone;

}

JAVA™ CLASSES FOR CHAPTER 30
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List of Symbols

Symbol Interpretation
0 Empty set.
. . 1 for x>0,
1 Indicator function; 1(x) =
0 else.
. . 1 forxe(a,bl,
1n(x) Indicator function; 1,4 (x) = (@b
0 else.
x' Transposed (of a vectors or a matrix x).
N, o?) Normal distribution with mean u and variance o2
w Brownian motion. See Definition 29.
P Real measure.
QY Martingale measure corresponding to the numéraire N. N-
relative price processes % of traded assets V are QV-martingales.
Exists (as a measure equivalent to P) under certain assumptions.
E<" Expectation operator with respect to the measure Q.
[x] GaubB bracket. Largest integer, being less than or equal to x.
[x] :=max{n € {0,1,2,...} | n < x}
fllls ¢1-norm of a vector x = (xy,..., x,). |Ixll, = X7 1xil.
ljx1t, £>-norm of a vector x = (x1,..., X,). ||x||§ =37, Ix:2.
. X L x; fori=j,
diag(x,,...,x,) Diagonal matrix. diag(xi,..., X,);; =

0 else.
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P(T)

Zero-coupon bond with maturity 7. P(T) (in general) is a
stochastic process. Evaluated at time f on path w we write
P(T;t, w). See Definition 97.

Forward rate for the period [T, T,]. See Definition 99.

S =8(T;,...,T;). Swap rate for the tenor structure 7;,...,T}.
See Definition 122.

Money market account. See Equation (9.6).

m(t) := max{i : T; < t}. Projection to last fixing in tenor
structure. See Definition 124.
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