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CHAPTER 1 

Introduction 

1 .I Theory, Modeling, and Implementation 

This book tries to give a balanced representation of the theoretical foundations of 
mathematical finance, especially derivative pricing, state-of-the-art models, which are 
actually used in practice, and their implementation. 

In practice, none of the three aspects-theory, modeling, and implementation- 
can be considered alone. Knowledge of the theory is worthless if it isn’t applied. 
Theory provides the tools for consistent modeling. A model without implementation 
is essentially worthless. Good implementation requires a deep understanding of the 
model and the underlying theory. 

With this in mind, the book tries to build a bridge from academia to practice and 
from theory to object-oriented implementation. 

1.2 Interest Rate Models and Interest Rate 
Derivatives 

The text concentrates on the modeling of interest rates as stochastic (undetermined) 
quantities and the evaluation of interest rate derivatives under such models. Howevel; 
this is not a specialization! Although the mathematical modeling of stock prices 
was the historical starting point and interest rates were assumed to be constant, some 
important theoretical aspects are significant only for stochastic interest rates (e.g. the 
change of numkraire technique). So for didactic reasons it is meaningful to start with 
interest rate models. Another reason to start with interest rate models is that interest 
rate models are the foundation of hybrid models. Since the numkraire, the reference 
asset, is most likely an interest-rate-related product, a need for stochastic interest 
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rates implies the need to build upon an interest rate model; see Figures 1.1 and 1.2. 
We will do so in Chapter 29. Nevertheless, the first model studied will be, of course, 
the Black-Scholes model for a single stock, after which we will move to stochastic 
interest rates. 

Figure 1.1. Hybrid Models: The nume'raire, the reference asset in the modeling of 
price processes, is most likely an interest rate product. This choice is not mathemat- 
ically necessary but common for  almost all models. Interest rate processes are the 
natural starting point for the modeling of price processes. 

Figure 1.2. The Black-Scholes model may be interpreted as a hybrid model with 
deterministic interest rates. The solution of dB(t) = rB(t)dt is B(0) exp(r t), i.e. it is 
deterministic and given in closed form. Thus the interest rate component is trivial. 
Within a LIBOR market model the interest rate is a stochastic quantio. This also 
changes properties of the stock process. 
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1.3 About This Book 

1.3.1 How to Read This Book 

The text may be read in a nonlinear way, i.e., the chapters have been kept as free- 
standing as possible. Chapter 2 provides the foundations in the order of their depen- 
dence. The reader familiar with the concepts of stochastic processes and martingales 
may skip the chapter and use it as reference only. To get a feeling for the mathe- 
matical concepts, one should read the special sections Interpretation and Motivation. 
Readers familiar with programming and implementation may prefer Chapter 13 as an 
illustration of the basic concepts. 

The appendix gives a selection of the results and techniques from diverse areas 
(linear algebra, calculus, optimization), which are used in the text and in the imple- 
mentation, but which are less important for understanding the essential concepts. 

1.3.2 Abridged Versions 

For a crush course focusing on particular aspects some chapters may be skipped. 
What follows are a few suggestions in this direction. 

1.3.2.1 Abridged version “Monte Carlo Pricing” 

Foundations (Chapter 2) + Replication (Chapter 3) 
+ Black-Scholes Model (Chapter 4) 
+ Discretization / Monte-Carlo Simulation (Chapter 13) 

1.3.2.2 Abridged version “LIBOR Market Model” 

Foundations (Chapter 2) + Replication (Chapter 3) 
+ Interest Rate Structures (Chapter 8) + Black Model (Chapter 10) 
+ LIBOR Market Model (Chapter 19) 
+ Instantaneous and Terminal Correlation (Chapter 2 1) 
+ Shape of the Interest Rate Curve (Chapter 25) 

1.3.2.3 Abridged version “Markov Functional Model” 

Foundations (Chapter 2) + Replication (Chapter 3) 
.+ Interest Rate Structures (Chapter 8) + Black Model (Chapter 10) 
+ The Density of the Underlying of a European Option (Chapter 5) 
+ Markov Functional Models (Chapter 27) 
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1.3.3 Special Sections 

The text contains special sections giving notes on interpretation, motivation, and 
practical aspects. These are marked by the following symbols: 

Interpretation: Provides an interpretation of the preceding topic. 
QI Casts light on purposes and practical aspects. 

Motivation: Provides motivation for  the following topic. Sometimes 
4 notes deficiencies in the previous results. 

Further Reading: Suggested literature and associated topics. a1 

Experiment: Guide for  a software experiment where aspects of the 
4 preceding topic can be explored. 

Tip: Hints fo r  practical use and software implementation of the 
preceding topics. 4 

1.3.4 Notation 

We will model the time evolution of stocks or interest rates with random variables 
parametrized through a time parameter t.  Such stochastic processes may depend on 
other parameters like maturity or interest rate period. We will separate these two 
different kinds of parameters by a semicolon-see Figure 1.3. 
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Value Random Stochastic 
Variable Process 

F 

Interest Rate 
Curve 

Figure 1.3. On the notation. 

1.3.5 Feedback 
Please help to improve this work! Please send error reports and suggestions to 

Christian Fries <email@christian-fries.de>. 

Thank you. 

1.3.6 Resources 
In connection with this book the following resources are available: 

0 Interactive experiments and exercises: 
http://www.christian-fries.de/finmath/applets 

0 JavaTM source code: 
http://www.finmath.net/ 

0 Figures (in Color): The figures in this book are reproduced in black and white. 
The original color figures may be obtained from 
http://www.christian-fries.de/finmath/book 

0 Updates: For updates and error corrections see 
http://www.christian-fries.de/finmath/book/errata 
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CHAPTER 2 

Foundations 

2.1 Probability Theory 

Definition 1 (Probability Space, u Algebra): 
Let R denote a set and 7 a family of subsets of R. 7 is a u-algebra if 

1 

1 . 0 6 7  

2. F E ~  * R \ F 6 7 .  

00 

3. F I , F ~ , F ~  , . . .  € 7  3 U F ~ E F .  
i= 1 

The pair (R, 7) is a measurable space. A function P : 7 + [O,oo) is a probability 
measure if 

I .  P (0)  = 0, P ( R )  = 1. 

2. For F I ,  F2, F3, .  . . E 7 mutually disjoint (i.e. i # j * F,  n F ,  = 0), we have 

The triple (R, 7, P )  is called probability space (if instead of 1 we require only 
P(0)  = 0, then P is called measure and (R, 7, P )  is called measure space). A 
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Interpretation: The set LR may be interpreted as the set of elementary 
events. Only one such event may occur. The subset F c Q may then 
be interpreted as an event configuration, e.g. as if one asked only for a 
specific property of an event, a property that might be shared by more 

than one event. Then the complement of a set of events corresponds to the negation 
of the property in question, and the union of two subsets F I  , F2 c R corresponds to 
combining the questions for the two corresponding properties with an “or”. Likewise 
the intersection corresponds to an “and”: only those events that share both properties 
are part of the intersection. A a-algebra may then be interpreted as a set of properties, 
e.g., the set of properties by which we may distinguish the events or the set of 
properties on which we may base decisions and answer questions. Thus the a-algebra 
may be interpreted as information (on properties of events). 

Thus a probability space (Q, 7, P )  may be interpreted as a set of elementary events, 
a family of properties of the events, and a map that assigns a probability to each 
property of the events, the probability that an event with the respective properties will 
occur. Q I  

Since conditional expectation will be one of the central concepts, we remind the 
reader of the notions of conditional probability and independence. 

Definition 2 (Independence, Conditional Probability): 
Let (Q, 7, P) denote a probability space and A, B E 7. 

-I 

1. We say that A and B are independent, if 

P(A n B) = P(A) P(B). 

2. For P(B) > 0 we define the conditional probability of A under the hypothesis B 
as 

P(A n B) 
P(B) . 

P(A1B) := 

The Borel cT-algebra B(R) or B(Rn) plays a special role in integration theory. We 
define it next. 

Definition 3 (Borel a-Algebra, Lebesgue Measure): 
Let n E N and ai < bi ( i  = 1,. . . , n).  By B(Rn) we denote the smallest a-algebra for 
which 

(a,,  b l )  x . . . x (an, b,) E B(R”). 

1 

B(Rn) is called the Borel a-algebra. The measure R defined on B(Rn) with 

n 

R((a1, bl)  x . . . x (a,, b,)) := n ( b i  - ai) 
i= 1 

is called a Lebesgue measure on B(Rn). J 
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Remark 4 (Lebesgue Measure): Obviously the Lebesgue measure is not a proba- 
bility measure on (R", B(Rn)) since A(Rn) = 00. It will be needed in the discussion of 
Lebesgue integration and we give the definition merely for completeness.' 

Definition 5 (Measurable, Random Variable): 
Let (a, 7) and (S, S) denote two measurable spaces. 

1.  A map T : H S is called (7, S)-measurable if2 

T - ' ( A )  E 7 for all A E S. 

1 

If T : Q H S is a (7, S)-measurable map we write more concisely 

T : (a, 7)  H (S ,  S). 

2. A measurable map X : (a, 7)  H (S, S) is also called a random variable. A 
random variable X : (Q, 7) H (S, S) is called a n-dimensional real-valued 
random variable if S = R" and S = B(R"). 

J 

We are interested in the probability for which a given random variable attains a 
certain value or range of values. This is given by the following definition. 

Definition 6 (Image Measure): 
Let X : (Q, 7) H (S, S) denote a random variable and P a measure on the measure- 
able space (Q, 7). Then 

1 

Px(A) := P(X- ' (A))  V A  E S 

defines a probability measure on (S, S), which we call the image measure of P with 
respect to X .  -I 

Interpretation: A real-valued random variable assigns a real value 
(or vector of values) to each elementary event w.  This value may be 
interpreted as the result of an experiment, depending on the events. In 
our context the random variables mostly stand for payments or values 

of financial products depending on the state of the world. How random a random 
variable is depends on the random variable itself. The random variable that assigns 
the same value to all events w exhibits no randomness at all. If we could observe 

' The Lebesgue measure measures intervals (n = 1 )  according to their length, rectangles (n  = 2) 

* We define T - ' ( A )  := (w E R 1 T(w)  E A]. 
according to their area, and cubes (n = 3) according to their volume. 
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only the result of such an experiment (random variable), we would not be able to say 
anything about the state of the world w that led to the result. 

The image measure is the probability measure induced by the probability measure 
P (a probability measure on (a, 7)) and the map X on the image space (S, S). 

The property of being measurable may be interpreted as the property that the 
distinguishable events in the image space (S, S) are not finer (better distinguishable) 
than the events in the preimage space (R,F). Only then it is possible to use the 
probability measure P on (Q7) to define a probability measure on (S,S), see 
Figure 2.1. 4 

n F X Z 

Figure 2.1. Illustration of measurability: The random variables X and Z assign 
a gray value to each elementary event w1,. . . , w10 as shown. The cT-algebra 7 is 
generated by the sets F1 = (w1, w2, w3), F2 = (wq, wg, wg), F3 = ( ~ 7 , .  . . , ~ 1 0 ) .  The 
random variable X is measurable with respect to 7, the random variable Z is not 
measurable with respect to F. 

Exercise: Let X be as in Definition 6. Show that 

(X-'(A) I A E S )  

is a cT-algebra. What would be an interpretation of X-'(A)? 

Motivation: We will now define the Lebesgue integral and give an 
interpretation and a comparison to the (possibly more familiar) Riemann 
integral. 

The definition of the Lebesgue integral is not only given to prepare 
the definition of the conditional expectation (Definition 15). The definition will also 
show the construction of the Lebesgue integral and we will later use similar steps to 
construct the It6 integral. 4 
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Definition 7 (Integral, Lebesgue Integral): 
Let (R, 7, p )  denote a measure space. 

1 

1. Let f denote a (7, B(R))-measurable real-valued, nonnegative map. f is called 
an elernentaryfinction i f f  takes on only a finite number of values a l ,  . . . ,a, .  
For an elementary function we define 

where Ai := f - ' ( { a i ) )  ( * Ai E 7)3 as the (Lebesgue) integral o f f .  

2. Let f denote a nonnegative map defined on R, such that a monotonically 
increasing sequence (Uk)kEN of elementary maps with f := sup uk exists. Then 

ksN 

f (w> dp(w) := SUP uk(w>dp(w> 
k d  S R 

is unique and is called the (Lebesgue) integral o f f .  

3. Let f denote a map on R such that we have for f' := max(f, 0) and f- := 
max( -f, 0), respectively, a monotone increasing sequence of elementary maps 
as in the previous definition. Furthermore we require that f' dp < 00. Then 
f is called integrable with respect t o p  and we define 

as the (Lebesgue) integral o f f .  

J 

Remark 8 (sf(.) dx, Jf(t) dt): If the measure p is the Lebesgue measure p = R 
we use the shortened notation 

Sf(.) dR(x) =: J' f(x) dx. 
A A 

In this case 0 = PS" and we denote the elements of R by latin letters, e.g. x (instead of 
w). If the elements of R = R have the interpretation of a time we usually denote them 
by t. 

m 

We have (a; - :,a; + i) E B(R) by definition. Then (a l )  = n (ai - : ,a ,  + A )  E B(II5). 
n= 1 
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Theorem 9 (measurable e integrable for nonnegative maps): For a non-negative 
map f on i2 a monotone increasing sequence (Uk)kEN of elementary maps with f = 
supk,N Uk exists if and only i f f  is 7-measurable. 

Proof: See 113, $12. 01 

interpretation: 
integral we consider its definition for elementary maps: 

To develop an understanding of the (Lebesgue) 

JR 

2 .  0.3 
4 0.4 
6 * 0.3 

t = 4  

i= 1 

The Lebesgue integral of an (elementary) 
map f is the weighted sum of the function val- 
ues ai off ,  each weighted by the measure p(AJ 
of the set on which this value is attained (i.e., 

If in addition we have p( i2)  = 1, where Cl is 
the domain off, then the integral is a weighted 
average of the function values ai o f f .  

For a real-valued (elementary) function of a 
real-valued argument, e.g., f : [a, b] H R, and 

Ai = f- ' ({ail>).  

the Lebesgue measure, the integral corresponds to the naive concept of an integral as 
being the sum all rectangles given by 

base area (Lebesgue measure of the interval) x height (function value) 

which is also the concept behind the Riemann integral. 
Part 2 and 3 of Definition 7 extend this concept via a limit approximation to more 

general functions. al 

Excursus: On the Difference between Lebesgue and Riemann 
in teg rak4 

The construction of the Lebesgue integral differs from the construction of the Riemann 
integral (which is perhaps more familiar) in the way the sets Ai  are chosen. The 
Riemann integral starts from a given partition of the domain and multiplies the 

' An understanding of the difference between the Lebesgue and Riemann integrals does not play a major 
role in the following text. The excursus can safely be skipped. It should serve to satisfy curiosity, e.g., 
if the concept of a Riemann integral is more familiar. 

14 



Riemann integral Le besgue Integral 

Figure 2.2. Lebesgue integral versus Riemann integral. 

size of each subinterval by a corresponding functional value of (any) chosen point 
belonging to that interval (e.g., the center point). The Lebesgue integral chooses the 
partition as preimage f - ' ( (a i ) )  of given function values ai. In short: the Riemann 
integral partitions the domain off ,  the Lebesgue integral partitions the range off .  For 
elementary functions both approaches give the same integral value; see Figure 2.2. For 
general functions the corresponding integrals are defined as the limit of a sequence of 
approximating elementary functions (if it exists). Here, the two concepts are different: 
In the limit, all Riemann integrable functions are Lebesgue integrable, and the two 
limits give the same value for the integral. However, there exist Lebesgue integrable 
functions for which the Riemann integral is not defined (its limit construction does 
not converge). 

Definition 10 (Distribution): 1 

Let P denote a probability measure on (R, B(R)) (e.g., the image measure of a random 
variable). The function 

F p ( x )  := P( (-w, x) ) 

is called the distribution function5 of P. 
(R", B(Rn)) the n-dimensional distribution function is defined as 

If P denotes a probability measure on 

Fp(x1 , .  . . , x,) := P( (-w, XI)  x . . . x (-w, x,) ). 

We have (-w,.x) E B(R) since (-m,x) = UpO=,(x - i , x ) ,  see Definition 1. 
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The distribution function of a random variable X is defined as the distribution function 
of its image measure Px (see Definition 6). J 

Definition 11 (Density): 1 

Let Fp denote the distribution function of a probability measure P. If Fp is differen- 
tiable, we define 

a 
ax $(x) := - F ~ ( x )  

as the density of P. If P is the image measure of some random variable X, we also 
say that $ is the density of X .  -I 

Remark 12 (Integration Using a Known Density/Distribution): To calculate the 
integral of a function of a random variable (e.g., to calculate expectation or variance), 
it is sufficient to know the density or distribution function of the random variable. Let 
g denote a sufficiently smooth function and X a random variable on (R, 7, P); then 
we have 

J g ( X ( w ) )  dP(w) = 1, g(x) dFp,(x) = 
n 1: g(x)$(x)  dx, 

where Fpx denotes the distribution function of X and $ the density of X (i.e., of Px). 
In this case it is neither necessary to know the underlying space R, the measure P, 
nor how X is modeled (i.e., defined) on this space. 

Definition 13 (Independence of Random Variables): 
Let X : ( R , 7 )  H (S,S) and Y : (R, 7) H (S,S) denote two random variables. X 
and Y are called independent, if for all A ,  B E S the events X - ' ( A )  and Y-'(B) are 
independent in the sense of Definition 2. J 

Remark 14 (Independence): For i = 1,. . . , n let Xi : R H R denote random 
variables with distribution functions Fx, and let F(x,  ,.,,,x,) denote the distribution 
function of ( X I ,  . . . , X, )  : R H R". Then the Xi are pairwise independent if and only 
if 

1 

F(x I,..., X " ) h > .  . .9xfl) = F X , ( X l ) .  . . . . Fx,(x,) .  

Definition 15 (Expectation, Conditional Expectation): 
Let X denote a real-valued random variable on the probability space (R, 7, P). 

1 

1. If X is P-integrable, we define 

E p ( X )  := L X d P  

as the expectation of X .  
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2. Furthermore, let Fi E 7 with P(Fi)  > 0. Then 

is called the conditional expectation of X under (the hypothesis) Fi. 
A 

Theorem 16 (Conditional Expectation6): Let X denote a real-valued random 
variable on (R, 7, P) ,  either nonnegative or integrable. Then we have for each (T- 

algebra C c 7 a nonnegative or integrable real-valued random variable XI,  on R, 
unique in the sense of almost sure eq~al i ty ,~,  such that X I ,  is C-measurable and 

V C E C : s, X I ,  dP = 1 X dP, i.e., EP(XIC) = Ep(XcIC). 

We will discuss the interpretation of this theorem after giving a name to X,: 

Definition 17 (Conditional Expectation (continued)): 
Under the assumptions and with the notation of Theorem 16 we define: 

1 

1. .The random variable X I ,  is called the conditional expectation of X under (the 
hypothesis) C and is denoted by 

2. Let Y denote another random variable on the same measure space. We define: 

EP(XJY)  := E(XJu(Y) ) ,  (2.2) 

where r ( Y )  is the c+-algebra generated by Y ,  i.e., the smallest c7-algebra, with 
respect to which Y is measurable, i.e., r ( Y )  := c7(Y-'(S)). 

A 

Interpretation: First note that the two concepts of expectations from 
Definition 15 are just special cases of the conditional expectation defined 
in Definition 17, namely: 

0 Let C = (0, R). Then E(X I C) = X I ,  where Xl,(w) = E ( X )  V w E R. 

See [2], Chapter 15 

zero. 
' A property holds P-almost surely if the set of w E Q for which the property does not hold has measure 
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i f w E F  

{i::i?\F) i f w e R \ F ’  
For C = (0, F, R \ F, R) we have X I C ( W )  = 

with E ( X )  = P(F) E(X1F)  + (1 - P(F)) E ( X l R  \ F )  

The conditional expectation is a random variable that is derived from X such that 
only events (sets) in C can be distinguished. In the first case we have a very coarse C 
and the image of Xc contains only the expectation E ( X ) .  This is the smallest piece of 
information on X .  As C becomes finer, more and more information about X becomes 
visible in X ~ C .  Furthermore, if X itself is C-measurable, then X and X I ,  are (P-almost 
surely) indistinguishable. 

Figure 2.3. Conditional expectation: Let the a-algebra C be generated by the sets 
CI = {wI 9 w29 w31, c2 = {w47 w5, w61, c3 = {wl , .  . . 9 w10). 

In this sense C may be interpreted as an information set and X I ,  as afiltered version 
of X .  If it is only possible to make statements about events in C, then we can only 
make statements about X which could also be made about Xlc, see Figure 2.3.  a1 

2.2 Stochastic Processes 

Definition 18 (Stochastic Process): 
A family X = ( X ,  1 0 I t < co) of random variables 

1 

x, : (a, 7) -+ (S, S)  

is called (time continuous) stochastic process. If ( S ,  S )  = (Rd, B(Rd)), we say that 
X is a d-dimensional stochastic process. The family X may also be interpreted as a 
x :  [O,w)xR-+S:  

X ( t ,  w )  := X , ( w )  v (t ,  w )  E [O, co) x a. 
If the range (S, S )  is not given explicitly, we assume (S, S) = (Rd, !B(Rd)). J 
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Interpretation: The parameter t obviously refers to time. For fixed 
t E [0, m) we view X ( t )  as the outcome of an experiment at time t .  Note 
that all random variables X ( t )  are modeled over the same measurable 
space (Q, 7). Thus we do not assume a family (Q,, E )  of measurable 

spaces, one for each X, .  The stochastic process X assigns apath to each w E 0: For a 
fixed w E R the path X ( . ,  w )  := { ( t ,  X ( t ,  w))  I t E [0, co)] is a sequence of outcomes of 
the random experiments X ,  (a trajectory) associated with a state w. Knowledge about 
w E R implies knowledge of the whole history (past, present, and future) X(w). 

To model the different levels of knowledge and thus distinguish between past and 
future, we will define in Section 2.3 the concept of a filtration and an adapted process. 

QI 

Definition 19 (Path): 
Let X denote a stochastic process. For a fixed w E Q the mapping t H X ( t ,  w )  is 
called the path of X (in state w). A 

Definition 20 (Equality of Stochastic Processes): 
We define three notions of equality of stochastic processes: 

1 

1 

1. Two stochastic processes X and Y are called indistinguishable if 

P(X, = Y, : v 0 I t < m) = 1. 

2. A stochastic process Y is a modijication of X if 

P(Xr = Y,) = 1 : v 0 I t < co. 

3. Two stochastic processes X and Y have the samejinite-dimensional distribu- 
tions, if 

Remark 21 (On the Equality of Stochastic Processes): While in Definition 20.3 
only the distributions generated by the processes are considered, Definitions 20.1 
and 20.2 consider the pointwise differences between the processes. The difference 
between 20.1 and 20.2 will become apparent in the following example: 

Let Z : (R,B(R)) + ([-l,l],B([-1, 11)) be a random variable on ( Q , 7 , P )  = 
(R,B, A )  and t H X ( t )  := t .  Z be a stochastic process.* Let P((Z E A)) = P((-Z E A]) 

' An interpretation of this process would be the position of a moving particle, having at time 0 the 
position 0 and the random speed Z .  
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V A E B([-l, 11) and P({Z  = x)) = 0 V x E [-1, I], e.g., an equally distributed Z. 
Furthermore let V (t, w )  E [0, m) x R 

X(t,w) fort # w 
Y2(t, w )  := -X(t, w). 

-x(t,w) for t = w ' 
Y1 ( t ,  W )  := 

The Y1 is a modification of X, since Yl(t) differs from X(t) (for fixed t )  only 
on a set with probability 0. However, X and Yl are not indistinguishable, since 
P(X(t) = Yl(t) : V 0 2 t < m) = (the two processes are different on 50% of 
all paths). Y2 is neither indistinguishable nor a modification of X, but due to 
P ( ( Z  E A)) = P ( { Z  E -A)) VA E B([-l, 11) it fulfills condition 3 in Definition 20. 

To summarize, condition 1 in Definition 20 considers the equality of the processes 
X, Y ,  condition 2 in Definition 20 considers equality of the random variables X(t), 
Y(t) for fixed t ,  and condition 3 in Definition 20 considers the equality of distributions. 
In our applications we are interested only in the distributions of processes. 

2.3 Filtration 

Definition 22 (Filtration): 
Let (Q, 7) denote a measurable space. A family of cT-algebras {% I t 2 O), where 

1 

is called aJiltration on (Q, 7). A 

Definition 23 (Generated Filtration): 
Let X denote a stochastic process on (Q, 7). We define 

1 

7;" := a(X,; 0 I s 5 t) 

:= the smallest cT-algebra with respect to which X, is measurable V s E [0, t ] .  

J 

Definition 24 (Adapted Process): 
Let X denote a stochastic process on (Q, 7)  and (7;) a filtration on (Q, 7). The 
process X is called {%}-adapted, if X, is %-measurable for all t 2 0. J 

1 
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Figure 2.4. Illustration of a Jiltration and an adapted process. 

Interpretation: In Figure 2.4 we depict a filtration of four a-algebras 
with increasing refinement (left to right). The black borders surround 
the generators of the corresponding a-algebra. If a stochastic process 
maps a gray value for each elementary event (or path) wi of 52 (left), 

then the process is adapted if it takes a constant gray value on the generators of the 
respective cr-algebra. If at time t2  the process assigns to w7 the same dark gray as to 
wg, then the process is adapted, otherwise it is not. 

By means of the conditional expectation (see Theorem 16 and the interpretation of 
Figure 2.3) we may create an adapted process from a given filtration [F, I t 2 0)  and 
an F-measurable random variable 2: 

Lemma 25 (Process of the Conditional Expectation): Let {F, I t 2 0) denote a 
filtration 7, 7; 7 and 2 an 7 measurable random variable. Then 

X(t)  := E(Z 17;) 

is a (%)-adapted process. 

This lemma shows how the filtration (and the corresponding adapted process) may 
be viewed as a model for information: The random variable X(t)  in Lemma 25 allows 
with increasing t more and more specific statements about the nature of 2. Compare 

4 this to the illustrations in Figure 2.1 and 2.3. 
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The concepts of an adapted process only links random variables X ( t )  to a-algebras 
71 for any t .  It does not necessarily imply that the stochastic process X (interpreted as 
a random variable on [0, m) x SZ) is measurable. A stronger requirement is given by 
the following Definition. 

Definition 26 (Progressively Measurable): 
An (n-dimensional) stochastic process X is called progessiuely measurable with 
respect to the filtration (71) if for each T > 0 the mapping 

1 

x : (10, TI x Q , W O ,  TI 8 71)) -+ (R wn)) 
is measurable. J 

Remark 27: Any progressively measurable process is measurable and adapted. Con- 
versly a measurable and adapted process has a progressively measurable modification; 
see [20]. 

Another regularity requirement for stochastic processes is that of being previsible: 

Definition 28 (Previsible Process): 
Let X denote a (real-valued) stochastic process on (QF) and (E)  a filtration on 
(a, 7). The process X is called (7;)-previsible, if X is (7;]-adapted and bounded with 
left continuous paths. J 

1 

2.4 Brownian Motion 

Definition 29 (Brownian Motion): 
Let W : [0, m) x SZ + R" denote a stochastic process with the following properties: 

1 

1. W(0)  = 0 (P-almost surely). 

2 .  The map t H W ( t )  is continuous (P-almost surely). 

3. For given to < t l  < . . . < t k  the increments W(t1) - W(to), . . . , W(tk) - w(tk-1) 

are mutually independent. 

4. For all 0 5 s 5 t we have W(t )  - W ( s )  - N(0, ( t  - s)Z,J, i.e., the increment 
is normally distributed with mean 0 and covariance matrix ( t  - s)Zn, where I,, 
denotes the n x n identity matrix. 

Then W is called (n-dimensional) P-Brownian motion or a (n-dimensional) P- Wiener 
process. J 

We have not yet discussed the question of whether a process with such properties 
exists (it does). The question for its existence is nontrivial. For example, if we want to 
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replace normally distributed by lognormally distributed in property 4 in Definition 29 
there would be no such process.’ If we set s = 0 in property 4, we see that we 
have prescribed the distribution of W ( t )  as well as the distribution of the increments 
W(t )  - W(s) .  

Remark 30 (Brownian Motion): Property 4 is less axiomatic than one might 
assume: The central requirement is the independence of the increments together 
with the requirement that increments of the same time step size t - s have the same 
nonnegative variance (here t - s) and mean 0. That the increments are normally 
distributed is more a consequence than an requirement, see Theorem 3 I .  This theorem 
also gives a construction of the Brownian motion. 

w -(path) 

Figure 2.5. Time discretization of a Brownian motion: The transition AW(Ti) := 
W(Ti+l)-W(Ti) from time Ti to Ti+! is normally distributed. The mean of the transition 
is 0, i.e., under the condition that at time Ti the state W(TJ = x* was attained, the 
(conditional) expectation of W(Ti+l) is x*: E(W(Ti+l) I W(TJ = x*)  = XI. 

Tip (Time-Discrete Realizations): In the following we will often 
consider the realizations of a stochastic process at discrete times 0 = 
TO < T I  < . . . < TN only (e.g., this will be the case when we consider 
the implementation). If we need only the realizations W ( T J ,  we may 

generate them by the time-discrete increments AW(Ti) := W(Ti+l) - W(Ti) since from 
4 Definition 29 we have W(Ti) = zLzb AW(Tk), W(T0) := 0. See Figure 2.4. 

Note that the sum of two (independent) normally distributed random variables is normally distributed, 
but the sum of two lognormally distributed random variables is not lognormal. 
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2.5 Wiener Measure, Canonical Setup 
The following theorem gives a construction (or approximation) of a Brownian motion. 
It defines the Wiener measure and shows that the properties of a Brownian motion are 
less axiomatic than one might assume from Definition 29; rather they are consequences 
of independence. 

Theorem 31 (Invariance Principle of Donsker (1951); see [20] $2): Let (R, F, P )  
denote a probability space and (Y,);l a sequence of independent identically dis- 
tributed random variables (not necessarily normally distributed!) with mean 0 and 
variance r2 > 0. Define S O  := 0 and S k  := $, Y j .  Let X" denote a stochastic 
process defined as the (scaled) linear interpolation of the Sk ' s  at time steps of size A :  

where [XI denotes the largest integer number less or equal to x. 
A path X"(w>, w E R, defines a continuous map [0, KJ) H R and X" is (Q, F) H 

(C([O, KJ)), B(C([O, cxl))))-measurable'o. Let P" denote the image measure of X" 
defined on (C([O, KJ)), B(C([O, KJ))). Then we have: 

0 ( P n l ~ l  converges on (C([O, oo)), B(C([O, KJ)))) to a measure P* in the weak 

0 The process W defined on (C([O, co)), B(C([O, KJ)))) by 

sense' 

W(t ,  w )  := w(t)  

is a P* Brownian motion. 

Proof: See [20] §2. 01 

Definition 32 (Wiener Measure): 
The measure P* from Theorem 3 1 is called Wiener measure. 

Definition 33 (Canonical Setup): 
The space 

(C([O, W)), B(C([O, KJ)), P * )  

1 

J 

1 

l o  With C([O, a))) denoting the space of continuous maps [0, M) H W endowed with the metric of 
equicontinuous convergence d(f,g) = zEl & - with d,(f,g) = If(?) - &)I (then 
(C([O, M)), d )  is a complete metric space) and B(C([O, a)))) denoting the Bore1 cr-algebra induced by 
that metric, i.e., the smallest a-algebra containing the d-open sets. 

I '  A sequence of probability measures (P,],"=, converges in the weak sense to a measure P', if sf dP, + sf dP* for all continuous bounded maps f : R H R. 
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(as defined in Theorem 31) is called the canonical setup for a Brownian motion W 
defined by W(t ,  w )  := w(t), w E C([O, co)). J 

Remark 34: A more detailed discussion of Theorem 31 may be found in [20]. A 
less formal discussion of properties of the Brownian motion may be found in [ 131. 

2.6 It6 Calculus 

Motivation: The Brownian motion W is our first encounter with an 
important continuous stochastic process. The Brownian motion may 
be viewed as the limit of a scaled random waZk.I2 If we interpret the 
Brownian motion W in this sense as a model for the movement of a 

particle, then W ( T )  denotes the position of the particle at time T and W(T+AT)-  W ( T )  
the position change that occurs from T to T + AT; to be precise, W ( T )  models the 
probability distribution of the particle position. 

The model of a Brownian motion is that position changes are normally distributed 
with mean 0 and standard deviation m. Requiring mean 0 corresponds to requiring 
that the position change has no directional preference. The standard deviation 
is, apart from a constant which we assume to be 1, a consequence of the requirement 
that position changes are independent of the position and time at which they occur. 

To motivate the class of It6 processes we consider the Brownian motion at discrete 
times 0 = TO < T I  < . . . < T N .  The random variable W(TJ (position of the particle) 
may be expressed through the increments AW(Ti) := W(Ti+l) - W(Ti): 

i- 1 

W(TJ = AW(T,). 
j=O 

Using the increments AW(T,) we may define a whole family of discrete stochastic 
processes (Figure 2.6). We give a step by step introduction and use the illustrative 
interpretation of a particle movement: First we assume that the particle may lose 
energy over time (for example). Then the increments may still be normally distributed 
but their standard deviation no longer will be ,/-. Instead it might be a 
time-dependent scaling thereof, e.g., e-TJ ,/= where the standard deviation 
decays exponentially. Multiplying the increments AW( Tj)  by a factor gives normally 

'' In a (one-dimensional) random walk a particle changes position at discrete time steps by a (constant) 
distance (say 1)  in either direction with equal probability. In other words, we have binomial distributed 
Yj in Theorem 3 1.  
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Figure 2.6. Brownian motion: Paths of (a discretization of) a Brownian motion 

Figure 2.7. Paths of (a  discretization of) a Brownian motion with time-dependent 
instantaneous volatility. 

distributed increments with arbitrary standard deviations. Thus we consider a process 
of the form 

i- 1 

j=O 

where in our example we would use u(T,) := e-Tl (Figure 2.7). 

Next we consider the case where the particle has a preference for a certain direction, 
i.e., a drgt (Figure 2.8). This is modeled by increments having a mean different from 
zero. The addition of a constant p to a normally distributed random variable with 
mean zero will give a normally distributed random variable with mean p. We want 
p to be the drift per time unit and allow that p may change over time. Thus we add 
p(Tj)  (Tj+l - Tj )  to the corresponding increment over period T ,  to T,+l. If we also 
consider the starting point to be random, modeled by a random variable X(O), we then 
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Figure 2.8. Paths of (a discretization of) a Brownian motion with drifi. 

consider processes of the form 

Normal distributed with meanp(Tj) ATj  and 
standard deviation c ( T j )  

1.e.. 

v 

=: AT, 

Our next generalization of the process is that the parameters p(T; )  and (~(7';) could 
depend on the paths, i.e., are assumed to be random variables. This might appear 
odd since then one could create any time-discrete stochastic proce~ses.'~ However, it 
would make sense to allow the parameters p(T, )  and/or a ( T j )  (used in the increment 
from X(T;) to X(T,+l)) to depend on the current state of X(T,) as in 

X(T;+l) - X(T;) = X(Tj) (T;+l - T;) + (~(7';) AW(7';). - - 
=: AX(T,)  =: AT, 

Here we would have p(T; )  = p(T;,X(T;)) = X(T;), i.e., a drift that is a random 
variable. It is an important fact that the drift for the increment from T ,  to Tj+l is 
known in T;. More generally, we allow p and (T to be stochastic processes if they are 
(7;)-adapted.14 

l 3  If Ti H S(Ti) is an arbitrary time-discrete stochastic process, we set c+(Tj) := 0 and p ( T j )  := 

I 4  The increment AW(Tj)  is not 7r,-measurable. It is only F~,+,-measurable. The requirements that 
(S(Tj+l )  - S(Tj))/(Tj+l - T,)  and have X(T;)  = S(T;) .  

p ( T j )  is FT,-rneasurable excludes the example in footnote 13. 
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The continuous analog to the time-discrete processes considered above are It6 
processes, i.e., processes of the form 

X ( T )  = X ( 0 )  + lT p(t) dt + lT a(t)  dW(t), (2.3) 

i.e., 

and as a short-hand we will write 

dX(t)  = p(t)dt + a(r)dW(t). 

While the dt part of (2.3) may be (and will be) understood pathwise as a Lebesgue 
(or even Riemann) integral, we need to define the dW(t) part (as we will see), the It6 

integral. l 5  Q I  

2.6.1 It6 Integral 
T 

In this section we define the It6 integral f(t, w )  dW(t, 0). We do not present the 
mathematical theory in full detail. For a more detailed discussion of the It6 integral 
see, e.g, [13,20, 21, 271. 

Definition 35 (The Filtration (7;) generated by W): 1 

Let (R, 7, P )  denote a probability space and W(t) a Brownian motion defined on 
(R, F, P )  (e.g., by the canonical setup). We define 7; as the a-algebra generated by 
W(s) ,  s I t ,  i.e., the smallest a-algebra, which contains sets of the form 

k 

{w;  W(ti, w )  E Fi , . . . , W(tk, 0)  E Fk, = n W(ti)- ' (Fi)  

for arbitrary ti < t and Fi c W, Fi E B(W) ( j  I k )  and arbitrary k E N. Furthermore 
we assume that all sets of measure zero belong to 7;. Then (7;) is a filtration which 
we call thejltration generated by W .  -I 

Remark 36: 

i= 1 

W is a (%)-adapted process. 

l5 The dW(r) part may not be interpreted as a Lebesgue-Stieltjes integral through C f (~~)(W(t ,+l)-  W(r,)), 
T~ E [ t J ,  tJ+l] ,  since t H W(r,w) is not of bounded variation. Thus the limit will depend on the specific 
choice of T~ E [ r J ,  t J+ l ] ;  see Exercise 7. 
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Definition 37 (It8 Integral for Elementary Processes): 
A stochastic process 4 is called elementary, if 

1 

where (tj I j E N U (0)) is a strictly monotone sequence in [0, 00) with to := 0 and 
(ej I j E N u (O)} a sequence of %,-measurable random variables and l(t,,t,+,~ denotes 
the indicator f~nction’~.” 

For an elementary process we define the It6 integral as 

Remark 38 (On the One-sided Continuity of the Integrand): In some textbooks 
(e.g., [27]) the elementary integral is defined using the indicator function l ~ ~ , , ~ , + ~ )  in 
place of l(l,,l,+ll. For continuous integrators, as we consider here (W(t)) ,  it makes no 
difference which variant we use. However, if jump processes are considered (see, e.g., 
[29]), and also with respect to the interpretation of the integral as a trading strategy 
(see page 62), our definition is the better suited. 

Lemma 39 (It8 Isometry): Let 4 denote an elementary process such that @(., w )  is 
bounded. Then we have 

Definition 40 (It8 Integral): 
The class of integrands of the It8 integral is defined as the set of maps 

f : [O, co) x SZ H R, 

for which 

1. f is a B x 7-measurable map, 

1 

I 6  We define l(t,,t,+,~(t) = 1, if t E ( t j , f j + l ]  and = 0 else. 
Note that by this definition every path is elementary in the sense of Definition 7. 
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2. f is an Fr-adapted process, 

3. f is P-almost surely of finite quadratic variation, i.e., we have 

E[ LT f ( t ,  w ) ~  dt] < w. 

Iff  belongs to this class, then there exists an approximating sequence {4n] of elemen- 
tary processes with 

EP [ l T ( f ( t .  w )  - 4n(t, w ) ) ~  dt + 0 (for n + co), 1 
and the It6 integral is defined as the (unique) L2 limit 

6’ f ( t ,  w )  dW(t) := lim 4n(t, w)dW(t). 
n+m 6’ 

J 

Remark 41: For a proof of the statements made in this definition (e.g., the existence 
and uniqueness of the limit), see [27]. 

2.6.2 It6 Process 

Definition 42 (It6 Process): 
Let u denote a stochastic process belonging to the class of integrands of the It6 
integrals (see Definition 40) with 

1 

P ( ~ c T ( T , u ) ’  dT < w V t  2 0 

and 1-1 an (%)-adapted process with 

Then the process X defined through 

X ( t ,  w )  = X ( 0 ,  w )  + p(s, w)  ds + u ( s ,  w )  dW(s, w),  s s 
where X ( 0 ,  .) is (70, B(R))-measurable is called It6 process (Remark: X is %-adapted). 

This definition is generalized by the rn-dimensional Brownian motion as Defini- 

A 

tion 43. 
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Definition 43 (It6 Process (m-factorial, n-dimensional)ls): 1 

Let W = ( WI , . . . , Wm)T denote an m-dimensional Brownian motion defined on 
(!2,7, P). Let vi,; (i = 1,. . . ,n, j = 1,. . . ,m) denote stochastic processes belonging 
to the class of integrands of the It6 integral (compare Definition 40) with 

C T ~ , , ( T , W ) * ~ T < C O V ~ ~ O  = 1, i =  1 ,..., n , j =  1 ,..., m, p(l 1 
and pi (i = 1,.  . . , n )  an {%)-adapted process with 

Then the (n-dimensional) process X = (XI, . . . , X,JT with X(0, .) being (70, B(Rn))- 
measurable and 

m r  

Xj(t,w) = Xi(0,w) + l p i ( s , w )  ds + vi,;(s,w) dW;(s,w), (i = 1 , .  . . , n ) ,  
j =  1 

is called (n-dimensional) (m-factorial) It6 p roce~s . '~  We will write X in the shorter 
matrix notation as 

X ( t ,  W )  = X(0, 0) + F ( S ,  W )  . dW(s, w), 

with 

Remark 44 (It6 Process, Differential Notation): For an It6 process 

T T 

X(T, w> = X ( 0 ,  w)  + p( t ,  w )  dt + 1 d t ,  w )  . dW(t, w), 

as defined by Definitions 42 and 43 we will use the shortened notation 

dX(t, w)  = p(t, W )  dt + r ( t ,  w )  . dW(t, w). 

l 8  Compare [27], Section 4.2 
'' The dimension n denotes the dimension of the image space. The factor dimension rn denotes the 

number of (independent) Brownian motions needed to construct the process. 
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The stochastic integral 

X(t) dY(t) 
J f l  

was defined pathwise for integrators Y that are Brownian motions (dY = dW) and for 
integrands X belonging to the class of integrands of the It6 integral. We extend the 
definition of the stochastic integral to integrators that are It6 processes. 

Definition 45 (Integral with It6 Process as Integrator): 
Let Y denote an It8 process of the form 

1 

dY = p d t  + u d W  

and X a stochastic process such that X(t)p(t) is integrable with respect to t and X(t)a(t) 
is integrable with respect to W(t). Then we define 

Jfz X(t) dY(t) := Jfz X(t)p(t) dt + X(t)u( t )  dW(t). 
f l  f l  

As in Remark 44 we will write 

X(t) dY(t) := X(t)p(t) dt + X(t)u(t) dW(t). 

2.6.3 It6 Lemma and Product Rule 

Theorem 46 (It6 Lemma (One Dimensional)20): Let X denote an It8 process with 

dX(t) = p dt + u dW. 

Let g(t, x) E C2([0, co] x R). Then 

Y(t) := g(t, X(t>) 

is an It8 process with 

1 a2g 
(2.4) 

ag dg 
at ax 2 ax2 

dY = -(t, X(t)) dt + -(t, X(t)) dX + - -(t, X(t)) (dX)2, 

where (dX)2 = (dX) (dx) is given by formal expansion using 

dt dt = 0, 

dW dt = 0, 

dt dW = 0, 

dW dW = dt, 

2o Compare [27], Section 4.1. 
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i.e., 

(dX)’ = (dX) (dX) = (pdt + udW) (pdt + udW) 

= p 2  dt dt + p (+ dt dW + p u dW dt + u2 dW dW = v2dt 

Theorem 47 (It6 Lemmaz1): Let X denote an n-dimensional, rn-factorial It6 process 
with 

dX(t) = p dt + u dW. 

Let g(t, x) E C2([0,  co] x Rn; Rd), g = (gl, . . . , gdT. Then 

is an &dimensional, n-factorial It6 process with 

dY,(t) = $(t, X(t)) dt + 2 %(t, x(t)) dXj(t) axi 
i= 1 

where dXi(t) dXj(t) is given by formal expansion using 

dt dt = 0, dt dWj = 0, 

dWi dt = 0, 
dt i = j  
0 i # j  

dWi dWj = 

Theorem 48 (Product Rule): Let X, Y ,  and XI, .  . . , X, denote It8 processes. Then 
we have 

1. d(X Y) = Y dX + XdY + dXdY 

k#i j>i k#i,j 

Proof: 
lemma to the map 

We prove only 1 since 2 follows from 1 by induction. We apply the It8 

g : R x R x R + R ,  g( t ,x ,y) :=x.y.  

2’ Compare [27], Section 4.2. 
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We have 

dg2 = 1  
dXY 

and thus 
d(X Y) = d(g(X, Y)) = Y dX + X dY + dX dY 

Theorem 49 (Quotient Rule): Let X and Y and Yl, . . . , Y,, denote It6 processes 
where, Y > c for a given c E R. Then we have 

1 

Lemma 50 (Drift Adjustment of Lognormal Process): Let S ( t )  > 0 denote an It6 
process of the form 

dS(t) = p(t)S(t) dt + cr(t)S(t) dW(t), 

and Y(t) := log(S(t)). Then we have 

1 
2 

dY(t) = @(t) - -u2(t)) dt + a(t) dW(r). 

Proof: See Exercise 8. 
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Interpretation: The It6 lemma and its implications such as 
Lemma 50 may appear unfamiliar. They state that a nonlinear func- 
tion of a stochastic process will induce a drift of the mean. This may be 
seen in an elementary example: Consider the time-discrete stochastic 

process X(ti) constructed from binomial distributed increments AB(t;) (instead of 
Brownian increments dW(t)), where AB(ti) are independent and attain with proba- 
bility p = A the value + I  or -1, respectively. Assuming X(t0) = 10, we draw the 
process 

X(ti+l) = X(tj) + AB(ti) 

in Figure 2.9 (left), i.e., AX(ti) = AB(ti). This process does not exhibit a drift. We 
have 

In other words: In each node in Figure 2.9 the process X attains the mean of the values 
from the two child nodes. 

12 
X(t,w) 

4Q .... 10 

0 

144 

100 rot)-’ 

64 

Figure 2.9. Non-linear functions of stochastic processes induce a drift to the mean. 

As in Figure 2.9 (right) we then consider the process Y(ti) = f (X( t i ) )  = X ( t J Z .  This 
process exhibits in each time step a drift of the mean of +l. One can easily check that 
the increments of the process Y are given by 
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(check this in Figure 2.9). This corresponds to the result stated by It6’s lemma (see 
Theorem 46 with g(t, x) = f (x) = x’). Indeed we have 

Y(ti+l> = ( ~ ( t i + l ) ) ~  = (x( t i )  + AX(ti))2 

= X(ti)’ + AX(ti)’ + 2X(ti) AX(ti) 

= Y(ti)  + AB(ti)’ + 2X(ti) AB(ti) 

= Y(ti) + 1 + 2X(ti) AB(ti) 

1 a2f a f  
2 ax’ ax 

= Y(tJ + - -(X(ti)) (AX(ti))’ + -(X(ti)) AX(t,). 

Obviously we may interpret It6 formula (2.4) in It6’s lemma as a (formal) Taylor 
expansion of g ( X  + dX) up to the order (dX)’. For the continuous case the higher 
order increments are (almost surely) 0. For the discrete case this is not the case. For 

4 example, consider (X(ti) + AX(ti))3 in the example above. 

2.7 Brownian Motion with Instantaneous 
Correlation 

In Definition 29 Brownian motion was defined through normally distributed incre- 
ments W(t )  - W(s) ,  t > s having covariance matrix ( t  - s)Z,. In other words, for 
W = ( W I  , . . . , W,) the components are one-dimensional Brownian motions with 
pairwise independent increments, i.e., for i # j we have that Wi(t) - Wi(s) and 
Wj(t)  - WJs) are independent (thus uncorrelated). 

We define the Brownian motion with instantaneously correlated increments as a 
special It8 process: 

Definition 51 (Brownian Motion with Instantaneous Correlated Increments): 
Let U denote an m-dimensional Brownian motion as defined in Definition 29. Let 
f i , j  (i = 1,. . . , n, j = 1,. . . , rn) denote stochastic processes belonging to the class of 
integrands of the It6 integral (see Definitions 40 and 43) with 

f , , j ( ~ , c o ) ’ d ~ < m V t ? O  = 1, i =  1 ,..., n , j =  1 ,..., m, 

furthermore let 
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denote an n x m matrix with 

Then the It6 process 

dW(t) = F(t) . dU(t), W(0)  = 0 

(see Definition 43) is called m-factorial, n-dimensional Brownian motion with factors 
f j ,  j = 1 , .  . . , m. With R := FFT we call R the instantaneous correlation and W a 
Brownian motion with instantaneous correlation R .  F is called the factor matrix. A 

Interpretation: 
F = ( f i  , . . . , fm). Then we have for time-discrete increments 

For simplicity let us consider a constant matrix 

Note that AU;(Tk) and Auj(Tk)  are independent. They may be interpreted as 
independent scenarios. If w is a path with Au;(Tk; w )  # 0 and AUj(Tk; w )  = 0 for 
j # i ,  then we have from (2.5) that AW(Tk; w )  = J ;  Aui(Tk; w),  i.e., on the path w 
the vector W will receive increments corresponding to the scenario J ;  (multiplied 
by the amplitude Au;(Tk; w)) .  If, for example, f i  = (1,. . . , l)T, then the scenario 
corresponds to a parallel shift of W (by the shift size AU1 (Tk)). 

Our definition of a factor matrix does not allow arbitrary scenarios since we require 
that C'& J??,(t) = 1, i.e., that R := F F T  is a correlation matrix. By this assumption 
we ensure that the components of Wi of W are one-dimensional Brownian motions in 
the sense of Definition 29. 

By means of the factor matrix F we may interpret the implied correlation struc- 
ture R in a geometrical way. The calculation of F from a given R is a Cholesky 
decomposition. 

We will make use of this construction in the modeling of interest rate curves 
(Chapter 19: LIBOR Market Model). Here the interpretation of the factors is given by 
movements of the interest rate curve. The possible shapes of an interest rate curve 
will then be investigated (Chapter 25)). The question of how to obtain a set of factors 
or reduce a given set of factors to the relevant ones is discussed in Appendices B.2 
and B.3. 4 
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2.8 Martingales 

Definition 52 (Martingale): 1 

The stochastic process { X ( t ) ,  7; ; 0 I t < 001 is called a martingale with respect to 
the filtration (7;) and the measure P if 

X,y = E(X(t) 17,) P-almost surely, VO I s < t < 00. (2.6) 

If (2.6) holds for I in place of =, then X is a called submartingale. If (2.6) holds for 
2 in place of =, then X is called supermartingale. J 

Lemma 53 (Martingale It6 Processes Are Drift-Free): Let X denote an It6 process 
of the form 

dX = p dt + ~r dW under P 

with E‘(( LT r2(t) dt)1’2) < 00. Then we have 

X is a P-martingale e p = 0 (i.e., X is drift-free). 

2.8.1 Martingale Representation Theorem 

Theorem 54 (Martingale Representation Theorem”): Let W(t) = 
(W1 ( t ) ,  . . . , Wm(t))T denote an rn-dimensional Brownian motion, F, the corresponding 
filtration. Let M ( t )  denote a martingale with respect to T, with & IM(t)I2 d P  < 00 

(V 1 2  0). 
Then there exists a stochastic process g (with g( t )  belonging to the class of inte- 

grands of the It6 integral) with 

/-I 

M ( t )  = M ( 0 )  + g(s) dW(s) P-almost surely, V t 2 0. J, 

22 See [271, Section 4.3 and [20], Theorem 4.15 
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2.9 Change of Measure 

Definition 55 (Measure with Density): 1 

Let ( S Z ,  7, P) denote a measure space and 4 a P-integrable nonnegative real-valued 
random variable. Then 

Q(A> := i 4  d P  

defines a measure on ( R , 7 ) ,  which we call measure with density I$ with respect to P. 
J 

Definition 56 (Equivalent Measure): 1 

Let P and Q denote two measures on the same measurable space (R, 7). 

1. Q is called continuous with respect to P @ (P(A) = 0 * Q(A) = OVA E 7). 

2. P and Q are called equivalent @ (P(A) = 0 9 Q(A) = 0 VA E 7). 
J 

Theorem 57 (Radon-Nikodfm Density): Let P and Q denote two measures on a 
measurable space ( S Z ,  7). Then we have 

Q is continuous with respect to P Q has a density with respect to P. 

Proof: See [I] .  01 

Definition 58 (Radon-Nikodfm Density): 1 

If Q is continuous with respect to P,  then we call the density of Q with respect to P 
the Radon-Nikodjm density and denote it by g. _I 

Theorem 59 (Change of Measure (Girsanov, Cameron, Martin)): Let W denote 
a (&dimensional) P-Brownian motion and (7;) the filtration generated by W fulfilling 
the usual conditions23. Let Q denote a measure equivalent to P (w.r.t. (7;)). 

1. Then there exists a (%)-previsible process C with 

23 Given a complete, filtered probability space (a, 7,IE It E [O, T I ) ,  P ) ,  the filtration 17,  Ir E [O, T I )  
= nt,07r+r) and 70 (and thus 7, for satisfies the ‘‘usual conditions”, if it is right-continuous (i.e., 

every t E [O, t ] )  contains all P-null sets of 7. 
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2. Let T > 0 fixed. Reversed, if p denotes a strictly positive P-martingale with 
respect to (7; I t E [0, T I }  with Ep@) = 1, then p ( t )  has the representation 
(2.7) and defines (as a Radon-Nikodfm process) a measure Q = Q' which is 
equivalent to P with respect to FT, given by 

Q(A) := s p ( T )  dP  VA E Tr. (2.8) 
A 

In any given case 

@(t )  := W(t) - C ( S )  ds s' 
is a Q-Brownian motion (with respect to (7;)) (and for t 2 T in the second case). 

Remark 60 (Change of Measure-Change of Drift): 
written as 

Equation (2.9) may be 

(2.10) d@(t) = -C(t) dt + dW(t) 

and we see that the change of measure (2.7) corresponds to a change of drift (2.10). 
The second case has a restriction on a finite time horizon T ,  which will be irrelevant 
in the following applications. 

Remark 61 (Radon-Nikodfm Process): Note that 

p( t )  := exp (f C ( S )  dW(s) - !. 1 lC(s)12 ds) 
0 2 

is a P-martingale. From this we have that for A E 7; 

Thus, p defines a process of consistent Radon-Nikodym densities 1% on (Q, E). 

Exercise: (Change of Measure in a Binomial Tree): Calculate the probabilities (the 
measure) such that the process Y depicted in Figure 2.9 is a martingale. 

40 



Interpretation: The form of the change of measure (2.7) may be 
motivated via a simple calculation and derived for a time-discrete It6 
process 

by elementary calculations. 
At first: Let Z denote a normally distributed random variable with mean 0 and 

standard deviation (T on a probability space (Q, F, P ) .  Under which measure will 
Z be normally distributed with mean c and standard deviation (T? The density of a 
normally distributed random variable with mean c and standard deviation u is 

z w  1 -exp(--). (2 - C l 2  
G(T 2(T2 

Thus we seek a change of measure such that 

1 (2 - c)2 dQ 1 

2 &u d P  2 &(T 

- exp(-T) dz = dQ = -dP = - . , 
Y 

%=desired density under Q 

. 
Y /- 

%=known density under P = '? 

With 

it follows that the desired change of measure is 

1 2  dQ cz-  -c 
- d P  = exp(-) U2 

This corresponds to the term in (2.7). 
To illustrate this we consider the time-discrete process 

AX(Ti)  = pp(Ti )  ATi + u(T i )  AW(TJ under P. 

Under which measure is X a (time-discrete) martingale? We have 

Xis  a Q-martingale @ pQ(Ti)  = 0 a EQ(AX(Ti) 1 FT~) = 0 

(2.11) 
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First consider a single increment: The random variable 

is (under P) normally distributed with mean - AT; and standard deviation m. 
For the conditional (!) expectation under Q we have 

Then 
E Q ( - A ~ ( T ; ) I F ~ , )  1 = o 

4 T I )  

if EQ(AW(T;) 1 FT,) = C(TJ ATi where C(T;) = -- (we correct for the drift). 
Given the considerations above we have to apply a change of measure 

for the time step AT; (apply (2.1 1) with Z = AW(Ti), c = C(Ti) ATi and u = m). 
This is just the change of measure needed to make the increment AX(Ti) drift-free. 

Since the increments AW(TJ are independent, we get the change of measure for the 
process X from TO to T,, by multiplying the Radon-Nikodgm densities, i.e., 

The change of measure will make all increments AX(Ti) drift-free for i = 

0,. . . , n - 1 .  Due to the independence of the increments AW(Ti), we obtain indepen- 
dP ITn 

EQ(AW(TI)) = EP AW(Ti) n n-l -1 dQ ) = n E P ( l  9 l  ) EP(AW(Ti) -1 dQ ) 
dP  AT, d P  AT, ' 

j # i  . , dP AT, 
j=O 

= 1  

The term (2.12) is a discrete version of (2.7). To some extent we have just proven a 
version of the change of measure theorem for time-discrete It6 processes. 
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The term -C(t)2 dt in (2.7) (or -C(Ti)2 ATi in (2.12)) may also be motivated as 
follows: The random variable 

Z(t)  := -1 dQ 
d P  7; 

represents a density of the measure Q ~ E  with respect to the measure PIE. Since Ql7; 
should be a probability measure we must have 

Ql~(!2) = EP'q(Z(t)) = 1 (2.13) 

and with Z(0) = 1 this follows if Z is a martingale. Thus the dr@ correction -C(t)* dt 
4 follows from Lemma 50 because Z is a lognormal process. 
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2.1 0 Stochastic Integration 

In the previous sections the following integrals were considered: 

Maps: 

Random Variables: 

J+dP(4 

Lebesgue or Riemann integral. 
Integral of a real valued function with respect to t. 

Lebesgue integral. 
Integral of a random variable 2 with respect to a 
measure P (cf. expectation). 

Lebesgue integral. 
Integral of a random variable X(tl) with respect to a 
measure P;  see Figure 2.10. 

Lebesgue integral or Riemann integral. 
The (pathwise) integral of the stochastic process X 
with respect to t. 

It6 integral. 
The (pathwise) integral of the stochastic process X 
with respect to a Brownian motion W 

The notion of a stochastic integral may be extended to more general integrands 
and/or more general integrators. For completeness we mention: 

Definition 62 (Integral with Respect to a Semimartingale as Integrator): 
Let Y denote a semimartingale (see Remark 63) of the form 

1 

Y ( t )  = A(t) + M ( t ) ,  

where A(t)  is a process with locally bounded variation and M ( t )  a local martingale. 
Let X ( t )  denote a previsible process. Then we define 

x(t) dY(t) := 6’1 X ( t )  dA(t) + 6’1 X ( t )  dM(t). 

Remark 63 (Stochastic Integral): The class of processes (integrands) for which we 
may define a stochastic integral depends on the properties of the integrators (and vice 
versa). For continuous integrators (as the Brownian motion) the integrands merely 
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Figure 2.10. Integration of stochastic processes. 

have to be adapted processes. To allow more general integrators one has to restrict to 
a smaller class of integrands, e.g., previsible processes. Compare Example 4.1 and 
Remark 4.4 in [13]. For more detailed discussion of the stochastic integral see [5 ] ,  
$5.5, and (especially for more general integrators) [13], $4, and [20], $3. 

Further Reading: On stochastic processes: As introduction, see [27, 
QI 251. For an in-depth discussion, see [20, 29, 311. 
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2.1 1 Partial Differential Equations (PDEs) 

We consider partial differential equations only marginally. In Section 7.2.2 we 
derive the Black-Scholes partial differential equation. The bridge from stochastic 
differential equations (SDE) to partial differential equations (PDE) is given through 
the Feynman-KaE theorem below. 

2.1 1 .I Feynman-KaC Theorem 

Theorem 64 (Feynman-Kai.): 
(XI, . . . , xd), following the stochastic differential equation (SDE): 

Let X denote a d-dimensional It8 process, X = 

dX;(t) = p;(t ,  X) dt + u;(t, X) dWF(t) on [0, TI under Q. 

Furthermore let V denote the solution of the parabolic partial differential equation 
(PDE): 

with yi,j = u;u,p;,; and dWi(t) dWj(t) = pi,; dt. 

V(t, x) = EQ (4 (X(T) )  I X ( t )  = x) for (t, x) E [0, TI x Rd (2.14) 

Remark 65 (Solving Backward in Time): Note that the PDE solves V backward 
in time. V is given at the final time T and the PDE described V for t < T .  The 
meaning of this will become apparent in the following interpretation, however; to 
fully understand the interpretation in our context the knowledge of the next chapter is 
helpful. 

Interpretation: A stochastic differential equation decribes how a 
stochastic process X changes from x(t) to X(T). The change is the 
increment AX = J dX-a random variable. The increment decribes 
how values change and give the probability for such a change. 

If we now look at a stochastic process that is a function of X, say V(t) = V(t, X(t)), 
then 16’s lemma allows us to derive the stochastic differential equation for V, i.e., we 
have a formula for dV. The change from V(t) to V(T) is the increment AV = 1 dV, 
and again the increment decribes how values change and give the probabilities for 

T 

T 

46 



such a change. However, the probabilities do not change. If X moves from X(t) = x to 
X(T) = y with some (transition) probability density +(r ,  x; T ,  y ) ,  then V moves from 
V(t, x) =: u to V(T, y )  =: v with the same (transition) probability density + ( r ,  x; T ,  y). 

So for V just the attained values change. The underlying transition probabilities are 
the ones of X. These are, of course, just the direct consequences of our assumption 
that V is afunction of X. This assumption “splits” the definition of the stochastic 
process V into two parts: The transition probabilities are given by X. The values that 
are attained are given by ( r ,  x) H V(t, x). 

Now, if we consider the function V to be the conditional expectation operator 
in (2.14), then it is not surprising that there is a rule of how to calculate V(t) from 
V(T) using the coefficients of the SDE of X, because these coefficients essentially 
contain the transition probabilities of X. This rule for calculating V is a partial 
differential equation. 

The theorem makes two restrictive assumptions on the process V, namely: 

0 V(t) is a function of some underlying state variables X(t), and 

0 V(t) is the conditional expectation of V(T). 

However, as we will learn in the next chapter, under suitable (and meaningful) 
assumptions, all the stochastic processes describing the prices of financial derivatives 
will fulfill these assumptions. Thus, the theorem allows us to derive the price of a 
financial derivative V as a function of some other quantity X through a PDE, given 
we know that function at some future time T. For financial derivatives, the time T 
function V(T) is often known (e.g., for a call option on X we know that at time T its 
value is max(X(T) - K ,  0)). Solving the PDE gives the function V(0) from V(T). If 
today’s value xo := X(0) of X is known, then the function V(0) gives today’s value of 

V as V(0, xg). QI 

Further Reading: In [34] a short proof of the Feynman-KaE theorem 
is given. The instructive books of Wilmott, e.g., [40], give, besides an 
introduction to mathematical finance, an overview on PDE methods. 
The numerical methods for pricing derivatives by PDEs are discussed, 

e.g., in [lo, 35,401. QI 
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2.12 List of Symbols 
The following list of symbols summarizes the most important concepts f rom Chap- 
ter 2: 

Symbol Object Interpretation 

element of R 

set 

random variable 

stochastic process 

stochastic process evalu- 
ated at time t (= random 
variable) 

stochastic process eval- 
uated in state w 

Brownian motion 

rr-algebra (set of sets) 

filtration 

State. In the context of stochastic processes: 
path. 

State space. 

Map which assigns an event/outcome (e.g., a 
number) to a state. Example: the payoff of a 
financial product (this may be interpreted as a 
snapshot of the financial product itself). 

Sequence (in time) of random variables (e.g., 
the evolution of a financial product (could be 
its payoffs but also its value)). 

See above. 

Path of X in state w. 

Model for a continuous (random) movement 
of a particle with independent increments (PO- 
sition changes). 

Set of information configurations (set of sets 
of states). 

% is the information known at time t .  
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CHAPTER 3 

Rep I icat i o n 

Nowadays people know the price of everything 
and the value of nothing. 

Oscar Wilde 
The Picture of Dorian Gray [38] 

3.1 Replication Strategies 

3.1.1 Introduction 

We motivate the important principle of replication by considering the simplest finan- 
cial derivative, the,forward contract. Consider the following products: 

A (Forward Contract on Rain): At time TI > 0 the amount of rain fallen R(T1) 
is measured (in millimeter) at a predefined place and the dollar amount 

$ 
mm 

A(T1) := (R(T1) - X )  . - 

is paid. Here, X denotes a constant reference amount of rain. 

B (Forward Contract on IBM Stock): At time T I  > 0 the value S ( T l )  of an 
IBM stock is fixed and the dollar amount 

B(T1) := @(TI)  - X )  

is paid. Here, X denotes a constant reference value. 
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These products may be interpreted as a guarantee or insurance.' The product A is 
a weather derivative, the product B is an equity derivative. What is a fair value for 
the product A and the product B? What do we expect to pay in TO (today) for such a 
guarantee? 

Consider the product A: It appears that the determination of its fair value requires 
an exact assessment of the probability of rain at time T I .  So let RT, : R + R denote 
a random variable (rain quantity at time T I ,  modeled over a suitable probability 
space-for w E R the RT, (w)  denotes the quantity of rain that falls in state w. Then, 
the random variable A(T1) := RT, - X defines the payoff of product A. We wish to 
determine the value A(T0) of this product at time To. 

For the trivial case of a single-point distribution, i.e., 

RT,(w)  = R* = const. V w E R, 

i.e., the amount of rain at time T I  is R* with probability I ;  in other words: It is certain 
that in T I  the amount of rain falling is R*. Then product A pays at time T I  the amount 
A* := R* - X with probability 1. In this case, the product corresponds to a savings 
account. Let P(T0) denote the value that has to be invested at time To (into a savings 
account) to receive in T I  (including interest) the amount 1 (=: P(Tl)),  then product A 
pays in T I  the value A* times the value of P. Since A is equivalent to A* times P ,  we 
have 

A(T0) = A* P(T0) 

(we assumed that the interest rate paid is independent of the amount invested, i.e., the 
interest is proportional to the amount invested). With P(T1) = 1 this may be written 
as 

For the (quite unrealistic) case of a one-point distribution (i.e., a deterministic pay- 
ment) we may derive the value of the product A by comparing it to the value of 
another product with deterministic payoff (the savings account). 

In the general case, where a probability distribution of R(T1) is known, it is ques- 
tionable that we can replace the value & by, e.g., the expectation- 

I The product B is a guarantee to buy the stock S at time T I  for the amount X ,  since the product B pays 
the difference required to buy the stock at its value S(T1).  The product A is an insurance against a 
change in rain quantity, which would be sensible for the operator of an irrigation system supplying 
water to farmers. If he suffers from a loss of earnings during a rainy season, he gets paid back a quantity 
proportional to the rain fallen. 
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-if so, this would imply that the risk (e.g., the variance of A(T1)) does not influence 
the value. Since product A is an insurance against the risk of variations in rainfall, 
this appears to be nonsense. 

Product B is very similar to product A. Instead of the amount of rain R(T1) the 
value of a stock S(T1) determines the payout. The considerations of the previous 
section apply accordingly. However, for B it is possible to determine its value in 
TO = 0 independent of the specific probability distribution of ~ ( T I ) :  

In time TO we take a loan with fixed interest rate such that the amount to be repaid 
at time T I  is X. This loan pays us in TO the amount X P(T1; In addition we 
acquire the stock at its current market price S(T0) .  In total we have to pay in TO the 
amount 

V(T0) = s (To) - XP(7-I ; To). (3.1) 

At time T I  this portfolio (stock + loan) (replication portfolio) will have the value 

i.e. it matches exactly the value of the product B at time T I .  

TO TI 

buy stock j Stock j sell stock 
pay %To) j +: receive s(T,) 

borrow money i Loan i redeem loan 
receive X .  P(To) f Fi pay X .  1 

Figure 3.1. Buy and hold replication strategy. 

Thus, we have found a strategy (replication strutegy) to construct a portfolio for 
which its value in T I  matches our product B exactly. This property is fulfilled in any 
state w E R independent of the probability distribution of S(T1). Furthermore, the 
cost to acquire the portfolio in TO, i.e., V(To), is known. As a random variable B(T1) 

* We denote here by P(T1; TO) the amount paid by a loan in TO, which has to be repaid in T I  by the 
amount I =: P(T1; T I )  and such a loan is acquired X times. See Section 1.3.4 on the notation P ( T I ;  To). 
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is indistinguishable from V(T1). Thus we have (valuing on a fair basis) that the price 
B(T0) of product B is equal to the cost of the portfolio V(T0). To determine V(T0) it 
is only required to know today’s price for the stock and today’s price for a loan (see 
Equation (3.1)). 

The replication strategy used in this example is called buy-and-hold since all parts 
of the product required for replication are bought at time TO. See Figure 3.1. 

The essential difference between product A and product B is that for product B the 
quantity that carries the uncertainty (the stock) can be bought. In other words, it is 
possible to buy (and sell) “risk”. We assume that we may buy and sell parts of stocks 
(and other traded products) in arbitrary (real-valued) quantities. 

The key for the construction of the replication portfolio is that: 

0 It is possible to express today’s value of a deterministic future payment, and 
thus there is a vehicle to transfer a deterministic future payment to an earlier 
time: P(T1; t )  is a traded product. 

0 It is possible to buy or sell the underlying (the risk carrier) at any time in any 
quantity: S ( t )  is a traded product. 

It is a surprising consequence of the construction of a replication portfolio that: 

0 The real probabilities do not enter into the current value of the replication 
portfolio. 

Our strategy is to construct a portfolio at time TO and wait until time T I  (buy-and- 
hold strategy). Obviously this kind of strategy may be refined by restructuring the 
portfolio at other times. Dynamic (infinitesimal) restructuring will allow the replica- 
tion of arbitrary (continuous) payouts, given that the underlying random variables 
(the underlyings) are traded products. It is this condition that prevents the replication 
of product A: We cannot buy or sell the random variable 

Consider again the equation 

W T I )  
P(TI B(To) ; To) = EPI P(TI ; TI ) 1. 

This equation would reduce the pricing (i.e., the calculation of B(T0)) to the calculation 
of an expectation. The equation holds if 

Under certain conditions it would be possible to replicate product A: If there were a company whose 
stock value is perfectly correlated to the amount of rain falling, then the product may be replicated 
using stocks of that company. Of course, such a stock will only exist in some approximate sense, but 
then i t  might be possible to replicate product A in an approximate sense. 
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Obviously this equation cannot hold in general (or only the expectation of S(T1) 
would enter into the pricing and we would be ignorant of any risk). However, it is 
possible to change the measure such that the corresponding equation holds, i.e., there 
is a measure Q such that 

A change of measure is indeed an admissible tool when considering replication 
portfolios since-as we have seen-the real probabilities (the measure P) do not enter 
into the calculation. To motivate this important concept let us consider the following 
(simple) example. 

3.1.2 Replication in a Discrete Model 
3.1.2.1 Example: Two Times (TO, TI), Two States (w l ,  w2), Two Assets 

Let S and N denote stochastic processes defined over a filtered probability space 
(a, 7, P, 7;) with Q = ( w ~  , w2J. Here S ( t ,  w) denotes the value of a financial product 
S and N(t,  w )  denotes the value of a financial product N. We consider two points in 
time TO (present) and T1 (future). We assume that S and N are traded at these times. 
Let the filtration be given by F ,  = (0, Q) and FT, = (0, (w l ) ,  (wz) ,  01, i.e., in TO it is 
not possible to decide which of the states w1, w2 we are in, but in T I  this information 
is known. Assume that the processes S and N are (F,]-adapted, i.e., in TO we have 
S(To, W I )  = S(To, w2) and N(To, W I )  = N(To, w2). So, independent of the (unknown) 
state, the products have a defined value in TO. 

Given a derivative product (with the stochastic value process V )  depending in T1 
on the attained state wi. We seek to determine the value of V in TO. Our setup is 
illustrated in Figure 3.2. 

To have the derivative product V replicated by a portfolio, we seek a, j? such that 

(S J9 

(3.2) 
V(TI,wl) = aS(TI,wl) +PN(TI,wl), 

V(T1,w2) = aS(T1,u2) +PN(T1,w2). 

This system of equations has a solution (a,P) if 

 TI, w ) N ( T I ,  ~ 2 )  Z SVi,  w2)N(7-1 W I ) .  (3.3) 

With this solution the value of the replication portfolio (and thus the cost of replication) 
is known in TO, and thus the “fair” value of the derivative product V in TO as 

V(7-0) = as (7-0) + PN(T0). (3.4) 

53 



Figure 3.2. Replication: The two-times two-states two-assets example. 

As before, the probabilities P({wl]) ,  P({w2)) do not enter into the calculation of 
the cost of replication and thus V(T0). Let us investigate now whether V(T0) may 
be expressed in terms of an expectation. Assume that N # 0 and consider (3.2), 
(3.3), and (3.4) for N-relative prices. Equivalent to (3.2), (3.3), and (3.4) the portfolio 
satisfies in T I  : 

with the solvability condition being 

Obviously we have 

Now let q E R such that 
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i.e., 

- 
N(TI 9 w1) N(TI 3 w2) 

(cf. (3.6)). If in addition to (3.6) we have 

0 5 q l 1 ,  (3.8) 

then QN((wl I )  := q, QN((u2) )  := 1 - q defines a probability measure, and under QN 
we have 

So instead of calculating the parameters (a,P) for the replication portfolio we may 
alternatively calculate the measure Q N ,  i.e., the parameter q. At first it appears to be 
equally complex to calculate QN as it is to calculate the replication strategy. However, 
determining QN has a striking advantage: The calculation of QN is independent of 
the derivative V ,  but the pricing formula (3.9) is valid for all derivatives V .  If QN has 
been determined once, all derivatives V may be priced as a QN-expectation. 

In Equations (3.5) to (3.9) we have considered N-relative prices, i.e., the value of 
any product V was expressed in fractions of N ,  i.e., by $. As long as S # 0, we may 
repeat these considerations with S -relative prices, i.e., we have 

with the same (a,P) and we obtain the same value for the replication portfolio V(To), 
namelv 

(3.1 1) 

If we determine the measure Qs , such that 

then the measure Qs is different from QN - we have for example 
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Figure 3.3. Replication: Generalization to multiple states. 

However, the measure Qs also allows us to calculate the value of all derivatives V as 
a @-expectation via (3.12). 

We conclude this section with some remarks: 

0 Under the measure QN the relative price $ is a martingale: This is the defining 
property for the measure ON.  

0 Under the measure QN the relative price $ of any replication portfolio V is a 
ma~tingale:~ This allows the calculation of the price of V as @-expectation of 
N-relative payout. 

0 The choice of the product that functions as reference (numtraire) is arbitrary 
(as long as it is nonzero). The measure Q, under which any numkraire-relative 
replication portfolio becomes a martingale, depends on the chosen numkraire. 
This makes it possible to change the numtraire measure pair ( N ,  O N ) ,  e g ,  if 
this simplifies the calculation of the expectation. 

0 It is necessary to consider relative prices, such that 

- QN is independent of V ,  

- QN is a probability measure, i.e., QN(Cl) = 1. 

This follows since the replication portfolio is a linear combination of martingales and the expectation is 
linear. 
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Exercise: Change of Measure 

1. Reconsider the above under the numCraire S ,  calculate Qs and show, that 
Q N  # Q S .  

2. Instead of relative prices consider absolute prices, i.e., choose as numCraire 1 
and determine the measure Q' for which 

V(T0) = EQ'(V(Td17T"). 

Show that Q' depends on the specific V(T1) and is thus not universal for all 
replication portfolios. 

In case we wish to replicate a payoff X(T) ,  which depends on multiple states 
w1 , . . . , w,, then the above may be extended either by considering multiple time steps 
TO, T I ,  . . . , T,-, = T (dynamic replication) or multiple assets N ,  S 1 ,  . . . , S,-I-see 
Figure 3.3. 
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3.2 Foundations: Equivalent Martingale Measure 

3.2.1 Challenge and Solution Outline 

Motivation: According to the previous example, the evaluation of a 
product through the value of a corresponding replication strategy may 
be given as the QN-expectation of the N-relative price (where N denotes 
the chosen reference asset-the nume‘raire). 

How can we determine the measure Q N ,  given that we know the price processes 
under the real measure P? Note that under the measure QN, the N-relative prices are 
martingales, i.e., as It6 processes they are drift-free (Lemma 53)-this is the defining 
property of QN-, and a change of measure P + QN implies a change of drift for It6 
processes (Theorem 59). 

Thus, if we know the price processes under the real measure P (i.e., given a 
“model”), first we can derive the N-relative price processes under the real measure P 
by using the quotient rule. Then we can derive the equivalent martingale measure QN 
from the change of drift by using Girsanov’s theorem (Theorem 59) (see Figure3.4). 

Surprisingly, in our applications we never need to calculate the equivalent mar- 
tingale measure: Since we know the processes under QN (we know their drift under 
QN and only the drift changes under a change of measure), we know the conditional 
probability densities under QN,  and these are enough to calculate expectations (see 
Definition lo). 

What remains is to clarify under which conditions a given payoff function may be 
replicated and under which conditions an equivalent martingale measure exists. In 
this chapter we give a short overview of the corresponding mathematical foundations. 
In our later applications we will not discuss the existence of the equivalent martingale 
measure. 4 

Problem Description 

Given: M = { X I , .  . . , X n ] ,  where Xi denotes price processes under the (real) measure 
P, and a contingent claim (payoff profile) V ( T ) ,  where V ( T )  is a 71. measurable random 
variable. 

Wanted: Price indication, i.e., the value V ( t )  of V(T)  at time t < T ,  especially V(O), 
where V is a {7;]-adapted stochastic process. 



Solution (Sketched) 

Choice of nume'raire: Let N E M denote a price process that may function as 
reference asset (nume'raire). Without loss of generality let N = XI. 

Existence of a martingale measure for  N-relative prices: By Theorem 74 
there exists a measure QN, such that $ is a martingale with respect to 7,, 
V i =  1, ..., n. 

Definition of the (candidate) of a value process of the replication portfolio: 
Define 

Then 

Martingale representation theorem gives trading strategy: Since the pro- 
cesses 5 = ( 2 , .  . . ,+) and 5 are martingales under QN, there exists a 
# = (41, . . . , #,J such that 

is a @-martingale with respect to % (tower law). 

X 

(3.13) 

(Martingale Representation Theorem). 

The portfolio process # may be chosen to be self-Jinancing by setting 

Note: d (4) = d ( E )  = 0, i.e., (3.13) holds unchanged. 

The portfolio process # describes a replication portfolio for V ( T ) :  We have 

The evaluation does not require explicit determination of the replication portfo- 
lio: V ( t )  is the value of the replication portfolio at time t and we have 

(3.14) 
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Figure 3.4. Real measure versus martingale measure. 
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3.2.2 Steps toward the Universal Pricing Theorem 

We will now list the central building blocks of risk-neutral pricing, towards the 
universal pricing theorem (3.14): 

Trading strategies and characterization of self-jinancing of a trading strategy- 
in the sequel in Numbers 66 to 72. 

Equivalent martingale measure, to obtain a trading strategy from the martingale 
representation theorem, as a candidate for the replication strategy-in the sequel 
in Numbers 73 to 74. 

Replication of given payoff functions and universal pricing theorem followed 
1 7;) for the given payoff by definition of a martingale process t H EQN( 

function V T 4 n  the sequel in Numbers 76 to 79. 

This program is found in this order in most of the literature, some being less technical 
([3]), some being more technical ( [ 5 ,  271). We will usually sketch the theory without 
technical proofs but include references to the literature. 

Basic Assumptions (Part 1 of 3) 

Let M = (XI, . . . , X , )  denote a family of (Its) stochastic processes, defined over the 
filtered probability space (a, 7, P, (7;)) 

where (7;) is (the augmentation of) the filtration generated by the (independent) 
Brownian motions W, and the coefficients ,up and (T fulfill the integrability conditions 

The elements of M are price processes of traded assets ( M  represents the market). 
We consider these only up to a finite time horizon T and thus furthermore assume 
7 = 77. 
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3.2.2.1 Self-Financing Trading Strategy 

Definition 66 (Portfolio, Trading Strategy, Self-Financing): 1 

1. An n-dimensional (%}-progressively measurable process 4 = (41, . . . , 4n) with 

is called portfolio process or trading strategy. 

2. The value of the portfolio 4 at time t is given by the scalar product 

n 

V&) := @(t)  . X(t) = c $i(t)Xi(t). 
i= 1 

The process V, is called wealth process of the portfolio 4. 

3. The gain process of the portfolio 4 is defined by 

4. The portfolio process 4 is called self-jinancing, if 

V4(t) = Vq(0) + G4(t)  V t E [0, TI P-almost surely, (3.15) 

(3.16) 

A 

Remark 67: 
integral 4(s) . dX(s) exists. 

The integrability condition in 1 of Definition 66 ensures that the It6 

Interpretation: We interpret {Xi I i = 1,. . . , n} as a family of stock 
price processes and @(t )  := ($ l ( t ) ,  . . . , 4n(t)) as a stock portfolio, i.e., & 
denotes the number of stocks Xi in the portfolio. 

The relation (3.16) may be interpreted as follows: A change in the 
portfolio value V, comes only from changes in the stocks X, as if the portfolio 
remained unchanged, i.e., we hold a portfolio of 4 stocks and gain over dt the amount 

The interpretation of condition (3.16) becomes clear if we consider the time-discrete 
4.dx. 

variant of a self-financing strategy: 
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0 At time T; there exists a $(Ti) of the products X(Ti). Its value is V4(T;)  = 
@(Ti) . X(Ti) .  

0 At time Ti the products X are traded at prices X(T;)  and the portfolio is re- 
arranged in a selfTfinancing manner. The portfolio changes 
4(T;+l) - $(Ti). This change does not imply a change in value: 

A$(T,) . X(Ti)  = 0. 

0 Over the interval AT; := Ti+] - T; the value of the products 

Y A m ; )  = 

(3.17) 

changes by 
AX(Ti) := X(Ti+,)  - X(T; ) .  The value of the portfolio thus changes by $ ( T i + l ) .  
AX(Ti), i.e. the value then is $(Ti+])  . X(Ti+l) .  

0 For the value change of the portfolio we thus find 

This corresponds to the continuous case: 

Note that this interpretation is consistent with the definition of the elementary 
It6 integral, see also Remark 38. 

0 (andsoon.) 

Remark: We will discuss this time-discrete variant of a trading strategy (which does 
Q I  not result in a complete replication) in Chapter 7. 

3.2.2.2 Relative Prices 

Definition 68 (NumCraire): 
A price process N E M is called nume'ruire (on [0, T I )  if 

1 

P( ( N ( t )  > 0 I V t 5 T )  ) = 1. 
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Basic Assumptions (Part 2 of 3) 

For the remainder of this chapter we assume that X I  is a numkraire and we will use the 
symbol N := XI. Furthermore we require that the chosen numkraire is such that the 
integrability condition formulated in Definition 66 is equivalent to the corresponding 
integrability condition under the normalized system of the relative price processes 

dX = j i d t + e d W  
X - = (F,. x2 . . , %), i.e., with 

we require that for all  progressively measurable $ = (42,. . . , $n), 4 = 

(0942 ,  . . . 3 4n) 

Remark 69 (Assumptions on the NumCraire): We pose an additional as- 
sumption on the numkraire, namely that the integrability condition can be equiv- 
alently formulated with respect to the normalized system 5, i.e., the relative 
price processes. In many cases this follows from a more specific choice for 
the numCraire, e.g., for a locally riskless numkraire dN r(t)N(t) dt or for 
dN = r(t)N(t) dt + cF1 al,,(t)N(t) dWj with bounded UIJ .  Thus, in many works the 
requirement on the normalized system does not appear in this form since it is implied 
by the specific choice of the numkraires. 

= 

Lemma 70 (Condition of Self-Financing Is Invariant under a Move to Relative 
Prices): Let 4 = (41,. . . , q5n) denote a portfolio. Then we have 

In other words, 4 is self-financing if and only if 

Proof: Let 
n 

dV4 = 4j dXi. 
i= 1 

(3.18) 
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Then we find from 

xi (I: (it.)) ' (k) N 
dXi - + d  - + X . d  - = d- 

Conversely we have from 

(3.19) 

with d$ (N + dN) + 5 dN = dXi, that 

(3.19) xi x; 
- 4; dN(N + dN) + c 4;- dN N 

i= I i= 1 

i= 1 

Remark 71: Note that due to the choice of the numkraire, $1 does not enter into the 
sum over d$. We will use this in the following lemma to construct a self-financing 
replication portfolio. 

The move to relative prices makes it possible to construct a self-financing portfolio 
from a partial portfolio $2, . . . , Gn which fulfills for a given process V the relation 

d - = c $ ; d ' .  v x. 
N 

i=2 
N 

(3.20) 

Note that in (3.20) V stands for an arbitrary process, not limited to V, (the value 
process of the portfolio). This process becomes the value process of a self-financing 
portfolio by the following choice of $1 (replication): 
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Lemma 72 (Self-Financing Strategy for Given Partial Portfolio and Given Initial 
Value): Let $J = ($2 , .  . . ,4,J be (7;)-progressively measurable and such that 

6' ($J(s)ji(s)l + Il$J(s) . @(s)lli ds < 00 P-almost surely. 

Then we have that $ = ($1, .  . . , $,J where 

defines a self-financing strategy with V#(O) = VO. 

Proof: 
(Lemma 70) 

In order to show that $ is self-financing it is sufficient to show that 

(3.22) 

From Equation (3.21) it follows (note that $ = 1 and d% = 0) that 

and thus (3.22). The initial condition V#(O) = VO follows from setting t = 0. 01 

The relation (3.20) would follow from the martingale representation theorem if 
the corresponding processes were martingales. It thus becomes natural to ask for a 
measure under which the relative prices $ become martingales. 

3.2.2.3 Equivalent Martingale Measure 

Definition 73 (Equivalent Martingale Measure): 
Let N denote a numiraire. A probability measure QN defined on (Q, 7) is called 
equivalent martingale measure with respect to N (equivalent N-martingale measure) 
(on M ) ,  if 

1 

1. QN and P are equivalent, and 

2. the N relative price processes $ ( i  = 1, . . . , n)  are %-martingales with respect 
to Q N .  

A 

Theorem 74 (Equivalent Martingale Measure, Existence and Uniqueness): Let 
= (%,. . . , %)with 

dX = ji dt + 6. dW(t). 
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Suppose that there exists a progressively measurable process C : [0, TI x R + R"-' 
such that LT llC(s)11* ds < co and 

p = @ - . C  A x P-almost surely on [O, TI x R. 

Let Z(t)  := exp($ C(s) . dW(s) - llC(s)Il2 ds. 

1. (Existence) If E' ( Z ( T ) )  = 1 then the measure QN defined through 

(3.23) 

is an equivalent martingale measure. 

2. (Uniqueness) If further the process C defined in (74) is unique, then QN is the 
unique equivalent martingale measure. 

Remark 75 (State Price Deflator): If E' ( Z ( T ) )  < 1, then (3.23) does not define a 
Radon-Nikodfm process of a probability measure. Then it is not possible to define 
an equivalent martingale (probability) measure through 
possible to define a universal pricing theorem through 

(3.23). However, it is still 

The process 6 is called state price de$ator. 

3.2.2.4 Payoff Replication 

Given the existence of an equivalent martingale measure, we can define a self- 
financing trading strategy replicating a given contingent claim V T .  

Definition 76 (Admissible Trading Strategy): 
A self-financing trading strategy 4 is called admissible if 

1 

V, 2 - K  

for some finite K .  J 

Definition 77 (Attainable Contingent Claim, Complete): 
Let T > 0. A 7r-measurable random variable V ( T )  is called attainable contingent 
claim (or replicable payofl) if there exists (at least one) admissible trading strategy 4 
such that 

The market M is called complete if any contingent claim (payoff function) is attainable 
(replicable). A 

1 

V@(T) = P ' .  

67 



Basic Assumptions (Part 3 of 3) 

Using the martingale representation theorem on EQN( % 1 7;) we find a representation 

8 .  dWQN. In order to find the replication portfolio $ such that 8 . dWQN = $ . d% = 

there exists a $, AT ll8(s)11~ ds < 00 such that 

$ . 6 . d f l N  we need to solve 4 . ~ 7  = 8. We assume that for any 8, J T  ll8(s)1l2 2 ds < CO, 

4.6 = 8. 

What follows is 

Theorem 78 (Self-Financing Replication Portfolio of a Given Payoff Function): 
Let QN denote an equivalent martingale measure and V ( T )  a given payoff function 

(contingent claim) with EQN (I % 1’) < 00. Furthermore let 

From that it follows that 5 is a @“martingale. Furthermore let $2,. . . , $n be as in 
the martingale representation theorem, i.e., 

For the portfolio $ = ($1,.  . . , $n) let $1 be chosen as in Lemma 72 with V4(0) := V(0).  
Then $ is a self-financing replication portfolio of V ;  i.e., we have 

n 

V(t )  = v, = &bix;. 
i= 1 

In other words, 

Proof: That 5 is a QN-martingale follows immediately from the definition and the 
tower law5. From the definition of the martingale measure, $ are @“martingales 
and the martingale representation theorem gives the existence of $ 2 , .  . . , $n with 

is an attainable contingent claim. 

Choosing $1 as in Lemma 72 will make $ self-financing. 

See Exercise 2 on page 479 
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For the value process V, we find from Lemma 70 that 

", xi 
d- = z q 5 i d -  

N 
i=2 

N 

and thus d 2  = d$, so together with V,(O) = V(0) 

n 

V( t )  = V,(t) = q5i dXi. 
i= I 

Since the definition of the martingale measure QN was totally independent of V we 
have 

Theorem 79 (Risk-Neutral Valuation Formula, Universal Pricing Theorem): 
Let q5 denote an admissible self-financing trading strategy and QN an equivalent 

martingale measure with respect to the numkraire N with EQN ( lgr)  < 03. Then 

(3.24) 
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3.3 Excursus: Relative Prices and Risk-Neutral 
Measures 

3.3.1 Why relative prices? 

In our simple example from Section 3.1.2, using time-discrete processes with discrete 
states, it became apparent that the useful martingale measure may be chosen indepen- 
dently of the payoff function only if we consider relative prices. However, looking 
at the continuous time theory from Section 3.2.2, the consideration of relative prices 
seems to be less motivated. To motivate the relative prices we repeat steps of the 
continuous time theory by considering absolute prices: 

Let 
dX; = p; dt + ~j dWy, i = 1 , .  . . ,n 

denote the price processes of n traded assets. We assume that (T, > 0, V i. The 
processes are given under the real measure P. Since ~i > 0, we have from Girsanov's 
theorem that there exists a measure Q1 such that the processes are @-martingales, 
i.e., 

dXi = r i  dWF', 

If V T  denotes a given payoff function, then 

i = 1,. . . ,n. 

V(t) := EQ'(V'T' I E )  (3.25) 

is a Q1-martingale, and from the martingale representation theorem we get the exis- 
tence of a portfolio process ($1, . . . , $n) with 

n 

dV(t) = c4i dXj. 
i= I 

At this point we have to ask ourselves whether ( $ 1 , .  . . , $n) is a self-financing 
replication portfolio, i.e., whether 

n 

V ( t )  = f$i x;. 
i= 1 

Without this identity V(t) - V ( 0 )  is just the gain process of the trading strategy 

The key in the construction of the self-financing replication portfolio was the ability 
to use one asset as storage, here, e.g., XI. We divided by this asset and applied the 

(41 9 . . . 9 $, t ) .6  

Recall the definition of self-financing: The required condition is d(C:=, @iX,)  = C:=, dx;. 
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representation theorem only to the remaining n - 1 processes 2, . . . , 2. After that 

we could use $1 to ensure self-financing since $ (= 1) did not carry any risk (see 
Lemma 70). So: 

0 If we use the representation theorem on (XI, . . . , XJ, we find a representation of 
the gain process, but it is not clear if the portfolio (41, . . . , 4,J is self-financing 
and replicating. 

0 If we use the representation theorem on (Xz,. . . , X , )  and set 41 through 
Lemma 70, then the portfolio (41, . . . , Gn)  is self-financing, but it is not clear if 
the portfolio replicates V f T ) .  

In order to construct a self-financing replicating trading strategy there has to be 
an asset that (locally) does not carry any risk. The n processes XI , .  . . , X, have to 
be driven by n - 1 Brownian motions, i.e., the n - 1 processes 2,. . . ,? have to be 
driven by n - 1 Brownian motions. 

We consider price processes as before, however now let ul = 0 and, e.g., p1 = r XI 
with r > 0 and Xl(0) > 0. In this case XI corresponds to the value of a riskless 
( a l  = 0) asset with continuously compounded interest rate r: 

dX1 = r XI dt, i.e., Xl(t) = X l ( 0 )  exp(r t ) .  

Obviously, there exists no measure under which X I  would be a martingale. The 
product is riskless, i.e., XI is not stochastic and the expectation is thus independent of 
the probability measure. To make all processes martingales via a change of measure 
we have to move to relative prices. Dividing all processes by N := X1 we have $ = 1, 
which trivially is a martingale (under any measure). The remaining processes $ are 
either risky (i.e., with nonzero volatility) or martingales (i.e., if they are riskless they 
are constant), since the presence of a riskless N-relative process with drift different 
from 1 would imply arbitrage.’ 

It is not necessary to chose the riskless asset as numkraire. We could have divided 
by any asset. Either % is stochastic (i.e., has nonzero volatility) and can be turned 
into a martingale by a change of measure, or $ is drift-free.8 

If there were two riskless assets with different local rates of return, then we could construct a portfolio 
with zero initial cost having a positive payout with probability 1. This portfolio is constructed by 
buying the high yield asset and financing this by (short) selling the low yield asset. 

* This statement does not hold globally, it holds locally. 

71 



Interpretation: The transformation to relative prices corresponds 
to the transformation of the riskless rate of return (drift) to 0. This 
corresponds to the change of the frame of reference in physics. Since 
there is only one riskless asset, there is only one measure under which 

all processes become martingales. With this measure we can use the martingale 

QI representation theorem to derive the universal pricing theorem. 

3.3.2 Risk-Neutral Measure 
For each numtraire N there usually exists a different equivalent martingale mea- 
sure QN. As risk-neutral measure we denote the equivalent martingale measure QB 
corresponding to the (locally) riskless asset B with 

dB = r B dt. 

The name risk-neutral measure stems from the following considerations: Under the 
measure QB we have for any financial asset S that $ is a martingale. Thus, relative to 
B, S does not have any additional drift. So under QB the asset S has the same local 
rate of return as the riskless asset B, i.e., we have (written as a lognormal process) 

dS = r S d t + c T S d W @ .  

If QB had been the real measure, then this would imply that the real local rate of return 
of S would be the same as B.  In such a market all assets would have the same local 
rate of return, namely r, independent of their risk c. In other words: On average, the 
market participants are neutral with respect to risk; they are neither risk-affine nor 
risk-averse. 

In general one would expect that under the real measure all risky assets ((7 > 0) 
have a local rate of return, i.e., drift, > r ,  since investors like to get rewarded for the 
risk they take. There are, however, counterexamples: For a lottery the expected payoff 
is usually much less than the initial investment, since the lottery pays out only a part 
of the total investments. 
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Part II 

First Applications: 
Black-Sc holes Model , 
Hedging, and Greeks 
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CHAPTER 4 

Pricing of a European Stock 
Option under the Black-Scholes 
Model 

We assume here that interest rates are deterministic and that a bank account exists 
which may be used to invest or draw cash at a continuously compounded rate r(t), i.e., 
the investment of B(0) = 1 in t = 0 evolves as 

dB(t) = r(t)  B(t)  dt, 

i.e., 

(4.1) 

(here r denotes a known real valued function of time, not a random variable). Further- 
more we assume that the stock S ( t )  follows 

dS(t) = pp( t )  S ( t )  dt + ( ~ ( t )  S ( t )  dW'(t) under the real measure P, (4.2) 

(if (T is a constant, then u is called Black-Scholes volatility). The measure P denotes 
the real measure. Let K E R. We wish to derive the value V(0)  of the contract paying 

V ( T )  = max(S(T) - K,O) 

in t = T .  
We use the techniques from Chapter 3 (the following steps will be repeated similarly 

in other applications): As a numkraire N ( t ) ,  i.e., as reference quantity, we choose the 
bank account N ( t )  := B(t) .  From Theorem 74 we have the existence of a measure Q'" 
equivalent to P, such that and $ are both martingales.' From Theorem 59 S is 

' By V(r) we denote the value of the replication portfolio consisting of S(r) ,  B(r) such that V ( T )  = 
rnax(S(7') - K O ) .  
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given QN with a changed drift, i.e., 

dS(t) = pQN(t) S(t) dt + r ( t )  S ( t )  d@"(t) under QN, 

(where WQN denotes a QN-Brownian motion).* From the quotient rule 49 we find 

- 9bQ"( t )  dt + r ( t )  dWQN(t)][r(t) dt] 

- -[r(t) dt][r(t) dt] 

B(t) 
s (t) 
B(t) 

and by formal expansion, see Theorem 46: 

= 9 ( t ) ( p Q " ( t )  - r ( t ) )  dt + u(t) dWQN(t)] under QN. 
B(t) 

From Lemma 53 it follows that pQ"(t) = r(t) .  For the process Y := log(S) we then 
have by Lemma 50 

1 
2 

d(log(S(t)) = ( r ( t )  - -r2(t))  dt + c( t )  dWQN(t) under Q N ,  

i.e., log(S(T)) has normal distribution with meanp := log(S(0)) + FT - ; e 2 T  and 
standard deviation (T fi. where we define F and ii as3 

That the distribution of log(S(T)) is normal follows from the definition of the It6 
process: By 

1 
d(log(S(t)) = (r(t) - ?r2(t))dt + c(r)dWQN(t) 

* Since B has no stochastic component, i.e., does not depend on the path parameter w E Q, (4.1) holds 
under Q ~ ,  too. 
Often the model is considered with a constant (time independent) rate r and a constant volutiliry c. 
In this case we have F = r and @ = v. This and the shortening of notation are the reasons that we 
introduce the averaged quantities F and @. 
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we have just stated that 

log(S(T)) = log(S(0)) + 

I 
2 

= log(S(0)) + FT - -C2T + (TWQN(T). 

We thus know the dynamics of S ( t )  and B(t)  and more importantly the distribution 
of S ( T )  under the measure QN. Furthermore we know that the value of V(0) satisfies 

thus (with B(0) = 1, B(T)  = exp(rT)) 

V(T) 
B(T)  exp( FT) 

max(S ( T )  - K ,  0) 
V(0) = B(0) EQN (-) = 1 EQN ( 

= exp(-rT) EQN( max(S(T) - K,O)) 

= exp(-?T) EBN( max(exp(log(S(T))) - K ,  0)) 

and since log(S (T)) is normally distributed with mean ji and standard deviation (T fi 

max(expb) - K,  0) -4( 1 -) Y - P  dy, 
a f i  uqT 

where $(XI := 

The above integral may be represented as 
exp(-x2/2) denotes the density of the standard normal distribution. 

V(0) = S (O)@(d+) - exp(-rT)K@(d_), (4.3) 

We denote the cumulative normal distribution function by 0. In some books, especially in connection 
with the Black-Scholes model, it is denoted by N (which we usually use for the numkraire). Instead of 
d,, d- one often uses the symbols dl , d2. 
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To derive this formula we consider for given K, p, u E R (u > 0) 

m 

1 Y - P  

= J’ (expb) - K )  - 

lm max(exPb> - K ,  0) -4 (-) dy 
u u  

1 m 

log(K) 
m 1 - - - J’ expb) 

G u  l og (K)  

- -KJm 1 exp(--) 0, - PI2 dy. 
Gfl log(K) 2u2 

It is 

2u2 

1 

with 01 - p)2 - 2u2y = 0, - @I +  IT^))^ - 2pu2 - u4 

and with the substitution H y 

Similarly we have with the substitution jy H y 

Defining 
1 

@(x) := - J” exp (-I) dy 
G -m 
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we thus get from 

that 

Jm exp ( - Y2 -)dy = @(-x) 
6 .r 2 

p + ff2 - log(K) ) - KQ(l*-y)). 
exp(p + .( ff 

Remark 80 (Implied Black-Scholes Volatility): From Equation (4.3) and the 
definition of d, we see that under the model (4.2) the price of an option depends on 
S(O),  F, and (T only (apart from product parameters like T and K ) .  The parameter 

is called the Black-Scholes volatility, while ~ ( t )  is called the instantaneous volatility 
of the model (4.2). The Black-Scholes volatility is the square root of the average 
instantaneous variance (which is the square of the instantaneous ~olat i l i ty)~.  

For fixed S (0), i: the pricing formula (4.3) is a bijection 

(T H V(0)  

[O, co) + [max(S(O) - exp(-FT)K, 0) , S(O)] 

and thus we may calculate the Black-Scholes volatility corresponding to a given price 
V(0).  This volatility is called the implied Black-Scholes volatility. 

Note: The variance of the sum of two independent normally distributed random variables is the sum of 
their respective variances. 
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CHAPTER 5 

Excursus: The Density of the 
Underlying of a European Call 
Option 

Lemma 81 (Probability Density of the Underlying of a European Call Option): 
Let S denote a price process and N a numtraire on the probability space (R, B(R), QN). 
Let K E R and To < TI I T2, where TI denotes a fixing date and T2 a payment date 
of a European option with payout 

V ( K ;  T2) := max(S(T1) - K, 0). 

Let us further assume that the numtraire N has been chosen such that N(T2) = 1. 
Then we have for the (risk-neutral) probability density’ ~~s(T,)(s) of S(T1) under QN 

4S(T,)(S) = - 

1.e.. 

Remark 82 (Application): We may apply Lemma 81 to European stock options 
(TI  = T2 and N ( t )  = exp(r ( T I  - t ) ) ,  see Chapter 4, or to caplets, see Chapter 10. 

If a model is given (e.g., as a “black box” through some pricing software) and if the 
model allows the pricing of arbitrary European options, then we can use this lemma to 

I To be precise, @ s ( T ,  )(s) is the conditional probability density, conditioned on For simplicity we 

assume that FT~ = {0,!4 and write EQN(.) for EQN(. IFTJ. 
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infer the probability distribution of S ( T )  created by this model. This allows for some 
simple model tests: If the probability density is 0 in any region, then the model should 
be discarded if these regions play any role in the pricing. If the model exhibits regions 
with negative probability density, then the model is not arbitrage-free. It is easy to set 
up interpolatory models that fail when tested by this lemma. See Chapter 6. 

Proof: Under the measure QN, N-relative prices are martingales. Thus we have 

V ( K ;  To) = N(T0) EQN (w&) 

and thus 

i.e., 

As a direct consequence we have 

Lemma 83 (Prices of European Options Are Convex): Prices of European options 
are a convex function of the strike. 

Further Reading: The original article containing Lemma 81 is 1521. 
It will play role in the interpolation of option prices, i.e., for the implied 
volatility surface, and in the definition of a Markov functional model; 

4 see Chapters 6 and 27. 
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CHAPTER 6 

Excursus: Interpolation of 
European Option Prices 

Insufficient facts always invite danger. 

Spock 
Space Seed, stardate 3141.9 (Wikiquote) 

6.1 No-Arbitrage Conditions for Interpolated 
Prices 

We consider the price V ( K ;  0) of a European option with payoff max(S ( T )  - K, 0)  as 
a function of the strike K .  We assume S ( T )  2 0. Let P(T;  0) denote the value of the 
zero-coupon bond with notional 1.' From Lemma 83, the mapping 

K H V ( K )  

(we write shortly V ( K )  for V ( K ;  0)), which maps a strike K to the corresponding 
option price V ( K )  (for fixed, given maturity T and notional l), has to satisfy the 
following conditions: 

0 V ( 0 )  = P(T;O) S(0) (since S ( T )  2 O), 

0 V ( K )  = V ( 0 )  - P(T;  0) K for K < 0 (since S ( T )  2 0), 
i.e., V is linear for K < 0, 

0 lim V ( K )  = 0, 
K- rm 

' See Definition 97 on the definition and Section 1.3.4 on the notation P(T;  0). 
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d2 V - > 0 (from Lemma 81), i.e., V ( K )  is convex. 
dK2 - 

Figure 6.1. Arbitrage-free option prices for European options (payoff max(S ( T )  - 
K,O)) with strike K < K1 or K1 < K < K2 or K > K2; assuming that two option 
prices V ( K I )  > V(K2) (for K1 < K2) are given. 

Given strikes K1 < K2 and corresponding option prices V(K1)  and V(K2),  re- 
spectively, we find geometric conditions for the possible (arbitrage-free) strike-price 
points ( K ,  V ( K ) ) .  The price points c = (K1, V(K1))  and d = (K2, V(K2))  as well as 
a = (-1, V ( 0 )  - P(T;  0)) ,  b = (0, V(O)), and e = (0, V(K2)) define lines ab, be, cd, and 
de which are boundaries of the set of admissible strike-price points. As depicted in 
Figure 6.1 we have: 

--- 

For K < K I  < K2: 

V ( K )  2 V ( 0 )  - P(T;  0) K ( (K ,  V ( K ) )  2 ab). 
( ( K ,  V ( K ) )  2 2). 

( ( K ,  V ( K ) )  I bc). 

K2 - K K - Kl 
V ( K )  2 V(K1)- K2 - K1 + V W 2 ) n  

V ( K )  5 V ( 0 )  + (V(K1) - V(O))& 

V ( K )  2 V(K0) + ( V ( K I )  - V(O))& 

V ( K )  2 W 2 )  

For K1 < K < K2: 

( (K ,  V ( K ) )  2 bc). 
( (K ,  V ( K ) )  2 de). 
( ( K ,  V ( K ) )  I z). K2 - K K - K1 V ( K )  I V(K1)- K2 - K1 + v(K2)= 

For K1 < K2 < K:  

( ( K ,  V ( K ) )  2 2). 
( (K ,  V ( K ) )  I de). 

K2 - K K - K1 
V ( K )  2 V(K1)- K2 - K1 + V(K2)- 

V ( K )  5 V(K2) 
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6.2 Arbitrage Violations through Interpolation 

2 
3 
4 

In this section we give some examples to show that simple interpolation of prices or 
implied volatilities may lead to arbitrage. 

0.75 0.3237 0.4 
1.25 0.1739 0.6 
2.00 0.0563 0.6 

6.2.1 Example 1 : Interpolation of Four Prices 

Consider a stock S with a current value of S (0) = 1 .O and a European option on S 
having maturity T = 1.0 and strike K ,  i.e., we consider the payoff 

max(S (1 .O) - K, 0). 

Assume that for strikes K = 0.5,0.75,1.25, and 2.0 the following prices are given: 

I 

I 1 I 0.50 I 0.5277 I 0.4 1 

The given implied volatility is the (T of a Black-Scholes model with assumed interest 
rate (short rate) of r = 0.05. Note, however, that we start with given prices which are 
model-independent. 

We will now discuss several “obvious” interpolation methods applied to this data. 
One approach consists of the interpolation of prices, the other approach consists 
of the interpolation of implied volatilities and calculating interpolated prices from 
the interpolated volatilities. These interpolations are not model-independent. The 
interpolation method itself constitutes a model. This is obvious with the second 
approach, where a model is involved in the calculation but also applies to the first 
approach. From Lemma 81 we have that the interpolation method constitutes a model 
for the underlying’s probability density. It does not model the underlying’s dynamics. 

6.2.1.1 Linear Interpolation of Prices 

In Figure 6.2 we show the linear interpolation of the given option prices. The prices do 
not allow arbitrage, which is obvious from the convexity of their linear interpolation. 

However, the linear interpolation of prices has severe disadvantages: The linear 
interpolation of option prices implies a model under which the underlying may not 
attain values K # Ki; the corresponding probability density is zero for these values. 
For values corresponding to the given strikes Ki a point measure is assigned: see 
Figure 6.2, right. In addition the corresponding implied volatilities look strange. 
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Figure 6.2. Linear interpolation of option prices. 

6.2.1.2 Linear Interpolation of Implied Volatilities 

In Figure 6.3 we show the linear interpolation of the corresponding implied volatilities 
(center), while the corresponding prices are recalculated via the Black-Scholes formula 
(left). The linear interpolation of implied (Black-Scholes) volatilities may lead to 

Figure 6.3. Linear interpolation of implied volatilities. 

prices allowing for arbitrage: At the edges K = 0.75 and K = 1.25 we have a point 
measure, the measure for S ( T )  = 1.25 being negative. Thus the implied measure is 
not a probability measure; see Figure 6.3, right. From Lemma 81 we have: There is 
no arbitrage-free pricing model that generates this interpolated price curve. 

On the other hand, linear interpolation of implied volatilities also has a nice 
property: If the given prices correspond to prices from a Black-Scholes model, i.e., if 
the implied volatilities are constant, then, trivially, the interpolated prices correspond 
to the same Black-Scholes model. 
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6.2.1.3 Spline Interpolation of Prices and Implied Volatilities 

To remove the disadvantage of degenerated densities (i.e., the formation of point 
measures) as it appears for a linear interpolation, we move to a smooth (differen- 
tiable) interpolation method, e g ,  spline interpolation. Figure 6.4 shows the spline 
interpolation of the given data. The upper row shows the spline interpolation of the 
option prices. The lower row shows the spline interpolation of the implied volatilities. 
Using (cubic) spline interpolation the probability densities are continuous functions. 

Figure 6.4. Spline interpolation of option prices (upper row) and implied volatilities 
(lower row). 

However, it shows large regions with negative densities (Figure 6.4, right), thus the 
density is not a probability density and arbitrage possibilities exist. The strike-price 
curve is not convex (Figure 6.4, left). 

A spline interpolation of prices generates negative densities, because the spline 
interpolation of convex sample points is not convex. 

6.2.2 Example 2: Interpolation of Two Prices 

The example from Section 6.2.1 of a linear interpolation of implied volatilities may 
suggest that the problem arises at the joins of the linear interpolation, i.e., the behavior 
at K2 = 0.75 and K3 = 1.25. One could hope that a local smoothing would solve this 
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problem. Instead we will give an example showing that a linear growth of implied 
volatility may be inadmissible alone, although the interpolated prices are admissible. 

We consider two prices V(K2) > V(K3).  The monotony ensures that these two 
prices alone do not allow for an arbitrage. 

i 
2 
3 

Strike Ki Price V ( K i )  Implied Volatility cr(Ki) 

0.75 0.4599 0.9 
1.25 0.0018 0.1 

The implied volatility decreases with the strike K .  Figure 6.5 shows the linear 
interpolation of the implied volatilities (center). The density (see Figure 6.5, right) 

i Strike Ki Price V ( K i )  
2 0.75 0.2897 
3 1.25 0.2532 

Figure 6.5. Linear interpolation for decreasing implied volatility. 

Implied Volatility a ( K i )  

0.2 
0.8 

shows a large region with negative values: thus it is not a probability density. The 
reason is a decay of the implied volatility too fast. 

Conclusion: An arbitrarily fast decrease of implied volatility is not possible. 
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Figure 6.6. Linear interpolation for increasing implied volatility. 

Figure 6.6 shows the linear interpolation of the increasing implied volatilities. 
At first sight the density implied by the linear interpolation of the implied volatilities 

exhibits no flaw (positive, no point measure). However, it is not a probability density. 
The integral below the segment is larger than 1. That this is inevitable is obvious from 
the price curve. The price curve is convex (and thus the density positive), but not 
monotone. The arbitrage is obvious, since the option with strike 1 .O is cheaper than 
the option with strike 1.25. If the prices should converge to 0 for increasing strike, 
then it is inevitable that the convexity will be violated. Thus it is inevitable that the 
density will exhibit a region with negative values beyond the interpolation region 
(this, however, will make the integral of the density to 1). 

Conclusion: An arbitrarily fast increase of implied volatility is not possible. 

6.3 Arbitrage- Free I n t e r po lat ion of Eu ro pea n 
Option Prices 

The examples of the previous sections bring up the question for arbitrage-free interpo- 
lation methods. 

Every arbitrage-free pricing model defines an arbitrage-free interpolation method, 
if it is able to reproduce the given prices. However, this insight is almost useless, 
since: 

0 Most models are not able to reproduce arbitrarily given prices exactly. 

- The Black-Scholes model (Chapter 4) and (in its simplest form) the 
LIBOR market model (Chapter 19) allow, by the choice of their volatility, 
the perfect fit for only one European option per maturity. 
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- Extended models (e.g., models with stochastic volatility) allow for a 
calibration to more than one option price per maturity. They often do this 
in an approximative way, i.e., the residual error of the fitting is minimized, 
but not necessarily 0. However, this may also be a desired effect, since 
such a fitting is more robust against errors in the input data. 

Extended models that fit more than one option price per maturity usually require 
great effort to find the corresponding model parameters. These models are 
intended for the pricing of complex derivatives (which justifies the effort), but 
not primarily as an interpolation method to price European options. Examples 
of such model extensions are stochastic volatility or jump-diffusion extensions 
of the LIBOR market model, [23]. 

0 Some models even require a continuum of European option prices K H V (  T ,  K )  
as input. Then they require an interpolation. An example for such a model is 
the Markov functional model; see Chapter 27. 

Thus, special methods and models have been developed to specifically achieve 
the interpolation of given European option prices. Often they reproduce given prices 
only approximately in the sense of a “best fit”-they are not an interpolation in the 
original sense. The construction of an (interpolating or approximating) price function 
(T ,  K )  H V(T,  K )  of European option prices with maturity T and strike K is called 
modeling of the volatility surface. 

Definition 84 (Volatility Surface): 
Given a continuum (T ,  K )  H V(T,  K )  of prices of European options with maturity T 
and strike K .  Let a ( T ,  K )  denote the implied volatility of V(T,  K ) ,  i.e., the volatility 
for which a risk-neutral pricing with a lognormal model dS = rS dt + a ( T ,  K)S dW, 
S(0) = So (Black-Scholes model) will reproduce the prices V(T,  K ) .  Then ( T ,  K )  H 

u ( T ,  K )  is called volatility surface. A 

The modeling of a volatility surface may be viewed as important postprocessing 
of market data. On the other hand it may be viewed as an integral part of the pricing 
model. A detailed discussion of volatility surface modeling is beyond the scope of 
this little excursus and we restrict ourself to citing a few methods: 

1 

Further Reading: An introduction to the volatility surface is given 
by Gatheral [15]. 

The mixture of lognormal approach [54] uses the fact that if the 
probability density 4 s ( T )  of the underlying S ( T )  is given as convex 

combination 
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of lognormal densities &, , then the price of a European option is given as a convex 
combination (using the same weights Ri’s) of corresponding Black-Scholes formulas2 
In some cases this allows for a choice of the &,’s and Ri’s that exactly reproduces 
given option prices. However, the method is not able to reproduce arbitrary arbitrage- 
free prices. 

Fengler [64] applies a cubic spline interpolation with an additional shape constraint 
to given option prices. This leads to an arbitrage-free smoothing algorithm for the 
implied volatility. 

The SABR model [75] is a four-parameter model (r, a, /?, p )  for European interest 
rate options (the underlying is an interest rate; see Chapter 8). It reproduces given 
prices only approximately, but models a more realistic behavior of the dependency of 

QI the volatility surface from the spot value of the underlying. 

Experiment: At http: //www. Christian-fries. de/finmath/ 
apple t s/Op t i onPr i ce Int erpo 1 at i on. html several interpolation 
methods may be applied to a user-defined configuration of European op- 
tion prices. The figures in this chapter were produced with this software. 

QI 

* This follows directly from the linearity of the integral with respect to the integrator dQ = @(S) dS 
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CHAPTER 7 

Hedging in Continuous and 
Discrete Time and the Greeks 

7.1 Introduction 

The evaluation theory we have presented so far relies on the possibility of replicating 
a financial derivative by a portfolio of traded assets (replication portfolio) and a 
self-financing strategy. 

If we assume a perfect replication, we can evaluate a derivative product without 
explicitly deriving the replicating strategy. This is made possible by the introduction 
of the equivalent martingale measure and the universal pricing theorem. However, 
in practice, the price calculated by this risk-neutral valuation theory makes sense 
only if the corresponding replication is conducted. Thus, it is necessary to explicitly 
determine the replication portfolio in order to do the replication. 

In the first part of this chapter we will show that the replication strategy may be 
derived from the risk-neutral valuation surprisingly simply. 

Depending on the state space modeled, the following basic requirement has to hold 
in order to replicate arbitrary payoff functions: 

0 To replicate arbitrary payoff functions modeled over a continuous state space, 
it is in general necessary to trade continuously and in infinitesimal amounts of 
the underlyings. The existence of such a replicating trading strategy is ensured 
by the martingale representation theorem, see Theorem 54. 

To replicate arbitrary payoff functions modeled over a finite, discrete state 
space, it is only necessary to trade at discrete times. However, the number of 
traded assets (underlyings) has to match the number of possible state transitions 
over one time step, see Section 3.1.2. 
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Both modelings (continuous or discrete replication) do not represent reality exactly: 
on the one hand it is not possible to trade continuously in infinitesimal amounts; on 
the other hand the number of possible states is usually much larger than the number 
of traded assets.' 

Apart from the question of how to derive the replication strategy for time-continuous 
trading, we are especially interested in the replication when trading takes place at 
discrete points in time only. In this case, which is closer to reality, a complete 
replication is not possible. A residual risk remains. 

Definition 85 (Hedge): 1 

A replication portfolio (almost) replicating a derivative product and thus, if considered 
together with the derivative product neutralizing (reducing) the total risk, is called a 
(partial or incomplete) hedge. The corresponding trading strategy is called hedging. 

First we will derive the delta hedge, delta-gamma hedge, and vega hedge from the 
risk-neutral evaluation theory (Section 7.2). We will then transfer these hedges to 
the case of trading in discrete time, these being incomplete hedges, and analyze the 
residual error (Section 7.4). 

The Bouchaud-Sornette method (Section 7.5) determines the replication portfolio 
that minimizes the residual risk. The residual risk has to be measured in the real 
measure P. There is a real risk of a loss due to incomplete hedging. The real measure 
is no longer irrelevant since a complete replication is no longer possible. 

1 

7.2 Deriving the Replications Strategy from 
Pricing Theory 

Let M := (SO,  S 1,. . . , S,) denote a set of It6 price processes, representing a complete 
market of traded assets. Let the process N = S O  be a numkraire and QN the corre- 
sponding martingale measure. Let t H V(t) denote the price process of a derivative 
product, i.e., 

We assume that the value of the derivative product V can be written as a function 
of ( t ,  So(t) ,  S ~ ( t ) ,  . . . , S,(t)), i.e., we have 

' At a stock exchange the prices that can be attained by a stock are in fact discrete. 
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If V(t) is given by an evaluation theory-i.e., an analytic formula or pricing 
algorithm-as a function of the underlyings, then the self-financing replication port- 
folio 

n(t> := 40(t)so(t) + 41(t>s l(t> + . . . + 4n( t ) sn ( t )  (7.2) 

with n(t) = V(t) (replication) may be determined as follows: 
The property that II is self-financing may be written as (see Definition 66) 

dn(t) = ~o(t)dSo+~l(t)dSI(t)+~..+~n(t)dS,(t) = z Q i d S i .  
n 

i=O 

Furthermore we find from ItB’s lemma (Theorem 47) applied to (7.1) 

From dII(t) = dV(t) (replication), we find 40,. . . , $J~ by comparing coefficients. It is 

dSi dS j = 0. 
1 a2v(t) 

at 2 . .  l ,J=O asiasj- 
av(t> d t+  - c - 

=( ... ) dt 

(7.4) 

Conclusion: Under a model, which permits the evaluation of V through a martin- 
gale measure and universal pricing theorem, i.e. without explicit construction of the 
replication portfolio, the replication portfolio may be calculated a posteriori from the 
partial derivative of the price after the underlyings. 

Interpretation: Comparing coefficients of dV and d n  we find Equa- 
tions (7.3) for the replication portfolio process 4. The partial differential 
equation (7.4) is just a reformulation that 

V(t) = v(t, So(t), S ~ ( t ) ,  . . . , Sn(t>> 

is the value process of a self-financing portfolio in the coordinates 
(So(t),S ~ ( t ) ,  . . . , S,(t)). Equation (7.4) may be used together with the $nu1 
condition 

V(T, S o ( r ) ,  Si(T), . . . , S A T ) )  = VT 

to determine V(t) for t < T from the given payoff profile VT. This is the entry point 
to the pricing of derivatives by partial differential equations; see Section 2.1 1. uI 
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7.2.1 Deriving the Replication Strategy under the 
Assumption of a Locally Riskless Product 

The ansatz V(t) = V(t, So( t ) ,S  ~ ( t ) ,  . . . , S,( t ) )  is just one possible way of interpreting 
V as a function of the underlyings. It is a specific choice of the coordinate system 
leading to very natural equations for the portfolio parameters and the partial differ- 
ential equations for V. If N = So is locally risk-free, we may easily give V in the 
coordinates ( r ,  S 1 ( t ) ,  . . . , S,(t)) alone. A special case which we consider now: Let 
N = S o  denote a locally risk-free numkraire, i.e., assume that the process N (i.e., S O )  
is of the form 

dN 
dN = -dt, 

at 
(7.5) 

i.e., we assume that dN does not have a dW-component.2 For N > 0 (N is a numkraire) 
we have r := 7 a i o m  

a log(N)N dt = rN dt. dN = - &  = ~ 

aN 
at at 

We assume that, for a given N, V(t) is given as a function in the coordinates 
( r ,  S ~ ( t ) ,  . . . , S,(t)) and denote this function by V again, i.e., 

v(0 = V(t, S l ( 0 ,  . . . , S n ( t > ) .  (7.7) 

In other words: N is no longer a modeled free q~ant i ty .~  
If V(T) is given in this from, we may derive the self-financing replication portfo- 

lio (7.2) with n(t) = V(t) as follows: From ItB's lemma (Theorem 47), applied to 
V(t,Sl(t), ..., S. ( t ) )  we have 

-\..., ". 
With dn(t) = zYZo #i dSi = dV(t) (self-financing of n, replication of V) we find 
40,. . . , @n by comparing the coefficients of dt and dSi, i 2 1 as 

=( ... ) dt 
. , J - .  

(7.8) 

The property is local, since 9 may very well be stochastic. An example would be dN = rN dr, as it 
was considered for the Black-Scholes model in Chapter 4. 
An example is the Black-Scholes model, where N ( t )  = exp(r t )  and r is a fixed model parameter. 
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The equation for 40 seems unnaturally complex when compared to the equation for 
$1,  . . ., &. This is a consequence of representation (7.7), which we had assumed for 
V ;  see Section 7.2.3. However, since the portfolio is self-financing, it is not necessary 
to calculate 40 from (7.8); 40 follows from the condition of self-financing portfolios. 

7.2.2 Black-Scholes Differential Equation 

Writing $$! = F N  =: rN the equation for $0 in (7.8) becomes 

$o(t)r(t)N(t) dt = - dt + 1 2 a2v(t) dSi dS , . 
at 2 . .  l , J = l  asiasj-+ 

=( ... ) dt 

Since 

we also have 

and denoting the instantaneous correlations by pi,,, i.e., dS; dS, = aiajpi,,  d t  we 
arrive at 

This is a variant of the Black-Scholes partial differential equation in the coordinates 
( t ,  S I , .  . . , Sn) .  

7.2.3 Derivative V(t)  as a Function of Its Underlyings S i ( t )  

The representation of the portfolio process components 4i as a partial derivative of 
V as well as the partial differential equation for V depend of course on the chosen 
coordinate system of the underlyings. Instead of comparing coefficients of dSi, i 2 1 
and dt (as above), in general, it is possible to compare the coefficients of dt and the 
differentials of the driving Brownian motions dW;. 

To illustrate that we have just considered a change (or rather substitution) of 
coordinates, let us reconsider V written in the two different coordinate systems above, 
i.e, 
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With So = N and dN(t) = r(t)N(t) dt (this assumption makes it possible to replace 
the dependence on SO by a dependence on t) it is 

V"(t, S 1 , .  . . , S,) = Vn+l(t, N(t), S 1 , .  . . , S,),  

thus 
avn avn+I a v n + l  aN - avn+l aN 
at at aiv at at at 

+40 - 7  
- -  - +-- - - 

i.e., 
BN avn+I (Po- = - 

at at  at ' 

avn -- 

Together with dS; dS, = 0 if i = 0 or j = 0 in (7.4) this gives 

dSidSj = 0 
at 

=( ... ) dt 

dS;dS; = 0 
avy t )  aN 1 a2V"(t> 
- dt -40 dt dt + - ~ a 

at 2 . .  I , J = 1  as;as,- 
=( ... ) dt 

7.2.3.1 Path-Dependent Options 

Our assumption that V(t) is a function of Si ( t )  excludes path-dependent options. 
However, our considerations may be easily extended to the case of path-dependent 
options by writing V as a function of the corresponding path quantities. For example, 
considering a path-dependent option of the form 

with 

we derive 
dl dS + - N ( t )  av(t) 

d t +  - dV(t) = - 
ai as at 

and substitute dZ(t) = S ( t )  dt. For the replication portfolio we thus get 
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7.2.4 Example: Replication Portfolio and Partial 
Differential Equation of a European Option under a 
Black-Scholes Model 

As an illustration we reconsider these calculations for a simple model, the Black- 
Scholes model, with price processes N for the savings account and S for the stock: 

dN(t) = rN(t) dt, 

dS(t) = p S ( t )  dt + d ( t )  dW(t), 
N(0 )  = 1, 
S ( 0 )  = So. 

1 

For a European option with strike K and maturity T, i.e. Payout max(S (T) - K ,  0)) = 
V(T), the Black-Scholes-Merton formula (4.3) for the value V at time t is 

V(t, S(t)) = S(t)@(d+) - exp(-F(T - t ) )K@(d-) ,  

where 

2 .  1 [log( F) + r(T - t )  f e2(T - t )  
d -  
* - 34(T=?j 

See (4.3) in Chapter 4. 
This gives V as a function o f t  and S ( t ) ,  since r is seen as constant and thus N ( t )  

is known as a deterministic function oft .  With N(t) = exp(r t) we may write V as a 
function of ( t ,  N(t), S (t)), namely 

where 

It is 
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With 

we get 

and thus 

Similarly, we can derive 

K 
@(d-). - av - -- 

aN(t )  - N ( T )  

To sum up, we have V( t ,  N( t ) ,S ( t ) )  = qjO(t)N(t) + $l ( t )S( t )  with 

K 
4o(t) = -- @W), 

N ( T )  
$l(t) = @(d+). 

Indeed, we might simply have read off the representation of the replication portfolio 
from (7.10). 

For the function 

K 

N ( T )  
V( t ,  n, s)  = s@(d+) - n-@(d-) 

with 
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it is 

d N d N = O  
dNdS = O  - u2 = 0. 

dV(t) 1 @V(t) 
at  2 asas 

-dt+ -- 

See Exercise 10. Furthermore, the final condition 

V ( T ,  N ( T ) ,  s) = max(s - K ,  0) 

holds. 

7.2.4.1 Interpretation of V a s  a Function in (t ,  S) 

For the Black-Scholes model, the classical way is to write V as a function o f t  and 
S(t) only. In this case we get (see (7.8)) 

In addition we have from V = @ON + 41s 

which brings us once again to the Black-Scholes partial differential equation 

rV = r@o(t)N(t) + r#lS(t) 

av(t) 1 a2v(t) av(t) 
at  2 dS as - - - + --u2s2--, + r-S 

and thus 

Definition 86 (Delta Hedge): 
This choice of the replication portfolio given in Equations (7.2) and (7.3) is called 
Delta hedge. J 

1 
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Interpretation: Considering the derivative product V as a function 
of the underlyings S , then the portfolio II given by the delta hedge is the 
local linear approximation of V; see Figure 7.2. For a fixed path w the 
map r H S (t, w )  is almost surely continuous (a property of It8 processes) 

and on that path we have V(T) = & dV = & dn .  This corresponds to the main 

theorem of ordinary calculus: f(T) = & df = & f ’ ( t )  dt (e.g. for differentiable f). 
This illustrates why the portfolio II is only required to coincide with V upon their first 

T T 

T T 

derivative by S, i.e., the so-called delta: = 8. 4 

7.3 Greeks 

The partial derivatives of the value V(t) of a derivative product upon product- or 
model-parameters are important quantities. They describe how the product reacts to 
infinitesimal changes and are essential for the construction of the replication portfolios. 
These quantities are usually denoted by Greek letters and therefore called Greeks. 
Here we give definitions of the most important Greeks: 

Definition 87 (Delta): 
The first-order partial derivative of the price of a derivative product with respect to 
the underlyings is called delta. It is the first-order sensitivity of the derivative product 
to price changes of the market-traded assets (or market quotes). A 

Definition 88 (Gamma): 
The second-order partial derivative of the price of a derivative product with respect to 
the underlyings is called gamma. It is the second-order sensitivity of the derivative 
product to price changes of the market-traded assets (or market quotes). A 

Definition 89 (Vega4): 1 

The first-order partial derivative of the price of a derivative product with respect to 
the underlyings log-volatility is called vega. It is the first-order sensitivity of the 
derivative product to log-volatility changes of the market-traded European options. 1 

Definition 90 (Theta): 
The first-order partial derivative of the price of a derivative product with respect to 
time is called theta. It is the first-order sensitivity of the derivative product to time. 1 

Definition 91 (Rho): 
The first-order partial derivative of the price of a derivative product with respect to the 
interest rate ( r )  is called rho. It is the first-order sensitivity of the derivative product 
to a change in interest rate. 

1 

1 

1 

1 

Vega is not a Greek letter. 
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The definition of rho is only used for models with nonstochastic interest rates. For 
interest rate derivatives (evaluated under a model of stochastic interest rates), as will 
be considered in the later chapters, the interest rates are underlyings and rho is just a 
delta. -I 

7.3.1 Greeks of a European Call-Option under the 
Black-Scholes Model 

Given the Black-Scholes model with price processes for the savings account N and 
the stock S : 

dN(t) = rN(t) dt, 

dS(t) = pS(t)  dt + a S ( t )  dW(t), 
N ( 0 )  = 1, 

S ( 0 )  = so, 

consider a european stock option with payout max(S(T) - K, 0)) = V(T) .  From 
Chapter 4 the price V(0)  of the option under this model is given by the Black-Scholes- 
Merton formula (4.3): 

V(0)  = So("(+) - exp(-rT)K@(d_), 

where 
Y2 O(X) := - y 1 dY 4% S' -a? 

and 

Thus, the price is a function of S O ,  r, K ,  CT, and T .  

They are given in Table 7.1. 
From the Black-Scholes-Merton formula we may derive the Greeks analytically. 

7.4 Hedging in Discrete Time: Delta and 
Delta-Gamma Hedging 

If a delta hedge is applied continuously, then it achieves a perfect replication. At 
any time, the portfolio V - n is neutral with respect to infinitesimal changes in the 
underlyings Si. However, if the delta hedge is applied only at discrete times t k ,  i.e., 
the portfolio process ( & # I , .  . . , &) is kept constant on time intervals [ t k ,  t k + l ) ,  then 

103 



Greek Definition within the Black-Scholes model 

av 
Delta (A) - = @(d+) 

0 

Vega 

Theta (0) - 

Table 7.1. Greeks within the Black-Scholes model. 

the replication is no longer exact.5 While in continuous time 

. , 
Y 

=O 

is exact by It8’s lemma (and (7.4)), we have for the time-discrete case (AV = V(t + 
At) - V(t)) 

(7.1 1) 

#( ...) At 

(AS; AS j - yj,j At) + h.o.t., - 2 av(t) as ASi + c ~ .. (7.12) 
a2v(t) 

, 
- 

2 i,,=o as i as I =o ” 
#O 

See also the discussion of self-financing (Definition 66). 
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where yI,J is given by dSi dS = yi,, dt and h.0.t. = O(lAt12, /At M i l ,  IAS;I3). For 
comparison, for the replication portfolio we have in the time-discrete case 

n 

AII(t) = C p j  ASj .  
i=O 

(7.13) 

Assuming we have an exact replication at time t (V( t )  = II(t)), then there is no choice 
for the replication portfolio Cp such that AV(t )  = AII(t) in general. An exact replication 
at time t + At is not guaranteed. 

To ensure that the replication portfolio is self-financing, we have to reformulate the 
requirement in the time-discrete setting. Trading at discrete times t k  the self-financing 
property is 

2 ( @ i ( t k )  - @i(tk-l))S i ( t k )  = 0. 
i=O 

This may be ensured, e.g., by the choice of 40 according to 

(we have SO # 0 since we assumed that S O  is a numtraire). While in continuous time 
V may be replicated exactly with a self-financing portfolio, there is a choice whether 
40 is chosen to reduce the replication error or 40 is chosen to keep the portfolio 
self-financing . 

The restriction to a self-financing portfolio leads to an error propagation of the 
replication error via (7.14); see Section 7.4.2. 

7.4.1 Delta Hedging 

A delta hedge determines the replication portfolio such that the delta of the replication 
portfolio II matches the delta of V .  In other words, the delta of the replication error 
V - II is zero. The replication error is first-order insensitive to movements of the 
underlyings. If we consider the requirement of self-financing to be ensured by the 
choice of 40, then we chose 
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For the error AV(t)  - AII(t) we get from (7.12) and (7.13) 

and with 4; = - for i # o as 

(AS, AS j - y;,j At)  + h.o.t., 
, 

Y 

#O 

7.4.2 Error Propagation 

The choice of 40 at time t = 0 is determined by the initial condition n(0) = V(0) 
and at later times t = t k ,  k = 1,2, . . . by the requirement for a self-financing trading 
strategy: 

(7.15) 

This results in an error propagation. Assuming that at time t k  the replication error due 
to the previous choice of #i ( fk- l )  is V(tk) - Cr=, # i ( t k - ~ ) S ; ( t k )  =: e(tk), then we have 
with 

(7.16) 

and # i ( t k )  = av(tk) fork # 0 (delta hedge), such that 

Thus the requirement for a self-financing portfolio implies 

This shows how the replication error at time t k  is propagated over the time step At by 
the requirement for a self-financing strategy through $0. 
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Summarizing, we have for the delta hedge 

(ASi A S  - yi,j At) + h.o.t., 
ASo 1 d2V(t) 

~ AV(t) - A n ( t )  = (V(t) - n(t))- + - 
SO 2 r,,=O aSi 8s j ” ! 

f O  

where h.0.t. = O(lAtI2, IAt ASil, IAS;I3). 

7.4.2.1 Example: Time-Discrete Delta Hedge under a Black-Scholes 
Model 

We consider a Black-Scholes model with the notation as above. For the replication 
portfolio 40(t)N(t)  + 41 (t)S ( t )  we have 

We use this choice to trade within the replication portfolio at discrete times l k ,  

k = 0,1, . . .. The size of the “cash position” is chosen such that the portfolio remains 
self-financing, i.e. 

At time to = 0 the portfolio is set up according to the option value known from the 
evaluation 

Figure 7.1 shows the result of a weekly delta hedge. 

‘ Eventually, the initial investment in the replication portfolio is not sufficient, see Figure 7.1, right. 
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Figure 7.1. Samples of the value of the replication portfolio using weekly delta 
hedging. The market ( N , S )  follows a Black-Scholes model dN(t)  = rN(t)  dt, dS(t)  = 
p S ( t )  dt + d ( t )  dW(t) with (N(O),S(O)) = (1.0, l.O), r = p = 0.05 and c ( t )  = 0.5. 
We aim to replicate the payout X ( T )  = max(S(T) - K ,  0))  with K = 1 .O and T = 6.0 
(line). The replication portfolio II = @ON + 41 S is chosen according to a delta hedge 
at times tk = k x $. Shown are the realized values I I (T)  (dots) over S ( T ) .  In the 
figure on the left the delta hedge uses the correct model parameters. In the figure 
on the right the portfolio is constructed assuming a volatility of 0.4 (instead of 0.5). 
As a result the option value is underestimated and the replication portfolio is set up 
without enough initial value, such that at maturity T = 6.0 the mean of the replication 
portfolio is systematically below the option payout. In addition, the variance of the 
replication portfolio is increased, since the delta hedge used is wrong. 

108 



7.4.3 Delta-Gamma Hedging 

Motivation (The Delta Hedge Again): A delta hedge (Figure 7.2) 
applied in time-discrete steps At, = t,+l - t, is not exact since the 
option value is, in general, a nonlinear function of the changes of the 
underlyings ASi = Si(t,+l) - Si( t j ) .  However, the replication portfolio 

is linear in the underlyings. 

For motivation reconsider a mar- 
ket consisting of a stock S and 
some other numkraire asset N (as 
in the Black-Scholes model) and a : f l=OoN+Ct),S 

derivative product V as a function : (linear in S) 

of ( t , S ) :  V = V ( t , S ) .  At fixed 
time t j ,  V will be a nonlinear func- 
tion S H V(tj,S) of S in general. 
However, the replication portfolio 
KI = $ON + 41 S is linear in S . Lo- 
cally, for a fixed point S ( t j ,  w )  the 
replication portfolio may match the 
value and the first derivative in S (the delta) of V: For infinitesimal changes dS the 
infinitesimal changes of derivative (dV) and replication portfolio dII agree. If the 
movements of S are within in a larger (noninfinitesimal) range AS( t , ) ,  then derivative 

4 

: V(t,,S) 

v 'n,  

SC$, w )  s 

Figure 7.2. Delta hedge. 

and replication portfolio may deviate significantly. 

The error given by the only linear approximation of the derivative product may 
be reduced by adding products to the replication portfolio which are themselves 
non-linear, e.g., options. This is possible if such products are traded and may be used 
for replication: Some standardized options are traded in sufficient quantities and may 
be used to replicate derivative products that are not traded in liquid quantities. An 
example of such a case would be options traded at standardized maturities, which 
could be used to build a replication portfolio for an option with a nonstandard maturity 
(and/or strike). 

We consider a portfolio consisting of So,  S 1 ,  . . . , Sfl  and additional (derivative) 
products CI, . . . , C, 
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Assuming that, like V(T) ,  the Ck(r)’S may be written as functions Ck(t,So,. . . , S,) of 
the Si’s, we have for the replication portfolio n(t) instead of (7.13) 

where again h.0.t. = O(lAtI2, ]At ASil, ]ASJ3). Let us compare this with the expansion 
of V from (7.12): 

(AS, AS j - yj,j At) + h.0.t. 
1 a2v(r) 

AV(t) = 2 ASi + - c ~ as I 2 . .  I,J=O asiasjL ,=O Y 
, 

f O  

If the portfolio process (40,. . . , @,z, +I , .  . . , qm) solves the equations 

is j =  1, ..., n 
a2 v 

k =  I 

(7.17) 

i =  1, ..., n, (7.18) 

then the residual risk is AV(t) - An(t )  = O(lAtI2, /At AS,], lAS,13). To neutralize the 
gamma of a derivative product V it requires at most as many hedge derivatives ck as 

partial derivatives -&%- i 5 j = 0,. . . , n (gamma) are nonzero. It requires at most 

m = n(n - 1)/2 additional derivative products. 

Remark 92 (Linear Product, Static Hedge): If a derivative product V is a linear 
function of the underlyings, then the delta hedge replicates the product globally. 
In this case, not only is a gamma hedge unnecessary (gamma and all higher order 
derivatives are zero), but the dynamic adjustment of the replication portfolio is not 
required. In this case the hedge is called staric and the derivative product is called 
linear product. 

as, as, 
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7.4.3.1 Example: Time-Discrete Delta-Gamma Hedge under a 

We consider a Black-Scholes model with the notation as above. Let C1 denote an 
option with maturity T* and payoff profile max(S(T*) - K*,O).  We aim to replicate 
an option V with maturity T < T* and payoff profile max(S(T) - K,O).  We allow 
trading at discrete times 0 = to < tl < . . .. 

Black-Scholes Model 

For the option V to be replicated we have 

For the replication portfolio Il we have 

For the replication portfolio n ( t )  = @o(t)N(t) + @l(t )S( t )  + y?~(t)C(t) we find 

We chose this to trade within the replication portfolio at discrete times tk. The size 
of the “cash position” is chosen such that the portfolio remains self-financing, i.e., 

At time to = 0 the portfolio is set up according to the option value known from the 
evaluation formula.7 

1 
GO(t0) = -(V(to> - @l(tO)S(tO)) 

N(tk) 

Eventually the initial investment into the replication portfolio is not sufficient; see Figure 7. I ,  right 
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Figure 7.3. Samples ofthe value of the replication portfolio using monthly hedging: 
delta versus delta-gamma hedge. 
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Figure 7.4. Samples of the value qf the replication portfolio using weekly hedging 
with wrong interest rate. 



Interpretation (Role of the Hold Period At): The delta hedge 
neutralizes the first-order error in S ; the delta-gamma hedge neutralizes 
the first- and second-order errors in S (Figure 7.3). The residual error 
of the delta-gamma hedge is of the order 

O(lAtI2, lAt ASil, lASiI3). 

A question arises: 

Why is the error in At not considered? 

First, the answer is given in the interpretation of the hedge strategies: They aim to 
minimize the risk in the underlyings S i ,  i.e., the dependence of V ( t )  - n(t) on Si ( t ) .  
The interpretation is that the length of the hold period At is not known a priori. In 
our considerations we thus assume At + 0. Then the residual error is @AS?) for the 
delta hedge and O(ASl )  for the delta-gamma hedge. 

Furthermore: An error in AS, is stochastic, i.e., a risk. An error in At is determinis- 
tic. If the hold period At is known a priori, then the error in At may be compensated for 
if the portfolio is not required to match the derivative value initially, i.e., n(0) = V(0) .  
The derivative value V ( 0 )  corresponds to the replication portfolio for infinitesimal 
hold periods At + 0. We will consider a known hold period At > 0 in Section 7.5. 01 

7.4.4 Vega Hedging 

As in the delta-gamma hedging, where in addition to a hedge of the option’s delta a 
hedge of the option’s gamma is considered, we may consider further dependencies 
of the pricing function. If the dependence on the log-volatility of the underlyings, 

dV i.e. - for dS, = pISl dt + u r S i  dW,, is neutralized, then this called vega hedging. au, 

7.5 Hedging in Discrete Time: Minimizing the 
Residual Error (Bouchaud-Sornette Method) 

The delta hedge transfers the optimal trading strategy for trading in continuous time 
to the time-discrete case, for which the strategy is not necessarily optimal. A more 
adequate calculation of a risk minimizing trading strategy may be derived from the 
residual risk: We look for a trading strategy that minimizes’ the residual risk. This is 
the idea of the method of Bouchaud-Sornette [49]. Since for the time-discrete case 
the replication portfolio does not give an exact replication, we have yet to clarify in 
which sense a replication portfolio is optimal, i.e., in which norm the hedge error 

* In contrast to neutralizes 
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Figure 7.5. Value of the replication portfolio without rehedging. The replication 
portfolio is set up in t = 0.0 corresponding to a delta- or delta-gamma hedge and kept 
fixed until option maturity T (model and option parameter are as in Figure 7. I ) .  

is measured. The optimal replication portfolio derived from this criterion is not 
necessarily identical with the replication portfolio of the delta hedge and depends on 
the norm that is used to measure the residual risk. 

At time T a payoff profile V(T) has to be replicated as closely as possible by a 
replication portfolio t H rI(t)J1=T. We consider the mean squared error, i.e., the 
variance of V(T) - n(T): 

Var(V(T) - n(T)). 

We also wish to minimize the variance in a conditional sense and repeat the required 
definitions and a lemma: 

Definition 93 (Conditional Variance): 1 

Let C c F denote two cT-algebra and X an F-measurable random variable over a 
probability space (R, P, F). Then 

Var(X1C) := E(X21C) - (E(XIC))’ 

is the conditional variance of X under C. _I 

Remark 94 (Conditional Variance): 
random variable. 

The conditional variance is a C-measurable 

114 



Lemma 95 (Conditional Variance): Let C c 7 denote two a-algebras, X an 
7-measurable random variable and Y a C-measurable random variable over the 
probability space (Q, P, 7). Then 

Var(X + YlC) = Var(XIC). 

Proof: The proof is elementary. From E(X . YIC) = Y . E(XIC) and E(Y21C) = Y2 
we get 

Var(X + Y I C) 'Af E((X + Y ) ~  I C) - (E(X + Y I c)12 
= E(X2 [ C) + 2E(X Y I C) + E(Y2 I C) 

- E(X I C)2 - 2E(X I C) E(Y I C) - E(Y I Q2 

= E(X2 IC)+- +R- E(X I C)2 -- -R 
= E(X2 I C) - E(X I C)2 = Var(X 1 C). 

01 

Let 0 = to < tl < . . . < t ,  = T denote a time discretization and #(t)  = (40,. . . , &) 
a portfolio process n(t) = #( t )  . S ( t )  = C&#;(f)Si(t) ,  with piecewise constant # i ,  

i.e., we assume that trading takes place only at discrete times (# [ ( t )  = #, ( tJ )  for 
tJ I t < f J + l ) .  

7.5.1 Minimizing the Residual Error at Maturity T 

Trading Strategy: At time fk the self-financing portfolio # ( f k )  is chosen such that the 
residual risk is minimized, i.e., 

Var( V( T )  - n( T)  I 7,, ) + min , 

where (7;) denotes the filtration generated by S. 
To simplify notation let SO := P ( T )  denote the bond with maturity T, i.e., the 

financial product that guarantees a payment of 1 at time T ,  P ( T )  : t H P(T; t )  with 
P(T;  T )  = 1. This product will later lay the foundation for the theory of interest rates; 
see Definition 97 in Chapter 8. It is not required that one of the products is the Bond 
with maturity T, but it simplifies the notation since 

and instead 
,n- 1 

n ( T )  = n(0) + #(ti)  A S ( t / ) .  
1=0 
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We may equivalently write 

-note that 40 does not enter in the last sum. Thus 40 may be chosen such that the 
condition of self-financing is fulfilled and q$, i 2 1 determines the “optimal hedge”. 

S 

SO 
With the notation S = - we have 

m- I 

V(T) - n ( T )  = V(T) - n(0) - C # ( t i ) .  AS(t1) 
/=0 

k- I 

and with Lemma 95 

Finally we get from 
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the equation for 4(tk) 

l=k+l  

7.5.2 Minimizing the Residual Error in Each Time Step 

The strategy described in Section 7.5.1 focuses at each time t k  on the minimization of 
the residual risk at maturity T .  An alternative trading strategy is to require at each 
time t k  that the residual risk at time tk+l is minimized by the choice of the portfolio 
4(tk).  

W V ( t k + l )  - n(tk+l) I Ffk) + min. 

Obviously (consider the last time step k = m - 1 in (7.19)) the equation for + ( t k )  

then follows as 

Remark 96 (Measure): The measure under which the minimization, and thus the 
covariance in (7.19), has to be considered is the real measure P. A consideration 
under a martingale measure essentially corresponds to a measuring of the risk under a 
different norm. 

Experiment: At h t t p  : //www. C h r i s t i a n - f r i e s .  de / f inmath /  
apple t s /HedgeSimula tor  . html a hedge simulator can be found. 
There, in a Monte Carlo simulation, paths t H ( N ( t ,  w) ,  S (t, w) )  are 
generated corresponding to a given model. Along each path a self- 

financing trading strategy is applied to a replication portfolio. At maturity T the value 
of the replication portfolio is compared to the option value V(T). It is possible to 
choose the model parameters assumed in the construction of the replication portfolio 
independent from the model parameters, which determine the evolution of the market. 
A mismatch in the parameters results in an increased residual risk (see Figure 7.1). a1 
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Part 111 

Interest Rate Structures, 
Interest Rate Products, and 
Analytic Pricing Formulas 
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Motivation and Overview - Part 111 

Part I11 will consider the interest rate structures and the analytical pricing of interest 
rate derivatives. The methods for pricing financial products may roughly be classified 
into three groups. These are 

0 Model-independent analytic pricing: The financial product can be separated 
into a portfolio of traded assets. The value of the derivative product is then given 
by the value of the portfolio. The portfolio represents a replication portfolio, 
i.e., a static hedge. 

0 Model-dependent analytic pricing: The replication of the financial product 
requires dynamic hedging, i.e., a continuous adjustment of the portfolio, and 
thus requires a model for the underlying stochastics. The value of the replication 
portfolio depends on the model. However, the product and the chosen model 
are simple enough to derive an analytic pricing formula. 

0 Model-dependent numeric pricing: The replication of the financial prod- 
uct requires dynamic hedging and thus requires a model for the underlying 
stochastics. The value of the replication portfolio depends on the model. The 
complexity of the product or of the model requires a numerical calculation of 
the price. 

In Chapter 8 we will define some elementary products and interest rates. In Sec- 
tion 9.1 simple interest rate products will be presented which allow model-independent 
analytic pricing. Here, the corresponding pricing is discussed right after the definition 
of the product. In Section 9.2 we define some simple options. In Chapter 10 and 11 we 
will show how to derive some analytic pricing formulas using some simple standard 
models. In Chapter 12 more exotic options will be presented, for which pricing 
requires generally numerical methods. 

Numerical pricing methods and complex pricing models will be considered in 
Parts IV and V. 
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CHAPTER 8 

Interest Rate Structures 

8.1 Introduction 

In previous sections we have considered a one-dimensional stochastic process as the 
underlying, representing a stock for example. We will now turn to the modeling of 
interest rates and later the pricing of interest rate derivatives. Interest rates potentially 
offer a richer structure than a single stock, since at each time t we have to consider an 
interest rate curve F ( T ;  t ) ,  T 2 t instead of a scalar stock price S ( t ) .  

Let F ( T ; t )  denote the interest earned on an investment made over the period 
[ t ,  TI,  if the contract is written at the beginning t of the period, i.e., we assume that 
N (1 + F ( T ;  t )  (T - t ) )  is the amount one receives at time T ,  if one invests the amount 
N at time t ,  and the contract is fixed at the beginning of the period, i.e., in t.' For 
different times T I  < T2 two such interest rates F(T1; t )  and F(T2; t )  may be different, 
the reason being the different interest earned on the two subperiods [ t ,  T I ]  and [ T I ,  Tz], 
e.g., if interest rates are expected to rise or fall in future. Thus, if one decomposes the 
time axis into small interest rate periods [Ti, Ti,,] and defines 

then it is rational to represent each interest rate L(Ti, Ti+1; t )  by its own stochastic 
process. Here we assume TO = t and L(Ti, Ti+l; t )  denotes the interest rate earned over 
the period [Ti, TL+1] as given by a contract which is fixed in t.2 See Figure 8.1. It is 
common to have interest rate derivatives that depend on more than one interest rate 
and in this sense depend on the movement of the whole curve. 

We will comment below on the fact that the contract may be fixed at an earlier time than the start of the 
interest rate period. 
Equation (8.1) represents the relationship between interest earned over the period [t, Tk] and interest 
earned from smaller subperiods, including compounding. Since all rates are fixed in time 1, the 
difference is only interpretation. Thus the two sides in (8.1) must agree. 
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Figure 8.1. Modeling an interest rate curve by a family of stochastic processes. 

8.1.1 Fixing Times and Tenor Times 

If the interest rates F(T;; t )  for periods [ t ,  Ti] for i = 1 , .  . . , k are known, then we can 
derive from Equation (8.1) the rates for the subperiods [Ti-], Ti]. It is 

1 + F(T;; t)(T; - t )  
1 + F(Ti-l;t)(T1-, - t )  

L(T,-,,Ti;t) = ~ - 1). (8.2) 

The rate L(Tj-1, T;; t )  is the interest rate for the future period Ti-], Ti, that has been 
derived from the interest rate curve as of time t .  The interest rate has been fixed at 
time t, i.e., the stochastic process is evaluated in t .  The time t is the simulation time 
of the stochastic process; it thus determines that the random variable L(Tj-1, Ti; t )  has 
to be (at least) %-measurable. The times T; mark the start and the end of the periods. 
The period structure {To, T I , .  . . , Tk} is also called the tenor structure. 

8.2 Definitions 
All of the following random variables and stochastic processes are assumed to be 
defined over the same probability space (0, 7, JP). As the building block of all interest 
rates we define the bond: 

Definition 97 (Bond3): 
Assume that a guaranteed payment of a unit currency4 1 in time T2 is a traded product 
at any earlier time t < T2 and its value in state w E R is uniquely determined by ( t ,  w). 

1 

The term defined is the zero-coupon bond (there are no intermediate payments (coupons) until maturity). 
We give the trivial extension to a coupon bond in Definition 108. 
See Remark 134. 
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The value of this product is called the price of the T2 bond as seen in (t,  w )  and will 
be denoted by P(T2; t, w). It defines a stochastic process on [0, T2] which we denote 
by P(Td : 

P(T2) : [O, T2] x R H R. 

Interpretation: The value of the bond P(T2; t, w )  is the amount we 
have to invest at a given time t and a given state w to receive 1 in T2. Thus 
for a (riskless) investment of 1 at time t we get a guaranteed payment of 
l /P (T? ;  t, w )  at time T2, because we simply buy lIP(T2; t ,  w )  times the 

bond. Note that we assume that all products may be traded in arbitrary fractions and 
that the price is unique, the same for selling and buying. Thus P(T2; t ,  w )  not only 
implies the interest earned on an investment, it also implies the interest to be paid for 
a corresponding loan. 4 

Definition 98 (Forward Bond): 1 

Let 0 5 T I  2 T2 < 03. As forward bond we denote the stochastic process 

defined on [0, T I  3. -I 

interpretation: The forward bond P ( T I ,  T2;  t )  corresponds to the 
amount that has to be invested at time T I  to receive a guaranteed payment 
of 1 in T2, if that contract is finalized at time t in state w. To receive 
1 in T2 one has to invest P(T2;t) in t. This investment is financed by 

borrowing until T I ,  i.e., we borrow P(T2; t )  1 /P (T l ;  t )  times the value of a P(T1) bond 
(compare Figure 8.2). 

It is important to understand that P(T1, T2; t )  is not the value of a forward bond at 
time t. The value of that contract is simply 0. What is denoted by P(T1, T2; t )  is the 
amount that has to be paid in T I  as part of a contract written in t. The subject of the 
contract is a bond which liesforward in time. 

4 Obviously we have P(T2; t )  = P(r, T2; t) .  

Often the bond (or forward bond) will be represented by a rate (or forward rate). 
However, the interest rate that corresponds to a bond depends on how we think 
of interest earned, e.g., if compounding, i.e., interest paid on interest received, is 
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T, Bond (scaled) 
I 

Figure 8.2. CashPow for a forward bond. 

considered. Thus, there are many different definitions of interest rates. For that reason 
we see an interest rate as a derived quantity. We define some interest rates. 

Definition 99 (Forward Rate ((Forward) LIBOR)): 
Let T I  < T2. The (forward) LIBOR’ L(T1, T2) is defined by 

1 

i.e., 

- ’ LIBOR = London lnter s a n k  offer Rate. The acronym LIBOR is often used for a rate following 
Definition 99, because the interbank rate follows this convention. 
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Definition 100 ((Continuously Compounded) Yield): 1 

Let TI < T2. The (continuously compounded) (forward) yield r(T1, T2) is defined by 

i.e., 

Definition 101 (Instantaneous Forward Rate): 
The instantaneous forward rate is defined by 

1 

f ( t ,  T) := lim L(T, Tz; t ) .  
T z V  

It may be interpreted as the interest rate for the infinitesimal period [T, T + dT]. _I 

Remark 102 (Instantaneous Forward Rate): We have 

1 P(T; t )  - P(Tz; t )  
f ( t ,  T) = lim L(T, T2; t )  = lim ~ 

T z I T  T 2 I T  P(T2;t) T2 - T 
1 aP(T; t )  - alog(P(T; t ) )  

P(T;t) aT  dT . 
- - - - 

Definition 103 (Short Rate): 
Let t 2 0. The short rate r(t) is defined by 

1 

a 
r(t) := lirn r(t, T; t )  = - - log(P(T; r ) ) l  

T'd  dT T=I 

BP(T; t )  

Remark 104 (Short Rate): Note that in Definitions 99, 100, and 101 we define 
families of stochastic processes, while the short rate from Definition 103 is a single, 
scalar stochastic process. 

The short rate is a limit of the spot forward rate (LIBOR) and the yield. We have 

r(t) = lirn r(t, T; t )  = lirn L(t, T; t ) .  
T l t  T I r  
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This short rate is the interest rate for the infinitesimal period [t, t + dt], as seen in t .  

Interest Rate 
Forward rate L 
Instantaneous forward rate f 
Short rate r 

Remark 105 (Forward Forward): The term “forward” is used ambiguously: In 
Definitions 99 and 100 we define stochastic processes for interest rates, i.e., for a 
given observation time t we define L(T1, T2; t )  and r(TI, T2; t )  as rates for the period 
[TI, T2] as seen in t. If T I  > t ,  then these rates are called “$orward” (i.e. forward 
LIBOR, forward yield), since the rate is associated with a future period, lying forward 
in time. If T I  = t we would use the attribute “spot” instead. 

However, on the other hand, the rate L(T1, T2; T I )  (note t = T I )  is often denoted as 
forward rate, since it is an interest rate for an interval up to T2. This is in contrast to 
the short rate, which is defined for an infinitesimal period. Being precise, terms like 
“forward forward rate” should be used. 

There is a similar ambiguity for volatilities. The term forward volatility may 
be interpreted as the volatility of a forward rate or as a volatility of some process 
considered at a future period in time. 

Model 
LIBOR market model --f Chapter 19 
HJM framework + Chapter 22 
Short rate models + Chapter 23 

Table 8.1. Interest Rate Models. 

Although the models above do not model the bond prices directly, we view zero- 
bond prices as the basic building blocks. 

Remark 107 (Bond Prices as a Function of Interest Rates): 
may be calculated from the interest rates. We have 

The bond prices 

P(T;t) = 

P ( T ; t )  = 

P(T;t) = 

exp(-r(t, T ;  t)(T - t ) )  
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The short rate is an exception. Here the reconstruction of bond prices is possible 
only if the short rate process is known under the equivalent martingale measure QN 
corresponding to the numkraire N( t )  := exp (6 r(T) dT). Then we have 

T 

P( T ;  t )  = EQN (exp(- r(T) dT) I E )  

Tip (Discount Factors as a Basic Market Data Object): We 
consider the price of zero bonds as given and view interest rates as 
derived quantities. It is natural to take this view in the implementation 
as well. If we want to provide information on market interest rates 

through a class6, then we store internally a discretization of the bond price curve 
j H P(Tj;  0) (also called discountfactors). The class then provides the various interest 
rates under various conventions through methods. This design reduces the errors of 
misinterpretation of the stored data (especially if more than one developer works on 
the class), since the data stored is free of market conventions and the convention used 
to calculate the rates is explicit in the implementation of the corresponding method. 
This also reduces the documentation overhead for the data model. 

discountFactors 

etYteld(double maturity) 

Figure 8.3. UML diagram: The class DiscountFactors internally stores discount 
factors and provides various interest rates through corresponding methods. 

A problem of this design is that discount factors are usually not the quantities 
that are observable in the interest rate market. The market quotes the prices of 
various different interest rate products (e.g., futures or swaps), from which discount 
factors have to be calculated. This calculation is called bootstrapping. Under some 
conditions, it might be useful to store the original market data. One such application 
is the numerical calculation of partial derivatives with respect to a change in these 

input  price^.^ 4 

See Chapter 30. 

Chapter 7. 
’ The importance of the partial derivative with respect to the price of an underlying has been discussed in 
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8.3 Interest Rate Curve Bootstrapping 

Since bootstrapping of discount factors from market prices involves the inversion of a 
pricing formula, we have to discuss the interest rate products and their pricing. We 
will do so in Chapter 9 but give an anticipatory abstract description of the bootstrap 
algorithm here: 

Let 0 = TO < T I  < Tz < . . . denote a time discretization. For given discount factors 
d f j  = P(Tj;O), j = 0,1,. . . , i, we assume the existence of an interpolation function 
d f (d f0 ,  . . . , df,; t) ,  having the property that an additional sample point beyond T; will 
not change the interpolation in t I T;, i.e., 

df(df0,. . . ,dfi; t )  = d f ( d f 0 , .  . . , df,, df i ,~;  t )  V t I T; V i = 1,2,3, 

Let V y k e t  denote given market prices of interest rate products for which the price 
may be expressed as a function Vi of the discount factors in t I T;, i.e., 

v; = V;( { d f ( t )  I t I Ti] ). 

We further assume that the discount factor df(T,) enters into the pricing, i.e., let 

V, # 0. Then the bootstrap algorithm is given by: 
a 

8 d f  (Ti) 

Induction Start (TO): 

0 dfo := df(T0)  = P(T0;O) = P(0;O) = 1.0. 

Induction Step (TI-,  + TI) :  

0 Calculate df, := df(T,) such that, using the discount factor interpolation, we 
have 

V,( (d f (d f0 , .  . . , df,; t )  I t I T,)  ) : v y k e t .  (8.3) 

In some cases Equation (8.3) may be directly solved for df,, especially if it does not 
depend on the interpolation method used. Normally, a numerical solution is possible 
(see Appendix B.4).* 

8.4 Interpolation of Interest Rate Curves 
We consider, as before, a family of bond prices T H P(T;  0), i.e., the discount factor 
curve, as the basic representation of the interest rate curve. If the prices dfi := P(T;; 0) 

* If interest rates are positive, a simple interval bisection like the Golden Section Search works, since 
dfi t LO, dfi- I I. 
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are known for times 0 = TO < TI < T2 < . . ., we seek a meaningful interpolation 
method to calculate interest rates for subperiods. The interpolation method should 
fulfill two basic requirements: 

The interpolation method should be sufficiently smooth, at least continuously 
differentiable. This is desirable because the calculation of an interest rate 
corresponds to a finite difference, i.e., converges to a derivative for decreasing 
period lengths. 

The interpolation method should preserve the monotonicity of discount factors, 
i.e., if we have monotone decreasing sample points, then the interpolation 
should be a monotone decreasing curve. 

The following additional requirement is also desirable: 

If the sample points correspond to a set of constant rates, then their interpolation 
should give constant rates. In other words, the interpolation of sample points 
from a flat interest rate curve should be flat (where flat means flat with respect 
to a rate). 

The linear interpolation of bond prices fulfills the second, but neither the first, nor 
the third requirement. The linear interpolation of forward rates fulfills the first and 
third requirement, but not necessarily the second. A simple interpolation method, 
which is also popular in practice, is the linear interpolation of the logarithm of the 
discount factors, i.e., the linear interpolation of r(0, Ti) Ti: 

This interpolation fulfills the second and the third requirement. 

curves may be found in [76]. 
A more complete discussion of various interpolation methods for interest rate 

8.5 Implementation 

We extend the design of the DiscountFactors class of Figure 8.3 by an interpolation 
algorithm and a bootstrap algorithm, see Figure 8.4. 

If the interpolation method is realized as part of the getDiscountFactor() 
method, and if the methods which calculate interest rates from discount factors 
(like getForwardRate0 or getyield()) only use getDiscountFactor() (and 
not the internal data model), then the interpolation method is available in all derived 
interest rates once it has been implemented in getDiscountFactor () .9 

This is one reason for encapsulation of the internal data model, which should only be accessible to a 
small set of methods (even within the same class!). 
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The bootstrapper is then realized through one additional method 
appendDiscountFactor(ProductSpecification productspec, double 
marketprice), where productspec contains the description of the financial 
product for which an additional discount factor has to be calculated from the given 
market price marke tPri ce. 

Figure 8.4. UML Diagram: The class DiscountFactors internally stores dis- 
count factors and provides various interest rates through corresponding methods. 
The method appendDi scount Factor (Product Speci fi ca t i on product Spec, 
double marketPri ce) implements one induction step of a bootstrap algorithm. 
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CHAPTER 9 

Simple Interest Rate Products 

So far we have defined a single interest rate product, the zero-coupon bond P(T).  
In the following, we give the definitions of some basic interest rate products. Many 
definitions use Definition 99 of the forward rate (which, of course, is based on the 
definition of the zero bond). 

9.1 Interest Rate Products Part 1: Products 
without Optional ity 

9.1.1 Fix, Floating, and Swap 

We define a trivial generalization of the zero bond: 

Definition 108 (Coupon Bond): 
A coupon bond with coupons C,, i = 1 , .  . . , n - 1 and tenor structure T,,  i = 1,. . . , n 
and maturity T,, pays 

1 

(n  - 1 payments). A 

Theorem 109 (Value of a Coupon Bond): The coupon bond consists of n - 1 
guaranteed payments with different payment dates. Clearly, the value of the coupon 
bond as seen in t < T2 is given by 

2 Ci (Ti+, - Ti)  P(Ti+l; t )  + P(T,,; t ) .  (9.1) 
i= I 
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Remark 110 (Dirty Price, Clean Price, Accrued Interest): The value of a coupon 
bond as given by Equation (9.1) is called dirty price. The dirty price is sometimes 
split into two parts, called the clean price and accrued interest. 

If T I  < t < T2, i.e., the bond is evaluated within the first interest rate period, then 
the accrued interest is defined by 

Remember that in Definition 109 it is assumed that t < T2. A(T1, T2; t )  is called 
accrued interest. Dirty price and clean price are now related through 

~ D l n y ( t )  = C c,v,+~ - TJ ~ l + i ;  t> + P(Tn; t) ,  

n- 1 

1= 1 

PClean(t) = PDirty(t) - A(TI 7 T2; t ) .  

The accrued interest represents the fraction of the future coupon payment that relates 
to the past fraction of the period. This stems from the interpretation of the coupon 
payment as equally distributed. The price of a bond is often quoted only by its clean 
price. 

The decomposition in clean price and accrued interest may appear useless, since 
upon trading their sum, i.e., the dirty price, has to be paid. However, quoting the 
clean price has an advantage: The clean price evolves continuously in t across period 
end dates, while the dirty price exhibits a jump at the end of a period, due to the paid 
coupon. 

The zero bond P(T1; t )  is the time t value of a guaranteed payment of 1 in TI .  It 
thus represents a fixed interest rate payment. A product with variable interest rate 
payments is the $outer. 

Definition 111 (Floater): 
Let T,, i = 1, . . . , n denote a given time discretization (a tenor structure). A floater 
with notional N pays 

1 

N W',, T1+1; TJ V,+I - TJ in T,+I 

f o r i =  1, ..., n-1(n-lpayments). _I 

Theorem 112 (Value of a Floater): At time t 5 T I  the value of a floater (as in 
Definition 11 1) is given by 

n- 1 

VFloater(t) = N L(Ti, Ti+I; t )  (Ti+l - Ti) P(Ti+I; t )  
1= 1 
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Proof: 
single payment of the floater in time Ti+] 

Variant I of the proof: From the definition of the forward rate we have for a 

This payment is an FT,-measurable random variable. The interest rate of Vkloater was 
fixed in Ti and is no longer stochastic when observed on [Ti, Ti+]].  As seen in Ti the 
value of this payment is thus a multiple of P(Ti+,; T;) ,  namely 

V:1,,ter(Ti) = Vkloater(Ti+l) P(Ti+l; Ti) = N (P(Ti; Ti) - P(Ti+l; Ti)). 

Thus we see that the time Ti value of the floater is given by a portfolio of bonds. The 
time f value of this portfolio is known. Thus we have 

This is the value of a single floater payment. The claim follows by summation over i. 
Variant2 of the proof: We have to value Vkloater(Ti+l). Choose N ( f )  = P(T;+l;l) as 

numkraire and let Q"' denote a corresponding martingale measure. Then N(T ,+] )  = 1 
and 

This is the value of a single floater payment. The claim follows by summation over i. 
01 

Definition 113 (Floating Rate Bond): 1 

Let Ti, i = 1,. . . , n denote a given time discretization (a tenor structure). A floating 
rate bond with notional N pays 
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Figure 9.1. CashJlow of aJloater with exchange of notional N .  

for i = I , ,  . . ,rz - 1 ( n  - 1 payments). A 

The value of a floating rate bond is N P(Tl),  because it is just the sum of a floater 
(value N P ( T , ) )  - N P(T2)) and a zero-coupon bond with maturity T2 (value N P(T2)). 

Interpretation: Definition 11 1 considers only the coupon payments 
of a floater. Normally an exchange of notional takes place at the begin- 
ning and end of the product: A payment of -N is made in T I  (receive 
notional) and a payment of N is made in T2 (pay notional). Since from 

Theorem 1 12 the value of the pure coupon payments is N P(T1) - N P(T,), the value 
of a floater with exchange of notional is 0. 

Figure 9.1 shows a cash flow diagram for a floater with exchange of notional. 
At time T I  the notional N is invested over the period [ T I ,  Tz] with an interest rate 
L(T1, Tz;  T I ) ,  fixed at the beginning of the period. In T2 the interest is paid and the 
notional N is reinvested over the following period (with a newly fixed rate). At the 

4 

As shown, there are two different ways to derive the value of the floater. The first 
method uses the fact that the payment N L(Ti, Ti+,; Ti) (TI+1 - -TI)  is an FT,-measurable 
random variable paid in Ti+, . Thus, its value as of time Ti is given by multiplication 
with P(T,+I; Ti). Since this value could be expressed as a portfolio of bonds, we know 
its time t value. Essentially, we derive a replication portfolio for each cash flow. The 
second method considers relative prices and applies Theorem 79. 

In this context, the time Ti is called3xing date and the time Ti+l is called payment 
date. 

end T,, the interest for the last period is paid together with the notional. 

Definition 114 (Fixing Date, Payment Date): 1 

Let T2 2 T I  and V,, (Tz)  be an 'FT, -measurable random variable defining a payment 
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made in T2. Then T I  is calledJixing date and T2 is called payment date of VT, (T2). 
See also Figure 9.2. _I 

Lemma 115 (Moving the Payment Date): Let t 2 T I .  The value of a payment 
VT,  (T2) withfiing date T I  and payment date T2 corresponds to the value of a payment 
of V,, (T2) P(T2; t )  in t for t < T2 and the value of a payment of VT, (T2) & in t for 
t > T2. 

Proof: The first part follows as in the proof of Theorem 112; the second part follows 
from exchanging t and T2. 01 

TT, - measurable 

I - fixing date 

L evaluation date L payment date 

Figure 9.2. Fixing date, payment date, and evaluation date. 

Remark 116 (On the Additivity of Cash Flows with Different Payment Dates): 
The value of a financial product or a single cash flow depends on its evaluation time, 
the time we select to observe it. Two payments with the same payment date may 
be added to create a single one. For two payments with different payment dates a 
summation is not meaningful. To calculate the total value of several products or 
cash flows at time t we have to move all cash flows as in Lemma 115. However, 
Lemma 115 applies only to times t larger than the fixing dates. The lemma is not 
applicable for times before the fixing date. Here, a risk-neutral evaluation has to be 
performed. 

Relative prices behave differently: Relative prices are additive (independent of the 
&ing date). Let VT, denote an 7;, -measurable random variable defining the value of 
a financial product in time T I .  Then we have 

For t < T I :  EQN(& I K) is the N(t)-relative value of VT, at time t. This 

Fort > T I :  EQN(A I z) = V,, EQ"( & I z) = + IS the N(t)-relative 

follows from Theorem 79. 

v, P(T2.t) . 

value of VT, at time t .  This follows from Lemma 115. 
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The additivity of relative prices follows from the linearity of the expectation operator. 

Definition 117 (Swap (Payer Swap)): 
A swap is an exchange payment of fixed rate for a floating rate. Let 0 = To < T I  < 
T2 < . . . < Tn denote a given tenor structure. A swap pays 

1 

N (W,, T , + I ;  T I )  - S , )  V,+I - T I )  in T,+I 

for i = 1,. . . , n - 1 (n  - 1 payments), where S ,  E JR denotes the fixed swap rate and 
L(T,, T,+l; T,) denotes the forward rate from Definition 99, and N denotes the notional. 
The swap defined here is a payer swap; see Definition 1 18. _I 

Definition 118 (Payer Swap, Receiver Swap): 
The swap defined in Definition 1 17 with payments 

1 

N (W,, T , + I ;  T , )  - S, )  V,+I - T,> in T,+I 

is called payer swap. In contrast, the swap with reversed payments 

N (S, - w,, T,+1; TI)) V I + l  - T,> in Tl+l 

is called receiver swap. The term payer/receiver indicates whether the holder of the 
swap has to pay the fixed coupon (it enters negative) or receives the fixed coupon (it 
enters positive). _I 

Definition 119 (Floating Leg, Fixed Leg): 
The payments of a swap may be decomposed into 

and 
N S ,  V,+I - TI> in T , + I .  (9.3) 

The payments (9.2) of the variable rates are called$oating leg; the payments of the 
constant rates (9.3) are calledfied leg. _I 

Theorem 120 (Value of a Swap): At time t I T I  the value of a swap is given by 

n- 1 

Vswap(t) = N C (UT, ,  T,+I; t )  - S,) V,+I - TI) W,+I; t ) .  
I =  1 

Proof: The swap consists of a floater (floating leg, (9.2)) and fixed payments 
-N S i  (Ti+l - T i )  in Ti+l for which their time t value is the corresponding multiple of 

01 P(Ti+l; I). The claim follows by applying Theorem 112 to the floating leg. 
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Remark 121 (Swap Rate): Let T I , .  . . , T,, be a given tenor structure. Consider a 
swap as in Definition 1 17. The par swap rate S (in t )  is the unique rate for which a 
swap with Si := S has the time r value 0, i.e., the total time t value of the payments 

is 0. Since the time t value of such a swap is given by 

then 

Definition 122 (Par Swap Rate): 
Let T1 < T2 < . . . < T,, . The par swap rare (often just called swap rate) S ( T I ,  . . . , T,) 

1 

J 

Interpretation: Since the par swap rate is the rate for which a 
corresponding swap has value 0, we may see the par swap rate Si,J := 
S(T; ,  . . . , T,) as some mean of the forward rates L k ,  k = i, . . . , j - 1. 
Indeed, the par swap rate Si , ,  is a convex combination (and thus a 

weighted average) of the forward rated L k ,  k = i, . . . , j - 1 as shown in the following 
lemma. 4 

Lemma 123 (Swap Rate as Convex Combination of the Forward Rates): Let 
Ti < T;+l < . . . < Tj denote a given tenor structure. Then we have 

k=i k=i 

The weights a k  are given by 

The weights are stochastic. 
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i- 1 

and thus 

Interpretation (Usage of the Terms Bond and Swap): The 
terms bond and swap are also used in a much broader sense than given. 
A financial product with coupon payments and final notional payments 
at maturity is called a bond. A financial product where coupon payments 

are exchanged (and no notional is paid) is called a swap. The terms are used indepen- 
dently of the specific structure of the coupons. A coupon may be a constant @), a 
variable rate (jloat), or a complex function of one or more interest rates (structured). 
In the latter case, the coupon is called a structured coupon, and the corresponding 
bond and swap are called structured bond and structured swap. 

A swap may be interpreted as a portfolio of a bond long (i.e., with positive cash 
flow) and a bond short (i.e., with negative cash flow), where the two notional payments 
cancel. In Section 12.2.1 we will consider the relationship between bonds and swaps. 

4 

9.1.2 Money Market Account 

If we invest at time TO = 0 a unit currency over the period [To, T I ] ,  then we receive 
at T I  the amount 1 + L(T0, T I ;  TO) ( T I  - TO). If this amount is reinvested for another 
period and if this process is continued for periods [T,, Tj+l] with j = 1,2,. . ., then 
we have at time Ti a value of 

f i ( l  + L(TJ ,  T J )  ( T ] + l  - Tj)) .  (9.4) 
j=O 

Equivalently, we may write this with the instantaneous forward rate as 
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If we consider a continuum of infinitesimal periods, i.e., we consider continuously 
compounding with the short rate, then the corresponding value will evolve as 

Definition 124 (Rolling Bond): 
The financial product 

1 

where m(t) := max(i : Ti I t ) ,  is called (single period) rolling bond. 1 

Definition 125 (Savings Account, Money Market Account): 
The financial product B in (9.6) is called savings account or money market account. 

1 

_I 

Interpretation: The financial product B has to be interpreted as an 
idealization (like the short rate itself), since infinitesimal periods are an 
idealization. 

Note that (9.4) and (9.5) are equivalent, whereas B(Ti) does not co- 
incide with the value of (9.4) generally. The expressions (9.4) and (9.5) depend on 
the choice of the periods and if evaluated in Ti, they are 7T,_, -measurable random 
variables, whereas B(Ti) is FT, -measurable only. 4 
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9.2 Interest Rate Products Part 2: Simple 
Options 

9.2.1 Cap, Floor, and Swaption 

Definition 126 (Caplet): 
A caplet is an option on the forward rate (LIBOR) and pays 

where K is the strike rate, L(T1, T2; t) the LIBOR, and N the notiona2. Payment date 
and fixing date 0 < T I  < T2 coincide with the LIBOR period [ T I ,  T21. 1 

Definition 127 (Cap): 1 

A cap is a portfolio of caplets. Let 0 = TO < T I  < T2 < . . . < T,, denote a given 
tenor structure. A cap pays 

N max (L(Ti, Tj+1 ; T i )  - Ki , 0) (Ti+l - Ti) in T;+l (9.8) 

for i = 1, . . . , n - 1 (n  - 1 payments), where Ki are the strike rates, L( T,,  Ti+ I ; T, )  are 
the LIBOR rates, and N denotes the notional. _1 

Remark 128 (Floorlet, Floor): If in (9.8) or correspondingly in (9.7) the payoff is 

then the product is calledjoor orjoorlet, respectively. 

Remark 129 (Caplet, Cap): The name caplet (and thus cap) seems counterintuitive. 
A cap is usually an upper bound, a floor a lower bound. Indeed, the payoff 

[LIK := min(L, K) 

is called capped and the payoff 

[ L ] K  := max(L, K) 

is calledjoored. The counter-intuitive name caplet for (9.7) stems from its application 
as a swap that exchanges a floating rate L against a capped coupon [LIK: 

L - [LIK = max(L - K, 0), 
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i.e., 

-[LIK = -L + max(L - K, 0). 

If we have the obligation to pay a variable interest rate (-L),  buying a cap (+ max(L - 
K, 0)) will cover the risk of an increasing interest rate, i.e., the payment is capped 
(-[LIK). The cap is the product one has to buy to have floating payments capped.' 

Definition 130 (Swaption): 1 

A swaption is an option on a swap. Let Vswap(t) denote the time t value of a swap as 
defined by Definition 117. Then the value of a swaption (with underlying Vswap) is 
given by the payout 

Vswaptron(T1) := max (Vswap(T1) , 0) in T I .  

Definition 131 (Digital Caplet): 
A digital caplet pays 

Vdigital(T2) = N 1(L(Ti7 T2; Ti 1 - K) (T2 - Ti 1 in Tz, 

where K is the strike rate, L(T1, T2; t )  is the LIBOR, N denotes the notional and 1 
denotes the indicator function (with l(x) := 1 for x > 0 and l(x) := 0 else). J 

Lemma 132 (Digital Caplet Valuation, Call-Spread): For the value Vdigita1(K. 0) 
of a digital caplet with strike K we have 

The approximation (see Figure 9.3) of the differential using finite differences 

is called call spread. 

Proof: The proof follows the lines of the proof in Lemma 8 1. 

' See [7], p. 12 
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0 K Underlying 
I-ZE-l 

Figure 9.3. Call spread approximation of a digital option by two call options 

9.2.1.1 Example: Option on a Coupon Bond 

Consider the option to receive at T I  a coupon bond in exchange for a notional payment. 
A coupon bond with tenor structure Ti, i = 1, . . . , n, coupons Ci and maturity T,  pays 

The time t value of a forward starting coupon bond with an initial notional payment 1 
in T I  is 

for t I T I ;  see (9.1). Since P(T1; t )  - P(Tn; t )  is the value of a floating rate bond, see 
Definition 113; this is just a swap 

= F ( C ;  - L(T,, Tj+l; t ) )  (Tj+I - Ti) P(Ti+, ; t ) .  
i= I 

Consequently, an option on a forward starting coupon bond is just a swaption. 

9.2.2 Foreign Caplet, Quanto 

Definition 133 (Foreign Caplet): 
A foreign caplet is a caplet in a foreign currency. From the domestic investor's point 

1 
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of view it pays 

N m a x ( L ( T , , ~ ~ ; ~ l )  - K ,  0) (T’ - T ~ )  FX(T~) in T’, 

where K t R is the strike rate, t(T1, T2; t )  is the foreign LIBOR, FX(T2) is the 
exchange rate, and fi denotes the notional in foreign currency.’ _I 

Remark 134 (Units): It is useful to consider units, just as one would do in physics. A 
domestic bond P has the unit of one domestic currency, [PI = dom. Interest rates have 
the dimension A, e.g., for the forward rate (LIBOR) we have [L(T,, Tl+l) (Tl+l - 
T,)]  = 1, since it is the quotient of two bonds. The unit of the stochastic process FX 
is [FX] = 2, i.e., FX(t) is the time t value of a foreign currency unit in domestic 
currency. In Definition 133 we have [A] = for. For the following product it is crucial 
to consider units. 

Definition 135 (Quanto, Quanto Caplet): 
A guanto is a financial product for which a payout will be converted from a foreign 
currency to a domestic currency without use of the exchange rate. Instead of FX(t) it 
uses 1 2 or another conversion factor (the quanro rate) fixed a priori. 

Let 0 < T I  < T2 denote jxing and payment date, respectively. A quanto caplet 
pays 

1 

dom . 
for 

Nmax(L(T1,T2;T,)-K, 0) (T2-Tl)l- inT2, 

where K is the strike rate (dimension &), L(T1, T2; t )  is the foreign LIBOR (dimen- 
sion A), and denotes the notional in foreign currency. A 

Further Reading: An introduction to the basics of interest rates 
4 products may be found in [4] (in German). 

FX = Foreign ezchange 
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CHAPTER 10 

The Black Model for a Caplet 

We consider a caplet as defined by Definition 126 as an option on the forward rate 
L I  := L(T1, T2) for given times 0 < T I  < T2. 

The Black model for the valuation of a caplet postulates a lognormal dynamic of 
the underlying LIBOR' 

dLl(r) = pp((r)Ll(t) dt + a( t )Ll( t )  dW'(t), u(t) 2 0, under P. (10.1) 

We seek the price V(0)  of the payoff profile 

V(T2) := max ((LI (TI 1 - K )  (T2 - TI ), 0) , 

where L1 (T2 - T I )  := P(Tl)/P(T2) - 1, i.e., LI  = Ll(T1, T2) denotes the forward rate 
(the (forward) LIBOR) of the period [ T I ,  Tz].  Without loss of generality we assume 
that the notional is 1. We choose the T2-bond as numkraire: 

N ( t )  := P(T2; t ) .  

This choice of the numkraire is the crucial trick in the derivation of a risk-neutral 
pricing formula. Since 

1 P(TI 1 1 PVI) - P V 2 )  
(T2 - TI)  (m - ') = (T2 - T I )  P V 2 )  

LI = 

L f  is the N-relative price of a traded asset.2 From Theorem 74 we have the existence 
of an equivalent martingale measure QN such that all N-relative prices of traded 

' The lognormal process is often written in the form = p'(t) dt + c(t) dW'(t). 
The traded asset is the portfolio & (P(T1)  - P(T2))  consisting of & fractions of a TI-bond 
(long) and T2-bond (short). 
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assets are martingales. Thus LI  is drift-free (see Lemma 53), i.e., 

dLI(t) = a( t )Ll ( t )  dWQN(t), under QN 

For the process Y := log(L1) we have from Lemma 50 that 

1 
2 

d(log(Ll(t)) = - - ~ ( t ) ~  dt + a( t )  d e N ( t ) ,  

i.e., log(LI(T)) is normally distributed with mean log(LI(0)) - ;a2T and standard 

deviation 6 fi, with c? := (i T 
a2(r) dr)Il2; see Section 4. 

For the option value we now have 

V(T2) = max((LI(T1) - K )  (T2 - Tl),O) in T2 

and from N(T2) = 1 we have3 

i.e., 
V(0 )  = P(T2; 0) EQN (max ((,!,](TI) - K ) ,  0)) (T2 - T I ) .  

Knowing the distribution of L1 under QN this expectation may be represented as 

where 

and 

see Chapter 4. Equation (10.2) is termed Black formula (for caplets). 

Remark 136 (Implied Black Volatility): Similar to Remark 80 in Chapter 4 we 
have: Equation (4.3) gives us the price of the option under the model (10.1) as a 
function of the model parameter a. In this context c? is called the Black volatility. 

This is the point where the specific choice of numkraire comes in handy for the second time 
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Taking the other model and product parameters (r ,  K ,  T I ,  T2) as constants, the pricing 
formula (10.2) represents a bijection: 

The @ calculated for a given price V(0 )  through inversion of the pricing formula is 
called the implied Black volatility. 

Lemma 137 (Price of a Digital Caplet under the Black Model Dynamics): The 
price of a digital caplet under the Black model is 

where 
1 

@(x) := - [ exp (-;) dy 6 -m 

and 
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CHAPTER 11 

Pricing of a Quanto Caplet 
(Modeling the FFX) 

In this chapter all quantities related to a foreign currency are marked with a tilde (3. 
Let 0 < TI < T2 denotejxing and payment date, respectively. The payoff profile of a 
quanto caplet is given by 

dom . 
V ( T 2 ) = r n a x ( t ( T i , T z ; T , ) - K ,  0) (T2-Tl) 1~ mT2, 

where K is the given strike rate and &TI,  T2; t )  is the foreign forward rate. The 
notional and quanto rate are assumed to be 1. 

We assume a lognormal dynamic for the foreign LIBOR, i.e., we model it as1 

dL(t) = p*(t)E(t)  dt + r+i(t)E(t) dW!(t). 

11 .I Choice of Numeraire 

If we choose the foreign T2-bond converted to domestic currency, i.e., P(T2; t)FX(t), 
as numtraire, then from 

I - 1 B(Tl)FX(t) - B(T2)FX(t) 
- 

1 &TI) - P(T2) 
L(T1,Tz;t) = ~ 

T2 - TI B(T2) T2 - TI P( T2 )FX(t) 

(see Chapter 10) we find 

dZ(t) = ai( t )E(t)  dW3(t) under Qp(T2) FX. 
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Remark 138 (Foreign Market, Cross Currency Change of NumCraire): Note 
that the foreign LIBOR is not a martingale with respect to QacT2), since we are based 
in the domestic market. For the domestic investor the foreign bond P(Tj) is not a 
traded asset, but the foreign bond converted to domestic currency B(Tj) FX is a traded 
asset. Although we have 

dE(t) = q ( t ) E ( t )  dW3(t) under QP(T2),  

we cannot use this change of measure, since P(T2) is not a traded asset and thus not a 
numkraire in the domestic market. Choosing the domestic bond P(T2) (a traded asset) 
as numkraire, we generally have 

dt(t)  # q ( t ) E ( t ) ( t )  dW3(t) under Qp(T2). 

Since the payoff profile of the quanto caplet is 

dom . 
V(T2) = rnax(E(T,,T2;T1) - K ,  0) (T2 - TI) 1- 

for in T2, 

it is advantageous to know the dynamics of &TI, T2) under the measure Qp(Tz) ,  the 
domestic T2 terminal measure. Choosing P(T2) as numtraire, the numkraire is 1 at 
payment date and will not show up in the expectation operator above. This trick has 
already been used in Chapter 10, where we were lucky that additionally the underlying 
was a martingale under this measure. 

By the change of measure from QP(';') F X ( t )  to Qp(T2) we have a change of the drift; 
see Theorem 59 (Girsanov, Cameron, Martin), i.e., 

dE(t) = pP(T2'(t)E(t)  dt + q ( t ) E ( t )  dW['TZ'(t) under Qp(T2). 

In other words, the dynamics of the underlying is known under the measure 
QP(T;r) FX('). From the shape of the payoff function a change of numkraire from 
B(T; t )  F X ( t )  to P(T; r ) ,  thus a change of measure from QP(T;') FX(') to QP(T;r) is 
desirable. We thus define: 

Definition 139 (Forward FX Rate): 
Let 0 < t < T. The forward FX rate F F X ( T )  is defined as 

1 

Remark 140 (Forward FX Rate): The forward FX rate (also known as FX 
forward) is a relative price of two domestic traded assets. It is dimensionless, since 
[P(T; r ) ]  = 1 for, [P(T; t ) ]  = 1 dom and [ F X ( t ) ]  = 1 e. It is a QP(T) martingale. 
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We assume lognormal dynamics for F F X ( T z ) ,  i.e. 

d F F X ( T 2 ;  t )  = g F F X ( t ) F F X ( T 2 ;  t )  dW:(*”(t) under Qp‘T2). 

Since 

- - 1 (WI 1 - P(Tz>)FX(t) 
T2 - TI P(T2) 

is a P(T2)-relative price of domestic traded assets (namely a portfolio of foreign 
bonds), we have that .&TI, T z )  F F X ( T 2 )  is a martingale under Qp(T2), i.e., 

P(T2I - 
DriftQ (L(T1, T2) F F X ( T 2 ) )  = 0. (1 1.1) 

On the other hand 

d(E F F X )  = dE F F X  + t d F F X  + dE d F F X  

= F F X  E pp(T2)  dt + F F X  E a~ dW[‘*’) 

+ F F X  t UFFX dW,P‘T2’ + F F X f f F F x  dW,P‘T2’ dW[‘T’’, 

and assuming an instantaneous correlation p(t) for dW,P‘*’’ and dW,p’T2’ 

= F F X  E((pp(*2’ + ~ C T F F X C T ~ )  dt + ‘TL dW[‘*’’ + UFFX dW,””’) 

From (1 1.1) we thus find 

pp(*2)(t) = -p(t)aFFx(t)q(t).  

We now know the dynamics of E under Qp(T2) 

dE = - p ( t ) ~ F F X ( t ) ~ i ( t ) E ( t )  dt + q ( t ) E ( t )  dW:‘T2’(t) 

and (as in Chapter 10) we know the distribution of &TI ,  Tz)  (under Qp(Tz))  is lognor- 
mal with 

1 
2 

p(t)uFFX(t)cL(t) dt - -@; T , 8; T 

df) - -@; 1 T , @; T 2 
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where 
T 

@; = 1 (+i(t) dt (mean variance). 

Altogether it follows an (adjusted) Black formula, where in contrast to the Black 

formula from Chapter 10 E(0) is replaced by &(O) e-fpP(f)cFFX(f)ui(f) dt. The factor 

e- f P(f)uFFx(fbL(t) dr 

is called the quanto adjustment. 
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CHAPTER 12 

Exotic Derivatives 

We have already introduced some simple interest rate derivatives. In this section we 
give a selection of so-called exotic derivatives. The name “exotic” does not mean that 
these derivative products are of less importance. With respect to evaluation models 
the converse is true: The value of exotic derivatives usually depends on a multitude of 
model properties, which may not even play a role in the pricing of simple derivatives. 
An example is the time structure t H ~ ( t )  of the volatility in the Black-(Scholes) 
model (4.2), (10.1): Its distribution over time does not play a role in the pricing of a 
European option, only the integrated variance enters into the pricing formula. It will, 
however, play a role for the pricing of a Bermudan option. 

Thus, in this sense we may view certain prototypical properties of exotic derivatives 
(e.g., having more than one exercise date) as test functions for prototypical properties 
of (complex) models (e.g., the term structure of volatility).’ 

12.1 Prototypical Product Properties 

The list of exotic interest rate derivatives we give in Section 12.2 does not claim to be 
complete or representative. It is exemplary for prototypical product properties and 
for applications of the pricing models and methodologies which we will discuss later. 
We focus a bit on more recent products, where we will discuss the relationship of 
prototypical product properties to models and their implementation. 

Some product properties, like path dependency or early exercise characterize a 
whole class of products. To evaluate a product of the respective class, the object 
path, i.e., the history, for path dependency and conditional expectation for early 

’ To clarify the meaning of this sentence we remind the reader that a digital option may be used to extract 
the model-implied terminal distribution function of its underlying; see Chapter 5. Thus digital options 
may be viewed as test functions of a model’s terminal distributions. 
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exercise are central. The path dependency is best represented in a path simulation 
(forward algorithm). The conditional expectation is best represented in a state lattice 
(backward algorithm). See Table 12.1. 

Furthermore, some models have a preferred mode of implementation, i.e., as path 
simulation or as state lattice. Whether a model can be implemented on a state lattice 
is often decided by its Markov dimension; see Table 12.2. 

Thus, prototypical product properties impose requirements on model and imple- 
mentation. 

Model 

Short rate models (+ Chapter 23) 
Market models (-t Chapter 19) 
Markov functional models (+ Chapter 27) 

Prototypical Product Property 

Early exercisebermudan, 
low Markov dimension 

Property 

Low Markov dimension 
High Markov dimension 
Low Markov dimension 

Early exercise/american, 
low Markov dimension 

Path Dependency, 
high Markov dimension 

Path dependency, 
model: low Markov dimension; 
product: high Markov dimension 
Early exercise, 
high Markov dimension 

Path dependency, 
low Markov dimension 

Model Requirement / Implementation 

Backward algorithm, 
coarse time discretization 
+ state lattice/tree, Section 13.3 
Backward algorithm, 
fine time discretization 
+ PDE, Chapter 14 
Forward algorithm 
+ path simulation, Section 13.1 

Path simulation through a lattice 
+ Section 13.4 

Forward algorithm 
with estimator of conditional expectation 
+ Chapter 15 
Backward algorithm 
with extension of state space 
+ Chapter 16 

Table 12.1. Prototypical product properties and corresponding model requirements 
and implementation techniques. 

Table 12.2. Markov dimension of some models. 
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12.2 Interest Rate Products Part 3: Exotic 
Interest Rate Derivatives 

Motivation (“Why Exotic Derivatives?”): A simple European 
option with payoff max(L(T) - K ,  0) may be interpreted as an insurance 
against an increase of the interest rate L(T).  In case of an increasing 
interest rate it pays the corresponding compensation. 

To interpret an exotic derivative, e.g., one with payoff 

c, 
c, + 1 

0 else. 

if L(Tj) < K V j 5 i 

if L(Ti-1) < K 5 L(TJ 

a n d i +  1 < n  

o r i +  1 = n  

as an insurance is not intuitive. The payoff above constitutes a coupon bond which 
matures if L(T,) exceeds the rate K .  Such a structure is usually offered with an 
above-average coupon CI and below-average coupons Ci, i > 1 .2 Thus, this product 
is appealing if the investor would like to receive a high initial coupon (this could be 
done with a standard coupon bond) and at the same time expects that the interest rate 
will rise faster than the market predicts. Since the coupon bond will mature early if 
interest rates rise, the lower than average coupons C,, i > 1 do not take effect. Thus, 
in this case, the investor would have a coupon bond with an above-average coupon. 
Since the investor takes the risk that he will receive lower than average coupons if 
interest rates do not rise, the product will be much cheaper than a standard coupon 
bond paying a coupon C1 and maturing early. The investor is financing the initial 
above-average coupon by taking the risk of losing his bet on rising interest rates. He 
is a risk taker. The product is appealing to the investor since he has a different view 
on the future than the market (i.e., the average). 

Exotic derivatives interpreted as an investment usually link a guaranteed high initial 
payment with a risky structure, which extracts the favorable case of the investor’s 
market view. 

An exotic derivative may both reward for taking risk as well as cover risk (in the 
sense of an insurance). Both interpretations jointly exist. For example, the structure 
above has an insurance against total loss of investment. The worst-case scenario is a 

4 coupon bond with below-average coupons. 

A similar structure is given by the target redemption note 

157 



12.2.1 Structured Bond, Structured Swap, and Zero 
Structure 

Exotic interest rate options mainly come in two different forms: as a (structured) bond 
or a (structured) swap. The products bond and swap are closely related. For a given 
(coupon) bond we may define a swap, such that the swap together with a floating rate 
bond replicates the coupon bond. We consider this relationship first for the trivial 
case of a simple coupon bond, then for the more tricky case of a zero-coupon bond. 
All coupons may be structured coupons. 

A structured bond is a bond for which the coupons Ci are arbitrary complex 
functions of interest rates or other market ob~ervables.~ In this case the coupons are 
called structured coupons. A corresponding swap exchanges the structured coupon 
payments of the bond by coupon payments of a corresponding floating rate bond; see 
Figures 12.1 and 12.2. Taking the swap and the floating rate bond (which just pays 
the current market rate on the notional) together, we may hedge the structured bond. 
For the values of the products in TO we thus have N1 + Vswap = Vbond. 

The structured bond and its (hedge-)swap are separate products, since they are 
often offered by separate  institution^.^ 

Zero Structures 

Besides (structured) coupon paying bonds, another common type of bond is that for 
which the coupon is accrued instead of paid. Then, as for the zero-coupon bond, there 
will be a single payment at maturity; see Figure 12.3, right. An accruing product 
is called a zero structure. A bond with accruing coupons is sometimes called a 
zero-coupon bond. 

For an accruing zero-coupon bond we may define a corresponding swap too. To 
do so we consider the following (equivalent) representation of the bond: At the end 
of each coupon period the notional and the period’s coupon is paid. The amount 
defines the new notional for the following period and is reinvested (this corresponds 
to accruing the coupon); see Figure 12.3, left. The swap is then defined such that 
it exchanges the structured coupon (on the various notionals) by a corresponding 
coupon with a given market rate. 

The swap will then allow to build up the bond’s payment at maturity using the 
starting notional invested at market rates; see Figure 12.4. 

For the valuation in TO we again have 

Nl + Vswap = Vbond, (12.1) 

Common coupons are options on interest rates, e.g., a guaranteed minimum rate in the form of 
C, = max(L,(T,), K ) ,  or even coupons which depend on the performance of one or more stocks, in 
which case the bond would be a hybrid interest rate product. 
E.g., a mortgage bank and an investment bank. 
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" =? = N j  
Coupon Bond 

Figure 12.1. 
notionals at the end of each period; right: with effective cashjow only. 

Cashjows for a coupon bond. Left: with imaginary exchange of 

Swap 

u' 

i 
2- 

2- 

Figure 12.2. Cashjows for a swap whosejixed leg corresponds to the coupon bond 
in Figure 12.1. Left: with imaginaly exchange of notionals at the end of each period; 
right: with effective cashjow only. 

where the swap is interpreted as payer swap, i.e., it pays C; - Li. That Equation (12.1) 
holds, follows iteratively by considering a single period: The notional N1 is invested 
at the market rate like a floating rate bond. The floating rate bond pays N1 + N1 LI  in 
T2. The swap exchanges the coupon N1 LI  for the structured coupon. Thus we have 
N I  + N1 C, =: N2 which is the notional N2 which is used for the same construction 
for the following period. 

Such a construction is especially meaningful if the zero-coupon bond may be 
canceled at the end of a coupon period. In this case it would pay the accrued notional 
up to this period. For a cancelable bond the swap has the same cancellation right and 
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Figure 12.3. Cashjows for a zero coupon bond. Left: with imaginary exchange of 
notionals at the end of each period; right: with effective cash $ow only. 

.) 

t Swap 

A' 
2- 2- 2- 

UYA u- i- 

' 2- 2- 2- 

2- 2- 2- 2- 2- 2- 

2- 4- 2- 4N 2- 4- 

2- 2- 

2- 2- 

I1 I1 It 

+ + + 

1, 
b 

Figure 12.4. Cashjows for a swap whose$xed leg corresponds to the zero coupon 
bond in Figure 12.3. Left: with imaginary exchange of notionals at the end of each 
period; right: with effective cashjow only. 
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is canceled sim~ltaneously.~ 
We repeat the notions structured bond and structured swap in a definition, although 

these definitions differ only in one minor aspect from the ones for coupon bond 
or swap, respectively: the coupon C, may be an arbitrary FT,,,~ -measurable random 
variable. 

Definition 141 (Structured Bond): 1 

Let 0 = TO < T I  < T2 < ... < Tn denote a given tenor structure. 
For i = 1, .  . . , n - 1 let Ci denote a (generalized) interest rate for the periods 

[Ti, T i+ ] ] ,  respectively. Let C; be an TT~,, -measurable random variable. 
Furthermore let N, denote a constant value (notional). The structured bond pays 

in T;+l. The value of the structured bond seen in t < T2 is 

Definition 142 (Structured Swap (Structured Receiver Swap)): 
Let 0 = TO < T I  < T2 < . . . < T, denote a given tenor structure. 

[ T I ,  

(notional). The structured swap pays 

1 

For i = 1,.  . . , n - 1 let C, denote a (generalized) interest rate for the periods 

Furthermore let s, denote a constant interest rate (spread) and N, a constant value 
respectively. Let C, be an FT,,,, -measurable random variable. 

XI := N, (C, - (UTz, TI+,; Tz) + s,)> (T,+I - T,)- 

in Ti+\. The value of the structured swap seen in t < T2 is 

Remark 143 (Structured Coupon): By C; we denote an arbitrary, generalized 
interest rate. In general it will be a function of L(Tk, Tk+l) with fixing date T;, and 
thus even FT, -measurable. We allow that the generalized interest rate C; depends on 

Other arguments for this construction are reduction of default and market risk. 
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events within the period [Ti, Ti+,] and requires FT,,,, -measurability only. An example 
of Ci is a constant rate Ci = const., the forward rate Ci = L(T;, Ti+l; Ti), or a swap 
rate C; = S(T;,  . . . , Tk; Ti). 

Remark 144 (Zero Structure): The swap in Definition 142 is called zero structure, 
if the notional N; if given by 

Ni+l :=NiCi (T i+ l -T i )  i =  1, ..., n - 1 .  

Remark 145 (Structured Payer Swap/Structured Receiver Swap): 
defined in Definition 142 is a receiver swap. A swap with reversed payments 

The swap 

Xi := Nj ((L(T;, Ti+l; Ti) + s;) - C;) (Tj+l - Ti) 

is called structured payer swap. See Definition 1 18 

12.2.2 Bermudan Option 

Definition 146 (Bermudan): 
A financial product is called Bermudan if it has multiple exercise dates (options), i.e., 
there are times T; at which the holder of a Bermudan may choose between different 
payments or financial products (underlyings). A 

A more formal definition of the Bermudan option, anticipating the result that the 
optimal exercise is to choose the maximum of the exercise and nonexercise value, is 
given in the following definition: 

Definition 147 (Bermudan Option): 1 

Let (Ti}i=I,...,n denote a set of exercise dates and (Vunder],;}j=l,...,n a corresponding set of 
underlyings. The Bermudan option is the right to receive at one and only one time Ti 
the corresponding underlying Vunder1,i (with i = 1,. . . , n )  or receive nothing. 

At each exercise date T;,  the optimal strategy compares the value of the product 
upon exercise with the value of the product upon nonexercise and chooses the larger 
one. Thus the value of the Bermudan is given recursively 

1 

Bermudan with 
exercise dates 

Ti,.  . . , Tn 

Bermudan with Product 
exercise dates received upon 

exercise in Tj T i c ! ,  . . . , Tn 

where Vbem(Tn;  T,) := 0 and Vunderl,i(Tj) denotes the value of the underlying Vunder1,i 

at exercise date Ti. _I 
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An example is given by the Bermudan swaption. Here the option holder has the 
right to enter a swap at several different times. The optimal exercise strategy chooses 
the maximal value from either the swap or the Bermudan with the remaining exercise 
dates. 

Definition 148 (Bermudan Swaption): 1 

Let 0 = TO < T I  < T2 < ... < T,, denote a given tenor structure. The value 
VBermSwpt(T1, . . . , T,,; To) of a Bermudan swaption seen at time TO is defined recur- 
sively by 

where V B ~ ~ ~ S ~ ~ ~ ( T , , ;  T,,) := 0 and Vswap(Ti,. . . , T,,; Ti) denotes the value of a swap 
with fixing dates Ti,. . . , T,-I and payment dates Ti+1,. . . , T,,, seen in Ti. Furthermore, 
with a given numkraire N and a corresponding equivalent martingale measure QN 

Interpretation: The Bermudan swaption V B ~ ~ S ~ ~ ~ ( T , , - ~ ,  T,,) is sim- 
ply a swaption (option on a swap) and since the swap has only a sin- 
gle period [T,,-I,  T,,] it is actually a caplet. The Bermudan swaption 
VBermSwpt(Tn-2, T,,-I, T,,) is an option which allows a choice in time Tn-2 

between a swaption (with later exercise date) or a (longer) swap. Thus it is an option 
on an option. Iteratively the Bermudan swaption is an option on an option (on an 
option, etc.). 

Taking the underlying swap as the defining object, we see that the Bermudan 
swaption V B ~ ~ ~ S ~ ~ ~ ( T I , .  . . , T,,) can also be interpreted as an option either to enter at 
times T I , .  . . , Tn-l a swap with remaining periods up to T,,, or to wait. Options with 
multiple exercise times are called Bermudan. Options with a single exercise time are 
called European. 4 

Remark 149 (Bermudan Swaption): It is key to the evaluation of the Bermudan 
swaption that by Equation (12.3) we have at each exercise date Ti an evaluation 
of a derivative product. For this the conditional expectation has to be calculated. 
Depending on the model and the implementation, the calculation of conditional 
expectations may be nontrivial. In Chapter 15 we give an in-depth discussion on how 
to calculate a conditional expectation in a path simulation (Monte Carlo simulation). 
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Figure 12.5. Bermudan swaption. 

12.2.3 Bermudan Callable and Bermudan Cancelable 

We will now define a product class that generalizes the structure of a Bermudan 
swaption. 

Definition 150 (Bermudan Callable Structured Swap6): 
Let 0 = TO < T I  < T2 < . . . < Tn denote a given tenor structure. 

[TI ,  T I + [ ] ,  respectively. Let C, be an FTz+, -measurable random variable. 

(notional) and 

1 

For i = 1,.  . . , n - 1 let C, denote a (generalized) interest rate for the periods 

Furthermore let s, denote a constant interest rate (spread), N,  a constant value 

XI := N ,  (C, - (UT,, TI+I> + SO) (Tl+l - TI). 

Let Vunderl(TI,. . . , Tn; T I )  denote the value of the product paying X k  in Tk+l for k = 
i, . . . , n - 1, seen in T, .  If N denotes a numCraire and QN a corresponding equivalent 
martingale measure, then 

(12.4) 

The value of a Bermudan callable swap with structured leg Ci7 is recursively 
defined by 

Compare [89]. 
On the naming see Remark 154. 
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where T,) := 0 and 

Remark 151 (Bermudan Callable, Structured Leg): For C, = S ,  = const. the 
product defined in Definition 150 is a Bermudan swaption. 

The payments (cash flows) Xi consist of some part Ni Ci (Ti+] - Ti) which is called 
the structured leg and another part Ni (L(Ti, T ~ + I )  + si) (Ti+l - Ti) which is called the 
floating leg. 

The underlying Vunderl(Ti, ..., T,) is a swap swapping the rate Ci against 
L(Ti, Ti+[) + s,, with$xing dates Ti,. . . , T,-I and payment dates Ti+l, . . . , T,. 

To evaluate a Bermudan option we need to calculate at most two conditional 
expectations (12.4), and (12.6) at each exercise time Ti. Under the assumption of 
optimal exercise these two values are linked by (12.5), going backward from exercise 
date to exercise date. In Chapter 15 we give an in-depth discussion of the calculation 
of conditional expectation in a path simulation (Monte Carlo simulation). 

The Bermudan swaption (or a Bermudan callable) allows an (possibly structured) 
swap to be entered into at one single time of predefined times Ti. In contrast to this, 
the Bermudan cancelable swap allows the cancelation of the underlying swap at one 
single time of the predefined times Ti. 

Definition 152 (Bermudan Cancelable Swap): 
With the notation from Definition 150 let 

1 

the value of the coupon payments (cash flows) for the period [Ti, Ti+,], seen in T,. 
The value of a Bermudan cancelable with structured leg Ci is recursively defined 

by 

where V B ~ ~ ~ C ~ ~ ~ ~ ~ ( T ~ ;  T,) := 0 and 

J 
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Remark 153 (Bermudan Cancelable): 
and 152 we have 

With the notation from Definitions 150 

VBermCancel(Tiy.. . 1 T n ;  Ti) = Vunderl(TiI.. ., Tn; Ti) f VBermCallPayer(Ti7.. . > Tn; Ti), 
(12.7) 

where V B ~ ~ ~ C ~ ~ ~ P ~ ~ ~ ~  denotes a Bermudan callable with reversed sign in the underlying. 
The right to cancel the structured swap Vunderl corresponds to the right to enter such a 
structured swap with reversed cash flow. 

Likewise we have 

VBerrnCall(Ti9.. . 9 Tn; Ti) = Vunderl(Ti,. . . T  Tn; Ti) f VBermCancelPayer(Ti7.. . 3 T n ;  Ti), 
(12.8) 

where V B ~ ~ ~ C ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  denotes a Bermudan cancelable with reversed sign in the under- 
lying. 

From this we conclude that the problem of evaluating a Bermudan cancelable 
corresponds to the problem of evaluating a Bermudan callable-and vice versa. 

Remark 154 (Bermudan Callable): Our definition of a Bermudan option is a 
general one: For each exercise date the corresponding underlying can be specified 
arbitrarily. The Bermudan callable is a special variant of a Bermudan option, where 
the underlyings share the same cash flow after exercise.8 The Bermudan callable is 
the right to enter a financial product at some later time. The Bermudan cancelable is 
the right to terminate a financial product at some later time. Bermudan callable and 
Bermudan cancelable are counterparts in the sense of Equation (1 2.7). 

For (structured) bonds it is usually the case that the issuer (i.e. the party that pays 
the coupons) has the right to cancel the bond.9 Due to relationship (12.7) it is the case 
that the issuer of a bond having the right to cancel the issued bond essentially has a 
callable bond. Therefore the use of the words callable and the call right are often 
used where our definition would seem to point to a cancelable contract. 

12.2.4 Compound Options 

A compound option is an option on an option. Popular are a European call option 
on a European call option, a call on a put, a put on a call, and a put on a put. The 
compound option is closely related to the Bermudan option with two exercise dates. 
The compound option may be viewed as a special variant of a Bermudan option. 

As for the Bermudan option, the evaluation of a compound option requires the 
evaluation of an option at a future time (the exercise date of the first option). The 

Our definition of a Bermudan callable is the same as, for example, in Piterbarg [89] ’ Upon cancelation the notional is repaid. 
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methods used for the pricing of Bermudan options can thus be applied to the evaluation 
of compound options as well. 

12.2.5 Trigger Products 

For a Bermudan option and a Bermudan cancelable the exercise criterion is given by 
optimal exercise: The option holder chooses the maximum value. Thus the recursive 
definition of the product value uses the maximum function on the values of the two 
alternatives nonexercise and exercise. For a trigger product the exercise is given by 
some criterion, the trigger, which does not necessarily represent an optimal exercise. 
An example of such a product is the autocap, which we will define in Section 12.2.6.4, 
or the following target redemption note. 

12.2.5.1 Target Redemption Note 

Definition 155 (Target Redemption Note): 
Let 0 = To < TI < T2 < . . . < T, denote a given tenor structure. 

[T,, Ti+l], respectively. Let Ci be an FT,+, -measurable random variable. 

Pays 

with 

1 

For i = 1,. . . , n - 1 let Ci denote a (generalized) interest rate for the periods 

Furthermore let Ni denote a constant value (notional). A target redemption note 

Ni Xi in Ti+l 

for i = 1, 
for i > 1 

(structured coupon) 
min(Ci , K - &Il Ck) 

x, := 

1 for Ck < K <= Ck or i = n, 

0 else. 
(redemption) 

+ [ gmax(0, K - EL,, ck) for i = n 
(target coupon guarantee). 

else. 
_I 

Remark 156 (Target Redemption Note Coupon): The rule that defines the coupon 
Ci in Definition 155 may vary, and Definition 155 is only the framework of the product. 
With a coupon, e.g., like 

(12.9) 

the product is also called variable maturity inverse $outer (VMZF). We will consider 
structured coupons in Section 12.2.6. 

Ci = K - a Li (Ti,] - Ti) for i > 1. 
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Interpretation: The holder of a target redemption note receives the 
coupon Ci until the sum of the coupons has reached K ,  the target coupon. 
If the accumulated coupon exceeds the target coupon (C;,, Ck >= K ) ,  
then the difference between the target coupon and the notional is paid. 

After this no coupon payments will be made. The structure is canceled if the target 
coupon has been reached. If the target coupon has not been reached over the full life 
time of the product, then the difference between the target coupon and the notional is 
paid at maturity. 

Thus, the target redemption note guarantees the payment of a coupon K and the 
redemption of the notional. What is uncertain is the time of payment and the maturity, 
and thus the yield of the product. The yield of the product depends on when the 
condition 

I i- 1 

c C k =  K and Z C k  < K (12.10) 
k= 1 k= I 

is fulfilled. 
It is normal to have an above-average initial coupon C I  . The life time of the product 

varies between T2 and T,,, giving yields between KIT2 and KIT,,. An investor would 
buy this product if he assumed that the condition (12.10) would be fulfilled early, 
such that the yield of the product (is expected to be) above average. 

An example of a target redemption note, actually offered in 2004, is 

Ci = 7.5% - 2 Li ( T ~ + I  - Ti) for i > 1. 

Here the option holder profits from the product if the interest rates Li decline faster 
4 than expected (and thus the product will be redeemed early). 

12.2.6 Structured Coupons 

In the previous definitions we have defined the structured bond (Definition 141), the 
structured swap (Definition 142), the Bermudan option (Definition 150), the Bermudan 
cancelable (Definition 152), and the target redemption note (Definition 155) without 
specifying the coupons C,. We now refine our definitions by defining some of the 
most common structured coupons Ci. In the respective definitions we only give the 
characteristic that describes the coupon. The characteristics defined in the following 
exist for bonds and swaps and for Bermudan callable and Bermudan cancelables 
alike. For example, we define a coupon of a CMS spread product and the name of the 
corresponding Bermudan callable swap as a Bermudan callable CMS spread swap. 

168 



12.2.6.1 Capped, Floored, Inverse, Spread, CMS 

Definition 157 (Capped Floater): 
A product as in Definition 141, 142, 150, or 152 with 

Ci := min(L(Ti, Ti+, )  + si, c;) 

is called a cappedjoater. Here c, denotes a constant (cup). 

Definition 158 (Floored Floater): 
A product as in Definition 141, 142, 150, or 152 with 

Ci := max(L(Ti, Ti+,) + s ; , J )  

is called ajoored$oater. Here J denotes a constant (floor). 

Definition 159 (Inverse Floater): 
A product as in Definition 141, 142, 150, or 152 with 

C, = min (max (ki - L(T,, Ti+] ), J )  , ci) 

is called an inversejoater. Here J ;  < c; (floor, cup) and k; are constants. 

Definition 160 (Capped CMS Floater): 
A product as in Definition 141, 142, 150, or 152 with 

1 

_I 

1 

Ci := min(S;,;+, + s;,ci), 

where s,, c, denote constants (spread, cap) and S,,,,, = S(Tl, . . . , TI+,) denotes a 
swap rate as in Definition 122, is called a capped CMS” joater. The rate S ,,;+, is 
called constant maturity swap (CMS) rate since the maturity relative to the period start 
T,, is constant (T,,, - TI is constant, i.e., independent of i), assuming an equidistant 
tenor structure. J 

Definition 161 (Inverse CMS Floater): 
A product as in Definition 141, 142, 150, or 152 with 

1 

where k;,  f i ,  c; denote constants (strike, jloor, cap) and Si.;+, = S(T;, . . . , TI+,) 
denotes a swap rate as in Definition 122, is called an inverse CMSjouter. _I 

l o  CMS stands for consfant maturity swap, i t . ,  the maturity of the underlying swap relative to the swap 
start (T,,, - T,) is constant. For simplicity we assume here that the tenor structure is equidistant. 
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Definition 162 (CMS Spread): 
A product as in Definition 141, 142, 150, or 152 with 

1 

Ci = min (max (S :,i+m, - s :i+m2, fi) , ci) , 

where fi, c, denote constants (floor, cap) and S,,,,, = S(T , ,  . . . , TI+,,,, ), S,,,+,, = 
S(T, ,  . . . , T,,,,) denotes a swap rate as in Definition 122, is called a CMS spread. A 

12.2.6.2 Range Accruals 

Definition 163 (Range Accrual): 1 

Let t;,k E [Ti, Ti+l) denote given observation points for the period [Ti, Ti+l). Fur- 
thermore let K, and bf < bh denote given interest rates (constants). A product as in 
Definition 141, 142, 150, or 152 with 

. n. 

in Ti+1. 

is called a range accrual. Here AT; := T;+l - Ti. _I 

Interpretation: The interval [bf, bf] describes an interest rate corridor. 
It is calculated how often the reference rate L(t, t+ATi; t )  stays within this 
comdor at the times ti,k. The product pays the corresponding fractional 
amount of the rate K; at the end of the period. 

Since the interest rate corridor may be chosen as a function of the period i, the 

4 product makes it possible to profit from a specific evolution of the rate. 

12.2.6.3 Path-Dependent Coupons 

Definition 164 (Snowball/Memory): 
A product as in Definition 141, 142, 150, or 152 with 

Ci = min (max (Ci-1 + Xi ,  fi) , ci) , 

is called snowball, where Xi is some coupon as in Definitions 157 to 163 and fi, ci 
denote constants (jioor, cap) and Ci-1 denotes the coupon of the previous periods with 
c, := 0. _I 
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Example: A coupon 

C; = min (max (Cj-1 + k; - L(T;, T;+I ) , A ) ,  c;) 

is called an inversejoater memory. 

Definition 165 (Power Memory): 
With the notation from Definition 164 the coupon 

C; = min (max ( d - 1  + X i ,  A ) ,  c;) 

is called a power memoiy (for a # 1). 1 

Remark 166 (Snowball, Path Dependency): The snowball is called a path- 
dependent product, since its coupon depends on the previous coupon, i.e., on the 
history. 

Definition 167 (Ratchet Cap): 
The ratchet cap pays in Ti+, 

1 

X ;  = N max (L(T;, T;+l; Ti) - Ki , 0)  (Ti+] - Ti) 

for times T I , .  . . , T,, where 

K, :=min(K,-~ + R ,  L ( T f , T f + l ; T l ) )  f o r i >  1 

and K1 , R denote constants (strike and ratchet), L(T;, Ti+, ; Ti) denote the forward rate 
(LIBOR), and N denotes the notional. 1 

Remark 168 (Ratchet Cap): The ratchet cap has an automatic adjustment of the 
strike K;. Since the adjustment depends on past realizations, the ratchet cap is a 
path-dependent product. 

12.2.6.4 Flexi-Cap 

Thejexi cap comes in two variants: As an autocap with a simple (automatic) exer- 
cise criterion and as an chooser cap with an assumed optimal exercise (like for the 
Bermudan). Both caps have in common that the maximum number of exercises is 
limited. 
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Definition 169 (Autocap): 
Let nmaxEx E N. An autocap pays in T ~ + I  

Xi  := N max (L(T;, Ti+l; Ti) - Ki , 0)  (Ti+, - Ti) 

or else: 

xi := 0 

for times T I , .  . . , T,, where Ki denotes the strike rate, L(Ti, T;+l; Ti) denotes the 
forward rate (LIBOR), and N denotes the notional. The autocap pays in the same way 
as a normal cap as long as the number of past (positive) payments is below nmaxEx. J 

Definition 170 (Chooser Cap): 
Let n,axEx E N. A chooser cap pays in Ti+ I 

1 

Xi := N max(L(T;,T,+l;T,)- K , ,  0) (T,+l -Ti )  

otherwise: 

xi := 0 

for times T I , .  . . , T,, where Ki denotes the strike rate, L(Ti, Ti+l; Ti) denotes the 
forward rate (LIBOR), and N denotes the notional. J 

Remark 171 (Autocap): The autocap is a path-dependent product, since at a future 
time the number of exercises allowed depends on the history. It is also a trigger 
product, since the exercise is not optimal, but triggered by a simple trigger. The 
corresponding optimal exercise is given by the chooser cap. 

Remark 172 (Chooser Cap (Backward Algorithm)): Since the option holder 
chooses to exercise optimally, we have that the value Vg;;$”Tn)(To) of the chooser 
cap is given by 

where 
Xi := N max (L(T;, Ti+1; T,) - Ki , 0)  (Ti+l - T,)  

172 



and 
nEx .T" 7" 1 V(O.T, .T" 1 V;hooser (Tn) = 0 3  Choose. (Ti) = 0, 

where VZ:;&Tn)(Tk) denotes the value of a chooser cap with at most nEx exercises in 
Ti, . . . , T,,, seen in Tk. 

Remark 173 (Chooser Cap as Bermudan): 
exercises is a Bermudan cap. 

A chooser cap with nmaxEx = 1 

12.2.7 Shout Options 

Definition 174 (Shout Option): 1 

Assume that a financial product pays an underlying S ( t* )  at time T ,  i.e., t' is the fixing 
date and T the payment date. The owner of the financial product has a shout right 
on the underlying, if the holder of the right can determine once at any time t with 
T I  5 t I T2 I T the fixing date t* as t* := t. The holder determines by shouting that 
the underlying should be fixed. _I 

Remark 175: While for an American option or a Bermudan option, e.g., on S ( r )  - K ,  
the fixing date and the payment date are both determined upon exercise, i.e., S( t * )  - K 
is paid in t*, for a shout option the fixing date is determined upon exercise, while the 
payment date stays predefined. 

Theorem 176 (Value of a Shout Right): 
submartingale (under terminal measure) is worthless. 

A shout right on a convex function of a 

Proof: Let T denote the payment date of f ( S ( t ) ) ,  where t is fixed as t = t* by 
shouting. For the chosen numtraire N we assume N ( T )  = 1 (terminal measure). Let 
f be convex and S a submartingale under QN. Then we have: 

Thus, to maximize the value, the option holder will always exercise the shout right at 
t' = T2. ml 
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12.3 Product Toolbox 

The terms used in the previous section, like capped, inverse, ratchet, etc., describe 
properties of the payoff function. In practice the terms are used less strictly and the 
name of a product corresponds to its mathematical definition only loosely. Here mar- 
keting aspects are more important. Key product features are, nevertheless, indicated 
by the name of a product. 

Table 12.3 gives a rough idea of some of the most common terms used to denote 
properties of the product or payoff function. 

Experiment: At h t t p :  //www. Chris t ian-  fr ies.  de/finmath/ 
applets/LMMPricing . html several interest rate products can be 
priced, among them a cancelable swap. The model used is a LIBOR 

4 market model implemented in a Monte Carlo simulation. 

Further Reading: An overview of exotic derivatives can be obtained 
from the customer information service of some investment banks or the 
term sheets of the products. They contain descriptions of the product 
and definitions of the payoffs, similar to the definitions in this chapter, 

Zhang’s book [43] presents some of the most important exotic options, in particular, 
as well as a short discussion of product properties. 

exotic equity options. 4 
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Attribute 

Bond (a.k.a. Note) 

Exchange coupons (usually against float). 
See Definition 142 

Product Property 

Receive coupons. At maturity receive the notional. 
See Definition 141 

I 

Bermudan option 

Bermudan cancelable 

Receive an underlying at one of multiple exercise dates. 
See Definition 146 

Cancel product (e.g. bond or swap) at one of multiple cancela- 
tion dates. See Definition 152 

Target redemption min(C, , K- Gill, C,) with cancelation and notional redemption 
at (12.10) (trigger). See Definition 155 

I CMS 1 C, is swap rate with constant time to maturity 

Chooser Receive an underlying at some of multiple exercise dates. 
See Definition 170 

h p r e a d  

Attribute 

LIBOR / floater 

I Ratchet I K, = min(K,_, + R ,  C,) 

Payoff Function 

c, = w,, T,+1; T,)  

Table 12.3. Product Toolbox: Common attributes and their representation in product 
property and payof function. 

Capped 

Floored 

Inverse 
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Motivation and Overview - Part IV 

In Chapter 4 we presented the Black-Scholes model of a stock S and a riskless account 
B: 

dS(t) = p’(t)S(t) dt + a ( t ) S ( t )  dWp(t), 

dB(t) = r(t)B(t) dt. 

In Chapter 10 we presented the corresponding Black model for a forward interest rate 
L1 = L(TI, T2): 

dLl(t) = p’(t)Ll(t) dt + a( t )Ll( t )  dW”(t), ~ ( t )  I 0. 

Using these models we could derive analytic pricing formulas for the corresponding 
European options. An obvious generalization of these models consists in modeling 
multiple stocks, e.g., 

dS,(t) = p$(t)Si( t )  dt + a i ( t )S i ( t )  dWF(t), 

dB(t)  = r(t)B(t) dt, 

respectively, a model for multiple forward rates, e.g., Li = L(Tj, Ti+l) for T I  < T2 < 
. . . with, e.g., 

dLi(t) = p$(t)Li(t) dt + cri(t)Li(t) dW;(r), a(t) L 0. 

This model is called the LIBOR market model. 
Such models may then be used for the evaluation of complex derivatives, e.g. a 

spread option, where the payout depends on two or more forward rates. The pricing, 
i.e., the calculation of the expectation E@( # I TO), where N is a chosen numtraire 
and QN is a corresponding martingale measure, often requires a numerical method, 
e.g., a Monte Carlo integration 

for a sampling w l ,  . . . , w,. Here, P and N denote approximations of V and N ,  
respectively, since the corresponding Monte Carlo samples are generally generated 
for an approximating model, namely a time-discrete model. 

In Chapter 13 we start by examining the approximation of time-continuous stochas- 
tic processes through time-discrete stochastic processes. We then consider the approx- 
imation of the random variables by a Monte Carlo simulation or a discretization of 
the state space. 
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These discretizations allow us to calculate (approximate) expectations and thus 
derivative prices. It turns out that within the discrete setup some calculations are 
difficult. In a Monte Car10 simulation the calculation of a conditional expectation is 
nontrivial. A conditional expectation may be required in the pricing of Bermudan 
products; see Chapter 15. In a discretization of a state space the calculation of path- 
dependent quantities is nontrivial. Path-dependent quantities appear in path-dependent 
options; see Chapter 16. 

The treatment of complex models, like the LIBOR market model, will be given in 
Part V. 
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CHAPTER 13 

Discretization of Time and State 
Space 

In this chapter we present methods for discretization and implementation of It6 
stochastic processes. We give an integrated presentation of path simulation (Monte 
Carlo simulation) and lattice methods (e.g., trees). Finally, we show how both methods 
can be combined; see Section 13.4. 

Throughout our discussion of the discretization and implementation we will repeat 
some of the terms from Chapter 2, e.g., path, a-algebra, filtration, process, and 
%-adapted. Thus, this chapter will also serve as an illustration of some of the 
mathematical concepts from Chapter 2. 

The discretization and implementation should not be seen as a minor additional step 
after the mathematical analysis and it should not be underestimated. The discretization 
and implementation allow us a second look, possibly providing further insights into a 
model. ' 

In Figure 13.1 we give an overview of the steps involved in the discretization and 
implementation of It6 processes. 

13.1 Discretization of Time: The Euler and the 
Milstein Schemes 

As a first step we shall consider the discretization of time and present the Euler scheme 
and the Milstein scheme. 

' Indeed, it is common in mathematics to prove analytical results as a limit of a numerical, i.e., discrete, 
procedure. 
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Figure 13.1. Discretization and implementation of It6 processes 
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13.1.1 Definitions 

Definition 177 (Euler Scheme): 
Given an It6 process 

dX(t) = p(r, X ( t ) )  dt + a(t, X(t)) dW(t), 

and a time discretization (ti I i = 0, . . . , n} with 0 = to < . . . < t,,, then the time-discrete 
stochastic process r? defined by 

r?(ti+I) = r?(tj) + p(tj ,g(t i ) )  Ati + a(ti,&ti)) AW(ti) 

is called an Euler scheme of the process X (where Ati := ti+l - ti and AW(ti)  := 

W(t i+~)  - W(ti>>. _I 

Interpretation (Euler Discretization): The Euler scheme derives 
from a simple integration rule. From the definition of the It6 process we 
have 

X( t ,+ , )  = X(t ,> + f"' p ( t , X ( t ) )  dt + [' a ( t ,X( t ) )  dW(t). 
f, 

Obviously, the Euler scheme is given by the approximation of the integrals 

Lt'+' p(t, X(t>) dt = if'+' P ( t f ,  X(tf>) dt = P ( t f ,  X(t,)> At, 

l"'' a(t, X ( t ) )  dW(t) = Lr'+' a(t,,X(t,)) dW(t) = d t f 7 X ( t f ) >  AW(t,). 

QI 
The following Milstein scheme improves the approximation of the stochastic 

integral dW. 

Definition 178 (Milstein Scheme): 
Given an It6 process 

1 

dX(t) = p(t, X(t)) dt + a(t, X ( t ) )  dW(t), 

and a time discretization (t, [ i = 0, . . . , n) with 0 = to < . . . < tn,  then the time-discrete 
stochastic process X defined by 

m1+d = Rt , )  + P ( t f 3 ( f l ) )  At1 + ~ ( t f , m >  Aw(t,) 
1 

+ ~ a ( t , , g ( t l ) ) a ' ( t f , ~ ( f l ) ) ( A W ( f f ) 2  - Afl> 
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is called a Milstein Scheme of the process X (where At; := ti+l - ti and AW(ti)  := 
W(t i+l )  - W(ti)  and r‘ := &r). _I 

Remark 179 (Milstein Scheme): The Milstein scheme gives an “improvement” 
only if cr depends on X. 

Let us consider another discretization scheme: 

Definition 180 (Euler Scheme with Predictor-Corrector Step): 
Given an It6 process 

1 

dX(t) = p(t, X(t)) dt + r ( t ,  X(t)) dW(t), 

and a time discretization { t i  I i = 0, . . . , n )  with 0 = to < . . . < t,,, then the time-discrete 
stochastic process .% defined by 

1 
z ( t i+ l )  = .%(ti) + i b ( t i , Z ( t i ) )  +/-4ti+1,8*(ti+l))) At, + ~( t ; , .%( t ; ) )  AW(ti)  

with 

x*(t;+l) = .%(ti) + p(ti,.%(ti)) At; + cr(t;, .%(ti)) AW(ti) 

is called an Euler scheme with predictor-corrector step of the process X (where 
At, := t;+l - ti and AW(ti) := W(t;+l)  - W(t;)). 1 

Interpretation (Predictor-Corrector Scheme): The predictor- 
corrector scheme improves the integration of the drift term s dt, not 
of the stochastic integral JdW. Instead of approximating the integral 

f”‘ p(t, X(t)) dt by a rectangular rule p(t,, X(t , ) )  At, the method aims to 

use a trapezoidal rule. With a trapezoidal rule the integral f”‘ p(t, X ( t ) )  dt would be 

approximated as i(p(tl,X(t,)) + p(t,+l, X(~,+I))) At,. Since the realization X(t,+,) and 
thus p( t f+ l ,  X(r,+,)) is unknown, it is approximated by an Euler step p ( t , + l )  (predictor 
step) and the trapezoidal rule is applied with this approximation. This corresponds to 
correcting X*(t ,+l)  (corrector step). We have: 

1 
2(tf+l) = x*(t ,+l)  -p(tf,z(r,)) At, + 2 b ( t f , Z ( t f ) )  +p(t l+1,x*(t ,+1)))  

(13.1) 

. 
Y 

correction term 
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Tip (Implementation of the Predictor-Corrector Scheme): 
Note that for an implementation formula (13.1) is more efficient than 
the two Euler steps in the original Definition (1 80) of the scheme. The 
second Euler step is replaced by a correction term applied to x*(t;+l)  

4 
The schemes presented give a time-discrete stochastic process x such that x( t i )  is 

an approximation of X(t,). An in-depth discussion of numerical methods of approxi- 
mating stochastic processes can be found in [21]. 

and requires only the additional calculation of p(ti+l, 81(t;+l)) .  

13.1.2 Time Discretization of a Lognormal Process 

Consider the process 

dX = p ( t ,  X(t))X(t) dt + a(t)X(t) dW(t), (1 3.2) 

where ( t ,  x) H p ( t ,  x) and t H a(t) are given deterministic functions. With Lemma 50 
we have 

(13.3) 
1 

d log(X) = b(t, X(t)) - -a2@)) dt + a(t) dW(t). 
2 

In the following we discuss several possible time discretizations of the process X. The 
discussion is of special importance since the Black-Scholes model, the Black model, 
and the LIBOR market model are all of the form (13.2). 

13.1.2.1 Discretization via Euler Scheme 

The Euler scheme for the stochastic differential equation (13.2) is given by 

x(ti+,)  = 2(ti) + p ( t i ,  8 ( t i ) ) ~ ( t i )  Ati + a(ti)x(ti) AW(ti). 

The random variables %(I) generated by this scheme differ from the random vari- 
ables X(t) of the time-continuous process by a discretization error X(t) - x(t). This 
discretization error might be relatively large. Take, for example, the even simpler 
case of a vanishing drift p = 0. Then X ( t l )  is normally distributed, while X(tl) is 
lognormally distributed. Note that x can attain negative values, while X cannot (this 
follows from (1 3.3)). 

13.1 -2.2 Discretization via Milstein scheme 

One way of reducing the discretization error is to use the Milstein scheme (Defini- 
tion 178): 

1 
2 

x(ti+,) = 2(ti) + @(t i ,x ( t i ) )  - - ~ ( t ~ ) ~ ) X ( t ~ )  Ati 

1 
2 

+ c+(ri)x(ti) AW(ti)  + -a(tJ2r?(ti) AW(tJ2.  
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13.1.2.3 Discretization of the Log Process 

A much better discretization than the two previous schemes is given by the Euler 
discretization of the It6 process of log(X). The Euler scheme of (13.3) is given by 

and applying the exponential we have 

Using this scheme will give a lognormal random variable 8(tl). 

13.1.2.4 Exact Discretization 

For the special case where p does not depend on X ,  e.g., if X is a relative price under 
the corresponding martingale measure and thus even drift-free, then we can take the 
exact solution as a discretization scheme. We then have 

1 
2 X(t i+,)  = X(r , )  exp(bl  - -a;) At; + g i  AW(ti>), (13.5) 

where 

13.2 Discretization of Paths (Monte Carlo 
Simulation) 

Consider the time-discrete stochastic process 

This is an Euler scheme. The considerations below apply to any other discretization 
scheme. Furthermore, we do not apply a tilde to the process X since we are only 
considering the time-discrete process, and so do not have to distinguish it from the 
original time-continuous process. 
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13.2.1 Monte Carlo Simulation 
The random variables AW(ti) of the respective time steps are mutually independent; 
see Definition 29. At every time step ti a random number is drawn according to the 
distribution of AW(t;), (i.e., a vector of random numbers if AW(ti) is vector valued), 
which we denote by AW(ti, wj) .  Then 

X(ti+l> w j )  = X(t i ,  wj )  + P(ti9 x(ti, wj))  Ati + d t i ,  x(ti, wj ) )  AW(ti, w j )  

determines the process X on a path, which we denote by w,. Here AW(t,,w;) and 
AW(tk,w;) (i # k )  are independent random numbers, following the definition of 
the Brownian motion. If we follow this rule to generate paths w1,. . . , wnparhr, where 
AW(ti, w;) and AW(t;, wk) ( j  # k )  are independent, then we say that the set 

is a Monte Carlo simulation of the process X .  

Figure 13.2. Monte-Carlo Simulation 

An approximation of the expectation of some function f of the X(ti) 's  is then given 

by 

The generation of random numbers is discussed in Section B. 1 

13.2.2 Weighted Monte Carlo Simulation 
A generalization of the procedure is to generate the random numbers AW(t,, w;) not 
according to the distribution AW(ti), which means that all paths w; are generated with 
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nonuniform weights pi (Cy?;" p ,  = 1). In this case we call the simulation weighted 
Monte Carlo simulation. For the expectation we have 

j=  I 

To summarize, the Monte Carlo simulation consists of the time-discrete process X 
in (1 3.6), represented over a discrete probability space (a, F,  p ) ,  where 

= {ul,. .  . 9 unpnlhr} c Q, F = g({uj} l j  = 1,. . . , npaths). p ( ( u j ) )  = p i -  

13.2.3 Implementation 

Figures 13.3 and 13.4 show an example for an object-oriented design. The figures 
follow the Unified Modeling Language (UML) 1.3; see [28]. 

The generation of a Monte Carlo simulation of a lognormal process is realized 
through the abstract base class LOGNORMALPROCESS. The class defines abstract methods 
for initial conditions, drift, and volatility. A specific model has to be derived from this 
class and implement the three methods. The abstract base class LOGNORMALPROCESS 
provides the implementation of the discretization scheme, using the methods for 
initial conditions, drift, and volatility. 

The calculation of the Brownian increments, i.e., the random numbers, is given by 
an additional class: BROWNIANMOTION. 

Figure 13.3. UML Diagram: Monte Carlo simulation/lognormal process. 

13.2.3.1 Example: Valuation of a Stock Option under the 

Consider the model from Chapter 4, the Black-Scholes model: We have to simulate 
the process 

Black-Scholes Model Using Monte Carlo Simulation 

dS(t) = r ( t )S( t )  dt + a ( t ) S ( t )  dW'(t) under the measure QN, S(0) = SO 
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together with the numtraire 

dN(t) = r(t)N(t) dt, N(0 )  = 1, 

which is not stochastic here. For this example we have to set X = ( X I ,  X z )  = (S, N )  
in the previous section. We choose r and a constant and apply the Euler scheme to 
log(S), following Section 13.1.2.3: 

1 
2 

S(ti+l) = S(ti) exp((r - -a2) Ati + a AW(ti)), 

N(ti+i) = N(ti) exp (r Ati), 

S(0) = So, 

N(0)  = 1. 

In this example the time discretization does not introduce an approximation error, 
because we are in the special situation of Section 13.1.2.4. If w1,. . . , wnpaths are paths 
of a Monte Carlo simulation, then we have for the price V of a European option with 
maturity tk  and strike K 

max ( S ( t k ,  w,) - K ,  0)  

N(tk) 

We can extend the object-oriented design from Figure 13.3 to derive the class 
BLACKSCHOLESMODEL from the abstract base class LOGNORMALPROCESS. The class 
BLACKSCHOLESMODEL implements the methods providing the initial value (returning 
S(O)), the drift (returning r), and the factor loading (returning a). In this context the 
factor loading is identical to the volatility.* In addition the class implements a method 
that returns the corresponding numtraire. 

13.2.3.2 Separation of Product and Model 

The evaluation of a derivative product, in our case a simple European option, is 
realized in its own class STOCKOPTION. This class does not communicate directly with 
the BLACKSCHOLESMODEL. Instead it expects an interface MONTECARLOSTOCKPROCESS- 
MODEL and the model implements this interface. 

The interface MONTECARLOSTOCKPROCESSMODEL means that the stock model makes 
the stock process and the numtraire available to the stock product as a Monte Carlo 
simulation. All corresponding Monte Carlo evaluations of stock products expect this 
interface only. All corresponding Monte Carlo stock models implement this interface. 
This produces a separation of product and model. The model used to evaluate the 
products may be exchanged for another, as long as the interface is respected. 

We will use this principle in the object-oriented design of the LIBOR market 
model, a multidimensional interest rate model. There we will reuse the classes 
BROWNIANMOT~ON and LOGNORMALPROCESS; see Section 19.6. 

In a multi factor model the factor loading is given by the square root of the covariance matrix 
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Figure 13.4. UML Diagram: Evaluation under a Black-Scholes model via Monte 
Carlo simulation. 
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1 3.2.3.3 Model-Product Communication Protocol 

In designing a Monte Carlo simulation, one of the first steps is the design of the core 
data objects representing the realizations of the stochastic process. These are the data 
objects that are sent from the model to the product (via call to a method of the model). 
They define the communication protocol between model and product. 

If we think of a more complex model, e.g., a model for a family of forward rates 
(L(Ti, Ti+,) I i = 0,1,2,. . . , n - l}, as given by the LIBOR market model, then the 
product needs access to a whole family of stochastic processes to process it. 

The question we would like to briefly address here is how these data should be 
stored and in what order it is usually accessed and processed. Of course, the favored 
solution may vary with the specific application, so we shall remain on a fairly general 
level. More specifically we would like to consider the order in which data objects are 
aggregated. For example: Is it better to store a family of stochastic processes, each 
being a family of one-dimensional random variables (parametrized by simulation 
time), each being a set of realizations on a path, i.e., 

( ( (Xi(r j ,wk) I k = 0,1,2 ,... } I j = 0, 1,2 ,... } I i = 0,1,2, . .  .}, 

or would we rather store a family of sample paths (with path index k )  of a function of 
t j  (with time index j )  each being vector values (with component index i), i.e., 

( ( { X i ( t j , W k )  I i = 0,1,2,. . .) I j = 0,1,2,. . .) I k = 0, 1,2,. . .). (13.7) 

Examples of such data objects are a family of forward rates Xi  := L(Ti, Ti+l), e.g., as 
modeled by a LIBOR market model, or a set of stock price processes Xi ,  for example, 
as underlyings of a basket. 

One is tempted to believe that for a Monte Carlo simulation the paths wk are totally 
independent objects and thus that it would be reasonable to have the index k on 
the top-most level of aggregation/parametrization, as is the case in (13.7). Indeed, 
this would make it easy to parallelize the processing since the algorithm could be 
called with different subsets of paths. However, this is only possible for simple (say 
European) options. 

The solution we recommend is to aggregate the data (from outer to inner objects) 
as a family of random variables parametrized by t,, each random variable being 
a vector consisting of one-dimensional random variables parametrized by i, each 
one-dimensional random variable being represented by a vector of evaluations on 
sample paths parametrized by k ,  i.e., 

( ( ( L ( T i ,  Ti+l; ti, wk) I k = 0,1,2,. . .) I i = 0,1,2,. . .} I j = 0,1,2,. . .). 

In other words: We build our data object or array (from inner to outer) as follows: 

191 



Core Object: Random Variable The core object is a one-dimensional random 
variable evaluated on given sample paths, 

x k  := x(wk), 

defining a vector of realizations 2 := (XI,. . . , x,)~. There are two major reasons for 
using this vector as a basic object: 

0 Product payoffs are functions of the underlyings, i.e., functions operating on 
random variables. This makes it possible to define the functions as functions 
acting on vectors (vector arithmetic), which greatly increases the readability 
of the code. Loops over the paths are hidden inside the methods acting on the 
random variable objects. For example, the payoff of an option max(S T - X ,  0) 
would appear as such in the code while the pathwise evaluation is hidden in the 
implementation of the max-function. 

0 For Bermudan options it is necessary to calculate conditional expectations. To 
do so, one needs access to the realizations on other paths, e.g., when using 
the regression method (see Section 15.10.1). To some extent, the pricing of 
Bermudan options breaks the naive parallelization of pricings through subsets 
of sample paths. See the discussion of the foresight bias in Section 15.9. 

Aggregation 1 : Vector of Random Variables of Same Simulation Time 
When simulating multiple stochastic processes, like, for example, a basket of underly- 
ings or a family of forward rates, access to the whole family for a fixed simulation 
time t is normally required. So on the next aggregation level the basic object thus is a 
vector of random variables sharing the same measurability property, 

Xi  where Xi is %-measurable. 

This makes sense since we often build a new stochastic process by defining its time 
t value as a function of the time t value of other stochastic processes. We give two 
examples: 

0 At time t ,  the value of a basket of stocks is the sum of the underlyings Sl,. 

0 At time t the swap rate is a function of forward rates Li(t). 

Aggregation 2: Time-Discrete Stochastic Process Aggregating these vec- 
tors of random variables over all simulation times is finally the complete description 
of the Monte Carlo simulation. 
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Storage, Access, and Processing To summarize, we say that for most appli- 
cations the storage should be allocated as a three-dimensional array 

results in a reference (!) to a vector containing the sample paths of a random variable 
X,( t i ) .  If basic functionalities are implemented as methods acting on random variables, 
then we may work directly with this reference. It may be convenient to define this as 
a class, eventually endowing it with additional information, e.g., 

Remark 181 (Counterexample): There are applications where other storage 
layouts are advantageous. Path-dependent products such as Asian or lookback options 
usually require the application of a function to a path (parametrized by ti). In such 
cases it may be convenient to work with (13.7). 

Remark 182 (Performance and Readability of the Code): The storage layout 
has an impact on the performance. Usually a large number of paths (10,000-100,000) 
for a few stochastic processes (1-100) given at a modest number of time discretization 
points (50-500) are considered. Therefore, it is sensible to use the random variable 
as the core object so that one needs to allocate only a few objects containing large 
continuous blocks of memory (which is more efficient than doing it vice versa) and 
one can optimize core methods which iterate often.3 

Last but not least, the entire mathematical theory is built on random variables as the 
central modeling entity. Thus, using random variables as core objects will improve 
the readability of the code. Whenever code is developed as a collaborative effort, this 
should be considered as a top priority. 

13.2.4 Review 

Through the Monte Carlo simulation we can evaluate simple and pure path-dependent 
products. The Monte Carlo evaluation of derivatives where an expectation has to be 

Consideration of a large single (one-dimensional) array and working on it might be the most efficient 
implementation, but it will make it difficult to comply with basic principles of object-oriented design 
(like data hiding) and will most likely make the code difficult to maintain and extend. 
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calculated that is conditional to a future time t ,  is nontrivial, e.g., 

E ( X ( t , )  I 95) 

for t ,  > t ,  > to.4 Why this is nontrivial becomes apparent when we consider the 
filtration: 

In a path simulation in general no two paths will have a common past. The reason 
is that the number of possible states X ( t , )  is much higher than the number of paths 
that are simulated. If no two paths have a common past, then we have the following 
filtration: 

and 

The calculation of a condition expectation in a Monte Carlo simulation is not straight- 
forward, since no suitable time discretization of the filtration 7;, of X is g i ~ e n . ~  The 
filtration of the Monte Carlo simulation depicted in Figure 13.2 is given by 

%(, = WJ,fil, 
%, = c({{ui 1, ( 0 2 1 ,  { u 4 1 } ) ,  

%, = c ( { { ~  1, (u21 ,  {@3), {u41}), 

%, = c({{wiI, ( ~ 2 1 ,  ( 0 3 1 ,  { u 4 1 } ) .  

To achieve a time discretization of the filtration, we restrict the possible values of 
X in each simulation time step. We thus assume a discretization of state space. 

Such a conditional expectation would be necessary for the evaluation of a Bermudan option. 
In Chapter 15 we will present special methods for the evaluation of conditional expectation in a Monte 
Carlo simulation. 
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Figure 13.5. Monte Curlo simulation. 

13.3 Discretization of State Space 

13.3.1 Definitions 

Instead of the time-discrete process 

we will consider the time-discrete process 

where the increments AB(ti)  are random variables that take only a finite number of 
values and are mutually independent. According to Theorem 3 1 we can choose the 
AB(t;)  such that in the limit At, 4 0 we recover a Brownian motion, i.e., for X we 
recover the original time-continuous process. 

Using the increments AB(ti )  the process X from (13.8) can take on only a finite 
number of values too: 

We denote this set as a lattice. Let 

{p!’Jz I j l  = 0,. . . , n; ; j ,  = 0,. . . , n;+l ; i = 0,. . . , ntimes - 11, 

denote the transition probabilities of the AB(t,)’s, i.e., p:”’’ := P(X(t ,+t)  = <:, IX(t,) = 

.;’,I). Depending on the probability distribution assumed for the AB(t , ) ,  the matrix of 
transitional probabilities (pj”JZ)J,rJ2 from t, to rl+l is sparse. For a binomial tree, i.e., 
binomial distributed AB(t,)’s, in each row only two entries are nonzero. 
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Figure 13.6. Lattice. 

In the given situation of a discretized state space, it is far more efficient to store 
transition probabilities than to simulate all possible paths. For example, the lattice 
in Figure 13.6 exhibits 9 states at each of the 4 time steps. In this lattice there exist 
94 = 656 1 paths; however, there are only 9 + 3 x 92 = 252 transition probabilities. The 
amount of memory needed to store all paths grows exponentially with time, whereas 
the amount of memory needed to store all states and transition probabilities shows 
only linear growth over time. 

If we use binomial distributed increments AB(ti), then we obtain a binomial tree. 
Figure 13.8 shows the paths that can be distinguished in the binomial tree depicted in 
Figure 13.7. 

Figure 13.7. Binomial tree Figure 13.8. Paths of the binomial tree 
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For the binomial tree the filtration is no longer trivial. It exhibits a hierarchy of 
refinements. For the binomial tree in Figure 13.7 the filtration is given by 

13.3.2 Backward Algorithm 

Given a lattice we may calculate the conditional expectation of a function f of X( r I+ l ) ,  
condition to X( t , )  = 4z1 as 

Qlt I 

EP(f(X(tl+i)) I (X(tJ = -$)) c ~ j l ” ~  f(X;’,:,). 
J 2 = I  

A step-by-step application finally gives the expectation E’(f(X(t,+l)) 1 ( X ( t 0 )  = x:~]). 
Assuming that X( t0 )  = const. = x:l,, i.e., that the lattice has a single state in to, this 
corresponds to 

E’(f(X(tI+i )> I F-(to>>. 

This procedure is called backward algorithm. If we consider the case of a numtraire 
N and a derivative product V given at time t,+l as a function of the states X( r l+ l ) ,  then 
we find 

(13.9) 

Thus, financial products which are functions of the states X ( t , )  are evaluated in a 
lattice by storing the numhaire-relative prices at the nodes e+l and calculating the 

N-relative value in node 4’ via (13.9). The transition (13.9) is also called rollback. 

13.3.3 Review 

13.3.3.1 Path Dependencies 

If a lattice with states 4 and transition probabilities p{”J2 is set up, we are able to 
calculate (certain) conditional expectations. However, it is nontrivial to calculate 
path-dependent products, i.e., financial products that not only depend on the current 
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state of the underlying but also on the history (the paths). The backward algorithm 
carries information from the future backward in time but cannot consider information 
from the past. In contrast the Monte Carlo simulation is aforward algorithm that 
carries information forward in time. 

13.3.3.2 Course of Dimension 

A further problem of lattices becomes apparent for vector values processes X .  The 
number of possible transitions (and thus the amount of transition probabilities that 
must be stored) grows exponentially with the dimension of the vector X ,  and already 
for dimensions like 3 or higher the numerical calculation of the rollback (1 3.9) is 
critical with respect to the resources required (CPU time and memory). 

13.4 Path Simulation through a Lattice: Two 
Layers 

To calculate a path-dependent product in a lattice we may create a Monte Carlo 
simulation according to the state-discretized process (13.8). This may be depicted as 
a “Monte Carlo simulation through a lattice” or a second Monte Carlo layer laid over 
the lattice. See Figure 13.9. 

Figure 13.9. Lattice with overlain Monte Carlo simulation 

Further Reading: An in-depth discussion of numerical methods to 
4 approximate stochastic processes is to be found in [21]. 
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CHAPTER 14 

Numerical Methods for Partial 
Differential Equations 

The Feynman-KaE Theorem creates the link to partial differential equations (PDEs). 
The calculation of an expectation, i.e., the pricing of a derivative, becomes equivalent 
to the solution of the PDE: 

Endowed with the pricing PDE we can apply the proven numerical methods for the 
solution of partial differential equations, like jinite differences and jinite elements. 
In the context of PDEs, the binomial or trinomial tree is just a special variant of a 
finite difference method (namely an explicit Euler scheme). On the other hand, PDE 
implementations are just a special version of lattices. 

The field of numerical methods for partial differential equations is huge. In this 
book we focus more on Monte Carlo methods, which, to some extent, have a much 
broader range of application. Here is a brief reference to some literature. 

Further Reading: Numerical methods for partial differential equa- 
tions in the context of mathematical finance may be found in Giinther and 
Jiingel [ 171, Seydel [32], and Wilmott [40]. A discussion of the imple- 
mentation of the Cheyette model's PDE is given in Kohl-Landgraf [84]. 

4 
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CHAPTER 15 

Pricing Bermudan Options in a 
Monte Carlo Simulation 

15.1 Introduction 

Let us first consider the simple case of a Bermudan option Vberm(T1, T2) with two 
exercise dates only (Figure 15.1): The option holder has the right to receive an 
underlying Vunderl,l in TI or wait and retain the right to either receive an underlying 
Vunderl,2 in  T2 or receive nothing. Put differently, the option holder has the choice of 
receiving the underlying value Vunderl,J(Tl) or the value of an option voption(Tl) on 
Vu&rl,2(T2). The Bermudan may be interpreted as an option on an option. In T I  the 
optimal exercise is given by choosing the maximum value 

where (having chosen a numkraire N) 

is the value of the option with exercise in T2, evaluated in TI .  
Thus, to evaluate the exercise criterion (15.1) it is necessary to calculate a con- 

ditional expectation. The calculation of a conditional expectation within a Monte 
Carlo simulation is a nontrivial problem. The two main issues are complexity and 
,fnresiglzt bias, which we will illustrate in Section 15.5 and 15.6. In the following 
section we will present methods to efficiently estimate conditional expectations and/or 
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Figure 15.1. A simple Bermudan option with two exercise dates. 

the Bermudan exercise criterion within Monte Carlo simulation. The application to 
the pricing of Bermudan options is exemplary. The methods presented are not limited 
to Bermudan option pricing. 

15.2 Bermudan Options: Notation 

Reconsider the general definition of a Bermudan option (see Definition 146). Let 
{ T i ] I , ,  ,_,,, denote a set of exercise dates and { V,,nderl,i]i=l,,,,, , a corresponding set of 
underlyings. The Bermudan option is the right to receive at one and only one time T,  
the corresponding underlying Vunderl,l (with i = 1,. . . , n)  or receive nothing. 

At each exercise date Ti, the optimal strategy compares the value of the product 
upon exercise with the value of the product upon nonexercise and chooses the larger 
one. Thus the value of the Bermudan is given recursively 

Bermudan with 
exercise dates 
Ti,. . . , T ,  

Bermudan with Product 
exercise dates received upon 

exercise in T, Ti+! , .  . . , Tn 

where Vberm(Tn ;  T,) := 0 and Vunderl,;(Ti) denotes the value of the underlying Vunderl,i 

at exercise date Ti. 
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15.2.1 Bermudan Callable 

The most common Bermudan option is the Bermudan callable'. For a Bermudan 
Callable the underlyings consist of periodic payments Xk and differ only by the start 
of the periodic payments. The value of the underlying then becomes 

Here Xk denotes a payment fixed in Tk (i.e., FTk-measurable) and paid in Tk+l. This 
is the usual setup for interest rate Bermudan callables. Other payment dates are a 
minor modification; they simply change the time argument of the numCraire. 
value upon nonexercise we have as before 

If the value of the underlying cannot be expressed by means of an analytical 
formula, two conditional expectations have to be evaluated to calculate the exercise 
strategy (15.3). 

15.2.2 Relative Prices 

Since the conditional expectation of a numkraire-relative price is a numkraire-relative 
price, the presentation will be simplified by considering the numkraire-relative quanti- 
ties. We will therefore define 

thus we have 

and in the case of a Bermudan callable 

' See Remark 154 on the naming Bermudan callable 
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The relative prices are marked by a tilde. 

Remark 183 (Notation): The processes t H vUnderl,,(t) and t H i&rm,r(t) are E 
conditional expectations of vunderl,,( T , )  and vb,rm,,( T,) ,  respectively, and thus mar- 
tingales by definition. The time-discrete processes i H vUnderl , , (Tr) ,  i H vberm, , (Tr )  

consist of different products at different times and are thus not normally time-discrete 
martingales. 

15.3 Bermudan Option as Optimal Exercise 
Problem 

A Bermudan option consists of the right to receive one (and only one) of the under- 
lyings Vunderl,i at the corresponding exercise date T;. The recursive definition (15.3) 
represents the optimal exercise strategy in each exercise time. We formalize this 
optimal exercise strategy: 

For a given path w E R let 

and 

1 if Ti 2 T ( w )  
0 else. q :  ( 1  ,..., n -  1)  X R  + (0, l ) ,  q(i ,w) := 

The definitions of T and q give equivalent descriptions of the exercise strategy: T ( w )  
is the optimal exercise time on a given path w;  q(., w )  is an indicator function which 
changes from 0 to 1 at the time index i corresponding to T; = T(w).  The boundary 
a (q  = 1)  of the set {q  = 1)  is termed the exercise boundary. It should be noted that 
q ( k )  is 7~~ -measurable. 

15.3.1 Bermudan Option Value as Single (Unconditioned) 
Expectation: The Optimal Exercise Value 

With the definition of the optimal exercise strategy T (or 7)  it is possible to define a 
random variable which allows the Bermudan option value to be expressed as a single 
(unconditioned) expectation. With 

LJ(T;) := V u n d e r l , , ( ~ , )  i = 1, .  . . , n 

denoting the relative price of the i-th underlying; upon its exercise date Ti we have 
for the Bermudan value 

vberm(T0)  = EQ ( f i / ( T )  I T T o ) .  
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For the Bermudan callable we may alternatively write 

The random variable o ( T )  can be calculated directly using the backward algorithm. 
We will look at this in the next section and conclude by giving o ( T )  a name. 

Definition 184 (Option Value upon Optimal Exercise): 1 

Let 0 be the stochastic process whose time t value U( t )  is the (numtraire-relative) 
option value received upon exercise in t.  Let T be the optimal exercise strategy. The 
random variable o ( T ) ,  where 

O(T) [w]  := U(T(w) ,  w )  

is the (numeraire-relative) option value received upon optimal exercise. The 
(numeraire-relative) Bermudan option value is given by EQ(o(T) I FT,,). J 

Thus the value of Vherrn(T1, . . . , T,) can be expressed through a single expectation 
conditioned to To and does not need an expectation conditional to a later time to be 
calculated, (f we have the optimal exercise date T ( w )  (and thus q(., w) )  for any path 

Remark 185 (Stopped Process): The random variable o ( T )  is termed a stopped 
process. 0 is a stochastic process and T is a random variable with the interpretation 
of a (stochastic) time. Furthermore T is a stopping time; see Definition 197. Here the 
stochastic process 0 is the family of underlyings received upon exercise, parametrized 
by exercise time, and T is the optimal exercise time. Thus o ( T )  is the underlying 
received upon optimal exercise. All quantities are stochastic. 

w. 

15.4 Bermudan Option Pricing-The Backward 
Algorithm 

The random variable o ( T )  can be derived in a Monte Car10 simulation through 
the backward algorithm, given the exercise criterion (15.3), i.e., the conditional 
expectation. The algorithm consists of the application of the recursive definition of 
the Bermudan value in (15.3) with a slight modification. Let: 

Induction start: 
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Induction step i + 1 + i for i = a , .  . . , 1: 

and 01 = o ( T )  with the notation from the previous section. 

Interpretation: The recursive definition of oi differs from the recur- 
sive definition of i&m,i(Tj). We have 

and 

There is a subtle but crucial difference. While both definitions give the Bermudan op- 
tion value (through application of (1 5.4)), the definition of ol requires the conditional 
expectation operator only to calculate the exercise criterion. 

Since a Monte Carlo simulation requires advanced methods to obtain an (often not 
very accurate) estimate for the conditional expectation, it is important to reduce their 
use. 

Note that vbe rm, l (T l )  is FT, -measurable by definition as a 7~~ conditional expectation, 
while all ol are at most F~,,-measurable since they are defined pathwise from FT,- 

4 measurable random variables vunderl.k(Tk) for i 5 k 5 n. 

The pricing of a Bermudan option may thus be reduced to either the calculation of 
conditional expectations or to the calculation of the optimal exercise strategy T .  

As a motivation, in Sections 15.5 and 15.6 we will look at two methods which are 
not suitable for calculating conditional expectations. 

See Exercise 2 on page 479. 
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15.5 Resimulation 

Let us consider the simplified example of a Bermudan option as given in Section 15.1. 
If no analytical calculation of the conditional expectation (15.2) is possible and if 
Monte Carlo is the numerical tool for calculating expectations, the straightforward 
way to calculate the conditional expectation is to create in T I  a new Monte Carlo 
simulation (conditioned) on each path-see Figure 15.2. This leads to a much higher 
number of total simulation paths needed. 

Figure 15.2. Brute-force calculation of the conditional expectation by (pathwise) 
resimulation. 

If one considers more than one exercise date (option on option on option. . . ), this 
method becomes particularly impractical. The required number of paths, i.e., the 
complexity of the algorithm and thus the calculation time, grows exponentially with 
the number of exercise dates. This creates the need for efficient alternatives. 

Interpretation: The calculation of conditional expectation in a path 
simulation requires further measures since the path simulation does not 
offer a suitable discretization of the filtration. dl 

15.6 Perfect Foresight 

If one refuses to use a full resimulation and sticks to the paths generated in the original 
simulation, then one effectively estimates the conditional expectation by a single path, 
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namely by 

Basically, this is a limit case of the resimulation where each resimulation consists of a 
single path only, namely the one of the original simulation. If this estimate is used 
in the exercise criterion, the exercise will be superoptimal since it is based on future 
information that would be unknown otherwise. 

The exercise criterion at time T I  may only depend on information available in T I ,  
i.e., on FT, -measurable random variables. The estimate # is not FT, -measurable. 

For an illustration of the superoptimality, consider the simulation consisting of 
two paths; see Figure 15.3. Both paths are identical on [0, T I ] ,  i.e., FT, = (0, R) = 
( @ , ( w ~ , w 2 ) } .  We consider the option V to receive either S(T1) = 2 at time T I  
or S(T2) E ( 1,4) at a later time T2. The random variable 7 : R + (0, 1 )  denotes 
the exercise strategy for T I  : It is 1 on paths that exercise in T I ,  otherwise 0. With 
perfect,foresighf the superoptimal exercise strategy is T(w1) = T2, T(w2) = T I ,  
i.e., ~ ( w I )  = 0, 7(w2) = 1, and an average value of V(T0) = i (4  + 2)  = will be 
received. Note that then 7 is not FT, -measurable. The exercise decision is made in 
T I  with knowledge of the future outcome. If we restrict the exercise strategy to the 
set of F~,-measurable random variables, we either get i(4 + 1) = 2 using 7 I 0 or 
i ( 2  + 2) = using 7 I 1. Thus the optimal, FTl -measurable (and thus admissible) 
exercise strategy is ~ ( w I )  = q(w2) = 0. 

P({wl}) = 0.5 

P({w,}) = 0.5 
4 

1 

P({w,}) = 0.5 

I I 
I t b  

TO Tl T2 

Figure 15.3. Illustration of perfectji,resight, 

Perfect,foresight is not a suitable method for estimating conditional expectation 
and calculating the exercise criterion. 
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15.7 Conditional Expectation as Functional 
Dependence 

Let us reconsider the calculation of the conditional expectation through brute-force 
resimulation as described in Section 15.5 and depicted in Figure 15.2. On each path of 
the original simulation a resimulation has to be created. These resimulations differ in 
their initial conditions (e.g., the value S(T1)  in a simulation of a stock price following 
a Black-Scholes model, or the values Li(T1) in a simulation of forward rates following 
a LIBOR market model). The initial conditions are FT, -measurable random variables 
(known as of T I ) .  Thus the conditional expectation is a function of these initial 
conditions (and possibly other model parameters known in T I ) .  If it is known that 
the conditional expectation is a function of an FT~ -measurable random variable Z (we 
assume here that Z : R + Rd with some d ) ,  we have 

see Figure 15.4. 

(15.5) 

Figure 15.4. Predictor variable versus realized value (continuation value): A 
diagram showing the path value of the predictor variable Z(w;) and the path value of 
P(T2; w;)  = -. The conditional expectation is a,function of Z dividing the cloud 
of dots. 
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Interpretation: If the random variable Z is such that FT, is the 
smallest (T field with respect to which Z is measurable (i.e., we have 
Z-’(B(Rq)) = FT,), then Equation (15.5) is merely the definition of 
an expectation conditioned on a random variable. If, however, the 

conditional expectation on the left hand side (ie.,  g )  is known to be measurable 
with respect to a smaller v field (e.g., because its functional depends on a smaller 
set of random variables), then it might be advantageous to use the right-hand side 
representation. This representation is also useful for deriving an approximation, e.g., 
if the functional dependence with respect to one component of Z is known to be weak 
and thus neglectable. 

Example: Consider a LIBOR market model with stochastic processes for the 
forward rates L I ,  L2,. . . L,,. In T I  we wish to calculate the conditional expectation of 
a derivative with a numeraire-relative payoff that depends on Lz, . . . , Lk only (e.g., 
on a swap rate). While the filtration FT, is generated by the full set of forward rates 
LI(TI),L~(TI), . . .L, ,(TI) it is sufficient to know L ~ ( T I ) ,  . . . , L ~ ( T I )  to describe the 

dl conditional expectation (i.e., the conditional value of the product). 

We will now describe methods that derive the functional dependence of the condi- 
tional expectation from a given set of random variables. 

15.8 Binning 

In a path simulation the approximation of EQ (z I Z )  will be given by averaging all 
paths for which Z attains the same value. For the simple example in Figure 15.3 this 
would remove the perfect foresight since S ( T I ) - ’  (2) = R. In general the situation will 
be such that there are no two or more paths for which Z attains the same value-apart 
from the construction of the unfeasible resimulation. Thus this approximation will 
show a perfect foresight. 

An improvement is given by a binning method, where the averaging will be done 
over those paths for which Z lies in a neighborhood (bin). If the quantities are 
continuous, we have 

where U,(Z(w)) := { y  I IIZ(w) - yII < €1. 
Instead of defining a bin U,(Z(w)) for each path w, it is more efficient to start with 

a partition of Z (Q)  into a finite set of disjoint bins U ;  c Z(R). The approximation of 
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the conditional expectation 

where Ui denotes the set with Z(w) E Ui; see Figure 15.5. 

Figure 15.5. Calculation of the conditional expectation by binning: Neighboring 
paths, i.e., paths which belong to the same bin, are bundled. The bins are defined by 
means of the TT, -measurable predictor variable Z. The figure shows the special case 
Z = W(T1). 

Example: Pricing of a Simple Bermudan Option on a Stock 
We illustrate the method in a simple Black-Scholes model for a stock S. In T I  
we wish to evaluate the option of receiving N I  (S(T1)  - K l )  in T I  or receiving 
N2 max(S (T2) - K2,O) at later time T2 (where N I ,  N2 (notional), K l ,  .K2 (strike) are 
given). The optimal exercise in T I  compares the exercise value with the value of the 
T2 option, i.e., 

I ..I) . 
N2 (T2) - K2,O) 

EQ( N(T2) 
From the model specification, e.g., here a Black-Scholes model 

dS(t )  = r S ( t )  dt + d ( t )  dWQ(t), N ( t )  = exp(r t ) ,  

it is obvious that the price of the T2 option seen in T I  is a given function S(T1)  and 
the given model parameters ( r ,  (T). Thus it is sufficient to calculate 
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In this example the functional dependence is known analytically. It is given by 
the Black-Scholes formula (4.3). Nevertheless we use the binning to calculate an 
approximation to the conditional expectation. If we plot 

i , " 
Continuation Value 

as a function of - 
Underlying 

we obtain the scatter plot in Figure 15.6, left. For a given S(T1) none or very few 
values of the continuation values exist. An estimate is not possible or else exhibits a 
foresight bias. For an interval [S I - E ,  S I + E ]  with sufficiently large E we have enough 
values to estimate 

which in turn may be used as an estimate of 

In Figure 15.6, right, we calculate this estimate for S 1 = 1 and E = 0.05. 

15.8.1 Binning as a Least-Square Regression 

Consider the binning again: 
EQ (z I Z ( o ) )  we calculated the conditional expectation 

As an estimate of the conditional expectation 

(15.6) 

given a bin Ui with Z(w) E U;. 

For the expectation operator EQ an alternative characterization may be used: 

Lemma 186 (Characterization of the Expectation as Least-Square Approxima- 
tion): The expectation of a random variable X is the number h for which X - h has 
the smallest variance (i.e., L2(0) norm). 

Proof: Let X be a real-valued random variable. Then we have for any h E R 

E ( ( X  - h)*) = E(X') - 2 E ( X )  h + h2 =: f ( h ) .  

Since f' = 0 a h = E ( X )  and f" = 1 2 0, we have that f attains its minimum in 
h = E ( X ) .  For vector-valued random variables this follows componentwise. The same 

01 result holds for conditional expectations. 
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Figure 15.6. The continuation value as a function of the underlying (spot value) and 
the calculation of the conditional expectation by a binning 

Using Lemma 186 we can write (15.6) as a minimization problem: 

For disjoint bins Ui this may be written in a single minimization problem for the 
vector (Hi)i=~,...: 

This condition admits an alternative interpretation: Hi represents the piecewise con- 
stant function (constant on (I,) with the minimal distance from % in the least-square 
sense. 

Let 5'f be the space of functions H : R -+ R being constant on the bins Z-'(Ui).3 
Let H E 5'f with H(w) := Hi for w E Z- '(Ui).  Then (15.7) is equivalent to 

Note that the bins Ui were defined as subsets ofZ(R), whereas here we consider H as a function on 0. 
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Equation (15.8) is the definition of a regression: Find the function H from a 
function space H with minimum distance to # in the L2 norm. Binning is just a 
special choice of functional space: 

Lemma 187 (Binning as L2 Regression): 
of functions being piecewise constant on Ui. 

Binning is an L2 regression on the space 

15.9 Foresight Bias 

Definition 188 (Foresight Bias (Definition 1)): 
Aforesight bias is a superoptimal exercise strategy. 

A foresight bias arises due to a violation of the measurability requirements: If the 
exercise decision in T, is based on a random variable which is not Fr, -measurable, the 
exercise may be superoptimal, i.e., better than if based on the information theoretically 
available (7~~). If we use the same Monte Carlo simulation to first estimate the exercise 
criterion and then use this criterion to price the derivative, we will definitely generate 
a foresight bias. In this case the foresight bias is created by the Monte Carlo error of 
the estimate, which is in general not FT, -measurable. The existence of this problem 
becomes obvious if we consider a limit case of binning where each bin contains a 
single path only. Here we would have perfect foresight. 

If our exercise criterion at time T ,  uses only FT!-measurable random variables, then 
there is-in theory-no foresight bias. If, however, the exercise criterion is calculated 
within a Monte Carlo simulation, the Monte Carlo error of the calculation represents 
a non-FTt-measurable random variable; thus it induces a foresight bias. In this case 
we can give an alternative definition for the foresight bias: 

Definition 189 (Foresight Bias (Definition 2)): 
Thefiwesight bias is the value of the option on the Monte Carlo error. 

1 

A 

As the number of paths increases the foresight bias introduced by binning converges 
to zero since the Monte Carlo error with respect to a bin converges to zero. 

A general solution to the problem of a foresight bias is given by using two inde- 
pendent Monte Carlo simulations: One to estimate the exercise criterion (for binning 
this is given by the Hi corresponding to the U,'s), the other to apply the criterion in 
pricing. This is a numerical removal of the foresight bias. In [67] an analytic formula 
for the (Monte Carlo error-induced) foresight bias is derived. It can be used to correct 
the foresight bias analytically. 
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15.1 0 Regression Methods-Least-Square 
Monte Carlo 

Motivation (Disadvantage of Binning): The partition of the state 
space Z(R) into a finite number of bins results in a piecewise constant 
approximation of the conditional expectation. An obvious improvement 
would be to approximate the conditional expectation by some smooth 

function of the state variable Z. 
The considerations in Section 15.8.1 suggest a simple yet powerful improvement 

to the binning: The function giving our estimate for the conditional expectation is 
QI defined by a least-square approximation (regression). 

15.1 0.1 Least-Square Approximation of the Conditional 
Expectat ion 

Let us start with a fairly general definition of the least-square approximation of the 
conditional expectation of random variable U .  

Definition 190 (Least-Square Approximation of the Conditional Expectation): ’ 
Let (R, F, Q, 1%)) be a filtered probability space and V an Fr,  -measurable random 
variable defined as the conditional expectation of U :  

V = EQ(U I FT, 1, 

where U is at least F-measurable. Furthermore let Y := ( Y I ,  . . . , Y p )  be a given FT, - 
measurable random variable and f : RP x F L Y  a given function. Let R* = [wl , . . . wn,] 
be a drawing from R (e.g., a Monte Carlo simulation corresponding to Q) and 
a* := (cy,,. . . , aq) such that 

IIU - f ( K  ~ * ) I I L ? ( R S )  = min IIU - f ( K  ~ ) I I L ~ ( P )  

in 

j =  I 
where IIU - f ( K  a*)Il&.) = 2 ( U ( w j )  - , f ( Y ( w j ) ,  a*))’. We set 

VLS := f ( K  a*).  

The random variable VLs is FT, -measurable. It is defined over R and a least-square 
approximation of V on W. A 

The approach of Carriere [59], Longstaff and Schwartz [86] uses a function f with 
q = p and 

n 
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such that a* may be calculated analytically as a linear regression. 

Lemma 191 (Linear Regression): Let Q* = { W I  , . . . , w,) be a given sample space, 
V : Q* + R and Y := (Yl , . . . , Y,,) : Q* + IWp given random variables. Furthermore 

Then we have for any a* with X T X a *  = XTv 

Proof: See Appendix B.5. 01 

Definition 192 (Basis Functions): 
The random variables Y I  , . . . , Y p  of Lemma 191 are called basisfunctions (explanatory 
variables). _I 

1 

15.1 0.2 Example: Evaluation of a Bermudan Option on a 
Stock (Backward Algorithm with Conditional 
Expectation Estimator) 

Consider a simple Bermudan option on a stock. The Bermudan should allow exercise 
at times T I  < T2 < . . . T,,. Upon exercise in T,  the holder of the option will receive 

once, but nothing if no exercise is made. 
We will apply the backward algorithm to derive the optimal exercise strategy. All 

payments will be considered in their numkraire-relative form. Thus the exercise 
criterion is given by a comparison of the conditional expectation of the payments 
received upon nonexercise with the payments received upon exercise. 

Induction Start: t > T,. After the last exercise time we have 

0 The value of the (future) payments is o,l+~ = 0 
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Induction Step: t = Ti, i = n , n  - l , n  - 2,.  . . 1. In Ti we have 

0 In the case of exercise in T; the value is 

(15.9) 

0 In the case of nonexercise in Ti the value is vhold,j(T;) = EQ(oi+l I TT,). This 

- Let B i  be given (TT,-measurable) basis  function^.^ Let the matrix X 

value is estimated through a regression for given paths W I ,  . . . , w,,,: 

consist of the column vectors Bj(wk), k = 1 , .  . . , in. Then we have 

0 The value of the payments of the product in T; under optimal exercise is given 

by 
if vhold,i(Ti) < vunderl , i(Ti) 

else. 
ui := 

Remark 193: Our example is of course just the backward algorithm with an explicit 
specification of an underlying (15.9) and an explicit specification of an exercise 
criterion, here given by the estimator of the conditional expectation (15.10). 

15.1 0.3 Example: Evaluation of a Bermudan Callable 

Consider a Bermudan callable. The Bermudan should allow exercise at times T I  < 
T2 < . . . T,,. Upon exercise in Ti the holder of the option will receive a payment of X i  

in Ti+l, i.e., the relative value %,(Tl+l)  := m. 
We will apply the backward algorithm to derive the optimal exercise strategy. All 

payments will be considered in their numtraire-relative form. 

X 

Induction Start: t > T,. After the last exercise time we have 

0 The value of the (future) payments is on+l = 0. 

Suitable basis functions for this example are I (constant), S(T; ) ,  S(T, )2 ,  S(Ti) ' ,  etc., such that the 
regression function .f will be a polynomial in S (T;) .  
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Figure 15.7. Regression of the conditional expectation estimator without restriction 
of the regression domain: We consider a Bermudan option with two exercise dates 
T I  = 1.0, T I  = 2.0. Notional and strike are asfollows: N I  = 0.7, N2 = 1.0, K1 = 0.82, 
K2 = 1 .O. The model for the underlying S is a Black-Scholes model with r = 0.05 and 
u = 20%. The plot shows the values received upon exercise depending on the values 
received upon nonexercise in T I .  Each dot corresponds to a path. The regression 
polynomial gives the estimator for the expectation of the value upon nonexercise. It is 
optimal to exercise ifthis estimate lies above the value received upon exercise. The 
regression polynomial is a second-order polynomial in S ( T I  ). 
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Figure 15.8. Regression of the conditional expectation estimator with restriction of 
the regression domain: Parameters as in Figure 15.7. The regression polynomial is a 
second-orderpolynomial in max(S(T1) - K1,O). Thus, values where S(T1) - K I  2 0 
are aggregated into a single point. For the product under consideration this is 
advantageous since for S(T1) - KI 5 0 exercise is not optimal with probability 1. 
This restriction of the regression domain increases the regression accuracy over the 
remaining regression domain. Compare with Figure 15.7. 
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Figure 15.9. Regression of the conditional expectation estimator using a polynomial 
of fourth (above) and eighth (below) order in max(S(T1) - K1,O). Parameters as 
in Figure 15.7. A polynomial of higher order shows wiggles at the boundary of the 
regression domain. Howevel; only a few paths are affected by the wrong estimate. 
Restricting the regression domain may reduce the errors (compare the leji end of the 
regression domain with the right end). 
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Induction Step: t = Ti,  i = n,n - 1, n - 2 , .  . . 1. 

0 In the case of exercise in Ti the value is 

In Ti we have 

This value is estimated by a regression for given paths wl , . . . , w,: 

Let Bf be given (FT,-measurable) basis functions. Let the matrix XI 
consist of the column vectors Bf(wk),  k = 1,. . . , m. Then we have 

(15.1 1) 

0 In the case of nonexercise in Ti the value is vhold,i(Ti) = EQ(0i+1 I TT,). This 
value is estimated by a regression for given paths w1,.  . . , w,: 

Let BY be given (FT,-measurable) basis functions. Let the matrix 

consist of the column vectors BY(wk), k = 1, . . . , m. Then we have 

0 The value of the payments of the product in Ti under optimal exercise is given 

bY 

Remark 194 (Bermudan Callable): The modification to the backward algorithm 
to price a Bermudan callable consists of the use of two conditional expectation 
estimators: one for the continuation value and (additionally) one for the underlying. 
As before, the conditional expectation estimators are used only for the exercise 
criterion (and not for the payment). 
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Remark 195 (Longstaff-Schwartz): 

0 The estimator of the conditional expectation is used in the estimation of the 
exercise strategy only. 

0 The choice of basis functions is crucial to the quality of the estimate. 

ClCment, Lamberton, and Protter [60] showed convergence of the Longstaff- 
Schwartz regression method to the exact solution. 

15.1 0.4 Implementation 

Figure 15.10. UML Diagram: Conditional expectation estimator: The method 
setBasisFunctionsEstimator sets the basis functions which form the matrix 
X .  The method setBasisFunctionsPredi ctor sets the basis functions which 
form the matrix x*. These are the same basis functions as for X ,  but possibly 
evaluated in an independent Monte Carlo simulation (to avoid foresight bias). The 
method getCondi tionalExpectation calculates the regression parameter a* = 
(XT . X ) - ’  . XT . v from a given vector v and returns the conditional expectation 
estimator x* . a* of v. See Lemma 191. 

The Longstaff-Schwartz conditional expectation estimator may easily be imple- 
mented in a corresponding class, independent of the given model or Monte Carlo 
simulation-see Figure 15.10. This class contains nothing more than a linear regres- 
sion, but the methodology may be replaced by alternative algorithms (e.g., nonpara- 
metric regressions). 

As pointed out in the discussion of the backward algorithm, it is not normally 
necessary to explicitly calculate the exercise strategy in the form of T or 7. It is 
sufficient to calculate the random variables oi in a backward recursion. Since finally 
only 01 is needed to calculate the price of the Bermudan option, the oi’s may be 
stored (updated) in the same vector of Monte Carlo realizations. 
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15.1 0.5 Binning as Linear Least-Square Regression 

We return once again to the binning. In Section 15.8.1 it turned out that binning may 
be interpreted as least-square regression with a specific set of basis functions: The 
indicator variables of the bins U,, which we denote by 

1 forw E U ,  

0 else. 
hj(w) := (15.12) 

We now give an explicit calculation using the linear regression algorithm with the bin 
indicator variables as basis functions. 

Figure 15.11. Binning using the linear regression algorithm with piecewise constant 
basis functions: We use 20 bins (basis&nctions). Each bin consist of approximately 
the same number of paths. Model and product parameters are as in Figure 15.7. 

Let wk denote the paths of a Monte Carlo simulation and X the matrix (h,(wk)), j col- 
umn index, k row index. Since the Uj's are disjoint, we have XTX = diag(m1,. . . , mp) ,  
where m, is the number of paths for which hj(wk) = 1. Thus we have for the regression 
parameter 

a* = (  X T . X ) - ' . X T . v = d i a g ( L ,  ml ...,$). XT.v.  
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It follows that the regression parameter gives the expectation on the corresponding 
bin: 

1 

m j  v t E ~ ,  

a; = - C vk for j =  1, . . . , p .  

15.1 1 Optimization Methods 

Motivation: In the discussion of the backward algorithm it has be- 
come obvious that the conditional expectation estimator is needed to 
derive the optimal exercise strategy only. Since a suboptimal exercise 
will lead to a lower Bermudan price, the optimal exercise has an alter- 

native characterization: It maximizes the Bermudan value. A solution to the pricing 
problem of the Bermudan thus consists of maximizing the Bermudan value over a 
suitable, sufficiently large space of admissible5 exercise strategies. Q I  

15.1 1.1 Andersen Algorithm for Bermudan Swaptions 
The following method was proposed for the valuation of Bermudan swaptions by 
Andersen [44]. We thus restrict our presentation to the evaluation of the Bermudan 
callable and use the notation of Section 15.10.3. In [44] the method appears less 
generic than the Longstraff-Schwartz regression. However, one might reformulate the 
optimization method in a fairly generic way. As the optimization is a high dimensional 
one, the method then becomes less useful in practice. 

The exercise strategy is given by a parametrized function of the underlyings 

where we replace the optimal exercise 

by 
I ; (R)  > 0. 

Here the function f may represent a variety of exercise criteria, e.g., 

By an admissible exercise strategy we denote one that respects the measurability requirements. As we 
noted, a violation of measurability requirements, i t . ,  a foresight bias or even perfect foresight, will 
result in a superoptimal strategy. The Bermudan value with a superoptimal strategy is higher than the 
Bermudan value with the optimal strategy; however, superoptimal exercise is impossible. 

224 



We assume that Ii is such that it may be calculated without resimulation, i.e., we 
assume that the underlyings vunderl,j(Tj) are either given by an analytic formula or 
a suitable approximation. For example, this is the case for a swap within a LIBOR 
market model. If we use the optimization method within the backward algorithm, it 
now looks as follows: 

Induction Start: t > T,. After the last exercise time we have 

0 The value of the (future) payments is O,+I = 0. 

Induction Step: t = Ti, i = n,n - 1 , n  - 2,. . . 1. In Ti we have 

0 In the case of exercise in Ti the value is vunderl,i(Tj) 

0 In the case of nonexercise in Ti the value is vhjlold,i(Ti) = EQ(Ui+l I FT,). This 
value is estimated through an optimization for given paths w1, . . . , w,: 

- Ii(A, w )  = .f(vunderl,i(Ti, w) ,  . . . 9 Vunder1.n-l (Ti, w),  A). 

- vbenn,i(TO> A )  = E"(Oi(n> I i c f l i (A,  wk) 
k 

- A* = arg max (i 2 o ~ ( A ,  wk)) 
A k 

0 The value of the payments of the product in T, under optimal exercise is given 

by 

The exercise strategy is estimated in Ti by choosing the R* for which Ii gives the 
maximal Bermudan option value. This is done by going backward in time, from 
exercise date to exercise date. 

15.1 1.2 Review of the Threshold Optimization Method 

15.1 1.2.1 Fitting the Exercise Strategy to the Product 

Let us apply the optimization method to the pricing of a simple Bermudan option on 
a stock following a Black-Scholes model. This shows that a too simple choice of the 
exercise strategy will give surprisingly unreliable results. 
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The simple strategy (15.13) fails for the simplest type of Bermudan option. Con- 
sider the option to receive 

Nl (S (TI 1 - KI) 

max(N2(S(T2) - K2)3 0) 

in TI  or receive 

in T2, where-as before-Ni and Ki denote notional and strike and S follows a Black- 
Scholes model. This gives us an analytic formula for the option in T2 and thus the 
true optimal exercise. Figure 15.12 shows an example where the optimization of the 
simple strategy (15.13) gives the value of the Bermudan option. 

Figure 15.12. Example of the successful Optimization of the exercise criterion 
(intersection of the two price curves, left). The graph on the right shows the Bermudan 
option value as a function of the exercise threshold A. 

A small change in notional N1 and strike K1 changes the picture. If both are smaller 
than N2 and K2, respectively, we obtain two intersection points of the exercise and 
continuation value. In T I  it is optimal to exercise in between these two intersection 
points. Our simple exercise criterion cannot render this case. Optimizing the threshold 
parameter A shows two maxima: the value of the two European options “exercise 
never” and “exercise always”. Both values are below the true Bermudan option value; 
see Figure 15.13, right. 
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Figure 15.13. Example of a failing optimization of the exercise criterion (intersection 
of the two price curves, left). The graph on the right shows the Bermudan option 
value as a function of the exercise threshold A. 

The conclusion of this example is that the choice of the exercise strategy has to 
be made carefully in accordance with the product. But this remark applies to some 
extent to any method. 

15.1 1.2.2 Disturbance of the Optimizer through Discontinuities and 
Local Minima 

The Monte Car10 Bermudan price calculated from the backward algorithm is a discon- 
tinuous function of the exercise criterion. The Bermudan price jumps if the exercise 
criterion Z(w, A )  changes sign for a given path w. The price jumps by the difference 
of exercise value and continuation value. Even in the case of an optimal exercise 
criterion (i.e., A = Amax) we see a jump in price since even then exercise value and 
continuation value will generally be different (at optimal exercise, only the expected 
(!) continuation value equals the exercise value). 

As a function of A, the price will not only exhibit discontinuities, but also small 
local maxima induced by them; see Figure 15.12, right. These may prevent the 
optimizing algorithm from finding the global maxima. 
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However, if there are a sufficient number of paths, the local maxima appear only 
on a small scale. The jumps in price will be of the order O(i), where n denotes 
the number of paths. Thus with a robust minimizer one would rarely encounter this 
problem. For example, consider the case that the limit function (for n + m) would 
satisfy an estimate of the form V,,, - V(A)  > C(A - i.e., without the Monte 
Carlo discontinuities no other local maxima or saddle point would exist. Then a 
bisection search on the disturbed function will miss the true maxima only by the order 
ofajump o(:). 

15.1 1.3 Optimization of Exercise Strategy: A More General 
For mu lat ion 

There is a trivial generalization of the optimization method considered in Sec- 
tion 15.1 1.1: 

0 The exercise criterion will be given as a function of arbitrary !F~,-measurable 
random variables. 

0 The exercise criterion will be given as a function of a parameter vector R E Rk. 

Thus we replace the “true” exercise criterion used in the backward algorithm 

vu:nderl,i(Ti) < ~ ~ ( O - i + l  I FT,) 

by a function 

where B;,; is a set of F:r,-measurable random variables and R E Rk 

zi(L W )  := f ( B i , ~  (w) ,  . . ., B i , m ( u ) ,  

15.1 1.4 Comparison of Optimization Method and 
Regression Method 

The difference between the optimization method and the regression method becomes 
apparent in Figures 15.7 to 15.9. While the regression method requires the regression 
functions to give a good fit to the conditional expectations across the whole domain 
of the independent variable, the optimization method only requires that the functional 
[,(A) captures the exercise boundary. In Figures 15.7 to 15.9 the conditional expecta- 
tion estimator is a curve, but the exercise boundary is given by two points only (the 
intersection of the conditional expectation estimator with the bisector). 

Thus the optimization method can cope with far fewer parameters than the regres- 
sion. On the other hand, as noted in the example above, it is far more important that 
the functional is adapted to the Bermudan product under consideration. 
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It is trivial to choose the map Zi(R) such that the optimal A* give the same or a better 
value than the least-square regression. If Bi,i denote the basis functions used in the 
least-square regression for exercise date Ti, we set 

Then for R = a*, where a* is the regression parameter from the least-square regression, 
the exercise criterion agrees with the one from the least-square regression. This result 
however is rarely an advantage of the optimization method since in practice a high 
dimensional optimization does not represent an alternative. 

229 



15.12 Duality Method: Upper Bound for 
Bermudan Option Prices 

Motivation: So far, the ansatz to evaluate a Bermudan option has 
been to estimate the exercise strategy, i.e., the stopping time T. If this 
estimate is itself a stopping time, i.e., no foresight bias is present, then 
the evaluation with the estimated exercise strategy gives a lower bound 

for the true value of the Bermudan option. The stopping time T maximizes the option 
price; all other stopping times give lower prices because they are subobtimal. In 
order to decide if the given lower bound is sufficiently close to the optimal value, a 

4 
In this section we present a method that gives, in the limit of a vanishing Monte 

Carlo error, an upper bound for the Bermundan option value. The upper bound itself 
converges to the true option value as a given space of test functions converges to the 
whole space. Putting aside the Monte Carlo error, together with the lower bound 
methods, Sections 15.8 to 15.1 1.1, we then obtain an interval for the true value of the 
Bermudan price. 

The method was introduced by Rogers [93], Haugh and Kogan [77], and originally 
by Davis and Karatzas [62]. 

corresponding upper bound would come in handy. 

15.1 2.1 Foundations 

Let us review some foundations. 

Definition 196 (Supermartingale): 1 

The stochastic process { X f ,  7; ; 0 5 t < a ~ }  is called a supermartingale with respect 
to the filtration 7; and the measure P, if 

X,s 2 E(Xf I Fy), P-almost surely, V 0 I s < t < 00. 

J 

Definition 197 (Stopping Time (Time-Discrete Process)): 
Let T : R -+ {To, . . . , T,) denote a random variable. T is called a stopping time if 

1 

{T = Ti} E Tr,. (15.14) 

J 

Remark 198 (Stopping Time): Equivalent to (15.14) is 

since FT, c FT, for T,j < Ti. 
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Interpretation: A stopping time may be viewed as the mathematical 
representation of an exercise strategy of a Bermudan option. If for a 
given path w, T(w) = Ti denotes the time at which an event occurs 
(e.g., the decision to exercise an option), then (15.15) constitutes the 

requirement that the decision is based on information that is available on or before 
Ti-expressed through the FT, -measurability. 

The condition (15.15) precludes a foresight bias. Compare Section 15.66. a1 

Given a stochastic process and a stopping time, we may construct the stopped 
process: 

Definition 199 (Stopped Process): 1 

Let X denote a stochastic process and T a stopping time. The process X T  given 
through X stopped in T, is defined by 

J 

Interpretation: On every path w the stopped process X T  coincides 
with X for times before the stopping time. For times on or after the 
stopping time the stopped process takes the constant value of X at the 
stopping time. It is stopped. This is similar to what happens for the 

(relative) price of a Bermudan option. Before the exercise date, the option value is 
stochastic. Upon exercise the value is frozen to the value upon exercise. 4 

Definition 200 (Snell Envelope): 
Let Z denote a time-discrete adapted process and U defined by 

U V n )  = Z(TA 

U(TI) = max(Z(T,),E(U(T,+I) I 7 T . I .  

1 

The process U is called Snell envelope of Z .  

Lemma 201 (Snell Envelope): 
gale which dominates 2. 

Theorem 202 (Doob-Meyer Decomposition): 
supermartingale. Then there exists a (unique) decomposition 

J 

The Snell envelope of Z is the smallest supermartin- 

Let U denote a (time-discrete) 

U(Ti) = M(Tj) - A(Tj), 

For the example discussed in Section 15.6 T(w1) = T(w2) = T I  and T(w1) = T(w2) = T2 are both 
stopping times (check!), however, the superoptimal exercise strategy T ( q )  = T I ,  T ( q )  = T2 is not a 
stopping time. 
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where M is a (time-discrete) martingale and A is a (time-discrete) previsible nonde- 
creasing process (i.e., A(T;-1, w )  I A(Ti, w ) )  where A(T0) = 0. 

Proof: 

15.1 2.2 American Option Evaluation as Optimal Stopping 
Problem 

We repeat the Bermudan option evaluation as optimal stopping: Let 0 = TO < TI < 
. . . < T,. Let Vunderl( T,) ,  i = 1, . . . , n - 1 denote a sequence of FT, -measurable random 
variables, giving the value of financial products at time T I .  We define recursively 

Vberrn(Ti) := max(Vunderl(Ti)> EQN(Vberm(T,+I) ~ N(T1) I FT,)), 
N(T,+ 1 ) 

where ( N ,  QN) denotes a given numkraire-martingale measure pair. Furthermore let 

denote the corresponding N-relative prices, i.e., 

Theorem 203 (American Option Price-Dual Formulation (Time-Continuous 
Version)): Let 

Vamer(0) := SUP E(VU(T> I fib). 
T stopping time 

Then 
Vamer(0) = inf, E( SUP ( V U ( t )  - M ( t ) )  I%), 

MSH" O<f<T 

where H i  denotes the set of all martingales M with sup IM(t)l E Ll(l2) and M ( 0 )  = 

0. 
OstsT 

Since we consider only the evaluation of Bermudan options, i.e., options a finite 
number of exercise dates, we give a time-discrete version of Theorem 203: 
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Theorem 204 (Bermudan Option Price-Dual Formulation (Time-Discrete Ver- 
sion)): Let 

vB(Tl) := max(vu(T,>, E ( ~ B ( T , + ~ )  I FT,)). 

v ~ ( T 0 )  = inf E(max(vdT,) - M(T,) )  I T o ) ,  (15.16) 
McH:, T, 

where H i  denotes the set of all (time-discrete) martingales M with 

M(T0)  = 0 

M ( T f )  = E(WT,+l)IFT,) M ( T , )  E LI (a 
and max(vu(T,) - M(T,) )  has to be understood pathwise, i.e., 

T, 

max(Vu(T,) - M(Tl))[wI = max(vu(T,, w )  - M(T, ,  w))  
T, T, 

(and not as a maximum over all stopping-times). 

Remark 205 (On Theorem 204): First, it is worth noting that in Theorem 204 
the maximum is applied pathwise. If the pathwise maximum is applied to Vunderl 

then maxTr(Vunderl(T,)) gives the value of a perfect foresight. As we will show in 
Lemma 206, a foresight error is precluded by the martingale M .  

The expectation in (15.16) is conditioned to FT(, = 70 only, i.e., it is not required 
to calculate a conditional expectation at a later time. However, the expectation has 
to be minimized over all martingales M .  This is as complex as the calculation of the 
optimal exercise strategy (by maximizing over all stopping times T). But Theorem 204 
indeed gives an upper bound for the value of the Bermudan option: 

and this upper bound may be arbitrarily close to the option price Vberm(TO) if M is 
suitably chosen. 

Lemma 206 (Eliminating Foresight): 
Let v"(T;), ~ B ( T ; )  be as before, i.e., 

and M as in the Doob-Meyer decomposition of v ~ ( T i )  

(1 5.17) 

7 T J .  ( 1 5.1 8) 

233 



Let Topt : R --f ( T I , .  . . , T,)  denote the (optimal) stopping time given by 

~"p'(w) := min{T, : V ~ ( T , ,  w )  2 E(VB(T]+I) I 7 T J ) [ w ] }  

(this implies v ~ ( T 0 )  = E(vu(ToPt) 17~")). 
Then we have (pathwise!) 

max(Vu/u(T,, w )  - M(T,, w))  = V"'U(T"~'(~), w)  - M(TOP', w). 
TJ 
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Remark 207 (Foresight Bias): Lemma 206 shows that the martingale M eliminates 
the foresight bias. We have 

Vu(T,) - M U ; )  1 VU(Tj )  - M ( T j )  'f T,, 

however, in general 

Proof: It is 

15.1 3 Primal-Dual Method: Upper and Lower 
Bound 

The calculation of the exercise strategy and from it the price of the Bermudan option 
via an (approximation) of the conditional expectation is called primal. The calculation 
of the exercise strategy via the stopping time through Section 15.12 is called dual. 



With the result from Lemma 206 we can combine both methods. From Theorem 204 
and Lemma 206 we have 

with 

The conditional expectation in (15.23) can be estimated with a primal method. If 
the conditional expectation has already been estimated in a calculation of the lower 
bound or the Bermudan option price, then (15.22) immediately gives a corresponding 
upper bound. 

Compare also [4S]. 

Further Reading: The discussions in [16], [IS], and [53] consider 
Monte Carlo methods for derivative pricing in general. In [60] the 
convergence of the regression methods is proven. The optimization 
method for Bermudan swaptions is given in [44], and a primal-dual 

U I  method i s  given in [45]. The discussion of the foresight bias is found in 1671. 

Experiment: At http://www. Christian-fries. de/finmath/ 
applets/BermudanStockOptionPricing.html the evaluation o f a  
Bermudan option on a stock following a Black-Scholes model may be 
studied. There is a choice of different evaluation methods. QI 
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CHAPTER 16 

Pricing Path-Dependent Options 
in a Backward Algorithm 

A backward algorithm, e.g., as given by a model implemented as a lattice, allows the 
calculation of the conditional expectation 

and thus defines induction steps Ti - Ti-] backward in time. Path-dependent 
quantities cannot be considered directly. One way of allowing for path-dependent 
quantities in a backward algorithm is to eliminate the path dependency by extending 
the state space. 

16.1 State Space Extension 
Let V denote a product whose time Ti value depends on a quantity Ci given by an 
update rule 

Ci = . f (TI ,  Ci-1, X I ) ,  Co = constant, (16.1) 

were X ;  is a random variable that is a function of the time Ti values of the model 
primitives, i.e., non-path dependent. Thus Xi and hence Ci are FT, measurable. 
Equation (16.1) constitutes the path-dependency of C;; it may not be written as a 
function of the time T ,  values of the model primitives. It depends on the past since it 
depends on the previous value C;-l. 

To remove the path-depency in V we add C, as an additional state. We consider the 
time Ti value of V as a function of Cj  

V(Tj) = V(Tj,Ci), i = 0 , l )  . . . ,  n.  
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Then backward algorithm is: 

Given V(T, ,  C,). 

0 Apply the update rule to define 

V(T; ,  Ci- I, X , )  := V (  Ti, f(Ci-I ,  X i ) )  

0 Define 

( 1  6.2) 

(16.3) 

Note that conditional to FT!,, the state C,-l is a constant. 

Interpretation (State Space Extension): The method is called 
state space extension because the discrete stochastic process T, H 

C(Ti)  := Ci can be interpreted as an additional state of the model 
and (16.1) defines the evolution of this process. Seen over this extended 

QI  space the product is non-path dependent. 

16.2 Implementation 
In order to implement the state space extension we discretize the additional state 
random variables C, into k, state values 

c, E k , , I  3 . . . 3 Cf,L, I. 

For the implementation of the update rule (16.2) an interpolation has to be used, 
e.g., a linear interpolation 

V(Ti, Ci-l,j, X ; )  = 
.f(ci- I , , j >  X i )  - ci,/, 

Ci,l,+l - CiJ I  

ci,l,+I - f(ci-l,j>Xi+I) 

%/ ,+I  - G,l, 
V(T,,  ci,/,+I) + V(Ti, Ci,[,)r 

where l j  is such that ci,lI 5 f ( c , - ~ , ~ ,  X i )  < c;,~,+l. 
Then the conditional expectation (16.3) is calculated for each state realization ci-l,j 

giving V(T;-I,ci-l,1), . . . , V(T;- l , c -~ ,k~) .  

Remark 209: For some products the value V(T, ,c)  is linear in c. In such cases 
two states are sufficient and the approximation of the update rule by the linear 
interpolation is exact. Examples are zero structures, where the additional state is the 
accrued notional; the value of the future cashflow is linear in the notional. 
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16.3 Path-Dependent Bermudan Options 

The state space extension can be used in any pricing code that uses a backward 
algorithm. It is not limited to models implemented on a lattice, although this might 
have been suggested by the word “extension”. A state space extension can also be 
used to consider path-dependent quantities in a backward algorithm in a Monte-Carlo 
simulation, e.g., for the pricing of path-dependet bermudan options in Monte-Carlo. 

Combining the Bermudan’s optimal exercise (15.3) with the state space extension 
the backward algorithm is 

Apply the optimal exercise for exercise date T; to define 

, V h e r m , i ( T i ~ c i - l ~ x i )  := max( Vhberm, i+ l (T , ,C i - l ,X i )  1 V u n d e r l , i ( T i , C i - l , X i ) ) .  
v Y ” 

Bermudan with Bermudan with Product 
exercise dates exercise dates received upon 

exercise in T ;  T , ,  . . . , Tn T;+i,. . ., Tn 

Define 

Tip: Here, the application of the update rule is performed before 
the application of the optimal exercise. However, the two steps may 
be interchanged. If one adds a state space extension to the Bermudan 
pricing it may appear more natural to apply the update rule after the 

optimal exercise has been applied. However, this will likely introduce numerical 
problems. If we consider 

Vherm,i(Ti ,  c i )  := max (Vherm, i+ l (T i ,  c i )  > Vunderl,i(Ti> c i ) )  

and then apply the update rule 
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it is difficult to implement an accurate interpolation of the update rule since c H 

Vberm,;(T;, ,f(c, X , ) )  is not a smooth function in c (the max() will introduce kinks). 
On the other hand, in (16.4) the update rule is applied to the conditional expectation 

of the previous backward induction step, which is usually a smooth function of the 
states. aI 

16.4 Examples 

We illustrate the method of state space extension for the valuation of a snowball/mem- 
ory (Definition 164) and for the evaluation of a flexi-cap (Definition 169). 

16.4.1 Evaluation of a Snowball in a Backward Algorithm 

A snowball/memory pays a coupon C; in T;+l which depends on the previous coupon. 
The coupon C; is given by an update rule 

with an ‘7,-measurable X ;  (the index), i.e., C; is path-dependent. 

as a function of this state. 

of the initial (or past) coupon Co, which is known. 

Remark 210 (In Arrears Fixing): Note that we assumed that the index X ;  is a 
function ofthe time Ti values of the model primitives and thus F,,-measurable. If the 
index X,-1 is a function of the time Ti values of the model primitives, i.e., fixed in 
arrears, then the additional state variable is the value of the previous coupon. 

We add the value of the coupon C; as an additional state and write the product value 

The backward induction from 16.1 gives the product value V(T0, CO) as a function 

16.4.2 Evaluation of a Autocap in a Backward Algorithm 

An autoccap pays at time T;+I the amount 

Xi := N max(L;(T;) - K; , 0) (T;+I - T; )  

1 
0 else, 

if l ( j  : j < i and Lj(Tj) - K ,  > 0)l < nmax~x 

where L,(t) := L(T,, T,,,; t )  denotes the forward rate for the period [ T I ,  T I+ , ]  seen in 
t I T,. 
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As a function of the processes Li the payoff X, is path-dependent since the payoff 
function is not given by the random variables Lk(T,) alone, but also by the past 
realizations of the processes Lk (entering though LJT;), j < i). 

We extend the model by the stochastic process 

q(t) : R + (0,. . . ,II - I}, 

w H I { L ; ( T ~ )  - K > o I T ,  I t ,  j = I ,  . . . , n - 111. 

Given L;, q the payoffs X; are a function of the realizations &(Ti), q(T;): 

1 ifV(T,) < nmaxEx 

0 else. 
X ,  := N max(L,(T,) - K, , 0) (T ,+ ,  - T , ) .  
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CHAPTER 17 

Sensitivities (Partial Derivatives) 
of Monte Carlo Prices 

17.1 Introduction 

The technique of risk-neutral pricing, i.e., the change toward the martingale mea- 
sure, allows us to calculate the cost of a (self-financing) replication portfolio, to be 
expressed as an expectation. The determination of the replication portfolio itself is 
not necessary. However, once a pricing formula or pricing algorithm (e.g., a Monte 
Carlo simulation) has been derived, the replication portfolio can be given in terms of 
the partial derivatives of the price with respect to current model parameters (like the 
initial values of the underlyings).' The partial derivatives of the price with respect to 
the model parameters are also called sensitivities, or Greeks. They are important to 
assess the risk of a financial product; see also Chapter 7. 

For complex products, like Bermudan options, an analytic pricing formula is usually 
not available. The pricing has to be done numerically. Under a high-dimensional 
model, like the LIBOR market model, the numerical method of choice is usually a 
Monte Carlo simulation. Given that, we will investigate the numerical calculation of 
sensitivities (partial derivatives) of Monte Carlo prices. 

The simplest way of calculating a derivative is by applying finite differences. 
Unfortunately, this can lead to a Monte Carlo algorithm giving unstable or inaccurate 
results. 

' Note that all market parameters enter into model parameters via the calibration of the model 
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17.2 Problem Description 

Let us consider a pricing algorithm that uses Monte Carlo simulation to calculate the 
price of a financial product as the expectation of the numiraire-relative value under 
an equivalent martingale measure Q: 

We are interested in the calculation of a partial derivative of V(to) with respect to some 
model parameter, e.g., the initial values of the underlying (+ delta), the volatility (+ 
vega), etc. 

Since we treat this problem as a general numerical problem, not necessarily related 
to derivative pricing, we do not adopt a specific model but use a notation that is 
slightly more general. To fix notation, let us restate Monte Carlo pricing first. 

17.2.1 Pricing using Monte-Carlo Simulation 

Assume that our model is given as a stochastic process X, for example an It6 process 

dX = p d t + c . d W ( t )  

modeling our model primitives like functions of the underlyings (e.g., financial 
products (stocks) or rates (forward rates, swap rates, FX rates)). For example, for 
the Black-Scholes model we would have X = (log(S), log(B)). Let X * ( t , )  denote an 
approximation of X(t,) generated by some (time) discretization scheme, e.g., an Euler 
scheme: 

X*(t,+l) = X*( t , )  +P(tl)At, + d t l )  ’ AW(t,) 

or one of the more advanced schemes2. We assume that our financial product depends 
only on realizations of X at a finite number of time points, i.e., we assume that the 
risk-neutral pricing of the financial product may be expressed as the expectation 
(with respect to the pricing measure) of a function f of some realizations Y := 
(X(to), X(tl), . . . , X(t,n)). This is true for many products (e.g., Bermudan options). If 
these are approximated through the realizations of the numerical scheme, we have 

Here ,f denotes the numiraire-relative payoff function. 

’ For alternative schemes see, e.g., 12 1,701 
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The Monte Carlo pricing consists of the averaging over some (often equidistributed) 
sample paths of, i = 1, . . . , n: 

To summarize: We have two approximation steps involved: The first one approx- 
imates the time-continuous process by a time-discrete process. The second one 
approximates the expectation by a Monte Carlo simulation of n sample paths. This 
is the minimum requirement to have the pricing implemented as a Monte Carlo 
simulation. 

17.2.2 Sensitivities from Monte Carlo Pricing 

Assume that 8 denotes some model parameter3 or a parametrization of a generic 
market data movement and let YQ denote the model realizations dependent on that 
parameter. Let us further assume that @yo denotes the probability density of YQ. Then 
the analytic calculation of the sensitivity is given by 

While the payoff f may be discontinuous, the density in general is a smooth function 
of 8 in which case the expectation E(f( Y ~ ) l ~ l l )  (the price) is a smooth function of 8, 
too. The price inherits the smoothness of # y o .  

The calculation of sensitivities using finite differences on a Monte-Carlo-based 
pricing algorithm is known to exhibit instabilities, if the payoff function is not smooth 
enough, e.g., if the payoff exhibits discontinuities as for a digital option. The difficul- 
ties arise when we consider the Monte Carlo approximation. It inherits the regularity 
of the payoff f ,  not that of the density 4: 

1 "  
E ( ~ ( Y ~ ) I F I ~ ~ )  = - C f(YQ(wi)).  

I = )  

So while E ( f ( Y ~ ) 1 7 ; ~ ~ )  may be smooth in 8, the Monte Carlo approximation 
E(f( Yo)Iz , , )  may have discontinuities. In this case a finite difference approxima- 
tion of the derivative applied to the Monte Carlo pricing will perform poorly. 

17.2.3 Example: The Linear and the Discontinuous Payout 

The challenge in calculating Monte Carlo sensitivities becomes obvious if we consider 
two very simple examples: 

So for ddra His an initial value X(O) ,  for vega H denotes a volatility, etc. 
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17.2.3.1 Linear Payout 

First consider a linear payout, say 

f ( X ( T ) )  = a X ( T )  + b. 

The (discounted) payout depends only on the time T realization of X (as one would 
have for a European option). Let Yo(w) := X(T, w, H ) ,  where 8 denotes some model 
parameter. The partial derivative of the Monte Carlo value of the payout with respect 
to 6, is 

Obviously the accuracy of the Monte Carlo approximation depends on the variance of 
2 only. When $ YH(wi) does not depend on wi, then the Monte Carlo approximation 
gives the exact value of the partial derivative, even if we use only a single path. 

17.2.3.2 Discontinuous Payout 

Next, consider a discontinuous payout, say 

1 ifX(T) > K 

0 else. 
f ( X ( T ) )  = 

Analytically we know from Yo+h = Yo + 2 h  + O(h2) and 

that 
1 a 

lim -(@(f(yfI+h) I ~ m )  - ~ ~ ~ ( y o - h )  I = (PY,(K) z. 
h-0 2h 

However, the partial derivative of the Monte Carlo value of the payout is 

a ^  i " a  
-E(,f(Yo)17;,) = - ae ae -f(Yo(w,)) = 0 assuming that YH(w,) # K for all i. 

i=l  

Thus, here, the partial derivative of the Monte Carlo value is always wrong. 

246 



17.2.4 Example: Trigger Products 
The two simple examples above suggest that a finite difference approximation of a 
Monte Carlo price works well if the payout is smooth, but fails if the payout exhibits 
discontinuities. The problem becomes a bit more subtle if we consider products 
where the discontinuous behavior is just one part of the payout which, in addition, 
may also be of more complex nature. Consider, for example, the autocap. For 
given times T I , .  . . , T, the autocap pays at each payment date T,+1 the payout of a 
caplet max (L(T,,  T, , , ;  T , )  - K ,  , 0) (T,+l - To,  but does so only if the number of 
nonzero payments up to T ,  is less than some n,,,,,~~. This latter condition represents a 
trigger which makes the otherwise continuous payoff discontinuous; see Figure5 17. I 
and 17.2. 

Figure 17.1. The payoff of an autocap paying a maximum of two out of three caplets, 
considered under a parallel shift of the interest rate curve (black line). The strike 
rate is depicted by a dot, a positive payout is marked in dark gray: In scenarios ( a )  
and (b) the first caplet does not lead to a positive payout while the second and third 
caplet do generate a positive payout. The shift of the interest rate curve from (a )  to 
(b) changes the payout continuously. In scenario (c)  thejrst caplet leads to a positive 
payout. Since the autocap is limited to two positive payouts the payout of the third 
caplet is lost as soon as the first caplet pays a positive amount. Thus, ,from scenario 
(b)  to (c)  the payout of the autocap changes discontinuously. 
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Figure 17.2. The value of an autocap as a function of the shijt size ( f a  parallel 
shift cf the interest rate curve. Using only a small number o f  paths, a small shijt 
does not lead to a change of the exercise .strategy. The price change is driven by the 
sensitivity of the underlying cuplets. Thus, for  small shifts one might be tempted to 
call the sensitivity stable. For a larger shift the exercise strategy changes on some 
paths, leading to a jump in payo# 
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17.3 Generic Sensitivities: Bumping the Model 

The finite difference approximation calculates the sensitivity by 

a 
do 

E ( f (  YH+h)l7;[,) - E ( f (  Yo-h )l7;[, 1 
2h --E(f(Yo)17;,,) = 

This brure-forcejnite dzrerence calculation of sensitivities is sometimes referred to as 
bumping the model. Bumping the model has a charming advantage: If you keep your 
model and your pricing code separated (a design pattern one should always consider), 
then you may implement a generic code for generating sensitivities by feeding the 
pricing code with differently bumped models. In other words: 

Once the pricing code is written, all sensitivities are available. (17.1) 

It seems as if you get sensitivities almost for free (i.e., without any effort in modeling 
and implementation) and the only price you pay is a doubling of calculation time 
compared to pricing. However, it is known that applying such a finite difference 
approximation to a Monte Carlo implementation will often result in extremely large 
Monte Carlo errors. Especially if the payout function of the derivative is discontinuous, 
this Monte Carlo error tends to infinity as h tends to zero. And discontinuous payout 
is present whenever a trigger feature is present. 

Sensitivities in Monte Carlo are known as a challenge. Numerous methods have 
been proposed for calculating sensitivities in Monte Carlo, among them the likelihood 
ratio [55] and the application of Malliavin calculus [22], which has attracted increased 
attention recently [65]. These methods improve the robustness of sensitivities but 
require more information. 

It appears as if the measures you have to take to improve Monte Carlo sensitivities 
will lose the advantage (17.1) of bumping the model. Later, we will present a method 
(which is also an implementation design pattern) that makes it possible to calculate 
sensitivities through bumping the model while providing the accuracy and robustness 
achieved by the likelihood ratio or Malliavin calculus approach. The method is 
essentially a likelihood ratio reconsidered on the level of the numerical scheme. 

There are basically two different methods for calculating sensitivities in Monte 
Carlo: 

0 The pathwise method, which differentiates the payout on every simulation path; 
see Section 17.5 

0 The likelihood ratio method, which differentiates the probability density; see 
Section 17.6. 
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Numerically, these two methods may be realized as: 

0 (Traditional) finite differences; see Section 17.4. 

0 Finite differences applied to a proxy simulation scheme. 

However, a proxy simulation scheme is a much more powerful design; see Chapter 18. 
It is also possible to mix the two approaches by considering a partial proxy simulation 
scheme; see Section 18.2. 

In the following we will present the different methods for calculating sensitivities 
in Monte Carlo simulations. Each section starts with a short description of the 
approximating formula and gives the method requirements and properties as bullet 
points. We assume that a Monte Carlo pricing algorithm has been implemented and 
we mention only requirements additional to the pricing. 
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17.4 Sensitivities by Finite Differences 

The finite difference approximation is given by 

Requirements 

@ No additional information from the model SDE4 X 
@ No additional information from the simulation scheme X*(t;+l) 

@ No additional information from the payout f 

@ No additional information on the nature of 6' (- generic sensitivities) 

Properties 

8 Biased derivative for large h due to finite difference of order h 
8 Extremely large variance for discontinuous payouts and small h (order h- ' )  

The most important feature of finite differences is their genericity. Once the pricing 
code has been written, all kinds of sensitivities may be calculated. 

For smooth payouts, the finite difference approximation converges to the derivative 
for h -+ 0. Thus, if the payout is smooth, small shift sizes h are favorable. Using 
large h the approximation of the derivative is biased. 

For discontinuous payouts, as h + 0 the finite difference of the Monte Carlo 
price does not converge to the derivative of the Monte Carlo price. The reason is 
that for discontinuous payouts the Monte Carlo approximation (n  ---f m) and the 
approximation of the derivative (h  + 0) are not interchangeable. 

For discontinuous payouts finite differences with a fixed, small shift size h perform 
poorly. The contribution of a discontinuity to the sensitivity may be calculated ana- 
lytically. It is the jump size multiplied by the probability density at the discontinuity. 
Finite differences resolve this contribution only through those sample paths which 
fall into a neighborhood around the discontinuity, having the width of the shift size. 
Thus, if the shift size is small, the discontinuity is resolved by a few points, ultimately 
resulting in a large Monte Carlo error. For discontinuous payouts large shift sizes 

SDE: stochastic differential equation. 
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are preferable. However, if the shift size is large, the derivative becomes biased by 
second order effects (if present). 

Since finite difference does not require anything more than a given pricing algo- 
rithm, we are tempted to apply it to any product for which a Monte Carlo pricing may 
be calculated. If the product exhibits discontinuities in the payout, the finite difference 
approximation tends to be unreliable, and a careful analysis of the Monte Carlo error 
for a given shift size h has to be performed. 

17.4.1 Example: Finite Differences Applied to Smooth and 
Discontinuous Payout 

Let us consider a finite difference approximation of the partial derivative for the case 
of the linear payout , f (X(T) )  = a X ( T )  + b from Section 17.2.3.1. We have 

a 1 
ae -EQ(.f(Yo> I %"I = # Y f ( Y o + h )  I El,) - EQ(f(YQ-h)  I 9?J> 

which is a good approximation, if $Yo(u; )  = &(Y0+h(wi) - Yo-h(u i ) ) .  This is 
usually the case, and throughout this chapter we assume that the model is such that its 
realizations Y ~ ( u i )  are smooth in the model parameters 8. 

For the discontinuous payout f ( X ( T ) )  = 1 if X ( T )  > K and f ( X ( T ) )  = 0 else, 
considered in Section 17.2.3.2, we have 
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This is a valid approximation, but it has a large Monte Carlo variance, since the true 
value is sampled by 0 and & occurring in the appropriate frequency. If h gets smaller, 
then we have to represent the true value by a sampling of 0 and a very large constant. 

Simplified Example: 
YO+h = Yo + % h and thus 

Assume for simplicity that Yo is linear in 8, i.e., we have 

LO else. 

sign (%) 
- if Y Q ( W ~ )  E [ K  - E ,  K + E ]  - 

10 else. 

where E := 1 %  I h. For the probability we have 

In other words: We are sampling the partial derivative of the expectation by a binomial 
experiment: 

sign (2) 
2h 

with probability q and 0 with probability 1 - q. 

The expectation of this binomial experiment is 

which is the desired analytic value for the finite difference approximation as h --f 0. 
The variance of the binomial experiment is 

which explodes as h + 0. 
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17.5 Sensitivities by Pathwise Differentiation 

The pathwise differentiation method is given by 

Requirements 

8 Additional information on the model SDE X 
@ No additional information on the simulation scheme X(t i+,)  
8 Additional information on the payout f (derivative of f  must be known) 
8 Additional information on the nature of H (s no generic sensitivities) 

Properties 

@ Unbiased derivative. 
@ Discontinuous payouts may be dealt with (interpret f’ as distribution; see 

below). 

The pathwise method requires the knowledge of the derivative of the payout f’ and 
the derivative of the process realizations with respect to the parameter 8, i.e., -. 
It is thus only applicable for a restricted class of models and model parameters, where 
- may be calculated analytically. 

It seems as if a discontinuity in the payout cannot be dealt with, since we require 
f’ to exist. However, the impact of a discontinuity can be calculated analytically; see 
Section 17.5.2. 

It is a major disadvantage of the method that it requires special knowledge of the 
payout function and of model realizations. 

17.5.1 Example: Delta of a European Option under a 
Black-Scholes Model 

We consider a Black-Scholes Model: 

B( t )  = B(0) exp(Ft). 
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In this case we have. ex. .  

Using the notation above, our model primitive is X = (S, B).  We assume that the 
payout of our derivative depends on Y = X ( T )  = ( S ( T ) , B ( T ) )  only, i.e., we are 
considering a European option Then we have 

17.5.2 Pathwise Differentiation for Discontinuous Payouts 
In case that the payout f exhibits discontinuities the pathwise method may be applied, 
provided that ,f allows for a decomposition 

with g being smooth. In this case we have 

See [83, 941 for examples of how to use pathwise differentiation with discontinuous 
payouts (there in the context of nth to default swaps, CDOs'). 

CDO: Credit Default Obligation. 
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17.6 Sensitivities by Likelihood Ratio Weighting 

The pathwise method differentiates the path value Y(8)  of the underlying process 
realizations Y .  Provided there is a probability density @ ~ ( o )  of Y(8 )  we may write 
the expectation as a convolution with the density. The likelihood ratio weighting 
[ 16, 53, 551 is then given by 

where 

Requirements 

8 Additional information on the model SDE X (+ @yce,) 

CB No additional information on the simulation scheme X(t ;+l)  

@ No additional information on the payout f 
8 Additional information on the nature of 8 (s no generic sensitivities) 

Properties 

@ Unbiased derivative. 
@ Discontinuous payouts may be dealt with. 

The likelihood ratio method requires no additional information on the payout func- 
tion. This is an advantage compared to the pathwise differentiation. However, it 
requires that the density of the model SDE's realizations X ( t )  is known and, further- 
more, that its derivative is known analytically with respect to the parameter 8. This is 
rarely the case and thus a major drawback of the method. 

The likelihood ratio method does not require the payout to be smooth. The method 
works very well for calculating the impact of a discontinuity in the payout. However, 
the method has its problems with smooth payouts: The Monte Carlo error of the 
approximation using likelihood ratio is larger than the Monte Carlo error of the finite 
difference approximation. We give a simple example of this effect next. 
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17.6.1 Example: Delta of a European Option under a 
Black-Scholes Model Using Pathwise Derivative 

Let us look again at a European option using the Black-Schloes model (17.2). Since 
B is deterministic, we need to consider the probability density of S . Since log(S ( T ) )  
is normally distributed (see Chapter 4), we have for the density of S ( T )  

1 
where &td.norm.(X) = 
tion. 

, f ( S ( T ) ,  B(T) ) ,  calculated by the likelihood ratio method, is given by 

exp(-x2/2) is the density of the standard normal distribu- 

Thus, the delta of a European option with (numkraire-rebased) payout 

17.6.2 Example: Variance Increase of the Sensitivity when 
using Likelihood Ratio Method for Smooth Payouts 

For some smooth payouts, the likelihood ratio method may perform less accu- 
rately than the pathwise method (Section 17.5) or its finite difference approximation 
(Section 17.4). A simple example illustrates this effect: Consider constant payout 
f ( S ( T ) ,  B(T) )  = b. Then, the likelihood ratio method gives the delta of this option as 

and indeed (using substituation y = log(s), dy = :ds) we see that the delta is zero: 
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The Monte Carlo approximation is 

which is in general nonzero. It is an approximation of zero, having some variance. 

approximation thereof would give a delta of zero with zero Monte Carlo variance. 
On the other hand, note that the pathwise method and even a finite difference 

17.7 Sensitivities by Malliavin Weighting 

The Malliavin weighting [22, 651 is similar to the likelihood ratio method: The 
sensitivity is expressed as the expectation of a weighted payout function: 

Requirements 

8 Additional information on the model SDE X (+ w) 

@I No additional information on the simulation scheme X ( t i + l )  

@I No additional information on the payout f 

8 Additional information on the nature of Q (3 no generic sensitivities) 

Properties 

@I Unbiased derivative. 

@ Discontinuous payouts may be dealt with. 

Benhamou [47] showed that the likelihood ratio corresponds to the Malliavin 
weights with minimal variance and may be expressed as a conditional expectation of 
all corresponding Malliavin weights (we thus view the likelihood ratio as an example 
of the Malliavin weighting method). 
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However, here the weights are derived directly through Malliavin calculus, which 
makes this method more general and applicable even if the density is not known. The 
derivation of the Malliavin weights requires in-depth knowledge of the underlying 
continuous process X and it is heavily dependent on the nature of 8. 

17.8 Proxy Simulation Scheme 

The proxy simulation scheme defines a design of a Monte Carlo pricing engine that 
has the remarkable properties that the application of finite differences to the pricing 
will result in likelihood ratio weighted sensitivities without actually the need to know 
the density 4 analytically. Thus it combines the robustness of likelihood ratio or 
Malliavin weighting with the genericity of finite differences. 

Since the proxy simulation scheme method is not solely devoted to the calculation 
of sensitivities, it will be discussed in Chapter 18. Here, we will summarize the key 
properties. 

The Monte Carlo sensitivity under a proxy simulation scheme is given by 

-see Section 18.1 for a definition of Y" and Y*. 

Requirements 
@ No additional information on the model SDE X 
8 Additional information on the simulation scheme X*(t;+l), Xo( t i+ l )  

@ No additional information on the payout f 
@ No additional information on the nature of 8 (3 generic sensitivities) 

Properties 
0 Biased derivative (but small shift h possible!). 
@ Discontinuous payouts may be dealt with. 
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CHAPTER 18 

Proxy Simulation Schemes for 
Monte Carlo Sensitivities and 
Importance Sampling 

In this chapter we describe the proxy simulation scheme technique as it is given 
in [66, 69, 701. 

18.1 Full Proxy Simulation Scheme 

We take the notation of the previous chapter (see Section 17.2 and 17.3) and consider 
two time-discrete schemes for the stochastic process X :  

X *  t ,  H X * ( t i )  i = 0, 1,2, .  . . time discretization scheme of X 
+ target .scheme 

X" ti H Y ( t i )  i = 0, 1,2, .  . . any other time-discrete stochastic process 
(assumed to be close to x*) 
+ proxy scheme 

Let Y = ( X ( t , ) ,  . . . ,X(t,)), Y* = ( r ( t , ) ,  . . . ,X*( t , ) ) ,  Y o  = ( X o ( t l ) ,  . . . , xO(t,)). 
Let 4 y . b )  denote the density of Y" and 4y.(y) the density of Y*.  We require 

v y  : @ Y O ( y )  = 0 3 4y'(y) = 0. (18.1) 
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18.1.1 Pricing under a Proxy Simulation Scheme 

Using the additional scheme x" the pricing of a payout function f is now performed 
in the following way: We have E Q ( f ( Y ( Q ) )  I Z,,) = EQ(f(Y*(Q))  I 7,) and furthermore 

where w(@) = 
@Y0(4.)  . 

For the Monte Carlo approximation this implies that the sample paths are generated 
from the scheme x" while the probability densities are corrected toward the target 
scheme X * .  

18.1.1.1 Basic Properties of a Proxy Simulation Scheme 

0 For x" = X *  we have w(Q) = 1, and in this case the proxy simulation scheme 
corresponds to the ordinary Monte Carlo simulation of X'.  

0 The proxy scheme X"  and thus its realization vector Y" are seen as being inde- 
pendent of 8. This has important implications on the calculation of sensitivities; 
see Section 18.1.3. 

The requirement Vy : #p(y) = 0 a gY'(y) = 0 corresponds to the non- 
degeneracy condition of the diffusion matrix as it appears in the application of 
the likelihood ratio and Malliavin weights. However, here this requirement is 
far less restrictive since we are free to choose the proxy scheme X " .  

18.1.2 Calculation of Monte Carlo Weights 

For the most common numerical schemes the densities 4p, #Y' and thus the Monte 
Carlo weights may be calculated numerically. Consider, for example, the schemes 

Target scheme: X*(t;+,) = X * ( t i )  + pX*( t i )  At; + X ( t , )  . T(r,) . AU(ti) ,  

Proxy scheme: Xo( t ;+ l )  = XO(ti) + pr(t i )  Ati + Co(ti)  . r"(ti) . AU(t;) ,  

where C denotes an invertible volatility matrix and r denotes a projection matrix, the 
factor matrix which defines the correlation structure R = TTT. 
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Assume for simplicity that p x * ( t i )  depends on X*( t i )  only (and similar for p x o ( t i ) )  
(this holds for the Euler scheme), then we have for the transition probability densities: 

4y (t i ,  xi"; ti+] , xi"+l) 
1 - - exp -- ( A ~ - ~ / ~ F ~ ~ c ~ - ' ( x ~ " , ,  - X ;  - p r ( t i >  ( 2 A t i  (2Il At,)"/* 

where we used the factor decomposition (PCA)' r = F . fi where A = 

diag(A1, . . . , A,) are the nonzero eigenvalues of r . TT. 
Then the proxy scheme weights are given by 

18.1.3 Sensitivities by Finite Differences on 
Simulation Scheme 

a Proxy 

Applying a partial derivative with respect to some model parameter 8 to a pricing 
under a proxy simulation scheme gives 

a 1 
-EEQ(f(y*(@) I Fto) zz g(EQ(f(Y*(Q + h) )  I %,,I - EQ(f(Y*(e - h))  I Zo)) a@ 

In other words, setting up the pricing using a proxy simulation scheme, apply finite 
differences to the pricing will result in an approximation of the likelihood ratio rather 
than an approximation of the pathwise differentiation. 

' See also Section 19.4.3.3 and Appendix B.3. 
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Requirements 

@ No additional information on the model SDE X 
8 Additional information on the simulation scheme X*( t i+ l ) ,  Xo(t ,+l)  

@ No additional information on the payout f 

@ No additional information on the nature of 0 (a generic sensitivities) 

Properties 

0 Biased derivative (but small shift h possible!). 
@ Discontinuous payouts may be dealt with. 

We noted above that additional information on the simulation scheme is required, 
that is, the densities of the two schemes. Note, however, that we require these 
densities to set up the pricing algorithm. For the sensitivity calculation no additional 
information is needed. Note also that the required densities are densities of numerical 
schemes, which can usually be calculated from known transition probability densities 
(see Section 18.1.2). 

18.1.4 Localization 

If the payout function f is smooth, then ordinary finite differences perform better than 
the weighting techniques. The latter shows an increase in Monte Carlo variance of 
the sensitivity. This effect is not only visible for smooth payouts f ,  but also for large 
finite difference shifts. 

A solution that has been proposed in [65] is localization. Here the weighting is 
applied only to a region where the payoff is discontinuous. 

Let g denote the localization function, i.e., a smooth function 0 5 g I 1 such that 
g = 1 at discontinuities o f f .  Consider the decomposition 

f = ( l  -d . f  + g . f .  

We define the pricing of the payout f as 

E(,f(Y*)I7%) = E((1 - g ( Y * ) )  f(Y*)17;,,> + E g ( Y " )  f ( Y " )  !!r IYi, . ( 4JP 1 
In other words; we use a pricing based on a proxy simulation scheme for g f and a 
pricing based on direct simulation for (1 - g) f .  

It should be noted that localization is carried out by a redefinition of the payout. 
The product is split into two parts, where one is priced by a direct simulation scheme 
and the other is priced by a proxy simulation scheme method. This allows us to 
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implement localization on the product level, completely independent of the actual 
simulation properties. In addition, localization does not reduce the ability to calculate 
generic sensitivities. 

In Section 18.3 we will consider a slightly different variant of localization, which 
uses information of the payout to modify the numerical scheme. 

18.1.5 Object-Oriented Design 

The proxy scheme simulation method may in part also be viewed as an implementation 
design. In Figure 18.l(a) we depict the object-oriented design of a standard Monte 
Carlo simulation where a change in market data results in a change of simulation path. 
In Figure 18.l(b) we contrast the proxy scheme simulation method where a change in 
market data results in a change of Monte Carlo weights. 

In practice, we propose that the model driving the generation of the proxy schemes 
paths is calibrated to market data used for pricing while a market data scenario used 
for sensitivity calculation, i.e., by bumping the model, only impacts the Monte Carlo 
weights. A method should be offered to reset the proxy simulation’s market data to 
the target simulation’s market data. 

18.1.6 Importance Sampling 

The key idea of importance sampling is to generate the paths according to their 
importance to the application, not according to their probability law, and in doing 
so, adjust toward their probability by a suitable Monte Carlo weight (the change of 
measure). 

Using a proxy simulation scheme, the paths are generated according to the proxy 
scheme while a Monte Carlo weight adjusts their probability toward the target scheme. 
Actually, once the proxy simulation scheme framework has been established, the 
Monte Carlo weights are calculated automatically from the two numerical schemes. 

Thus, choosing the proxy scheme such that it creates paths according to their 
importance to the application is a form of importance sampling. It has the advantage 
that specifying a suitable process might come easier than calculating the optimal 
sampling and the corresponding Monte Carlo weights. 

18.1.6.1 Example 

Let us look at the pricing of an out-of-the-money (OTM) option under a lognormal 
model (like the Black-Scholes model or the LIBOR market model): 

Log Euler scheme: 

OTM option: 
log(X)(t;+l) = log(X)(t,) + p(t) At; + CT AW(t;) 

max(X(T) - K ,  0), 
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(a) Standard Monte Carlo Simulation 

(b) Proxy Scheme Monte Carlo Simulation 

Figure 18.1. Object-oriented design of the Monte Carlo pricing engine: We depict 
the impact of a change of different market data scenarios 8 + h and e - h on the pricing 
code of a standard Monte Carlo simulation and a proxy scheme simulation. 
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where X(0) = XO and K >> XO. The drift of the model is determined by the specific 
pricing measure. However, in our application we would prefer that the mean of X(T) 

be close to the option strike K rather than being close to exp(log(X0) + p(t) dt). To 
achieve this, simply use a proxy scheme with artificial drift: 

T 

Proxy scheme: log(X)(t;+,) = log(X)(tj) + - Atj + (+ Aw(t,) 
T 

Target scheme: log(X)(t;+l) = log(X)(t;) +p(t)  At; + u AW(t;) 

This will bring the paths to the region that is important for the pricing of the option, 
while the proxy simulation scheme framework automatically adjusts probabilities 
accordingly. Figure 18.2 shows a comparison of the distribution of Monte Carlo prices 
obtained from direct simulation compared to the prices obtained from importance- 
adjusted proxy scheme simulation. 

Figure 18.2. Importance sampling using a drift-adjusted proxy scheme. The example 
was created using a LIBOR market model to price a caplet with strike K = 0.3, the 
initial forward rate being XO = Li(0) = 0.1. 
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18.2 Partial Proxy Simulation Schemes 

The (full) proxy simulation scheme method requires the density of the target scheme 
realization to be zero if the density of the proxy scheme is zero; see Equation (18.1). 
In other words, it is required that the paths simulated under the proxy scheme comprise 
all paths possible under the target scheme. If the property is violated, then the Monte 
Carlo expectation using the weighted paths of the proxy scheme will leave out some 
mass. This limits the application of the full proxy simulation scheme. For the 
calculation of sensitivities the limitation means that we cannot calculate the sensitivity 
with respect to all possible perturbations. 

However, in order to improve the calculation of sensitivities of trigger products it 
is not necessary to keep all underlying quantities rigid (as for a full proxy simulation); 
it is sufficient to keep the quantity that induces the discontinuity rigid. This gives rise 
to the notion of a partial proxy simulation scheme [69]. 

Let K" denote the unperturbed scheme and K* some perturbation of KO, e.g., a 
scheme with different initial data. We will call @ the reference scheme and K* the 
target scheme. 

The usual procedure of bump-and-revalue for computing Greeks would simulate 
paths of K* having Monte Carlo weight A .  The proxy simulation schemes would 

simulate paths of KO using Monte Carlo weights . 5 .  Instead, here we consider a 

third scheme K 1 ,  the (partial) proxy simulation scheme where paths are such that the 
pathwise values of some (but not all) components of K 1  (or a function thereof) agree 
with the corresponding pathwise quantities under KO. 

18.2.1 Linear Proxy Constraint 

Let n(tj) denote a projection operator of rank k. Let v(tj) be defined as 

v(ti) := (n . r(rj))-' . (n . ~ * ( t ; + ~ )  - r~ . ~ " ( t ; + ~ ) ) ,  (1  8.2) 

where (n .  r(t;))-I is the quasi-inverse of n .  I-([;), i.e., v is the solution of 

I I ~  ' K"( t i+ l )  - n ' (K*(ti+l) - nr(ti)v(ti))ItLz + min. ( 1  8.3) 

We define the k-dimensional partial proxy scheme K '  as: 

K 1 ( t o )  := K*(to), 

K1( t i+ , )  := K*(t ,+ l )  - r(t,). v(t,). 
(1 8.4) 

The scheme K 1  has the following properties: 

0 It coincides with on the k-dimensional submanifold defined by n, i.e., 
rl. K 1 ( t i )  = II. @(ti). 
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It is given through a mean shift v(ti) on the Brownian increment Aw(ti)  of the 
target scheme K*. 

Consequently, the Monte Carlo weight of the partial proxy scheme is given by 

#K'(t i ,K'(t i) ; t i+l,K'(t i+l))  

V ' ( t i >  K1(ti);  t i + l ,  K'(ti+l)) '  
W ( t j )  = 

In the case of a linear proxy constraint, the mean shift v(ti) is 7;,-measurable.2 Then, 
using simple Euler schemes, the transition probabilities are 

f ' ( t i ,  K'(ti);ti+I, K'(ti+l)) = #w(ti ,  w(ti), t i + l ,  w(ti+l>>, 

#*(ti, K1(ti); t i + i ,  K'(t i+l)) = #w(ti, w(ti), t i+ l ,  w(ti+l> - v(ti)). 
(1 8.5) 

From this we can derive w(tJ as a simple analytic formula; see Section 18.2.4.2. 
We would like to note that in (18.3) we may replace the projection operator by a 

general nonlinear function, if necessary. We will discuss this case in Section 18.2.3 
and we will consider this case in our example in Section 18.2.7. 

18.2.2 Comparison to Full Proxy Scheme Method 

The full proxy simulation scheme introduced in Section 18.1 corresponds to K 1  = KO. 
Thus, it is a special case of Equations ( I  8.2) and (1 8.4) if Il is the identity and if 

r(ti)v(ti) := ~ * ( t ~ + , )  - K O ( ~ ~ + ~ )  (1 8.6) 

has a solution v(ti) (not only in the sense of a closest approximation). If, however, 
(1 8.6) has no solution, v(tJ from (18.2) still defines a valid mean shift for the scheme 
K*. The scheme K 1  will be the closest approximation to KO fulfilling the measure 
continuity condition with respect to K*. 

A major advantage of the partial proxy scheme is that the projection n may be 
chosen such that (1 8.2) has an exact solution with respect to the submanifold defined 
by Il, so K 1  and KO coincide on a k-dimensional submanifold. We will make use of 
this in our example in Section 18.2.6. 

18.2.3 Nonlinear Proxy Constraint 

An obvious (and commonly required) generalization is to replace the linear projection 
operator II by a general, possibly nonlinear function f : R" + Rk and define v( t i )  as 
the solution of 

* We will later consider the general case of nonlinear proxy constraints and F,,, measurable mean shifts; 
see Sections 18.2.3 and 18.2.4. 
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Thus we have f ( t i+ l ,@(t i+ l ) )  = f ( t i+ l ,  K1(r i+l ) ) .  An example of an application of 
this generalization is a LIBOR market model, where f represents a certain swap rate 
or function of swap rates (e.g., a CMS spread3). The condition will then ensure that 
the path values of the swap rate(s) are the same under and K 1 .  

18.2.3.1 Linearization of the Proxy Constraint 

While a constraint like (18.7) will be the general application, its numerical implemen- 
tation may be expensive since one has to solve the nonlinear equation on every path 
in every time step. However, if K * ( t i + l )  is a small perturbation of Ko(tj+l) ,  we may 
linearize Equation (1 8.7). In other words we would set 

n := f ' (K"(f j+')) .  (18.8) 

Note that the proxy simulation method is constructed such that a finite difference us- 
ing small perturbation will remain stable, i.e., K*(t;+l) may be chosen to be arbitrarily 
close to KO( t i+ l ) .  

18.2.3.2 Finite Difference Approximation of the Nonlinear Proxy 
Constraint 

The linearization (18.8) o f f  may still result in relatively large computational costs, 
because the projection operator has to be calculated on every path. Note that we 
linearize around @ ( t i + l ,  w) .  Thus the quasi-inverse of nr has to be calculated on 
every path in every timestep. If we want to implement a faster calculation of the mean 
shift v(ti, w, ) ,  we can calculate an approximate solution of (18.7) by guessing the 
directional shift G(tJ and finite differences to determine the shift size. 

Assume we knew that the directional shift P(tJ does not lie in Kernf'r. Then for 
some > 0 calculate 

( 1 8.10) 

in the definition of the partial proxy scheme K' (18.4). 
This solution has the desirable property that its implementation allows the constraint 

function f to be specified exogenously by the user; this constraint function may vary 
with the application. 

CMS: constant maturity swap; see Section 12.2.6.1 
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Example: If K is the log of the forward rates under a LIBOR market model and f 
is a swap rate, i.e., we would like to keep a swap rate rigid, then we can achieve this 
by modifying the first factor. This corresponds to o(t i)  = (1, 0, . . . , 0). From (18.9) 
we can calculate the impact of a shift of the first factor on the swap rate; from (18.10) 
we can calculate the required magnitude of this shift (it is a scalar equation with a 
scalar unknown v1 (t i)). 

We will consider a constraint like (1 8.7) next. In our benchmark application, a 
trigger option on an index like a CMS swap rate is considered under the LIBOR 
market model. 

18.2.4 Transition Probability from a Nonlinear Proxy 

18.2.4.1 The Proxy Constraint Revisited 

There is subtle but crucial detail in the definition of the mean shift v(ti): It is defined 
by comparing K*(ti+l) to @(ti+I): 

Constraint 

f(ti+l, ~ O ( t i + l ) )  = f(ti+l, ~ * ( t i + l )  - r(ti>. v(ti>>? (18.11) 

not by comparing K*(ti) to @(ti). Thus, in general, v(t;) is a z,,, -measurable random 
variable, but not %,+, -mea~urable.~ If we would define v(ti) through 

f(ti+ly  ti)) = f(ti+lt   t ti) -  ti> . v(ti>), 

then it is not guaranteed that 

holds, after the drift and the diffusion from ti to ti+l has been applied. To account for 
the drift we could define v(tJ through 

f(ti+l, 9 ( t ; )  +luo(ti)AtJ = f(ti+i, K*(ti) +p*(ti)Ati - Ut;)  . v(ti)), (18.12) 

which makes v(q) a %,-measurable random variable, but there is still no guarantee 
that the proxy constraint holds after the diffusion has been applied. However, it will 
be the case for linear constraints. 

From this consideration it becomes obvious that for the linearization of the proxy 
constraint, we would have to linearize around Ko(ti+l) and not around @(ti). As a 
solution of this linearization v(ti) will be 7;+, -measurable only. 

In the following we will say ~ ( 2 ; )  is T,,,, -measurable only, if it is %,+,-measurable but not %,- 
measurable. 
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If the mean shift v(ti) is defined by (1 8.1 1) as an %,+,-measurable random variable, 
it means-using Euler schemes-that v(ti) depends nonlinearily on the increment 
A W(ti) ,  and the formula for the corresponding transition probability involves inverting 
this dependence. Here are two examples. 

18.2.4.2 Transition Probabilities for General Proxy Constraints 

If the proxy constraint on time t,+l is linear, then it may be realized by an E3- 
measurable mean shift v(t;). In this case the calculation of the transition probabilities 
that form the Monte Carlo weight leads to very simple formulas. From (1 8.5) we find 
that for an E, -measurable mean-shift 

( 1 8.13) 

where X k  := Awk(t;). 
If the mean shift v(t;) is only E,,, -measurable, then it is still possible to obtain a 

simple analytic formula for the transition probability; however, this formula requires 
the differentiation of the functional dependence of v(ti) on the increment A W(t;) .  

Consider the general case where the mean shift v(t;) depends on the Brownian 
increment AW(r;), i.e., 

Define f = g(x) := x - v(t;, x). Obviously we have 

 ti) = v(ti, AW(tj)). 

Here x denotes the (realization of the) Brownian increment AW and 4 denotes its 
probability density. Evaluating functions of I = g(x) corresponds to pricing under the 
partial proxy scheme K ' ;  evaluating functions of x corresponds to the pricing under 
the target scheme K*. From (18.14) we can read off the Monte Carlo weights for the 
pricing under the scheme K' as 

where x k  := AWk(t;). 
Obviously this result is not limited to the case of Euler schemes. The only require- 

ment with respect to the scheme is that it is generated by the Brownian increments 
AW(t,) (e.g., as for a Milstein scheme). We summarize our result in a theorem. 

Lemma 211 (Partial Proxy Simulation Scheme): Let K*(t;), i = 0, 1 ,2 , .  . ., denote 
a numerical scheme generated from the Brownian increments AW(t,), i = 0, 1,2, .  . . 
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(target scheme), i.e., 

Let Ko(ti), i = 0, 1,2,. . . denote another numerical scheme, also generated from the 
Brownian increments AW(t;)  and close to K*. 

For a given function f (the proxy constraint) let v(tJ denote a solution of 

and-assuming a solution exists-define the scheme K' by 

K ' ( t i c l )  := K * ( t j + I ,  K*( t i ) ,  AW(ti)  - v(ti)). 

Then the Monte Carlo pricing under the scheme K* is, in the Monte Carlo limit, 
equivalent to the pricing under the scheme K' using the Monte Carlo weights n w; 
with w; given by (18.15). 

We call the scheme K 1  the (partial) proxy scheme satisfying the proxy constraint 
.f(ti+l, K ' ( t i + ~ ) )  = f(t i+i,  Ko(ti+i)). 

18.2.4.3 Example 

Since we desire an implementation that is both generic and fast, we would like to 
discuss a special case, sufficiently general for all our applications and simple enough 
to give direct formulas for the transition probabilities: 

Assume that v(rJ is linearly dependent on the increment AW(ti), i.e., 

v(ti) := A( t i )  . AW(ri) + b(t;), 

with A and b being 7;,-measurable. Then we have for the mean-shifted diffusion 

AW(t;)  - ~ ( t ; )  = (1 - A(tj ) )  . (AW(tj)  - b(ti)). 

Thus the corresponding transition probability is normally distributed with mean b(t,) 
and standard deviation (1 - A( t , ) )  a. Note that if the target scheme is a small 
perturbation of the reference scheme, then A(t,) is small and (1 - A(t , ) )  is nonsingular. 

So here, the z,,, -measurable mean shift is given by an %,-measurable mean shift b 
and a scaling of the "factor" AW. We will make use of this in our next example: A 
proxy constraint stabilizing the calculation of vega, the sensitivity with respect to a 
change in the diffusion coefficient. 
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18.2.4.4 Approximating an %,+, -measurable Proxy Constraint by an 

To allow rapid calculation of the transition probability we propose to approximate the 
proxy constraint (18.1 1) by (18.12). Thus v(t,) is an %,-measurable mean shift and 
the ratio of the transition probabilities is given by (18.13). 

In addition we propose to linearize this constraint around Ko(t,)+po(t,) Atl ,  defining 
the linear proxy constraint by II := f ' ( K " ( t l )  + po(tl) At,) .  

All of our benchmark examples are based on the approximative constraint (1 8.12) 
or its linearization. 

%,-measurable Proxy Constraint 

18.2.5 Sensitivity with Respect to the Diffusion 
Coefficients-Vega 

If we consider only an Ez-measurable mean shift applied to the Brownian increment 
AW(t , ) ,  then the method is not applicable to the calculation of a sensitivity with 
respect to the diffusion coefficient T(t,)-a.k.a. vega. The reason is simple: There is 
no %,-measurable mean shift that will ensure that the proxy constraint holds at tl+l 

after a different (%,+, -measurable) diffusion has been applied-not even if the proxy 
constraint is a linear equation. Neglecting the Brownian increment, as suggested 
in Section 18.2.4.4, is a step in the wrong direction, since we are interested in the 
sensitivity with respect to the diffusion coefficient. 

Of course, in our general formulation (1 8.1 l), an 7,+, -measurable mean shift 
applied to the diffusion AW(t, )  will ensure that the proxy constraint holds at time t l + l ,  

even if the diffusion coefficient has changed. However, to obtain a simple formula 
for the transition probability and thus the Monte Carlo weight w(t,) ,  it is helpful to 
take an alternative view to the problem: The idea is similar to what is done in the case 
of a full proxy scheme (see [70]): We modify the diffusion of the proxy scheme to 
match the diffusion of the reference scheme and calculate the corresponding change of 
measure. In other words, we use the unperturbed diffusion coefficient for the (partial) 
proxy scheme. This adjustment is made prior to the calculation of the mean shift v(tJ 
for the corresponding proxy constraint, which will correct additional differences in 
the drift, if any. 

From the previous section it is clear that this is equivalent to specifying an 7,,+,- 
measurable mean shift, being linear in the Brownian increment A W(t,). 

18.2.6 Example: LlBOR Target Redemption Note 

We are going to calculate delta and gamma for a TARN5 swap. The coupon for the 
period [Ti, T;+l] is an inverse floater max(K-2 L(T,, Ti+,) ,  0) and it is swapped against 

TARN: target redemption note; see Section 12.2.5.1 
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floating rate L(Ti, Ti+) ) until the accumulated coupon reaches a given target coupon. 
If the accumulated coupon does not reach the target coupon, then the difference to the 
target coupon is paid at maturity. 

Thus the coupon of the TARN is linked to a trigger feature, similar to the digital 
caplet. However, here, the trigger depends on more than one rate, so it is not sufficient 
to set up a proxy constraint for a single forward rate, unlike for the digital caplet. 

Our unperturbed scheme is the LIBOR market model with the initial yield curve, 
evolving the log-LIBOR with an Euler scheme. The natural perturbed scheme is then 
the same, except for a different initial condition. We will use the following proxy 
constraint: 

for all periods of the model to obtain the preferred proxy scheme. The constraint is 
realized by a mean shift of the diffusion of the first factor, and since the forward rate 
follows a lognormal process, we have v = (v,, 0,. . . , 0) with 

where f1,j denotes the j-th component of the first factor. We assume here that f ~ , ;  # 0. 
A nonzero factor loading exists as long as the forward rate L(Tj, Tj+l) has a nonzero 
volatility. The results can be improved if the factor having the largest absolute factor 
loading is chosen (factor pivoting). 

Figure 18.3 shows the delta and gamma of a TARN swap for different shift sizes of 
finite differences applied to standard resimulation and partial proxy scheme simulation. 
For this example the interest rate curve was upward sloping from 2% to 10% and for 
the TARN we took K = 10% and a target coupon of 10%. 

With small shifts the variance of the delta and gamma calculated under full reevalu- 
ation increases and the mean becomes unstable, while the mean for delta and gamma 
calculated under partial proxy scheme remains stable and the variance small. For 
increasing shift size full re-evaluation stabilizes, but higher order effects give a signifi- 
cant bias. Very high shift increases the Monte Car10 variance of the likelihood ratio 
and thus increases the variance of the delta and gamma calculated under the partial 
proxy scheme simulation. 
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Figure 18.3. Dependence of the TARN gamma on the shift size of the finite difference 
approximation. Finite difference is applied to a direct simulation (dark gray) and to a 
(partial) proxy scheme simulation (gray). Each dot corresponds to one Monte-Carlo 
simulation with the stated number of paths. The red and green corridors represent the 
corresponding standard deviation. 
The proxy scheme simulation shows no variance increase fo r  small shift sizes while 
giving stable expected values~for the sensitivity. 

18.2.7 Example: CMS Target Redemption Note 
Next we will kook at a target redemption note with a coupon max(K - 2 Z(T;), 0) ,  
where the index Z(T;) is a constant maturity swaprate, i.e., Z(T;) = Si,i+k(Ti) with 

The swap rate Si,;+k(t) is a nonlinear function of the forward rate curve L,(t), 
j = i ,  . . . , i + k - 1 which we denote by S : 

Si,i+k(t) = S(Li( t ) ,  . . ., L+~-I  (t)) .  

From the proxy simulation scheme we require S under L' to match S under the 
reference scheme Lo. Our proxy constraint is therefore 

s (L; ( t ) ,  . . . 1 Lf+,-, (t>> = S (LP(t), . . . , L;+&, (t>>. 
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We solve this equation by modifying the first factor, i.e., in each time step tj we 
determine a single scalar v1 ( t i )  such that 

and define Lf(t;+l) := L;(tj+l) + Vl(tj) f i , ; .  

tion (1 8.16) and get an explicit (first-order) formula for v1 ; see Equation (1 8.10). 
To simplify and speed up the calculation, we (numerically) linearize Equa- 

18.2.7.1 Delta and Gamma of a CMS TARN 

The result of the calculation of delta and gamma is depicted in Figure 18.4. Using the 
simple linearized proxy constraint we see a small increase in Monte Carlo variance 
for the gamma with very small shifts. 

Figure 18.4. Dependence of the CMS TARN gamma on the shift size of the $finite 
difference approximation. Finite difference is applied to a direct simulation (dark 
gray) and to a (partial) proxy scheme simulation (gray). The proxy constraint used 
was a simple (numerical) linearization of (18.16). 

The linearized constraint remains stable for small shifts. However, using a few 
Newton iterations on the linearization solves the nonlinear constraint and further 
improves the result for the gamma; see Figure 18.5. 
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Figure 18.5. Dependence of the CMS TARN gamma on the shift size of the$nite 
direrence approximation. Finite diference is applied to a direct simulation (dark 
gray) and to a (partial) proxy scheme simulation (gray). The proxy constraint is given 
by applying a few Newton iterations to the (numerical) linearization of ( 18.16). 

18.2.7.2 Vega of a CMS TARN 

We will calculate the vega of a CMS TARN, i.e., the sensitivity of the CMS TARN 
with respect to a parallel shift of all instantaneous volatilities. The result is depicted 
in Figure 18.6. For medium and large shift size the vega calculated from finite 
differences applied to a partial proxy is similar to the vega calculated from finite 
differences applied to direct simulation. However, note that for very small shift sizes 
(around 1 bp), the vega calculated from finite differences applied to direct simulation 
converges to an incorrect value and that this result occurs with a very small Monte 
Carlo variance. 

The reason for this effect is that the shifts are too small to trigger a change in 
the exercise strategy. Hence, the vega calculated is the sensitivity conditional on no 
change in exercise strategy, which is of course a different thing; see Section 17.2.4. 

This effect is also present for delta and gamma and for all trigger products, but it 
has not been visible in the figures so far due to the scale of the shift sizes and the 
number of paths used there. 
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Figure 18.6. Dependence of the CMS TARN vega on the shift size of the finite 
difference approximation. Finite difference is applied to a direct simulation (dark 
gray) and to a (partial) proxy scheme simulation (gray). The proxy constraint was 
given by applying a few Newton iterations to the (numerical) linearization of (1 8.16). 

18.3 Localized Proxy Simulation Schemes 

18.3.1 Problem Description 

Let us consider an asset or nothing option on some underlying S . The asset or nothing 

Pays 

in time T ,  where T is the maturity and K is the strike. Let us assume that our model 
implies S ( T )  > 0. 

Due to the discontinuous payout it seems best to calculate sensitivities using a 
likelihood ratio method, or - speaking of proxy simulation - to apply a (partial) proxy 
simulation scheme with a proxy constraint keeping S ( T )  rigid. 

However, for K + 0 the payout of V is V ( T )  = S ( T )  and thus smooth. In this case 
a likelihood ratio method would give extremely noisy results and it is best to calculate 
sensitivities using the pathwise method. 

In Figures 18.7, 18.8 we look at the delta and gamma calculated using direct 
simulation (pathwise method) or proxy simulation (likelihood ratio method) for a 
digital caplet with strikes at the forward and away from the forward. 
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Figure 18.7. Delta of a digital caplet calculated by $finite difference applied to direct 
simulation (dark gray) and to a partial proxy scheme simulation, internally using 
the likelihood ratio method (light gray). The forward of the model is at L(0) = 10%. 
I f  the the strike K is close to the forward (left jigure, K = L(0) = 10%) then the 
partial proxy scheme (likelihood ratio method) remains stable for  small shifts, while 
the direct simulation (pathwise method) becomes unstable. I f  the strike K is far from 
the forward (rightjigure, K = 2%, L(0) = 10%) then the partial proxy scheme falls 
short qf the direct simulation due to the huge Monte-Carlo variance introduced by 
the likelihood ratio. 
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Figure 18.8. Gamma of a digital caplet calculated byJinite difference applied to 
direct simulation (dark gray) and to a partial proxy scheme simulation, internally 
using the likelihood ratio (light gray). For gamma the proxy simulation scheme is the 
method of choice in both cases, K = L(0) = 10% and K = 2%. 

28 1 



18.3.2 Solution 

The idea we present here is to use the likelihood ratio method for those paths w for 
which the underlying is close to the discontinuity, while using the pathwise method 
elsewhere. In other words: we mix the pathwise and likelihood ratio method on a 
per-path and time-step bask6  

Surprisingly, this may be achieved by a simple modification of the partial proxy 
simulation scheme method, namely through the introduction of a (product dependent) 
localization function. 

Since the location of the discontinuities of a payout is, naturally, known a-priori, it 
is straightforward to define the localization function as part of the pricing code. 

We also suggest an object oriented design that allows the retention of much of the 
separation of model and product. The model provides a method such that the product 
can set the localizer before the pricing starts. 

18.3.3 Partial Proxy Simulation Scheme (revisited) 

We repeat the definition of the partial proxy simulation scheme method. 

18.3.3.1 Reference Scheme and Target Scheme 

Let a model be given in the form of a stochastic process KQ.  For example an It6- 
Process 

dKH = p ( t ,  0)dt + c( t ,  0) . dW (18.17) 

with initial data &(O), defined over a filtered probability space (a, 7, (7; 1 t E 

[0, T I ) ,  Q) where Q denotes the pricing measure associated with some numkraire 
N .  Here 8 is any model parameter for which we would calculate a sensitivity, 
i.e. $EQ(f(KQ)(70))8 ,0 ,  where f denotes a numkraire relative payout. 

Let 0 = to < t l  < . . . denote a time discretization and 

( K o ( t i )  I i = 0, l  . . .) 

a given time discretization scheme of the model K O .  We call K" the primary scheme. 
Furthermore let 

(K*( t j )  I i = 0, l  . . .] 

denote a time discretization scheme for the model KQ. We call K* the target scheme. 
See Section 13.1 on the time discretizaton of SDEs and Monte-Carlo simulation. 

The results obtained from using a localized proxy simulation scheme for the test cases in Figures 18.7, 
18.8 are shown in Figures 18.9, 18.10of Section 18.3.7. 
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18.3.3.2 Transition Probabilities 

We assume that the discretized prozess obtained from the discretization scheme is 
Markovian, such that we may define the transition probility density for the increment 
AK*(ti) as a function of K*(ti), K*(ti+]). We will denote the transition probability 
density of AK*(t i )  by 

#K'( t i+ i ,Y , t i ,x )  x = K*(ti), Y = ~ * ( t i + l )  

(and correspondingly for AKo(ti)  and all other schemes considered). 

18.3.3.3 Proxy Constraint and Proxy Scheme 

Let f : I x R" + Rk denote a given function, the proxy constraint, fulfilling the 
following assumption: 

For any ti E I ,  i > 0 

f ( t j ,  K"(t i ) )  = f ( t i ,  KP(ti))  ( 18.1 8) 

has a solution Kp(ti) such that the transition probability densities of AK*(ti) = 
K * ( t i + ] )  - K*(ti), AKP(ti)  = KP(ti+l) - KP(ti) fulfill 

# K " ( r j + j ,  y, t i ,  x> = o = #K* ( t i+] ,  y ,  t i ,  X) = o v i, X, y. (1 8.19) 

where 
KP(to> := K*(to) = Ko(0). 

In other words: Equation (1 8.18) implicitly defines a scheme KP(ti) which coincides 
with K'(ti) on the manifold defined through the proxy constraint, but allows a measure 
transformation to the scheme K*(ti+1). 

In the special case where v(ti) := AK*(t i ) -AKP(t i )  is TT,-measurable, the transition 
probability of KP may be given as a modification of the transition probability of K*, 
easing calculation. In this case it is 

K' 
# K P ( t i + i , ~ , t i , ~ )  = 4 (t i+l,Y,t i ,x- v> I x = Kp( t i ) ,  Y = ~ ~ ( t i + i ) .  

For the general case where v(ti) depends on K*(ti+]), K"(ti+l) we may also derive a 
simple formula for # K P .  

18.3.3.4 Calculating Expectations using a Proxy Simulation Scheme 

For the calculation of expectations we use the simulation scheme KP in place of 

K' and perform a change of measure, i.e. a weighting by $. For the expectation 
K* 
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operator we have 

(18.20) 

This is immediately clear using the integral representation of EQ with the above 
densities. 

18.3.3.5 Example: Euler Schemes 

For illustrative purposes, we will assume that K O  and K* are Euler schemes for It8 
processes, differing only in the model parameters (initial value, drift and diffusion 
coefficients), i.e. 

K " ( t i + ~ )  = K"(ti) +po(ti)Ati + r"(ti)AW(t;), K"(0)  = Ko(0) 

K*(ti+l) = K*(ti) +p*(ti)Ati + r*(ri)AW(ti), K*(O) = KdO). 

Let 

K"(t0) := K*(to). 

Let u( t ; )  denote the solution of 

- implicitly assuming it exists. Then we define 

i.e. with v(ti) = AK*(ti) - AKP(t,) ,  u(ti) solves Uti)  . u(ti) = v(ti). The scheme KP has 
the following properties: 

0 It coincides with KO on the k-dimensional sub-manifold defined by f ( t i+ l ,  .), 
i.e. . f ( t i+ l ,  K"(ti+l) = f ( t i + l ,  K"(ti+l)). 

0 It is given by a mean shift u(t i )  on the Brownian increment AW(ti) of the target 
scheme K*.  The change in transition probability is thus trivial to calculate. 
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18.3.4 Localized Proxy Simulation Scheme 

Let K" and K' be as above. Let f : I x Rn -+ Rk denote a given function, the proxy 
constraint. Let g : I x R" + [0,1] denote a given function, the localization function. 
We define the localized proxy simulation scheme by induction. Let 

Kf3.'"'(to) := K*(to) .  

For ti E I ,  i > 0 we assume that 

f( t i+i ,  K"(ti+i 1) = f ( t i+ l l  KP3'"'(ti) + AKP(t i ) )  

has a solution AKP(ti). Then we set 

K/J,/O(' ( t i+l)  := Kf3'"'(ti) + g(t i+ l ,  KO). A K f ( t i )  + (1 - g(ti+l, KO)) . A K * ( t i )  
(18.23) 

where v(rJ = A K * ( t i )  - AKP(ti)  - as above. We assume that f , g  allow a solution 
Kp,"" (t i+l)  such that the transition probability densities of AK*(t i )  = K*(ri+l) - K*(ri), 

@".'"' ( r i + l ,  y ,  t i ,  x) = o - #*(ti+l, y ,  ti, x) = o v i, x, y.  (1 8.24) 

The function g is called the localization,function. The localized proxy simulation 

= AK*(t i )  + g(ti+I, K " )  .  ti), 

AKPh'( t ; )  = Kf, loc(f i+l)  - K P h c ( t i )  fulfill 

scheme has the following properties: 

0 At times ti+l and paths w where K"(w)) = 1, the value off  applied to the 
realization Kf','oc(ti+l, w)  coincides with the value off  applied to the realization 
K"(ti+l, w )  of the primary scheme. In other words, at g = 1 the quantity f stays 
rigid. 

0 At times ti+I and paths w where g(t i+l ,  K"(w)) = 0, the increments of AKP"f'c(ti) 
coincide with the increments of AK*(ti)  (as would be the case for a perturbation 
of a simulation scheme using the pathwise method). 

We assume that the localization function g is such that there is a change of measure 
allowing us to write an expectation of a function of K* as an expectation of a function 

There is a subtle point in the definition of the localized proxy simulation scheme: 
In (18.23) the localization function depends on KO, thus it does not depend on the 
model parameter 8. This makes the localization more robust, e.g. if the localization 
function is not smooth. Note: In most applications the localization function at time 
ticl will depend on K"(ti+l), i.e. g(ticI, K") = Ko(t i+ l ) )  in (18.23), but it is also 
possible to have a localization function that depends on past realizations g(ti+l,  K") = 
g(rj+l, (K"(t , ) l j  = 0,. . . , i + 1)) (a target redemption note is such an example). 

of KPx"'". 
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18.3.5 Example: Euler Schemes 

As in 18.3.3.5 let us assume that K" and K* are Euler schemes for It6 processes, 
differing only in the model parameters (initial value, drift and diffusion coefficients), 
i.e. 

Ko( t ,+I )  = K"(ti) +po(t j )At i  + r"(t;)AW(ti) ,  K"(0) = Ko(0) 

K * ( t i + ] )  = K * ( t i )  + p * ( t j ) A t i  + r*( t i )AW(t i ) ,  K*(O) = Ko(0) .  

Let 
Kp3'""(to) := K*(to) .  

Let u(tj) denote the solution of the proxy constraint 

f ( t ;+l ,  K o ( t i + l ) )  = f ( t j + l ,  KP3'oc(ti) + AK*(t i )  - r(t;) . u(tj)), (18.25) 

- implicitly assuming it exists. Then we define 

K"."JC(tj+l) := Kp3'oc(ti) + AK*(t i )  - r(t;) . g(ti+l) . ~ ( t j ) .  (1 8.26) 

The scheme Kp, loc  has the following properties: 

At times  ti+^ and on paths where g(ti+l> = 1, it coincides with K" on the 
k-dimensional sub-manifold defined by f ( t i+ ,  , .), i.e. f ( r i+l ,  Kp,'fJc(ti+l))  = 

f ( t i + l ,  K"(ti+t)). 

0 It is given through a mean shift g(ti+l)u(ti) on the Brownian increment AW(ti)  
of the target scheme K'. The change in transition probability is thus trivial to 
calculate. 

18.3.6 Implementation 

It may seem that the implementation of the localized proxy simulation scheme is 
difficult and resource intensive. First, the partial proxy simulation scheme Kp is 
defined only implicitly by the proxy constraint. Second, Kp,"" is calculated as an 
interpolation of KP and K * .  So all in all it appears as if we are required to do four 
simulations. 

However, for the standard Euler scheme at least, the localized proxy simulation 
is just a simple modification to a standard Monte-Carlo simulation, where a product 
calculates the required mean shift v(ti)  and provides it to the model. It may be 
implemented in an object oriented design using just a small amount of additional 
code. It will not be required to calculate K* or KP explicitly. 
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18.3.7 Examples and Numerical Results 

18.3.7.1 Localizers 

We investigate two simple localization functions. The first based on a piecewise 
constant function 

1 for 1x1 < €1. 

0 for 1x1 > € 2 .  

for €1 I 1x1 I € 2 .  

The second being a smooth variant 

In our numerical experiment we found virtually no difference between the use of hlin 

versus hexp. However the choice of the localization domain given by € 1 ,  €2 is relevant. 

18.3.7.2 Model 

As our model SDE we consider a standard LIBOR market model, see Chapter 19. 

18.3.7.3 Example: Digital Caplet 

We consider a LIBOR market model L = e x p ( K )  with K as in (18.17). The proxy 
constraint is 

Ly+,(ti+l) = LP+I(ti+l). 

We use the localization function 

where t k  is the exercise date of the option, K its strike and L;+,(ti+l) is the LIBOR rate 
calculated from the reference scheme KO. 

Numerical Results 

We perform a numerical calculation with the simplified model data L(0) = lo%, 
(+ = 20% and the drift p being chosen as the risk neutral drift under terminal measure. 

Using €1 = 1 %, €2 = 2% (which is a good, but not the optimal choice) we obtain 
the results shown in Figures 18.9, 18.10. The localized proxy simulation scheme 
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beats all competing methods (direct simulation (pathwise methods) or partial proxy 
(likelihood ratio method)) for options with strikes both at the forward and distant from 
the forward. It also gives much better results than the (non-localized) partial proxy 
simulation scheme for gamma. 

18.3.7.4 Example: Target Redemption Note (TARN) 

We consider a more sophisticated example: a target remption note with a structured 
coupon. The target redemption note matures (and pays back the notional) if the 
cumulated coupon hits a pre-defined target coupon. In contrast to the digital caplet: 

0 The trigger criteria is (in general) path dependent, e.g. a cumulated coupon 

0 The discontinuity is given by a change in maturity (chosen from a discrete set 
of observation dates). Thus almost all paths will exhibit a discontinuty. 

As a consequence, the definition of a localizer is slightly more complex. The localizer 
itself will be path-dependent. 

We give a short definition of the TARN, see also [91]: Let 0 = TO < T I  < 
T2 < . . . < T, denote a given tenor structure. For i = 1,.  . . , n  - 1 let C, denote a 
(generalized) “interest rate” (the coupon) for the periods [ T I ,  T l + l ] ,  respectively. We 
assume that C, is a FT,-measurable random variable (natural fixing). Furthermore let 
N ,  denote a constant value (notional). A target redemption note pays 

N ,  . X ,  at T , + I ,  

where 

r CI for i = 1. 
i- 1 (structured coupon) 

min(Ci, K - C Ck) for i > 1 
k= 1 

X I  := 

i- I I 

1 

0 else. 

max(0, K - C ck) 

for C Ck < K <= C Ck or i = n,  
k= I k= I (redemption) 

I 

for i = n 

else. 
k= I (target coupon guarantee). 

The payoff of the target redemption note contains the discontinuous (digital) part 

i- I I 

k= 1 k=l 
1 for C ck K <= C ck, 
0 else. 

288 



Figure 18.9. Delta of a digital caplet calculated by Jinite diference applied to direct 
simulation (dark gray), to a partial proxy scheme simulation (light gray) and to a 
localized proxy simulation scheme (gray). The initial forward rate of the model is at 
10%. I f  the the strike K is close to the forward rate (leftjgure) then the partial proxy 
scheme (likelihood ratio method) remains stable for  small shifts, while the direct 
sirnulation (pathwise method) becomes unstable. I f  the strike K is far away from the 
forward rate, the partial proxy scheme falls short of the direct simulation due to the 
huge Monte-Carlo variance introduced by  the likelihood ratio. 

289 



Figure 18.10. Gamma of a digital caplet calculate by finite difference applied to 
direct simulation (dark gray), to a partial proxy scheme simulation (light gray) and to 
a localized proxy simulation scheme (gray). As in Figure 18.7, considering different 
strikes shows that one or the other methods prevails. 
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18.3.7.5 Proxy Constraint and Localizer for the Target Redemption 

A pathwise payoff of the TARN depends discontinuously on the cumulated coupon 

C Ck. Consequently the proxy constraint is 

Note 

I 

k= I 

k= 1 

Let 
i- I 

Ki-1 := K - Ck 
k= 1 

denote the time Ti trigger level. Ki-1 is Ti-]-measurable, so conditional to 7T,-, it is a 
constant. Then the localizer is given by 

Numerical Results 

Figure 18.1 1 shows some numerical results comparing direct simulation, partial proxy 
simulation and localized proxy simulation for a TARN, calculating Gamma. 

Further Reading: The (full) proxy simulation scheme method was 
instroduced in [70]. The partial proxy simulation scheme method is 
found in [69]. The localized partial proxy simulation scheme method 
is found in [66]. QI 
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Figure 18.11. Delta and Gamma . f a  target redemption note (the coupon is a reverse 
CMS rate) calculated by finite difference applied to direct simulation (dark gray), to 
a partial proxy scheme sirnulation (light gray) and to a localized proxy simulation 
scheme (gray). Direct simulation produces enormous Monte-Carlo variances for 
small shift sizes. The method is useless. The partial proxy simulation scheme shows 
an increase in Monte-Carlo variance if the shift size is large. The localized proxy 
simulation scheme is an improvement on the partial proxy simulation scheme and 
shows only small Monte-Carlo variance for large shifts. Note: The localizer used is 
not the optimal one. 
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Part V 

Pricing Models for Interest 
Rate Derivatives 
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Motivation and Overview - Part 111 

Up until now we have been considering models of a single scalar stochastic process 
and options on it: The Black-Scholes model for a stock S ,  or the Black model for a 
forward rate L. The true challenge in evaluation of interest rate products lies in the 
modeling of the whole interest rate curve (instead of a scalar) and in the evaluation of 
complex derivatives, which depend on the whole curve. 

Historically the path to modeling the interest rate curve started with the modeling 
of the short rate, from which we may calculate the whole interest rate curve; see 
Remark 104. The initial motivation for considering the short rate derived from the 
wish to model a scalar quantity, thus to be able to apply familiar numerical methods 
from stock models, e.g., binomial trees. 

For didactic reasons we are not going to present things chronologically. Instead, 
we consider the LIBOR market model first. It is a high-dimensional model, which 
discretizes the interest rate curve into a finite number of forward rates. It is highly 
flexibly due to its huge number of free parameters. It will allow us to study model 
properties like mean reversion, number of factors (Chapter 25), instantaneous volatil- 
ity, and instantaneous and terminal correlation (Chapter 2 1). Despite its presumed 
complexity, the LIBOR market model is essentially a very simple model: It is nothing 
more than the simultaneous consideration of multiple Black models under a common 
measure. So we are carrying on from Chapter 10. 

For the short rate models the modeled quantity is the short rate, a quantity not 
directly observable. Here we model quantities which are observable as market quotes, 
like the LIBOR or the swap rate. The class of models that model quantities which are 
directly observable on the market are called “market models”. We will look at the 
LIBOR market model first. 
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CHAPTER 19 

LIBOR Market Model 

The pure and simple truth 
is rarely pure and never simple. 

Oscar Wilde 
The Importance of Being Earnest [39]. 

We assume a time discretization (tenor structure) 

O=To<T1 < . . . < T ,  . 

We model the forward rates L; := L(T;, Ti+,) for i = 0,. . . , n - 1; see Definition 99. 
This represents a discretization of the interest rate curve, where the continuum of 
maturities has been discretized.' 

The LIBOR market model assumes a lognormal dynamic for LIBORs Li := 
L(T;, T;,, 1, i.e.,* 

%@ = pu$(t) dt + r i ( t )  dWF(t) for i = 0,. . . , n  - 1, under P, (19.1) 
Li ( t )  

with initial conditions 

Li(0) = L . 0 ,  with Li,0 E [0, cm), i = 0, .  . . , n  - 1 ,  

where W r  denote (possibly instantaneously correlated) P-Brownian motions with 

dWr(t) dWJ(t) = pi , j ( t )  dt. 

Let r i  : [0, TI H IW and pi,j : [0, TI H R be deterministic functions and pi the drift as 
F,-adapted process. By R(t)  := ~ i , , ( t ) ) ; , j = ~ , , , , , ~ - l  we denote the correlation matrix. 

I In practice it is normal to model semiannual or quarterly rates T,+l - T, = 0.25 and to consider these 

* We denote the simulation time parameter of the stochastic process by t. 
up to a maturity of 20 or 30 years, giving 80 or 120 interest rates to model. 
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Motivation: Equation (19.1) is a lognormal model for theforward 
rates L;. If we consider only a single equation, i.e., fix i E ( 1,. . . , n - l}, 
it represents the Black model considered in Chapter 10: Equation (19.1) 
is identical with Equation (10.1). If we change the measure such that L; 

is drift-free (see Chapter lo), we see that the terminal distribution of Li is lognormal. 

Thus, the LIBOR market model is equivalent to the consideration of n Black models 
under a unified measure. 

As was discussed in Chapter 10, to evaluate a caplet under this model it is not 
relevant that (7; is time dependent (we have assumed time dependency of ui in 
Chapter 10 for didactical reasons). However, for the value of complex derivatives 
the time dependency matters. A further degree of freedom introduced in (19.1) is the 
instantaneous correlation p;,, of the driving Brownian motions. For the value of a 
caplet the instantaneous correlation is insignificant (indeed, it does not enter in the 
Black model). For the evaluation of swaptions the correlation of the forward rates is 
significant. 

For further generalizations of the model, consider nondeterministic c;, i.e., stochas- 
tic volatility models. In this case the terminal LIBOR distributions no longer cor- 
respond to the Black model ones, which is, of course, intended. Equation (19.1) is 
to be seen as a starting point of a whole model family. The model (19.1) has been 
chosen as the starting point, because (historically) the lognormal (Black) model is 

4 well understood, especially by traders.' 

Remark 212 (Interest Rate Structure): Equation (19.1) models the evolution of 
the LIBOR L(Ti, Ti+,). Without further interpolation assumption, these are the shortest 
forward rates that can be considered in our time discretization (tenor structure). The 
equation system (19.1) thus determines the evolution of all bond prices with maturities 
Ti and all forward rates for the periods [Ti, Tk], since 

To shorten notation we write 6i := Ti+, - Ti, i = 0,. . . , n - 1 for the period length. 

Caplet prices are quoted by traders by the implied Black volatility. This is, of course, just another unit 
of the price, since the Black model is a one-to-one map from price to implied volatility. 
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19.1 Derivation of the Drift Term 

As in Chapters 10 and 11, our first step is to choose some numkraire N and derive the 
drift under a martingale measure QN. If the processes have been derived under the 
martingale measure Q'" then the (discretized) interest rate curve may be simulated 
numerically and a derivative V may be priced through V(0) = N(0)EQN ($17~") (see 
Chapter 13). 

We fix a numtraire N. Let the assumptions of Theorem 74 hold such that there 
exists a corresponding equivalent martingale measure QN such that N-relative prices 
are martingales. From Theorem 59 under QN the process (19.1) has a changed drift, 
namely 

= p y N ( t )  dt + a i ( t )  dW?"(t) for i = 0,. . . , n - 1. (1 9.2) 
Li(t) 

19.1.1 Derivation of the Drift Term under the Terminal 
Measure 

We fix the T,,-bond N ( t )  = P(T,,; t )  as numkraire. From Theorem 59 under Qp(Trl) the 
process (19.1) has a changed drift: 

dL;(t) QPlTnI 

- = Pi ( t )  dt + cri(t) dWFP'rn'(t) for i = 0,. . . , n  - 1. (19.3) 
Li(t) 

We need to determine pFp(TnJ. The martingale measure Qp(Tn) corresponding to N(t) = 
P(T,l; t )  is also called terminal measure (since T,, is the time horizon of our time 
discretization). 

As in Chapter 10, we will construct relative prices with respect to P(T,) and obtain 
equations from which we will derive the drifts pi.  From Definition 99 

Since we have a P(T,)-relative price of a traded product on the right-hand side 
in (19.4), we have for the drifts: 
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i.e., 

(19.8) 

The procedure above may be summarized as follows: To derive the n drifts we 
write down n independent traded assets as a function of the model quantities. By 
considering the drifts of their relative prices, we obtain n equations for the drifts of 
the modeled quantities. 

19.1.2 Derivation of the Drift Term under the Spot LlBOR 
Measure 

We fix the rolled over one period bond as numeraire, i.e., the investment of 1 at time 
To into the TI -bond and after its maturity the reinvestment of the proceeds into the 
bond of the next period, i.e., in TJ the reinvestment in the Tj+l-bond. It is 

where m(t) := max(i : TI 5 t )  and 6; := Tj+, - T,i. The corresponding equivalent 
martingale measure QN is called the spot measure. 

As before, we consider the processes of N-relative prices of traded products (from 
which we know that they have drift 0 under QN). We consider the N-relative prices of 
the bonds P(Ti). It is 

/=m(t)+l  j=O 

thus 

(19.1 1) 
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Since 

we consider 

and thus V j = 0,.  . . , n - 1 

If we now use 

dLj = L;pYN d t  + Ljc ;  dW, and 

= 0. (19.12) 

dLj dLI = L j L / ~ ; ~ i p ; , l  d t  
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in ( I  9.7), then we have4 

19.1.3 Derivation of the Drift Term under the Tk-Forward 
Measure 

Exercise: (Drift under the T&mvard measure) Consider 

where m(t) := max{i : Ti I t ) .  

1. Give an interpretation of N ( t )  as traded product. 

2. Derive the drift of the model (19.1) under the QN measure with the numhaire 
N .  

Solution: 

~ 

Since the coefficient of dt equals 0. 
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19.2 The Short Period Bond P(T,(r)+l; t )  

For t @ { T I , .  . . , T n }  neither the numkraire N ( t )  of the terminal measure nor the 
numkraire of the spot measure is not fully described by the processes L,(t). The 
unspecified bond P(Tr,(t)+l; t )  occurs in both numkraires. We will now discuss the 
relevance of P( Tm(r)+ I ; t) .  

19.2.1 Role of the Short Bond in a LIBOR Market Model 

For the modeling of the forward rates L,(t) := L(T,, T,+I ; t )  on the tenor periods 
[T,, T , + I ] ,  i = 0,. . . , n the specification of P(m(t)+ 1; t )  is irrelevant. For the derivation 
of the corresponding drift terms it was not relevant to specify the stochastic of 
P(Tm({)+l ; t ) ,  since the term canceled for the relative prices considered. 

Conversely, the LIBOR market model does not describe the stochastic of the short 
bond P(Tm(r)+l ; f), since it is not given as a function of the processes L,(t). 

19.2.2 Link to Continuous Time Tenors 

The specification of the short bond P(Tf,f(tl+l; t )  becomes relevant if the model has 
to describe interest rates of interest rate periods which are not part of the tenor 
structure. The specification of P(m(t) + 1 ; t )  will determine how the fractional forward 
rates L(T, ,  T,; t )  with T ,  @ ( T I , .  . . , T,,} and/or T ,  @ ( T I , .  . . , T R }  will evolve (see 
Section 19.5). It is the link from a model with discrete tenors (LIBOR market 
model) to a model with continuous time tenors (Heath-Jarrow-Morton framework). 
In the special case where P(m(t) + 1 ; t )  has zero volatility, the LIBOR market model 
under spot measure coincides with a Heath-Jarrow-Morton framework with a special 
volatility structure under the risk-neutral measure (see Section 24.2). 

19.2.3 Drift of the Short Bond in a LIBOR Market Model 

Within the LIBOR market model there is no constraint on the drift of P(m(r) + 1; r ) ,  
the term cancels out. The relative price is always a because in ~ ( r )  

martingale for any choice of P(nz(t) + 1; I ) .  This might come as a surprise, but we 
have already encountered this behavior: In the Black-Scholes model the drift r of 
B(t)  is a free parameter, because it is the drift of the numkraire. The parameter r is 
determined by calibration to a market interest rate. In a short rate model the drift is a 
free parameter. It is determined by calibration to the market interest rate curve; see 
Chapter 23. Here, similarly, P(m(t) + 1 ; t )  determines the interpolation of the initial 
interest rate curve. 

P(m( t )+ l , t )  
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The trivial fact that the numkraire-relative price of the numtraire, i.e., %, is 
always a martingale plays a role in Markov functional models. There, the numeraire 
is postulated to be a functional of some Markov process. 

19.3 Discretization and (Monte Carlo) Simulation 

In this section we will discuss the discretization and implementation of the model. 
Let us therefore assume that the free parameters rr, p i , j ,  and Li,o ( i ,  j = 1,. . . , n) are 
given. Together with the drift formula obtained in the previous section the model is 
fully specified. Section 19.4 will then discuss how the parameters L,,g, u,, p, , ]  are 
obtained. 

19.3.1 Generation of the (Time-Discrete) Forward Rate 
Process 

As discussed in Chapter 13, we choose the Euler discretization of the It6 process of 
log(L,). From Lemma 50 we have 

(19.13) 
1 

d(log(L,(t))) = (p?’(t) - iuf(t)) dt + ul(t) dW?”(t) 

and the corresponding Euler scheme of (19.13) is 

1 

2 Iog(L,(t + At))  = log(L,(t)) + ( p , ( t )  - -r;( t))  At + u,(t) AW,(t) .  (19.14) 

Applying the exponential gives us the discretization scheme of L, as 

L,(t + At) = L,(t) exp At + r l ( t )  AW,(t)  ) . (19.15) 

In the special case that the process Li is considered under the measure Qp(T1+l), i.e., 

pui ( t )  = 0, and that the given u;(t) is a known deterministic function, we may use 
the exact solution for a discretization scheme: 

@(7,+11 

L;(t + Ar) = L;(t)  exp t + At) At + ei(t, t + At)  AW; 

where 

t + A f  

b ; ( t , t  + At)  := d& CT?(T) dr.  
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In the case where Li is not drift-free, we choose instead of (19.15) the discretization 
scheme 

1 
Li(t + At)  = Li(t) exp t + At)2)  At + di(t,t + At)  AW;(t)  

(we write L in place of E ,  although (19.16) is an approximation of (19.1)). The 
difTusion dW is discretized by exact solution; the drift dt is discretized by an Euler 
scheme. The discretization error of this scheme stems from the discretization of 
the stochastic drift pf only. This discretization error results in a violation of the no- 
arbitrage requirement of the model (the discretized model does not have the correct, 
arbitrage-free drift). Methods which do not exhibit an arbitrage due to a discretization 
error are called arbitrage-free discretization; see [73]). 

The volatility functions rf are usually assumed to be piecewise constant functions 
on [T,, TI+,) ,  such that el(t, t + At)  may be calculated analytically. It is d,(t, t + At)  = 

f f f ( f ) .  

19.3.2 Generation of the Sample Paths 

Equipped with the time discretization (1 9.16), realizations of the process are cal- 
culated for a given number of paths wl , ~ 2 ,  ~ 3 , .  . .. To do so, normally distributed 
random numbers AWi(t;)(wk), correlated according to R = (pl,;), are generated (see 
Appendices B.l and B.2). These are used in the scheme (19.16). The result is a 
three-dimensional tensor L;(t;, wk) parametrized by 

i : Index of the interest rate period (tenor structure), 

j : Index of the simulation time, 

k : Index of the simulation path. 

19.3.3 Generation of the Numeraire 

Given a simulated interest rate curve L;(t,, wk), we can calculate the numiraire. Of 
course, we have to use the numiraire that was chosen for the martingale measure 
under which the process was simulated (form of the drift in (19.13)). For the terminal 
measure we would calculate 
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Note: The numkraire is given only at the tenor times t = Ti, since for t # Ti we 
did not define the short period bond P(Tm(r)+l ; t).5 An interpolation is possible; see 
Section 19.5 and [96]. 

19.4 Calibration-Choice of the Free Parameters 

We are now going to explain how the free parameters of the model can be chosen. 
The free parameters are 

0 the initial conditions Li.0, 

0 the volatility functions or volatility processes6 vi, 

the (instantaneous) correlation pi,,, 

i = 0 , .  . . ,n  - 1 ,  

i =  1, ..., n -  1 ,  

i , j =  1 ,..., n -  1. 

The determination of the free parameters is also called calibration ofthe model. 

Motivation (Reproduction of Market Prices versus Historical 
Estimation): With the LIBOR market model we have a high- 
dimensional model framework. The main task is the derivation or 
estimation of the huge amount of free parameters. Two approaches 

are possible: 

0 Reproduction of Market Prices: The parameters are chosen such that the 
model reproduces given market prices. 

0 Historical Estimation: The parameters are estimated from historical data, e.g., 
time series of interest rate fixings. 

It may be surprising at first, but the second approach is not meaningful, being in 
the context of risk-neutral evaluation. The model is considered under the martingale 
measure QN and its aim is the evaluation and hedging (!) of derivatives. An expec- 
tation of the relative value under the martingale measure corresponds to the relative 
value of the replication portfolio. This replication portfolio has to be set up from 
traded products, traded at current (!) market prices. If the model did not replicate 
current market prices, then it would not be possible to buy the replication portfolio of 
a derivative at the model price of the derivative. The model price would inevitably be 
wrong. 

This remark applies to all free model parameters. In practice, however, it may be 
difficult or impossible to derive all parameters from market prices. This could be 

See Section 19.2. 
The parameters ct may well be stochastic processes. In this case ui is called a stochastic volatility 
model. 
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because for a specific product no reliable price is known (low liquidity). It could also 
be that a corresponding product does not exist. This is often the case for correlation- 
sensitive products from which we would like to derive the correlation parameters. If a 
parameter cannot be derived from a market price, a historical estimate becomes an 
option. If in such a case complete hedge is not possible, the residual risk has to be 
considered, e.g., by a conservative estimate of the parameter. 

For the LIBOR market model a parameter reduction is usually applied first, based 
on historical estimates of rough market assessment. An example of such parameter 
reduction is the assumption of a family of functional forms for the volatility c i ( t )  
o r  the correlation pl,,(t). The remaining degrees of freedom are then derived from 

market prices. 4 

19.4.1 Choice of the Initial Conditions 

19.4.1.1 Reproduction of Bond Market Prices 

Let PMarket(T1) E (0, 11 denote a market observed (i.e., given) price of a TI-bond. If 
we set 

pMarket ( T I )  - PMarket( TI+ I ) 

(Tl+l)(Tl+l - TI) ’ pMarket 
LI,O := 

then the model reproduces the given market prices of the bonds PMarket. This is 
ensured by the model having the “right” drift and it is independent of the other 
parameters. 

19.4.2 Choice of the Volatilities 

19.4.2.1 Reproduction of Caplet Market Prices 

We assume here that the ti's are deterministic functions (i.e., not random variables or 
stochastic processes). The forward rate Li follows the It6 process 

dLi(i) = p:(i)Li(t) dt + c,(t)Li(t) dWF(t) under Q := QN 

Thus the model corresponds to the Black model discussed in Chapter 10. Under 
we have p ~ p ‘ r ’ ” ’  = 0, the distribution of Li(Ti) is lognormal, and there exists 

an analytic evaluation formula for caplets. The only model parameters that enter the 
caplet price are Lo(Ti) and 

(19.17) 
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If the market price V&Z:; of a caplet on the forward rate L;(T;) is given, then the 

corresponding implied Black volatility vy’ack9Market may be calculated by inverting7 
Equation (10.2). If then v;(t) is chosen such that 

vBlack,Model - - vBlack,Market 
I 1 

(1 9.18) 

then the model reproduces the given caplet price VEiZ:;. A possible trivial choice is, 

e.g., tr;(t) = ui 

Remark 213 (Caplet Smile Modeling): The fact that the LIBOR market model 
calibrates to the cap market by a simple boundary condition is one reason for its initial 
popularity. However, since the model restricted to a single LIBOR is a Black model, 
the implied volatility does not depend on the strike of an option. Thus, in this form, 
the model may calibrate to a single caplet per maturity only. It cannot render a caplet 
smile yet. 

To remove this restriction one can extend the model by a local or stochastic volatility 
or jump-diffusion processes [8]. For an overview on smile modelling in the LIBOR 
market model see [23]. 

v t. Black,Market 

19.4.2.2 Reproduction of Swaption Market Prices 

If the correlation R = (pi,;) is given and fixed, then we influence swaption prices 
through the time structure of the volatility function t H vi. We consider swaptions 
that correspond to our tenor structure, i.e., option on the swap rates: 

S(T; ,  . . . , T;; Ti), 0 < i < j I n. 

From the definition of the swap and swap rate it is obvious that the price 
of a corresponding swaption with exercise date on or before Ti and peri- 
ods [Ti, Ti+l] ,  . . . , [T;-l, T,j] depends only on the behavior of the forward rates 
Li(t), . . . , L;-1 (t) until the$xing t 5 Ti; see Figure 19. I .  

If we discretize the volatility function corresponding to the tenor structure and 
define 

the price of an option on the swap rate S (T ; ,  . . . , T;; Ti) depends only on u k , ~  for 
k = i,.. . , j  - 1 and 1 = 0, .  . . , i  - 1. 

’ For inversion of a pricing formula we may use a simple numerical algorithm. For the Black for- 
mula (10.2) the price is increasing strictly monotone in the volatility. 
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Figure 19.1. Swaption as a function of the forward rates: The 
swap with periods [T;,  T;+l], . . . , [Tj-l,  Tj]  is a function of the forward rates 
L(T;, T;+l; T;) ,  . . . , L(Tj-1, Ti ;  T,)  (all with jixing in Ti). The corresponding swap- 
tion depends only on the joint distribution of these forward rates. Under our model, 
with given initial conditions Li.0 and correlation R = @i,j), the swaption price depends 
on rr;(t), . . . , u j - ~ ( t ) ,  t E [0, T;] only. The dynamic of these forward rated beyond the 
t > T; and all other forward rates do not influence the swaption price. 

This allows an iterative calculation of r + k , ~  from given swaption market prices: 

F o r i =  1, ..., n -  1: 

F o r j = i +  1, . . . ,  n: 
Calculate u,-I,,-I from the price of an option on S (T , ,  . . . , T I ;  T,)  
by considering the already calculated u k , /  with k = i ,  . . . , j - 1 and 
1 = 0,. . . , i - 2 from the previous iterations. 

To derive r+,-l,,-l from the market price V5Y$&(TI,. . . , T,) we have to invert the 
mapping 

In principle this mapping may be realized by a Monte Carlo evaluation of the swaption. 
To allow for faster pricing, and thus faster calibration, analytic approximation formulas 
for swaption prices within a LIBOR market model have been derived; see also 
Section 19.4.5. 

Remark 214 (Bootstrapping): The above procedure of calculating a piecewise 
constant instantaneous volatility from swaption prices is called volatility bootstrap- 
ping. 

uj-1.1-1 H Vg$d,e,f,n(T, 9 . . . ,  TI). 

Remark 215 (Review: Overjitting): The calculation of a piecewise constant volatil- 
ity function u;,j from swaption prices bears the risk of an overjtting of the model. 
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Note that if this procedure is applied, then we accept completely the validity of every 
single given swaption price, i.e., that the prices are of sufficiently good quality with 
respect to topicality (fixing time of the price) and liquidity. If not all prices are of the 
same quality, then some have to be interpolated, smoothed, or corrected by hand. In 
this case, the calibration problem has been replaced by an interpolation problem. If the 
interpolation and maintenance of the market data is not done with care, a calibration 
that fits to these prices exactly may be useless. See, for example, Chapter 6. 

In addition, the bootstrapping of the instantaneous volatility from swaption prices 
does not allow for a weighting of the swaption prices according to their importance. 

A solution to this is the reduction of the free parameters by a reduction of the family 
of admissible volatility functions with consequent loss of the perfect fit. 

19.4.2.3 Functional Forms 

To reduce the risk of over-tting, the admissible volatility functions may be restricted 
to a parametrized family of volatility functions. For example, a functional which is 
empirically motivated by the historical shapes of the volatility and which is common 
in practice is 

c ~ ; ( t )  := (a + b (Ti - t)) exp(-c (Ti - t ) )  + d. 

Given a functional form, the calibration of the model consists of a selection of 
(liquid) market prices of caps and swaptions and an optimization of the remaining 
parameters (e.g., a, b, c, d above) to fit the model prices to the market prices. 

For a detailed discussions of a robust calibration to cap and swaption prices we 
refer to the literature, especially [7, 301. 

19.4.3 Choice of the Correlations 

19.4.3.1 Factors 

We assumed in (19.1) a model in which (potentially) each forward rate Li is driven by 
its own Brownian motion W;. The model is driven by an n-dimensional' Brownian 
motion 

W =  

* An n - I-dimensional Brownian motion is sufficient here, since we can choose WO = 0, because the 
forward rate LAJ is not stochastic. It is fixed in To = 0. Formally we achieve this by setting uo = 0. 
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The effective number of factors, i.e., the number of independent Brownian motions, 
that are driving the model is determined by the correlation 

By an eigenvector decomposition (PCA, principal component analysis) of the correla- 
tion matrix R = (p,,J);,l=~...n we may represent dW as 

dW(f) = F ( t )  dU(t), 

where U := ( U l ,  . . . , U,,JT and U I ,  . . . , Urn denote independent Brownian motions 
and F = (A,;) denotes a n x m-matrix. In other words, we have 

; = I  k= 1 

A proof of this representation is in Appendix B.2. Note that here we can have m < n. 
The columns of the matrix F are called factors. 

19.4.3.2 Functional Forms 

A full rank correlation matrix R is hard to derive from market instruments. As before 
a common procedure is to reduce the family of admissible correlation matrixes R. 
One ansatz consists of functional forms, for example 

p;,;(f) := exp(-o:. IT, - 7';l). (19.19) 

19.4.3.3 Factor Reduction 

The specification of the correlation matrix as a functional form is usually followed by 
a reduction of the number of factors. This is done in what is known as factor reduction 
(PCA). There only the eigenvectors corresponding to the largest eigenvalues of R are 
considered, and a new correlation matrix is formed from these selected factors. For a 
discussion of the factor reduction see Appendix B.3. 

The advantage of the factor reduction is that afterwards only an m-dimensional 
Brownian motion has to be simulated (and not an n-dimensional Brownian motion). 
Often n 2 40 is required (e.g., a 20-year interest rate curve with semiannual periods), 
however, often m 5 5 is sufficient. The choice of the actual number m of factors 
depends on the application; see Chapter 25. 
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19.4.3.4 Calibration 

The correlation model, e.g., the free parameter a in (19.19), may be chosen such that 
the fit of model prices to given market prices is improved. Alternatively, it may be 
chosen to give more realistic interest rate correlations. 

It should be stressed that we calibrate the instantaneous correlation, i.e., the cor- 
relation of the Brownian increments dW, and not the terminal correlation, i.e., the 
correlations of the distribution of the interest rates at a fixed time. We will consider 
the relation of the two in Chapter 21. 

We have seen that we may calibrate to the swaption matrix solely by the spec- 
ification of the time-structure of the instantaneous volatility of the LIBORs. The 
time-structure of the instantaneous correlations of the LIBORs will allow to calibrate 
correlations of the swaprates with different tenors. In other words: The terminal 
covariance of swaprates may be calibrated by the time-structure of the instantaneous 
covariance of the LIBORs. Thus is makes sense to consider the instantaneous LIBOR 
covariance as the free model parameter. We do so in Section 19.4.4. For an approxi- 
mation giving the terminal covariance of swaprates in terms of the time-structure of 
the instantaneous covariance of the LIBORs see Section 19.4.5. 

19.4.4 Covariance Structure 

In the previous sections we considered volatility and correlation separately. This is 
not necessary, as both can be considered together in the form of the correlation matrix 
(ulu,pi,;). Thus the calibration problem consists of the calculation of the (market 
implied) covariance matrix (or covariance matrix function). 

Defining the parametrized functional forms for volatility and correlation, e.g., as 

ai( t )  := (a + b (Ti - t ) )  exp(-c (Ti - t ) )  + d, pi,j(t) := exp(-a ITi - T,l) 

reduces the number of degrees of freedom of the covariance model and thus the possi- 
ble number of products for which an exact fit is possible. This might be a desirable 
feature, e.g., to avoid an overfitting. A disadvantage is the lack of transparency of 
the parameters. To derive the parameters numerical optimization has normally to be 
used, e.g., the minimization of a suitable norm of the error vector of some selected 
product prices as a function of the model parameters. The optimization of volatility 
parameters and correlation parameters may occur jointly, i.e., we consider a functional 
form of the covariance structure. 
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19.4.5 Analytic Evaluation of Caplets, Swaptions and 
Swap Rate Covariance 

To calculate the calibration error we need to calculate the corresponding model 
prices. Since a numerical calculation of the model price (e.g., by a full Monte Carlo 
simulation) is time consuming, and since the optimization requires many calculations 
of model prices, there is a need for fast analytical pricing formulas for specific 
calibration products. 

19.4.5.1 Analytic Evaluation of a Caplet in the LIBOR Market Model 

The analytic evaluation of caplets in the LIBOR market model is provided by the 
Black formula (10.2) using (19.17) to calculate the Black volatility. 

19.4.5.2 Analytic Evaluation of a Swaption in the LIBOR Market Model 

The analytic evaluation of swaption in the LIBOR market model is possible only by 
an approximation formula. An approximation formula can be derived by expressing 
the volatility of the swap rate as a function of the volatility and correlation of the 
forward rates. Assuming a lognormal model for the swap rate, which is already an 
approximation, we can then apply the Black formula for swaptions.’ Corresponding 
approximation formulas may be found in [7]. 

An approximation formula for swaption prices can be derived as follows: 
Let 0 = To < TI < . . . denote the tenor structure for the forward rates. Consider a 

swaprate 

. 122 P(T,; t )  - t 

associated with the swap tenor T, = Ti, < . . . < Ti, = Tb. In other words we assume 
that the swap tenor is a subset of the forward rate tenor, but it is allowed to be coarser. 

From the definition of the swap rate it is clear that the swap rate Sa,b can be seen as 
a function of Lk = L(Tk, Tk+l) with k = a , .  . . , b - 1, see also Lemma 123. Using It6’s 
Lemma we write the swap rate process as 

1 b-’ 

2 aLkaLl -- b- I 

k=a aLk k,l=u 

dSU,b(t) = S d L k  + - *dLkdL, 

(...) dt 

Assuming lognormal processes for the forward rates, the swap rate is not a lognormal process in 
general. 
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i.e., 

h- 1 

k=a 

where 

If the swap rate follows a lognormal model 

then the price of the corresponding swaption is given by the Black formula using the 
swaption’s Black volatility 5 a . b  where 

Note that ‘+iah(t) dt is just the relative quadratic variation 

In other words: If the relative quadratic variation of the swap rate is non-stochastic, 
we can calculate the swaption price from the Black formula. From the above we see 
that under a LIBOR Market model 

Since Wk(t)wl(t)Lk(t)Ll(t) is stochastic the swap rate has a stochastic relative quadratic 
variation and thus stochastic log-volatility. Consequently the Black swaption formula 
does not hold. In order to apply the Black swaption formula we use the approximation 

315 



i.e., we freeze the random variable wiLi to its initial value. Then we can calculate an 
approximation to the model swaption price using Black's swaption formula and the 
approximated integrated relative quadratic variation 

The weights wk are given as 

Together with 

if i,+l > k iu otherwise 

Tki I -Tk 
-P(T+)  . l+Li(Tk+,-Tkj  a 

- W l , + , )  = 
aLk 

we find with / ( k )  := min(l I il 2 k )  (the index / ( k )  marks the first swap period [Tl,, TI,+, J 
which contains the forward rate period [Tk, Tk+l]) 

With the swap annuities 

this can be simplified to 
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The last equation allows the efficient calculation of the weight wk(0) in our approxi- 
mation formula. 

We summarize the result: 

Theorem 216 (Analytic Approximation of Swaptions under a LIBOR Market 
Model (Hull & White 1999)): Within a LIBOR market model an analytic approxi- 
mation of the swaption price is given by the Black formula for swaptions using the 
Black volatility @:.h with 

h- I 

where 

JO 

Interpretation: The term 

TO 

?I,,(Td = 1 fll(j)fl,(t)Pl,J(t) dt 

is the integrated instantaneous covariance of the log forward rates. Defining the 
covariance matrix C = (~l , , (Tu)) l ,J=u,  ,b we can rewrite equation (19.20) as 

@;,hTu = v(o)TCv(o), 

where v = (w&, . . . , w&). The vector v is the gradient of log(s,,,b) in log(Lk)- 
coordinates: 

The approximation we made is 

alog(Su,b) - alog(S.,b) 
z 

i.e., we linearize the log-swap rate log(S.,h) as a function of log(Lk) around log(Lk(0)). 
QI 
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19.4.5.3 Analytic Calculation of Swap Rate Covariance in the LIBOR 

In the same way we obtain an approximation for the integrated instantaneous swap 
rate covariance under a LIBOR market model. Considering two swap rates Sa,b with 
tenor T, = Ti, < . . . < Ti, = T b  and S c , d  with tenor T ,  = T,, < . . . < Tim = Tb we 
have 

Market Model 

h-l d-l 

where 

The swap rate covariance may then be used in analytic pricing formulas for CMS 
spread options, i.e., a payout 

max (Sa,b(T) - s c , d ( T )  - K ,  0). 

See [7] for the derivation of an analytic pricing formula. This allows to calibrate the 
LIBOR market model to CMS spread options. 

The calibration to caplet, swaptions and swap rate covariance/cms spread options 
completely determines the instantaneous covariance structure of the LIBOR market 
model. 

Tip (Efficient Implementation of the Swaption Approxima- 
tion): To calibrate a LIBOR market model to swaptions we use a 
multi-dimensional optimizer minimizing the distance of the model swap- 
tion prices (given through the swaption approximation) from given 

market prices as a function of LIBOR covariance structure ( e i r j p i , ~ ) .  This makes it 
necessary to repeatedly calculate the swaption approximation for different values of 
~ i ~ j p ; , , .  The followings two observations are helpful to improve the performance of 
the calibration: 

0 For each swaption the weights vk(0) need to be calculated only once since they 
do not depend on the LIBOR covariance structure (c ic jp ; , j ) .  They only depend 
on the interest rate curve L;,o, which does not change during the calibration 
(we assume that the model is already calibrated to the interest rate curve by the 
choice of Li,"). 
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0 The integrated instantaneous covariance of the log forward rates (19.21) needs 
to be calculated only once per iteration since it does not depend on the swaptions. 
This will improve the performance if there are many swaptions with overlapping 
tenors, thus sharing a portion of the integral (19.21). 

19.5 Interpolation of Forward Rates in the LIBOR 
Market Model 

Motivation: An implementation of the LIBOR market model (e.g, 
as Monte Carlo simulation) allows us to calculate the forward rate 
L(Tj, Tk; t i )  for interest rate periods [Tj,  Tk], Tj  < Tk and fixing times 
ti.'' Using these rates, we can evaluate almost all interest rate derivatives 

that can be represented as a function of these rates. 
The discretization of the simulation time { t i )  determines at which times we may 

have interest rates fixings. The discretization of the tenor structure { T j )  determines for 
which periods forward rates are available and, since the numkraire is only defined at 
t = T i ,  it determines at which times we may have payment dates. The tenor structure 
imposes a significant restriction since a change of the tenor structure is essentially a 
change of the model. 

In practice, we desire to calculate as many financial products as possible with the 
same model. First, the aggregation of risk measures, i.e., of sensitivities" of products 
to the sensitivity of a portfolio, is correct only if the product sensitivities have been 
calculated using the same model. Second, the setup of a pricing model (calibration, 
generation of Monte Carlo paths) usually requires much more calculation time than 
the evaluation of a product, i.e., it is possibly efficient to reuse a model. 

Thus, it is desirable to know how to calculate from a given LIBOR market model 
the quantities L(Ts,  T'; t )  for T" ,  T" @ {TO, T I ,  . . . , T,) (unaligned period) and/or 

dl t G ( to ,  tl, . . . , t,) (unaligned fixing). 

19.5.1 Interpolation of the Tenor Structure (Ti) 
Let us look at how to interpolate the tenor structure. We will derive an expression for 
L(Ts, T"; t )  for T S  @ {TO, T I , .  . . , T,) and/or T' G {TO, T I , .  . . , T,). Let T" < T". 

lo  In a Monte Carlo simulation the rates carry, of course, an approximation error of the time discretization 

'I A sensitivity is a partial derivative of the product price with respect to a model- or product-parameter 
scheme. 

(e.g., volatility or strike). 
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The forward rates L(T",  T" ;  t )  may be derived from corresponding bonds P(T;  t) .  
We have 

P (T ' ;  t )  
P(Te;  t )  

1 + L(T' ,  T'; I )  (T" - T ' )  = ~ 

For arbitrary T > t the bond P ( T ;  t )  is given by 

The definition of the numkraire of the LIBOR market model shows that the specifica- 
tion of the short period bond P(Tm(f)+l; t )  is sufficient (and necessary) to determine all 
bonds P (T ;  t )  and thus all forward rates.12 

19.5.1.1 Assumption 1 : No Stochastic Shortly Before Maturity. 

We assume that P(Tm(r)+l ; t )  is an F~,,,,,,-measurable random variable, i.e., the bond 
has no volatility at time t with Tn7(f) 5 t 5 Tm(t)+l, i.e., shortly before its maturity. In 
other words, t H P(Tm(f)+I; t )  is a deterministic interpolation function of quantities 
known at the period start Tm(f). In this case for the bond with maturity t ,  seen at time 
s with Tm(f)  I s 5 t I Tm(f)+l we have 

(19.22) 

Thus we see that (under Assumption l), the interpolation function t H P(t ;  Tm(r)) 
(interpolation of the maturity t )  is derived directly from the interpolation function 
t H P(T,(f)+l ; t )  (interpolation of the evaluation time t )  and vice versa. The functions 
are reciprocal. 

l 2  Note that the considerations on interpolation given in this section do not assume a LIBOR market 
model. They are valid in general. 
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19.5.1.2 Assumption 2: Linearity Shortly Before Maturity. 

If the chosen interpolation function T H P(T;  T,,(,,) is linear, then the interpolation 
of bond prices P (T ;  s) seen in s < Tm(t) is linear too. This follows directly from the 
linearity of the expectation: 

( 19.24) 

and thus 

From (19.22) we have for Tm( t )  5 s 5 t 

1 + LT,(,)(Tm(r)) (Tm(r)+l - t )  

1 + LT,,,,,l(Tm(r)) (Ttn(t)+I - $1 . 
P(t; s) = 

We summarize this result in a theorem. 

Theorem 217 (Interpolation of Forward Rates on Unaligned Periods): Given a 
tenor structure TO < T I  < T2 < . . . . For all t let the short bond P(Tm(r)+~ ; t )  be given 
by the interpolation 

(1 9.26) 
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Then we have for arbitrary t 5 T with k = rn(t), 1 = m(T)  

where t* = min(t, Tl). For T,, 5 T, with Tk < T,T 5 Tk+l and TI 5 T, < TI+]  we have 
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19.6 Object-Oriented Design 

Figures 19.2 and 19.3 show an object-oriented design of a Monte Carlo LIBOR market 
model. The following important aspects are considered in the design: 

0 Reuse of implementation 

0 Separation of product and model 

0 Abstraction of model parameters 

0 Abstraction of calibration 

We will describe these aspects in the following. 

Figure 19.2. 
market model via Monte Carlo simulation. 

UML Diagram: Evaluation of LIBOR-related products in a LIBOR 
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19.6.1 Reuse of Implementation 

For the Monte Carlo simulation of the lognormal process we use the same classes 
as in the example of the Black-Scholes model; see Figure 13.4. To do so the classes 
BROWNIANMOTION and LOGNORMALPROCESS were from the beginning designed for 
vector-valued, i.e., multifactorial processes, although the Black-Scholes model does 
not require it. Improvements to the classes BROWNIANMOTION and LOGNORMALPROCESS 
will result in improvement of both applications. 

19.6.2 Separation of Product and Model 

The interface ABSTRACTLIBORMARKETMODEL defines how LIBOR-related products 
communicate with a Monte Carlo LIBOR model. Through this interface the model 
serves to make the process of the underlyings (the forward rates) and the numiraire 
available to the product as a Monte Carlo simulation. All corresponding Monte 
Carlo evaluations of interest rate products expect this interface. All corresponding 
Monte Carlo LIBOR models implement this interface. This realizes a separation of 
product and model. The specific LIBOR market model is realized through the class 
SIMPLELIBORMARKETMODEL. Model extensions may be introduced without the need 
to change classes that realize LIBOR-related Monte Carlo products. 

19.6.3 Abstraction of Model Parameters 

The model parameters, i.e., the covariance structure, are encapsulated in their own 
classes. The model parameter classes implement a simple inte$uce LIBORCOVARI- 
ANCEMODEL. A specific covariance model (i, j ,  t )  H yi,;(t) = rri(r)rrj(t)pi,;(r) is realized 
through a class that implements the interface LIBORCOVARIANCEMODEL. This class is 
then served to the model. The interfaces are designed such that (i, j ,  t )  H yi,;(f) may 
be stochastic.'3 See Figure 19.3. 

This abstraction of model parameters makes it easy to exchange different modelings 
of covariance, i.e., volatility and correlation. 

Warning: In cases where the covariance structure is modeled by 
volatility and correlation, it seems reasonable to define corresponding 
interfaces LIBORVOLATILITYMODEL and LIBORCORRELATIONMODEL. A 

simple class LIBORCOVARIANCEMODELFROMVOLATILITYANDCORRLEATION calculates the 
factor loadings and covariances from given volatility and correlation models. See 
Figure 19.4. However, the separation of volatility and correlation into their own classes 
will bring some disadvantages for a joint calibration and general covariance modeling. 
The corresponding code may become overdesigned. The design in Figure 19.4 would 

l 3  A stochastic volatility model would result in a stochastic covariance model 
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Figure 19.3. UML Diagram: LIBOR Market Model: Abstraction of model parame- 
ters. 

make sense if one wished to explore many combinations of different volatility and 
correlation models. a/  

19.6.4 Abstraction of Calibration 
The abstraction of model parameters allows for the abstraction of calibration. The 
algorithm calibrating the covariance model is clearly a part of the covariance model. 
Thus each covariance model object can carry calibration data (e.g., market data) 
that, once set, is used to calibrate the model. The calibration data themselves may 
be anything from given correlation and volatility parameters to a list of products 
with associated target values. A generic calibration for parametric models may be 
implemented in an abstract class defining the properties of parametric covariance 
models; see Figure 19.5. 

Experiment: At http://www. Christian-fries .de/finmath/ 
applets/LMMPricing . html several interest rate products can be 

4 priced using a LIBOR market model. 

325 



Further Reading: The original articles on the LIBOR market model 
are [50] and [88]; for the calibration of the LIBOR market model see [7, 
301; for the arbitrage-free discretization see [73]; for the interpolation 
of forward rates see [96]. The evaluation of Bermudan options in Monte 

Car10 is considered in Chapter 15; see also [44,45]. 
We will use the LIBOR market model as foundation for further investigations 

into general interest rate model properties. In Chapter 21 we will investigate the 
instantaneous correlation pi,j and volatility ( ~ i  and their effect on terminal correlation. 
In Chapter 25 we will investigate the influence of mean reversion and multifactoriality 

4 on the shape of interest rate curve. 

326 



Figure 19.4. UML Diagram: LIBOR market model: Abstraction of model param- 
eters as volatility and correlation. Introducing separate classes for  volatility and 
correlation has some disadvantages for  joint calibration and general covariance 
modeling. The design above might be considered overdesigned. 
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Figure 19.5. UML Diagram: LlBOR market model: Abstraction of model parame- 
ters: Parametric covariance models. 
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CHAPTER 20 

Swap Rate Market Models 

Motivation: The LIBOR market model postulates as lognormal dy- 
namic for the forward rate L, := L(Ti, Ti+l). In other words, each single 
forward rate follows a Black model. This allows an easy calibration 
of the LIBOR market model to caplet prices. We only have to fulfill 

condition (19.18). 
If, however, swap options (i.e., swaption or swaption-related products like Bermu- 

dan swaptions) are in the focus, then a model that simulates the swap rate directly 
might be a better choice.' If, for example, the swap rate follows a lognormal process, 
then the corresponding swaptions may be calibrated by a simple condition involving 

4 the implied Black-volatility of the swap rate. 

Instead ofa  lognormal dynamic for the forward rate L(Ti, Ti+, ) ,  which is the starting 
point of the LIBOR market model, we postulate here a lognormal dynamic of the 
swap rate: 

Since the set of swap rates defined for a given tenor structure To < T I  < . . . < T ,  
is a two parametric family of ( ( n  - 1) n)/2 rates which are related by functional 
dependencies, a meaningful dynamic can be given only for a subset of swap rates.' 

When choosing a system of swap rates S i ,k ,  for which we wish to specify the 
dynamics, we have to take care that the system is neither overdetermined nor, with 

' Later, we will explain why a forward-rate-based model might be the choice even for swap-rate-related 
products; see Remark 219. 
For example, the swap rate Sr,r+4 is a function of the swap rates S,,i+z and S2+2,,+4, which in turn 
are functions of the swap rates S i , i + ~ ,  . . . S r + 3 , , + 4 .  The swap rates with one period are forward rates 
Li = si,i+l. 
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Co-sliding: Sl,m,n(;+k,,t) i = 0, 1 , .  . . , n - 1 

Co-terminal: S i ,n i = 0,2, .  . . ,n  - 1 

Table 20.1. Co-sliding and co-terminal swap rates 

respect to the given tenor structure, underdetermined. The system of rates has to 
consist of n swap rates since on the tenor structure 0 = To < T I  < . . . < T, we have n 
degrees of freedom in terms of bond prices. 

Two common variants are given by the set of co-sliding swap rates and co-terminal 
swap rates; see Table 20.1. When specifying co-sliding swap rates, it is necessary 
to close the system. Our definition achieves this by first considering the swap rates 
S;,;+k with k periods (co-sliding, i < n - 1 - k )  and starting with i = n - k we consider 
co-terminal swap rates. 

If the selection of swap rates is made, we model each S i , k  from the selection as a 
lognormal process: 

with initial conditions 

Interpretation: The modeling of co-terminal swap rates is a suitable 
choice if, e.g., we have to price Bermudan swaptions, which have these 
swap rates as underlying. The modeling of co-sliding swap rates is a 
suitable choice if we have to price products relying on swap rates with 

constant time to maturity (CMS rate'). 4 

20.1 The Swap Measure 

If we consider the definition of the swap rate in (20. l), it is apparent that S i,k is a 
martingale under the martingale measure QN corresponding to the numtraire 

N ( t )  := A ( T i , .  . . , Tk; t )  := (Tj+l - T j )  P(Tj+l ;  t ) ,  k > i, r I T;+,. (20.3) 2 j=; 

See Definition 160 
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The right-hand side in (20.3) is a portfolio of zero bonds and thus a traded product 
and the swap rate is the N-relative price of a traded product. 

Definition 218 (Swap Measure, Swap Annuity): 1 

The equivalent martingale measure QN corresponding to the numkraire N in (20.3) is 
called swap measure corresponding to the swap rate S(T1,.  . . , Tk). The expression 
on the right-hand side in (20.3) is also called swap annuity. A 

The numtraire is, so far, defined for t 5 Ti+[ only, since at t = Ti+l the first bond 
P(Ti+l) is at its maturity and we have to specify how its payment has to be reinve~ted.~ 
A continuation of the numtraire definition to t > Ti+l can be given by a reinvestment 
into the next swap annuity. This is the analog to the numtraire (19.9) of the spot 
measures. For i = 1,. . . , k - 1 we have 

where To := 0. The swap rates we are considering here are co-terminal. Of 
course, we may consider co-sliding swaps in a similar way, using the swap an- 
nuities A(T,, . . . , T;+k; t) .  The corresponding numtraire of reinvestment in co-sliding 
swap annuities, i.e., a rolling co-sliding swap annuity then is 

For k = i + 1 this corresponds to ( 1  9.9). 

20.2 Derivation of the Drift Term 

For the swap rate market model we have multiple sets of swap rates, which may be 
modeled and (as in the LIBOR market model) multiple possible choices of numkraires. 
This section does not give a detailed derivation of the drift terms. The derivation is 
done similarly to the derivation of the drift in the LIBOR market model by expressing 
a martingale through the elementary swap rate processes Si,;. If for example Ak,/ is 
the numkraire, we consider the @kJ-martingale (S i,, 2). 

The reinvestment determines the evolution of the numkraire for t > T,+ l :  For example, if we compare 
the investment of the paid I in - parts of a Tk-bond with the investment in & parts of 
a Tk+l-bonds, then the evolution of the numeraire will differ by the evolution of the Tk forward rate, 

P(Tk+i:f) = I+L(Th.Th+i .fl.(Th+1rTk) i'e.' by 'he factor 
I+l.(Tk.Tn+l ;T ,+ ,  1 (Tk+l -TkI .  
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20.3 Calibration-Choice of the Free Parameters 

20.3.1 Choice of the Initial Conditions 

20.3.1.1 Reproduction of Bond Market Prices or Swap Market Prices 

If we set t to the preset time in the definition of the swap rate (20.1), i.e., t = 0 
following our convention, then we get an equation relating today’s bond prices to 
today’s swap rates s ; , k ( O ) ,  and the latter are just the initial conditions of the chosen 
swap rate processes. Thus the initial conditions of the processes are given by (20.1) 
with t = 0 and today’s bond prices, i.e., today’s interest rate curve. 

Although we regard the family of zero bonds as the natural description of the 
interest rate curve and we see swap rates and swap prices as derived quantities, it is 
in this case natural to calculate today’s swap rates directly from today’s swap prices 
(assuming they are given). In this case the initial conditions are given by today’s swap 
prices. With this choice, the model will reproduce these prices. 

20.3.2 Choice of the Volatilities 

20.3.2.1 Reproduction of Swaption Market Prices 

The calibration of the model to swaption prices is analog to the calibration of the 
LIBOR market model to caplet prices. Let the dynamic of the swap rate S;,k be given 
by (20.2). Furthermore let O-;yMarket denote the market prices of an option on S ;,k 

given as implied Black-volatility. If we calculate 

then the model reproduces the given swaption market prices if 

Black,Model - Black,Market 
ui,k - O-i,k 

This statement is trivial since, if we consider only a single swap rate S i , k ,  then (20.2) 
is a Black model for this swap rate, and under this model the implied volatility is 
defined by inverting the pricing formula. The inversion of the pricing formula is what 
a calibration should achieve. 

Remark 219 (LIBOR Market Model versus Swaprate Market Model): The 
question of whether one should choose a LIBOR market model or a swap rate market 
model seems to depend on the application only, to be precise, on whether the model 
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should calibrate to caplets or swaptions-and whether or not one sees a lognormal 
forward rate or a lognormal swap rate as a realistic modeL5 

Therefore, the criterion that defines the choice of the model thus is the quality of 
the model calibration to the specific application. 

However, the swap rate market model has a disadvantage compared to the LIBOR 
market model: If we calculate a forward rate L; in a swap rate market model, then the 
forward rate tends to suffer from numerical instabilities. Conversely the calculation 
of a swap rate from forward rates in a LIBOR market model is generally much more 
stable. 

Interpretation: The reason lies in the representation of the swap rate 
as a convex combination of the forward rates. From Lemma 123 we 
have 

with 

If we calculate a forward rate L; from (e.g., co-terminal) swap rates S , , ,  we have 

L; = - S ; , n  1 - Ni+lrrsi+l.n+l 1 
a;?" I 

Assuming for simplicity a>' = A, which is with J$! a? = 1 plausible6, then we 
have 

This shows: 

In general both assumptions cannot hold, and it is necessary to modify the models with respect to their 
distribution assumption. Such a modification of the model is called smile modeling. 
Indeed we have 
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0 The calculation of a swap rate S i,n from forward rates Lk corresponds to the 
calculation of an average (rate)-the swap rate can be interpreted as an integral 
of the forward rates. Errors in Lk are averaged and thus smoothed. The variance 
of an unsystematic error is reduced. 

0 The calculation of a forward rate Li from swap rates Si,n, Si+l,n consists of a 
finite difference tern-this part of the forward rate may be interpreted as a 
derivative. The calculation of a difference is very sensitive to errors in the swap 
rates (e.g. small jumps) and the error is scaled up by the factor (n - i - 1) for 
n large and i small. Thus forward rates for short periods in a model of long 
period swap rates have a tendency to numerical instability. 

Tip: If there is no strong reason for a swap rate market model, a 
generic LIBOR market model with calculation of the corresponding 
swap rates from forward rates is preferable. This provides a single, thus 
consistent, model for multiple applications (products), which allows the 

aggregation of risk parameters (delta, gamma). The difference in the distributional 
4 properties is often negligible (see [7]). 

Further Reading: The original article on the swap rate market 

model is @ I ] .  QI 
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CHAPTER 21 

Excursus: Instantaneous 
Correlation and Terminal 
Correlation 

In this chapter we will use the LIBOR market model to discuss the influence of 
instantaneous volatility and instantaneous correlation on option prices. Although our 
study is based on the LIBOR market model, the intuition gained from our experiments 
is universally valid. 

We will experiment with different (extreme) parameter configurations, and we will 
see how a single-factor model in which all interest rates L(Ti, Ti+l) move (instanta- 
neously) perfectly correlated may, however, exhibit at time t > 0 (terminal) perfectly 
decorrelated random variables L(T,, T,+l;  t ) ,  L(Tk, Tk+l; t). 

We will start by repeating some basic concepts. 

21 .I Definitions 

Definition 220 (Covariance, Correlation): 1 

Let X, Y denote two (numeric) random variables, 8 = E(X), = E(Y). Then 

COV(X, Y) := E((X - 8). (Y - F')) 

is called the covariance of X and Y, Var(X) := Cov(X, X) is called the variance of X 
and 

E((X - X) . (Y - U)) 
Cor(X, Y) := 

d m .  diciQj 
is called the correlation of X and Y .  J 

335 



Let L = (LI ,  . . . , L,) denote an n-dimensional m-factorial It6 process of the form 
m 

dL, = p ,  dt + ( ~ i  dW;, where dW; = f r , k  dUk (21.1) 
k= I 

and uk denote independent Brownian motions. Furthermore, let f r , k  be such that 

is a correlation matrix (i.e., Cy==, = 1). We have 

< dW(t), dW(t) > = R dt. 

Definition 221 (Instantaneous Covariance, Instantaneous Correlation): 
With the notation above we call pi,j defined by 

1 

the inytantaneous correlation of the processes L, and L,, and we call CT,U,~,,, the 
instantaneous covariance of the processes L, and L,. A 

Definition 222 (Terminal Covariance, Terminal Correlation): 1 

With the notation above we call p y  defined by 

p y ( t )  := Cor(Lf(t), LJ(t)) 

the terminal correlation of the processes L, and L,. Correspondingly we call t H 

Cov(L,(t), L,(t)) the terminal covariance of the processes L, and L,. _I 

21.2 Terminal Correlation Examined in a LIBOR 
Market Model Example 

We are considering a LIBOR market model with semiannual tenor structure T, := 0.5 i 
and investigating the behavior of the two rates Llo = L(5.0,5.5) and Ll1 = L(5.5,6.0). 
Under the numkraire N = P(T12) = P(6.0) we have for the dynamic of these rates 
(see (19.3), (19.8)) 

(i = 10, 11)  (21.2) dL,(t) = pf(t)Lf(t) dt + c,(t)Lf(r) dW:”(t) 
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If we neglect the drift (i.e., set pi0 = 0) and assume a constant instantaneous covari- 
ance c l o c 1  I ~ I O , J I  = const., then it follows from (21.1) that the terminal correlation 
is 

P?(t> = Pl0,l I v t. 
As one might have expected, the terminal correlation is given by the choice of the 
instantaneous correlation. In this case, to achieve a terminal correlation different 
from zero we need at least a two-factor model. Figure 21.1 shows a scatter plot 
for a one-factor and a five-factor model' of the interest rates LIo(t), Ll l ( t )  at time 
t = Ti0 = 5.0. 

LIBOR(5.0,5.5) LIBOR(5.0,5.5) 

Figure 21.1. The two (adjacent) rates Llo = L(5.0,5.5) and L11 = L(5.5,6.0) in a one- 
and a multijiactor model for constant instantaneous volatility clo(t) = (+I 1 ( t )  = const. 
In a one-factor model both random variables are peqectly correlated (left). In a 
jive-jiactor model both random variables show a correlation different from 1. This is a 
consequence of the instantaneous correlation plo,~ 1 being different from 1. 

21.2.1 Decorrelation in a One-Factor Model 

It is possible to achieve a terminal de-correlation for processes which have perfect 
instantaneous correlation. Consider 

= 0 fort  < 2.5, 

> 0 for t 2 2.5, 
(21.3) 

> 0 fort  < 2.5, 

= 0 fort  2 2.5, 

I The exact model specification is: L,,o = 0.1, r,  = 0.1, and p,,, = exp(-0.5li - j l ) ,  followed by a factor 
reduction as given in Section B.3. For the five-factor model we havepl0,ll = 0.94. 
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LIBOR(5.0,5.5) LIBOR(5.0,5.5) 

Figure 21.2. The two (adjacent) rates ,510 = L(5.0,5.5) and ,511 = L(5.5,6.0) in 
a one-factor model. Left: The two random variables exhibit a correlation close to 
0 (perfect decorrelation). Right: The two random variables exhibit very different 
variances. The covariance is close to zero since the variance of LI  1 is close to 0. 
Both scenarios are the consequence of a very special choice for the instantaneous 
volatility. 
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i.e., the processes receive the Brownian increment dW(t) at different times t; thus the 
increments received are independent. Since in this case we have plo = pl1 = 0 in 
(21.2), the two random variables Llo(5.0), Lll(5.0) are given by 

where (7:" = & L2'5 a:,(t) dt and @?, = & f;" a:l(t) dt. 

are independent, Ll0(5.0), L11(5.0) are independent as well; see Figure 21.2, left. 
Since, even for a one-factor model, the increments (W(2.5)- W(O)), (W(5)- W(2.5)) 

21.2.2 Impact of the Time Structure of the Instantaneous 
Volatility on Caplet and Swaption Prices 

The previous example of the decorrelation of the rates Llo, LI  1 in a one-factor model 
shows the importance of the time structure of the instantaneous volatility for the 
(terminal) distribution of (Llo, L11) at time t = 5.0. Now we will look at the corre- 
sponding caplets and a swaption with maturity 5.0 and payment dates 5.5,6.0, which 
is dependent on L I O  and L1 1 : 

Caplet Caplet Swaption 
5.0-5.5 5.5-6.0 5.0-6.0 Scenario ai(t) Pl0, l I  

1 0.1 1.0 0.26% 0.26% 0.5 1 % 
2 0.1 0.94 0.26% 0.26% 0.50% 
3 as in (21.3) 1.0 0.26% 0.26% 0.36% 
4 0.7 exp(4.9(Ti - t ) )  1 .O 0.26% 0.26% 0.27% 

Table 21.1. Caplet and swaption prices for diferent instantaneous correlations and 
volatilities. 

T, In all scenarios we have 

Figures 21.1 and 2 1.2 are generated with these parameters. 

ai(t)* dt = 0.05 for i = 10, thus all caplet prices are 
the same.2 

T, 

0 
We have 

soT' ( r l ( r ) 2  dr = 0.05(1 - exp(-49)) = 0.05 (1 - 5 x 

(b exp(-c ( T ,  - r)))* dt = g( 1 - exp(-2 c T l ) ) .  For TI = 5.0, b = 0.7, c = 4.9 we thus have 

5 0.05. 
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21.2.3 Swaption Value as a Function of Forward Rates 

To interpret these results we analyze the dependency of the swaption value from the 
rates L I O ,  LI I .  

For the value of a swaption VSwnption(TO) with fixed swap rate (strike) K we have 

with 

1 - P(Tn; Ti) 
S(Tj )  = (par swap rate). 

With the numkraire N = P(T,) we have 

and 

with 

n-l n- I 
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If we apply this to the special case of a swaption with a two-period tenor 
{Ti,. . . , T n )  = ( T l o , T l ~ ,  T12) = [5.0,5.5,6.0), we get 

= max(( 1 + Llo AT)(  1 + L11 A T )  - K(AT(  1 + L I  1 A T )  + AT),  0) 

= max((Ll0 - K )  AT + ( L ~  I - K )  AT + L~ I ( L ~ ~  - K ) ( A T ) ~ ) ,  0). (21.4) 

From (21.4) we can derive the following observations for the value of the swaption: 

0 If Lll (Tlo) = K ,  then the value of the swaption corresponds to the value of a 
caplet paying max(Ll0 - K ,  0). If L I  I has at time Tlo no or small variance and 
if L1 I (Tlo) is close to K ,  then the value of the swaption is close to the value of 
a caplet with payoff max(Llo - K ,  0). 

0 Neglecting the term L~~(Tlo)(Llo(Tlo) - K)(AT)2 ,  which is justified for small 
rates and short periods AT, and considering thus only 

(Lio(Tio) - K )  AT + (Lii(Tio) - K )  AT = (Lio(Tio) + Lli(Tio) - 2 K )  AT,  

we see that the option price is determined by the variance of Llo(Tlo) + LI  1 (TIo) .  
For this we have 

0 From the previous we know that the option value is maximal for pEr:(Tlo) = 

1 and minimal (even 0) for pEf:(Tlo) = -1 (still neglecting the term 

LI I(Tlo)(~lo(Tlo) - K ) A T 2 ) .  

From these remarks the results in Table 2 1.1 become plausible. In scenario 4 the rate 
LII(Tlo) has a negligible small variance (compare Figure 21.2, right). The swaption 
value is close to the caplet value. The caplet on the period [TI  1 ,  T121, however, has 
the same price as in the other scenarios, since the high instantaneous volatility for 
t E [Tlo, T l l ]  will give the rate LI  ] ( T I  I )  the required (terminal) variance. 

While for the swaption the rate L ~ l ( T l o )  is relevant, for the caplet it is the rate 
LI I(Tl0). 

Experiment: The influence of the instantaneous volatility and in- 
stantaneous correlation on terminal correlation, caplet and swaption 
prices may be investigated at http : //www. Christian- fries. de/ 
finmath/applets/LMMCorrelation.html. 4 
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21.3 Terminal Correlation Is Dependent on the 
Equivalent Martingale Measure 

The terminal correlation is dependent on the martingale measure and thus the 
numkraire used. The whole (terminal) probability density is, of course, measure 
dependent; see also Lemma 81 in Chapter 5. Thus an interpretation of terminal 
correlation and other terminal quantities should be made with caution. 

How the chosen martingale measure influences the terminal distribution, especially 
the terminal correlation, may easily be seen in a LIBOR market model. Consider the 
processes Li = L(Ti, Ti+l) and Li+l = L ( T ~ + I ,  Ti+z), i.e., two adjacent forward rates, 
under the martingale measure Qp(Tn) corresponding to the numkraire P( T,)  (terminal 
measure). It is 

1 
ai(t)aj(t)pi,j(t) dt + -u;(t)’ dt + ai(t) dW~p‘7’’) 

GjLj(t) 
dlog(L;) = - 

1 + GjLj(t) 2 
i<j<n 

With dKj(t) := G i L j ( t )  dt we thus have 
1 + GjLj(t) 

The terminal correlation is influenced by the common drift term Ci+l<j<n dKj and 
this influence can be increased arbitrarily through the factor u, in front of K,. If and 
how this term is present depends on the chosen martingale measure: For n = i + 2 
the sum is empty and the term is = 0, for n > i + 2 the term is > 0. In theory it 
might be possible that Li and Li+l appear almost perfectly correlated under Qp(T1+3) 

and perfectly uncorrelated under Qp(Ti+2). 

21.3.1 Dependence of the Terminal Density on the 
Martingale Measure 

How the chosen martingale measure influences the terminal distribution function is 
shown in the following examples. In Figure 21.3 we look at the density of a forward 
rate under a one-factor LIBOR market model with constant instantaneous volatility, 
equal for all rates. Under different martingale measures (spot measure, terminal 
measure) the distribution is slightly different. If, however, the volatility of the other 
rates is increased, then, depending on the chosen martingale measure, the distribution 
will change, see Figure 21.4. As before, the change in the distribution function stems 
from the drift of the LIBOR market model. 
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Figure 21.3. The terminal distribution function of a forward rate under different 
martingale measures. Shown is the rate L(5.0,5.5) upon itsJixing at t = 5.0. All 
rates are simulated in a one-factor LIBOR market model with constant instantaneous 
volatility cr = 10%. 

Tip (Terminal Quantities Independent of the Martingale Mea- 
sure): In place of martingale measure-dependent quantities, like the 
terminal distribution of the terminal correlation, we can define mean- 
ingful alternatives. The implied (Black) volatility is an example of a 

martingale measure-independent quantity. Apart from the scaling with the square 
root of the maturity a, it corresponds to the terminal standard deviation under the 
Tk+ 1 -forward measure. If, for example, 

dlog(Li(t)) = (. . .) dt + cri(t) dWi(t) 

dlog(L;(t)) = (. . .) dt + ~ j ( t )  dWj(t) 

are given processes, then the integrated instantaneous covariance 

is independent of the chosen martingale mea~ure .~  It would correspond to the covari- 
4 ance of log(Li(t)) and log(L;(t)), if both were martingales. 

This is clear because a change of martingale measure is a change of drift only. 
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Figure 21.4. The terminal distribution function of a forward rate under different 
martingale measures. Shown is the rate L(S.O,5.5) upon its$xing at t = 5.0. In 
contrast to Figure 21.3 the rates L(T,, TI+,)  for TI < 5.0 are simulated differently. 
They are simulated with a high volatility of 150%. All other rates are simulated as in 
Figure 21.3 with volatility (T = 10%. The change of the simulation of the other rates 
has an significant impact on the distribution of L(5.0,S.S) under the spot measure. 
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CHAPTER 22 

Heath-Jarrow-Morton Framework: 
Foundations 

The Heath-Jarrow-Morton (HJM) Framework [78] postulates an It8 process as a 
model for the instantaneous forward rate' : 

df(t, T )  = ap(t, T )  dt + ~ ( t ,  T )  . dW'(t) 
(22.1) 

f ( 0 , T )  = fo (T)  

for 0 I t < T ,  where W' = (Wp, . . . , WL) is an m-dimensional P-Brownian mo- 
tion with instantaneously uncorrelated components.* Furthermore we assume that 
~ ( t ,  T )  = ( ( r l ( t ,  T ) ,  . . . , r,,n(t, 7')) and ct.'(t, 7') are adapted processes. 

In case of its existence, let Q denote the risk-neutral measure, i.e., the martingale 
measure Q = QB corresponding to the numkraire B with 

(22.2) 

where r denotes the short rate-see Definition 103. 
Girsanov's theorem (Theorem 59), gives the process (22.1) under Q as 

df(t, T )  = aQ(t, T )  dt + ~ ( t ,  T )  . dWQ(t), 
(22.3) 

Equation (22.3) represents a family of stochastic processes parametrized by T ,  
which give a complete description of the interest rate curve: From Definition 101 we 

f a  T )  = f o m .  

have 

' Definition 101 on Page 127. 
I.e., that d W T  . d W  = I dr. See Section 2.7 
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i.e. (using P(t; t )  = 1) 

P ( T ;  t )  = exp (- .IT f ( t ,  i )di)  

Apart from the requirement that the processes are It6 processes, we do not consider 
a specific model or its implementation. A speciJic model would be given if we had 
specified the form of ( r ,  T )  H a(t, T ) .  With a specific choice of a(t, T )  (22.3) may 
become a known short-rate model or the LIBOR market model; see Chapter 24. 

In this chapter we will discuss the no-arbitrage conditions of (22.3) and discuss 
how other models fit into this framework. 

22.1 Short-Rate Process in the HJM Framework 

The specification of the families of processes f ( . ,  T )  implies a process for the short- 
rate r.  We write Equation (22.3) in integral form:3 

f ( t ,  T )  = fo (T)  + a(s ,  T )  ds + ~ ( s ,  T )  . dW(s). (22.4) l l 
With T + r we find for the short-rate r ( t )  := limf(t, T )  that 

T l t  

r(t)  = f ( t ,  t )  = fo(t) + (22.5) 

and thus the short-rate process is in differential notation given as 

(22.6) 
0 0 

+u(t, t).dW(t). 

Remark 223 (Notation): Equation (22.6) follows from (22.5) by differentiating 
with respect to t. Since t enters into the second argument of a and u, we have to 
calculate the partial derivative of a and u with respect to their second argument. In 
accordance with the notation in (22.1) we denote the partial derivative of a with 
respect to its second argument by and the partial derivative of u with respect to its 
second argument by g. Likewise we denote the (partial) derivative of f0 with respect 

to its argument by $. 

We are dropping the superscript QB on the drift a and the diffusion W for a while. 
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22.2 The HJM Drift Condition 

Theorem 224 (Heath-Jarrow-Morton-HJM Drift Condition): 
of bond price processes P ( T )  the following holds: The B-relative price 
@-martingale, if and only if 

For the family 
is a 

T T 

JTcr(s,S)dS = il c ( s , S ) d S  . 1 rr(s,S)TdS. 

From this we have: All bond price processes of the bond curve T H P ( T )  are 
@-martingales, i.e., the model is arbitrage-free, if and only if 

(22.7) .IT aQ”(t, T )  = a(t, T )  . v(t, T ) ~  dT ‘d T .  

Equation (22.7) is called the HJM drift ~ondi t ion .~  

Proof (of the HJM Drift Condition): Let T denote a fixed maturity. With B(t) = 

exp ($ r(s)  ds) and P (T ;  t )  = exp - f ( t , S )  dS it follows for the B-relative price ( J;’ 
of the bond P ( T )  that: 

T 

-- P(T;  ‘I - exp(X(t)) with X(t) = - f ( t ,  S) dS - it r(s)  ds. 
B(t) 

From (22.4) and (22.5) follows 

T 

X ( t )  = - .I f ( t ,  S) dS - 1 T ( S )  ds 

- l f o ( S )  dS - 1 l a ( s , u )  ds du - if l r ( s ,  u)  . dW(s) du. 

Note that r is a row-vector, i.e., (22.7) involves a scalar product. 
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With 4' 6 dW(s) du = 4' ir du dW(s) and the interchange of the integrals this is 

= - l T f o ( S ) d S  - l l T a ( s , S ) d S  d s -  11'' ~ ( s ,  S) dS . dW(s) 

- 1 fo(S) dS - l 1 a($, u )  du ds - lt .6' d s ,  u )  du . dW(s) 

= - lT fo(S) dS - l lT a(s, S)  dS ds  - 

= X ( O ) + ~ A ( s ) d s + ~ P ( . s ) ~ d W ( s ) ,  

thus 

where 

dX(t) = A(t )  dt + C ( t )  . dW(t), 

C(S) = - u(s ,S)  dS. 6' 
Let the B-relative price of P ( T )  be a martingale under QB, i.e., the process 

exp(X(t)) is drift-free. From It8's lemma we have d exp(X(t)) = exp(X(t)) dX(t) + 
exp(X(t)) dX(t) dX(t), i.e., 

dexp(X(t)) = exp(X(t)) . 

That exp(X(t)) is drift-free thus implies A ( t )  + iC(t)C(t)T = 0, i.e., 

If this equation is valid for all T ,  we get by differentiation $ the HJM drift condition 

a(t, T )  = ~ ( t ,  T )  . ~ ( t ,  S)TdS. lT 
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Interpretation (Bond Volatility): The expression X ( t )  = 

- J T  a(t, S)  dS corresponds to the volatility of the bond price process 
P ( T )  at time t (bond volatility), since we have 

dP(T; t )  = d(B(t) exp(X(t))) = B(t)  d exp ( X ( t ) )  

1 
2 

= B(t)exp(X(t)) (dX(t) + - dX(t) dX(t)) 

= P(T;  t )  ((. . .) dt + X ( t )  . dW(t)) 

= P(T;  t )  (. . .) dt + P(T;  t )  X ( t )  . dW(t). 

Motivation (Embedding other Models): If an interest rate model 
is arbitrage-free and if the processes of the instantaneous forward rates 
f ( . ,  7') are It6 processes, then the model has to fulfill the HJM drift 
condition (22.7). Thus, these interest rate models may be derived as a 

special case of the HJM framework. Since the volatility structure ( t ,  T )  H ~ ( t ,  T )  
and the initial conditions f(0, T )  are the only free parameters of the HJM framework, 
this embedding of arbitrage-free interest rate models can be achieved by choosing the 
HJM volatility structure and the initial interest rate curve. We will show in Chapter 24 
how short-rate models and the LIBOR market model can be interpreted as special 
HJM volatility structures. QI 
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CHAPTER 23 

Short-Rate Models 

23.1 Introduction 

At a fixed point t in time the short rate is given by 

See Definition 103. Thus r 
the following assumptions: 

: t H r(t)  is a real-valued stochastic process. We make 

1 .  Given is a model for r (short-rate model), e.g., in the form of an It8 process 

dr  = pp( t ,  r )  d t  + ~ ( t ,  r )  dW'(t), r(0) = ro, (23.1) 

where P denotes the real probability measure. 

2. The continuously compounding money market account B(t), 

dB(t) = r(t)B(t) dt, B(0) = 1, i.e., B(t) = exp (l r(T) di)  , 

is a traded asset.' 

3. Corresponding to the numkraire N ( t )  = B(t), there exists a martingale measure 
Q = QB equivalent to P. 

' The short-rate r is, as an interest rate for an infinitesimal period dt, an idealized quantity. Correspond- 
ingly the product B is an idealized quantity: The continuous reinvestment of an initial value of 1 over 
infinitesimal periods [ r ,  t + dr] with rate r(r). 
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From Girsanov’s Theorem2 the process of r under Q is 

dr  = pQ(t, r )  dt + ~ ( t ,  r )  dWQ(t), r(0) = TO, (23.2) 

with pQ(t, r )  = pu’(t, r )  + C(t). Since under Q all B-relative prices of traded assets are 
martingales, all bond prices are given by 

From the bond prices P(T;  t) we can calculate all derived quantities such as forward 
rates or swap rates; see Section 8.2. Thus, the short-rate model (23.2) gives a complete 
description of the interest rate curve dynamic. 

Short-rate models were and are popular, since the underlying stochastic process r 
is one-dimensional (i.e., scalar valued). Thus many techniques that are known from 
the modeling of (also one-dimensional) stock price processes can be used (e.g., finite 
difference implementations). Depending on the specific model (i.e., the form of pQ 
and u), analytic formulas for bond prices or simple European interest rate options 
may be derived, similar to the Black-Scholes formula for European stock options 
under a Black-Scholes model. 

Instead of specifying the model (23.1) of the short-rate process under the real 
measure P and applying the measure transformation to Q, it is usual to specify the 
model (23.2) directly under Q and calibrate given model parameters. 

23.2 The Market Price of Risk 

Consider a bond with maturity T .  Under a short-rate model its price process P ( T )  : 
t H P(T ;  t )  is a function of ( t ,  r( t))  and if It6’s lemma is applicable, we have3 

dP(T) = a;(t, r )P(T)  dt + U T ( ~ ,  r )P(T)  dW’(t), (23.3) 

where the price process is considered under the real measure P. 
Let P(T1) and P(T2) denote two bonds with different maturities T I  # T2. We 

construct a portfolio process ( ~ O , # I )  for a self-financing portfolio of B and P ( T , ) ,  
which replicates P(T2). The portfolio process ($0, $ 1 )  has to satisfy the following 
equations: 

4oB + 41 P(TI 1 = W 2 )  (“replicating”) (23.4) 

(23.5) d($oB + 41 WI 1) = 40 dB + 41 W T i  1 (“self-financing”). 

Theorem 59 on page 39. ’ At this point, it is not obvious that ItB’s lemma is applicable, especially if the functional dependence of 
P ( T ;  t )  from r(f) is sufficiently smooth. However, for the short rate models presented this is the case. 

From ItB’s lemma we then have a7 = p m  and U T  = = c$log(P(T)). 
~ P ( T ) + ~ ~ P ( T ) + : ~ ~ ~ P ( T )  dm) 
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From (23.4) we find dP(T2) = d(4oB + @ I P ( T I ) )  and with 

we have, by comparing coefficients, 

(23.6) 

(23.7) 

While (23.7) and (23.4) uniquely determine the portfolio process (40, @ I ) ,  (23.6) is 
a consistency condition for r, a~~ and ar2.  If (23.6) were violated, then the model 
would not be arbitrage-free. We rewrite the consistency condition (23.6) as: 

tj 

tj 

(23.4) 
'3 

..;* P V 2 )  = 4 0  r B + 41 a;] PVI) 

a;* PV2) = 4 0  7. B + 41 r W I )  + 41 (a;l - r )  P(TI) 

a;* P(77.L) = r P(T2) + 41 (a;] - r )  PVI) 

tj (ff;* - r )  W 2 )  = 41 - r )  W I )  
a"T, - r  a;,, - r  

- (23.7)  
w - 

f l T >  C T T ~  

It follows that there exists a A' such that for all bond price processes 

dP(T)  = a;(t, r )  P(T)  dt + C T T ( ~ ,  r )  P(T)  dWp(t) 

we have 

F T  

Since a' is the local rate of return of the bond, we may interpret A' as the local excess 
return rate over r per risk unit U T .  

Definition 225 (Market Price of Risk): 
The quantity A' := 

1 

, which is independent of T ,  is called the market price of risk. 
J 

If we consider the bond price process 

dP(T) = a?(t)P(T) dt + g,(t)P(T) dWQ(t) 
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under the measure Q, it is obvious that a; = r for all T ,  since all B-relative prices are 
Q-martingales. Thus, under Q the price of risk AQ = 0. It follows that 

, - A  - Q a T + r = O + r = ~  P u T + ~ - A  P C T T = ~ ~ - A ~ ( T T ,  P 

and we find that market price of risk A" appears in the change of drift to the measure 
Q, i.e., we have C( t )  = -A" CTT in Theorem 59. 

Definition 226 (Risk Neutral Measure): 1 

Let r(t) denote the short rate. The martingale measure QB corresponding to the 
numkraire B(t) = exp ( A' r(T) dT) is called the risk-neutral measure. A 

Remark 227 (Risk-Neutral Measure): The continuously compounding money 
market account B is locally risk-free, since the process dB(t) = r(t)B(t) dt does not 
exhibit a dW(t) term. However, r(t) may be stochastic. If r were not stochastic, then 
B would be globally risk-free. 

23.3 Overview: Some Common Models 

Table 23.3 gives a selection of the most common short-rate models. 

Name 
Vasicek Model 
Hull-White Model 
Ho-Lee Model 

Dothan Model 
Black-Derman-Toy Model 
Black-Karasinski Model 

Cox-Ingersoll-Ross Model 

Model 
dr = (b  - ar) dt + u dWQ 
dr = (#( t )  - ar) dt + u(t) dWQ 
dr = a(t) dt + u(t) d@ 

dr = a r  dt + ur dWQ 
dlog(r) = #( t )  dt + u(t) dWQ 
dlog(r) = (#(t)  - alog(r))  dt + u(t) dWQ 

dr = (b - ar) dt + u(t) & dWQ 

Table 23.1. Selection of Short-Rate Models 

The Hull-White model is sometimes called extended Vasicek model. The Vasicek, 
Hull-White, and Ho-Lee models allow for negative short rates. The Black-Derman- 
Toy (BDT) and Black-Karansinski (BK) models use a lognormal process, and the 
Cox-Ingersoll-Ross model uses a square-root process. Neither of these two processes 
allow for negative rates.4 

This result holds for the time-continuous process. A time discretization of the process may allow for 
negative rates. See, for example, Section 13.1.2. 
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23.4 Implementations 

23.4.1 Monte Carlo Implementation of Short-Rate Models 

A short-rate model gives a description of the dynamics of the short rate. To obtain a 
complete interest rate curve at a given simulation time t ,  we have to calculate the bond 
prices from (23.1) as conditional expectation. To calculate a conditional expectation 
in a Monte Carlo simulation numerically requires additional, numerically expensive 
methods; see Chapter 15. To obtain a Monte Carlo simulation of the full interest rate 
curve from a Monte Carlo simulation of the short rate, analytic formulas for bond 
prices are indispensable. The popularity of short-rate models is thus partly due to the 
need for a simple and efficient implementation. 

For a fast calibration to a given interest rate curve it is also required to calculate 
bond prices analytically. 

23.4.2 Lattice Implementation of Short-Rate Models 

If the short-rate model is Markovian in low dimensions, then it is best to implement 
the short-rate model on a lattice, allowing for a backward algorithm.’ Depending 
on the model, implementations using binomial or trinomial trees or general finite 
differences for PDE’s are used. See [35] for a detailed discussion. 

Further Reading: Bjorg’s book [6] contains a discussion of short- 
rate models with affine term structure. Tavella and Randal’s book [35] 
gives an introduction to finite difference methods, as well as applications 
to interest rate models. QI 

See Section 13.3.2. 
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CHAPTER 24 

Heath-Jarrow-Morton Framework: 
Immersion of Short-Rate Models 
and LlBOR Market Model 

You’re going to find that many of the truths we cling 
to depend greatly on our own point of view. 

~~ 

Obi- Wan Kenobi / George Lucas 
Star Wars: Episode V1 (Wikiquote). 

24.1 Short-Rate Models in the HJM Framework 

The Heath-Jarrow-Morton (HJM) framework 

(was 22.3) 

implies the short-rate process 

(was 22.6) 
0 0 

+ ~ ( t ,  t).dW(t), 

both under the measure @-see Equations (22.3), (22.4), (22.5), and (22.6). The 
short-rate model is thus given by the specific choice of the HJM volatility structure 
~ ( t ,  t )  (+ short-rate volatility) and initial conditions ,f0 (+ short-rate drift). 
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24.1.1 Example: The Ho-Lee Model in the HJM Framework 

Consider the simple case of a constant volatility function 

u(t, T )  = u = const. 

T 
From (22.7) we have a(t, T )  = u u d r  = u2 (T  - t ) ,  i.e., 

df(t, T )  = u2 (T - t )  dt + u dW(t), f ( 0 ,  T )  = fo(T).  

For the short rate it follows that 

r(t) = f ( t ,  t )  = f o ( t )  + u2 (T  - s) drl + 1 u dW(s) 
T=t 

1 
2 

= f"(t)  + -u2t2 + uW(t) ,  

i.e., 

dr(t) = -(t) + u2t dt + u dW(t). (Z ) 
Using the notation from the Ho-Lee model, dr(t) = @(t) dt + u dW(t), it is 

dfo @(t) = -(t) + u2t. 
dT 

(24.1) 

Interpretation: Equation (24.1) allows a calibration of the Ho-Lee 
model to a given curve of bond prices P ( T )  by setting 

With this choice the model reproduces the given bond prices. 

T I  > 0, then from 
If we consider the interest rate curve f T ,  ( T )  := f ( T I ,  TI + T ) ,  T 2 0 at a later time 

we find that f ~ ,  ( t )  = f ~ ,  (0) + fo(T1 + t )  - f o ( t )  + u2(T1 t + i t2).  
So to summarize, the model reproduces all bond prices, but in the evolution the 

4 interest rate curve gets steeper and steeper-a rather unrealistic behavior. 
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24.1.2 Example: The Hull-White Model in the HJM 
Framework 

Consider the case of an exponential volatility function 

u(t, T )  = u e-" ( '- I)  , (a > 0). 

Then we have g(t, T )  = -a u e-a ( T - r )  = -a u(t, T ) .  
short-rate process dr(t) = p(t)  dt + u(t, t )  dW(t) we get 

For the drift p(t) of the 

t )  ds - 

t )  ds  - u r(t)  + u fo( t )  + 

a a($, t )  dW(s) s' 
i.e., 

dr(t) = (#(t)  - ar(r)) dt + u dW(t) 

with 

@(t) = - ( t )  afo + a ,fo(t) + a(t, t )  + 1 *(s, t )  ds + l a .  a(s, t )  ds. 
aT dT 

With the HJM drift condition (22.7) it follows that a(t, T )  = uz e-" (k) -!(l - 

) and thus (T-1))  = &2 l ( e - a  ( T - t )  - e-2a ( T - t )  
U 

@ ( I )  = -((t) dfo + a fo(t) + a(t, t )  + 1 $(s, t )  d s  + l a  a(s, I )  ds 
dT 

ds s' df0 

dfo a2 

= %(t)  + a fo(t) + a2e-2rr ('-.') 

= - ( t )  + a  f o ( t )  + -(I - e-2u '). 
dT 2a 

Altogether we have 

U2 

2a 
+ a f o ( t )  + -(1 - e-2a I )  - ar(t)  

Note that this equation allows a calibration of the Hull-White model to a given curve 
of bond prices. From the bond price curve we can calculate $ ( t )  + a fo(t). 
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Interpretation (Mean Reversion): The derivation of a Hull-White 
model from a Heath-Jarrow-Morton model gives an important insight 
to the relevance of the time structure of the volatility function: 

A volatility function of the instantaneous forward rate f(t, T ) ,  which is 
exponentially decaying in (T - t) (time to maturity), i.e., 

r ( t ,  T )  = exp(-a(T - t)), corresponds to a mean reversion term for the short-rate 
process r(t) with mean reversion speed a. 

Correspondingly, this effect is visible in the LIBOR market model; see Chapter 25. 
QI 

24.2 LIBOR Market Model in the HJM Framework 

24.2.1 HJM Volatility Structure of the LIBOR Market Model 

In the specification (19. I )  of the LIBOR market model dW denoted the increment of 
a n-dimensional Brownian motion with instantaneous correlation R. In the specifica- 
tion (22.3) of the HJM framework dW denoted the increment of an m-dimensional 
Brownian motion with instantaneous uncorrelated components. To resolve this con- 
flict we employ the notation of Section 2.7: Let U denote an m-dimensional Brownian 
motion with instantaneous uncorrelated components and W denote an n-dimensional 
Brownian motion with dW(t) = F(t) . d U ( t ) ,  i.e., the instantaneous correlation of W 
is R := F F T .  Consider the HJM model 

df(t, T )  = @(t, 7') dt + ~ ( t ,  T )  . dUQ(t) 
(24.2) 

f (0 ,T)  = A m  
with dU = (dUI,. . . ,durn). From 

(see Remark 102) it follows that the forward rate L;(t) := L(Ti, Ti+, ;  t) is given by 

Note that for X(t) := J;;"" f(t,T) d r  we have by the linearity of the integral that 

dX = ST'*' df(t, T)dT, thus we find from ItB's lemma that within the HJM framework 
T ,  
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the process of the forward rate L,(t) is 

1 
2 

dL,(r) AT, = dexp(X) = exp(X) (dX + -dX dX) 

= exp (J:' f ( t ,  T)dT) [J;' (df(t, TI) dT 

+ J:' (df(t, 4) dT J:' (df(t, TI) d i ]  

1 
= ( 1  + L,(t) AT,)  [ ( A ( t )  + - Z ( t )  . Z(t)') dt + C . dUQ] 

2 

where A( t )  = A:'' $(t ,  7) d r  and Z ( t )  = L;'' c( t ,  T) dT 

dL,(t) = + L'(t) AT' ((Act) + ,Z(r) 1 . Z(t)') d t  + 1;' C(f, T) dT dU'(t)). 
AT, 

(24.3) 
We will now choose the volatility structure such that (24.3) corresponds to the 

process of a LIBOR market model: Let W = ( W I  , . . . , Wn)T denote an n-dimensional 
Brownian motion as given in Section 2.7. 

dW(t) = F ( t )  . dU(f), with correlation matrix R := FF', 

1.e. 

dW;(t) = F;( t )  . dU(t), with F = 

Let the volatility structure be chosen as 

where i is such that T E [T;,  T;+I) .  Then we have 

The forward rate then follows the process 

dL; = pyB( t )L;( t )  dt + c;( t )L;( t )  dW;(t), 

(24.4) 



where 

Interpretation (LIBOR Market Model as HJM Framework with 
Discrete Tenor Structure): Apart from the factor &, (24.4) 
gives the volatility structure r ( t ,  T )  of f ( t ,  T )  as piecewise constant in T .  
The factor L,(t) results from the requirement to have a lognormal process 

for L,. The factor & results from the discretization of the tenor structure. This 
shows that the LIBOR market model can be interpreted as HJM framework with 
discrete tenor structure. In the limit AT, + 0 the factor & vanishes and we 
obtain (apart from the restriction to a lognormal model) the HJM framework. U I  

24.2.2 LIBOR Market Model Drift under the QB Measure 

The HJM drift condition states that 

aQB(t, T )  = ( ~ ( t ,  T )  ( ~ ( t ,  r )TdT.  
. .c' 

Since for fixed t ,  r ( t ,  T )  is a piecewise constant function in T-namely constant on 
[Ti, TI+ , )  ..., we have for T E [T;, T;+l) 

aQH(r, T )  = ( ~ ( t ,  T J  . 

where m(t) := max(i Ti I t ) .  Thus we have 

1 
2 

aQH(t, T) dr = u ( t ,  T i )  AT; . [ 2 v ( t ,  Tj)'AT, + -c(r, TJTATi 
j=m(t)+ I 

With 
( T i  Li UjLj 

c ( t ,  T i )  . c ( t ,  Tj)T = 
1 + L; AT; 1 + L~ A T ~ ~ ~ , J  
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we find 

Interpretation: Surprisingly, we find that the drift under QB is 
identical to the drift under the spot LIBOR measure (see Section 19.1.2) 

The reason is simple: Under the assumed volatility structure the numtraires B(t)  and 
N ( t )  are identical. To be precise, it is the assumption 

u(t, T )  = 0 for Tm(t) I t I T < Tm(r)+~ (24.5) 

which implies that the two numkraires coincide. By this the HJM drift implies 

aQB(t, T )  = o for T ~ ( ~ )  I t s T < 

and thus for T,,(t) I T < Tm(t)+,: 

=O =O 

From f ( t ,  T )  = f ( T m ( / ) ,  T )  we have 
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with B(0) = N(0) = 1, i.e., B(t) = N(t). 4 
We will summarize this result as a theorem: 

Theorem 228 (Equivalence of the Risk-Neutral Measure and the Spot LIBOR 
Measure): Given a tenor structure 0 = TO < T I  < . . . < T,,. Under the assumption 
that the Tj+l-bond P(Ti,l;t) has volatility 0 on t E [Ti, Ti+l] for all i = 0, 1 ,2 , .  . ., we 
have 

B(t)  = N ( t )  

for B(t)  as in (22.2) and N ( t )  as in (19.9). 

Proof: The claim follows from the considerations above, since the assumption in 
01 the theorem is equivalent to (24.5). 

24.2.3 LIBOR Market Model as a Short Rate Model 

In Section 24.2.1 we have given the volatility structure for ( t ,  T )  H f(t, T )  under 
which the forward rates Li evolve as in a LIBOR market model. Since the short rate is 
given as r(t)  := l i m r l t  f ( t ,  T ) ,  the volatility structure also implies a short-rate model, 
Furthermore, the numkraire B(t)  = exp ($ T(T) dr )  is fully determined by the short 
rate, thus the short-rate process under QB gives a complete description of all bond 
prices (and all derivatives): 

P(T;  t )  = B(t)EQB (- 1 I E )  . 
B(T)  

The short-rate process r implied by the volatility structure (24.4) generates a LIBOR 
market model. The short-rate process under QB is given by (22.6): 

+ aQB(t, t )  + $ 
0 0 

+v(t, t).dW@(t), 
(was 22.6) 

The drift of this short-rate model is, as a function of (r(s)lO 5 s 5 t } ,  path-dependent. 
Only in high dimensions, namely as a function of (Li(t)li = 0,. . . , n ) ,  will the model 
be Markovian (i.e., the drift is no longer path-dependent). 
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CHAPTER 25 

Excursus: Shape of the Interest 
Rate Curve under Mean Reversion 
and a Multifactor Model 

In this chapter we are considering the influence of model properties like mean rever- 
sion, number offactors, instantaneous correlation, and instantaneous volatility on the 
possible future shapes of the interest rate curve. 

As in Chapter 21, which discussed the relation of instantaneous correlation and 
instantaneous volatility to the terminal correlation, our goal is to develop an un- 
derstanding of the significance of the model properties rather than looking at them 
rigorously in abstract mathematical terms. We thus pose the question of how the 
interest rate curve differs qualitatively under different model configurations. 

25.1 Model 

As a model framework we will use the LIBOR market model. Due to its many 
parameters it gives us enough freedom to play with. We will restrict the set of 
parameters and concentrate on three (important) parameters that are sufficient to 
create the phenomena we are interested in. 

Let us restrict the model to a simple volatility structure, namely 

r ; ( t )  = (T* exp ( - a (Ti - t ) )  (25.1) 

with r* = 0.1 and a = 0.05. We will choose an equally simple correlation model, 
namely dW; dWj = pi,jdt with 

= exp(-rlT; - Tjl). (25.2) 
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Parameter 

a 

r 

m 

Table 25.1. Free parameters of the LIBOR market model considered. 

Effect 

Damping of the exponentially decaying, 
time-homogenous volatility 

Damping of the exponentially decaying in- 
stantaneous correlation 

Number of factors extracted from the corre- 
lation matrix 

25.2 Interpretation of the Figures 

Figures 25.1, 25.2, 25.3, and 25.4 show 100 paths of a Monte Carlo simulation of 
the interest rate curve. The simulation was frozen at a fixed point in time ( t  = 7.5 in 
Figures 25.2, 25.3, and 25.4 and t = 17.5 in Figure 25.1). To the left of this point the 
forward rates L;(TJ are shown, each upon their individual maturity-this is a discrete 
analog of the short rate. To the right of this point the future forward rate curve L,(t) is 
drawn. 

The figures differ only in the parameters used to generate the paths. The same 
random numbers are used, thus the simulated paths depend smoothly on a and 1. 

To improve the visibility of the individual paths, each path is given a different color, 
where the hue of the color depends smoothly on the level of the last rate LJt).' This 
makes it very easy to check if the interest rate curves are parallel or exhibit some 
regular structure; see Figure 25.2. 

' The choice of the last rate is arbitrary. 
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25.3 Mean Reversion 

We will consider the example of a simple one-factor Brownian motion @i, ,  = 1 ,  i.e., 
r = 0). Figure 25.1 shows the simulated forward rates for different parameters a in 
Equation (25.1). 

Figure 25.1. Shape of thefuced rates Li(Ti) and the interest rate curve for different 
instantaneous volatilities (corresponds to different mean reversion) frozen at time 
t = 17.5 using a one-factor mode. We used a = 0 (upper left), a = 0.05 (upper right), 
a = 0.10 (lower left) and a = 0.15 (lower right). For interpretation see Section 25.3. 

From the derivation of the Hull-White model from the HJM framework it became 
obvious that an exponentially decreasing volatility structure of the forward rate 
corresponds to a mean reversion of the short rate; see Section 24.1.2. We rediscover 
this property qualitatively here. Figure 25.1 shows 100 paths of a Monte Carlo 
simulation of a LIBOR market model with different values for the parameter a: a = 0, 
a = 0.05 in the upper, and a = 0.1, a = 0.15 in the lower row (left to right). Observe 
the fixed rates L;(Ti) left from the simulation time. They may be interpreted as a direct 
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analog of the short rate. In Figure 25.1 it becomes obvious that with an increasing 
parameter a the paths develop a tendency to revert to the mean (mean reversion). 

25.4 Factors 

Figure 25.2. Shape of the interest rate curve with different factor conjigurations, 
seen at time t = 7.5: One, two, three, andfive factors from upper leji to lower right). 
For interpretation see Section 25.4. 

Figure 25.2 shows a Monte Carlo simulation with the parameters above and varying 
numbers of factors m. The possible shapes of the interest rate curve are given by 
combinations of the factors parallel shzji, tilt, bend, and oscillations with increasing 
frequencies; see also Figure B. 1. 
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25.5 Exponential Volatility Function 

Figure 25.3. Shape qf thefixed rates Li(Ti) and the interest rate curve with different 
instantaneous volatilities (corresponds to mean reversion) at time t = 7.5 in a one- 
factor model (upper row and lower left) with a = 0.0, a = 0.05 and a = 0.1 and a 
three-factor model (lower right) with a = 0.1. For interpretation see Section 25.5. 

As in Figure 25.1 we consider the Monte Carlo simulation under different parame- 
ters a. First a = 0, a = 0.05, and a = 0.1 in a one-factor model ( r  = 0, m = l), and 
last a = 0.1 in a three-factor model. We are observing this at simulation time r = 7.5 
and concentrate here on the section right of the simulation time, i.e., the interest rate 
curve L,(t) for j > m(t). 

It is apparent that the curve (Lj(t)  I j > m(t)} shows a shape similar to an exponential 
in j ,  depending on the parameter a; see Figure 25.3, lower left (a = 0.1) to the right 
of the simulation time. If we consider a one-factor model (as used in the figure), we 
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have 

Lj(t) = Lj(0) exp 

For a fixed point in time t (and a state (path) w )  the interest rate curve shows the 
following dependence on j :  

where k := W(t,  w).  
For the volatility structure (25.1) particularly, we find 

1 
2a 
1 

2a 

= -( exp(-2a(Tj - t ) )  - exp(-2a(Tj - 0))) 

= - (exp(2a t )  - 1) exp(-2aTj) 

i H Lj(O) exp ( l p j ( T ,  w )  di) exp (k exp(-uTj)), (25.3) 

where k = k Jk(exp(2u t )  - 1). 

The drift L ' p , ( ~ , w )  dT is monotone increasing in j ;  see Equation (19.8). This 
explains the shape of the interest rate curve in Figure 25.3, upper left. With increasing 
parameter a the interest rate curve is multiplied by the double exponential (25.3) with 
increasing steepness. This explains the shape of the interest rate curve in Figure 25.3, 
upper right and lower left. Only the addition of more driving factors allows for a richer 
family of possible curves. If the parallel movement (level) remains the dominant 
factor, then the shape (25.3) still dominates the interest rate curve, Figure 25.3, lower 
right. 
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25.6 Instantaneous Correlation 

Figure 25.4. Shape of thefixed rates Li(Ti) and the interest rate curve with different 
instantaneous correlations, seen at time t = 7.5. We used a correlation matrix with 
(all) 40 factors and r = 0.01 (upper left, high correlation), r = 0.1 (upper right) and 
r = 1 .O (lower left, high de-correlation). In the lower right we used a correlation 
matrix with r = 1 .O (the same as in lower left), but reduced the number of factors to 
three. For interpretation see Section 25.6. 

We fix a slightly decreasing volatility structure (25.1) with a = 0.1 and vary the 
parameter r of the correlation function (25.2). We do not apply a factor reduction, 
thus keep all 40 factors. The parameter r = 0.01 corresponds to an almost perfect 
correlation of the processes. Thus the possible shapes of the curve are almost parallel; 
the curve is very smooth since we started from a smooth (namely flat) curve. If the 
correlation parameter is increased to r = 1.0, then the distribution of rates within the 
curve is almost independent. See Figure 25.4, upper left, upper right, and lower left. 
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It should be noted that this (terminal) decorrelation is also achievable under r = 0.01 
by an appropriate choice of the volatility structure; see Chapter 21. The instantaneous 
decorrelation introduces an additional terminal decorrelation. The statement that a 
model with perfect instantaneous correlation exhibits perfect terminal decorrelation 
of the forward rates is wrong. 

Finally we have chosen in Figure 25.4, lower right, the parameter r = 1.0 again (as 
for the lower left with strong decorrelation) but have applied a reduction to the three 
largest factors. It is obvious that this strongly reduces the possibility of decorrelation. 
The three factors only allow that the beginning, the middle, and the end of the curve 
attain different values. Adjacent rates are still on similar levels. 

Experiment: At http://www.christian-fries.de/finmath/ 
applets/LMMSimulation. html a simulation of an interest rate curve 
with the model framework above is to be found. The parameters may be 
chosen at will to study the different shapes of the interest rate curve. a1 
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CHAPTER 26 

Ritch ken-Sakarasu bramanian 
Framework: HJM with Low 
Markov Dimension 

26.1 Introduction 

Motivation: The LIBOR market model is, with respect to the flexi- 
bility of the modeling, much more advanced than the short-rate models 
discussed in Chapter 23. Under the LIBOR market model all forward 
rates are modeled directly. Their volatility and correlation structure may 

be specified directly. 
Like all models which derive from the HJM framework, the LIBOR market model 

may be interpreted as a short rate model; see Section 24.2.3. In this formulation the 
price that has to be paid for its modeling flexibility becomes apparent: The model is 
non-Markovian in the short rate. The drift is path-dependent. Only by the addition of 
all forward rates does the model become Markovian. Since a Markovian representa- 
tion thus requires a high-dimensional state space, a numerical implementation on a 
lattice cannot be achieved.' 

On the other hand, all the short rate models that were discussed in Chapter 23 were 
one-dimensional Markov processes. 

If we now reconsider the derivation of the short rate models and the LIBOR 
market model from the Heath-Jarrow-Morton framework, then the question arises: 
What is the HJM volatility structure that results in a model, i.e. short rate, being a 
low-dimensional Markov process? 

' For an implementation using a lattice the complexity, i.e., the requirements on memory and CPU time, 
grows exponentially in the Markov dimension. 
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One answer to this question was given by Cheyette [61], Ritchken and Sakarasub- 

ramanian [92], and others. 4 

26.2 Cheyette Model 

Let Q denote the risk-neutral measure, i.e., the equivalent martingale measure corre- 
sponding to the numkraire 

Consider an HJM framework 

d f ( r ,  T )  = &r, T )  dt + cr(t, T )  d WQ(r) 

f a  T )  = f o V )  
(was 22.3) 

with a special volatility structure 

d t ,  T )  := g(t> h(T), (26.1) 

where g : [0, T * ]  H Iw \ (0) denotes a deterministic function and h : [0, T * ]  x C2 H Rm 
an m-dimensional Markov process. 

Remark 229 (Separability of Volatility): The property (26.1) is called separability 
of volatility. 

Theorem 230 (Cheyette Model (Single Factor)): 
the special volatility structure (26.1). Then the short-rate process is given by 

Given an HJM dynamic with 

r(t) = f (0 ,  t> + X(t), (26.2) 

where 

Remark 231 (Cheyette Model): The representation of the short rate by Equa- 
tions (26.2) and (26.3) gives a complete model of the interest rate curve, since the 
numkraire depends on r alone. 
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The interest rate model (26.2), (26.3) is called the Cheyette model. 

Remark 232 (Markov Dimension): Within the Cheyette model the short rate r(t)  
is a function of X ( t ) .  The increment dX of X ( t )  depends on X(t), Y(t) ,  and h(t). If 
h is deterministic, then Y is deterministic too, and the Markov dimension is 1; the 
time t state of the model is represented by state variable X ( t ) .  If h(t) is a function of 
X(t) (local volatility), then Y is stochastic via the link to X through 77, and the Markov 
dimension is 2; the time t state of the model is represented by the state variable 
( X ( t ) ,  Y(t) ) .  If h is a stochastic process such that h(t) is not a function of ( X ( t ) ,  Y( t ) )  
(stochastic volatility), then the Markov dimension of h has to be added; the time t state 
of the model is represented by the state variable ( X ( t ) ,  Y(t ) )  and the state variables of 
h(t). 

26.3 Implementation: PDE 

If the Markov dimension is low (say 2 2), the model is an ideal candidate to be 
implemented using PDE methods. See [84] for an in depth discussion of the PDE 
implementation of the Cheyette model. 
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CHAPTER 27 

Markov Functional Models 

27.1 Introduction 

Motivation: From Chapter 5 we have a relation between the prices of 
European options and the probability distribution function (or probability 
density) of the underlying (under the martingale measure). If we consider 
a European option on some underlying, say the forward rate L, := 

L(T,, TI+, ;  T I )  (i.e., a caplet), then Lemma 81 allows us to calculate the probability 
density of L, from the given market prices. It seems as if this allows perfect calibration 
of a “model” to a continuum of given market prices. However, the terminal distribution 
alone does not determine a pricing model. What is missing is the specification of 
the dynamics, i.e., the specification of transition probabilities, and, of course, the 
specification of the numkraire. This is the motivation for the Markov functional 
modeling. There we postulate a simple Markov process, e.g., dx = ~ ( t )  dW(t) for 
which the distribution function c H P ( x ( T )  5 5) is known analytically. Then we 
require the underlying L, to be a function of x(T, ) .  Let us denote this function by g,, 
i.e., let L,(w) = g,(x(T,,w)) for all paths w.  If the functional g, is strictly monotone, 
then with K = sf({): 

FL,(K) := P(L, I K )  = P ( g , ( x ( T ) )  I K )  

= P ( x ( T )  5 c> =: FX(T, ) (O = Fx(T, , (S,’(K>) 

With a given distribution function FL, of L, (e.g., extracted from market prices through 
Lemma 81), the choice of the functional g, allows the calibration to the distribution of 
L,, while the process x (and the sequence of functionals [g,))  describe the dynamics. 
To achieve a fully specified pricing model we further require the specification of 
the numkraire as function of the Markov process x. To achieve this we may use 
Theorem 79. if 
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0 x is given under the equivalent martingale measure Q and 

0 x generates the filtration. 

4 
Given a filtered probability space (R, B(R), Q, (7;)). Consider a time discretization 

0 = To < T I  < . . . < T,. Financial products beyond T ,  are not considered. 
Let t H N ( t )  denote the price process of a traded asset, which we choose as 

numtraire and let Q denote the corresponding equivalent martingale measure. Then 
for any replicable asset price process V ( t )  (see Definition 73 and Theorem 79) 

In particular for every zero-coupon bond P(Tk), paying 1 in Tk 

Let x denote an %-adapted stochastic process with 

dx(t) = u(t) dW(t), ~ ( 0 )  = XO. 

The filtration should be generated by x. On this space we consider time-discrete 
stochastic processes, namely those for which their Ti realization is a function of 
 TO), . . . , x(T;) )  , for all i. We particularly consider processes for which their time 
Ti realization is a function of x(T;)  alone (i.e., independent of the process’s history). 

27.1.1 The Markov Functional Assumption (Independent of 
the Model Considered) 

We assume that the time Ti realization of the numkraire process is a function of x(T;), 
i.e., 

N(Ti, W )  = N(Ti7 x(Ti, w)), (27.1) 

where we use the same letter N for the (deterministic) functional 

process V ( T ; )  for i 5 k is 

H N(T; ,  6). 
Then, for any payoff v(Tk)  that is itself a function of X(Tk) for some k ,  the value 
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Thus, the time Ti realization of the value process V(Ti)  is also a functional of x(T;) ,  
which we denote by the same letter V .  The functional 5 H V ( T i , t )  of the value 
process is 

Note: The Markov functional assumption (27.1) may be relaxed such that the 
numkraire is allowed to depend on  TO), . . . , x(Ti)) .  This relaxation is used in the 
LIBOR Markov functional model in spot measure. 

27.1.2 Outline of This Chapter 

In Section 27.2 we consider a Markov functional model for a stock (or any other 
non-interest-rate-related (single) asset). In Section 27.3 we will then consider a 
Markov functional model for the forward rate L(T;, Ti+* ; Ti), which may be viewed as 
a time-discrete analog of the short rate. Both sections are essentially independent of 
each other. In Section 27.4 we will discuss how to implement a Markov functional 
model using a lattice in the state space. 

27.2 Equity Markov Functional Model 

27.2.1 Markov Functional Assumption 

Consider a simple one-dimensional Markov process, e.g., 

dx(t) = cr(t) d@(t), x(0) = XO, (27.2) 

where cr is a deterministic function and WQ denotes a Q-Brownian motion. Without 
loss of generality we may assume xo = 0. Equation (27.2) is the most simple choice 
of a Markovian driver process. We will consider the addition of a drift term to (27.2) 
in our discussion of model dynamics in Section 27.2.5. 

Let S (t)  denote the time t value of some asset for which we assume that we have a 
continuum of European option prices. Let x and S be adapted stochastic processes 
defined on (a, Q, E), where (E)  denotes the filtration generated by WQ. 

We assume that the time r value of the asset S is a function of x(t), i.e., we assume 
the existence of a functional ( r ,  5) H S (?, 5) such that 

where the left-hand side denotes our asset value at time ton path w, and the right-hand 
side denotes some functional of our Markovian driver x, which we ambiguously name 
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S . We allow some ambiguity in notation here. From here on S will also denote a 
deterministic mapping (the functional) 

It will be clear from the arguments of S if we sp 
or of the process t H S ( t ) .  

For rI  < t2  we trivially have that 

ak of the functional ( t ,  5) H S ( t ,  #) 

We now postulate that Q is the equivalent martingale measure with respect to the 
numkraire S and that a universal pricing theorem holds for all other traded products, 
i.e., that their S relative price is a @martingale. 

This implies that the zero-coupon bond P ( T ;  t )  having maturity T and being ob- 
served in t < T fulfills 

Using the functional representation of S we find that P(T;  t )  is represented as a 
functional of x( t )  too, namely 

with 

(27.3) 

27.2.2 Example: The Black-Scholes Model 

Let us assume a Markovian driver with constant instantaneous volatility u(t) = u. 
For the Black-Scholes model we have 

S ( t , # )  = S(0) exp (27.4) 

where CTBS denotes the (constant) Black-Scholes volatility. Plugging this into (27.3) 
we find 

P(T;  t ,  5) = exp(-r(T - t ) ) ,  

so that interest rates are indeed deterministic here. 
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This is the Black-Scholes model: From the definition of the Markovian driver we 
have x(t) = W(t)  and thus 

In other words, the Q dynamics of S is' 

dS(t) = rS( t )  dt + u&S( t )  dt + r .BSS(t)  dWQ(t). 

Introducing a new numdraire 

dB(t) = rB(t) dt, B(0) = 1 

we find for the change of numdraire process 5 that 

S 
B 

d- = U&S( t )  dt + u ~ s S ( t )  d@(t). 

For 5 to be a martingale under QB it has to be d@(t) = dW@ - uiS dt and thus 

dS(t) = r S ( t )  dt + UBS S ( t )  d e B ( t ) ,  

dB(t) = r B(t) dt. 

Note: dWQ(t) is a Q-Brownian motion, where Q is the equivalent martingale measure 
with respect to the numdraire S ,  while dWQB(t) is a QB-Brownian motion, where QB 
is the equivalent martingale measure with respect to the numiraire B. 

27.2.3 Numerical Calibration to a Full Two-Dimensional 
European Option Smile Surface 

As for the interest rate Markov functional model we are able to calculate the function- 
als numerically from a given two-dimensional smile surface. Our approach here is 
similar to the approach for the one-dimensional LIBOR Markov functional model 
under spot measure [71]. Consider the following time T payout: 

(ai, if S ( T )  > K 
V ( T , K ; T )  := 

otherwise. 
(27.5) 

' Note that Q is the equivalent martingale measure with respect to the numkraire S 
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Obviously 

i.e. the value of V is given by the value of a portfolio of one call option and K digital 
options, all having strike K .  This is our calibration product. 

27.2.3.1 Market Price 

Let @ss(T,  K) denote the Black-Scholes implied volatility surface given by market 
prices. Then the market price of V is 

( T ,  K;O) = S(O)@(d+) - exp(-rT)K@(d-) Vmarket 

call option part 

dK 
@(d-) + S (0) f i @ ’ ( d + )  

digital pan 

a@Bs(T, K) 
= S (O)@(d+) + KS (0) f i @ ’ ( d + )  aK , 

where 

27.2.3.2 Model Price 

Within our model the price of the product (27.5) is 

Assuming that our functional ( T ,  .f) H S ( T ,  6)  is monotonely increasing in c, we may 
write 

Vmode’(T, K; 0) = S(0) EQ(l{x(,)>,*l I = xol), (27.6) 

where x* is the (unique) solution of S ( T , x * )  = K. Note that (27.6) depends on x* 
and the probability distribution of x ( T )  only and that x ( T )  is known due to the simple 
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form of our Markovian driver. It does not depend on the functional S ! Thus for given 
x* we can calculate 

Vmodel(T, x * ; O )  := S(0)  EQ(l,x(T)>x*i I{x(O) = ~ 0 1 ) .  

27.2.3.3 Solving for the Functional 

For given x* we now solve the equation 

Vmarket (T ,  K * ;  0) = Vmodel(T, x*; 0)  

to find S (T ,  x*) = K* and thus the functional form ( T ,  5) H S (T ,  5). This can be done 
very efficiently using fast one-dimensional root finders, e.g., bisection or Newton's 
method; see Section 30.3 and Appendix B.4. 

27.2.4 Interest Rates 
27.2.4.1 A Note on Interest Rates and the No-Arbitrage Requirement 

Functional models for equity option pricing have been investigated before; see, 
e.g., [57] and references therein. However, the approach considered there chooses 
deterministic interest rates and the bank account as numtraire. As suggested in 
Section 27.2.2, this will impose a very strong self-similarity requirement on the 
functionals (which is fulfilled by the Black-Scholes model). Such models may 
calibrate only to a one-dimensional submanifold of a given implied volatility surface; 
see [58]. For the Markov functional model this follows directly from (27.3). Assuming 
that the Markovian driver x is given and that the interest rate dynamic P ( T ;  t ,  5) is 
given, we find from (27.3) that 

P ( T ;  t ,  5) 
I S ( t , O  = 

EQ (- I {x(t) = 5)). 
So once a terminal time T functional ,$ H S ( T ,  5) has been defined, all other function- 
als are implied by the interest rate dynamics P and the dynamics of the Markovian 
driver. 

Sticking to prescribed interest rates, the only way to allow for more general func- 
tional is to violate the no-arbitrage requirement (27.3) or change the Markovian driver. 
The latter will be considered in Section 27.2.5. 

27.2.4.2 Where Are the Interest Rates? 

Our model calibrates to a continuum of options on S .  We do not even specify 
interest rates. This is not necessary, since the specification of the interest rates is 
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already contained in the specification of a continuum of options on S . Consider 
options on S ( T ) ,  i.e., options with maturity T .  First note that from a continuum 
K Vmarket (T ,  K ;  0) of market prices for call option payouts: 

Vmarket 
call ( T ,  K ;  7') = max(S(T) - K ,  0) 

we obtain prices for the corresponding digital payouts 

Vmarket a 
a K  

digital (T ,  K ;  0) = --V::ket(T, K ;  0). 

Thus the value of the zero-coupon bond with maturity T is 

a 
P (T ;  0) = ii VEz$(T, K ;  0) = - lim - V:rket(T, K ;  0). 

K / O  d K  
(27.7) 

Note that this argument is model-independent. 

that we are at time t in state x ( t )  = 5, we have for the corresponding bond 
Within the functional model, Equation (27.7) holds locally in each state. Given 

From this it becomes clear why specifying interest rates would represent a violation 
of the no-arbitrage requirement.2 

In the next section we show that the model-implied interest rate dynamics are likely 
to be undesirable. However, as is known from interest rate hybrid Markov functional 
models [71], it is possible to calibrate to different model dynamics by changing the 
Markovian driver x. 

27.2.5 Model Dynamics 

27.2.5.1 Introduction 

Markov functional models calibrate perfectly to a continuum of option prices, i.e., 
to the market-implied probability density of the underlying; see Chapter 5 and [52]. 
Indeed, the functional ( t ,  5) H S ( t ,  5) is nothing more than the transformation of the 
measure from the probability density of x( t )  to the market-implied probability density 
of the underlying S( t ) .  

This is precisely the reason why the model in [57] allows for arbitrage 
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While calibration to terminal probability densities is a desirable feature, it is not 
the only requirement imposed on a model, specifically if the model is used to price 
complex derivatives like Bermudan options. Here the transition probabilities play a 
role, i.e., the model dynamics. The most prominent aspects of model dynamics are: 

0 Interest Rate Dynamics: For an equity Markov functional model the joint 
movement of the interest rate and the asset has to be analyzed. It is possible 
to calibrate to given interest rate dynamics by adding a drift to the Markovian 
driver; see Section 27.2.5.2. 

0 Forward Volatility: This is the implied volatility of an option with maturity T 
and strike K ,  given we are in state ( t ,  t), i.e., 

Obviously it will play an important role for compound options and Bermudan 
options. The forward volatility may be calibrated by changing the instantaneous 
volatility of the Markovian driver; see Section 27.2.5.3. 

0 Auto Correlatioflorward Spread Volatility: The autocorrelation of the 
process S impacts the forward spread volatility. This is the implied volatility of 
an option on S(T2) - S(T1) with maturity T2, given we are in state ( t ,r) ,  i.e., 

Markov functional models allow limited calibration to different model dynamics 
by changing the dynamics of the Markovian driver x. For our choice 

dx = a(?) dW(t) 

we can change the autocorrelation of x by choosing different instantaneous volatility 
functions a. Since the calibration of the functionals is scale invariant with respect to 
the terminal standard deviation @(t)  of x(t),  the calibration to the terminal probability 
densities is independent of the choice of (T. See the Black-Scholes example in 
Section 27.2.2 for an example of this invariance. 

Time Copula 

The specification of the autocorrelation of x (through a) is sometimes called time 
copula [57], since it may be specified through the joint distribution of (x(tl), x(t2)). 
For this reason similar functional models are sometimes called copula models, a 
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term that is more associated with credit models, where joint default distribution is 
constructed from marginal default distributions. 

In addition to a specification of the instantaneous volatility, the Markovian driver 
may be endowed with a drift. 

Time-Discrete Markovian Driver 

We assume a given time discretization (0 = to < tl < t2  < . . .) and consider the 
realizations x(ti) of the Markovian driver x given by increments Ax(ti) = x(t i+l)  - 
x( t l ) .  It is natural that a practical implementation of the model will feature a certain 
time discretization. Thus, speaking of calibration of a specific time-discretized 
implementation, it is best to consider the Markovian driver given by an Euler scheme 
(as in Equations (27.8) and (27.9)) 

 ti,^) =  ti) +  ti,  ti)) At, +  ti,  ti)) AW(ti). 

27.2.5.2 Interest Rate Dynamics 

Example: Black-Scholes Model with a Term Structure of Volatility 

Let us first assume that the Markovian driver is given by 

Consider a term structure of Black-Scholes implied volatilities, i.e., let @ ~ s ( t i )  denote 
the implied volatility of an option with maturity ti. With the simple Markovian driver 
(27.8), the corresponding functionals that calibrate to these options are 

where @’ := t 
we find 

CT; Atj. 
Within this model a stochastic interest rate dynamic is already implied. From (27.3) 
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If the volatility of the Markovian driver x decays faster than the implied Black-Scholes 
volatility, then the interest rate will move positively correlated with the stock. If the 
volatility of the Markovian driver x decays slower than the implied Black-Scholes 
volatility, then the interest rate will move in a negatively correlated way.3 If we choose 
the instantaneous volatility of x such that (Ti = ( T ~ s ( t i ) ,  

f‘(ti+i; t i , [>  = exp(-r (ti+l - ti)), 

i.e., we have recovered a model with deterministic interest rates. Reconsidering the 
case of a continuous driver dx = c( t )  dW(t), we see that for f (T(T)~ dT = @ ~ s ( t ) ~  
the functionals above define a Black-Scholes model with instantaneous volatility (T. 

However, we do not need to sacrifice the instantaneous volatility of x to match the 
interest rate dynamics. A much more natural choice is to add a suitable drift to the 
Markovian driver x. Consider a Markovian driver x such that 

x ( t i + ] )  = x( t i )  + a i x ( t i )  Ati + ( T ~  AW(ti), x( t0)  = x0 = 0. (27.9) 

Note that the x(ti)’s are normally distributed with mean 0 (assuming xo = 0) and 
standard deviations yi 6 where 

yi+lfi+l = yi ti ( 1  + ai At;) + (T; Ati. 2 2 2 

Together with the functionals 

we have 

Note that on average the interest rate is still r. 
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Choosing ai such that 

(27.10) 

we have 

P(ti+l; ti, 5) = exp(-r (ti+i - t i ) ) .  

Interestingly, the Markov functional model (27.9)-(27.10) does not necessarily 
need to be a Black-Scholes model having the @-dynamics: 

dS(t) = rS ( t )  dt + ( + ~ s ( t )  S ( t )  dW@(t), 

dB(t) = rB(t) dt, 
(27.1 1) 

where C ~ s ( t ; ) ~  = $' ( + ~ s ( t ) ~  dt. The two models are not the same, although their 
terminal probability densities (European option prices) and their interest rate dynamics 
agree. The difference lies in the forward volatility, which may be changed for the 
Markov functional model by the instantaneous volatility of x. Only for c(t) = ( + B S ( t )  

we have the dynamics (27.11). In this case the ai in (27.10) will be zero, i.e., we are 
in the situation of the previous example. 

Calibration to Arbitrary Interest Rate Dynamics 

Within the no-arbitrage constraints, it is possible to calibrate the model to a given 
arbitrary interest rate dynamics by choosing the appropriate drift. To do so, we have 
to find ,u(t;, 5) such that 

This can be done numerically by means of a one-dimensional root finder. The 
functional S ( t ; + l )  has to be recalibrated in every i te ra t i~n .~  

27.2.5.3 Forward Volatility 

The calibration to European option prices (Section 27.2.3) and joint movements of 
asset and interest rates (Section 27.2.5.2) still leaves the instantaneous volatility (+ 

of the Markovian driver x a free parameter. It may be used to calibrate the forward 
volatility, i.e., the volatility of an option; conditionally we are at time t > 0 in state 5. 

The procedure is the same as in the calibration of the FX forward within the cross currency Markov 
functional model, [71]. 
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Example: Black-Scholes Model with a Term Structure of Volatility 

Consider the simple Black-Scholes-like example from Section 27.2.5.2. For simplicity 
we consider a Markovian driver without drift, i.e., 

x(ti+l) = x(ti) + uj AW(ti). 

together with functionals 

calibrating to European options with implied volatility ~?Bs( t i ) .~  

ti), where 
maturity tk, given we are in state (ti, c),  is 

Then we have that the standard deviation of the increment x(tk)-x(ri) is cT,t,Ik $tk - 
$‘ C T ~  Atj. It follows that the implied volatility of an option with 

f k - f ,  

Thus a decay in the instantaneous volatility of the driver process will result in a 
forward volatility decaying with simulation time ti (for fixed maturity t k ) .  

Example: Exponential Decaying Instantaneous Volatility 

Consider the case of a time continuous Markovian driver dx = u(t) dW with decaying 
instantaneous volatility 

c ( t )  = exp(-a r ) ,  a # 0. 

Then 

-1 
c?,,,,~ := \ii s’: r ( t )  dt = (exp(-2a t2) - exp(-2a t l ) ) .  

t2 - t1 t ,  24 t2  - ? I )  

Assuming functionals 

the forward volatility for an option with maturity T, given we are in 1, is 

T exp(-2at) - exp(-2aT) 
= (TBs(T) - J T - t 1 - exp(-2aT) 

@(t ,  T )  
4, T) 

e B S ( T )  7 

As before we use the notation @: := 1 1;:; u: AtJ 
r ,  
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27.2.6 Implementation 

The model may be implemented in the same way as is done for a one-dimensional 
Markov functional LIBOR model. The basic steps for a numerical implementation 
are (Figure 27.1) 

0 Choose a suitable discretization of (l, x( t ) ) ,  i.e., set up a grid ( t i ,  xl , , ) .  

For each x* = xi,,: 

- Calculate vrnode1(~, x*; 0). 
- Find K* such that Vmarket(T, K*; 0) = Vmodel(T, x*; 0). 

- Set S(x,,,) := K * .  

See Section 27.4. 

27.3 LIBOR Markov Functional Model 
We postulate that the forward rate viewed on its reset date (fixing) may be given as a 
function of the realization of the underlying Markov process x: 

The forward rate (LIBOR) 

(seen on its reset date Tk) is a (deterministic) function of 
x(Tk),  where x is a Markov process of the form 

dx = u(t) dW under QN, x(0) = XO. 

(27.1 2) 

At that point we leave the choice of the numkraires N and the corresponding martingale 
measure Q open. We will make this choice now, and depending on this we obtain a 
Markov functional model in terminal measure (Section 27.3.1) or in spot measure 
(Section 27.3.2). 

27.3.1 LIBOR Markov Functional Model in Terminal 
Measure 

We choose as numiraire the T,-bond N := P(T,). The measure Q should denote the 
corresponding martingale measure (terminal measure). From assumption (27.12) we 
have: 
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Lemma 233 (Numkraire of the Markov Functional Model under Terminal Mea- 
sure): The numtraire N(T;)  = P(T,; Ti)  is a (deterministic) function of x(Ti) ,  i.e., 
N(Ti)  = N(Ti ,  x(T;)) .  For the functional 5 H N(Ti, 5)  we have the recursion 

Remark 234 (Notation for the Functionals): Here and in the following we denote 
the functionals by the same symbol as the corresponding random variables they are 
representing. In the equation 

the N(Ti)  on the left-hand side denotes the random variable; on the right-hand side 
5 H N(Ti, 5)  denotes a function. If we used different symbols it would reduce the 
readability of the following text. The difference between the two will be obvious from 
the additional argument 5 or x(Ti) in its place. 

Proof: 
theorem. Thus for the zero-coupon bond P(Tk) (maturity in Tk) 

Since Q is the corresponding martingale measure we can use the pricing 

Since the process x generates the filtration {FT!} and since x is Markovian, it is 
sufficient to know the FT,-measurable random variable P(Tk; Ti) on the set (x(T;)  = 5). 
Thus the bond P(Tk) seen at time Ti may be given as a function of x(Ti), namely as 
P(Tk; Ti) = P(Tk; Ti,X(Ti)) with 
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we have 

and thus (27.1 3). DI 

With N(T,) = P(T,; T,) = 1 we have from (27.13) a recursion to determine the 

With the specification of the nurnkraire the model is fully described. The functionals 
functionals N(T i ,  <) from the functionals Li(Ti, r).  

5 H Li(T,, E )  are the free quantities that may be used to calibrate the model. 

27.3.1.1 Evaluation within the LIBOR Markov Functional Model 

As preparation for the discussion of the calibration of the model we consider the 
evaluation of a caplet and a digital caplet using the LIBOR Markov functional model. 

Valuation of Caplets within the LIBOR Markov Functional Model 

Let Ti denote the fixing and Ti+l the payment date of caplet with notional 1 and strike 
K .  Then for its value Vcaplet(TO) in the LIBOR Markov functional model 

where 

Valuation of Digital Caplets within the LIBOR Markov Functional Model 

Let Ti denote the fixing and Ti+l the payment date of digital caplet with notional 1 
and strike K .  Then for its value Vdigital(T0) in the LIBOR Markov functional model 
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where 

A detailed description of how the given expectations may be numerically calculated, 
i.e., how to implement the model, is given in Section 27.4. 

27.3.1.2 Calibration of the LIBOR Functional 

The LIBOR functionals may be derived from the market prices of caplets. One 
possibility is to give a parametrization of the functional and optimize the parameters 
by comparing the model prices to given market prices. Another possibility is to derive 
the functional pointwise from a continuum of given market prices. For this we have 
to know the market prices of the caplets with periods [Ti, T;+l] and strikes K E [0, m). 

If the prices are known only for a finite number of strikes K,,  then we require a 
corresponding interpolation of the caplet prices. This is nontrivial; see Chapter 6. 

Calibration of Parametrized LIBOR Functionals 

If we assume a parametrized functional form for L(Ti), then we can calculate the 
model prices of caplet on L(T;) from a known functional for N(T;+ , ) .  This allows us to 
optimize the parameters of a parametrized functional form to achieve the replication 
of given market prices. Thus we have the following backward induction: 

Induction start: 

0 N(T,) = 1. 

Induction step (Ti+l -+ Ti): 

0 “Optimize” L(T;) by comparing (27.15) with given market prices. 

0 Calculate N(T ; )  from L(Ti) and P(Ti+l; T , )  via (27.13). 

If L(Ti) should be almost lognormally distributed, then a good starting point for the 
parametrization is an exponential. In [26] the following parametrization is discussed: 

~ ~ ( 5 )  = exp(a + be + c(( - d12). 
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Calibration of Discretized LIBOR Functionals (Pointwise) 

The evaluation of a digital caplet allows us to calculate the value L(Ti, x*) of the 
functional for an arbitrary point x*. We make the following additional assumption: 

With this assumption we can provide a simple algorithm to derive the functional L( Ti) 
from a given curve of caplet market prices.6 We assume that for any Ti and any strike 
K we have a market caplet price Vcaplet(T;, K; TO).’ Then we can calculate all digital 
caplet prices Vzl.:z(T;, K*; TO). We have 

(27.18) 

thus, from the monotony assumption (L(x(Ti)) > K e x(T;)  > x*) it follows that the 
product may be evaluated without the knowledge of the LIBOR functional L(T;). We 
thus write in brief V::;:f(T;, x*; TO). By solving the equation 

(27.20) 

to K we obtain K * ,  i.e., L(x*) ,  for the given x*. Compare Figure 27.1. 
The LIBOR functional obtained from this procedure replicates the given market 

price curve of the digital caplets and thus the market price curve of the caplets. Using 
backward induction we can calibrate the model to caplets of different maturities: 

See also the considerations in Chapter 5 ,  where we showed how to derive the probability density of the 
underlying from market prices of European options. 
A complete price curve is usually not available. It has to be constructed by interpolating on given 
market prices. This interpolation procedure has to be understood as part of the model; see Chapter 6.  
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Figure 27.1. Calibration of the LIBOR functional L(x)  within the Markov functional 
model: For a given x* we calculate the model price of a digital caplet with strike 
K* = L(x*)  (payoffprojle in black). This is possible without knowing the functional 
L. For the given model price V ( x * )  (gray surface) w e j n d  the corresponding strike 
K* by looking it up on the (inverse) of the market price curve K H V ( K )  (left graph). 
This determines the LIBOR functional x H L(x)  (right graph). 
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induction start: 

0 N ( T J  = 1. 

induction step ( T j + l  + T i ) :  

0 For any given {x;}: 

- Calculate the model price V:i;:f(T,, x*; TO) from (27.19). 

- Calculate K* = L(x*)  from (27.20) and (27.18). 

If required, calculate an interpolation from sample points x*, L(x*) obtained in 
the previous step. 

0 Calculate N(T;)  from L(Ti) and P(T,+I;  Ti) through (27.13). 

27.3.2 LIBOR Markov Functional Model in Spot Measure 

In this section we will discuss the Markov functional model under the spot measure, 
i.e., we choose the money market account as numkraire and present an efficient 
calibration method for this model. By money market account numkraire we mean 
(cf. [24, 811) 

i- 1 

N(T,.) := n(l+ L(Tk))(Tk+l - T k ) ,  (27.21) 

which is the value of repeated reinvestments of the initial value N ( 0 )  = 1 in the 
shortest bond in our time discretization {To,. . . , T N } .  As in Section 27.3 we make the 
assumption: 

k=O 

The forward rate (LIBOR) 

(seen upon its maturity Tk) is a (deterministic) function of 
x(Tk),  where x is a Markovian process given by 

dx = ~ ( t )  dW under QN, x(0) = xo. 

(27.12) 

Note that this does imply that the numkraire N(Tk) given in (27.21) is not a function of 
x(Tk)  alone. Here the numkraire N ( T ; )  is path-dependent, i.e., it is given as a function 
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of X ( T O ) >  - 0 1  1,. . . 1 X(T1-I 1: 

I -  1 

N V , ;  X(To),  X(TI) ,  . . . , X(TI-1)) := + W k ;  X(Tk))(Tk+l - Tkh (27.22) 
k=O 

and FT,-, -measurable. In contrast to this, for the Markov functional model under 
terminal measure the numkraire N(T , )  was a function of x(T,)  alone (i.e., not path- 
dependent and FT~ -measurable, not 7~,_,  -measurable). 

27.3.2.1 Calibration of the Markov Functional Model under Spot 

The calibration procedure of the Markov Functional model under the terminal measure 
was presented in Section 27.3.1.2. It seems as if the feasibility of the calibration 
process is tied to the choice of the terminal measure as it induced a simple backward 
induction for the LIBOR functionals. The LIBOR functionals were calculated by the 
pricing of digital caplets which simply involved expectations of indicator functionals 
(i.e., half-integrals over given distributions). 

We will show that the calibration procedure of the Markov functional model under 
the spot measure is given by a simplefornard induction for the LIBOR functionals. 
They are calculated by the pricing of a portfolio of a caplet and digital caplets. 
This involves only a simple half integral over the given distribution and a known 
expectation step. 

Measure 

27.3.2.2 Forward Induction Step 

We assume that the LIBORs L(T j )  for Tj < Ti and thus N ( T ; )  have already been 
calculated and present the induction step Ti -+ Together with N ( 0 )  := 1 this 
gives the calibration procedure as a forward-in-time algorithm. Let V T , ( T ~ )  denote the 
time Tk value of a product with a time Ti+l value V T ~ ( T ~ + ~ ;  L(T;))  depending on L(Ti) 
only (e.g., the value of a caplet or digital caplet with fixing date T; and payment date 
Ti+[). Then the value of this product is 

On the right-hand side, we take the expectation of a function depending on L(Tf )  
and N ( T , ) .  As the numkraire N(T,)  is known from the previous induction step; the 
functional form of L(T,; x(T, ) )  is the only unknown in this equation and it may be 
used to calibrate the functional form [ H L(T,; () to given market prices. 

Note that N(T,)  depends on L(T,) for T ,  < T ,  only 
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27.3.2.3 Dealing With the Path Dependency of the Numeraire 

The path dependency of the num6raire (27.22) implies that (conditional) expectations 
have to be calculated time step by time step using 

where 

The need for the time step by time step calculation of conditional expectations 
(induced by the path dependency of the numkraire) seems to be a major computational 
bottleneck, when compared to the Markov functional model in terminal measure. 
However, we will discuss in Section 27.3.3 the fact that 7 ~ "  conditioned expectations 
may be calculated fast using a single scalar product with precalculated projection 
vectors. 

27.3.2.4 Efficient Calculation of the LIBOR Functional From Given 
Market Prices 

The LIBOR functional are now derived from the model pricing formula of a portfolio 
of a caplet and digital caplets. Consider the following payout function: 

1 + L(T;)(Ti+l - T;)  if Li - K > 0 
else 

paid in Ti, 1. VT,,K(Ti+l> LV;)) := 

(27.23) 
This is a digital caplet in arrears or equivalently the portfolio of 1 strike K caplet and 
K + -  ' strike K digital caplets. Given market prices of caplets, we have market 
prices for the digital caplet in arrears for any strike K ;  see [71]. Its model price is 

( T ~ + I - T ~ )  

398 



given by 

- 
FT,,, -measurable 

where 1 denotes the indicator function with 1(R) = 0 if R I 0 and 1(R) = 1 if R > 0 
and 5 H L(T;, 5) denotes the functional form of the LIBOR, assumed to be increasing. 
If x* is such that 

L(Tj,x*) = K (27.24) 

we have 

V T , , K ( T i - I )  = E(l(L(Ti,x(Ti)) - K )  1 (Ti-195)) = E(l(x(Ti) - x*> 1 (Ti-195)) 

= 4471 - r ;  m-I 7 T , ) )  d71. 

This reduces the model price to an integral over the indicator function(a1) and then 
taking the expectation E (m I FT"). The latter is known from the previous calibra- 
tion steps from Ti- I back to TO. It is implemented efficiently as a scalar product with 
a precalculated projection vector.' 

The calculation of the functional form L(T,; 5) thus involves the calculation of 
model prices as outlined above for suitable discretization points x* and calculating 
the corresponding strikes K by inverting the market price function. This determines 
L(T,, x*) using (27.24). 

The calibration step is as simple as it was under the terminal measure: Model 
prices of calibration products are evaluated by a half-integral together with a known 
expectation step and matched with the market price function. Here, the half-integral 
only represents a slightly different product. 

Often a certain measure is chosen to simplify the pricing of a given product 
(e.g., the Black '76 caplet pricing formula (10.2) is best derived under the terminal 
measure associated with the caplet's payment date). Here this technique is reversed 
by considering a certain product with a simple (model) pricing formula under a given 

We will discuss this aspect of the implementation in the next section 
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measure. The suitable product for the terminal measure is the digital caplet while the 
digital caplet in arrears seems the best choice for the spot measure. 

27.3.3 Remark on Implementation 

Given a certain functional 5 H f (5 )  and a lattice time and state discretization 

{XT,,k I k = 1,. . . ,mi] c X(T1 ,  a) = R, 0 5 j 5 n, 

where mo = I ,  x~;,J  = XO. The expectation of f ( x ( T i + l ) )  conditional on state x(Ti)  = 

(27.25) 

where @(.;(+) is the density of the normal distribution with variance (r' = 

J';;"' rr2(r) dr. The approximation of this integral within the lattice is given by 
a numerical integration based on sampled values fk := , f ( X T , , k ) .  We represent this 
integration by 

AT#+' T ,  . ( f l ? .  . . >fm,+l )T>  (27.26) 

where A:+' is a linear operator given by a m, x m,+l matrix. Defining 

(27.27) 

the large time expectation step 

E(f(X(Ti+l) I I ~ T o )  = ~ 0 1 )  

is represented numerically by A::'. The matrix multiplication with A:;' is fast as 

A:;' is a row vector. 

27.3.3.1 Fast Calculation of Price Functionals 

In the model calibration and the application of the model to derivative pricing ex- 
pectations of numhraire relative prices have to be calculated. For a given time Ti+l 
functional V we have to calculate 

It is advantageous to view 5 H 1 . @(t - XT,,k;  (7') as a convolution kernel and 
directly precalculate the numerical approximation of the (linear) operator V H Z[V]. 

N(Tt+ I 3 0  
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Redefining the A;+' in this sense, we are able to numerically calculate large time- 
step expectations 

even for the path-dependent numtraire (27.22) by a single scalar product of the 
projection vector A:;' with the sample vector ( V ( X T , + ~ , I ) ,  . . . , V(,XT,+' ,~,+,)) .  The vectors 

A::' may be precalculated iteratively in each forward induction step. 

The elements of projection vector A:;' are Arrow-Debreu like prices. 

27.3.3.2 Discussion on the Implementation of the Markov Functional 

It appears that the precalculation of the large time expectation step is only necessary 
to cope with the path-dependent numtraire in the spot measure Markov functional 
model. However, in our experience the precalculation of projection vectors by means 
of the iteration (27.27) is advantageous even for the terminal measure variant as it 
will prevent numerically inconsistent ways of calculating the large time expectation. 
Numerical approximation errors will lead to significant differences between iterated 
expectation and single, large time-step expectations, thus violating the tower law". 
By enforcing the calculation of large time-step expectations by iterated expectations 
the tower law will by definition be valid in the model implementation. It might seem 
as if the iteration (27.27) will then lead to a propagation of numerical errors. Indeed 
the terminal distributions are much less close to a normal distribution, but exact 
sampling of the terminal distribution is not crucial and the calibration quality of the 
discrete model will not suffer. 

Model under Terminal and Spot Measure 

27.3.4 Change of Numeraire in a Markov Functional Model 

Having presented Markov functional models under different measures, it is natural to 
ask how the functionals relate, i.e. under what conditions a functional calibrated in 
one measure may be reused in the other. 

Let N ,  M be two numtraires. Then for any traded asset V :  

l o  The tower law is the equation of iterated expectation, i.e., E(E(Z I FT,) I FT,) = E(Z 177 , )  for T, < T,. 
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Thus 

i.e., 

We want to see this in the light of a Markov functional model and thus require that 
all three quantities V ,  N ,  and M are functions of a (scalar) time-discrete Markovian 
stochastic process x( t ) .  For illustration purposes we additionally assume that the 
functional of V under QM is the same as V under QN and that 

~(T;+I 1 = x(Ti) + dTi)AW(Ti,  Ti+I) 

x(Ti+~ = 47';) + fi(Ti, x(T;))ATi + dTi)AW(Ti,  Ti+l) 

under QN, 
under Q M ,  

where AT; := (Ti+l - T;)-it will become clear below that this assumption cannot 
hold in general. Under these assumptions we find from (27.29)" 

i.e., 

Equation (27.30) is valid for all traded assets V.'* Choosing V(T2) 1 (a bond), 
we see that Equation (27.30) determines p(x(T1)) from the change of numtraire 
integration kernel CI3. With p fixed we see that (27.30) cannot hold for general 
functionals V .  This is clear from Girsanov's theorem: Over a discrete time step a 
change of numtraire will introduce a change in the conditional probability density, 

which cannot be just a shift of the mean as in general f + A f f i ( t )  dt is not E-previsible. 
(Girsanov's theorem states that the conditional probability density changes by an 
infinitesimal shift of the mean (the drift adjustment) over an infinitesimal time step. 

I 1  We assume here that the two measures are identical on FT,, i.e., [T, ,  T , + I ]  is the first time interval where 
the change of numkraire applies. This is not a restriction, for example, the argument applies to the first 
time step [To, T I ] .  

I 2  Equation (27.30) is just a discrete version of Girsanov's theorem. 
l 3  Note that C(T, ,  T ,+ l )  is FT,+, measurable but not FT,-measurahle. 
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Therefore, in a discrete time model it is usually not possible to perform a change 
of numkraire by means of an adapted change of the drift (if it is done, it is an 
approximation). 

Thus we have to relax our assumptions to either 

the drift p is path-dependent, i.e., we consider 

dx = p(t, x)dt + u(t) dW resulting in 

the functional V is different under QN and QM. 

The first will work because it is simply the proposition of Girsanov's theorem. 
As we do not want such a path-dependent drift in the driving process, we choose 

the second approach. Then we can fit terminal (!) distributions of V by means of a 
change of the functional form. Under the changed numtraire one has to recalculate 
the functional form V M .  

Note that a recalculation of the functional forms is not a change of numkraire in the 
strict sense. The functional forms may be used to match the relevant terminal, but not 
the transition, distributions under QN and QM. As a result prices of some products, 
e.g., Bermudans, may differ. The two models are not "eq~ivalent" .~~ 

This can already be seen for the Markov functional model under the terminal 
measure. Two such models with different time horizons T,  < T,, are not equivalent 
over the common time interval [0, Trn].l5 

27.4 Implementation: Lattice 

Consider an implementation which relies on functionals discretized in the state 
space (in contrast to parametrized functionals). In addition to the time discretization 
(0 = TO < . . . < T,,) we consider a discretization of the state space 

x;,j E x(Ti)(R) = R j = 1, .  . . ,mi, i = 0,. . . ,n. (27.31) 

l4 This problem also exists in Monte Carlo simulations. For example, the Euler discretization of the 
LIBOR market model's SDE dL,(r) = p,( t )L,( t )  dt + a,(t)L,(t) dW(t) exhibits different discretization 
errors for different measures; see also Section 13. I .2. For the Monte Carlo simulation this problem can 
be solved by arbitrage-free discretization techniques [73] or by reducing the size of the discrete time 
step At. 

l 5  It is a charming aspect of the spot measure Markov functional model that it does not exhibit this 
dependence on the time horizon (since there is no time horizon at all). 
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For any given time discretization point T; and any given space discretization point x* = 
x;, j ,  we calculate the model price of the digital caplet Vzi::f(T;, x*; To) and calculate 
from it the value of the LIBOR functional L(Ti, xi,;) and from there the numtraire 
functional N(Ti,  xi,^). It remains to specify how we interpolate the functionals 6 H 

L(T,, c), 5 H N(Ti, 5) for 5 # xi,j and calculate the conditional expectations, i.e., how 
we perform the numerical integration 

where @(< - p, a,) = 1 exp(- M) 2 4  denotes the (transition) probability density 

of ~ ( T , + I )  - x ( T , ) l , ( ~ , ) = ~  with (T, := (J;;"" a 2 ( t )  dt)1'2. 
dfGU, 

27.4.1 Convolution with the Normal Probability Density 

A main part of the implementation of the model is the numerical integration, i.e., the 
convolution of a functional with the density of the normal distribution: 

e x p ( - w ) .  In the literature one can find many methods with @(.$ - p, a;) = 1 
G U ,  

for numerical integration. Since f is given only at the state space sample points 
(lattice) {xi+1,klj = 1, .  . . ,mi),  but the density @ is given analytically, it is natural to 
make use of this. 

2 4  

27.4.1.1 Piecewise Constant Approximation 

Let x ~ + ~ , ~ + ;  = 
let ,fk := f(x,+l,k). Then an approximation of the integral I from (27.32) is given by 

& + I  h+I+Xi+l,k denote the center point of the interval [x;+l,k, x;+l,k+l] and 

where @,,,(x) = lL @(t - p,  a)  q. For the cumulative normal distribution function 
@,,,, there are very accurate approximations using rational functions. 
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Figure 27.2. Calculation of the conditional expectation (numerical integration) 
within a "lattice". 

27.4.1.2 Piecewise Polynomial Approximation 

If we approximate the integrand f by a piecewise polynomial, then we have to 
calculate integrals of the form 

These may be given recursively in terms of the cumulative distribution function @. 
We have 

Lemma 235 ( Convolution of a Monomial with the Normal Distribution Func- 
tion16 ): 

l 6  Compare [26] 
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Proof: Form E N 

i.e. 

h 
The claim follows after multiplication with 1 GlT and integration LIZ @. Dl 

To calculate the interpolating polynomials many different methods may be used 
(e.g. cubic spline interpolation). The Neville algorithm gives a simple recursion by 
which we can calculate a piecewise polynomial interpolation function. 

Lemma 236 (Neville Algorithm-Piecewise Polynomial Interpolation Function): 
Let x; denote given sample points and J; the corresponding values. If F i -k l  ,;+kz is a 
polynomial of degree kl + k2 interpolating the points (xj, J,) ,  j = i - kl , . . . i + k2, i.e., 

F;-klri+kZ(xj) = fj for j = i - k l ,  . . . i + k2, 

then 

(5 - ~ i - k l )  Fi-kl+~.i+k?+l(t) + (Xi+kz+l -t> Fi-kl.i+k? 
Xi+kz+1 - Xi-k l  

Fi-k,,i+kZ+1(5) = 

defines an interpolating polynomial of degree kl + k2 + 1 for the points ( x j , J , ) ,  
j = i - k l ,  . . . , i + k2 + 1. With the trivial interpolating polynomial Fi,i E J; having 
degree 0, induction gives a construction of the desired interpolating polynomial. 

Proof: A polynomial of degree kl +k2 + 1 is uniquely determined by kl + k2 + 2  points. 
The claim follows then by induction, evaluating the approximations polynomial 
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F i - k , , ; + k 2 + l  at the sample points x;+k2+1, x;-k, and the sample points which are common 

The algorithm is called the Neville algorithm. The polynomial F ; +  ,;+kz(xj) 
will then be used as an interpolating polynomial on the interval xi,x;+1.” Using 
Lemma 235 the corresponding integral part is calculated. 

The interpolation function is (for degree > 0) continuous, but is not differentiable 
at the interval bounds, as would be the case with a cubic spline interpolation. 

to F ; - k l + l , i + k 2 + I  and F i - k l , i + k z -  01 

27.4.2 State Space Discretization 
The rule for choosing the state space discretization points xi,,, j = 1,.  . . , mi (the 
lattice) for the realization of the Markovian driver x(Ti)  has a major impact on the 
accuracy of the model. 

27.4.2.1 Equidistant Discretization 

A simple rule gives an equidistant discretization of the interval [x;,,,i,,, where 
the interval has been chosen such that the neglected area (-co, x;,,,i,,) U (x;,,,~~. co) sup- 
ports only a small probability measure Q(x(T;)  @ [x;,,,i,,, Xj,max]> = E ;  see Figure 27.3. 
The bounds xi,,,i,,, may be derived from the definition of the process x, e.g., in 
terms of the standard deviation of x(T;:  

The factor k has to be chosen sufficiently large (e.g. k > 3). 

such that all intervals support the same probability mass, i.e., 
Instead of an equidistant discretization one may choose the interval [xi,,, ~ ; , ~ + l ]  

1 - €  
Q(x;,, I x(T;)  I X i , , + l )  = - 

mi- 1 ’  

Further Reading: The LIBOR and swap rate Markov functional 
model in terminal measure is discussed in [13, 261 as well as in the 
original article [79]. A LIBOR Markov functional model in spot measure 
is discussed in [71]. A hybrid cross currency Markov functional model 

is discussed in [63,68,71]. Q I  

” It is natural to choose the sample point symmetrically, i.e., use k2 = kl + 1 
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Figure 27.3. State space discretization for the Markov functional model: A simple 
rule to choose the discretization points x,,,. 
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Extended Models 

409 



This Page Intentionally Left Blank



CHAPTER 28 

Credit Spreads 

28.1 Introduction-Different Types of Spreads 

First, we wish to clarify that there are essentially two different concepts of “spreads”. 

28.1.1 Spread on a Coupon 

We have already encountered the term spread in the definition of some products. 
There, a spread was an additional fixed rate added to the floating rate to form the 
coupon, e.g., as in 

c; = L(Ti, Tj+I) + si, 

where s; is a constant-the spread; see Section 12.2. The spread is paid as part of 
the floating leg. It may be interpreted as a periodic fee. Usually the spread is chosen 
such that the deal is at par when issued, i.e., for (structured) swaps the spread is 
chosen such that the swap’s value is 0, for (structured) bonds the spread is chosen 
such that the bond’s value is 1 ,  which would relate the spread to market parameters. 
Nevertheless, this type of a spread is a static feature of the product. It is determined 
when the product is issued and does not change over the lifetime of the product. 

28.1.2 Credit Spread 

The credit spread has a different origin than the spread on a coupon: It is a market 
parameter derived from market prices (like interest rates). Apart from the fact that it is 
derived (e.g., bootstrapped) from (specific) market products, it is product independent. 
To introduce the credit spread we will consider the defaultable zero-coupon bond in 
the following section. 
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However, in some situations it is possible to express a credit spread in terms of 
a spread on a coupon. Actually, for zero-coupon bonds, there is a transformation 
which is almost linear. Thus, the two notions of a spread may be related, which, 
unfortunately, may give rise to misunderstandings. It is important to understand that 
the original definition of a credit spread (as a market parameter) is different from a 
spread on a coupon (as a static product feature). 

28.2 Defaultable Bonds 

We started our consideration of interest rates with the definition of the zero-coupon 
bond. We viewed the zero-coupon bond as the fundamental (atomic) interest rate 
product and all other interest rate quantities (forward rate, short rate, swap rate, 
coupon bond, floater, etc.) could be expressed in terms of zero-coupon bonds. The 
continuum of zero-coupon bonds gives a complete representation of the interest rate 
curve; see Section 8.2. 

The zero coupon bond P(T; t) represents the value of a guaranteed payment of unit 
1 in time T ,  seen in time t. However, in reality the guarantee of the payment of 1 may 
be limited. For example, if the issuer of the bond goes bankrupt, he does not repay 
the value or only a fraction of it. The financial term used for this case is that the issuer 
defaults. Let pd(T; t) denote the time t-value of a zero coupon bond that carries a 
default risk, paying I in T in case of nondefault. The default event may accure any 
time in ( t ,  T). 

Remark 237: Since each issuer (obligor) might carry his individual default risk, 
each issuer defines a unique continuum of defaultable bonds, e.g., pd,us-Gov, @IBM, 

etc. In the following, pd denotes a defaultable bond of some fixed (yet unspecified) 
issuer. In reality all bonds are defaultable and the (nondefaultable) zero-coupon bond 
is an idealization. 

A continuum of defaultable bonds T H p d ( T ;  t )  allows us to define all the asso- 
ciated rates, as we considered for the nondefaultable case in Section 8.2. This will 
give rise to the definition of the defaultable forward rate, the defaultable short rate, 
the defaultable instantaneous forward rate, etc. 

Definition 238 (Defaultable Instantaneous Forward Rate): 1 

For fixed t let T H pd(T;  t) denote a family of defaultable bonds with maturities 
T 2 t. Assume that T H pd(T; t )  is differentiable in T .  We define 

a 
pet, T )  := -- log(Pd(T; t ) )  aT 
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as the defaultable instantaneous forward rate. From the definition we have 

We are interested in the relation of the defaultable quantities to the nondefaultable 
quantities. We start by defining the default intensity. For an interpretation see below. 

Definition 239 (Default Intensity, Credit Spread): 1 

For fixed t let T H pd(T; t )  denote a family of defaultable bonds with maturities 
T 2 t. Assume that T H pd(T; t )  is differentiable in T .  We define 

as the default intensity or credit spread. From the definition 

i.e. 

Interpretation (Default Probability, Survival Probability, In- 
tensity): Obviously the value of a bond which carries a default risk is 
less than or equal to the value of a (nondefaultable) zero-coupon bond, 
i.e., we have 

The term has an intuitive interpretation: It may be viewed as the probability of 
survival in ( t ,  T ) .  Consequently R(t, .) is just the intensity of an exponential distribution. 

If exp (- f A(t, T) dT is the survival probability, then 1 - exp (- f R(t, T) dT is the 

default probability, where-in this interpretation-default means that the bond pays 
0. The parameter R is called the default intensity. The default intensity R has the 
(physical) unit &. It is the rate at which defaults occur. The inverse f has the 
(physical) unit time. It is the average survival time. Note that the expectation of a 
random variable having exponential distribution is f . 

1 1 
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There is one important aspect here which one may easily overlook. The survival 
probability 

is not the real survival probability. It is the market implied probability from the price 
of a defaultable bond. It is the probability we should use as a pricing measure if we 
hedge default risk by trading in defaultable bonds. We will comment again on this 
point later. QI 

28.3 Integrating Deterministic Credit Spread into 
a Pricing Model 

A model which models one or more additional credit spread curves may become 
quite complex. Note that so far it is possible that t H A(., T )  is a stochastic process. 
Because the credibility of an issuer varies uncertainly, it is natural to assume stochastic 
intensities. 

However, if we make the simplifying assumption that the intensity is a deterministic 
function, then it is straightforward to endow all models discussed so far with the 
ability to handle defaultable quantities. 

Assume a general (nondefaultable) pricing model with numkraire N and equivalent 
martingale measure Q = QN, modeled over the probability space (R, 7). Then the 
value of a nondefaultable zero coupon bond is given by 

1 
P ( T ; t )  = N ( t ) E Q  

and the time t-value of a payoff V ( T )  paid in T is 

.) 3 

.) . 

If Q is the pricing measure of a pure nondefaultable model (i.e., default events 
are not considered under Q, i.e., falsely have probability zero), then we may simply 
correct for it by multiplying by the survival probability. The value of a defaultable 
bond is given by 
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(check!) and the time t-value of a defaultable payoff V d ( T )  paid in T thus is 

Essentially we split the probability space into the nondefaultable part (pricing measure 

Q) and the default part (survival probability exp ( - R' A(t,  r )  d r  ). In a more rigorous 

treatment we would have introduced the product measure. 

28.3.1 Deterministic Credit Spread 
If the credit spread is nonstochastic, to be precise, an It6 process with zero volatility, 
then this implies that R does not depend on t. 

Lemma 240 (Nonstochastic Credit Spread): If 

then A does not depend on t, i.e., 

R(t, T )  = A(T). 

Proof: The proof starts with a useful little trick: By our assumption the stochastic 

process t H exp (- RT R(i ,  T )  dT has zero volatility. Thus, the theorem of Girsanov 

implies that a corresponding change of measure does not change the process-there 
is no change of drift since there is no diffusion. So considering (28.1) under the 
T-terminal measure QP(T;t) we immediately obtain 

1 

2 at (exp (- l' A(t,  T )  dr)) = 0. 

From that, with 

we find 

i.e., 

A(t,t) - -A(t, T )  d r  = 0, J' ;t 

R(t ,  t )  = -A(t,r) dr V T I' aar 
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The right-hand side does not depend on T .  Consequently the left-hand side does not 
depend on T .  Differentiating with respect to T ,  we find the integrand on the right-hand 
side to be zero: a 

-A(t,T) = 0 
at 

V T .  

In other words, /1 does not depend on t. 01 

Interpretation (The Default Event-Recovery Rates): There is 
a somewhat surprising aspect of our consideration of the default risk 
so far: We did not specify the nature of the credit event itself. Usually, 
when a (risky) bond defaults, then it pays some fraction of the original 

notional called the recovery rate. So far we did not consider if and how much recovery 
a defaultable assets pays. We did not even consider the nature of the credit event itself. 
Is it a total default at a single point in time or a gradual process? 

If we only want to evaluate payments made by counterparties with credit risk, i.e., 
where the corresponding zero-coupon bond has a value different from the nonrisky 
zero-coupon bond, then these aspects are irrelevant. The credit event itself (e.g., the 
recovery rate) has to be modeled only if a financial product relies on the nature of 
the credit event (e.g., a guaranteed compensation of the loss (as for a Credit Default 
Obligation (CDO))). 

In this sense, we once again stress that the intensity R is not the intensity of the true 
default probability (whatever the true default is). It is the equivalent intensity under 
the assumption of defaults (modeled as Poisson events) with zero recovery, implied 
(!) by market prices. Like the equivalent martingale measure, it is a calculational tool 

QI rather than a real quantity. 

28.3.2 Implementation 

Implementing deterministic credit spread into a given pricing model turns out to be a 
minor modification of the discounting. Given two curves of zero-coupon bond prices: 

T H P(T;O), 

T H Pd(T;O), 

nondefaultable zero-coupon bonds, 

defaultable zero-coupon bonds, 

calculate the credit spread curve 

From this, calculate the forward credit spread as 
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for T I  < T2. A defaultable cash flow to be received in T2, evaluated as seen in T I  < T2 
is then adjusted by the factor 

In other words, while the time t relative value of nondefaultable cash flow Xi to be 
made in T; is given by 

the time t relative value of a defaultable cash flow X ;  to be made in Ti is 

This can be implemented by replacing N(Ti)  by N(TJ exp(+s(Ti) Ti), i.e., 

(28.2) 

in the application of the universal pricing theorem (i.e., discounting) for all defaultable 
cash flows. 

Interpretation (Seeing (28.2) as an Exchange Rate or as an 
Interest Rate): The modification in (28.2) is similar to an exchange 
rate. For example, if one needs to price foreign cash flows using a model 
with a domestic numkraire, then one does so by exchanging the foreign 

cash flow into domestic currency using the exchange rate at payment date T,,  then 
discounting in the domestic model and converting back to foreign currency with the 
inverse of the exchange rate. 

The same is happening here. At payment date a defaultable cash flow is being 
interpreted as nondefaultable. The corresponding conversion factor is 1, since at 
payment date the amount of the cash flow is indeed the same. Then the cash flow is 
discounted in the nondefaultable model and converted back to a defaultable quantity. 
The exchange rate is -, the value of a defaultable time T ,  cash flow in terms of a 
nondefaultable time T, cash flow. 

This “exchange rate” depends on the maturity of the cash flow. So actually it is 
more similar to an interest rate and the interpretation of A( t )  as an (additional) interest 
rate is even more striking: Assume that we are under the risk-neutral measure, i.e. the 
numkraire is N ( t )  := exp($ r(~)d7) .  Then (28.2) will replace N ( t )  by exp(Jr T ( T )  + 
A~d7). Q I  
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28.4 Receiver's and Payer's Credit Spreads 

All future cash flows of a (nonfonvard starting) bond have the same direction: The 
holder of the bonds receives coupons until maturity and notional upon maturity. If 
the bond is forward starting, then the holder pays notional to the issuer upon start, in 
which case there is also a future cash flow from the holder to the issuer. For a swap 
the direction of the cash flow depends on the fixing and may vary for each period. If 
the cash flow is positive, the holder receives the cash flow from the issuer. If the cash 
flow is negative the holder pays its absolute value to the issuer. 

Obviously, receiver and payer may have different credit spreads, i.e., different 
default risks. Let A' denote the receiver's credit spread and RP the payer's credit 
spread. Let X denote an FT-measurable random variable modeling a defaultable cash 
flow in T. If QN denotes the nondefaultable pricing measure corresponding to the 
nondefaultable numtraire N, then the time t-value of the defaultable time T-cash flow 
X is 

For a financial product consisting of multiple (potential) cash flow we have to calculate 
the net exposure consisting of the present cash flow and the value of the future product. 
Let X; denote an FT,-measurable random variable modeling a defaultable cash flow 
in Ti. Then V;,,(T;) denotes the time T; value of the defaultable cash flow X, for 
j I i + 1. Then we have the backward induction 

Interpretation: For products with multiple cash flow (i.e., periods) 
with possibly different signs, the pricing is thus given as a backward 
algorithm like that for the pricing of Bermudan options. Using two 
different spread curves on a swap immediately results in a Bermudan 

pricing algorithm. QI 

Remark 241 (Netting): There are usually netting agreements between counter- 
parties such that upon default the outstanding debt is calculated across a portfolio and 
only the net debt is under default. When this is done, the pricing Equation (28.3) needs 
to be considered on a portfolio level, which requires that all products are evaluated 
using the same model and within the same simulation. 
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28.4.1 Example: Defaultable Forward Starting Coupon 
Bond 

Recall that the value of a forward starting coupon bond with an initial notional 
payment 1 in T I  is 

n- 1 

which is identical to a swap 

n- 1 

see Section 9.2.1.1. 
If we consider defaults, then the time T I  value of the cash flows received after T I  is 

Together with the initial cash flow at time T I ,  the time t-value of the defaultable 
forward starting coupon bond is 

n- 1 

which is identical to 

n- I 

= c ( C i  - LdXp(T;, T;+l; T I ) )  (Ti+] - Ti) pd3p(Ti+l; T I ) ,  (28.4) 
i= I 
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where 

Note that (28.4) is a swap where both counterparties share the same default probabili- 
ties. 

28.4.2 Example: Option on a Defaultable Coupon Bond 

Consider an option on the defaultable coupon bond with exercise date T I .  Since the 
option is exercised if and only if VgpnBnd(T,) - 1 > 0 its value is 

Consequently, the value of an option on a defaultable coupon bond corresponds to 

exp (- JT'  #'(T) dT times the value of a (nondefaultable) option on the defaultable 

swap. Note that due to the optionality A' does not enter the valuation. 
It appear as if this allows to derive an adjusted Black formula using only implied 

volatilities of the (nondefaultable) swap rates. However, the implied volatilities refer 
to swaptions paying a constant coupon Ci = C in each period. If these coupons 
are weighted by the survival probability, then, effectively, we have an option on a 
weighted sum of different swap rates.' Thus, the pricing of an option on a defaultable 
swap (or bond) requires additional information on the correlation of the swap rates. 

1 

Further Reading: The setup of two spread curves is identical to 
considering a market where the interest rate for borrowing is different 
from the interest rate for lending. For a thorough treatment of the 

Q I  underlying theory see [ 121. 

' See Exercise 1 I 
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CHAPTER 29 

Hybrid Models 

In this chapter we introduce several kinds of hybrid models. A hybrid model is a 
model that models multiple (different) assets in a single unified model. In general 
one combines several well-known models into a single unified model. Since different 
models usually come under different pricing measures, the essence of a hybrid model 
is the question “How do these models look under a common pricing measure?”. So 
apart from the prerequisite that the models be compatible, the construction of a hybrid 
model is just a change of measure. 

In this sense, we have already encountered the basic technique required for a 
hybrid model in the discussion of the LIBOR market model: There we wrote down 
multiple individual Black models (Chapter 10) and asked ourself how they look under 
a common pricing measure. The result was the LIBOR market model. 

29.1 Cross-Currency LIBOR Market Model 

For two currencies, “domestic” and “foreign”, we model the interest rate curves, each 
with a LIBOR market model, as was discussed for an interest rate curve in a single 
currency in Section 19. 

In addition we model the foreign exchange rate FX(t). In Chapter 11 we presented 
the pricing of a quanto caplet by modeling the FX forward as a lognormal process. 
Here the spot exchange rate FX(t)  is modeled directly, also as a lognormal process. 
Let FX(t)  denote the amount (in domestic currency) that has to be paid by a domestic 
investor at time r for one unit of foreign currency (for). Thus, FX(t)  has the (physical) 
unit [ F X ( ~ ) ]  = -. 

We assume that for the chosen numkraire N that there exists a corresponding 
equivalent martingale measure QN. By the change of measure theorem (Girsanov 
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theorem, 59) the modeled quantities are again lognormal processes under QN, i.e., 

dLi(t) = Li(t)pi(t) dt + Li(t)ai(t) dWyN(t), (0 5 i 5 n - 1) 

dFX(t) = F X ( t )  p F X ( t )  dt + F X ( t ) a F X ( t )  dW;i(t) 

d&(t) = Ei(t) Oi( t )  dt + &(t)@i(t) dWyN(t) (0 5 i 5 n - l), 

with initial conditions 

As before, this is the starting point for 

0 Determination of the drift terms pi, p F X ,  and pi for a chosen numCraire N ( t )  
using the @-martingale property of N-relative prices. 

0 Determination of the initial conditions Li.0, FXo,  Ei.0 using the bond and foreign 
bond prices observed at time t = 0. 

0 Determination/choice of the volatility and correlation to reproduce given option 
prices. 

29.1.1 Derivation of the Drift Term under Spot Measure 

As numtraire we chose the rolled over one period bond we had already made use of 
in Section 19.1.2: 

;=0 

where m(t) := max(i : Ti 5 t ] ,  6; := Tj+l -T;. We will now derive the corresponding 
processes (i.e., the drifts) under the corresponding equivalent martingale measure QN, 
the spot measure. 

29.1 .1.1 Dynamic of the Domestic LIBOR under Spot Measure 

For the drift pi we have, exactly as in Section 19.1.2 

/=m(r)+ I 

This is the already known LIBOR market model in domestic currency. 
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29.1 .I .2 Dynamic of the Foreign LIBOR under Spot Measure 

We derive the drift j i ( t )  of the foreign LIBOR by considering financial product 
from the foreign market. The foreign bond 1"(Ti+l), converted to domestic currency, 
i.e. P(Ti+l) FX is a traded asset for the domestic investor. Thus, p(Tr+k:y') is a 

@'-martingale: I 

Likewise 

F X  

(29.1) 

(29.2) 

is a traded asset for the domestic investor, because it is a portfolio of (foreign) bonds 
converted to domestic currency. Thus, 

From the product rule we find 

(29.3) 

from which we derive pi after calculation of d p(Tc+k:p(r) by comparing drift terms. 
We have 

Remark 242 (Interpolation of Bond Prices): At this point we encounter an inter- 
esting difference to the single currency LIBOR market model (see Section 19): While 
for the case of the domestic currency the corresponding term vanishes, it is 

necessary to provide an interpretation of m. p ( T m ' r ) + ' ~ r )  See also Section 19.2.3. 

' In the view of the domestic investor the foreign bond is not a traded asset. Only after conversion to 
the domestic currency by the applicable conversion rate F X ( t )  does the product become tradable for 
the domestic investor. This is also apparent from the fact that relative prices are dimensionless: While 
P(l ,+ l  .f) F X ( f )  . 

N ( f )  
I S  dimensionless, we find that - has the (physical) unit s. 
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We have not yet defined the value of the short period bonds P(Ti+l; t )  and P(T;+l; t )  
fo r t  # T,, j = 0, 1,2, .  . .. We do this now and define for Tj < t I Tj+1: 

P(Tm(t)+l ;  t )  := (1 + Ln1(,)(Tnz(/))  (Tm(t )+l  - t>)- ' ,  

m r n ( t ) + l ;  t )  := (1 + L m ( t ) ( T m ( t ) )  ( T m ( t ) + l  - WI. 
This concludes the definition of the numkraire. 

From this we find 

d dt, 

i.e., the term - has no diffusion part dW for T,  < t 5 T,,, . This is sufficient for 
the following derivation: The specific form of the drift does not need to be known. 

Indeed, it would be sufficient to require that P(T,+1; t )  and P(T,+, ; t )  have zero 
volatility, i.e., no diffusion part, in the short period t E (TI, T,+1]. No specific inter- 
polation is required. The zero volatility assumption for P(T,+l ; t )  and ~ ( T , + I ;  t )  on 
t E (T l ,  Tt+l] closes the definition of the LIBOR market model for all t E [TO, T1, . . . ) . 2  

Continuing with the derivation of the drift, we have 

d ( W,+I ; t )  F X ( t ) )  
N ( t )  

If we plug this into (29.3) and compare drift terms (the coefficients of dt) we get, 
together with (29.1) and (29.2), 

i 6;L; 
ci-iBj dWyN(t) dWyN(r)  

P(T,+ , ;  t )  F X ( t )  - + Ldn( - c ~ 

N(t) j=rn(t)+l 1 +G;tj 

+ @ ; r F X ( t )  d@yN(r) dW:i(t)). 

See [24]. 
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Denoting the interest rate correlation within the foreign currency by p i , j ,  i.e., 

d W y N ( t )  d y N ( t )  = P ; , j ( t )  d t  

and denoting the correlation of the foreign currency and the foreign exchange rate by 

dWFN(r )  dW; l ( t )  = P;,Fx(t)dt, 
&,FX? 

gives 

29.1.1.3 Dynamic of the FX Rate under Spot Measure 

For a given t E [T,n(r), T m ( f ) + ~ )  consider the foreign bond with maturity Tm(,)+l-the 
next possible maturity in our tenor discretization. Converting it to domestic currency 

its N-relative value F X ( t )  p("7i'"''f) N ( t )  is a martingale. Furthermore we have 

and thus 
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The drift p F X ( t )  thus depends on the chosen interpolation of the bond prices; see 
Remark 242. However, for its use in an implementation via a time discretization 
scheme it is not necessary to calculate the corresponding derivative after t ,  since 
only the integrated drift enters the time discretization scheme. For the integral 

A:'' p F X ( t )  dt we have 

i.e., it is independent of the interpolation of the bond prices. See also Section 29.3.3. 

29.1.2 Implementation 

We will discuss the implementation together with the equity hybrid LIBOR market 
model in Section 29.3.3. 

29.2 Equity Hybrid LIBOR Market Model 

In Chapter 4 we introduced the Black-Scholes model for a (single) stock. The stock 
S was modeled as a lognormal process: 

dS(t) = pS3'( t )S( t )  dt + >( t )S( t )  dWs.'(t) under the real measure P. 

We had assumed interest rates to be nonstochastic and constant and the chosen 
numkraire was then B( t )  := exp(r t ) .  Under the corresponding martingale measure 
QB we could then derive an analytic formula for the price of a European stock option. 

The pricing of products exhibiting optionalities related to both stock and interest 
rates requires joint stochastic modeling of the stock and the interest rates. If we chose 
as the interest rate model the LIBOR market model and as the stock process model the 
Black-Scholes model, then the construction of the joint model is simply the derivation 
of the drifts under a common measure. 

29.2.1 Derivation of the Drift Term under Spot-Measure 

As before, we choose as numkraire the rolled over one period bond: 

j=O 

where m(t) := max(i : Ti 5 t )  and S j  := Tj+l - Ti.  
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29.2.1.1 Dynamic of the Stock Process under Spot Measure 

The stock S is a traded asset, thus $ is a martingale under the equivalent martingale 
measure QN. From the product rule we have 

For TI  < t < T,+I let the bond price P(T,+,; t) defined (interpolated) as in Remark 242, 
i.e., 

P(T,+,;  t )  := ( I  + L,(T,) (T,+, - t))-l for T,  < t < T, ,~ .  

In this case 

Remark 243 (On the Numeraire Process i): Under the assumption that N ( t )  does 
not have a diffusion (i.e., dW) term, which is the case for the above definition of the 
short period bond, then d (h) = ($ h)  dt. Nothing else has been calculated above. 
See also Remark 242. 

Assuming that N does not have a diffusion (Le., dW) term, dS d (h) = 0 and from 

DriftQN ($) = 0 we find 



thus 

(29.4) 

Interpretation (Comparison to the Dynamic of the Black- 
Scholes Model): Using the numkraire B(t) := exp(r . t )  used in 
the Black-Scholes model (see Chapter 4) we had derived the drift of 
the stock process under the martingale measure QB as pS@ = r .  Equa- 

tion (29.4) is simply a discrete (and stochastic) version of this drift: For the average 
drift over one period [Ti, Ti+ 1 ] 

~ J:' pUS@(t) dt = log( 1) - log( 1 + L;(T;)) (T;+I - T; ) )  
1 

T,+I - Ti 

- - log(l + Li(TJ) V i + I  - Ti)) - 
T;+I - T; 

and for infinitesimal period lengths T;+l + T; we find-see Definition 103-that 

--+ r(T;) = pUS.QH, + L;(TO) (T;+l - T; ) )  
Ti+[ - Ti T,+I +T, 

I.e., 
pJ..Bh(t) + p S ' Q B ,  

T,+I +TJ 

41 

29.2.2 Implementation 

We discuss the implementation together with the previously discussed cross-currency 
LIBOR market model in Section 29.3.3. 

29.3 Equity Hybrid Cross-Currency LIBOR 
Market Model 

The models given in Sections 29.1 and 29.2 may be combined. This is now trivial 
since the numkraire and thus the martingale measure are the same in both models. 
Thus we have a unified model for interest rates, foreign exchange rates, foreign 
interest rates, and equity. We will now add the model of a foreign stock. Let 3 denote 
another stock process, modeling a stock from the foreign market, i.e., the process 3 
has the dimension (currency unit) Ifor. 
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29.3.1 Dynamic of the Foreign Stock under Spot Measure 

We assume that the foreign stock S follows a lognormal process 

dS(t) = p'.'(t)s(t) dt + IT' (t)S(t) dWS,p(t) under the real measure P. 

As in Sections 29.1 and 29.2, we chose as numkraire N ( t )  := P(7'm(r)+l; t )  n;":(l + 
L J ( T j )  . S j ) .  As for the cross-currency LIBOR market model, the foreign stock 3 has 
to be converted to domestic currency to be a traded asset for the domestic investor. 
That is, FX . a @-martingale. From 
the product rule 

is a traded asset and the N-relative price 

1 

N 
= d ( F X S ) - + F X s . d  

and 

d ( F X . s ) = d F X . s  + F X d S  + d F X d s .  

With the definition of the numkraire from Remarks 242 and 243 

and thus 

Drift (7) F X . S  
6" 

- - ( p F X  +p' + crFX(t) dWF:(t) crs(t) dW:"(t) + 
N 

If we denote the instantaneous correlation of the stock process s and the foreign 

we get with DriftQN (T) = 0: 

exchange rate process FX by p F X , ~ ,  Le., we have dWF;(t) dWs QN ( t )  = pFX,f dt, then 

With 
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and 

we get 

29.3.2 Summary 

Under the numiraire 

where m(t) := max{i : T; I r ) ,  and the assumption that N ( t )  does not have a diffusion 
part, as would be the case for 

the dynamic of the equity hybrid cross-currency LIBOR market model under the 
corresponding martingale measure QN (spot measure) is given by 

dL;(t) = L;(t) .pui(t) dt+ L;(t)a;(t) dWFN(t), 

dFX(t) =FX(t) . p F X ( t )  dt+ F X ( t ) r F X ( t )  dWF;(t), 

dti( t)  = t i ( t )  .P i ( t )  dt+ Ej(t)L?i(t) d v N ( t ) ,  

dS(t) = S(t)pS(t) dt+ S(t)c?(t) d e N ( t ) ,  

dS(t) = S(t)p’(t) dt+ S ( t )dS( t )  dWy(r),  

for i = 0,. . . , n - 1, 

for i = 0,. . . , n - 1, 



where 

29.3.3 Implementation 

Due to the many state variables, i.e., the high Markov dimension, it is natural to 
consider an implementation to be path simulation (Monte Carlo simulation). The 
first step toward an implementation is the discretization of the simulation time t by 
suitable discretization scheme. Since the processes are lognormal processes, we use 
the Euler scheme for the log process; see Sections 13.1 and 13.1.2.3. 

The discretization of the interest rate processes Li has been presented in Sec- 
tion 19.3, the interest rate processes of the foreign currency rates z; are discretized 
likewise. For F X  we find 

F X ( t  + At)  

1 
2 

f + A f  (l p U F X ( ~ )  - -cFX(?)* = F X ( t )  exp 
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with A W F X ( t )  := W F X ( t  + At) - W F X ( t )  and 

r+At 

p F X  ( t )  := .f p F X ( ~ )  d7 
At 

t+At 

vFX(~)’ dT 

If we especially choose the time discretization of the Monte Carlo simulation to 
match the tenor structure TO, T I ,  T2,. . ., then we have 

1 
F X ( T , + , )  = F X ( T , )  exp , P x ( ~ , )  AT, - - ( T ~ ~ ( T , ) *  AT, + c F X ( ~ , )  AW~’(T,) i 2 

with AT, := T,+I - T, and AWFX(T,> := WFX(T,+l> - W F X ( T , )  and 

1 + Li(Ti) . (T;+l - T; )  

1 + L;(T,) (T;+l - T; )  
= -log 

This Euler discretization is exact. The discretization of the processes S and 5; follows 
likewise. With “discrete drift term” 
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Part VII 

Implementation 
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CHAPTER 30 

Object-Oriented Implementation 
in JavaTM 

From early on, we wanted a product that would 
seem so natural and so inevitable and so simple, 
you almost wouldn’t think of it as having been 
designed. 

Jonathan Ive 
iPodTM Design Team, Apple Computer [37] 

30.1 Elements of Object-Oriented Programming: 
Class and Objects 

First we define the two concepts class and object. 

Definition 244 (Class): 
A class consists of 

a A description of a data structure. 

A description of a set of functions, the methods that act on the data structures 
and other data (given as arguments). The description of the methods consists of 

- A description of the calling convention of the methods, the interface; see 

- A description of how the method (function) actually acts on the data, the 

Section 30.1.3 and Definition 247. 

implementation. 
J 
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Definition 245 (Object): 
We say that X is an object of the class K ,  if 

1 

0 X provides memory to store data according to the structure (layout) described 
by K and 

0 the methods described in K may be applied to the data in X .  

In this case, K is also called the Qpe of X .  A 

Interpretation: A class is the blueprint of an object, while an object 
is a real instance of the class. 

Considering how classes and objects are realized in a computer, it 
becomes apparent that an object X of class K merely stores the data 

according to the storage layout in K ,  while the algorithms (code) that operate on X 
are given by K .  The class is a description of the storage layout and the functionality, 
while the object represents the corresponding data record. The definition of a class 
exists only once, while the object of a class (data records) may exist multiple times. 
Class and object distinguish between logic (code) and data. Obviously, the logic, i.e., 
the class, has to know the layout (structure) of the data. 

To illustrate the relation of classes and objects some authers use an analogy like, 
e.g., human is a class while the specijic individual “Christian Fries” is an object 
of the class human. Such analogies do not hold very far. For example, it does not 
become apparent that an object is just a data storage, disfunctional without the class 
and that the code, i.e.; the algorithm that acts on the data exists only once, namely 
inside the class. However, each individual has its own experiences (data) and patterns 
of (re-)action (code processing experiences). 

That the code is stored only inside the class also becomes apparent in the memory 
requirements: If we add a data field to a class and create 100 objects (instances) of 
this class, then, of course, this consumes 100 times the memory of the new data field. 
If a new method is added to a class, then its code is stored only once and the memory 
requirement is totally independent of the number of objects created. 

As well as the data described in the class, an object carries another data item, 
namely its type. This type specifies the class of the objects. Thus there is a link 
back from the object to the class and thus to the methods that may be invoked on the 
objects’ data. 4 

30.1.1 Example: Class of a Binomial Distributed Random 
Variable 

Let B denote a binomial distributed random variable defined over a probability space 
(R, 7, P )  with R = ( W I ,  ~ 2 ) .  Probability space and random variable may be charac- 
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terized by three values bl , b2, p E R: 

(30.1) 

Equation (30. I )  describes the class of “binomial distributed random variables” while 
the random variable C with 

C ( W ~ )  = 1, P ( w ~ )  = 0.5, 

C ( W ~ )  = -1, P ( w ~ )  = 0.5, 
(30.2) 

is a (specific) object, i.e., an instance of the class “ binomial distributed random 
variable”. Of course, operators that may be applied to this random variable have to be 
defined only on the class level. For example, the calculation of the mean is defined by 

Ep(B) = 1, B d P  = p B ( w I )  + (1 - p )  B ( 4  = p bl + (1 - p )  b?. (30.3) 

That E(C) = 0.5 x 1 .O + 0.5 x (- 1 .O) = 0.0 follows from (30.3). 
In JavaTM a corresponding class could look as follows: The class definition starts 

(after a comment) with the description of the data layout, here valuel, value2 and 
pobabilityOfState1 for bl ,  62, and p ,  respectively. 

Listing 30.1. BinomialDistributedRandomVariable: A class for binomial dis- 
tributed random variables 

1 

followed by the constructor 
/ * a  

* This class implements a binominal distributed random variable 
* @param valuel The value in state 1. 
* @param value2 The value in state 2. 

”/ 
@param probabilityOfState1 The probability o f  state 1. 

public BinomialDistributedRandomVariable(doub1e valuel, double value2 
double probabilityOfState1) { 
this.value1 = valuel; 
this.value2 = value2; 
this.probabilityOfState1 = probability0fStatel; 

1 

1 

3 
4 
5 
6 
1 
8 
9 
10 
I I  

15 

17 
18 

21 
22 
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and the description of the method getExpectation. 

80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

30.1.2 Constructor 

The constructor of a class is a (special) method that is called upon the instantiation 
(construction) of an object (there may be many different constructors and then it is 
possible to choose which constructor is called). With a constructor it is possible to 
do additional initializations beyond the allocation of the memory-in our case the 
initializations are setting the value of bl, b 2 ,  and p .  

The code of the above constructor of the class 
BinomialDistributedRandomVariable may be confusing: The arguments 
of the constructor have the same names as the data fields of the class. This is allowed 
and is often used for data initialization in constructors, but it is dangerously confusing 
in other methods with longer code. In this case the corresponding name always 
denotes the argument of the constructor (or method). To access the data field with the 
corresponding name the prefix this. has to be added. So the constructor above sets 
the data fields of the object to the values given by the arguments. 

30.1.3 Methods: Getter, Setter, and Static Methods 

30.1.3.1 Calling Convention, Signatures 

The calling convention of a method is the name of the methods together with the list of 
its argument types, i.e., the calling convention defines which name and argument type 
have to be used to call a method. The list of argument types is called the signature 
of a method. Two methods of the same name but with different signatures are seen 
as different methods. Providing another method with the same name but a different 
signature is called overloading the method. I 

' Within a class there cannot be two methods with the same name and the same signature. The return 
value may not be changed by overloading. 
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30.1.3.2 Getter, Setter 

If the data fields of an object are made accessible, then they may be accessed through 
objectName.dataFieldName, i.e., they may be read or modified. The access to 
the data fields of an object may be allowed or denied; see also data hiding in Sec- 
tion 30.2.1. 

After an object has been constructed data fields may still be changed by means of 
methods. We may set the data or get the data. Methods that do this are called setter or 
getter. It is a convention that all getter methods start with the prefix get and all setter 
methods start with the prefix set, both followed by a name of the entity they modify, 
starting with a capital letter. 

We add a setter for the value of bl to the class definition: 
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The method only changes the state of object and thus does not return a value. This is 
indicated by the keyword void. 

30.1.3.3 Static Methods 

Methods that do not require knowledge of the data fields of an object, i.e., that do  
not read or modify data from an object, are called static methods. Put differently, the 
method does not need an object; it is sufficient to have the class definition. 

Definition 246 (Static Method): 
A method of class K which keeps objects of the class K invariant and is independent 
of its data is called static. A static method is also called a class method. A 

1 

In JavaTM method is declared static by the keyword static. 

To apply the (nonstatic) method to data we (have to) create objects. A corresponding 
code, demonstrating how to work with object of the toy class above by doing some 
tests is given in the main method2. 
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The main method may be called from outside without requiring a corresponding object. It is sfatic 
Thus (especially since it does not require the existence of an object) it may function as a possible entry 
point to a program. 
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In line 33 we create a new object of the type 
BinomialDistributedRandomVariable by using the keyword new (reserv- 
ing the memory corresponding to the data layout) followed by the specification of the 
constructor to use (note that the constructor is essentially a method having the same 
name as the class) (right side of =). The result is stored in an object reference of type 
BinomialDistributedRandomVariable (left side of =). 

Further Reading: In [ 1 1, 361: primitive types, object references, 
static methods (the keyword s t a t i c ) ,  return values (the keyword void),  
the main method, comments, and the JavaDoc standard. 4 

30.2 Principles of Object Oriented Programming: 
Data Hiding, Abstraction, Inheritance, and 
Po I y m o r p h ism 

30.2.1 Encapsulation and Interfaces 
To access the data of an object there are two possible ways: One is to provide two 
(or more) methods that allow us to read and modify the data, i.e. getters and setters 
are implemented. In our example class BinomialDistributedRandomVariable 
we provide an example of this for the data field p r o b a b i l i t y o f s t a t e l :  

Listing 30.2. Getter and setter 
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The use of these methods could look as follows: 

Another possiblily is to use the direct access to the corresponding data field: 

The last variant works without special methods3 It is the direct access to the internal 
data of the object. 

This kind of access to the data structure appears to be more convenient for both the 
developer who does not need to implement special getter and setter methods as well 
as for the user of the class. Direct access to the internal data structure of a class has 
to be allowed explicitly. To allow direct access to a data field the keyword p u b l i c  
has to be used: 

30.2.1.1 Encapsulation 

Hiding the internal data structure and implementation and thus denying direct access to 
the data structure is called encapsulation. The fundamental advantage of encapsulation 
is that the data structure and the way the methods process that data may be changed. 
Users of the class, having access to methods on the objects only, may be left untouched 
by such changes. From “outside” the class behaves as before. 

The advantage of encapsulation may be illustrated with the very simple example of 
a binomial distributed random variable. We give two examples. 

As long as access to the data is allowed, in JavaTM this is done by adding the keyword public before 
the data. 
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Example of Encapsulation: Offering Alternative Methods: Like the getter 
and setter for the probability P ({wl} )  of the state W I  we offer a getter and setter for 
the probability P((wz})  of the state w2: 
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Previously, the state W I  was distinguished by the methods available (only its prob- 
ability p could be read) and the probability of the state w2 was a derived quantity 
P ( [ w 2 } )  = 1 - p .  Now both states are equally represented. How the properties of 
a binomial distributed random variable are represented internally, i.e., how the data 
is stored, cannot be inferred from outside. It is possible to change the data layout 
and keep the specification (behavior) of the methods unchanged by adapting their 
implementation. 

Example of Encapsulation: Performance Improvement by Adding a 
Cache to the Internal Data Modell: The data model described in Listing 30.1 
consists of B ( w l )  (valuel), B(wz)  (value2) and P({wl})  (probabilityofstatel). 
As a consequence we have to calculate the expectation as 

This is done by the method getExpectation0. If this method is called very often, 
we may improve performance by calculating the result once and storing it in a cache. 
We add a data field mean as cache 

which is updated to the mean by the method updateMean 
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In addition we add a call to updateMean0 at the end of the constructor as well as at 
the end of any setter modifying the state of the object, i.e., modifying the data. This 
ensures that the field mean contains the valid mean. The method getExpectation 
does not do any calculations but merely returns the value from the cache mean: 

A multiply call to getExpectation does not result in a multiple calculation of the 
(same) mean. 

Obviously, the user must not gain access to the field mean of a corresponding mean. 
This would be fatal. The lines 

would put the object randomvariable into an inconsistent state. The user must 
neither assume the existence of a cache nor manipulate it. Thus both mean and 
updateMean are declared private. All other data fields also have to be declared 
private. If they are changed, then mean has to be recalculated. This is ensured by 
adding a call to updateMean to any setter. A direct manipulation of the data fields 
would disable this. 

30.2.1.2 Interfaces 

The advantage of encapsulation is that the internal data layout may be changed if 
required. By adapting the implementation of the methods which is also hidden it is 
ensured that the methods offer the same functionality as before. For the user of (the 
objects of) a class it is only relevant to know the calling convention of the methods, 
the interface. 

Definition 247 (Interface): 
The description of the calling convention of methods is called the interjiace. Similar 
to Definition 244 an interface consists of 

0 A description of the calling convention of a set of functions, the methods. 

1 

Definition 248 (Encapsulation): 1 

If a class offers its functionality only through an interjiace, then we call the class 
encapsulated. This is called encapsulation. 1 

An example of an interface for an discrete real-valued random variable, i.e., a 
real-valued random variable defined over a space C2 = (w1, . . . , wn) ,  is given by: 
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Listing 30.3. DiscreteRandomVariabl eInterface: Interjiace description of a 
discrete random variable 

Further Reading: In [ l l ,  361: The keywords public, private, 
dl and protected for data fields and interfaces. 

30.2.2 Abstraction and Inheritance 

Interface and class are two extremes and something in between may be considered, 
namely classes in which some methods have an implementation, while others are 
given only through their calling convention (i.e., as an interface). Methods for which 
the implementation is not yet specified are called abstract methods. 

An example may be given by considering the interface 
DiscreteRandomVariableInterface above: The implementation of ex- 
pectation and variance may be added without the knowledge of the internal data 
layout of the class. It is possible to add a partial implernentati~n.~ 

Listing 30.4. Di scre  t eRandomVari abl e: Abstract base class for a discrete random 
variable 

' An abstract class does not need to have any data layout. 

444 



To define a class which provides an implementation to the interface 
DiscreteRandomVariableInterface is is only necessary to extend the class 
DiscreteRandomVariable with the implementations of the remaining abstract 
methods. This is possible in an elegant way by specifying that the new class should 
inherit the already defined properties from DiscreteRandomVariable. By doing 
so we may define a (new) class for the binomial distributed random variable: 

Listing 30.5. BinomialDistri butedRandomVariab1 e: derived from 
DiscreteRandomVariabl e 
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Inheritance is not limited to the implementation of abstract methods, i.e., inheriting 
from abstract classes. It is also possible to inherit from a class (not necessarily abstract) 
and to extend this class by a new data layout, new methods, or new implementation 
of existing methods. 

Definition 249 (Inherited Class): 1 

Let A and B denote classes. B is called inherited from A, if B implements (at least) the 
interface of A. B is also called derived class. A is called base class, also superclass. 

If class B is inherited from A, then all objects of type B are simultaneously objects 
of the type A ;  they are polymorph; see Definition 25 1. J 

A convenient element of inheritance is the possibility of using the implementation 
of the base class by default. If the derived class does not provide an implementation 
for a base class method, then the implementation is inherited from the base class. To 
be precise, a call to a method on an object of the derived class is routed automatically 
to the base class object if the derived class does not provide an implementation. The 
method then works on the data fields of the base class object. 

Definition 250 (Overwriting (a Method)): 1 

Supplying a new implementation to a method of a base class in a derived class is 
called overwriting the method. J 

30.2.3 Polymorphism 

The property that objects of a derived class are of multiple types is very important. 
Since the derived class implements the interface defined by the superclass, objects 
of the derived class’s type may be used equally well in all applications of base class 
objects. This is possible and meaningful because these objects may simultaneously 
be seen as objects of type A (type of the super class) and as objects of type B (type of 
the derived class). We say that these objects are polymorph.’ If a base class is itself a 
derived class, then objects of the derived class have all types of all base classes. 

Definition 251 (Polymorph): 1 

An object is called polymorph if it is of multiple type and behaves according to its 
derived type, even if it is used in a context (originally) expecting a base class. J 

Objects are polymorph, i.e., of multiple types, not classes. 
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The importance of polymorphism becomes apparent in the method call of polymor- 
phic objects. Method calls on polymorphic objects use what is called lure binding. 
There a method call on a polymorphic object is routed to the implementation of the 
derived class even if the call is invoked in a context originally expecting a base class. 

Remark 252 (Interface, The Message Paradigm): The concept of an interface is 
a central concept of object-oriented programming. Inheritance is to some extent only 
a short way of saying that a class offers a superset of the interface of another class, 
where the shortening is that for methods that do not have an implementation in the 
derived class the implementation in the base class is used as a proxy. 

For inheritance (in JavaTM) there is also the concept of the type of an object (and 
thus the concept of polymorphism). In JavaTM it is possible that two objects of two 
different classes providing methods with identical calling conventions, i.e., providing 
the same interfaces, are not interchangeable in their use since they are of different 
types. If this additional restriction (type safety) is left out, then the only characteristic 
of a class is the interface provided. The calling convention of a method is often 
interpreted as a “message which may be received by an object”. Some programming 
languages do not have the concept of type safety and distinguish objects only by the 
messages they may receive. Nice examples are Smalltalk and Objective-C. 

Further Reading: The JavaTM keywords private, protected, 
public, void, static, final, implements, extends, package, and 
import in [ I  1, 361. 4 
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30.3 Example: A Class Structure for 
One-Dimensional Root Finders 

We consider the problem of finding a root6 of a function f : R + R. The algorithm 
for seeking the root is realized in a class that does not know the special shape of the 
function. Instead we realize a question-answer pattern: In each iteration the class 
proposes a value x (through a getter) for which it awaits the function value to be 
set, i.e., the class questions the function value f(x) for a (chosen) x and develops a 
strategy for approaching the solution from the answers. 

30.3.1 Root Finder for General Functions 

30.3.1.1 Interface 

Such a class has to provide a method that returns the suggested point x (double 
getNextPoint ()) and a method that receives the corresponding value f ( x )  (void 
s e t v a l u e  (double)). Together with some methods for controling the iteration 
(counting, accuracy achieved) we have to provide the following interface: 

Listing 30.6. RootFinder: Interface f o r  a one-dimensional root$nder 

' .r is a root of , /  if , f (x)  = o 
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We still have no data layout and no specific implementation. RootFinder only 
describes the inteqace. Obviously, a class implementing a root finder according to 
this interface has to have some storage on the current state of the search (say a data 
field for the current x) to derive a strategy for seeking the root. Which strategy is 
used (the implementation) and which information is needed for the strategy (the data 
layout) is not required in order to use it. It is sufficient to know the interface. Thus 
we may write a method that tests a given RootFinder against some test function f 
without actually having a specific class implementing the RootFinder: 

Listing 30.7. Test for  RootFinder classes 
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30.3.1.2 Bisection Search 

A simple root finding algorithm is the bisection search. 

Definition 253 (Bisection Search): 
Given a continuous function f : IR H R and X I ,  x2 with f(x1) f ( n 2 )  < 0. The 
sequence 

1 

is called bisection search. J 

The class Bisectionsearch realizes this algorithm by implementing the interface 
RootFinder. A corresponding code is given in Appendix D. 1. 

30.3.2 Root Finder for Functions with Analytic Derivative: 
Newton’s Method 

Some root finding methods, like the Newton method, require knowledge of the 
derivative f’ = 2. The “search strategy” of the Newton method is 

30.3.2.1 Interface 

Obviously a corresponding class has to implement a slightly mod- 
ified interface. Instead of a method setValue(doub1e value) 
the interface RootFinderWithDerivative provides a method 
setValueAndDerivative(doub1e value, double derivative). 

30.3.2.2 Newton Method 

The class NewtonsMethod implements the interface RootFinderWi thDerivative 
using a Newton method. For the Newton method the corresponding implementation 
looks as follows: 

Listing 30.8. NewtonsMethod: Implementing the RootFinderWi thDeriva t i  ve 
integace 
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30.3.3 Root Finder for Functions with Derivative 
Estimation: Secant Method 

30.3.3.1 Inheritance 

The power of inheritance and interfaces becomes apparent in the following realization 
of the ,secant method. The search strategy of the secant method is 

From that, two aspects become apparent: 

0 The secant method is a Newton method with an estimate for the derivative: 
f ’ ( x , )  ~ f ( r O - f ( x t - 1 )  

x,--l,-1 

0 In each iteration the secant method only required knowledge of the function 
value , f(xi) for the proposed point xi. 

For the class, these properties translate to: 

0 The secant method extends the class NewtonsMethod by an estimator for the 
derivative. 

0 The secant method implements the RootFinder  interface. 

Thus, a corresponding class would look as follows: 
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Listing 30.9. SecantMe thod: Implementing the RootFinder interface 
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Remark 254 (SecantMethod): Note that in our implementation of the secant 
method we stored the current point x of each iteration in a field cur ren tpoin t .  This 
is not necessary, as we could have used the field nextpoint  from the base class 
NewtonsMethod. However, then we have to make the field visible to the derived 
class.7 Using the additional field cur ren tpoin t  makes the derived class independent 
of the data model of the base class (but also a bit less efficient since the point is stored 
twice). 

30.3.3.2 Polymorphism 

The class SecantMethod shows how polymorphism works. Objects of the class 
SecantMethod are simultaneously objects of the class NewtonMethod, since 
SecantMethod inherits from NewtonMethod and thus offers the corresponding 
interface. Thus the class SecantMethod not only implements the interface 
RootFinder but also implements the interface RootFinderWi thDerivat ive 
as a Newton method. With respect to the interface 
RootFinderWithDerivative behaves like a NewtonMethod (by routing calls to 
the base class); with respect to the interface RootFinder it implements the secant 

It is truly polymorphic. 

’ It would be sufficient to declare the field protected, a weaker form of public making it visible only 
to derived classes. 
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method. That the class SecantMethod may act like a NewtonMethod is not surpris- 
ing: We did not change any method of the interface of the base class (no method has 
been overwritten). This is also apparent in out test program Listing 30.10, testing all 
the root finders; see Listing 30.1 1. 

Remark 255 (Inheritance: Specialization and Extension): The construct “B 
inherits from A” is often interpreted as “B is an A”. For example, “a discrete random 
variable is a random variable” or “a binomially distributed random variable is a 
discrete random variable”. The motivation for this “mnemonic trick” is the conception 
that the derived class B is a specialization of the base class A.  This interpretation may 
help us to design a class hierarchy, but it is not universal. For example “the secant 
method is a Newton method” appears to be wrong. The use of “. . . extends . . . ” in 
place of “. . . is a(n) . . . ” is much more universal. For example: “The secant method 
extends the Newton method by an approximation for  the derivative” makes sense. 
And in JavaTM the corresponding keyword is extends. 

We test the implementation of our root finders with the class TestRootFinders. 
Since there are only two different interfaces we have to write only two different test 
routines: 

Listing 30.10. Test for Roo tFinder and RootFinderWi thDeri va t i  ve classes 
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Listing 30.11. Output of the teest 30.10 
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30.4 Anatomy of a JavaTM Class 

In Figure 30.1 we show (part of) a JavaTM class with the most important elements. 
Before the declaration of the class the name of the packet to which the class belongs 

is specified. The full class name is the concatenation of the packet name and the class 
name and it should be unique. To achieve this, the packet name is often derived from 
the Internet address of its creator. 

This is followed by the specification of other classes used in the declaration of this 
class by means of the keyword impor t  followed by the full class name. 

The declaration of the class starts with the keyword class followed by the class 
name and introduced by the keywords ex tends  and implements the optional speci- 
fication of a base class and the implemented interfaces. If the specification of a base 
class is missing, then j ava  . l ang  . Objec t  is used as a base class. Thus all objects 
inherit directly or indirectly from j a v a .  l a n g  .Ob jec t .  

Following is the declaration of the data layout by a list of data fields, also called 
attributes. An attribute is defined by the specification of its type (primitive types, like 
double,  i n t ,  etc., or a class) and its name. To determine its visibility (encapsulation) 
it may be preceded by the keywords p r i v a t e ,  p r o t e c t e d ,  or p u b l i c .  Without such 
a keyword the visibility p r i v a t e  is assumed. 

The remainder of the class declaration consists of the declaration and implementa- 
tion of the constructors and methods. The method name is preceded by the type of the 
return value (or vo id  for a method without return value). This may be preceded by 
further keywords (visibility: p u b l i c ,  p r i v a t e ;  declaration as class method: s t a t i c ;  
prevention of overwriting: f i n a l ) .  A constructor is a method for which the name 
corresponds to the class name. It is p u b l i c  and has no return value (the keyword 
v o i d  is missing, however).* 

Actually, the object created should be viewed as the return value of the constructor. 
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Figure 30.1. Anatomy of JavaTM class. 
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30.5 Libraries 

A major advantage of JavaTM is its rich set of class libraries, which may easily be 
incorporated due to their unique package name and clear interfaces and often coming 
with a JavaDoc documentation. Not only are basic data management classes like 
collections available but also numerical libraries with algorithms from linear algebra, 
statistic and stochastic. 

30.5.1 JavaTM 2 Platform, Standard Edition (j2se) 

The packets j ava . ;k of the JavaTM 2 Platform, Standard Edition, offer basic function- 
alities, especially for the management of lists, strings, and files. 

30.5.2 JavaTM 2 Platform, Enterprise Edition (j2ee) 

The packets j avax . * of the JavaTM 2 Platform, Enterprise Edition, provide function- 
alities for the graphical user interface Swing and Internet communication. 

30.5.3 Colt 

The Colt library offers in the packets cern. c o l t .  functionalities from linear alge- 
bra (matrix multiplication, matrix inversion, eigenvector decomposition) and in the 
packets cern. j e t .  $c functionalities from stochastics (random number generators, 
distribution functions). 
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30.5.4 Commons-Math: The Jakarta Mathematics Library 

30.6 Some Final Remarks 

30.6.1 Object-Oriented Design (OOD)/Unified Modeling 
Language (UML) 

Two key advantages of object-oriented programming are the modularization of the 
solution of a problem by encapsulation and abstraction and the reuse and extensibility 
of the solution of a problem by inheritance and polymorphism. Clean interfaces allow 
the independent development, refinement, and optimization of parts, independent both 
in time and personal. 

Working out an object-oriented solution starts with the definition of the interfaces. 
These should provide an efficient communication of the objects. The design of the 
interfaces (and from that the classes) is called object-oriented design (OOD) [ 141. For 
the design of more complex solutions a graphical language may be used (a convention 
of symbols): the unijied modeling language (UML) [28]. 

Further Reading: 
in [14], and UML in [28]. 

On the object-oriented design: Design patterns 
4 
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APPENDIX A 

A Small Collection of Common 
Misconceptions 

In a one-factor model a flat interest rate curve stays flat (a 
steep curve stays steep, an inverse curve stays inverse) 

This assumption is wrong with respect to multiple aspects. If the diffusion part 
(u dW) only allows a parallel movement of the interest rate curve, then the shape of 
the interest rate curve at a future time is given by the initial interest rate curve, the 
parallel movements of the interest rate curve, and the drift. The drift will change 
the shape of the interest rate curve. For example, a flat interest curve becomes steep 
under a one-factor LIBOR market model. In addition, a time structure of volatility 
allows parts of the movements of the interest rate curve to be independent. See also 
Chapter 25. 

Specifying an interest rate model as short-rate model 
imposes a restriction. A short-rate model is incomplete 
since it models the short rate only 

This is wrong. = 

exp(A'r(T) dT) all bonds are given by P ( T ; t )  = EQB(B(T)-'  I E) .  Thus, in the- 
ory, the bond price curve T H P(T;  t ) ,  i.e., the interest rate curve, may be derived 
from the short-rate dynamics under the measure QB. The short-rate dynamic gives 
a complete description of the interest rate curve dynamic. Conversely, any HJM 
model may be written as a short-rate model (this holds also for the LIBOR Market 
Model). However, the drift may then be path-dependent. The possible shapes of the 
interest rate curve are restricted, imposing special requirements on the model (e.g., 

Under the martingale measure QB with numkraire B ( f )  
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the assumption of a Markov property of the short-rate process). See also Section 22.1, 

An ~1 factor model may be implemented in a lattice with ~1 

space dimensions 
This is not necessarily the case. The amount of state space dimension necessary is the 
Markov dimension of the model, i.e., the number of state variables that are required 
to give the model as a Markov process. The Markov dimension may be significantly 
higher than the number of driving Brownian motions. Examples are given by the 
LIBOR market model and the Cheyette model. 

In an n-factor (Monte Carlo) model the option value at time 
t > 0 can be described by an n-dimensional state vector 
(e.g., when pricing a Bermudan option by regression 
methods) 

This is not necessarily the case. The reasoning corresponds to the previous consid- 
erations regarding the meaning of the number of factors. Also consider the counter- 
example from Figure 21.2, that a one-factor model may generate at maturity forward 
rates that are completely independent. 

The LIBOR market modell exhibits no mean reversion 

It is not reasonable to expect a mean-reversion term in the process for the forward 
rates, since the drift of the forward rates is given by the no-arbitrage requirement 
(martingale property). In this context, the property of being mean reverting makes 
sense only for the short rate. In a LIBOR market model the short rate may indeed 
exhibit a mean reversion. This is determined by the specific volatility structure of the 
forward rates. See also Section 25.3. 
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APPENDIX B 

Tools (Selection) 

B.1 Generation of Random Numbers 

This section will consider the generation of (pseudo-)random numbers and shows 
how to construct a Monte Carlo simulation from these. There are numerous methods 
to generate random numbers and Monte Carlo simulations and a discussion of the 
various aspects of the quality of random numbers will not be discussed. We will give 
only an example based on the Mersenne twister. However, the methods presented are 
sufficient for most applications. 

B.l . l  Uniform Distributed Random Variables 

B.l . l . l  Mersenne Twister 

A very popular (and also very good) random number generator for [0,1]- 
equidistributed random numbers is the Mersenne twister (MT 19937). The random 
number generator has a period length of 219937 - 1, i.e., the random numbers generated 
repeat for the first time after 219937 samples. The random numbers are also equidis- 
tributed in high dimensions (up to 623); see [87]. Based on the MT 19937 we may 
thus generate an n-dimensional stochastic process by drawing n sequential random 
numbers in each time step to calculate the increments of the stochastic process.' 

Many libraries contain an implementation of the MT 19937. For the most popular 
languages it is available as source code. 

' See also the remark at the end of Section B.1.5. 
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B.1.2 Transformation of the Random Number Distribution 
via the Inverse Distribution Function 

If Z is an [0, I]-equidistributed random variable and CJ a cumulative distribution 
function, then X := V'(2) is a random variable with a distribution given by CJ. If 
a random number generator for equidistributed random numbers is given (e.g., the 
Mersenne twister), then we draw realizations Z(wi), i = 1,2, .  . . and obtain from 
W ' ( Z ( w i ) )  realizations of X .  Thus, in addition to an [0, 11-equidistributed random 
number generator, we only require an inverse distribution function. 

B.1.3 Normal Distributed Random Variables 

B.1.3.1 Inverse Distribution Function 

The density of the standard normal distribution is 4(x) := I exp( - $), the 6 
(cumulative) distribution function is @(x)  := s-", 4(5) q. The algorithm described 
in [97] gives an approximation 6-' of CJ-' with a relative error of 

B.1.3.2 Box-Muller Transformation 

The Box-Muller transformation transforms two independent [0, 11-equidistributed 
random numbers into two independent normally distributed random numbers. 

Lemma 256 (Box-Muller Transformation): 
[0, 11-equidistributed random variables, then 

If z1 and z2 are two independent 

XI := pcos(B), x2 := p sin(@) 

withp := 4- and B := 2nz2 two independent normally distributed random 
variables with mean 0 and standard deviation 1. 

B.1.4 Poisson Distributed Random Variables 

B.1.4.1 Inverse Distribution Function 

The cumulative distribution function of the Poisson distribution is @(T) := 1 - 
exp (- 6 R( t )  dr), where R denotes the intensity. If R is constant then 

log(1 - 2 )  
CJ-I(z) = - 
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If q is the probability that an event will occur in the interval [ T I ,  Tz] and if A is 
constant, then 

log(l - q) 
T2 - TI 

A = -  

B.1.5 Generation of Paths of an n-Dimensional Brownian 
Motion 

Let To < T I  < . . .  < T,,, denote a given time discretization. We wish to generate 
the realization of an N-dimensional Brownian motion W := (Wl , . . . , W,,) on sample 
paths w~ , . . . wk. For a single path we have to draw n . m  random numbers. To generate 
the n . m-tuples we use the Mersenne twister and apply a transformation. 

Let (zi];=l,2,... denote the sequence of [0, 1 1-equidistributed random numbers drawn 
from the Mersenne twister. Then { @ - I  (zi)} i=l,z,, , ,  is a sequence of standard normally 
distributed random variables. If no rma lDis t r ibu t ion  . nextDouble () is a method 
returning a new element of the sequence { W ' ( z i ) ] f = l , 2 , , , ,  upon each call, then a time- 
discrete Brownian motion is generated by the code in Listing B. 1. 

Tip (Generation of Paths of Time-Discrete Stochastic Pro- 
cesses): The Mersenne twister is equidistributed in 623 dimensions. 
How well this property is preserved in higher dimensions is not clear. 
For an n-dimensional Brownian motion with independent increments, 

we have first the requirement that the increments are derived through a transformation 
of independent equidistributed random variables. For this reason it is advisable to 
generate the random numbers of the IZ increments of the n-dimensional processes in a 
sequence (i.e., as an n-tuple). Furthermore we have the requirement of the temporal 
independence of the m increments of the stochastic process, here the increments 
AW(T,)  := W(T,+l) - W(T; )  of the Brownian motion. Thus, a path w corresponds to 
the realization of an n . m-dimensional random variable, here 

In other words, if we have to generate paths of an n-dimensional process with m 
time steps, then we draw an n . m-tuple for every paths. This requires the random 
number generator to create the desired distribution in n . m dimensions. Thus, the 
high dimension of the Mersenne twister is of interest to our application. With the 
Mersenne twister we may, e.g., generate a 7-dimensional process with 89 time steps 
(7 x 89 = 623).2 

4 Thus, the order of the loops in Listing B. 1 has been chosen deliberately. 

' Not all 623 dimensions have to be used, although in this example this would be the case 
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Listing B. l .  Generation of an n-dimensional Brownian motion 
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Further Reading: For the generation of random numbers, especially 
in the context of Monte Carlo simulations and derivative pricing, see [ 181. 
Packground information on the Mersenne twister and references to 
its source code and libraries may be found in the Wikipedia article 

“Mersenne twister”, http: //en. wikipedia. org/wiki/Mersenne-twister. a1 

B.2 Factor Decomposition-Generation of 
Correlated Brownian Motion 

Lemma 257 (Factor Decomposition): Let R = @;,,);,j=l..., denote a given correla- 
tion matrix. Thus R is symmetric and positive semidefinite. This implies that R has 
real eigenvalues A1 2 . . . 2 A, 2 0 and that a corresponding orthonormal basis of 
eigenvectors V I ,  . . . , v,, of R exists, i.e., 

21 0 

3 V :  VTRV = D := [ ; ... 0 1 ,  where V = (VI , . . . ,  v,), 

and R = VDVT as well as VTV = I .  

W with 
Let U I ,  . . . , U, denote independent Brownian motions, U := ( U l ,  . . . , U,,)’. Then 

dW:=(dW1,... ,dW,)T := V G d U  

is an n-dimensional Brownian motion with 

< dW;, dW, >= p;,j dt. 

With F := (VI  a,. . . , v, a) we thus have dW = F dU. 

Proof: Obviously, a correlation matrix is symmetric and thus its eigenvalues are all 
real. If R is the correlation matrix of the random variable vector X = (XI, . . . , Xn)T 
with Var(X;) = 1 and E(Xi) = 0, then R = E(X . X’). If v; denotes the eigenvector 
corresponding to the eigenvalue Ri, then 

E(IIXTvill:2) = E(vTX . XTvi) = v:Rvi = Rillvilli 

and thus 

Thus, R is positive semidefinite and dW := V @ d U  is well defined. 01 
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B.3 Factor Reduction 
Using the construction of correlated Brownian motion discussed in Section B.2, we 
may reduce the number of relevant factors (i.e., the number of nonzero eigenvalues), 
while keeping the correlation structure close to the original correlation structure. Let 
R, V ,  D be as in Section B.2 and m < n.  Using 

( f i , .  . . , f n )  = F = V f i ,  f i  = (&,;);=I 

i.e. the n x m matrix F' is calculate from the n x m matrix (v1 fi, . . . , v,, G) by 
re-normalizing the n rows. 

Let U I ,  . . . , U,, denote independent Brownian motions, U := ( U l ,  . . . , U,,l)T. Then 
W defined by 

is an n-dimensional m-factorial Brownian motion. 

renormalization of the components. 

Remark 258 (Factor Reduction): The magnitude of the absolute value of the 
eigenvalue of A,  represents the importance of the corresponding factor fi. It may be 
used to decide upon the number of factors to use. A simple example is given by the 
limit case of perfect correlation P , , ~  = 1. The corresponding correlation matrix has one 
eigenvalue n corresponding to the eigenvector (1,. . . , 1) and an n - l-fold eigenvalue 
0 corresponding to the orthogonal space. This implies that the dynamic of the n- 
dimensional Brownian motion may be explained by a one-dimensional Brownian 
motion (one factor). 

In Figure B. 1 we depict a reduction to the first three factors for the case of a high 
correlation p, , ,  = exp(-0.005 * li - j l). However, if many factors with relatively high 
weight (eigenvalues) are neglected, then the factor reduction has a significant impact 
on the correlation structure (see Figure B.3) as well as on the shape of the remaining 
factors (see Figure B.2). 

dW := (dW1,...,dWn)T := F'dU 

The factor reduction corresponds to a pricipal component analysis followed by a 

Experiment: 
matrix may be studied for different Correlation structures at 
http://www.christian-fries.de/finmath/applets/ 
FactorReduction.htm1. 4 

The impact of a factor reduction on the correlation 
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Figure B.l. Factor reduction in the case of high correlation: The factors J (eigen- 
vectors) ofthe correlation matrix pi,, = exp(-0.005 * li - j l )  (left) and a reduction to 
the three factors having the largest eigenvalues (right). 

Figure B.2. Factor reduction in the case cf low correlation: The factors J (eigenval- 
ues) of the correlation matrix p i , i  = exp(-0. 1 * li - j l )  (left) and a reduction to the 
two factors having the largest eigenvalues (right). 
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Figure B.3. Factor reduction in the case c.flow correlation: The original correlation 
matrix pi,; = exp(-0.1 * IT; - T;l) (top) and the correlation matrix corresponding to 
the reduction to two factors (bottom). This case corresponds to the factor reduction 
in Figure B.2. 
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B.4 Optimization (One-Dimensional): Golden 
Section Search 

Given a function f : [a, b] + R. Furthermore let R E (0,l) and mo = Ra + (1  - R)b 
such that f(mo) < min{,f(a), f ( b ) ] .  Then the sequence { m ; ) ~ o  defined by the following 
algorithm converges to a local minimum off (and thus to a global minimum on [a, b],  
i f f  is strictly convex on [a, b]):  
Iteration start: 

a0 := a,  mo := Ra + (1  - R)b, bo := b. 

Iteration step: 

If b; - m; > m; - a;, then set z := Am; + (1 - R)bi, and 
a;+1 := a, a;+l := mi 

:= 6, 

If b; - m; 5 mi - ai, then set z := Rai + (1 - R)m;, and 
a;+l := a; ai+1 := z 

:= bi 

Figure B.4. Golden section search. 

The algorithm places a point ( z )  into the larger of the two intervals [a, m ] ,  [m, b] and 
from the resulting three intervals it rejects the one that is adjacent to the larger value 
of f(m), f(z); see Figure B.4. 

For the division ratio A the value 

3 -  43 
- 

2 
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is optimal in the following sense: In the worst case, in which the algorithm rejects the 
smaller interval and retains the larger interval at every iteration step, then the value 

R = 9 will result in the fastest convergence rate. Since this ratio is the golden 
section, the algorithm is called the golden section search. 

B.5 Linear Regression 

Lemma 259 (Linear Regression): Let CY = ( ~ 1 , .  . . , un} be a given sample space, 
V : R* -+ R and Y := ( Y I ,  . . . , Y,,) : R* -+ IWP given random variables. Furthermore 
let 

Then for any a* with XTXa* = XTv 

IIV - f ( r ,  Q*)IIL2(C1') = min IIV - , f ( K  Q)IIL2(R')9 

Y l ( W l )  . . .  Y,(Wl) V ( W )  

V(un ) 

where 

x:= f ; 1, v : = [  f 1. [ Yl(un)  . . .  Y p ( u n )  

If (XTX)-' then a* := (XTX)-'XTv. 
explanator)] variables. 

Proof: 

The Y I  , . . . , Y, are called basis functions or 

We have to solve the minimization problem 

g(a) := I I V  - f ( ~  a)11&, = (v - x . . (v - X .  a )  -+ min . 

The quadratic function on the right-hand side attains its minimum where the partial 
derivatives with respect to a; are zero. We have 

and thus 

Further Reading: An extensive discussion of regression methods is 
given in [9]. 4 
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B.6 Convolution with Normal Density 

Lemma 260 (Integration of exp(a . X ) ,  X Normally Distributed): It is 

h,  -0 ,+u0-2))]  exp ( ay + "p') - , 
0- ff 

where $(<;p ,0- )  = - $-- exp(--) denotes the density and @(x) := 

lL 4((; 0, l )  denotes the distribution function of the normal distribution. In 
Darticular: 1: exp(a x) #(x;y, 0-) dx = exp ( ay  + - 07). 
Proof: It is  

Since 

exp (a  x - (7 r ) 
i 1 

= exp a x - - ( x 2 - 2 x y + y ' )  

= exp (-- (x2 - 2x y + y* - 2ar2 x) 

( 2u2 

i 1 
20-2 

1 11 ( 2 

a2u2 
exp ay  + - 1 

= exp -- (x' - 2x0,  + a r 2 )  + (y + a0-*12 ( 2f f2  

= exp(- (x-O,+uir2))2j exp ( ay  + - (17 j , 
2f f2  
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it follows that 

- - - 1 J”; exp (- ( x - ( y + a u 2 ) ) Z )  dx exp ( ay + - a y )  
$% h ,  2a2 

@(x ;y  + a a 2 ,  (T) dx exp 
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APPENDIX C 

Exercises 

In this appendix we give a small selection of exercises. The points are a rough 
indication of the complexity of the solution. 

Exercise 1 (Probability Space, Random Variable [15 points]): Let (a, 7, P )  
denote a probability space and X : + 1w a random variable. 

1. Give an example of a (false) modeling 52, 7, X of some random experiment, 
such that X is not (7, B(R))-measurable (give the definition of the mathematical 
objects and their interpretation). 

2 .  Now let X be (7, B(R))-measurable. 

a) Show that 
W ( A )  IA E B(WJ 

is a c+-algebra and a subset of 7 (sub-c7-algebra of 7). Give a possible 
an interpretation of the object? 

b) Show that 
Px(A)  := P ( X - ' ( A ) )  VA E B(R)) 

defines a probability measure (the image measure). 

Exercise 2 (Conditional Expectation [20 points])': Let X denote an 7-measurable 
(numerical) random variable and 6 a cr-algebra with 6 c 7 (i.e., 6 is a sub-c+-algebra 
of 7). Prove the following properties of the conditional expectation: 

1. If X is a 6-measurable random variable, then E(X16) = X (P-almost surely). 

2. If X 2 0, then E(XI6) 2 0. 
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3. (Tower Law) If 7f is an cr-algebra with 'H c G, then E(E(XIG)I'H) = E(X(7f). 

4. (Taking out what is known) If Z is a bounded @measurable random variable, 

E(ZX16) = ZE(X16). (C. 1) 

then 

Exercise 3 (Distribution Function [lo points])': 
variable and F the distribution function of X, i.e., F ( x )  := Px( ( -w ,  x)). Show that: 

Let X : SZ -+ R denote a random 

1. F is left continuous, i.e., F ( x )  = limhpo F ( x  + h). 

2. If g : R -+ R is measurable with E(lg(X)l) < 00, then 

where the integral is interpreted as the Lebesgue-Stieltjes integral (see [27]). 

Exercise 4 (Brownian Scaling [lo  point^])^: 
and c > 0. Show that with 

Let W denote a Brownian motion 

1 
W ( t )  := -W(c2t) 

c 

W is also a Brownian motion. Are the two processes W and W equal in any sense 
(cf. Definition 20)? 

Exercise 5 (Quadratic Variation [lo  point^])^: Let X denote a continuous stochas- 
tic process5. For p > 0 let the p-th variation process be defined as 

where ( t i ] : ,  is a strictly monotone sequence with to = 0, limk+M tk = w, At := 
supk ( t k + l  - t k l .  The process < X,X > ( l )  is called the total variation of X and the 
process < X, X >:=< X, X >(2) is called the quadratic variation of X .  

Let W denote a (one-dimensional) Brownian motion. 

See [27]. 
See 1271. 
See 1271. 
A continuous stochastic processes is a stochastic process for which each path is a continuous function 
in time. 
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1. Show that 

< W, W > (t ,w) = t P-almost surely. 

2. Show that 
< W, w > l  ( t ,  w )  = 00 P-almost surely. 

Note that these properties hold pathwise for almost all paths and not only just in an 
averaged sense. 

Exercise 6 (It6 Integral [lo  point^])^: 
It6 integrals that 

Show by direct use of the definition of the 

1. 6 t dW(t) = T W(T) - AT W(t)  dt, 

2. LT W(t)2 dW(t) = W(T)3 - A,' W(t) dW(t). 

Exercise 7 (Stratonovich Integral [lo points])': Let Tc") := { t o , .  . . , t,) with 
0 = to < tl < . . . < t,l = T denote a decomposition of the interval [0, TI and 
AT'") := supi It; - [;-I I its$neness. Furthermore let f : [0, TI x R + R be of the c/a.ss 
cfintegrands of the It6 integral (on [0, T I )  and t H f ( t ,  w )  continuous for (almost) all 
w. Then 

is in L,(P) (proof?). The Stratonovich integral is defined correspondingly as 

with t j - f  := y. Calculate 

1. kT W(t,w)odW(t,w)and 

2. J r  W( t ,  w )  0 dW(t, w )  - Lr W(t ,  W )  dW(t, w). 

See [n]. 
'See 1271. 
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Solution: It is 

and 

Exercise 8 (It8 Product Rule, It8 Quotient Rule [15 points]): Use the It8 formula 
and prove 

482 



1. The product rule: Let X and Y denote It6 processes. Then 

d(XY) = Y d X + X d Y + d X d Y  

2. The quotient rule: Let X and Y denote It6 processes, Y > c for some c E (0, cu). 
Then 

3. The drift adjustment of a lognormal process: Let S ( t )  > 0 denote an It6 process 
of the form 

dS(t) = p(r)S(t)  dt + c ( r ) S ( t )  dW(t), 

dY(t) = @(t) - - r 2 ( t ) )  dt + r(r) dW(t). 
1 
2 

Exercise 9 (Martingale: It8 Formula [15 points])*: 
that the following processes are %-martingales: 

Use the It6 formula and show 

1. x(t)  = exp(it) cos(W(t)) 

2. ~ ( t )  = exp(it) sin(W(t)) 

3. x(r) = ( t  + W(t))exp(-it - ~ ( t ) ) ,  

where W ( t )  denotes a one-dimensional Brownian motion. 

Exercise 10 (Black-Scholes Partial Differential Equation in the Coordinates t ,  
N ( t ) ,  S ( t )  [20 points]): Show that the function 

V(t ,n ,  s)) = s@(d+) - 

with 

and W(x) = @(x) = Cexp(-x2/2) solves the partial differential equation 

av(t) 1 a2v(t) r2 
- d t +  -- = o  

at 2 as as 
'See [27]. 
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with the j n a l  time condition 

V ( T ,  N ( T ) ,  s) = max(s - K ,  0). 

Exercise 11 (Black 76 Formula for Swaption [30 points]): Let T I  < . . .  < Tn 
denote given times. Let Vswap denote s swap as in Definition 117 with constant 
swap rates S i  = K ,  i = 1, .  . . ,n - 1 ( T I , .  . . , Tn-l are fixing dates and T2,. . . , Tn are 
payment dates). Let S denote the corresponding par swap rate as in Definition 122 
(cf. Remark 12 1). Derive the formula for the value V\waption of an (European) option 
on Vswap (with exercise date T I ) ,  assuming the S has lognormal dynamics 

dS ( t )  = p( t )S ( t )  dt + cr(r)S ( t )  dW(t) under P. 

Hint: First rewrite the value of the swap Vswap as a function of S and K by 
transforming cash flow: L(Ti, T;+l) - K = (L(Ti,  Ti+l) - S )  + (S - K ) ;  note the 
definition of S . Then consider the value of the swap at exercise date of the option, i.e. 
VSwap(7'1) and try to choose a suitable numkraire (compare with the evaluation of a 
caplet). Say why the numkraire chosen is a traded product. 

Solution (sketched): From Definition 117 a swap pays 

Let t 5 T I .  The value of the payment (C.2) in t is 

Thus, the value of the swap in r is given by 

i= I 

By Definition 122 the par swap rate is given by 
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Thus 

For a swap with S ,  = K this implies 

n- I 

i= I 

=(Spa&) - K )  A([), 

where A(t) := ~ ~ ~ ~ ( T i + l  - Ti)  P(T,+l; t )  is called swap annuity. Since A(t) > 0 we 
have for the value of the option on this swap 

V\waption(t) = max(Spar(t) - K ,  0) A(r). 

Now chose A as numkraire. Under the corresponding martingale measure Q A ,  S is an 
A-relative price, thus a martingale and thus dS(t) = c ( t ) S ( t )  dWQA(t). The evaluation 
formula for a swaption now follows as in the derivation of the Black formula for a 
caplet. 
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APPENDIX D 

JavaTM Source Code (Selection) 

D.l JavaTM Classes for Chapter 30 

Listing D.l. BinomialDistri butedRandomVariab1 e: A toy sample class to illus- 
trate the concepts of “classes ”, “data” and “methods ”. 
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Listing D.2. Bisectionsearch: Root jnder  implementing the RootFinder- 
interface using the bisection method. 
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List of Symbols 

Symbol Interpretation 

Empty set. 

1 forx>O,  

0 else. 
Indicator function; l (x)  = 

1 for x E (u,b], 

0 else. 
Indicator function; l(c,,,,,(x) = 

Transposed (of a vectors or a matrix x). 

Normal distribution with mean p and variance cr’. 

Brownian motion. See Definition 29. 

Real measure. 

Martingale measure corresponding to the numCraire N .  N -  
relative price processes of traded assets V are QN-martingales. 
Exists (as a measure equivalent to P) under certain assumptions. 

Expectation operator with respect to the measure ON. 

Gaul3 bracket. Largest integer, being less than or equal to x. 
[x] := max(n E (0, 1,2, .  . .) I n 5 x) 

E l  -norm of a vector x = (xI , . . . , x,J. llxll, = C:=, Ix,I. 

ez-norm of a vector x = (x,, . . . , .xu). ~lxll; = c:=, lxJ2 

x, for i = j ,  

0 else. 
diag(xl,. . . , x,,) Diagonal matrix. diag(xl,. . . , x,,)~,, = 
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P ( T )  Zero-coupon bond with maturity T .  P ( T )  (in general) is a 
stochastic process. Evaluated at time t on path w we write 
P ( T ;  t ,  w). See Definition 97. 

Forward rate for the period [TI, T2] .  See Definition 99. 

S,,, := S ( T , ,  . . . , T,). Swap rate for the tenor structure Tt, . . . , T,. 
See Definition 122. 

Money market account. See Equation (9.6) 

L(TI, T 2 )  

s ' , I  

B 

m(t) m(t) := max(i : T, _< t ) .  Projection to last fixing in tenor 
structure. See Definition 124. 
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