


Simple Heuristics

That Make Us Smart



EVOLUTION AND COGNITION

General Editor. Stephen Stich, Rutgers University

Published in the Series

Simple Heuristics That Make Us Smart
Gerd Gigerenzer, Peter M. Todd, and the ABC Research Group



Simple Heuristics
That Make
Us Smart

Gerd Gigerenzer

Peter M. Todd

and the ABC Research Group

OXFORD
UNIVERSITY PRESS



OXFORD
UNIVERSITY PRESS

Oxford New York
Athens Auckland Bangkok Bogota Buenos Aires Calcutta
Cape Town Chennai Dar es Salaam Delhi Florence Hong Kong Istanbul
Karachi Kuala Lumpur Madrid Melbourne Mexico City Mumbai
Nairobi Paris Sao Paulo Shanghai Singapore Taipei Tokyo Toronto Warsaw

and associated companies in
Berlin Ibadan

Copyright © 1999 by Oxford University Press, Inc.

First published in 1999 by Oxford University Press, Inc.
198 Madison Ave., New York, New York 10016

First issued as an Oxford University Press paperback, 2001

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data
Gigerenzer, Gerd.

Simple heuristics that make us smart / Gerd Gigerenzer, Peter M.
Todd, and the ABC Research Group.

p. cm.
Includes bibliographical references and indexes.
ISBN 0-19-512156-2; ISBN 0-19-514381-7 (pbk.)
1. Heuristic. I. Todd, Peter M. II. ABC Research Group.

III. Title.
BD260.G54 1999
128'.33—dc21 98-51084

9 8 7 6

Printed in the United States of America
on acid-free paper



Dedicated, simply, to our families.



This page intentionally left blank 



Preface

I his book is an invitation to participate in a journey into largely un-
known territory. The journey ventures into a land of rationality that is
different from the familiar one we know from many stories in cognitive
science and economics—tales in which humans live in a world with un-
limited time and knowledge, where the sun of enlightenment shines down
in beams of logic and probability. The new land of rationality we set out
to explore is, in contrast, shrouded in a mist of dim uncertainty. People
in this world have only limited time, knowledge, and computational ca-
pacities with which to make inferences about what happens in the enig-
matic places in their world.

How can one be rational in a world where vision is limited, time is
pressing, and decision-making experts are often unavailable? In this book
we argue that rationality can be found in the use of fast and frugal heuris-
tics, inference mechanisms that can be simple and smart. The laws of
logic and probability play little if any role in the performance of these
components of the mind's adaptive toolbox—these heuristics are success-
ful to the degree they are ecologically rational, that is, adapted to the
structure of the information in the environment in which they are used to
make decisions.

We set out on this journey as a disparate group of people from various
fields that often do not talk to each other, including psychology, mathe-
matics, computer science, economics, and evolutionary biology. The trick
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was to put everyone in one boat, where there was no escape from talking
and working together or from learning the language and the skills of the
others. The boat and its long-term funding was provided by the unique
policy of the Max Planck Society, which allowed us to take on a challeng-
ing project with an uncertain outcome by adopting a research perspective
of many, many years. Much of the exploration described in this book was
carried out at the Max Planck Institute for Psychological Research in Mu-
nich; further forays into the vast unexplored territory of ecological ration-
ality have taken place in our new home at the Max Planck Institute for
Human Development in Berlin. We have only been on our journey for
fewer than three years, but in that time we have seen new horizons and
made new discoveries in the world of heuristics, making the time right
for a first report from the field.

Our group's name, the ABC research group, is short for the Center for
Adaptive Behavior and Cognition. This name also has a second meaning
that is central to the topic of this book: We study the ABCs of decision-
making heuristics—that is, the basic building blocks from which these
inference mechanisms are made.

The chapters in this book tell the story of our explorations in a way
that reflects our feelings and mounting excitement during the long trek.
We stumbled over the surprising performance of a variety of simple heu-
ristics, and the reasons behind their successful behavior, only after long
and painful stretches of lack of insight and failed conjectures. We started
off believing our results just could not be true (a sentiment many of our
colleagues were quick to share, and slower than we to abandon), only to
end up realizing that there are good reasons for these findings to be true.
To reflect our progress from bafflement and disbelief to happy certainty,
some early chapters will report our first puzzling findings, while later
chapters will put the pieces together into the bigger picture.

This book is meant to excite and inspire intellectual adventurers who
love to explore and dare rather than playing it safe and sticking to re-
ceived wisdom. This is not to say that we present only daring, unwise
results—we marshal the evidence of experiments, real-world simulations,
and the safe haven of proofs. But we have also undertaken bold adven-
tures, such as the (lucrative) decision to throw one of our heuristics at the
stock market to see whether it could make any money.

We have made forays into several different regions of the new territory
of ecological rationality, from the chaos of the stock market to the intrica-
cies of mate choice. But what is most important is the guiding vision that
has given us the overall direction that we follow. We may have seen only
the coastal regions of the new territory, and we may have placed some of
the heuristics mistakenly on our growing map, but we believe that the
land of fast and frugal heuristics is the right direction in which to head.

The individual chapters in this book are all multiauthored, reflecting
the interdisciplinary collaboration among researchers that gave birth to
each separate expedition. Successful interdisciplinary collaboration is still
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a rare event even in these days of proliferating interdisciplinary groups.
Part of our success came from the attitudes that the individual researchers
brought with them: After an initial phase of puzzlement ("What could I
learn from a mathematician?"), intellectual curiosity and trust—that is,
the feeling that one can challenge and disagree but still be respected and
remain friends—won out. Also crucial, though, was establishing an envi-
ronment in which these attitudes could evolve: everyone with offices near
each other and the doors left open, and coffee and tea every afternoon at
4 P.M. These are some of the features that made our journey enjoyable as
well as productive.

Any journey into new territory must build upon the past explorations
of others, and draw upon the knowledge and guidance of current adven-
turesome experts. We have been inspired both by the ideas, and by the
title, of Donald Norman's book Things That Make Us Smart (1993). We
are grateful to our colleagues who read through drafts of earlier versions
of individual chapters and gave us helpful feedback: Gregory Ashby, Peter
Ayton, Talia Ben-Zeev, Jim Bettman, Greg Brake, Arndt Broder, Ed Buk-
szar, Nick Chater, Edgar Erdfelder, Klaus Fiedler, Bruno Frey, William M.
Goldstein, Karl Grammer, Nigel Harvey, Reid Hastie, Wolfgang Hell, Os-
wald Huber, Helmut Jungermann, Peter Juslin, Timothy Ketelaar, Jack
Knetsch, Asher Koriat, Jane Lancaster, Pat Langley, Barbara Mellers, Rich-
ard Nisbett, Richard Olsen, John Payne, Stuart Russell, Peter Sedlmeier,
Thor Sigvaldason, Tom Stewart, Richard Thaler, Ryan Tweney, Kim Vi-
cente, Tom Wallsten, X. T. Wang, Elke Weber, and Kevin Weinfurt.

Special thanks go to Valerie M. Chase, Elke Kurz, Catrin Rode, and
William Wimsatt, who read drafts of the entire book, and to Donna Alex-
ander, Andreas Deters, Martin Dieringer, Timmo Kohler, Ulrich Kuhnert,
Torsten Mohrbach, Marianne Muller-Brettel, Brady Richards, Rudiger
Sparr, Anita Todd, Ahn Vu, and Jill Vyse, who helped us with collecting
data and editing the manuscript.

This book is the starting point of an ongoing research program; for fur-
ther developments and results, we invite you to visit our Center's website
at http://www.mpib-berlin.mpg.de/abc/.

Welcome to our journey.

Berlin Gerd Gigerenzer
July 1998 Peter Todd

http://www.mpib-berlin.mpg.de/abc/
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Fast and Frugal Heuristics

The Adaptive Toolbox

Gerd Gigerenzer
Peter M. Todd

Truth is ever to be found in simplicity, and not in the
multiplicity and confusion of things. As the world, which
to the naked eye exhibits the greatest variety of objects,
appears very simple in its internal constitution when sur-
veyed by a philosophical understanding, and so much the
simpler by how much the better it is understood.

Isaac Newton

A man is rushed to a hospital in the throes of a heart attack. The doctor
needs to decide quickly whether the victim should be treated as a low-
risk or a high-risk patient. He is at high risk if his life is truly threatened,
and should receive the most expensive and detailed care. Although this
decision can save or cost a life, the doctor does not have the luxury of
extensive deliberation: She or he must decide under time pressure using
only the available cues, each of which is, at best, merely an uncertain
predictor of the patient's risk level. For instance, at the University of Cali-
fornia, San Diego Medical Center, as many as 19 such cues, including
blood pressure and age, are measured as soon as a heart attack patient is
admitted. Common sense dictates that the best way to make the decision
is to look at the results of each of those measurements, rank them accord-
ing to their importance, and combine them somehow into a final conclu-
sion, preferably using some fancy statistical software package.

Consider in contrast the simple decision tree in figure 1-1, which was
designed by Breiman and colleagues (Breiman et al., 1993) to classify
heart attack patients according to risk using only a maximum of three
variables. A patient who has a systolic blood pressure of less than 91 is
immediately classified as high risk—no further information is needed.
Otherwise, the decision is left to the second cue, age. A patient under 62.5
years old is classified as low risk; if he or she is older, then one more cue
(sinus tachycardia) is needed to classify that patient as high or low risk.

1

3
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Figure 1-1: A simple decision tree for classifying incoming heart attack
victims as high-risk or low-risk patients (adapted from Breiman et al.,
1993).

Thus, the tree requires the doctor to answer a maximum of three yes/
no questions to reach a decision rather than to measure and consider 19
predictors, letting life-saving treatment proceed all the sooner.

This decision strategy is simple in several respects. First, it ignores the
great majority of possible measured predictors. Second, it ignores quanti-
tative information by using only yes/no answers to the three questions.
For instance, it does not care how much older or younger the patient is
than the 62.5-year cutoff. Third, the strategy is a step-by-step process; it
may end after the first question and does not combine (e.g., weight and
add) the values on the three predictors. Asking at most three yes/no ques-
tions is a fast and frugal strategy for making a decision. It is fast because
it does not involve much computation, and it is frugal because it only
searches for some of the available information. Its simplicity raises the
suspicion that it might be highly inaccurate, compared to standard statisti-
cal classification methods that process and combine all available predic-
tors. Yet it is actually more accurate in classifying heart attack patients
according to risk status than are some rather complex statistical classifica-



FAST AND FRUGAL HEURISTICS: THE ADAPTIVE TOOLBOX 5

tion methods (Breiman et al., 1993). The more general form of this coun-
terintuitive finding—that fast and frugal decision making can be as accu-
rate as strategies that use all available information and expensive
computation—forms one of the bases of our research program.

This book is about fast and frugal heuristics for making decisions—how
they work, and when and why they succeed. These heuristics can be seen
as models of the behavior of both living organisms and artificial systems.
From a descriptive standpoint, they are intended to capture how real
minds make decisions under constraints of limited time and knowledge.
From an engineering standpoint, these heuristics suggest ways to build
artificially intelligent systems—artificial decision makers that are not par-
alyzed by the need for vast amounts of knowledge or extensive computa-
tional power. These two applications of fast and frugal heuristics do not
exclude one another—indeed, the decision tree in figure 1-1 could be used
to describe the behavior of an unaided human mind or could be built into
an emergency-room machine.1

Visions of Rationality: From Demons to
Bounded Rationality

Humans and animals make inferences about their world with limited
time, knowledge, and computational power. In contrast, many models of
rational inference view the mind as if it were a supernatural being pos-
sessing demonic powers of reason, boundless knowledge, and all of eter-
nity with which to make decisions. Such visions of rationality often con-
flict with reality. But we can use them as points of comparison to help
clarify our own vision of ecological rationality—rationality that is defined
by its fit with reality. We start by considering two conceptual revolutions.
The first is the demise of the dream of certainty and the rise of a calculus
of uncertainty: that is, probability theory. This revolution is known as the
probabilistic revolution in science and everyday life (Gigerenzer et al.,
1989; Kruger et al., 1987). The second revolution, which this book is
meant to advance, concerns the way minds deal with an uncertain world.
We propose replacing the image of an omniscient mind computing intri-
cate probabilities and utilities with that of a bounded mind reaching into
an adaptive toolbox filled with fast and frugal heuristics.

Let us briefly sketch the first revolution, as it concerns our views about
mind and rationality. For two millennia following Aristotle, the Western
intellectual tradition distinguished between two kinds of knowledge. One
was demonstrative proof, the other probable reasoning. The first provided

1. Decision trees such as the one in this example are easy to use, but their con-
struction in the first place is based on quite extensive computations. In this book
we will see how fast and frugal heuristics can get around this costly construction
phase.
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certainty, while the second produced only uncertain knowledge. During
the Reformation and the Counter-Reformation of the sixteenth century,
traditional sources of certainty—particularly religion and philosophy—
came under attack simultaneously. As a result, the domain of demonstra-
tive proof shriveled, while that of probable reasoning grew (Daston, 1988).
By the mid-seventeenth century, a new pragmatic rationality emerged that
abandoned traditional ideals of certainty. It was a modest view, expressed
by the calculus of probability invented during the same period. The mod-
esty of this vision stemmed from an acceptance that humble humans can
attain only uncertain knowledge about themselves and their world. To be
rational, then, required taming life's uncertainty. Blaise Pascal's famous
wager (1669/1962) illustrates some moral consequences of this new ra-
tionality. In an atmosphere of unwavering religious certainty that God had
to exist, Pascal asked: Is it rational to believe in him? Pascal proposed that
one should sacrifice worldly pleasures to enhance one's uncertain pros-
pect of salvation, because no matter how small the probability of God's
existence, the payoff of living a Christian life is eternal afterlife, and the
expected reward—the (perhaps small) probability of salvation multiplied
by its infinite value—is still infinite. The other alternative—eternal dam-
nation—is infinitely awful, no matter what its probability. The new ration-
ality expressed by the calculus of probability was not just an intellectual
revolution of thought, but also one in moral and religious attitudes.

The probabilistic revolution has shaped our picture of the mind in
fields ranging from cognitive science to economics to animal behavior.
Mental functions are assumed to be computations performed on probabili-
ties and utilities (Gigerenzer & Murray, 1987). In this view, the laws of
probability describe or prescribe sound reasoning, judgment, and decision
making. Probabilistic conceptions of the mind have led to many elegant
theories, but also to thorny problems. The moment one moves beyond
simple constrained settings such as ones that psychologists and computer
scientists study to real-world situations that people actually live through,
the time, knowledge, and computation that probabilistic models demand
grow unfeasibly large. As a consequence, when these models meet the
rigors of reality, they turn into a psychology more applicable to supernatu-
ral beings than to mere humans.

In this book, we push for a second revolution, which provides a bold
vision of rationality. Our premise is that much of human reasoning and
decision making can be modeled by fast and frugal heuristics that make
inferences with limited time and knowledge. These heuristics do not in-
volve much computation, and do not compute probabilities and utilities.
They are models of bounded rationality. This second theoretical upheaval
embraces the earlier probabilistic revolution's emphasis on uncertainty
without sharing its focus on probability theory, either as a description or
as an attainable norm of human behavior. The four major visions of ration-
ality that continue to struggle with each other in this second upheaval are
shown in figure 1-2.
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Rationality comes in many forms. The first split in figure 1-2 separates
models that assume the human mind has essentially unlimited demonic
or supernatural reasoning power from those that assume we operate with
only bounded rationality. There are two species of demons: those that ex-
hibit unbounded rationality, and those that optimize under constraints.
Unbounded rationality encompasses decision-making strategies that have
little or no regard for the constraints of time, knowledge, and computa-
tional capacities that real humans face. Unbounded rationality is tradi-
tionally modeled by probability theory. Its best-known realizations are the
maximization of expected utility and Bayesian models. There are also two
main forms of bounded rationality: satisficing heuristics for searching
through a sequence of available alternatives, and fast and frugal heuristics
that use little information and computation to make a variety of kinds
of decisions. We will illustrate these four conceptions of rationality by
considering a commonly faced decision problem, showing where the
demons may lurk.

A couple of years after completing his historic scientific voyage on the
Beagle, the 29-year-old Charles Darwin turned his mind to more domestic
issues. He scrawled the following notes in pencil on a scrap of paper,
divided into two columns like a balance sheet and headed "This is the
Question":

MARRY

Children—(if it please God)—con-
stant companion, (friend in old age)
who will feel interested in one, ob-
ject to be beloved and played with—
better than a dog anyhow—Home,
and someone to take care of house—
Charms of music and female chit-
chat. These things good for one's
health. Forced to visit and receive

Not MARRY

No children, (no second life) no one
to care for one in old age. . . . Free-
dom to go where one liked—Choice
of Society and little of it. Conversa-
tion of clever men at clubs.—Not
forced to visit relatives, and to bend
in every trifle—to have the expense
and anxiety of children—perhaps
quarrelling.

Figure 1-2: Visions of rationality.
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relations but terrible loss of time. Loss of time—cannot read in the eve-
My God, it is intolerable to think of nings—fatness and idleness—anxiety
spending one's whole life, like a neu- and responsibility—less money for
ter bee, working, working and noth- books etc—if many children forced
ing after all.—No, no won't do.— to gain one's bread.—(But then it is
Imagine living all one's day solitarily very bad for one's health to work too
in smoky dirty London House.— much)
Only picture to yourself a nice soft Perhaps my wife won't like London;
wife on a sofa with good fire, and then the sentence is banishment and
books and music perhaps—compare degradation with indolent idle fool—
this vision with the dingy reality of
Grt Marlboro' St.

(Darwin, 1887/1969, pp. 232-233)

Darwin concluded that he should marry, writing "Marry—Marry—
Marry Q. E. D." decisively beneath the first column. On the reverse side of
the page he considered the consequences of his decision for his personal
freedom, ending with the insight: "There is many a happy slave." The
following year, Darwin married his cousin, Emma Wedgwood, with whom
he eventually had 10 children. How did Darwin decide to marry, based
on the possible consequences he envisioned—children, loss of time, a
constant companion? He did not tell us. But we can use his "Question"
as a thought experiment to illustrate various visions of rationality.

Unbounded Rationality

When Darwin was just a 5-year-old child, dreamy and quiet and showing
no signs of his later genius, the astronomer-philosopher Pierre Simon de
Laplace (1814/1951) was contemplating the ultimate genius, an omni-
scient superintelligence he characterized as follows:

Given ... an intelligence which could comprehend all the forces by
which nature is animated and the respective situation of the beings
who compose it—an intelligence sufficiently vast to submit these
data to analysis . . . nothing would be uncertain and the future as
the past, would be present to its eyes. (Laplace, 1814/1951, p. 4)

Laplace was areligious, and the superintelligence he imagined was a
secularized version of God. John Locke (1690/1959) had contrasted the
omniscient God with us humble humans living in the "twilight of proba-
bility"; Laplace secularized this opposition with his fictitious superintelli-
gence. From the perspective of God and Laplace's superintelligence alike,
Nature is deterministic and certain; but for humans, Nature is fickle and
uncertain. Mortals cannot know the world, but must rely on uncertain
inferences, on bets rather than on demonstrative proof. Although omni-
science and certainty are not attainable for any real system, the spirit of
Laplace's superintelligence has survived nevertheless in the vision of un-
bounded rationality.
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Imagine that Darwin had attempted to resolve his Question by maxi-
mizing his subjective expected utility. To compute his personal expected
utility for marrying, he would have had to determine all the possible con-
sequences that marriage could bring (e.g., children, constant companion,
and an endless stream of further possibilities not included in his short
list), attach quantitative probabilities to each of these consequences, esti-
mate the subjective utility of each consequence, multiply each utility by
its associated probability, and finally add all these numbers up. The same
procedure would have to have been repeated for the alternative "not
marry." Finally, he would have had to choose the alternative with the
higher total expected utility. To acquire reliable information about the
consequences and their probabilities and utilities, Darwin might have had
to invest years of research—time he could have spent studying barnacles
or writing Origin of Species.

Unbounded rationality is a strange and demanding beast. On one hand,
researchers who envision rationality in this way accept the difference be-
tween God, or Laplace's superintelligence, and mere mortals. Humans
must make inferences from behind a veil of uncertainty, but God sees
clearly; the currency of human thought is probabilities, whereas God deals
in certitude. On the other hand, when it comes to how they think these
uncertain inferences are executed, those who believe in unbounded ra-
tionality paint humans in God's image. God and Laplace's superintelli-
gence do not worry about limited time, knowledge, or computational ca-
pacities. The fictional, unboundedly rational human mind does not
either—its only challenge is the lack of heavenly certainty. In figure 1-2,
unbounded rationality appears in a class of models of reasonableness la-
beled "demons." We use the term in its original Greek sense of a divine
(rather than evil) supernatural being, as embodied in Laplace's superintel-
ligence.

Proponents of unbounded rationality generally acknowledge that their
models assume unrealistic mental abilities, but nevertheless defend them
by arguing that humans act as if they were unboundedly rational. On this
interpretation, the laws of probability do not describe the process but
merely the outcome of reasoning. Another common defense is that this
theory exhibits mathematical beauty and convenience. Finally, some pro-
ponents simply say, "don't quarrel with success" (see Conlisk, 1996; Sel-
ten, 1991).

The greatest weakness of unbounded rationality is that it does not de-
scribe the way real people think. Not even philosophers, as the following
story illustrates. One philosopher was struggling to decide whether to stay
at Columbia University or to accept a job offer from a rival university. The
other advised him: "Just maximize your expected utility—you always
write about doing this." Exasperated, the first philosopher responded:
"Come on, this is serious."

Because of its unnaturalness, unbounded rationality has come under
attack in the second half of the twentieth century. But when one (un-
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boundedly rational) head has been chopped off, another very similar one
has usually sprouted again in its place: its close demonic relative, optimi-
zation under constraints.

Optimization Under Constraints

To think is to take a risk, a step into the unknown. Our inferences, inevita-
bly grounded in uncertainty, force us to "go beyond the information
given," in Jerome Bruner's famous phrase. But the situation is usually
even more challenging than this, because rarely is information given. In-
stead we must search for information—cues to classify heart attack pa-
tients as high risk, reasons to marry, indicators of stock market fluctua-
tion, and so on. Information search is usually thought of as being internal,
performed on the contents of one's memory. But it is important to recog-
nize that much information search is external, looking through the knowl-
edge embodied in the surrounding environment. This external search in-
cludes seeking information in the socially distributed memory spanning
friends and experts and in human artifacts such as libraries and the In-
ternet.

The key difference between unbounded rationality and the three other
visions in figure 1-2 is that the latter all involve limited information
search, whereas models of unbounded rationality assume that search can
go on indefinitely. In reasonable models, search must be limited because
real decision makers have only a finite amount of time, knowledge, atten-
tion, or money to spend on a particular decision. Limited search requires
a way to decide when to stop looking for information, that is, a stopping
rule. The models in the class we call "optimization under constraints"
assume that the stopping rule optimizes search with respect to the time,
computation, money, and other resources being spent. More specifically,
this vision of rationality holds that the mind should calculate the benefits
and costs of searching for each further piece of information and stop
search as soon as the costs outweigh the benefits (e.g., Anderson & Milson,
1989; Sargent, 1993; Stigler, 1961). The rule "stop search when costs out-
weigh benefits" sounds plausible at first glance. But a closer look reveals
that optimization under constraints can require even more knowledge and
computation than unbounded rationality (Vriend, 1996; Winter, 1975).

To see this point, imagine the unboundedly rational Darwin and a Dar-
win who optimizes under constraints, both of them trying to decide
whether to marry. The unboundedly rational Darwin has to search for all
the possible consequences of marrying and not marrying before choosing
the alternative with the higher subjective expected utility. Now suppose
that the Darwin who attempts to optimize under constraints has already
listed two consequences of marriage, having a constant companion and
children, and estimates of their respective probabilities and utilities. Be-
fore he proceeds to a third consequence, he must calculate whether the
benefits of continuing the information search will outweigh its costs—if



FAST AND FRUGAL HEURISTICS: THE ADAPTIVE TOOLBOX 11

not, then he can stop his search at this point. To compute the benefit of
further search, this poor Darwin would again have to consider what all
the third consequences could be, estimate their utilities and probabilities,
calculate how much each one could change his ultimate decision, and
average all of these to come up with the expected benefit of continuing
his search. The same calculation has to be performed before each further
consequence is considered. Thus, calculating the benefits of further
search demands the same kind of knowledge that the unboundedly ra-
tional Darwin needs. But the Darwin who tries to optimize under con-
straints is not finished yet—he must also determine the costs of continu-
ing search. These include, for instance, the opportunity costs: The
optimizing Darwin must determine all the other things he could be doing
during the time he would be considering his decision (such as dissecting
another barnacle), and what the cost of continuing to deliberate his Ques-
tion instead of pursuing those other activities would be. At the end, this
leads to an infinite regress. The optimizing Darwin would need to deter-
mine not only what the opportunity costs are, but also the second-order
costs for making all these cost-benefit calculations, and so on (Conlisk,
1996). Even the unboundedly rational Darwin could make a decision
faster than this.

Recall that the very motivation for replacing unbounded rationality by
optimization under constraints was to build empirically more realistic
models that respect the limitations of human minds. The paradoxical ap-
proach of optimization under constraints is to model "limited" search by
assuming that the mind has essentially unlimited time and knowledge
with which to evaluate the costs and benefits of further information
search. The dream of optimization, threatened in its instantiation in un-
bounded rationality, is thus salvaged by being incorporated into an appar-
ent competitor. When solving Darwin's Question or other real-world prob-
lems, constrained optimization invites unbounded rationality to sneak in
through the back door.

Of course, few would argue that real humans have the time and knowl-
edge necessary to perform the massive computations required of either of
these imaginary demonic Darwins. Instead, these visions of rationality are
usually presented as lofty ideals that human reasoning should aspire to.
But such aspirations can make real human reasoning look flawed and
irrational in comparison. In our view, it is these aspirations that are
flawed—we will argue that reasoning can be powerful and accurate with-
out requiring unlimited time and knowledge.

What certain forms of optimization under constraints can offer—in
contrast to unbounded rationality—is an analysis of the structure of envi-
ronments. For instance, in Anderson's rational analysis framework (Ander-
son, 1990; Oaksford & Chater, 1994) constraints from the environment are
used to modify one's understanding of what is optimal behavior in a par-
ticular context. Such an analysis does not directly address the question of
what mental mechanisms could possibly yield behavior approaching the
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optimal norm, but at least it allows us to create a more realistic standard
for assessing proposed mechanisms.

Instead of the demonic visions of reason, we turn to the idea of
bounded rationality. Many, if not most, researchers in cognitive science,
economics, and animal behavior interpret the term "bounded rationality"
as synonymous with optimization under constraints, a (mis)use we
strongly reject. This interpretation may be responsible for the frequent
dismissal of bounded rationality in favor of good old-fashioned demonic
visions. The economist Thomas Sargent (1993), for instance, in interpre-
ting bounded rationality as optimization under constraints, argues that
when one models people as "bounded" in their rationality, one's models
use a greater number of parameters and become more demanding mathe-
matically. He believes that the reason why researchers (particularly econo-
mists) stick with models incorporating unbounded rationality is that their
desire for models with fewer parameters is not met by the bounded ap-
proach: "a reduction is not what bounded rationality promises" (p. 4). But
this is a misleading interpretation of bounded rationality—rationality
need not be optimization, and bounds need not be constraints.

Bounded Rationality: Satisficing

The "father" of bounded rationality, Herbert Simon, has vehemently re-
jected its reduction to optimization under constraints: "bounded rational-
ity is not the study of optimization in relation to task environments"
(Simon, 1991, p. 35). In personal conversation, he once remarked with a
mixture of humor and anger that he had considered suing authors who
misuse his concept of bounded rationality to construct ever more compli-
cated and unrealistic models of human decision making.

Simon's vision of bounded rationality has two interlocking compo-
nents: the limitations of the human mind, and the structure of the envi-
ronments in which the mind operates. The first component of his vision
means that models of human judgment and decision making should be
built on what we actually know about the mind's capacities rather than
on fictitious competencies. In many real-world situations, optimal strate-
gies are unknown or unknowable (Simon, 1987). Even in a game such as
chess, where an optimal (best) move does in fact exist at every point, no
strategy can calculate that move in a reasonable amount of time (either
by human minds or computers), despite the well-defined nature of the
possibilities to be searched. In less well-defined natural situations, our
hope of identifying a usable optimal strategy is even further diminished.
Because of the mind's limitations, humans "must use approximate meth-
ods to handle most tasks" (Simon, 1990, p. 6). These methods include
recognition processes that largely obviate the need for further information
search, heuristics that guide search and determine when it should end,
and simple decision rules that make use of the information found. We
explore these classes of methods at length in this book.
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The second component of Simon's view of bounded rationality, envi-
ronmental structure, is of crucial importance because it can explain when
and why simple heuristics perform well: if the structure of the heuristic
is adapted to that of the environment. Simon's (1956a) classic example
concerns foraging organisms that have a single need, food. One organism
lives in an environment in which little heaps of food are randomly distrib-
uted; it can get away with a simple heuristic, that is, run around randomly
until a heap of food is found. For this, the organism needs some capacity
for vision and movement, but it does not need a capacity for learning. A
second organism lives in an environment where food is not distributed
randomly but comes in hidden patches whose locations can be inferred
from cues. This organism can use more sophisticated strategies, such as
learning the association between cues and food, and a memory for storing
this information. The general point is that to understand which heuristic
an organism employs, and when and why the heuristic works well, one
needs to look at the structure of the information in the environment. Si-
mon (1956a) was not the only one to make this important point; it was
made both before his work (e.g., Brunswik, 1943) and at various times
since (e.g., Anderson, 1990; Shepard, 1990), including the extreme state-
ment that only the environment need be studied, not the mechanisms of
the mind (e.g., Gibson, 1979). But in general the second part of Simon's
(1956a) paper title, "Rational choice and the structure of environments,"
has been neglected in mainstream cognitive sciences (sometimes even by
Simon himself—see Simon, 1987).

We use the term "ecological rationality" to bring environmental struc-
ture back into bounded rationality. A heuristic is ecologically rational to
the degree that it is adapted to the structure of an environment (see be-
low). Thus, simple heuristics and environmental structure can both work
hand in hand to provide a realistic alternative to the ideal of optimization,
whether unbounded or constrained.

One form of bounded rationality is Simon's concept of satisficing—a
word that originated in Northumbria (a region in England on the Scottish
border), where it meant "to satisfy." Satisficing is a method for making a
choice from a set of alternatives encountered sequentially when one does
not know much about the possibilities ahead of time. In such situations,
there may be no optimal solution for when to stop searching for further
alternatives—for instance, once Darwin decided to marry, there would be
no optimal way of deciding when to stop looking for prospective marriage
partners and settle down with a particular one (see chapter 13 for more
on satisficing in mate search). Satisficing takes the shortcut of setting an
adjustable aspiration level and ending the search for alternatives as soon
as one is encountered that exceeds the aspiration level (Simon, 1956a,
1990).

Satisficing is evident in the behavior of firefighter commanders who
make life-and-death decisions under extreme time pressure: Rather than
surveying all of the alternative courses of action to combat the flames in,
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say, the basement of a four-story apartment building, they seem to pick
one possible action, play it quickly through in a mental simulation,
and if it works well enough—that is, if its outcome exceeds a predeter-
mined aspiration level for success—they act it out without ever consider-
ing other alternatives. If the outcome of the mental simulation does not
meet their aspiration level, they go on to the next alternative, repeating
the simulation process until a satisfactory course of action is found (Klein,
1998).

Bounded Rationality: Fast and Frugal Heuristics

Satisficing is a way of making a decision about a set of alternatives that
respects the limitations of human time and knowledge: It does not require
finding out or guessing about all the options and consequences the future
may hold, as optimization under constraints does. However, some forms
of satisficing can still require a large amount of deliberation on the part
of the decision maker, for instance to set an appropriate aspiration level
in the first place, or to calculate how a current option compares to the
aspiration level (Simon, 1956b). Rather than let unrealistic mental com-
putation slip back into our picture of human rationality, we narrow our
focus still more to concentrate on fast and frugal heuristics for decision
making.

Fast and frugal heuristics employ a minimum of time, knowledge, and
computation to make adaptive choices in real environments. They can be
used to solve problems of sequential search through objects or options, as
in satisficing. They can also be used to make choices between simultane-
ously available objects, where the search for information (in the form
of cues, features, consequences, etc.) about the possible options must be
limited, rather than the search for the options themselves. Fast and
frugal heuristics limit their search of objects or information using easily
computable stopping rules, and they make their choices with easily
computable decision rules. We thus see satisficing and fast and frugal
heuristics as two overlapping but different categories of bounded ration-
ality: There are some forms of satisficing that are fast and frugal, and
others that are computationally unreasonable; and there are some fast
and frugal heuristics that make satisficing sequential option deci-
sions, and some that make simultaneous option choices. We consider fast
and frugal heuristics to represent bounded rationality in its purest
form.

How would a fast and frugal Darwin settle his marriage quandary? One
way that he could make his decision between the two alternatives—to
marry or not—with little time and knowledge would be to employ a form
of one-reason decision making, in which he need only find a single piece
of information to determine his decision. Indeed, the passage immediately
before Darwin's "Q. E. D." can be read to suggest that there was only one
decisive reason for his choice in favor of marriage, that of having a con-
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stant companion: "Imagine living all one's day solitarily in smoky dirty
London House.—Only picture to yourself a nice soft wife on a sofa. . . . "
There is a sound reason why a person might base a decision on only one
reason rather than on a combination of reasons: Combining information
from different cues requires converting them into a common currency, a
conversion that may be expensive if not actually impossible. For instance,
to make his decision on the basis of several cues combined into one as-
sessment of each option, Darwin would have to decide how many conver-
sations with clever friends are equivalent to having one child, and how
many hours in a smoky abode can be traded against a lifetime of soft mo-
ments on the sofa. Standard models of optimization, whether constrained
or unbounded, assume that there is a common currency for all beliefs and
desires, namely, quantitative probabilities and utilities. Although this is a
mathematically convenient assumption, the way we look at the world
does not always conform to it. Some things do not have a price tag, and
cannot be reduced to and exchanged for any common currency (Elster,
1979). Love, true friendship, military honors, and PhD's, for example, are
supposed to be priceless, and therefore incommensurable with items for
sale in a shopping mall. When reasons cannot be converted to a single
currency, the mind has little choice but to rely on a fast and frugal strategy
that bases its decision on just one good reason. As we will see, however,
incommensurability is not the only reason for one-reason decision making
(chapters 4-6).

Before we take a closer look at fast and frugal heuristics, let us sum up
our discussion so far. Bounded rationality has become a fashionable term
in many quarters, and a plethora of proposed examples have been thrown
together under this term, including optimization under constraints. Figure
1-2 helps to make clear the distinctions between bounded rationality and
the demonic visions of rationality. Unbounded rationality is not con-
cerned with the costs of search, while bounded rationality explicitly lim-
its search through stopping rules. Optimization under constraints also
limits search, but does so by computing the optimal stopping point, that
is, when the costs of further search exceed the benefits. In contrast,
bounded rationality "bets" on simple heuristics for search and stopping
rules that do not attempt to optimize. Finally, the purest form of bounded
rationality is found in fast and frugal heuristics, which perform limited
search through objects (in satisficing) or cues and exploit environmental
structure to yield adaptive decisions.

The ABCs of Fast and Frugal Heuristics:
A New Research Program

This book promotes the view of bounded rationality as the way that real
people make the majority of their inferences and decisions. It is also a
useful framework for developing decision-making heuristics for artificial
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agents. The program of studying boundedly rational heuristics involves
(a) designing computational models of candidate simple heuristics, (b) an-
alyzing the environmental structures in which they perform well, (c) test-
ing their performance in real-world environments, and (d) determining
whether and when people really use these heuristics. The results of the
investigatory stages (b), (c), and (d) can be used to inform the initial theo-
rizing of stage (a). The different stages of this research program rest on
multiple methods, including theoretical modeling of heuristics, computer
simulation of their performance, mathematical analysis of the fit between
heuristics and specific environments, and laboratory experimentation. We
now consider each of the four stages in turn.

Computational Models

A computational model of a heuristic specifies the precise steps of infor-
mation gathering and processing that are involved in generating a deci-
sion, such that the heuristic can be instantiated as a computer program.
For a fast and frugal heuristic, this means the computational model must
specify principles for guiding a search for alternatives, information, or
both, stopping that search, and making a decision.

Heuristic Principles for Guid ing Search Decisions must be made between
alternatives, based on information about those alternatives. In many situa-
tions, those alternatives and pieces of information may need to be found
through active search. The heuristic principles for guiding search, whether
across alternatives or information, are what give search its direction (if it
has one). For instance, search for cues can be simply random, or in order
of some precomputed criterion related to their usefulness (see chapter 6),
or based on a recollection about which cues worked previously when
making the same decision (see chapter 4). Search for alternatives can simi-
larly be random or ordered. Fast and frugal search-guiding principles do
not use extensive computations or knowledge to figure out where to look
next.

Heuristic Principles for Stopping Search In our conception of bounded ra-
tionality, the temporal limitations of the human mind (or that of any real-
istic decision-making agent) must be respected as much as any other con-
straints. This implies in particular that search for alternatives or
information must be terminated at some point. Moreover, the method for
determining when to stop search should not be overly complicated. For
example, one simple stopping rule is to cease searching for information
and make a decision as soon as the first cue or reason that favors one
alternative is found (see chapter 4). This and other cue-based stopping
rules do not need to compute an optimal cost-benefit trade-off as in opti-
mization under constraints; in fact, they need not compute any costs or
benefits at all. For search across alternatives, simple aspiration-level stop-
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ping rules can be used, as in Simon's original satisficing notion (Simon,
1956a, 1990; see also chapter 13).

Heuristic Principles for Decision Making Once search has been guided to
find the appropriate alternatives or information and then been stopped, a
final set of heuristic principles can be called upon to make the decision
or inference based on the results of the search. These principles can also
be very simple and computationally bounded. For instance, a decision or
inference can be based on only one cue or reason, whatever the total num-
ber of cues found during search (see chapters 2-6). Such one-reason deci-
sion making does not need to weight or combine cues, and so no common
currency between cues need be determined. Decisions can also be made
through a simple elimination process, in which alternatives are thrown
out by successive cues until only one final choice remains (see chapters
8 and 11).

These heuristic principles are the building blocks, or the ABCs, of fast
and frugal heuristics. Given that the mind is a biological rather than a
logical entity, formed through a process of successive accrual, borrowing,
and refinement of components, it seems reasonable to assume that new
heuristics are built from the parts of the old ones, rather than from scratch
(Pinker, 1997; Wimsatt, in press). In this light, we have used two main
methods to construct computational models of fast and frugal heuristics:
combining building blocks and nesting existing heuristics. Heuristic prin-
ciples can be combined in multiple ways, such as the several guises in
which we find one-reason decision making throughout this book, though
of course not arbitrarily. For instance, a fast and frugal heuristic for two-
alternative choice that stops information search at the first cue on which
the alternatives differ must also use a decision principle based on one-
reason decision making. Whole fast and frugal heuristics can themselves
be combined by nesting one inside another. As an example, the recogni-
tion heuristic (see chapters 2 and 3) works on the basis of an elementary
cognitive capacity, recognition memory, but it can also serve as the first
step of heuristics that draw on other capacities, such as recall memory
(see chapters 4 and 5). Recognition memory develops earlier than recall
memory both ontogenetically and evolutionarily, and the nesting of heu-
ristics can similarly be seen as analogous to the addition of a new adapta-
tion on top of an existing one.

We have formulated the fast and frugal heuristics in this book as pre-
cise step-by-step models that are highly transparent: It is easy to discern
and understand just how they function to make decisions. Because they
involve few free parameters and a minimum of computation, each step of
the algorithm is open to scrutiny. These simple heuristics stand in sharp
contrast to more complex and computationally involved models of mental
processes, which may generate good approximations to human behavior
but are also often rather opaque. For instance, the resurgence of connec-
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tionism in the 1980s brought forth a crop of neural networks that were
respectable models for a variety of psychological phenomena, but whose
inner workings remained mysterious even to their creators. Only with ef-
fort has the fascination with these black-box connectionist models been
overcome, and new methods developed to allow us to see inside them
(Regier, 1996; Rumelhart & Todd, 1993). The temptation of the black
magic associated with black-box methods exists in other related domains,
such as the use of complicated and opaque statistical packages to analyze
behavior (Boyd & Richerson, 1985; Gigerenzer, 1993). Transparent models
of fast and frugal heuristics avoid misunderstanding and mystification of
the processes involved, even if they do sacrifice some of the allure of the
unknown.

Ecological Rationality

Traditional definitions of rationality are concerned with maintaining in-
ternal order of beliefs and inferences, as we will see in the next section.
But real organisms spend most of their time dealing with the external
disorder of their environment, trying to make the decisions that will allow
them to survive and reproduce (Tooby & Cosmides, 1998). To behave
adaptively in the face of environmental challenges, organisms must be
able to make inferences that are fast, frugal, and accurate. These real-
world requirements lead to a new conception of what proper reasoning is:
ecological rationality. Fast and frugal heuristics that are matched to partic-
ular environmental structures allow organisms to be ecologically rational.
The study of ecological rationality thus involves analyzing the structure
of environments, the structure of heuristics, and the match between them,
as we will see throughout this book.

How is ecological rationality possible? That is, how can fast and frugal
heuristics work as well as they do, and escape the trade-offs between dif-
ferent real-world criteria including speed and accuracy? The main reason
for their success is that they make a trade-off on another dimension: that
of generality versus specificity. While coherence criteria are very gen-
eral—logical consistency, for instance, can be applied to any domain—the
correspondence criteria that measure a heuristic's performance against the
real world require much more domain-specific solutions. What works to
make quick and accurate inferences in one domain may well not work in
another. Thus, different environments can have different specific fast and
frugal heuristics that exploit their particular information structure to
make adaptive decisions. But specificity can also be a danger: If a different
heuristic were required for every slightly different decision-making envi-
ronment, we would need an unworkable multitude of heuristics to reason
with, and we would not be able to generalize to previously unencountered
environments. Fast and frugal heuristics avoid this trap by their very sim-
plicity, which allows them to be robust in the face of environmental
change and enables them to generalize well to new situations.
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Exploiting Environment Structure Fast and frugal heuristics can benefit
from the way information is structured in environments. In chapter 10,
for instance, we will meet a fast and frugal heuristic for quantitative esti-
mation that relies on the skewed distributions of many real-world vari-
ables such as city population size—an aspect of environment structure
that traditional statistical estimation techniques would either ignore or
even try to erase by normalizing the data. Standard statistical models, and
standard theories of rationality, aim to be as general as possible, so they
make as broad and as few assumptions as possible about the data to which
they will be applied. But the way information is structured in real-world
environments often does not follow convenient simplifying assumptions.
For instance, whereas most statistical models are designed to operate on
data sets where means and variances are independent, Karl Pearson (1897)
noted that in natural situations these two measures tend to be correlated,
and thus each can be used as a cue to infer the other (Einhorn & Hogarth,
1981, p. 66). While general statistical methods strive to ignore such factors
that could limit their applicability, evolution would seize upon infor-
mative environmental dependencies such as this one and exploit them
with specific heuristics if they would give a decision-making organism an
adaptive edge.

Robustness How can simple domain-specific heuristics ever be about as
accurate as complex general strategies that work with many free parame-
ters? One answer lies in not being too specific. Simple heuristics are
meant to apply to specific environments, but they do not contain enough
detail to match any one environment precisely. General strategies that can
be made to conform to a broad range of environments, on the other hand,
can end up being too highly focused to be of much real use—having a
large number of free parameters to fiddle with can be a hindrance. Imag-
ine a compulsive Weather Channel watcher with too much time on his
hands who decides to record the daily fluctuations in temperature and
rainfall where he lives for a year. If he uses this exact daily data to deter-
mine his wardrobe choices the following year, wearing shorts this April
15 because it was hot and dry last April 15, he will often end up cold and
wet. As accurate as his detailed weather model may be for describing the
particular pattern for which it was constructed, its predictive value in
other situations—other times or other locations—may be minimal. This
failure of generalization, a phenomenon known as overfitting (e.g., Geman
et al., 1992; Massaro, 1988b), stems from assuming that every detail is of
utmost relevance. In contrast, if our weather watcher had used many
fewer parameters in his model, for instance just recording the average
weekly temperature and rainfall and using that to infer how to dress ac-
cordingly a year later, he could have made much more accurate (weekly)
predictions and ended up more comfortable, adapting to the general
trends that occur year after year. As we will show in various chapters,
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models with many free parameters, from multiple linear regression to neu-
ral networks, can suffer from trying to be like the compulsive rain spotter.

Thus, there is an important difference between the two typical applica-
tions of a strategy, fitting (fit a strategy to a given set of data) and general-
ization (use a strategy to predict new data). In fitting, it is usually true
that the more parameters a model has, and the more information (cues) it
uses, the better it will fit given data. In generalization, in contrast, more
is not necessarily better. A computationally simple strategy that uses only
some of the available information can be more robust, making more accu-
rate predictions for new data, than a computationally complex, informa-
tion-guzzling strategy that overfits.

Robustness goes hand in hand with speed, accuracy, and especially
information frugality. Fast and frugal heuristics can reduce overfitting by
ignoring the noise inherent in many cues and looking instead for the
"swamping forces" reflected in the most important cues. Thus, simply
using only one or a few of the most useful cues can automatically yield
robustness. Furthermore, important cues are likely to remain important.
The informative relationships in the environment are likely to hold true
when the environment changes—for instance, April is likely to be associ-
ated with showers in northern locations year after year. In contrast, the
random fluctuations of noise and even the effects of smaller systematic
factors may well frequently alter—for instance, May flowers may depend
on many variable factors such as temperature, rainfall, seed dispersal, and
insect pests that collectively change more from one year to the next. Be-
cause of this pattern, fast and frugal heuristics that pay attention to sys-
tematic informative cues while overlooking more variable uninformative
cues can ride out environmental change without suffering much decre-
ment in performance. Laplace's superintelligence would never overfit be-
cause it does not have to make uncertain predictions. But models of infer-
ence that try to be like a Laplacean superintelligence are doomed to
overfitting, when they swallow more data than they can digest.

Studying ecological rationality enables us to go beyond the widespread
fiction that basing decision making on more information and computation
will always lead to more accurate inferences. This ideology dominates
much research, leading to computational models of cognition that are
based on information-hungry statistical methods (Gigerenzer & Murray,
1987), and more generally to evaluative judgments about what is good and
bad cognition. For instance, many "dual process" theories in cognitive
and social psychology characterize reasoning with dichotomies such as
analytic versus heuristic, argumentative versus suggestive, rule-based ver-
sus associative, and mindful versus mindless (e.g., Evans, 1989; Sloman,
1996). The unquestioned assumption behind these theories is that the
more laborious, computationally expensive, and nonheuristic the strategy,
the better the judgments to which it gives rise. This more-is-better ideol-
ogy ignores the ecological rationality of cognitive strategies. Consequently,
it comes as a surprise to the dichotomy makers when people perform bet-
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ter by violating one of these ideological dictums, for instance when people
make better judgments by relying on their intuition than when they reason
(Wilson & Schooler, 1991), or when someone's forecasts of stock earnings
decrease in accuracy as new information is added (Davis et al., 1994), or
when simple intuitive strategies do well on Bayesian inferences (McKen-
zie, 1994; see also Ambady & Rosenthal, 1992). There is a point where too
much information and too much information processing can hurt. Cogni-
tion is the art of focusing on the relevant and deliberately ignoring the
rest. We take the same approach to modeling cognition.

Performance in Real-World Environments

As mentioned earlier, bounded rationality is often characterized as a view
that takes into account the cognitive limitations of thinking humans—an
incomplete and potentially misleading characterization. If we want to un-
derstand how real human minds work, we must look not only at how our
reasoning is "limited" compared to that of supernatural beings, but also
at how our minds are adapted to real-world environments. This two-sided
conception of bounded rationality should inform our choice of criteria by
which to evaluate the performance of heuristics.

One set of criteria that is often used to evaluate judgments and deci-
sions is the laws of logic and probability theory. For instance, if judgments
are consistent (e.g., I always think that event A is more likely than B) and
transitive (I think A is more likely than B, B is more likely than C, and
therefore that A is more likely than C), this is taken as an indication that
the underlying decision strategies are rational. If such criteria are violated,
this is typically held to be a sign of irrationality on the part of the decision
maker. These laws of logic and probability are called coherence criteria
because they are primarily concerned with the internal logical coherence
of judgments rather than with how well they help us to make useful deci-
sions in the real world. If you believe there is a probability of 90% that
Elvis is still alive and a probability of 10% that he is not, your beliefs are
at least coherent, in that you give the two opposite possibilities together
a 100% chance, as probability theory says you must. But if they lead you
to spend long hours in cornfields waiting for his UFO to land, these be-
liefs are not doing you much real-world good. Instead of considering these
issues of content and real-world adaptiveness, most experimental research
programs aimed at demonstrating the rationality or (usually) irrationality
of humans and animals have used the abstract coherence criteria. For in-
stance, many claims that there are systematic irrational fallacies in human
reasoning are based entirely on a violation of some rule or other of logic
or probability (e.g., Tversky & Kahneman, 1983; Wason, 1983). Similarly,
it has been claimed that monkeys are rational (McGonigle & Chalmers,
1992) following the observation that squirrel monkeys make choices that
conform to transitivity.



This book adopts a different, adaptive view of rational behavior. We do
not compare human judgment with the laws of logic or probability, but
rather examine how it fares in real-world environments. The function of
heuristics is not to be coherent. Rather, their function is to make reason-
able, adaptive inferences about the real social and physical world given
limited time and knowledge. Hence, we should evaluate the performance
of heuristics by criteria that reflect this function. Measures that relate de-
cision-making strategies to the external world rather than to internal con-
sistency, such as accuracy, frugality, and speed, are called correspondence
criteria (Hammond, 1996a). As Egon Brunswik (1957) observed, the mind
and the environment are like a husband and wife who must come to terms
with each other by mutual adaptation. However, owing to the focus on
coherence in much research on reasoning and decision making, the cou-
ple has become estranged. Our aim is to get this couple corresponding
again, even if they cannot be coherent.

Indeed, the two kinds of criteria, coherence and correspondence, can
sometimes be at odds with each other. For instance, in social situations,
including some competitive games and predator-prey interactions, it can
be advantageous to exhibit inconsistent behavior in order to maximize
adaptive unpredictability and avoid capture or loss (Driver & Humphries,
1988). hi chapters 4 and 5, we will meet a similarly illogical heuristic—
the Minimalist heuristic—that violates transitivity but nevertheless makes
fairly robust and accurate inferences in particular environments. Thus,
intransitivity does not necessarily imply high levels of inaccuracy, nor
does transitivity guarantee high levels of accuracy—logic and adaptive be-
havior are logically distinct.

To conclude: Heuristics are not simply hobbled versions of optimal
strategies. There are no optimal strategies in many real-world environ-
ments in the first place. This does not mean, though, that there are no
performance criteria in the real world. As a measure of the success of a
heuristic, we compare its performance with the actual requirements of its
environment, which can include making accurate decisions, in a minimal
amount of time, and using a minimal amount of information. We have
thus replaced the multiple coherence criteria stemming from the laws of
logic and probability with multiple correspondence criteria relating to
real-world decision performance. But there is a further difference between
these two sets of multiple criteria: While all coherence criteria must be
met for a decision method to be deemed rational, correspondence criteria
can be considered in relation to each other. In some environments, for
instance, it may be more important to make a decision quickly rather than
focusing on accuracy. However, one of the surprising empirical results
reported in this book is that simple heuristics need not always make such
trade-offs. We will show that, when compared to some standard bench-
mark strategies, fast and frugal heuristics can be faster, more frugal, and
more accurate at the same time. No trade-off need be considered.

22 THE RESEARCH AGENDA
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Do People Use Fast and Frugal Heuristics?

The research program described so far encompasses three big questions:
(1) What are reasonable heuristic principles for guiding search, stopping
search, and making a decision using the results of that search? (2) When
and why do these heuristics perform well, that is, how can they be ecolog-
ically rational? (3) How well do fast and frugal heuristics actually perform
in real-world environments? Exploring these three questions is sufficient
if we are interested in investigating new heuristics for various applied
settings—the realms of artificial intelligence and decision-support sys-
tems, for instance. But if we are also concerned to discover the principles
that guide natural human and animal behavior, we must add a fourth
question to our research program: What is the evidence that humans or
animals use specific fast and frugal heuristics?

We know rather little about the heuristic principles of limited search
and stopping that people and animals use. One major reason for this is
that the typical experimental task eliminates search in the first place (but
see e.g., Connolly & Gilani, 1982; Payne et al., 1993; Saad & Russo, 1996).
Researchers usually sidestep questions of search by using tasks in which
all pieces of information—usually only two or three—are already conve-
niently laid out in front of the participant. We refer to this type of task as
inference from givens, as opposed to inference from memory or inference
from the external environment, both of which require search (Giger-
enzer & Goldstein, 1996a). For instance, the majority of psychological
studies of categorization use artificial objects (e.g., drawings of faces or
fishes) that vary on only a few cues. To classify a new object, the partici-
pant is not supposed to perform a search for cues in memory or in the
environment, but rather is expected merely to use the few immediately
available cues presented in the stimuli (see chapter 11 for a discussion of
this problem and a fast and frugal categorization heuristic designed to
tackle more realistic multiple-cue situations). Theories of cognition and
the experimental tasks used to test those theories often conspire hand in
hand to overlook limited search and stopping rules. But experiments in
which search is obviated are unsuitable for testing models of ecological
and bounded rationality that rely on limited information search as a cen-
tral component.

Ironically, one reason why so little attention has been devoted to heu-
ristic principles of limited search may stem from the use of a fast and
frugal heuristic itself. The tools-to-theories heuristic of scientific discov-
ery (Gigerenzer, 1991a) predicts that the laboratory tools entrenched in
the daily routine of cognitive scientists will tend to be adopted as models
of mind. In the 1950s and 1960s, statistical methods of inference were
institutionalized in experimental psychology, based on a mishmash of
Fisher's null hypothesis testing and Neyman and Pearson's decision the-
ory. None of these institutionalized tools dealt with search and stopping
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rules, in contrast to other well-known statistical tools that do (e.g., the
sequential analysis of Wald, 1947). In accordance with the tools-to-theo-
ries heuristic, many researchers have since proposed theories that model
cognitive processes after these institutionalized statistical tools, and that
therefore also ignore the necessity of modeling search and stopping rules.
For example, in his causal attribution theory, Kelley (1967) proposed that
the mind attributes effects to causes in the same way that cognitive re-
searchers generally do, that is, by calculating Fisher's analysis of variance.
As another instance, in what became known as signal detection theory,
Tanner and Swets (1954) suggested that the mind discriminates between
two stimuli the way a statistician of the Neyman-Pearson school would
test between two statistical hypotheses. As mentioned above, these statis-
tical approaches of Fisher and Neyman-Pearson did not include the con-
cept of search, and so, following the tools-to-theories explanation, this is
why neither the cognitive theories stemming from these statistical tools
nor the experimental tasks designed to test them consider search pro-
cesses, a legacy we are left with today (Gigerenzer & Goldstein, 1996b;
Gigerenzer & Murray, 1987).

In contrast to the lack of work on heuristic principles for guiding and
stopping search, decision rules have been the focus of a great deal of re-
search and theorizing. For instance, psychologists have asked whether
children integrate information additively, multiplicatively, or in some
other way (e.g., Gigerenzer & Richter, 1990), and whether adults integrate
information by Bayes's rule or by averaging (e.g., Birnbaum & Mellers,
1983). But again these questions are typically investigated with experi-
mental designs in which information is restricted to only two or three
cues presented to participants, removing the need for any search. As a
consequence, the results of these studies may not tell us much about the
heuristic decision principles used in more realistic situations where infor-
mation or alternatives must be actively sought.

Summary of the Research Program

The research program just described is designed to elucidate three distinct
but interconnected aspects of rationality (see also Chase et al., 1998).

1. Bounded rationality. Decision-making agents in the real world must
arrive at their inferences using realistic amounts of time, information, and
computational resources. We look for inference mechanisms exhibiting
bounded rationality by designing and testing computational models of fast
and frugal heuristics and their psychological building blocks. The build-
ing blocks include heuristic principles for guiding search for information
or alternatives, stopping the search, and making decisions.

2. Ecological rationality. Decision-making mechanisms can exploit
the structure of information in the environment to arrive at more adap-
tively useful outcomes. To understand how different heuristics can be
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ecologically rational, we characterize the ways information can be struc-
tured in different decision environments and how heuristics can tap that
structure to be fast, frugal, accurate, and otherwise adaptive at the same
time.

3. Social rationality. The most important aspects of an agent's envi-
ronment are often created by the other agents it interacts with. Thus, pred-
ators must make crucial inferences about the behavior of their prey (see
chapter 12), males and females must make decisions about others they are
interested in mating with (chapter 13), and parents must figure out how
to help their children (chapter 14). Social rationality is a special form of
ecological rationality, and to study it we design and test computational
models of fast and frugal heuristics that exploit the information structure
of the social environment to enable adaptive interactions with other
agents. These heuristics can include socially adaptive building blocks,
such as emotions of anger and parental love and social norms, which can
act as further heuristic principles for search, stopping, and decision (we
return to this point below).

These three aspects of rationality look toward the same central goal:
to understand human behavior and cognition as it is adapted to specific
environments (ecological and social), and to discover the heuristics that
guide adaptive behavior.

How the ABC Research Program Relates to Earlier
Notions of Heuristics

The term "heuristic" is of Greek origin, meaning "serving to find out or
discover." From its introduction into English in the early 1800s up until
about 1970, "heuristic" referred to useful, even indispensable cognitive
processes for solving problems that cannot be handled by logic and proba-
bility theory (e.g., Groner et al., 1983; Polya, 1954). After 1970, a second
meaning emerged in the fields of psychology and decision-making re-
search: overused, mostly dispensable cognitive processes that people of-
ten misapply to situations where logic and probability theory should be
applied instead (e.g., Tversky & Kahneman, 1974). We now explore the
twentieth-century changes in the concept of heuristic in a bit more detail,
and show how our own use of the term fits into the historical context.

In 1905, the 26-year-old Albert Einstein published his first fundamen-
tal paper in quantum physics, titled "On a heuristic point of view con-
cerning the generation and transformation of light." In that Nobel prize-
winning paper, Einstein used the term "heuristic" to indicate that he con-
sidered the view he presented therein as incomplete, false even, but still
useful. Einstein could not wholeheartedly accept the quantum view of
light that he started to develop in this paper, but he believed that it was
of great transitory use on the way to building a more correct theory (Hol-
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ton, 1988, pp. 360–361]. As used by Einstein, then, a heuristic is an ap-
proach to a problem that is necessarily incomplete given the knowledge
available, and hence unavoidably false, but which is useful nonetheless
for guiding thinking in appropriate directions (see also Wimsatt, 1987).

A few decades later, Max Wertheimer (a close friend of Einstein's), Karl
Duncker, and other Gestalt psychologists spoke of heuristic reasoning, but
with a meaning slightly different from Einstein's. Gestalt psychologists
conceptualized thinking as an interaction between inner mental processes
and external problem structure. In this view, heuristic methods such as
"looking around" and "inspecting the problem" are first used to guide
the search for appropriate information in the environment, which is then
restructured or reformulated by inner processes (e.g., Duncker, 1935/
1945). It is in this tradition that Herbert Simon and Allen Newell modeled
heuristics for search, replacing the somewhat vague methods of the Ge-
stalt school with much more precise computational models. With the ad-
vent of information processing theory in cognitive psychology, a heuristic
came to mean a useful shortcut, an approximation, or a rule of thumb for
guiding search, such as a strategy that a chess master uses to reduce the
enormous space of possible moves at each point in a game.

We use the term "heuristic" in the same positive sense as these earlier
theorists, emphasizing its beneficial role in guiding search, and following
Simon and Newell's emphasis on creating precise computational models.
However, we break with the past tradition of using well-defined artificial
settings for the study of heuristics, such as mathematical problems (Polya,
1954) or the games of chess and cryptarithmetic that Newell and Simon
(1972) investigated. Instead, our research addresses how fast and frugal
heuristics can make inferences about unknown aspects of real-world envi-
ronments.

The research most closely related to the ABC program on fast and fru-
gal heuristics is that on adaptive decision making and on simple classifi-
cation rules in machine learning. In their work on the "adaptive decision
maker," Payne, Bettman, and Johnson (1993) studied the trade-off between
accuracy and effort for various choice strategies, including lexicographic
rules and Elimination by Aspects (Tversky, 1972). Payne and colleagues
emphasized that a decision maker has a multitude of strategies available
and chooses among them depending on their costs and accuracy given
constraints such as time pressure. This important work has many connec-
tions with our own program, as we will see throughout this book, but
important differences will also become evident. One such distinction is
that Payne and colleagues focused on preferences, such as between hypo-
thetical job candidates or randomly generated gambles, rather than on in-
ferences about the real world, such as which soccer team will win or
which of two cities is larger. This is why they could not measure the accu-
racy of strategies in terms of their ability to predict real-world outcomes.
Instead, they measured accuracy by how closely a strategy could match
the predictions of a weighted additive rule, which is the traditional gold
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standard for rational preferences. As a consequence, in Payne, Bettman,
and Johnson's research a heuristic can never be better than a weighted
additive rule in accuracy (though it may require less computational ef-
fort). In contrast, by measuring the performance of all competing strategies
against external real-world criteria, we find that fast and frugal heuristics
can be more accurate than a weighted additive rule both in theory (chap-
ter 4) and in practice (chapter 5). Research in machine learning similarly
focuses on inferences about real-world environments, again allowing ac-
curacy to be measured objectively. Work on simple classification rules
that use only one or a few cues (e.g., Holte, 1993; Rivest, 1987) has demon-
strated that fast and frugal methods can be accurate, as well as being ro-
bust generalizers owing to their limited parameter use.

A very different notion emerged in psychology in the early 1970s, em-
phasizing how the use of heuristics can lead to systematic errors and
lapses of reasoning that indicate human irrationality. This "heuristics-
and-biases" program launched by Tversky and Kahneman (1974) tainted
the idea of simple mental mechanisms by attaching them to the value-
laden "bias" term in a single inseparable phrase. Within this program,
heuristics were often invoked as the explanation when errors—mainly de-
viations from the laws of probability—were found in human reasoning.
Although Tversky and Kahneman (1974) repeatedly asserted that heuris-
tics sometimes succeed and sometimes fail, their experimental results
were typically interpreted as indicating some kind of fallacy, which was
usually attributed to one of three main heuristics: representativeness
(judgments influenced by what is typical), availability (judgments based
on what comes easily to rnind), or anchoring and adjustment (judgments
relying on what comes first).

The heuristics-and-biases program suggests that ordinary people are
cognitive misers who use little information and little cognition and thus
are largely unable to estimate probabilities and risks. Some have taken
this to mean that it might be best to cut the general public out of making
important social and political decisions, such as those concerning the
regulation of the nuclear industry and other potentially hazardous new
technologies. In the words of a Newsweek article reporting on heuristics-
and-biases research: "Most people . . . are woefully muddled information
processors who often stumble along ill-chosen short-cuts to reach bad
conclusions" (McCormick, 1987, p. 24). However, Tversky and Kahneman
also argued that leaving decisions to experts may not be an improvement,
as they can be subject to similar mistakes. Given this pessimistic view, it
is hard to know where to turn for reasonable decisions.

The narrowly defined "fallacies" discussed by the heuristics-and-
biases program have not only been deemed irrational, but have also been
interpreted as signs of the bounded rationality of humans (e.g., Thaler,
1991, p. 4). Equating bounded rationality with irrationality in this way is
as serious a confusion as equating it with optimization under constraints.
Bounded rationality is neither limited optimality nor irrationality.
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Our research program of studying fast and frugal heuristics shares some
basic features with the heuristics-and-biases program. Both emphasize the
important role that simple psychological heuristics play in human thought,
and both are concerned with finding the situations in which these heuris-
tics are employed. But these similarities mask a profound basic difference
of opinion on the underlying nature of rationality, leading to very diver-
gent research agendas: In our program, we see heuristics as the way the
human mind can take advantage of the structure of information in the
environment to arrive at reasonable decisions, and so we focus on the
ways and settings in which simple heuristics lead to accurate and useful
inferences. In contrast, the heuristics-and-biases approach views heuris-
tics as unreliable aids that the limited human mind too commonly relies
upon despite their inferior decision-making performance, and hence re-
searchers in this tradition seek out cases where heuristics can be blamed
for poor reasoning. We discuss two important distinctions here that follow
from this basic difference; for a more detailed analysis, see Gigerenzer
(1991b, 1994, 1997; Gigerenzer & Murray, 1987), and for arguments in fa-
vor of each side, see the debate between Kahneman and Tversky (1996)
and Gigerenzer (1996).

The first distinction is that the ABC program opts for computational
models of heuristics instead of vague labels. After three decades of re-
search, the heuristics-and-biases program has generated only nebulous, if
plausible, proposals for simple mechanisms of (poor) reasoning, primarily
the three heuristics mentioned earlier, representativeness, availability,
and anchoring. These one-word labels at once explain too little and too
much: too little, because the underlying processes are left unspecified,
and too much, because, with sufficient imagination, one of them can be
fit to almost any empirical result post hoc. For instance, "base-rate ne-
glect," or ignoring the frequency with which different alternatives occur
in the environment when making decisions about them, is commonly at-
tributed to the representativeness heuristic. However, the opposite result,
overweighting of base rates (or "conservatism," Edwards, 1968), is as eas-
ily "explained" by anchoring (on the base rate) and adjustment (Giger-
enzer & Murray, 1987). There are two ways a theory can fail: by being
wrong, or by being not even wrong, but merely indeterminate and impre-
cise. The heuristics-and-biases program has too often fallen into the latter
category. But we would rather risk the former fate, because indeterminate
theories hinder scientific progress by resisting attempts to prove, dis-
prove, or improve them. In this book, we therefore propose computational
models of heuristics, putting our theoretical cards on the table so that
others can see them—and even pick them up and play with them.

The second distinction is a normative one. The ABC program dispenses
with the focus on coherence criteria (e.g., the laws of probability) as the
yardsticks of rationality. Instead, we study the correspondence-based per-
formance of heuristics in real-world environments, situations where opti-
mal coherent strategies are often not known or not feasible. In contrast,
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proponents of the heuristics-and-biases program typically assume that
each reasoning task has exactly one normative answer, which is derived
by applying a law of probability in a content-blind way, without looking
at the specifics of the task or environment. Our view liberates fast and
frugal heuristics from their role in the heuristics-and-biases program as
the harbingers of coherence-defined irrationality and holds them up as
tools for adaptive and accurate decision making in real environments.

To summarize the place of our research in its historical context, the
ABC program takes up the traditional notion of heuristics as an essential
cognitive tool for making reasonable decisions. We specify the function
and role of fast and frugal heuristics more precisely than has been done
in the past, by building computational models with specific principles of
information search, stopping, and decision making. We replace the nar-
row, content-blind norms of coherence criteria with the analysis of heuris-
tic accuracy, speed, and frugality in real-world environments as part of
our study of ecological rationality. Finally, whereas the heuristics-and-
biases program portrays heuristics as a frequent hindrance to sound rea-
soning, rendering Homo sapiens not so sapient, we see fast and frugal
heuristics as enabling us to make reasonable decisions and behave adap-
tively in our environment—Homo sapiens would be lost without them.

The Adaptive Toolbox

Gottfried Wilhelm Leibniz had a beautiful dream. He dreamed of a univer-
sal logical language, the Universal Characteristic, that would replace all
reasoning (Leibniz, 1677/1951). The Universal Characteristic had two
parts: (1) an alphabet of human thought, that is, a system of primitive
characters that stand for irreducible simple concepts and form an inven-
tory of real things; and (2) a calculus of reasoning that combines the ele-
ments of this alphabet. While Robert Boyle had searched for the alpha-
betic elements of chemistry, Leibniz aimed for an even more ambitious
target: understanding the universal language in which God had written
the book of nature. He saw such knowledge of God's creation as the most
important goal anyone could strive for. Leibniz believed that the Univer-
sal Characteristic would put an end to scholarly bickering and clamorous
controversy—people could stop shouting at one another and settle matters
peacefully by sitting down with pencil and paper and saying, "Let's calcu-
late." All matters of science and morality would be solved, and we would
live in the best of all possible worlds. Young Leibniz made the optimistic
prediction about the Universal Characteristic's development period that
"a few selected persons might be able to do the whole thing in five years"
(Leibniz, 1677/1951, p. 22). (Similar sentiments have been uttered over
the years concerning psychology and artificial intelligence.) For some
time, many Enlightenment thinkers believed that the mathematical theory
of probability could make Leibniz's dream a reality. But by the 1840s,



mathematicians had given up the task of reducing rational reasoning to a
general calculus as thankless and even antimathematical (Daston, 1988).
However, as we saw earlier in our discussions of demons, there are still
many theorists in a variety of fields to this day who have not given up the
logic of this dream.

The multitude of simple concepts making up Leibniz's alphabet of hu-
man thought were all to be operated on by a single general-purpose tool
such as probability theory. But no such universal tool of inference could
be found. Just as a mechanic will pull out specific wrenches, pliers* and
spark-plug gap gauges for each task in maintaining a car's engine rather
than merely hitting everything with a large hammer, different domains of
thought require different specialized tools. This is the basic idea of the
adaptive toolbox: the collection of specialized cognitive mechanisms that
evolution has built into the human mind for specific domains of inference
and reasoning, including fast and frugal heuristics (see also Bettman,
1979; Cosmides & Tooby, 1992; Payne et al., 1993). The notion of a toolbox
jumbled full of unique one-function devices lacks the beauty of Leibniz's
dream of a single all-purpose inferential power tool. Instead, it invokes
the more modest but surprising abilities of a "backwoods mechanic and
used parts dealer" (as Wimsatt, in press, describes Nature) who can pro-
vide serviceable solutions to most any problem with just the things at
hand.

The adaptive toolbox contains psychological (as opposed to morpho-
logical or physiological) adaptations (Tooby & Cosmides, 1992). These in-
clude so-called "lower order" perceptual and memory processes which
can be fairly automatic, such as depth perception, auditory scene analysis,
and face recognition, as well as "higher order" processes that are based
on the "lower" processes and can be at least partly accessible to con-
sciousness. Higher order mental processes include the examples we have
discussed earlier of inferring whether a heart attack victim should be
treated as a high- or low-risk patient and deciding whether or not to
marry. The focus of this book is on fast and frugal heuristics for higher
order cognitive processes that call upon lower order processes of cue per-
ception and memory.

Lower order perceptual and memory processes such as face and voice
recognition are complex and difficult to unravel, in part because they
make use of massively parallel computations. No one has yet managed to
build a machine that recognizes faces as well as a 2-year-old child. Now
consider a higher order decision mechanism that makes inferences based
on these processes, the recognition heuristic introduced in chapter 2. This
fast and frugal heuristic uses recognition to make rapid inferences about
unknown aspects of the world: For instance, food whose taste one recog-
nizes is probably safer than unrecognized food, and a university whose
name one has heard of probably provides a more prestigious education
than one whose name is unfamiliar. Although the mechanisms of recogni-
tion memory may be intricate and complex, the recognition heuristic can
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be described as an algorithm just a few steps long. We do not need to
know precisely how recognition memory works to describe a heuristic
that relies on recognition. This example illustrates an apparently paradox-
ical thesis: Higher order cognitive mechanisms can often be modeled by
simpler algorithms than can lower order mechanisms.

This thesis is not new. It has been proposed in various forms over the
past century, as for example by proponents of the Wiirzburg school of
psychology in the early twentieth century (Kusch, 1999) and more re-
cently by Shepard (1967a). The thesis has limits as well, of course: Some
higher order processes, such as the creative process involved in Darwin's
development of the theory of natural selection, are probably beyond the
grasp of fast and frugal heuristics. But we believe that simple heuristics
can be used singly and in combination to account for a great variety of
higher order mental processes that may at first glance seem to require
more complex explanation, as we will show throughout this book.

Emotions, Social Norms, and Imitation

Although we focus on cognitive heuristics in this book, it is important to
point out that emotions can also function as heuristic principles for guid-
ing and stopping information search. For instance, falling in love can be
seen as a powerful stopping rule that ends the current search for a partner
(at least temporarily) and strengthens commitment to the loved one. Simi-
larly, feelings of parental love, triggered by one's infant's presence or
smile, can be described as a means of preventing cost-benefit computa-
tions with respect to proximal goals, so that the question of whether it is
worthwhile to endure all the sleepless nights and other challenges associ-
ated with baby care simply never arises. Emotions are good examples of
building blocks in the adaptive toolbox that are substantially domain-spe-
cific rather than domain-general (Tooby & Cosmides, 1990): For instance,
while parental love is designed to help parents to solve the adaptive task
of protecting and providing for their offspring, disgust functions to ad-
dress the adaptive challenge of avoiding being sickened by spoiled food.
There is no general-purpose all-encompassing emotion.

Social norms and social imitation can also help us make decisions with
limited time and knowledge. Following heuristics such as "eat what older
and experienced conspecifics eat" or "prefer mates picked by others" can
speed up decision making by reducing the need for direct experience and
information gathering. These forms of social rationality can be found
throughout the animal world: For instance, female guppies have a ten-
dency to copy the mate choices of other female guppies that is powerful
enough to reverse their prior preferences for one male over another (Du-
gatkin, 1996), and female quail use a related form of mate copying (Galef &
White, 1998). In humans, in addition to individual and media-fueled mate
copying, academic hiring sometimes seems to follow a similar heuristic.
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Thus the adaptive toolbox contains decision-making heuristics that
employ emotions, norms, and imitation in addition to the cognitive build-
ing blocks outlined earlier. These additional heuristic principles are par-
ticularly important in the realm of social rationality.

How Are Heuristics Selected?

How does the mind choose which heuristic in the adaptive toolbox to
apply to a specific problem? There may not be as much choice as it ini-
tially seems. The most important reason for this is that specific tasks call
for specific tools—that is, each heuristic is specialized for certain classes
of problems, which means that most of them are not applicable in a given
situation. There are two (overlapping) forms of domain specificity used
throughout this book that can determine heuristic choice: specific adap-
tive tasks, such as mate choice or parental investment; and specific infer-
ence tasks, such as categorization or estimation. Clearly, a heuristic de-
signed to make a choice between two alternatives will not be suitable for
categorization, nor will a mate choice heuristic help in judging habitat
quality. The domain-specific bins in the adaptive toolbox could often hold
only a single appropriate tool.

In cases where there is more than one applicable heuristic, the knowl-
edge that the decision maker has can be used to select the heuristic. For
instance, if a person knows that certain cues can be used to decide be-
tween two options, but not which cues are better indicators than others,
she does not have enough information (about how to order the cues) to
apply a fast and frugal heuristic we call Take The Best (chapter 4). How-
ever, she can use the even simpler Take The Last heuristic, which only
needs to know what cues to use, and not what order to use them in. If she
does not even know any cues to use, but at least recognizes one option
and not the other, she can still apply what is perhaps the simplest fast
and frugal heuristic: the recognition heuristic (chapter 2). In this way, the
level of knowledge can make further selections among domain-specific
heuristics in the adaptive toolbox.

Other external factors, such as time pressure and success, may further
help to select heuristics (Johnson & Payne, 1985). There are also certain
situations in which it is adaptive to alternate between multiple strategies,
either randomly, yielding unpredictable protean behavior that can be use-
ful when engaging competitors or fleeing from predators (Driver & Hum-
phries, 1988), or systematically, yielding individual differences in deci-
sions that help avoid conflicts such as everyone crowding into the local
bar on the same night each week (Arthur, 1994). We assume that all of
the factors involved in selecting decision-making mechanisms from the
adaptive toolbox will themselves be used in a fast and frugal manner to
make the tool choice, rather than being handed over to a hidden computa-
tionally elaborate demon who undermines the spirit of fast and frugal cog-
nition by optimizing heuristic choice.
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The tools in the adaptive toolbox are made from more primitive com-
ponents, including the heuristic principles of information search, stop-
ping, and decision discussed earlier. New tools can also be fashioned from
old tools, much as a handle added to a chopping stone creates an axe.
Thus, for instance, the Take the Best heuristic presented in chapter 4 is
made from the more primitive (and probably earlier evolved) recognition
heuristic of chapter 2 along with additional heuristic principles. This con-
structive view applied to the mental tools themselves distinguishes the
adaptive toolbox image from the similar metaphor of the mind as a Swiss
army knife (Cosmides & Tooby, 1992). Both analogies emphasize that the
mind uses a collection of many specifically designed adaptive strategies
rather than a few general-purpose power tools, but the toolbox metaphor
puts more emphasis on the possibility of recombining tools and building
blocks and the nesting of heuristics.

Beyond Demons and Nightmares

In the world of academic thought, there are powerful demons that few
people would want to tangle with, such as irrationality and mysticism.
But there are also demons that some researchers seem to love, inviting
them into mental theories at every opportunity—unbounded rationality
and optimization under constraints sitting at the top of the demonic hier-
archy. These popular demons embody characteristics that are unquestion-
ably desirable, such as being able to calculate the future, but nonetheless
absolutely unattainable for mortal humans. Why have so many social sci-
entists idealized our human knowledge and abilities in ways aspiring to
the characteristics of some Supreme Being, rather than reflecting our more
real limitations? Is it an intellectual holdover from the pre-Darwinian
view of humankind as distinct from the rest of Nature?

The fascination with what is optimal in thought and behavior does
reflect a certain sense of beauty and morality. Leibniz's dream of a univer-
sal calculus exhibits the aesthetics and the moral virtue of this ideal, as
does Laplace's omniscient super-intelligence. Cognitive scientists, econo-
mists, and biologists have often chased after the same beautiful dreams by
building elaborate models endowing organisms with unlimited abilities
to know, memorize, and compute. These heavenly dreams, however, tend
to evaporate when they encounter the physical and psychological realities
of the waking world. Mere mortal humans cannot hope to live up to these
dreams, and instead appear irrational and dysfunctional when measured
against their fantastic standards. On earth, heavenly dreams become
nightmares.

In the face of this nightmarish dilemma, many researchers have still
preferred to keep dreaming that humans can approximate these exacting
standards, rather than surrender to an ungodly picture of human irration-
ality and stupidity. The choice, however, is not between an unrealistic
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dreaming rationality and a realistic nightmare irrationality. There is a
third vision that dispenses with this opposition: rationality through sim-
plicity, and accuracy through frugality.

This book is the story of our successes and unresolved challenges in
understanding how minds can be fast, frugal, and accurate at the same
time, making adaptive inferences about an unknown world through un-
certain cues. It is also the story of an interdisciplinary group who set out
to journey together from the land of demons to the land of ecologically
rational beings, learning the use of multiple methods of inquiry and the
value of multiple points of view from each other. When we began our
travels almost three years ago, we never imagined how fascinating the
voyage would be, nor the many new things our eyes would see.
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The Recognition Heuristic

How Ignorance Makes Us Smart

Daniel G. Goldstein
Gerd Gigerenzer

Human thought consists of first, a great capacity for recog-
nition, and second, a capability for selective search.

Herbert A. Simon

On a country road in Scotland, MacGregor sees his old schoolmate Mac-
Alister and calls out to him. MacAlister hesitates. He recognizes Mac-
Gregor's face, but has no idea of his name, where they had met before, or
anything else. MacGregor expresses surprise that his old classmate would
"tartle," that is, hesitate in getting beyond a sense of mere recognition.
As this useful Scottish verb helps to demonstrate, recognition and recall
memory can break apart. Sometimes this break can be permanent, as in
the case of R.F.R., a 54-year-old policeman who developed amnesia so
grave that he even had difficulty identifying his wife and mother in photo-
graphs (Warrington & McCarthy, 1988). It would seem that R.F.R. had lost
his capacity for recognition. Had he? In an experiment, he was presented
photographs of famous people and of strangers he had never seen before
and was asked to point out the famous ones. He performed as though his
memory were unimpaired. Even though he lacked the recall memory to
name people (such as his mother) in photographs, he retained a normal
recognition memory, and this allowed him to indicate the famous faces
he had seen before.

Like R.F.R. and the tartling Scotsman, as we wander through a stream
of sights, sounds, tastes, odors, and tactile impressions, we have little
trouble knowing what we have encountered before, even when we cannot
recall more information. Our sense of recognition is argued to constitute
a specialized memory system that can be impaired independently of other
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memory capacities. For instance, elderly people suffering memory loss
(Craik & McDowd, 1987; Schonfield & Robertson, 1966) and patients suf-
fering certain kinds of brain damage (Schacter & Tulving, 1994; Squire et
al., 1993) have problems saying what they know about an object, even
where they have encountered it, but can act in a way that shows that they
have encountered the object before. Similarly, laboratory research has
demonstrated that recognition memory continues to encode information
even in divided-attention learning tasks that are too distracting to allow
more substantial memories to be formed (Jacoby et al., 1989). Mere recog-
nition, this essentially binary feeling that we have or have not experi-
enced something before, is a minimal state of knowledge. Why do minds
encode it? What is mere recognition good for?

In this chapter, we introduce the simplest heuristic in this book, the
recognition heuristic, which exploits the vast and efficient capacity of rec-
ognition to make inferences about unknown aspects of the world. The
processes underlying face, voice, and name recognition are anything but
simple, and are still far from understood in cognitive science. However,
their output is available to us as a simple signal, recognition, which can
be exploited by a very simple heuristic. The recognition heuristic is
so frugal that it actually requires a beneficial lack of knowledge to
work. In this chapter, we define the heuristic in the form of a simple rule,
which allows us to study its performance by means of simulation and
mathematical analysis. We show that, under certain conditions, it leads to
the counterintuitive less-is-more effect, in which a lack of recognition can
be beneficial for making inferences. We also illustrate how to measure
recognition, which allows us to study experimentally whether people ac-
tually use the recognition heuristic.

The term "recognition" has been used in many contexts, so let us be
clear about the way in which we shall use it. MacAlister steps onto a
bus. The passengers may fall into three classes corresponding to the three
columns in figure 2-1. There may be passengers he does not recognize,
that is, whom he is sure he has never seen before, represented by the
leftmost column. There may be passengers he merely recognizes, but
whom he cannot identify or recall anything about (those that make him
tartle), represented by the center column. Finally, there may be people he
can recognize and also identify (what their profession is, for instance),
represented by the rightmost column.

With the term "recognition," as the striped line in figure 2-1 shows, we
divide the world into the novel (the leftmost column) and the previously
experienced (the two rightmost columns). For instance, landmark recogni-
tion, which serves the adaptive function of helping an organism find its
way home, is based on the simple binary distinction between the novel
and the previously experienced. Mere recognition needs to be distin-
guished from degrees of knowledge and what is referred to as "familiar-
ity," such as in theories that postulate that attitudes toward objects
become more positively inclined with repeated exposure (e.g., Zajonc,
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Figure 2-1: How the recognition heuristic applies to unrecognized, novel
objects (Not R = not recognized), merely recognized objects (R), and ob-
jects about which something is known beyond recognition (R+). The dis-
tinction relevant for the recognition heuristic is that between unrecog-
nized objects and everything else.

1968), and those that contend that the belief in an assertion increases with
its repetition (e.g., Gigerenzer, 1984; Hasher et al., 1977). We will study
heuristics that use knowledge beyond mere recognition beginning in
chapter 4. Our use of the term "recognition" also needs to be distin-
guished from the very common usage that refers to a person's ability to
verify whether an object was presented in a previous experimental ses-
sion. Such studies often fail to touch upon the distinction between the
novel and the previously experienced because the stimuli in these studies,
mostly digits or common words, are not novel to the participant before
the experiment. For example, "cat," a common word, would not be novel
to someone before an experiment whereas "flink," a nonword, most proba-
bly would. In contrast, experiments that use never-before-seen photo-
graphs, as in the following examples, exemplify our sense of the word
"recognition."

Recognition memory is vast, automatic, and save for deja vu, reliable.
Shepard (1967b) instructed participants to look through 612 pictures at
their own pace and immediately afterward tested recognition memory
with pairs of pictures, one previously presented and the other novel. Par-
ticipants were able to recognize the previously presented pictures in
98.5% of all cases, on average. Standing (1973) increased the number of
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pictures (photographs and "striking" photographs preselected for their
vividness] to 1,000 and limited the time of presentation to five seconds.
In a test like Shepard's 48 hours later, participants were able to point to
the previously presented picture 885 times (normal pictures) or 940 times
(striking pictures). These figures become 770 and 880 after a correction
for guessing. Standing then outdid himself by a factor of 10. In perhaps
the most extensive recognition memory test ever performed, he presented
people with 10,000 pairs of normal pictures from which participants
chose correctly 8,300 times (6,600 with guessing correction). With respect
to the performance with the "striking" pictures, Standing speculates, "if
one million items could be presented under these conditions then 731,400
would be retained" (p. 210). Note that, while the retention percentage de-
clines with the number of pictures presented, the absolute number of pic-
tures recognized keeps increasing. We conjecture that the limits of recog-
nition memory cannot be exceeded in a laboratory experiment, and
perhaps not in the lifetime of a human being.

How to Benefit from Ignorance

The remarkable capacity for recognition in higher organisms is likely to
have evolved for a number of adaptive functions. Consider the eating hab-
its of wild rats, which exhibit strong neophobia, that is, a reluctance to
eat foods they do not recognize (Barnett, 1963). This mechanism is adap-
tive in avoiding poisons: Every food a living rat has eaten has, necessarily,
not killed it (Revusky & Bedarf, 1967). Norway rats prefer foods they rec-
ognize from having tasted them or from having smelled them on the
breath of other rats (Galef, 1987; Galef et al., 1990). This heuristic for food
choice is followed even if the rat whose breath is smelled happens to be
sick at the time. That is, recognition dominates illness information. We
will report later in this chapter on a related experiment with humans, in
which recognition dominates conflicting information. Food choice in wild
rats accords with the recognition heuristic, defined shortly.

In what follows, we describe the recognition heuristic and explore its
inferential accuracy. We specify conditions under which this heuristic en-
ables organisms with less knowledge to make more accurate inferences
than organisms with more knowledge: a counterintuitive phenomenon we
call the less-is-more effect. We start by introducing our "Drosophila" prob-
lem area—that is, an example that is well understood—for studying infer-
ence: geography.

Proper name recognition constitutes a specialized region in our cogni-
tive system that can be impaired independently of other language skills
(McKenna & Warrington, 1980; Semenza & Zettin, 1989; Semenza & Sgara-
mella, 1993). A person's knowledge of geography consists largely of
proper names (those of cities, countries, mountains, and so on) and their
assignment to real places on the earth. Geographical knowledge is always
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incomplete, which makes it an ideal field of inquiry for studies of recogni-
tion. We will analyze recognition by means of computer simulation, math-
ematical analysis, and experimentation. In several demonstrations, we use
a geographical topic about which our participants (students at the Univer-
sity of Chicago) had incomplete knowledge: cities in Germany. In particu-
lar, we dealt with the class of 83 German cities with more than 100,000
inhabitants. Our American participants recognized only about a quarter
of these cities, and yet they were able to exploit this lack of recognition,
as we will see.

The task we examine is a common one: selecting a subset of objects
from a larger set. In this chapter, we focus on the case of choosing one
object from two. This task, two-alternative choice, besides being a staple
of experimental psychology, is an elementary case to which many prob-
lems of greater complexity (multiple choice, for instance) are reducible.
An example of a two-alternative choice question is: "Which is the stronger
currency: the pound or the markka?" Or, in the realm of geography:
"Which city has a larger population: Munich or Dortmund?"

The Recognition Heuristic

Consider the task of inferring which of two objects has a higher value
on some criterion (e.g., which is faster, higher, stronger). The recognition
heuristic for such tasks is simply stated: If one of two objects is recognized
and the other is not, then infer that the recognized object has the higher
value.

For instance, a person who has never heard of Dortmund but has heard
of Munich would infer that Munich has the higher population, which
happens to be correct. The recognition heuristic can only be applied when
one of the two objects is not recognized, that is, under partial ignorance.
Note that where recognition correlates negatively with the criterion,
"higher" would be replaced with "lower" in the definition.

Recognition and the Structure of the Environment

The recognition heuristic is domain-specific in that it only works in envi-
ronments where recognition is correlated with the criterion. How is the
correlation between recognition and the criterion estimated? In some do-
mains, the direction of this correlation can be genetically coded (as seems
to be the case with the rat's inference that unrecognized food is suspect).
In other domains, the direction of the correlation must be learned through
experience. However, in cases of inference or prediction, the criterion is
inaccessible to the organism. Though the criterion may be inaccessible,
there are "mediators" in the environment that have the dual property of
reflecting (but not revealing) the criterion and also being accessible to the
senses, as figure 2-2 illustrates. A person may have no direct information



42 IGNORANCE-BASED DECISION MAKING

Figure 2-2: The ecological rationality of the recognition heuristic. The in-
accessible criterion is reflected, but not revealed, by the mediator variable.
The mediator influences the probability of recognition. The mind in turn
uses recognition to infer the criterion.

about the endowments of universities, for example, as this information is
not always accessible. However, the endowment of a university may be
reflected in how often the university is mentioned in the newspaper.
Since the newspaper is accessible, it is an example of a mediator. The
more often a name occurs in the newspaper, the more likely it is that a
person will recognize this name. For instance, Stanford University is more
often mentioned in the national press than Miniscule State. Thanks to the
mediator of the newspaper, a person can now make an inference about
which of these two universities has a larger endowment. Three variables
that describe the relationship between the criterion, mediator, and mind
are the recognition validity, the ecological correlation, and the surrogate
correlation.

The ecological correlation describes the relation between the criterion
and the mediator. In the case of university endowments, the criterion is
the endowment and the mediator variable is simply the number of times
the university is mentioned in the paper (and not any information about
its endowment). In the case of the Norway rats, the criterion is the toxicity
of a food and the mediator variable could be the number of rats with that
food on their breath (and not any other information concerning the health
of these rats). The surrogate correlation is that between the mediator
(which acts as a surrogate for the inaccessible criterion) and the contents
of recognition memory. In our university example, the surrogate correla-
tion is the number of times names are mentioned in the newspaper corre-
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lated against recognition of these names. Surrogate correlations can be
measured against the recognition memory of one person (in which case
the data will be binary), or against the collective recognition of a group,
which we will demonstrate later.

The strength of the relationship between recognition and the criterion
is the recognition validity, which we define as the proportion of times a
recognized object has a higher criterion value than an unrecognized object
in a given reference class. The recognition validity a is thus:

where R is the number of correct (right) inferences made by the recogni-
tion heuristic computed across all pairs where one object is recognized
and the other is not, and W is the number of incorrect (wrong) inferences
under the same circumstances,

Could It Ever Be Smart to Reason by Recognition?

Food choice in rats may be guided by recognition, but what about infer-
ences made by Homo sapiens? Won't inferences based on recognition (or
more fittingly, on ignorance) be little more than guesses? Consider two
examples of people using the recognition heuristic.

Which U.S. City Has More Inhabitants: San Diego or San Antonio? We posed
this question to students at the University of Chicago and the University
of Munich. Sixty-two percent of the University of Chicago students, who
have a reputation for being among the most knowledgeable in the United
States, chose the correct answer. However, 100% of the German students
chose correctly. How did the Germans infer that San Diego was larger? All
of the German students had heard of San Diego, but many of them did
not recognize San Antonio. They were thus able to apply the recognition
heuristic and make a correct inference. The American students, recogniz-
ing both cities, were not ignorant enough to be able to apply the recogni-
tion heuristic.

Which English Soccer Team Wil l Win? Fifty Turkish students and 54 Brit-
ish students made forecasts for all 32 English F.A. Cup third-round soccer
matches (Ayton & Onkal, 1997). The Turkish participants had very little
knowledge about English soccer teams, while the British participants
knew quite a bit. Nevertheless, the Turkish group made predictions that
were nearly as accurate as those of the English group (63% versus 66%
correct). English soccer teams are usually named after English cities (for
example, Manchester United), and people who are ignorant of the quality
of English soccer teams can still use city recognition as a cue for soccer
team performance. Cities with successful soccer teams are likely to be
large, and large cities are likely to be recognized. Empirical evidence indi-
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cates the Turkish students indeed used the recognition heuristic: Among
the pairs where one team was recognized (familiar to some degree) but
the other was not, the former team was chosen in 627 out of 662 cases
(95%). As before, the recognition heuristic can turn partial ignorance into
reasonable inferences.

Both studies illustrate the ecological rationality of the recognition heu-
ristic. The recognition heuristic is ecologically rational in the sense that
it exploits the structure of information in natural environments: Lack of
recognition in these environments is systematic and not random. Igno-
rance is beneficial if it is correlated with what one wishes to infer. The
heuristic is not a general-purpose strategy because this correlation holds
in some situations, but not in all. In many environments involving compe-
tition, such as inferring which of two colleges is more highly ranked, or
which of two teams will win a match, the recognition heuristic works
well. However, there are tasks in which recognition is not a good pre-
dictor. Let us look more closely at when the recognition heuristic suc-
ceeds and fails.

Accuracy of the Recognition Heuristic

What is the proportion of correct answers one can expect to achieve using
the recognition heuristic on two-alternative choice tasks? Suppose there
is a reference class of N objects and a test consisting of pairs of randomly
drawn objects. When drawing pairs of objects, there are three ways they
can turn out: one recognized and one unrecognized, both unrecognized,
or both recognized. Suppose there are n recognized objects and thus N-
n unrecognized objects. This means that there are n(N - n) pairs where
one object is recognized and the other is unrecognized. A similar calcula-
tion shows that there are (N - n)(N - n - l)/2 pairs in which neither object
is recognized. Finally, there are n(n - l)/2 pairs where both objects are
recognized. To transform each of these absolute numbers into a proportion
of cases, it is necessary to divide each of them by the total number of
possible pairs, N(N - l)/2.

To compute the proportion correct on such a test, it is necessary to
know the probability of a correct answer for each type of pair. Recall that
the recognition validity a is the probability of getting a correct answer
when one object is recognized and the other is not. The probability of
getting a correct answer when neither object is recognized (and a guess
must be made) is .5. Finally, let (3 be the knowledge validity, the probabil-
ity of getting a correct answer when both objects are recognized. Combin-
ing all these terms together, the expected proportion of correct inferences,
f(n), on an exhaustive pairing of objects is:
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The right side of the equation breaks into three parts: the leftmost term
equals the proportion of correct inferences made by the recognition heu-
ristic; the middle term equals the proportion of correct inferences result-
ing from guessing; the rightmost term equals the proportion of correct in-
ferences made when knowledge beyond mere recognition can be used.
Inspecting this equation, we see that if the number of cities recognized, n,
is 0, then all questions will lead to guesses and the proportion correct will
be .5. If n = N, then the leftmost two terms become zero and the proportion
correct will be p. We can also see that the recognition heuristic will come
into play most when the participant is operating under "half ignorance,"
that is, when half of the objects are recognized (n = N - n), because this
condition maximizes the number of pairs n(N - n) in which one object is
recognized and the other is unrecognized.

To summarize, based on the recognition validity a, the knowledge va-
lidity B, and the degree of ignorance, that is, n compared to N, Equation
(1) specifies the proportion of correct inferences made by someone who
uses the recognition heuristic. Now we will look at the most counterintu-
itive property of the recognition heuristic: the less-is-more effect.

The Less-ls-More Effect

Imagine that MacAlister's three sons have to take a quiz at school about
German cities. The quiz consists of randomly drawn, two-alternative ques-
tions about population sizes of the 50 largest German cities. The youngest
brother is ignorant, and has never even heard of Germany (not to speak of
German cities) before. The middle brother is savvy, and recognizes 25 of
the 50 largest cities from what he has overheard from day to day. The
cities this middle brother recognizes are larger than the cities he does not
recognize in 80% of all comparisons, that is, his recognition validity a is
.8. The eldest brother is quite the scholar and has heard of all of the 50
largest cities in Germany. When any of the brothers recognizes both cities
in a pair, he has a 60% chance of making the correct choice, that is, ß
is .6.

Suppose that all brothers use the recognition heuristic whenever they
can. Which one will score the highest on the quiz? Figure 2-3, calculated
from Equation (1), shows the performance of the three brothers. The
smooth line connecting the points graphs the continuous version of Equa-
tion (1).

The youngest brother performs at chance level, and the eldest does
better with 60% correct. Remarkably, the middle brother, who knows less
than the eldest, makes the most accurate inferences. He is the only brother
who can use the recognition heuristic. Moreover, he can make the best of
his ignorance because he happens to recognize half of the cities, and this
allows him to use the recognition heuristic most often. The recognition
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Figure 2-3: An illustration of a less-is-more effect. The youngest brother
has never heard of any German city, and performs at chance level. The
middle brother recognizes half of the 50 cities, and thus can apply the
recognition heuristic in about half of the questions. This allows for 67.5%
correct inferences (calculated from Equation (1); a = .8 and ß = .6). The
oldest brother, who has heard of all the cities and thus knows more than
the middle brother, gets only 60% correct inferences—a less-is-more ef-
fect. The curve also shows the performance for intermediate states of lack
of recognition (calculated from Equation (1)). Note that the curve does not
peak over the middle brother, but rather has its maximum slightly to the
right of him. The reason for this is that ß is .6 rather than .5.

heuristic can thus lead to a paradoxical situation where those who know
more exhibit lower inferential accuracy than those who know less.

When Will the Less-ls-More Effect Occur?

The situation in which the less-is-more effect occurs can be stated in gen-
eral terms. In the type of two-alternative tests described here where the
recognition heuristic is consistently applied, a less-is-more effect occurs
when the recognition validity a is greater than the knowledge validity p.

If this condition does not hold, then inferential accuracy will increase
as more and more objects become recognized. We derive this result mathe-
matically in Goldstein and Gigerenzer (1998).
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A mathematical demonstration, however, is always based on simplify-
ing assumptions. Here, for example, we have supposed that the recogni-
tion validity a remains constant across the x-axis in figure 2-3. In contrast
to this figure, which represents individuals (the brothers) with different
knowledge states and fixed a, the recognition validity usually varies when
one individual comes to recognize more and more objects. The intuition
for this result is as follows. When there are many different individuals
with various levels of recognition, it is possible that each individual has
the same recognition validity (that is, the objects they recognize are larger
than the objects they do not recognize a certain proportion of the time,
which we call a). However, when one individual comes to recognize more
and more objects, the recognition validity changes because each newly
recognized object, depending on how large it is, will increase or decrease
the recognition validity. That is, coming to recognize smaller objects de-
creases recognition validity, and coming to recognize larger objects in-
creases it.

Thus, the question must be posed: Can we demonstrate a less-is-more
effect using realistic sequences of learning that do not satisfy the simplify-
ing assumption that a is constant as n varies?

We created a computer program that learns about German cities in or-
der of how well-known they are. To estimate this order, we surveyed 66
University of Chicago students and asked them to select the cities in Ger-
many they recognized from a list, and then we ranked the cities by the
number of people who recognized them. With this data, we hoped to ap-
proximate the order in which an American might learn about cities in
Germany. The computer program first learned to recognize only Munich,
the most well-known city, and was then given an exhaustive quiz consist-
ing of all pairs of German cities. Next, already knowing Munich, it learned
to recognize Berlin, the second most well-known city, and was tested
again. It learned to recognize city after city until it recognized them all.
In one condition, the program learned only the names of cities and made
all inferences by the recognition heuristic alone. This result is shown by
the bottom line on figure 2-4 labeled "no cues." When all objects were
unrecognized, performance was at a chance level. Over the course of learn-
ing about cities, an inverse "U" shape appears, as in figure 2-3. Here the
less-is-more curve is very jagged because, as mentioned, the recognition
validity was not set to be a constant, but was allowed to vary freely as
cities became recognized.

Would the less-is-more effect disappear if the computer program
learned not just the names of cities, but information useful for predicting
city populations as well? In a series of conditions with increasing infor-
mation, the program learned the name of each city, along with one, two,
or nine predictive cues for inferring population (the same cues as in Giger-
enzer & Goldstein, 1996a). In the "one cue" condition, as the program
learned to recognize a city, it also learned if it was once an exposition
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Figure 2-4: Less-is-more effects as cities become recognized in an order
indicated by actual recognition data. Inferences are made on recognition
alone (no cues), or with the aid of 1, 2, or 9 predictive cues.

site. Being an exposition site is a strong predictor of population with a
high ecological validity of .91 (see Gigerenzer & Goldstein, 1996a).1 The
program then used a decision strategy called Take The Best (see chapters
4 and 5) to make inferences about which city is larger. All that is neces-
sary to know for now is that Take The Best is an accurate strategy (as
accurate as multiple regression for this task) for drawing inferences from
cues, and it uses the recognition heuristic as its first step.

1. An ecological validity of .91 means that in 91% of the cases where one city
has an exposition site and the other does not, the first is also the larger city. An
ecological validity is a relation between a cue and a criterion, independent of a
particular person. It is not the same as the knowledge validity ß, which is the pro-
portion of correct answers a person achieves when both objects are recognized, no
matter what the values on the various cues are. Ecological validity is defined for
the subset of pairs where both objects are recognized and one has an exposition
site and the other does not. Both a and ß are characteristics of a particular person.
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Does adding predictive information about exposition sites wash out the
less-is-more effect? It does not. The peak of the curve shifts slightly to the
right, but it maintains its inverse "U" shape. When the program recognizes
more than 58 cities, including information about exposition sites, the ac-
curacy still goes down. In the "two cue" condition, the program learned
if each city was an exposition site and if it had a soccer team in the major
league—another cue with high validity (.87). The less-is-more effect was
lessened—to be expected when adding knowledge—but still pronounced.
Recognizing all cities and knowing all the information contained in two
cues (the far right-hand point) resulted in fewer correct inferences than
recognizing only 23 cities. Finally, in the "nine cues" condition, the pro-
gram had all information about all nine cues available to it. This is surely
more information for predicting German city populations than most Ger-
man citizens know. This degree of knowledge must be enough finally to
overcome the benefits of ignorance, right? Figure 2-4 shows the less-is-
more effect finally flattening out. However, it does not go away com-
pletely: Even when all 747 (9 x 83) cue values are known and all cities
are recognized, the point on the far right is still lower than more than a
quarter of the points on that curve. A beneficial amount of ignorance can
enable even higher accuracy than extensive knowledge.

The simulation can be summarized by two main results. The simplify-
ing assumption that the recognition validity a remains constant is not a
necessary precondition for the less-is-more effect. Moreover, the counter-
intuitive effect holds in this example even when complete knowledge
about nine predictors is present.

A less-is-more effect can be observed in at least three different situa-
tions. First, it can occur between two groups of people, where the more
knowledgeable group makes systematically fewer accurate inferences than
a less knowledgeable group in a given domain. An example of this was
the performance of the American and German students on the question
about whether San Diego or San Antonio is larger. Second, a less-is-more
effect can occur between domains, that is, where the same group of people
makes a greater number of accurate inferences in a domain where they
know little than in a domain where they know a lot. An empirical exam-
ple will soon follow. Third, a less-is-more effect can occur over time, that
is, where the same group makes increasingly worse inferences as they
learn about a domain. For instance, the simulation results in figure 2-4
show how accuracy first increases and then decreases as knowledge is
acquired.

So far, we have specified mathematically when the less-is-more effect
occurs and shown that it also appears in realistic learning situations that
violate the assumptions of the mathematical model. But can the effect be
observed in real people? It could be that evolution has overlooked the
inferential ease and accuracy the recognition heuristic affords. In the fol-
lowing section, we study whether people's judgments actually follow the
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recognition heuristic, and whether a less-is-more effect can be demon-
strated empirically.

Empirical Evidence

Do People Use the Recognition Heuristic?

This simple test asks how often unprompted people will use the recogni-
tion heuristic. We quizzed Americans on all pairs of cities drawn from the
25 (n = 6) or 30 (n = 16) largest in Germany (300 or 435 questions) and
asked them to choose the more populous city in each case. We had the
participants check off from a list which of these cities they recognized,
either before or after the test (this order, however, had no effect). From
this recognition information, we could calculate how often participants
had an opportunity to choose in accordance with the recognition heuristic
and compare it to how often they actually did. Figure 2-5 shows the re-
sults for 22 individual participants. Note that the recognition heuristic
predicts individual differences. Depending on the particular cities people
recognize, their inferences about the population should systematically
vary.

For each participant, two bars are shown. The darker bar shows how
many opportunities the person had to apply the recognition heuristic, and
the lighter bar shows how often that person's judgments agreed with the
heuristic. For example, the person represented by the leftmost pair of bars
had 156 opportunities to choose according to the recognition heuristic,
and did so every time. The next person did so 216 out of 221 times and
so on. The proportions of recognition heuristic adherence ranged between
100% and 73%. The median proportion of inferences following the recog-
nition heuristic was 93% (mean 90%).

This simple test of the recognition heuristic showed that people adhere
to it the vast majority of the time. Let us put the heuristic to a tougher
test. Would people still rely on it when given information that suggests
doing otherwise?

Do People Use the Recognition Heuristic Despite
Conflicting Information?

In this experiment, we taught participants useful information that offered
an alternative to following the recognition heuristic. The information was
about the presence of major league soccer teams, powerful predictors of
city population in Germany. We wanted to see which people would
choose as larger: an unrecognized city, or a recognized city that they just
learned has no soccer team. To get an idea of which German cities our
participants might recognize, we ran a pilot survey of 26 participants and
had them check off from a list those cities they had heard of before.
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Figure 2-5: Recognition heuristic opportunities and usage by 22 individ-
ual participants. The individuals are ordered from left to right according
to how closely their judgment agrees with the recognition heuristic. The
darker bars are of different heights because individual participants recog-
nized different numbers of cities.

The experiment began with a training session during which partici-
pants were instructed to write down all the information that would fol-
low. They were first told that they would be quizzed on the populations
of the 30 largest cities in Germany. Next they were taught that 9 of the 30
largest cities have soccer teams, and that the 9 cities with teams are larger
than the 21 cities without teams in 78% of all possible pairs. Next, partici-
pants were allowed to draw eight cities at random and learn whether each
has a soccer team or not. This drawing was rigged so that each participant
chose the same four well-known cities that have soccer teams and four
well-known cities that do not. Participants were then tested to make sure
they could reproduce all of this information exactly, and could not pro-
ceed with the experiment until they did so. Either before or after the main
task, participants were shown a list of German cities and asked to mark
those that they had heard of before coming to the experiment.
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With their notes beside them, participants were then presented pairs
of cities and asked to choose the larger city in each pair. To motivate them
to take the task seriously, they were offered a chance of winning $15 if
they scored a high percentage correct. To reiterate, the point of the experi-
ment was to see which participants would choose as larger: a city they
have never heard of before, or one that they recognized beforehand but
just learned has no soccer team. From the information presented in the
training session (which made no mention of recognition), one would now
expect a larger proportion of participants than in the previous experiment
to choose the unrecognized city. Why? An unrecognized city either does
or does not have a soccer team. If it does (a 5 in 22 chance from the infor-
mation presented), then there is a 78% probability that it is larger, based
on the soccer cue alone. If it does not, then soccer team information is
useless and a wild guess must be made. The unrecognized city should be
favored because any chance of it having a soccer team suggests that it is
probably larger. Figure 2-6 shows the results.

The graph reads the same as figure 2-5. The darker bars are of different
heights because individual participants recognized different cities before
the experiment, so the number of cases where the recognition heuristic
applied varied. Twelve of 21 participants made choices in accordance
with the recognition heuristic without exception, while most others devi-
ated on only one or two items. All in all, participants followed the recog-
nition rule in 273 of the 296 total critical pairs. The median proportion
of inferences agreeing with the heuristic was 100% (mean 92%), despite
conflicting knowledge. These numbers are as high as in the previous ex-
periment. It appears that the additional information was not integrated
into the inferences, consistent with the recognition heuristic.

Does the Less-ls-More Effect Occur in Human Reasoning?

We have documented that the recognition heuristic can describe how hu-
mans make inferences in certain tasks. This result provides empirical sup-
port to the theoretical prediction that the less-is-more effect will appear.
But we have yet to see this effect in the reasoning of real people. We
administered two quizzes to 52 University of Chicago students. One quiz
was on the 22 largest cities in the United States, cities about which they
knew a lifetime of facts useful for inferring population. The other was on
the 22 largest cities in Germany, about which they knew little or nothing
beyond mere recognition—and they did not even recognize about half of
them (Goldstein & Gigerenzer, 1998). Each question consisted of two ran-
domly drawn cities, and the task was to pick the larger. One would expect
American students to score substantially better on their native cities than
on the foreign ones because of their lifelong acquaintance with their coun-
try. We considered this a tough test of the less-is-more effect. The curious
phenomenon of a less-is-more effect is harder to demonstrate with real
people than on paper, because the theory and simulation work we pre-
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Figure 2-6: Recognition heuristic adherence despite training to encourage
use of information other than recognition. The individuals are ordered
from left to right according to how closely their judgment agrees with
the recognition heuristic. The darker bars are of different heights because
individual participants recognized different numbers of cities.

sented is about inference under uncertainty, but real people often have
definite knowledge of the criterion. For instance, many Americans, and
nearly all University of Chicago students, can name the three largest U.S.
cities in order. This alone gives them the correct answer for 26% of the
questions. Those who know the top five cities will get a free 41% correct.
This definite knowledge of the rankings of the largest cities, combined
with the lifetime of knowledge Americans have about their own cities,
should make their scores on the domestic test hard to match.

The result was that the Americans scored a median 71% correct (mean
71.1%) on their own cities. On the less-familiar German cities, the median
was a surprising 73% correct (mean 71.4%). Despite the presence of sub-
stantial knowledge about American cities, including some definite knowl-
edge of which are the largest, the recognition heuristic resulted in a slight
less-is-more effect. For half of the subjects, we kept track of which German
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cities they recognized, as in previous experiments. For this group, the
median proportion of inferences according with the recognition heuristic
was 91% (mean 89%). Furthermore, participants could apply the recogni-
tion heuristic nearly as often as possible, as they recognized a mean of 12
German cities, roughly half of the total. In a study that is somewhat the
reverse of this one, a similar less-is-more effect was demonstrated with
Austrian students who scored more accurate inferences on American
cities than on German ones (Hoffrage, 1995; see also Gigerenzer, 1993).

Where Dpes Recognition Originate?

For some important adaptive tasks, such as avoiding food poisoning and
identifying kin, organises seem to be genetically prepared to act in accor-
dance with the recognition heuristic. Wild Norway rats do not need to be
taught to prefer recognized foods over novel ones. If a choice has life-
threatening consequences, organisms that have to learn to use the recogni-
tion heuristic would likely die before they got the chance. Kin identifica-
tion is an important adaptive task whose function seems to be avoiding
incest and promoting nepotism (inclusive fitness) (Holmes & Sherman,
1983). Paper wasp females, for instance, use odor recognition (the odor
they learned in their nest) to infer whether another wasp is a sister or
nonsister. One can fool this mechanism by transferring newly emerged
queens to a foreign nest, where they learn the odor of their (unrelated)
nestmates (Pfennig et al., 1983). On the other hand, there are many do-
mains in which organisms learn the predictive power of recognition
through experience. Let us have a closer look at a source of name recogni-
tion in the realm of geography.

To what degree is the media responsible for the proper names we recog-
nize? If the degree is high, the number of times a city is mentioned in the
newspapers should correlate strongly with the proportion of the readers
who recognize the city. The Chicago Tribune has a Sunday circulation of
more than 1 million in the state of Illinois alone. We counted the number
of articles published in the Chicago Tribune between 1985 and July 1997
in which the words "Berlin" and "Germany" were mentioned together.
There were 3,484. We did the same for all cities in Germany with more
than 100,000 inhabitants. The folks at the Chicago Tribune are not the
world's most consistent spellers. We found Nuremberg spelled as Nurn-
berg, Nurnburg, Nuernberg, and Nuremburg (the database contained no
umlauts). We searched under all the spellings we could imagine for all
the cities. Table 2-1 illustrates that, for the top 12 German cities, the num-
ber of newspaper articles mentioning a city is a good predictor of whether
its name will be recognized. What we call the surrogate correlation in
figure 2-2, that is, the Spearman correlation (over all cities) between the
number of newspaper articles mentioning a city and number of people
recognizing it, is .79. But what about the actual populations? The ecologi-
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Table 2-1: Recognition of German and American Cities

Recognition
City Articles (%) City

Recognition
Articles (%)

Berlin
Hamburg
Munich
Cologne
Frankfurt
Essen
Dortmund
Stuttgart
Dusseldorf
Bremen
Duisburg
Hannover

3484
1009
1240
461

1804
93
84

632
381
140
53

260

99
96

100
82
96
28
19
63
81
44

7
88

New York
Los Angeles
Chicago
Houston
Philadelphia
San Diego
Phoenix
Dallas
San Antonio
Detroit
San Jose
Indianapolis

493
300
175

73
67
78
56
39
4

66
13
20

100
100
97
80
63
47
53

100
23
80
17
50

Left side: Number of articles in 12 years of the Chicago Tribune mentioning the 12 largest
German cities and the percentage of 67 University of Chicago students who recognized each
city. Cities are ranked according to their actual size. Right side: Number of articles in 2 years
of Die Zeit mentioning the 12 largest U.S. cities and the percentage of 30 University of Salzburg
students who recognized each city.

cal correlation, that is, the correlation between the number of newspaper
articles and population, is .70. Finally, the correlation between the num-
ber of people recognizing the city's name and population is .60.2

These results suggest that individual recognition is more in tune with
the media than with the actual environment, which indicates that city
name recognition may come largely from the media. True population size
is unknown to most people, but they can rely on mere recognition to make
a fairly accurate guess.

But do these results stand up in a different culture? We looked at a
major German-language newspaper, Die Zeit, and recorded the number of
articles in which each of the U.S. cities with more than 100,000 inhabit-
ants was mentioned. We compared this to the number of University of
Salzburg students surveyed who recognized each city (Hoffrage, 1995).
Table 2-1 shows again that the media references predict the number of
people recognizing cities quite accurately. The surrogate correlation over all
the cities between the number of newspaper articles and recognition is .86.
The ecological correlation between the number of articles and population
is .72, and that between recognition and the rank order of cities is .66. These
results are quite consistent with those from the American participants, with
slightly higher correlations. In all cases, the surrogate correlation is the

2. This correlation reflects the average recognition validity. It is calculated
across persons, whereas the recognition validity is a characteristic of a particular
person. The relation between validities and correlations is analyzed in chapter 6.
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strongest, the ecological is the next strongest, and the correlation between
recognition and the criterion is the weakest. In the next section, we see how
institutions can exploit this relationship via advertising.

Institutions That Take Advantage of the
Recognition Heuristic

Oliviero Toscani, the man behind the notorious Benetton advertising cam-
paign, effectively bet his career on a series of advertisements that con-
veyed nothing about the product, but only sought to induce name recogni-
tion with shocking images such a corpse in a pool of blood, or a dying
AIDS patient. In his book, Toscani (1997) reports that the campaign was a
smashing success, which vaulted Benetton's name recognition higher than
Chanel's and placed it among the top five brands in the world. Is recogni-
tion, regardless of how it is achieved, good for business? In the social
world, name recognition is often correlated with wealth, resources, qual-
ity, power, and the like. Advertisers pay great sums for a place in the
recognition memory of the general public. We have grown accustomed to
seeing advertisements like Benetton's that communicate no product infor-
mation besides proper names (this becomes especially clear visiting a
foreign country where one has no idea to what the proper names refer).
Less-known politicians, universities, cities, and even small nations go on
crusades for name recognition. They all operate on the principle that if
we recognize them, we will favor them.

There is evidence that one can induce name recognition furtively, and
even unconsciously. The "overnight fame" experiments by Jacoby and col-
leagues (Jacoby, Kelley, Brown, & Jasechko, 1989; Jacoby, Woloshyn, &
Kelley, 1989) demonstrate that people can be made confused about
whether they have been shown a name in an experimental session or if
they had encountered it before they came to the experiment. Jacoby's ex-
periments have shown that exposing people to nonfamous names, waiting
overnight, and then having them make fame judgments on these and other
actually famous names causes them to confuse nonfamous names with
famous ones. This demonstrates how a feeling of recognition can fool us
into believing ordinary names are famous.

Mere Recognition Versus Degrees of Knowledge

We treat recognition as a binary phenomenon: one either recognizes or
does not. How often one has been exposed to something is both hard to
assess subjectively and irrelevant for the frugal recognition heuristic.
These two features, the binary quality of recognition and the inconsequen-
tiality of further knowledge, set the recognition heuristic apart from no-
tions such as availability (Tversky & Kahneman, 1974), familiarity (Griggs
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& Cox, 1982), or the feeling of knowing (Koriat, 1993). The terms "avail-
ability" and "familiarity" are often used as common-sense explanations
rather than as process models. Availability applies to items in memory
and is often measured by the order or speed with which items come to
mind, or the number of instances of a category that can be generated (see
chapter 10). In contrast, as figure 2-1 shows, recognition concerns the dif-
ference between items in and out of memory (Goldstein, 1997). Availabil-
ity is about recall, not about recognition. The term "familiarity" is typi-
cally used to denote a degree of knowledge or experience a person has
with respect to a task or object. It does not pick up on the most important
distinction for the recognition heuristic—that between recognized and un-
recognized objects. As intuitive as notions such as availability and famil-
iarity may be, there is a need to bring them from one-word explanations
to precise models for heuristics (Gigerenzer, 1996). If this is done, then
one could hope for a deeper, detailed understanding that can lead to unex-
pected consequences including the less-is-more effect.

A feeling of knowing, in Koriat's usage, is a person's assessment of the
likelihood of being able to retrieve something from memory in the future.
For example, the probe question "Who is the prime minister of Canada?"
may put many non-Canadians into a tip-of-the-tongue state in which they
may have a feeling about whether they will be able to retrieve the answer
that is eluding them. Unlike the recognition heuristic, feelings of knowing
presuppose knowledge beyond recognition, namely, the information held
in the probe question. Another key difference is that the recognition heu-
ristic can use recognition to predict some criterion in the world, whereas
the feeling of knowing only predicts future memory performance.

The Recognition Heuristic as a Prototype
of Fast and Frugal Heuristics

In this book, we study the architecture and performance of fast and frugal
heuristics. The recognition heuristic is the simplest of these adaptive
tools. It uses a capacity that evolution has shaped over millions of years,
recognition, to allow organisms to benefit from their own ignorance. The
heuristic works quickly and with limited knowledge—and even requires
a certain amount of ignorance. The building blocks it uses for search, stop-
ping, and decision are astoundingly simple. Search is limited to recogni-
tion memory—no recall of knowledge beyond recognition is attempted.
Since search is limited in this way, the stopping rule is constrained—
search terminates as soon as recognition has been assessed for both ob-
jects. The decision is consequently based on only one piece of informa-
tion, recognition. Because a lack of recognition is essential for enabling a
decision, we call this heuristic principle ignorance-based decision mak-
ing. These heuristic principles add up to a conflict-avoiding strategy that
eliminates the need for making trade-offs between cues pointing in differ-
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ent directions (as in the case where one recognizes a city but knows that
it has no soccer team).

Fast and frugal heuristics, including the recognition heuristic, are
based on psychological capacities such as recognition and heuristic prin-
ciples such as ignorance-based decision making and one-reason decision
making (relying on just one piece of information instead of aggregating
several). The observation that people often try to avoid trade-offs and fo-
cus on one good reason has been documented numerous times (e.g.,
Baron, 1990; Hogarth, 1987; Payne et al., 1993). However, many scholars,
psychologists included, have mistrusted the power of these heuristic prin-
ciples, and saw in them single-mindedness and irrationality. This is not
our view. The recognition heuristic is not only a reasonable cognitive ad-
aptation because there are situations of limited knowledge in which there
is little else one can do. It is also adaptive because there are situations,
including those defined in this chapter, in which missing information re-
sults in more accurate inferences than a considerable amount of knowl-
edge can achieve. In these situations, the recognition heuristic can be said
to be ecologically rational, having the capacity to exploit structures of
information in the environment in a simple and elegant way.
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A good name is better than riches.
Cervantes (Don Quixote)

How complex a decision tool does an investor need to construct a suc-
cessful stock portfolio? How much privileged information must one ob-
tain to accomplish this goal? The tools and information professional in-
vestment firms use for investment decisions are far beyond the ordinary
person's reach. Furthermore, the value of expert advice has been ques-
tioned; in the words of billionaire Warren Buffet, "the only value of stock
forecasters is to make fortune tellers look good" (1987, p. 40). In this chap-
ter, we propose a fast and frugal heuristic that exploits a lack of knowl-
edge, rather than using market-specific information or tools, to construct
stock portfolios. In particular, we test whether an ignorance-based deci-
sion-making mechanism we call the recognition heuristic (described in
chapter 2) can make money on the stock market. This heuristic relies on
only one piece of information to make investment decisions: company
name recognition. No privileged company information needs to be re-
searched, no sophisticated analytical or numerical tools need to be em-
ployed; the only thing one needs is a beneficial degree of ignorance.

This chapter reports a competition between the recognition heuristic
and five benchmarks for stock selection: mutual funds, market indices,
chance or "dartboard" portfolios, individual investment decisions, and
portfolios of unrecognized stocks. In this chapter more than any other in
this book, we attempted a daring and financially perilous undertaking—
throwing a lowly fast and frugal heuristic into the highly volatile, ostensi-
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bly lucrative, and notoriously technical world of stock market investment.
Will it survive? And will our money?

Investment Theory and Practice

Financial markets are notoriously unpredictable, and pose a challenge for
a strategy as simple as the recognition heuristic. Given the tremendous
rewards the stock market has to offer, theorists and practitioners have
poured millions of hours and dollars into its prediction. Some have con-
cluded that consistent success beating the market is not possible. Neoclas-
sical economists, for instance, portray investors as unboundedly rational
entities capable of forming rational expectations. This stance is captured
in the efficient market hypothesis1 (EMH), which maintains that agents
cannot attain above-average returns in the long run (e.g., Lucas, 1980;
Muth, 1961). In the words of Cootner (1967):

If any group of investors was consistently better than average in
forecasting stock price, they would bring the present price closer to
the true value. Conversely, investors who were worse than average
in forecasting ability would carry less and less weight. If this pro-
cess worked well enough, the present price would reflect the best
information about the future, (p. 80)

Despite early empirical challenges (e.g., Rozef & Kinney, 1976; Special
Issue, Journal of Financial Economics, 1978), the EMH has been fully in-
corporated in the leading normative models, such as the widespread Capi-
tal Asset Pricing Model (e.g., Sharpe, 1964)—itself constituting the basis
for modern portfolio (management) theory.

Many professional investment analysts, such as Soros (1994), have long
doubted the realism and relevance of the efficient market hypothesis and
have turned instead to technical trading models to exploit speculative op-
portunities. In fact, recent evidence suggests that technical trading models
have been shown to yield small but significant returns (e.g., Brock et al.,
1991). Furthermore, modern finance, based on the insights gained by be-
havioral economists (e.g., Arthur et al., 1997; DeBondt & Thaler, 1985;
Shleifer & Summers, 1990; Thaler, 1992, 1993), has also started to recog-
nize the limited usefulness of the EMH and begun to focus on how it is
undermined by psychological expectations under bounded rationality.

Regardless of the shift in academic research, the actual performance
of professionally managed investment funds indicates how difficult it
is in the long(er) run to match or beat the market consistently. The track
record of major U.S. investment management and mutual companies, for
example, indicates that the vast majority of sophisticated experts perform

1. Specifically, EMH not only assumes that agents are fully rational but also
that each agent knows that the other agents behave in such a manner.
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worse than the market.2 This sobering fact is a slap in the face of the
sophisticated modeling employed by the financial industry. Indeed, al-
most 75% of the professionally managed U.S. stock funds performed be-
low the Standard & Poor's 500 (S&P 500) performance criterion in 1996
(Kadlec, 1997).

The investment strategies of experts, despite their efforts to acquire and
process the best possible information using the best financial modeling
tools available, provide only average returns on a theoretical basis—and
often worse ones in practice. In view of this evidence, is it possible, or
even desirable, for "Joe Six-Pack" to invest his limited cognitive and fi-
nancial resources in financial markets?

Ignorance-Based Investment Decisions

Since knowledge and expertise seem to be of less use in predicting the
stock market than is commonly presumed and asserted, one has to wonder
how an investment heuristic based on ignorance would fare. The recogni-
tion heuristic feeds on ignorance when it is systematically, rather than
randomly, distributed. Originally, Goldstein and Gigerenzer (chapter 2)
studied the recognition heuristic as a mechanism for two-alternative
choice, and its formulation was simple: When choosing between two ob-
jects, and only one is recognized, choose the recognized object. A general-
ization of the recognition heuristic for choosing a subset of objects from a
larger set, which can be applied to investment decisions, is: When choos-
ing a subset of objects from a larger set, choose the subset of recognized
objects.

For one individual, the recognition heuristic dictates choosing only the
stocks he or she recognizes. When looking at the collective recognition of
a group, as in our study, the strategy is to choose all the stocks recognized
by a given percentage (e.g., 90%) of the group.

Putting the recognition heuristic to work requires a degree of ignorance
(that is, a lack of recognition). For example, financial experts who recog-
nize the names of all the major stocks cannot use the recognition heuristic
to choose among those stocks. Entirely ignorant people who have not
heard of any stocks at all, on the other hand, also cannot use the heuristic.
Between these two extremes, a large contingent of people display what
we call a "beneficial degree of ignorance."

To dare to pit the recognition heuristic against the challenges of the
stock market is not necessarily a ruinous notion. We had two reasons to
hope that the recognition heuristic would not fail utterly. First, consumers

2. Of course, this dismal performance is at least partly attributable to two recur-
ring "cost" factors. First, funds need to be liquid, and not all money received for
investment is invested in stocks but parked in cash accounts yielding few, if any,
returns. Second, expert advice comes at a price, and many of the management fees
levied are not at all, or only loosely, coupled to the success of the investment fund.



62 IGNORANCE-BASED DECISION MAKING

tend to choose products they have heard of—a behavior exploited by ad-
vertisers—and stocks are essentially "products" whose prices are deter-
mined by human choice. Second, several successful investment experts,
such as Peter Lynch, have suggested that a lack of name recognition is
grounds for eliminating a stock from consideration (Lynch, 1994). Can the
recognition heuristic compete with the tools and knowledge of rational
ivy-tower theorists and expensive Wall Street professionals in the hunt
for stock market profits? More specifically, can stock portfolios be con-
structed that perform at least at the market level?

Company Recognition

We asked Germans and Americans to indicate which companies they rec-
ognized from those listed on the New York Stock Exchange (NYSE) and
several German stock exchanges. A total of 480 people were surveyed con-
cerning 798 companies, including the 500 companies of the American
S&P 500 index (with the Dow 30 companies) and 298 German companies
(with the Dax 30 companies). These people were grouped into one of four
categories: American laypeople, American experts, German laypeople,
and German experts. Laypeople were 360 pedestrians surveyed in down-
town Chicago or Munich, each of whom provided recognition information
for one-sixth of the total number of companies. Experts were 120 finance
or economics graduate students interviewed at the University of Chicago
or the University of Munich, each of whom provided recognition informa-
tion for one half of the total set of companies. Table 3-1 shows the names
of the companies that were recognized unanimously, for all groups. Figure
3-1 shows the number of companies recognized by a given percentage or
more of the population. For instance, 8 German companies were recog-
nized by 100% of the German laypeople, and 25 German companies were
recognized by at least 90% of the German laypeople. One German com-
pany—Lufthansa—was recognized by 100% of the American experts, and
only five by at least 90% of the American experts.

Which group recognized the most companies and which was most ig-
norant? American experts recognized the most company names, followed
by American laypeople, German experts, and German laypeople. The fact
that German experts recognized fewer companies than pedestrians in
downtown Chicago may come as a surprise. Two possible reasons are the
higher active participation of the American public in the stock market,
and a larger number of American stocks than German stocks. The interna-
tional recognition rates were the lowest: The American pedestrians sur-
veyed, for instance, did not recognize a single German firm unanimously.

Can the Recognition Heuristic Make Money?

To test the performance of the recognition heuristic on the stock market,
we constructed two investment portfolios consisting of highly recognized



Table 3-1: Companies Recognized by All Participants. (G = German companies; US = U.S. companies)

U.S. Laypeople German Experts U.S. Experts

Allianz AG G
Bayerische Vereinsbank G
Commerzbank AG G
Daimler Benz G
Dresdner Bank AG G
Lufthansa G
Porsche AG G
Siemens AG G

Amoco
Chrysler Corp.
Coca-Cola Co.
Ford Motor Co.
General Mills
Hilton Hotels
Maytag Corp.
Sears Roebuck & Co.

US Adidas AG
US American Express
US BASF AG
US Bayer AG
US HypoBank
US Bayerische Vereinsbank
US Daimler Benz
US Dresdner Bank AG

Escada AG
Karstadt AG
Kaufhof AG
Lufthansa
Microsoft Corp.
Miinchener Ruck.
Telekom AG
Volkswagen AG (VW)

G Allstate Corp.
US American Express
G Ameritech
G Avon Products
G Bell Atlantic
G Black & Decker Corp.
G Citicorp
G Coca-Cola Co.
G Dow Jones & Co.
G Eastman Kodak
G Ford Motor Co.
G Intel Corp.
US J.P. Morgan & Co.
G Kmart
G Lufthansa
G Merck & Co.

Merrill Lynch
Morgan Stanley
Procter & Gamble
Southwest Airlines
Whirlpool Corp.

us
us
us
us
us
us
us
us
us
us
us
us
us
us
G
us
us
us
us
us
us

German Laypeople
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Figure 3-1: Recognition of stocks, in terms of the proportion of people
recognizing the corresponding company names. For instance, 14 German
company names were recognized by 100% of German experts, 33 com-
pany names were recognized by at least 90% of German experts, and so
on.

companies, for each of the four groups. One portfolio consisted of highly
recognized companies within the group's home country ("domestic recog-
nition"), where we defined highly recognized companies as those recog-
nized by 90% or more of the participants in a group. The other portfolio
contained the 10 companies that each group recognized most often from
the other country ("international recognition"). Thus there were a total of



CAN IGNORANCE BEAT THE STOCK MARKET? 65

eight recognition-based portfolios, as shown in figure 3-2. Recall that the
recognition heuristic dictates investing in highly recognized stocks.

We analyzed the performance of recognition-based portfolios for 6
months from the completion date of the recognition test, December 13,
1996. The returns of the recognition-based portfolios were compared with
the performance of (a) the stocks of unrecognized companies, that is, com-
panies recognized by fewer than 10% of the participants, (b) market indi-
ces, (c) mutual funds, (d) chance portfolios, and (e) individuals' invest-
ment choices. Well before these results became known, two of us decided
to put our money where our heuristic was, and bet a nontrivial amount of
our savings on German stocks recognized by Munich pedestrians. Would
we regret, for the rest of our days, betting our hard-earned money on the
ignorance of laypeople?

Figure 3-2: Performance of the recognition heuristic for the recognition of
domestic and international stocks. Results are for the 6 months following
the date of the recognition test, December 1996 to June 1997. For compari-
son, the performance of unrecognized stocks (0% to 10% recognition rates),
market indices (Dow 30 or Dax 30), mutual funds (Fidelity Growth Fund
or Hypobank Equity Fund), and chance portfolios (average returns of
5,000 randomly drawn portfolios) are shown.
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How Does the Recognition Heuristic Compare with
Choosing Unrecognized Companies?

The investment portfolio of German stocks based on the collective recog-
nition of the 180 German laypeople resulted in a gain of 47% in the 6
months of the study.3 The portfolio based on the unrecognized companies
yielded a gain of only 13%. Figure 3-2 shows that this superior perfor-
mance of domestic recognition holds in each of the four groups, laypeople
and experts, German and American. The performance of the recognition
heuristic was particularly strong in the two most ignorant groups, German
laypeople and experts. For German experts, it reached a return of 57%,
compared to 14% for the unrecognized stocks. Across all domestic tests,
the average return of the portfolios built using the recognition heuristic
was more than three times higher than those built from unrecognized
stocks.

How Does the Recognition Heuristic Compare with
Market Indices?

Recognized stocks outperformed unrecognized ones, but this may be of
little interest to the investor whose main interest is beating the market.
Performance of the overall market is commonly measured by indices such
as the Dow 30 for American stocks and the Dax 30 for German ones. Dur-
ing our 6-month investigation, the Dax increased 34%. However, the sum
of the prices of the 30 stocks constituting the Dax rose 41% over the same
period. Hence, the stocks making up the Dax 30 index actually performed
better than the Dax index; this is possible because the index is weighted
to reflect the overall market development. The stock prices for the 298
German companies increased 24%. In the same period the Dow 30 in-
creased by 23%, whereas the 30 companies in the Dow rose 8% and all
500 American stocks in our study increased by 10%. It appears that the
Dow index may be difficult to attain.

Can the recognition heuristic come close to the Dow and Dax market
indices? We tested this by tracking the performance of domestic recogni-
tion and international recognition. As figure 3-1 illustrates, domestic rec-
ognition rates are higher than their international counterparts.

Domestic Recognition The investment portfolio of German stocks based
on the recognition of the German laypeople outperformed the Dax 30 mar-
ket index by 10%, based on a raw yield of 47% (figure 3-2). The portfolio

3. The portfolio returns were calculated as follows: raw score = (portfolio value
^/portfolio value ta) - I and the normalized score = ((portfolio value ^/portfolio
value y/(market index ti/market index t0)) - 1. The price development for a hand-
ful of companies could not be tracked over the evaluation period and was therefore
dropped from the analysis.
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of German stocks based on the recognition of the German experts outper-
formed the market by 17%, with a stunning raw return of 57%.

How did the recognition portfolios for the two less-ignorant groups per-
form? The portfolio of highly recognized U.S. stocks based on U.S. laype-
ople's recognition made money, but fell 10% below the Dow 30 market
index. The unrecognized stocks lost 12% in relation to the market. Simi-
larly, the American experts' recognized stocks yielded a 16% return, 6%
below the Dow 30, while the unrecognized stocks were a worthless invest-
ment, returning nothing.

International Recognition Since the recognition of company names var-
ied widely among participants in the international comparison, we con-
structed portfolios with the 10 most recognized stocks, that is, on the basis
of fixed numbers of stocks. We used the 10 most recognized companies
instead of the 90% criterion because, as figure 3-1 shows, international
recognition is so low that under some conditions there are no companies
that 90% of the group recognized.

How well did the 10 most recognized American stocks chosen on the
basis of German recognition do? The recognition heuristic, using interna-
tional recognition, actually beat the Dow 30—a feat none of the other port-
folios accomplished. The same result was obtained for the stocks recog-
nized by German experts. The portfolio from the less knowledgeable
German laypeople even did better than that of the German experts.

Was international ignorance beneficial when going the other way
across the Atlantic? The 10 German stocks most recognized by American
laypeople outperformed the market by 23%. Similarly, the top 10 portfolio
based on U.S. experts' recognition greatly outperformed the market.

In all four cases of international recognition, the recognition heuristic
beat the relevant market index. Furthermore, in all four cases the interna-
tional recognition led to higher returns than domestic recognition, and the
recognition of laypeople led to slightly more profitable portfolios than
that of experts. In general it seems that the greater the degree of ignorance,
the better it is for picking stocks.

As a control, we also calculated the performance of portfolios based on
the top 20 and top 30 recognized stocks, for the four international tests.
Figure 3-3 shows that in each of these four groups, stocks with higher
recognition rates lead to higher returns.

How Does the Recognition Heuristic Compare with
Managed Funds?

We have tested the recognition heuristic against the market and unrecog-
nized stocks, and so far it has done well, winning in all of four compari-
sons against unrecognized stocks, and in six out of eight comparisons to
market indices. How will a heuristic based on a lack of recognition fare
when compared to the tools and knowledge of professional portfolio man-
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Figure 3-3: International recognition rates vs. returns. There is a direct
relationship between the recognition rate and the returns, in each of the
four groups. The top 10 are the 10 most recognized stocks from the inter-
national perspective (see figure 3-2). When this set is expanded to include
the top 20 or 30 most recognized stocks, recognition rates necessarily de-
crease, and returns follow.

agers? Two major mutual funds, the American-based Fidelity Blue Chip
Growth Fund and the German Hypobank Investment Capital Fund, served
as benchmarks for the recognition heuristic. The Fidelity fund increased
by 19% and the Hypobank fund increased by 36% over the December-to-
june period.

Figure 3-2 shows that the recognition heuristic beats managed funds in
six of the eight possible tests. For instance, the collective ignorance of 180
pedestrians in downtown Munich was more predictive than the knowl-
edge and expertise of American and German fund managers. Again we
see that international ignorance was even more powerful than domestic
ignorance. In addition, the two most ignorant groups, German laypeople
and experts, gained the most from their beneficial ignorance.

How Does the Recognition Heuristic Compare With
Random Stock Portfolios?

Recall that according to the efficient market hypothesis, one should not
be able to beat consistently a portfolio of randomly drawn stocks. For in-
stance, the Wall Street Journal's renowned investment column has sug-
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gested repeatedly that random stock picks, operationalized via a highly
sophisticated dartboard mechanism, often outperform expert picks. We
constructed 5,000 random portfolios consisting of 10 stocks from both the
American and German markets and valued them for the December-to-june
period. Figure 3-2 shows the average returns of the random portfolios:
22% for German stocks and 11% for American ones. The recognition heu-
ristic beats the random portfolio performance in seven of the eight possi-
ble tests, and matches it in the remaining one. The recognition heuristic
turned out to be far better at stock selection than chance.

How Does the Recognition Heuristic Compare With
Individuals' Investment Choices?

How good are experts and laypeople at picking stocks in which to invest?
Who will assemble the better portfolios, laypeople or experts? We asked
the German experts and laypeople to identify up to 10 stocks that they
would pick for investment purposes from the lists of companies in the
recognition test. We assembled portfolios of the 10 most often selected
German and American stocks chosen by German experts and laypeople.

The German laypeople tended to pick highly recognized German stocks
for investment; the average recognition rate of their 10 most selected
stocks was .80. Experts, however, opted for less recognized German stocks,
with an average recognition rate of .48. The recognition heuristic makes a
clear prediction here: The group that picks more highly recognized stocks
should enjoy the greater return. Indeed, the laypeople's stock picks
achieved a staggering return, whereas the experts' picks actually lost
money (figure 3-4).

For the Germans' picks of 10 American stocks, the average recognition
rate was lower (.27) and did not differ between experts and laypeople.
Consequently, both portfolios of international picks performed much
worse than the portfolios of recognized stocks in figure 3-2. Again, the
stock picks of the laypeople outperformed those of the experts by a wide
margin (figure 3-4).

From Recognition to Riches?

Can a fast and frugal heuristic that exploits patterns of ignorance rather
than substantial knowledge make money on the stock market? For the
period investigated, we have obtained the following results:

1. Portfolios of highly recognized stocks outperformed the portfolios
of unrecognized stocks. This result was replicated in all four domestic
tests (figure 3-2) and in all four international tests, where portfolio returns
increased with their average recognition rates (figure 3-3).

2. In tests of international recognition, the recognition heuristic per-
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Figure 3-4: Stock-picking performance of German laypeople and experts
on the two markets. The returns above or below the corresponding market
index were calculated by (1 + raw change in portfolio)/(l + raw change in
market index) -1.

formed above the market indices for each of the four conditions: American
stock recognition by German laypeople and experts and German stock rec-
ognition by American laypeople and experts. These international tests in-
dicate that the fewer companies a group recognizes, the better the recogni-
tion heuristic performs. Domestic recognition in Germany outperformed
the Dax, but in the United States domestic recognition did not beat the
Dow. Thus, in six out of eight tests, the recognition heuristic outper-
formed the market indices, often by a large margin.

3. In comparison with two major managed funds, the American Fidel-
ity Blue Chip Growth Fund and the German Hypobank Investment Capital
Fund, the recognition heuristic performed better in six out of eight tests.

4. The average return of random stock portfolios was consistently be-
low the returns achieved by the recognition heuristic. This result held in
seven out of eight tests (with the remaining one matching).

5. When people's investment choices followed the recognition heuris-
tic, their portfolio earned a very impressive return above the Dax. In the
three other cases, where the stocks picked had a low average recognition,
returns were much lower. Experts picked stocks with low recognition
rates, which performed dismally.

The predictive power of the recognition heuristic corroborates the no-
tion that a lack of recognition can contain implicit knowledge as powerful
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as explicit knowledge. The superiority of international over domestic rec-
ognition and the superiority of laypeople over experts in stock picking
supports the notion that a certain degree of ignorance can be a virtue.

How does the recognition heuristic do so well in the stock market?
Strategic management and marketing research suggests a positive correla-
tion between market share and firm profitability (e.g., Buzzell et al., 1975,
and for a review, Ramanujam & Venkatraman, 1984). Thus, companies
with the dominant market share are most likely to become both recog-
nized and profitable. Another link to profitability is core competence, that
is, "the collective learning in the organization, especially how to coordi-
nate diverse production skills and integrate multiple streams of technolo-
gies" (Hamel & Prahalad, 1994, p. 82). Honda, for example, is generally
portrayed as possessing a core competence in engines, which are featured
in a variety of products, such as cars, lawn mowers, boat engines, and
power generators. There seems to be evidence that core competence is
linked to above-average performance (e.g., Hamel & Prahalad, 1994; Praha-
lad & Hamel, 1990). If there is a further link between core competence
and company name recognition, an issue itself worthy of further research,
it may explain why recognized companies are more profitable.

Another link between recognition and stock performance may exist.
Professional fund managers seem to employ name recognition as if it were
a fundamental indicator for stock valuation. Joerg-Viggo Mueller, invest-
ment relations manager at Hugo Boss AG, for example, is quoted as say-
ing, "Boss shares are not blue chips [i.e., stocks from the most well-estab-
lished corporations]—yet analysts often position us as if we were"
(Deutsche Borse, 1997, p. 35). That is, members of the investment commu-
nity attribute a higher quality to Hugo Boss shares than is warranted by
strict fundamental analysis. Similarly, Manfred Ayasse, information rela-
tions manager at Porsche, suggests that "like consumers, investors cannot
resist the 'good vibes' associated with a car like Porsche" (Deutsche Borse,
1997, p. 35). So, although investment professionals may not be able to
apply the recognition heuristic themselves (since they recognize virtually
all market firms), they may consider public name recognition as part of a
stock's value. Names have value, as reflected in the explicit pricing of
good will and evidenced by countless court cases over corporate name
ownership.

The impressive performance of recognition-based portfolios was ob-
tained in a strong bull market. We do not yet know how well these results
would generalize to other periods, such as a decreasing bear market. One
explanation for the recognition heuristic's good performance is that it is
picking "big" firms, which are known to do well in up markets. This hy-
pothesis can be tested in a down market, where big firms generally do
more poorly than the market indices. If recognized stocks perform above
big firms in upswings, and do not suffer as much in downturns, then we
will have evidence distinguishing recognition effects from big-firm effects.
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At least in the upswing period we have considered, the recognition-based
portfolios outperformed the summed returns of the big firms of the Dax
and Dow, giving us partial indication that these effects are distinct.

Would the logic of the recognition heuristic be spoiled when compa-
nies become recognized because of bad press, such as when the public
learns of an oil company from news of an oil spill? One might expect such
a stock to perform poorly. However, financial markets are fast and stock
prices quickly adjust for expected losses in earning power. Once the bad
news hits the mass media outlets, share prices may even increase because
the bad news has been taken into account by insiders and the uncertain-
ties with respect to future earnings have been reduced or even eliminated.
Hence, "ignorant" investors recognizing a company by way of adverse
news may in fact disproportionally benefit.

Ignorance Can Be Informative

In this chapter, we have taken a bold step into the unknown, throwing a
heuristic fueled by ignorance onto the trading floor. The striking returns
generated by recognition-based portfolios substantiate evidence in the
previous chapter that the recognition heuristic can make accurate infer-
ences in real-world domains. For the period considered here, at least, the
recognition knowledge of pedestrians turned out to be more profitable
than the considered opinions of mutual fund experts. The stock market
may be a complex real-world environment in which lack of recognition is
not completely random, but rather systematic and informative. In invest-
ments, there may be wisdom in ignorance.
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Betting on One Good Reason

The Take The Best Heuristic

Gerd Gigerenzer
Daniel G. Goldstein

Bounded rationality is what cognitive psychology is all
about. And the study of bounded rationality is not the study
of optimization in relation to task environments.

Herbert A. Simon

Vjod, as John Locke (1690/1959) asserted, "has afforded us only the twi-
light of probability; suitable, I presume, to the state of mediocrity and
probationership he has been pleased to place us in here. . . . " In the two
preceding chapters, we argued that humans can make the best of this me-
diocre uncertainty. Ignorance about real-world environments, luckily, is
often systematically rather than randomly distributed and thus allows or-
ganisms to navigate through the twilight with the recognition heuristic. In
this chapter, we analyze heuristics that draw inferences from information
beyond mere recognition. The source of this information can be direct
observation, recall from memory, firsthand experience, or rumor. Darwin
(1872/1965), for instance, observed that people use facial cues, such as
eyes that waver and lids that hang low, to infer a person's guilt. Male
toads, roaming through swamps at night, use the pitch of a rival's croak
to infer its size when deciding whether to fight (Krebs & Davies, 1991).
Inferences about the world are typically based on cues that are uncertain
indicators: The eyes can deceive, and so can a medium-sized ethologist
mimicking a large toad with a deep croak in the darkness. As Benjamin
Franklin remarked in a letter in 1789: "In this world nothing is certain
but death and taxes" (Smyth, 1907, p. 69).

How do people make inferences, predictions, and decisions from a
bundle of imperfect cues and signals? The classical view of rational judg-
ment under uncertainty is illustrated by Benjamin Franklin's moral alge-

75

4



76 ONE-REASON DECISION MAKING

bra. In an often-cited letter to the British scientist Joseph Priestley, Frank-
lin (1772/1987) explained how to decide which of two options to take,
based on uncertain cues (which he calls "reasons"):

[M]y Way is, to divide half a Sheet of Paper by a Line into two Col-
umns, writing over the one Pro, and over the other Con. Then during
three or four Days Consideration I put down under the different
Heads short Hints of the different Motives that at different Times
occur to me for or against the Measure. When I have thus got them
all together in one View, I endeavor to estimate their respective
Weights; and where I find two, one on each side, that seem equal, I
strike them both out: If I find a Reason pro equal to some two Rea-
sons con, I strike out the three. If I judge some two Reasons con
equal to some three Reasons pro, I strike out the five; and thus pro-
ceeding I find at length where the Ballance lies; and if after a Day
or two of farther Consideration nothing new that is of Importance
occurs on either side, I come to a Determination accordingly. And
tho' the Weight of Reasons cannot be taken with the Precision of
Algebraic Quantities, yet when each is thus considered separately
and comparatively, and the whole lies before me, I think I can judge
better, and am less likely to make a rash Step; and in fact I have
found great Advantage from this kind of Equation, in what may be
called Moral or Prudential Algebra, (p. 878)

Franklin's moral algebra, or what we will call Franklin's rule, is to
search for all reasons, positive or negative, weigh each carefully, and add
them up to see where the balance lies. This linear combination of reasons
carries the moral sentiment of rational behavior: carefully look up every
bit of information, weigh each bit in your hand, and combine them into a
judgment. Franklin's method is a variant of the classical view of rational-
ity which emerged in the Enlightenment (see chapter 1), a view that is not
bound to linear combinations of reasons. Classical rationality assumes
that the laws of probability are the laws of human minds, at least of the
educated ones (the hommes eclaires, see Daston, 1988). As Pierre-Simon
Laplace (1814/1951, p. 196) put it, "the theory of probabilities is at bottom
only common sense reduced to calculus."

But in real-world situations with sufficient complexity, the knowledge,
time, and computation necessary to realize the classical ideal of un-
bounded rationality can be prohibitive—too much for humble humans,
and often also too much for the most powerful computers. For instance,
if one updates Franklin's weighted linear combination of reasons into its
modern and improved version, multiple linear regression, then a human
would have to estimate the weights that minimize the error in the "least
squares" sense for all the reasons before combining them linearly—a task
most of us could not do without a computer. If one were to further update
Franklin's method to (nonlinear) Bayesian networks, then the task could
become too computationally complex to be solved by a computer.

Despite their psychological implausibility, the preferred models of cog-
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nitive processes since the cognitive revolution of the 1960s were those
assuming demons: subjective expected utility maximizing models of
choice, exemplar models of categorization, multiple regression models of
judgment, Bayesian models of problem solving, and neural-network mod-
els of almost everything. Demons that can perform amazing computations
have not only swamped cognitive psychology, but also economics, opti-
mal foraging theory, artificial intelligence, and other fields. Herbert Simon
has countered, "there is a complete lack of evidence that, in actual human
choice situations of any complexity, these computations can be, or are in
fact, performed" (1955a, p. 104).

Simon proposed to build models of bounded rationality rather than of
optimizing. But how? What else could mental processes be, if not the lat-
est statistical techniques?

Simple Stopping Rules

xln this chapter, we deal with the same type of task as in chapter 2: deter-
mining which of two objects scores higher on a criterion. This task is a
special case of the more general problem of estimating which subclass of
a class of objects has the highest values on a criterion (as in chapter 3).
Examples are treatment allocation (e.g., which of two patients to treat first
in the emergency room, with life expectancy after treatment as the crite-
rion), financial investment (e.g., which of two securities to buy, with
profit as criterion), and demographic predictions (e.g., which of two cities
has higher pollution, crime, mortality rates, and so on).

To illustrate the heuristics, consider the following two-alternative
choice task:

Which of the two cities has a larger population?
(a) Hannover
(b) Bielefeld

Assume that a person has heard of both cities, so cannot use the recog-
nition heuristic. This person needs to search for cues that indicate larger
population. Search can be internal (in memory) or external (e.g., in librar-
ies). Limited search is a central feature of fast and frugal heuristics: not
all available information is looked up, and consequently, only a fraction
of this information influences judgment. (In contrast, laboratory experi-
ments in which the information is already conveniently packaged and laid
out in front of the participants eliminate search, and in line with this
experimental approach, many theories of cognitive processes do not even
deal with search.)

Limited search implies a stopping rule. Fast and frugal heuristics use
simple stopping rules. They do not follow the classical prescription to
search as long as the perceived marginal benefits of acquiring additional
information exceed the perceived marginal costs (Stigler, 1961). That
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minds could and would routinely calculate this optimal cost-benefit
trade-off is a dominant, yet implausible, assumption in models of informa-
tion search (see the epigram introducing this chapter).

We demonstrate a simple stopping rule with figure 4-1. This figure rep-
resents a person's knowledge about four objects a, b, c, and d (cities,
for example) with respect to five cues (such as whether the city has a
big-league soccer team, is a state capital, and so forth) and recognition
(whether or not the person has heard of the city before). For instance, if
one city has a soccer team in the major league and the other does not,
then the city with the team is likely, but not certain, to have the larger
population. Suppose we wish to decide which of city a and city b is
larger. Both a and b are recognized, so the recognition heuristic cannot be
used. Search for further knowledge in memory brings to mind information
about Cue 1, the soccer team cue. City a has a soccer team in the major
league, but city b does not (these cue values are represented by "1" and

Figure 4-1: Illustration of bounded search through limited knowledge.
Objects a, b, and c are recognized (+), d is not (-). Cue values are binary
(0 or 1); missing knowledge is shown by a question mark. For instance, to
infer whether a > b, Take The Best looks up only the values in the lined
space. To infer whether b> c, search is bounded to the dotted space. The
other cue values are not looked up and so are shown within the diagram
as shrouded in the fog of memory.
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"0" in figure 4-1). Therefore, the cue discriminates between the two cities.
Search is terminated, and the inference is made that city a is the larger
city. More generally, for binary (or dichotomous) cues, the simple stop-
ping rule is:

If one object has a positive cue value ("1") and the other does not
(i.e., either "0" or unknown) then stop search.

For convenience, we use "1" for positive cue values, those that indicate
higher criterion values (e.g., a larger population) and "0" for negative cue
values, which indicate lower criterion values. If the condition of the stop-
ping rule is not met, then search is continued for another cue, and so on.
For instance, when deciding between b and c in figure 4-1, Cue 1 does
not discriminate, but Cue 2 does. Object b is inferred to be larger on the
basis of this single cue. Limited search works in a step-by-step way; cues
are looked up one by one, until the stopping rule is satisfied (similar to
the Test Operate Test Exit procedures of Miller et al., 1960). If no cue is
found that satisfies the stopping rule, a random guess is made. No costs
or benefits need to be computed to stop search. The following heuristics—
Minimalist, Take The Last, and Take The Best—use this simple stopping
rule. They also use the same heuristic principle for decision, one-reason
decision making, that is, they base an inference on only one reason or cue.
They differ in how they search for cues.

Heuristics

The Minimalist

The minimal intuition needed for cue-based inference is the direction in
which a cue points, for instance, whether having a soccer team in the
major league indicates a large or a small population. This direction can,
for instance, be estimated from a small learning sample (and the estimated
direction may sometimes be wrong, see below). The Minimalist has only
this minimal intuition. Nothing more is known, for instance, about which
cues are better predictors than others. Consequently, the heuristic for
search that the Minimalist uses is to look up cues in random order. When-
ever the Minimalist can, it will take advantage of the recognition heuristic
(see chapter 2). However, there are situations where the recognition heu-
ristic cannot be used, that is, when both objects are recognized, or when
recognition is not correlated with the criterion.

The Minimalist heuristic can be expressed in the following steps:

Step 0. If applicable, use the recognition heuristic; that is, if only
one object is recognized, predict that it has the higher value
on the criterion. If neither is recognized, then guess. If both
are recognized, go on to Step 1.

Step 1. Random search: Draw a cue randomly (without replace-
ment) and look up the cue values of the two objects.



80 ONE-REASON DECISION MAKING

Step 2. Stopping rule: If one object has a positive cue value ("1")
and the other does not (i.e., either "0" or unknown value)
then stop search and go on to Step 3. Otherwise go back to
Step 1 and search for another cue. If no further cue is found,
then guess.

Step 3. Decision rule: Predict that the object with the positive cue
value has the higher value on the criterion.

Take The Last

Like the Minimalist, Take The Last only has an intuition in which direc-
tion a cue points but not which cues are more valid than others. Take The
Last differs from the Minimalist only in Step 1. It uses a heuristic princi-
ple for search that draws on a strategy known as an Einstellung set. Karl
Duncker and other Gestalt psychologists demonstrated that when people
work on a series of problems, they tend to start with the strategy that
worked on the last problem when faced with a new, similar-looking prob-
lem (Duncker, 1935/1945; Luchins & Luchins, 1994), and thereby build
up an Einstellung set of approaches to try. For the first problem, Take The
Last tries cues randomly like the Minimalist, but from the second problem
onward it starts with the cue that stopped search the last time. If this cue
does not stop search, it tries the cue that stopped search the time before
last, and so on. Because cues that recently stopped search tend to be more
likely than others to stop search (i.e., they are cues with higher discrimi-
nation rates), Take The Last tends to search for fewer cues than the Mini-
malist. For instance, if the last decision was based on the soccer team cue,
Take The Last would try the soccer team cue first on the next problem. In
contrast to the Minimalist, Take The Last needs a memory for what cues
discriminated in the past. Step 1 of Take The Last is:

Step 1. Einstellung search: If there is a record of which cues stopped
search on previous problems, choose the cue that stopped
search on the most recent problem and has not yet been
tried. Look up the cue values of the two objects. Otherwise
try a random cue and build up such a record.

Take The Best

There are environments for which humans or animals know (rightly or
wrongly) not just the signs of cues, but also which cues are better than
others. An order of cues can be genetically prepared (e.g., cues for mate
choice in many animal species) or learned by observation. In the case of
learning, the order of cues can be estimated from the relative frequency
with which they predict the criterion. For example, the validity of the
soccer team cue would be the relative frequency with which cities with
soccer teams are larger than cities without teams. The validity is com-
puted across all pairs in which one city has a team and the other does
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not. If people can order cues according to their perceived validities—
whether or not this subjective order corresponds to the ecological order—
then search can follow this order of cues. Take The Best first tries the cue
with the highest validity, and if it does not discriminate, the next best
cue, and so on. Its motto is "take the best, ignore the rest." Take The Best
differs from the Minimalist only in Step 1, which becomes:

Step 1. Ordered search: Choose the cue with the highest validity
that has not yet been tried for this choice task. Look up the
cue values of the two objects.

Note that the order that Take The Best uses is not an "optimal" one—it
is, rather, a frugal ordering. It does not attempt to grasp the dependencies
between cues, that is, to construct an order from conditional probabilities
or partial correlations (see chapter 6). The frugal order can be estimated
from a small sample of objects and cues (see chapter 5).

To summarize, the three fast and frugal heuristics just presented em-
body the following properties: limited search using step-by-step proce-
dures, simple stopping rules, and one-reason decision making. One-rea-
son decision making, basing inferences on just one cue, is implied by the
specific stopping rule used here. It is not implied by all simple stopping
rules. Furthermore, one-reason decision making does not necessarily im-
ply the stopping rule used by the three heuristics. For instance, one could
search for a large number of cues that discriminate between the two alter-
natives (such as in a situation where one has to justify one's decision) but
still base the decision on only one cue.

Compare the spirit of these simple heuristics to Franklin's rule. One
striking difference is that all three heuristics practice one-reason decision
making. Franklin's moral algebra, in contrast, advises us to search for all
reasons—at least during several days' consideration—and to weigh care-
fully each reason and add them all up to see where the balance lies. The
three heuristics avoid conflicts between cues that may point in opposite
directions. Avoiding conflicts makes the heuristics noncompensatory: No
amount of contrary evidence from later (unseen) cues can compensate for
or counteract the decision made by an earlier cue. An example is the infer-
ence that a is larger than b in figure 4-1; neither the two positive values
for b nor the "0" value for a can reverse this inference. Basing an entire
decision on just one reason is certainly bold, but is it smart?

Psychologically Plausible but Dumb?

Consider first a species that practices one-reason decision making closely
resembling Take The Best. In populations of guppies, the important adap-
tive task of mate choice is undertaken by the females, which respond to
both physical and social cues (Dugatkin, 1996). Among the physical cues
they value are large body size and bright orange body color. The main
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social cue they use is whether they have observed the male in question
mating with another female. The cues seem to be organized in a hierarchy,
with the orange-color cue dominating the social cue. If a female has a
choice between two males, one of which is much more orange than the
other, she will choose the more orange one. If the males are close in or-
angeness, she prefers the one she has seen mating with another female.
She prefers this one even if he has slightly less orange color. The stopping
rule for the orangeness cue is that one male must be much (about 40%)
more orange than the other. Mate choice in female guppies illustrates lim-
ited search, simple stopping rules, and one-reason decision making.

People, not just lower animals, often look up only one or two relevant
cues, avoid searching for conflicting evidence, and use noncompensatory
strategies (e.g., Einhorn, 1970; Einhorn & Hogarth, 1981, p. 71; Fishburn,
1988; Hogarth, 1987; Payne et al., 1993; Shepard, 1967a). For instance,
Take The Best (unlike the Minimalist and Take the Last) is related to lexi-
cographic strategies. The term lexicographic signifies that the cues are
looked up in a fixed order of validity, like the alphabetic order used to
arrange words in a dictionary. The Arabic (base 10) and Babylonian (base
12) number systems are lexicographic. To see which of two numbers with
equal numbers of digits is larger, one has to look at the first digit: If this
digit is larger, the whole number is larger. If they are equal, one has to
look at the second digit, and so on. This simple method is not possible
for Roman numbers, which are not lexicographic. In experimental studies,
lexicographic strategies seem to be favored under time constraints (Payne
et al., 1993; see also chapter 7). In addition, Take The Best and the more
general framework of probabilistic mental models (Gigerenzer et al., 1991)
have been successful in integrating various empirical phenomena (Di-
Fonzo, 1994; Gigerenzer et al., 1991; Juslin, 1993; McClelland & Bolger,
1994).

However, simple heuristics that embody one-reason decision making,
avoid conflicts, and are noncompensatory were often discredited as irra-
tional, because they look stupid in comparison to traditional norms of
rationality that focus on coherence rather than on performance in real-
world environments. For instance, when Keeney and Raiffa (1993) discuss
lexicographic strategies, they repeatedly insert warnings that this strategy
"is more widely adopted in practice than it deserves to be" because "it is
naively simple" and "will rarely pass a test of 'reasonableness'" (pp. 77-
78). They did not actually perform such a test. We shall.

Can Fast and Frugal Heuristics Be Accurate?

Heuristics are often evaluated by principles of internal coherence, rather
than by criteria that measure their performance in the external world: ac-
curacy, frugality, and speed, among others. The major exception in judg-
ment and decision-making research is the work by Payne et al. (1993),
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who have systematically compared the "effort-accuracy" trade-off of sim-
ple strategies to the performance of the weighted additive rule (Franklin's
rule), which is often taken as normative for preferences (see also Beach &
Mitchell, 1978; Beach et al., 1986). In contrast to our research, Payne
and his colleagues studied preferences in artificial problems rather than
inferences about the real world. One consequence is that there is no ex-
ternal criterion for accuracy (e.g., the actual population of a city), so
norms must be constructed. In their studies, the weighted additive rule
is taken as the gold standard, and accuracy is defined as how close a strat-
egy comes to this rule. Therefore, no strategy can ever be more accurate
than the norm.1 When making inferences about the real world, however,
it does not necessarily hold that the weighted additive rule is the best one
can do.

How accurate can heuristics be that violate the following two com-
mandments that are often taken as characteristic of rational judgment?

Complete search. Thou shalt find all the information available. If thou
cannot because of time or computational constraints, then compute the
point where the cost of further searching exceeds the benefits of doing so,
and search until this point.

Compensation. Thou shalt combine all pieces of information. Thou
shalt not rely on just one piece.

While Franklin's rule respects both commandments, the Minimalist,
Take The Last, and Take The Best heuristics violate them. They do not
look up all cue values (limited search) and do use a simple stopping rule.
They do not combine cue values (noncompensation). The Minimalist, in
addition, can violate transitivity, a sacred principle of internal coherence.2

To answer the question of how accurate fast and frugal heuristics are,
we evaluated their performance in a competition that pitted three stan-
dard statistical strategies against the three fast and frugal heuristics intro-
duced above. The goal was to see which strategy would yield the most
accurate inferences while looking up the fewest cue values.

The Competitors

To provide standards of comparison, we introduce three competitors that
do not violate these commandments of rational judgment. The first is a
weighted linear combination of cues, which we call Franklin's rule, be-
cause it applies Franklin's principles to the two-alternative choice tasks
considered here. It is actually a more empirical method than Franklin's

1. An exception is when the weighted additive rule is modified to use only
limited information.

2. Intransitivity can result from the fact that the Minimalist picks cues in ran-
dom order, as is illustrated by figure 4-1. For instance, if Cue 1 happens to be
applied to objects a and b, Cue 2 to b and c, and Cue 3 to a and c, we get the
intransitive judgment a > b, b> c, and c> a.
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original moral algebra because the weights are not subjective but com-
puted from the data. In the present simulation, the cue weights are ecolog-
ical validities, to be defined shortly. Franklin's rule multiplies each cue
value by its weight and sums the total, inferring that the object with the
larger sum is the larger object. In the simulation, positive and negative
cue values are coded as 1 and 0, respectively.

The other two competitors are linear combinations of cues, like Frank-
lin's rule. One of them demands considerably more knowledge and com-
putation, and one demands less. The more demanding algorithm is multi-
ple linear regression. Multiple regression takes care of the dependencies
between cues by calculating weights that minimize the error in the least-
squares sense. Variants of weighted linear models have been proposed as
descriptive or prescriptive models of cognitive processes, for instance, in
N. H. Anderson's (e.g., 1981) information integration theory and in social
judgment research (Brehmer, 1994; Brunswik, 1955). As descriptions of
psychological processes, weighted linear models, and particularly multi-
ple linear regression, are questionable given the complex computations
they assume (Brehmer & Brehmer, 1988; Einhorn & Hogarth, 1975; Ho-
garth, 1987). A more psychologically plausible version of a linear strategy
employs unit weights, as suggested by Robyn Dawes (e.g., 1979). This
strategy simply adds up the number of positive cue values (or ones) and
subtracts the number of negative cue values (or zeroes). Thus it is fast (it
does not involve much computation), but not frugal (it looks up all cues).
For short, we call this strategy Dawes's rule.

In the simulations we report, these three linear models serve as bench-
marks against which to evaluate the performance of the fast and frugal
heuristics. Note that Franklin's rule and multiple linear regression use all
the information the three heuristics use, and more. They also carry out
more sophisticated computations on this information.

The Environment

After Germany was reunified in 1990, the country had 83 cities with more
than 100,000 inhabitants. These cities and nine cues for population size
constituted the environment for the simulation. The cues were chosen
from people's reported cues in experiments (Gigerenzer et al., 1991; Giger-
enzer & Goldstein, 1996a). The task was to infer which of two cities has a
larger population. Each cue has two important characteristics: its ecologi-
cal validity and its discrimination rate. The ecological validity of a cue is
the relative frequency with which the cue correctly predicts the criterion,
defined with respect to the reference class (here, all German cities with
more than 100,000 inhabitants). For instance, if one checks all pairs in
which one city has a soccer team but the other city does not, one finds
that in about 87% of these cases the city with the team also has the higher
population. This .87 value is the ecological validity of the soccer team
cue. In general, the ecological validity v, of the j'th cue is:
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v, = number of correct predictions/number of predictions

where the number of predictions is the number of pairs in which one
object has a positive and the other a negative value. The ecological validi-
ties of the cues varied over the whole range (table 4-1).

A cue with a high ecological validity, however, is not very useful if its
discrimination rate is small. The discrimination rate of a cue is the rela-
tive frequency with which a cue discriminates between pairs of objects
from the reference class. The discrimination rate is a function of the distri-
bution of the cue values and the number N of objects in the reference
class. Let the relative frequencies of the positive and negative cue values
be x and y respectively. Then the discrimination rate di of the ith cue is:

as an elementary calculation shows. Thus, if N is very large, the discrimi-
nation rate is approximately 2xy.

The larger the ecological validity of a cue, the better the inferences.
The larger the discrimination rate, the more often a cue can be used to
make an inference. The pairwise correlations between the nine cues
ranged between -.25 and .54, with an average absolute value of .19.

Different strategies extract different information from the environment.
The Minimalist, for instance, does not extract information about which

Table 4-1: Cues, Ecological Validities, and Discrimination Rates

Ecological Discrimination
Cue Validity Rate

National capital (Is the city the national
capital?)

Exposition site (Was the city once an
exposition site?)

Soccer team (Does the city have a team in
the major leagues?)

Intercity train (Is the city on the Intercity
line?)

State capital (Is the city a state capital?)
License plate (Is the abbreviation only one

letter long?)
University (Is the city home to a univer-

sity?)
Industrial belt (Is the city in the industrial

belt?)
East Germany (Was the city formerly in

East Germany?)

1.0

.91

.87

.78

.77

.75

.71

.56

.51

.02

.25

.30

.38

.30

.34

.51

.30

.27
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cues are better than others; it only needs to estimate in which direction a
cue points. Take The Best extracts information about the order in which
cues should be tried. All competitors made use of the actual cue values
from the complete environment to calculate parameters such as ecological
validities or regression coefficients.

Limited Knowledge

We simulated subjects with varying degrees of knowledge about this envi-
ronment. Limited knowledge can take two forms. One is limited recogni-
tion of objects. The other is limited knowledge about the cue values of
recognized objects. To model limited recognition knowledge, we simu-
lated subjects who recognized between 0 and all (83) German cities (i.e.,
84 different levels of recognition). To model limited knowledge of cue
values, we simulated six classes of subjects, who knew 0, 10, 20, 50, 75,
or 100% of the cue values associated with the objects they recognized.
Combining the two sources of limited knowledge resulted in 6 x 84 types
of subjects, each having different degrees and kinds of limited knowledge.
For each type of subject, we created 500 simulated individuals, who dif-
fered randomly from one another in the particular objects and cue values
they knew.

The simulation needed to be realistic in the sense that the simulated
subjects should be able to invoke the recognition heuristic. Therefore, the
sets of cities the simulated subjects recognized had to be carefully chosen
so that the recognized cities were larger than the unrecognized ones a
certain percentage of the time. We performed a survey to get an empirical
estimate of the actual relationship between the recognition of cities and
city populations. In a survey of undergraduates at the University of Chi-
cago, we found that the cities they recognized (within the 83 largest in
Germany) were larger than the cities they did not recognize in about 80%
of the cases. We incorporated this value into our simulations by choosing
sets of cities (for each knowledge state, that is, for each number of cities
recognized) where the known cities were larger than the unknown cities
in about 80% of all cases. Thus, the cities known by the simulated sub-
jects had the same relationship between recognition and population as
did those of the human subjects. For details of the simulation see Giger-
enzer and Goldstein (1996a).

Each simulated subject made inferences about which of two cities is
larger, using each of six strategies: the three fast and frugal heuristics
(Take The Best, Take The Last, and the Minimalist) and the three linear
methods (regression, Franklin's rule, and Dawes's rule). The question of
how well a fast and frugal heuristic performs in a real-world environment
has rarely been posed in research on inductive inference. If the simple
heuristics are adapted to environmental structures, then they should not
fail outright.
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How Frugal Are the Heuristics?

We measure frugality by the number of cues a heuristic looks up. The
three linear models always look up and integrate all 10 cues (9 ecological
cues plus recognition). Across all states of limited knowledge, Take The
Last looked up on average only 2.6 cues, the Minimalist 2.8 cues, and
Take The Best 3.0 cues (table 4-2). Take The Last owes its frugality to the
Einstellung set, which tends to collect the cues that discriminate most
often. The reason why the Minimalist looked up fewer cues than Take
The Best is that cue validities and cue discrimination rates are negatively
correlated (table 4-1). Therefore, randomly chosen cues tend to have
higher discrimination rates than cues chosen by cue validity. All in all,
the three heuristics look up less than a third of the cues used by the linear
models, on average.

How Accurate Are the Heuristics?

How accurate are the three heuristics, given that they look up only a frac-
tion of the available information? Recall that the Minimalist looks up on
average only 2.8 cues, uses one-reason decision making, does not know
which cues are better than others, and can violate transitivity. It must be
doomed to fail. Table 4-2, however, shows that the Minimalist achieves
an average accuracy of 64.7%. This is slightly higher than Take The Last,
but lower than Take The Best with 65.8%. But how much more accurate
are Dawes's rule, Franklin's rule, and multiple regression, which use all
cues' values and combine them? The result in table 4-2 is surprising.
Dawes's rule is outperformed by each of the three heuristics, although

Table 4-2: A Tournament Between Three Fast and Frugal
Heuristics (Minimalist, Take The Last, Take The Best) and
Three Linear Strategies (Dawes's Rule, Franklin's Rule, and
Multiple Regression)

Knowledge
About

Strategy Cues

Take The Last direction
Minimalist direction
Take The Best order
Dawes's rule direction
Franklin's rule validities
Multiple regression beta weights

Frugality
(Number of

Cues Looked Up)

2.6
2.8
3.0

10.0
10.0
10.0

Accuracy
(%)

64.5
64.7
65.8
62.1
62.3
65.7

Note. Results are averaged across all levels of limited knowledge, that is, limited rec-
ognition and limited number of cue values known (see text). For instance, the Mini-
malist looked up only 2.8 cues on the average and made 64.7% correct inferences.
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Dawes's rule has all the information that the Minimalist and Take The
Last have (only Take The Best knows about the order of cues, which is
not available to Dawes's rule). Franklin's rule has all the information that
each of the three heuristics has, and more. Still, it is outperformed by
even the most frugal of the simple heuristics.

How do the heuristics compare to a more powerful competitor? Multi-
ple regression calculates a set of weights considered optimal for linear
prediction, and arriving at these weights requires considerable computa-
tional might. Though it makes more accurate inferences than both the
Minimalist and Take The Last, regression is matched in accuracy by the
fast and frugal Take The Best.

Figure 4-2 shows the accuracy of the six competitors as a function of
the number of cities recognized. Here, the situation where all competitors
perform best is shown, namely when knowledge of cue values is 100%.
The figure shows that the Minimalist and Take The Last can compete well
with the other algorithms in accuracy when the number of objects recog-
nized is limited, but take a loss when all are known, that is, when com-
plete information is available. Franklin's rule and Dawes's rule match
Take The Best when no or all objects are recognized, but suffer with inter-

Figure 4-2: Results of the competition among decision strategies when
knowledge of cue values is 100% but recognition rate varies.
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mediate levels of recognition. Why is this? The reason is that these two
strategies violate the wisdom of the recognition heuristic. They sometimes
choose unrecognized cities as larger than recognized ones. In this environ-
ment, most cities have more negative cue values than positive ones: for
example, the average city is not a state capital, does not have a major
league soccer team, and so on. Dawes's rule, which subtracts the number
of negative cue values from the number of positive ones, often arrives at
a negative total for a recognized city that exceeds that of an unrecognized
city (which is always -1, because of one negative reason: no recognition).
The same holds for Franklin's rule, which weights the reasons (Giger-
enzer & Goldstein, 1996a). Therefore, an unrecognized city is often in-
ferred to be larger than a recognized one, which turns out to be a bad
idea in this environment where the recognized cities were larger than the
unrecognized cities 80% of the time. When one helps the linear strategies
by endowing them with the recognition heuristic, their performance
roughly matches that of Take The Best and multiple regression.

Figure 4-2 also illustrates a less-is-more effect (see chapter 2) in four of
the six strategies. In contrast to figure 2-4, which shows a noisy less-is-
more effect obtained by Take The Best in a simulation where the recogni-
tion validity was determined empirically at each level of recognition, here
we see it in a smooth, refined form—a result of holding the recognition
validity constant at our estimate of its empirical average.

Trade-Off Between Accuracy and Frugality

Within the three heuristics, the expected trade-off holds: the more frugal
(the fewer cue values looked up), the less accurate. However, when we
compare the family of heuristics to the three linear strategies, things get
very interesting. Compared to multiple regression, Take The Best did not
sacrifice accuracy for frugality—it achieved both. Compared to Dawes's
and Franklin's rules, all three heuristics managed to be more accurate and
yet more frugal at the same time.

When we first obtained these results, we could not believe them. We
hired independent programmers in the United States and Germany to re-
run the simulations to exclude possible wishful thinking on our part.
When we finally published the results, we also included the data on the
environment so that everyone could perform their own replications, and
many did (Gigerenzer & Goldstein, 1996a). Fast and frugal heuristics do
not necessarily have to trade accuracy for simplicity.

Can Frugality and Accuracy Both Be Possible?

Fast and frugal heuristics can make accurate inferences about unknown
properties of the world, that is, inferences that are equal to or more accu-
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rate than the three linear strategies. In designing these simulations, we
wondered if the heuristics would fail dismally. Before we reported the
results, three eminent researchers in judgment and decision making pre-
dicted that Take The Best might perform 10 or 5 percentage points worse
than the linear strategies. Each of the three heuristics, however, exceeded
these expectations, and even outperformed some of the linear strategies.
Take The Best matched or outperformed them all. At that juncture we
did not understand how the competition could come out that way. The
answer—in the form of what we call ecological rationality—only emerged
after some further struggling, and will be developed in chapter 6. Here we
summarize a few insights.

The observation of a flat maximum for linear models is one insight. If
many sets of weights can perform about as well as the optimal set of
weights in a linear model, this is called a flat maximum. The work by
Robyn Dawes and others (e.g., Dawes & Corrigan, 1974) made this phe-
nomenon known to decision researchers, but has actually been known
longer. Since Wilks (1938) wrote about the robustness of equal weights,
many have argued that weights are irrelevant both for making predictions
by an artificial system (such as an IQ test) and for describing actual human
inferences. In psychometrics, weighting the components of a test battery
is rare because various weighting schemes result in surprisingly similar
composite scores, that is, in flat maxima (e.g., Gulliksen, 1950). Flat max-
ima seem to occur when cues are strongly positively correlated. The per-
formance of fast and frugal heuristics indicates that a flat maximum can
extend beyond the issue of weights to decision strategies themselves: in-
ferences based solely on the best cue can be as accurate as those based on
a weighted linear combination of all cues.

There is also scattered earlier evidence that simple, noncompensatory
heuristics can perform well. However, because much of the earlier work
concentrated on preferences (rather than inferences) and on artificial stim-
uli (rather than real-world environments), external criteria of performance
were often hard to come by. As mentioned before, the closest relatives of
Take The Best are lexicographic strategies. Payne et al. (1993) showed that
lexicographic judgments can sometimes be close to those of a weighted
linear model, but they had no external criteria for accuracy. A second
class of close relatives are simple algorithms in machine learning, which
can perform highly accurate classifications (Holte, 1993; Rivest, 1987). A
more distant relative to Take The Best is Elimination By Aspects (Tversky,
1972), which also employs limited search and a stopping rule, but deals
with preference rather than inference, does not use the order of cues but
a probabilistic criterion for search that requires knowledge of the quantita-
tive validities of each cue, has no recognition heuristic built in, and does
not employ one-reason decision making. Another more distant class of
relatives are classification and regression trees (CARTs), which use a sim-
ple decision tree and oneLreason decision making, but differ in the knowl-
edge and computational power they use for setting up the simple tree. For
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instance, Breiman et al. (1993) reported a simple CART algorithm with
only three binary, ordered cues that classified heart-attack patients into
"high" and "low" risk groups. This noncompensatory tree was more accu-
rate than standard statistical classification methods, which used up to 19
variables (see chapter 1). The practical relevance is obvious: In the emer-
gency room, the physician can quickly obtain the measures on one, two,
or three variables, and does not need to perform any computations since
there is no integration. For theories that postulate mechanisms that resem-
ble Take The Best see relevance theory (Sperber et al., 1995) and optimal-
ity theory (Legendre et al., 1993; Prince & Smolensky, 1991).

All in all, the observation of flat maxima, the performance of simple
machine learning rules and CART trees, and the work by Payne, Bettman,
and Johnson gave us hope that there was something larger to discover
behind this first surprising finding.

Matching Stopping Rules to Environments

What structures of information in real-world environments can fast and
frugal heuristics exploit in order to perform as accurately as they did?
Where would they fail? Chapters 5 and 6 will address these questions.
Here, we will illustrate this idea of ecological rationality—the match be-
tween mind and environment—by the positive bias of the stopping rule.
Recall that the combination of a positive value and an unknown value
stop search, but a negative and an unknown value do not. This asymmetry
is what we mean by a positive bias. Positive biases of various kinds have
been observed in humans (e.g., Klayman & Ha, 1987) and can result in
both more frugal and more accurate inferences than an unbiased stopping
rule. Consider first an unbiased stopping rule that demands a positive and
a negative cue value (as proposed by Gigerenzer et al., 1991). This stop-
ping rule would be less frugal, because search would take longer when
there is limited knowledge (i.e., unknown cue values) than it would with
a positive bias. Now consider a faster, unbiased stopping rule that always
terminates search when the positive bias rule does, but in addition when
a negative and an unknown value are obtained. Compared to this second
unbiased stopping rule, a positive bias can be shown to achieve more ac-
curate judgments in environments where negative cue values are more
frequent than positive ones. The intuition for this result is that the un-
known value is most likely negative. If the unknown value is negative,
however, this will lead to fewer accurate judgments when one stops with
a negative and an unknown value, because this would often mean that
there were actually two negative values. Thus, a stopping rule with posi-
tive bias is ecologically rational in environments where negative cue val-
ues outnumber positive ones. An example is the environment studied in
this chapter, where only relatively few cities have soccer teams in the
major league, and only a few are state capitals (see also the "rarity" as-



92 ONE-REASON DECISION MAKING

sumption of Oaksford & Chater, 1994). More generally, in environments
where positive indicators are few and scattered—a rare symptom that sig-
nals a disease, an unusual feature that hints competence—a stopping rule
with positive bias will prove ecologically rational.

Generalization

How does Take The Best estimate the order of cues? How do Take The
Last and the Minimalist learn in which direction a cue points? There are
several ways cues and their ranking may be learned. Cues, or the pre-
paredness to learn cues, may be genetically coded through evolution. Cues
for distance perception, mate choice, and food avoidance have been pro-
posed as examples (e.g., Buss, 1992). Cues can also be learned through
cultural transmission. For example, the cues needed for expertise can be
learned from apprenticeship and the exchange of trade secrets. Finally,
cues can be learned from direct observation. For instance, a person who
knows some cue values for just 10 German cities, and knows for some
pairs of these cities which has a higher population, could use this knowl-
edge to estimate the rank order and direction of cues for the entire set. In
contrast, in the simulations reported in this chapter, each strategy com-
puted the parameters needed (direction of cue, cue order, cue validities,
regression coefficients) from the entire data set.

How well would Take The Best do if it were to learn cues from a small
sample? Recall that Take The Best extracts from a learning sample only
the order and sign of the cues, a very small amount of information com-
pared to the real-valued weights, regression coefficients, or conditional
probabilities extracted by more complex statistical procedures. Thus, in
a learning situation, Take The Best takes away only a small amount of
information from a small sample. Regression, in contrast, extracts consid-
erably more information from a small sample. Which is the better policy?

Figure 4-3 shows Take The Best, Take The Last, and the Minimalist
competing with multiple regression at making generalizations from a
training set to a test set. Each strategy estimated its respective parameters
from a proportion (between 10% and 90%) of the German cities and made
predictions about the complement. The process of dividing the environ-
ment into training and test sets, learning the parameters from the training
set, and making predictions about the test set was repeated 500 times. In
these simulations recognition was not a factor, that is, all objects were
assumed to be recognized. Let us first consider the situation in which all
cue values are known for all objects in the training and test sets (figure 4-
3a). At the point where the training set is 50% of the total environment,
for instance, Take The Best reaches 72% correct predictions, whereas mul-
tiple regression achieves 71%. More generally, throughout the entire range
of training set sizes, Take The Best outperforms multiple regression, espe-
cially when the training set is small. Figure 4-3b shows a more difficult



Figure 4-3: Generalizing from a training set to a test set. Results are
shown for training sets with between 10% and 90% of the objects. Com-
petitors were tested on the complement of the training set, so for instance
in the 10% condition, the test set included the remaining 90% of the ob-
jects. We also varied the amount of missing knowledge in the environ-
ment. Figure 4-3a shows the cases where the training and test sets had no
missing cue values. Figure 4-3b shows the case where 50% of the cue
values, selected at random, were eliminated (replaced with question
marks) from the overall environment before dividing it into training and
test sets.
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situation where half of the cue values were eliminated from the environ-
ment before the training and test sets were created. Here, the advantage of
Take The Best is slightly more pronounced. Furthermore, when the train-
ing set is very small, the two most simple heuristics, Take The Last and
Minimalist, perform as well as or better than the other strategies. These
results indicate that Take The Best is more robust than multiple regression
on this data set, and less prone to overfit a training set. Under situations
of limited knowledge, simpler strategies may be more robust.

What about the generalization ability of strategies that are more compu-
tationally expensive than multiple regression? Using the German cities
environment, Chater et al. (1997) tested Take The Best against complex
strategies, including neural networks and exemplar models of categoriza-
tion. Like multiple regression, none of these strategies has a stopping rule,
but rather use all available cues. When the training set was less than 40%
of the test set, Take The Best outperformed all other competitors. This
advantage was largest (10 percentage points) when the size of the training
set was smallest. Only when the training set grew beyond 40% of the
German cities environment (which is actually more knowledge than most
anybody has about German demographics, Germans included) did the
competitors' performance increase above that of Take The Best, at most
attaining a margin of about five percentage points. Note however that the
simulations of Chater et al. have only dealt with the case where there were
no unknown cue values (as represented by the question marks in figure
4-1).

These results, which came as a surprise to us, show how very simple
heuristics can excel in situations where knowledge is limited, and where
generalizations must be made from one sample to another. Chapters 5 and
6 will address the robustness of fast and frugal heuristics in more detail.

The Adaptive Toolbox

The Minimalist, Take The Last, and Take The Best are candidates for the
collection of heuristics in what we call the adaptive toolbox. The empha-
sis is on "collection." None of these three strategies can perform all possi-
ble inferences under uncertainty—for instance, all three are designed to
make estimates about which of two objects is larger, more effective, more
dangerous, and so on. They cannot, for instance, estimate the quantitative
values of one object. However, some of the building blocks—simple stop-
ping rules, one-reason decision making—can be recombined to make heu-
ristics for quantitative estimation, classification, and other tasks, as we
will see in later chapters.

One may think of a collection of heuristics as a body made up of organs
that have evolved over time rather than being designed in a grand plan.
Thus, the adaptive toolbox may have evolved by adding features to al-
ready existing tools, rather than by replacing one generation of tools with
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a completely new generation. The three heuristics studied in this chapter,
for instance, are built around the recognition heuristic. If the recognition
heuristic can be used, search for further knowledge is not needed. If it
cannot, the inference is made by the additional tools. Here, the order in
which these two layers of heuristics are invoked follows their likely de-
velopmental and evolutionary order: Recognition and recognition mem-
ory are the more fundamental adaptive functions, less able to be damaged
by age and brain injury (see chapter 2) than the recall memory used by
Take The Best and its relatives.

The single most important result in this chapter is: Fast and frugal heu-
ristics that embody simple psychological mechanisms can yield infer-
ences about a real-world environment that are at least as accurate as stan-
dard linear statistical strategies embodying classical properties of rational
judgment. This result liberates us from the widespread view that only
"rational" algorithms, from Franklin's rule to multiple regression, can be
accurate. Human inference does not have to forsake accuracy for simplic-
ity. The mind can have it both ways.

When we concluded our first report of these results (Gigerenzer &
Goldstein, 1996a) with the previous sentence, deep in our hearts we still
had nagging doubts. Can heuristics really be fast, frugal, and accurate at
the same time? Maybe there is something peculiar to city populations, or
to German cities. Does the power of these heuristics to combine simplicity
and frugality with accuracy generalize to other domains? What structures
of information in natural environments do these heuristics exploit? Where
do they break down? The following chapters tell what we have learned,
so far. More surprises are to come.
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How Good Are Simple Heuristics?

Jean Czerlinski
Gerd Gigerenzer
Daniel G. Goldstein

Psychology has forgotten that it is a science of organism-
environment relationships, and has become a science of the
organism. . . . This ... is somewhat reminiscent of the posi-
tion taken by those inflatedly masculine medieval theo-
logians who granted a soul to men but denied it to women.

Egon Brunswik

Steve Bauer won the first day of the 1991 Tour de France, but placed
97th out of 200 at the end of the three-week race (Abt, 1991). Every day
of this grueling bicycle tour covers a different type of terrain, and winning
on one day does not guarantee good performance on the others. Likewise,
Take The Best's success in Gigerenzer and Goldstein's (chapter 4) compe-
tition inferring German city populations does not guarantee that it will do
well in other competitions. So before selling your sophisticated multiple
regression software and converting to fast and frugal ways, heed this chap-
ter. The strategies will complete two tours of 20 environments and predict
everything from fish fertility to fuel consumption. The first tour will be
data fitting: Strategies will train on the same course on which the race
will be held. The second tour will be harder because the strategies will
not be allowed to see the actual course until they race on it; they must
train off-location. The results of these tours will pave the way for deciding
when it pays to be fast and frugal and when it is better to use a more
complex strategy such as multiple linear regression.

Meet the Environments

The glamour of the Tour de France is that it covers a wide variety of
terrains, from flat to hilly to mountainous. Steve Bauer won the first day
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because he excelled on the plains, but lost the tour because he could not
keep up on the mountains. The winner must be an all-rounder. Our tour
is no different, consisting of 20 diverse environments. An environment
consists of objects, each associated with a criterion to be predicted and a
number of cues that may be helpful in predicting it. The task in the com-
petition is to infer which of two objects scores higher on the criterion, for
example, inferring which of two high schools has a higher dropout rate.
Cues useful for making this inference could include the percentage of low-
income students at the high school, the average SAT score, and the degree
of parental involvement in their children's schooling. Our environments
cover disparate domains from the objective number of car accidents on a
stretch of highway to the subjective ratings of the attractiveness of public
figures (table 5-1). The environments vary in size from 11 objects (ozone
levels in San Francisco measured on 11 occasions) to 395 objects (fertility
of 395 fish), and from 3 cues (the minimum needed to distinguish among
the strategies) to 18 cues. To win this tour, an inference strategy will have
to perform well in a variety of environments. Most of the environments
come from statistics textbooks and are used to teach statistics, usually as
examples of good applications of multiple regression. This should make
it less than easy for Take The Best to compete with regression.

Meet the Competitors

Gigerenzer and Goldstein's competition (chapter 4) pitted a wide range of
inference strategies against each other. Below we briefly describe four of
the strategies; for more details see the previous chapter.

Take The Best

Imagine a bicycle built from the favorite parts of several racers, one con-
tributing a frame, another a brake, a third a crankshaft. Instead of bicycle
parts, Take The Best is assembled from cognitive building blocks: simple
heuristics for search, stopping, and decision (see chapters 1 and 4 for defi-
nitions of these terms).

The first step of Take The Best is the recognition heuristic. In both
tours, we will test the competitors in prediction tasks where all objects
are recognized and all cue values are known; thus Take The Best will not
be able to take advantage of the recognition heuristic, as it could in the
previous chapter. Recall that Take The Best tries cues in order, one at a
time, searching for a cue that discriminates between the two objects in
question. For example, when inferring two professors' salaries, the rank
cue might be tried first. If both professors are of the same rank (say both
associate professors), then the gender cue might be tried. If one of the
professors is a woman and the other is a man, then we say that the gender
cue "discriminates." Once a discriminating cue is found, it serves as the
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Table 5-1: A Description of the 20 Environments Used in the Competition

Psychology

Attractiveness of men: Predict average attractiveness ratings of 32 famous men
based on the subjects' average likeability ratings of each man, the percentage of
subjects who recognized the man's name (subjects saw only the name, no photos),
and whether the man was American. (Based on data from a study by Henss, 1996,
using 115 male and 131 female Germans, aged 17–66 years.)
Attractiveness of women: Predict average attractiveness ratings of 30 famous
women based on the subjects' average likeability ratings of each woman, the per-
centage of subjects who recognized the woman's name (subjects saw only the name,
no photos), and whether the woman was American. (Based on data from a study
by Henss, 1996, using 115 male and 131 female Germans, aged 17-66 years.)

Sociology

High school dropout rates: Predict dropout rate of the 57 Chicago public high
schools, given the percentage of low-income students, percentage of nonwhite stu-
dents, average SAT scores, etc. (Based on Morton, 1995, and Rodkin, 1995.)

Homelessness: Predict the rate of homelessness in 50 U.S. cities given the average
temperature, unemployment rate, percentage of inhabitants with incomes below
the poverty line, the vacancy rate, whether the city has rent control, and the per-
centage of public housing. (From Tucker, 1987.)

Demography

Mortality. Predict the mortality rate in 20 U.S. cities given the average January tem-
perature, pollution level, the percentage of nonwhites, etc. (Based on McDonald &
Schwing, 1973; reported in StatLib.)
City population: Predict populations of the 83 German cities with at least 100,000
inhabitants based on whether each city has a soccer team, university, intercity train
line, exposition site, etc. (From Fischer Welt Almanach, 1993.)

Economics

House price: Predict the selling price of 22 houses in Erie, PA, based on current
property taxes, number of bathrooms, number of bedrooms, lot size, total living
space, garage space, age of house, etc. (Based on Narula & Wellington, 1977; re-
ported in Weisberg, 1985.)
Land rent: Predict the rent per acre paid in 58 counties in Minnesota (in 1977 for
agricultural land planted in alfalfa) based on the average rent for all tillable land,
density of dairy cows, proportion of pasture land, and whether liming is required to
grow alfalfa. (Alfalfa is often fed to dairy cows.) (Data provided by Douglas Tiffany;
reported in Weisberg, 1985.)
Professors' salaries: Predict the salaries of 51 professors at a midwestern college
given gender, rank, number of years in current rank, the highest degree earned, and
number of years since highest degree earned. (Reported in Weisberg, 1985.)

(continued)
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Table 5-1: Continued

Transportation

Car accidents: Predict the accident rate per million vehicle miles for 37 segments
of highway, using the segment's length, average traffic count, percentage of truck
volume, speed limit, number of lanes, lane width, shoulder width, number of inter-
sections, etc. for Minnesota in 1973. (Based on an unpublished master's thesis in
civil engineering by Carl Hoffstedt; reported in Weisberg, 1985.)

Fuel consumption: Predict the average motor fuel consumption per person for each
of the 48 contiguous United States using the population of the state, number of
licensed drivers, fuel tax, per capita income, miles of primary highways, etc. (Based
on data collected by Christopher Bingham for the American Almanac for 1974,
except fuel consumption, which was given in the 1974 World Almanac; reported
in Weisberg, 1985.)

Health

Obesity at age 18: Predict fatness at age 18 of 46 children based on body measure-
ments from age 2 to age 18. The body measurements included height, weight,
leg circumference, and strength. (Based on the longitudinal monitoring of the
Berkeley Guidance Study, Tuddenham & Snyder, 1954; reported in Weisberg,
1985.)

Body fat: Predict percentage of body fat determined by underwater weighing (a
more accurate measure of body fat) using various body circumference measure-
ments (which are more convenient measures than underwater weighing) for 218
men. (Data supplied by A. Garth Fisher from the study of Penrose et al., 1985;
reported in StatLib.)

Biology

Fish fertility. Predict the number of eggs in 395 female Arctic charr based on each
fish's weight, its age, and the average weight of its eggs. (Data courtesy of Christian
Gillet, 1996.)

Mammals' sleep: Predict the average amount of time 35 species of mammals sleep,
based on brain weight, body weight, life span, gestation time, and predation and
danger indices. (From Allison & Cicchetti, 1976; reported in StatLib.)

Cow manure: Predict the amount of oxygen absorbed by dairy wastes given the
biological oxygen demand, chemical oxygen demand, total Kjedahl nitrogen, total
solids, and total volatile solids for 14 trials. (Moore, 1975; reported in Weisberg,
1985.)

Environmental Science
Biodiversity. Predict the number of species on 26 Galapagos islands, given
their area, elevation, distance to the nearest island, area of the nearest island, dis-
tance from the coast, etc. (Based on Johnson & Raven, 1973; reported in Weisberg,
1985.)

Rainfall from cloud seeding: Predict the amount of rainfall on 24 days in Coral
Gables, FL, given the types of clouds, the percentage of cloud cover, whether the
clouds were seeded, number of days since the first day of the experiment, etc.
(From Woodley et al., 1977; reported in Weisberg, 1985.)

Oxidant in Los Angeles: Predict the amount of oxidant in Los Angeles for 17 days
given each day's wind speed, temperature, humidity, and insolation (a measure of
the amount of sunlight). (Data provided by the Los Angeles Pollution Control Dis-
trict; reported in Rice, 1995.)
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Table 5-1: Continued

Ozone in San Francisco: Predict the amount of ozone in San Francisco on 11 occa-
sions based on the year, average winter precipitation for the past two years, and
ozone level in San Jose, at the southern end of the Bay. (From Sandberg et al., 1978;
reported in Weisberg, 1985.)

Note. For each environment we specify the criterion, a sample of the cues for predicting the
criterion, and the source of the data. Recall that the cues are either binary or were dichotomized
by a median split, and that the task is always to predict which of two objects scores higher at
the criterion.

basis for an inference, and all other cues are ignored. For instance, if gen-
der discriminates between two professors, the inference is made that the
male earns a higher salary, and no other information about years of experi-
ence or highest degree earned is considered. Could such one-reason deci-
sion making be accurate? This chapter will answer this question.

Since Take The Best does not integrate information or require extensive
computations, it is fast. Since it has a stopping rule to effect limited search
for cues, it is frugal. In this competition, Take The Best looks up cues in
the order of their validities, which it has to estimate from a training set.
Recall that the validity of a cue is defined as the number of correct infer-
ences divided by the number of correct and incorrect inferences made
using the cue alone (chapter 4).

The Minimalist

The fast and frugal Minimalist looks up cues in a random order, stopping
when it finds a cue that discriminates between the two objects. Otherwise,
it is exactly the same as Take The Best. In the simulation, it will not be
able to take advantage of the recognition heuristic, for the same reason as
for Take The Best.

Multiple Regression

Multiple linear regression is the most thoroughly trained and well-
equipped rider in the pack. It rides on sophisticated computations rather
than on fast and frugal building blocks. Regression assumes the data can
be approximated by a hyperplane plus independent, identically distrib-
uted errors with zero mean. It then finds the hyperplane that minimizes
the squared vertical distance between the hyperplane and the data points.
Finding an optimal fitting surface is not the kind of calculation that can
be easily carried out with pencil and paper or a standard pocket calcula-
tor—a computer is called for. When regression is used to make a predic-
tion, all of the available cues must be gathered and plugged into the
model, so it is not frugal. Furthermore, since multiple regression requires
extensive computations, it is not fast.
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Dawes's Rule

Dawes's rule is a simplification of regression. The model is still linear,
but instead of optimal weights, only unit weights (+1 or -1) are used
(Dawes, 1979). That is, it adds up the number of pieces of positive evi-
dence and subtracts the number of pieces of negative evidence. We opera-
tionalize the assignment of the unit weights by giving a cue a weight of
+1 if a cue's validity is above chance (.5) and -1 if it is below chance.
Since using Dawes's rule to make a prediction still requires all of the cues,
it is not frugal. But unlike regression it is fast, since the weighting scheme
is trivial.

We have defined athletes with four differing strategies. Who will win
the 20-environment tour?

The First Tour: Fitting Known Environments

In our first tour, the riders were allowed to examine every detail of the
race course before the competition. There were no missing cue values or
unrecognized objects, unlike the scenarios in chapters 2, 3, and 4. All of
the cue and criterion values were available for calculating cue validities
or linear weights. The strategies then predicted the criterion values (which
they had already seen). This type of contest is called data fitting. The first
two environments that were fit, high school dropout rates and professorial
salaries, will be described in detail to give a sense of how the strategies
compete against one another. Then we will jump to the end of the race to
see who won the overall tour and by how much.

Dropping Out

The first stage of the tour is important for American society: predicting
dropout rates at Chicago public high schools. The 1995 rates were pub-
lished in Chicago magazine (Morton, 1995; Rodkin, 1995), along with pos-
sible cues such as the socioeconomic and ethnic compositions of the stu-
dent bodies, the sizes of the classes, the attendance rates of the students,
the parent participation rates, and the scores of the students on various
standardized tests.

We prepared the raw data from the magazine to suit the four inference
strategies. We converted all cue values that were real numbers into ones
and zeroes using the median as a cutoff. These ones and zeroes were as-
signed such that the ones corresponded to higher values on the criterion.

After the data were transformed into the appropriate format, their char-
acteristics could be measured. Overall, the dropout environment looked
fairly challenging. The average cue validity was only .63, compared to .76
for the German city population data. The maximum cue validity was also
rather low, .72. These characteristics should create considerable difficul-
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ties for Take The Best, which relies on only the best cue that discriminates
between two high schools. Furthermore, the environment comprised a to-
tal of 18 cues, double the number in the city population environment.
Since Dawes's rule improves in accuracy with the addition of more cues
(see chapter 6), this environment was a particularly tough test for Take
The Best and the Minimalist.

Before revealing the accuracy of the strategies in predicting dropout
rates, let us review the results on German city populations (figure 4-2; the
values on the right of the graph where all objects are recognized). Recall
that multiple regression made 74% correct inferences. Dawes's rule did
very well in comparison, also earning 74% correct. The surprising finding
was that Take The Best matched the 74% performance of these linear
strategies. Finally, the exceedingly simple Minimalist scored a respectable
70% correct.

What happened on the more difficult high school dropout environ-
ment? Despite the lower cue validities, regression was still able to get 72%
of the inferences correct (table 5-2, "fitting"). Perhaps the large number of
cues made up for the low validities. Dawes's rule did not seem to be able
to take as much advantage of the many cues, getting only 64% correct.
Take The Best made 65% of the inferences correctly—slightly better than
Dawes's rule but still seven percentage points behind the performance of
linear regression. The Minimalist was again the weakest strategy, but not
too far behind Take The Best with 61% correct. Take The Best and the
Minimalist looked up on average only a few cues (table 5-2). Speed and
frugality paid the price of seven percentage points in lost accuracy on the
difficult high school dropout data.

Policy Implications Discovering which strategy best fits the data can have
important consequences for public policy. For example, Take The Best
regarded attendance rate, writing test score, and social science test score

Table 5-2: Predicting High School Dropout Rates

Accuracy (% Correct)

Strategy Frugality Fitting Generalization

Minimalist
Take The Best
Dawes's rule
Multiple regression

2.7
3.4

18
18

61
65
64
72

58
60
62
54

Note. Performance of two fast and frugal heuristics (Minimalist, Take The Best) and
two linear strategies (Dawes's rule, multiple regression) in predicting which of two
Chicago high schools has a higher dropout rate. There were 57 public high schools
and 18 predictors (table 5-1). Performance is measured in terms of frugality (average
number of cues looked up) and accuracy (% correct). Accuracy is measured both for
fitting data (test set = training set), and for generalization (test set = training set). The
average number of cues looked up was about the same for both kinds of competition.
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as the most valid cues for dropout rate, in that order. In contrast, linear
regression's top three predictors were percentages of Hispanic students,
students with limited English, and black students. Thus, each strategy led
to different implications for how we can help schools lower dropout rates.
While a user of Take The Best would recommend getting students to at-
tend class and teaching them the basics more thoroughly, a regression
user would recommend helping minorities assimilate and supporting En-
glish as a second language (ESL) programs. Because regression resulted in
the best fit, it looked like the regression user would be able to give better
advice for lowering dropout rates.

Professors' Income

Let us now consider how well the strategies predict individual professors'
salaries from the following five cues: gender, rank (assistant, associate,
full professor), number of years in current rank, highest degree earned,
and number of years since degree earned. The data is from a midwestern
college, which shall remain anonymous. Clearly, this environment al-
ready had one binary variable (gender); the rest were dichotomized at the
median.

This environment had a maximum cue validity of .98 and its average
cue validity was .79, similar to the city population environment. It had
only five cues, about half as many as for predicting populations. How
would this affect the accuracy of Take The Best and the Minimalist? One
intuitive answer would be that high cue validities and few cues allow the
two heuristics to keep up with the algorithms that integrate information
across cues; let us see if this was true.

Crossing the finish line first was the rider on the fanciest and most
expensive bicycle, multiple regression, with a stunning 83% correct (table
5-3, "fitting"). This was surprising since the environment seemed to be

Table 5-3: Predicting Professors' Salaries

Accuracy (% Correct)

Strategy Frugality Fitting Generalization

Minimalist
Take The Best
Dawes's rule
Multiple regression

2.1
2.3
5
5

73
80
75
83

72
80
75
80

Note. Performance of two fast and frugal heuristics (Minimalist, Take The Best) and
two linear strategies (Dawes's rule, multiple regression) in predicting which of two
professors at a midwestern college has a higher salary. There were 51 professors and
five predictors (table 5-1). Performance is measured in terms of frugality (average
number of cues looked up) and accuracy (% correct). Accuracy is measured both for
fitting data (test set = training set), and for generalization (test set = training set). The
average number of cues looked up was about the same for both kinds of competition.
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about the same as the cities except with half as many cues. Taking one
cue at a time, Take The Best somehow managed second place by scoring
80% correct. Dawes's rule, the leaner linear model, got 75% correct, not
as far behind linear regression as it was with school dropout rates. The
Minimalist finally pulled in at 73%, almost as good as Dawes's rule.

It turned out that the best cue for predicting professor salary was rank,
with a cue validity of .98. It may not come entirely as a surprise that the
second best cue was gender, with a validity of .88. In this environment,
regression was mostly in agreement, giving rank the greatest weight, fol-
lowed by highest degree earned and gender.

The Overall Winner of the First Tour

We now have a sense of how the competition works and how the charac-
teristics of the environments might affect the strategies. Let us finally find
out which strategy won on the complete range of environments, that is,
fitting both the mountain roads and the plains closely enough to win the
overall tour.

How frugal were the heuristics? The Minimalist searched for only 2.2
cues on average to make an inference. Take The Best needed slightly more
cues, 2.4, whereas the two linear strategies always used all the available
information, 7.7 cues on average (the linear strategies have no heuristics
for search and stopping). Thus, the two heuristics looked up fewer than a
third of the cues. If they are so frugal, how accurate can they be?

Perhaps it is no surprise that the first-place finisher was multiple linear
regression, which used all information and subjected it to complex com-
putation (table 5-4, "fitting"). Across the 20 environments, regression scored
77% correct. However, the second-place finisher may be a surprise. The

Table 5-4: Performance Across 20 Data Sets

Accuracy (% Correct)

Strategy Frugality Fitting Generalization

Minimalist
Take The Best
Dawes's rule
Multiple regression

2.2
2.4
7.7
7.7

69
75
73
77

65
71
69
68

Note. Performance of two fast and frugal heuristics (Minimalist, Take The Best) and
two linear strategies (Dawes's rule, multiple regression) across all 20 data sets. The
average number of predictors was 7.7. Performance is measured in terms of frugality
(average number of cues looked up) and accuracy (% correct). Accuracy is measured
both for fitting data (test set = training set), and for generalization (test set = training
set). The average number of cues looked up was about the same for both kinds of
competition. For a similar result with slightly different data sets, see Gigerenzer et al.
(1999), and for the performance of various strategies on the 20 individual data sets,
see table 8-1.
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fast and frugal Take The Best finished the tour only two percentage points
behind regression, with 75% correct. This is close to what Gigerenzer and
Goldstein (chapter 4) found, suggesting that our set had more cases similar
to the city population data than to the high-school dropout data. The fast
but not frugal Dawes's rule scored two percentage points behind Take The
Best with 73% correct. It was quite a surprise that Dawes's rule scored
worse than Take The Best, given that Take The Best was even more frugal
and did not integrate what little cue information it did gather. Finally, the
Minimalist pulled in last with 69% accuracy, a respectable score consid-
ering its extreme simplicity. The price of using a fast and frugal heuristic
was small, about two percentage points for Take The Best and about eight
for the Minimalist. Furthermore, more cue information did not guarantee
more accuracy, since Take The Best was slightly more accurate than
Dawes's rule despite using fewer cues.

We Knew It All Along

One reaction to a novel claim is to say that it is impossible. Gigerenzer and
Goldstein (1996a) showed that their claim—that fast and frugal heuristics
can also be accurate—was possible; and this chapter has further shown that
it is not only sometimes possible but is, in fact, often the case. Environ-
ments in which the price of simplicity is high, such as when predicting
dropout rates in high schools, seem to be the exceptions and not the rule.

Another reaction when an "impossible" novel claim has finally been
proven is to say one "knew it all along" (see chapter 9 on hindsight where
this memory distortion is modeled by Take The Best). In this section, we
review the psychological literature to find what actually was known all
along about how well fast and frugal heuristics can perform relative to
more complex strategies.

The comparison is not entirely straightforward because earlier research
differs from ours in a number of ways. First, the range of strategies com-
pared in earlier studies was mostly restricted to different weighting
schemes for linear models. Second, the range of environments was typi-
cally restricted to artificially generated data sets with multivariate normal
distributions for the cues and criteria. Finally, the type of competition
differed, usually involving not just fitting given data, but generalizing to
new data, that is, training an algorithm on one part of the data and then
making predictions on another part. If both parts are of equal size, this is
usually called cross-validation. In the next section we will rerun the
whole competition using cross-validation. First let us consider the previ-
ous literature.

Research on simple strategies began in earnest in the mid-1970s.
Through computer simulations and mathematical analysis, researchers
such as Schmidt (1971), Dawes and Corrigan (1974), and Einhorn and Ho-
garth (1975) found that a unit-weighted linear model (which we call
Dawes's rule) was on average almost as accurate as multiple linear regres-
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sion—and far more robust to boot. (A "robust" strategy or model is one
that remains accurate when generalizing to new data, such as in cross-
validation.) For example, in predicting grade point averages, a unit-
weighted linear model made predictions that correlated .60 with the ac-
tual values, while a cross-validated regression model scored .57. Note that
because regression was cross-validated—making predictions on data dif-
ferent from that on which it was trained—its performance can be lower
than the unit-weighted model (which was not cross-validated). In the
three other tasks considered, unit weights had a higher accuracy than
cross-validated regression in two (Dawes & Corrigan, 1974). As Paul
Meehl put it, "in most practical situations an unweighted sum of a small
number of 'big' variables will, on the average, be preferable to regression
equations" (quoted in Dawes & Corrigan, 1974, p. 105).

In a related but more recent line of research, Ehrenberg (1982) analyti-
cally compared regression weights to other weights. He showed that for
typical values of a one-cue prediction problem (e.g., with a correlation of
.7 between the criterion and the cue), using a slope differing from the
optimal by as much as plus or minus 30% results in only a 4% increase
in unexplained error. Dawes and Corrigan (1974, citing an unpublished
manuscript by Winterfeldt & Edwards, 1973) called this the phenomenon
of the flat maximum: Weights even vaguely near the optimal lead to al-
most the same output as do optimal weights.

These studies seem to say that Dawes's rule is often almost as accurate
as multiple regression. But life is not quite that simple. First of all, in
those cases in which real environments were used, only a few such envi-
ronments were checked. Second, this research cross-validated only for re-
gression but not for Dawes's rule, with the argument that "it is the human
judge who knows the directional relationship between the predictor vari-
ables and the criterion of interest" (Dawes, 1979, p. 573). But even experts
must have some method by which they estimate the direction of cues, and
so the cross-validated simulations in the next section test how well
Dawes's rule performs when it must estimate the direction of the cue, too.
We will wait until a later section to operationalize Meehl's suggestion of
using only "a small number" of variables; we will continue to use all the
cues for now. Our work goes beyond previous research by operationaliz-
ing all aspects of Dawes's rule—testing cross-validated Dawes's rule
against cross-validated regression—and seeing if the old findings still
hold up.

We also go beyond previous research in pursuing the trade-off question
more intensively: Just how much simpler can inference strategies be with-
out losing too much accuracy? Our simulations test not just Dawes's rule
against regression but also against Take The Best and the Minimalist.
There have been some scattered experiments also trying very simple heu-
ristics (e.g., Hogarth & Makridakis, 1981; Kleinmuntz & Kleinmuntz,
1981), but only Payne, Bettman, and Johnson (1988, 1990) have launched
a consistent program of study. Their program focuses on preferences (e.g.,
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between gambles) rather than on cue-based inferences, and they measure
performance by a correlation of choices with a weighted additive model
(the expected payoff) rather than with an external criterion (since for sub-
jective choice there is none). For example, in their competitions the
simpler heuristics typically achieved from 60 to 70 percent of the perfor-
mance of the weighted additive model benchmark, but by this measure-
ment method, the simple heuristics cannot be more accurate than the "ra-
tional" answer of the weighted additive model. Only with an external
standard for the number of correct inferences is it possible to show that
simple heuristics can be more accurate than more complex strategies.
Thus, previous research has focused on preferences rather than infer-
ences, and on artificial rather than real-world environments. As a conse-
quence, it has not shed much light on the accuracy of simple heuristics
in making inferences about the real world.

In this chapter, we test heuristics on a wider range of empirical data
environments than has been used before. We run the Tour de France of
heuristic decision makers.

The Second Tour: Generalizing to New Objects

Imagine a bicycle rider who spent all his time training on the plains of
the Midwest and then tried to race in the varied landscapes of the Tour
de France. What would probably happen? He might fail completely on the
mountains. This is not to say he would have to go to France to train; as
long as he could find a mixture of Colorado mountains, midwestern
plains, and winding New England streets, he could adequately prepare for
the Tour. Training on a course and racing (testing) on another is general-
ization, as opposed to fitting.

More precisely, generalization means that the strategies build their
models (i.e., calculate regression weights, determine cue orders or cue di-
rections, etc.) on some subset of all objects, the training set. The strategies
then make predictions about the remaining objects, the test set. General-
ization is a more difficult and realistic test of the strategies than training
and testing on the same objects. In our simulations, we tested generaliza-
tion by breaking the environment into halves, with a random assignment
of objects to one half or the other. This is called cross-validation. The
performance is then the proportion correct in the test set. Each environ-
ment was split 1000 times into training and test sets, in order to average
out any particularly helpful or harmful ways of dividing the data.

Dawes's rule and the Minimalist might not seem to be doing any esti-
mation, but in fact they use the first half of the environment to estimate
the direction in which the cues point. In our simulations, they did this by
calculating whether the cue validity was above or below the chance level.
(This is equivalent to testing whether the cue has a positive or negative
Goodman-Kruskal rank correlation with the criterion, as shown in chapter



HOW GOOD ARE SIMPLE HEURISTICS? 109

6.) Take The Best estimates the direction of the cues and then orders them
from best to worst predictor. Multiple regression estimates the optimal
beta weights, taking into account the relationships between the variables.

We will now race through each of the environments and consider how
the strategies perform in generalization. In chapter 4, we saw one case
of generalization, predicting city populations. When the algorithms were
trained on half of the cities, as in our second tour, Take The Best was
slightly more accurate (72%) than multiple regression and Dawes's rule
(71% each). Does this result generalize? Could it be that one-reason deci-
sion making can be more accurate across the 20 environments?

Dropping Out Again

We first tested generalization when predicting high-school dropout rates.
The simplest strategy, the Minimalist, fell from 61% to 58%; similarly,
Dawes's rule dropped from 64% to 62%. Take The Best, which estimates
both cue direction and cue order, took a slightly larger loss and dropped
to 60% (table 5-2, "generalization"). Finally, multiple regression dropped
a whopping 18 percentage points, from 72% to 54%, which also made it
by far the least predictive strategy of the bunch. It seems the simpler strat-
egies are the more robust ones in generalization. What explains regres-
sion's huge drop?

We believe the answer is overfitting. Imagine that a bicycle rider trains
on a course beginning with a steep ascent, continuing with a long, flat
plain, and ending with a final descent, having exactly the same proportion
of uphill, flat, and downhill regions as the test course will have. Every
day, the rider's body gets used to pumping hard and heavy at first, then
cruising quickly, then relaxing on the way down. The danger is that the
rider may get so used to this pattern that he can no longer deal well with
other combinations of hills and plains: If the test course is a drop, then a
flat plain, ending with a steep ascent, the rider might have difficulties
adjusting. Such overfitting can happen to inference strategies, too: They
can learn the particular quirks of their training data, such as details of cue
orders and intercorrelations, too well. The more closely a strategy tries to
fit the training landscape, the greater is the danger of overfitting.

In the case of the dropout environment, there were 18 cues. Such an
abundance of cues offered ample opportunity for accidental correlations.
If regression built these accidents into its model, then its predictions on
the second half of the data, which need not have the same accidental
correlations as the first half, would be inaccurate.

Public Policy Again, consider possible policy implications. In the fitting
tour, the regression user would have confidently recommended expand-
ing ESL classes to help the dropout rate. Because regression had the best
predictions, this would seem the best policy. However, in the generaliza-
tion tour, Take The Best was more accurate than regression, and it appears
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that regression overfitted the training data. While regression put a heavier
weight on the influence of ESL classes on dropout rates based on the train-
ing data, this may have been a fluke that will not generalize. On the other
hand, Take The Best's recommendation, based on the training data, to
encourage attendance and teach the basics may be more generalizable.
Dawes's rule and the Minimalist do not suggest specific recommenda-
tions—just to improve on all fronts—because they weight all predictors
equally.

Later in this chapter, we will argue that regression carries a lower risk of
overfitting in larger environments with more objects (or fewer cues). There
are, though, only 57 public high schools in Chicago, and if this number of
objects does not suffice for regression, then regression simply should not be
used. There is no more data to collect for it. One might try to train regression
on dropout rates from other cities or from previous time periods in Chicago,
but then one risks again overfitting, finding factors relevant to other places
and times than to today's Chicago public high schools.

Professors' Income

Let us also briefly consider generalizing predictions of professors' salaries
based on five cues. Regression's score dropped only slightly, from 83% to
80%. Dawes's rule and Take The Best held their ground at 75% and 80%,
respectively (table 5-3, "generalization"). The Minimalist dropped one
point to 72%. Compared with the task of predicting high school dropout
rates, predicting income was based on a smaller number of cues and on
cues with higher validity. It seemed that with these characteristics, the
drop in accuracy also was less than was the case in predicting city popula-
tions.

We now have some idea of how generalization affects the strategies.
Which of the strategies will make robust generalizations across the 20 en-
vironments?

The Winner of the Second Tour

On average, regression dropped a stunning nine percentage points in ac-
curacy, from an average of 77% for the fitting task to 68% for generaliza-
tion (table 5-4, "generalization"). Meanwhile, Dawes's rule fell four per-
centage points, from an average of 73% to 69%, as did the Minimalist,
from 69% to 65%. The small size of these drops was probably due in part
to the fact that these two strategies estimated very little—only the direc-
tions of the cues.

The overall winner was Take The Best at 71% accuracy, down five
percentage points. Take The Best earned the highest accuracy in general-
ization among the four strategies, despite its fast and frugal nature. Across
the 20 environments, regression and Dawes's rule used an average of 7.7
cues per inference, whereas Take The Best only used 2.4 cues, the same
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small number as for the fitting task. The fact that a heuristic can disobey
the rational maxim of collecting all available information and yet be the
most accurate is certainly food for thought.

Take The Best outperformed multiple regression by an average of three
percentage points when making generalizations. Startling at this result is,
it is not entirely inconsistent with the previous literature, which showed
that in several types of environments regression generalized less well than
the simpler Dawes's rule (without cross-validation). Our second tour,
however, has shown that Dawes's rule is also in danger of overfitting.
Moreover, simplicity and frugality, pushed to the extreme, can eventually
have a price: The Minimalist placed last. But this price was not very high,
for the Minimalist's average performance was a mere three percentage
points behind multiple regression.

Tinkering With the Rules of the Tour

Some colleagues were skeptical about the possibility that one-reason deci-
sion making could be fast, frugal, and accurate at the same time. They
suggested modified versions of the competition, predicting that the coun-
terintuitive accuracy of Take The Best would quickly vanish. One early
conjecture voiced against the results reported in Gigerenzer and Goldstein
(1996a; see also chapter 4), was that the recognition heuristic, with its
high empirical validity (.8) for population size, would be the main cause
for the accuracy of Take The Best. We have taken care of this conjecture
in this chapter: In both tours, all objects were recognized, so that the rec-
ognition heuristic could not operate. We will consider four further modifi-
cations and conjectures.

Use exact rather than dichotomized numbers. In the simulations re-
ported, we have dichotomized all quantitative cues at the median (except
for the binary cues, such as gender) rather than using the exact values.
This procedure was assumed to mimic the limited knowledge about cue
values that people typically have, and the potential unreliability of pre-
cise values. Each competitor, the linear strategies and the heuristics, based
their predictions on these binary or dichotomized values. A reasonable
conjecture is that part of the power of multiple regression is lost when it
is applied to dichotomized data. Some colleagues suggested rerunning the
tour and letting every strategy have the exact quantitative cue values.
There are two major ways lexicographic strategies such as Take The Best
can be extended to make inferences from quantitative values (Payne et al.,
1988, 1990). In the first version, search continues until the first cue is
found in which the two values are different; in the second, search contin-
ues until the difference between cue values exceeds a threshold or "just
noticeable difference." To avoid the arbitrariness in defining how large
the threshold should be, we went with the first version.

We reran Take The Best and multiple regression under the conditions
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of the second tour. Take The Best, when adapted to quantitative values,
was even more frugal than its standard version. Search often stopped after
the first or second cue, because even small quantitative differences were
sufficient to halt search and prompt a decision. But how accurate were the
inferences based on quantitative predictors? Our colleagues were right:
Multiple regression did improve when given real numbers—but so did
Take The Best. Across the 20 environments, Take The Best made 76%
correct predictions, compared to regression, which also earned 76% cor-
rect. Thus, one-reason decision making in the form of Take The Best could
still match multiple regression in accuracy, even with exact quantitative
values. This counterintuitive result came as a surprise to us, but, by then,
we were getting used to surprises.

Give Dawes's rule another chance by using only the "big" cues. Recall
Paul Meehl's conjecture: "an unweighted sum of a small number of 'big'
variables will, on the average, be preferable to regression equations." In
the two tours, Dawes's rule had access to all of the cues. Meehl, however,
suggested using only the "big" cues, that is, the most valid ones. When
Dawes's rule estimates the direction of a cue in the training set, erroneous
estimates of the direction occur most often with low-validity cues. We
developed a version of Dawes's rule that ignored cues with an estimated
validity of .7 or less. We reran this truncated version of Dawes's rule un-
der the conditions of the second tour. The accuracy indeed increases from
69% with Dawes's rule (see table 5-4) to 71% with the truncated Dawes's
rule, three percentage points above the accuracy of regression. Meehl's
intuition turned out to be correct across the 20 environments. Using only
a small number of "big" cues, without weighting them, is, on average,
more accurate in generalization than a regression that weights all cues.
But Meehl's intuition can be pushed even further. Take The Best, which
uses only the "best" cue that discriminates between two objects, turns out
to be as accurate.

But what if Take The Best does not have the order of cues (as in Tour
1), and needs to estimate it from a very small sample? Recall first that
Take The Best does not try to estimate an optimal order of cues (as, for
instance, classification trees attempt to do; see chapters 6 and 8). Instead,
it uses a simple and frugal method to create an order (for binary cues, the
cue order can be calculated with one simple pass through the objects; see
Czerlinski, 1998 for details). Ordering cues by their cue validity, as Take
The Best does, is not called "optimal" because this procedure ignores all
dependencies between cues. We saw that, for estimating population size,
Take The Best lost on accuracy when the training set was very small, but
multiple regression lost even more (figure 4-3). These results suggest that
Take The Best is relatively robust when making predictions from a small
number of observations. But does this result generalize to other data sets?
We tested the accuracy of Take The Best when it had to estimate the cue
order from just 10 randomly chosen objects rather than from the full first



HOW GOOD ARE SIMPLE HEURISTICS? 113

half of the objects, as in the second tour. It then made predictions on the
other half of the environment just as in the regular second tour.

This tour tested the degree to which Take The Best depends on copious
information for assessing the order in which to try cues. The result across
20 environments was that Take The Best scored about 66% correct predic-
tions, losing five percentage points from when it had access to half the
environment for training. These numbers match the result in estimating
city populations in chapter 4. This Sample-10 tour is similar to allowing
bicycle riders only very limited training, say by announcing the layout of
the race course only days ahead of the race. It seemed that even with
very few observations, Take The Best could still make reasonably accurate
predictions.

But Take The Best cannot estimate quantities, whereas multiple regres-
sion can. This conjecture addresses the generality of Take The Best, Take
The Last, and the Minimalist. These three heuristics can make predictions
about which object has a higher value on a criterion, such as which of
two highways is more dangerous, but they cannot make quantitative pre-
dictions, such as how high the car accident rate on one of those two high-
ways is. The heuristics are specialized for particular classes of tasks,
whereas multiple regression is more general. In chapter 10, we will study
a heuristic that can make quantitative predictions, and employs one-rea-
son decision making like Take The Best. What we call the adaptive tool-
box is a collection of different heuristics designed from the same kinds
of building blocks. The building blocks, not the specific heuristics, have
generality. The specificity of the individual heuristics enables them to be
fast, frugal, and accurate—with little trade-off.

How Does Take The Best Do So Well?

What is the difference between the environments in which Take The Best
performed poorly and those in which it did well? This question concerns
the ecological rationality of Take The Best, that is, the fit between the
structure of the heuristic and that of an environment (chapter 1). This
question is the focus of the next chapter—here we will raise the question,
review previous research, and test three of its predictions empirically.

Characterizing Environments: A Review

The literature suggests variables that matter in predicting whether cross-
validated regression or Dawes's rule without cross-validation would win
.our competition. Our goal, however, was to understand the performance
of fast and frugal heuristics, so it is unclear whether these earlier findings
are relevant. Furthermore, previous research has used either simulation
studies of hundreds of randomly generated environments, or mathemati-
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cal analysis with numerous simplifying assumptions about the form of the
data. There is cause to doubt whether such findings would generalize to
our empirical environments. Let us nevertheless consider what has been
discovered, but with these caveats in mind.
Schmidt's (1971) simulations on random data (multivariate normal distri-
butions) showed that in cross-validation regression outperformed Dawes's
rule on average only for large numbers of objects. For example, with four
cues, one needs a sample size of at least 50 objects for regression to beat
Dawes's rule. For six cues, one needs at least 75 objects. For 10 cues,
100 objects are required. As a rule of thumb, it seems one should not use
regression with fewer than 10 objects per cue; otherwise, unit weights will
outperform regression weights on average. Regression is likely to overfit
the data when there are too few objects for the number of cues. That is,
regression takes account of numerous intercorrelations that may be arti-
facts of the current sample. Similarly, the fewer kinds of training course
a bicycle rider is exposed to, the more likely she is to overfit the ones she
has seen.

Einhorn and Hogarth (1975; see also Hogarth, 1981) confirmed
Schmidt's findings and added two other factors. Dawes's rule can be ex-
pected to perform about as well as multiple regression when (a) the coeffi-
cient of determination (R2), from the regression model is in the moderate
or low range (.5 or smaller) and (b) the cues are intercorrelated. The coeffi-
cient of determination measures the linear fit between the criterion and
the cues.

If we take these three factors together, the literature indicates that re-
gression models are slightly more accurate than Dawes's rule if there are
many objects per cue, a high linear predictability of the criterion, and cues
are not highly correlated. Under the opposite conditions, Dawes's rule is
slightly better.

We shall now see if number of objects per cue, ease of linear predict-
ability, or degree of cue intercorrelation can explain why Take The Best
was so successful in the real-world environments of the two tours.

Is It the Number of Objects per Cue?

Figure 5-1 shows that the advantage of Take The Best over multiple re-
gression (the difference in accuracy) depends on the ratio between the
number of objects and cues. Take The Best won by more when there were
fewer objects per cue. However, a large number of objects per cue, even
more than 10, did not guarantee that regression would tie or outperform
Take The Best. For instance, the largest ratio in figure 5-1 was obtained
for predicting body fat, with 218 men measured on 14 cues, resulting in
about 16 objects per cue. Even with this high ratio of objects per cue, Take
The Best made a higher proportion of accurate inferences than multiple
linear regression.
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Figure 5-1: Take The Best's advantage over multiple regression (in per-
cent correct) plotted against the number of objects per cue for 19 of the 20
environments (Tour 2). The missing environment is fish fertility, which is
well off the scale with 395 objects and 3 cues. Take The Best scored 1.8
percentage points behind regression on the fish fertility data.

The finding that the number of objects per cue was a good predictor of
Take The Best's advantage provides support to the hypothesis that regres-
sion was overfitting when there were few objects per cue. There is a more
direct test of this hypothesis: Compare cross-validated regression with re-
gression that merely fits the data, as the number of objects per cue is var-
ied (figure 5-2). The result shows a trend similar to that in figure 5-1: The
smaller the number of objects per cue, the larger the difference between
the performance of regression in the fitting and generalization tasks. In
both figures, the plots have nonconstant variance and appear curved.

Is It the Ease of Linear Predictability?

The second characteristic of environments is the coefficient of determina-
tion (R2). The idea is that in environments with a high coefficient of deter-
mination, multiple regression results in better predictions than Dawes's
rule, while the exact weighting scheme does not matter much for data that
is not very linear anyway. We measured R2 by running regression on the
full environment. However, there appeared to be no relation between R2
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Figure 5-2: The accuracy of multiple regression in the fitting task (Tour
1) minus its accuracy in the generalization task (Tour 2) plotted against
the number of objects per cue for 19 of the 20 environments. The fish
fertility environment is again omitted. In data fitting, regression scored
0.4 percentage points higher than in cross-validation on this data set.

and the difference in accuracy between Take The Best and multiple re-
gression.

Is It the Cue Intercorrelation?

If all cues were perfectly correlated (r =1.0), then one-reason decision
making would be as accurate as a linear combination of all cues. There-
fore, several of our colleagues have suggested that the higher the intercor-
relation between cues, the greater the advantage Take The Best has over
regression. (Some others proposed the opposite relationship.) To test this
hypothesis, we measured the correlations between each pair of cues in
each environment, took the absolute values, and then averaged them. Will
environments with high average absolute correlations give Take The Best
more of an advantage over regression? We found no trend, so this variable
does not seem to explain Take The Best's success. Nor did one of the
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following variables: the maximum cue intercorrelation, the minimum cue
intercorrelation, and the variance of the correlations.

What structures of real-world environments does Take The Best exploit
in order to perform so well? From the three characteristics reported in
studies that compared Dawes's rule with regression, only one, the ratio
between the number of objects and the number of cues, was related to the
advantage Take The Best had over regression. Thus, the hypotheses de-
rived from previous work comparing Dawes's rule with regression only
partially shed light on the question of which environment structures can
be exploited by fast and frugal heuristics. The following chapter offers
more insight into this question, based on mathematical intuition and
proof.

What We Have Learned

To control for the natural reaction to all new results, the "I knew it all
along" reflex, we had asked several prominent researchers in judgment
and decision making to predict how close Take The Best would come to
multiple regression in accuracy. These researchers were expert on non-
compensatory strategies and multiple regression. Their predictions were
consistent: They bet on between 5 and 10 percentage points more accu-
racy for multiple regression. Our results surprised them as much as us.

In this chapter, we have considered those surprises:

1. The original results obtained by Gigerenzer and Goldstein (1996a)
and summarized in chapter 4 generalized to 20 environments and to situa-
tions where the recognition heuristic played no role. This undermines
the conjecture that there is something peculiar or wrong with the original
domain of population sizes of German cities.

2. When one replaces the fitting task used by Gigerenzer and Goldstein
with a generalization task, the fast and frugal Take The Best was even
more accurate across 20 real-world environments than multiple regres-
sion. Take The Best achieved this accuracy despite using less than one
third of all cues. Also, the myopic Minimalist came close to multiple re-
gression in accuracy. Extending earlier findings, Dawes's rule slightly out-
performed regression even when both were cross-validated.

3. Several variants of the competition did not change these results
much. For instance, even with quantitative rather than binary predictors,
Take The Best still matched and slightly outperformed the accuracy of
multiple regression.

An important issue that we could not resolve in this chapter is the
how question. How can one-reason decision making be as accurate, and
sometimes even more accurate, than linear strategies—despite the latter's
use of all cues and, in some cases, complex matrix computations? The
result in figure 5-1 indicates that the relation between the number of cues
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and objects plays a role in the answer. But this does not explain the cause
nor provide a proof. The next chapter will give several analytical answers
and proofs. What structures of information in environments can Take The
Best exploit, that is, what structures make a heuristic ecologically ra-
tional?

We began this chapter with a Darwinian message from Egon Brunswik:
To understand the mind one needs to analyze the texture of its environ-
ment, past and present. Brunswik, however, also tentatively suggested
that multiple regression could provide a model for how the mind infers
its environment, and many neo-Brunswikians since have relied exclu-
sively on these linear models. Our results indicate instead that mental
strategies need not be like multiple regression to make accurate inferences
about their environments. In the situations we studied in this chapter,
simple heuristics can achieve the same goal. One-reason decision making
can win a whole Tour.



Why Does One-Reason Decision
Making Work?

A Case Study in Ecological Rationality

Laura Martignon
Ulrich Hoffrage

Entia non sunt multiplicanda praeter necessitatem
(No more entities should be presumed to exist than are
absolutely necessary)

William of Occam

Occam's Razor, originally formulated as a maxim against the prolifera-
tion of nominal entities, has become a methodological principle dictating
a bias toward simplicity in theory construction. In today's scientific jargon
Occam's Razor has become this: Prefer the simplest model that explains
the data. The need for such a maxim suggests that scientific theories often
exhibit the opposite tendency and, in striving for optimality, become ex-
ceedingly intricate. Is natural, unaided, human inference similarly elabo-
rate and tortuous? A well-established trend in cognitive psychology has
been to project scientific tools into mental theories: As Gigerenzer (1991a)
has suggested, models of the mind's function have often reflected the com-
putationally expensive statistical tools used in scientific induction. This
book has a different viewpoint, revealing the simple heuristics the mind
can use without necessarily sacrificing accuracy.

Can a simple heuristic for pair comparison be fast, frugal, and accu-
rate? We were surprised by the performance of Take The Best in 20 varied
environments as discussed in chapter 5, and wondered why it did not
trade accuracy for simplicity. In that chapter we found, with extensive
data analysis, that the relationship between the number of objects and the
number of cues influences the performance of Take The Best. In this chap-
ter, we add analytic methods to help explain Take The Best. As outlined
in chapter 1, the reason for the success of a heuristic can be found in
its ecological rationality, more precisely, in the fit between the structural
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properties of the heuristic and the structure of the environment it is ap-
plied to.

In the first section of this chapter, we identify structures that favor Take
The Best and structures that favor its competitors. In the second section,
we examine the robustness of Take The Best, in particular the robustness
of its frugal principles for search and its stopping rule. We conclude by
looking at Take The Best from three perspectives, viewing it first as a spe-
cial case of a linear model, second as a lexicographic method, and third
as a classification tree.

Structures of Environments

Before describing the structures of environment that favor Take The Best
we must formalize what we mean by environment. An environment con-
sists of a set of objects, where each object is characterized by a criterion
value and a cue profile (see table 6-1 for an example of an environment
consisting of eight objects listed in criterion order, and each characterized
by a profile of three cues]. We only deal with cases in which all cue values
are known and all objects are recognized. In the words "structure of the
environment," we are using a shorthand for the structure of information
that is known about an environment. We analyze Take The Best in three
information structures, for noncompensatory, scarce, and abundant infor-
mation.

Noncompensatory Information

Take The Best is based on one-reason decision making: The decision
which of two objects scores higher on the criterion is made solely on the

Table 6-1: An Environment Consisting of
Eight Objects Listed in Criterion Order
Where a Scores Highest

Object Cue 1 Cue 2 Cue 3

a
b
c
d
e
f
8
h

1
I
1
1
0
0
0
0

1
1
0
0
1
1
0
0

1
0
1
0
1
0
1
0

Note. Each object is characterized by a profile of three
cues. This is a perfect environment for Take The Best,
because this heuristic achieves 100% performance
across all pair comparisons when using the cues to infer
which object scores higher.
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basis of the most valid cue that discriminates between the two objects.
The decision may be wrong, yet none of the remaining cues, nor any com-
bination of them, will change it. In other words, Take The Best is a non-
compensatory strategy. Such a strategy works best if the environment has
a similar structure, where each cue is more important than any combina-
tion of less valid cues. The alphabetical order of words, for example, is
clearly noncompensatory; the first letter that is different in two words is
the only one that matters in ordering them alphabetically. This is what
makes looking up a word in a dictionary so easy. Another example is
number comparison. If two large numbers have the same number of digits,
then one can determine which is larger by comparing first their leftmost
digits. If both digits are equal, one proceeds to compare the next two dig-
its, and so on, until two corresponding digits differ. This procedure is
similar to Take The Best's search through cues. Noncompensatory number
systems (e.g., the Indo-Arabic system) make calculations and comparisons
easy. This is one reason why they were preferred to other systems such as
Roman numerals.

Consider an example of noncompensatory cues in vision, illustrated in
figure 6-1. Are the left fencer's legs outside or inside the ring? And which
is further away from the viewer—the referee or the foil? Here, the criterion
is distance, and we are confronted with the kind of task examined in
chapters 4 and 5, namely, comparing objects by a criterion. There is a vast
literature on how cues are processed for depth perception. A large amount
of experimental evidence suggests that several cues are used (e.g., Bruno &

Figure 6-1: A visual illusion (Petter's illusion) that can be attributed to
noncompensatoriness (from Metzger, 1975, with permission of the pub-
lisher).
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Cutting, 1988; Massaro, 1988a), although there is little agreement on how
they are combined. There exist phenomena, however, that suggest that
cues for depth perception are sometimes noncompensatory. In figure 6-1
many people "see" the foil behind (or through) the referee, and the legs
of the left fencer in front of the fence. Because this is a two-dimensional
picture, some of the important cues for depth perception, such as stereo-
motion and binocular disparity, are absent and cannot be used to discrimi-
nate between objects. There are several cues that can still be used—object
overlap (closer objects partially obscure ones that are further away), object
size (larger objects are closer than smaller objects), perspective, height in
the plane (the referee's feet are closer to the horizon than the foil), and
common sense, which suggests that the foil is not behind or through the
referee.

The mechanism behind the illusion is the noncompensatory processing
of cues. If object overlap could be used to judge the distance of foil and
referee, it alone would allow a decision, but since both are black in the
picture, this cue does not discriminate. The next cue, object size, does
discriminate, and its inference (that the referee is closer than the foil) can-
not be overruled by the combination of all the other cues.

If cue weights are noncompensatory, then linearly combining cues
gives the same performance as processing cues in lexicographic fashion,
one cue at a time (see Result 1, below). In this situation the performance,
not the process, of a lexicographic strategy is identical to that of a linear
model. The typical claim is that cues are combined linearly (Bruno & Cut-
ting, 1988; Jameson & Hurvich, 1959; see also Julesz, 1971). Yet cues may
appear to be combined linearly although they are processed lexicographi-
cally. This view is consistent with the arguments of Runeson (1977) and
Runeson and Costall (1991), who have repeatedly stressed that models
that assume linearity may not capture the subtleties of cue processing for
depth perception. The noncompensatory order of cues seems to be part of
the process. The idea that one cue may dominate all others was present,
although not thoroughly worked out, in Brunswik's (1956) view of cogni-
tion, which was motivated by models of cue processing in perception.

As another real-world example of a noncompensatory process let us
recall the mating strategies of female guppies mentioned in chapter 4. A
female guppy places orangeness above other cues for mate choice (Dugat-
kin, 1996). If a possible mate is significantly more orange than another,
the female guppy will choose the more orange mate. But if the difference
in orangeness is not significant then a social cue is used: The female
guppy will mate with the male that she has previously seen mating with
another female.

These are illustrations of strategies that use cues in a noncompensatory
way. We now define, in general terms, what a noncompensatory strategy
is. Consider an ordered set of M binary cues, C1; . . . CM. These cues are
noncompensatory for a given strategy if every cue Cj outweighs any possi-
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ble combination of cues after Cj, that is, Cj+1 to CM. In the special case of a
weighted linear model with a set of weights W= {w1, w2, w3,. . . ,WM] a
strategy is noncompensatory if for every 1< j <M we have W j > E W k . In

k>j
other words, a linear model is noncompensatory if, for a given ordering
of the weights, each weight is larger than the sum of all weights to come.
A simple example is the set {I, 1/2, 1/4, 1/8, 1/16}.

A linear model with a noncompensatory set of weights ends up making
exactly the same inferences as Take The Best. The converse is also true
(Martignon & Hoffrage, 1999).

Result 1: Noncompensatory information. The performance of Take
The Best is equivalent to that of a linear model with a noncompen-
satory set of weights (decaying in the same order as Take The Best's
hierarchy). If an environment consists of cues that are noncompen-
satory when ordered by decreasing validity, then the corresponding
weighted linear model cannot outperform the faster and more frugal
Take The Best.

Loosely speaking, Take The Best embodies a noncompensatory struc-
ture, and if the environment has the same structure then there is a fit. The
degree to which this fit exists contributes to the ecological rationality of
Take The Best. Three of the 20 data sets discussed in chapter 5 have non-
compensatory regression weights decreasing in the same order as do the
validities of the cues; and, as predicted by Result 1, the performance of
regression and Take The Best coincide. If the fit is not perfect, but approx-
imate, then Take The Best will still be about as accurate as the correspond-
ing linear model.

The equivalence of Take The Best and multiple regression can be seen
in the artificial environment in table 6-1, which consists of eight objects
{a, b, c, d, e, f, g, h} and their values described by three binary cues. As-
sume that a scores highest on the criterion, b next, and so on. This is an
ideal environment, not a real-world one: The cue profiles correspond to
the numbers from 7 to 0 expressed in base two. The validity and discrimi-
nation rate (see chapter 4) of each cue is optimal given the preceding one.
How does multiple regression perform? We have to imagine some crite-
rion with values, say 8 for a, 7 for b, 6 for c, and so on until 1 for h. In
this case the beta weights for the first, second, and third cues are .873,
.436, and .218, respectively. (All intercue correlations are 0.) This is a
noncompensatory set of cue weights, and consequently Result 1 predicts
a perfect match between Take The Best and multiple regression. Indeed,
both algorithms achieve the same performance, namely 100% correct in-
ferences. How accurate is Dawes's rule, the simplest linear model, in this
environment? Recall that Dawes's rule simply sets all weights equal to 1.
For the specific task of score comparison the scores of Dawes's rule can
be computed by adding the number of Is in each cue profile, rather than
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adding the number of 1s and subtracting the number of 0s.1 Dawes's rule
makes one wrong inference for one pair, de, and it is forced to flip a coin
in the case of six pairs (bc, be, ce, df, dg, and fg), resulting in a perfor-
mance of 86%.

Take The Best "bets" that the environment is skewed as in figure 6-2
(left), whereas Dawes's rule treats information in the world as if it were
levelled as in figure 6-2 (right). It is likely that there is more skewness
than equality in the world (see chapter 10), so that betting on skewness
may turn out to be a better strategy. Multiple regression, in contrast, does
not make blind bets but computes its parameters to fit the structure. The
price for this is more computation and less robustness (see below).

Scarce Information

Skewness is not the only environmental property that benefits Take The
Best. In many real-world situations, we have to make decisions based on
scarce information. We will now give a formal definition of what we mean
by "scarce information" and then show how it affects the accuracy of Take
The Best.

How much information is needed to differentiate between N objects?
Think of the yes-no parlor game. Imagine you and another person are in
a room where there are 64 toys. Suppose that you have to determine

1. The scores for Dawes's rule (chapters 4 and 5) are usually defined as the
number of 1s in the cue profile minus the number of 0s. For the comparison task
treated here, Dawes's rule is equivalent to comparing the scores obtained by count-
ing the number of 1s in each profile. Twice the number of 1s minus the number of
cues is equal to the number of 1s minus the number of 0s. Therefore, the orderings
defined by both scores coincide.

Figure 6-2: Examples of noncompensatory (left) and compensatory (right)
weights.
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which of these toys has been mentally selected by the other person. You
are allowed to ask only questions requiring a yes or no answer. What is
the smallest number of questions you have to ask to determine the se-
lected object? The answer is Iog264 = 6. More generally, according to infor-
mation theory (Shannon, 1948), a class of N objects contains log2N bits of
information. The environment shown in table 6-1 has eight objects that
are perfectly coded by three (i.e., Iog28) binary cues. Observe that these
cues are very specially tuned to each other: The cue profiles represent the
objects uniquely and unambiguously. In most environments with eight
objects and three cues perfect coding is not achieved. If there were only
two cues, perfect coding is impossible. This motivates the following:

Definition: An environment with M binary cues and N objects pro-
vides scarce information if M < log2N.

In the environment of table 6-1, as mentioned above, Dawes's rule has
a performance of 86% whereas Take The Best makes 100% correct infer-
ences. Furthermore, if only the first two cues are considered, Take The
Best would achieve 93% correct inferences and Dawes's rule would again
achieve 86%. The environment consisting of the first two cues provides
scarce information. Here, as observed, Take The Best outperforms Dawes's
rule. Is this still true when the set is generalized to contain more objects?
The following result has been shown to be true for "small" environ-
ments—those with up to 500 objects—by exhaustive counting (Martig-
non & Hoffrage, 1999):

Result 2: Scarce information. In the majority of small environments
with scarce information, Take The Best is more accurate than
Dawes's rule.

Here we are looking at the performance of both algorithms across envi-
ronments with a fixed number of objects and a fixed number of cues pro-
viding scarce information. An intuitive explanation of this result is that
when using a large number of cues, Dawes's rule can compensate for pos-
sible errors in the first ones and seldom has to guess. With scarce informa-
tion, these advantages are lost: Dawes's rule cannot really exploit compen-
sation and is forced to make many guesses.

The comparison with multiple linear regression in scarce environ-
ments is more difficult. Extensive simulations for up to 30 objects and
five cues suggest that in scarce environments multiple linear regression
is, on average, more accurate (in fitting) than the fast and frugal Take The
Best. There are exceptions, as table 6-2 shows. Here, assuming again that
the criterion values are 8, 7 , . . . . 1, the performance of Take The Best is
91%, whereas that of multiple linear regression is 87.5%. We do not have
a theorem characterizing all situations in which Take The Best wins. But
we do know that when the regression weights are noncompensatory and
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Table 6-2: An Environment Where Take
The Best Outperforms Multiple Regression

Object Cue 1 Cue 2 Cue 3

a
b
c
d
e
f
g
h

1
1
1
1
0
0
0
0

1
0
1
1
1
1
0
0

1
0
1
0
1
0
1
0

Note. Performance is 91% for Take The Best and 87.5%
for multiple regression.

they decrease in the same order as cue validities, then Take The Best and
regression always make the same inferences.

Abundant Information

In general, adding information to a scarce environment will do little for
Take The Best, while it can compensate for mistakes Dawes's rule makes
when based on the first cues only.

An environment provides abundant information when all possible un-
certain, yet valid, cues are present. In an environment with N objects and
binary cues, the number of possible cues is the number of different 1-0
sequences of length N, Note that the expression "all possible uncertain,
yet valid, cues" does not refer to all possible real-world cues but to the
different 1-0 sequences. Whereas the number of real-world cues is infinite
(because different real-world cues may have the same value for each ob-
ject), the number of different 1-0 sequences is finite. As an example of
abundant information, consider five objects {a, b, c, d, e} where, as usual,
a scores highest on the criterion, b next highest, and so on. Table 6-3
shows the eight uncertain and valid binary cues (i.e., with validity larger
than .5 but less than 1) that exist for five objects.

Dawes's rule computes the score of each object by counting the number
of 1s, and achieves a performance of 100% correct inferences. Eight cues
are sufficient for guaranteeing perfect inferences on five objects. (In an
environment consisting only of the first seven cues, Dawes's rule would
have to make one guess, for pair bc, and give a performance of 95%.)
Franklin's rule (see chapter 4), which multiplies each cue value by its
validity, adds these numbers, and infers that the object with the larger
sum ranks higher on the criterion, also achieves a performance of 100%
in this environment. Are these results true in general?

The following result is true for environments with five or more objects
(an analytical proof is given in Martignon & Hoffrage, 1999):
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Table 6-3: An Environment With Five Objects Ordered According to
the Criterion, and With Abundant Information

Object Cue 1 Cue 2 Cue 3 Cue 4 Cue 5 Cue 6 Cue 7 Cue 8 Score

a
b
c
d
e

v =

1
0
1
0
0

5/6

1
1
0
1
0

5/6

1
1
1
0
1

3/4

0
1
0
0
0

3/4

1
0
1
1
0

4/6

1
0
0
1
0

4/6

0
1
1
0
0

4/6

1
1
0
0
1

4/6

6
5
4
3
2

Note. Abundant information refers to all nonredundant binary cues that have a validity v
of more than .5 and less than 1. Both Dawes's rule and Franklin's rule are perfect on this
environment.

Result 3: Abundant information. When information in an environ-
ment is abundant, Dawes's rule makes a correct inference for each
possible pair of objects. The same is true of Franklin's rule.

In contrast, the more frugal Take The Best cannot achieve perfection in
such environments, because its errors cannot be compensated by later
cues. For instance, in the environment of table 6-3, Take The Best's perfor-
mance is fully determined by the first three cues, and the values of the
other cues are not consulted. Based on the three most valid cues (regard-
less of whether Cue 1 or Cue 2 is checked first, or whether Cue 3 or Cue
4 is checked third), Take The Best's performance is 90%.

Table 6-3 reveals a counterintuitive fact about Take The Best. One
might believe that the performance of Take The Best can never be higher
than the validity of the most valid cue. But this is wrong. For instance, in
table 6-3, Take The Best's accuracy (9/10 = 90%) exceeds the validity of
the most valid cue (5/6 = 83%). In fact, four pairs of objects are left undis-
criminated by the most valid cue and on these pairs the remaining cues
make only correct inferences (the concept of conditional validity, which
helps to understand this phenomenon, will be introduced below).

To summarize, we analyzed three information structures—noncompen-
satory, scarce, and abundant—and examined how Take The Best performs
in each context as compared with standard linear models. This demon-
strated three aspects of Take The Best's ecological rationality, and there
are probably more. The fit between fast and frugal heuristics and the
structure of environments explains why there need not always be a trade-
off between simplicity and accuracy—a heuristic can have it both ways.

The Robustness of Take The Best

So far, we have investigated the fit between a heuristic and the structure
of a known environment. The next step is into unknown territory: How
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will a fast and frugal heuristic perform when making inferences about
new objects, based on information acquired on a training set? Does frugal-
ity provide a sound basis for generalization beyond the training data? Ac-
cording to decision theory, costless additional information is never harm-
ful to the decision maker (e.g., Clemen, 1996). In practice, the problem is
to distinguish real information from noise. This is not a problem when
fitting known data, in which case the optimal strategy can, in general,
be specified. In the comparison task analyzed in this chapter, the profile
memorization method (see chapter 8) captures all information the data
contains.2

However, when generalizing from known to unknown data there is no
provably optimal model. A strategy that attempts to squeeze too much
information out of a training set may fail dismally on a test set. The danger
lies in overfitting the training set. The phenomenon of overfitting is easily
explained. Consider a large data set from which we extract a smaller train-
ing set. We train models on the smaller set, and look at how well they
generalize to make decisions about the entire data set. A model overfits
the training set if an alternative model exists that, even though it does
not do as well on the training set, nonetheless is more accurate when it
generalizes to the entire data set. To understand why overfitting occurs, it
helps to appreciate that the training set has both inherent structure and
noise. It is the inherent structure that generalizes beyond the training set,
and this is what a model should capture. If a model is too flexible (as
is often the case with complex models that have a large number of free
parameters) it will go beyond the inherent structure to fit the noise in the
training set. This can cause significant degradation in performance when
the model is applied to cases outside the training set (i.e., when it is gen-
eralized). The simple models—those obeying Occam's Razor—are less
prone to overfitting, because they are parsimonious, using a minimum
number of parameters and thus avoiding fitting noise. (For instance, the
simple Dawes's rule is well-known for its robustness.) But there is a limit
to simplicity. The opposite danger is to underfit. A model can fail in two

2. Following this method, one starts by memorizing all cue profiles and how
they score on the criterion. Then, this information is used for inferring whether
object a scores higher than object b. If a pair of profiles appears only once in the
list of all possible pairs, one remembers which profile scored higher and makes
that inference. If some cue profiles occur more than once and, consequently, several
pairs of objects have the same pair of cue profiles, the probabilistic recipe is to
count how often the first profile scores higher than the second one. The profile
memorization method will pick the profile that has the greatest chance of scoring
higher. When fitting the training set, this method is closely related to Persson's
(1996) exemplar-based model. In environments where each cue profile appears ex-
actly once, as in the one described in table 6-1, the profile memorization method
always achieves 100% correct inferences. If there are repeated profiles—and there-
fore also repeated pairs of profiles—this method will score less than 100% correct
inferences and so will any other algorithm.
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ways: by having too many free parameters and overfilling, or by being too
simple and under fitting.

The art is to strike a balance between these two extremes. Two opposite
approaches can achieve this. One is to minimize overfitting by selecting
a "near-optimal" strategy from the vast number of all possible—simple
and complex—models. In the last decade a flurry of paradigms have been
designed to control overfitting and the associated high variance in perfor-
mance when generalizing (e.g., Geman et al., 1992). Among them is the
Bayesian paradigm, which has become widely used for searching across
classes of models—be they decision trees, regression models, or neural
networks (Chipman et al., 1996; Friedman & Goldszmit, 1996; MacKay,
1995)—and which provides a unified approach to developing robust esti-
mates of both structure and parameters (see chapter 8). These techniques
are far from being boundedly rational.

The second approach, promoted in this book, is to use a fast and frugal
heuristic that "bets" on the structure of the environment, without trying to
compute the optimal model. For instance, Take The Best bets that the struc-
ture of information is skewed in a noncompensatory fashion and its success
depends on how well this assumption is fulfilled by the environment.

As discussed in chapter 1, a heuristic can be characterized by three
principles: search, stopping, and decision. Search principles direct how
the information is searched, stopping principles define when to terminate
a search, and decision principles specify how the information searched
for is used to make a decision.

Both the search and stopping parameters determine whether the heu-
ristic strikes a balance. As we shall see, the search process of Take The
Best is neither too complex nor too simple, and its stopping rule has the
adequate flexibility.

The Robustness of Search Principles

So far we have compared Take The Best with linear models, which have
no heuristic principles of search and stopping (although they may have
heuristic principles of decision; for example, Dawes's rule bases its deci-
sion on the simplest linear combination of all cues). Take The Best is a
lexicographic strategy—therefore principles of search and stopping need
to be specified. A heuristic principle of search determines which cue to
look up first, second, third, and so on. A lexicographic strategy can use
various methods to determine this cue hierarchy. Take The Best uses a
frugal method, but there are many others, for instance, finding the "opti-
mal" ordering. This section first relates this frugal method to other known
principles for determining order, and then analyzes the robustness of fru-
gal search.

Take The Best fixes its cue hierarchy by ranking cues according to their
validities. Whereas a human may directly estimate the cue order, a com-
puter needs to compute the validities first and then use them to sort the
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cues. The concept of cue validity therefore deserves a closer look. Follow-
ing Gigerenzer and Goldstein (1996a) we define the ecological validity of
a cue as the proportion of right inferences:

where R denotes the number of right inferences and W denotes the num-
ber of wrong inferences. We call a cue neutral or uninformative if v = .5,
and valid if v> .5. Note that Take The Best operates only with valid cues:
If the validity of a cue is less than .5, the values of this cue are inverted
by changing 1s into 0s and vice versa. Equation (la) can be quickly com-
puted if one displays the objects in decreasing order as we have done in
all the tables in this chapter. One simply counts how many times a 1
precedes a 0 to obtain R and how many times a 0 precedes a 1 to obtain
W. To calculate the number of discriminated pairs (i.e., the denominator),
one can even do something simpler than computing W: One can also mul-
tiply the number of 1s by the number of 0s. Another, quite different but
practical way of computing the ecological validity is the following:

where R0 denotes the sum of all ranks of 0 entries, N0 is the number of 0
entries, and N1 the number of 1 entries. The advantage of (1b) is that cue
validity can be computed without generating all pairs. Note that the nu-
merator corresponds to the well-known U value for the Mann-Whitney
test, and the denominator corresponds to R + W (for the equivalence be-
tween (la) and (1b), see Martignon & Hoffrage, 1999).

The ecological validity v is a positive rescaling of the well-known
Goodman-Kruskal rank correlation y defined by:

3. Cue validities can also be used as weights in a linear model, as in Franklin's
rule. Provided with the Goodman-Kruskal rank correlation in the perfect environ-
ment of table 6-1, Franklin's rule has noncompensatory weights, namely, 1, .5, and
.25. In contrast, provided with v, Franklin's rule has compensatory weights, namely
1, .75, .625. This demonstrates that—within the framework of linear models—

A simple calculation shows that y= 2v- 1. Thus, both notions of validity,
v and y, define the same hierarchy when used as a criterion to order cues,
and both can be used as alternatives.3 Choosing the Goodman-Kruskal
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rank correlation as a validity criterion can have advantages: A neutral or
uninformative cue satisfies y= 0. and a valid cue satisfies 0 < y< 1.

Another approach to defining the validity of a cue is to look at the
performance of Take The Best when the cue in question is the only one
that can be used. Each time the cue does not discriminate between two
objects, we flip a coin. The performance of a Take-The-Best-type algorithm
based only on this cue is what we call the success [s] of the cue:

where P again denotes the number of pairs, R the number of right infer-
ences, and W the number of wrong inferences (for details on y and T see
Gigerenzer, 1981).

A sophisticated heuristic for search is to operate with a conditional
validity (cv). The conditional validity is computed for each cue on the set
of pairs not discriminated by the cues already used. The first cue used by
this type of search is the most valid, as for Take The Best. The second cue
is the most valid for the set of pairs that the first cue did not discriminate,
and so on; if the validity of a cue on the remaining pairs turns out to be
below .5, the values of this cue are inverted by changing 1s into 0s and
vice versa. The following is a straightforward result.

Result 4: When training set and test coincide, the accuracy of a lexi-
cographic strategy with conditional validity is larger than or equal
to that of Take The Best.

it is not only the environment that determines whether compensation can occur,
but also how validity is measured (for the constructive nature of measurement, see
Gigerenzer, 1981). In table 6-3, the Goodman-Kruskal validities form a noncompen-
satory set. Multiple regression also has a noncompensatory set of weights, but in a
different order. Thus, Result 1 does not apply.

where P is the total number of pairs. This criterion is the expected propor-
tion of correct inferences and was chosen, for instance, as the validity
definition for the heuristic Categorization by Elimination, described in
chapter 10. The ecological validity v is also related to success: It is the
probability of the success of a cue, conditional on discrimination.

Our list of relevant candidate definitions for validity would be incom-
plete without Kendall's T, which is given by a slight modification of y,
namely:
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A lexicographic strategy can employ a frugal heuristic for search (such
as using ecological validity), a sophisticated heuristic for search (such as
using conditional validity), or it can even try to optimize search. Table 6-
4 shows a simple example of a case where the search by ecological valid-
ity (v) is not optimal. Let us compute the ecological validity of Cue 1. As
we already mentioned, a simple method is to count how many times a 1
precedes a 0. This number, which is the number of correct inferences, is
then divided by the product of the number of 1s and the number of 0s.
Cue 1 has a higher validity than Cue 2 (5/7 = 15/21 and 10/15 = 14/21,
respectively). Actually, all other definitions of cue validity, except Ken-
dall's T, rank Cue 1 higher than Cue 2. Yet consulting Cue 1 before Cue 2
leads to only 13 correct inferences while consulting Cue 2 first leads to
14 correct inferences!

Thus, Take The Best does not necessarily choose the optimal ordering.
How can this optimal ordering be found? Schmitt and Martignon (1999)
prove that there is no simpler procedure than testing all possible permuta-
tions of cues and comparing the performance of a lexicographic strategy
for each of these orderings. This procedure is anything but fast and frugal,
because in an environment with Mcues, M! orderings have to be checked.
The problem of finding the optimal order is NP-complete (M! exceeds
2(AM); for an explanation of NP-completeness see chapter 8).

How do different search principles influence the performance of lexi-
cographic strategies? We answer this question for the task of comparing
German cities (see chapter 4). Figure 6-3 shows the accuracy distribution
of all possible orderings. The optimal ordering achieves a performance of
75.8% (the right extremity in this distribution). The mean of this distribu-
tion (70.0%) corresponds to the expected performance of the Minimalist,
which uses the simplest search principle by picking cues in random order
(see chapter 4). All other search principles have a performance between

Table 6-4: A Puzzling
Environment

Object Cue 1 Cue 2

a
b
c
d
e
f
8
h

1
1
1
1
1
0
1
1

0
1
1
1
1
1
0
0

Note. Although Cue 1 has a higher valid-
ity than Cue 2, a lexicographic algorithm
can achieve a higher performance if Cue
2 is looked up first.
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Figure 6-3: Distribution of performances for all possible cue orderings in
the German city environment. The mean of the distribution (70%) corre-
sponds to the expected performance of the Minimalist (random ordering).
The performance of lexicographic strategies, which search for cues ac-
cording to ecological validity (i.e., Take The Best), success validity, Ken-
dall's T, and conditional validity are denoted by v, s, i, and cv, respec-
tively.

these two values: Conditional validity (cv) achieves 75.6%; ecological va-
lidity (v), as used by Take The Best, achieves 74.2%; Kendall's T achieves
73.5%; and success (s) achieves 72.7%. Only 1.8% of the orderings allow
a higher performance than the ordering of Take The Best. Thus, the search
principle of Take The Best achieves a satisficing performance, in that im-
proving this performance involves paying too high a price in terms of
computational complexity; to determine the optimal ordering for the Ger-
man city environment takes a fast computer almost four days!

How robust is Take The Best's search principle compared with those
of the other strategies? To answer this question, we need to compare the
accuracy when fitting known data with the accuracy obtained when gen-
eralizing to unknown data. Usually generalization is performed within a
homogeneous population—from a subset to either the whole population
or another subset.4 The cross-validation results of chapter 5 belong to the
latter category. Here we check the robustness of search principles by the

4. In another scenario, there is no population containing training and test set,
or if there is one, it is vague and heterogeneous, such as professors' salaries all over
the world. Dawes (1979) showed examples of medical diagnosis data where
Dawes's rule remained fairly robust even under change across time.
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Figure 6-4: Robustness of lexicographic strategies with different orderings
for cue search in the German city environment. The training set consisted
of half of the cities randomly drawn from the environment, the test set
the remaining half. Performance is averaged across 100 trials.

same procedure: We randomly take a subset of half of the German cities
for which we determine the orderings depicted in figure 6-3, check the
performance first in the subset (i.e., the training set) and then in the other
half of the cities (i.e., the test set). This procedure is repeated 100 times
for randomly chosen subsets. The results are shown in figure 6-4. As
expected, for all orderings, the performance in the test set is lower than
that in the training set. Surprisingly, Take The Best uses the most robust
search principle. The complex search principles (optimal ordering and cv)
dropped the most, proving that they fitted noise in the training set.

The Robustness of Stopping Rules

The stopping rule used by Take The Best allows it to search through all
retrieved cues when necessary. Of course, there are other possibilities.
One could, for instance, think of stopping right after the first or the second
most valid cue, flipping a coin for undiscriminated objects. The other ex-
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treme is to have no stopping rule at all. This is the case for linear models,
which consult and use all the available cues. Take The Best falls between
these two extremes. An important feature of its stopping rule is its flexi-
bility: For a particular pair of objects Take The Best may stop its search
after the first cue (because this cue discriminates between the objects),
and for another pair it may look up all information (because no discrimi-
nating cue has been found). To explore the robustness of this flexible stop-
ping rule, we cross-validated various strategies in the 20 data sets intro-
duced in chapter 5. Figure 6-5 shows the performance of these strategies
in training and test sets averaged across all these data sets.

Again, performance drops for all strategies from training to test set. The
strategy that fits the training set best is multiple regression, whereas the
most robust is Take The Best, since it achieves the highest performance in
the test set. Multiple regression clearly overfits. Dawes's rule is more ro-
bust than multiple regression. The two truncated versions of Take The
Best, one of which restricts its search to the first cue (TTB-Truncated #1),

Figure 6-5: Robustness of various strategies with different stopping rules
averaged across 20 environments (100 trials in each). Multiple regression
overfits, while Take The Best is fairly robust.



136 ONE-REASON DECISION MAKING

the other to the first two cues (TTB-Truncated #2), underfit. When truncat-
ing the search after one cue, ecological validity is not the best criterion
for selection, because it does not take discrimination rate into account.
But even the most successful cue when used alone (success #1) underfits.

Take The Best's stopping rule is ecologically rational: When to stop is
not constant and fixed but depends on the available information. In our
20 data sets the average number of cues used by Take The Best is 2.4 (see
chapter 5). A rationale for the robustness of Take The Best is that these
few most valid cues are likely to remain highly valid in generalization.
This also explains why the truncated Dawes's rule, as discussed in chap-
ter 5, is more robust than the normal (untruncated) Dawes's rule.

Three Perspectives on Take The Best

We claim that Take The Best is a mental process, which can be repre-
sented mathematically as an algorithm. This algorithm can be seen as em-
bedded in more than one mathematical structure. Since different perspec-
tives may enrich the understanding of the algorithm, let us describe at
least three of them.

The Linear Model Perspective

Linear models are among the most widely used tools for inference. As
mentioned in chapter 4, the weighing and adding of cues for decision
making reflects the moral ideal of rational choice that has been prevalent
since the Enlightenment. Linearizing the world has become a basic tool
in the realm of statistical inference in general. Historically, a peak was
reached in the use of linear models for statistical inference with the ad-
vent of linear regression, which solves an important optimization prob-
lem: It minimizes the sum of squares of deviations between predicted and
observed criteria. The rapid diffusion of the linear regression method and
its acceptance in practically all scientific fields is one of the great success
stories in the history of statistics (Stigler, 1986).

From the point of view of accuracy, linear models can be outperformed
by other procedures, for example, the Bayesian networks discussed in
chapter 8. But if several pieces of evidence have to be taken into account,
more complex models such as these networks can soon become intracta-
ble. In fact, linear models, in spite of their structural simplicity, still per-
form remarkably well; linearizing the world has not lost its position as a
sound, transparent, and simple approach to decision making.

One limitation of linear computations is that they can only be per-
formed mentally if they involve few terms. Franklin himself needed paper
and pencil to balance positive and negative reasons. Dawes's rule, which
counts up the number of confirmatory cues and subtracts the number of
disconfirmatory cues, can be computed mentally if the number of cues is
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not too large. For real-world decisions, there is rarely time to add or sub-
tract each item of information in turn, let alone to perform paper and
pencil computations. If all of the useful information were simultaneously
available and could be processed in parallel—by assessing it in a single
moment—these time constraints would vanish. However, in the kind of
inference tasks we are concerned with, cues have to be searched for, and
the mind operates sequentially, step by step and cue by cue. Linear mod-
els can be processed either in parallel or sequentially: The weighted cue
values can be added one by one by a sequential mechanism or in a single
shot. For linear models with noncompensatory weights, sequential pro-
cessing that stops after the first cue that discriminates leads to exactly the
same performance as parallel processing of all cues. It is these linear mod-
els that are equivalent to Take The Best (Result 1).

Lexicographic Algorithms for Comparison

Natural environments are rich in order structures, rankings, and hierar-
chies. Nevertheless, as the Bourbaki group so insistently pointed out
(Bourbaki, 1963), order theory was neglected in the history of mathemat-
ics. It was the merit of nineteenth-century mathematicians (mainly Dede-
kind, 1887/1987) to perceive that order theory is at least as profound and
far-reaching as algebra and topology. In the Bourbaki compendium of
mathematics, its three realms are, in fact, the three disciplines—algebra,
topology, and order—from which everything else is derived (Bourbaki,
1963). From the point of view of order theory, Take The Best has a perfor-
mance of 100% if (and only if) the mapping that assigns a cue profile to
an object is an order homomorphism of the set of all objects ordered by
the criterion into the set of natural numbers expressed in binary form.
This means that if object a is larger than object b according to the crite-
rion, then the profile of a represents a natural number that is larger than
the number represented by the profile of b.

Classification Trees

Another candidate method for the comparison task dealt with in this
chapter is the classification tree. It is no exaggeration to say that classifica-
tion trees have been used for millennia. As early as the third century, the
Greek philosopher Porphyrius Malchus classified species by the method
called "per genus et differentiam" (collecting items of the same genus and
separating them according to specific differences), which corresponds to
using a simple classification tree.

A classification tree for these problems is a tree-structured graph. The
nodes are cues and the arcs between nodes indicate the values of the cue
at the tail of the arc. Each path from root to leaf consists of a possible
combination of cue values, and the leaf node indicates the decision to be
made (e.g., a > b or b > a). To classify an object, one begins at the root,
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examines the root cue, proceeds along the arcs corresponding to the cues'
values, examines the cue at the head of each arc, and continues in this
way to reach the decision at the leaf of the tree. Take The Best corresponds
to a simple classification tree, as illustrated in figure 6-6. The root node
is the cue with the highest validity. If the objects differ on the first cue,
then a decision is made; otherwise the second cue is looked up, and so
on.

The problem of constructing the adequate classification tree for a given
data set can be extremely difficult. In the past 20 years, learning classifi-
cation trees from data has become an important research topic in both
statistics and machine learning. Much interest has been focused on the
development and evaluation of efficient heuristics for constructing classi-
fication trees that perform well and that generalize well to new data sets.
CARTs (classification and regression trees, introduced by Breiman et al.,
1993) have been extremely successful as tree construction mechanisms
that guarantee high accuracy. The Bayesian paradigm also provides effi-
cient search methods for good classification trees (see chapter 10).

Figure 6-6: Take The Best as a classification tree for comparing two ob-
jects, a and b, on the basis of cues ci.
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The step toward fast and frugal strategies for tree construction has been
undertaken only recently in machine learning. Similarly to Take The Best,
the 1-R classification tree algorithm introduced by Holte (1993) is based
on one-reason decision making. In the specific case of classification for
comparison, 1-R chooses the cue with the highest validity and acts—like
Take The Best—on the basis of this cue alone. That is, if the cue discrimi-
nates between the objects, it chooses the object with the higher cue value.
However, unlike Take The Best, 1-R does not proceed to the next cue if
the first does not discriminate, but chooses at random. Thus, 1-R is identi-
cal to Take The Best truncated after the first cue. With binary cues, 1-R
has a disadvantage compared to standard Take The Best (both when fitting
known data and when generalizing to new data, see figure 6-5), because
it necessarily involves an excessive number of random decisions.

The algorithm 1-R was actually conceived for classification based on
real-valued cues and various categories. Holte tested 1-R on a large num-
ber of data sets (in particular, several data sets from the UC Irvine reposi-
tory—see Merz & Murphy, 1996); he obtained an excellent performance
(Holte, 1993), only slightly less accurate than C-4, the tree construction
algorithm introduced by Quinlan (1986). (For more details, see chapter
11.) The success of the best cue can be surpassed if the rest of the cues
perform better than chance on the pairs left undiscriminated by the best
one, which is generally the case.

Concluding Remarks

Whereas an all-purpose integration algorithm clumps information to-
gether to make inferences, a smart heuristic subtly exploits those proper-
ties of the available information that are essential for the specific task.
Evolution has frequently provided us with the ability to capture the rele-
vant features of environmental information and adjust our tools according
to them.

Lexicographic models based on binary cues yield the same perfor-
mance as linear models with noncompensatory weights. How, then, can
one distinguish which model a person used to arrive at a choice? Our
conjecture is that a lexicographic model is more natural than a linear one.
Linearity is an often artificial simplification device that permits us to
model the world in ways understandable to our minds. Order is not only
in ouf minds—it is "out there"; the world is crowded with order struc-
tures. Lexicographic models provide a powerful way to generate infer-
ences, by taking into account structures more explicitly present in the
environment. They exploit skewness. Sometimes they exaggerate: They
skew the world more than the world is skewed. But often enough the
skewness of the environment is noncompensatory. In this case, Take The
Best and more sophisticated linear models show equal performance when
known data are fitted for inferences on the same data.
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However, there are also some (extreme) environments that sharpen dif-
ferences: Scarce environments favor Take The Best, while abundant infor-
mation favors Dawes's rule. These theoretical results fit with empirical
results obtained by Payne, Bettman, and Johnson (1988,1993), who found
that people choose their strategies according to the conditions the envi-
ronment imposes on them. For instance, the algorithms people choose
depend on how much time they have for making a choice or an inference,
and what the decision might cost. If time is short they will make infer-
ences by means of lexicographic models (see chapter 7). The same holds
if they have a very good cue. In contrast, people will integrate information
if the penalties for errors are high, or if they have more time at their dis-
posal. It could be a verse in Salomon's Kohelet: There is a time to use
Take The Best and a time to use Dawes's rule. Through the last millennia,
evolution may have given us a good intuition for these fundamental differ-
ences between strategies and thus taught us when to use which strategy.
The next chapter will be devoted to the problem of identifying the policy
used by subjects in different tasks and in different environments.



When Do People Use Simple Heuristics,
and How Can We Tell?

Jorg Rieskamp
Ulrich Hoffrage

Possibly our feeling that we can take account of a host
of different factors comes about because, although we
remember that at some time or other we have attended to
each of the different factors, we fail to notice that it is
seldom more than one or two that we consider at any one
time.

Roger N. Shepard

Mr. K., who just came into a substantial sum of money, is considering
how to invest it for maximum profit. Two friends of his who invest in
stocks and shares keep themselves informed of all the relevant facts. One
of them, Ms. Speed, is a broker; she often has to decide within seconds
which shares to buy. For the other friend, Mr. Slow, buying shares is more
of a hobby, but nevertheless he takes his investments very seriously and
often takes the whole weekend to make up his mind about new purchases.
In this chapter we will put ourselves in the position of Mr. K., who is
trying to figure out how his friends make decisions; like Mr. K. we want
to find out what kind of decision strategies people use when they have to
make choices. Do people use simple heuristics? How can we know? These
are the two questions we address.

First, we ask whether people use simple heuristics. Previous chapters
of this book have demonstrated that fast and frugal heuristics can be
highly accurate. The fact that these simple heuristics not only are accurate
but also require little cognitive effort makes it plausible that people actu-
ally use them. We assume that people have a repertoire of different strate-
gies—an adaptive toolbox—and that they use different strategies from this
toolbox under different conditions. Which conditions may have an impact
on strategy selection? One possibility is time pressure. Ms. Speed, who
makes decisions under time pressure, will probably apply a different strat-
egy than Mr. Slow. The fast and frugal heuristics proposed in this book
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are highly adapted to situations in which time and knowledge are limited.
They are fast, easy to use, and require little information—nevertheless,
they perform quite well. Chapter 4 dealt with limited knowledge. In the
present chapter we will deal with limited time, asking: Does time pressure
foster the use of simple heuristics?

Second, we consider the important question of how one can identify
what strategy a person is using. Two main research approaches have been
developed to investigate and identify people's strategies. One, the process-
oriented approach, focuses on the predecisional process by looking, for
instance, at the order of information acquisition; the other, the outcome-
oriented approach, focuses on the outcomes of the decision process and
builds models that predict these outcomes.

This chapter is structured as follows. We start with a description of
various decision strategies. We then outline an experiment in which parti-
cipants had to choose among alternatives under low and high time pres-
sure. Next, the process- and outcome-oriented approaches are described,
and our experiment is used as an illustration for the methodological prob-
lems in identifying strategies. Finally, we review some studies that have
investigated conditions that should have an impact on decision strategies,
including time pressure.

Simple Heuristics for Making Decisions

Heuristics provide a description of the successive stages of a decision pro-
cess. (But keep in mind that individuals' actual decision processes may
differ from a heuristic if they carry out supplementary operations not de-
scribed by the heuristic.) In box 7-1, we present a short summary of vari-
ous decision strategies that have been proposed in the literature. They all
choose one out of several alternatives, where each alternative is character-
ized by cue (or attribute) values, and where the importance of a cue is
specified by its weight (or validity). The list in box 7-1 is far from com-
plete, partly because we are studying inferences rather than preferences
(which often involve making a choice between gambles). Strategies that
are more suitable for preferences are not included. Moreover, our purpose
in this chapter is not to give a complete overview of candidate strategies.
We believe that our main conclusions do not depend on the selection
of strategies listed in box 7-1 but rather hold for a wide range of strategies.

One general problem is how a strategy deals with incompatible value
ranges for different cues (or attributes). For instance, if the values of one
cue range from 0 to 100 and those of another from 30,000 to 100,000, what
should a strategy do? In chapter 5, continuous cue values were split at
their medians, resulting in binary values. For the experiment reported be-
low, the continuous cue values were mapped onto a categorical scale, al-
ways with the values 1, 2, 3, 4, and 5. Original values between the lowest
value and the 20th percentile were transformed into the value 1, between



WHEN DO PEOPLE USE SIMPLE HEURISTICS, AND HOW CAN WE TELL? 143

Box 7-1: Decision Strategies

Franklin's rule calculates for each alternative the sum of the cue values
multiplied by the corresponding cue weights (validities) and selects the alter-
native with the highest score.

Dawes's rule calculates for each alternative the sum of the cue values (multi-
plied by a unit weight of 1) and selects the alternative with the highest score.

Good Features (Alba & Marmorstein, 1987) selects the alternative with the
highest number of good features. A good feature is a cue value that exceeds
a specified cutoff.

Weighted Pros (Huber, 1979) selects the alternative with the highest sum of
weighted "pros." A cue that has a higher value for one alternative than for
the others is considered a pro for this alternative. The weight of each pro is
defined by the validity of the particular cue.

LEX or lexicographic (Fishburn, 1974) selects the alternative with the highest
cue value on the cue with the highest validity. If more than one alternative
has the same highest cue value, then for these alternatives the cue with the
second highest validity is considered, and so on. Lex is a generalization of
Take The Best (see text).

LEX-Semi or lexicographic semiorder (Luce, 1956) works like LEX, with the
additional assumption of a negligible difference. Pairs of alternatives with a
negligible difference between the cue values are not discriminated.

EBA or Elimination by Aspects (Tversky, 1972) eliminates all alternatives that
do not exceed a specified value on the first cue examined. If more than one
alternative remains, another cue is selected. This procedure is repeated until
only one alternative is left. Each cue is selected with a probability propor-
tional to its weight. In contrast to this probabilistic selection, in the present
chapter the order in which EBA examines cues is determined by their validity,
so that in every case the cue with the highest validity is used first.

LEX-ADD or lexicographic additive combination is a combination of two strat-
egies. It first uses LEX-Semi to choose two alternatives as favorites, then evalu-
ates them by Dawes's rule and selects the one with the highest sum.

the 21st and 40th percentile into the value 2, and so on. All the strategies
listed in box 7-1 can take these categorical cue values as input. For sim-
plicity, so far we have not examined how the strategies would operate
with limited knowledge, that is, unknown cue values.

Chapter 1 distinguished among a heuristic's principles of search, stop-
ping, and decision. Principles of search direct how information is
searched, principles of stopping define when search is terminated, and
principles of decision specify how the information searched for is used to
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make a decision. These principles can be used to characterize any specific
strategy. For each of these principles, we introduce one distinction. First,
a strategy can search for information in either an alternative-wise or a cue-
wise manner. Alternative-wise search seeks all cue values for one alterna-
tive before the next alternative is considered, whereas cue-wise search
seeks all the cue values for one cue before another cue is checked. For
instance, Mr. K. could use the relevant cues one after another to compare
shares (cue-wise search) or evaluate each share on all the cues one after
another (alternative-wise search). Second, a strategy may or may not have
a stopping rule for deciding when to stop information search and to make a
choice. While in many experiments the number of cues is limited, outside
those experimental settings, stopping rules become essential. Third, a strat-
egy may or may not allow for compensation. A strategy is compensatory if
there is at least one cue that can be outweighed by other cues; a strategy is
noncompensatory if a cue cannot be outweighed by any combination of less
important cues (see chapter 6). A compensatory strategy integrates (at least
some of) the available information and makes trade-offs between the rele-
vant cues to form an overall evaluation of each alternative.

The principles of search, stopping, and decision are connected to each
other. For instance, when a heuristic searches for only one (discriminat-
ing) cue, this constrains the possible decision rules to those that do not
integrate information. Thus, if an individual does little search, then the
process-oriented approach has strong implications for the possible charac-
ter of the heuristic principle of decision. On the other hand, if search
extends to many cues, this does not constrain the decision rule. The cues
may be weighted and integrated, or only the best of them may determine
the decision. The latter case illustrates the limits of the process-oriented
approach, which focuses on search. If an individual acquires a large
amount of information, this does not necessarily imply that the person
also would base the decision on all of this information. Nevertheless, the
underlying assumption of the process-oriented approach is that informa-
tion search is related to the decision strategy, and hence, characteristics
of the search reveal important aspects of the decision strategy actually
used by a person.

We now use the three principles to classify the decision strategies in
box 7-1. Franklin's rule, Dawes's rule, Good Features, Weighted Pros, and
LEX-ADD are compensatory strategies, none has a stopping rule, and for
all of them (except Weighted Pros and LEX-ADD), alternative-wise search
is most appropriate. LEX, LEX-Semi, and EBA are noncompensatory strat-
egies, have a stopping rule, and use cue-wise information search.

Compensatory strategies do not always entail compensation; whether
it occurs depends on the number of cues, on the variability of cue values
and validities, and on exactly how this information is processed. Frank-
lin's rule processes all available information, whereas Dawes's rule re-
places the validities with (positive or negative) unit weights. (In this chap-
ter we consider only positive unit weights, because in our experiment
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higher cue values always indicate higher criterion values.) Good Features
is similar to Dawes's rule but does not require addition of the cue values.
One advantage of these three strategies is that an additional alternative in
a decision task does not require a totally new evaluation of all alterna-
tives. This is not true for all compensatory strategies: In contrast to the
others, the score that Weighted Pros computes for an alternative depends
on the cue values of the other alternatives. This is because a "pro" is de-
fined by a comparison between the cue values for all alternatives. This
feature also explains another peculiarity of Weighted Pros: It is the only
compensatory strategy that searches for information cue-wise. LEX-ADD
combines compensatory and noncompensatory elements, as well as alter-
native- and cue-wise search. Thus, Weighted Pros and LEX-ADD form a
bridge between the compensatory strategies with alternative-wise search
and the noncompensatory heuristics with cue-wise search.

LEX, LEX-Semi, and EBA are noncompensatory, which means that a
cue supporting one alternative cannot be outweighed by any combination
of less important cues, even if they all support a different alternative. This
is because these three heuristics do not necessarily use all the information
available. LEX is similar to the Take The Best heuristic (except that there
is no recognition heuristic as the initial step, see chapter 4). In fact, it is
one possible generalization of it from two-alternative to multialternative
choice tasks. If two or more alternatives are tied, that is, they have the
same value on the cue with the highest validity, and no other alternative
has an even higher one, then there are two possible ways of continuing
the procedure. The first way of generalizing Take The Best, which we have
chosen in this chapter, is to consider the cue with the second highest
validity only for those alternatives with the highest cue value. By empha-
sizing the idea of a lexicographic ordering of alternatives, it leads to selec-
tive information search, because alternatives are often eliminated by the
heuristic in earlier steps of the decision process. The second method of
generalizing Take The Best would lead to the procedure of reconsidering
the cue with the second (and—possibly—third, fourth, and so on) highest
validity for all alternatives. This second way emphasizes the concept of
one-reason decision making, whereby at each step of the decision process
all the alternatives are compared with respect to one particular cue, and
this cue alone can determine which alternative is chosen.1 Because of its

1. To illustrate, one can use each of these ways to decide which of three compa-
nies, a, b, and c has the highest profit. Suppose that two different cues (e.g., assets
and number of employees) are positively correlated with the company profit. Com-
panies a and b have large assets, while company c has low assets. However, com-
pany a has few employees, company b a medium number of employees, and
company c many employees. If the most important cue is assets, then one cannot
discriminate between companies a and b, so one would next use the number of
employees as a cue. Taking the lexicographic route, one would then choose com-
pany b. The other way of generalizing Take The Best would lead one to select
company c.
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highly selective and cue-wise information search, LEX can be considered
very simple to use. By comparison, LEX-Semi is less frugal, because more
cue values (and also more cues) must usually be checked (see also Payne
et al., 1988). EBA's information search is similar to that of LEX and LEX-
Semi, but there is an important difference: With EBA, elimination of alter-
natives depends on a cutoff, whereas with LEX and LEX-Semi no cutoff
needs to be specified and elimination is solely determined by the cue
values of the alternatives.

All that is needed to make a choice is to identify the alternative that
scores highest with respect to the criterion; it is not necessary to know
either the exact criterion values or the rank order of the inferior alterna-
tives. In this respect, cue-wise search is advantageous because it enables
individuals to identify inferior alternatives at an early stage of search and
then concentrate on the superior alternatives. By contrast, in an alterna-
tive-wise search it is necessary to evaluate each alternative in turn; only
when all the alternatives have been considered does it become clear
which one is superior. Hence, if Mr. K. wants to choose between different
shares, it might be simpler for him to use one cue after another to compare
the shares and concentrate on the most promising ones.

How do strategies compare in terms of the amount of processing re-
quired to execute them? Because compensatory strategies usually have no
stopping rule, they look up all cues and are therefore less frugal than non-
compensatory strategies. For instance, Franklin's rule, which uses all cue
values and weights, is neither frugal nor computationally simple (see also
Payne et al., 1988, 1993). Compensatory strategies evaluate each alterna-
tive on its own by computing scores, which then have to be stored in
memory so that they can be compared. The limited capacity of human
working memory (Miller, 1956) poses a problem for strategies requiring
short-term information storage that makes high demands on memory. For
a choice task in which the information is supplied simultaneously, a cue-
wise information search can involve less memory and fewer computations
than an alternative-wise search. A cue-wise search makes it possible to
use each cue step-by-step in order to compare the alternatives. This step-
by-step procedure can be used to establish alternatives as favorites. The
individual simply has to keep in memory the alternatives regarded as
favorites, but does not need to remember any cue values. The favorites
can be examined in the light of newly acquired information. In contrast,
an alternative-wise search has the advantage of forming a more precise
view of a specific alternative, but it does make it more difficult to see
differences between specific aspects of the alternatives.

Could a difference in the "effort" required to use the strategies help us
to predict which of them will provide a better model of what people actu-
ally do? Payne, Bettman, and Johnson (1988, 1993) believe so, and have
proposed an "effort-accuracy" framework based on the assumption that
people have a repertoire of different decision strategies that can be evalu-
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ated in terms of their costs and benefits. The costs are related to the cogni-
tive effort needed to process the strategy; the benefits are related to accu-
racy. Payne et al. (1993) state that "the decision maker assesses the various
benefits and costs of the different strategies that are available and then
chooses the strategy that is best for the problem" (p. 91). According to this
view, the decision maker anticipates the effort and the accuracy of a strat-
egy and uses these as criteria to select the "best" strategy. Payne et al.
concede that such selections among strategies are not necessarily con-
scious and that the trade-off between effort and accuracy of strategies may
have been learned by experience. In some situations particular decision
strategies may not be examined with regard to effort and accuracy at all
because they exceed the critical threshold of effort that an individual can
expend. In their framework, the assessment of effort may serve two differ-
ent functions: either as an additional criterion besides accuracy for evalu-
ating decision strategies, or as a constraint to eliminate strategies from
consideration.

Consistent with Payne et al. (1993), we assume that the constraints un-
der which people have to make their decisions, such as limited time and
limited knowledge, are important determinants of judgment and decision
making. The view of Payne et al. leaves open the possibility that these
constraints are supplementary criteria that have to be evaluated during a
particular decision process. In contrast to this view, we consider limited
time and limited knowledge as constraints under which people have al-
ready developed or learned their smart heuristics. This implies that an
individual's repertoire of strategies includes some that take the constraints
into account. We do not assume that a trade-off between effort and accu-
racy or an evaluation of strategies is computed during the decision pro-
cess. Based on an individual's prior experience of decision making, a par-
ticular situation could prompt her or him to use a particular decision
strategy.

Payne et al.'s framework and our view lead to similar assumptions:
Under particular conditions, especially under time pressure, individuals
use simple strategies. We assume that people are equipped with simple
strategies for situations of severe time pressure, and that these strategies
require little effort. Thus, simple heuristics that need less information, do
not require integration of information, and use cue-wise search should be
good at modeling people's decision strategies under time pressure.

One plausible assumption is that individuals will acquire less informa-
tion under high time pressure than under low time pressure. If they shift
their decision strategy toward a noncompensatory strategy, where the or-
der of the information search is determined by the importance of the cues,
they will focus their attention on the more important cues. This leads to
the following hypotheses: (1) Under high time pressure, the proportion of
participants whose decision strategies can best be described with a sim-
ple, noncompensatory heuristic will be larger than under low time pres-
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sure; and (2) participants will show more selective information search and
acquire relatively more information about the important cues under high
time pressure than under low time pressure.

To test these hypotheses, we conducted an experiment in which we
investigated people's decision strategies under low and high time pressure
(see box 7-2). In the next two sections, this experiment will be used as an
illustration of the two main approaches for investigating people's decision
strategies.

Box 7-2: Experimental Task

From four publicly held companies, participants had to select the one with
the highest yearly profit (reference year was 1994). Each set of companies was
selected from a sample of 70 real companies, forming the environment. Six
company variables were used as cues. The importance of each cue is given
by its cue validity. The cues (and their validities) were: the amount of invest-
ments (.78), the amount of the company's share capital (.68), the number of
employees (.64), the recognition rate (.50), the share price on the stock market
at the end of 1994 (.48), and the dividend for the share (.37). Note that a
validity of .25 reflects chance performance. To determine the validities, every
possible set of four out of the sample of 70 companies was examined; the
proportion of sets in which the company with the highest cue value was also
the company with the highest profit determined the validity. (The recognition
rate is the rate at which the company was recognized by participants in a
survey.) The information was presented on a computerized information
board.

The experiment began with a training phase of seven choices, in which the
participants received feedback about the correct choice. (The main purpose
was to get the participants used to the task, rather than to get them to learn
the cue validities. The concept of the cue validities was explained to the
participants before the experiment and the validities were presented on a
card next to the monitor.) After the training phase, participants had to make
15 choices under low time pressure (50 seconds for each choice), and then
15 choices under high time pressure (20 seconds). A clock in the top left
corner of the screen showed the passing time. To open an information box
the participants had to click on that box, and had to click again to close it
before they could open another box. When the time had expired, the partici-
pants could not acquire additional information and had to make the choice.
For each correct choice the participants earned one German mark (approxi-
mately 60 U.S. cents).
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Looking at the Decision Process

One way in which Mr. K. could find out more about his friends' decision
strategies is to observe their activities before they finally make their deci-
sions. What kind of information do they seek and in what order do they
collect it? More generally, what happens before the decision is made?
What are the processes that lead to the final decision? Many researchers
employ such a process-oriented approach and important contributions
have been made, for instance, by Payne et al. (1988, 1993), Beach and
Mitchell (1978), and Svenson (1979). Of special interest is the order in
which information is acquired by participants, how the information is
cognitively represented, and how this representation is transformed to
reach a decision. The investigatory methods used include asking partici-
pants to describe the process by which they arrived at their decisions, as
well as monitoring the information search.

The first method involves collecting verbal descriptions of the decision
process—either during decision making with the "think-aloud" technique
(e.g., Timmermans, 1993), or retrospectively after the decision has been
made. These descriptions can provide information about the cognitive op-
erations and decision strategies. The retrospective technique has often
been criticized with the argument that people do not have access to their
cognitive operations and cannot accurately describe their decision pro-
cesses (Nisbett & Wilson, 1977). Some authors support protocol analysis
instead (Ericsson & Simon, 1993; Montgomery & Svenson, 1989; Payne et
al., 1978). A modification of the think-aloud technique is the "write-
aloud" technique, which was used by Gigerenzer and Hoffrage (1995) in
a study on Bayesian reasoning. In this study participants were instructed
to make notes while working on reasoning problems; afterward the re-
searchers used these notes to interview the participants about their rea-
soning.

The second method monitors the decision maker's information search.
The information is presented on a (computerized) information board in
the form of an alternative-by-attribute (cue) matrix. The information is
usually not visible and participants have to ask or perform some action to
acquire the attribute values. A similar method is the eye-movement re-
cording technique, which infers the information search from participants'
eye movements (Russo & Dosher, 1983). The results obtained by applying
such techniques are interpreted on the basis of the assumption that the
order of information search depends on the individual's decision strategy.
For a comparison between verbal protocol techniques and methods that
monitor information search, see Biggs, Rosman, and Sergenian (1993).

One widely used method of monitoring information search is a com-
puter program called Mouselab (Johnson et al., 1991). In our experiment
this program was used to present the four companies and the six cues in
the form of an information board (figure 7-1). The cue values were hidden
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Figure 7-1: Computerized information board (generated by Mouselab)
showing four companies and their six (hidden) cues, which can be re-
vealed one at a time. Here, Company 2's dividend value is looked up by
the participant.

in boxes, but could be revealed by clicking on the boxes. Only one box
could be opened at a time. The final company choice was made by select-
ing a box at the bottom of the screen.

How can monitoring information search be used to identify strategies?
The Mouselab program gives two types of information: the sequence in
which a participant opened the boxes and the period of time a participant
kept each box open. These types of information allow one to calculate
several process variables that describe the search process. Most of the
variables discussed next were also used by Payne, Bettman, and Johnson
(1988).

One obvious characteristic of search is the amount of information
looked up. For example, in our experiment the participants performed 33
box openings on average under the condition of low time pressure. Since
the information board only consists of 24 different boxes, this means that
some participants opened some of the boxes more than once. For none of
the decision strategies listed in box 7-1 is it necessary to examine informa-
tion more than once. The reason people do so is probably that they simply
forget the cue values due to limits in their working memory (Miller, 1956).
Another reason might be that they seek information twice in order to be
more confident with their choice; they might start with a particular heu-
ristic to establish a first favorite choice and acquire information repeat-
edly to support this favorite as their final choice (for a similar view, see
Svenson, 1992). Nevertheless, the number of box openings tells us that the
search process is not accurately described by any of the strategies under
discussion. Under the condition of high time pressure the average number
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of box openings was 19. This lower figure is not surprising, but it does
indicate that, at least for some participants, the use of a strategy that re-
quires all available information was no longer possible. From a broader
perspective, the average number of box openings prompts the question of
how an individual's information search is related to the decision strategy
applied. Even if someone acquires a large amount of information, this
does not necessarily mean that all of this information is used to make the
decision. Rather, the decision may only rest on those pieces of acquired
information that are required by a particular strategy.

The search process can also be characterized by the average period of
time each box was kept open. We might expect that high time pressure
accelerates the rate of information acquisition. A reduced average time for
each box allows more information to be acquired within the same total
time. The information boxes were on average kept open for 430 ms under
low time pressure and for 325 ms under high time pressure. A more spe-
cific interpretation can be made if we calculate the lengths of time the
boxes remained open for each particular cue or alternative. What propor-
tion of the total time boxes were kept open did the participants spend on
the most important cue? Under low time pressure this proportion was
21% across participants; under high time pressure it increased to 25%.
(Since six cues were used in the experiment, one cue corresponds to
16.6% of all the available information.) The increase from 21% to 25%
indicates greater attention to the cue with the highest validity. In contrast,
the proportion of time spent for the cue with the lowest validity slightly
decreased from 13.5% to 11%. More generally, under high time pressure
the time spent on each cue was more closely associated with the validities
of the cues than under low time pressure. This can be shown by the corre-
lation between the validities of the cues and the time spent on each cue.
Under low and high time pressure this correlation was .69 and .82, respec-
tively, which demonstrates that the attention paid to each cue is largely
determined by the validities of the cues and—to a lesser extent—by the
amount of time pressure. One interpretation of these results is that people
change their decision strategy under high time pressure in favor of non-
compensatory strategies.

Did the standard deviation of the proportion of time spent on each cue
vary with time pressure? Under low time pressure, the standard deviation
was on average 80 ms; it increased under high time pressure to 100 ms.
Thus, individuals did not spend equal time on each cue and under high
time pressure their attention was more unequally dispersed among the
different cues. A similar variable is the standard deviation of the propor-
tion of time spent on each alternative. Under low and high time pressure
this standard deviation was 130 and 120 ms, respectively. The unequal
attention to the alternatives did not increase under high time pressure.
This result is in contrast to the expectation that unequal attention to the
alternatives would increase as a consequence of the more frequent use of
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noncompensatory strategies under high time pressure. One explanation
for this result could be that participants under low time pressure used the
remaining time to consolidate their favorite choice.

The next variable, "pattern," was proposed by Payne (1976) to charac-
terize the type of information search used. After closing one particular
box, a decision maker can open either another box for the same alternative
(which is called a transition within alternative) or one for the same cue (a
transition within cue). Pattern equals the number of transitions within
alternatives minus the number of transitions within cues, divided by the
total number of both transition types. (Moves to a box that is for both
another alternative and another cue are not considered when calculating
this variable.) The values for this variable range from -1 to +1; positive
values indicate more alternative-wise information search, while negative
values indicate a more cue-wise information search. In our experiment,
the average value for "pattern" was -0.13 under low time pressure and
-0.28 under high time pressure. These values reveal an information search
that is more often cue-wise, especially under high time pressure. Cue-wise
search is consistent with the use of any noncompensatory heuristic or the
Weighted Pros heuristic.

Awkwardly, the values for the variable pattern are affected by asymmet-
ric information matrices, which means that if the number of cues is larger
than the number of alternatives (as is the case in our experiment), a posi-
tive value for the variable can be expected even if the information search
is random. Therefore, a correction for the bias of asymmetric matrices
would yield even more evidence of cue-wise search in the experiment.2

Although the differences between the values of the process variables
under low and high time pressure are small, most of them express rele-
vant effect sizes. The value differences under low and high time pressure
for the number of opened boxes, the average time a box was open, the
proportion of time spent on the most important cue and that spent on the
least important one, and the standard deviation of the proportion of time

2. Also, even heuristics such as Weighted Pros or LEX, which are characterized
by a cue-wise information search, could include transitions within alternatives. If
someone applies Weighted Pros and acquires the information of one cue over all
alternatives and then moves to another cue, this move from one cue to another
could be a transition within the same alternative. This information search seems to
be possible for someone who applies Weighted Pros, but for the information board
used in the experiment this search could yield a value of only -0.57 (which is far
above the possible minimum of-1) for the variable "pattern." If, for instance, an-
other person uses LEX and cannot discriminate between two of four alternatives
after examining the cue with the highest validity, this person will compare the two
remaining alternatives on the cue with the second highest validity. This informa-
tion search could lead to the value of only -0.6 for "pattern." Thus, even for heuris-
tics characterized by cue-wise information search, the negative maximum of the
variable pattern is often unattainable and values such as those reported for our
experiment are even more consistent with cue-wise information search (see also
Bockenholt & Hynan, 1994).
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spent on each cue have large effect sizes, while the differences for "pat-
tern" and the correlation between the time spent on each cue and the cue
validities have medium effect sizes (calculated and classified following
Cohen, 1988).

The process variables are useful for revealing different decision pro-
cesses, but can they also be used to identify specific strategies? Some au-
thors suggest that a combination of process variables permit such identifi-
cation (Billings & Marcus, 1983; Westenberg & Koele, 1992). Westenberg
and Koele assumed that the EBA heuristic could be identified by the com-
bination of a negative value for the variable "pattern" (indicating cue-wise
information search) and a different amount of information acquired for
different alternatives (indicating that some received more attention than
others). One drawback of this identification method is that EBA cannot be
distinguished from other noncompensatory heuristics, such as LEX and
LEX-Semi (which were not considered in Westenberg and Koele's study).
Another drawback is that a decision strategy is classified as noncompen-
satory if the amount of information acquired differs even slightly for dif-
ferent alternatives. But this can often occur, especially in tasks in which
more than two alternatives are available, and it seems reasonable to as-
sume that even if people use a compensatory strategy, they will sometimes
not acquire or ignore information for particular alternatives. Therefore, we
do not feel that the process variables allow us to identify uniquely the
decision strategy of an individual participant.

In sum, the process analysis of our experiment shows that the partici-
pants predominantly used a cue-wise information search; this could be
concluded from the variable pattern. This type of information search is
consistent with LEX, LEX-Semi, EBA, Weighted Pros, or LEX-ADD. How-
ever, it is difficult to differentiate among these heuristics. In evaluating
the process-oriented approach, we conclude that while it is useful for
showing different decision processes under different conditions, it is
problematic when used as a method of identifying particular decision
strategies. Furthermore, although it can be assumed that people who use
a compensatory strategy acquire more information than people who use a
noncompensatory strategy, it is difficult to determine a critical value that
can discriminate between these strategies. Nevertheless, it is reasonable
to assume that process data can be used to reduce the number of plausible
strategies. Table 7-1 shows the relationship between compensatory and
noncompensatory strategies with respect to the process variables.
Weighted Pros, which is not included in table 7-1, could have been as-
signed to the compensatory group except that for the variable pattern a
negative value would be expected. The compensatory heuristic LEX-ADD
is not included in table 7-1 either, because the expected values of the
process variables are a mixture of the expected values for the strategies
LEX and Dawes's rule.

Although various authors have proposed investigating both the partici-
pants' choices and the predecision process (e.g., Einhorn & Hogarth, 1981;



Einhorn et al., 1979), most process-oriented studies do not consider
choices (e.g., Payne et al., 1988). If process data suggest cue-wise informa-
tion processing, but do not discriminate among different strategies, an
analysis of the actual choices might be valuable in filling in this gap.

Looking at the Outcome

Mr. K. could also try to model his friends' choices by working out the
relationship between the information about alternative shares (the input)
and their final decisions about which shares to buy (the output). Many
researchers have in fact adopted such a research strategy. The most promi-
nent representative of this approach is the neo-Brunswikian "social judg-
ment theory" proposed by Ken Hammond (1955; for overviews see also
Brehmer & Joyce, 1988; Cooksey, 1996; Doherty, 1996). As a framework
for describing people's judgment policies, social judgment theory mainly
uses linear models, particularly multiple regression. In a technique called
"judgment analysis" or "policy capturing," this statistical model is used
to describe how participants utilize available cues to arrive at their judg-
ments. A person's "policy" is described as a vector of weights in a regres-
sion equation, making the judgment a linear function of the cues. Al-
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Table 7-1: Process Variables That Distinguish Compensatory From
Noncompensatory Strategies

Strategies

Non-
compensatory compensatory

Franklin's Rule, LEX,
Dawes's Rule, LEX-Semi,

Process Variables Good Features EBA

Number of information box >
openings

Average time a box was open <
Proportion of time spent on the <

most important cue
Standard deviation of the <

proportion of time spent on the
alternatives

Standard deviation of the propor- <
tion of time spent on the cues

Pattern positive > negative
values values

Correlation between time spent on
each cue and cue validities <

Note. Strategies are explained in box 7-1.
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though neo-Bmnswikians have mostly restricted themselves to using
multiple regression as a tool for describing judgments, this analysis is in
principle open to testing other candidate models. Indeed, in Egon Bruns-
wik's work one cannot find this restriction, and Kenneth Hammond (1996b)
recently pointed out that focusing on regression was a regrettable error.

In the outcome analysis reported below, each of the strategies listed in
box 7-1 was used to predict participants' choices.3 In contrast to the stan-
dard policy-capturing technique, whereby the model is made to fit by de-
riving the multiple regression weights from the participants' data, we for-
mulated the strategies a priori with weights specified by the cue validities
(see box 7-2). This can result in lower fits to participants' choices than
the standard technique, which would have resulted in different weights
for different participants.

Before we proceed, we want to point out one limitation of this ap-
proach. Different strategies frequently lead to identical prediction so that
an individual's decision cannot be assigned unambiguously to one strat-
egy. To illustrate this problem, we determined the overlap between the
predictions of the Take The Best heuristic (which is similar to LEX) and
those of multiple regression for the city environment in chapter 4. Take
The Best and multiple regression were used to predict which of two cities
has the larger population. The environment consisted of 83 cities and nine
cues with binary cue values. The overlap of predictions was determined
for all possible paired comparisons of two cities. If Take The Best and
multiple regression made the same prediction for a particular comparison,
the match was counted as "1." If not, it was counted as "0," and if one or
both of them had to guess, this was counted as ".5." The results indicate
that for most of the cases the predictions made by Take The Best and by
multiple regression coincided: Averaged across all possible comparisons,
the match was 92%. After excluding all cases where either Take The Best
or multiple regression had to guess, this value increased to 96%.

Such a large overlap has implications for policy capturing. Suppose
that a participant consistently uses Take The Best to make inferences for
100 paired comparisons randomly drawn from this city environment and
that another participant consistently uses multiple regression for the same
set. Would a neo-Brunswikian who applies the policy-capturing technique
detect any difference between these two participants? The answer is no.
The multiple correlations and the weights in the regression equation that
describe the policies of these two fictitious participants do not differ from

3. These predictions were then compared to the actual choices. Each strategy's
prediction was based on the information in all 24 boxes. This may be considered
problematic because—especially under time pressure—not all of this information
may be looked up by participants. However, basing the predictions only on those
pieces of information that have actually been looked up would be more problem-
atic: It is not clear how to determine the prediction of a strategy when a participant
does not look up the information that it requires.
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each other (Hoffrage et al., 1997). Thus, one should be aware that linear
models are hardly more than what Hoffman (1960) called a "paramor-
phical" representation, that is, a mathematical representation that may not
necessarily be a valid description of the actual reasoning process (see also
chapter 6, on noncompensatory sets of weights). This problem is not re-
stricted to linear models, but also arises for other models used to describe
human judgments or decisions. Moreover, linear models can still be very
useful for predicting outcomes or examining individual differences.

In sum, outcome analysis faces the same problem as process analysis:
separability, that is, the difficulty of discriminating between strategies.
One solution to this problem is to select the alternatives presented to par-
ticipants in a way that forces the strategies to make different predictions.
However, selecting alternatives to minimize the overlap of the strategies'
predictions often makes the item set unrepresentative and the results diffi-
cult to generalize. There seems to be a dilemma here: Either the item set
is representative, with generalizable results but barely distinguishable
strategies, or the item set is selective, with distinguishable strategies but
possibly limited generalizability.

In the experiment, we used an environment of 70 randomly drawn
publicly held companies. Each item consisted of a set of four companies,
and the task was to choose the one with the highest profit. We constructed
two different item sets. The first, "representative" set had 30 items, each
consisting of four randomly selected companies. Here, the overlap of iden-
tical predictions of the strategies listed in box 7-1 was very high: For 23
of the 30 items all the strategies chose the same company. The percentage
of identical predictions for each pair of strategies was about 92% (aver-
aged across all possible pairs of strategies).

For this reason, the second, "selected" item set of 30 items was con-
structed to reduce the overlap between Dawes's rule and LEX, chosen as
representatives of compensatory and noncompensatory strategies, respec-
tively. Our procedure for assembling the selected item set was to generate
items randomly one after another and keep mainly those where Dawes's
rule and LEX differed in their chosen alternative.4 In the selected item set,
the same prediction was made by all the strategies for only 2 of the 30
items. In contrast to the representative item set, the average percentage of
identical predictions for a pair of strategies was only 50%. The alterna-
tives in the selected item set were slightly more similar to each other than
those in the representative set: The average standard deviation of the cue

4. Also, we tried to avoid a large deviation between the cue validities in the
selected set and the validities in the set of all possible items. To this end, items
that led to distorted cue validities were excluded from the selected item set, and
in addition, two further items with an identical prediction for Dawes's rule and
LEX were included. Note that all items of the selected item set did occur in the
environment, and the performance of the strategies was not considered at all in the
selection procedure.
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values between the alternatives was higher for the representative set than
for the selected set (mean standard deviation of 1.3 versus 1.2], which
means that the choices in the selected set should be perceived as more
difficult. In the experiment, 50 participants worked on the selected set
and 25 on the representative set.

What is the performance of the 'strategies for the two item sets, again
defined as the proportion of times the highest-profit company is picked?
As can be seen in table 7-2, in the representative set the strategies make
on average 73% correct predictions. In the selected set, the performance
of the strategies is not only on average poorer, but the variance between
strategies is also larger. In both item sets, the performance of simple heu-
ristics is on average comparable to the performance of Franklin's rule,
which looks up all cue values and requires considerable computations. In
particular, Weighted Pros and LEX-Semi make more correct choices in the
selected set than Franklin's rule. In the representative set, LEX and Good
Features make as many correct choices as Franklin's rule.

These results are interesting and deserve some attention in light of the
results of research on preferences. The fact that heuristics can perform as
well or better than Franklin's rule could only be obtained because we used
an external criterion (the profit of the company] to determine whether or
not a strategy's prediction was correct. In research on preferences, such a
criterion does not exist. Here the normative proposition is often made that
the expected value model (which is similar to Franklin's rule] is the best
method for making a choice among different alternatives, and used as a
norm against which all strategies are evaluated (e.g., Payne et al., 1988).
As a consequence, the performance of other heuristics in the preference
literature can only be as good as the performance of Franklin's rule, but
never better, as they were here.

How frugal are the strategies for the two item sets? Here frugality is
defined as the percentage of information boxes (out of all 24 boxes) that
had to be opened by each strategy to come to a decision. Table 7-3 shows
these percentages averaged across all items. For most of the compensatory
strategies, all information is necessary to reach a decision. LEX is most
frugal, using only a quarter of the information.

Finally, how well do the heuristics describe participants' choices? We
first considered all correctly predicted choices across all participants and
all items. As can be seen in figure 7-2, the proportion of correctly pre-
dicted choices is much higher in the representative than the selected item
set. However, the differences between the proportions of correctly pre-
dicted choices for the different strategies are also much smaller in the
representative set. This result can be explained by the high overlap of
identical predictions between strategies in this set.

Figure 7-3 shows the results in terms of the participants' strategies. The
strategy that predicted the largest number of choices for each individual
participant was assigned to that participant. If two or more strategies pre-
dicted the same number of a participant's choices, the participant was



Table 7-2: Performance of the Strategies for the Representative and the Selected Item Set

Representative item set
Selected item set

Franklin's
Rule

77
57

Dawes's
Rule

75
37

Good
Features

77
43

Weighted
Pros

73
60

LEX-
ADD

70
53

LEX

77
53

LEX-
Semi

73
63

EBA

73
47

Note. Performance is expressed as percentage of items in which the most profitable company was correctly predicted (strategies are explained in box
7-1).
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Figure 7-2: Accuracy of different decision strategies in predicting partici-
pants' choices on representative and selected item sets. The horizontal
line indicates the accuracy that can be expected by chance (25%).

Figure 7-3: Percentage of participants who were assigned to each of the
strategies on the basis of both item sets, aggregated over both time pres-
sure conditions.



Table 7-3: Frugality of the Strategies for the Representative and the Selected Item Sets

Representative item set
Selected item set

Franklin's
Rule

100
100

Dawes's
Rule

100
100

Good
Features

100
100

Weighted
Pros

100
100

LEX-
ADD

60
63

LEX

26
24

LEX-
Semi

49
47

EBA

60
63

Note. Frugality is shown as percentage of cue values used when predicting the company with the highest profit (lower values indicate more frugal
strategies; strategies are explained in box 7-1).
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classified as "ambiguous." The heuristics that could be assigned to the
participants most frequently were LEX-Semi, Weighted Pros, and LEX-
ADD for the representative set, and LEX, Weighted Pros, and LEX-Semi for
the selected set. The proportion of participants who could not be assigned
unambiguously to one strategy was relatively high, especially for the rep-
resentative set.

The results underline the importance of constructing item sets that
allow one to distinguish among different strategies. For this reason, the
analysis of the influence of time pressure was only conducted for the 50
participants who worked on the selected set. In addition, the category
"ambiguous" was resolved by dividing each ambiguous participant among
all the strategies that tied for first place in predicting his or her choices
(e.g., if two strategies tied for first, each was increased by .5). Figure 7-4
shows the participant-strategy match under low and high time pressure.
The strategies that could be assigned to the participants most often were
LEX and Weighted Pros. LEX describes more participants' strategies under
high time pressure, while Weighted Pros accounts for more under low
time pressure. This indicates a shift from the compensatory heuristic
(Weighted Pros) under low time pressure to a more simple and noncom-
pensatory heuristic (LEX) under high time pressure, consistent with our
first hypothesis that the proportion of participants whose decisions can

Figure 7-4: Number of participants who were assigned to the strategies,
separated for low time pressure (50 seconds) and high time pressure (20
seconds). (This data is restricted to the 50 participants who worked on
the selected item set.)
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be described best with a noncompensatory heuristic is greater under high
time pressure than under low time pressure.

Out of all decision strategies, LEX and Weighted Pros were identified
as the best at describing participants' choices. What is the result if only
these two heuristics are compared? We compared LEX with Weighted Pros
in the selected item set and again assigned the participants to the heuristic
that predicted the highest number of their choices. In this direct compari-
son, under low time pressure 26 participants were assigned to Weighted
Pros and 15 participants to LEX, while under high time pressure 15 parti-
cipants were assigned to Weighted Pros and 27 to LEX. (For the other 9
participants under low time pressure and 8 participants under high time
pressure, both heuristics predicted an identical number of choices.) To
summarize, this direct comparison leads to an interpretation similar to
that of the outcome analysis for all strategies reported above: Under high
time pressure, the noncompensatory heuristic LEX is more useful for pre-
dicting the participants' choices than the compensatory Weighted Pros.

We can now try to integrate variables from the process-oriented ap-
proach into our outcome analysis to yield a clearer interpretation of the
results. Table 7-4 depicts the process measurements for those participants
who were assigned to Weighted Pros and LEX. If the classification of parti-
cipants' strategies is valid, different participants should differ on the pro-
cess variables. The process measurements are consistent with this expec-
tation, especially under high time pressure. Participants assigned to LEX
looked up, on average, less information. They also showed higher selectiv-
ity in their information search. For instance, they showed a higher correla-
tion between the time spent on each cue and the validities of the cues.
However, these differences are small, and some of them are contrary to
expectations, especially under low time pressure.

To sum up, we applied an outcome analysis to find out which of sev-
eral strategies is the most suitable for predicting individuals' choices. We
emphasized an important methodological point: If the alternatives of a
decision task have been chosen randomly, it is likely that different strate-
gies perform about equally well in predicting the choices of the partici-
pants. If two strategies always predict identical choices, it is impossible
using outcome analysis to determine which strategy was used by an indi-
vidual. As Wallsten (1980) pointed out, a good fit between a model and a
decision does not necessarily mean that the cognitive process behind the
decision adhered to that model. Even if a model can predict an individu-
al's choices, it is not certain that the individual used that model as a strat-
egy to make his or her decisions, and the process underlying a decision
can remain unclear (Luce, 1995). One way of tackling this problem is to
construct an item set with a low overlap between the strategies' predic-
tions. We followed this procedure in our experiment, and it enabled us to
identify two heuristics—LEX and Weighted Pros—as the most accurate
models of the participants' strategies.



Table 7-4: Process Measurements for Participants Who Were Assigned to Either the LEX or Weighted Pros Strategy, Under Low
and High Time Pressure (Selected Data Set)

Outcome

Low Time Pressure

Process Variables

Number of opened information boxes
Average time a box was open
Proportion of time spent on the most important cue
Standard deviation of the proportion of time spent on the alternatives
Standard deviation of the proportion of time spent on the cues
Pattern
Correlation between time spent on each cue and cue validities

LEX
(n = 14)*

32.9 boxes
0.45 seconds

20%
sd = 0.12
sd = 0.08

-0.38
r=0.70

Weighted Pros
(n = 18)

33.3 boxes
0.35 seconds

21%
sd = 0.12
sd = 0.07

-0.01
r=0.73

Analysis

High Time Pressure

LEX
(77 = 18)

18.5 boxes
0.32 seconds

28%
sd = 0.13
sd = 0.11

-0.53
r=0.91

Weighted Pros
(n = 7)

20.5 boxes
0.28 seconds

23%
sd = 0.10
sd=0.09

-0.13
r = 0.80

*E.g., 14 participants were assigned to LEX under low time pressure.
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When Do People Use Simple Heuristics?

Mr. K., who has become fascinated by decision-making research in general
and simple decision heuristics in particular, broadens his initial question.
He now wonders what conditions lead to more frequent use of simple
heuristics. As we have shown, one such condition is time pressure. What
can we predict with respect to time pressure, and what do we know from
other studies?

It can be assumed that people react to time constraints either by apply-
ing the same decision strategy more quickly by considering the informa-
tion faster, or by shifting their strategy (e.g., by cutting the information
search short or by using a totally different strategy), in order to conduct a
more selective information search. The first reaction leads to accelerated
information acquisition. Many studies have demonstrated such an accel-
eration under time pressure (Ben Zur & Breznitz, 1981; Edland, 1994;
Kerstholt, 1995; Payne et al., 1988); the evidence usually consists of a
larger amount of information being acquired in the same period of time.
There is also evidence for the second reaction, shifting the decision strat-
egy. For instance, some authors have demonstrated an increased attention
to the more important attributes, and hence higher selectivity in informa-
tion search (Ben Zur & Breznitz, 1981; Bockenholt & Kroeger, 1993; Kers-
tholt, 1995; Payne et al., 1988; Wallsten & Barton, 1982). Others have
shown that individuals under high time pressure employ a more cue-wise
information search (Maule, 1994; Payne et al., 1988). In a study by Edland
(1994), people responded to time constraints by more frequently using
simple decision strategies. In a study by Payne, Bettman, and Luce (1996),
the effect of time pressure was investigated with the additional aspect of
opportunity costs. The authors address the question of whether people
change their strategy when delay in making a decision leads to decrement
in a benefit. Participants' reactions to opportunity cost were similar to the
reactions to time pressure, resulting in the use of simpler strategies. For
an overview of research on the effect of time pressure on judgment and
decision making, see Svenson and Maule (1993).

What other conditions foster more frequent use of simple decision
strategies? Most studies on strategies are concerned with the influence of
task characteristics (for a discussion see Einhorn, 1970). One important
characteristic is the type of decision task, such as choice versus judgment.
Judgments often require an estimation of a particular value. Several au-
thors assume that the use of noncompensatory heuristics is more frequent
for choice tasks (Billings & Marcus, 1983; Hertwig & Chase, 1998; Mont-
gomery et al., 1990). Westenberg and Koele (1992) found that information
search differs for choice and for ranking tasks and concluded that non-
compensatory heuristics are more often used for choice tasks.

It is important to interpret the results of a particular decision task in
relation to the type of the task. While outcome-oriented studies mainly
require judgments, the process-oriented approach usually studies choices.
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In a review of 45 process-oriented studies, Ford et al. (1989) found that
35 of the studies used a choice task, while a judgment was required in
only 7 of them. Three of the studies used both choices and judgments.
The divergent results of outcome- and process-oriented approaches in the
literature may reflect this asymmetry.

What role does the number of alternatives and cues play? With more
alternatives and cues, the complexity of the decision task probably in-
creases. Ford et al. (1989) concluded that higher task complexity leads to
more selective information search. A number of authors have shown that
the use of simple, noncompensatory strategies increases when the number
of alternatives increases (Billings & Marcus, 1983; Johnson & Meyer, 1984;
Payne, 1976; Timmermans, 1993). Likewise, an increase in the number of
cues leads to reduced information search (Shields, 1983). However, Payne
(1976) found no evidence for a shift from compensatory to noncompensa-
tory strategies when the number of cues increased, suggesting that its in-
fluence is less clear.

Does the range of the cue values, the correlation between the cues, and
the different variability of the cue weights matter? A narrow range of cue
values can lead to a higher subjective weight of that cue for a judgment
than a wide range (Mellers & Cooke, 1994). Negative intercue correlation
impels people to devote more effort to the task and to show less selective
and more alternative-wise information search (Bettman et al., 1993). Un-
der the condition of high variability of cue weights, people tend to use a
more selective and cue-wise information search (Payne et al., 1988).

Social context can also influence the use of decision strategies. One
important context characteristic is accountability, that is, pressure to jus-
tify one's view to others. Tetlock (1983) hypothesized that people who are
accountable for their decisions try to achieve greater accuracy or better
decision quality, unless they can avoid the increased effort of a more accu-
rate decision by adapting the decision to others' expectations. This hy-
pothesis is grounded in the assumption that people expect to make more
accurate decisions with strategies that require more effort. Indeed, McAl-
lister, Mitchell, and Beach (1979) demonstrated that participants who
have to account for their decisions more frequently select strategies that
require considerable effort but offer a higher probability of a correct deci-
sion. The same result was found for the effect of the importance of the
decision task. In a study by Billings and Scherer (1988), participants re-
sponded to the greater importance of a task with increased information
search, although this effect was found for a choice task but not for a judg-
ment task.

The main individual characteristics that are reported to influence deci-
sion strategies are knowledge and experience, emotional and motivational
factors, cognitive abilities, and gender. In a broader context, Shanteau
(1988) summarized how experts' decision strategies differ from those of
novices. Experts adjust their initial decisions more often, and they try to
learn from the successes and failures of earlier decisions; they accept
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small errors but avoid large mistakes. Shanteau (1992) argued that the
amount of information used is not connected with expertise. The assump-
tion that experts make better judgments because they use more informa-
tion does not appear to be true. Instead Shanteau assumed that the differ-
ence between novices and experts is the ability to discriminate between
relevant and irrelevant cues. Experts seem to use the same number of cues
but are more likely to use cues that are more useful for making appropriate
decisions. Klayman (1985) examined the influence of cognitive capacity.
He showed that children with high cognitive capacity acquire more infor-
mation for important decisions where several alternatives are available.

What We Have Learned

This chapter has had two goals. The first was to examine the question of
whether people use simple heuristics; the second was to discuss two pos-
sible approaches to identifying these strategies: process analysis and out-
come analysis. Both approaches are useful for investigating decision mak-
ing. Although neither of them is sufficient on its own to gain a precise
view of people's decision strategies, the use of both approaches can in-
crease the psychological insight into the decision process.

The process-oriented approach monitors the predecisional information
search and records the length of time people spend examining particular
pieces of information. The experiment reported in this chapter showed
that this method indeed captures some aspects of the decision process.
Most participants used a cue-wise information search to acquire informa-
tion. Their attention in both low and high time-pressure conditions was
focused on important cues. The time spent on each cue was highly corre-
lated with the validities of the cues, particularly under high time pressure.
These results lent support to the hypothesis that participants use noncom-
pensatory heuristics. However, process data cannot identify which partic-
ular heuristic is the most adequate decision model; the noncompensatory
heuristics we tested differ only slightly with respect to their expected in-
formation search and attention to particular information.

The main idea of the outcome-oriented approach is to build decision
models that predict the choices of individuals. Usually linear models are
used, although this approach is not restricted to such models. In our ex-
periment we used various additional strategies to predict participants'
choices. For a representative item set it was difficult to assign one particu-
lar strategy to an individual, due to the high overlap in predictions among
the strategies. The heuristics that were best at modeling the choices in the
selected item set, where this overlap problem was reduced, were
Weighted Pros under low time pressure and LEX, a generalization of Take
The Best, under high time pressure. This leads to the important interpreta-
tion that people change their decision strategy under severe time con-
straints, a result that was confirmed by process analysis.
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Both Weighted Pros and LEX use the cues one after the other (cue-wise
search) to compare the alternatives. Moreover, both only examine whether
one alternative has a higher cue value than the other alternatives; the ab-
solute difference between the cue values is ignored. These heuristics are
therefore very sensitive to differences between cue values. However,
whereas LEX is noncompensatory, Weighted Pros is compensatory, be-
cause it integrates information. On the other hand, compensation oc-
curred less frequently with Weighted Pros than with Franklin's rule.

Keeping in mind that heuristics are only models of actual reasoning,
we have presented evidence that heuristics with a cue-wise information
search can describe individuals' decision strategies for choice tasks. Indi-
viduals seem to use a fast and frugal noncompensatory strategy (LEX) with
a simple stopping rule. Although under particular conditions there has
also been evidence for a strategy that integrates information (Weighted
Pros), this integration is based on only a subset of the information avail-
able. This is in line with Shepard (1967a), who argued that people seldom
consider more than one or two factors at any one time, although they feel
that they can take a host of factors into account. Consistent with other
research (Simon, 1990), our participants avoided strategies that use all
available information and require a great deal of computation. Even if peo-
ple use a large amount of information and do integrate it, they seem to
use simple cognitive operations. Taken together, the results reported in
this chapter strongly indicate that people indeed use smart and simple
decision strategies.
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8

Bayesian Benchmarks for Fast and
Frugal Heuristics

Laura Martignon
Kathryn Blackmond Laskey

When your Daemon is in charge, do not try to think con-
sciously.

Rudyard Kipling

I his chapter is devoted to the demonic beauty of Bayesian models for
inference. First, we describe the changing relationship between Bayesian
models and theories of human reasoning during the past three centuries.
Second, we describe the Bayesian paradigm. Third, we propose three
Bayesian models as competitors of both the less demonic linear regression
model and the all-too-innocent Take The Best. We then discuss the subtle
issue of how to measure the complexity of the inference strategies treated
in this book, and the role of Bayesian models as benchmarks for fast and
frugal heuristics. Throughout this chapter, we address the general ques-
tion: What is the proper role of probability theory in the psychology of
fast and frugal heuristics?

The Laws of Probability and the Laws of Reasoning

The first chapter of this book sketched the probabilistic revolution in
Western thought and the ups and downs of the belief in probability as
the cornerstone of reason. The identification of the rational ideal with
probabilistic reasoning was first articulated during the Enlightenment, a
time of heady enthusiasm for reason's potential to liberate humankind
from the shackles of dogma and superstition. The Enlightenment thinkers
saw themselves as discovering and formalizing fundamental laws of hu-

169
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man reasoning. They viewed probability—an extension of the logical cal-
culus—as the calculus of reason and an essential cornerstone of rational
choice. The laws of probability were viewed not just as normative, but
also as descriptive of enlightened human thinking. L'homme eclaire, that
is, the enlightened man (Daston, 1988), if not the man on the street,
would, according to Laplace, reason by means of the probability calculus.
The formal edifice of probability and decision theory erected by Thomas
Bayes, Jakob and Nikolas Bernoulli, Pierre Simon de Laplace, and others,
became the paradigm of human rationality. Yet the identification of the
laws of human reasoning with those of probability did not last.

After the horrors of the French Revolution, which some viewed as a
consequence of excessive rationality, probability theory ceased to be seen
as common sense reduced to a calculus. The focus slowly shifted, and
probability theory became another mathematical tool of the natural sci-
ences. From the middle of the nineteenth century, probability gradually
gained ground in physical theories. It first appeared in the theory of heat.
In 1871, Ludwig Boltzmann (1909/1968) interpreted the irreversibility of
thermal processes as the tendency of molecules to evenly distribute their
energies, and his calculations relied on probability theory. In 1900, Max
Planck invoked probability in his theory of radiation (Planck, 1958). With
the further development of quantum theory, probability invaded atomic
theory. The emergence of quantum mechanics was crucial to the probabi-
listic revolution (Krtiger et al., 1987), when the deterministic view of na-
ture, held by Isaac Newton, Rene Descartes, and Laplace, gave way to a
probabilistic one.

As a description of human reasoning, probability had been rejected
from the early nineteenth century onward, but except for some inveterate
rationalists, this rejection only continued in the first half of the twentith
century. The frequentist school of probability (Mises, 1957) attempted to
put probability on a firm foundation as an objective, measurable property
of random, repeatable events. It was not until well into the twentith cen-
tury that the notion of probability as a calculus of rational deliberation
resurfaced (de Finetti, 1937; Savage, 1954). Yet the attempt to resurrect
the ideal of the rational probabilist was met with skepticism and even
outright hostility. The subjectivity of Savage's theory, which abandoned
the assumption that enlightened individuals with the same knowledge
would necessarily agree on the "correct" probabilities, was unsettling to
scientists trained to search for objectively verifiable truths about nature.
Modern experimental psychology opened up another front in the war
against the view of the rational human as probabilist, in a flurry of work
documenting the ways in which actual human reasoning differs from the
probabilistic norm. These deviations were regarded by many as cognitive
illusions, as proof that unaided human reasoning is riddled with fallacies
(e.g., Tversky & Kahneman, 1974).

However, it soon turned out that ordinary people's Bayesian reasoning
can be improved and cognitive illusions reduced when information is pre-
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sented in frequency formats (Gigerenzer & Hoffrage, 1995). Yet, if there
are many cues, applying the probabilistic (i.e., Bayesian) norm may not
be feasible if the person making decisions does not have a calculator to
hand. As the number of cues increases, the probabilistic paradigm based
on Bayes's theorem soon becomes intractable even with a computer. It
was the intractability of probabilistic strategies that created the most seri-
ous roadblock to their acceptance as models of human cognition and ma-
chine intelligence.

The heuristics used by humans, as we argue in this book, are adaptive
strategies that have evolved in response to the need to draw inferences
and make decisions with bounded knowledge and limited time. Cognitive
resources being limited, good reasoning relies on a toolbox of ecologically
rational fast and frugal strategies. The general, abstract methodologies sci-
entists have developed as tools for inference probably have little in com-
mon with the psychologically plausible process of inference in human
choice and decision making in everyday life.

Does this mean that formal theories of probabilistic rationality have
become irrelevant and their study should be abandoned? There was defi-
nitely a time when it appeared that not only cognitive psychology, but
also artificial intelligence and machine learning were moving in that di-
rection. In the 1980s, Rivest (1987) had a major impact on artificial intelli-
gence by introducing his decision lists, which are closely related to heu-
ristics such as Take The Best and have become central to theoretical
computer science. A few years later, Holte showed that very simple classi-
fication rules, even simpler than Take The Best, perform excellently
(Holte, 1993).

But probabilistic inference has been enjoying a resurgence in recent
years, albeit in a more limited, humble, and we believe, appropriate role.
In spite of prophecies of the demise of probability, in spite of the assump-
tion that computational intractability would doom probabilistic inference
to become a theoretical oddity with little application to practical reason-
ing, there has been an unexpectedly vigorous renaissance in the last dec-
ade. The rapid and exuberant growth of Bayesian models and Bayesian
techniques for inference, parameter learning, and even structure learning
have caused enthusiasts to go so far as to declare that the twenty-first
century will be the century of Bayes. Ward Edwards, one of the chief pro-
ponents of Bayesian decision making, is preparing a celebration in Lon-
don, gathering all Bayesians around Bayes's tomb in the year 2001.

In the spirit of the recent resurgence of the probabilistic approach, this
chapter explores the appropriate use of probability theory by cognitive
scientists who promote fast and frugal heuristics. When performing a
comparison, estimation, or categorization task, even the most committed
Bayesian, if faced with computational constraints, will accept a fast and
frugal strategy as a shortcut or approximation whenever it is certain that
the loss in performance is not dramatic. The principles of decision theory
(Clemen, 1996) dictate balancing the cost of computation against the accu-
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racy gain. At the other end of the spectrum, even the strongest advocate
of the bounded rationality approach can see the value of the Bayesian
paradigm because it provides the best available benchmarks for evaluating
the performance of fast and frugal heuristics. Thus at the meta level of
algorithm evaluation, the Bayesian and the fast and frugal views meet in
peace, each with different, yet compatible, objectives and expectations.
The proponent of bounded rationality needs the help of the demon to
provide a standard of comparison against which to evaluate the quality of
fast and frugal heuristics.

Bayesian Demons

Chapter 1 distinguished between two visions of reasonableness: models
of demons and models of bounded rationality. Demons do not have the
infallible, universal knowledge of the superintelligence imagined by La-
place. Yet they behave like computationally unconstrained agents who
throw frugality to the winds and are willing and able to apply the entire
arsenal of lengthy deliberation and modern computing power to the prob-
lem at hand. Among the demons contemplated in this book, Bayesian
models are the wildest type. They are the least frugal and definitely the
slowest of the models we have considered. Yet—from the point of view
of performance, theoretical consistency, and transparency—they are the
most fascinating demons.

Previous chapters have shown that a simple fast and frugal heuristic
such as Take The Best matches and often even outperforms tame versions
of demons such as multiple regression. The strong performance of Take
The Best occurs both within training samples and in generalizations to
test samples. The aim of this chapter is to compare the performance of
Bayesian demons with that of Take The Best. We examine first the un-
bounded Bayesian demon, whose capacities are beyond our reach, and
then three workable Bayesian models: profile memorization, naive Bayes,
and a special Bayesian network recently developed by Friedman.

Bayesian models start with a prior distribution for the relationship be-
tween cues and criterion, use the training sample to update the prior dis-
tribution and obtain a posterior distribution, and then apply this posterior
distribution to evaluate the test set. The least frugal demon is a fully un-
bounded Bayesian strategy. The unbounded Bayesian demon is not sure
which class of models—regression, logistic regression, CART, Bayesian
network, or other—applies to a problem. Anything this demon is uncer-
tain about is assigned a prior distribution, so a prior distribution is de-
fined over the model classes. The next level of uncertainty applies to
structural assumptions within a class of models—which regressors to in-
clude in the regression equation, where to make the splits in the classifica-
tion tree, what arcs belong in the Bayesian network. Again, the demon
assigns a prior distribution to these uncertainties. Finally, it assigns a
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prior distribution to the parameters for a given structure—regression
weights, criterion probabilites at the leaf nodes of the classification tree,
local conditional tables in the Bayesian network. Thus, this demon carries
a staggering number of possible models. Each is assigned a prior probabil-
ity, and each is updated to obtain a posterior probability. The final judg-
ment is based on a weighted average of the conclusion of each of the mod-
els, where each model is weighted by its posterior probability. Clearly,
the task faced by such a demon is far too daunting for even the fastest
computers.

Profile Memorization Method

The first class of Bayesian models that actually can be applied to the real-
world environments studied in chapter 5 is the profile memorization
method. This is limited to situations where training and test sets coincide,
where the goal is to fit a training sample and not to extrapolate to cases
not yet seen. The method is to memorize every cue profile and its corre-
sponding criterion value. For each pair of profiles the method will choose
the one for which the memorized criterion is larger. If there are several
pairs of objects with the same pair of cue profiles, the profile memoriza-
tion method looks at all the pairs and determines the frequency with
which an object with the first cue profile scores higher on the considered
criterion than the object with the second profile. This proportion is the
probability that the first object scores higher. If forced to find a determin-
istic answer, the method chooses the object that has the greater probability
of a high value on the criterion. This Bayesian model has a frequentist
attitude! The strategy is optimal from the probabilistic point of view.

The value of the profile memorization method is that it represents the
optimal solution, that is, for a given data set it reaches the maximum per-
formance that can be achieved. But when the training and test sets differ,
that is, when we are generalizing from known to unknown data, there is
no single provably optimal strategy.

In contrast to the profile memorization method, the following two
types of Bayesian models can be used for both fitting and generalization
tasks.

Naive Bayes

Naive Bayes (also known as "idiot Bayes") assumes that cues are indepen-
dent of each other given the criterion. Naive Bayes is a special case of the
more general class of Bayesian networks (Pearl, 1988). Let us explain how
naive Bayes is applied in the context of the inferential task described in
several other chapters, that is, to identify which of two objects has the
larger criterion value, when presented with a set of cues related to the
criterion. We assume a population of objects, each characterized by a cri-
terion value and a set of M cues. The cues are assumed to take on one of
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two values (1 and 0). The criterion values are ordered either cardinally or
ordinally.

Let us consider how a Bayesian network for this task could be con-
structed. Consider a population of objects. Each object is defined by a
criterion value X, and a set of M cues, C1, . . . , CM. Suppose a and b are
two objects chosen at random from this set, with criterion values Xa and
Xb, and cue values C;(a), Cj(b), respectively, where j lies between 1 and M.
The task is to infer from the cue profiles (C1(a), . . . , Cm(a)) and (C1(b), . . . ,
C]m(b))» whether Xa is larger or smaller than Xb. That is, the objective is to
infer

which is the probability of a scoring higher than b on the criterion X,
given the cue profiles of a and b.

As a concrete example let us discuss the task investigated in chapter 4,
where pairs of German cities were compared to determine which one had
a larger population. There were nine cues: "Is the city the national capi-
tal?" (NC); "Is the city a state capital?" (SC); "Does the city have a soccer
team in the major national league?" (SO); "Was the city once an exposi-
tion site?" (EX); "Is the city on the intercity train line?" (IT); "Is the abbre-
viation of the city on license plates only one letter long?" (LP); "Is the city
home to a university?" (UN); "Is the city in the industrial belt?" (IB); "Is
the city in former West Germany?" (WG).

Figure 8-1 shows one possible Bayesian network for the task of compar-
ing two German cities to determine which is larger. A Bayesian network
is a graphical representation of a probabilistic model of the relationships
among a set of variables. Each node in the network represents a variable,
taking values in a set of mutually exclusive possibilities. For instance, a

Figure 8-1: Naive Bayes network for comparing the sizes of German cities
on the basis of nine cues.
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city may or may not have an intercity train, and exactly one of these has
to be true. The Bayesian network in figure 8-1 has 10 variables: one for
the criterion and one for each of the nine cues. The criterion variable can
take on two possible values: that the first city a is larger or that the second
city b is larger. Each cue variable can take on four possible values:

• (0,0) Both cities have value 0 on the cue
• (1,0) City a has value 1 on the cue; city b has value 0
• (0,1) City a has value 0 on the cue; city b has value 1
• (1,1) Both cities have value 1 on the cue

Variables in a Bayesian network are represented by nodes connected
by directed arcs (or arrows) that indicate probabilistic dependencies. If an
arrow begins in node g and ends at node h, g is called a parent of h and
h is called a child of g. A node / is called a descendant of g if there is a
direct path of arrows connecting g to /. One can say that each variable is
independent of its nondescendants if its parents are known, that is, the
value of a variable is independent of the values of all nondescendant vari-
ables, given that one knows the values of the parent variables. Thus, in
figure 8-1, all cues depend on the criterion variable, but conditional on
the criterion variable, cues are independent of each other. For example,
the probability that a city is a state capital (SC) or has a soccer team (SO)
depends on the population size criterion (in this case, the probability is
higher for the larger city). However, if we know which of the two cities is
the larger, then in the network in figure 8-1, there is no relationship be-
tween whether it is a state capital and whether it has a soccer team.

The model of figure 8-1 is an example of naive Bayes. This particular
network is the simplest Bayesian network relating these nine cues to all
nine criteria. There is empirical evidence suggesting that people act as
naive Bayesians, in that they tend to assume the independence of different
pieces of evidence (Waldmann & Martignon, 1998) until they have evi-
dence of interactions. However, people are poor at the quantitative estima-
tion of conditional probabilities with two or more cues.

To form a complete probability model for the network in figure 8-1,
one must specify 10 local probability tables (LPTs), one for each variable.
Each LPT is a set of probability distributions: one distribution for the vari-
able given each possible value of its parent variable(s). In figure 8-1, we
need to specify a probability distribution for the criterion variable and
two probability distributions for each cue: one for the case that the first
city is larger and one for the case that the second city is larger. The distri-
bution for the criterion is straightforward: If pairs are to be chosen at ran-
dom then there is a 50% chance that the first city will be the larger one.
To compute LPTs for the cues given the criterion, we use the training
sample to update a uniform prior distribution (Cooper & Herskovits,
1992). This method is essentially the same as using sample frequencies
when the sample size is large, but is more robust for small sample sizes.

Now, after training is done, suppose a pair of cities with a given cue
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profile is observed. The problem is to compute the conditional distribu-
tion on the criterion variable given these cue values. That is, we wish to
compute the probability as in Equation 1. In general, this computation can
be carried out by entering the network into any of a number of Bayesian
network software packages, declaring the observed cue values as evi-
dence, and querying the posterior distribution for the criterion node. For
the naive Bayes network of figure 8-1, there is a simple expression for
computing the probability distribution of the posterior distribution for the
criterion variable:

where a is a normalizing constant chosen to ensure that the probabilities
add up to 1. Here we have merely used Bayes's inversion rule, assuming
all cues are independent of each other given the criterion as dictated by
our naive Bayes network. Since Prob(XQ > Xb \ C,(a),C,(b)) is the ecological
validity (see chapter 6) v, of C, if C,(a) = 1, C/(b) = 0 and 1 - vt if C,(a) = 0,
Ci(b) = 1, it turns out that in the case of naive Bayes the probabilities be-
come simple expressions involving exclusively the validities of the cues.

A Savvy Bayesian Network

Naive Bayes has something in common with Take The Best and Dawes's
rule (see chapter 6): It "bets" on the structure of the environment. It
blindly assumes that cues are conditionally independent. If there are
strong dependencies between cues given the criterion, naive Bayes may
lose in accuracy. Our aim is now to extract information on cue-condi-
tional interdependences from the data. We apply an approach of learning
Bayesian networks, from data originally developed by Cooper and Her-
skovits (1992), of which a more efficient version was developed by Fried-
man and Goldszmit (1996). These algorithms, although far simpler than
the unbounded Bayesian demon described above, are more complex, more
expressive, and potentially more accurate than the other demons we have
considered.

A more general Bayesian network (see, for example, the network of
figure 8-2) may contain more-,complex dependencies among the nodes.
The more highly connected the network, the more complex the depen-
dency structure it can represent. More complex networks in general re-
quire more complex computations for computing the conditional distribu-
tion of one node given others. More complex networks also have larger
LPTs, and therefore require more data to obtain reliable estimates of the
probability tables. In the extreme of a fully connected network with an
arc between every pair of nodes, computing Equation (1) amounts to
applying the profile memorization method, which will result in poor esti-
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Figure 8-2: Full Bayes network for the German city data. The Markov
blanket of the Size node in this network (obtained by Friedman's search
method) includes all other nodes with the exception of LP and WG, which
become irrelevant to computing city size, given the other cues.

mates of probabilities unless the sample size is large enough that there are
many observations for each cue profile. In general, accurate estimation of
the probability tables requires samples with many observations. Thus for
this type of inference problem there is a trade-off: greater generality of
representation (i.e., greater number of links between nodes representing
possible dependencies) versus computational tractability and robust infer-
ence with smaller sample sizes.

Of course, some dependencies are stronger, and therefore more impor-
tant to include, than others. Ignoring the weaker dependencies may help
to avoid overfitting. As discussed more fully in chapter 6, the term "over-
fitting" describes a general phenomenon that occurs when fitting a model
for generalization: One may fit many more parameters than are required
to capture the inherent structure of the data. The excess parameters fit
the noise rather than the structure, and can cause poor performance on
previously unseen data. The Bayesian needs a way to decide which de-
pendencies to include and which to ignore. Methods have been developed
by the artificial intelligence and statistics communities for searching
through a large space of possible Bayesian networks to find one that is a
good model, that is, one capturing the relevant, strong probabilistic de-
pendencies among objects of the training set.

One class of search methods views the problem of finding a good
Bayesian network as a problem in Bayesian inference (Cooper & Hersko-
vits, 1992). This approach identifies networks in which variables are con-
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nected. Weak dependencies tend to be ignored because of the "natural
Occam's Razor" associated with Bayesian model selection (Kass & Raftery,
1995). The prior distribution amounts to a bias toward frugality, in that a
more complex model will achieve a higher posterior probability than a
simpler model only when the improvement in performance is unlikely to
be due to chance alone. These Bayesian search methods find a "good"
network and then determine the conditional probabilities associated with
the links in the network. In other words, they are methods for learning
both structure and parameters.

We applied a Bayesian network search algorithm developed by Fried-
man and Goldszmit (1996) to the comparison task presented in previous
chapters for the 20 data sets discussed in chapter 5. This algorithm ex-
tends the approach of Cooper and Herskovits (1992) to exploit not only
the global structure of a Bayesian network, but also local structure (called
asymmetric independencies) within LPTs, thus increasing efficiency of
learning (i.e., permitting more complex global structures to be learned
with smaller sample sizes). Figure 8-2 shows the network obtained with
Friedman's search method, for the task of comparing German cities ac-
cording to their population size.

To use the network of figure 8-2 to infer which city is larger given
the cue values requires solving Equation (1). There are standard software
packages to do this. But it is useful to note that in the case in which all
cues are known, Equation (1) can be solved with the following:

Theorem (Pearl, 1988): The conditional probability of a node j being
in a certain state given knowledge on the state of all other nodes in
the network, is the product of the conditional probability of the
node given its parents multiplied by the conditional probability of
each one of its children given its parents, where all this is multi-
plied by a normalizing constant.

In symbols:

Prob(node j | all other nodes)
= a x Prob(node / | parents of;')

where a is the normalizing constant.
The set—consisting of a node, its parents, its children, and the other

parents of its children—is called the Markov blanket of that node. What
the theorem states is that a node's probability depends on all other nodes
in the network only through its Markov blanket. Given its Markov blanket,
it is independent of all other nodes in the network.

Figure 8-2 shows the Markov blanket of the node Size, which repre-
sents the criterion variable for the German cities task. This node has two
possible states: "city a has more inhabitants than city b" and "city b has
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more inhabitants than city a." The Markov blanket of this node consists
of all cues except license plate (LP) and West Germany (WG), which are
neither parents, nor children, nor parents of children, of node Size. This
means that these two cues are irrelevant to the criterion when the other
seven cue values are known. To compute the probability distribution for
the criterion node, we use the theorem presented in Equation (3).

where a is a constant chosen so that the probability of the two states of
the size variable add up to 1.

The probabilities on the right-hand side of Equation (4) are taken from
the LPTs of the network of figure 8-2. This represents an enormous com-
putational reduction in the calculation of probability distributions. There
are 219 probabilities to estimate for a general probability distribution, one
for each combination of cue/criterion values. The complexity is far less
when the conditional independencies are taken into account. The proba-
bility distribution for Size given the cues is the product of three factors,
one for each of the LPTs that mentions the Size variable. Each of these
has 27 entries, so 3 x 27 probabilities must be estimated for the task of
inferring the probability for Size given its Markov blanket. The more con-
ditional independence, the greater the potential reduction in the number
of probabilities to be computed. It is precisely this kind of reduction in
computational complexity that has led to the popularity of Bayesian net-
works in both statistics and artificial intelligence in the last decade.

The number of probabilities to be estimated is still exponential in the
number of parents per node, because each node stores a probability distri-
bution for each combination of values for its parents. Again, the complex-
ity of the problem may be reduced by making structural assumptions con-
straining the probabilities. The algorithm we applied uses a decision tree
to estimate the local probability tables. The decision tree greatly reduces
the number of computations. Here the problem of finding a good tree was
solved with the same type of approach used to determine the network
describing dependencies between cues, described above.

Figure 8-3 illustrates the decision tree produced by the program for
Prob(Size | SO,EX,SC). The probability distribution for the Size variable
is obtained by tracing the arcs of this tree. From figure 8-3 we see that the
first step is to check the exposition (EX) cue. If neither city is an exposi-
tion site, the probability is determined by whether the city has a soccer
team (SO), and the state capital (SC) cue is irrelevant. Conversely, when
one or both cities are exposition sites, then the probability distribution is
determined by the state capital (SC) cue, and the soccer team (SO) cue is
irrelevant. Thus, instead of requiring 27 = 128 probability distributions for
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Figure 8-3: Tree for computing the local probability table for the Size
node of figure 8-2. For instance, if neither of the two cities a and b is an
exposition site (symbolized by the two zeros in the left branch), then the
only relevant cue is SO, that is, whether a city has a soccer team in the
major league (cue SC is irrelevant). If a has a soccer team but b does not
("1" for a and "0" for 6) then Prob(XQ > Xb I SO.EX.SC) = .88.

the Size node, the decision tree representation of figure 8-3 requires only
24 = 16.

To summarize, the method we used to find a probability model for the
relationship between cue and criterion involves:

1. Searching over a large space of directed graphs representing
Bayesian networks on cue and criterion variables

2. Searching over decision-tree models for the within-node LPT
structure

3. Estimating probability distributions for LPTs
4. Computing the posterior distribution of the criterion variable

given cue values using Equation (4)

This method is much more computationally intensive than multiple
regression, not to mention Take The Best. In fact, the complexity of
searching the entire space of Bayesian networks and within-node decision
trees—computed in terms of elementary operations as a function of M
cues and N objects—contains an exponential term in M. This space is far
too large to search exhaustively even for a relatively small problem such
as predicting the population sizes of German cities. Thus, the demon actu-
ally makes use of heuristic search. We have also unabashedly used the
highest-probability network identified by the algorithm (such as the one
for the cities data reproduced in figure 8-2), rather than, in true demonic
fashion, trying to compute the full posterior distribution for the criterion
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variable. The full posterior distribution is an average in which the result
given by each network is weighed by its posterior probability—clearly an
infeasible calculation.

The Competition

Can the performance of the fast and frugal Take The Best ever come close
to that of a demon, the Bayesian network? We tested the performance of
four competitors—Take The Best, naive Bayes, Bayesian network, and
multiple regression—for two tasks: fitting given data (training set is equal
to test set) and generalization to new data (training set is not equal to test
set, i.e., cross-validation). In the generalization task, 50% of the objects in
the data set were chosen at random 10,000 times and the model obtained
on the training set was then tested on the remaining 50%. These two tasks
correspond to the two "tours" in chapter 5, and we ran the competition
for the 20 environments used in chapter 5. In addition, the profile memo-
rization method was used to determine the maximum performance when
the test set is the training set. The conditions of the competition were the
same as the two tours in chapter 5.

Each competitor was presented with a training sample to learn about
the relationship between cues and criterion. For example, Take The Best
uses the training sample to learn the ordering of the cue validities. Linear
regression uses the training sample to estimate regression coefficients.
After this opportunity to learn, the competitors are then tested on their
ability to ascertain the ordering of criterion values on a set of test pairs.
The inferences the competitors had to make included the following.
Which of two German cities has the higher population? Which of two U.S.
cities has the higher homelessness rate? Which of two individual Arctic
female char fish produces more eggs? Which of two professors at a mid-
western college has the higher salary? (For a complete description see
chapter 5.)

Consider first the results when inferring city populations (table 8-1).
When performance is tested on the training set (fitting), the accuracy of
Take The Best is only two percentage points lower than that of the Bayes-
ian network. The upper limit of correct inferences is computed by the
profile memorization method as 80%, which is four percentage points
above the performance of the Bayesian network. When the test set is dif-
ferent from the training set, there is no theoretically best solution, but the
competitors can still be compared with each other. In this case, multiple
regression takes a slightly larger cut in performance than Take The Best
and the Bayesian network.

When evaluating homelessness, the Bayesian network performs eight
percentage points better than Take The Best on the training set (table
8-1, "Fitting"). This difference is reduced to two percentage points when
the test set is different from the training set (table 8-1, "Generalization").



Table 8-1: Performance of Different Algorithms in 20 Data Sets

Environment

Ozone in San Francisco
Cow manure
Oxidant
Mortality
House price
Rainfall
Biodiversity
Attractiveness of women
Attractiveness of men
Mammals' sleep
Car accidents
Obesity at age 18
Fuel consumption
Homelessness
Professors' salaries
High school dropout rates
Land rent
City population
Body fat
Fish fertility

Average over the 20 data sets

# Objects

11
14
17
20
22
24
26
30
32
35
37
46
48
50
51
57
58
83

218
395

#Cues

3
6
4

15
10
6
6
3
3
9

13
10
6
6
5

18
4
9

14
3

PM

85
83
93

100
96
71
88
80
75
95
93
70
87
82
87
90
82
80
87
75

85

TTB

84
79
84
77
86
67
84
71
73
78
71
74
78
69
80
65
80
74
59
73

75

Fitting

Reg

85
79
84
83
86
71
80
71
73
79
79
74
79
70
83
72
81
74
61
75

77

Generalization

NB

84
79
84
78
87
68
83
71
73
77
75
77
78
68
80
65
80
74
80
73

77

BN

84
80
84
79
87
68
83
71
73
83
75
79
80
77
84
65
81
76
82
75

79

TTB

79
76
80
62
84
53
80
66
71
75
64
71
73
63
80
60
77
72
56
73

71

Reg

77
72
76
54
68
56
72
67
69
65
64
63
74
62
80
54
80
71
55
75

68

NB

80
78
81
66
86
57
80
68
72
76
71
71
76
64
80
61
77
72
79
74

73

BN

78
79
82
67
86
59
82
59
70
80
71
69
76
65
81
60
78
74
80
75

74

Note. PM = profile memorization, TTB = Take The Best, Reg = Regression, NB = naive Bayes, BN = Bayesian network.
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As a final example, consider predicting which of two professors at a
midwestern college has the higher salary. When the task is fitting known
data, the performance of Take The Best is four percentage points lower
than the Bayesian network. When training and test sets differ, this differ-
ence decreases to one percentage point and Take The Best almost matches
the Bayesian network.

The following observations can be made from examining the results
across different data sets:

1. On average, Take The Best is only four percentage points less
accurate than the Bayesian network when the test set is the same
as the training set (fitting). Take The Best pays only a small price
in accuracy for being fast and frugal.

2. On average, Take The Best is only three percentage points less
accurate than the Bayesian network when the test set is different
from the training set (generalization). The Bayesian network
deals poorly with generalization in small data sets, whereas Take
The Best is fairly robust through all the data sets.

3. Naive Bayes lives up to its reputation of being simple, fast, and
robust. Like Take The Best (see chapter 6), naive Bayes bets on
the structure of the environment: It bets that cues are indepen-
dent conditional on their value on the criterion. The more frugal
Take The Best almost matches naive Bayes on average on the 20
data sets.

The general result is surprising. Simple one-reason decision making, as
employed by Take The Best, is almost as accurate as the computationally
expensive Bayesian network. Even compared to a demon, Take The Best
had to make little trade-off between being fast and frugal, and being accu-
rate.

Complexity: Demons and Heuristics

It is wise to choose an approach to a task by balancing the need for accu-
racy against computational load. We should therefore compare different
algorithms not just on their accuracy, but also the computational load in-
volved in applying them. This computational load includes both the up-
front effort required to learn a model and the run-time effort to apply the
algorithm to specific cases.

We have formulated computational models of fast and frugal heuristics
in the form of step-by-step algorithms, rather than in terms of parallel
processing. Thus, when talking about the complexity of a cognitive algo-
rithm, we are counting operations as they are performed consecutively.
Let us take a look at the sequential complexity of the algorithms treated in
this book from the point of view of computer science, where complexity is
defined in terms of the time required to perform all operations necessary.

Theoretical computer science provides a number of methods for study-
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ing the complexity of algorithms. One possibility is to count the number
of steps in an algorithm and then to express this number as a function of
the parameters involved in the algorithm. One then determines the order
of complexity of this function. One criterion is O( ) (called the Landau
symbol), defined as follows: When we are given two functions F(iV) and
G(N] on the natural numbers, we say that F is of the order of G, and write
F = O(G), if there exists a constant K such that:

for all natural numbers N different from 0. Thus, for instance, the function
F(N) = 3JV+ 1 is of the order of G(A/) = N, but AT3 is not of the order of N2.
O(l) means a constant time that is not a function of N. Every polynomial
in N, that is, a linear combination of powers of N, is of the order of the
highest power of N in it. Since what is being counted is the number of
steps in a sequential process, it is common to view the resulting O( )
criterion as the "time complexity" of the algorithm. Landau's criterion O( )
admits a straightforward generalization when more than one variable is
involved, as is the case in table 8-2. It is usual in computer science to

Table 8-2: Worst-Case Complexity of Algorithms

Algorithm Setup Decision

Bayesian network

Profile memorization
Estimation tree
Naive Bayes
Exemplar model for categori-

zation
Neural network
Multiple regression
Franklin's rule
Dawes's rule
Take The Best

QuickEst

Categorization by Elimination
Minimalist

0(2^) for structure search ^2 ^
O(MJV) for storage O(l)
O(2M) for search O(MogJV)
O(MNlogN) for validities O(M)
O(MN) for storage O(MJV)

0(M3JV) 0(N2)
O(M2JV) O(M)
O(MMogN) O(M)
O(MMogAT) for validities O(M)
O(max(MMogN, MlogM)) for O(M)

validities and cue sorting
O(max(MN\ogN, MlogM)) for O(M)

validities and cue sorting
O(MlogM) for cue sorting O(M)
O(MJVlogAT) for validities O(M)

Note. Here N denotes the number of objects and M the number of cues of a given environ-
ment. Computing the validity of each cue has a complexity of NlogN if one uses Equation
(Ib) of chapter 6. Observe that, because there are usually many more objects than cues (N>
M), logM is usually less than NlogN, so that the setup complexity of Take The Best and
QuickEst is just MMogJV. The profile memorization method is a good example for the differ-
ence between machines and humans: What is of low complexity for a machine can be unat-
tainable for a human mind (here, to memorize all MN cue values), and vice versa. (QuickEst
is described in chapter 10, and Categorization by Elimination in chapter 11.)



BAYESIAN BENCHMARKS FOR FAST AND FRUGAL HEURISTICS 185

consider worst-case complexity, as we shall do here. This provides a
bound on how long an algorithm can take. We note that average-case com-
plexity may be of more interest, but is more difficult to estimate and re-
quires assumptions about the problem set.

For an inference algorithm that operates on a reference class of N ob-
jects and M cues, the order of the number of operations performed will
depend on both parameters.

An intuitive way to determine the O( ) complexity of an algorithm is
to ask how many times each input element must be manipulated during
the course of the algorithm's execution. If, for example, each of the N
elements needs to be seen once, as in the case of finding the mean of a
list of numbers, the time complexity is O(A7). For the setup of Take The
Best, M cues must be sorted according to their validity. Standard com-
puter sorting algorithms require MlogM steps. The actual time spent on
each computation is a constant factor and does not affect the time com-
plexity measure. This constant factor is important in determining practi-
cal performance as well as the problem size at which the "crossover" oc-
curs between two algorithms of different complexity, so as to establish
which would take more time in practice. However, no matter what the
constant factor is, an algorithm of higher time complexity will eventually,
for large enough problems, be slower than one of lower complexity.

Algorithms that have a complexity measure that is the sum of two or
more measures have the time complexity of the larger of the two measures
by definition. As examples, an algorithm that first finds the distances be-
tween every pair of a set of points with a time complexity of O(N2) and
then prints out the list of points with a time complexity of O(N) ends up
having the time complexity of the more expensive part, namely O(AT2).

Algorithms that are considered "simple" fall in the O(N) to O(AT3)
range. For example, finding an item in a list is O(N), the best sorting algo-
rithms are O(AflogN), and performing calculations using all pairs in a list
is O(N2). Unfortunately, there is a large class of problems that require algo-
rithms with the time complexity of O(2N) or even O(NN) for an optimal
solution. Many scheduling and design optimization algorithms fall into
this "exponential" category. These algorithms with a complexity of order
larger than any power of N are clearly of order larger than any polynomial
in N (because, by definition, a polynomial is of the order of its highest
power of N) and are called NP-complete, which means "not (to be) com-
plete^) in polynomial time." In practice, these NP-complete algorithms
are intractable for large Ns. Alternative algorithms that allow a trade-off
of solution quality for time complexity are needed in these cases. The
general problem of Bayesian inference is NP-complete (Cooper, 1990).
That is, when there are no restrictions on the structure of the Bayesian
network, the problem of inferring which criterion is larger given the cue
values is not of polynomial order.

Table 8-2 summarizes time complexity measures for several of the algo-
rithms and heuristics treated in this book. This table is useful for compar-
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ing the worst-case performance of the different algorithms. We have di-
vided the overall time complexity in two phases: one for setup and one
for decision. We note, however, that two algorithms may have the same
worst-case complexity but perform very differently in practice (or vice
versa). We note also that even when claims of cognitive plausibility are
made, as for some of the algorithms studied in this book, the time com-
plexity of a computer implementation may bear little relation to how long
it takes a person to complete the task. What will be clear from our analysis
of worst-case time complexity is that the class of fast and frugal heuristics
proposed in this book deserve to be called fast even in the rigorous frame-
work of worst-case complexity in theoretical computer science.

Conclusions

We think of our lives as consisting of a series of decisions, some large
and significant, others smaller and less significant, but each confined to a
relatively small and restricted domain. Savage (1954, p. 83) reminds us
that in actuality we have but one decision to make: how we shall live our
lives. In other words, we must choose a policy for drawing inferences and
making decisions. All other decisions follow from that.

So how should we choose? Shall we adopt the normative Bayesian ap-
proach to inference and decision making, or shall we stick to simple heu-
ristics such as the fast and frugal ones presented in this book?

This need not be an exclusive either/or decision: Fast and frugal heu-
ristics can have their place in everyday affairs where time is limited and
knowledge is scarce, and Bayesian tools can be the choice of someone
who is in no hurry and has access to a computer (Winterfeldt & Edwards,
1986). Obtaining those extra percentage points of accuracy may be well
worth the computational cost in high-stakes decisions such as those in-
volving human lives or having serious long-term environmental or social
impact. A Bayesian who tries to optimize under constraints must choose
a strategy under a combination of criteria, such as computational cost,
accuracy, and perhaps even transparency. Thus, it may happen that a
Bayesian may choose to apply Take The Best, or another fast and frugal
heuristic, over more expensive Bayesian networks for some classes of
problems. Bayesian reasoning itself may tell us when to choose.

The results reported in this chapter were obtained with real-world
data. However, it is important to note the restricted applicability of our
results. First, we studied situations in which the problem representation
was given to us, and that representation was one of comparison using a
set of cues given a priori. We did not study situations in which the task
is to construct a representation (i.e., to determine the appropriate cues).
A second limit on the applicability of our results is that we studied infer-
ences only under complete knowledge, unlike Gigerenzer and Goldstein
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(1996a; see chapter 4), who studied the performance of heuristics under
limited knowledge. Limited knowledge (e.g., knowing only a fraction of
all cue values) is a realistic condition that applies to many situations in
which predictions must be made. It is important to note that Bayesian
networks can be applied when not all cue values are known. The simple
formula given in Equation (3) must be replaced by a more complex belief
propagation algorithm (Jensen, 1996), but the distribution of the criterion
may be obtained, conditional on whatever cue values are known. Finally,
the Bayesian network model we put forward as a paragon of rationality is
itself only a heuristic approximation to a full Bayesian model. It uses heu-
ristic search rather than enumerating all possible Bayesian networks and
it chooses a single best model rather than averaging over all models with
nonnegligible posterior probability. Moreover, the algorithm assumes the
use of independent observations, and our data does not fulfill this condi-
tion. This is because the data we used consist of pairs of objects, where
each object participates in multiple pairs in the data set, introducing de-
pendency. We used an easily available algorithm that we expected to pro-
vide a good benchmark. More sophisticated Bayesian algorithms will soon
be proliferating in the literature—how will they compare?

In summary, this chapter has argued several related points. First, a ma-
jor, important role for Bayesian models is as a benchmark for evaluating
fast and frugal heuristics. Second, given a heuristic algorithm and a
benchmark algorithm, one can examine the trade-off between computa-
tional cost and accuracy. This enables the development of policies to de-
termine which solution methods are most appropriate for particular
classes of problems. One could even argue for the application of the
Bayesian ideal of rationality at the meta level, at the level of selecting
policies for which approach to use on given classes of problems. There-
fore, a decision-theoretic argument can be developed for the use of fast
and frugal heuristics in place of optimizing strategies in situations in
which computational time and cost are important considerations. In mak-
ing predictions about 20 real-world environments, we found that Take
The Best was almost as accurate as a Bayesian network. The trade-off be-
tween simplicity and accuracy turned out to be almost negligible. Take
The Best is a fast and frugal strategy that is quite useful in situations in
which a few points of accuracy can be sacrificed to save considerable
computational cost.

Appendix

Ward Edwards, who had posed the challenge of comparing Take The Best
with Bayes, had a creative reaction to the results in table 8-1, responding with
the following limerick:
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To Bayes or not to Bayes?
A Limerick

Gerd and his joyful friends all had visions:
Take The Best can make ideal decisions.

"Let us put Take The Best
to a rigorous test

To avoid all collegial derisions."

So they ran Take The Best against Bayes.
Their finding leaves me in a daze.

If you are a go-getter
You know Bayes did better

Because we all know that Bayes pays.

But TTB did quite well too
Although it uses only one cue.

If the felt need to work
Tends to drive you berserk

Bayes and TTB just about drew.

TTB brought straight lines to their knees
And even put Bayes in a squeeze

The moral's quite clear:
You can act without fear,

Guided by whichever you please.

Ward Edwards
September 1997
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Hindsight Bias

A Price Worth Paying for Fast and
Frugal Memory

Ulrich Hoffrage
Ralph Hertwig

Remembering is not the re-excitation of innumerable fixed,
lifeless and fragmentary traces. It is an imaginative recon-
struction, or construction . . .

Sir Frederic Bartlett

Frustration about a fallible memory is familiar to most of us: "But men
are men; the best sometimes forget" (Shakespeare, Othello]. Remembering
past events is not merely retrieving them from storage like books from a
library. Memories can be lost or distorted, and memories for events that
never even happened can be induced (e.g., Loftus, 1997; Schacter, 1995).
Our memory is not like that of a Laplacean demon—we cannot perfectly
recall everything we have ever thought, said, or experienced. Other chap-
ters in this book deal with constraints of limited time and knowledge; in
this chapter we focus on the constraints imposed by the limited capacity
of human memory. How can memory work given its limitations? Our an-
swer is, by reconstruction: When retrieval fails, inferential heuristics are
employed. This answer is by no means new. It was already proposed by
Sir Frederic Bartlett, one of the pioneers of modern memory research. In
his classic Remembering (1932/1995, p. 213), Bartlett proposed that mem-
ory is a process of reconstruction (see—or recall if you can—the epigram
that opened this chapter).

Reconstruction, however, has its price. We focus on one, the well-
known hindsight bias, and propose a computational model for this effect
based on a fast and frugal heuristic. Hindsight bias has often been re-
garded as just another error of human information processing. We argue,
instead, that it is a by-product of two generally adaptive processes: first,
updating knowledge after receiving new information; and second, draw-
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ing fast and frugal inferences from this updated knowledge. Before speci-
fying the model, we illustrate hindsight bias by exploring a topic that con-
cerns every citizen of a modern democracy: public polling and electoral
outcomes.

Public Polling, Elections, and Hindsight Bias

The history of American political polling is closely linked to the name of
George Gallup. Gallup believed that his ideal of direct democracy called
for public information and policy evaluation not filtered through the eco-
nomic elite (Hamilton, 1995). In the early 1930s, he realized his vision
of going directly to the voter by polling for a local election in Iowa
in which his mother was a candidate. Shortly afterward, he began to
apply this technique to predicting election results for dissemination by
the public media. Since Gallup's early polls, polling has "moved to the
epicenter of American campaigns" (Hamilton, 1995). For instance, Gallup
and Harris, giants of the polling industry, attracted Richard Nixon's in-
terest and became prime candidates for attack and manipulation by his
administration (Jacobs & Shapiro, 1996). The acceptance of polling as a
political tool did not go unchallenged. Indeed, it has been contended that
opinion polls do not lead to political responsiveness, but are used by
elites to manufacture the public attitudes they desire (see Jacobs & Sha-
piro, 1996).

The Achilles heel of polling companies is that the public can retrospec-
tively check their predictions' accuracy. This is fine as long as they were
accurate. In fact, for the Gallup company, the 1997 British parliamentary
elections were just such a success story. In a poll sponsored by The Daily
Telegraph, Gallup predicted the results almost perfectly. Based on inter-
views conducted a day before the elections with a randomly selected na-
tional sample of 1,810 citizens eligible to vote, Gallup forecast a 13%
margin of victory for the Labour Party over the Conservative Party. The
actual results of these historic elections, which ended the Conservatives'
18 years in power, put the final difference at 14%.

Such a post hoc reality check can, however, also be highly embarrass-
ing. A famous "miss" by Gallup and others was Truman's victory in the
1948 presidential elections. In those first days of November, 1948, every-
one knew that Thomas Dewey would defeat Harry Truman in the upcom-
ing presidential elections. Pollsters and professional politicians alike pre-
dicted it. Daily newspapers came out eight to one in favor of Dewey. In
its desire to get a scoop, the Chicago Daily Tribune jumped the gun in its
November 4 edition and, relying on the seemingly reasonable predictions
of Gallup and other polling companies, reported that Dewey would be the
next president (Hamilton, 1995). (You may recall the photo of the smiling
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president-elect, Harry Truman, holding aloft the newspaper with the now
famous headline, DEWEY DEFEATS TRUMAN.)

What pollsters would like to do to save face in such situations is to
say: "We knew it all along—that's what we really predicted." But the pub-
lic memory represented in newspapers, videotapes, and other physical
media make this ploy impossible—the pollsters must stand by their past
predictions. Individuals speaking (or just thinking) in everyday life, how-
ever, usually have only their fallible internal memory to go on—and no
external records to embarrass or contradict them. This can lead to situa-
tions in which an individual inaccurately remembers a prediction or state-
ment he or she made in the past. For instance, Uncle Joe might contend
that he knew Truman would win all along, even though he had earlier
believed that Dewey would make it to the White House. This tendency to
believe falsely—after the fact—that one would have predicted the out-
come of an event is known as hindsight bias (for other systematic distor-
tions in reconstructing the past, see Johnson & Sherman, 1990).

Recent laboratory research in psychology shows that hindsight bias is
common in laypeople and experts (e.g., voters, physicians, businesspeo-
ple), and that it is manifest across a variety of judgments (e.g., confidence
judgment, choice, categorization, or quantitative estimation; for a review,
see Hawkins & Hastie, 1990). Not surprisingly, it also occurs in predic-
tions of political election outcomes. For instance, before the 1982 Hawai-
ian gubernatorial election, Synodinos (1986) asked participants in a study
to indicate the probability of each of the canditates winning the election.
After the election, another group of participants was asked to make these
predictions as if they had been asked before the election. As expected,
the participants showed a "knew-it-all-along" tendency: The postelection
probability estimates for the winner were higher than those made before
the election, whereas the postelection estimates for the two losers were
lower than the preelection estimates.

Synodinos (1986) demonstrated the effect of outcome knowledge by
comparing two different groups of participants. Hindsight bias can also be
found within a single participant. Fischhoff and Beyth (1975), for in-
stance, had a group of student participants judge a variety of possible out-
comes of President Nixon's visits to Peking and Moscow before they oc-
curred in 1972. The possible outcomes were presented as assertions, such
as: "The United States will establish a permanent diplomatic mission in
Peking, but not grant diplomatic recognition" and "President Nixon will
meet Mao at least once." Participants rated their confidence in the truth
of the assertions on a 0% to 100% scale. After the visits, the assertions
were repeated, and the participants were asked to recall their original con-
fidence. The participants exhibited hindsight bias: Recalled confidence
for events they thought had happened was higher than original confi-
dence, while recalled confidence for events they thought had not hap-
pened was lower.
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Views of Hindsight Bias

Hindsight bias has been interpreted in various ways. We distinguish two
types of interpretations and add a third one. Fischhoff (1975), whose early
experimental studies carved out this new topic for memory researchers,
stressed that hindsight bias is not only robust and difficult to eliminate
(Fischhoff, 1982a), but also has potentially harmful consequences:

When we attempt to understand past events, we implicitly test the
hypotheses or rules we use both to interpret and to anticipate the
world around us. If, in hindsight, we systematically underestimate
the surprises that the past held and holds for us, we are subjecting
those hypotheses to inordinately weak tests and, presumably, find-
ing little reason to change them. Thus, the very outcome knowledge
which gives us the feeling that we understand what the past was all
about may prevent us from learning anything from it. (Fischhoff,
1982b, p. 343)

Rather than stressing the harmful consequences of hindsight bias, oth-
ers (e.g., Campbell & Tesser, 1983) have pointed out its potentially adap-
tive aspects. Presenting ourselves as wiser after the fact may enable us to
appear intelligent, knowledgeable, or perspicacious. In fact, as long as no
record of our previous judgments is available (which, unlike for pollsters,
is generally the case), the immediate benefits of presenting oneself as
knowledgeable outweigh the unlikely costs of being revealed as an impos-
ter. In addition to hindsight's potential benefits in social interaction, hind-
sight bias may play an important role in creating and maintaining a coher-
ent conception of oneself. Take, for instance, the situation of people who
suddenly find themselves in a society whose value system has completely
changed. The 1990s have seen an unusual number of such rapid societal
transformations, from the fall of the apartheid regime in South Africa to
the end of the socialist regimes in the Soviet Union and East Germany,
among other countries. Many of those who held a responsible position
in the old regimes are now being asked by their families and friends, or
interrogated by official bodies (e.g., the Commission for Truth and Recon-
ciliation in South Africa), to account for their previous behavior. Under
these circumstances, hindsight bias—here the belief that one's past con-
victions and behavior are compatible with what the new regime considers
to be right—can be an effective way of preserving the integrity of one's
personality (and perhaps one's skin).

We propose a third view (which does not exclude the two views out-
lined above). According to this view, hindsight bias is a by-product of an
adaptive process rather than being an adaptation itself (for a general ver-
sion of this argument, see Campbell, 1959). To introduce this view, we
first address the question: What are the alternatives to the assumption that
human memory is unbounded in its capacity?

Consider the following situation. Mr. Loman is a salesman who visits
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his clients by car. Every day, he repeatedly decides where to park his car,
then stores this information in memory, and finally, after completing his
business appointment, retrieves the car's location from memory. He does
this very many times in the course of weeks, months, and years. How
could a memory system be designed that allows Mr. Loman quickly and
reliably to retrieve the knowledge about where he parked his car most
recently? Is a system that maintains access to the knowledge of all past
parking locations efficient? Some current conceptions of human memory
seem to assume that we do in fact keep a record of every discrete event
we have experienced and that, when we retrieve information or classify
an object, we compare a probe with all our existing memory traces. For
instance, exemplar models (e.g., Estes, 1986; Hintzman, 1988; Medin &
Schaffer, 1978; Nosofsky, 1986; Ratcliff, 1978) are based on such an as-
sumption. Although these models have provided impressive accounts of
a wide array of memory phenomena, their psychological plausibility has
been questioned, both for the extensive similarity computation, as well as
for the vast memory resources they require (Nosofsky et al., 1994; see also
chapter 11 for an alternative).

Sharing these doubts, we concur with Anderson and Schooler's (1991)
argument that "it is just too expensive to maintain access to an un-
bounded number of items" (p. 396). In addition, a stockpile of memories
(e.g., the memories of all the previous locations of Mr. Loman's car) may
interfere with the only information that is relevant right now (e.g., where
his car is currently parked). In this sense, forgetting may be necessary for
memory to maintain its function, insofar as it prevents us from using old
and possibly outdated information (Bjork, 1978; Ginzburg et al., 1996). A
well-known phenomenon that reflects the adaptive nature of forgetting is
the Zeigarnic effect. Zeigarnic (1927) showed that memory for tasks that
have been completed declines rapidly compared to those tasks that have
not yet been completed (e.g., a waiter's memory of the amount of the bill,
depending on whether or not the customer has already paid). Thus, forget-
ting should most likely occur once the usefulness of some information has
passed.

An alternative to a memory system that includes an immense, continu-
ously expanding long-term storage is a system that maintains access pri-
marily to the information most likely to be needed and most likely to be
correct. For such a memory system, it is crucial to update information
constantly and automatically. This process would avoid the problems of
an exploding number of items, and the increasing retrieval time required
if memory probes were compared with stored traces in a serial manner. It
would make possible a boundedly rational memory system, which keeps
available only those items that are most likely to be needed. Such a pro-
cess of information updating is consistent with Bartlett's (1932/1995) clas-
sical finding that schemata are constantly changing and being updated.

Besides the fact that for most experiences there is no need for later
recall (Anderson & Schooler, 1991), there is another reason why it is not
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necessary to maintain a memory trace for everything we have thought,
said, or experienced in the past: When something needs to be recalled,
there are alternatives to memory retrieval. For example, imagine that you
own 25 shares of stock in a company, which are listed in the newspaper
as being worth $378.50 each. To calculate their total value, you multiply
25 times 378.5. A couple of days later, you want to know this value again.
Can you remember $9,462.50? Probably not. However, this is not a prob-
lem, because you can compensate for your failure to retrieve it from mem-
ory by performing the same calculation again: Recall can be replaced by
recalculation. We posit that the same sort of recalculation can be done—
and, in fact, is done—when a past judgment, such as the prediction of the
outcome of an election, needs to be recalled. If it cannot be recalled, going
through the same process that led to the original judgment can provide a
good approximation, and perhaps even a perfect substitute. There is, how-
ever, an important difference between a multiplication and a judgment.
Performing arithmetic computations is a technical skill and we are trained
to do it reliably. Therefore, performing the same multiplication a second
time should yield the same result. In contrast, making a judgment often
implies drawing knowledge-based inferences. If knowledge is constantly
updated, as suggested above, inferences based on the updated knowledge
may be different from those based on past knowledge.

Updating knowledge is the key assumption underlying the model of
hindsight bias proposed below. It applies to situations where the original
judgment was a knowledge-based inference. If the attempt to remember
this original judgment directly fails, it will be reconstructed by repeating
the same process that led to this judgment. However, knowledge about
the outcome of an event, or feedback on whether an inference was correct,
leads to an updating of relevant knowledge. As a consequence, the recon-
struction based on the updated knowledge can be systematically different
from the construction based on the original knowledge. This difference is
what is known as hindsight bias. Thus, in our view, the so-called bias is
a by-product of an adaptive process, namely knowledge updating.

Previously, we proposed a model that accounts for a puzzling effect in
research on hindsight bias, namely the observation that hindsight bias is
larger for assertions where the feedback is "true" than for assertions where
the feedback is "false" (Hertwig et al., 1997). That model explained this
finding as a result of the co-occurrence of hindsight bias and the reitera-
tion effect, that is, the phenomenon that mere repetition of an assertion
increases confidence in its correctness. However, that model does not ex-
plain why there is hindsight bias in the first place. The present model
does. Although it is not the only account of hindsight bias where a hind-
sight judgment is seen as a "reconstruction of the prior judgment by 're-
judging' the outcome" (Hawkins & Hastie, 1990, p. 321), it seems fair
to say that ours is the only account that has specified a process model
for knowledge-based inferences. It allows us to explain, at the level of
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individual responses from individual participants, why hindsight bias oc-
curred, did not occur, or even was reversed.

Inferring Past Judgments Fast and Frugally

What processes do people go through when they try to reconstruct their
original judgment? We suggest that asking this question is the same as
asking what processes underlie the original judgment. The theory of prob-
abilistic mental models (PMM theory; Gigerenzer et al., 1991) provides
one answer. The PMM framework applies to tasks in which a choice must
be made between two alternatives according to a quantitative criterion,
together with a judgment of confidence that the chosen alternative is cor-
rect. (In one such task, participants are asked: "Which city has more in-
habitants, Heidelberg or Bonn?" "What is your confidence that the alterna-
tive you have chosen is the correct one?") We now extend the PMM
framework to a context in which feedback about the correct answer is
given, and the mind reconstructs the original response (both the choice
and confidence). We call this model RAFT (for Reconstruction After Feed-
back with Take The Best).

Original Response

A concrete example will help to illustrate the task and the proposed
mechanism: A friend of ours from southern California, Patricia, is trying
to reduce her consumption of cholesterol. However, she has a sweet tooth
and at a restaurant wants to order a dessert, either chocolate fudge cake
or pumpkin custard pie. She asks herself which of the two foods has more
cholesterol (in order to choose the one having less). Because Patricia does
not know the correct answer, she tries to infer it from what she knows
about the two foods. We hypothesize that to make this inference she will
construct a probabilistic mental model. Such a PMM consists of a refer-
ence class, probability cues, knowledge about the objects of the reference
class with respect to these cues, and a heuristic for processing this knowl-
edge.

Knowledge About Cues According to PMM theory, knowledge is concep-
tualized as a set of cues (e.g., amount of saturated fat), and the values
these cues have regarding the alternatives (henceforth, foods). When com-
paring the cue values of two foods, there are—in the case of a quantitative
cue—four possible relations: "larger" (e.g., cake contains more saturated
fat than pie), "smaller," "equal," or "unknown." Henceforth, we refer to
these relations as object relations. (Note that it is sufficient to have an
intuition, right or wrong, concerning the object relations; whether these
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relations are directly retrieved or deduced from absolute cue values is left
open.)

PMM theory also assumes that people have intuitions about the pre-
dictive power of a cue. The predictive power of a cue can be measured by
its ecological validity. Ecological validity is defined as the relative fre-
quency with which the cue correctly predicts which object scores higher
on the criterion in a defined reference class (chapter 4). It is determined
by considering only those comparisons where the cue discriminates (i.e.,
the object relation is "larger" or "smaller"). Let us assume that Patricia's
reference class consists of foods sampled from her local supermarket, and
let us consider saturated fat as a quantitative cue for cholesterol. When
we took a random sample of 36 food items from a supermarket and
checked all possible pairs, we found that in about 80% of these pairs, the
food item with more saturated fat (cue) also has more cholesterol (crite-
rion). This value is the ecological validity of the saturated fat cue (in our
supermarket sample).

Heuristic How can Patricia use this knowledge to infer which food has
more cholesterol? We account for her inference with a heuristic in the
PMM framework called "Take The Best" (Gigerenzer & Goldstein, 1996a;
see also chapter 4). If both foods are known, Take The Best starts with an
estimated rank order of cues according to their validities and makes the
inference on the basis of the highest ranking ("best") cue that discrimi-
nates between the two foods. Suppose that Patricia's PMM consists of
three cues, amount of saturated fat, calories, and protein, which are al-
ready ordered according to their validities (80%, 70%, and 60%, respec-
tively). Her original mental model about the relations between cake and
pie on these cues is depicted in figure 9-1 (in the original response col-
umn). The highest ranking cue, saturated fat, does not discriminate; there-
fore Take The Best will try the next cue, calories. Because the cake has
more calories than the pie, the heuristic stops searching and chooses cake
as the alternative with more cholesterol. Confidence in the correctness of
the decision is the validity of the cue that determined that decision (here,
70% as the validity of the calorie cue).

A defining characteristic of this fast and frugal heuristic is its simple
stopping rule: Terminate search when the first good reason is found that
speaks for one alternative over the other. No other cues are looked up
after this point, and no cost-benefit computations are made in an attempt
to determine the "optimal" stopping point for memory search. Such a sim-
ple stopping rule is crucial for memory-based inferences where much time
and effort could be spent searching for information in the fog of memory.
In the study reported below, we taught participants about only three cues
(those listed in figure 9-1) and thus have artificially limited the search. In
real-world inferences about food, there would typically be many more
cues available and search would continue beyond such a small number of
cues unless a stopping rule terminated it.
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Figure 9-1: Hindsight bias at the level of confidence. The probabilistic
mental model contains three cues ranked according to their validity (spec-
ified in parentheses). The symbols ">" and "?" denote the relations be-
tween objects on these cues. For instance, in the left column, which de-
scribes the knowledge underlying the original response, the object
relation on the saturated fat cue is unknown. As indicated by the arrow
("->"), this object relation changes after feedback that cake has more cho-
lesterol than pie. The relation shifts toward feedback, that is, from "?" to
">" in the updated mental model (right column). As a consequence, hind-
sight bias occurs. Note that Take The Best stops cue search before reaching
the shaded object relations.

Feedback and Reconstruction

Some weeks after having dinner at the restaurant, Patricia goes to the mar-
ket and finds out that chocolate fudge cake has more cholesterol than
pumpkin custard pie. She tries to remember her past choice. What is the
mechanism of recalling the original response? Figure 9-2 illustrates the
cognitive processes as assumed by the RAFT model. First, an attempt is
made to retrieve the original response directly from memory. The chance
of doing this successfully depends on factors such as time delay between
original judgment and recollection (Fischhoff & Beyth, 1975; Hertwig,
1996), and depth of encoding of the original response (Hell et al., 1988).
If the original response is directly (and veridically) recalled from memory,
no hindsight bias is obtained (upper left box in figure 9-2).

If the original response cannot be retrieved from memory, an attempt
is made to reconstruct the original PMM that led to this response. An
identical reconstruction will be obtained if (a) the type of strategy (e.g.,
lexicographic strategy, linear model, neural net, or Bayesian net) is the



Figure 9-2: Flowchart of the RAFT model for hindsight bias.
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same for the original response and its reconstruction; (b) this strategy op-
erates with the same parameters (e.g., the same cue order, weights, or
probabilities); (c) the strategy uses the same cues; and (d) the values that
are retrieved on these cues are the same. A violation of any of these re-
quirements may lead to differences between the original and the recon-
structed response. In fact, RAFT posits a violation of requirement (d), that
is, a systematic difference between the cue values underlying the original
response and the reconstructed response. RAFT does not exclude the pos-
sibility that requirements (a), (b), and (c) may also be violated, and there
are indeed such accounts of hindsight bias (e.g., Hawkins & Hastie, 1990).
Nevertheless, we argue and provide evidence that the violation of require-
ment (d) is sufficient to account for hindsight bias.

Knowledge Updating Why should there be a change in object relations
on the cues after feedback? Usually there is more than one cue that can
be used to infer a criterion. Thus, if information on one cue is not avail-
able, this cue can be replaced by another. Egon Brunswik (1952) called
this "vicarious functioning." Further, it is not only cues that are inter-
changeable, but also a cue and the criterion: For many cases, the possibil-
ity of drawing inferences from a cue to a criterion can also be reversed.
For instance, not only can the amount of saturated fat be used to infer the
amount of cholesterol, but the reverse is also true. Suppose you know
neither how much saturated fat nor how much cholesterol is in chocolate
fudge cake. If you now learn that cake has a lot of saturated fat, you can
use this as a cue to infer that it also has a lot of cholesterol. Similarly, if
you are told that cake has a lot of cholesterol, you can use this as a cue to
infer a high saturated fat value. Thus, new information about the criterion
can be used to update related knowledge in semantic memory—similarly
to the updating of outdated information in episodic memory (as in Mr.
Loman's car-parking case, see also Bjork, 1978). Updating is adaptive: It
increases the coherence of our knowledge and the accuracy of our infer-
ences (since more recent information is typically more valid and more
relevant).

Thus, our conjecture is that knowledge stored in memory is in a state
of flux, constantly changing, in part because new information is acquired,
and in part because knowledge related to this new information is updated.
Next, we show how such changes in knowledge over time lead us to pre-
dict and account for hindsight bias (as depicted in the branch at the bot-
tom right of figure 9-2).

Predictions

The fact that the same variable may serve as either a criterion or a cue
offers an interesting perspective. In the restaurant, Patricia worried about
cholesterol, and her original mental model contained saturated fat as a
cue (to infer cholesterol). In an attempt to reconstruct her original mental
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model, saturated fat—or more precisely, the knowledge she had about sat-
urated fat when she was in the restaurant—becomes the criterion. In some
cases veridical retrieval of this past cue and current criterion may be pos-
sible; in others it may not. As a substitute for such a gap in memory,
Patricia could use the knowledge she has now. However, in the meantime
she found out which of the two foods has more cholesterol, and this new
information might have led to an updating of related knowledge, such as
saturated fat. As a consequence of this cue-criterion switch, the knowl-
edge in the updated mental model will show systematic shifts toward
feedback (Prediction 1). Because RAFT assumes that updating only occurs
with some probability, this prediction does not necessarily hold for each
single item.

According to RAFT, systematic changes in knowledge about cues can
explain systematic changes in recollection of choice and confidence. That
is, the occurrence of hindsight bias is contingent on the reconstructed
knowledge. After excluding cases where original and recalled responses
are identical (and thus can be attributed to direct memory), RAFT should
be able to account for individual recollections: Regardless of whether
hindsight bias or reversed hindsight bias is observed, this observation
should match RAFT's prediction, which is derived from the recalled ob-
ject relations for this item (Prediction 2).

Illustrations of the RAFT Model

We now illustrate how RAFT accounts for recollections made with hind-
sight. When Patricia tried to infer at the restaurant which of the two foods
has more cholesterol, she did not know the value on the saturated fat cue
(i.e., the most valid cue, see figure 9-1). After she found out that cake has
more cholesterol than pie, this value was updated. The consequence is
that in hindsight, when Patricia tries to remember her original judgment,
the saturated fat cue—which was not available to her at the restaurant—
discriminates, and Patricia infers that she thought that cake is the one
with more cholesterol. She also infers that her confidence in this choice
was 80% (the cue validity of saturated fat). Thus, her reconstructed choice
is identical to her original choice. Her reconstructed confidence, however,
increased relative to her original confidence. This is an example of hind-
sight bias. More generally, hindsight bias at the level of confidence occurs
if a choice is correctly recalled, but recalled confidence increases after
feedback indicating the originally selected alternative was correct (or de-
creases after feedback that it was wrong).

Not only can recalled confidence differ from original confidence, but
recalled choice can differ from original choice as well. Hindsight bias at
the level of choice occurs when feedback indicates that the originally cho-
sen alternative was wrong and the recalled choice is the correct alterna-
tive (e.g., original choice is pie, feedback is cake, and recalled choice is
cake). RAFT can account for hindsight bias at the level of choice as well.
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Figure 9-3 (panel A) provides an example: At the restaurant, only the pro-
tein cue discriminated, pointing to the pie. After feedback, however, the
saturated fat cue discriminates, pointing to the cake. If the original choice
is reconstructed from this updated knowlegde, RAFT predicts hindsight
bias at the level of choice.

It is also conceivable for hindsight bias to be reversed. Reversed hind-
sight bias at the level of choice occurs when the original choice is correct
according to feedback, but recalled choice is wrong. Reversed hindsight
bias at the level of confidence occurs if recalled choice equals original
choice, but recalled confidence decreases after feedback confirming—or
increases after feedback does not confirm—the originally selected alterna-
tive. How does RAFT account for reversed hindsight bias? It does so by
allowing for random shifts in the object relations. That is, beyond system-
atic shifts due to feedback, RAFT posits unsystematic shifts due to the
imperfect reliability of one's knowledge. Such random shifts are assumed
to be independent of feedback. For this reason they may either coincide
with the direction of feedback, or be counter to it. In figure 9-3 (panel B),
a random shift changed the object relation on the saturated fat cue counter
to the direction of the feedback. This random shift leads to reversed hind-
sight bias at the level of confidence.

To summarize, our starting point was the observation that human
memory is bounded in its capacity. An alternative to unbounded memory
is a system that maintains access to the information that is most likely to
be needed and most likely to be correct. For such a memory system, it is

Figure 9-3: Hindsight bias at the level of choice (panel A), and reversed
hindsight bias at the level of confidence (panel B). For an explanation of
the symbols, see figure 9-1.



204 BEYOND CHOICE: MEMORY, ESTIMATION, AND CATEGORIZATION

crucial to update information constantly and automatically. We suggest
that hindsight bias is a by-product of this adaptive updating. Assuming a
fast and frugal heuristic for reconstructing past judgments based on up-
dated knowledge, RAFT explains this so-called bias.

Empirical Evidence

We conducted a study that was designed to test Predictions 1 and 2 (see
Hoffrage et al., 1999). The experiment started with a phase in which parti-
cipants learned the values of the saturated fat, calorie, and protein cues
for various food items. They were also taught the validities of these cues
(80%, 70%, and 60%) for inferring which of the food items has the higher
amount of cholesterol. Immediately after this learning phase, the partici-
pants were given a list of food pairs and asked two questions about each
pair: "Which food do you think has more cholesterol?" and "How confi-
dent are you that your choice is correct?" (The confidence rating scale
ranged from 50% to 100%.) After they had given their responses, we
asked them to recall the amounts of saturated fat, calories, and protein
they had learned for each food item or to indicate for each food pair the
relation between the food items on each cue (this is their knowledge be-
fore feedback).

In the second session, participants in the experiment first received the
correct answer (feedback) for each of the questions they had answered in
the first session. In the control condition, no feedback was provided. Then
all participants were asked to recall (a) which food they had originally
chosen as having more cholesterol, (b) how confident they were that their
choice was correct, and—in a new questionnaire—(c) the originally learned
cue values or the foods' relations on the cues (this is their knowledge after
feedback). Recording participants' knowledge was important here be-
cause, according to RAFT, the occurrence of hindsight bias depends on
this knowledge.

We first investigated whether participants showed any hindsight bias.
For correct choices, hindsight bias' occurred if recalled confidence in-
creased, and for wrong choices hindsight bias occurred if recalled confi-
dence decreased. In order to be able to include confidence judgments for
correct and wrong choices in a single analysis, we mapped original and
recalled confidences for wrong choices on a full-range scale. For example,
a confidence judgment of 70% that the wrong alternative was the correct
one was coded as 30% (confidence in the correct alternative). On this full-
range scale, hindsight bias would always appear as an increase in confi-
dence. Confidence increased in the feedback condition by an average of
3.4 percentage points, whereas in the no-feedback condition, it decreased
by 0.6 percentage points. The effect of the difference is of medium size
(d = 0.54, Cohen, 1988, p. 20) and is larger than the average effect size
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reported in Christensen-Szalanski and Fobian Willham's (1991) meta-
analysis.

Did relations on cues shift systematically after feedback (Prediction 1)?
Shifts can occur toward or away from feedback. A shift toward feedback
occurred when the cue originally pointed to the wrong alternative and
now points to the correct alternative, or does not discriminate anymore.
A shift toward feedback also occurred when the cue originally did not
discriminate but now points to the correct alternative. The same logic de-
fines shifts away from feedback. A cue does not discriminate if a partici-
pant did not specify the object relation on this cue (or the values for the
two objects). In the feedback condition, 66.0% of the relations remained
unchanged after feedback (across all participants, items, and cues). Did
the remaining relations shift systematically toward feedback? Figure 9-4
shows the percentages of shifts toward and away from feedback. Consis-
tent with Prediction 1, in the feedback condition, shifts toward feedback
outnumbered those away from it, whereas in the no-feedback condition,
both kinds of shifts occurred equally often.

Can we specify more precisely when shifts toward feedback occur? We
suggest that updating after feedback should occur most likely when a cue
did not discriminate at the time of the original response. To illustrate this
rationale, let us first consider those cues that discriminated. The fact that
a cue discriminated implies that knowledge was available in the original

Figure 9-4: Proportion of object relations shifting toward and away from
feedback. Shifts toward the correct or wrong alternative are equivalent
to shifts toward or away from feedback, respectively, when feedback is
given.
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mental model. The mere existence of knowledge provides the chance that
it can be accessed again at some later point and that the object relation is
veridically retrieved—even after feedback. In contrast, if the relation was
unknown, then feedback does not need to overcome preexisting knowl-
edge to become manifest. A similar implication holds for "equal" rela-
tions. Here, a shift in one cue value is sufficient to change the relation.
For a discriminating relation, a shift may reduce the difference between
the two values but not necessarily cause a change in the relation.

Is updating after feedback most likely when a cue did not discriminate
at the time of the original response? To answer this question, we calcu-
lated the differences in the proportions of shifts toward and away from
feedback (across all participants, items, and cues). Figure 9-5 displays the
results. In 38.7% of the cases in which cues originally did not discrimi-
nate, cues disciminate after feedback: in 27.7% of the cases, they point to
the correct alternative, and in 11.0% to the wrong alternative. This differ-
ence of 16.7 percentage points is depicted by the leftmost bar in figure
9-5. In contrast, when cues originally discriminated, shifts were almost
symmetrical—the difference between shifts toward and away from feed-
back decreased to 2.8 percentage points. In the no-feedback condition,
the difference between shifts was miniscule for both discriminating and
nondiscriminating cues. These results strongly confirm the prediction that
the impact of feedback is most pronounced when a cue did not discrimi-
nate at the time of the original response.

Figure 9-5: Proportion of object relations shifting toward the correct alter-
native minus those shifting toward the wrong alternative, depending on
whether a cue discriminated when the original response was given.
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Can hindsight bias and reversed hindsight bias be predicted from re-
called object relations (Prediction 2)? To test this prediction, we first ex-
cluded cases where original and recalled response are identical, because
they can be attributed to accurate memory (and are thus not subject to
reconstruction). Next, we determined RAFT's prediction for each partici-
pant as follows. For each food pair, we applied Take The Best to the up-
dated knowledge and compared the resulting choices and confidences
with the original choices and confidences. This comparison determined
whether RAFT would predict hindsight bias, reversed hindsight bias, or
no hindsight bias (predicted outcome). The predicted outcome was then
compared with observed outcomes (hindsight bias or reversed hindsight
bias), and for each participant, we finally determined the percentage of
correct predictions across items.

Averaged across all participants, the percentage of correct predictions
was 76.3%. RAFT correctly explains nearly as many of the observed out-
comes in the feedback and the no-feedback conditions: 76.6% and 75.9%,
respectively. This is not surprising as RAFT can also account for recon-
structed judgments based on cue values that were not updated (e.g., be-
cause no feedback was provided). To see how good the performance of
RAFT is we compared it with a chance model (for details, see Hoffrage et
al., 1999). Averaged across all participants in the feedback and the no-
feedback conditions the performance of this chance model was 67.9%
(i.e., 8.4 percentage points worse than RAFT's, performance; £=5.0, p =
.001).

Looking Back

We proposed a model of the cognitive processes underlying hindsight
bias. This model assumes that information about the correct answer leads
to an updating of elusive cue values. If the original response is inaccessi-
ble, it will be reconstructed based on cue values that may have been up-
dated. As a consequence, the reconstructed response may exhibit hind-
sight bias. Consistent with Prediction 1, we found that feedback on the
criterion systematically influenced participants' recollection of their
knowledge about cues. Consistent with Prediction 2, a majority of the
cases in which either hindsight bias or reversed hindsight bias occurred
was accurately predicted by applying Take The Best to the recalled (and
updated) cue values. In Hoffrage et al. (1998), we report a further study
that replicated the present results, report evidence for a third prediction
(that assisting the recall of cue values reduces hindsight bias), and discuss
how RAFT explains other findings obtained in research on hindsight bias.

Fast and Frugal Inferences

The model of hindsight bias we have proposed integrates ideas from Sir
Frederic Bartlett, Egon Brunswik, and Herbert Simon. Like Bartlett, we
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see remembering as a process of reconstruction. Bartlett himself did not
go on to specify how this reconstruction can be modeled. In our view,
consistent with Brunswik's (1952, 1957) framework, reconstruction is
based on uncertain cues. However, in contrast to the neo-Brunswikian
idea that cues are weighted and integrated by multiple regression (Cook-
sey, 1996; Doherty, 1996; Hammond, 1955), our assumption is that the
nature of the inferential mechanism is fast and frugal. Take The Best is
such a fast and frugal mechanism. Because it has a stopping rule, it does
not seek all the available information, and it is computationally simple
compared with multiple regression. Thus, RAFT's inferential mechanism
is a bounded rational one (Simon, 1982; chapter 1).

As many of the results reported in this book suggest, Take The Best
can compete impressively with more complex strategies. Because of its
psychological plausibility, we chose to model people's recollections with
this simple heuristic. Would we have achieved a better fit of the predicted
and actual responses if we had used computationally more powerful but
psychologically less plausible strategies? To answer this question, we re-
analyzed the data and tested Prediction 2 with several other strategies,
including a unit-weight linear model (Dawes's rule, chapter 4), a linear
model with cue validities as the weights (Franklin's rule, chapter 4), and
naive Bayes (chapter 8). None of the alternative strategies modeled actual
responses better than Take The Best; they all performed similarly well.
One reason for this is that the strategies' responses were generated from
only three cues, and thus for most constellations of cue values they made
the same inference (see chapters 6 and 7). As it is psychologically more
plausible, and in light of the evidence that people's choices can best be
modeled by heuristics that only process some of the available information
(chapter 7), we suggest Take The Best as the more likely candidate strat-
egy of people's memory inferences.

Conclusion

The adaptive process of knowledge updating relieves us of the need to
store everything we have thought, said, or experienced in the past. Updat-
ing makes us smart by preventing us from using information that may be
outdated due to changes in the environment. As Bartlett put it: "In a world
of constantly changing environment, literal recall is extraordinarily unim-
portant" (1932/1995, p. 204). Adaptive updating has an uninvited by-
product: hindsight bias. But this by-product may be a relatively low price
to pay for a memory that works fast and frugally.
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Quick Estimation

Letting the Environment Do the Work

Ralph Hertwig
Ulrich Hoffrage
Laura Martignon

We may look into that window [on the mind] as through a
glass darkly, but what we are beginning to discern there
looks very much like a reflection of the world.

Roger N. Shepard

"CSeptember 30, 1659. I, poor, miserable Robinson Crusoe, being ship-
wrecked, during a dreadful storm in the offing, came on shore on this
dismal unfortunate island, which I called 'the Island of Despair,' all the
rest of the ship's company being drowned, and myself almost dead" (De-
foe, 1719/1980, p. 74). Thus begins Robinson Crusoe. Daniel Defoe's clas-
sic novel has been interpreted as everything from a saga about human
conquest over nature to an allegory about capitalism. At a much more
mundane level, however, Crusoe's adventures illustrate the crucial impor-
tance of being able to estimate the frequency of recurrent natural events
accurately. Of his first attempt to sow grain, he wrote in his journal: "Not
one grain of that I sowed this time came to anything; for the dry months
following, the earth having had no rain after the seed was sown" (p. 106).
From then on, Crusoe kept track of the rainy and dry days in each month,
and subsequently sowed seed only when rainfall was highest. He reaped
the rewards of this strategy, later reporting: "I was made master of my
business, and knew exactly when the proper season was to sow; and that
I might expect two seed times, and two harvests, every year" (p. 107).1

1. Crusoe's story may not be completely fictitious. Before the publication of
Robinson Crusoe, Defoe might have read about Alexander Selkirk, a sailor who
survived five years on a desert island—Juan Fernandez Island off the coast of

209
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Defoe equipped the fictional Crusoe with a journal, which helped him
to predict rainfall. Are real humans equipped to estimate environmental
quantities even without the benefit of written records? One domain where
we would expect to find evidence of such an ability—if it exists—is in
foraging for food. Humans have spent most of their evolutionary history
in hunter-gatherer foraging economies in which they have had to decide
what to hunt. The Inujjuamiut, a group of Eskimos who live in Canada,
afford us an opportunity to observe how contemporary human hunter-
gatherers select strategies for obtaining food (Smith, 1991). One of the In-
ujjuamiuts' food sources is the beluga whale. When hunting belugas, the
Inujjuamiut encircle a group of them and drive them into shallow water.
Exploiting the whales' sensitivity to noise, the hunters then "herd" them
by pounding on the gunwales of their canoes and shooting in a semicircle
around them. While the whales are being killed with high-powered rifles
and secured with floats, the pursuit of the next group of belugas gets un-
derway.

Inujjuamiut foraging strategies—their strategies for choosing prey and
hunting methods—can be modeled by the contingency prey model. Ac-
cording to the anthropologist Eric Alden Smith (1991, p. 237), this model
is the best tool yet devised for explaining hunter-gatherer prey choice. It
suggests why the Inujjuamiut undertake time-consuming and dangerous
whale hunts rather than pursuing easier prey, such as ducks, geese, and
seals. Its basic intuition, shared by other foraging models, is that a forager
who has encountered a food item (prey or patch) will only attempt to
capture it if the return per unit time for doing so is greater than the return
that could be obtained by continuing to search for another item. Hence
prey choice depends on rankings of food items in terms of return rates
(see chapter 15). Setting aside the details of this model (see Smith, 1991),
one of its crucial assumptions is that to be ranked according to their net
return, food items (from prey) must be classified according to their statisti-
cally distinct return rates (per-unit handling time, i.e., time spent in pur-
suit, capture, and processing) and encounter rates (per-unit search time).
Thus, just as Defoe equipped Crusoe with journal entries from which to
estimate rainfall, the contingency prey model endows humans with the
cognitive abilities necessary to estimate environmental quantities (e.g., the
rate at which they encounter a certain type of prey).

But literary devices and theoretical assumptions aside, the question re-
mains: Do humans actually have this ability, and how can it be modeled?
According to Brown and Siegler (1993), psychological research on real-
world quantitative estimation "has not culminated in any theory of esti-

Chile. Selkirk was left there at his own request after quarreling with his captain.
When it was published, Selkirk's story was a sensation. The public was fascinated
by the way this man had survived—as was Defoe, who may even have met him, as
some scholars believe (see Swados's Afterword in Defoe, 1719/1980).
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mation, not even in a coherent framework for thinking about the process.
This gap is reflected in the strangely bifurcated nature of research in the
area. Research on heuristics does not indicate when, if ever, estimation is
also influenced by domain-specific knowledge; research on domain-spe-
cific knowledge does not indicate when, if ever, estimation is also influ-
enced by heuristics" (p. 511). In this chapter, we attempt to bridge this
gap by designing a heuristic adapted to make fast and frugal estimates in
environments with a particular statistical structure. Before describing this
heuristic, we review previous research on quantitative estimation, focus-
ing on how people estimate numbers of events (both types and tokens);
the events in question may be objects, people, or episodes.2 We review
two classes of estimation mechanisms: estimation by direct retrieval and
estimation by inference.

Estimation by Direct Retrieval

The Scottish Enlightenment philosopher David Hume believed that the
mind unconsciously and automatically tallies event frequencies and ap-
portions degrees of belief in events accordingly. Hume (1739/1975)
claimed that the psychological mechanism for converting observed fre-
quency into belief was extremely finely tuned: "When the chances or ex-
periments on one side amount to ten thousand, and on the other to ten
thousand and one, the judgment gives the preference to the latter, upon
account of that superiority" (p. 141).

Recent research on human monitoring of event frequencies (Hasher &
Zacks, 1979, 1984) supports Hume's position by suggesting that memory
is extremely sensitive to frequency of occurrence information (Hasher &
Zacks, 1984, p. 1379), although not as finely tuned as Hume suggested.
People's sensitivity to natural frequency of occurrence has been demon-
strated using a variety of stimuli. For instance, several authors have docu-
mented that people's judgments of the frequency with which letters and
words occur generally show a remarkable sensitivity to their actual fre-
quencies (e.g., Attneave, 1953; Hock et al., 1986; Johnson et al., 1989).3

Hasher and Zacks (1979, 1984) assumed that people automatically en-
code the occurrences of an event, store a fine-grained count of its fre-
quency, and when required to estimate its frequency, access this count.
They proposed that people can estimate frequencies accurately because

2. This chapter does not review research on estimation of psychophysical stim-
uli (e.g., Haubensack, 1992; Mellers & Birnbaum, 1982; Parducci, 1965), probabili-
ties (e.g., Kahneman et al., 1982; Peterson & Beach, 1967), or statistical parameters,
such as central tendency, variability, and correlation (e.g., Busemeyer, 1990).

3. For instance, Attneave (1953) asked participants to judge the relative fre-
quencies of all the letters in the alphabet and found a correlation of .79 between
actual relative frequencies and the medians of the judged frequencies.
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registering event occurrences is a fairly automatic process, that is, it re-
quires little to no attentional capacity, hi this view, frequency is one of
the few attributes of stimuli that seems to be encoded automatically (oth-
ers being spatial location, temporal information, and word meaning). Al-
though the claim that event frequencies are automatically encoded may
be too strong and has been seriously criticized (see Barsalou, 1992, chap.
4), there seems to be broad agreement with the conclusion that Jonides
and Jones (1992) summarized as follows: "Ask about the relative numbers
of many kinds of events, and you are likely to get answers that reflect the
actual relative frequencies of the events with great fidelity" (p. 368). A
similar conclusion has also been drawn in research on probability learn-
ing, about which Estes (1976) remarked: "The subjects clearly are ex-
tremely efficient at acquiring information concerning relative frequencies
of events" (p. 51).

Estimation by Inference

Where Hasher and Zacks assume that people have access to a count of the
event, the advocates of a rival approach contend that people infer this
value from cues correlated with it. The researchers who advocate this ap-
proach may be divided into two groups according to their postulate of the
nature of these cues: ecological versus subjective.

Inference by Ecological Cues

According to Brunswik (1952, 1955), the perceptual system estimates a
distal variable (e.g., distance) by using proximal cues that are probabilis-
tically related to it (e.g., perceived size of an object, converging lines). For
the system to respond successfully, Brunswik argued that cues should be
utilized according to their ecological validity (see discussion in Ham-
mond, 1966, p. 33), and that this concept is best measured by correlational
statistics. Thus, ecological validity was defined as the correlation between
a proximal cue and a distal criterion (Brunswik, 1952).

Unlike Hasher and Zacks's theory, Brunswikian theories of human
judgment (e.g., Gigerenzer et al., 1991; Hammond et al., 1975) assume that
the criterion—for instance, the frequency of sunny days in Rome in May—
will typically not be directly retrieved from memory. Instead, it will be
inferred based on proximal cues—for instance, the fact that Rome is lo-
cated in southern Europe. Nevertheless, the Brunswikian research shares
an interesting link with that of Hasher and Zacks (1984): While the latter
assumes and provides evidence that people store accurate records of event
frequencies, the former assumes and provides evidence that people keep
fairly accurate records of ecological cue validities (e.g., Arkes & Ham-
mond, 1986; Brehmer & Joyce, 1988). Learning cue validities, however,
requires the ability to register event frequencies and their co-occurrences
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accurately, except when knowledge of the validities is evolutionarily built
in (e.g., in depth perception).

Inference by Subjective Cues: Availability

In a classic study by Tversky and Kahneman (1973), people had to judge
whether each of five consonants (K, L, N, R, V) appears more frequently
in the first or the third position in English words. Although all five conso-
nants are more frequent in the third position, two-thirds of the partici-
pants judged the first position to be more likely for a majority of the let-
ters.4

Tversky and Kahneman (1973) proposed the availability heuristic as
a mechanism of real-world quantitative estimation that can account for
systematic biases in people's estimates. According to the availability ex-
planation, assessments of frequency (or probability) are based on the num-
ber of instances of the event that "could be brought to mind" (p. 207).
That is, its basic assumptions are that people draw a sample of the event
in question (e.g., by retrieving words that have the letter "R" in the first
and third position, respectively) or assess the ease with which such a sam-
ple could be drawn, and then use the sample statistics to estimate the
criterion. However, sample parameters may systematically deviate from
population parameters (e.g., if it is easier to retrieve words with a certain
letter in the first than in the third position, the sample will not be repre-
sentative of the population). In this way, use of the availability cue may
lead to systematic biases. Because the ability of a sample to predict the
criterion can only be evaluated with respect to the sample drawn by a
specific person, the availability cue is subjective rather than ecological.

Since Tversky and Kahneman (1973) proposed availability and other
heuristics as important mechanisms underlying judgments of (relative)
frequency and probability, their findings and the proposed heuristics have
stimulated a tremendous amount of research and have raised serious con-
cerns about people's ability to estimate event frequencies and probabili-
ties accurately. At this point, the operation of availability is "one of the

4. In discussing Tversky and Kahneman's study, Lopes and Oden (1991) ob-
served that 12 of the 20 English consonants are more frequent in the first position
than in the third position, possibly explaining their results. In contrast, if one as-
sumes that people have experienced a representative sample of letters and their
positional frequencies (e.g., during reading), then their mental models should be
well adapted to a representative sample presented by the experimenter. Sedlmeier
et al. (1998) gave participants a representative sample of consonants (i.e., some that
are more and some that are less frequent in the second position) and vowels. In
each of three studies, they found that the estimated relative frequencies in the first
versus the second position closely agreed with the actual rank ordering, except for
an overestimation of low and underestimation of high values. Neither of the two
versions of the availability heuristic that Sedlmeier et al. tested was able to account
for these results.
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most widely shared assumptions in decision making as well as in social
judgment research" (Schwartz et al., 1991, p. 195). For example, it has
been suggested that availability may account for people's tendency to ex-
aggerate the frequency of some specific causes of death such as tornadoes
(Lichtenstein et al., 1978) and for their performance in estimating demo-
graphic parameters such as countries' population size (Brown & Siegler,
1992, 1993).

Paradoxical Assumptions and Contradictory Findings

Here is the puzzle. Hasher and Zacks (1984) argued that people encode
occurrences of an event, store a count of its frequency, and when required
to estimate its frequency, access this count. Tversky and Kahneman
(1973), in contrast, seemed to assume that people do not keep a record of
event frequencies but construct a sample of the event in question and then
infer event frequencies from the ease with which the sample could be
constructed. Hasher and Zacks (1984) concluded that their experiments
"reliably and unequivocably [sic] demonstrate remarkable knowledge of
the frequency of occurrence of all events so far tested" (p. 1373), whereas
Tversky and Kahneman (1973) took their results as evidence that the use
of the availability heuristic leads to "systematic biases" (p. 209).

These contradictory assumptions and findings have been reported side
by side in scientific journals and textbooks, without much discussion
about how each line of research qualifies the other's findings (for excep-
tions, see Ayton & Wright, 1994; Holyoak & Spellman, 1993; Williams &
Durso, 1986).5 Suppose one tried to resolve the conflict by assuming that
the two accounts—accurate judgments based on memorized experienced
frequencies and (in)accurate judgments based on subjective cues—apply
to different situations: The former holds whenever humans have experi-
enced and encoded events one by one before making judgments, and the
latter holds whenever humans have not directly experienced the criterion
and thus have to rely on (subjective) cues correlated with it to derive a
judgment.

This resolution, however, cannot work. Tversky and Kahneman's ex-
periments also included situations where participants actually experi-
enced the events sequentially. In one study, for instance, participants were
serially presented with names of well-known personalities of both sexes
(e.g., Elizabeth Taylor), and one group was then asked to judge whether
the list contained more names of men or women (Tversky & Kahneman,
1973). Another example is their classic study of positional letter frequen-

5. One reason why this conflict did not attract more attention may be that
Hasher and Zacks (1984) seem to have downplayed it. In a footnote they wrote:
"The conflict between our view and that of Tversky and Kahneman is more appar-
ent than real" (p. 1383; see their arguments in their footnote 9).
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cies, mentioned above, in which they asked participants to judge events
they had previously experienced sequentially. Both studies illustrate that
availability is also intended to apply to experienced events.

In our view, the conflicting findings about the accuracy of people's fre-
quency judgments and the conflicting claims about the underlying mecha-
nisms cannot be reconciled simply by running more experiments in
which people's estimates are observed to be either correct or incorrect.
Contexts that elicit both biased and unbiased estimates can no doubt
be found. The more interesting issue is how we can make theoretical
progress in modeling the cognitive processes underlying quantitative esti-
mation. Toward this goal, we pose two interrelated questions that are per-
tinent to both Hasher and Zacks's and Tversky and Kahneman's ap-
proaches. First, what do humans need to count in order to meet their
adaptive goals? Second, what is the structure of the environments in
which quantification occurs, and what heuristics can exploit that struc-
ture?

What Needs Counting?

The world can be carved up into an infinite number of discrete events or
objects. Which of them deserve monitoring? Hasher and Zacks (1984, p.
1373) did not explicitly address this question, but proposed that for the
frequency of a stimulus to be encoded and stored, it must at a minimum
be "attended" to. The notion of "attention" was not precisely explicated.6

How plausible is such a domain-general encoding mechanism, that is, a
mechanism constrained only insofar that it requires attention (or "con-
scious" attention, as later proposed by Zacks et al., 1986)?

Consider, for instance, the processing that might occur when we walk
down the street engaged in an engrossing conversation. We are generally
successful at avoiding collisions with objects and other people, thus indi-
cating that we take note of their locations. But later, would we be able to
judge the relative frequency of their locations in relation to us (e.g., how
many objects to the right and how many to the left of us), or the relative
frequency of men and women who were wearing hats? Why should we be
able to make such judgments retrospectively if we did not consider them
useful at the time? More generally, do we encode every event and keep
track of its frequency of occurrence, just because we have experienced it?

This is a question that neither the British empiricists nor Hasher and
Zacks (1984) seriously addressed. For instance, David Hartley (1749) sug-
gested a domain-general physiological mechanism of frequency counting

6. However, we can exclude one possible definition: intentional monitoring.
Hasher and Zacks (1984) argued that a stimulus can be automatically encoded even
if it is not intentionally monitored, which implies that intentional monitoring was
not part of their definition of attention.
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designed in analogy to Newton's theory of vibrations (Daston, 1988, p.
203). According to this mechanism, repeated occurrences of an object cre-
ate cerebral vibrations until "grooves of mental habit" are etched into the
brain. Hartley's is a content-general mechanism, insofar as it does not put
any constraints on the type of objects to be counted. One can also find
modern "cognitive" relatives of Hartley's physiological mechanism that
are similarly unconstrained. Take, for instance, MINERVA 2 (e.g., Hintz-
man, 1984, 1988), which has been used to model frequency judgments.
This model keeps copies (in terms of memory traces) of all events we
have experienced over a lifetime (although one may bring content-specific
considerations in through the back door by way of learning parameters,
as Hintzman, 1988, does).

Should we be able to judge the relative frequency of men and women
wearing hats? Marcia Johnson and her colleagues (Johnson et al., 1989)
suggested that this is unlikely. On the basis of a series of ingenious stud-
ies, they demonstrated that, for frequency judgments to reflect presenta-
tion frequency accurately, two conditions must be met: The exposure time
must be >2 seconds, and processing must involve directing attention to
the identity of objects as well as their spatial location. Although their find-
ings imposed an initial constraint on the mechanism, it remains essen-
tially unconstrained with respect to what is counted.

Erase, Cosmides, and Tooby (1998) have proposed a more stringent
constraint. They argued that another way to restrict the counting mecha-
nism is to consider the nature of what is counted; there are aspects of the
world that one would not expect a human inference mechanism to count
spontaneously. According to their account, individuated whole objects
rather than arbitrarily parsed objects (i.e., random chunks, nonfunctional
fragments, etc.) are the natural unit of analysis: Toddlers may spontane-
ously count teddy bears, but not teddy bears' ears (as long as they have
not been broken off the parent object).

A variation on Erase et al.'s approach is to consider the adaptive value
of what is counted: Keeping track of event frequencies is most likely to
occur in domains where knowing frequency counts has a plausible adap-
tive value for the organism. It is easy to see the value of monitoring the
frequencies of specific events in the domains of mating and foraging (e.g.,
among the Inujjuamiut). But can considerations of adaptive value help us
to derive counterintuitive predictions in other domains? We think so. De-
spite Tversky and Kahneman's (1973) seemingly unsupportive results (in
their letter study), there is good reason to predict that people can quantify
the statistical structure of language because of its adaptive value.

What Is Adaptive About Knowing the Statistical Structure
of Language?

In any specific language certain sound sequences are more likely to occur
within some words than in others. For instance, consider the sound se-
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quence "pretty baby": The transition probability from "pre" to "ty" is
greater than that from "ty" to "ba." Thus we would be more likely to ex-
pect a word break between the latter two syllables. For babies acquiring
language, keeping track of these transition probabilities may have an im-
portant function, because these probabilities help them to identify bound-
aries between words (a problem that continues to hamper attempts to
build a computer that "understands" spoken language). Recent results re-
ported by Saffran, Aslin, and Newport (1996) indicate that babies are in-
deed sensitive to such transition probabilities.

To test whether babies have access to this kind of statistical informa-
tion, Saffran et al. tested infants' ability to distinguish between "words"
and "part-words" (using nonsensical stimuli in both cases). The stimulus
words included sound sequences such as "bidaku" and "padoti" and a
sample of the speech stream is "bidakupadotigolabubidaku...." The ba-
bies listened to a two-minute tape of a continuous speech stream consist-
ing of three-syllable words repeated in random order. A synthesized wom-
an's voice spoke the sound stream with no inflection or noticeable pauses
between words, removing the word boundary cues contained in normal
speech. The only possible cues were the relative frequencies of co-occur-
rence of syllable pairs, where relatively low relative frequencies signal
word boundaries.

After listening to the speech stream, the infants heard four three-sylla-
ble test words one at a time. Two words were from the speech stream and
two were part-words. The part-words consisted of the final syllable of a
word and the first two syllables of another word. Thus, a part-word con-
tained sounds that the infant had heard, but it did not correspond to a
word. Infants would be able to recognize part-words as novel only if the
words from the original speech stream were so familiar to them that new
sequences crossing word boundaries (i.e., the part-words) would sound
relatively unfamiliar. In fact, the infants did listen longer to part-words
than to words, indicating that they found them more novel than the
words.

This example illustrates the importance of asking what information is
adaptive to encode, store, and quantify. With this question in mind, one
can derive interesting and counterintuitive predictions, for instance, that
language learners will learn the statistical structure of language quickly.
We now turn to the second important question: What is the structure of
the environments in which quantities need to be estimated?

The Importance of "Ecological Texture"

"Although errors of judgments are but a method by which some cognitive
processes are studied, the method has become a significant part of the
message" (Kahneman & Tversky, 1982, p. 124). This quotation illustrates
Kahneman and Tversky's awareness that the heuristics-and-biases pro-
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gram came to focus on humans' cognitive errors at the expense of their
cognitive successes. In fact, their initial framing of the availability heuris-
tic stressed an ecological perspective that was later largely abandoned. Of
the availability heuristic Tversky and Kahneman (1973) wrote:

Availability is an ecologically valid clue for the judgment of fre-
quency because, in general, frequent events are easier to recall or
imagine than infrequent ones. However, availability is also affected
by various factors which are unrelated to actual frequency. If the
availability heuristic is applied, then such factors will affect the per-
ceived frequency of classes and the subjective probability of events.
Consequently, the use of the availability heuristic leads to system-
atic biases, (p. 209)

Not only did Tversky and Kahneman (1973) conceptualize availability
as an "ecologically valid clue" to frequency, but they also stressed that it
exploits the structure of the environment in the sense that objectively fre-
quent events have stronger representations because these are strengthened
by event repetitions, and thus, ceteris paribus, are easier to recall than
infrequent ones. In light of its beginnings, the availability heuristic could
have been developed into a cognitive strategy that reflects the texture of
the environment as well as the mind, but was not.

Several decades ago, Egon Brunswik (1957) already emphasized the
importance of studying the fit between cognition and the environment: "If
there is anything that still ails psychology in general, and the psychology
of cognition specifically, it is the neglect of investigation of environmental
or ecological texture in favor of that of the texture of organismic structures
and processes. Both historically and systematically psychology has forgot-
ten that it is a science of organism-environment relationships, and has
become a science of the organism" (p. 6).

In what follows, we propose an estimation heuristic that differs from
those identified in the heuristics-and-biases program (e.g., availability) in
several ways. First, how it exploits a particular environmental structure
is specified. Second, it has a precise stopping rule that terminates memory
search. Finally, it is formalized such that we can simulate its behavior.
For these reasons, it exhibits bounded rationality. Before we analyze the
structure of a specific class of environments in which various quantities
have to be estimated, let us consider what adaptive value estimating one
such quantity—population size—might have. We speculate that estima-
tion of population demographics may be a descendant of an evolutionarily
important task, specifically, estimation of social group size.

Estimation: Using Ecological Cues in a J-Shaped World

Because humans have always lived in groups (e.g., families, clans, tribes),
it is very likely that social environments played a major role in shaping
the human mind. Until recently, this possibility has largely been over-



QUICK ESTIMATION: LETTING THE ENVIRONMENT DO THE WORK 219

looked in research on human reasoning and decision making. Wang
(1996a, 1996b), however, demonstrated how social cues can affect deci-
sion making in surprising ways. Using Tversky and Kahneman's (1981)
famous Asian disease problem, he found preference reversals (often con-
sidered irrational because they violate the invariance axiom of expected
utility theory) when the text indicated that the decision was to be made
for a large group. When the text indicated that the decision would affect
a smaller group, however, most participants favored the risky outcome in
both the loss and the gain framing.

Wang's (1996a) finding suggests that humans are sensitive to group size
when making decisions. One may speculate that this sensitivity rests on
an evolved ability to estimate group sizes. In fact, the ability to estimate
the size of social groups accurately might have been of value in a number
of circumstances encountered by our evolutionary ancestors, for instance,
when they had to make quick decisions about whether to threaten to fight
over resources with other families, clans, or tribes. Humans' social struc-
tures have changed since the time when we lived in hunter-gatherer socie-
ties. Group size has been directly affected by the shift from nomadic
bands to small agricultural and pastoral communities to large populations
of many thousands of people whose economic and social center is the city
(e.g., Reynolds, 1973). Interestingly, in samples of American and Chinese
participants, Wang (1996a) found that decision making is sensitive to cul-
turally specific features of social group structure. Evolutionary considera-
tions aside, we assume that the estimation heuristic proposed here is
adapted to modern group sizes. We now consider the statistical structure
of the environment in which the heuristic operates.

Let us start to analyze the statistical structure of population demo-
graphics by considering the following question. What distribution results
if one makes a scatterplot of people's performance on the following task?
Name all the characters in Shakespeare's Comedy of Errors. If we plotted
people's performance on this task (e.g., the number of people who can
name no, one, two, three, etc. characters), we would probably find that
many people would get a low score, and that only a few people can attain
a high score. Thus, contrary to the typical assumption of educational re-
searchers that knowledge, learning, and performance generally conform
to a bell-shaped distribution across individuals, in which moderate values
are most frequent, human performance is often best characterized by the
"empirical law of the higher, the fewer" (Walberg et al., 1984, p. 90), or in
other words, by positively skewed, J-shaped distributions (where the "J"
is rotated clockwise by 90 degrees).7

7. These distributions are related to Zipfs law (Zipf, 1949), which is the obser-
vation that frequency of occurrence of some event (P) as a function of the rank (i)
when the rank is determined by the frequency of occurrence, is a power-law func-
tion PJ ~ I//7 with the exponent a close to unity. The most famous example of Zipfs
law is the frequency of English words. Assume that "the," "to," and "of are the
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Athletic performance can also follow such J-shaped distributions. Take
the final distribution of medals in the 1996 Summer Olympics in Atlanta
as an example. A total of 197 nations competed for 842 medals in the
Atlanta games. Figure 10-1 plots the total number of medals won (gold,
silver, and bronze) by each nation, excluding those that won no medals.
The average number of medals won was 4.3. At one extreme, the United
States, Germany, and Russia won 101, 65, and 63 medals respectively; in
other words, 1.5 percent of the participating nations (and 8.5% of the
world population) won almost one-third of all medals. At the other ex-
treme, 118 participating nations won no medals at all. Highly positively
skewed distributions also characterize many processes and phenomena in
biology (e.g., fluctuations in neural spikes plotted by amplitude), geogra-
phy (e.g., earthquakes plotted by severity), psychology (e.g., distribution
of memory traces plotted by the likelihood they are needed; Anderson &
Schooler, 1991), and other fields.

Cities plotted by actual population also form J-shaped distributions. In
any given region, there are a few large settlements and a large number of
small settlements. Herbert Simon (1955b) argued that in the special case
of city population size, such a distribution is expected if the population
growth is due solely to the net excess of births over deaths, and if this net
growth is proportional to the present population size. Urban growth mod-
els that use techniques originally developed to model clumping and mo-
tion of particles in liquids and gases also predict this city size distribution
(Makse et al, 1995). Figure 10-1 also shows the populations of German
cities with more than 100,000 inhabitants ranked by their size. This distri-
bution reflects the empirical law of the higher, the fewer in three ways:
the largest value (here Berlin) is an extreme outlier; the mean (309,000),
which is strongly influenced by such extreme observations, is much
higher than the median (180,000); and the standard deviation (428,000) is
large relative to the mean.

To what extent is it plausible to assume that people actually know
about the J shape of distributions such as that of German cities? We asked
74 German participants to estimate the number of German cities in 25 size
categories (100,000-199,999; 200,000-299,999; etc.). Figure 10-2 shows
the distribution of their mean frequency judgments in comparison with
the actual frequency distribution. (Note that compared with figure 10-1
the axes are reversed.) Although participants underestimated the relative
number of cities in the smallest category (100,000-199,999), the results

three most frequent words (i.e., receive ranks 1, 2, and 3); then, if the number of
occurrences is plotted as the function of the rank, the form is a power-law function
with exponent close to 1. There are several variants of Zipf s law, such as Pareto's
law, which essentially form J-shaped distributions. More generally, Gruneis et al.
(1989) proved that J-shaped distributions belong to a class of distributions that can
be modeled in terms of an adjoint Poisson process.
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Figure 10-1: Distribution of medals won per nation at the 1996 Summer
Olympics in Atlanta, and of the population size of the 83 largest German
cities (Fischer Welt Almanach, 1993).

indicate that they were well aware of the skewness. Now that we have
established that people have an intuition about the higher, the fewer char-
acteristic of the German city size distribution, we turn to the next ques-
tion: How might a heuristic exploit this J-shaped ecological structure so
as to reduce the computational effort needed to make an estimate?

Fast and Frugal Estimation: The QuickEst Heuristic

Let us start by considering a technical problem, namely, sorting pieces of
coal according to size. One way to sort them is to use a conveyor belt that
carries the coal pieces across increasingly coarse sieves. The belt is de-
signed so that first small pieces fall through the "small" sieve into the
crusher below, then medium-sized pieces fall through the "medium"
sieve, and so on. Pieces that make it across all the sieves are dumped into
a catchall container. Let us assume that the sizes of the coal pieces follow
a J-shaped distribution, that is, most pieces are small and only a few
pieces are (very) large. The conveyor belt's design minimizes the time re-
quired for the sorting process by exploiting this fact, sorting out the large
number of small pieces first, then the fewer larger ones, and finally the
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Figure 10-2: Percentage of German cities in 25 size categories, along with
estimates made by participants (percentage values derived from frequency
estimates).

very few largest ones. Figure 10-3 illustrates the design features of such a
conveyor belt. We now propose an estimation heuristic, the Quick Estima-
tion heuristic (QuickEst), which exploits the J-shaped distribution in a
way similar to the conveyor belt for sorting coal.

QuickEst's Design Properties

QuickEst's policy is to use environmental structure to make estimates for
the most common objects (e.g., in the cities environment, the smallest
cities) as quickly as possible. What design features of the heuristic enable
it to implement this policy?
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Figure 10-3: Illustration of a conveyor belt that sorts pieces of coal ac-
cording to their size. (Although this is a fictitious example, its design re-
sembles that of actual conveyor belts advertised at the Web sites of vari-
ous manufacturers.)

How Are the Cues Ranked? When a person is asked to estimate the popu-
lation of a city, the fact that it is a state capital may come to mind as a
potential ecological cue. Cities that are state capitals (e.g., Munich, the
capital of the state Bavaria) are likely to have larger populations than
cities that are not state capitals, the major exceptions to this rule being in
the United States. For any binary cue i, one can calculate the average size
of cities that have this feature (s/, e.g., the average size of all the German
cities that are state capitals) and the average size of those cities that do
not have this feature (s^). Note that for the purpose of the simulations, we
calculated s/~ (s/) from the actual sizes of the German cities that do not (or
do) have the property. The input for this calculation, however, need not
be the actual values, but could instead be imprecise subjective values.

Because positive cue values by definition indicate larger cities, s,~ is
smaller than s/". For this reason, cues are ranked in the QuickEst heuristic
according to s~, with the smallest s~ first. This design follows the coal-
sorting analogy, insofar as the cues (sieves) are ranked according to their
coarseness, with the smallest cue first. For this ranking, the heuristic does
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not need to know s~ exactly; it only needs to estimate a relative ranking
of cues according to s~.

When Is Search Stopped? Each cue asks for a property of a city, for in-
stance, "Does the city have a university?" QuickEst has a simple stopping
rule: Search is terminated when the first property is found that the city
does not have (i.e., the response to the question is "no"). If a city has the
property, then search continues, and its value on the cue with the next
lowest s~ is retrieved from memory. This stopping rule has a negative bias,
that is, a negative but not a positive value terminates search. This has an
important consequence: As there are only a few cities with mainly posi-
tive cue values and many with mostly negative values, a stopping rule
with such a negative bias generally enables the heuristic to stop earlier in
the search and arrive at estimates quickly.8

Owing to its stopping rule, QuickEst's inference is based on the first
property a city does not have. In contrast to computationally expensive
strategies such as multiple regression, QuickEst does not integrate cue val-
ues. An important consequence of QuickEst's stopping rule is that the
heuristic is noncompensatory. Further cue values (even if all of them are
positive) do not change the estimate based on the first negative cue value
encountered. By virtue of its simplicity, noncompensatory decision mak-
ing avoids dealing with conflicting cues and the need to make trade-offs
between cues.

How Coarse Are the Estimates? The estimate of QuickEst is the s~ of the
first property a city does not have, rounded to the nearest spontaneous
number. According to Albers (1997), spontaneous numbers are multiples
of powers of 10 {a 10': a € {1, 1.5, 2, 3, 5, 7}}, where i is a natural number.
For instance, 300, 500, 700, and 1,000 are spontaneous numbers, but 900
is not. By building in spontaneous numbers, the heuristic takes into ac-
count two frequently observed properties of people's estimates. First,
spontaneous numbers are related to what Albers (1997) described as num-
ber "prominence," that is, the phenomenon that in cultures that use the
decimal system the powers of 10 "are the most prominent alternatives
which have highest priority to be selected as responses, or terms by which
given responses should be modified" (Albers, 1997, part I, p. 6). Second,
spontaneous numbers relate to the phenomenon that, when asked for
quantitative estimates (e.g., the price of a Porsche Carrera), people provide
relatively coarse-grained estimates (e.g., $70,000, i.e. 7 x 104 rather than
$75,342). This graininess of estimates, or crude levels of "relative exact-

8. For instance, in the reference class of all the German cities with more than
100,000 inhabitants and for the following eight ecological cues—soccer team, state
capital, former East Germany, industrial belt, license plate, intercity train line, ex-
position site, and university (see chapter 4)—the German cities have on average
about six (5.7) negative values.
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ness" (Albers, 1997, part I, p. 12), reflects people's uncertainty about their
judgments (see also Yaniv & Foster, 1995).9

The property that s~ is rounded to the nearest spontaneous number has
two implications: First, for the numerical estimation the heuristic does
not need to estimate s~. It only needs to estimate which of two neighboring
spontaneous numbers is nearer to s~, and this spontaneous number is then
given as the estimate.10 Second, the heuristic's estimates can only achieve
the precision and not exceed the graininess of spontaneous numbers.

How Can the Heuristic Deal With the Few Very Large Cities? The present
stopping rule speeds up estimation by terminating search as soon as a
property is found that the city in question does not have. Still, there are
a handful of very large "outlier" cities that do have most properties. To
avoid an unnecessarily time-consuming search for a possible property
they do not have, QuickEst has a "catchall" category in reserve. That is,
the heuristic stops adding more cues to its cue order as soon as most cities
(out of those the heuristic "knows," i.e., the training set) have been sifted
out. For our simulations, we assume that searching cues is stopped as
soon as four-fifths of all the cities have already been sifted out by the
heuristic. The remaining fifth of the cities are put into a catchall category
and automatically assigned an estimate of s/ (where cue ; is the cue by
which these largest cities were "caught" last) rounded to the nearest spon-
taneous number.

How Is QuickEst Ecologically Rational? QuickEst exploits the characteris-
tics of the city population domain in two ways. First, its stopping rule—
stop when the first negative cue value is found—limits the search process
effectively in an environment in which negative cue values predominate.
Second, its rank ordering of cues according to s~, with the smallest s~ first,
gives QuickEst a bias to estimate any given city as relatively small. This
is appropriate for objects that fall in J-shaped distributions, in which most

9. Because there are more of them in the range of small digits (1,1.5, 2, 3) than
in the range of large digits (5, 7), spontaneous numbers also seem to be predicated
on Benford's law. Benford's law (1938; Raimi, 1976) states that if numerical data
(e.g., atomic weights) are classified according to the first significant digit, the nine
classes that result usually differ in size. Whereas in a randomly generated data set,
each number would be the first significant digit with frequency 1/9, in many real-
world data sets, this frequency is approximately equal to Iog10(p + l)/p. Thus, the
digit "1" is first about 30% of the time, "2" somewhat less often, and so on, with
"9" occurring as the first digit less than 5% of the time. Consistent with Benford's
law, 57% of German cities with more than 100,000 inhabitants begin with "I,"
whereas only 1.2% begin with "9."

10. Suppose that s~ lies in the interval between the spontaneous numbers
300,000 and 500,000. To decide whether s" is to be rounded up or down, the heuris-
tic only needs to know whether s' belongs to the right or to the left of the interval's
midpoint (i.e., 400,000). This only requires a choice (i.e., is s~ larger or smaller than
400,000).
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objects have small values on the criterion, and only a few objects have
(very) large values. In addition to being ecologically rational, QuickEst is
psychologically plausible in that it provides estimates with the precision
and graininess of spontaneous numbers.

Illustration

An American colleague of ours, Valerie, knows the approximate popula-
tion size of five German cities from previous trips to Germany (Munich,
1,000,000; Frankfurt, 700,000; Nuremberg, 500,000; Bonn, 300,000; and
Heidelberg, 150,000). Valerie also knows the cities' values on three cues
(exposition site, state capital, and university). Given her limited knowl-
edge about the reference class, German cities, how accurately could she
infer the size of, for instance, Leverkusen? To answer this question, we
first describe how QuickEst, as a model for Valerie's inferences, learns its
parameters.

Training QuickEst ranks cues according to the average population size of
cities that have negative values (s~). Given Valerie's knowledge, the cue
with the smallest s~ is "exposition site," which provides the estimate
200,000." The next cue is "state capital," which yields the estimate
500,000. Based on these two cues, the heuristic can sift out most of the
cities Valerie knows: four out the five (i.e., 80%) have a negative value on
at least one of these two cues. Thus, the only city that has positive values
on the exposition site and state capital cues, Munich, is put into the catch-
all category. The estimate for this category is derived from the last cue in
which Munich was "caught," here the state capital cue. The estimated
size is 1,000,000 (which simply equals the size of Munich).

In sum, given Valerie's knowledge of German cities, the realization of
the QuickEst heuristic includes two of the three cues she knows (exposi-
tion site and state capital), and a catchall category. This design allows
QuickEst to derive one of three unique estimates for any given city in the
reference class: 200,000, 500,000, and 1,000,000 inhabitants. How well
does this realization of QuickEst perform when applied to new cities, for
instance, Leverkusen and Hamburg?

Estimation To estimate the size of Leverkusen, QuickEst first retrieves
that city's values on the exposition site cue. Because it does not have an
exposition site, search is stopped and Leverkusen is estimated to have a
population of 200,000, close to the 160,000 inhabitants it actually has. To
derive an estimate for Hamburg, QuickEst looks up its value for the expo-

11. This figure is calculated as follows: Two of the five cities Valerie knows,
Heidelberg and Bonn, do not have an exposition site. That is, sexpo equals the aver-
age size of Heidelberg and Bonn (225,000) rounded to the nearest spontaneous
number (200,000).
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sition site cue; as the value is positive, it then retrieves the value for the
state capital cue, which is also positive. As a result, Hamburg ends up in
the catchall category and is estimated to have a population of 1,000,000,
which is not very close to the 1,650,000 inhabitants it actually has.

How good—or bad—is this performance, and how frugal is QuickEst in
comparison with other heuristics?

Test of Performance: Environment and Competitors

To test QuickEst's performance more generally, we computed its estimates
for the real-world environment of German cities with more than 100,000
inhabitants. After its reunification in 1990, Germany had 83 such cities.
All of these cities (except Berlin) and their values on eight ecological cues
to population size (the same cues as were used in chapter 4, except the
national capital cue) were included in the test. (Berlin was excluded be-
cause it is an outlier and an error in estimating its population dwarfs er-
rors of proportionally comparable size.) To evaluate the performance of
QuickEst, we compared it with two competitors that demand considerably
more computation and/or knowledge: multiple regression and an estima-
tion tree (for quantification of the heuristics' complexity, see chapter 8).

Multiple regression is a demanding benchmark insofar as it calculates
least-squares minimizing weights that reflect the correlations between
cues and criterion, and the covariances between cues. Multiple regression
has been proposed as both a descriptive and a prescriptive cognitive
model, although its descriptive status is debated, given the complex calcu-
lation it assumes (for references on this issue, see chapter 4).

The second benchmark is an estimation tree (for more on tree-based
procedures, see Breiman et al., 1993). With the aid of a computationally
expensive Bayesian search process (e.g., chapter 8; Chipman et al., 1998),
this tree was identified as one with a high probability of good perfor-
mance.12 It collapses cities with the same cue profile—that is, the same
cue value on each of the eight ecological cues—into a class. The estimated
size for each city equals the average size of all cities in that class. (The
estimate for a city with a unique cue profile is just its actual size.) As long
as the test set and training set are identical, this algorithm is optimal, and
is equivalent to the exemplar-based algorithm model proposed by Persson
(1996).13 When the test set and training set are not identical the tree will

12. The Bayesian search was limited to the subset of trees that classified each
new profile in the interval whose boundaries are defined by the cue profiles of
known cities.

13. The optimal solution is to memorize all cue profiles and collapse cities with
the same profile into the same size category. In statistics, this optimal solution is
known as true regression and approximates the profile memorization method for
optimal performance in choice tasks (see chapters 6 and 8).
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encounter new cities with possibly new cue profiles. If a new city matches
an old cue profile, its estimated size is the average size of those cities (in
the training set) with that profile. If a new city has a new cue profile, then
this profile is matched to the profile most similar to it. How is this done?

First, the cues are ordered within each profile according to their valid-
ity, with the one highest in validity first (for more on cue validity, see
chapter 6). Second, the cue profiles are ordered lexicographically such
that those with a positive value on the most valid cue are ranked first.
Profiles that match on the first cue are then ordered according to their
value on the second most valid cue, and so on. New cue profiles are filed
with the lexicographically ordered old profiles according to the same
logic. As an estimate of the size of a city with a new profile, the estimation
tree takes the average size of those cities whose profile is above the new
one in the lexicographical order. The estimation tree is an exemplar-based
model that keeps track of all exemplars presented during learning as well
as their cue values and sizes. Thus, when the training set is large, it re-
quires vast memory resources (for the pros and cons of exemplar-based
models, see Nosofsky et al., 1994).

We simulated population estimates, assuming varying degrees of
knowledge about this environment. We tested a total of 10 sizes of training
sets, in which 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 percent of the
cities (and their respective sizes) were known. In the training phase, the
three strategies—QuickEst, multiple regression, estimation tree—learned
a model (or parameters) of the data (i.e., cities and their cue values;
weights, s,+, Sj~, etc.). To obtain reliable parameters, 1,000 random samples
were drawn for each training set. For example, we drew 1,000 samples of
41 cities (50% training set) randomly from the reference class of 82 cities.

In the test phase, we applied the strategies to the complete reference
class (i.e., test set, which includes the training set). The strategies' task
was to estimate the populations of all the cities (assuming that the cities'
values on the cues were known). To make the simulation psychologically
more plausible, we assumed that the probability that a city belonged to
the training set was proportional to its size. This assumption captures the
fact that people are more likely to know about larger cities than smaller
ones.

How Frugal Is QuickEst?

QuickEst is designed to make estimates quickly. How many cues must
the heuristic consider before search is terminated? Figure 10-4 shows the
number of cues that had to be retrieved by each strategy for various sizes
of training sets. On average, QuickEst considers 2.3 cues per estimate—a
figure that remains relatively stable across training sets. In contrast, multi-
ple regression always uses all eight available cues. The estimation tree
uses more and more cues as the size of the training set increases—across
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Figure 10-4: Number of cues looked up by QuickEst, multiple regression,
and by the estimation tree as a function of size of training set. Vertical
lines represent standard deviations.

all training sets, it uses an average of 7.2 cues. Thus, QuickEst bases its
estimates on about 29% and 32% of the information used by multiple
regression and the estimation tree, respectively.

How Accurate Is QuickEst?

How accurate is QuickEst, which involves simple averaging and
rounding, compared with multiple regression, which involves complex
calculations? We compared the three strategies' performance using two
different measures of accuracy. First, we used the most common measure
of estimation accuracy, according to Brown and Siegler (1993), that is, the
(mean) absolute error (i.e., absolute deviation between actual and esti-
mated size). Second, for the (82 x 81)/2 city pairs in the complete set of
paired comparisons, we simulated choices ("Which of the two cities is
larger?") based on the estimates generated, and then calculated the pro-
portion of correct inferences drawn.

Absolute Error

What price does QuickEst pay, in terms of absolute error, for considering
only a few cues? Figure 10-5 shows the absolute error as a function of the
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Figure 10-5: Mean absolute error (i.e., absolute deviation between pre-
dicted and actual size) as a function of size of training set. Vertical lines
represent standard deviations. Note that some of the points have been
offset slightly in the horizontal dimension to make the error bars easier to
distinguish, but they correspond to identical training set sizes.

amount of learning (i.e., sizes of the training set). The 10% training set
exemplifies a situation where knowledge is scarce (which is likely to be
the rule rather than the exception in most domains). For this set, Quick-
Est's estimates are incorrect by an average of about 132,000 inhabitants
(about half the size of the average German city in the simulated environ-
ment), compared with 303,000 for multiple regression, and 153,000 for
the estimation tree. That is, under the psychologically relevant circum-
stances of scarce knowledge, QuickEst outperforms multiple regression
clearly and the estimation tree by a small margin.

How does performance change as a function of learning (i.e., more
cities known)? When 50% of the cities are known, for example, QuickEst
and multiple regression perform about equally well, and the estimation
tree outperforms both by a small margin. When the strategies have com-
plete knowledge (all cities are known), multiple regression outperforms
QuickEst by a relatively small margin—their respective absolute errors are
about 93,000 and 103,000—and the estimation tree outperforms both com-
petitors (absolute error is about 65,000, which equals the optimal perfor-
mance, see footnote 13). That is, under the psychologically rather unlikely
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circumstances of complete knowledge, QuickEst falls only slightly below
the performance of multiple regression but is clearly outperformed by the
estimation tree. (Even when multiple regression uses only those cues
whose weights are significantly different from zero—7.3 on average in-
stead of 8—its absolute error improves so slightly that the difference could
hardly be seen if plotted in figure 10-5, except for the 10% training set.)

This result is similar to that reported by Chater et al. (1997). They
tested the fast and frugal choice heuristic Take The Best (chapter 4), of
which QuickEst is a relative, against four computationally expensive strat-
egies, including neural networks and exemplar models. The task was to
determine which of two German cities had the larger population size.
Chater et al. found that when the training set was less than 40% of the
test set, Take The Best outperformed all other competitors. Only when the
training set grew beyond 40% did the competitors' performance increase
above that of Take The Best.

Where does QuickEst make substantial errors? Figure 10-6 shows the
deviations between actual and estimated size (in the 100% training set)
for each strategy as a function of population size. Each heuristic has a
distinct error pattern. Whereas QuickEst estimates the sizes of the many
small cities quite accurately, it makes substantial errors on the few large

Figure 10-6: Deviation between actual and estimated size (in the 100%
training set) for the three estimation methods on all cities, rank ordered
according to population size.



232 BEYOND CHOICE: MEMORY, ESTIMATION, AND CATEGORIZATION

cities because it puts them in its catchall category. Multiple regression, in
contrast, makes substantial errors along the whole range of population
size. The estimation tree makes relatively small errors for both small and
large cities.

Another aspect of figure 10-6 deserves attention. More than the esti-
mates made by the estimation tree and multiple regression, QuickEst's
estimates are regressed toward the mean: On average, it underestimates
the size of large cities and overestimates the size of small cities. Such a
regression effect is typical in human quantitative estimation (e.g., Att-
neave, 1953; Lichtenstein et al., 1978; Sedlmeier et al., 1998; Varey et al.,
1990). In figure 10-6, the overestimation of small city sizes appears minis-
cule compared to the underestimation of large city sizes. However, if the
deviations between predicted and actual size are divided by actual size,
then the regression effect for small cities is larger than for large cities. In
the 100% training set, the median regression across all cities is 56%, 45%,
and 23% for QuickEst, multiple regression, and the estimation tree, re-
spectively (we applied the analysis described in Sedlmeier et al., 1998,
footnote 1). Thus, QuickEst comes closest to showing the regression of
about 70% observed in people's estimates in other tasks (Sedlmeier et al.,
1998).

QuickEst uses only spontaneous numbers as estimates. What price will
multiple regression pay if it has to work with the same psychological con-
straint? Recall that under complete knowledge (i.e., when all cities are
known), multiple regression outperformed QuickEst (absolute errors of
93,000 vs. 103,000). If multiple regression also rounds its estimates to the
nearest spontaneous number, however, it performs worse than QuickEst
(absolute errors of 114,000 vs. 103,000).

To summarize, although the QuickEst heuristic involves only about a
third of the information available to its competitors and fewer complex
calculations than multiple regression, it outperforms multiple regression
and the estimation tree when knowledge is scarce. In addition, QuickEst's
performance is relatively stable across different amounts of learning: The
absolute error is only 1.3 times higher for the 10% training set than for
the complete knowledge case. In contrast, the absolute errors of multiple
regression and the estimation tree in the 10% training set are 3.3 and 2.3
times higher than the absolute errors for complete knowledge, respec-
tively. Only in the psychologically less plausible situation of abundant
knowledge (i.e., 50% or more of the cities are known) is QuickEst
(slightly) outperformed by its competitors.

Proportion of Correct Inferences

How many correct inferences do the heuristics make when comparing
pairs of cities? Figure 10-7a shows the results for the proportion of correct
inferences excluding cases of guessing (i.e., city pairs for which the heu-
ristics chose randomly because the predicted sizes were identical), and



Figure 10-7: Percentage of correct city comparison inferences as a func-
tion of the size of training set, both excluding guessing (a) and including
guessing (b). Vertical lines represent standard deviations. Note that some
of the points have been offset slightly in the horizontal dimension to make
the error bars easier to distinguish, but they correspond to identical train-
ing set sizes.
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figure 10-7b shows the results including guesses. QuickEst's performance
is excellent when it does not have to guess: Across all training sets, its
proportion of correct inferences is 81%, whereas those of multiple regres-
sion and the estimation tree are 73% and 77%, respectively.

In cases in which the predicted sizes are identical, each of the strate-
gies guesses randomly between the two cities, and thus, the proportion of
correct inferences in such cases is expected to be 50%. Because this value
is lower than the performance of the strategies without guessing, we can
predict that overall performance decreases when guessing is included (see
figure 10-7b). QuickEst suffers most because it falls back on guessing more
because it has a smaller set of numerically distinct estimates available:
Across all training sets, its proportion of correct inferences with guessing
is 66%, whereas those of multiple regression and the estimation tree are
71% and 75%, respectively.

Conclusion

Let us conclude, as we began, with one of Robinson Crusoe's journal en-
tries. Once Crusoe realized that his island was regularly visited by sav-
ages, he prepared himself for a possible confrontation with them. One
early morning, he was surprised by

seeing no less than five canoes all on shore together on my side of
the island; and the people who belonged to them all landed, and
out of my sight. The number of them broke all my measures; for
seeing so many and knowing that they always came four, or six, or
sometimes more, in a boat, I could not tell what to think of it, or
how to take my measures, to attack twenty or thirty men single-
handed; so I lay still in my castle, perplexed and discomforted. (De-
foe, 1719/1980, p. 198)

For many evolutionarily important tasks, from choosing where to for-
age to deciding whether to fight, adaptive behavior hinges partly on organ-
isms' ability to estimate quantities. Such decisions often have to be made
quickly and on the basis of incomplete information. What structure of
information in real-world environments can fast and frugal heuristics for
estimation exploit to perform accurately? We presented a heuristic, Quick-
Est, that exploits a particular environmental structure, namely, J-shaped
distributions. We demonstrated by simulation that where knowledge is
scarce—as it typically is in natural decision-making settings (e.g., Klein,
1998)—the fast and frugal QuickEst outperforms or at least matches the
performance of more expensive methods such as multiple regression and
estimation trees. QuickEst is an ecologically rational strategy whose suc-
cess highlights the importance of studying environmental structures.
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Categorization by Elimination
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Categorize or die.
F. Gregory Ashby

Miking through the Bavarian Alps, you come across a large bird
perched on a fence. You pull out your European bird guidebook to iden-
tify it. From the shape of its head, you assume that this is a bird of prey,
so you turn to the section on raptors in the guide. You next use size to
narrow down your search to a few kinds of hawks; then you use color to
limit the possibilities further. When you consider the bird's tail length,
you finally have enough information to determine the exact species. Using
only four features (cues), you correctly identify this bird as a sparrow
hawk.

Now imagine that rather than observing a bird on a fence, you spot one
flying overhead. The bird is moving rather rapidly and is backlit by the
sun so you are only able to perceive a few of its attributes. The first thing
you notice is the bird's size, followed by the shape of its silhouette, and
lastly its fluid gliding motion. Again, with limited information you are
able to categorize the bird as a sparrow hawk, but this time using a differ-
ent (and smaller) set of cues than when the bird was stationary.

How would this categorization process proceed if a rabbit rather than
a human were watching the bird? The rabbit would not be interested in
knowing the exact species of bird flying overhead, but instead would want
to categorize it as predator or not, as quickly as possible—the Rabbit's
Guide to Birds has only two short sections. While the rabbit could also
use several cues to make its category assignment, as soon as it finds
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enough cues to decide on the category "predator"—for instance, if this
bird is gliding—it should not bother gathering any more information, and
just head for shelter. Obviously, for a rabbit, speed is of the essence when
it comes to categorizing birds as predators or nonpredators.

Humans and animals alike face circumstances where rapid categoriza-
tion, making use only of immediately available information, is called for.
Quickly categorizing the intention of another approaching creature as
either hostile or courting, for instance, enables the proper reaction in
enough time to ensure a happy outcome. Indeed, the function of categori-
zation itself can be regarded as a means for making speedy snap judg-
ments about things in our environment: Correctly placing an object into a
category after observing only a few of its features allows one to generalize
beyond those features and make predictions about other properties of that
object (Anderson, 1991; Medin et al., 1987; Rosch, 1978). If the purpose
of categorization is to allow rapid predictions, a process of categorization
that required an exhaustive search of all relevant features before reaching
a conclusion would defeat this goal. That is, if each feature takes time to
acquire or observe, a process that uses all features will be slower than a
process that does not require all features. Rapid categorization thus best
supports rapid category-based prediction—but how can it be accom-
plished? A fast and frugal algorithm that stops looking for features as soon
as there is sufficient information to make a decision would satisfy our
goal.

In this chapter, we consider the case for just such a fast and frugal
model of categorization, akin to the categorization process based on or-
dered cues described in the first paragraph. This model, which we call
Categorization by Elimination (or CBE; see Berretty et al., 1997), uses only
as many of the available cues or features as are necessary to first make a
specific categorization. As a consequence, it often uses far fewer cues in
categorizing a given object than do standard models that integrate cues—
hence its fast frugality. Despite its frugality, the accuracy of this approach
typically rivals that of more computationally involved algorithms, as we
will show. We therefore propose Categorization by Elimination as a parsi-
monious psychological model, as well as a useful candidate for some ap-
plied categorization tasks.

We describe competing psychological and machine-learning models of
categorization in the next section. Because Categorization by Elimination
is closely related to Tversky's Elimination by Aspects model of choice
(Tversky, 1972), we proceed to a discussion of the main assumptions of
elimination models. We next present the CBE model in detail. Most other
recent models of human categorization have been tested in quite restricted
(low-dimensionality) environments having only two or three cues, situa-
tions in which CBE can show little advantage. Therefore, we have experi-
mentally investigated a multiple-cue categorization task in which we can
compare our model with others in accounting for human performance. We
describe this study, which involves categorizing animate motion trajector-
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ies into different behavioral intentions using seven cue dimensions, at the
beginning of the fifth section on results (it is covered much more exten-
sively in chapter 12). CBE performs there as well as linear categorization
methods, and does not overfit the data as much as neural networks some-
times do. We continue in that section to look at how well our algorithm
does alongside some of the cue-integrating categorization methods devel-
oped in psychology and machine learning on standard data sets from the
latter field. This comparison shows that CBE competes in accuracy with
more traditional methods in a variety of domains, even when using far
fewer cues. Finally we consider some of the challenges still ahead for
developing fast and frugal categorization algorithms. Throughout the re-
mainder of the chapter we use the terms cues, aspects, dimensions, and
features, as appropriate, all to mean roughly the same thing.

Existing Categorization Models

The proliferation of categorization models in both psychology and ma-
chine learning demands some categorization itself. Psychologists are pri-
marily concerned with developing models that best describe human cate-
gorization performance, while in machine learning the goal is to develop
models that attain the highest accuracy of categorization. These two goals
are not necessarily mutually exclusive; indeed, one of the main findings
so far in the field of human categorization is that people are often able to
achieve near-perfect accuracy (that is, categorize a stimulus set with mini-
mal errors; see Ashby & Maddox, 1992). As a consequence, some models
(e.g., Miller & Laird's symbolic concept acquisition model, 1996) are
aimed at filling both roles.

Categorization models can be analyzed according to the three heuristic
building-block dimensions introduced in chapter 1: How does a particular
model search for information to make a category judgment? When will the
model stop searching for information? And what decision process will it
use once it has all the information it requires? However, this sort of analy-
sis does not always get us very far, because there has been little focus
in the psychological literature in particular on how people acquire the
information they need (the first two dimensions). The majority of psycho-
logical studies of categorization have used simple artificial stimuli (e.g.,
semicircles in two-dimensional space; Nosofsky, 1986) that vary on only
a few (two to four) dimensions.1 With all of the (limited) information pre-
sented to participants, there is no need for search, and so no need to stop
search, either—only the decision rule needs to be specified. It remains to
be demonstrated how accurate humans can be when categorizing objects

1. Posner and Keele (1968) have used multidimensional random dot stimuli to
test human classification, but the exact number of dimensions is undeterminable.
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that have many dimensions. This is in contrast to the more natural high-
dimensional categorization applications used in machine learning, such
as wine tasting (Aeberhard et al., 1994) or handwriting recognition (Mar-
tin & Pittman, 1991). In that field, appropriate information search can be
very important. Here we briefly review some of the currently popular cate-
gorization models for human categorization and machine learning with
the three heuristic building blocks in mind. In many cases, though, we
must extrapolate or remain silent because an algorithm was not designed
with the concerns for limited time, memory, or computational effort that
the building blocks embody.

Theories of categorization in the psychology literature have been in-
stantiated primarily in exemplar models (e.g., Kruschke, 1992; Nosofsky,
1986), decision-bound models (e.g., Ashby & Gott, 1988), and rule-based
models (e.g., Miller & Laird, 1996; Nosofsky et al., 1994). These models
assume that any object may be represented as a point in a multidimen-
sional space of cue values (possibly with some uncertainty). Furthermore,
these models all assume that humans integrate features in the categoriza-
tion decision process—that is, we combine multiple cues to come to a
final judgment. By relying on integration, these models can suffer greatly
in performance when too few cues are available, as we will show later.
Finally, these models imply that categorizers use all of the cues that are
present—that is, there is no explicit stopping rule for information search,
and we do not discard any available information. This can lead to time
pressure when many cues are available. To point out these important as-
pects of psychological categorization models, we will now compare No-
sofsky's generalized context model and Ashby's decision bound theory.

Exemplar models (Brooks, 1978; Estes, 1986; Kruschke, 1992; Medin &
Schaffer, 1978; Nosofsky, 1986) assume that humans categorize novel ob-
jects by computing the similarity between an object and all exemplars in
every category in which the novel object could be placed, using all the
cues available. Thus there is no stopping rule for information search. Two
main types of decision rules are used: The object can be identified with
the category to which it is most similar according to the similarity metric,
or it can be assigned a category probabilistically using normalized similar-
ity values as probabilities (as in most exemplar models). Nosofsky's (1986)
generalized context model (GCM) allows for variation in the amount of
attention given to different features during categorization (see also
Medin & Schaffer, 1978). Therefore, because some cues can be given atten-
tion weights of zero and thus ignored, it is possible that different cues can
be used in different tasks. But the particular cues that are used and their
weights remain the same for the entire stimulus set for each particular
categorization task. (In contrast, as we will see, CBE can use a different
set of cues to categorize each new object.) These weights could be used to
order cues in search, if time pressure prevented an agent with this kind
of model from accessing all available information—although not explicitly
addressed by exemplar theorists, an underlying assumption is that cues
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with larger attention weights could be assessed and used before cues with
smaller attention weights.

Decision bound theory (or DBT; see Ashby & Gott, 1988) assumes that
there is a region in multidimensional space associated with each category,
and therefore that categories are separated by bounds between regions.
Decision bounds are determined by the mean, variance, and covariance of
the stimulus points within each category. DBT uses a deterministic re-
sponse rule to categorize an object according to the region of perceptual
space in which it lies. If some cues are not available when categorization
is to be performed, then a lower-dimensional projection of the original
learned perceptual space (defined by all of the available cues) would be
used. Again, there is no explicit search order or stopping rule, and the
decision is made by combining cue values.

While these psychological models all categorize by integrating all the
cues available (except in exemplar models if a cue has an attention weight
of zero), their memory requirements do differ. GCM assumes that all ex-
emplars ever encountered are stored and used when categorizing a novel
object, while DBT only needs to store the bound-determining parameters
of each category. We will return to the issue of memory and the trade-off
with cue use in the final section.

A different approach to categorization is captured in rule-based mod-
els. Miller and Laird's (1996) symbolic concept acquisition (SCA) model
incrementally builds up a set of rules for classifying stimuli according to
specific discrete features. The first rules to be constructed are very general
ones that only test a single feature. If the current set of rules cannot distin-
guish between categories, then more detailed rules will be added, which
must match the stimuli on more features. After a set of rules has been
learned in this way, new stimuli are categorized by first checking them
against specific rules incorporating all the available features. If there is no
exact match between all perceived features and a specific rule, then fea-
tures are successively dropped until a more general rule that does match
the remaining features is found. Thus cue search order, stopping condi-
tion, and final decision are all specified by the model's rules. There are
similarities between this approach and Categorization by Elimination; in
particular, the order in which features are processed can be related to our
cue validity measure. But a major difference is that during categorization,
CBE begins with a single feature (rather than all those available), and only
adds new ones if necessary, thereby decreasing computation. Another
model that tests rules in this more efficient general-to-specific order
is Feigenbaum and Simon's EPAM symbolic discrimination-net model
(Feigenbaum & Simon, 1984); however, our two approaches differ signifi-
cantly beyond this point.

The quest for psychological plausibility and computational simplicity
was taken up by Nosofsky, Palmeri, and McKinley (1994) in developing
their rule-plus-exception (RULEX) model. In RULEX, simple logical rules
are learned for binary-valued feature dimensions, mapping particular fea-
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ture values onto particular categories. However, these rules can be imper-
fect, so exceptions must be memorized as well. Nosofsky et al. found that
accurate categorization could be achieved in their data sets with very few
stored rules plus exceptions. This simple approach can also account for
individual differences in categorization performance. However, RULEX
was designed for the limited case of two categories defined by binary-
valued cues (though it is now being extended); we will aim for a more
general model.

In machine learning, predominant categorization theories include neu-
ral networks, Bayesian models, and decision trees. The goal of these ma-
chine learning models is usually to maximize categorization accuracy on
a given useful data set. Limiting algorithmic complexity is not typically
the most important factor in developing machine learning models, which
can sometimes lead to computation-intensive models that are not psycho-
logically plausible.

Neural network-based categorization and classification models (see,
e.g., Hertz et al., 1991) can learn hyperplane boundaries between catego-
ries, capturing this knowledge in their trainable weights. Values of all
available cues in a particular stimulus are usually processed through a
nonlinear decision (activation) rule to determine the region of multidi-
mensional space, and hence the associated category, in which that stimu-
lus falls, both during learning (training) and generalization (testing). Neu-
ral networks are usually conceived of as parallel processing systems, so
that they expect to have all input data available simultaneously, without
need for either search or stopping rules. Once a network has been trained
with a particular set of cues, categorization performance will typically
suffer if any of those cues are missing in stimuli during testing; however,
one of the hallmarks of distributed models of this type is graceful degrada-
tion, in which performance declines gradually rather than catastrophi-
cally with decreasing input knowledge.

The Bayesian approach to categorization formulates the problem in a
probabilistic framework: Find the category that maximizes the probability
that a new (nontrained) object belongs to it, given the object's cue values
and knowledge of the cue validities. The naive Bayes classifier assumes
that all cues are independent of each other on the categories concerned,
which greatly simplifies the calculations involved in setting it up. The
structure of the created classifier determines which cues will be used, but
their order is not specified. In some categorization domains the perfor-
mance of the naive Bayes approach has been shown to be close to that of
neural networks and decision trees (Blum & Langley, 1997; Domingos &
Pazzani, 1996). Anderson (1991) has also proposed a naive Bayes method
as a normative model for human behavior. He did not intend his Bayesian
approach to be a model of a psychological mechanism, and indeed the
computations involved are too complex: People have difficulty even han-
dling conditional probabilities that involve more than one cue and one
category at a time. But Anderson has analyzed a variety of experimental
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results and found that human categorization behavior can be close to that
of the naive Bayes standard. While a naive Bayes model may not be psy-
chologically plausible, the full Bayesian approach, that is, respecting all
relevant dependencies, is even less so—see chapter 8 for a discussion of
the complexities involved in these demonic methods.

In decision tree models of classification, a primary goal is to simplify
the actual categorization process by reducing the number of dimensions
needed to determine an object's category. But to achieve this decision-
making simplification, quite complex methods are usually employed to
select the dimensions used at various points in the tree. For example,
the setup phase of Quinlan's (1986, 1993) ID3 decision tree calculates the
attribute that provides the greatest information for determining the correct
category and uses it as the root (i.e., first decision branch point) of the
tree. The rest of the tree's branches are chosen recursively by again com-
puting the most informative attribute at each successive decision point.
Once a tree has been set up, its structure determines the exact number
and sequence of cues that must be used to reach a final category decision,
and all of the decision making itself is done at the successive branch
points on any particular path through the tree.

Breiman et al.'s (1993) classification and regression tree (CART) models
also require extensive calculations of statistical tests between pairs of fea-
tures to determine which ones will be used where in the decision tree.
For both IDS and CART, the values of previously checked attributes can
affect what attribute is looked at next, so that different objects may be
categorized using different sets of attributes (see the patient classification
example at the beginning of chapter 1). The large amount of computation
required to set up these models before a single categorization decision can
be made (even if each subsequent decision is itself simple) renders them
rather unrealistic from a psychological perspective. Holte (1993) has
greatly simplified the decision tree approach by considering only a single
cue dimension, divided up into regions each corresponding to a particular
category. With enough such divisions, this simple method can be very
accurate, but the memory requirements become quite high.

One example of a model that does attempt psychological plausibility
is Gennari's (1991) CLASSIT, which applies selective attention to unsu-
pervised concept formation. This system makes an initial classification of
an object by using as few of the most salient cues as necessary. However,
all cues must still be considered before a final decision is settled on, to
make sure that further information would not change the initial classifica-
tion. This "worst case" stopping rule for checking cues is a form of con-
strained optimization as defined in chapter 1.

Even though many of the machine learning models (e.g., CART and
CLASSIT) use only a few cues during a given categorization, the process
of setting up the algorithm's decision mechanisms beforehand, including
determining which cues to use, can be complex (e.g., CART's use of t-
tests—see Breiman et al., 1993) or time consuming (e.g., neural network
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training iterations). Can we instead design a heuristic categorization method
that is simple to set up, employs limited cue search and simple decision
rules, and yet still produces high accuracy?

Elimination Models

Motivated by the psychological plausibility concerns introduced in the first
section, that humans and other animals often must categorize objects based
on few cues in little time, we wanted to develop a fast and frugal categoriza-
tion method. Such a method can combine the best aspects of both the psy-
chological and machine learning categorization models: simple decision
processes and limited cue use. This combination of features is embodied in
a class of psychological theories known as elimination models.

Elimination models were originally developed for choice and preference
tasks (Restle, 1961; Tversky, 1972). In a sequential elimination choice
model, one object is chosen from a set of objects by repeatedly eliminating
subsets of objects from further consideration, thereby whittling down the
set of remaining possibilities until a single choice remains. Objects in the set
are defined by a number of features. To eliminate the first subset of objects, a
feature is selected in some way, and all objects with that feature are removed
from the set of possibilities. Subsequent subsets are chosen in the same
manner with successive features, and are removed. The object remaining
after this elimination process is the final choice. Thus elimination models
must specify a search-order building block, and stop information search as
soon as a single choice remains, so that their stopping rule and decision rule
are intertwined (as in decision trees).

The most widely known elimination model in psychology is Tversky's
(1972) Elimination by Aspects (EBA) model of probabilistic choice. One
of the motivating factors in developing EBA as a descriptive model of
choice was that there are often many relevant cues that may be used in
choosing among complex alternatives (Tversky, 1972). Tversky therefore
wanted his model to incorporate a psychologically plausible procedure to
select and order the cues to use from among many alternatives. In EBA,
the cues, or aspects, are selected in a probabilistic order based on their
utility for making a particular decision (e.g., for choosing a restaurant
from those nearby, the most important aspects might be what it serves and
how much it charges). Remaining possibilities that do not match the cur-
rent aspect being considered (e.g., restaurants that do not serve seafood)
are eliminated from the choice set. Furthermore, only aspects that are
present in the remaining choice set are considered (e.g., if all nearby sea-
food restaurants are equally inexpensive, then high price cannot be used
as an aspect to distinguish further between them). Additional aspects are
used to eliminate possibilities until a single choice is left. This use of only
the necessary aspects is markedly different from the categorization models
described in the previous section that use all available cues. (See chap-
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ter 7 for more on EBA and other elimination-based heuristics used for
choice.)

Moving from choice toward categorization, elimination models have
also been developed for identification. Townsend and Ashby's (1982) se-
quential feature testing algorithm is an elimination model of the decision
process involved in letter recognition using visual features. As in Elimina-
tion by Aspects, each feature is weighted (here with values that best
mimic human performance). However, rather than selecting the next as-
pect based on those present in the current subset of choices, the aspect
with the next highest weight is picked. If this aspect was perceived in the
letter shown, all remaining letters without that aspect are eliminated from
the choice set (so for instance, if a curved part was seen in the letter "b,"
then all letters without curved parts, including "x" and "k," would be
eliminated from further consideration). Likewise, if this aspect was not
perceived, all letters with that aspect are eliminated. Aspects are checked
until only one letter remains, or if all letters are eliminated, then a random
choice is made.

To repeat, there are two main assumptions underlying elimination
models, and thus CBE. First, the cues used must be ordered in some way
(even if only probabilistically)—a search-order building block is required.
Second, it is not always necessary to use all cues to reach a decision—the
simple stopping rule is to halt search when a unique decision has been
determined (or when no more cues are available). Although these assump-
tions have not been tested explicitly in a categorization task (to our
knowledge), they have been tested in various studies on other forms of
decision making.

Previous research has suggested that people process cues in order of
their usefulness for a particular task. Studies of information search in hy-
pothesis testing have shown that people prefer to use diagnostic cues over
nondiagnostic cues (Skov & Sherman, 1986; Trope & Bassok, 1982). The
diagnosticity of a binary cue for distinguishing between two hypotheses
is defined as the likelihood ratio between the probability that the first
hypothesis is true, given that the cue is present, and the probability that
the second hypothesis is true, given that the cue is present. A cue's diag-
nosticity thus indicates how well it discriminates between the hypothe-
ses. Categorization by Elimination can use various related ways of order-
ing cues from most to least useful (see chapter 6 for more on different
types of cue orderings). In the version we present here, we order the cues
based on how often they would make a correct categorization if they were
used by themselves.

With regard to the second assumption, it has been demonstrated that
people do not use all of the cues made available to them in a variety of
decision-making tasks (see chapter 7). Saad and Russo (1996) investigated
how many cues people would actively select to make a choice between
two apartments in an experimental setting. When people were allowed to
select cues in the order they wanted, they only used a quarter (median of
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24%) of the possible cues; even when the experimenters controlled the
cue presentation order, people still only requested about half (median of
52%) of the cues before making their decisions. In another decision task,
people preferred to make a decision they were not completely sure of
based on a limited number of cues, instead of accessing further informa-
tion available to them (Jacoby et al., 1994). Perhaps most importantly for
our purposes, it has also been found that people use fewer cues if they
have high diagnosticity than if they have low diagnosticity (Van Wallen-
dael & Guignard, 1992). These findings further indicate that when people
can access cues in a particular desired order, they will typically use fewer
of them.

Categorization by Elimination

To build a categorization model based on an elimination process, we begin
with the following general assumptions: Objects to be categorized have
perceivable cues with continuous or discrete values. For a given task,
there is a set of possible categories in which objects can be placed based
on their cue values. Unlike Tversky's EBA model of preference and proba-
bility-matching models of categorization, we are concerned here with
problems where there is a correct answer to be determined, and where we
can measure the performance of our algorithm against an external accu-
racy criterion. Our model is consequently deterministic rather than proba-
bilistic (except where guessing is required). Further, because this is not
an object identification task where we would look for an exact match of
an object's cues with a cue profile stored in memory, there will be general-
ization. This means that there can be occasions on which the model will
not predict an object's category correctly.

More specifically, we build the following components into CBE: To cat-
egorize an object, its values on the various cue dimensions are processed
in a particular predetermined order. The same order is used for any object,
but because of the eliminatory nature of the model, not all cues will be
processed for all objects. Each cue processed restricts the set of possible
categories left that could be ultimately chosen by removing some of them
from further consideration—this is the elimination step. (Note that a given
cue may also leave the set of possible categories unchanged, but it can
never increase the pool of possibilities.) Processing of cues stops when a
single category remains, or when no more cues are available, at which
point a random choice is made from the remaining possibilities. Given
these assumptions and components, we can now consider exactly how
Categorization by Elimination operates and how well it performs.

An Example of Categorization by Elimination

To illustrate how the CBE model works, we can apply it to the task of
determining a wine's variety—whether zinfandel, Pinot Grigio, or another
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of a prespecified set of possibilities—by using a set of cues that could be
collected during a wine tasting. We begin with a list of categories to con-
sider and a list of cues that can be used to place wines in those categories.
The heuristic makes categorizations by processing a training set of wines
whose categories (their varieties) and cue values are known. Out of the
many possible cues we could use to assess the wines, we will consider
here just four obvious ones: sweetness, color, aroma, and the presence or
absence of added alcohol. First, the heuristic needs a rule that gives
search a direction, that is, determines which cue is looked up first, sec-
ond, and so on. As mentioned earlier, cues that make more correct catego-
rizations when used by themselves will be ranked before cues that make
fewer correct solo categorizations. For this wine-tasting task, imagine that
it has already been estimated that color is the best single cue of wine type,
followed by aroma, sweetness, and then added alcohol.

Second, the cue values of the known wines are analyzed to divide up
each cue dimension into "bins" that correspond to specific variety catego-
ries. For example, the cue-value distributions of the wine categories in the
training set may divide the "color" dimension into three bins: one with
cue values from light yellow to gold, one with pink, and the last with red
cue values. (We discuss how these bins are created from the training set
data in the next subsection.) Each cue-value bin has a set of possible cate-
gories associated with it. For example, the bin spanning red color-cue val-
ues could correspond to the wine categories Beaujolais, Burgundy, Caber-
net Sauvignon, Pinot Noir, zinfandel, port, and merlot. (Finer gradations
of bins may increase categorization accuracy, but for now we will assume
three bins are sufficient.) The "aroma" dimension might consist of several
bins that correspond directly to cue values: woody, earthy, herby, fruity,
and unassignable. Based on the known wines we have analyzed to con-
struct these bins, the unassignable aroma bin could correspond to the
categories sparkling wine, champagne, and Beaujolais. (Note that these
categories could be present in other bins on the same cue dimension
as well—for instance, if we had two types of Beaujolais in our known
wine set, one fruity and one unassignable, then the Beaujolais category
could fall into both the unassignable and fruity bins on the aroma dimen-
sion.)

Once the cues have been ordered and their value ranges divided into
bins representing different categories, this knowledge can be used to cate-
gorize new wines. Imagine that we have a mystery glass poured in front
of us, and we want to use CBE to figure out what kind of wine this is. We
would proceed to check the cues in order. We first observe the color cue
and see that the wine is red. We therefore know that this wine must be
among the possible categories in the red color bin: Beaujolais, Burgundy,
Cabernet Sauvignon, Pinot Noir, zinfandel, port, and merlot. This color
cue has thus eliminated a number of wines from further consideration,
such as golden Pinot Grigios and pink roses. Next we take a sniff to assess
the aroma of the wine, finding that it is not easily identifiable. Thus the
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aroma cue indicates that the wine's variety is one of those in the unassign-
able bin: a sparkling wine, champagne, or Beaujolais. We eliminate all but
these wine varieties from the previous set of red-color possibilities, and
see what choices we are left with. This is the same as taking the intersec-
tion between the two sets of wine categories that the two cues indicate.
When we do this we find that only one wine variety remains that fits both
cues: Beaujolais. So we conclude that the wine in question comes from
this category. If there had been several possibilities that were both red and
of unassignable aroma, we would have proceeded to check the next cue,
sweetness, to see if that cut down the set of possibilities any further, and
we would go on in this way with further lower-ranked cues until only a
single category remained, or until we ran out of cues and had to guess
among the categories still left in the running.

The Algorithm

Categorization by Elimination is a fast and frugal, noncompensatory, cue-
based model of categorization. This means that it uses cues in a particular
order to determine an object's category, and categorization decisions made
by earlier cues cannot be altered (i.e., compensated for) by later cues. In
CBE, cues are ordered and used according to their probability of success.
We define probability of success as how accurately a single cue catego-
rizes some set of stimuli, in percentage correct (see chapter 6 for more on
this and other ways of ordering cues). This value can be calculated by
running CBE using only the single cue in question and seeing what pro-
portion of correct categorizations the algorithm makes. If using the single
cue results in CBE being unable to distinguish between multiple catego-
ries for a particular stimulus, as will often be the case, the algorithm
chooses one of those categories at random. For instance, if size alone is
more accurate in categorizing birds (or more successful at narrowing
down the possible categories) than shape alone, then the size cue would
have a higher probability of success than shape, and so would be used
earlier by CBE.

As described in the previous section, setting up CBE for a particular
task involves identifying the relevant cue dimensions and then dividing
up each dimension into bins. Each bin covers a continuous range of cue
values (either nominal or numeric) that corresponds to certain categories.
These bins form the knowledge base that CBE uses to map cue values onto
their possible corresponding categories. Bins can either be fully con-
structed from a training set of objects before testing CBE's categorization
performance (as we do here), or bin learning and categorization testing
can be done incrementally. In both cases, bin construction proceeds by
determining low and high cue value boundaries for each category on each
cue dimension. These boundaries are then used to divide up each dimen-
sion into the cue-value ranges that form the bins (see figure 11-1). This
means that CBE has very specific, and frugal, memory requirements: It
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Figure 11-1: Construction 01 cue-value bins on one cue dimension. Here
the wingspan dimension for four categories of birds is divided up into six
bins (shown under the dimension line, with the categories they corre-
spond to). The bin boundaries are determined by the upper and lower
bounds of the distribution of wingspans of each category of bird, as shown
by the vertical lines.

only needs to store two values per category per cue dimension, indepen-
dent of the number of objects encountered.

We have explored two ways of determining the low and high cue-value
bounds associated with each category. First, in cases where cue values for
a particular category are assumed to be normally distributed, we can use
a low cue bound that is one or two standard deviations below the distribu-
tion mean, and a high bound that is one or two standard deviations above
the mean. This Gaussian binning (used in the first example in the next
section with one-standard-deviation bounds) captures where the majority
of members of a particular category will fall on a particular cue dimen-
sion—but objects in that category could be seen that have cue values out-
side of this range. This means that the binning structure will misclassify
these noncentral objects on that dimension; however, other dimensions
could still correctly categorize them.

Second, particularly if category cue values are thought to be uniformly
distributed, then the low cue bound can simply be the lowest cue value
seen for a particular category, and the high cue bound can be the highest
value seen. In this case, the cue-value bins will map from a particular cue
value to the entire set of possible categories associated with that value (in
the training set), whereas the Gaussian bins only map to the most preva-
lent categories for a cue value. This "perfect binning" (also used in the
next section) will not misclassify objects seen during training (bin con-
struction), except when final guesses are required. Perfect binning thus
generally yields a higher training-set accuracy than Gaussian binning.
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How does CBE use the constructed cue-value bins to categorize a par-
ticular object? A flowchart of the processing steps used by CBE is shown
in figure 11-2. Given a particular stimulus to categorize, we begin with an
initial set of possible categories S and an ordered list of cue dimensions
to be used. The categorization process begins by picking the cue dimen-
sion C with the highest probability of success. Next, the constructed bins
are used to map the object's value on C to the corresponding set S* of the
possible categories for that cue value. If only one category corresponds to
that cue value (that is, if S* contains only one category), then the categori-
zation process ends with this single category.

Usually, though, there will be more than one possible category in S*.
In this case, that set S* of possible categories is intersected with the previ-
ous (full) set of possibilities, S, and the remaining possibilities in this
intersection are saved as the new set S of possible categories for the next
pass through the loop. This is CBE's elimination step: All those categories
that are not in both the new and old set of possibilities are eliminated. In

Figure 11-2: Flowchart for the Categorization by Elimination algorithm.
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this way, only those categories that fit with all of the cues seen so far for
this object will remain as possibilities. To continue the elimination pro-
cess, the cue dimension with the next highest probability of success is
chosen as the new C. The set of categories corresponding to the object's
value on dimension C is assigned to S*, and this new set is intersected
with the previous set of remaining possibilities, S. Again if this intersec-
tion contains a single category, we are done. If not (and if there are still
cues left to check), the intersection becomes the set of possibilities for the
next round, and the process continues.

The Categorization by Elimination algorithm thus has a simple,
straightforward stopping rule: If only one category remains in the newly
formed set of possibilities, then this is the decision the algorithm ends
with; or if all of the cues have been processed and more than one possible
category remains, then a choice is made randomly from that set. As long
as both of these conditions are not met, the algorithm continues, in one
of two ways. If more than one possible category remains, then as indicated
above, the next most successful cue is checked. Alternatively, if the inter-
section of S* and S is empty, leaving no possible categories to choose
among, then the present cue C is ignored, the prior set S of categories is
retained, and the next cue is evaluated.

This algorithm has several interesting features. It is frugal in informa-
tion, using only those cues necessary to reach a decision. It is noncompen-
satory, with earlier cues eliminating category-choice possibilities that can
never be rescued by later cues. The binning functions used to associate
possible categories with particular cue values are simple, use little mem-
ory, and can be easily learned. And the exact order of cues used does not
appear to be critical: In preliminary tests, different random cue orderings
vary the algorithm's categorization accuracy by only a few percentage
points. But notably, the number of cues used with different orderings does
vary more widely. This number is, however, kept low when the cues are
used in order of their probability of success.

Categorization by Elimination is clearly related to Tversky's Elimina-
tion by Aspects model in several respects, though there are some impor-
tant differences. First, EBA is a probabilistic model of choice while CBE
is a deterministic model of categorization (but including the possibility of
a final guess). Second, in CBE cues are ordered by our success measure
before categorizing begins, so that the same cue order is used to evaluate
each object. In EBA, aspects are selected probabilistically according to
their weight, so that the order in which aspects are considered is not nec-
essarily the same for each object. Third, as mentioned previously, EBA
only chooses aspects that are present in the current set of remaining possi-
ble choices, and therefore the process never terminates with the empty
set. However, this requires checking for the presence of each proposed
aspect among the remaining choices. CBE does no such prescreening for
appropriate cues to use, but rather takes the psychologically simpler route
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of dropping the last cue seen whenever it leads to an empty intersection
of category sets.

CBE is also a relative of Gigerenzer and Goldstein's (1996a) Take The
Best heuristic for two-alternative choice (see chapter 4). Take The Best
makes its choices by going through a set of cues ordered by their ecologi-
cal validity (see chapter 6); the first cue that allows a decision to be made
will stop the search for further cues. CBE uses a similar stopping rule,
ending the search for further cues as soon as a category choice can be
made. Take The Best can be considered a special case of CBE, where the
items to be categorized are now statements of the form "How does A com-
pare to B?," the possible categories are "A is greater" and "B is greater,"
and the cues are ordered pairs (cue-x-of-A, cue-x-of-B). CBE extends Take
The Best from discrete cues and two categories to continuous cues and
multiple categories.

How Well Does Categorization by Elimination Perform?

Of course, all of these interesting features of our new algorithm make little
difference if it does not actually perform well. How will the fast and frugal
CBE compare to standard compensatory algorithms? We first tested CBE
as a model of human categorization on motion trajectories that corres-
ponded to different intentional actions (Blythe et al., 1996; see chapter 12
for a complete description). Participants in this experiment viewed re-
corded "movies" of two artificial bugs moving around on a blank back-
ground, and had to decide as quickly as possible whether a marked bug
was pursuing, evading, fighting, courting, being courted, or playing
with the other bug. We modeled the human performance on this inten-
tion-from-motion categorization task with four different algorithms: CBE,
Dawes's rule (a linear model with unit weights—see chapter 4), Franklin's
rule (a linear model with differential weights—see chapter 4), and a three-
layer neural network, each of which could use seven basic motion cues to
make a decision. CBE categorized the motion trajectories about as accu-
rately as Dawes's rule and Franklin's rule on both training sets and testing
sets (generalization), while using only half as many cues (see table 12-3).
The neural network beat the other three algorithms, but suffered greatly
on the test set when some of the cues were eliminated, indicating a lack
of generalization robustness in comparison to CBE. All of the algorithms
outperformed the human participants (in part because the algorithms
were trained before they were tested, while the participants were purpose-
fully given no practice). But the fact that CBE performed as well as the
linear rules, even though it did not even consider half of the available
information on average, supports its candidacy as a fast and frugal, psy-
chologically plausible categorization algorithm.

To challenge CBE in a tougher competition, we next turned to data sets
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used as testbeds in the machine learning community2—the multidimen-
sional object databases in the Irvine Machine Learning Repository (Merz &
Murphy, 1996). We used three of these data sets (described below) to com-
pare the performance of CBE using perfect binning with an exemplar
model (Nosofsky's 1986 GCM) using variable dimension weights found by
gradient descent, and a three-layer feed-forward logistic activation neural
network trained with backpropagation. For each data set, we ran 10 trials
in which we split the full data set in half, trained on one half (recording
the fit to the training data), and tested generalization performance on the
other half.

Table 11-1 shows the results of these comparisons for three data sets.
The first is Fisher's (1936) famous iris flower database, containing 150
instances of flower measurements classified into three categories (differ-
ent iris species) using four continuous-valued features (lengths and
widths of flower parts). The next data set is made up of 178 wines from
each of three particular Italian vintages, each with 13 associated continu-
ous chemical-content cues. The third data set consists of 8,124 instances
of two mushroom categories, poisonous and edible, with 22 nominally
valued dimensions. For each data set, we show the three competing algo-
rithms' accuracy and number of cues used (frugality) when fitting the
training set, and their accuracy and number of cues used when generaliz-
ing to predictions about the test set. In addition, we include (in the two
available cases) the average generalization performance of all machine
learning systems reported in a survey by Holte (1993), and the best re-
ported performance we have found for each data set in the machine learn-
ing literature.

Overall, CBE does quite well on these three sets of many-featured natu-
ral objects. It generalizes better than the exemplar model on two of the
three data sets, and lags only a few points behind the average machine
learning algorithm. We were not expecting CBE to outperform the various
specialized machine learning algorithms; merely being in the same ball-
park is a powerful indicator that this simple method's accuracy may ex-
tend to other more varied domains. The critical point of interest is that
CBE performs similarly to its often more-complex competitors while using
only a small proportion of the available cues. In fact, on average CBE can
make accurate generalizations just using about a quarter of the informa-
tion that the other methods use.

But perhaps the other methods do not really need all the information
they are given—it could be that they too would perform just as well even
when they only had as many cues to go on as CBE used. To test this, we
ran the exemplar model and neural network on the three data sets again,

2. It is difficult to compare CBE to existing categorization models on human
multiple-cue data, because few other experiments have been performed with more
than three or four cues. We hope to see more researchers running such realistic
multiple-cue categorization experiments in the future.



Table 11-1: Categorization Accuracy (Percent Correct) and Information Frugality (Number of Cues Used) for Various Models on Three
Data Sets (Means Over 10 Runs)

Iris Wine Mushrooms

Fitting Generalization Fitting Generalization Fitting Generalization

Frugality Accuracy Frugality Accuracy Frugality Accuracy Frugality Accuracy Frugality Accuracy Frugality Accuracy

CBE
Exemplar
Neural network
ML average
ML best
Frugal exemplar
Frugal network

1.2
4.0
4.0
—

—

96%
99%
99%

—

—

1.2
4.0
4.0
—

1.2
1.2

93%
92%
96%
94%
98%
88%
40%

2.3
13.0
13.0
—

—

94%
94%

100%
—

—

2.2
13.0
13.0
—

2.2
2.2

87%
84%
94%

100%
80%
54%

5.8
22.0
22.0
—

—

91%
100%
100%

—

—

5.7
22.0
22.0
—

5.7
5.7

91%
100%
100%
97%

100%
52%
91%

Afote. Fitting performance on the training set and prediction (generalization) performance on the test set are both shown. The fourth line (ML average) shows the average
generalization ability of several machine learning algorithms (from Holte, 1993), while the fifth line (ML best) shows the best reported machine learning algorithm performance
(James, 1985, for the iris data; Aeberhard et al., 1994, for the wine data; Holte, 1993, for the mushroom data). The last two lines show the generalization ability of an exemplar
model and neural network when both are restricted to the cues used by CBE.
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but this time we only let them use the same cues that CBE checked for
each object. Thus, if CBE classified a particular wine after seeing just the
first two cues, then we would let the exemplar model and neural network
use only those two cues for their classification of that wine as well. With
this restricted input, the two competitors suffered greatly, as can be seen
in the last two lines of table 11-1 (the "frugal exemplar" and "frugal net-
work"). On each data set the exemplar model typically dropped a few
percentage points behind CBE, while the neural network was drastically
hobbled, losing close to half its accuracy. Thus, CBE's virtue, frugally us-
ing as few cues as possible, can be another algorithm's bane.

Future Work

The results we have presented here indicate that a fast and frugal ap-
proach to categorization is a viable alternative to cue-integrating compen-
satory models. By only using those cues necessary to first make a category
decision, CBE can categorize stimuli under time pressure. Moreover, if
certain cues are missing (i.e., some feature values are unknown or cannot
be perceived), CBE can still use the available cues to come up with a
category judgment, in a way that has so far proven more robust than sim-
ple exemplar or neural network models (though further comparisons be-
yond those shown in table 11-1 are necessary, using different numbers of
cues in training and testing). Yet, despite its limited use of knowledge,
CBE still performs quite accurately and rivals the abilities of much more
complex and sophisticated algorithms (not to mention human partici-
pants).

This research opens up many interesting avenues to be explored con-
cerning the relationships between fast and frugal categorization methods
and more traditional approaches. One important issue is how a categoriza-
tion algorithm's accuracy is affected by the interaction between the num-
ber of cues it uses to make a decision and the amount of memory it needs
to store its parameters. (We are primarily concerned here with the long-
term memory needed to store the knowledge gained during learning or
training, rather than the algorithm's working memory requirements as dis-
cussed by Smith et al., 1998.) These two factors can be used to divide
categorization algorithms into four classes, which the algorithms in this
chapter can be used to illustrate. For example, exemplar models typically
use a large number of cues (all those available) to make their category
decisions, and also require a large amount of memory to store all of their
exemplars. Decision bound theory also uses a large number of cues, but
has a low memory requirement. Holte's (1993) model only uses a single
cue to categorize an object, but it needs a large amount of memory to store
many small ranges of values on that cue dimension and the categories
associated with each range. The only model with both minimal cue use
and low memory needs is Categorization by Elimination. More systematic
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analysis of how accuracy, cue use, and memory requirements are inter-
twined should yield new insights into how categorization algorithms can
be designed to emphasize some of these factors more than others. Further-
more, we expect that the information structure of different environments
will allow different categorization algorithms to perform more or less ac-
curately, and more or less frugally, and this aspect of the ecological ration-
ality of fast and frugal categorization must also be explored.

Second, more data from human performance on categorizing multidi-
mensional objects needs to be collected and analyzed to provide a testbed
for comparisons between CBE and other categorization models. We are
particularly interested in comparing the learning curves, patterns of mis-
classifications, and decision times associated with CBE and human per-
formance. The intriguing finding that CBE's categorization accuracy seems
to vary little with changes in cue order should also be studied experimen-
tally, although we expect that human behavior will not show this effect
strongly, assuming that people have an absolute upper limit to the number
of cues they will consider.

Third, category base rates and costs and benefits for incorrect and cor-
rect classifications could be incorporated into the model. For example, if
a mushroom remains uncategorized as poisonous or safe even after all the
cues have been used, it seems reasonable to err on the side of caution and
guess that the mushroom is poisonous. This extra information could not
only be used to guide guesses in safer directions, but could also be taken
into consideration earlier when the bin structure is set up, allowing costs
and benefits to be incorporated throughout the decision process.

The very nature of categorization is to go from a limited amount of
information to a greater body of knowledge—as soon as we can assign an
object to a category, we are able to tap into our stored knowledge about
(other) instances in that category, which we can then use to make smarter
decisions regarding the object. A fast and frugal approach to categoriza-
tion fits directly into this adaptive inference role, allowing that leap from
a few features to more useful stored knowledge to be made all the sooner.
It is not necessary to amass and combine all the available cues when tell-
ing a hawk from a dove, or a Medoc from a Graves—fast and frugal does
the trick.
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How Motion Reveals Intention

Categorizing Social Interactions

Philip W. Blythe
Peter M. Todd
Geoffrey F. Miller

Do not go where the path may lead, go instead where there
is no path and leave a trail.

Ralph Waldo Emerson

I f you should encounter a mountain lion while hiking in the Sierra Ne-
vada mountains of California, there are two things you must not do, ac-
cording to the Mountain Lion Foundation: turn your back on the animal
or run away. Either of these behaviors would trigger the lion's predatory
chase behavior, transforming you from startled hiker into potential prey.
It is possible to avoid becoming prey by denying the lion's perceptual
system the cues that normally accompany being a mealtime animal.
Knowing how other creatures categorize behavior based on motion cues
could thus make the difference between life and death.

Humans are also very adept at making such behavioral judgments from
simple motion patterns: When two children run across a field, their par-
ents can distinguish in a brief moment whether they are playing or fight-
ing in earnest. When a pigeon twirls and struts before another, who ig-
nores this display and turns away, we can quickly tell that the first is
trying unsuccessfully to court the second. In situations such as these, we
as outside observers can often decide what is going on—who is doing
what to whom—based just on the motions of the two organisms relative
to each other. Moreover, the human or animal participants in such cases
can also tell what kind of interaction they are having, again using motion
cues. How can organisms categorize behaviors based solely on observed
motion patterns? In other words, how can humans and other animals
translate from the domain of pure physical movement into the domain of
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animate intentions and desires such as chasing, playing, and courting?
What are the most important categories of behavior? What motion cues
are most useful for distinguishing them, and how do we exploit these cues
to achieve fast, accurate recognition of other agents' intentions?

The answers to these questions come in three stages. First, we must
specify the major behavioral functions that an organism's whole-body mo-
tions can fulfill, such as chasing, fighting, or courting. Second, we must
determine the observable motion cues that allow us to categorize which
of these functions an organism is performing at a particular time. And
third, we must find the cognitive algorithms that can be used to make this
functional categorization based on motion cues.

These stages require very different research methods. The first stage
entails an evolutionary task analysis of motion itself, asking what basic
reasons animals have for moving at all, given the demands of survival
and reproduction. The second stage requires analyzing the information
structure of the environment, determining what useful motion cues can
be recovered by observing a moving animal, and which motion cues are
most useful in distinguishing the animal's reasons or intentions for move-
ment. The third stage includes comparing the performance of different
possible decision algorithms that map motion cues onto the basic func-
tional categories of animal movement, to narrow the search for algorithms
that animals and humans might actually use. Because many algorithms
attain similar levels of accuracy when inferring intention from motion (see
chapter 7 for more on this problem of algorithm comparison), we will
not aim to be conclusive on this point. Rather, our main concern will be
determining the functionally important motion categories and the avail-
able motion cues that can be used to distinguish between them.

It is not at all obvious how to get from motions to intentions. The diffi-
culties are clear in comparing the standard dictionary definitions for mo-
tion terms with those for higher-level intentional behaviors. For example,
the Oxford English Dictionary defines "run" as "to move the legs quickly
(the one foot being lifted before the other is set down) so as to go at a
faster pace than walking"; whereas it defines "chase" as "to pursue with
a view to catching." Thus, "run" is defined by reference to observable
motion cues, whereas "chase" is defined by unobservable intent with re-
spect to a future goal concerning an unstated object. Nothing in the defini-
tion of "chase" suggests how a naive observer could distinguish chasing
from any other intentional category of movement. Because we cannot di-
rectly perceive movement intentions and goals, and the targets of move-
ment may even be hidden, we must infer them all indirectly using motion
cues that can be directly perceived—a clear case of inference under uncer-
tainty as described in chapter 1.

A general description of how we can infer goals and intentions from
observable behavior would constitute a rather complete understanding of
the human "theory of mind" (Baron-Cohen, 1995) and much of social psy-
chology more generally. We are not attempting to provide that general un-
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derstanding here—we focus only on the very simple case of using motion
cues to categorize the most typical forms of intention-driven interaction
between two agents. This special case is, nonetheless, biologically impor-
tant to virtually every animal species, and psychologically important as
the most elementary level of social cognition. Animal species differ in
body structure, modes of locomotion, environmental constraints on mo-
tion, motion perception abilities, mating systems, and positions in the lo-
cal food chain. However, by keeping our analysis of the special case of
intention from motion sufficiently abstract, we hope to identify motion
cues and intention categorization strategies that are general enough to
apply to many species despite these differences.

We must still constrain the special case explored here by limiting the
types of intentional motion categories, cues, and cue-processing algo-
rithms we will consider. First, we assume that humans and other animals
have domain-specific motion perception and intention inference adapta-
tions that are attuned to ancestrally typical categories of motion patterns
and intentions. These typical patterns, associated with intentions such as
pursuit, evasion, fighting, courtship, and play, arise because there are just
a few basic survival and reproductive goals for animate motion. The fact
that there are only a few reasons why one animal moves relative to an-
other animal makes our job as psychologists much easier, transforming an
unconstrained inference task ("Why is that animal moving?") into a sim-
ple categorization decision ("Is that animal chasing, fleeing, fighting, court-
ing, or what?").

Second, we limit our consideration of the vast range of possible infor-
mation that could be used in judging the intentions of other agents. Poten-
tial cues include not only the motion of whole bodies in relation to other
bodies—as when mountain lions infer edibility when humans turn from
them—but also motions of one body part in relation to another, including
threat and submission postures, facial expressions (e.g., snarling dogs or
laughing children; see Darwin, 1872/1965) and those micromovements of
throat, tongue, and lips that result in articulate human speech. Here we
focus on just the first, simplest form of information for judging intentions:
the overall motion trajectories of two whole organisms in relation to each
other. Third, the inference algorithms that might use this motion informa-
tion are also limitless, but again we are interested in simple possibilities:
fast and frugal heuristics that use as little of the available information
as they can to make their decisions and operate as quickly as possible.
Particularly when judging the intentions of (possibly hostile) others, it is
important to be able to make decisions quickly and with just the informa-
tion at hand, rather than waiting until all possible evidence has been gath-
ered and the mountain lion has pounced.

We begin this chapter with an evolutionary analysis of how animate
intentions could be inferred from motion cues. We then develop a novel
experimental method for studying how humans make these inferences.
The first step is to gather ecologically representative examples of the six
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most typical animate motion patterns, by having participants play interac-
tive computer games that require them to pursue, evade, fight, court, be
courted, or play with each other. The participants control on-screen bugs
with realistic motion physics using a mouse. The resulting motion pat-
terns are recorded and presented to another set of participants, who try to
infer what the bugs are trying to do to each other. We determine which
intentions are confused most frequently with which other intentions. We
then construct and test various models of how people could categorize
these intentions given some simple motions cues that can be computed
directly from the motion patterns. The goal is to identify both useful ob-
jective motion cues and simple heuristics that can process them to infer
animate intentions. We view this intention-inference task as the founda-
tion for more advanced forms of social cognition and attribution.

Previous Research on Inferring Intentions
from Motion Cues

The question of how we infer intentions from motion cues seems funda-
mental for motion perception and social cognition, but it has rarely caught
the attention of mainstream psychologists. The few exceptions are those
who take an ecological view of perception, which motivates more direct
study of the structure of the observable environment in relation to an
agent's goals.

The earliest example was perhaps Fritz Heider, who set out to study
the perception of social events by studying the particular stimuli that led
to different attributions. His experiments in the 1940s with Simmel
(Heider & Simmel, 1944] demonstrated that people spontaneously attri-
bute intentions and personalities even to featureless geometric figures
such as dots and triangles, if these figures move around in a cartoon film
according to patterns reminiscent of animals courting and fighting. Heider
and Simmel did not explicitly identify the motion cues that provoke these
interpretations. But they had enough tacit knowledge of these cues that
they could lead observers to view a roving triangle as a scheming villain,
or a flitting disc as a fickle adulteress, through nothing more than relative
motion in a simple environment.

Interest in this area fell dormant for a quarter of a century, aside from
research in ethology specifically aimed at uncovering the motion cues that
animals make to signal their intentions to each other, such as wolf pups
bowing to signal playful intent (see Fagen, 1981). In the 1970s, J. J. Gib-
son's (1966, 1979) research on "direct" perception of ecologically impor-
tant visual cues of motion inspired a number of studies on the perception
of gait and other forms of biological motion by Kozlowski and Cutting
(1977; Cutting & Kozlowski, 1977). These studies were aimed at identify-
ing various dynamic and structural invariants in "point-light displays,"
films of people walking and acting in total darkness, with only small light
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sources affixed to their limbs and bodies. Even such impoverished stim-
uli, consisting solely of cues to movement, contained enough information
to allow the visual system to make sophisticated inferences (e.g., that is a
man lifting a heavy object, or that is a woman walking).

In a separate research tradition, French psychologist Albert Michotte
investigated how people perceive cause and effect based on motion cues
(Michotte, 1963). His project addressed mainly the psychology of causal-
ity (inspired by the philosophy of Aristotle and Hume), but Michotte was
intrigued by his finding that people tend to interpret rectangles that inter-
act without colliding as if they were animals or humans (Michotte, 1950),
similar to Heider and Simmel's findings of rampant anthropomorphism.
His work influenced modern studies on the innate preparedness of infants
to perceive animacy (Premack, 1990; Spelke et al., 1995), and on the per-
ception of animate motion more generally (Freyd & Miller, 1992; Gelman
et al., 1995; McBeath et al., 1992). Michotte's emphasis on causation has
been followed by recent studies that focus more oh how people distin-
guish animate from inanimate motion, rather than how people distinguish
between different types of animate motion.

This preoccupation with the animate-inanimate distinction is unfortu-
nate because it stops short of what is arguably the more interesting ques-
tion: Recognizing a moving object as animate is only the first step toward
recognizing its intentions, which are what really matter for deciding what
to do in response to it. Zebra herds have to live with lions hanging around
at their watering holes, fleeing only when the lions show a real intention
to chase them. The crucial distinction for a zebra is not between animate
motion (a moving lion) and inanimate motion (a breeze stirring tawny
grasses), but between animate motion that is relevant (a hungry lion at
full sprint heading straight for you) and irrelevant (a fat lion chasing a
fertile lioness). The point of animate motion perception is to guide one's
own animate motion. The animate-inanimate distinction is just one rela-
tively weak cue for deciding what to do; much stronger, more informative
cues are available and so should be used to help determine other agents'
intentions and one's own reactions. With that view, this chapter examines
some basic goals of animate motion, some associated motion cues that
may be general across species and ecologies, and some simple heuristics
for categorizing intentions based on those motion cues.

The Basic Goals of Animate Motion

Moving has energetic costs, so animals are expected to move only when
the fitness benefits of movement exceed these costs. The major fitness
benefits of moving, as of any other behavior, are survival and reproduc-
tion. Thus, it is possible to deduce a few paradigmatic goals of animate
motion from the fundamentals of natural selection and sexual selection.

Animals evolve to interact adaptively with various "fitness affordan-
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ces" in their environments—things that are likely to affect the replication
of their genes (Miller & Freyd, 1993; Todd & Wilson, 1993). Positive fit-
ness affordances, such as food and sexual mates, promote survival or re-
production. Negative fitness affordances, such as predators, pathogens,
parasites, and sexual competitors, interfere with survival or reproduction.
Animals evolve sensory-motor systems to approach the positives and
avoid the negatives. If two animals offer the potential of mutually positive
yields, mutual approach usually results (e.g., in symbiotic relationships).
If they threaten mutually negative yields, then mutual avoidance results.
Movement patterns in these cases are just solutions to various positive-
sum coordination games. The more interesting case is when animals pres-
ent affordances of opposite sign to each other, that is, when one animal
wants to be near the other, but the other wants to be far away. The zebra
is a positive (food) affordance for the lion, but the lion is a very negative
(death) affordance indeed for the zebra. Such conflicts of interest lead to
more complex interactions, transforming simple approach into relentless
pursuit, and simple avoidance into desperate evasion (Miller & Cliff,
1994).

From these arguments, it follows that the fundamental categories of
two-agent animate interaction are mutual approach (boring), mutual
avoidance (also boring), and pursuit and evasion (interesting). In the sur-
vival domain, pursuit and evasion usually occur between predators and
prey, or between fighting conspecifics. In the reproductive domain, males
usually pursue and females usually evade, at least for a while (Andersson,
1994; Darwin, 1871). Thus, almost every animal will need to master some
subset of five basic categories of animate motion: pursuing, evading, fight-
ing, courting, and being courted. To these categories we also add a sixth,
play, which is widely used, especially by mammals, to learn mastery of
the other five movement types. Although not all species need to exhibit
the full set of these behaviors, they generally need to be able to recognize
each of them. We will now consider the six behavior types in turn.

Pursuit Animals move toward objects they desire. If the desired object is
inanimate, we have a degenerate case of goal-directed behavior. But if the
object is animate and does not want to be exploited as a fitness affordance
(e.g., as food or as a mate), then it will move away (evade). The simplest
pursuit strategy is to point one's front in the direction of the desired object
and charge at top speed toward it, changing one's direction if the object
deviates to the left or right of one's current heading. However, pursuit can
be more efficient by predictively taking into account any environmental
constraints on motion (obstacles and boundaries) and the pursued agent's
own heading, movement, and intentions.

Evasion Animals move away from things that threaten them. Again, if
the threatening object is inanimate, we have a degenerate case of obstacle
avoidance, or one-step "evasion." If the threat is animate, however, and
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does not wish to be evaded, then it will pursue, and sustained evasion
becomes necessary. Evasion often favors strategies of deceptive feints and
lunges and unpredictable, "protean" zigzagging (Driver & Humphries,
1988; Miller & Cliff, 1994), as well as avoidance of environmental traps or
cul-de-sacs.

Fighting Animals of the same species often fight over fitness affordances
such as territories, resources, sexual mates, and social status. Fights can
be tricky to decipher because both animals must combine pursuit and eva-
sion, attack and defense, in a way that intimidates or overcomes the oppo-
nent, without injuring or killing themselves. Because animal bodies are
heterogeneous, with some parts specialized for attack and other parts vul-
nerable to injury, fighting usually includes a great deal of precise, dy-
namic body positioning in relation to one's opponent.

Courting Animals (usually males) move toward members of the opposite
sex (usually females) with whom they wish to mate (Andersson, 1994;
Darwin, 1871). But because selective mate choice is almost always im-
posed by the opposite sex (usually females), simple approach is almost
never enough. Instead, mate-seeking animals often evolve extremely com-
plex courtship behaviors with special features designed to display their
health, strength, size, status, intelligence, or creativity (Andersson, 1994;
Miller, 1998). These displays are usually produced close enough for the
desired mate to perceive them, but not too close, lest the audience is
scared off rather than enticed. After some display time, ranging from sec-
onds (for some insects) to years (for some humans), if the desired mate
signals her (or his) interest, the final approach and copulation can occur.

Being Courted Animals sought after as mates (usually females) have
strong incentives to select among their suitors quite carefully, because
they usually have more at stake when mating than the suitors, and the
genetic quality of the suitors they choose to mate with will determine half
of the genetic quality of their offspring. Random mating is stupid mating
(see chapter 13 for more on nonrandom mating and mate search). The task
when being courted, then, is to express enough interest to elicit informa-
tive courtship behavior from various suitors so their mate quality can be
assessed, but not so much interest that the courter skips courtship alto-
gether and tries to move straight to copulation. Thus, being courted re-
quires a delicate balance between interactive encouragement and coy reti-
cence. Courted animals usually maintain enough proximity to their
suitors that they can determine the suitor's quality, but do not get close
enough to risk sexual harassment or rape.

Playing Play often comprises a variety of actions through which young
animals can practice all of the above movement types, using play signs to
indicate that they are pursuing, evading, courting, or fighting without real
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lethal or sexual intent (Fagen, 1981). In basic play, animals repeatedly
switch roles between pursuer and evader, or attacker and defender. In
more complex play characteristic of large-brained primates, animals
may interact in more abstract ways with imaginary partners or mutual
mimicry.

These six goals for animate motion are not intended to be the building
blocks in some sort of universal movement grammar. There are other
movement goals that cannot be reduced to these categories, such as paren-
tal protection of vulnerable offspring from conspecifics or predators, for-
aging for inanimate food items or nest materials, migrating to new habi-
tats, grooming oneself or others, flocking, mobbing predators, and so forth.
We simply start with the most obvious basic cases of two-agent interac-
tion. Future research will, we hope, analyze the motion cues that help
distinguish these additional categories of behavior.

Eliciting Motion Trajectories for the Six Typical Behaviors

Following in the tradition of early work on attribution of intentional be-
havior to simple moving stimuli by Heider and Simmel (1944), we sought
to study how people categorize the functional intentions of two interact-
ing organisms based solely on their trajectories through space relative to
each other. This required collecting some trajectories representative of
each of our six functional categories that could be measured objectively
to find useful motion cues, and that could be presented in a standard
format as stimuli to human participants. But such trajectory data is rather
difficult to come by. The literature in both biology and psychology offers
many studies of long-range animal navigation, migration, and commuting
on the one hand, and small-scale limb movements on the other. However,
there is little publicly available data on behavioral trajectories between
these extremes. So we decided to generate our own sample trajectories,
using the animate agents we had in ready abundance: university students.

The question was how to obtain ecologically representative samples of
the six typical behavioral categories. Despite generous research resources,
it proved infeasible to attach radio tracking beacons to participants' heads,
record them from satellite observations, and wait for some good examples
of pursuit, fighting, courtship, and play. Though overhead video record-
ings from the Oktoberfest near our Munich laboratory would have cap-
tured instances of all of these behaviors, the trajectories would have ap-
peared somewhat distorted by the potent Weissbier.

Instead, we had pairs of participants interact through a computer net-
work, generating the trajectories by instructing them to play various move-
ment games. Each participant sat before a computer and used a mouse to
control the motions of a simple buglike creature displayed on the com-
puter screen. Participants could see their own bug and another bug, which
was controlled by another participant in another room at another com-
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puter. Both bugs are displayed on-screen in a featureless rectangular envi-
ronment bounded by walls, without any obstacles, viewed from an over-
head perspective (see figure 12-1). We engaged 10 pairs of participants to
perform the six fundamental behaviors in this simple computer-mediated
interaction game.

The bug did not act like an ordinary on-screen cursor that directly re-
flects hand movements across the mouse pad. Rather, the bug was con-
strained by some simulated physics. This included momentum, which
produced slow acceleration and deceleration of the bugs; collision dy-
namics, which made the two bugs bounce off each other and the walls;
and a top speed at which the bugs could travel. The participants' mouse
movements were essentially treated as targets for where the bug should
be heading next (for details, see Blythe et al., 1996). These semirealistic
physics made the movement games challenging, enhanced the perception
of animacy, and, we hope, made the resulting motion trajectories more
ecologically representative of natural animal movement.

The bug form was chosen because it looked more interesting than a
dot. As discussed earlier, previous experiments on motion perception sug-
gested that the attribution of animacy to a moving object appears to be a
natural tendency for humans, whether the object resembles a human form

Figure 12-1: The two-bug view that each participant saw when generating
motion trajectories, captured at a single instant in time. Each bug is a
different color.
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or a geometric shape (as found by Heider & Simmel, 1944; Michotte, 1963;
Rime et al., 1985). However, we thought the bug form would stimulate
participants' interest without biasing their behavior in anthropomorphic
ways, as a human-shaped icon might. It was also important to use a figure
with a clear front and back end (as opposed to a circle, for instance) so
that orientation would be unambiguous to both parties involved in the
motion games. Furthermore, as biologist J. B. S. Haldane is reputed to
have observed, "to a first approximation, all animals are beetles."

During each experiment, two participants unknown to each other were
put into separate rooms with computers and were guided by on-screen
instructions to practice and play the appropriate movement games in se-
quence. The participants were initially given a two-minute practice pe-
riod to learn how to control their bugs using the mouse. Pilot studies
showed this practice period sufficient for attaining a reasonable skill
level, given that most participants had substantial experience with com-
puter mouse controls. Following this, they participated in six trials of two
minutes each.1 The asymmetric trials of pursuit-evasion and courting-
courted were duplicated with roles reversed, while fighting and play were
only performed once by each participant pair.

The two participants, here A and B, were instructed to play the six
movement games as follows:

1. A pursues B: Participant A was instructed to move his or her
bug to intercept the other player's bug as quickly and as often
as possible. Participant B was instructed to try to avoid being
intercepted at all times.

2. B pursues A: This situation simply reversed the roles of pursuer
and evader between participants A and B.

3. A courts B: Participant A was instructed to move his or her bug
so as to court the other bug, by interacting with it in any way
that it might find interesting, exciting, or enticing. Participant B
was instructed to play the role of being courted, moving his or
her bug to show interest or disinterest, and to elicit further dis-
plays in any way desired.

4. B courts A: This situation reversed the roles of courter and
courtee.

5. Fighting: Both participants were instructed to attack the other
bug from behind, while at the same time avoiding being attacked.
Specifically, they were instructed to try to strike the other bug's
rear end with their bug's front end, at the same time avoiding the
attacks of the other bug trying to do the same to them. This type
of fighting resembles World War I aerial combat (bring one's front
guns to bear on the enemy without his guns pointing at you)
rather than boxing or wrestling.

1. The courtship trials lasted three minutes as it is a slower, more gradual be-
havior that required more time with some participants. In real life, while fights and
pursuits may be over in seconds, we expect courtship to take rather longer.
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6. Playing: Both participants were instructed to play with the other
bug in whatever manner they wanted.

These movement games were obviously underspecified: We gave no
feedback, offered no monetary incentives for performance, and allowed
almost no practice time. We were not interested in studying the long-term
equilibrium strategies for these dynamic two-person games, but rather in
using the games as a quick and easy way of generating ecologically repre-
sentative motion trajectories for six typical kinds of animate interaction.
We expected that participants would have relatively stable and readily
applied notions about what movement in each category looks like, and
this is the knowledge we wanted to elicit. For pursuit, evasion, and fight-
ing it would have been possible to specify each participant's payoffs ex-
actly, but for courting, being courted, and playing, such payoff specifica-
tion would have been difficult.

Visualizing the Resulting Trajectories

In each motion category trial, the computer recorded the movement trajec-
tory of each participant's bug at a high temporal and spatial resolution.
We then analyzed the resulting fine-grained trajectories in various ways,
to see if there were any motion cues that could distinguish one behavioral
category from another. First, we used a simple visualization method to
look at the trajectories of two bugs interacting during one two-minute mo-
tion trial. Figures 12-2 to 12-5 show space-time plots of typical pursuit-
evasion, courtship, fighting, and play trajectories generated by pairs of
participants. The horizontal plane of the plot represents the horizontal
and vertical positions of the creatures in the two-dimensional environ-
ment, while the vertical axis represents time during one 90-second trial
segment. These plots reveal some basic information about the trajectories.
Higher velocities (more spatial distance covered per unit time) result in
flatter trajectories. Bugs that are not moving result in vertical line seg-
ments in these plots. Smaller distances between the bugs result in tightly
intermingled trajectories.

Several features are immediately apparent in the plots that result from
different movement games. In pursuit and evasion (figure 12-2), one sees
very flat (very high speed) movements extending over a great area of the
environment, contrasting sharply with the slower, more restricted move-
ments during courtship (figure 12-3). Both pursuit-evasion (figure 12-2)
and fighting (figure 12-4) show high speeds combined with large amounts
of turning and looping. Fighting (figure 12-4) is distinguished by a smaller
average distance between the two bugs, and by more tightly intertwined
looping, with frequent contacts between the bugs (where their trajectories
meet). In courtship (figure 12-3), the courter moves much more than the
often stationary courtee, sometimes circling, and occasionally engaging
the courtee in little bursts of pursuit and evasion. Only a few body con-



Figure 12-2: A sample trajectory generated when one participant's bug
pursued the other, which evaded. Here, 90 seconds of interaction is repre-
sented, with time proceeding upward on the z-axis, and on-screen posi-
tion of each bug plotted in the x-y plane. Note the generally high speed
(flat segments) and large area covered.
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Figure 12-3: A sample trajectory generated when one participant's bug
courted the other, which responded to the overtures. Note the more elabo-
rate motions of the courter, and occasional rapid fleeing of the courtee.
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Figure 12-4: A sample trajectory generated when the two participants'
bugs fought, trying to hit each other from behind. Note the high speed and
high degree of looping.
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Figure 12-5: A sample trajectory generated when the two participants'
bugs played with each other. Here, one bug looped while the other
dashed.
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tacts occur in courtship. Play (figure 12-5) looks like a combination of
pursuit, evasion, fighting, and courtship, combining looping, rapid dashes,
and long still pauses. We will use these observations later to suggest some
motion cues for distinguishing among these behavioral categories.

How Do People Categorize the Trajectories?

Our goal is to find motion cues that can distinguish exemplars of the six
behavior categories and that may be used by humans in making such cate-
gorizations. But before we analyze the motion trajectories we have col-
lected for different intentional categories, we must be sure that these tra-
jectories do in fact contain the cues necessary to make the proper
categorical distinctions. To find out, we tested whether a new set of parti-
cipants could categorize the motion patterns accurately. Given example
trajectories, how good are untrained people at assigning them to the be-
havioral task for which they were originally generated? Knowing this pro-
vides a rough check on the ecological validity of the trajectories, and
makes it possible to investigate which categories are easily confused and
which are easily distinguished. A model of animate motion categorization
might perform well, but unless it makes roughly the same pattern of judg-
ments, both correct and incorrect, as real human participants, it would
not qualify as a good psychological model. Also, we can see what happens
when we present the trajectories of both bugs together, versus only one by
itself (see next section), to check the relative importance of single-bug
motion cues versus interactive, relational cues for trajectory categoriza-
tion. That is, by systematically removing some motion cues and recording
drops in categorization performance, we can see which cues matter.

The Two-Bug Case: Relational and Individual Cues

In this categorization experiment, 10 participants saw portions of 30 mo-
tion trajectories recorded from the first experiment presented in random-
ized order, with one bug displayed in blue and the other in red. Partici-
pants were instructed to decide which one of the six behaviors the red
bug was engaged in, as quickly as possible. As soon as they felt they could
decide whether the red bug was pursuing, evading, fighting, courting, be-
ing courted, or playing with the blue bug, participants were to stop the
trajectory playback and make a choice. To clarify this six-alternative
forced choice, these trajectory-categorizing participants were shown the
instructions given to the original trajectory-generating participants. How-
ever, these participants were not shown any examples of the motion cate-
gories beforehand, nor given any feedback on their selections. Nonethe-
less, participants' categorization performance changed little if at all over
the course of the 30 trials, with equal accuracy in the first and second
halves of the trials, suggesting that there was no significant learning effect.
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Table 12-1: Participants' Categorization Confusion Matrix for Two-Bug
Trajectories

Choice

Actual Pursuing Evading Courting Courted Fighting Playing

Pursuing
Evading
Courting
Courted
Fighting
Playing

Totals

29
5
2
0
5
2

43

1
20
0
2
6
0

29

1
0

38
5
3
9

56

0
5
2

29
3

10

49

9
6
4
4

10
7

40

17
7
8
6

23
21

82

Note. Each entry shows how many times participants chose a particular (column) category for
a trajectory generated in some actual (row) category. The main diagonal (in bold) shows correct
categorizations.

(Response times were also recorded for each judgment for later compari-
son among different categorization models, but we will not discuss these
data in this chapter.)

Overall, participants selected the originally intended motion category
in nearly half (49%) of the trials. This is well above chance (about 17%)
for six-alternative choice. (In comparison, three expert participants who
were familiar with the task and had previously seen many trajectories—
the three authors—achieved 72% matches.) To see where participants
erred, we can construct confusion matrices showing which categories
were most often confused with each other. Table 12-1 shows such a confu-
sion matrix for the 300 participant categorizations. The rows denote the
actual intention-category instruction given to the trajectory generators,
and the columns denote the choice decisions made by the trajectory cate-
gorizers. Thus, the leading diagonal represents correct responses. With
10 participants each making 30 categorizations distributed across the six
categories, each row contains about 50 responses.2

The column totals in table 12-1 (which would equal the row totals if
participants matched all of the trajectory categorizations) show that parti-
cipants overestimated the base rate of play by nearly 70%, and underesti-
mated the amount of evasion by about 30%. (Participants also overesti-
mated courtship and underestimated pursuit and fighting by smaller
amounts.) These tendencies could reflect participants' underlying beliefs
about the base rates of these motions in nature, particularly that play is
more common than serious conflict, especially evasion. The play overesti-

2. Most rows in tables 12-1 and 12-2 do not have exactly 50 entries due to
missing data and to the way in which randomly assigned trials were split between
the pursuing-evading and courting-courted pairs.
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mation could also indicate that participants use play as a default "catch-
all" choice when no clear distinction can be made, in keeping with the
argument mentioned earlier that play provides training for the other be-
haviors.

Reading across rows in the table, we also see some more specific
sources of confusion. Pursuit was very often miscategorized as play, and
fighting was miscategorized as play more often than it was accurately cat-
egorized as fighting. Fighting was often mistaken for pursuit and evasion,
as well. In addition to the general tendency to mistake other behaviors as
play, actual play was often mistaken for other behaviors such as courting,
being courted, and fighting. This error can arise when participants first
see a chasing component of play, for instance, and make a quick (wrong)
decision of pursuit-evasion from this limited time window. In nature,
other nontrajectory cues (such as laughing in humans) could be used to
categorize play more accurately.

On the other hand, participants did often get the categorizations right:
Pursuit and evasion were rarely confused with each other, and courting was
rarely confused with being courted. As might be expected, pursuit and be-
ing courted were never mistaken for each other, and courting and evading
were never mistaken for each other. This is consistent with the existence of
similarities between pursuit and courting, and between evasion and being
courted. However, important differences are clearly present as well, because
pursuit was almost never perceived as courtship, courtship was almost
never perceived as pursuit, and being courted was rarely mistaken for eva-
sion. These differences and similarities should be reflected in the set of
cues we ultimately settle on for categorizing motion trajectories.

While our data showed a high percentage of systematic errors (overesti-
mating play, underestimating evasion) and many individual confusions, it
must be emphasized that even with no feedback, no practice, and minimal
instruction, naive participants can categorize behaviors into biologically
important classes at far above chance levels, given nothing more than the
recorded trajectories of two agents interacting. We have stripped away all
environmental context, all gait and posture information about the agents,
all facial expression, and all communication. Nevertheless, pure whole-
body motion cues are sufficient to categorize the behaviors fairly accu-
rately, from which we conclude that the trajectories we collected do in
fact contain enough information to indicate intentional categories. We can
therefore proceed to analyze just how that information is reflected in the
trajectories: What are the cues we can use to judge intention from motion?

The One-Bug Case: Trajectories Without Relational Cues

One way to determine what sort of cues people (in particular, our partici-
pants) use to judge intention from motion is to eliminate part of the avail-
able information from the motion trajectories and see how this affects the
categorization judgments made on the basis of the modified trajectories. In
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the first categorization experiment, participants saw all of the information
captured in the complete trajectories of both interacting bugs. This made
it possible for participants to use all of the motion cues that rely on the
relative position, heading, and speed of the two creatures. To gauge the
importance of this class of relational cues, we wanted to find out how
well people could do at the categorization task if they were all stripped
away. Such relative information can be removed by only playing back the
recorded trajectory of one of the two bugs, so that participants cannot
know what the other bug is doing.

To this end, we ran a second categorization experiment in the same
manner as the first, but with 10 new participants, and with only one of the
two bugs in an interacting pair being visible in each presented trajectory.
Participants had to categorize what behavior the one visible bug was per-
forming. Table 12-2 shows the confusion matrix from this experiment,
presented in the same format as table 12-1. Now, overall percentage cor-
rect drops from the 49% level of the two-bug experiment to 30% (still
well above the chance level of 17%). This large performance drop indi-
cates that we should include relative motion information in our list of
important cues in this domain. We can also learn something interesting
from considering the patterns of errors made in this setting.

Inspecting the column totals in table 12-2 reveals that participants in
this experiment selected all six categories more evenly; the play overesti-
mation has disappeared, replaced by a slight tendency to overestimate the
amount of courting going on. Most of the miscategorizations were due to
strong confusions between certain behavior classes. Whereas pursuit was
clearly distinct from evasion or courting if the second bug was visible
(table 12-1), one-bug pursuit was very often confused with the latter two
categories. Evasion was mistaken for pursuit as often as it was accurately
categorized, perhaps because both entail high-speed, unpredictable loop-

Table 12-2: Participants' Categorization Confusion Matrix for One-Bug
Trajectories

Choice

Actual Pursuing Evading Courting Courted Fighting Playing

Pursuing
Evading
Courting
Courted
Fighting
Playing

Totals

15
13

2
5
7
5

47

8
14
5
7
4
4

42

12
9

16
4

12
10

63

3
1

17
21
0
5

47

7
5
5
2

13
14

46

7
6
9
5

14
10

51

Note. Each entry shows how many times participants chose a particular (column) category for
a trajectory generated in some actual (row) category, after seeing the motions of only one of the
two bugs involved. The main diagonal (in bold) shows correct categorizations.
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ing throughout the entire space. Courting was very often mistaken for be-
ing courted, but, strangely, being courted was still rarely mistaken for
courting. Fighting was mistaken for courting and for play nearly as often
as it was categorized accurately.

The differences between tables 12-1 and 12-2 indicate that relational
cues are important in making some distinctions but not others. In particu-
lar, single-bug (nonrelational) information is usually sufficient to distin-
guish aggressive intentions (pursuit, evasion, fighting] from more passive
intentions such as being courted. But relational cues seem to be necessary
to decide whether the bug is the follower (pursuit or courtship) or the
avoider (evasion or being courted). These two findings indicate that a dif-
ferent set (and number) of cues is needed to make different categoriza-
tions—in some cases, decisions can be made without using all of the
available information. Our search for appropriate categorization algo-
rithms later in this chapter will make use of this fact.

Identifying Useful Motion Cues Computable from
Trajectory Information

The categorization experiments just described showed that, to categorize
intentions from the motion trajectories of two interacting agents, we must
consider both individually based cues computed from the motion of a
single agent, and relational cues determined by comparing the motions of
both agents together. To narrow in on the specific cues that could be used,
we must consider the information embedded in the trajectories.

Some obvious cues might relate to the goals of the behavioral catego-
ries. For example, in our experiments the goal of pursuit was to intercept
the other agent, and the goal of fighting was to strike the other agent's rear
end with one's front end. Thus, one could just try to count up the number
of successful interceptions and strikes to distinguish pursuit and fighting
from play. However, the other agent does not want to be intercepted or
struck. Successful evasion implies unsuccessful pursuit. Cues of success
may be poor indicators of intention, particularly over short-term portions
of an ongoing interaction, and in fact, such cues did not prove to be very
diagnostic in our setting.

It is more useful to consider the simple, objective (nonintentional) cues
that can be computed given an intentional motion trajectory. The trajector-
ies recorded in our experiment took place in two spatial dimensions, so
we can focus on some simple Newtonian cues. A trajectory can be mea-
sured in terms of the bug's position and velocity for each of the two linear
dimensions. Because the bug figures have a head end and a tail end, they
also have a rotational degree of freedom, captured in their orientation or
heading, and a rotational velocity equivalent to the rate at which they
are changing their orientation. Ignoring higher-order parameters such as
acceleration, this yields six basic motion parameters for each agent: hori-
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zontal position, horizontal velocity, vertical position, vertical velocity, ori-
entation, and rotational velocity. A two-agent system can thus be de-
scribed with 12 independent parameters.

This might be fine for a physicist interested in modeling abstract
changes in position in a two-body system, but is it useful for categorizing
behaviors and intentions of animate agents? Intuition, and the results of
our categorization experiments presented in the previous sections, suggest
not. Information about one's absolute place in the world and that of some
other organism does not matter to individuals nearly as much as compari-
son between oneself and others—social behavior, like evolution itself, is
driven by relative differences. Absolute position information is largely ir-
relevant in perceiving how two agents are interacting (aside from the ef-
fects of special locations in the environment such as watering holes or
shelter); what matters is their position relative to each other. Likewise,
their individual orientations are not as informative regarding their inten-
tions toward each other as are their relative orientations toward each
other. From any one agent's perspective, the three position and orientation
parameters that matter are likely to be the distance to the other agent
(what we refer to as the relative distance cue), the angle between one's
current heading and the other agent's location (relative angle], and the
angle between one's current heading and the other agent's own heading
(relative heading).

We can also reduce the six velocity parameters that describe a general
two-agent system into four velocity parameters that matter to any given
agent whose behavior we want to categorize: absolute velocity (how fast
the agent is going forward, rather than in the two orthogonal spatial direc-
tions separately—as we will see, we can ignore the other velocity compo-
nent corresponding to sideways motion), relative velocity (how fast the
one agent is going relative to the other agent), absolute vorticity (how fast
the agent is changing heading), and relative vorticity (how fast the one
agent is changing heading relative to the other agent's heading change).
We can eliminate two parameters by ignoring one's own sideways velocity
(which is usually zero in nature and in our bug world), and relative side-
ways velocity (which is also usually zero). Thus, we are left with three
relevant position parameters and four relevant velocity parameters. These
can be converted into motion cues by averaging them over some temporal
window. In accordance with the results of our second categorization ex-
periment, which demonstrated the importance of relational information,
five of the seven cues we have ended up with are relational (uncomput-
able given just one visible agent).

In summary, we propose seven simple, ecologically relevant cues that
can be useful in categorizing the intentions of one (focal) agent interacting
with another agent.

Relative distance: the distance between the two agents. Fighting and
pursuit-evasion tend to produce smaller relative distances in the bug tra-
jectories than do courtship and play.
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Relative angle: the angle between the focal agent's current heading (the
direction it is facing) and the other agent. This cue indicates whether the
other agent is in front of or behind the focal agent. Pursuit can be distin-
guished from evasion most easily by relative angle.

Relative heading: the difference in heading between one agent and the
other, indicating whether they are facing the same direction (more typical
of pursuit and evasion), or facing each other (more typical of fighting,
courtship, and play).

Absolute velocity, the forward velocity of the focal agent with respect
to the background environment. Pursuit-evasion and fighting generate
higher absolute velocities than do courtship and play.

Relative velocity, the difference between the velocities of the two
agents. Pursuers and evaders tend to have nearly zero relative velocity
across the duration of a chase, but courtship produces large differences in
velocity between courter and courtee.

Absolute voriicity. the vorticity (change in heading) of the agent with
respect to the background environment. Fighting and courting produce high
vorticities, while play and being courted are associated with low vorticity.

Relative vorticity. the difference between the vorticities of the two
agents. Pursuers and evaders tend to turn equally often, and so have zero
relative vorticity, while courters and courtees often have a large vorticity
difference.

Before settling on this set of seven cues distilled from the motion tra-
jectories, we need to be sure that they contain at least enough information
to make reasonably accurate intention categorizations. If we discover oth-
erwise, then we would have to search for a different set of more appro-
priate cues. One way to test this question is to see whether a general-
purpose pattern-associating algorithm can map from the particular values
of these seven cues computed from portions of motion trajectories to the
correct categories for those trajectories. We trained a simple logistic-acti-
vation three-layer neural network on the same 300 examples of motion
trajectories that participants saw in our categorization experiments de-
scribed earlier, using the values of the seven cues as inputs and the proper
category as the target output. After training, the neural network correctly
categorized 247 out of the 300 examples, or 82%. (When tested for gener-
alization ability on 300 different examples, the network still got 200 cor-
rect, or 67%—see table 12-3.) Recall that participants only correctly cate-
gorized 49% of the 300 examples. Based on this, we concluded that these
seven cues, while perhaps not fully capturing all of the distinguishing
trajectory information, still distill enough information to allow us to cre-
ate reasonable models of human performance in this task.

Solitary animals that only encounter a single other conspecific individ-
ual at any one time need only be able to categorize the behavior of those
others relative to themselves, that is, from an egocentric viewpoint. For
animals in more social species, where interactions between others are
commonly witnessed, it can also be important to keep track of the inten-
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Table 12-3: Categorization Accuracy of Participants and Competing
Algorithms for One- and Two-Bug Trajectories, Along With Number
of Cues Used by Each

Competitor

Dawes's Franklin's Neural
Criterion Participants CBE Rule Rule Network

% correct on training
set with 7 cues

% matches to partici-
pants' correct

Average number of
cues used

% correct on testing
set with 2 cues

% correct on testing
set with 7 cues

49% 65%

— 73%

? 3.6

30% 34%

— 57%

62%

72%

7

33%

60%

68%

77%

7

34%

60%

82%

90%

7

26%

67%

Note. Here, accuracy is shown in percentage correct (out of 300 trials), except for the second
row, which shows percentage of matches to participants' (147) correct categorizations.

tions of different group members relative to each other. This is particu-
larly true in species with dominance hierarchies and kin networks. Fur-
thermore, between-species interactions often need to be judged accurately.
For example, a gazelle should be able to tell if a lioness is chasing one of
its herd mates, or if she is being chased herself, perhaps by another lion.
Each of the seven cues listed above should be readily computable from
either an egocentric viewpoint or from a third-party observer position.
Although our experiments presented trajectories from a rather ecologi-
cally implausible (but computationally simple) top-down view, the seven
cues could be computed almost as easily from a more realistic ground-
level view.

The seven cues just described, like the 12 Newtonian parameters, are
mostly independent in principle, but rather highly correlated in practice.
That is, the structure of motion trajectories produced by organisms in na-
ture will ensure that certain cue values co-occur. These natural intercorre-
lations between motion cues have two implications for categorizing inten-
tions. First, only a few cues may suffice for making an accurate decision,
because there is high overlap in information content between cues. Sec-
ond, if one cue is unavailable, another may take its place: Correlated cues
enable vicarious functioning (essentially, cue substitutability) in decision
making (Brunswik, 1943).

Vicarious functioning is important because in many real-world situa-
tions some or most of the possible cues may not be perceivable at any
given time. Furthermore, the speed with which a cue can be registered
may be another crucial constraint on the decision-making process. For
high-pressure problems, such as deciding whether a mountain lion is stalk-
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ing you, it may not suffice to wait for all cues to become available before
making a decision. Such time pressure may favor fast and frugal, noncom-
pensatory decision heuristics that make the most efficient use of the mo-
tion information available (see chapter 7). These are the sorts of decision
heuristics for categorizing behaviors from motion cues that we will now
consider.

Decision Heuristics for Categorizing Behaviors

What sort of decision mechanism might people and other animals use
to process motion cues into intention category judgments? As we have
indicated, judging intention from motion is a critical task often performed
under time pressure. Moreover, our categorization experiments indicated
that different cues are useful for deciding on different categories. These
observations led us to look for a simple fast and frugal decision mecha-
nism that uses only as much of the information as is necessary to select a
single category. The Categorization by Elimination (CBE) algorithm is just
such a mechanism (see chapter 11 for a full introduction). CBE categorizes
a given stimulus by starting with a full set of possible categories and then
using the particular values of the cues for that stimulus to eliminate more
and more categories until only a single possibility remains. Thus, different
stimuli may require that more or fewer cues are processed before they
can be categorized. This algorithm always checks the cues in a particular
predetermined order, and only uses as few cues as it can get away with to
reach category decision, rendering it fast and frugal. Yet its categorization
accuracy on some standard test sets is still close to that of more traditional
algorithms that combine all available cues (as shown in chapter 11).

To use CBE to categorize motion intentions, we first determined the
order in which to use our seven cues, based on how well they can each
distinguish among the six intentional categories in our training set of 300
trajectory examples. We found that the absolute velocity cue was the most
accurate at categorizing these trajectories when used alone, so it was put
first in the list, followed by relative angle, relative velocity, relative head-
ing, relative vorticity, absolute vorticity, and relative distance. (We found
that the exact cue ordering did not make much difference in overall cate-
gorization performance; however, it does have a large effect on the number
of cues looked up by the algorithm.) Then, to categorize a particular trajec-
tory, CBE starts with the full set of six possible intentional categories and
considers the value of the absolute velocity cue for that trajectory to deter-
mine which categories to eliminate from the set of remaining possibilities.
For instance, a relatively low velocity value of only 400 pixels per second
indicates that the trajectory could correspond to the more leisurely catego-
ries of courting, being courted, or play, so that the other three more fre-
netic categories should be eliminated from the set of possibilities. Because
more than one category remains after checking velocity, the next cue in
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the preordered list (relative angle) must be used to eliminate more catego-
ries. This process of checking further cues continues until a single cate-
gory is left, which is the algorithm's final decision.

Categorization by Elimination has several interesting features as an al-
gorithm for cue-based categorization. It is nonintegrative, using only those
cues necessary to reach a decision. If each cue takes some time to assess,
this makes CBE faster than algorithms that use all cues. It is also noncom-
pensatory, with earlier cues eliminating category possibilities that can
never be restored by later cues. Whether this is a reasonable feature de-
pends on the type and number of errors CBE produces, and the conse-
quences of those errors. For example, if CBE eliminates the category
"fight" too readily, and stupidly mistakes fighting for playing, CBE would
be maladaptive. Finally, CBE always uses cues in a particular order. Here
we order the cues by their ability to make correct categorizations (cue
success—see chapter 11). It is important to use cues in a good order, be-
cause this is what allows CBE to make a rapid decision. If the algorithm
looked at cues starting with the least useful, for instance, it would take
more cues (and hence more time) to reach a decision and would more
often be incorrect.

We tested the performance of CBE on categorizing trajectory intentions
using the seven motion cues against both the correct (originally intended)
categories and the categories that participants actually chose (from table
12-1). These comparisons are shown in table 12-3. To see how this fast
and frugal heuristic performs in comparison with more traditional deci-
sion-making methods, we also constructed two linear combination models
(Dawes's rule, using unit weights, and Franklin's rule, using cue success
as weights—see chapter 4), which process the cues in the usual integra-
tive, compensatory fashion. As mentioned in the previous section, we also
trained a three-layer neural network model on this task to see how a non-
linear, compensatory system would do.

The first row of table 12-3 shows the performance of the above four
algorithms on 300 categorizations, along with participant performance on
the same data set. (The cue values in each of the 300 trials were computed
from the same time period of trajectory data that the participants saw in
that particular trial, ensuring that no extra advantage was given to the
algorithms over the participants.) Each of the algorithms outperformed the
participants by a fair margin. But this is not surprising given that the algo-
rithms were all trained with feedback on the data to make the proper cate-
gorizations, while participants were not given feedback and had to catego-
rize each motion pattern the first time they saw it. What is more
surprising, though, is that the fast and frugal CBE performs about as well
as the more traditional linear information-integrating methods (see chap-
ter 11 for more such surprises). Furthermore, CBE uses only half of the
cues, on average, that the other algorithms do—and thus it achieves its
good categorization performance with significantly less data.

How well do CBE and the other algorithms match the decisions made
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by our participants? For all trials that participants got right (147), we com-
pare how many times each algorithm also chose the (same) correct cate-
gory and show this as a percentage of the 147 trials in row 2 of table
12-3. (The different algorithms' matches to participant mistakes appeared
largely random and uninformative—there are more ways to be wrong than
to be right in this task—and so are not included here.) Here again CBE
does as well as the other linear-integrative algorithms, matching nearly
three-quarters of the participants' correct answers. Given that CBE is also
faster and more frugal than the other two linear models, we have some
reason for preferring it as a psychological model worthy of further investi-
gation. (In comparison, the baseline neural network algorithm matched
90% of the participants' correct responses.)

But just how much more frugal is CBE in this task? In the third row of
table 12-3, we show how many cues the different algorithms used to make
each categorization, averaged across the 300 trajectories seen. For the lin-
ear models and the neural network, this average is rather straightforward:
These algorithms always use all of the available cues, so their average cue
use is 7. But CBE can use a different number of cues to categorize each
trajectory, and in general uses as few as possible. On average, CBE uses
only 3.6 cues per categorization, little more than half of the total number
of cues available.

The benefits of CBE's minimal cue usage are indicated in the fourth
row of table 12-3, where we have strictly limited the number of cues that
participants or algorithms can use to make categorizations. Specifically,
we showed participants only one of the interacting bugs in the trajectory
(this is the data from the second categorization experiment reported ear-
lier), and we allowed the algorithms to use only the two nonrelational
cues that are computable from such a restricted single-bug trajectory (ab-
solute velocity and absolute vorticity). CBE and the two linear algorithms
again do at least as well as the human participants. But the powerful neu-
ral network model, which did so well on the full training set, is now rela-
tively crippled by the lack of information it was expecting—it is the only
decision model that makes fewer correct categorizations than the partici-
pants do. In the last row of table 12-3 we see further evidence about the
ability of these models to adapt to situations with new information: Here
we show their performance in generalizing to a different set of 300 trajec-
tories. All lose a fair amount of categorization accuracy, with the neural
network losing the most and the linear algorithms the least; CBE lies in
the middle.

These results can help us put the superior performance of the neural
network model on the full-cue categorization task in perspective. Cer-
tainly the greater number of free parameters in the neural network weights
can help its fitting performance. Beyond this, perhaps nonlinear cue inte-
gration has an advantage in this domain, and perhaps compensatory cue
use is more appropriate here as well, when all the cues are known. How-
ever, compensatory cue use requires simultaneous access to all relevant
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cues, and there may be situations where cues are naturally perceived at
different times or in different orders. In such cases, standard neural net-
work models may be at a relative disadvantage compared with fast and
frugal competitors. CBE, by contrast, could use cues in the natural order
in which they can be perceived, categorizing as far as possible given each
piece of incoming information. For example, relative position information
may often be easier to estimate than average velocity or vorticity informa-
tion, and so could be used to make an initial estimate of the appropriate
intentional category in a fast and frugal manner. These questions should
be explored by creating on-line dynamic decision models that can appro-
priately categorize animate intentions under ecologically realistic time
constraints.

In sum, the fast and frugal CBE heuristic performs about as accurately
as more traditional linear cue-integrating mechanisms as a model of hu-
man categorization in the intention-from-motion domain.3 It achieves this
surprising performance despite using on average only half of the informa-
tion that the other algorithms use. This frugality allows CBE to make faster
decisions, especially in realistic situations where time is required to as-
sess the value of each cue. Using fewer cues can also lend CBE added
robustness in comparison to the plethora of parameters in the competing
neural network model—several cues could be unobservable in the envi-
ronment without affecting CBE's performance at all. These advantages
may not make much of a difference in a laboratory setting, but they can
be crucial in real-world life-and-death decisions. This leads us to propose
CBE as an ecologically rational algorithm for determining an organism's
intention from its motion alone.

A Motion Turing Test and Other Extensions

As an adjunct to our categorization work, we devised a pilot version of a
motion-based Turing test, in which a robot bug replaces one of the human
participants in the trajectory-categorization experiments described earlier.
After the trial, we asked the lone human participants whether they
thought they were interacting with another human-controlled bug, or with
a computer-controlled bug. A pilot study suggested that even the simplest
robot algorithms could be surprisingly convincing, especially when their
actions respond to the human-controlled bug (as opposed to acting com-
pletely independently). That is, if one bug (e.g., a pursuer) is really con-
trolled by a human and the other (e.g., an evader) is controlled by a simple

3. As is often the case, it is difficult to make an empirical distinction between
the fast and frugal algorithm and other approaches based solely on comparisons to
human choices. See chapter 7 for more on this difficulty, and for some approaches
to distinguishing between algorithms using process data such as reaction times in
addition to choice data.
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computer program, the resulting motion pattern looks almost indistinguish-
able from that of two human-controlled bugs interacting. This simple test
further indicates the power of limited motion cues to indicate animate in-
tention. We can similarly test other proposed cues of intention from motion
by building behaviors that generate those cues into new robot bugs and in-
vestigating which combinations are most convincing to human observers.

These sorts of animate motion experiments may provide some useful
new methods for investigating human theory of mind—the attribution of
intentions, beliefs, and desires to others based on observable behaviors.
Some researchers suggest that autistic people have deficits in their theory
of mind module, such that their attributions of intention are severely im-
paired (Baron-Cohen, 1995). If so, it would be interesting to see how autis-
tics do on intention-from-motion categorization tasks: The types of ani-
mate intentions that different individuals can reliably categorize from
motion trajectories may indicate the presence or absence of different kinds
of empathic or social-attribution impairments.

Intention-from-motion heuristics could also be used in a variety of
practical applications. Many countries are increasing their use of closed-
circuit cameras to detect crime. Such crime detection is basically a prob-
lem of distinguishing criminal intentions and behavior patterns from be-
nign patterns, given motion cues. Even our simple cue-based methods of
distinguishing between pursuit, evasion, fighting, and play may find uses
in such systems. Automated crime-detection systems would not have to
be perfect on their own; they would only have to help security guards
identify which screen to pay most attention to out of the many screens
they are expected to monitor. Also, pharmaceutical companies often test
drugs by recording their effects on animal behavior patterns. Algorithmic
systems for categorizing rat behavior as aggressive, exploratory, or playful
may help in automating such evaluations. The problem of inferring inten-
tions from motion cues is so general that there are doubtless hundreds of
other related applications of simple fast and frugal decision heuristics.

Conclusions

In this chapter we have succeeded in uncovering a set of motion cues
that can be used to infer some major categories of adaptively important
intentions. The set of seven cues we proposed appears sufficient to cap-
ture the major regularities of motion in the six intentional categories we
investigated. We introduced a new simple algorithm, Categorization by
Elimination, that could accurately categorize motion patterns using a min-
imal number of cues, showing that these adaptively important inferences
can be made in a fast and frugal manner.

Our main goal has been to provide a basis for the concept of social
rationality, by finding simple motion cues and fast and frugal cue integra-
tion mechanisms that humans and other animals may use to interact effec-
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tively with each other. Such mechanisms can exploit the fact that animate
motion tends to fall into a few rather stereotyped categories that can be
derived from basic evolutionary and ecological principles. We tested the
competing decision algorithms on motion trajectories generated by human
subjects in the course of playing various computer-mediated interaction
games. We propose this methodological approach as a first step in examin-
ing how the basic building blocks of social cognition can be studied
through a combination of evolutionary principles, ecologically representa-
tive stimuli, human experimentation, and computer simulation of how
well different decision heuristics would perform against each other and
compared with human data. Our guiding principle has been that natural
environments offer a few key motion cues, a few typical kinds of animate
motion, and a plethora of animals, including mountain lions, more than
willing to eliminate others who fail to perceive the significance of their
movements.
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From Pride and Prejudice to Persuasion

Satisficing in Mate Search

Peter M. Todd
Geoffrey F. Miller

Wedding is destiny,
And hanging likewise.

John Heywood, Proverbes

I married the first man I ever kissed. When I tell this to my
children they just about throw up.

Barbara Bush, First Lady

In 1611, the first wife of astronomer Johannes Kepler (1571-1630) died
of cholera in Prague. Liberated from an arranged and unhappy marriage,
Kepler immediately began a methodical search for a replacement. Though
short, unhealthy, and the son of a poor mercenary, Kepler had an MA in
theology from Tubingen, succeeded Tycho Brahe as imperial mathemati-
cian of the Holy Roman empire, and had recently become famous for ex-
plaining how eyeglasses can correct myopia (Ad Vitellionem Paralipo-
mena, 1604), documenting a supernova (De Stella Nova, 1606), and
demonstrating that the orbit of Mars is an ellipse (Astronomia Nova,
1609). He was a good catch. Relentlessly courting, Kepler investigated 11
possible replacements in the two years after his wife's death. In a letter to
Baron Strahlendorf written shortly after marrying candidate number five
in 1613, Kepler described this methodical mate search. Friends urged
Kepler to choose candidate number four, a woman of high status and
tempting dowry, but she rejected him for having toyed with her too long,
so Kepler was free to settle with his most-preferred number five. Kepler
chose well: His new wife, though not of the highest rank or dowry, was
well-educated, bore him seven children, and provided the domestic infra-
structure for Kepler to publish four more major works laying the empirical
foundations for Newton's law of gravity, and, incidentally, to save his
mother from being burned at the stake as a witch in 1620 (see Ferguson,
1989; Koestler, 1960).

287
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Kepler's experience illustrates some of the major themes in the litera-
ture on search strategies that has emerged over the past several decades
in statistics, economics, and biology. So far in this book we have focused
on decision problems where all of the alternatives are simultaneously pre-
sented, and one only needs to search through information to guide one's
choice. In many real-world choice problems, though, an agent encounters
options in a temporal sequence, appearing in random order, drawn from
a population with parameters that are only partially known ahead of time.
In this case, the search for possible options, rather than just for informa-
tion about present alternatives, becomes central. For mate choice in par-
ticular, the structure of the search task requires that one choose a prospect
that fits one's real criteria for success rather than irrelevant ideals sug-
gested by well-meaning acquaintances, given limited time for investigat-
ing each possibility, and some risk that the prospect, being an agent in his
or her own right, will reject one's offer of union. The three disciplines that
have investigated search tasks most thoroughly have emphasized different
subsets of these issues.

Statisticians have focused on the "secretary problem" (Ferguson, 1989;
Gilbert & Mosteller, 1966], in which one must pick the very best secretary
from a sequence of applicants that appear in random order drawn from
an unknown distribution of quality. Once rejected, applicants cannot be
recalled. The secretary problem seeks perfection, with a payoff of one for
picking the very best applicant and zero for picking anyone else. It also
ignores search costs such as time, ignores the problem of mutual choice
(the possibility that the applicant you like will not like you), and assumes
you know the exact number of applicants who will arrive. But it directly
addresses what to do about the uncertainty that the next prospect one
encounters might be far superior to the best seen so far. It can be shown
that the solution to the secretary problem demands sampling a certain
proportion of the applicants, remembering the best of them, and then
picking the next applicant who is even better. The optimal number to
sample is 1/e (37%). Following this "37% rule" finds the very best appli-
cant about 37% of the time (see Ferguson, 1989).

Economists have developed models of job search for best salaries and
consumer search for lowest prices, emphasizing the importance of search
costs and the acceptability of less-than-perfect options (Lippman & Mc-
Call, 1976). These search models, like those of the statisticians, usually
ignore mutual choice, but they do not assume the total number of pros-
pects is known, nor do they assume that only the best will do. On the
other hand, these models generally assume that you can backtrack to pick
previously seen options. With assumptions differing markedly from those
of the secretary problem, the solution is also quite different. The general
solution to this type of search task is to set a "reservation price" at which
the marginal cost of further search equals the marginal expected improve-
ment over the best prospect seen so far. That is, one should keep looking
for a better salary or a lower price until the effort of looking further is
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likely to be more costly than the amount of improvement you could
achieve, and then return to the best seen. This in turn can depend criti-
cally on the standard deviation of the distribution of salaries or prices,
which may need to be estimated from previously observed options (Mar-
tin & Moon, 1992). This type of solution, requiring involved computations
to determine when to stop search, falls into the class of constrained opti-
mization methods discussed in chapter 1.

Biologists spent considerable effort in the 1980s amassing support for
Darwin's (1871) claim that animals engage in mate search with enough
discrimination and persistence to impose sexual selection pressures on
one another (see Andersson, 1994). Several researchers developed de-
tailed models for search behavior (e.g., Johnstone, 1997; Wiegmann et al.,
1996), often with less theorem-proving zeal than the statisticians or econo-
mists, but more attention to the empirical testability of their models.
These models usually incorporate search costs, and sometimes lack of
knowledge about the distribution of potential mates (Mazalov et al., 1996).
Much recent effort has gone into distinguishing whether different species
use a best-of-N rule or a threshold criterion rule in mate search (e.g.,
Fiske & Kalas, 1995; Forsgren, 1997; Valone et al., 1996). The best-of-N
rule means sampling a certain number N of prospects and then choosing
the best of those seen, whereas a threshold criterion rule, like the 37%
rule and the reservation price rule, means setting an aspiration level and
picking the first prospect that exceeds it. Simon (1990) has termed the
latter aspiration-setting mechanism "satisficing," defined as "using expe-
rience to construct an expectation of how good a solution we might rea-
sonably achieve, and halting search as soon as a solution is reached that
meets the expectation" (p. 9). As indicated in chapter 1, Simon sees satis-
ficing as one of the main forms of bounded rationality available in situa-
tions where the complete set of possible alternatives to choose from is
not, or cannot be, known.

All of the above approaches tend to consider a single searcher assessing
passive goods waiting to be chosen. But one of the major problems in mate
search is coping with mutual choice. It is fairly easy to develop satisficing
rules that work well for nonmutual search, for instance, shopping around
for tomatoes or televisions that will not object to being bought. There has
been much less research on finding satisficing rules for mutual search
under uncertainty. One more literature is relevant in this regard: the tradi-
tion of economic game theory research on "two-sided matching" (Roth &
Sotomayor, 1990), which is largely the study of mutual choice, but with
certainty and complete knowledge.

As with most game-theoretic analysis, this tradition has focused on
finding equilibria, or sets of strategies that are mutually optimal against
one another. It can be shown that if a finite set of men and women have
consistent, transitive preferences for one another, then there exists at least
one "stable matching" in which no one who has a mate would prefer
somebody else who would also prefer him or her in return. The two-sided
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matching literature also shows, however, that there are often multiple
equilibria, or different possible stable matchings given a particular set of
men and women with particular preferences. Although each is stable in
the sense that there is no rational incentive for divorce and remarriage,
different equilibria fulfill people's preferences to different degrees: Some
are "male-optimal" (making men as happy as they could be given the ac-
tual preferences of women), some are "female-optimal" (making women
as happy as they could be given men's preferences), and some are neither.
There is a simple search method called the "deferred acceptance proce-
dure" that is guaranteed to produce a stable matching efficiently given
mutual choice and perfect and complete information about everyone in
the population (Gale & Shapley, 1962). But whether such equilibria exist
(or ever occur) for real populations, and whether any algorithms exist for
finding them in realistic situations of imperfect, incomplete information,
remains to be shown.

How do all these statistical, economic, and biological models illumi-
nate Kepler's courtship plan, or more generally, human choice behavior
when presented with a sequence of options? Mate search can be consid-
ered a rather difficult but extremely important type of decision making
under uncertainty. The models mentioned above have identified some of
the difficulties: uncertainty about the distribution of mate values one will
encounter, ignorance of the order in which prospects will be met, diffi-
culty of backtracking to previously rejected prospects, search costs, time
limits and temporal discounting, and, above all, the mutual choice prob-
lem that mating must be mutually acceptable to both parties.

Different fields address or ignore these difficulties in different ways.
Statisticians and economists tend to treat mate search as an interesting
pretext for developing optimality theorems relevant to job search and con-
sumer search, rather than treating mate search as a central adaptive prob-
lem in human life. Biologists view things differently, because mate search
and mate choice drive sexual selection, an evolutionary process perhaps
equal to natural selection in its power and creativity. With the resurgence
of interest in sexual selection theory since the late 1970s (see Andersson,
1994; Bateson, 1983a; Cronin, 1991), and evolutionary psychology since
the late 1980s (see Barkow et al., 1992; Buss, 1994; Miller & Todd, 1998),
research has begun to focus on the role that sexual selection via mate
choice has played in shaping many aspects of the human mind (Miller,
1998; Ridley, 1993; Wright, 1994). In studying mate search then, we are
studying an interesting, difficult problem of decision making under uncer-
tainty that, perhaps uniquely among such problems, is likely to have had
a strong causal influence on human evolution.

As with so many problems of human decision making, the rationality
and efficiency of human mate choice, including the process of search, has
been questioned. Frey and Eichenberger (1996) argued that people do not
search long enough when seeking a mate, taking the incidence of divorce
and marital misery as indicators of insufficient search. Rapoport and Tver-
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sky (1970) questioned whether people adhere to the reservation price rule
for searching given a known distribution of values and a known search
cost. However, the sequential search literature is not dominated by these
sorts of worries about the ways that people deviate from known optimal
strategies, in part because the optimal strategies are not known for many
realistic search situations, and in part because psychologists have paid
much less attention to search tasks than to other decision-making tasks.
Psychologists and economists who have studied search have often fo-
cused on the simple heuristics that people actually appear to use. Hey
(1982, 1987) has identified a number of these rules, such as the "one-
bounce rule," by which people seeking high values keep checking values
as long as they increase, but stop as soon as they decrease and select the
previous value. Martin and Moon (1992) used computer simulation to as-
sess the relative performance of different simple strategies in a consumer
search setting and found that some rules can come within 3% of the nor-
mative standard.

In this chapter, we follow in the footsteps of these researchers and look
for simple satisficing search heuristics that perform adaptively in the spe-
cific domain of biologically realistic mate search problems. We also evalu-
ate different heuristics in simulation across a variety of search conditions
using a variety of performance measures. Following a similar historical
trend in sexual selection theory in biology (see Cronin, 1991), we begin
with the rather male-centered case of one-sided search, and then proceed
to the more realistic case of mutual search, emphasizing female choice as
well as male. (To keep our analyses simple, in this chapter we do not go
into the effects of possible sex differences in mate search strategies,
though these could certainly have interesting and important conse-
quences.)

Through our analyses we find that, even for simple cost-free, nonmu-
tual search as in the secretary problem, the 37% rule is outperformed on
many criteria by heuristics that sample significantly fewer prospects.
These heuristics do not even need to know the expected number of pros-
pects one will encounter: A simple satisficing heuristic called "Try a
Dozen" works well across a large range of numbers of prospects. We also
find that when mutual choice enters the picture, these types of search
strategies tend to perform very poorly. Only individuals who are very
highly valued themselves can get away with applying the 37% rule or the
Try a Dozen heuristic in mutual choice situations. (Kepler was lucky in
this respect: His high mate value helped ensure that his "Try Eleven"
strategy would yield good results.)

Instead, search heuristics that take into account one's own mate value
perform much better in mutual choice, producing faster, more frequent,
higher-quality matings for individuals. Even if one's own mate value is
not known initially, good search efficiency can be attained using a simple
adaptive heuristic that adjusts one's aspiration level based on the number
of offers and rejections received from others during an initial sampling
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period. If one also pays attention to the mate values of those who do or
do not show interest, it becomes easier to learn one's mate value, which
can be used as a basis for effective search strategies that deliver close to
the best mate that could be hoped for given mutual choice. In brief, search
strategies such as the 37% rule and the Try a Dozen heuristic that work
well without mutual choice perform extremely poorly given mutual
choice, falling far behind mutual choice strategies that allow one to learn
one's own mate value from others' reactions. In keeping with the idea of
ecological rationality, we find that the satisficing heuristics for mate
search that do best in a given environmental situation—whether one-
sided or mutual search—are those that exploit the structure of the infor-
mation in their environments, relying solely on mate values in the former
case, and on expressions of interest or disinterest in the latter.

Algorithms for One-Sided Mate Search: The Dowry Problem

The idealized versions of search described in the previous section differ
considerably from the situation that presents itself to men and women
searching for a mate, at least in many modern Western cultures. This type
of mate choice usually consists of a sequential search through successive
potential mates in which each one is evaluated and decided on in turn in
a process that can take minutes, hours, days, or years. (Here the decision
can be thought of as whether to settle down and have children with a
particular person, though other definitions are possible.) There are cer-
tainly costs associated with checking out each person during this search.
But perhaps the most significant cost is that it is difficult, and often im-
possible, to return to a potential mate that has been previously discarded
(because they remain in the "mating pool" and are likely to pair up with
someone else in the meantime, as countless romantic tragedies attest). To
further complicate matters, one does not know ahead of time what the
range of potential mates may be: How can we know the first time we fall
in love whether someone else might be able to incite still deeper feelings
if we just keep searching long enough to find them? We cannot even tell
how many more potential mates we may encounter. Given these restric-
tions on the search process and lack of knowledge about the space we are
searching, finding a mate looks like a very daunting problem indeed.

We can consider this situation in more precise detail, and in a form
more closely linked to mate choice, via an alter ego of the secretary prob-
lem mentioned in the previous section: the "dowry problem." This is a
well-known puzzle from statistics and probability theory (Corbin, 1980;
see also Gilbert & Mosteller, 1966; Mosteller, 1987), as the number of
names it goes by attests (it is also known as the "beauty contest problem"
and even "Googol"). In its dowry form, the story goes like this: A sultan
wishes to test the wisdom of his chief advisor, to decide if the advisor
should retain his cabinet position. The chief advisor is seeking a wife, so
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the sultan takes this opportunity to judge his wisdom. The sultan arranges
to have 100 women from the kingdom brought before the advisor in suc-
cession, and all the advisor has to do to retain his post is to choose the
woman with the highest dowry (marriage gift from her family). If he
chooses correctly, he gets to marry that woman and keep his post; if not,
the chief executioner chops off his head, and worse, he remains single.
The advisor can see one woman at a time and ask her dowry; then he
must decide immediately if she is the one with the highest dowry out of
all 100 women, or else let her pass by and go on to the next woman. He
cannot return to any woman he has seen before—once he lets them pass,
they are gone forever. Moreover, the advisor has no idea of the range of
dowries before he starts seeing the women. What strategy can he possibly
use to have the highest chance of picking the woman with the highest
dowry?

As mentioned earlier, it turns out that the algorithm the advisor should
use to guarantee the highest chance of choosing correctly is the 37% rule,
which in this case would work as follows: He should look at the first 37
women (or, more generally, 37% of any population of candidates he
faces), letting each one pass, but remembering the highest dowry from that
set—call this value D. Then, starting with the 38th woman, he should
select the first woman with a dowry greater than D. (For derivations of
this procedure, see Ferguson, 1989; Gilbert & Mosteller, 1966; Mosteller,
1987.) This 37% rule is the best the advisor can do—it finds the highest
value more often than any other algorithm (again, 37% of the time), and
thus is, in this sense, the optimal solution to this problem. With this rule,
the advisor has slightly better than a one in three shot at picking the right
woman and keeping his head. The other two-thirds of the time, the sultan
has to look for another advisor.

The dowry problem is certainly an unrealistic reflection of human mate
choice in many respects—it only involves one-sided (rather than mutual)
search, it reduces search to a single dimension instead of appreciating the
many facets by which we judge one another (Miller & Todd, 1998), it de-
nies any possibility of comparing candidates simultaneously or returning
to those previously seen, and so forth. But it gives us a reasonable starting
point for testing some specific mate search mechanisms in a setting with
at least some domain-specific structure. And we can modify some of its
assumptions in useful ways to help us get a better understanding of more
appropriate search mechanisms, as we will now show.

One of the major differences between the dowry problem and the real
world is that in the latter, of course, our mating decisions are seldom so
dramatic—we usually get to (or have to) live with whatever choice we
make, even if it is not the "best" one. To the sultan's advisor, the perfor-
mance of the 37% rule on those occasions when it did not pick the highest
dowry did not matter—he was killed in any case. But to a population of
individuals all using such an algorithm to choose their mates, what this
rule does the other 63% of the time would matter a lot. For instance, if
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applied to a set of 100 dowries covering all integer values from 1 to 100,
the 37% rule returns an average value of about 81 (i.e., the mean of all
dowries chosen by this rule). Only 67% of the individuals selected by this
rule lie in the top 10% of the population, while 9% fall in the bottom
25%. And it takes the 37% rule an average of 74 tests of potential mates
(i.e., double the 37 that must be checked before selection can begin) before
a mate is chosen. (These figures are all discussed in the next section.) If
any of these performance figures could be improved upon by some other
sequential choice algorithm, that algorithm could well prove more adap-
tive for a population of mate choosers, allowing them to pick better mates
more often, or more quickly, or with a smaller chance of picking a total
loser, and we might therefore reasonably expect it to evolve in preference
to the 37% rule.

If the dowry problem itself is unrealistic, the 37% rule solution also
has many characteristics that could make it an implausible model of how
people actually choose mates. Here we will focus on two difficulties.
First, it requires knowing how many potential mates, N, will be available,
in order to calculate how many are in the first 37% to check and set one's
aspiration level, D. Second, this rule requires checking through a large
number of individuals before a decision can be made—74 out of 100 in
the previous example. Even assuming a rather quick assessment of some-
one's mate potential, perhaps a few dates over a month's time, the search
time involved becomes extensive.

Thus, using the 37% rule for human mate search may require informa-
tion that is difficult to obtain (an accurate value for N), and a large number
of individuals to be checked and consequently a long search time. On the
other hand, Frey and Eichenberger (1996) argue that one of the paradoxes
of marriage is that people search too little for their marriage partners,
checking too few individuals before making a lifelong commitment to one
of them. The evidence they cite argues against the use of the 37% rule in
human mate search—but it also argues that, by not searching long enough,
people are making worse mate choices than they might. If people are not
using an algorithm as long-winded as the 37% rule, what might they be
doing instead? Is it possible that there are any faster search rules whose
performance can assuage Frey and Eichenberger's fears of poor mate
choice behavior? If so, will these rules prove more complicated? In the
next section, we explore the answers to these questions, and discover that
we can in fact do more, in mate choice, with less.

The Consequences of Searching Less

To investigate whether any simple search heuristics exist that can outper-
form the 37% rule on various criteria in the standard secretary/dowry
problem domain, we began by studying a class of satisficing rules derived
from the original 37% rule. It turned out that even this small set of similar
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heuristics contained some that are better than the 37% rule on many di-
mensions, and so we restrict our discussion here to this class (though
other types of simple search algorithms or rules will probably prove to
have even better performance on some criteria). We have dubbed the class
of search heuristics we consider here "Take the Next Best" (or TNB,
named after the fast and frugal Take The Best decision heuristic described
in chapter 4).

Take the Next Best rules work in direct analogy to the 37% rule as
follows: For some specified C, the first C% of the N total potential mates
are checked (without being selected), and the highest dowry D is remem-
bered—this is the searcher's aspiration level. After the first C% of poten-
tial mates have gone by, the next potential mate with a dowry greater than
D is chosen. (If no greater dowry turns up, then we assume that the
searcher accepts the very last individual in the sequence, which is why
our performance curves in the upcoming figures fall to a final nonzero
value.) This simple heuristic (of which the 37% rule is one specific exam-
ple) has minimal cognitive requirements: It only uses memory for one
value at a time (the current highest dowry), only needs to know N and C
and calculate N X C/100, and only needs to be able to compare two dowry
values at a time. We were interested in how the performance of these
simple algorithms would change as we altered the percentage of potential
mates they checked, C. Because we also wanted to be able to change the
underlying assumptions of this problem, such as the distribution of dowry
values, the cost of checking each potential mate, and whether or not N is
even known, the mathematics quickly grew complicated, and we decided
instead on a flexible simulation approach for answering these questions.

We tested the behavior of TNB search algorithms with values of C from
0% (corresponding to always choosing the first potential mate) to 15% in
increments of 1%, from 20% to 50% in increments of 5% (except around
the interesting 37% value, where we again increased the resolution), and
from 60% to 90% in increments of 10% (because we believed most of the
action—that is, good performance—would occur in the lower C ranges).
We ran each rule with different numbers N of potential mates, each with
10,000 different randomly created dowry (or mate value) lists. We col-
lected statistics on the distribution of mate values selected by each algo-
rithm (including the mean, standard deviation, quartile distributions, and
number of times the single best dowry value was chosen) and positions at
which mates were selected (the mean and standard deviation). With these
values in hand, we can answer the questions posed at the end of the previ-
ous section: Simply put, can the 37% rule be beaten?

Search Performance With 100 Potential Mates

The answer, even from the class of simple TNB rules, is a resounding
"yes." Of course, the 37% rule picks the highest mate value most often.
In figure 13-1, the "best" line shows how often the highest mate value was
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Figure 13-1: Chance of finding a mate in a particular value category, given
different percentages of mates checked (out of 100 total possible mates]
for setting the aspiration level before taking the next best candidate seen.
The performance of the 37% rule on the various criteria is indicated by
the broken vertical line.

picked by a TNB algorithm, for different percentages C of possibilities
(potential mates) checked. (See Gilbert & Mosteller, 1966, figure 1, p. 42,
for the mathematically derived equivalent of this function.) The greatest
chance of choosing the highest mate value or dowry comes with a C of
(about) 37%, as expected (the maximum in the figure is not at exactly
37%, because of the stochastic nature of the simulations we ran). But this
curve also exhibits a flat maximum, so that it does not much matter what
exact value of C is used—the results are largely the same for C between
30% and 50%. And the chance of finding the highest-value mate for any
of these strategies is never higher than 37%, as mentioned in the first
section—not very good odds.

To an animal searching for a mate, this one in three chance of getting
the "best" member of the opposite sex is probably not a bet worth taking—
other "pretty good" potential mates will often be selected instead to save
search time or energy (or even because the animal cannot perceptually
distinguish between "best" and "pretty good"). In terms of having an
adaptive advantage over other competing mate seekers, it may suffice to
find a potential mate with a value in the top 10% of the population rela-
tively quickly. In figure 13-1, we see that a low value of C, 14%, yields
the highest chance, 83%, of selecting a mate in the top 10% of the value
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distribution. If one's standards are a bit more lax, just desiring a mate in
the highest quartile (top 25%), then only C= 7% of the initial stream of
potential mates need be checked to maximize this chance, yielding mates
in that top quartile over 92% of the time. Finally, rather than being risk-
seeking by searching for a mate in the top ranks of the population, an
animal may be risk-averse, preferring only to minimize its chances of
picking a mate in the bottom quartile of the population, where the mu-
tants lie. From the line marked "bottom 25%" we can see that the way to
achieve this goal is to use a much lower C of 3%, leading to a less than
1% chance of choosing a mate in the bottom (quarter) of the barrel. The
37% rule would pick these poor mates over 9% of the time, which is
much worse performance by risk-averse standards.

Alternatively, an animal might gain the greatest adaptive advantage
over its competitors by simply maximizing the expected value of its se-
lected mate. Figure 13-2 indicates how to accomplish this goal, showing
mean obtained mate value plotted against the percentage C of the poten-
tial mates that are checked to set the aspiration level D. Searchers using
C= 9% in this environment of 100 potential mates with mate values from
1 to 100 will select mates with the highest average mate value, nearly 92.
In contrast, if searchers were to use the 37% rule, their average would
drop to 81.

Figure 13-2: Average value of selected mate (bars indicate one standard
deviation), given different percentages of mates checked (out of 100 total
possible mates) for setting the aspiration level before taking the next best
candidate seen. The performance of the 37% rule on this criterion is indi-
cated by the broken vertical line.
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The values of the mates selected by these search algorithms may not
be the only criterion that matters to an organism seeking a mate—the time
and energy spent searching may also strongly influence the adaptiveness
of the algorithm used (see, e.g., Pomiankowski, 1987; Sullivan, 1994). In
figure 13-3, we see how many total potential mates must be looked at, on
average, before the final mate is chosen, varying as a function of the num-
ber of potential mates checked (C x 100) to set the aspiration level before
mate selection. The 37% rule must look at 74 potential mates on average
before a final mate is selected. With lower values of C, the number of
mates that must be looked at falls off rapidly, with increasing advantage
as C decreases. The optimal value of C according to this criterion alone
would be C= 0, that is, pick the first potential mate encountered. When
combined with the other criteria, the importance assigned to this mean
search length variable will determine the precise trade-off between find-
ing a good mate and spending time and energy looking for that mate.

Search Performance With a Greater Number of
Potential Mates

All of the criteria other than the chance of picking the single best mate
favor Take the Next Best rules that set their aspiration levels by looking
at less than 37% of the population. Checking about 10% of the population

Figure 13-3: Average position at which a mate is selected (bars show one
standard deviation), given different percentages of mates checked first
(out of 100 total possible mates) for setting the aspiration level before tak-
ing the next best candidate seen. The performance of the 37% rule on this
criterion is indicated by the broken vertical line.
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of potential mates before selecting the highest individual thereafter will
result in about the highest average mate value possible, along with a high
chance of choosing mates in the top quartile and top 10%, and will re-
quire a search through 34 or so potential mates before the final selection
is made. This seems like quite reasonable performance, given that it only
requires checking 10 individuals initially out of a population of 100. But
ancestral humans may have had effective mating group sizes much larger
than this, and certainly in modern environments one can expect to meet
more than 100 people who could potentially become mates. So what hap-
pens with our simple search heuristics if the population size is increased
to 1,000, where checking 10% means testing 100 individuals, which may
start to seem less like fun and more like hard work? Because the number
of individuals that must be tested by a TNB rule with a C% parameter
goes up linearly with the total population size N, these rules may not end
up being so fast and frugal, at least for larger populations, after all.

But figure 13-4, which shows how TNB rules fare in a population of
1,000 potential mates with mate values from 1 to 1,000, proves that our
fears of linear time increase are unwarranted. As before, the greatest
chance of picking the single highest-value mate comes from first checking
37% of the population. But to maximize the chances of picking a mate in

Figure 13-4: Chance of finding a mate in a particular value category, given
different percentages of mates checked (out of 1,000 total possible mates)
for setting the aspiration level before taking the next best candidate seen.
Note that a smaller percentage of potential mates need now be checked to
maximize the chances of getting a top mate. The performance of the 37%
rule on the various criteria is indicated by the broken vertical line.
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the top 10% (with a 97% probability), only 3% of the potential mates
need to be checked to set the aspiration level D; and for a mate in the top
25% (with a 98% probability), only 1% to 2% of the potential mates need
be checked. Similarly, to minimize the chances (to 0.3%) of choosing a
mate in the bottom 25%, only 1% of the population needs to be checked.

Thus, to maximize potential mate value and minimize risk in this pop-
ulation of 1,000 potential mates, somewhere between 1% and 3% of the
population, or 10 and 30 individuals, must be checked first to come up
with the aspiration level D. In the previous population of 100 individuals,
checking about 10 of them also resulted in top search performance judged
by these criteria. So despite the tenfold increase in population size, the
number of individuals to check increases only slightly. This suggests that
our TNB rules can be simplified. Instead of checking a certain percentage
of the potential mates to come up with an aspiration level D, we only
need to check a certain absolute number of potential mates. This number
will work for population sizes varying over a wide range—for instance,
Try a Dozen (C= 12) is appropriate for population sizes from 100 to sev-
eral thousand. This simplified search heuristic escapes the criticisms
raised earlier against the 37% rule: It performs better than the 37% rule
on multiple criteria, it does not need knowledge of the total population
size, and it does not require checking an inordinate number of individuals
before a choice can be made. These results indicate that Frey and Eichen-
berger's (1996) pessimism about short-searching humans ever finding an
appropriate mate may be unfounded—even a little bit of search may go a
long way.

On to Mutual Sequential Mate Search

That is, a little search can go a long way, if you are a despot who can force
a collection of hapless potential mates to parade past you until you choose
one. While we may start out with adolescent fantasies about getting the
person we most desire, most of us soon discover that the mating game
operates a bit differently. Imagine that you enter the game with your
brand-new egocentric Try a Dozen rule, all set to find that high-value
mate. You dutifully consider the first 12 people you randomly encounter,
eventually turning each one down but remembering how much you liked
the best. Starting with the 13th, you look at a succession of further possi-
bilities until finally, on person 20, you find what you have been looking
for: someone better than all the others you have already seen. Your rule
is satisfied, and so are you. You propose to your newfound mate—and are
summarily rejected. What went wrong?

The problem is, at the same time that you are evaluating prospective
mates, they are evaluating you in return. If you do not meet a particular
other person's standards, then no amount of proposing on your part is
going to win them over (in this restricted scenario, at least). And if you
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and everyone else in the population have been using the Try a Dozen rule
to form an aspiration level, then you and everyone else will have rather
high aspirations for whom you will agree to mate with. The trouble is
then that if you do not yourself have a high mate value, then you will not
be selected by anyone else as a potential mate, and will end up alone.

We can observe these effects by constructing a new simulation to ex-
plore how different mate search rules will work in a mutual search situa-
tion. We create a population of 100 males and 100 females, each with a
distinct mate value between 0.0 and 100.0, and each with accurate knowl-
edge of the mate values of members of the opposite sex, but not necessar-
ily knowing his or her own mate value. We give each of the 200 individu-
als the same search strategy, and first let them assess some specific
number of members of the opposite sex during "adolescence." During this
time, individuals can adjust their aspiration level, if their search rule uses
one. After this adolescence period, males and females are paired up at
random, at which point they can either make a proposal (an offer to mate)
to their partner or decline to do so. If both individuals in a pair make an
offer to each other, then this pair is deemed mated, and the two individu-
als are removed from the population. Otherwise, both individuals remain
in the mating pool to try again. This pairing-offering-mating cycle is re-
peated until every individual is mated, or until every individual has had
the opportunity to assess and propose to every member of the opposite
sex. We are interested in who gets paired up in this setting using different
search rules; other criteria, such as how long this pairing process takes,
are also of interest, but we will not discuss them here.

Figure 13-5 shows the number of mated pairs that will form in a popu-
lation of 100 males and 100 females all using a particular mate-search
strategy. If everyone uses Take the Next Best with C = 1%, checking one
individual to set their aspiration level, about half of the population will
pair up. But as we increase the adolescence period (number of potential
mates first checked), the number of mated pairs falls drastically. Thus if,
instead, everyone uses the Try a Dozen variant and checks 12 potential
mates for their aspiration level, only about eight mated pairs will be
formed. The reason for this can be found in figure 13-6, where we can see
the mean mate value of all mated individuals. For individuals using Take
the Next Best rules, the longer the adolescence (number of mates to check,
C), the higher the average mate value of all those who succeed in getting
mated. That is, TNB rules give everyone in the population aspirations that
are too high, so only the individuals who actually have the highest mate
values will find mutually agreeing mates. Everyone else ends up spending
Saturday night watching television.

But why not use TNB and check only a single individual? Then your
aspiration level will not be too high, and nearly half of the population
gets mated, which might be more reasonable. The problem lies in a third
measure of population-level mating success: the average difference in
mate value between partners in a mated pair. This is graphed in figure
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Figure 13-5: Number of mated pairs formed in a population with all indi-
viduals using a particular mutual sequential mate search strategy, graphed
against the length of the adolescence period (during which an aspiration
level can be learned). Higher values indicate more successful mate search
strategies.

13-7. Here we can see that, even though TNB rules with very short adoles-
cence periods do yield a good number of mated pairs, those pairs are
rather mismatched—there is an average difference of nearly 25 between
partners' mate values. Such a large difference would make the pairings
formed very unstable in the game theory sense discussed in the first sec-
tion: Many individuals would be inclined to switch partners. So how can
we find a mutual sequential mate search rule that not only yields a high
proportion of the population finding good mates (high values in figure
13-5), and finds mates for individuals from a wide and unbiased range of
mate values themselves (values around 50 in figure 13-6), but also suc-
ceeds in pairing up individuals who are well matched to each other in
terms of mate value (low values in figure 13-7)?

Now imagine that, considerably chastened by your earlier failure on
the mating market, you reconcile yourself to be more realistic this time,
and only aspire to a mate with a value similar to your own, rather than
some lofty Hollywood-inspired ideal. In fact, out of humility you set a
threshold five points below your own mate value, proposing to any indi-
vidual with a mate value above this level. Now how will you fare, and
how will everyone else do if they use similarly humble thresholds? In
figure 13-5, we see that this strategy results in a high proportion of the
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Figure 13-6: Mean mate value of all mated individuals in a population
with all individuals using a particular mutual sequential mate search
strategy, graphed against the length of the adolescence period. Middle val-
ues (around 50) indicate more successful egalitarian mate search strategies
(for instance, those that enable more than just the elite to find mates).

population finding mates. In this case, adolescence does not involve
learning or adjusting your aspiration level, because that value is fixed,
but only represents an extended nonfertile period during which you meet
people but cannot propose to them (and you still cannot go back to them
later either). The length of adolescence has little effect on the performance
of this humble mate search strategy. Only when adolescence gets very
long does it start to reduce the number of mated pairs, simply because
there is no longer enough of the population left to search through to en-
sure finding a good-enough partner.

This mate-value-based humble search strategy also does well on our
other measures. Because most of the population gets paired up, the aver-
age mate value of those mated is around 50 (figure 13-6). It also succeeds
in pairing individuals with very similar mate values (figure 13-7), making
for a stable arrangement. That is, this strategy successfully sorts the popu-
lation by mate value as it pairs the individuals. So this seems like a good
mutual sequential mate search strategy to use. But there is a problem:
Knowing one's own mate value is not necessarily an easy thing. We can-
not be born with it, because it is both context sensitive (it depends on the
others around us) and changes over time as we develop. We cannot sim-
ply observe ourselves to determine it, because we do not see ourselves in
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Figure 13-7: Mean difference between the mate values of partners in
mated pairs formed in a population with all individuals using a particular
mutual sequential mate search strategy, graphed against the length of the
adolescence period. Lower values indicate mate search strategies that are
more successful at forming well-matched pairs.

the same way that the others who judge us as potential mates see us. We
do not even know the proper criteria on which to judge ourselves from
the perspective of the opposite sex. Without this initial knowledge, then,
we must somehow estimate our own mate value, if we are to use it to form
our aspiration level.

Thus we must take another step toward making our mate search strat-
egy less and less self-centered. We started by just considering what we
thought of everyone else (Take the Next Best), then we used what we
thought of ourselves (self-based aspiration level), and now we will look
at what others think of us (adjusting our self-perception based on feed-
back). The first feedback-based method to try is to raise our aspiration
level (the same as our self-perceived estimate of our own mate value) ev-
ery time we get a proposal from someone else, and lower our aspiration
level every time someone else does not propose to us. We will do this for
a certain adolescence period again (i.e., use this feedback from a certain
number of individuals we first encounter). The amount of adjustment we
make to our aspiration level on each instance of feedback is inversely
determined by the total length of our adolescence: If we have a short ado-
lescence, we should make more adjustment (learn quickly) at each step,
while if we have a long adolescence, we can learn more slowly. Thus,
starting with an aspiration level of 50, we use adjustment = 50/(1 + Q



FROM PRIDE AND PREJUDICE TO PERSUASION: SATISFICING IN MATE SEARCH 305

where C is the number of people we check out, and get checked out by,
in adolescence. This rule pairs up about 40% of the population ("Adjust
up/down" in figure 13-5), but preferentially in the lower half of the popu-
lation (the mean mate value of mated individuals is about 25 in figure
13-6). What is happening here?

The problem with this aspiration-adjustment heuristic is that it is vain.
Whenever a proposal comes from anyone, no matter what that person's
mate value, the individual being proposed to gets excited and raises his
or her aspiration level. Thus, individuals with mate values above 50 will
get a lot of offers and then raise their aspirations to be too high, while
those with mate values below 50 will more often get rejections, lower
their aspirations, and as a consequence continue to boost the egos of the
other half of the population. But individuals in the lower half, with the
crushed aspirations, also succeed in finding mates, whereas those in the
too-proud top half of the population often do not.

Instead of just taking someone else's word for it on whether you have
a high mate value, you should also consider the source: What is the mate
value of the other individual who is assessing you? If that person's mate
value is higher than you think your own is, and he or she still proposes
to you, then you should raise your own self-assessment, under the as-
sumption that the other is well-calibrated and so is giving you accurate
feedback about your own mate value. (You would always expect offers
from individuals with mate values lower than your own self-image, so you
should not use their offers to boost your self-image.) Similarly, if you get
a refusal (lack of offer) from an individual with a mate value lower than
your own self-perception, then this should make you think twice about
your self-image, and lead you to lower your aspirations as well. (Again,
lack of offers from those who are higher value than you think you are
should not affect your self-image.)

If we make adjustments of the same size as the previous strategy, but
now relative to the mate value of the other individual, we get about 40%
of the population paired up again ("Adjust relative" in figure 13-5), but
now it is the top half of the population that finds each other (mean paired
mate value is about 75 in figure 13-6). However, they do not do a very
good job of matching up—this strategy gives the worst mismatch between
mated partners (about 10 points difference, in figure 13-7). The problem
this time is that we are still using an adjustment that is independent of
the mate values involved. The adjustment here is a fixed value depending
only on the length of the adolescence period. But it does not make good
sense to make the same upward adjustment both when someone with a
mate value of 100 proposes to you, and when someone with a mate value
of 60 proposes to you (assuming your self-image starts at 50, say). You
should be much more excited about the former offer than the latter, and
you should raise your self-estimate correspondingly higher. In the next
strategy, we do just that.

As we have become less self-centered in our strategies, we have also
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added more information about the other potential mates we are interacting
with. First, we looked at whether they proposed to us; next, we consid-
ered their proposals and the direction of their mate values relative to our
own (i.e., we only needed to know if the values were bigger or smaller,
not the exact values themselves); and now we consider their proposals,
and the actual difference between their mate values and our self-estimate
of our own mate value. If someone proposes to us whose mate value is
higher than our self-image, then we raise our self-image (and hence our
aspiration level) by half of the difference between the two. If a potential
mate encountered during adolescence does not propose, and that person's
mate value is lower than our self-image, then we lower our self-image by
half of the difference. In this way, we put more weight on the feedback
we get from individuals who are further away from our self-image.

When we do so, we end up with the best aspiration-learning strategy
out of those we have considered so far. For short to medium adolescence
lengths, this strategy pairs up about half of the population ("Adjust rela-
tive/2" in figure 13-5). The more learning it can do (i.e., the longer adoles-
cence is), the closer it comes to pairing up an even distribution of individ-
uals (figure 13-6). And with more learning, the mismatch between mated
partners falls to near that of the humble mate-value-based strategy (figure
13-7).

Thus, we are getting close to a reasonable mutual sequential mate
search strategy. It involves estimating one's own mate value by using the
feedback of offers and refusals from members of the opposite sex, assum-
ing that we know their mate values. But note that this kind of simple
strategy does not assume that we know, or calculate, anything about the
population as a whole. We do not have to keep track of means or standard
deviations of the mate values encountered, for instance (as some of Mar-
tin & Moon's, 1992, strategies required). We also do not have to calculate
optimal search times (as many of the approaches to the secretary/dowry
problem required)—instead, most of the criteria seem to reach asymptote
after checking about 20 individuals. And we do not need prior knowledge
of the entire population, distinguishing this approach from that consid-
ered in two-sided matching problems (Roth & Sotomayor, 1990). Just
seeing one individual after another, and learning about ourselves in the
process, is enough.

Further Directions

We have presented here a collection of simple satisficing heuristics for
one-sided and mutual search that can learn appropriate aspiration levels
after checking only a few possible choices. As such, these heuristics fit
into our overall framework of bounded rationality: They use as little of the
available information as possible and still yield satisfactory performance.
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These rules are also ecologically rational, relying on the structure of infor-
mation in the environment—here, the pattern of proposals and rejections
made by members of the opposite sex—to bootstrap their adaptive choice
behavior.

Of course, we have still left much out of this discussion of mate search.
Populations are never fixed, and the mating game does not proceed in
discrete periods during which everyone in a predetermined set must pair
up or give up—rather, new individuals are always being introduced,
which has an effect on the overall mating success of different strategies
(Johnstone, 1997). The distribution of mate values we have used here is
uniform, but in the real world it is probably closer to a normal distribu-
tion. How will different distributions of mate values affect the perfor-
mance of different strategies? We have given everyone in the population
precisely the same impression of all the members of the opposite sex (all
females rank all males the same way, and vice versa), but this is not realis-
tic either: There will typically be some degree of agreement about who is
a good catch and who is not, but there will also be a large amount of
idiosyncracy in individual mate preferences. Some of these individual
preference differences will be based on purely aesthetic criteria, but some
will also have important fitness consequences (such as preferences for
mating with distant, but not close, relatives—see Bateson, 1983b).

This leads to another issue we must address: What are the most impor-
tant dimensions over which search algorithms such as these should be
compared? Here we have argued that finding the absolute best individual
in a population is not necessarily the most adaptive goal, if the search
time, or mean chosen mate value, or distribution of chosen mate values,
can be improved upon. Furthermore, finding a mate at all, in the mutual
search case, could require selecting an individual with a mate value close
to one's own. But we need to support these claims. One way to approach
this problem is to create evolutionary simulations in which different algo-
rithms compete with each other for mates and offspring, and see which
types of algorithms win out over time. This approach, though, will only
succeed in telling us something about real evolved human (or animal)
behavior to the extent that we successfully incorporate the relevant eco-
logical details (of how mate value maps onto number of offspring, for in-
stance) into our model.

The ultimate goal is to look for evidence of particular strategies in the
actual evolved search behavior that humans and other animals use, as
others have done experimentally in settings including mate choice (e.g.,
Alatalo et al., 1988; Harrison & McCabe, 1996; Hey, 1982, 1987; Martin &
Moon, 1992; Rapoport & Tversky, 1970; Sethuraman et al., 1994). There
is always the concern that experimental situations may not tap into the
mental mechanisms used in real-world behavior, though, so it is also im-
portant to look for evidence of different search algorithms in the real ob-
served mate search behavior of people and other animals. Our simulations
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are intended to guide these investigations of real behavior, by indicating
what kinds of psychologically plausible, simple but effective search rules
we can reasonably expect, and so should look for.

All of this is not to say that love has no place in mate choice, that it is
all down to percentages and aspiration levels and adaptive self-assess-
ments. Love can be a way of making any particular choice stick, lessening
or erasing any perceived mismatch between partners and making further
search seem blissfully unnecessary, even unthinkable. Love and other
emotions are important parts of behavioral mechanisms, rather than unique
undefinable forces that are orthogonal or even antagonistic to adaptive
behavior. But love can—and indeed may be designed to—obscure the op-
eration of the decision mechanisms in mate choice, so that the entire pro-
cess seems unfathomable when one is caught up in it. Choosing a mate
should not be a scientific affair. But we hope that scientific research can
be used to reveal some of the patterns in behavior underlying the way that
people search for, and find, each other.
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Parental Investment by Simple
Decision Rules

Jennifer Nerissa Davis
Peter M. Todd

There was an old woman who lived in a shoe. She had so
many children she didn't know what to do.

Traditional Nursery Rhyme

I he old woman may not have had much to give her children, but some-
how she still had to figure out how to divide the broth that she did have
among them. How could she do this? How do parents decide how to di-
vide their time, money, and energy among their children? They could try
to perform some sort of complex analysis, estimating all the future costs
and benefits from now until their children become independent for all
possible current choices, if such a thing were realistically calculable. Al-
though the task of figuring out "optimal" solutions to these sorts of prob-
lems may be terribly complex or even impossible, given the large amount
of computation and prediction of uncertain future events required, this
does not mean parents must perform complex calculations to invest
wisely. Instead they can rely on simple rules to guide their investment in
their children. In this chapter we present results of a study designed to
test just how successful such simple rules can be.

Parental Investment

Economists and behavioral ecologists have both addressed the problem of
how parents should divide investment among their children. The models
they have created, however, typically require information that is at best
difficult to calculate and at worst actually unknowable. For example,

309
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Becker (1991) provides an economic analysis of how rational parents
should distribute investment among their children, assuming that parents
are trying to maximize total child quality as defined by the sum of all the
children's wealth as adults. The quality of a child is a function of the
resources invested in the child, the child's own skill and abilities, and
any extra income he or she might earn as an adult through sheer luck.
Becker assumes that there are diminishing returns on the payoffs for in-
vesting in a child, that is, that for each additional equal-sized increment
of investment you give to a child, its effect on the child's quality is
smaller. Becker's analysis indicates that so long as this payoff curve is the
same for all children, parents should distribute investment such that each
child produces the same payoff. However, if some children produce
higher payoffs per unit investment than others, then parents should of
course favor them.

Similar investment advice can be found in the biological literature on
parental investment. There an individual's quality has typically been de-
fined as the number of offspring it is expected to produce as an adult, that
is, parents are expected to try to maximize their total number of descen-
dants. As long as all offspring have identical expected reproductive out-
put, parents should invest equally among them (Lacey et al., 1983; Real,
1980), but if differences exist that affect the expected return on investment
to parents, then parents should pay attention to these differences and bias
investment accordingly.

Although these conclusions may sound reasonable in general, they are
of limited use in making predictions about actual parental behavior in
specific situations. This is because both approaches assume that parents
have some means of calculating the effects of each unit of investment on
the future payoff they expect to gain from a child. In practice, however,
this calculation can require involved manipulations of information that is
itself difficult to obtain. In Becker's treatment, for example, the total capi-
tal of children is the sum of the value of the total investment parents have
made in each child when this child grows up, the value of the endowment
of each child when the child is an adult, and each child's capital gain due
to luck in the market sector. The biggest problem with trying to adapt
this form of analysis to make specific predictions about behavior is the
intractability of determining the future values involved. Children do not
come equipped with investment meters for their parents' convenience. To
cash out investment mechanisms such as these, some method for accu-
rately predicting future returns would have to be specified, but this is
intractable, if not impossible.

Mechanisms of Parental Investment

Much of the research on parental investment decisions that has been car-
ried out in the fields of behavioral ecology and evolutionary psychology
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has taken it as a given that parents could not possibly solve such complex
equations. Instead these investigations have focused on finding much sim-
pler decision rules parents could use to achieve success, with success
once again defined as the maximum possible number of all future descen-
dants. A common shorthand approximation of this is to measure success
simply as the number of offspring raised to adulthood. As mentioned be-
fore, if all offspring will provide equal expected returns on parental in-
vestment, then parents should treat them all equally. Of course, even in
this situation parents still need to make decisions about how much to
provide at any one moment, and when to provide it. When the amount of
investment per offspring that is required to reach a given level of fitness
is identical for all offspring, then one parental solution would be to treat
each on the basis of its need. Among birds, for example, chicks often beg
for food when hungry. If amount of begging is an honest and accurate
signal of need (e.g., Godfray, 1991), parents would then be expected to
feed their chicks according to their begging intensity to achieve invest-
ment equality. This is clearly a very simple decision rule.

Of course, in reality, situations in which all offspring have identical
expected returns are vanishingly rare. If the individual expected returns
do differ among offspring, parents should be sensitive to this and use a
decision rule that biases investment in favor of the offspring that will pro-
vide a bigger return. Again, behavioral ecologists have identified a simple
decision rule parents could use that exhibits such a bias: Satisfy the oldest
offspring first. To understand why it works it is first necessary to know a
bit about what might cause such a difference in return on investment in
the first place.

When Becker talks of children with greater rates of return he implies
that these are children of especially gifted talent or ability who could
achieve an especially large income as adults. When behavioral ecologists
talk of greater return on investment they are referring to offspring that
have a greater chance than their siblings of surviving to reproductive age
and producing a greater number of offspring of their own. One major pre-
dictor of the probability of survival is the current age of offspring. The
older they are, the closer they are to independence and reproduction, and
the more likely they are to make it all the way there. Therefore, if parents
are going to bias investment they should favor their eldest. Herein lies the
simple decision rule: Invest preferentially in older offspring.

If we want to predict parental behavior, then we need to find some way
of determining what sorts of situations parents face. Should they invest
on the basis of need, or age, or perhaps on the basis of some other as yet
unspecified variable? For instance, even if all offspring are the same age,
they should not necessarily all be given equal resource investments if they
differ in something such as size which could also be related to future
success.

If resources are scarce and parents cannot successfully raise all of their
offspring, then favoring the oldest makes adaptive sense. If you cannot
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save them all, save the ones most likely to make it to adulthood. However,
the choices made in this situation may be fundamentally different from
those parents make about how to partition investment among offspring
when there is more than enough to go around. In this situation there is no
a priori rationale for supposing that parents should achieve the greatest
success by investing highly in some offspring and not in others. Rather
than rearing one especially well-invested-in offspring and several who are
less so, parents may, for example, receive greater returns by evening out
resource distribution, or biasing it in favor of offspring who require more
to reach the same levels as their siblings. Parents, then, might be expected
to make environmentally contingent investment decisions. In poor envi-
ronments they could choose the simple strategy of investing more in older
offspring, while in more abundant environments they might do best to
invest on the basis of something else.

The decision rules that parents use for investing can be very simple. In
this chapter we discuss whether, given the intractable parental problems
of explicitly determining the effects of investing in each offspring, there
nonetheless exist simple decision rules that parents can use to guide their
offspring investments without having to calculate the incalculable. We
believe there are.

Determining the Decision Rules

We tackled the problem of finding successful parental investment strate-
gies for different resource levels by constructing a computer simulation of
the investment problem. Because human parental investment situations
are difficult to characterize, and because we are investigating a broad the-
oretical question that should be applicable to a wide variety of organisms,
we chose to model a simpler case: parental investment in birds. Like hu-
mans, many birds face the task of raising multiple offspring of different
ages and different developmental stages simultaneously. Chicks in many
species hatch a day apart from each other, and for birds this age difference
translates into significant differences in size and developmental maturity.
Parental investment in birds is easy to quantify, and investment strategies
have already been measured in the field for a number of species. In con-
trast, in humans investment can take many forms, such as number of calo-
ries of food provided, amount of money spent, or quality of interpersonal
interaction, therefore making it difficult to express as a single value. Fur-
thermore, the variation in individual investment strategies has not been
systematically measured.

More specifically, our study animal is the western bluebird (Sialia
mexicana), or rather, an electronic replication of a western bluebird. Our
simulation works by mimicking the hatching, feeding, growth, and nest-
leaving (fledging) of chicks. We chose bluebirds because information is
available about metabolic and growth rates for this species, which is nee-
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essary to build an accurate model. Equations for metabolic rate, digestion
rate, and stomach size were derived from published field data on growth
and metabolic rates of bluebird chicks across the nestling period (Mock et
al., 1991). Values for calorie content of the insects the bluebird feeds to
its chicks, and the percentage of metabolizable energy these items contain,
were taken from Dykstra and Karasov (1993).

Our goal was to find out what sorts of parental investment strategies
would work well for our simulated bluebird parents trying to raise a nest
of chicks under various environmental conditions. For our birds, parental
investment was limited to the amount of food a parent provides to a given
chick. Parental success was measured by the total number of "grams of
chick" that fledged from the nest. We used chick grams instead of merely
the number of chicks that fledged because we expect increased weight at
the time the chicks leave the nest to be monotonically associated with
survivorship over the first year; that is, we expect that any increase in
fledge weight will be associated with some increase in the ability of the
chick to make it through its first year, and to its first breeding season. In
the simulation, parents always did better to have more chicks fledge than
to have fewer fatter ones, because the range of possible fledge weights was
such that there was no possible overlap in total grams of chick for nests
that contained different numbers of chicks (e.g., three chicks could weigh
roughly between 78 and 84 grams in total, while two chicks could weigh
between 52 and 56 grams).

Food comes in patches in our simulation, so that foraging parents
can encounter several bugs in a row followed by a period with no bugs.
To explore how different investment strategies would work under dif-
ferent environmental conditions, we constructed environments varying
in two aspects of environmental quality: mean amount of food available,
and the patch size of that food. These two parameters were chosen
because they seemed to be the factors most likely to affect the outcome of
various parental investment strategies. For example, feeding the oldest
first, as mentioned above, may be best for situations of low food avail-
ability.

We tested six different parental decision rules. It has been suggested
that in some species parents may preferentially feed their youngest or
smallest chicks, so we tested both of these rules (feed from youngest to
oldest, and feed from smallest to largest, e.g., Stamps et al., 1985). While
this literature tends to equate these two rules with each other, from our
standpoint they are quite different. If the smallest chick is always fed first,
it may grow while its siblings do not, and hence the chick that is smallest
may change over time. The youngest chick, however, will always be the
youngest chick. Furthermore, the parental perceptual abilities necessary
to distinguish the smallest chick differ from those necessary to distinguish
the youngest. The former requires merely a size judgment, while the latter
depends on individual recognition of offspring, something which parent
birds may or may not be able to do.
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We considered two more strategies: invest on the basis of need (feed
the hungriest first), and invest more in older offspring (feed from oldest
to youngest). We considered testing the opposite of feeding the smallest
first, that is, feeding the largest first, but owing to the way chicks grow, as
long as offspring differ in age this latter rule will always be equivalent to
feeding the oldest first. We also tested a rule that would simply feed in
fixed rotation, so that each chick would get the same number of feedings
as its siblings. Again, this rule requires parents to be able to individually
recognize their chicks, a perceptually more difficult task. Investing ran-
domly was included as well to provide a benchmark for comparison. Par-
ents are not expected to waste time with decision rules that give them
outcomes worse than if they had invested randomly, and it is possible
that in some environments investing randomly is the best thing to do.

More precisely, the six heuristics we tested were

1. Feed from youngest to oldest
The parent first offers a bug to the youngest chick; then, if that
chick is full, the parent offers the bug to the next youngest, and
so on.

2. Feed from smallest to largest
The parent first offers a bug to the smallest chick, then the next
smallest, and so on. (Because chicks grow when they are fed,
this rule can yield a different outcome from feeding the youn-
gest.)

3. Feed the hungriest
The parent gives a bug to the chick with the greatest proportion
of empty space in its stomach relative to its stomach size.

4. Feed from largest to smallest
The parent first offers a bug to the largest chick, then to the next
largest, and so on.

5. Feed in fixed rotation (take turns)
The parent offers a bug to chicks in a fixed order, that is, first
to Chick 1, then to Chick 2, and so on. The fixed order is ini-
tially chosen at random.

6. Feed randomly
The parent offers a bug to a randomly chosen chick. If it is full,
another chick is chosen at random, and so on.

Although all of these strategies are computationally quite simple, they
require varying degrees of perceptual abilities on the part of the parents.
The strategies that feed the smallest first and feed the largest first require
nothing more than that parents discriminate chick size. There is an even
simpler way for parents to follow the strategy of feeding the largest: by
creating an environment that does this sorting for them. In several species,
parents set up a situation in which chicks physically compete for feeding
positions in the nest (e.g., Koelliker et al., 1998). This competition leads
to larger chicks being preferentially fed, and all parents need to do is con-
sistently feed in the same part of the nest. Feeding on the basis of hunger
can also be easy for parents to achieve, if it is assumed that begging is an
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honest signal of hunger. In this case, parents simply need to assess which
chick is begging the hardest and feed that one. Of course begging may not
always be honest, and there is the possibility that chicks could deceive
their parents about their hunger level, but we do not consider this case
here.

The strategies of feeding the youngest first and feeding in fixed rotation
are perceptually more difficult, as they require parents to discriminate
among individual chicks, and in the latter case, also remember who was
fed previously. Given the success that field biologists generally have in
swapping chicks between nests, it is not at all certain that parent birds
have these perceptual abilities. Nevertheless, these two strategies were
still tested, to see how well they fared against the others.

The Simulation

In this study we model only one feeding strategy per nest, because of the
complexity of testing strategies where two parents differed in their choice
of feeding heuristic. Each nest has four chicks, which hatch one day apart
on four successive days. Each chick remains in the nest, is fed, and grows
for 20 days, and then it fledges. Chicks thus fledge one day apart from
each other. The goal of the parent is to keep as many of the chicks alive
as possible and to make them as fat as possible before they have to leave
the nest.

At the beginning of each simulation run, the parental decision strategy
is set as one of the six listed in the previous section. The difficulty of the
environment is set by designating the probability that a parent will be able
to find a bug on any foraging trip given that it found one on its last trip,
and by designating the probability that a parent will not find a bug on
any foraging trip given that it did not find one on its last trip. These two
probabilities allow us to vary both the mean food level of an environment
and its patchiness.

The simulation is updated in 10-minute increments of simulated time.
During each time period, a number of things happen:

1. Any egg due to hatch, hatches.
2. The parent searches for food.
3. The parent returns to the nest, and if she has returned with a

bug, chooses a chick to feed and feeds it.
4. If a chick has been fed, the food item is added to its stomach.

Each chick with food in its stomach digests some of it, burns
calories in accordance with its metabolic rate, gains or loses
weight accordingly, and its stomach capacity changes to accord
with its new size.

5. If a chick's weight drops below a certain age-specific limit, it
dies.
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Parents are active between 6:00 A.M. and 8:00 P.M. As in the wild, dur-
ing the night no food is gathered or distributed; however, chicks continue
to maintain their basal metabolic rates, so that each chick burns calories,
digests any food left in its stomach, and gains or loses weight accordingly
during the night. When a chick reaches Day 20 it leaves the nest. The final
fledge weights of all the chicks as they leave the nest are summed as the
measure of parental success.

To investigate the success of the different decision rules in different
environmental situations, we collected data from 500 electronic nests for
each of the six feeding strategies, and we did this for each of 100 different
environments, constructed from combinations of 10 levels of the probabil-
ity of repeatedly finding food and 10 levels of the probability of repeat-
edly not finding food. From each set of 500 runs we computed the mean
parental success score, that is, the mean total grams of chick fledged. The
resulting mean parental success scores for each strategy were then com-
pared to the success achieved by parents feeding randomly to determine
in which environments each strategy exceeded this random baseline.

Simulation Results

Patch size in the environment accounted for almost no difference in the
success of different feeding strategies. Instead, the mean amount of food
available had the greatest impact on strategy success (figure 14-1).

Feeding the oldest first was the most successful decision rule in envi-
ronments with low food availability (29% or less, figure 14-2). Feeding

Figure 14-1: The mean number of "grams of chick" fledged from the nest
for the heuristics we tested, across all amounts of food availability.



the youngest first performed as well as feeding the oldest, but remember
that feeding the youngest first requires more complex parental perceptual
abilities, which it is not at all certain bird parents have. We therefore
considered feeding the oldest to be a more ecologically rational decision
rule than feeding the youngest, and have not plotted the data from the
latter here.

Feeding the hungriest was the most successful strategy in conditions of
moderately high food availability (70–79%, figure 14-2). Feeding in fixed
rotation performed almost as well in this same range. Because of this and
of questions about parental abilities to perform this strategy, we did not
plot its performance here. When food was extremely abundant (80-100%)
it ceased to matter how parents divided things up, as all six decision rules
performed equally well. Parents in this environmental situation should
therefore choose to feed chicks indiscriminately.

It was the middle range of food availability (30–69%, figure 14-2) that
yielded the most surprising result. Between the point where feeding the
oldest first did best and the point where feeding the hungriest was most
successful, feeding the smallest first outperformed all other heuristics. Al-
though data exists showing that this feeding pattern does occur in some
species (as we discuss below), this result was not predicted by either eco-
nomic or biological theory. Note one more time that feeding the smallest
is not the same thing as feeding the youngest. Remember that as chicks
are fed they grow, so that while the youngest chick will always be the
youngest chick, the identity of the smallest chick can change.

Figure 14-2: The mean number of fledged chick grams by which each of
the three most successful strategies beat random feeding. Feeding the
largest first is the most successful decision rule for conditions of up to
30% mean food availability. Feeding the smallest first does best in condi-
tions of 30–69% food availability. Feeding the hungriest first does best in
conditions of 70-79% food availability. Above 80% food availability all
strategies perform more or less equally well, on par with random feeding.
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"Optimal" Investment

We have so far compared five simple feeding rules with random feeding
behavior. Of course we would also like to have a maximum possible pa-
rental success score with which to compare these simple decision rules.
If a strategy beats random, but is still far from achieving perfection, this
leaves open the possibility that some other as yet untested strategy might
prove superior to those we have looked at so far. It is impossible to deter-
mine the optimal sequence of feeding decisions a parent bird should
make, because this would require exact knowledge of the future, specifi-
cally, when all bugs will be found and how big they will be. This calcula-
tion could be approximated with guesses as to the arrival time of future
bugs, but even in this case, the parent bird would have to try out all possi-
ble feeding sequences (e.g., give the first bug to Chick 1 and the next to
Chick 3 . . . , give the first bug to Chick 2 and the next to Chick 3 . . . , and
so on), and see which sequence resulted in the greatest total fledge weight
in the end. This kind of search through the tree of possible sequences, as
shown in figure 14-3, results in a combinatorial explosion of possibilities.
There would be 41680 paths to explore, by which time the waiting chicks
would be very hungry indeed, and even this would only give a best-esti-
mate solution. Still, we would like to know how much better that solution
could be than the results of following our six simple feeding rules. Is there
a way of approximating it more quickly? This sort of incalculability prob-
lem is often solved with dynamic programming, which starts at the de-
sired end state of the system and works backward to find the best way to
get there. Unfortunately, in this case it is the end state of the system that
we are trying to determine, so this approach cannot be used.

What we can do is look at strategies that perform optimization under
constraints, under the assumption that these will approach the success
that long-term optimization calculations would achieve. We have looked
at several such strategies with exactly this goal in mind. These maximiza-
tion strategies are not designed as models of any decision-making process
birds could actually use, because they involve complex computations us-
ing knowledge that may not even be assessable. All of these strategies
require precise knowledge of the effects of feeding a given chick now on
the total weight of chicks in the nest at some point in the future, that is,
knowledge of chick metabolism and growth rates. One strategy also re-
quires that parents know how long it will take a given chick to digest a
given bug; the others require parents to be able to predict when the next
bug is likely to be found.

In the first maximizing strategy, dubbed "bug digested," parents give
the current bug to the chick whose eating of it will maximize the total
weight of all chicks in the nest at the time that it finishes digesting the
bug. The simulation runs as follows: Every time a bug is found, the pro-
gram selects a chick and checks what would happen if it were to feed the
bug to that chick. It calculates the number of time steps it would take for



Figure 14-3: A schematic of the number of alternative feeding orders that must be checked to
determine the best parental strategy for just half an hour's worth of feedings. Each final branch
represents the states of all chicks in the nest at the end of the half hour.
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that chick to digest that bug, then it calculates the weight of all chicks in
the nest at the time that chick would finish digesting the bug and sums
them. Next it checks the consequences of feeding the bug to another chick
in the nest. This procedure is repeated until all chicks have been checked.
The program then selects the chick that yields the highest summed weight
at the time digestion is complete and actually feeds the bug to that chick.

The rationale for using this rule was simple: When deciding to whom
the current bug should be fed, we reasoned that what should be maxi-
mized is the effect of that specific bug on the survival and growth of the
chicks. This rule was inspired by similar computations in optimal forag-
ing theory where the forager is assumed to be maximizing the net energy
gained from its foraging activities, that is, the calories ingested minus the
calories burned while finding and ingesting the food (Stephens & Krebs,
1986; see also chapter 15). The results of "bug digested" are presented in
figure 14-4. Here we have graphed the performance of three constrained
optimization approaches and the best of the simple rules from figure 14-
2, all in terms of their difference from the performance of random feeding,
for the full range of mean food availability in the environment. As you
can see, it performed less than optimally. Not only was it worse than our
simple decision rules, it was worse than random feeding in nearly all en-
vironments.

This outcome was completely unexpected. We began testing these
types of strategies with the intention of seeing how closely our simple
decision rules could approximate the performance of more complex max-
imization rules. We never expected to beat them. We hypothesized that
our mistake might be that we were attempting to maximize the wrong

Figure 14-4: The performance of three strategies that attempt to optimize
feeding, along with the best of the simple strategies, compared against
random feeding. The "optimizing" strategies could not beat the best sim-
ple feeding rules.
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thing. Perhaps the payoff from the current bug at the time when it is fully
digested does not really matter. Instead, given that the chick is likely to
have another chance to eat before digestion is complete, the important
thing may be the payoff at the time when the next bug arrives.

In light of this, the second constrained maximization strategy we tested
we dubbed "next bug." It works much like "bug digested" except that
instead of calculating the payoff at the time when the current bug is di-
gested, the program uses the environmental parameters specified for that
run to calculate the expected number of time steps until the next bug will
be found and chooses to feed the chick that maximizes the total weight of
chicks in the nest at that time. Although it performed better than "bug
digested," overall the "next bug" strategy still did rather poorly, essen-
tially equalling random feeding across most environments, and never
managing to outperform the best of the simple strategies.

Given the improvement of this strategy over "bug digested," we rea-
soned that perhaps we were on the right track but were still not making
things complex enough. Maybe if we increased the number of feeding
times the strategy checked we would see further improvement, so we cre-
ated "2-bugs," which is identical to "next bug" except that it attempts to
maximize the total chick weight in the nest at the time at which the sec-
ond subsequent bug is found. It hypothetically feeds one chick, calculates
the weight of all chicks at the time the next bug is expected to be found,
hypothetically feeds each of these chicks the second bug in turn, calcu-
lates the total chick weight in the nest at the time the next bug after that
should be found, and saves the maximum value for this second hypotheti-
cal as the total return for the first chick. This process is repeated for all
chicks in the nest and the chick with the highest expected total return is
actually fed. Unfortunately "2-bugs" also performs rather badly, essen-
tially equaling the outcome of "next bug" (figure 14-4).

Obviously our attempts to find an upper limit to possible parental suc-
cess has failed, but something even more interesting has emerged. All of
these supposedly maximizing strategies are far more complex than our
successful simple decision rules. They require knowledge of things such
as current and projected future metabolic rates, digestion rates, and
growth rates of all chicks, which actual parents are unlikely to know and
could not directly assess. They integrate this information with knowledge
of environmental conditions in an attempt to determine the best possible
decision to make, in the tradition of biological optimality modeling, and
yet, despite all that, they make terrible decisions. Our simple rules do not
merely equal our more complex methods, they exceed them. What is go-
ing on here?

The aspects of the decision environment modeled in this chapter are
different from those presented in the rest of the book, and from those for
which standard optimality models are constructed. While each individual
step requires a simple choice—pick one chick out of a set of no more than
four—this choice must be made as many as 1,680 times before parental
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success is known. Each of these single choices affects the outcome of all
future choices that must be made, making them interdependent. Finally,
because the environment is probabilistic, at the time any given decision
is made the timing and number of those future choices are unknown. Even
this very simplified parental investment model is therefore not particu-
larly simple. If it were possible to compute all potential outcomes we
would be able to determine the perfect set of feeding decisions. Given that
this is not possible we are forced to use strategies that make guesses about
the future, and furthermore only guess about a very limited period of time,
just to keep the strategies computationally tractable. This simplification
is most likely what renders them impotent. It is in exactly this sort of
uncomputable situation that Simon (1990) has indicated the importance
of bounded rationality and satisficing heuristics.

Provisioning Rules for Birds

We do not yet have an upper limit with which to compare our simple
decision rules, but we expect that the performance of these rules is, in
fact, very close to the maximum possible. The process of natural selection
has had a very long time to shape the investment decisions of parents and
push them to optimality, so the investment strategies that real birds use
should be close to the possible maximum performance. An examination
of the literature on feeding patterns in birds reveals that the four simple
decision rules shown by our simulations to be successful in different envi-
ronments, and only those four strategies, seem to be used by bird parents
faced with the task of raising a nest full of chicks. The strategies that lost
out in the simulation, that is, feeding the youngest first and taking turns,
do not appear to be used by any species. Coots (Horsfall, 1984), budgie
mothers (Stamps et al., 1985), tree swallow mothers (Leonard & Horn,
1996), and pied flycatcher mothers (Gottlander, 1987) all preferentially
feed the smallest chick. Pigeons (Mondloch, 1995) and budgie fathers
(Stamps et al., 1985) preferentially feed the hungriest. Magpies (Re-
dondo & Castro, 1992) may also feed on the basis of hunger. Arabian bab-
blers (Ostreiher, 1997), pied-billed grebes (Forbes & Ankney, 1987), com-
mon swifts (Martins & Wright, 1993), yellow-headed blackbirds (Price &
Ydenberg, 1995), blue-throated bee-eaters (Bryant & Tatner, 1990), stone-
chats (Greig-Smith, 1985), and tree swallows (Leonard & Horn, 1996) pref-
erentially feed larger chicks. The degree to which the preference for larger
chicks is a result of direct parental discrimination between chicks or is
induced by parents setting the stage for chick competition over feeding
position is unknown for these species, but using position in the nest to
determine whom to feed has been observed in pallid swifts (Malacarne et
al., 1994), great tit females (Koelliker et al., 1998), pied flycatcher males
(Gottlander, 1987), and starlings (Kacelnik et al., 1995). Red-winged black-
birds (Clark et al., 1997), fieldfares (Ryden & Bengtsson, 1980), field spar-
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rows (Best, 1977), and song sparrows (Reed, 1981) appear to feed ran-
domly. Unfortunately, data on the food availability in the environments
in which these birds were studied is not readily available. Nor were we
able to obtain information on the feeding decisions of actual western blue-
birds.

The few cases where a species of bird has been observed to switch
provisioning rules in accordance with changing environmental conditions
show shifts that agree with what we would predict based on our simula-
tion results. Pied flycatcher females preferentially feed the smallest chicks
under normal food conditions. When food availability is experimentally
reduced, however, they switch strategies and instead preferentially feed
the largest (Gottlander, 1987). When food is plentiful, sparrow hawk
mothers allocate food resources equally among all chicks, although it is
not clear whether they do this by means of feeding the smallest first or by
random allocation. When food becomes scarce, however, they switch to a
strategy that favors the largest chicks (Newton, 1978). Two studies of
American robins have found different feeding strategies. Smith and Mont-
gomerie (1991) found that parents fed on the basis of chick begging, while
McRae et al. (1993) found chick competition for feeding position that re-
sulted in older chicks being preferentially fed. Although information on
food abundance is not reported in either paper, based on our results we
hypothesize that this may explain the difference between them.

Provisioning Rules for People

Decision rules for parental investment can be simple and successful. The
four best investment strategies are in fact actually used, at least by bird
parents. Of what relevance are these results for human parental invest-
ment decisions?

Birds are a good model for the study of human parental investment.
Like humans, and unlike most mammals, many bird species are faced
with the task of simultaneously raising offspring of different ages, and the
same basic biological principles that govern investment decisions in birds
should govern them in all species faced with similar investment prob-
lems. We therefore expect these simulation results to be applicable to hu-
man parental investment decisions in much the same way that they are
applicable to birds.

One example of how human investment patterns can be related to these
results is through studies of inheritance practices in different cultures.
Researchers have studied the division of land between children in agricul-
tural communities and the ecological conditions that affect how it is di-
vided in many different cultures across many different historical periods.
They have found fairly consistent patterns (e.g., Hrdy & Judge, 1993)
among wealthy landholders, who farm enough land to sustain their fam-
ily. In low population densities, where land is plentiful, inheritance in
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such families is distributed relatively equally. This is akin to our simu-
lated resource-rich environments where feeding the hungriest or feeding
randomly, the two most egalitarian strategies, do best. In more crowded
places, without so much room for expansion, and where subdividing ex-
isting holdings would eventually lead to farm sizes too small to support a
family, parents have practiced primogeniture, channeling these resources
into a single heir, typically the oldest son. This is similar to our simula-
tion results in resource-poor environments where feeding the largest is
most successful.

Given the recent resurgence of interest in birth order as an explanatory
variable in psychology, knowledge of how parents distribute investment
among their children has become increasingly important. Take, for exam-
ple, Sulloway (1996), who has shown striking birth order effects in peo-
ple's acceptance of scientific revolutions and radical ideas, and whose
research is based on the hypothesis that the amount parents invest in a
child varies predictably with birth order. He argues, from an evolutionary
standpoint, that parents should value older children more than younger
children. Older children, by virtue of simply having survived longer, are
more likely to continue to survive and to reach an age where they can
have children of their own.

Our results suggest, however, that this conclusion is not universally
correct. Parents do not always do best by favoring their eldest. Sometimes
they do best by favoring their smallest (i.e., the one that is farthest behind
its siblings), and sometimes they may do best by treating offspring on the
basis of need. Sulloway's analyses aside, birth order studies are notorious
for giving null results, and, when significant effects arise, they are typi-
cally very small in magnitude. Our research suggests one possible cause
for this: Birth order effects are elusive because the nature of the effect
depends on environmental circumstance, a variable that none of these
previous studies on humans have controlled for.

More to the point, unlike Becker's unboundedly rational parents, our
results suggest that parents everywhere, be they avian or human, do not
have to carry cumbersome investment equations in their heads. All they
need are one or two simple rules and perhaps a way of telling when to
use each one. Which rule is best depends on the harshness of the environ-
ment in which parents are attempting to raise their offspring, but the rela-
tion between the best rule and the environment also appears to be very
simple. A problem that is very difficult to solve analytically can therefore
be left unanalyzed, and parents can instead rely on simple strategies to
make good investment decisions.
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Demons Versus Heuristics in Artificial
Intelligence, Behavioral Ecology,
and Economics

Adam S. Goodie
Andreas Ortmann
Jennifer Nerissa Davis
Seth Bullock
Gregory M. Werner

[C]omplete representations of the external environment,
besides being impossible to obtain, are not at all necessary
for agents to act in a competent manner.

Rodney A. Brooks

How to model "rational," "intelligent," "adaptive," or "optimal" behav-
ior? Disputes about the answer to this question have been fought in vari-
ous disciplines, and with various vocabularies. In this chapter we con-
sider the state of the unbounded versus bounded rationality debate as it
pertains to the fields of artificial intelligence, animal behavior, and eco-
nomics. What the disputes reveal is a tension between two visions of ra-
tionality. One vision starts with the default assumption that human, ani-
mal, or computational agents have unlimited computational powers,
which they can use to derive "optimal" solutions to even the most diffi-
cult problems. Variants of this view can be found from Homo economicus
to optimal foraging theory to the assumption that problems of artificial
intelligence are computable. The alternative vision acknowledges that hu-
mans, animals, and computational systems do not have infinite capabili-
ties, and investigates the simpler mechanisms that these minds actually
use.

The alternatives to optimization in the three fields considered here
each represent one of the dimensions that defined the ABC vision of ra-
tionality in chapter 1. Bounded rationality has been applied widely in the
domain of artificial intelligence, where many problems have turned out
not to be computationally tractable (Tsotsos, 1991), and relatively simple
rules of thumb have often proved to be more successful. However, as we
will see, this application has not always been carried out in the spirit of
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this book. Ecological rationality is perhaps nowhere better exemplified
than in the study of animal behavior, where research programs from both
field and laboratory studies are converging on the conclusion that un-
bounded rationality, in addition to being evolutionary implausible, does
not account for how real animals exploit the structure of their environ-
ments. The real-world success of such heuristics may also often approxi-
mate optimal strategies (when optimal strategies exist) remarkably closely.
Finally, social rationality is exemplified by the study of gamelike interac-
tions in economics, where the considerations of other people's strategies
are leading to a recognition that even the simplest economic interactions
can demand impossible calculations to find an optimal solution. This has
begun to result in a consideration of simpler mechanisms that might serve
similar functions.

In the following sections we illustrate the dispute between unbounded
and bounded rationality by way of characteristic examples drawn from
the three disciplines. Each section begins with a brief outline of the state
of the dispute in its discipline, and concludes with speculative sugges-
tions of future directions that each field might follow in pursuing fast and
frugal strategies. Most environments in all the disciplines are too complex
for an optimal approach to succeed, and as the task environment becomes
more complex, human, animal, and computational minds must resort to
boundedly rational strategies.

Bounded Rationality in Artificial Intelligence

Artificial intelligence (AI) is the enterprise of creating new systems that
produce complex behavior—that is to say, smart computers. This contrasts
with psychology, which studies already existing complex systems (people
and animals). Since it is easier to imagine and theorize about a demon
than it is to actually build one, it is unsurprising that practitioners of
artificial intelligence have long been aware of the enormous problems in-
volved in building unboundedly rational agents. Indeed, they have dis-
covered that many problems cannot be optimally solved, even in principle
(Garey & Johnson, 1979). As a result, the search for heuristics came to be
a major theme of AI research, an important step toward slaying the
demons of unbounded rationality. However, the initial success of the heu-
ristic approach to creating artificial intelligence has led to the tacit as-
sumption that certain heuristics are candidates for nearly universal appli-
cation. Rather than considering heuristics to be fitted to certain problems
but unsuitable for others, the ability of some to deal generally with a wide
variety of problems has been feted. This perspective views the best heuris-
tics as those that are able to deal with the widest range of problems. In this
respect, AI treats heuristics as general-purpose demons. Although they
are not expected to exhibit godlike perfection, they are admired for, and
evaluated on, their ability to approach perfection in any given domain,
regardless of the time and resources required.
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Two approaches have emerged to respond when heuristic approaches
no longer work well. Most "GOFAI" scientists (a term coined by Brooks,
1991a, which stands for "Good Old-Fashioned AI") use a two-pronged
attack. First, they simplify the problem by creating "virtual" problems
with limited and known dimensions that are to be solved by "disembod-
ied" computers just by thinking about them. Then they use the latest and
fastest computers to undertake the massive computational problems that
still remain (Brooks, 199lb). The other approach, taken by a distinct mi-
nority of the community, is to find new heuristics for new situations. Prac-
titioners in this tradition rigorously seek agents that capitalize on the
structure of the environment they happen to occupy, which is often an
environment in the real world (Brooks, 1991b). In this section we examine
attempts in the AI community to find boundedly rational solutions to
complex problems, in other words those drawn from the second tradition.

Getting Along in a Deceptively Simple Environment: Chess

In 1992, Herbert Simon wrote: "It is difficult to predict when computers
will defeat the best human player. . . . It can only be a matter of a few
years before technological advances end the human supremacy at chess"
(Simon & Schaeffer, 1992, pp. 14–15]. Simon's prediction was right, and
five years later, in 1997, a computer called Deep Blue finally defeated
Garry Kasparov, the world's best human chess player, in a tournament.
This watershed event in the development of artificial intelligence was also
a significant moment in the development of satisficing mechanisms. The
game of chess occurs in a small field (an area of 64 discrete squares), with
a limited set of alternative events at each point in the game (16 pieces per
player, each with a defined set of legal moves), and a single goal (the
capture of the opponent's king). What could be simpler? But as anyone
knows who has attempted to play the game, or who has tried to program
a computer to play it, finding the one best solution to the problem of
putting an opponent in checkmate is unimaginably difficult. There are
simply too many possible lines of play to simulate them all, even with
the most powerful computers.

The game of chess, with its small field, its limited set of legal moves,
and a single goal, is too complex a problem to be solved by any machine
now imagined. While chess computers can easily consider millions of
lines of play in their quest for the best move, this impressive power is
dwarfed by the much greater number of possibilities to be considered.
There are typically about 35 or so possible moves available to a player
(de Groot, 1978), and the number of possible positions after n moves is
approximately 35n, which becomes a very large number very quickly. For
example, 358 is more than 2.2 trillion. And even if chess computers could
anticipate how the board will be arranged eight moves in the future, an
ideal strategy would require them to search well beyond that point, all
the way to the end of the game. Clearly, neither a computer nor a human
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player can consider all possibilities, and there are many ways to decide
how to narrow the set. How do chess players and chess programmers cope
with this problem?

At the most elevated level, the strategy of chess programmers is like
that of expert players, namely to try to find lines of play that seem likely
to lead to good outcomes short of checkmate. So, like humans, computers
must try to evaluate the relative value of various positions that are avail-
able after some smaller number of moves. At a finer level, though, the
methods used by programmers diverged long ago from those used by play-
ers, so that there is now more to be learned from differences between the
two strategies than from their similarities.

The attempt to limit the scope of the search in chess dates at least to
the work of Herbert Simon and George Baylor (Baylor & Simon, 1966),
who produced some of the few true satisficing strategies in the artificial
chess literature. They examined the performance of two programs that
were designed to lead to checkmate, starting relatively late in the game
and using simple decision rules regarding which lines of inquiry to fol-
low. They reasoned that one major goal of the game is to reduce the oppo-
nent's mobility—indeed, the object of the game can be described as reduc-
ing the king's mobility to zero—and so paths were sought solely on the
basis of how much mobility the opponent had following each move. In
MATER I (Baylor & Simon, 1966), each possible first move was considered
for how many moves the opponent could legally make in response, re-
gardless of the quality of those responses. The move that left the opponent
with the fewest moves was then examined for how many moves would be
available to the opponent after the second move, and so on until check-
mate was achieved. If checkmate was not possible, the program back-
tracked and traced the move with the second fewest possible responses.
A second algorithm, MATER II, differed in emphasizing the mobility of
the opponent's king. Moves that resulted in the king being unable to
move, or able to move in only one or two directions, were given priority.
Ties were resolved by recourse to the strategies of MATER I. While
MATER I and MATER II were not designed to play entire games, and
therefore cannot be evaluated in terms of games won, these early efforts
began a quest to find simple but powerful, in other words boundedly ra-
tional, approaches to automated chess.

Since the introduction of MATER, programs have been written with an
eye to winning complete games, making algorithms that are fast, frugal,
and fit a greater challenge to devise. However, some characteristics of fast
and frugal algorithms have remained cornerstones of chess programming.
In general, all moves are evaluated according to a "static evaluation func-
tion" that gives a score to the positions they create. Since the expression
is computed many millions of times, it must be very fast and use only
information that is readily available in the board configuration. Typical
chess evaluation functions use a few pieces of information, such as rela-
tive value of pieces remaining, number of pieces attacking the center of
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the board, and number of pieces attacking the opponent's pieces. Such
strategies neglect a great deal of the remaining information. The function
quickly calculates these values and integrates them into a single score,
and moves are selected on the basis of their scores.

Clever design of the evaluation function is the difference between an
artificial world champion and a machine that races toward bad outcomes.
Indeed, the creators of Deep Blue credited their recent victory over the
world champion to their much improved evaluation function. Much at-
tention was paid to the speed of their machine, which had doubled since
their previous attempt, but this improvement could have caused only mi-
nor improvements in playing ability. This is because a speed increase of
up to 35 times is required to search one extra move ahead, meaning that
a mere doubling of the speed of processing does not permit the machine
even to look one move farther ahead in its computations in the allotted
time. The key to improved chess is thus recognized to be clever algo-
rithms—in other words, those that are fast, frugal, and accurate—rather
than more powerful attempts at a Laplacean demon who can calculate the
future from the present. These algorithms must find the cues that are sub-
tle but available on the board and provide the most diagnostic information
about the outcome of various moves; in other words, they must capitalize
on the structure of the environment.

Still, the modern chess program is not an ideal model of satisficing
techniques, since it is built on a long tradition of improving programs by
waiting for the next generation of computer hardware to run yet more
millions of computations per second, a feature of computers that is in-
creasingly unrepresentative of human information processing (Brooks,
1990; Simon & Schaeffer, 1992). Deep Blue works as a high-speed com-
puter, not as a human being, and while it undoubtedly possesses a sophis-
ticated and clever evaluation routine, it also applies this evaluation to an
inhuman number of positions in finding the next move. In contrast, the
way expert humans play chess is to memorize approximately 50,000 posi-
tions, and good responses to them, and to consider approximately 100
paths of play prior to selecting a move in a real game (Simon & Schaeffer,
1992). The typical chess program memorizes no positions, except for a
few well-studied opening moves, but searches millions of paths of play.
The vision of the Laplacean demon has led chess research far away from
Simon's vision of bounded rationality. Since the cleverness of the evalua-
tion function, rather than the power of the computer, has proved to be a
better road to improved chess, perhaps chess research in the future will
return to the satisficing notions with which it began.

Losing Touch With Domain Specificity:
Generalized Heuristic Search

Herbert Simon and his collaborators applied search techniques to the
game of chess because the chessboard seemed like an environment where
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heuristic search would work well. The success of Deep Blue, which is
based on a search engine that is partially restrained by its evaluation func-
tion, suggests that this intuition was correct. However, with the success
of advancing generations of chess programs, the temptation mounted to
apply heuristic search to increasingly disparate arenas of artificial intelli-
gence. There is now a large class of problems that are approached under
the rubric of heuristic search. A heuristic has come to be defined as a
technique that decreases the time complexity of a process while possibly
degrading the quality of the solution found (Aho & Ullman, 1992; Green &
Knuth, 1982). This concept has clear ties to notions of bounded rational-
ity. A search is simply the attempted acquisition of a specified goal,
whether it be checkmate or the quickest route from home to work. Adding
heuristics to search algorithms can eliminate unfruitful lines of search,
and to the extent that heuristics are fast and frugal, the larger search algo-
rithms that use them are fast and frugal as well.

Many decision-making problems can be characterized as search prob-
lems, which clarifies the appropriate subgoals along the path to the ulti-
mate goal, and suggests satisficing strategies to achieve them (Pearl, 1984).
Usually the goal is to find such a path with minimal cost. To find the
absolute best solution, all possible paths from start states to goal states
would need to be searched. For any problem with a nontrivial number of
states, the number of possible paths is enormous; but heuristics can elimi-
nate some paths or, preferably, classes of paths without actually testing
them. For example, some search algorithms can be improved if they can
determine approximately how far they are from a solution at a given inter-
mediate state. Since they cannot know this exactly without knowing the
entire solution, they need a heuristic that estimates the distance remain-
ing to the goal. The better this heuristic, the more paths they can eliminate
from the search, and the faster the search will run. For example, if a heu-
ristic is known never to overestimate the distance to the solution, then
many possible paths can be eliminated without sacrificing an optimal so-
lution. In some cases, speed-ups can be attained with known properties
of the degradation of solution quality. For example, if there is a heuristic
that sometimes overestimates the distance to the solution, but never by
more than a fixed amount, a bound can be placed on how far from optimal
the final answer might be. The program will wrongly eliminate paths that
may be the optimal solution, but the solution found will be no further
away from optimal than the sum of the possible overestimates along the
way.

Heuristic search is a powerful tool when applied to well-chosen do-
mains. The trouble is that GOFAI has not been careful to choose domains
well. Heuristic search has been applied to some problems where it is help-
ful, such as its original domain, chess, but also to many where it is not.
In the wrong domain, a heuristic search algorithm, like any algorithm out
of its proper environment, will not do the job well and needs to be accom-
panied by a demon that will do the heavy lifting.
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In many domains, that heavy lifting amounts to conquering the well-
known frame problem (McCarthy & Hayes, 1969). The frame problem
arises when a system must decide what to do in a way that requires sev-
eral steps. Each possible step that the system could take has certain conse-
quences and sets up a new set of conditions and problems. This is the
case in chess, where each move may simultaneously threaten an oppo-
nent's piece, expose or cover one's own piece, and so on. Each of these
consequences also sets up new circumstances for the opponent, making
the opponent's next move a particular problem that is different from the
problem faced in a different move. For most problems, each possible step
sets up new circumstances, and vast arrays of possible future circum-
stances, that make the computation of optimal solutions an enormous
challenge. The problem is how to decide when to stop considering more
possibilities, and make the primary decision that is supposed to be made.

However, this challenge is overcome more easily in some cases than in
others. In chess, one can imagine ways to limit the impact of the frame
problem, which are all possible because of the simplifying features of the
chess problem that we noted above (small field, limited moves, and a sin-
gle goal). Imagine, in contrast, the frame problem that confronts a robot
whose mission is to search through a garbage dump to locate and remove
recyclable materials. In addition to the goal-related consequences of its
actions, such as finding and identifying aluminum cans, the robot must
consider many other possibilities, such as moving an article that causes a
pile of garbage to collapse on the robot, moving under a dripping can that
short-circuits the robot, and so forth. It is easy to see that the frame prob-
lem is not equally daunting in all domains of artificial intelligence.

The frame problem illustrates one reason why bounded rationality
must be applied in a domain-specific way (Cosmides & Tooby, 1987).
While the techniques of heuristic search applied widely in AI are in-
tended to reduce the need for demonlike computational capabilities, they
often fail in this mission because the heuristics employed, while fast and
frugal, are not fit in the environment on which they are unleashed.

The Ultimate Test: Robotics

In robotics, the limitations imposed by a domain-general application of
heuristic search can literally walk up to their creators and bite them on
the leg. However, these days they can do so only very slowly, and that is
precisely the problem. Here is the way that GOFAI approaches have typi-
cally achieved robot behavior:

1. Have the robot collect data from cameras and a large number of
sensors. Using these sensory data, and knowledge of physics,
have the robot build a sophisticated model of the physical world.
Include aspects of gravity, momentum, surface contours, and ob-
jects, as well as the robot's interaction with the world.

2. Generate a list of all possible things the robot can do next. This
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list will include actions such as "turn 5 degrees left and move
1 inch forward."

3. Simulate the robot doing each of the things on the list in the
world model. Assess whether the robot moves closer to its goal,
crashes into objects, overturns, fails to climb a steep gradient,
runs out of power, overheats, and so on.

4. Order all new states of the world according to some evaluation
function, and pick the action from the list that produces the best
resulting state.

5. Make the robot execute the chosen action in the real world.
6. Start again from step 1.

In practice, this approach is typically executed in environments carefully
engineered to be as easily represented by the robot as possible. Even so, a
supercomputer is typically required to build the world model and test
possible robot actions. Robots using this type of control strategy zoom
along at a few feet per day.

A different approach within AI has recently gained prominence. It em-
ploys simple, physically embodied systems that face and surmount real-
world tasks by employing simple task-dependent behaviors that exploit
the structure of the environment in which they operate. Brooks's (1991a,
1991b) robots, rather than building elaborate mental models, "use the
world as its own best model," exploiting regularities in their interaction
with the environment. For example, if an infrared detector spots a large
object ahead, the robot may assume that it is a dangerous obstacle and
steer away from it. A small rectangle in the visual field may be assumed
to be a can to be recycled, if recycling is the robot's mission, initiating a
grasping reflex. Robots that use this approach gain considerably in speed,
albeit at the expense of domain generality.

These systems are designed in the same spirit as the fast and frugal
heuristics discussed in this book. They are often described as "reactive"
in that their behavior is generated without periods of reflection or consid-
eration. Analogously, the heuristics presented in this book are noncom-
pensatory in that they do not compare or combine different pieces of
information. Brooks imagines a robot as a collection of separate competen-
cies, or behavioral layers, that are selected among and triggered by spe-
cific environmental events. A robot thus conceived is redolent of the
adaptive toolbox outlined in chapter 1.

There are contrasts between the fast and frugal program presented here
and Brooks's robotic program, but these lie mainly in methods of imple-
mentation and not in the spirit of the enterprise. For example, Take The
Best searches for information before making an inference, a practice that
Brooks prefers to avoid. However, it is clear that Brooks does not disdain
search for its own sake, but rather the unlimited search that demands
computational demons. In this regard, the programs are entirely in agree-
ment. Also, our heuristics, when simulated, are not embodied or situated
as Brooks advocates. In this regard they are similar to Braitenberg's (1984)
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conceptual "vehicles" that use the simplest possible elements and strate-
gies to create complex behavior. These robots were not actually built to
operate in the real world, but like our heuristics, they share Brooks's spirit
of power through simplicity.

The Future of Fast and Frugal Heuristics in
Artificial Intelligence

Computers continue to increase in power at an astonishing rate, and so it
is likely that many people will continue to proceed as if a working Lapla-
cean demon is just around the corner. While this approach may be popu-
lar, it will be a mistake; whereas the Laplacean demon has truly infinite
computational power, computers never will. The reason the Laplacean
demon must have infinite computational power is that the problems it
solves are infinitely difficult, marking the computer that finds unbound-
edly rational solutions as a chimera. Brooks's (e.g., 1991b) real robots and
Braitenberg's (1984) conceptual ones offer the beginnings of a more realis-
tic alternative, while fast and frugal approaches to traditional artificial
intelligence challenges such as artificial chess might inspire a return to
the field's roots, which lie in domain-specific, satisficing approaches.

Ecological Rationality in Animal Behavior

Many roboticists and practitioners of the new artificial intelligence turn
to behavioral ecology for design tips from nature. Behavioral ecologists
study adaptations in living organisms, typically defined by evidence that
a particular behavior was designed by the process of natural selection for
a specific function in a specific environment. Because the fit between be-
havior and its environment is a central assumption of the field, it is nor-
mally taken for granted and seldom discussed. The phrase "ecological ra-
tionality" is not a standard expression of the behavioral ecology field, but
ecological rationality is what behavioral ecology is all about.

A good anatomical model of the fit between adaptations and environ-
ment is the vertebrate eye, which contains a single lens that focuses light
on the retina and a layer of photoreceptive cells that translate light pat-
terns into neural impulses. Within this basic plan, however, there are
many variations in detail that allow particular organisms to see better in
their particular environments. Vertebrate eyes vary greatly in the distance
at which they can focus on objects, the colors that they are able to see,
and the light levels under which they are still able to make out their visual
world. For example, marine fish living in deep water where there is little
light have eyes with especially powerful lenses, and large multilayered
photoreceptors positioned with light reflectors under them that boost the
ability to sense light at low levels of illumination. Also, whereas the verte-
brate eye allows for good resolution over large distances, insects, with
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their large compound eyes, trade off the ability to focus clearly on objects
at a distance for the ability to view their entire visual world simultane-
ously and maintain a large binocular field that aids in such activities as
course control and navigation (Wehner, 1997).

The study of adaptations has taken two different but complementary
forms in behavioral ecology. One approach focuses on the selection pres-
sures an animal species is likely to have faced in its evolution and at-
tempts to use these to specify what behavior the animal is likely to exhibit
in its current environment, assuming that selection has shaped it to be-
have optimally in its natural setting. This approach captures the tradition
of optimality modeling. A second approach examines how an animal ex-
presses a given behavior and attempts to understand this in light of what
selection is expected to have wrought. These researchers study the mecha-
nisms of behavior. Both traditions have employed notions of bounds on
rationality, but it is not surprising that the "optimality" approach has ven-
tured only so far as to examine optimization under constraints; the mecha-
nistic approach has begun to study true bounded rationality by examining
the simple rules animals can use to succeed in their environments.

Unbounded Rationality in Behavioral Ecology

Optimality models have become a popular tool among behavioral ecolo-
gists because they help to formalize hypotheses about the design of adap-
tations and to clarify the adaptive problems that they solve. To the behav-
ioral ecologist, the optimal solution is the one that gives the organism the
best possible chance of surviving and reproducing. These optimal solu-
tions specify the behavioral response that should ideally be observed in a
given situation, but do not specify the mechanism by which the organism
arrives at the response. These models are used primarily to test the results
of the selection pressures thought to have acted on the organism. In other
words, they are hypotheses about the way natural selection has acted on
the creature under study.

Natural selection is expected to be an optimizing force. For example,
take the problem of finding food, in which an organism must consume a
certain number of calories every day to stay alive and must choose where
to forage at each moment. How does it decide when it has eaten enough
in one patch and should move on to another? An animal that forages too
long in a depleted patch runs the risk of not finding enough food to sur-
vive, and even if it finds enough to survive another day, a nonoptimal
forager will still not fare as well, in terms of survival and reproduction,
as an animal that left the patch earlier in favor of a more abundant loca-
tion. The animal in the depleted patch needs to spend more time and
energy finding food than the animal who switched patches. This lost time
and energy could have been spent caring for young, attracting mates, or
storing energy for future days when food might not be so plentiful. For
this reason, natural selection is expected to favor the proliferation of ani-
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mals that maximize their net rate of energy gain by switching to new food
patches at appropriate times. Animals that almost optimize, or that con-
sume enough to survive, but do so inefficiently, would be supplanted by
those who behave optimally. It would seem that as long as survival and
reproduction increase continually as a function of performance (perhaps
by way of the rate of energy gain) up to some maximal attainable value,
organisms should be shaped by natural selection to attain that maximum
value, and nothing less.

Optimization Under Constraints in Foraging Theory

But this picture is incomplete. Students of evolution, including optimality
modelers, are well aware of the existence of constraints on perfection (e.g.,
Stephens & Krebs, 1986). Perhaps the most important for our purposes are
phylogenetic or historical constraints, and constraints on time and materi-
als. Phylogenetic constraints are limitations on the possible adaptive solu-
tions placed on the organism by its previous evolutionary history. New
behaviors are shaped in small increments, and each evolved point on the
way from behavior A to behavior B must perform at least as well as the
step before it. If an animal does not solve a problem optimally, the way a
conscious designer would, this may be because there is no way to get
"there" from "here." To borrow an analogy from Dawkins (1982), engi-
neering by natural selection is like building a jet engine from a propeller
engine by changing it one rivet, nut, or screw at a time. Furthermore, ev-
ery prototype along the way must get off the ground and fly better than
the one before it—obviously a daunting limitation. Limits on the amount
of time and materials that an organism can devote to any given task consti-
tute a second type of constraint. Every unit of energy that is used to help
an animal find food, for example, is no longer available to be used caring
for offspring, or evading predators, or doing any of the many other things
necessary for survival, and because they are designed for their specific
food-finding function the cognitive mechanisms that enable efficient for-
aging are similarly unavailable to be used for these other tasks.

If behavioral ecologists have always been aware that limits on optimal-
ity exist, they have not always taken them into account in trying to ex-
plain behavior. To illustrate we again turn to optimal foraging, a success-
ful and highly model-driven area of behavioral ecology. Optimal foraging
theorists have been concerned with determining whether various animals
maximally exploit their food resources. An optimal forager faced with the
task of deciding when to switch patches calculates the rate of caloric re-
turn of exploiting various patches, chooses the one that maximizes net
energy gain, depletes it until its value falls below that of the next richest
patch, switches to that one, and continues in this fashion. Early optimal
foraging models assumed few or no constraints on the forager's abilities
to compute how rich the various patches are. The models were endowed,
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for example, with perfect knowledge of the environment and perfect recall
of that knowledge.1

The ideal free distribution (IFD) is an early optimal foraging model de-
signed to predict how animals distribute themselves among patches of
resources (Alexander, 1996; Fretwell & Lucas, 1970). In its simplest form
it predicts that, given equal competitive abilities among individuals, the
ratio of animals at different resource sites will be equal to the ratio of the
amount of resources at those sites (Milinski & Parker, 1991). In this spatial
distribution, each animal maximizes the resources it receives. To accom-
plish this feat, however, individual animals need perfect knowledge of the
profitability of resources.

Experiments designed to test the IFD uncovered systematic deviations
from its predictions, suggesting that some form of constraint may be af-
fecting behavior (e.g., Abrahams, 1986). When deviations appear between
the data and a theoretical model, foraging theorists assume that there are
constraints preventing the optimal solution from being reached, and it is
here that notions of constrained optimization begin to emerge. In parallel
with AI, though, researchers in behavioral ecology have introduced such
notions only when unbounded optimality models collapse. Early model-
ers took the lack of fit between theory and data largely for granted, and
made little attempt to account for it. The unrealistic quality of their initial
assumptions was acknowledged, and quantitative inconsistencies were of-
ten explained as the result of estimation errors on the part of the animal
(i.e., as perceptual constraints of the organism). But these constraints were
ignored in theorizing for the sake of generalizability, often because many
constraints are species specific, and early modelers sought to create mod-
els that applied broadly across species. More recently, foraging theorists
have taken deviations from the IFD as a starting point to determine the
nature of the constraints and incorporate them into their models to allow
greater accuracy in predicting behavior. If these "errors" are the result of
perceptual or cognitive constraints, then they should appear as system-
atic, nonrandom deviations from optimal predictions.

An example of the systematic deviation between the data and the IFD
model is that animals tend to underuse richer sites and overuse poorer
sites. This led some theorists to believe that perhaps the assumptions of
the original model were unrealistic; maybe animals do not have perfect
knowledge of the profitability of different food patches. Gray and Ken-
nedy (1994) have tested this in mallard ducks and shown that as the over-
all level of food drops, ducks find it increasingly difficult to discriminate
between patches. As a result of this inability to discriminate, ducks ar-

1. It should be stressed that for the behavioral ecologist, assuming that the ani-
mal has perfect knowledge of these things does not mean believing that it is making
conscious calculations following the formulas of the model. It is instead a short-
hand way of saying that the animal is expected to behave as if it had perfect knowl-
edge and abilities.
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range themselves between patches in a manner inconsistent with the ideal
free distribution, and consistent with the results of other, previous devia-
tions from the IFD.

Bounded Rationality for Animals

The incorporation of constraints into optimality models should not be
confused with true models of bounded rationality such as satisficing.
While they are similar in accounting for suboptimal performance, the op-
timality models of behavioral ecology are continually refined to incorpo-
rate constraints and generate more accurate predictions of behavior, al-
ways assuming that the organism is optimizing given the tools available
to it. After all, natural selection is expected to be an optimizing process.
Satisficing techniques, on the other hand, do not attempt to achieve opti-
mality. Instead they incorporate a minimum acceptable threshold (or aspi-
ration level) that must be reached, and any improvement beyond this
point is comparatively unimportant. In other words, a satisficer is con-
cerned with doing well enough, while an optimizer is concerned with
doing the best it can.

Stephens and Krebs (1986) have argued that if by some chance the trait
under question increases in a step function (e.g., if a plateau exists along
which increases in ability do not lead to increases in rate of food return),
then some sort of satisficing mechanism would indeed be expected to be
selected. Most modelers, however, have assumed that this situation is rare
in biology, without ever testing this assumption.

This conception takes satisficing in particular, and bounded ecological
rationality in general, to be an alternative to optimizing at the level of
selection pressures. There is another way to conceptualize the role of
bounded ecological rationality, however, and this is as the mechanism by
which the behavioral expectations under optimality are achieved. The fe-
male Trichogramma wasp lays her eggs inside the eggs of other insects,
and the optimum number to deposit is a function of the volume of the
host egg. She could, perhaps, calculate the host egg volume using geomet-
ric methods of spherical trigonometry, and use the result to decide how
many eggs she will lay. Instead, she estimates the volume by a fast and
frugal mechanism. She adopts a particular body posture while standing
on the egg, creating an angle between her head and the first segment of
her antenna that is related to the radius of the sphere. By simply basing
the number of eggs she lays on the acuteness of this angle, she can essen-
tially "compute" the volume of the egg without engaging in a single com-
plex calculation (Wehner, 1997).

Mechanisms of Ecological Rationality

Typically, optimality modelers do not claim that their models represent
the means by which animals actually solve problems, and researchers
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who focus on understanding behavioral mechanisms start with the as-
sumption that apparently complex behavioral decisions are mediated by
simple processes. Furthermore, these processes are expected to be domain
specific, that is, fitted especially to solve particular problems in the partic-
ular ecological environment in which they were selected. Simple heuris-
tics can provide good solutions without a great deal of complex general
purpose calculation. By stringing together a series of simple, special pur-
pose heuristics, animals can perform some very sophisticated tasks. One
illustration of this conies from Wehner's work on navigation in Catag-
lyphis ants of the Sahara desert (Wehner & Wehner, 1990; Wehner et al.,
1996; Wehner, 1997). After foraging over great distances in a desert sand
environment with almost no landmarks, the ants must be able to find their
way back to the nest. They could try to memorize their path and retrace
their steps exactly, but because they travel by circuitous routes while for-
aging, there is often a much shorter, more direct route home.

Cataglyphis solves its navigation problem by performing path analysis,
though not with a calculator and a batch of complex equations as a mathe-
matician might. Instead it relies on a number of simple subroutines that
allow it to continually measure all angles it turns and distances it covers,
and integrate this information into an updated vector that always points
it roughly toward home. The angles are measured by reference to the pat-
tern of polarized light in the sky (which, unlike humans, these ants can
see). This skylight pattern is not stable but changes with the elevation of
the sun over the horizon. Cataglyphis comes to the correct solution by
template matching the pattern of light in the direction of its own orienta-
tion with a preprogrammed representation of the polarization pattern
when the sun is at the horizon. This template is best matched with the
external pattern when the animal is aligned with either the solar or anti-
solar meridian, providing the ant with an adaptive built-in compass by
which to navigate. The path integration system is not without errors, and
while it is sufficient to allow the ant to return to the general area of its
nest, it does not usually lead it exactly to the entrance. Cataglyphis there-
fore uses a second template matching system once it arrives near its home.
It creates a snapshot in its head of the visual location of various landmarks
when standing in front of the entrance, and maneuvers around the area
until the visual world matches the template in its head.

Navigation is not the only area in behavioral ecology where researchers
have studied simple mechanisms that can perform as well as complex
calculations. In addition to the optimal foraging models discussed earlier,
some theorists have also built models of how a forager actually makes its
decisions. These theorists have looked at a number of simple rules of
thumb that make good foraging choices.

Green (1984) has examined rules of thumb that an animal could use to
decide whether to leave its current patch to try its luck elsewhere, a prob-
lem that has been studied extensively. Perhaps the best-known approach
to the problem is Charnov's (1976) marginal value theorem, which states
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that if the rate of finding food decreases over time as the forager searches,
then it should leave for a new patch when its rate of finding food falls to
equality with the highest possible rate it could achieve elsewhere. The
problem with this notion is that although it allows us to predict when an
animal should leave a patch, it does not tell us how an animal could know
when that moment has arrived. As Green (1984) puts it, "It is like telling
a gambler that he should stop playing just before he starts losing" (p. 30).
Green tested several possible rules animals could use to make these sorts
of decisions, such as the fixed-time rule (leave after a specified interval,
regardless of success), the giving-up-time rule (leave if food has not been
forthcoming over a specified interval), and the assessment rule (leave
when the rate of food encounter falls below a specified level). Of these
simple decision rules, the assessment rule achieved the highest return
across the broadest number of environments, and experimental research
has shown that at least one species, the parasitoid wasp Nemeritis canes-
cens, appears to use the assessment rule in making foraging decisions
(Waage, 1979).

This approach could be, and often has been, viewed as optimizing un-
der constraints of information gathering ability, but as in the case of
Wehner's work on ants, Green's analysis explicitly does not try to opti-
mize. Instead it considers what sort of information would be readily avail-
able to a forager and from this tests various possible decision rules. There
are no claims that this is the best an animal could possibly do, such as
the marginal value theorem attempts. The aim is merely to show how well
such simple rules of thumb can perform. In our terms, the optimizing
equation belongs to the species of demon, and the rule of thumb to that
of bounded rationality.

A Case History From the Lab:
Matching Versus Maximizing

A related example comes from the field of animal learning, which has
developed independently of behavioral ecology, but which shares an in-
terest in the ways animals adapt to meet their survival needs. Animal
learning researchers study how behavior can be changed in the laboratory,
which is supposed to reflect how behavior changes in the wild, but in
better-controlled conditions than can be obtained in the wild. We include
this example because it provides a case study in simple heuristics that
both describe real behavior better than models of unbounded rationality,
and are also more plausible to suppose in the minds of real animals.

Imagine an animal living between two fruit trees that occasionally drop
ripe fruit to the ground for the animal to eat.2 Suppose that Tree 2 provides

2. This example is intended as an accessible model of concurrent variable inter-
val (VI) schedules.



3. The exact location of the optimal choice proportions depends on one's model
of how an animal decides to change from one schedule to the other, but all theories
place the optimal proportion close to the matching proportion (Kagel et al., 1995).

4. This example is intended as an accessible model of concurrent variable ratio
(VR) schedules.
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twice as much fruit as Tree 1, but the animal needs more food than can
be provided by either tree alone, and the animal must search for food from
both trees continuously. Clearly, it is better to spend more time looking
for fruit under Tree 2 than under Tree 1, but the animal should not leave
the fruit that drops from Tree 1 to rot on the ground either. It turns out
that the fruit the animal acquires is maximized if the time allocated to
each tree is proportional to the amount of fruit acquired there.3 In mathe-
matical notation:

where B is the behavior allocated to a particular source of food (either in
terms of time spent waiting at each source, or in terms of particular re-
sponses that must be made to obtain the food), and R is the food (or rein-
forcement) acquired from that source. This equation is known as the
matching law (Herrnstein, 1961) and is a staple of the literature of animal
learning. In addition to characterizing the optimal behavior in this situa-
tion, the matching law also provides a strikingly accurate picture of how
animals actually apportion their time and effort (Davison & McCarthy,
1988). The question is, do they calculate the optimal distribution of be-
havior, which happens to be equivalent to Equation (1) above; or do they
follow a simpler procedure that conforms to the matching law and find
that it performs well for them? There are several process models that have
taken the matching law as the fundamental output (Williams, 1988). What
they share in common is that they do not need to induce the structure of
the environment, then deduce the optimal behavior within that environ-
ment, before acting. All that is required is a mechanism to perceive rein-
forcers and behaviors, and then to find ratios among them.

To answer this question, we must first consider another kind of forag-
ing situation. This time, imagine a bird that lives near two nut-bearing
trees, each of which provides more than enough nuts to sustain the bird.4

However, cracking the shell of a nut from either tree requires considerable
time and effort, and it takes twice as many pecks of the beak to crack the
shells of nuts from Tree A as to crack those from Tree B. Obviously, assum-
ing the nuts from both trees provide equal nutrition, the bird would do
best to take nuts exclusively from Tree B. And in fact, this is what birds
do, an apparently different strategy from that of the fruit-seeking animal
that distributed its responses across both patches. However, this pattern
of behavior also conforms to the matching law. Consider what Equation
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(1) would have to say about a bird that eats one nut from each tree. The
ratio of reinforcers is 1 : 1, but the ratio of behaviors required to eat those
nuts is 2 :1 (because nuts from Tree A require twice as many pecks). If the
bird eats one nut from Tree A and two from Tree B, the ratio of reinforcers
is 1 : 2, but the ratio of responses is now 1 : 1 (because the effort to crack
two nuts from Tree B is the same as is required to crack one nut from Tree
A). If the bird eats one nut from Tree A and three from Tree B, the ratio of
reinforcers is 1 : 3, and the ratio of responses is 2 :3. It turns out that the
only allocation that achieves equal ratios of responses and reinforcers is
exclusive preference for the richer side, where both ratios are 0 : 1.5 Again
the matching law both prescribes optimal behavior and describes real be-
havior, so again the question arises, do birds calculate their optimal be-
havior, or do they do something simpler to conform to the matching law?

To answer this, we need a situation where matching behavior and opti-
mizing behavior are not the same, as they were in both the fruit trees and
the nut trees. This is where the potential for creating artificial situations
in the laboratory becomes especially useful. In a lab, we can place one of
the fruit trees next to one of the nut trees, make them provide the same
kind of food, control the rates at which they provide that food, and ob-
serve how much time and effort animals devote to each food source. Un-
der these circumstances, optimal behavior requires a strong bias to work
on the nuts, while only occasionally checking the fruit tree to see if some-
thing has fallen. This is optimal because the nuts require constant effort,
while the fruit requires only waiting and occasional monitoring. However,
the fruit tree can be manipulated to provide equal amounts of food over
time as are acquired from the nuts, so that the matching law predicts little
or no preference for the nut tree over the fruit tree. In fact, this matching
law prediction is confirmed. When the matching law is experimentally
pitted against optimality theory, the matching law does a better job of
predicting the data (Williams, 1988).6

In this example, a simple rule of thumb—matching responses propor-
tionally to obtained reinforcers—results in strategies that are identical to
those of the optimal equation under choices between two fruit trees or
two nut trees, and teasing them apart for theoretical reasons required us
to introduce the somewhat artificial choice between the two kinds of
trees. The matching law is thus an excellent example of a behavioral strat-
egy that does very well in natural situations despite having a very simple
structure. However, this point has sometimes been lost in the matching-
maximizing debate. Those on the side of matching argue that pigeons are
simple creatures obeying simple laws, suggesting that it was a mere coin-

5. Exclusive preference for Tree A would also conform to the matching law, but
as is intuitively obvious, this does not happen. Melioration theory (Herrnstein &
Vaughan, 1980) accounts for this effect.

6. This conclusion is not universally accepted (cf. Kagel et al., 1995), but is a
majority opinion.
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cidence that their behavior was optimal in many situations. To their
credit, those on this side recognize the unlikelihood of the "demon in the
pigeon" implied by optimality theory in an animal with only three grams
of brain matter (these studies typically employ pigeons as subjects). But
in describing the algorithms used by pigeons, "simple" seemed to mean
"stupid," and the ingenuity of a simple mechanism that could do so well
was often lost.

In response, those on the maximizing side were determined to demon-
strate the cleverness of pigeons by insisting on increasingly complex (and,
as a consequence, decreasingly plausible) models of what was really being
optimized and what information was being used to optimize it. The defeat
of optimality models seemed to be a defeat for conceptions of pigeon "in-
telligence." In fact, nothing could be further from the truth. The way that
pigeons choose where to look for food is a marvel of ingenuity and adapta-
tion.

The Future of Fast and Frugal Heuristics in
Behavioral Ecology

After a long period of domination by the constrained optimization of se-
lective pressures, the tide now seems to be turning toward the bounded
rationality of behavioral mechanisms. A brief look at the last two editions
of Krebs and Davies's edited volume Behavioural Ecology (1991, 1997),
considered a standard book in the field, illustrates the change. The preface
to the third edition acknowledges greater attention to mechanism than
had been found in its pages previously. In the fourth edition, mechanism
and individual behavior receive their own section of five chapters. Of
course, as Kamil and Roitblat (1985) have pointed out, research is ideally
a balance of both functional (selection pressures) and causal (proximate
mechanism) rationales for behavior. Because of the earlier dominance by
the former, the shift toward the latter represents a movement toward this
balance.

Given the increased attention to mechanism, it is of course necessary
to have an idea of how adaptations could function. Behavioral ecologists
have thus far avoided the trap of trying to create mechanisms out of un-
bounded rationality or optimization under constraints. They have consid-
ered satisficing to some extent, but this has had limited impact, largely
because of such assumptions as that plateaus of fitness are rare (e.g., Ste-
phens & Krebs, 1986, but see also Ward, 1992). But other fast and frugal
decision mechanisms have remained promising in the view of behavioral
ecology, and a steadily growing body of research is attempting such ap-
proaches. Kin recognition mechanisms are instances of the recognition
heuristic (chapter 2), as is the use of recognition in the social transmission
of food choice in rats. Mate copying, mentioned in chapter 4, is another
fast and frugal mechanism currently receiving a good deal of attention
(e.g., Brooks, 1998; Dugatkin & Godin, 1998). And the mate choice algo-
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rithms and parental feeding mechanisms contained in chapters 13 and 14
of this book promise to add their own fast and frugal contributions to the
behavioral ecology literature.

Social Rationality in Economics

In economics, success is not defined as navigating through an artificial
environment, or finding food that is waiting to be gathered in a real but
passive environment, but negotiating one's way to a living in an environ-
ment made up of other agents who are also trying to make a living. Sup-
pose, in a small example of urban survival, that Sandy wants to buy a cup
of coffee from Bill. To determine his profit-maximizing price, Bill needs
to know not only how much the coffee cost him, but also what Sandy is
willing to pay for it. For Sandy to maximize her utility, she must know
the minimally profitable price that Bill is willing to accept. Even if we
assume that Bill knows both his own costs and Sandy's willingness to
pay, and Sandy knows both her willingness to pay and Bill's minimum
acceptable price, the problem is clearly not easily solvable.

But usually information does not flow so freely: Sandy most likely will
not reveal her willingness to pay, and Bill will not reveal his minimum
acceptable price. The two of them are left with a "bargaining game" under
incomplete information, which is even more complex than the problem
with complete information. Other considerations enter in as well, such as
how many people besides Sandy want a cup of coffee, how many people
besides Bill have a cup of coffee to sell, whether Sandy would be just as
happy with a glass of juice, whether Bill would like to sell coffee to Sandy
every day for the next five years, and so on. If we proceed by this kind of
analysis, for Bill to sell a cup of coffee to Sandy requires an ungainly
amount of information and a large number of decisions, even for such a
simple economic transaction. Clearly, this is not the way we normally go
about buying coffee. Rather, institutions such as posted prices have arisen
that allow fast and frugal decisions on the part of both the seller and the
buyer of a cup of coffee. Sellers often construct posted prices on the basis
of simple markup rules, although it is noteworthy that markup rules need
to be sensible, since senseless rules would endanger the existence of a
business. And buyers often use simple "take it or leave it" decision rules
that to some extent arise in response to budgetary constraints.

History and Conceptions of Economic Rationality

The concept of rationality—unbounded, bounded, or otherwise—has a re-
markably brief history in economics (Arrow, 1986; Vriend, 1996), if it is
not confused with self-interest. The central idea of self-interest dates at
least to the late eighteenth century with Adam Smith, whose most famous
statement of the principle was: "It is not from the benevolence of the
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butcher, the brewer, or the baker, that we expect our dinner, but from
their regard to their own self-interest. We address ourselves, not to their
humanity but to their self-love, and never talk to them of our own necessi-
ties but of their advantages" (Smith, 1937, p. 14). The concept of self-
interest is related to modern ideas of rationality, but there are fundamental
differences. Self-interest, as it was conceived by classical economists, was
not something that required the person possessing it to do any computa-
tion. The butcher, brewer, and baker need to make a living, and prefer to
sell their wares for the greatest possible profit. How absurd to think that
they do not automatically know this!

When Herbert Simon introduced the twin notions of satisficing and
search in the mid-1950s, he also introduced two other ideas: that the men-
tal state of economic agents matters, and that the assumptions made by
economists about agents' mental states should not be unrealistic. Stigler
(1961) introduced a different version of search theory, which modeled
search as optimization under constraints. Search concerned extra informa-
tion which was assumed to be costly, and that these costs should be taken
into account in the final calculation of what is truly in the agent's best
interest. These insights reintroduced the more general idea that the mental
events of economic agents (in this case, their knowledge state) were im-
portant data in accounting for economic phenomena. Since Stigler's pa-
per, a rich search literature has developed, but it shifted the emphasis
from Simon's concern for bounded rationality to the ideal of optimal
search with optimal stopping rules.

According to Vriend (1996), the pursuit of new questions raised by the
relevance of agents' mental states took at least two paths. The first path,
which includes the weighty tradition of expected utility theory (Ramsey,
1931; Savage, 1954; von Neumann & Morgenstern, 1944), seeks evidence
for or against the proposition that people's decisions adhere to certain
axioms. The axioms include such principles as completeness, invariance,
dominance, and transitivity, and together are taken to be rationality itself.
Not surprisingly, there is abundant evidence, some of it now bearing clas-
sic status, that in many situations, people do not adhere to these axioms
(e.g., Allais, 1953; Ellsberg, 1961; Kahneman & Tversky, 1979). These re-
sults have been interpreted by some as demonstrating human irrationality,
by others as demonstrating that the axioms were bad models of human
rationality. But tests of axioms typically do not take into account the issue
that Simon and Stigler addressed, namely the search for information,
which people may or may not do in a manner perfectly consistent with
their self-interest or with various axioms.

The other path taken to assess human rationality was to leave decisions
aside and assess the thought processes that were supposed to underlie
them. This question, whether people's mental operations allowed them
truly to pursue their best interests, could be asked only after Simon and
Stigler had introduced the importance of the mental state of the agents
under consideration. It is from the emphasis on inference rather than pref-
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erence that the question arises whether humans are intuitively capable of
performing the complex calculations characteristic of economic analyses,
to eventually arrive at "correct" inferences. Within this computational
background Simon's (1955a, 1957, 1959) concept of bounded rationality
came to influence economic thinking. People may not be able to calcu-
late—without calculators or specialized training—the complex functions
that economists have developed over the years, but they can make good
inferences on the basis of simpler calculations that are well adapted to
the inference (or decision) environment.

Models of bounded rationality have thus been present in the economics
literature approximately as long as the concept of unbounded rationality
(Mitchell, 1912; Sauermann & Selten, 1962; Selten, 1996; Simon, 1957),
but their influence on the field has generally been minimal. For a long
time the neoclassical paradigm of unbounded rationality, of " . . . contem-
plating all rates of substitution in n-space before buying a cup of coffee"
(Leijonhufvud, 1996, p. 50), simply ruled supreme. With the compara-
tively recent arrival of experimental economics and game theory, how-
ever, this situation has changed dramatically, as these new approaches
have compelled economists to examine the demands their models place
on the people whose behavior they are trying to describe.7 In response,
economists have begun to come up with promising alternative models.

Game theorists now routinely distinguish the so-called eductive and
evolutive approaches to noncooperative game theory. The first term de-
rives from the word "education" and corresponds roughly to models that
employ unbounded rationality and unlimited knowledge; the second term
derives from "evolution" and corresponds to models that employ
bounded rationality. Ken Binmore (1990) defines them as follows:

The word eductive. . . describe[s] a dynamic process by means of
which equilibrium is achieved through careful reasoning on the part
of the players. Such reasoning will usually require an attempt to
simulate the reasoning process of other players. . . . The word evolu-
tive . . . describe[s] a dynamic process by means of which equilib-
rium is achieved through evolutionary mechanisms . . . adjustment
takes place as a result of iterated play by myopic players. (p. 155)

7. Neoclassical theories explain, for example, consumer choices of commodity
bundles as choices of "sure things" (cups of coffee, pieces of German chocolate
cake, etc.). Consumer preferences are typically represented by "utility functions"
whose construction requires certain heroic assumptions about the underlying con-
sumer preferences. However, acknowledging that in most real and financial markets
outcomes are risky or uncertain, game theorists model consumer preferences by
way of von Neumann-Morgenstern utility functions. These utility functions repre-
sent outcomes of risky or uncertain nature as probability distributions over "prizes"
(essentially the commodity bundles of neoclassical theories). Both neoclassical and
von Neumann-Morgenstern utility functions are constructed under assumptions
whose validity as a realistic description of choice behavior has been experimentally
contested (see Kreps, 1990).
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Let us illustrate the eductive and the evolutive approach to game the-
ory by way of the example of symmetric bargaining games. These games
attempt to formally model the incentive structure of the kind of haggling
situation embodied in Sandy and Bill's coffee transaction. One example
of a symmetric bargaining game is taken from the situation depicted in
table 15-1, where two players ("Row" and "Column") can choose one
strategy that is "fair and efficient," in other words that distributes all of
the available money equally (e.g., each player gets 500). This strategy is
risky, because if one player chooses it and the other does not, the one who
chose it gets nothing. To avoid such an undesirable outcome, either player
can choose a "safe" strategy that guarantees a payoff that is at least 30c.
For example, if Row chooses "safe" and Column chooses "fair and effi-
cient," then Row gets 30c and Column gets nothing. Because Row went
the safe route, a positive outcome was guaranteed, but this was exactly
the possibility that made choosing the fair and efficient option risky. No-
tice that if either player goes the safe route, the fair and efficient outcome
is impossible. A third and final strategy adds extra payoff to both players
if (and only if) the other player has gone the safe route. This strategy is
also risky because if it is played when the other player did not play it
safe, neither player gets anything.

How would a rational player proceed in this situation, when the player
is uncertain how the other player will act? The eductive approach pre-
dicts the outcome of such a game by determining a Nash equilibrium,
which is a combination of actions such that, given other players' actions,
no player has an incentive to change hers or his. Such a combination of
actions can consist of one action for each player only, or a mix of action
choices over many iterations of the game. A mixed strategy may be advan-
tageous when there is something to be gained when the other player is
uncertain what you will do next. Imagine a tennis player serving against
an opponent. Even if she can serve faster to the left, she ought to serve to
the right from time to time, to make her serve less predictable.

Unfortunately for a person seeking a unique, "rational" solution, there
are five Nash equilibria in this game. Three of them are pure-action equi-
libria; they lie on the diagonal that runs from the lower left corner to the

Table 15-1: An Example of a Symmetric Bargaining Game

Column

Row Safe Fair & Efficient Third Way

Safe
Fair & Efficient
Third Way

30c, 30c
0, 30c

40(2, 60(2

30(2, 0
50(2, 50(2

0, 0

60c, 400
0, 0
0, 0

Note. The first number in each pair of payoffs denotes the payoff to the Row player; the
second number denotes the payoff of the Column player.
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upper right. If any one of these three pairs of strategies becomes estab-
lished as a pattern, then neither player makes more money by switching
to another strategy. The other two are mixed-strategy Nash equilibria.8 As
in the example of the tennis serve, these strategies capitalize on the uncer-
tainty they create in the other player.

Even if experimental subjects could and did compute the five Nash
equilibria, the eductive approach cannot identify a unique "best" equilib-
rium for the symmetric bargaining game above, and players would there-
fore have to take recourse to a general equilibrium selection theory (e.g.,
Harsanyi & Selten, 1988; Van Huyck et al., 1995, who discuss this bargain-
ing example in more detail), using such criteria as symmetry (identical
actions and payoffs for players), efficiency (maximal payoffs), and secu-
rity (a certain nonzero payoff). For the symmetric bargaining game above,
neither symmetry (which selects the 50c,50c outcome and the two mixed-
action Nash equilibria) nor efficiency (which selects the three pure-action
Nash equilibria) makes a unique selection by itself; however, if we com-
bine both properties the fair and efficient outcome (50c,50c.) is selected.

Unfortunately, this is not what we find in experimental implementa-
tions of the symmetric bargaining game outlined above. Subjects most of-
ten choose the first action initially, and eventually approach the mixed-
action equilibrium that employs the first action most of the time (Van
Huyck et al., 1995).9 It turns out that these experimental results can be
explained by the evolutive approach, which predicts the outcome of a
game by tracking the distribution of actions in repeated anonymous ran-
dom-encounter games given an initial distribution of actions. In short,
"fitter" mixes of actions gradually displace those that are less fit.10 By
modeling how iterated play of myopic players emerges, we can learn to
what extent the heroic knowledge and rationality assumption of the educ-
tive approach can lead to misleading predictions. These results and others
in related games (e.g., coordination games, Crawford, 1997; Ochs, 1995)
suggest that, indeed, economic agents make decisions in boundedly ra-
tional ways.

There are two problems, however, with the evolutive approach. The
process of gradual displacement of actions is modeled by means of differ-
ential and difference systems, which by their very nature are backward-
looking mechanisms. That is bothersome because in many economic con-

8. The mixed-strategy Nash equilibria are located at (6/7, 0, 1/7) and (2/5, 3/5,
0), where each triplet of numbers refers to the fraction of decisions allocated to the
three options respectively.

9. That is, (6/7, 0, 1/7). This discussion refers to the one-population experi-
ments reported in Van Huyck et al. (1995) only. The setting was a repeated anony-
mous random-encounter game, where subjects are randomly matched with one an-
other at each stage to play the game repeatedly, without knowing who they are
matched with.

10. See Erev & Roth, 1998; Friedman, 1991, 1996; Roth & Erev, 1995; Samuel-
son, 1997; Vega-Redondo, 1996; Weibull, 1995 for examples.
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texts expectations about other agents' future behavior plays an important
role. Furthermore, since dynamic systems typically track the distribution
of actions in a population, the analysis takes place on the level of the
population and not on the level of the individuals that make up the popu-
lation. Reinhard Selten's learning direction theory (Selten & Buchta, 1994;
Selten & Stoecker, 1986), overcomes these problems. It also turns out to
use very simple—fast and frugal—adjustment rules.

Let us illustrate learning direction theory by a simple guessing game
(Nagel, 1995). A large number of players simultaneously states a number
between 0 and 100. The average (mean) of these numbers is determined
and multiplied by a parameter p to determine a new target number. The
person whose number is closest to this number is the winner, and is paid
a fixed amount. If there is a tie, the prize is divided equally among all
winners. The interesting case for our purposes is when p < 1. In this case,
an eductive analysis determines that there is only one Nash equilibrium,
which requires all players to choose 0. To illustrate this, if there were an
equilibrium in which one player states a positive number with positive
probability, then the mean would be a positive number. It is easy to show
that there exists another number with the same probability that would be
closer to the mean than the original number. Clearly, a lot of anticipatory
thinking (and a lot of rationality) is required to get to the Nash equilib-
rium.

Nagel implemented this game in the laboratory. She had groups of
players play the guessing game for four rounds. The groups did not man-
age to end up in equilibrium, although there was a clear tendency toward
it (i.e., most subjects decreased their choices over time, using the previous
round's target number as the reference point). Nagel also found that play-
ers often started around a reference point 50p, suggesting that they did
engage in anticipatory thinking, trying to predict other players' behavior.
Crucially for our purposes, though, players seemed to adjust their guesses
according to a simple adjustment rule that had them increasing their
stated numbers if they were below the mean of the previous round, and
reducing their stated numbers if they were above the previous mean. This
strategy is an example of a fast and frugal mechanism. Similarly simple
adjustment rules have been shown to be useful in other contexts; Nagel
(1995) reviews some of this literature. Evidently, the simple heuristic em-
bodied in Selten's learning direction theory achieves both descriptive and
normative success: It accounts for people's real behavior, and also allows
them to achieve near-equilibrium performance.

Since the field of economics is generally concerned with social interac-
tions, its findings and theories, including notions of satisficing, can
readily be applied to behavior within organizations. Herbert Simon first
made his mark in organizational theory (e.g., Simon, 1947), and it is in
this arena that the idea of satisficing first appeared. March and Simon
(1993) say that "organization theories describe the delicate conversion of
conflict into cooperation, the mobilization of resources, and the coordina-
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tion of effort that facilitate the joint survival of an organization and its
members" (p. 2). Essentially, organization theories are about games that
convert the diverging interests of individuals into equitable and efficient
outcomes (like the equal division outcome in the symmetric bargaining
game) that mark the successful organization. However, human actors are
unable to think completely through all contingencies, even in the simplest
games (such as the guessing game) and increasingly in more complex task
environments (such as bargaining games).

The Mediating Role of Decision Costs

One rationale for discounting theories of unbounded rationality is to
claim that the cost of making an unboundedly rational decision exceeds
what is gained over being boundedly rational. If the costs are greater than
the benefits, then the boundedly rational agent will acquire more goods at
the end of the day than the unboundedly rational agent, marking bounded
rationality as the true rationality (Simon, 1987). For example, in bargain-
ing games, that is, situations that confront players with the choice be-
tween a secure action and one or more risky actions, it makes a difference
whether one gets to choose the risky strategy 10 times or 100 times. Eco-
nomic theory suggests that, other things being equal, an increase in the
number of periods lowers decision costs, increases the incentives for ex-
perimentation, and is likely to lead to different decision heuristics. Exper-
imental economists have started to introduce such decision costs into
their analyses (Pringle & Day, 1996; Wilcox, 1993), and there is the prom-
ise that we may have an empirically grounded understanding of the medi-
ating role of decision costs in the not-too-distant future. The challenge
faced by those who pursue this path is what happens when the agent
needs to figure out whether to be boundedly rational. This problem is
similar to the one noted by Green (1984) in knowing the premises of the
marginal value theorem. The calculation to determine whether it is ra-
tional to be boundedly rational (i.e., the computations involved in deter-
mining whether expected costs exceed expected benefits) is itself costly,
and this may nullify the advantage conferred by not being too rational
(Leijonhufvud, 1996). Indeed, the cycle of decision costs could go on for-
ever (Conlisk, 1996), and it is for this reason that Simon (1987) and Selten
(1996) have chosen not to go this route, and instead recommend reference
to aspiration levels or rules of thumb that may be gradually adjusted if
they become too lax or binding a constraint. The challenges to this ap-
proach lie in defining what determines those aspiration levels and rules
of thumb, if it is not the kind of rational calculation that can take forever.
One promising explanation is that aspiration levels and rules of thumb
them selves are the result of evolutionary selection. The question of how
aspiration levels and rules of thumb emerge is currently a field wide open
to inquiry.



352 A LOOK AROUND, A LOOK BACK, A LOOK AHEAD

Chapter 3 reported the successful (and lucrative) results of applying the
recognition principle to investment decisions in real markets; and this
and comparably fast and frugal approaches to investing may continue to
perform well within existing markets. However, the question remains
what sorts of algorithms might have operated in individual traders, prior
to the entry of Borges et al. (chapter 3) into the market, that created the
conditions that permitted the recognition heuristic to perform so well. In
other words, what are the individual processes that combine to create the
orderly and wealth-generating properties of markets that have fascinated
economists for centuries?

Intriguingly, these processes might also be fast and frugal. Code and
Sunder (1993) have recently reported that simple programs with "zero
intelligence" can converge on the maximal efficiency that is characteristic
of humans in double auction situations. Gode and Sunder do not propose
that people possess zero intelligence, but their findings suggest that fast
and frugal strategies can produce behavior that is both highly effective in
its intended environment, and conspicuously similar to what people actu-
ally do.

The Past, Present, and Future of Bounded Rationality

The demons of the behavioral sciences are formidable. Unbounded ration-
ality is a strongly entrenched benchmark that continues to dominate the
relevant fields in the sheer number of authors and articles that are influ-
enced by it. We scanned titles, abstracts, and keywords in representative
databases of publications in the life sciences for their representations of
computational demons through words including "regression" and
"Bayes," and for words connoting bounded rationality, namely "satisfic-
ing," "rule of thumb," "lexicographic," and "bounded rationality" itself.
The databases are listed in table 15-2.

"Regression" was by far the most common of the concepts we exam-
ined. It appears in almost one-half of one percent of all publications
scanned (some 104,000 out of almost 26 million), a figure that dwarfed all
others. The next most common reference was to the other demon, "Bayes"
with approximately 3,600 references. "Rule of thumb," which has been
used primarily in satisficing-like contexts, had approximately one-fifth
the prominence of "Bayes," with 731 references. All other terms with im-
plications of bounded rationality appeared fewer than 400 times out of
the 26 million articles and books over the entire period scanned. This is
about 10% of the incidence of "Bayes," one-third of one percent of the
incidence of "regression," and one-seventh of one percent of one percent
of all citations. Figure 15-1 displays these incidence rates graphically by
year, and shows that the trend has become worse over the years rather

The Future of Fast and Frugal Heuristics in Economics
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Table 15-2: The Databases for the Quantitative Analysis of
How Often the Term "Bounded Rationality" and Related
Concepts Appeared in the Titles, Abstracts, and Key Words
of Articles

Database Years Active Disciplines

Current Contents
Dissertation Abstracts
EconLit
Sociofile
Psychinfo
Biosis
Medline

1995-1998
1961-1998
1969–1997
1974-1998
1967-1998
1970-1998
1966-1998

All (journals only)
All (dissertations only)
Economics
Sociology
Psychology
Biology
Medicine

than better. Note that the data for the term "regression" are not even
shown, since they would so profoundly overshadow all others.

Figure 15-2 displays the same data for the three disciplines we have
considered here. There is approximately one order of magnitude differ-
ence between the proportion of articles that employ satisficing concepts
in psychology and biology overall (a ratio of 8.7), and approximately one

Figure 15-1: How often the term "bounded rationality" and related con-
cepts (satisficing, rule of thumb, and lexicographic) appeared in the titles,
abstracts, and key words of articles since 1965. (Sources are specified in
table 15-2.) For comparison, the curve for the term "Bayes" is shown, as
a representative of the class of demons. The data are presented as a per-
centage of all citations per year to control for the fact that the number of
new articles and books has dramatically increased (by a factor of about
seven) over the years.
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Figure 15-2: The contributions of the same concepts over the same period
as in figure 15-1, this time separated by the disciplines in which they
appear. The data are presented as a percentage of all citations per disci-
pline to control for the fact that biology has produced approximately 10
times as many total books and articles over the years as psychology,
which has produced approximately three times as much as economics.

order of magnitude difference between economics and psychology (a ratio
of 11.3). In reversing the trend to model minds as demons, psychology
may teach a thing or two to biology, but may need to learn a lesson from
economics. As the analysis in figures 15-1 and 15-2 indicates, the expan-
sion of the vision of bounded rationality is still in the future—this book
may help to achieve it.

In this chapter we have examined how the tension between unbounded
and bounded rationality is playing out conceptually in three fields outside
of cognitive psychology: artificial intelligence, animal behavior, and eco-
nomics. Heuristics have long been recognized as useful and necessary in
artificial intelligence, a field whose success is defined by the performance
of the minds it creates, but a drift away from domain specificity has made
true fast and frugal strategies relatively scarce. In behavioral ecology, opti-
mality theories generally dominate, but empirical failures of these theo-
ries demand a new way of theorizing about behavior in the wild, and such
theories have begun to appear. Most take the form of optimization under
constraints, but some have included fast and frugal strategies. The notion
of ecological rationality is deeply embedded in the field, though, so that
one may be optimistic about future developments. And in economics, the
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idea of bounded rationality confronts two centuries of classical theorizing,
but its power has already paved the way to empirical justification and
prompted important theoretical developments. In these three fields, we
can see the idea of simple heuristics advancing conceptually; however,
its quantitative impact remains small in comparison with older ideas of
unbounded rationality. The seed ideas are present—the next step is for
large numbers of theorists and experimenters to sprout them in their
thinking and writing.

Bounded rationality will undoubtedly continue to be developed in all
the disciplines we have discussed, either in coordination or in competi-
tion with each other. As the ideas grow in the various fields, the differ-
ences between them are likely to become sharper and more divisive, so
we might do well to take a moment before this happens to reflect on what
these notions have achieved so far in union, beginning to exorcise the
beautiful but illusory ideal of omniscient and omnipotent beings from the
behavioral sciences.
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What We Have Learned (So Far)

Peter M. Todd
Gerd Gigerenzer

At first it was thought that the surest way would be to take
as a foundation for the psychological analysis of the
thought-processes the laws of logical thinking, as they had
been laid down from the time of Aristotle by the science of
logic. These norms only apply to a small part of the thought-
processes. Any attempt to explain, out of these norms,
thought in the psychological sense of the word can only
lead to an entanglement of the real facts in a net of logical
reflections. We can in fact say of such attempts, that
measured by the results they have been absolutely fruitless.
They have disregarded the psychological processes them-
selves.

Wilhelm Wundt

We have reached the end of our initial exploratory foray across the
landscape of fast and frugal heuristics. Along the way, we have found
unexpected vistas and surprising terrain. In chapter 1 we presented a
rough map of the journey to come; now it is time to turn that map around
and look at where we have been from different angles.

The heuristics in our mind's adaptive toolbox can be organized and
accessed in a number of ways. They can be classified by type of decision
task being faced, or according to the adaptive problem that needs to be
solved—that is, in terms of a problem's domain-independent form or its
domain-specific content. The first scheme divides heuristics into those for
estimation, classification, two-alternative choice, and so on. The second
organizes heuristics into those for food choice, mate choice, parental in-
vestment, inferring intentions from motions, and so on. In this book, we
have taken both perspectives, and so can decision makers when seeking
the appropriate tool for the problem at hand.

There is a third point of view: Heuristics can be categorized in terms
of their building blocks—the particular heuristic principles they employ.
In chapter 1 we described three classes of building blocks, namely princi-
ples for directing information search, for stopping that search, and for
making a decision based on the search results. These can be used to define
classes of heuristics that share one or more building blocks. These classes
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cut across decision tasks and adaptive problems. We now review the ma-
jor classes of heuristics and the associated visions of rationality before
ending this book with open questions still awaiting answers.

Classes of Heuristics

Ignorance-Based Decision Making

Good decisions need not require amassing large amounts of information;
they can also be made on the basis of lack of knowledge. A basic cognitive
adaptation is the ability to recognize faces, voices, smells, names, and
other environmental features. There is a class of very simple heuristics
based on this adaptation that share one building block: only search for
recognition information. This may not sound like much for a decision
maker to go on, but there is often information implicit in the failure to
recognize something, and it can be exploited by these ignorance-based
heuristics.

The simplest exemplar in this class is the recognition heuristic, for
which we have found strong experimental evidence (chapter 2). Outside
the laboratory, the recognition heuristic influences the behavior of organ-
isms as widely varied as wild rats searching for food and humans decid-
ing on a restaurant for lunch, and underlies the proliferation of identical
fast-food chain outlets in much of the world (Schlosser, 1998). It can also
be generalized to the task of choosing a subset of objects from a larger set,
as in selecting a set of stocks based on recognition alone (chapter 3).

By analyzing and simulating the performance of the recognition heuris-
tic, we arrived at a surprising prediction: Using this heuristic, a person
who knows less than another can make systematically more accurate in-
ferences. In chapter 2 we showed that this less-is-more effect is borne out
by empirical data. Counterintuitive consequences such as this, which are
not predicted by other theories or by common sense, are important indica-
tions of the empirical validity and theoretical significance of fast and fru-
gal heuristics.

One-Reason Decision Making

Heuristics in the class of one-reason decision making search for reasons
or cues beyond mere recognition, either in recall memory or in external
stores of information. They use only a single piece of information for mak-
ing a decision—this is their common building block. Therefore, they can
also stop search as soon as the first reason is found that allows a decision
to be made. We proposed and studied a variety of heuristics in this class,
including the Minimalist, Take The Last, Take The Best (all in chapters 4,
5, and 6), and parental feeding heuristics (in chapter 14).

We were surprised by how accurate one-reason decision heuristics can
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be, for example outperforming multiple regression across 20 decision en-
vironments (chapter 5) and coming within a few percentage points of the
accuracy of computationally complex Bayesian models (chapter 8). Thus
there seem to be many situations without a trade-off between making a
decision fast and frugally and making it accurately. Simplicity can come
without a heavy price. The environmental conditions that explain this
bargain are the topic of the study of ecological rationality.

There is growing empirical evidence that people actually use lexico-
graphic heuristics such as Take The Best, particularly when time is lim-
ited (chapter 7). We have also investigated Take The Best as part of a
memory-updating mechanism that underlies hindsight bias, successfully
providing the first process model of this phenomenon (chapter 9). The
quest for empirical evidence, however, is still burdened with a method-
ological problem. Policy-capturing methods for tracing thought processes
still lack the power to distinguish exactly which heuristic an individual
may be using—developing more sensitive methods is a challenge for fur-
ther research.

Elimination Heuristics

Ignorance-based and one-reason decision heuristics (especially where the
one cue has only two values) are most appropriate for tasks where one of
two options must be selected. Other tasks call for a different class of heu-
ristics. In categorization, for instance, one category must be chosen from
several possibilities. For this type of task we can make fast and frugal, but
still accurate, decisions by using an elimination rule rather than one-rea-
son decision making. The class of elimination heuristics uses cues one by
one to whittle down the set of remaining possible choices, stopping as
soon as only a single category remains. QuickEst (chapter 10) can be seen
as taking an elimination approach to estimation. The Categorization by
Elimination heuristic (chapter 11) came within a few percentage points of
the accuracy of traditional categorization algorithms including exemplar
and neural network models, despite using only about a quarter of the
available information. In chapter 12, we explored how Categorization by
Elimination can be used to make rapid decisions about the intentions of
other organisms from their motion cues alone, helping individuals avoid
costly conflict or even predatory ingestion. In situations in which catego-
rization must be performed quickly and cues take time to search for, this
fast and frugal approach has clear advantages.

Satisficing

The previous three classes of heuristics are designed for situations in
which all of the possible options are immediately available to the decision
maker: For instance, the categories of possible intentions are all known,
and the chicks to be fed are all sitting patiently in the nest (chapters 12
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and 14). But a different class of heuristics is needed when alternatives (as
opposed to cue values) take time to find, appearing sequentially over an
extended period. In this type of choice task, a fast and frugal reasoner
should limit not only the search for information (cues) about each alterna-
tive, but also the search for alternatives themselves. Herbert Simon
(1955a, 1990) has used the term "satisficing" for heuristics that solve this
problem by relying on an aspiration level to stop search.

We investigated satisficing heuristics for sequential mate search in
chapter 13. Our focus was on simple mechanisms that limit both the time
needed to determine a useful aspiration level, and the average number of
potential mates considered before finding one who exceeded the aspira-
tion. Simple learning heuristics can indeed find such adaptive aspiration
levels, while still coming close to the mate choice performance of more
"optimal" (and much slower) rules. The design of heuristics that search
through both objects and cues, sequentially or simultaneously, is one of
the unresolved issues for future research.

Visions of Rationality

We began this book with a triadic vision of bounded, ecological, and so-
cial rationality. The three are intimately linked: The success of boundedly
rational heuristics depends on their ability to exploit the information
structures in the ecological and social environment. Thus, the interaction
of these three perspectives is essential for our notion of rationality.

Bounded Rationality

Our research program contributes to the study of bounded rationality on
two levels. First, we have laid out a general framework for the construc-
tion of fast and frugal heuristics from a small set of building blocks. New
heuristics can be formed through the combination of simple principles
for guiding information search, stopping search, and reaching a decision.
Second, we have explored a variety of specific heuristics that make accu-
rate inferences despite being bounded by limited time, knowledge, and
computation. These examples provide clear evidence that a demonic level
of power and resources is not necessary for rationality.

Ecological Rationality

There are two reasons for the surprising performance of fast and frugal
heuristics: their exploitation of environment structure and their robust-
ness (generalizing appropriately to new situations as opposed to overfit-
ting—see chapter 1). Ecological rationality is not a feature of a heuristic,
but a consequence of the match between heuristic and environment. For
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instance, we have investigated the following structures of environments
that can make heuristics ecologically rational:

Noncompensatory information. The Take The Best heuristic equals or
outperforms any linear decision strategy when information is noncompen-
satory, that is, when the potential contribution of each new cue falls off
rapidly (as defined in chapter 6).

Scarce information. Take The Best outperforms a class of linear models
on average when few cues are known relative to the number of objects (as
defined in chapter 6).

J-shaped distributions. The QuickEst heuristic estimates quantities
about as accurately as more complex information-demanding strategies
when the criterion to be estimated follows a J-shaped distribution, that is,
one with many small values and few high values (as described in chapter
10).

Decreasing populations. In situations where the set of alternatives to
choose from is constantly shrinking, such as in a seasonal mating pool, a
satisficing heuristic that commits to an aspiration level quickly will out-
perform rules that sample many alternatives before setting an aspiration
(as described in chapter 13).

By matching these structures of information in the environment with
the structure implicit in their building blocks, heuristics can be accurate
without being too complex. In addition, by being simple, these heuristics
can avoid being too closely matched to any particular environment—that
is, they can escape the curse of overfitting, which often strikes more com-
plex, parameter-laden models. This marriage of structure with simplicity
produces the counterintuitive situations in which there is little trade-off
between being fast and frugal and being accurate.

Social Rationality

Some of the most challenging decisions faced by social species are those
arising from an environment comprising the decisions of conspecifics. So-
cial environments are characterized by the speed with which they can
change and by the need to consider the decisions being made by others.
These two features make social rationality an important and distinct form
of ecological rationality. We have shown in this book that fast and frugal
heuristics can guide behavior in these challenging domains, when the en-
vironment is changing rapidly as a result of others' behavior (e.g., in stock
market investment—chapter 3), when the environment requires many de-
cisions to be made in a successively dependent fashion (e.g., in parental
investment—chapter 14), or when decisions must be made in coordina-
tion with other individuals (e.g., in mutual mate choice—chapter 13).
These particular features of social environments can be exploited by heu-
ristics that make rapid decisions rather than gathering and processing in-
formation over a long period during which a fleeter-minded competitor
could leap forward and gain an edge.
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These three perspectives on rationality are all defined in terms of an
organism's adaptive goals: making decisions that are fast, frugal, accurate,
and beneficial, in social and nonsocial situations. Thus, we see rationality
as defined by decisions and actions that lead to success in the external
world, rather than by internal coherence of knowledge and inferences.
Theories of mind that focus on internal coherence have led, in artificial
intelligence, economics, and elsewhere (see chapter 15), to models that
assume that an individual must create elaborate representations of knowl-
edge and solve impressive equations when making up its mind. The chal-
lenge ahead is not to construct models of omniscient minds, but rather of
adaptive minds that can act quickly and reliably in their environments.

In Walden (1854/1960), Henry Thoreau thought deeply about the rela-
tionship that people have with their environment, albeit from a different
perspective. His advice is equally appropriate for modeling minds in their
environments: "Our life is frittered away by detail. . . . I say, let your af-
fairs be as two or three, and not a hundred or a thousand. . . . Simplify,
simplify" (p. 66). Such simplicity in models has a certain aesthetic appeal.
The mechanisms are readily understood and communicated, and are ame-
nable to step-by-step scrutiny. Furthermore, Popper (1959) has argued that
simpler models are more falsifiable, and Sober (1975) deems them more
informative. But the transparency, falsifiability, or informativeness of
models are not the only grounds to argue for the simplicity of actual men-
tal mechanisms. We have provided evidence that simple heuristics are
also adaptive for those who actually use them (see also Forster & Sober,
1994). Simplicity can have both aesthetic appeal and adaptive value.

Looking Ahead

In this book we have proposed a variety of fast and frugal heuristics for
making adaptive inferences and decisions. For each new heuristic we
have endeavored to ask three main questions: How good is it—how well
does it perform in comparison with decision mechanisms adhering to tra-
ditional notions of rationality? How is it ecologically rational—when and
why does it work in real environments? And finally, do people or other
animals actually use this heuristic? We certainly do not have all the an-
swers to these queries. In fact, to date, most of our attention has been
focused on the first (easiest) question, and while we are starting to gain
some understanding about the second, our efforts to answer the third
(very difficult and in some ways most significant) question are just begin-
ning. This imbalance needs to be redressed. Looking ahead, there are
many open challenges that follow from these three questions. Facing these
challenges will not entail lone discovery of wholly new lands: Building
on results already found by others, often in other fields and expressed in
different languages, will accelerate the process of finding new answers.
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Cognitive Tasks

The first challenge is to explore fast and frugal heuristics for solving tasks
beyond those we have considered here. What other classes of decisions
can be made by simple mechanisms? How can fast and frugal cognition
help in tasks that extend over time such as planning or problem solving?
Can simple heuristics be applied to perceptual mechanisms as well? A
few researchers have called perception a "bag of tricks" (e.g., Ramachan-
dran, 1990), full of quick and sometimes dirty mechanisms that evolved
not because of their consistency but because they worked.

Adaptive Problems

The next challenge is to study how fast and frugal heuristics are applied
to important adaptive problems—the second organizing scheme for the
adaptive toolbox mentioned at the beginning of this chapter. The program
of carving up an organism's life and behavior into separate adaptive do-
mains, each containing several adaptive problems, has proved to be a
great challenge (see Hirschfeld & Gelman, 1994, for the current plethora of
approaches). But the discovery of domain-specific heuristics for important
adaptive problems may help clarify some of the divisions—for instance,
if heuristics used for sequential mate search differ from heuristics for se-
quential habitat search, this may indicate that mate choice and habitat
choice are distinct domains with specialized mechanisms. What heuris-
tics apply to adaptive problems such as food choice (including modern
forms of dieting), health preservation (including visiting doctors and tak-
ing drugs), and navigation (including getting from one end of a city to
another)? Why do people often prefer to solve adaptive problems using
socially transmitted information, for instance, deciding what medical
risks to take on the basis of hearsay rather than statistical evidence (while
at the same time often obsessing about baseball statistics)?

Social Norms and Emotions

Simple heuristics can be advantageous for navigating the complexities of
social domains, and can be learned in a social manner, through imitation,
word of mouth, or cultural heritage. We suspect that social norms, cul-
tural strictures, historical proverbs, and the like can enable fast and frugal
social reasoning by obviating cost-benefit calculations and extensive in-
formation search. We have also speculated occasionally in this book that
emotions may facilitate rapid decision making by putting strong limits on
the search for information or alternatives, as when falling in love stops
partner search and facilitates commitment. Where can we find further evi-
dence for the decision-making functions of these cultural and emotional
processes, and how can they serve as building blocks in precise models
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of fast and frugal heuristics? This is one of the most important areas still
to be mapped out.

Ecological Rationality

We do not yet have a well-developed language for describing those as-
pects of environment structure, whether physical or social, that shape the
design and performance of decision heuristics. Here one can turn for in-
spiration to other fields, including ecology and statistics, that have ana-
lyzed environment structure from different perspectives. For instance, the
statistical measures of two-dimensional patterns developed in spatial data
analysis (see, e.g., Upton & Fingleton, 1985) can be used when assessing
heuristics for spatial search in foraging or habitat selection. Evolutionary
psychology reminds us to reflect on possible differences between present
and past environments, by considering the important adaptive problems
our ancestors faced, the information available in their environment to
solve those problems, and how these inputs have changed in the modern
world (Cosmides & Tooby, 1987, p. 302).

Performance Criteria

How should the performance and usefulness of heuristics be measured?
Ultimately, ecological rationality depends on decision making that fur-
thers an organism's adaptive goals in the physical or social environment.
How can measures of decision speed, frugality, and accuracy be aug-
mented by and combined with measures of adaptive utility? We have
tested the generalization ability of heuristics so far mostly in cross-valida-
tion tests. How can we measure predictive accuracy and robustness in
environments that are in a state of continual flux, with new objects and
cues appearing over time? Finally, we have focussed on adaptive goals in
terms of correspondence criteria (e.g., accuracy, speed, and frugality) as
opposed to coherence criteria (e.g., consistency, transitivity, additivity of
probabilities) traditionally used to define rationality. Is any role left for
coherence criteria? Should one follow Sen (1993) in arguing that consis-
tency is an ill-defined concept unless the social objectives and goals of
people are specified?

Selecting Heuristics

How does the mind know which heuristic to use? Following our perspec-
tive of bounded rationality, a fast and frugal mind need not employ a
metalevel demon who makes optimal cost-benefit computations to select
a heuristic. The fact that heuristics are designed for particular tasks rather
than being general-purpose strategies solves part of the selection problem
by reducing the choice set (see chapter 1). But we have not addressed how
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individual heuristics are selected from the adaptive toolbox for applica-
tion to specific problems.

Multiple Methodologies

The combination of conceptual analysis, simulation, and experimentation
has deepened our understanding of fast and frugal heuristics. However,
more evidence must be amassed for the prevalence of simple heuristics in
human and animal reasoning. This need not be done solely through labo-
ratory experiments, where we often find that alternative mechanisms can
equally account for the observed behavior (as discussed in chapter 7). Col-
lecting data from the field—whether that field is a jungle habitat or an
airplane cockpit—is also vital for discovering new heuristics and teasing
competing mechanisms apart.

The Rational Meets the Psychological

Some years ago, sequestered in the hills overlooking Stanford, a gathering
of economists and psychologists engaged in an animated conversation on
the nature of reasoning. We argued over the latest stories about this or
that paradox or stubborn irrationality until finally one of the economists
concluded the discussion by throwing down the gauntlet. "Look," he said
with the conviction of his field, "either reasoning is rational, or it's psy-
chological." To him, this inviolable dichotomy implied an intellectual di-
vision of labor: Rational judgment is defined by the laws of logic and
probability, and thus should be the domain of rigorous economists and
mathematicians; what we know about the human mind is irrelevant for
defining sound reasoning. Only when things go wrong should psycholo-
gists be called in to explain why people can be irrational.

We hope that the simple heuristics analyzed in this book exemplify a
way to break down this unfortunate but widespread belief in an opposi-
tion between the rational and the psychological. This misleading idea has
cursed the cognitive sciences since the antipsychologism of nineteenth-
century philosophy, and it continues to obscure a realistic view of cogni-
tion to this day. A bit of trust in the abilities of the mind and the rich
structure of the environment may help us to see how thought processes
that forgo the baggage of the laws of logic and probability can solve real-
world adaptive problems quickly and well.

Models of reasoning need not forsake rationality for psychological
plausibility, nor accuracy for simplicity. The mind can have it both ways.
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exemplar models, 77, 94, 238,
251-253

memory requirements of, 239, 241,
246-247, 253

by one cue (1-R algorithm), 139, 241
rule-based models, 239

Categorization by Elimination (CBE),
131, 184, 236, 239, 244-254,
280-283, 359

as extension of Take The Best, 250
flowchart, 248
illustration of, 244-246, 280
performance, 250-253, 279,

281-283
causal inference, 24, 261
CBE. See Categorization by Elimina-

tion
certainty, 6, 8-9, 52-53
chess, 12, 26, 329-333, 335
children. See parental investment
city population (data set), 41, 45, 99,

102, 155
estimation, 221-232
structure of environment, 84, 220-

222,225
as two-alternative choice domain,

43, 45, 77-94, 99, 106, 109, 232
classification, 4, 26, 241. See also

categorization
classification and regression tree

(CART), 4, 90-91, 138, 241
classification tree, 4, 112, 137-139

Take The Best as, 138
CLASSIT, 241
coefficient of determination (R2). See

linear predictability
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cognitive limitations. See constraints
coherence. See norms
combinatorial explosion, 318-319,

329
common currency, 15, 17. See also

conflict-avoiding strategy
comparison. See two-alternative

choice
compensatory strategy, 52, 83, 144-

146, 153, 165-167, 282. See also
heuristics

complexity of algorithms, 146, 179-
180, 183-186, 227, 240, 332

table, 184
computability, 76, 171, 177, 180-

181, 322, 327-328, 335. See also
combinatorial explosion

computational models, 16-18, 28-
29, 191

confidence, 193, 196-200, 202-204,
207

conflict-avoiding strategy, 57-58,
81-82, 224. See also heuristics,
noncompensatory; incommen-
surability

confusion matrix, 273, 275
connectionism. See neural network
consistency, 18, 364. See also norms
constraints, 10-12, 147, 337-338

limited computational capacity,
166, 347, 355

limited knowledge, 39-41, 44-49,
58, 63-65, 78-93, 187, 230

limited memory, 146, 150, 191
limited time, 147, 164, 166, 279,

337. See also time pressure
consumer search, 62, 288, 291
contingency prey model, 210. See

also optimal foraging theory
coordination game, 262, 349
correspondence. See norms
cost-benefit analysis, 16, 31, 146—

147, 198, 254, 351, 363. See also
trade-offs

courtship, 262-263, 266-267, 269,
272-276, 287

cow manure (data set), 100
cross-validation, 106-108, 111,

114-116, 364. See also general-
ization

cue, 78-79, 212-213. See also mo-
tion, cues

bins, 245-247
intercorrelation, 90, 114, 116, 165,

173, 176-177, 279
learning, 92-94, 212. See also gen-

eralization
order, 80-81, 92, 112-113, 129-

134, 198, 223-228, 238-239,
242-244, 249, 280-281

profile, 120, 123-125, 173,
227-228

relational, 197-199, 274-275,
277-278

search. See building blocks
validity, 80-81, 92, 141-145, 148,

198, 212. See also validity mea-
sures

data fitting. See accuracy
Dawes's rule, 86-90, 106-115, 123-

129, 133, 135-136, 140, 143-
145, 153-154, 156, 160, 176,
184, 208, 250, 279, 281

definition, 84, 102, 143
performance, 87-89, 103-106,

123-128, 158-159, 161
truncated version, 112

DAX, 62, 65-67, 70. See also stock
decapitation, 293
decision bound theory (categoriza-

tion), 239
decision list, 171
decision rule. See building blocks
decision tree, 3-5, 179-180, 240-

241. See also classification tree
Deep Blue, 329, 331-332. See also

chess
deferred acceptance search proce-

dure, 290
demons, 5-12, 33, 77, 172-173, 328,

331, 333-335, 344, 352. See also
Laplace's super-intelligence

depth perception, 121-122
discrimination rate, 123, 125, 136

definition, 84-85
divorce, 290
domain specificity, 18-19, 31-32,

41, 211, 328, 333-336, 340, 357,
363
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Dow Jones, 62, 65-67, 70. See also
stock

dowry problem, 292-295. See also
secretary problem; 37% rule

dual process theories, 20
dynamic decision models, 283

ecological correlation, 42, 55-56,
218. See also validity measures

ecological rationality, 5, 13, 18-25,
90-92, 119, 328, 335, 339-341,
364

of specific heuristics, 123, 136,
225, 283, 360-361

ecological validity. See validity mea-
sures

economics, 59-72, 288-289, 309-
311, 345-352, 365

experimental, 349-350
eductive game theory, 347—348
efficient market hypothesis, 60, 68
effort-accuracy framework, 83, 146—

147. See also trade-offs
elections, 192, 193
Elimination by Aspects (EBA), 26,

90, 143-146, 153-154, 158-161,
242, 249

elimination models, 242-244, 359.
See also Categorization by Elimi-
nation; Elimination by Aspects;
QuickEst

embodiment, 329, 334. See also
robotics

emotions, 31-32, 308. See also
love

as stopping mechanisms, 31, 363
Enlightenment, 29, 169-170
environment, 12, 18, 21-22, 113-

114, 361
environment structure, 12-16, 19,

91, 113-117, 120-127, 262, 307,
311-313, 323, 361, 364

abundant information, 126-127,
232

J-shaped distribution, 218-221,
225, 361

noncompensatory information,
120-124, 361

scarce information, 124—126, 230,
361

equilibria (game theory), 289-290,
348-349

estimation, 113, 164, 209-234. See
also QuickEst

tree, 184, 227-234
evasion, 262-263, 266-268, 273-276
evolution, 19, 92, 218-219, 261-264,

290. See also adaptation
evolutionary psychology, 290, 310-

312, 364
evolutive game theory, 347-350
exemplar model, 128, 184, 195, 227,

231, 238. See also categorization
expected utility theory, 7, 9, 17, 77,

157, 345-347. See also norms
experts, 62-70, 165-166, 330-331

F.A. Cup, 43
fallacies, 21, 25, 27, 213
falsifiability, 362
familiarity, 38, 56-57
fast and frugal heuristics, 7, 14-18,

57-58, 191, 236, 259, 280-282,
330-332, 334, 339,344,350,
358-360. See also entries for in-
dividual heuristics

feature. See cue
feedback, 148, 196-197, 199-207,

281, 304-306
feeding strategy. See parental invest-

ment
feeling of knowing, 57
fighting, 75, 263, 266-267, 270,

273-276
firefighters, 13-14
fish fertility (data set), 100, 115
fitness affordance, 261-263
fitting. See accuracy
flat maximum, 90-91, 107, 296
foraging, 13, 264, 336-344

hunter-gatherer, 210
forgetting. See memory
frame problem, 333
Franklin's rule, 26-27, 76, 81, 126-

127, 130, 143-144, 146, 154,
157-161, 184, 208, 250, 279,
281

definition, 76, 83-84, 143
performance, 87-89, 158-159, 161

frequency (of events), 211-217
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frugality (information use), 22, 87-
89, 103-105, 146, 157, 160, 228-
229, 251-253, 282-283, 330-
331. See also fast and frugal
heuristics

fuel consumption (data set), 100

game theory, 289-290, 347-352
generalization, 19-20, 92-94, 103-

106, 108-113, 128-129, 173,
236, 364. See also accuracy;
cross-validation; overfitting; ro-
bustness; underfilling

generalized conlexl model (categori-
zation), 238, 251

German cilies. See cily population
Gestalt psychology, 26, 80
God, 6-9, 29, 75
Good Features strategy, 143-145,

157-161
Goodman-Kruskal rank correlation.

See validity measures
guessing game, 350-351
guppies (male choice in), 31, 81-82,

122

heart attack, 3, 91
heuristic principles. See building

blocks
heuristic search, 331-333. See also

building blocks
heuristics, 31, 142-143, 198, 291,

328, 332, 351. See also entries
for individual heuristics; fast
and frugal heuristics

compensatory, 144-148, 153, 281
history of, 25-29
nesting of, 17, 33
noncompensatory, 144-145, 151-

153, 157, 281
selection of, 32-33, 186, 364

heuristics-and-biases program, 27-
29, 217-218

high school dropout rates (data set),
98-99, 102-104, 106, 109-110

hindsight bias, 191-194, 196-197,
199-204, 207-208

as by-product of memory updat-
ing, 191, 196, 201, 204, 208

and public polling, 192-193
reversed, 202-203, 207

homelessness (data set), 99
homo economicus, 327
house prices (data set), 99

ID3 decision tree, 241. See also deci-
sion tree

ideal free distribution. See optimal
foraging theory

ignorance-based decision making,
57-59, 61-62, 71, 358. See also
recognition heuristic

imitation, 31-32. See also guppies;
learning; social information
transfer

incommensurability, 15. See also
common currency

independence (of cues). See cue, in-
tercorrelation

inference, 23, 196, 201, 207-208, 259
information search. See search
inheritance (human wealth),

323-324
integration of information, 24, 52,

84, 144, 167, 238. See also com-
pensatory strategy

intentions, 236, 250, 257-261
motion cues of, 276-280

intractability. See computability
intransitivity, 22, 83. See also Mini-

malist heuristic; transitivity
investment, 59-72, 352. See also pa-

rental investment; stock
iris (flower) categorization, 251-253
irrationality, 27, 33, 346, 365

J-shaped distribution. See environ-
ment structure

job search, 288
just noticeable difference, 111, 143

Kendall's T. See validity measures
knew-it-all-along effect, 106, 117,

193. See also hindsight bias
knowledge, 87, 191, 195, 197-198,

201-206
lack of, 38, 41, 43, 57-59, 61, 71,

282, 358
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missing (limited). See constraints,
limited knowledge

updating, 191, 195-196, 200-202,
204,206-208

knowledge validity. See validity mea-
sures

land rent prices (data set), 99
Landau's criterion (O)), 184-185.

See also complexity of algo-
rithms

Laplace's superintelligence, 8-10,
20, 33, 172, 191

laypeople. See novices
learning, 47-52, 92-94, 194, 230-

231, 240, 272. See also general-
ization; machine learning

animal, 341-343
in Bayesian networks, 176-178
language, 216-217
in mate search, 304-306

learning direction theory, 350
less-is-more effect, 38, 40, 45-49,

52-54, 57, 89, 358
letter recognition, 243
lexicographic strategy, 26, 82, 90,

111, 122, 129, 132-134, 137,
352-354

LEX, 143-146, 152-162, 166-167
LEX-ADD, 143-145, 153, 158-161
LEX-Semi, 143-146, 153-154,

157-161
linear model, 84, 87, 90, 122-123,

136-137, 154-156, 281-282. See
a7so Dawes's rule; Franklin's
rule; multiple linear regression

linear predictability (R2), 114-115
linear regression. See multiple linear

regression
local probability table (LPT), 175-

176, 178. See also Bayesian net-
work

logic, 21-22, 25, 357
logistic regression, 172
love, 31, 292, 308, 363

machine learning, 26-27, 90, 138-
139, 171, 237-238, 240, 251. See
also artificial intelligence

mammals' sleep (data set), 100
Mann-Whitney test, 130
marginal value theorem, 340-341,

351. See also foraging
Markov blanket, 178-179. See also

Bayesian network
marriage, 7-15, 287, 294
matching law, 341-343
mate choice, 31, 81-82, 263, 288,

290, 292, 307, 308, 344. See also
guppies; sexual selection; social
information transfer

mate search, 287-308, 360-361. See
also love; search

duration, 294, 298
mutual (two-sided), 289-290, 292,

300-306
one-sided, 292-300
preferences, 307
rejection, 300, 304-306
risk averse, 297

mate value
distribution of, 290, 292, 307
learning one's own, 291-292,

303-306
maximizing, 293, 295-297

MATER I, II, 330. See also chess
maximization of expected utility.

See expected utility theory
mediator, 42
memory, 80, 195, 199. See also hind-

sight bias; working memory
capacity, 39^0, 146, 191, 203
distortion, 191, 193
episodic, 201
forgetting, 191, 195
loss, 191
retrieval, 191, 195-196, 199, 202
search. See building blocks
semantic, 201
trace, 195, 196

mental models, 213, 327, 334. See
also probabilistic mental models

MINERVA 2 (memory model), 216
Minimalist heuristic, 22, 79-94, 101,

132, 184
definition, 79-80
performance, 87-88, 92-94, 103-

106, 108-111
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mixed strategy, 348—349. See also
game theory

moral algebra, 75-76, 81, 84. See
also Franklin's rule

morality, 6, 33, 76
mortality (data set), 99
motion, 257-272

cues, 257-261, 274-280
perception, 260-261, 265
trajectories, 250, 264-272, 276,

278-279
Turing test based on, 148-153,

283-284
Mouselab, 148-153
multiple linear regression, 20, 76-77,

84, 86-89, 92-94, 101, 103-118,
123-126, 135-136, 154-156,
172, 184, 227-234, 352-353

mushroom categorization, 251-253
mutual fund, 59-61, 67-68, 70, 72.

See also stock

naive Bayes, 173-176, 183-184, 208,
240—241. See also Bayesian
models

performance, 182-183
Nash equilibrium, 348-350. See also

equilibria
natural selection, 261, 335, 339. See

also evolution
neophobia, 40
neural network, 18, 20, 94, 184, 240,

250-253, 278, 281-283
noncompensatory information. See

environment structure
noncompensatory strategy, 81-83,

90-91, 121-123, 144-147, 151-
153, 164-167, 224, 246, 334. See
also environment structure; heu-
ristics; incommensurability

norms, 28-29, 82-83, 170-172, 307,
346-347, 357. See also logic; per-
formance criteria; rationality; so-
cial norms

coherence, 18, 21-22, 28-29, 82,
362, 364

correspondence, 18, 22, 28-29,
364

for evaluating specific heuristics,
59, 68, 84, 128, 172, 227, 314

novices, 62-70, 165-166
NP-completeness, 132, 185, 328. See

also complexity of algorithms

obesity at age 18 (data set), 100
object search. See search
Occam's Razor, 119, 128, 178
one-bounce search rule, 291
one-reason decision making, 15, 17,

58, 79, 81-82, 90, 112, 117-118,
145, 358

opportunity costs, 11, 164, 336
optimal foraging theory, 327, 337.

See also foraging
ideal free distribution, 338

optimality theory, 29, 91
optimization, 10-13, 15, 22, 33, 81,

107, 112, 132-134, 336, 337-
339

optimization under constraints, 7,
10-12, 15, 27, 241, 289, 318-
322, 338-339, 346, 354. See also
demons

organization theory, 350-351
outcome-oriented experimental ap-

proach, 142, 154-165. See also
process-oriented experimental
approach

overfilling, 19-20, 109-110, 128-
129,135,177, 361. See also accu-
racy, fitting; generalization

definition, 128
overnight fame, 56
oxidant level in Los Angeles (data

set), 100
ozone level in San Francisco (data

set), 101

parallel processing, 137, 183, 240.
See also neural network

parental investment, 309-324
birth order effects on, 312,

323-324
in humans, 309-311, 323-324
optimizing strategies, 318,

320-322
simple feeding heuristics, 313-

317, 322
perception, 260-261, 363. See also

depth perception
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performance criteria, 29, 82-83, 157,
244, 364. See also accuracy; fru-
gality; speed

Fetter's illusion, 120-121
pigeons, 257, 322, 344. See also rein-

forcement schedules
planning, 330, 332-334, 363
play, 263-264, 267, 271-276
point-light displays, 260
Poisson process, 220
policy capturing, 154-156, 359. See

also process-oriented experimen-
tal approach

population size. See city population
portfolio (management) theory, 60
posterior probability distribution,

172-173, 178, 180-181. See also
Bayesian models

predator, 235-236, 257, 264
preference, 90, 107-108, 157, 242,

289-290, 307. See also mate
choice

reversals, 219
prey, 210, 235, 257
primogeniture, 324
prior probability distribution, 172-

173, 175, 178. See also Bayesian
models

probabilistic mental models (PMM),
82,197-202

probabilistic revolution, 5-6,
169-170

probability, 17, 76, 170-171
conditional, 92, 174-180, 240. See

also validity measures
theory, 5, 21-22, 25, 27, 29-30,

292
of transition, 217

problem solving, 363
process-oriented experimental ap-

proach, 142, 149-154, 162-165.
See also outcome-oriented exper-
imental approach; policy cap-
turing

professors' salaries (data set), 98—99,
101, 104-105, 110

profile memorization method, 128,
173, 176, 181-182, 184, 227

prominence (of numbers), 224
protean behavior, 32, 263

protocol analysis, 149. See also pol-
icy capturing

provisioning rules. See parental in-
vestment

proximate mechanism, 339—344
psychological plausibility, 141, 186,

195, 208, 226, 239-242, 365
public policy, 103, 109
public polling, 192
pursuit, 262-263, 266-268, 273-276

QuickEst heuristic, 184, 221-234,
359, 361

definition, 221-225
illustration of, 226-227
performance, 228-234

RAFT model (Reconstruction After
Feedback with Take The Best),
197, 199, 201-204, 207

flowchart, 200
illustration of, 202-204

rainfall from cloud seeding (data
set), 100

rational analysis, 11
rationality. See also bounded ration-

ality; ecological rationality; so-
cial rationality; unbounded ra-
tionality

in economics, 345-351
visions of, 5-15, 327, 360-362

rats, 40, 42-43, 54, 344. See also rec-
ognition, food

reactive systems (robotics), 334
recall, 17, 37, 57, 95, 191, 193, 195-

196, 199-204. See also memory;
RAFT model

recognition, 12, 30-31, 37-58, 59-
72, 86, 88. See also recognition
heuristic

bad press, 72
brand, 56, 71
collective, 43, 62-65
direction of correlation, 41
versus familiarity, 38, 56—57
food, 30, 40-42, 54, 358
kin, 54
landmark, 38, 340
media effects, 54-56, 72
memory, 17-31, 37-43, 56-57, 95
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recognition (Cont.)
name, 37-38, 40, 54-56, 59, 62,

71-72
recognition heuristic, 17, 30, 32-33,

37-58, 59, 61-62, 66-72, 75, 98,
111, 358

definition, 41, 61
empirical test, 50-54
noncompensatoriness of, 40, 52
performance, 44-45, 65-72
in other heuristics, 78-79, 86, 89-

90, 95
recognition validity. See validity

measures
reconstruction (memory), 191, 196-

197, 199-201, 207-208. See also
RAFT model

regression. See multiple linear regres-
sion

regression effect, 232
reinforcement schedules, 341-344.

See also learning, animal
reiteration effect, 196
relevance theory, 91
representative sample, 156-162, 166,

213
reservation price. See stopping rule
robotics, 333-335
robustness, 19-20, 90, 94, 107, 112,

127-136, 231, 250, 283. See also
generalization; overfitting

of search rules, 129-134
of stopping rules, 134-136

rule-plus-exception (RULEX) model,
239

rules of thumb, 327, 340-341, 351-
354. See also heuristics

satisfying, 7, 12-14, 17, 289, 329-
331, 339, 353-354, 359-360. See
also aspiration level; stopping
rule

scarce information. See environment
structure

seafood, 242
search, 12, 23-24, 26, 112, 149-154,

164-165, 177-178, 330-333,
346. See also building blocks;
consumer search; job search;
mate search

alternative-wise, 144, 152
Bayesian, 177-178, 227
costs, 15, 288, 292, 332, 346
for cues (information), 57, 77-83,

243-244, 360
cue-wise, 144, 152, 164
Einstellung, 80, 87
external versus internal, 10, 77
for objects (alternatives), 13, 288,

360
ordered, 16, 81. See also cue,

order
random, 16, 79
robustness of search rules,

129-134
spatial, 152-153, 364. See also

foraging
search index coefficient, 152
secretary problem, 288. See also

dowry problem
selected sample, 156-163, 166
self-interest, 345-346
sequential feature testing model,

243
sexual selection, 29, 261, 289
siblings, 311-312
signal detection theory, 24
similarity, 195, 238
simplicity, 3-4, 34, 106, 119, 128,

359. See also robustness
aesthetic appeal of, 362

simulation, 47-48, 228, 291, 295,
301, 307, 312-322

soccer, 43, 49, 50-52, 79-80, 84-85
social information transfer, 31, 363.

See also guppies; rats
social judgment theory, 154-156
social norms, 31-32, 363
social rationality, 25, 31-32, 284-

285, 328, 345-352, 361
speed (decision making), 225, 235,

259, 279-280, 330-331, 359, 361
spontaneous numbers, 224, 232
stable matching (mate search), 289-

290, 302-304
statistical methods, 18-20, 23-24,

364
step-by-step procedure, 4, 81, 146
stock. See also mutual fund

blue chip, 71
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forecasters, 21, 59
market, 59-72
portfolio, 59, 62-71

stopping rule, 10, 15, 17, 23-24, 77-
82, 90-91, 134, 198, 224-225,
238, 249, 346. See also aspira-
tion level; building blocks

bias of, 91, 224
reservation price as, 288-289, 291
robustness of, 134—136

strategy. See compensatory strategy;
heuristics; noncompensatory
strategy

structure of environment. See envi-
ronment structure

super-intelligence. See Laplace's su-
perintelligence

surrogate correlation, 42, 54-55
symbolic concept acquisition model,

237, 239

Take The Best, 32-33, 78-140, 176,
184, 198-200, 207, 208, 334,
359

definition, 79-81
estimating cue order in, 109,

112-113
with exact versus dichotomous

cues, 111-112
performance, 87-89, 92-94, 103-

106, 109-113, 181-183, 361
relation to classification trees,

137-139
relation to lexicographic strategies,

111, 137, 145
relation to linear strategies, 123,

136-137, 155
robustness, 109-113, 115, 127-136
truncated version, 135-136

Take The Last, 32, 79-80, 86
definition, 78-81
performance, 87-88, 92-94

Take the Next Best, 295-302
difficulties with, 299
in mutual search, 300-302

Test Operate Test Exit procedure, 79
test set, 92-94, 103-105, 134-135.

See also accuracy, generaliza-
tion; cross-validation; generaliza-
tion

theory of mind, 258, 284
think-aloud technique, 149. See also

policy capturing
37% rule (mate search), 288, 291,

295-300. See also dowry
problem

application of, 293
difficulties with, 294

threshold criterion rule, 289. See
also stopping rule

time complexity. See complexity of
algorithms

time pressure, 13, 32, 141-142, 147-
148, 161-162, 164, 236, 280. See
also constraints, limited time;
speed

tools-to-theories heuristic, 23-24,
119

trade-offs, 16, 18, 22, 57-58, 78, 83,
89, 144, 146-147, 183-187,
359, 361. See also cost-benefit
analysis; effort-accuracy frame-
work

training set, 92-94, 103-105, 134-
135, 228. See also accuracy, fit-
ting; cross-validation; generaliza-
tion

transitivity, 21-22, 83, 346, 364
transparency (of decision processes),

17-18, 136, 172, 186, 362
Try a Dozen heuristic, 291, 300-301.

See also Take the Next Best
two-alternative choice, 17, 41, 44-

45, 61, 77, 83, 197, 232-234. See
also city population

two-sided matching (mate search),
289-290

unbounded rationality, 7-12, 33,
172-173, 328, 333-338. See also
demons

underfilling, 128-129, 136
unit-weight linear model. See

Dawes's rule
Universal Characteristic (Leibniz),

29, 33
utility. See expected utility theory

validity measures, 129-131. See also
cue, order; cue, validity
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validity measures (Cont.)
conditional validity, 81, 127, 131,

133
ecological validity, 48, 80-81, 84-

86, 102, 130, 148, 198, 272
Goodman-Kruskal rank correlation,

108, 130-131, 133-134
Kendall's T, 131, 133
knowledge validity, 44—49
recognition validity, 42-43, 45-49,

55, 89
success, 130-131, 133-134, 246

vicarious functioning, 201, 279
vision, 121-122, 260-261, 335-

336

wasps, 54, 339, 341
weighted additive model. See Frank-

lin's rule
Weighted Pros strategy, 143-145,

152-153, 157-163, 166-167
western bluebirds, 312-313, 323
wine categorization, 238, 244-246,

251-253
working memory, 146, 150, 253. See

also memory
Wurzburg school, 31

Zeigarnic effect, 195
zero intelligence traders, 352
Zipf's law, 219-220
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