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PREFACE

Many people find statistics challenging, but most statistics professors do not.

As a result, it is sometimes hard for our professors and the authors of statis-

tics textbooks to make statistics clear and practical for business students,

managers, and executives. Business Statistics Demystified fills that gap. We

begin slowly, introducing statistical concepts without mathematics. We

build step by step, from defining statistics in Part One providing the basic

tools for creating and understanding statistical reports in Part Two, introduc-

ing the statistical measures commonly—and some not-so-commonly—used

in business in Part Three and, in Part Four, applying statistics to practical

business situations with forecasting, quality management, and more.

Our approach is to focus on understanding statistics and how to use it to

support business decisions. The math comes in when it is needed. In fact,

most of the math in statistics is done by computers now, anyway. When the

ideas are clear, the math will follow fairly easily.

Business Statistics Demystified is for you if:

. You are in a business statistics class, and you find it challenging.

Whether you just can’t seem to think like a statistician, or it’s the

math, or you’re not sure what the problem is, the answer is here. We

take you through all the rough spots step by step.

. You are in a business statistics class, and you want to excel. You will

learn how to use statistics in real business situations, and how to

prepare top-quality statistical reports for your assignments.

. You are studying business statistics to move up the career ladder. We

show you where statistics can—and can’t—be applied in practical

business situations.

xi
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We wrote this book so that you would be able to apply statistics in a

practical way. When you have finished with this book, you will find that

you can:

. Understand and evaluate statistical reports

. Help perform statistical studies and author statistical reports

. Detect problems and limitations in statistical studies

. Select the correct statistical measures and techniques for making most

basic statistical decisions

. Understand how to select the appropriate statistical techniques for

making common business decisions

. Be familiar with statistical tools used in the most common areas of

business

. Avoid all the most common errors in working with and presenting

statistics

. Present effective statistical reports that support business decisions

HOW TO GET THE MOST OUT OF THIS BOOK

If you are just learning statistics, we recommend you start at the beginning,

and work your way through. We demystify the things that other books jump

over too quickly, leaving your head spinning. In fact, you might read

Part One before you look at other books, so you can avoid getting mystified

in the first place!

If you are comfortable with statistics, skim Part One and see if it clarifies

some of the vague ideas we can all carry around without knowing it, and then

use the rest of the book as you see fit. If you want to focus on performing

statistical studies and preparing statistical reports—or even just reading

them—then Part Two will be a big help. Part Three is a useful reference for

the more advanced statistical techniques used in business. And Part Four

makes the link between statistics and business interesting and exciting.

SIDEBARS FOR EASY LEARNING

In Business Statistics Demystified, we want to make it easy for you to learn

and to find what you need to know. So we’ve created several different types

of sidebars that will introduce key ideas. Here they are:

. Tips on Terms. Definitions and crucial terminology.

. Critical Cautions. Something statistical you must do—or must avoid—

to get things right.

PREFACExii



. Study Review. Key points for exam preparation.

. Survival Strategies. What to do on the job.

. Handy Hints. Other practical advice.

. Fun Facts. A little bit on the lighter side.

. Case Studies. Real-world examples that teach what works—and what

doesn’t.

. Bio Bites. The authors’ experience—if you learn from what we’ve been

through, your statistical work will be easier.

. Quick Quotes. Bits of wisdom from folks much smarter than we are.

PREFACE xiii
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PART ONE

What Is Business
Statistics?

People in business want to make good decisions and implement them. When

we do, our businesses flourish, we solve problems, we make money, we

succeed in developing new opportunities, etc. In the work of implementa-

tion—executing business plans—statistics can’t play much of a part. But in

the making of good decisions—in planning, choosing among options, finding

out what our customers, our manufacturing plants, or our staff are thinking

and doing, and controlling the work of people and machinery—business

people need all the help we can get. And statistics can help a great deal.

To understand how statistics can help business people understand the

world, it is important to see the bigger picture, of which business statistics is a

part. This is illustrated in Fig. I-1.

Let’s start at the top. Philosophy is the field that asks, and tries to answer,

questions that folks in other fields take for granted. These include questions

like: What is business? What is mathematics? How can we relate mathemat-

ics to science, engineering, and statistics? We left out the arrows because

1
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philosophy takes every other field as its field of study. And the first piece of

good news is that, while the authors of a good statistics book may need to

worry about philosophy, you don’t.

Next, mathematics can’t help business directly, because it is a pure

abstraction, and business people want to understand, make decisions about,

work in, and change the real world. Statistics brings the power of

mathematics to the real world by gathering real-world data and applying

mathematics to them. The second piece of good news is that, while statistics

often uses mathematics, statisticians often don’t need to. In the practical

world of business statistics, we leave the math (or at least the calculations) to
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Fig. I-1. Business statistics, mathematics, probability, models, and the real world.
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computers. But we do need to understand enough math to:

. understand the equations in statistical tools,

. know which equations to use when, and

. pass the exams in our statistics classes.

QUICK QUOTE

All real statistics can be done on an empty beach drawing in the sand with a stick.

The rest is just calculation.

John Tukey

The next point is key: statistics is not a part of mathematics. It is its own

field, its own discipline, independent of math or other fields. But it does make

use of mathematics. And it has important links to science, engineering,

business models of the world, and probability.

KEY POINT

Statistics Stands by Itself
Statistics is not part of mathematics, probability, business, science, or engineering. It

stands independent of the others. At the same time, statistics does make use of, and

relate to, mathematics, probability, science, and engineering. And it can help

business people make good decisions.

A fundamental problem of business—perhaps the fundamental problem of

life—is that we would love to know exactly how the world works and know

everything that is going on, but we can’t. Instead, we have only partial

information—all too often inaccurate information—about what is going on

in the real world. We also have a bunch of guesses—often called theories, but

we will call them models—about how the real world works. The guesses we

use in business often come from experts in science, engineering, the social

sciences, and business theory.

When business executives turn to experts for help in making decisions, we

often run into a problem. We understand that the experts know their stuff.

But what if their whole model is wrong? The most we can give to anyone

coming to us with a model of how the world works—a business model, a

PART ONE What Is Business Statistics? 3



scientific model, a social model, or an engineering model—is this: If your

model is right, then your advice will improve my chances of getting me to the

right decision. But what if your model is wrong?

In this, statistics stands apart from other fields. Engineering, science, the

social sciences, and business models all rely on being right about how the

world works. Statistics does not. Statistics relies on only one basic

assumption: that the future is likely to resemble the past, in general. If we

accept that principle, we can use statistics to understand the world, even if we

have no model about how the world works, or no model we are confident

enough to use.

Part of making good decisions is avoiding assumptions that might be

wrong. In using statistics, we are avoiding the assumption that a particular

idea of how the world works—how customers look at advertisements, or how

vendors deliver their goods—is true. We are relying on more general, more

proven principles.

But we can’t use statistics for every business decision. And Business

Statistics Demystified will show you how to know when statistics can help

with business decisions, how to use good statistics, and how to spot and

avoid bad statistical methods and unreliable statements backed up with a lot

of good-sounding statistics. Also, parts of statistical theory, especially those

regarding the significance of statistical results, were invented for statistics in

its relationship to science. Determining what statistical results mean for

business is very different from deciding what statistical results are important

for science, and we will demystify that, as well.

Statistics helps business in two basic ways. The first is called descriptive

statistics, and it tells us some useful things about what is going on in the data

we have about the world. The second is called inferential statistics, and it

helps us know about things we can’t affordably measure and count, and

about what is likely to happen if we make a particular decision.

We open Business Statistics Demystified with three chapters that lay a

foundation for the rest of the book. Chapter 1 ‘‘Statistics for Business’’

expands on and clarifies the issues we have raised here: What is statistics, and

how does it help us make business decisions? We also explore the basis of

statistics, and explain why knowing how to do bad statistics is essential to not

being fooled by them, and also for doing good statistics.

In Chapter 2 ‘‘What Is Statistics?’’ you will learn the basic elements and

terms of statistics: Measurement, error, sampling, and analyzing. In Chapter 3

‘‘What Is Probability?’’ we briefly turn away from statistics to introduce a

related, but separate field, probability. Probability and statistics seem similar.

Both apply mathematics to the real world. Both try to tell us what we are

likely to find in the real world, or what is likely to happen if we make a

PART ONE What Is Business Statistics?4



certain decision. But there is a fundamental difference. Probability is a way of

relating models to the real world and statistics is a way of finding out about

the world without models. We will then distinguish probability from sta-

tistics. Finally, we will also show how the two work together to help us have

confidence in our methods and decisions.

When we make the right decisions, and have confidence in them, it is easier

to follow through on them. And when we make the right decision and follow

through, we solve problems and succeed.

PART ONE What Is Business Statistics? 5
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CHAPTER
1

Statistics for
Business

Statistics is the use of numbers to provide general descriptions of the world.

And business is, well, business. In business, knowing about the world can be

very useful, particularly when it comes to making decisions. Statistics is an

excellent way to get information about the world. Here, we define business

statistics as the use of statistics to help make business decisions.

In this chapter, we will learn what statistics is for and how it ties into

business. We will discuss generally what statistics can and cannot do. There

will be no math and almost no technical terminology in this chapter (there will

be plenty of time for that later). For now, we need to understand the basics.

Doing Without Statistics
Statistics is like anything else in business. It should be used only if it is

worthwhile. Using statistics takes time, effort, and resources. Statistics for its

own sake just lowers profits by increasing expenses. It is extremely important

to recognize when and where statistics will aid in a business decision.

7
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Business decisions, big and small, get made every day without statistics.

The very smallest decisions will almost never benefit from statistics. What

restaurant to take our client to for lunch is probably a decision best made

without statistical assistance. There are many reasons not to use statistics for

bigger decisions as well. Statistics is one of the most effective ways to convert

specific facts about the world into useful information, but statistics cannot

improve the quality of the original facts. If we can’t get the right facts,

statistics will just make the wrong facts look snazzy and mathematical and

trustworthy. In that case, statistics may make us even worse-off than if we

hadn’t used them at all. It is vital to understand what facts are needed in

order to make a good decision before we use statistics, and even before we

decide what statistics to use.

KEY POINT

Facts First!
For example, if you are planning to take a foreign business guest to an excellent

restaurant, you might think it’s a good idea to pick the best restaurant in Chicago.

Looking at customer surveys, that’s likely to be a steak house.

But the more relevant information might be the fact that your guest is a

vegetarian.

The lesson: Decide what’s important, get the right facts, and then do statistics if

they help.

Even if the facts are right, there may not be enough of them to help us

make our decision. If so, the general information we get from statistics will

not be precise or accurate enough for our needs. In statistics, imprecision and

inaccuracy are called error. Error is one of the most important aspects of

statistics. One of the most remarkable things about statistics is that we can

use statistics to tell us how much error our statistics have. This means that

sometimes we can use statistics to find out when not to use statistics.

Statistics are Cheap
Is statistics overused or underused in business? It is hard to say. Some

business decisions are not made using statistics and some business decisions

should not be. But deciding when to use statistics is often not easy. Many

business decisions that could use statistical information are made without

statistics and many business decisions that shouldn’t use statistics are made

using statistics. It is probably fair to say that there are types of decisions and

PART ONE What Is Business Statistics?8



areas of business where statistics are underused and others where they are

overused.

Things that lead to the underuse of statistics are:

. lack of statistical knowledge on the part of the business people

. mistaken assumptions about how complicated or difficult to use or

costly statistics can be

. the time pressure to make business decisions

. a failure to set up statistical systems in advance of decision making

Your decision to learn about statistics will help you avoid the underuse of

statistics and Business Statistics Demystified will help you do that.

Things that lead to the overuse of statistics are:

. requirements made by bosses, standards, organizations, and legal

authorities that fail to recognize the limitations of statistics

. failures by decision makers to determine the value of statistics as part

of their analysis

. a poor understanding of the limits of the available facts or the statis-

tical techniques useful for converting those facts into information

. a desire to justify a decision with the appearance of a statistical analysis

Learning about statistics means more than learning what statistics is and

what it can do. It means learning about how numbers link up to the world

and about the limits of what information can be extracted. This is what it

means to think statistically. Far more important than learning about the

specific techniques of statistics is learning how to think statistically about real

business problems. This book will help you do both.

Lying with Statistics
There is a wonderful book by Huff and Geis (1954) called How to Lie with

Statistics. In clear and simple terms, it shows how statistics can be used to

misinform, rather than inform. It also provides wonderful examples about

how to think statistically about problems and about how to read statistical

information critically. (If How to Lie with Statistics covered all of basic

statistics and was focused on business, there might be no need for this book!)

The real importance of knowing how to lie with statistics is that it is the best

way to learn that careful, sound judgment is vital in making statistics work

for us while making business decisions. Identifying a problem and applying

the formulas without understanding the subtleties of how to apply statistics

to business situations is as likely to hurt our decision making as it is to help it.

CHAPTER 1 Statistics for Business 9



KEY POINT

97% Fat-Free
The term fat-free on food labels is an excellent example of what we mean by lying

with statistics. It would be easy to think that 97% fat-free meant that 97% of the

original fat had been removed. Not at all. It means that 3% of the milk is fat. So

97% fat-free just means ‘‘3% fat.’’ But how well would that sell?

There are two lessons here: First, we can only build good statistics if we gather

and understand all the relevant numbers. Second, when we read statistical reports—

on our job or in the newspaper—we should be cautious about incomplete

measurements and undefined terms.

Each and every statistical measure and statistical technique have their own

strengths and limitations. The key to making statistics work for us is to learn

those strengths and limitations and to choose the right statistics for the

situation (or to choose not to use statistics at all when statistics cannot help).

Throughout this book, we will learn about each statistical measure and

technique in terms of what it can and cannot do in different business

situations, with respect to different business problems, for making different

business decisions. (We will also slip in the occasional fun example of how

statistics get misused in business.)

So Many Choices, So Little Time
One feature of statistics is the enormous number of widely different tech-

niques available. It is impossible to list them all, because as we write the

list, statisticians are inventing new ones. In introducing statistics, we focus

our attention on the most common and useful statistical methods. How-

ever, as consumers of statistics and statistical information, we need to know

that there are lots more out there. Most often, when we need more

complicated and sophisticated statistics, we will have to go to an expert to get

them, but we will still have to use our best statistical judgment to make sure

that they are being used correctly.

Even when we are choosing from basic statistical methods to help with our

business decisions, we will need to understand how they work in order to

make good use of them. Instead of just memorizing the fact that medians

should be used in measuring salaries and means should be used in measuring

monthly sales, we need to know what information the median gives us that

PART ONE What Is Business Statistics?10



the mean does not, and vice versa. That way, when a new problem shows up

in our business, we will know what statistic to use, even if it wasn’t on a list

in our statistics book.

When we get past basic statistical measures and onto basic statistical

techniques, we will learn about statistical assumptions. Each statistical

technique has situations in which it is guaranteed to work (more or less).

These situations are described in terms of assumptions about how the

numbers look. When the situation we face is different than that described by

the assumptions, we say that the assumptions do not hold. It may still work to

use the statistical technique when some of the assumptions do not hold, but

we have lost our guarantee. If there is another statistical technique that we

can use, which has assumptions closer to the situation we are actually in, then

we should consider using that technique instead.

CRITICAL CAUTION

Whenever a statistical technique is taught, the assumptions of that technique are

presented. Because the assumptions are key to knowing when to apply one technique

instead of another, it is vitally important to learn the assumptions along with the

technique.

One very nice thing about statistical assumptions is that, because they are

written in terms of how the numbers look, we can use statistics to decide

whether the statistical assumptions hold. Not only will statistics help us with

our business decisions, but we will find that statistics can often help us with

the statistical decisions that we need to make on the way to making our

business decisions.

In the end, it is just as important to know how to match the type of

statistics we use to the business decision at hand as it is to know how to use

each type of statistic. This is why every statistics book spends so much time

on assumptions, as will we.

Math and Mystery
Now comes the scary part: math. As we all have heard over and over again,

mathematics has become part of our everyday life. (When I was a kid,

computers were big things in far-off places, so we didn’t believe it much. Now

that computers are everywhere, most people see how math has taken over our

CHAPTER 1 Statistics for Business 11



world.) Up to a certain point, the more you understand math, the better off

you are. And this is true in business as well.

But math is only a part of our world when it does something useful. Most

of the mathematics that a mathematician worries about won’t bother us in

our world, even in the world of business. Even understanding all the math

won’t be especially helpful if we don’t know how to apply it. Statistics is a

very odd subject, in a way, because it works with both abstract things like

math, and with the very real things in the world that we want to know about.

The key to understanding statistics is not in understanding the mathematics,

but in understanding how the mathematics is tied to the world. The equations

are things you can look up in a book (unless you are taking an exam!) or

select off a menu in a spreadsheet. Once you understand how statistics links

up numbers to the world, the equations will be easy to use.

Of course, this does not mean that you can get by without the algebra

required for this book (and probably for your statistics class). You need to

understand what a constant is, what a variable is, what an equation is, etc. If

you are unsure of these things, we have provided Appendix A with some of

the basic definitions from algebra.

Where Is Statistics Used?
At the start of this chapter, we defined business statistics as statistics used to

help with business decisions. In business, decisions are everywhere, little ones,

big ones, trivial ones, important ones, and critical ones. As the quotation by

Abraham Lincoln suggests, the more we know about what is going on, the

more likely we are to make the right decision. In the ideal, if we knew

specifics about the future outcome of our decision, we would never make a

mistake. Until our boss buys us a crystal ball so that we can see into the

future, we will have to rely on using information about the present.

QUICK QUOTE

If we could first know where we are, and whither we are tending, we could better

judge what to do, and how to do it.

Abraham Lincoln

But what sort of information about the present will help us make our

decision? Even if we know everything about what is going on right now, how

do we apply that information to making our decision? The simple answer is
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that we need to look at the outcomes of similar decisions made previously in

similar circumstances. We cannot know the outcome of our present decision,

but we can hope that the outcomes of similar decisions will be similar.

The central notion of all statistics is that similar past events can be used to

predict future events. First and foremost, this assumption explains why we

have defined statistics as the use of numbers to describe general features of

the world. No specific fact will help us, except for the specific future outcome

of our decision, and that is what we can’t know. In general, the more we

know about similar decisions in the past and their results, the better we can

predict the outcome of the present decision. The better we can predict the

outcome of the present decision, the better we can choose among the

alternative courses of action.

FUN FACTS

The statistical notion that past events can be used to predict future ones is derived

from a deeper philosophical notion that the future will be like the past. This is a

central notion to all of Western science. It gives rise to the very famous ‘‘Humean

dilemma’’ named after the philosopher, David Hume, who was the first person to

point out that we cannot have any evidence that the future will be like the past,

except to note that the future has been like the past in the past. And that kind of

logic is what philosophers call a vicious circle.

We discuss this problem more deeply in Chapter 16 ‘‘Forecasting.’’

There are three things we need to know before statistics can be useful for

a business decision. First, we need to be able to characterize the current

decision we face precisely. If the decision is to go with an ad campaign that is

either ‘‘edgy’’ or ‘‘dynamic,’’ we will need to know a lot about what is and

is not an edgy or a dynamic ad campaign before we can determine what

information about past decisions will be useful. If not, our intuition,

unassisted by statistics, may be our best bet. It is also important to be able to

determine what general features of the world will help us make our decision.

Usually, in statistics, we specify what we need to know about the world, by

framing a question about general characteristics of the world as precisely as

possible. And, of course, we don’t need to describe the whole world. In fact,

defining which part of the world we really need to know about is a key step in

deciding how to use statistics to help with our decisions. For example, if we

are predicting future sales, it is more valuable to know if our company’s

specific market is growing than to know if the general economy is improving.

We’ll look at these issues further in Part Four, when we discuss forecasting.
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Second, there needs to be a history of similar situations that we can rely

upon for guidance. Happily, here we are assisted by nature. Wildly

different situations have important features in common that we can make

use of in statistics. The important common elements can be found and

described by abstracting away from the details of the situation, using

numbers. This most important concept of abstraction is very simple and we

have a lot of experience with it. We all learned very early on that, once we

learned to count marbles and pencils we could also count sheep, cars, and

dollars.

When we think about what we’ve done, we realize that we’ve defined a new

practice, counting, and created a new tool for understanding the world, the

count. The number of pennies in a jar or the number of sheep in a flock is not

a specific fact about one specific penny or sheep. It is a general fact about the

contents of the jar or the size of the flock. A count is a statistical measure that

we use to tell us the quantity we have of an item. It is the first and simplest of

what are called descriptive statistics, since it is a statistical measure used to

describe things.

If our general question about the world merely requires a description of

the current situation or of previous similar situations as an answer,

descriptive statistics may be enough. Examples of questions that call for

descriptive statistics are:

. How many married women between 18 and 34 have purchased our

product in the past year?

. How many of our employees rate their work experience as very good

or excellent?

. Which vendor gave us the best price on our key component last

quarter?

. How many units failed quality checks today?

. How many consumers have enough disposable income to purchase our

premier product?

Third, there needs to be a history of similar decisions that we can rely

upon for guidance. While descriptive statistics have been around in some

form since the beginning of civilization and the serious study of statistics

has been around for almost a thousand years, it has been less than a hundred

years since statisticians figured out how to describe entire decisions with

numbers so that techniques useful in making one decision can be applied

to other, similar decisions. The techniques used are at the heart of what is

called inferential statistics, since they help us reason about, or make inferences

from, the data in a way that provides answers, called conclusions, to our
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precisely phrased questions. In general, inferential statistics answers questions

about relations between general facts about the world. The answers are based

not only on relationships in the data, but also on how relationships of that

same character can have an important effect on the consequences of our

decisions.

If our question about the world requires a conclusion about a relationship

as an answer, inferential statistics may be able to tell us, not only if the

relationship is present in the data, but if that relationship is strong enough to

give us confidence that our decision will work out. Examples of questions

that call for inferential statistics are:

. Have men or women purchased more of our product in the past year?

. Do our employees rate their work experience more highly than do our

competitors’ employees?

. Did our lowest priced vendor give us enough of a price break on our

key component last quarter to impact profits?

. Did enough units fail quality checks today to justify a maintenance

call?

. How many consumers have enough disposable income to purchase our

premier product if we lower the price by a specific amount?

TIPS ON TERMS

Descriptive statistics. Statistical methods, measures, or techniques used to sum-

marize groups of numbers.

Inferential statistics. Statistical methods, measures, or techniques used to make

decisions based groups of numbers by providing answers to specific types of

questions about them.

Using statistics to make decisions in business is both easier and harder

than using statistics in the rest of life. It is easier because so much of a

business situation is already described with numbers. Inventories, accounts,

sales, taxes, and a multitude of other business facts have been described using

numbers since ancient Sumeria, over 4000 years ago. It is harder because, in

business, it is not always easy to say what makes the best decision best. We

may want to increase profits, or market share, or saturation, or stock price,

etc. As we will see in Part Four, it is much easier to use statistics to predict the

immediate outcome of our decision than it is to know if, in the end, it will be

good for business.
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CASE STUDY

Selling to Men and Women
For example, say that we know that more women than men bought our product

during the Christmas season. And we know that, statistically, more women between

18 and 34 bought our product than the competitors’. Does that tell us whether we

should focus our advertising on men or women in the spring? Not necessarily. It

depends on whether we are selling a women’s perfume or a power tool.

If perfume, maybe we should focus on men to buy Valentine’s Day gifts. Or maybe

on women, so they’ll ask their husbands and boyfriends for our perfume by name.

If a power tool, then the Christmas season sales might be gifts. And a spring

advertisement might be better focused on men who will be getting ready for summer

do-it-yourself projects.

The lesson: Statistics may or may not be valuable to business. Common sense

always is. If we use statistics, be sure to use them with some common sense thrown in.

CRITICAL CAUTION

Good statistics is not just a matter of knowing how to pick the techniques and apply

them. Good statistics means knowing what makes for the best outcome and what the

problems are in measuring the situation. Good business statistics demands a good

understanding of business.

The Statistical Study
While statistics can be used on a one-time-only basis to help make a single

business decision, most commonly we find that a statistical study, containing

many statistics, either descriptive, or both descriptive and inferential, is

conducted. The reason for this is that, when many decisions have to be made

for one company, or for one department, or one project, and so forth, the

situations that must be studied to make good choices for each decision may

have a lot in common. A single statistical study can collect and describe a

large amount of information that can be used to help make an even larger

number of decisions. Like anything else, the economies of scale apply to

statistics. It is much cheaper to collect a lot of statistics all at once that may

help with lots of decisions later on than to collect statistics one by one as they

are needed. In fact, as we will see later, both governmental agencies and
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private firms conduct statistical studies containing thousands of statistics

they have no use for, but will be of use (and value) to their customers. We will

have much to say about statistical studies in Part Two.

TIPS ON TERMS

Statistical study. A project using statistics to describe a particular set of cir-

cumstances, to answer a collection of related questions, or to make a collection of

related decisions.

Statistical report. The document presenting the results of a statistical study.

The Statistical Report
No less important than the statistical study is the reporting of the results. Too

often we think of statistics as the collection of the information and the

calculation of the statistical measures. No amount of careful data collection

or clever mathematics will make up for a statistical report that does not make

the circumstances, assumptions, and results of the study clear to the

audience. Statistics that cannot be understood cannot be used. One of the

most important goals of this book is to explain how to read and understand a

statistical report. Another equally important goal is to show how to create a

report that communicates statistics effectively.

The rules for effective communication of statistics include all the rules for

effective communication in general. Presenting numbers clearly is difficult to

begin with, because much of our audience is not going to be comfortable with

them. One solution is to present the numbers pictorially, and different kinds

of numbers require different kinds of pictures, charts, and graphs. In

addition, the numbers that result from statistical calculations are meaning-

ful only as they relate to the business decisions they are intended to help.

Whether we present them as numbers or as pictures, we need to be able to

present them so that they are effective in serving their specific purpose.

Quiz
1. What do we call the use of numbers to provide general descriptions of the

world to help make business decisions?

(a) Common sense

(b) Statistics

(c) Business statistics

(d) Mathematics
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2. Which of the following does not lead to the underuse of statistics in business?

(a) A failure to set up statistical systems in advance of decision making

(b) A poor understanding of the limits of the available facts or

the statistical techniques useful for converting those facts into informa-

tion

(c) Lack of statistical knowledge on the part of business persons

(d) The time pressure to make business decisions

3. Which of the following does not lead to the overuse of statistics in business?

(a) Mistaken assumptions about how complicated or difficult to use or

costly statistics can be

(b) Requirements made by bosses and standards organizations and legal

authorities that fail to recognize limitations of statistics

(c) A desire to justify a decision with the appearance of a statistical analy-

sis

(d) Failures by decision makers to determine the value of statistics as a

part of their analysis

4. The key to knowing when to apply one statistical technique instead of

another is to understand the _______ of the techniques.

(a) Error

(b) Statistical assumptions

(c) Mathematics

(d) History

5. Which of the following is not one of the three things that we need to know,

and can know, before statistics can be useful for a business decision?

(a) We need to be able to characterize the current decision we face precisely

(b) There needs to be a history of similar situations that we can rely upon

for guidance

(c) We need to know specific facts about the future outcome of our

decision

(d) There needs to be a history of similar decisions that we can rely upon

for guidance

6. Which of the following is a question that can adequately be answered by

descriptive statistics?

(a) How many units failed quality checks today?

(b) Did our lowest priced vendor give us enough of a price break on our

key component last quarter to impact profits?

(c) Have men or women purchased more of our product in the past year?

(d) Do our employees rate their work experience more highly than do our

competitors’ employees?
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7. Which of the following is a question that can adequately be answered by

inferential statistics?

(a) How many of our employees rate their work experience as very good

or excellent?

(b) How many women between 18 and 34 have purchased our product in

the past year?

(c) Which vendor gave us the best price on our key component last

quarter?

(d) Did enough units fail quality checks today to justify a maintenance

call?

8. What are the advantages of conducting a statistical study over using a sta-

tistical technique on a one-time only basis?

(a) It is cheaper to collect a lot of statistics at once that may help with a

lot of decisions later on than to collect statistics one by one as they are

needed

(b) A single statistical study can collect and describe a large amount of

information that can be used to help make an even larger number

of decisions

(c) Both (a) and (b) are advantages

(d) Neither (a) nor (b) are advantages

9. Which of the following components of a statistical study is not necessary to

present in a statistical report?

(a) The calculations of the statistical techniques used in the statistical

study

(b) The circumstances of the statistical study

(c) The assumptions of the statistical study

(d) The results of the statistical study

10. Which of the following is not an advantage of understanding how to lie with

statistics?

(a) It is the best way to learn that sound judgment is vital to making sta-

tistics work for us

(b) It allows us to create convincing advertising campaigns

(c) It helps us to learn the strengths and limitations of statistical measures

and techniques

(d) It helps us to be cautious about incomplete measurements and unde-

fined terms in statistical reports
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CHAPTER
2

What Is Statistics?

We have learned what it is that statistics does, now we need to find out a bit

about how it works. How do statistical measures describe general facts about

the world? How do they help us make inferences and decisions? There is a

general logic to how statistics works and that is what we will learn about

here. There will be no equations in this chapter, but we will introduce and

define important technical terms.

SURVIVAL STRATEGIES

Use the definition sidebars and the quizzes to memorize the meaning of the technical

terms in this chapter. The more familiar and comfortable you are with the

terminology, the easier it will be to learn statistics.

This chapter will cover four very important topics: measurement, error,

sampling, and analysis. Sampling, measurement, and analysis are the first

three steps in doing statistics. First, we pick what we are going to measure,

then we measure it, then we calculate the statistics.
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We have organized the chapter so that the basic concepts are presented

first and the more complicated concepts that require an understanding of the

more basic concepts are presented afterwards. This will allow us to introduce

most of the basic statistical terminology used in the rest of the book. But it

will mean presenting these topics out of order compared to the order they are

done in a statistical study.

These four topics relate to one another as follows: We need to measure the

world to get numbers that tell us the details and then do statistical analysis to

convert those details into general descriptions. In doing both measurement

and analysis, we inevitably encounter error. The practice of statistics involves

both the acknowledgment that error is unavoidable and the use of techniques

to deal with error. Sampling is a key theoretical notion in understanding how

measurements relate to the world and why error is inevitable.

Measurement
Statistics is not a form of mathematics. The most important difference is that

statistics is explicitly tied to the world. That tie is the process of measurement.

WHAT IS MEASUREMENT?

The first and most fundamental concept in statistics is the concept of

measurement. Measurement is the process by which we examine the world

and end up with a description (usually a number) of some aspect of the

world. The results of measurement are specific descriptions of the world.

They are the first step in doing statistics, which results in general descriptions

of the world.

Measurement is a formalized version of observation, which is how we all

find out about the world every day. Measurement is different from ordinary

day-to-day observation because the procedures we use to observe and record

the results are specified so that the observation can be repeated the same way

over and over again.

When we measure someone’s height, we take a look at a person; apply a

specific procedure involving (perhaps) a measuring tape, a pencil, and a part

of the wall; and record the number that results. Let’s suppose that we

measure Judy’s height and that Judy is ‘‘five foot two.’’ We record the

number 62, measured in inches. That number does not tell us a lot about

Judy. It just tells us about one aspect of Judy, her height. In fact, it just tells

us about her height on that one occasion. (A few years earlier, she might have

been shorter.)
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Statistics uses the algebraic devices of variables and values to deal with

measurements mathematically. In statistics, a variable matches up to some

aspect of the thing being measured. In the example above, the variable is

height. The value is the particular number resulting from the measurement on

this occasion. In this case, the value is 62. The person who is the subject of the

measurement has many attributes we could measure and many others we

cannot. Statisticians like to think of subjects (whether they are persons or

companies or business transactions) as being composed of many variables, but

we need to remember that there is always more to the thing being measured

than the measurements taken. A person is more than her height, weight,

intelligence, education level, occupation, hair color, salary, and so forth. Most

importantly, not every variable is important to every purpose on every

occasion. There are always more attributes than there are measurable

variables, and there are always lots more variables that can be measured than

we will measure.

KEY POINT

Vital to any statistical analysis will be determining which variables are relevant to the

business decision at hand. The easiest things to measure are often not the most

useful, and the most important things to know about are often the hardest to

measure. The hardest part of all is to determine what variables will make a difference

in making our business decision.

TIPS ON TERMS

Subject. The individual thing (object or event) being measured. Ordinarily, the subject

has many attributes, some of which are measurable features. A subject may be a single

person, object, or event, or some unified group or institution. So long as a single act of

measuring can be applied to it, it can be considered a single subject. Also called the

‘‘unit of analysis’’ (not to be confused with the unit of measurement, below).

Occasion. The particular occurrence of the particular act of measurement, usually

identified by the combination of the subject and the time the measurement is taken.

Situation. The circumstances surrounding the subject at the time the measurement is

taken. Very often, when multiple measurements of a subject are taken on a single

occasion, measurements characterizing the situation are also taken.

Value. The result of the particular act of measurement. Ordinarily, values

are numbers, but they can also be names or other types of identifiers. Each value

usually describes one aspect or feature of the subject on the occasion of the

measurement.
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Variable. A mathematical abstraction that can take on multiple values. In statistics,

each variable usually corresponds to some measurable feature of the subject. Each

measurement usually results in one value of that variable.

Unit. (Short for unit of measurement. Not to be confused with unit of analysis in the

definition of Subject, above.) For some types of measurement, the particular

standard measure used to define the meaning of the number, one. For instance,

inches, grams, dollars, minutes, etc., are all units of measurement. When we say

something weighs two and a half pounds, we mean that it weighs two and a half

times as much as a standard pound measure.

Data. The collection of values resulting from a group of measurements. Usually,

each value is labeled by variable and subject, with a timestamp to identify the

occasion.

Values that aren’t numbers

In statistics, measurement doesn’t always result in numbers, at least not

numbers in the usual sense. Suppose we are doing an inventory of cars in a car

lot. We want to make a record of the important features of each car: make,

model, year, and color. (Afterwards, we may want to do some statistics, but

that can wait for a later chapter.) Statisticians would refer to the process of

collecting and recording the make, model, year, and color of each car in the lot

as measurement, even though it’s not much like using a tape measure or a

scale, and only in the case of the year does it result in a number. The reason for

this is that, just like measuring height or weight, recording the color of an

automobile results in a description of one feature of that particular car on that

particular occasion. From a statistical point of view, the important thing is not

whether the result is a number, but whether the results, each of which is a

specific description of the world, can be combined to create general

descriptions of the world. In the next section, Levels of Measurement, we

will see how statisticians deal with non-numerical values.

TIPS ON TERMS

Categorical data. Data recorded in non-numerical terms. It is called categorical

because each different value (such as car model or job title) places the subject in a

different category.

Numerical data. Data recorded in numerical terms. There are different types of

numerical data depending upon what numbers the values can be. (See Levels of

Measurement below.)
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What is data?

In Chapter 1 ‘‘Statistics for Business,’’ we didn’t bother too much about

specific definitions. Now, in Chapter 2 ‘‘What is Statistics?’’we are starting to

concern ourselves with more exact terminology. Throughout the remainder

of the book, we will try to be as consistent as possible with our wording,

in order to keep things clear. This does not mean that statisticians and

others who use statistics are always as precise in their wording as we should

be. There is a great deal of confusion about certain terms. Among these are

the notorious terms, data and information.

The values recorded as the result of measurement are data. In order to

distinguish them from other sorts of values, we will use the term data values.

Data are not the facts of the world that were measured. Data are

descriptions, not the things described. Data are not the statistical measures

calculated from the data values, no matter how simple. Often, statisticians

will distinguish between ‘‘raw’’ data and ‘‘cleaned’’ data. The raw data are

the values as originally recorded, before they are examined and edited. As we

will see later on, cleaning data may involve changing it, but does not involve

summarizing it or making inferences from it.

QUICK QUOTE

The map is not the territory. Alfred Korzybski

KEY POINT

Data are specific descriptions. Statistics are general descriptions.

A lot of data is used only indirectly, in support of various statistical

techniques. And data are always subject to error. To the degree that data

contain error, they cannot inform. So data, even though they are information

in the informal computer science sense, contain both information and error in

the more technical, theoretical sense. In statistics, as in information theory, it

is this latter, more technical sense that is most important. Because we will be

using data to make business decisions, we must not forget that data contain

error and that can result in bad decisions.We will have to work hard to control

the error in order to allow the data to inform us and help us make our

decisions.
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FUN FACTS

Facts. You may have noticed that we haven’t defined the term, fact. This is not an

accident. Statisticians rarely use the term in any technical sense. They consider it a

philosopher’s term.

You may have heard the expression, ‘‘It’s a statistical fact!’’ but you probably

didn’t hear that from a statistician. The meaning of this expression is unclear. It

could mean that a statistical description is free from error, which is never the

case. It could mean that the results of a statistical inference are certain, which

is never the case. It probably means that a statistical conclusion is good enough

to base our decisions on, but statisticians prefer to state things more cautiously.

As we mentioned earlier, statistics allows us to say how good our statistical

conclusions are. Statisticians prefer to say how good, rather than just to say,

‘‘good enough.’’

Some philosophers say that facts are the things we can measure, even if we don’t

measure them. Judy is some height or other, even if we don’t know what that height

is. Other (smarter) philosophers say that facts are the results we would get if our

measurements could be free of error, which they can never be. This sort of dispute

seems to be an excellent reason to leave facts to the philosophers.

LEVELS OF MEASUREMENT

You may have noticed that we have cheated a bit. In Chapter 1 ‘‘Statistics for

Business,’’ we defined statistics as the use of numbers to describe general facts

about the world. Now, we have shown how some measurements used in

statistics are not really numbers at all, at least not in the ordinary sense that

we learned about numbers in high school. Statistics uses an expanded notion

of number that includes other sorts of symbol systems. The statistical notion

of number does have its limits. First of all, the non-numeric values used in

statistics must be part of a formal system that can be treated mathematically.

In this section, we will learn about the most common systems used in

statistics. Also, for most statistical techniques used in inferential statistics, the

values will need to be converted into numbers, because inferential statistical

techniques use algebra, which requires numbers.

Let’s start with our example of measuring Judy’s height. We say that that

measurement results in a number, 62. You may remember from high school

algebra (or else from Appendix A) that there is more than just one kind

of number. There are counting numbers, integers, rational numbers, real

numbers, and so forth. We will see that it matters a lot what kind of number
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we use for different kinds of measurements. Height is measured with positive

real numbers. A person can be 5 foot 10 1
2
inches tall, but they can’t be minus

six feet tall, or zero inches tall.

We can see that the type of number used for different kinds of

measurement depends on what different values are possible outcomes of

that type of measurement. The number of items on a receipt is measured as a

positive integer, also known as a counting number. Counting numbers are

non-negative integers because counts don’t include fractions (ordinarily) or

negative values. The number of children in a family could be zero

(technically, a non-negative integer). A bank balance, whether measured in

dollars or in cents, is an integer, because it can be negative as well as positive

(negative if there is an overdraft), but we can’t have fractions of pennies.

Height and weight are positive real numbers. The amount of oil in an oil

tanker could be zero as well as a positive value. So it is measured as a non-

negative real number. The temperature inside a refrigerated container

could be negative or positive or zero, at least in the Celsius or Fahrenheit

scales.

KEY POINT

In algebra, different types of numbers are defined in terms of the different possible

values included. We choose the type of number for measuring a particular type of

variable when the different possible numeric values match up to the different

measurement outcomes.

But what about measurements that don’t result in numbers? Let’s go

back to our example of making an inventory of cars in a car lot. Suppose

that each parking spot in the car lot is labeled from A to Z. Each car is

either a sedan, convertible, or minivan. Our inventory sheet, shown in

Table 2-1, has one line for each parking spot on the lot. We go through the

lot and write down the model of the car in the line corresponding to its

parking spot.

Car models, like height, or weight, or dollars in a bank account, have

different values for different subjects, but the different values don’t really

correspond well to the different values for different types of numbers. The

closest match is positive integers, by assigning different numbers to different

models, like 1 for sedan, 2 for convertible, and 3 for minivan, but there is a

problem with this as well.
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Integers are different from car models in two ways. The first problem is

minor. There are an infinite number of integers, but only a finite number of

car models. Every bank account may have a finite amount of money in it, but

in principle, there is no limit to how much money can be in our bank account.

That is a good reason to use integers to measure money. Similarly, new car

models, like the minivan, occasionally get invented, so the infinite number of

integers available may be handy.

The other problem is not so minor. The integers possess a very important

property that car models do not: the property of order. Three is bigger than

two, which is bigger than one. There is no relation like ‘‘bigger than’’ that

applies to car models. The best way to see this is to realize that there is no

reason to choose any particular number for any particular car model. Instead

of choosing 1 for sedan, 2 for convertible, and 3 for minivan, we could just

as easily have chosen 1 for convertible, 2 for minivan, and 3 for sedan. Our

choice of which number to use is arbitrary. And arbitrary is not a good thing

when it comes to mathematics.

Statisticians do not classify different types of measurement in terms of

what types of numbers (or non-numerical symbols) are used to record the

results. While it may make a difference to certain types of calculations used

in statistics as to whether the original measurements are integers or real

numbers, this difference does not figure into the classification of measure-

ment. Instead, they group the different types of numbers in terms of what

Table 2-1 Automobile inventory.

Parking spot Type of car

A sedan

B sedan

C convertible

D sedan

E minivan

F minivan

. . . . . .
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makes a difference in using different statistical techniques. Just as with

statistical assumptions, the different types of measurement, called levels of

measurement, are grounded in the very important issue of how to pick the

right sort of statistical analysis for the problem at hand. The different levels

of measurement are:

. Nominal scale. When the values have no relation of order, the variable

is said to be on a nominal scale. This corresponds to categorical data.

Example: Methods of drug administration: oral, intravenous, intra-

muscular, subcutaneous, inhalant, topical, etc.

. Ordinal scale. When the values have a relation of order, but intervals

between adjacent values are not equal, the variable is said to be on an

ordinal scale. This is one type of numerical data. Example: Coin

grades: Poor, Fair, Good, Very Good, Fine, Very Fine, Extra Fine,

Mint, etc.

. Interval scale. When the values have a relation of order, and intervals

between adjacent values are equal, but a value of zero is arbitrary, the

variable is said to be on an interval scale. This is another type of

numerical data. Example: Fahrenheit temperature.

. Ratio scale. When the values have a relation of order, the intervals

between adjacent values are equal, and a value of zero is meaningful,

the variable is said to be on a ratio scale. (A meaningful value of zero

is called a true zero point or origin.) This is the last type of numerical

data. Example: Money, with debt measured as negative numbers.

HANDY HINTS

Some textbooks define ordinal data as a form of categorical data and others as a

form of numerical data. This is because ordinal data has characteristics of each and,

depending on what we do with it, it may be treated as either. An ordinal variable

does classify each individual subject item into one and only one category and, by that

standard, is definitely a type of categorical variable, where the categories have a

specific order. When graphing, ordinal variables are treated as categorical. Because

the positive integers are a very convenient way of showing order (after all, we are

all pretty familiar with the counting order), ordinal variables are very often coded

numerically as positive integers, which is one reason why some textbooks classify

ordinal variables as numerical.

Finally, many statistical inference techniques that require an interval level of

measurement can be and are used effectively with ordinal variables coded as integers.

(This is a good example of using a statistical technique even though one of

its assumptions is violated.) When it comes to inferential statistics, ordinal variables
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are treated as categorical or numerical depending on the technique used. Using a

technique (called a nonparametric technique) designed for categorical variables will

bemore accurate, butmay be less powerful. (That is, the technique is more likely to fail

to give a definitive answer to our question.) Using a technique (called a parametric

technique) designed for numerical variables is more powerful, but less accurate,

because the fact that the adjacent categories of an ordinal variable are not guaranteed

to be equally far apart violates one of the assumptions of the technique.

There is also a special case of a nominal variable that can be treated as interval.

When a variable can take on only two values, like true and false, or male and female,

or is-a-current-customer and is-not-a-current-customer, the data are nominal because

there is no order to the values. When used in inferential statistics, these variables

can be treated as interval, because, having only two possible values, they only have

one interval between the values. And one interval is always equal to itself. Variables

that can take on only two values are sometimes called binary variables, most often

called dichotomous variables, and when used in the inferential technique known as

regression (see Chapter 12 ‘‘Correlation and Regression’’), as dummy variables.

We will learn more about all of this in Part Three, where we learn about

inferential statistical techniques.

Note that this classification system ignores the differences between

integers, rational numbers, and real numbers. This is because measurements

are always made up to some level of precision. There is always the possibility

that two values are so close that they cannot be distinguished. Two people,

where one is six feet tall and the other is six feet and one millionth of an inch

tall, will both be classified as six feet tall. For the purpose of the analysis,

there is no difference between them. There are no truly continuous numbers

in measurement. Since statistics always begins with measurement, the issue

of continuity is irrelevant in applied statistics.

The only exception to this rule is for measurements that don’t ever come in

fractions. For example, sometimes the general fact of the world we care about

is discovered by counting, as in the number of widgets we produced last

week. The number of widgets is always a whole number. It wouldn’t make

much sense to say we have 45 1
2
widgets on hand. As we will see in later

chapters, statistics handles this problem in two different ways. If the number

of items is large enough, many of our questions can be answered statistically

by pretending that fractional values are possible. For example, if we are

producing between 40 and 50 thousand widgets a month, the fact that the

detailed calculations use fictitious values like 42,893.087 instead of genuinely

possible values like 42,893, doesn’t matter much. If the number of items is

small (usually less than 20), and it is the count that we really care about, there

are separate statistics, called count statistics that are used to answer our
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questions. In order to keep this difference straight, we will have two separate

examples running through the book: one about counting sheep, and one

about measuring people.

As we will see later on in Part Two and Part Three, the issues of possessing

order, equal intervals, and a true zero point are used to classify variables

because they make a difference as to whether different statistical measures

and techniques can be used effectively.

Error
In order to help make decisions, we need to know the true value of the

information that statistics provides. Statistics not only provides information,

but also specific measures of the degree of confidence with which that

information can be trusted. This ability to measure the quality of statistical

information is based on the concept of error.

TIPS ON TERMS

Error. The degree to which a description does not match whatever is being described.

All aspects of statistics are prone to error. No individual measurement is

free from error.Measurement is a human process, limited by our tools and our

senses and our other fallible human capacities. We need to understand

measurement error in order to have the right amount of confidence in our

data. Statistical measures and statistical techniques are also prone to error

of another type. Even when calculated mechanically and exactly from the

data, the information statistics gives us is never an exact description of the

true state of the world. (We will see more of why this is so later on in

this chapter and also in Chapter 3 ‘‘What Is Probability?’’) The statistical

theory of error helps us gauge the right amount of confidence to have in both

our data and our statistics.

CLEANING YOUR DATA

Computers have made statistics much easier to do, but they also make it

much easier to do statistics badly. A very common and very bad mistake is to

collect our data, get it onto the computer, and immediately begin to calculate

statistics. Both during and immediately after collecting data, we must check

our data thoroughly for errors. We will not be able to find every error. There
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are many types of errors we can’t even find in principle. But when a value

is clearly wrong, we need to fix it, or throw it out.

Throwing out a value leaves what is called missing data. Missing data can

be a real problem in statistics, but missing data is better than wrong data.

CRITICAL CAUTION

Missing Data
When there are multiple variables for each subject and one or more values for a

subject are missing, various serious problems can occur with different statistical

measures and techniques. Most computer programs that do statistics will handle

missing data automatically in the simplest way possible, which is usually good

enough. However, when there is lots of missing data, an expert should be consulted

to determine the best way to treat it.

QUICK QUOTE

There is only one good way to deal with missing data. Don’t have any!

Gertrude Cox

How do we know when the data are bad? Often, it’s quite simple. If the

variable is age, then values like ‘‘handle,’’ ‘‘�3,’’ and ‘‘123’’ are most likely

errors. Before data are collected, it is important to determine what the

acceptable values will be. These acceptable values are called legal values.

When the variable is non-numerical, it is a good idea to set up specific values

called codes for each legal category. Returning to our example of car models,

we might decide to save time and trouble by just coding the model of each car

using the first letter: C for convertible, S for sedan, and M for minivan. This

is fine, unless we find a coupe on the lot! Always plan for your possible values

before you start collecting data. If you are not sure of all possible values,

have a system ready to add more legal values and validate them.

BIO BITES

Always Almost Always
There are also more indirect ways of finding bad data. The first author used a

multiple-choice questionnaire for his Master’s research. All of the items had answers

rated from ‘‘1’’ to ‘‘5,’’ ranging from ‘‘never,’’ through ‘‘sometimes’’ to ‘‘always.’’

CHAPTER 2 What Is Statistics? 31



The answers for one subject were all ‘‘4.’’ Either the computer was broken that day,

or that student was in a hurry and didn’t want to read the questions.

You should also consider how the data will be collected. For instance, if

we are collecting information about cars in the lot on handwritten sheets,

different sorts of errors are likely to occur than if we are collecting that same

information with a hand-held computer. We should plan our codes

accordingly. If we are using the computer, we may want to use the full

names of the colors of the cars in the lot. If we know all the colors in advance,

we could put them on a menu. If we are writing things down by hand, names

can be a problem. The word ‘‘gray’’ can look an awful like the word, ‘‘green.’’

It might be better to assign numbers for each color and list those numbers at

the top of the sheet.

The important lesson is that dealing with error starts even before data

is collected. Careful planning and design is needed to prevent errors from

happening to begin with, and to make errors easier to detect if they do

happen. We cannot prevent errors entirely, but we need to work carefully to

minimize them.

TWO WAYS OF BEING WRONG: VALIDITY AND
RELIABILITY

In later chapters, we will have a great deal more to say about error. For

now, it is important to understand that there are two sorts of error. In

statistics, these two kinds of error are talked about in terms of reliability

and validity. The distinction is related to the difference between precision

and accuracy in physics and engineering, or between precision and clarity

in philosophy.

Suppose I am shooting at a target with a bow and arrow. Over time, I find

that I am hitting the target about 30% of the time, but that almost all of my

misses are falling short of the target. In addition, my arrows are scattered up

and down, right and left. The first step is to realize that I am making two

errors. My precision is low—the arrows are going all over the map. And my

accuracy is low—I am hitting consistently short of the target.

Being a statistician—and perhaps not a good student of archery—I choose

to work on my precision first. I give up on trying to hit the target, and I just

try to get all of my arrows to land in a small area, well short of the target.

Once I have accomplished this, I am making just about the same error with

every shot—I am always in line to the target, and I am always falling short.
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My precision is high—I hit almost the same spot every time. My accuracy is

low—I never hit the target.

At this point, I go to an archery instructor. I say, ‘‘I’ve gotten very good at

getting all the arrows to land in the same spot. But I’m pulling the bow as

hard as I can, and they don’t go far enough.’’ He says, ‘‘Let me watch.’’ I

shoot ten arrows. They all land in the dirt short of the target, in a circle

smaller than the bull’s eye of the target. He laughs, ‘‘You don’t need to pull

any harder. A bow should always be pulled with just enough strength for the

arrowhead to be just past the bow. If you want to hit the target, you have to

shoot farther. To shoot farther, just aim higher.’’ I give it a try, and, with a

little practice, I am hitting the target dead center every time. I’ve corrected

my second error. I’m shooting accurately.

When we are both precise and accurate, we hit the target. In statistics, we

would say that when our measurements are both reliable and valid, we have

reduced both types of error.

HANDY HINTS

Reliability is like precision and validity is like accuracy.

A similar situation happens in golf. If my shots consistently go left, the

golf pro coaches me to improve parts of my swing to reduce hooking.

Likewise for going right and slicing. The coach is working to reduce the bias

in my form and my golf swing. None of the coaching will have anything to do

with aiming at the target. It will all have to do with my form. On the other

hand, if I am missing both left and right, the golf pro will assist me with my

aim, that is, keeping my shots on target, keeping the spread down. The golf

pro is working first to reduce bias, that is, to increase accuracy, so that my

shots are centered around the hole. Secondly, the pro will help me increase

the precision of my golf shot, so I’m not just getting somewhere near the hole,

I’m landing on the green, very near the hole.

For reasons we will see in a moment, in statistics, we have to do things in

the reverse order from what our golf pro did and from what is done in sports

in general. First, we need to get the spread down, increasing the reliability of

our measurements, and then we need to make sure we are pointed in the right

direction, increasing their validity. (This is how our statistician tried to teach

himself archery, and why the archery instructor found it so amusing.)

Reliability is how statisticians talk about minimizing unbiased error,

reducing spread. The value of knowing the reliability of our measurement is

that we don’t have to measure again and again to get it right. If our technique
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for measuring Judy’s height is reliable, whatever height we get the first time

won’t be too far from the height we get the second time or the fifth time or

the fiftieth time (presuming Judy’s real height isn’t changing between

measurements). We can rely on the number we get being independent of

when we measure it. Measuring a person’s height with a tape measure is

pretty reliable; that is, if we measure several times in a row, we’ll probably get

almost the same answer.

Validity is how statisticians talk about minimizing biased error, making

sure things are centered at what they are pointed at. The value of knowing

the validity of our measurement is that we have a good estimate of how far-

off from the truth our measurement can be. If our technique for measuring

Judy’s height is valid, we know that her real height won’t be far from what we

get by measuring. If our measuring technique is not valid, we will need to find

and correct the source of bias if we can, or take it into account and adjust for

it. For example, if our tape measure is cut off at the front end, and starts at

two inches, instead of at zero, every time we measure Judy’s height, our result

is two inches taller than her actual height. Getting a good tape measure

would eliminate the bias.

There is an interesting relationship between reliability and validity. Our

measurements can’t be any more valid than they are reliable. The amount of

reliability is a ceiling on the amount of validity. This is true with precision

and accuracy as well. We can be perfectly precise and very inaccurate. In golf,

if I hook badly, it doesn’t matter if my spread is perfect. If it was, I might find

myself always missing the hole to the left by exactly ten and a half feet.

Strange, but possible. A statistician would say that my shot was biased and

invalid, but highly reliable. A physicist would say that my golf shot was

inaccurate, but precise. And my golf coach would tell me to pretend that the

hole was ten and a half feet further to the right.

On the other hand, we can’t be perfectly accurate and very imprecise. If my

every shot is a hole in one, then the spread of all my shots can’t be wider than

the hole. To have a high degree of accuracy, we need to have both validity

and reliability; we need to be both free of bias and consistently close to the

target. And, if our reliability is low, then we can’t know for sure whether our

validity is good. If we may always be missing by ten feet or so, we can’t find a

bias of less than ten feet with any certainty.

Another way to think about this is in terms of a clock. If our clock runs

with perfect precision and we set it five minutes fast, it will never give us the

correct time, but it will always be exact. It will be exactly five minutes off. On

the other hand, if the clock has poor precision, running faster and slower

from time to time due to a broken regulator, it will only give the correct time

now and then, and we won’t have any way of knowing when it is right. We
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will also have no way to set it to the correct time and keep it there, because it

does not keep time reliably.

In statistics, there is an important difference between reliability and

validity. We can calculate the reliability without even knowing the right

answer! Let’s go back to the golf example. Suppose I take a bunch of shots at

a hole from a place where I can reach the green easily. Now, we go up in the

blimp and take a picture of all of the golf balls from straight overhead.

Suppose we can see the golf balls in the picture, but we can’t see the hole,

because someone removed the flag. If all of the golf balls are close together,

we will know that my shooting was very precise, very reliable, but we won’t

know if I was hooking or slicing or very accurate. Now, someone goes and

puts the flag back in the hole, and the cameraman takes another photo. If the

hole is near the center of the area where the balls were found, then my golf

shot was accurate, free of bias, or, in statistical terms, valid. We need to see

the target to determine accuracy. In assessing validity, like accuracy, we need

to know what the true value is.

When it comes to statistics, obviously, validity is the most important thing.

We want our numbers to be right, or at least clustered around the right

answer. But validity is much harder to measure than reliability. The reason

for this is that we don’t know the world directly; we only find out about the

world by observing it. Recall that measurement is just formalized, repeatable

observation. As a result, we are always comparing one observation to other

observations, one measurement to other measurements. Statistics is like

playing golf, only nobody knows exactly where the hole is. Suppose we

measure Judy’s height over and over again and record the numbers. If all of

the numbers are close together, we know that our technique for measuring

Judy’s height is reliable, but how do we know if it is valid? Maybe, like the

case with the cut-off tape measure, every measurement is almost exactly two

inches off. Unlike the golf balls on the golf course, there is no way of knowing

where the target is. What is Judy’s ‘‘true height’’? The only way we know

Judy’s height at all is to measure it, yet we don’t know if our measuring

technique is giving us the right answer.

BIO BITES

Counting Blood Cells
The co-author of this book worked at a hospital blood lab when he was in high

school. A new machine for counting red blood cells had just been invented. It gave

different results than the old machine. Was it broken? Possibly not. Maybe it was

better than the old machine. If the old machine had a bias, and the new one didn’t,
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then the more accurate results would simply look different—they would look wrong

from the perspective of the old way of doing things.

This is the difficulty of determining validity. Only if we know what is really out

there can we say which method of measurement is more valid. But the only way to

know what is out there is to measure it, one way or another.

The hospital tested the new machine by comparing it against two or three other

methods, and determined it was a better device than the one it was replacing.

The best way to determine validity is to compare the measurements we get

to other measurements taken using an entirely different measurement tech-

nique. We could compare our results measuring Judy’s height with other

measurements taken with a doctor’s scale. When there is only one way to

measure something, the problems of assessing validity become much more

difficult.

Because of these two facts about the relationship between reliability and

validity, in statistics, we always consider reliability first. First of all, reliability

is easier to measure, because we don’t have to know where the target is. This

is the opposite of archery and golf, where we can see the target, and so the

easiest thing is to evaluate each shot with respect to the target. Even more

importantly, because our measurements can be no more valid than they are

reliable, it makes no sense to attempt to check our validity if our mea-

surements are all over the place. As we said above, low reliability means

we can’t even measure validity very closely. If all our golf shots are flying

into the crowd, it really doesn’t matter if more of them are going to the right

than to the left.

Sampling
We said earlier that, even if our measurements were perfectly free from error,

statistics would still not give us perfectly correct answers. Over and above

measurement error, there is also statistical error. Key to understanding

statistical error is the concept of sampling. Sampling is the process by which

we choose the individuals we will measure. The statistical errors due to

limitations of sampling are known as sampling error.

Statistical conclusions, whether the results of measurements or the results

of an analysis, usually take the form of a single number (the statistic, which is

a general description) that characterizes a group of numbers (the data, which

are specific descriptions). But we may want to know a general fact about

subjects we cannot measure. A good example of this is political polls for
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predicting election results. Before the election, the pollsters call people up and

ask who they are going to vote for. Even if we supposed that everyone knows

who they will vote for, that everyone answers, and that everyone tells the

truth (all of which means that there is no measurement error), the pollsters

could make the wrong prediction. Why? Because there is no way the pollsters

can call every voter. We all see polls on TV when no one called us the night

before. They must have been calling someone else. Suppose the pollsters only

called Republicans that night? Their prediction might be way off.

WHAT IS A POPULATION?

Ideally, if the pollster could call every person who was going to vote (and

there was no measurement error), they could get an exact prediction of the

election results. The group of people who are actually going to vote in the

election is what statisticians call the population. Practically speaking, limits

on time and money usually prevent measuring values from the entire

population, in polls or elsewhere. However, there are problems measuring the

entire population, even in principle. Even the night before the election, some

people might not be sure if they are going to vote. Maybe they are running

late the next morning and decide to skip it. Then, at lunch, a few co-workers

decide to go to vote together and the person who missed voting that morning

gets dragged along. Even someone who is 1000% sure they are going to vote

tomorrow may have an emergency and just not be able to make it. And we

also have to consider someone who plans to vote, does vote, and whose ballot

gets eliminated later on due to damage from a broken voting machine.

CRITICAL CAUTION

A population is a theoretical concept. We can envision it, but, when we get down to

the nitty-gritty details, we can almost never actually measure it exactly.

It is easy, but wrong, to think of a population as something real, that we

can’t measure because of the expense, but there are always limitations. Some

of these limitations might be classified as measurement error, and others

might not, but the result is the same. Suppose we want to evaluate yesterday’s

sales. Then yesterday’s sales are our population. Yesterday’s sales receipts are

how we can measure them. It may look like we have access to the entire

population at low cost, but that is not the case. Yesterday’s sales are past

events. Absent a time machine, we will never see them again directly. The
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sales receipts are just records, measurements of those events. Some may be

lost or have errors. Or a sales receipt from some other day may be marked

with yesterday’s date by mistake.

KEY POINT

The most important thing to understand about populations is the need to specify

them clearly and precisely. As we will see later on, every statistical study begins with

a question about some population. To make that question clear means being clear

about what the population is, who or what is or is not subject of the study, what is

the study question about. A good statistical study begins with a clearly specified

question. The easiest way to turn a good study bad is not to specify the population of

interest clearly and precisely.

In fact, one of the key reasons that different pollsters and pundits had different

predictions for the results of the Iowa Democratic Caucus is that they had different

expectations about who would participate in the caucus, that is, who would be in the

population.

The example of yesterday’s sales receipts is the ideal situation. Absent

measurement error, we have every reason to believe that we have access to

the entire population. Our collection of receipts is what statisticians call a

comprehensive sample. This is one of the best types of sample to have, but, in

practice, it is usually impossible to get. And, when we have it, it may be too

costly to measure every individual in the sample.

TIPS ON TERMS

Population. All of the subjects of interest. The population can be a group of business

transactions, companies, customers, anything we can measure and want to know

about. The details of which subjects are and are not part of our population should be

carefully specified.

Sample. The subjects in the population we actually measure. There are many ways of

picking a sample from a population. Each way has its limitations and difficulties.

It is important to know what kind of sample we are using.

Sampling. The process of selecting the individuals from the population that makes up

our sample. The details of the sampling procedure are what make for different kinds

of sample.
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WHAT IS A SAMPLE?

This brings us to the critical notion of a sample. A sample is the part of the

population we actually measure. Sampling is the process of selecting those

members of the population we will measure. Different ways of sampling lead

to different types of samples. The types of statistical error we can encounter

in our study depend on how our sample differs from the population we are

interested in. Understanding the limits of how confident we can be about the

results of our study is critically tied to the types of statistical error created.

Choosing the right sampling procedure and knowing the errors it creates is

critical to the design and execution of any statistical study.

KEY POINT

Choosing the right sampling procedure and knowing the errors it creates is critical to

the design and execution of any statistical study.

The relationship between sampling and error is not as hard as it seems. We

begin by wanting to know general facts about a situation: What were last

year’s sales like? How will our current customers react to a price increase?

Which job applicants will make the best employees? How many rejects will

result from a new manufacturing process? If we can measure all of last year’s

sales, all of our current customers, all of our future job applicants, etc., we

will have a comprehensive sample and we will only have to worry about

measurement error. But to the degree that our sample does not include

someone or something in the population, any statistics we calculate will have

errors. General descriptions of some of last year’s sales, some of our current

customers, or just the current crop of job applicants will be different from

general descriptions of all of the sales, customers, or applicants, respectively.

Which members of the population get left out of our measurements

determine what the error will be.

HANDY HINTS

Note that sampling error is a question of validity, not reliability. That is, sampling

error introduces bias. Differences between the sample and the population will create

statistical results that are different from what the results would have been for the

entire population, which is what we started out wanting to know. On the other hand,

our choice of sample size affects reliability. The larger the sample size in proportion
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to the population, the more reliable the statistics will be, whether they are biased

or not.

Here are some of the most common types of samples:

. Comprehensive sample. This is when the sample consists of the entire

population, at least in principle. Most often, this kind of sample is not

possible and when it is possible, it is rarely practical.

. Random sample. This is when the sample is selected randomly from the

population. In this context, randomly means that every member of the

population has an equal chance of being selected as part of the sample.

In most situations, this is the best kind of sample to use.

. Convenience sample. This is usually the worst kind of sample to use,

but, as its name implies, it is also the easiest. Convenience sampling

means selecting the sample by the easiest and/or least costly method

available. Whatever kinds of sampling error happen, happen.

Convenience sampling is used very often, especially in small studies.

The most important thing to understand about using a convenience

sample is to understand the types of errors most likely to happen, given

the particular sampling procedure used and the particular population

being sampled. Each convenience sampling process is unique and the

types of sampling error created need to be understood and stated

clearly in the statistical report.

. Systematic sample. This is when the sample is selected by a non-

random procedure, such as picking every tenth product unit off of the

assembly line for testing or every 50th customer off of a mailing list.

The trick to systematic sampling is that, if the list of items is ordered

in a way that is unrelated to the statistical questions of interest, a sys-

tematic sample can be just as good as, or even better than, a random

sample. For example, if the customers are listed alphabetically by last

name, it may be that every customer of a particular type will have an

equal chance of being selected, even if not every customer has a chance

of being selected. The problem is that it is not often easy to determine

whether the order really is unrelated to what we want to know. If the

stamping machine produces product molds in batches of ten,

choosing every tenth item may miss defects in some part of the stamp-

ing mold.

. Stratified sample. Also called a stratified random sample. This is a

sophisticated technique used when there are possible problems with

ordinary random sampling, most often due to small sample size.
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It uses known facts about the population to systematically select

subpopulations and then random sampling is used within each sub-

population. Stratified sampling requires an expert to plan and

execute it.

. Quota sample. This is a variant on the convenience sample common in

surveys. Each person responsible for data collection is assigned a quota

and then uses convenience sampling, sometimes with restrictions. An

advantage of quota sampling is that different data collectors may find

different collection methods convenient. This can prevent the bias

created by using just one convenient sampling method. The biggest

problem with a quota sample is that a lot of folks find the same

things convenient. In general, the problems of convenience samples

apply to quota samples.

. Self-selected sample. This is a form of convenience sample where the

subjects determine whether or not to be part of the sample. There are

degrees of self-selection and, in general, the more self-selection the

more problems and potential bias. Any sampling procedure that is

voluntary for the subjects is contaminated with some degree of self-

selection. (Sampling invoices from a file or products from an assembly

line involves no self-selection because invoices and products lack the

ability to refuse to be measured.) One of the most drastic forms of self-

selection is used in the Internet polls common to TV news shows.

Everyone is invited to log onto the Web and vote for this or that.

But the choice to view the show is self-selection, and others do not

get the invitation. Not everyone who gets the invitation has Internet

access. Since having Internet access is a personal choice, there is self-

selection there, as well. And lots and lots of folks with Internet access

don’t vote on that particular question. The people who make choices

that lead to hearing the invitation, being able to vote, and voting, are

self-selected in at least these three different ways. On TV, we are told

these polls are ‘‘not scientific.’’ That is polite. Self-selection tends to

create very dangerous and misleading bias and should be minimized

whenever possible.

We will have much more to say about exactly what kinds of errors result

from sampling in Chapters 3, 8, and 11. There is always more to learn about

sampling. Note that, although we discussed measurement first, the practical

order is: Define the population; Select the sample; Take the measurements.

When we have that, we have our data. Once we clean up our data—see

Chapter 6 ‘‘Getting the Data’’ about that—we are ready to analyze the data.
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Analysis
Analysis is the process that follows measurement. In Chapter 1 ‘‘Statistics for

Business,’’ we discussed the difference between descriptive and inferential

statistics. Both of these are types of statistical analysis. Here, we will explain

those differences in more detail.

Our data consist of a number of measurements of one or more different

features for each one of all of the individual subjects in our sample. Each

measurement value gives us specific information about the world. We use

mathematics to calculate statistical measures from those measurement values.

Each statistical measure gives us general information about the world

because it is calculated from multiple data values containing specific

information. The process of calculating general information from data is

called statistical analysis.

SUMMARIZING DATA: WHEN IS A NUMBER A
STATISTIC?

Within the field of statistics, the word, ‘‘statistic’’ has another, more specific

meaning. A statistic, also called a statistical measure, is a value calculated

from more than one data value, using a specific calculation procedure,

called a statistical technique or statistical method. We have mentioned one

statistic, the count, in Chapter 1. We will learn about a number of other

statistical measures in Chapter 8 ‘‘Common Statistical Measures.’’ Examples

of statistical measures are: ratio, mean, median, mode, range, variance,

standard deviation, and many others.

STUDY REVIEW

In statistics, a statistical measure, is a variable calculated from the data.We discuss the

most basic of these in Parts One and Two, especially in Chapter 8. Each variable

is calculated using a specific method, described by a mathematical equation.

A statistical procedure, some of which are called statistical significance tests, are

more complex methods that give you more advanced statistical measures. We discuss

these in Part Three. Statistical procedures often involve a number of equations and

provide more subtle and intricate information about the data. However, there is no

hard and fast rule dividing the measures from the procedures. In all cases, a number

is calculated from the data that informs us about the data.
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The procedures used for calculating a statistical measure starts with

multiple values and summarizes them, producing a single number that

characterizes all of the values used in the calculation. It is this process of

summarization that generates general descriptions from specific ones.

As we discussed in Chapter 1, there are two basic kinds of statistical

measures, descriptive and inferential. As you might imagine, a descriptive

statistic is one that describes a general feature of the data. An inferential

statistic describes the strength of a relationship within the data, but its most

common use is to say whether a relationship in the data is strong enough

to affect the outcome of a particular sort of decision. The calculated value of

the inferential statistic determines the conclusion of the statistical inference.

For example, in one of the most basic inferential procedures, the t test, the end

result is the calculation of an inferential statistical measure called the t statistic.

The t statistic is higher whenever the value of the particular variable being

analyzed is higher for one group of subject units than for another.

KEY POINT

Both descriptive and inferential statistics tell us about the world. An inferential

statistic also answers a specific type of question within the framework of a statistical

technique designed to perform a statistical inference. (For more on statistical

inference, see the sidebar on inductive inference.) All of the guarantees for that

statistical technique come with the proper use of the inferential statistic.

In the end, the distinction between a descriptive and an inferential statistic

is not a hard and fast one. It is a common error in statistics to use a

descriptive measure as if it could provide a conclusion to a statistical

inference. It is a common oversight in statistics to forget that any inferential

statistic does describe the data in some way. Simply put, every inferential

statistic is descriptive, but most descriptive statistics are not inferential.

WHAT IS A STATISTICAL TECHNIQUE?

Throughout these first two chapters, we have talked about statistical

techniques and differentiated them from statistical measures, but we haven’t

yet defined the difference. A statistical measure is a number that results from

making calculations according to a specified procedure. For every statistical

measure, there are one or more (usually more) procedures that produce the

right number as a result. Take the example of the simplest statistical measure,
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the count. The procedure used to produce counts is counting, which we all

know how to do.

When we get to more sophisticated statistical measures, particularly

inferential statistical measures, the procedures for calculating the measure get

a lot more complex. We call these much more complex procedures statistical

techniques or statistical methods. As a result, the distinction between a simple

calculation procedure and a complex statistical technique is also not a hard

and fast one.

One way of teaching basic, descriptive statistical measures is to present

step-by-step procedures for calculating them. On the other hand, this method

is almost never used for the more complex inferential measures, except in the

most advanced texts. Knowing how to do these calculations may be a good

teaching device, but, on the job, no one does these calculations, even the

simplest ones, by hand anymore. Computers are used instead. In this book,

we will not walk through the details for calculating most statistical measures,

because those can be found in other excellent texts, which we list for you at

www.qualitytechnology.com/books/bsd.htm. We will, however, provide

detailed procedures for some special types of calculations that you may

find useful in business when there is no computer around. (Recall the

quotation from John Tukey in the introduction to Part One about the stick

in the sand on the beach. Even without a computer, we can learn important

facts about data right on the spot.)

FUN FACTS

Brewing Up Inferential Statistics
Until the early part of the last century, statistics was about description. Then, in

1920, a statistician named Gossett, working in the business of brewing beer for

Guinness, came up with a trick called the t test. A famous statistician and scientist

named Sir Ronald A. Fisher immediately recognized the enormous importance of

the t test, and began the development of a second kind of statistics, inferential

statistics.

Statistical methods are formal, which means that once we abstract away from the

topic of interest by measuring things, we can do statistics on almost anything:

employees, receipts, competitors, transactions, etc. But the guarantee that statistical

techniques provide is not apodictic, because of the possibility of statistical error. As

we discussed before, even if all our measurements are perfect, our conclusions are

not guaranteed to be true.

What Fisher recognized was that the t test (also called Student’s t test, because

Gossett had to publish under the pseudonym ‘‘Student,’’ because, at the time,

Guinness Breweries prohibited its employees from publishing their work in scholarly
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journals) provided a weaker sort of guarantee, based on the concept of probability.

If all of our measurements are perfect (that is, all of our premises are true), we have a

guarantee that the statistical values we calculate are probably close to the right

values. (We will learn more details about this guarantee in later chapters.)

The three most important things to understand about statistical inference are that

it uses a specifiable procedure, that procedure is formal, and that it uses probability

to describe how confident we have a right to be about the results. Today, formal

procedures can be performed by computer, which is what makes the very powerful

and very complex statistical analyses so popular and useful in business (and

elsewhere) possible.

Quiz
1. What is the correct order of the first three steps in performing statistics?

(a) Analysis, sampling, and measurement

(b) Sampling, measurement, and analysis

(c) Analysis, measurement, and sampling

(d) Measurement, sampling, and analysis

2. Which of the following statements about measurement is not true?

(a) Measurement is a formalized version of observation

(b) Measurement is different from ordinary observation

(c) Measurement provides a specific description of the world

(d) Measurement provides a general description of the world

3. How is a variable used in statistics?

(a) A variable usually corresponds to some measurable feature of the sub-

ject

(b) A variable is a person, object, or event to which a measurement can be

applied

(c) A variable is the result of a particular measurement

(d) A variable is the collection of values resulting from a group of measure-

ments

4. The series ‘‘President, Vice-President, Secretary, Treasurer, Board Member’’

is on which type of scale?

(a) Nominal

(b) Ordinal

(c) Interval

(d) Ratio
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5. Which of the following components of statistics contain error?

(a) Measurement

(b) Statistical analysis

(c) Sampling

(d) All of the above

6. If we have a set of measurements that are valid, but not very reliable, they

will . . .

(a) Be clustered around the right value, but in a wide cluster

(b) Be clustered very closely together, but around the wrong answer

(c) Be in a wide cluster around the wrong value

(d) Include at least one measurement that is exactly the right value

7. Validity is how statisticians talk about minimizing _______ error;

Reliability is how statisticians talk about minimizing _______ error.

(a) Biased; biased

(b) Biased; unbiased

(c) Unbiased; biased

(d) Unbiased; unbiased

8. When a comprehensive sample is not possible, what is the best sampling

technique to use in order to avoid introducing additional bias?

(a) Convenience sample

(b) Stratified sample

(c) Random sample

(d) Systematic sample

9. Which of the following is the end product of the procedures used for calcu-

lating a statistical measure?

(a) A single summary number that characterizes all of the values used in

the calculation

(b) A statistical technique

(c) A range of numbers that characterize the population of interest

(d) A valid and reliable measure

10. Every inferential statistic is _______, but most descriptive statistics are not

_______.

(a) Inferential; inferential

(b) Inferential; descriptive

(c) Descriptive; inferential

(d) Descriptive; descriptive
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CHAPTER
3

What Is Probability?

Probability has an important role in statistical theory. Its role in learning

about statistics is less clear. However, many statistical texts cover basic

probability and readers of this book who want to do well in their statistics

class will need to understand probability, because it will probably be in the

exam. Here, we use the notion of probability to introduce the important

statistical notions of independence and distributions, which will come up

again throughout the book.

READING RULES

This is the first chapter in which we will be using mathematics. There will be some

equations, which, if you are taking a course, you may need to memorize for exams.

Here, we will focus on explaining them. By the last few sections of the chapter, we

will be ready to do our first real statistics. But, even for that, there will be almost no

math required.
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How Probability Fits in With Statistics
Thomsett (1990) points out that, in some ways, probability and statistics are

opposites. Statistics tells us general information about the world, even if we

don’t understand the processes that made it happen. Probability is a way of

calculating facts about the world, but only if we understand the underlying

process. One way that probability fits in with statistics is that, in order to

prove that this or that statistical technique will actually do what it is

supposed to do, statistical theoreticians make assumptions as to how the

underlying process works and use probability theory to prove mathematically

that statistics will give the right answer. Obviously, to us, as users of

statistics, that kind of theoretical connection between probability and

statistics isn’t too useful, although knowing that it is true can give us

confidence that statistics actually works.

For us, the most important way that probability fits in with statistics is

that it shows us the way that numbers calculated from a sample relate to the

numbers for the population. Every element of statistics that we actually use

in business or elsewhere is calculated from the sample, because the

population, as we noted in Chapter 2 ‘‘What Is Statistics?’’ is just a

theoretical abstraction. For every practical element of statistics based on the

sample, there is a corresponding theoretical element based on the population.

Once we understand the notion of probability, we will be able to see how the

numbers we calculate from the sample can tell us about the real values—the

true values, if we are willing to use that term—of the population that we

would like to have, in the ideal, to help make our business decisions.

Measuring Likelihoods
Probability is the mathematical study of chance. In order to study chance

mathematically, we will need some mathematical measure (not necessarily a

statistical measure) of chance. The mathematical measure of chance is called

the probability of an event and it is symbolized as Pr(x), where x is the event.

Probabilities are measured using a statistical measure called the proportion,

symbolized as p. Probabilities are based on the notion of likelihood. In this

section, we will explain the basics of chance, likelihoods, and proportions.
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LIKELIHOODS AND ODDS: THE MYSTERIES OF
CHANCE

What do we mean by chance? By chance, we mean the events for which we do

not know the cause. Even if we believe that every event has a cause, often

something will happen for no reason that we know of. Sometimes we say that

this happened ‘‘by chance.’’ Suppose that we walk into a store and the person

just in front of us is awarded a prize for being the store’s millionth customer.

We might say that that particular customer turned out to be the millionth

customer ‘‘by chance’’ even though, presumably, there were reasons why it

was them (and not us).

Maybe we went back to check to see that the car door was locked, which

delayed us by half a minute. Maybe they spotted a better parking spot that

we missed, which put them closer to the door. Maybe we dropped by the

store very briefly the night before because we couldn’t wait until today for

that candy bar. Had we stayed home hungry, they would have been the

999,999th customer today, and we would have been the millionth. When

there is no clear line of simple causes, we use the word ‘‘chance.’’

Ignoring causes: talking about likelihood

The trick to probability is that, whether chance is about causes we don’t

know about, causes that are too complicated, or events that actually have no

cause, we can talk about these events without talking about their causes. In

ordinary day-to-day matters, we do this using the notion of likelihood. Some

things are more likely to happen than others. Bob is usually late to meetings,

so it is likely he will be late to this next meeting. Rush hour usually starts

early on Friday, so, it is unlikely our delivery truck will have an easy time this

Friday afternoon. The likelihood of our winning the lottery tomorrow is very

low. The likelihood that the sun will rise tomorrow is very, very high.

Whether we believe modern science, and think the Earth rotates, or we use

the ancient Ptolemaic model that the sun circles the earth, doesn’t matter.

Our experience tells us that sunrise is a very likely event, independent of

theory. Note that even though likelihoods may be due to many things, we

often believe that the likelihood of something is high or low based on how

often similar things have happened in the past. This is another case of the

basic assumption that the future will be like the past that we mentioned in

Chapter 1 ‘‘Statistics for Business.’’
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Simple numbers for chances: odds

Even in ordinary day-to-day dealings, we deal with likelihoods in terms of

numbers. One way we do this is with the notion of odds. When the likelihood

is low, we say that the odds are against it. We also use odds to express

likelihoods more exactly, with numbers. The odds of heads on the flip of a

fair coin is 50–50. The odds on rolling a six on a single die is one-to-five (or

five-to-one against) etc. Odds are based on a statistic called the ratio, which in

turn is based on the statistic we learned about in Chapter 1, the count.

Likelihoods cannot always be calculated using counts alone, but when they

can be, then we use the notion of odds.

KEY POINT

Different situations lead to different ways that likelihoods can be calculated

mathematically. This is very important in the philosophy of probability, although, as

it turns out, not so much in the mathematical theory. As we will see later in this

chapter, there are three different sorts of situations, leading to three different types of

probability. In the first type of situation, we can count everything, which allows us to

calculate the odds. In the second, we can use the past to estimate the likelihoods. In

the third type, we can only use our own subjective intuition to guess at the like-

lihoods. In all three cases, the mathematical theory of probability works out the

same (which is pretty remarkable, all things considered).

Let’s return to our example of counting sheep from Chapter 1, to see

what a ratio is and how it relates to odds. Suppose we have a small flock of

sheep. We count the sheep and discover we have 12 sheep. Some of our sheep

are black and others are white. Since the two colors of wool are sold separately

for different prices, from a business perspective, the color of the sheep is

important. The categorical (nominal) variable, color, may be relevant to

our future business decisions as shepherds. Being smart businessmen, willing

to use probability and statistics, we choose to measure it.

Categorical variables are measured by counting. We can count black sheep

the same way we count sheep. Suppose we count the black sheep in our flock

and discover that we have 5 black sheep. Since there are only two colors of

sheep, the rest of our sheep must be white, although we can count them as

well, just to be sure. Now we have three numbers, all from counting. We have

12 sheep, 5 of which are black and 7 of which are white.

Ratios express the relationship between two counts. They are exact

measures of just how much bigger or smaller one number is than another.
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Ratios are expressed as numbers in three principal ways, as proportions, as

percentages, and as odds. Suppose we want to express the number of black

sheep, n, in terms of its relation to the total number of sheep in our flock,

N. The simplest way to do this is with an odds. We subtract the number of

black sheep from the total number of sheep to obtain the number of sheep

that are not black. The odds are expressed with the count of the items of

interest, n, followed by a colon (:), followed by the remainder, N–n, shown

in Equation 3-1.

5 : 7 ð3-1Þ

In ordinary language, we would say that the odds that any one of our

sheep we come across will be black are five-to-seven. If we express it in terms

of chances, rather than in terms of odds, we say that the chances are five-in-

twelve or five-out-of-twelve.

PROPORTIONS AND PERCENTAGES

Note that when we use the chances terminology (five-in-twelve instead of

five-to-seven), we do not use subtraction. We state the number of black sheep

directly in terms of the total number of sheep, which was our original goal.

These two numbers are the basis for the other ways of expressing ratios,

as proportions or as percentages. Both of these measures are calcu-

lated using division. To calculate a proportion, we take the count of the

objects of interest and divide by the total number of objects, as shown in

Equation 3-2.

p ¼ n=N ¼ 5=12 ¼ :417 ð3-2Þ

A couple of things to note about proportions. First, a proportion is a

single number calculated from two other statistics. Second, when calculated

in this way, with the first number being the count of just those subjects of

interest and the second number being the total number of subjects, a

proportion can only be between zero and one. If we had no black sheep, the

proportion would be zero. If all our sheep were black, that is, we had 12

black sheep, then the proportion of black sheep would be one.

A percentage is just the proportion multiplied by one hundred. Percentages

are sometimes used because they can be expressed as whole numbers, rather

than as fractions or decimals. Also, when other sorts of ratios are taken that

can be greater than one, percentages are more commonly used than

proportions.
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HANDY HINTS

Ratios Greater Than One
When can a ratio be greater than one? Only when the subjects of interest are not

truly part of the total. This is common in the comparison of two counts taken at

different times. For instance, if we breed our sheep this year and next year we have

fifteen sheep instead of twelve, we might want to express the increase in our flock by

comparing the two numbers as a percentage: 15/12� 100 ¼ 125%. Next year, we

would say that our flock was 125% of the size it was this year, or we could say we

had a 25% increase in the size of the flock. Note: This is a ratio, but not a

proportion. A proportion is a ratio of a part to the whole, and is therefore always

between zero and one.

The most important fact about proportions is that probabilities, the

numerical measures we use to express the likelihoods, are based on the

mathematics of proportions. Like proportions, probabilities range from zero

to one and the higher the probability, the more likely the event. Also, key to

the theory of probability is the distinction between the ratio between the

subjects of interest and the remainder of all of the rest, as is calculated via

subtraction in the odds.

Note that, mathematically, if p is the proportion of subjects of interest to

the total, then 1�p is the proportion of subjects not of interest. This is

because the total population is comprised of exactly the subjects of interest,

plus the subjects not of interest, as illustrated in Equation 3-3.

N� nð Þ=N ¼ 12� 5ð Þ=12 ¼ 7=12 ¼ :583 ¼ 1� :417ð Þ ¼ 1� pð Þ ð3-3Þ

The proportion of subjects not of interest, called the complement of the

proportion of subjects of interest, is extremely important to the theory of

probability.

Three Types of Probability
Traditionally, there are said to be three concepts of probability:

. Classical probability, which relies on the notion of equally likely

events.

. Frequentist probability, which relies on the notion of replication.

. Subjective probability, which relies on the notion of rational choice.
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Happily, as it turns out, all three notions are exactly the same,

mathematically. This means that the distinction is primarily (and perhaps

entirely) philosophical. Here, we will use the different types to show how

probability relates to the kinds of events we need to know about for business

decisions.

COUNTING POSSIBLE OUTCOMES: THE RULE OF
INSUFFICIENT REASON FOR CLASSICAL PROBABILITY

The theory of probability was first developed to handle problems in

gambling. The great mathematician, Pascal, was working to help out a

gambler who wanted to know how to bet on games of chance, especially dice.

In games, such as dice or cards, chances are easier to calculate, because

everything can be counted. This allowed Pascal to work out the first theory of

probability in terms of odds. This version of probability theory is called

classical probability.

The rule of insufficient reason

The theory of probability is basically the application of the mathematics of

ratios and proportions to the issues of chance and likelihoods. In one brilliant

move, Pascal was able to bridge these two very different fields and create the

theory of probability. Let’s see how he did it.

Suppose we have a standard deck of cards, face down on a table, and we

draw one card from the deck. What is the likelihood that we will draw the

King of Hearts? Intuitively, we would say that the likelihood is low. After all,

there are 52 cards in the deck and only one of them is the King of Hearts.

What is the likelihood that we will draw the Eight of Clubs? Also low, and for

the very same reason. Pascal then asked a critical question: Which is more

likely, that we will draw the King of Hearts or that we will draw the Eight of

Clubs?

Again, intuitively, since our reasons for assessing the likelihood of each is

the same, there does not appear to be any reason to assume that either draw

is more or less likely than the other. Pascal then proposed a new rule:

Whenever we have no reason to think that one possibility is more or less

likely than another, assume that the two likelihoods are exactly the same.

This new rule is called The Rule of Insufficient Reason. (You can’t beat the

Renaissance thinkers for nifty names!) This one rule makes it possible to

apply all of the mathematics of ratios and proportions to the problems of

chance in gaming and, eventually, to all other likelihoods as well.
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Measuring probabilities with proportions

We will get to the mathematical rules of probability a little bit later. For right

now, it’s enough to know a few important facts. Very little is needed to make

the mathematics of probability work. In fact, only three basic rules are

needed. See below.

TIPS ON TERMS

The Basic Rules of Probability
Scalability. The measures of probability must all be between zero and one.

Complements. The probability of something not happening must be equal to one

minus the probability of that same thing happening.

Addition. For any group of events, the probability of the whole group must be equal

to the sum of the probabilities of each individual event.

Collectively, these three rules are known as Kolmogorov’s axioms, after

the mathematician who discovered them almost 300 years after Pascal.

Notice how well these rules fit in with a situation where we can count up all

the events, as in the games of cards, or dice, or in counting sheep: proportions

of subjects that have a particular property (like the color of the sheep or suits

in a deck of cards) are all between zero and one. We have also seen how, in

the case of sheep, the proportion of sheep that are not black (known as the

complement) is one minus the proportion of black sheep. It looks like

proportions may make good measures of probability.

This leaves the rule of addition. All that is left is to show that the sum of

the proportions of different types of sheep (or cards or dice) is equal to the

proportion of all those types taken together. If that is true, then proportions

(which we already know how to calculate) will work just fine as our

numerical measure of likelihood, which we call probability.

Let’s expand our example of shepherding a bit. Suppose we have three

breeds of sheep, heavy wool merinos, fine wool merinos, and mutton

merinos. There are four heavy wool sheep, two fine wools, and six muttons.

The proportion of heavy wools is 4/12. According to the rule of

complements, the proportion of sheep that are not heavy wools should be

(1 � 4/12) ¼ 8/12. We don’t need the rules of probability to count the sheep

that are not heavy wools. There are eight, the two fine wools and the six

muttons. Because the counts all add up—(2 þ 6 ¼ 8)—and the proportions

are just the counts divided by 12 (the total number of sheep in the flock),

the proportions add as well (2/12 þ 6/12 ¼ 8/12). As we can see, so long as
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we can count all of the individual subjects, the rule of addition applies, too.

And, when we divide by twelve, all of our figures can be expressed so that the

measures of probability are between zero and one. As a result, we have met

the basic mathematical requirements of probability, and we can apply the

laws of probability to our counting of sheep (unless it puts us to sleep).

CRITICAL CAUTION

The probability of an event, Pr(x), is not a statistic. It is not a measure of a general

property; it is a measure of a specific attribute of a single event. The proportion, p, is a

statistic. When calculated from a sample, the proportion provides an estimate of the

probability of a specific event, using information from the entire sample. In

statistical theory, the proportion of the entire population is a theoretical model of the

probability (at least according to some theories of probability).

Probabilities in the real world

The notion of equally likely probabilities is, like most elegant mathematical

ideas, never true in the real world. It takes enormous amounts of technology

to manufacture dice so that they are nearly equally likely to land on each of

their six sides. Casino dice come with a guarantee (a statistical guarantee!)

that they will come pretty close to this ideal. Casino dice cost a lot more than

the dice we buy at a convenient store for just this reason. Playing cards have

been around for centuries, but the current playing card technology is only

about 50 years old. In no case are dice or cards or other human manufactured

technologies absolutely perfect, so the assumption of equally likely outcomes

is, at best, only an approximation.

In the case of gaming technologies, there is an explicit effort to create

equally likely outcomes, in order to satisfy the assumption based on the rule

of insufficient reason. In the rest of the world, even this assistance is lacking.

Consider even our simplified flock of sheep. It is unclear even what it would

mean to have an exactly equal likelihood of selecting one sheep in our flock

over another. If we are pointing out sheep, smaller sheep might be harder to

spot. If we are actually gathering them up, friskier sheep might be harder to

catch. Even if sheep breeders are breeding sheep for uniformity, they are not

doing so to help our statistics, and even if they were, there will always be

more variability among sheep than among dice.

The rule of insufficient reason does not mean that we have good reason to

believe that all of the basic outcomes (like one side of a die showing up, or

one particular sheep being picked) are equally likely to occur. It merely says

CHAPTER 3 What Is Probability? 55



that when we don’t have any reason to think that any two basic outcomes are

not equally likely to occur, we can base our measure of probability on

counting basic outcomes. In classical probability, these basic outcomes are

called simple events.

Mutually exclusive events

Finally, there is an important concept that applies to all three types of

probability, but is best understood in the case of classical probability. Note

that we have been considering different values (black and white, or heavy

wool, fine wool, and mutton) for only a single variable (color or breed) at a

time. This was a trick to ensure that all of the events were what is called

mutually exclusive. Two events (and the probabilities of those events) are

mutually exclusive if the fact that one happens means that the other cannot

possibly have happened. If the color of the sheep we pick is black, its color

cannot be white. If the sheep is a mutton merino, it cannot be a heavy wool

merino. This is always true for different values of a single variable.

Things get a bit more complex when we consider more than one variable at

a time. If the sheep we pick is black, it might or might not be a fine wool

merino. We can’t really know unless we know the relationship between the

colors and the breeds for our entire flock. If one or both of our two fine wool

merinos is black, then the event of picking a black sheep is not mutually

exclusive of the event of picking a fine wool merino. However, if it happens

that both of our fine wool merinos are white, then picking a black sheep

means we definitely did not pick a fine wool merino, and vice versa. The two

events are mutually exclusive despite being defined by values on two different

variables.

REPLICATION AND THE FREQUENCY APPROACH

What do we do when we have good reason to suspect that our most basic

outcomes, the simple events, are not equally likely to occur? If our business is

farming, we may want to know whether or not it will rain. Rainy days and

sunny days may be our most basic events. We certainly cannot assume that it

is as likely to rain on any given day as it is to be sunny. Climate, season, and a

host of other factors get involved. We have very good reason to suspect that,

for any given day, in any particular place, that the likelihood of rain is not

equal to the likelihood of sunshine. In similar fashion, the likelihood of

showing a profit is not the same as the likelihood of sustaining a loss. The

likelihood of a job candidate having a degree is not likely to be the same as

the likelihood that he will not. For some jobs, almost all prospective

candidates will have degrees; for other jobs, almost none.
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In cases such as these, we need a new rule for assigning values for our

probabilities. This time the rule depends on Hume’s assumption (discussed in

Chapter 1 ‘‘Statistics for Business’’) that the future will be like the past, which

is key to the philosophy of science, which provides the model for the second

type of probability, based on the theory of relative frequency.

In science, the assumption that the future will be like the past leads us to

assume that, under the same circumstances, if we do things exactly the same

way, that the results (called the outcome) will come out the same. The basic

idea behind a scientific observation or experiment is that things are done in

such a very carefully specified and documented way that the next person who

comes along can read what we have done and do things so similarly that she

or he will get the same results that we did. When this is true, we say that the

observation or experiment is replicable. Replicability is the heart of Western

science.

Frequentist theoreticians have an imaginary model of the scientific

experiment called the simple experiment. They define simple experiments in

terms of gambling devices and the like, where the rule of insufficient reason

applies and we know how to calculate the probabilities. Then they show that,

in the ideal, simple experiments, repeated many times, will produce the same

numbers as classical probability. The big advantage to frequentist probability

is that, mathematically, simple experiments work even when the underlying

simple events are not equally likely.

The first simple experiment that is usually given as an example is a single

flip of a coin. Then the frequentist moves on to dice. (Trust us. Heads still

turn up 50–50 and each side of the die shows up 1/6th of the time. Everything

works.) We will skip all this and construct a simple experiment with our flock

of sheep. Suppose we put all of our flock into an enclosed pen. We find

someone who is handy with a lasso, blindfold her, and sit her up on the fence.

Our lassoist then tosses her lasso into the pen and pulls in one sheep at a time.

(Simple experiments are theoretical, and don’t usually make much sense.)

The lassoing is our model of sampling, which we learned about in Chapter 2

‘‘What Is Statistics?’’ Importantly, after the sheep is lassoed and we take a

look at it, we then return it to the flock. (Like we said, these experiments

don’t make much sense.) This is called sampling with replacement.

TIPS ON TERMS

Sampling with replacement. In the context of an imaginary simple experiment, an

act that determines a single set of one value for each variable in such a way

that the likelihood of the different values does not change due to the act of

sampling itself. Examples are: the flip of a coin; the roll of a pair of dice; the
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drawing of a card from a deck of cards, after which the card is placed back in the

deck.

Note that things like flipping a coin or rolling dice, which we might not ordinarily

call ‘‘sampling’’ count as sampling in statistics. When we flip a coin, we are said to be

sampling from the space of possible outcomes, which are the events, heads and tails.

This is sampling from a set of abstract events, rather than from a set of physical

objects. What makes it sampling with replacement is that, once you flip a coin, the

side that lands up doesn’t get used up for the next toss. In terms of the odds, nothing

changes from one flip of the coin, or one roll of the dice, to the next. With cards, in

order to keep the odds the same, we have to replace the card drawn into the deck,

hence the expression, with replacement.

Sampling without replacement. In the context of an imaginary simple experiment,

an act that determines a single value for each variable in such a way that the

likelihood of the different values changes due to the act of sampling itself.

Examples are: the drawing of a card from a deck of cards, after which the card is

set aside before the next draw; choosing a name from a list and then checking off

the name.

The vast majority of statistical techniques, and all that we will cover here in

Business Statistics Demystified assume that sampling is done with replacement.

Mathematically, sampling without replacement is very complicated because, after

each subject unit is removed from the population, the size of the population changes.

As a result, all of the proportions change as well. However, sampling with

replacement does not make sense for many business applications.

Consider the example of surveying our customers: we have a list of customers and

are calling them in random order. In order to sample with replacement, we would

have to keep a customer’s number on the list even after we’d interviewed them once.

But if we do that, we might pick the exact same phone number again and have to call

that same customer! (‘‘Hi, Mr. Lee! It’s me, again. Sorry to bother you, but I need to

ask you all those same questions again.’’)

Of course, in these sorts of cases, sampling with replacement is never really done,

but the statistics that are used assume that statistics with replacement is always done.

The trick is that, mathematically, if the population is infinitely large, sampling

without replacement works identically to sampling with replacement. If our

population is finite, but very large compared to the total size of our sample, we

can pretend that it is infinite, and that all sampling is sampling with replacement,

without generating too much error.

What is the probability that we will lasso a black sheep? According to

classical probability theory, it is 5/12. Let’s have our lassoist lasso sheep 120

times, releasing the sheep afterwards each time. We will probably not find

that we have lassoed exactly 50 sheep (equal to 5/12 times 120), but we will be

pretty close. In short, we can estimate the true probability by repeating our

simple experiment, counting the different types of outcomes (black sheep or
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white sheep, in this case), and calculating the proportion of each type of

outcome. An advantage of frequentist probability is that it uses proportions,

just like classical probability. The difference is that, where classical

probability involves counting the different possible types of simple events

and assuming that each is equally likely, frequentist probability involves

repeating a simple experiment and counting the different outcomes.

HANDY HINTS

Later on, after we have learned some additional tools, we will see that the

frequentists have a better way of performing simple experiments in order to estimate

the true probability. Without giving too much away, let’s just say that it turns out

that it is better to do ten experiments, lassoing twelve times for each experiment, than

doing one experiment lassoing 120 times.

Why is this difference important? The reason is that the outcomes of

simple experiments don’t have to be equally likely. If our simple experiment is

to flip a coin or roll a die, the outcomes are heads or tails, or the number on

the top face of the die, and the outcomes can safely be assumed to be equally

likely. But what about our simple experiment lassoing sheep? If we think of

the outcome as being which of the 12 individual sheep gets lassoed, then each

outcome is equally likely. But, suppose we aren’t on familiar terms with all of

our sheep, and don’t know them all individually? We can think of the

outcomes as lassoing any black sheep and lassoing any white sheep. Unless

we count all the sheep in our flock and apply classical probability, we don’t

know what the relative likelihoods of lassoing a black sheep or a white sheep

are, and we certainly cannot assume they are equal. White sheep are vastly

more common than black sheep, and this is a very good reason to assume the

likelihoods of picking each type are not equal.

There are two sorts of cases where it is good to have the frequentist

approach, one where classical probability can be very hard to apply, and one

where it is impossible to apply.

First, suppose we had a huge flock of sheep. We aren’t even sure just how

many sheep we have. We want to know the probability that we will pick a

black sheep. If we define the outcome of our experiment as ‘‘black sheep’’ and

‘‘white sheep,’’ we can estimate the probability of picking a black sheep

without having to count our entire flock, or even being able to tell one sheep

from another, except for their color. This illustrates both the convenience of

the frequentist approach and the power of the sampling upon which it

depends.
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Second, so long as we can construct a simple experiment to sample some

attribute of our subjects, we can estimate the probabilities. This is very useful

in cases like the weather, profits and losses, and level of education (discussed

above), where we have no way of counting anything except the results of

sampling. Often, we do not even have to be able to conduct the simple

experiment. (No blindfolds required!) We can just collect the data for our

statistical study according to best practices, and treat the numbers as if

they were the outcomes of simple experiments. This illustrates how

probability based on relative frequency can be very useful in real world

statistical studies.

COMMON SENSE AND SUBJECTIVE LIKELIHOODS

Classical probability and frequentist probability are typically classified

together as types of objective probability. Here, ‘‘objective’’ means that there

is a set of rules for calculating the precise numbers that does not depend on

who actually does the experimenting or the counting or the calculations.

(Note that this is a very different meaning for the word ‘‘objective’’ than is

used in other contexts.) If it matters who does the work that produces the

numbers, then the probabilities are called subjective.

There is also a mathematical theory of subjective probability, which has

the same advantages over frequentist probability that frequentist probability

has over classical probability. Subjective probability can be applied in cases

where not only can we not count things, but where we cannot even expect

things to be repeatable.

A good example might be a civil law suit. The details of every lawsuit and

the peculiarities of every jury might be so dramatic as to prevent any sensible

notion of repeatability. If we are in the business of manufacturing

widgets and several other widget manufacturers have been sued for sex

discrimination, or the issues in the lawsuit for widget manufacture are similar

to those that have been raised in automobile manufacture, then frequentist

probability might apply. But if we are the first widget manufacturer to be

sued for sex discrimination and the widget business is importantly different

than other businesses with regard to the legal issues for sex discrimination,

then frequentist probability may not be useful. The only way we have of

estimating the probabilities would be to call in an expert who knows about

both widgets and sex discrimination lawsuits and have them make an

educated guess as to our chances of winning the case. And this is just what

subjective probability assumes.
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TIPS ON TERMS

Subjective probability is also called Bayesian probability, because estimating the true

values requires an equation called Bayes’ rule or, more extravagantly, Bayes’ Law.

The name Bayesian probability is a bit misleading, because Bayes’ Law can be

applied to any sort of probability.

What subjective probability requires in place of replicability or the rule of

insufficient reason, is a gambling game and players who are too sensible to

get cheated. The game has the same purpose in subjective probability that the

simple experiment has in frequentist probability. We imagine a game in

which players bet on the outcome of some event. The game can be simple or

complex. Remarkably enough, the rules of the gambling game do not matter,

so long as it is fair and the players all understand the rules (and real money or

something else of value is at stake). The event does not have to be repeatable,

so long as the gamblers can, in principle, play the game over and over again,

gambling on other non-repeatable events.

Being sensible is called being rational, and it is defined mathematically in

terms of something called Decision Theory. It turns out that, if a player is

rational in this formal sense, then his/her purely intuitive, subjective estimates

of the probabilities (expressed as numbers between one and zero, of course)

will not only satisfy Kolmogorov’s axioms, but will also approximate the

frequentist probabilities for repeatable events! Even more bizarre, if the

player’s initial estimates are off (presumably due to lack of knowledge of the

area) and the player is rational about learning about the world during

the playing of the game, his/her estimates will get better over time, again

approaching the true probabilities.

CRITICAL CAUTION

It would be a big mistake to think that just because subjective probability can be

applied more widely than frequentist probability and that frequentist probability can

be applied more widely than classical probability, that subjective probability is

somehow better than frequentist probability or that frequentist probability is better

than classical probability. Each of the three types of probability requires different

assumptions and there are always cases where some of these assumptions do not

apply. We have seen where the rule of insufficient reason does not apply and we

cannot use classical probability. When we cannot, even in principle, specify

how something could be repeated, we cannot use frequentist probability. Subjective
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probability actually requires seven separate assumptions (called the Savage Axioms,

after the mathematician L. J. Savage, who invented them), all of which are complex

and some of which are controversial. There are cases where none of the assumptions

hold and any notion of probability is suspect.

Using Probability for Statistics
We have seen what probability is. Now we will see some of how probability

gets involved with statistics. We will learn about several key statistical

concepts that require probability for a full understanding. We will see how

probability is involved in how statistics deals with issues of causality,

variability, and estimation.

STATISTICAL INDEPENDENCE: CONDITIONAL AND
UNCONDITIONAL LIKELIHOODS

The very important concept of statistical independence is based on a relation

between probability measures called conditionality. These concepts are

important in using statistics to determine the causes of various facts in the

world.

Finding causes

Understanding causality is a profound and difficult problem in philosophy.

At best, statistics has a limited ability to detect possible cause–effect relations.

However, statistics is one of the few techniques that can provide reliable

information about causal relations at all. In short, when it comes to figuring

out the cause of something, it is a limited tool, but, in many situations, it is

the best tool we have.

It should go without saying that the information needed to make a business

decisionmay very often not be information about a cause–effect relation. After

all, it is lot more important to know that 90% of women between age 19 and

34 want to buy your new product than it is to know precisely what caused that

fact. It should go without saying, but, unfortunately, it does not. Much of

statistics comes from work in the sciences, and, in particular, the social

sciences, where understanding cause–effect relations is taken to be of utmost

importance. Because of this, statistics texts often spend a great deal of time

focused on techniques for establishing cause–effect relations without even

explaining why cause–effect relations are important, much less taking the time
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to consider when, in business, other sorts of statistics providing other sorts of

information, may be more important.

FUN FACTS

The basic strategy for detecting the true cause of something observed in the world is

called Mill’s method, named after the philosopher, John Stuart Mill. Mill’s method is

actually five methods. The Method of Agreement means checking to see that the

proposed cause be present when the effect is observed. The Method of Difference

means checking to see that when the proposed cause is absent, the effect is absent.

The Joint Method of Agreement and Difference involves checking groups of

potential causes, systematically adding and removing potential causes, until one is

found that is present and absent together with the effect. The Method of

Concomitant Variation means checking to see that a proposed cause of more or

less intensity results in an effect of more or less intensity. The Method of Residues

means eliminating other possible causes by noting the presence of their separate

known effects together with the effect of interest. Statistics takes a similar approach,

with similar strengths and weaknesses.

From a statistical perspective, we would expect an effect to be more or less

likely when the cause is present or absent. In order to look for causes, we will

need a mathematical definition of the probability of one event when some

other event has or has not happened.

Conditional likelihoods

Up until now, we have only considered the probabilities of individual events.

These are called unconditional probabilities. The unconditional probability

of event, A, is symbolized as Pr(A). If we want to work with causal relations,

we need to be able to talk about the relationship between two events, the

cause, B, and the effect, A. For this, we use conditional probabilities. Let’s

look at an example:

The business cards for all nine Justices of the U.S. Supreme Court (as of

2003) have been placed face down on our desk. The probability of picking the

card of a female member of the court, Pr(Female), is 2/9. But suppose that

someone picks a card, looks at it without showing it to us, and tells us that it

is the card of a Republican member of the court? Knowing that the card is a

Republican’s, what is the probability that it is a woman’s? In probability, we

use the term given to express this relationship of conditionality. We ask:

What is the probability of picking a woman’s card, given that it is a

Republican’s? This is symbolized by Pr(Female | Republican). Because only
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one of the female members of the Court is a Republican, and seven members

of the Court are Republican, the probability, Pr(Female | Republican) ¼ 1/7.

The mathematical rule for calculating the conditional probability for any

two events, A and B is:

PrðAjBÞ ¼ PrðA&BÞ=PrðBÞ ð3-4Þ
In order to see why this equation works, we can check our example. The

probability of picking a card, from out of the original stack, of a Justice who

is both female and Republican, Pr(Female & Republican), is 1/9. The

probability of drawing a Republican’s card, Pr(Republican), is 7/9. And 1/9

� 7/9 ¼1/9� 9/7 ¼ 1/7.

CRITICAL CAUTION

Note that the probability of A given B, Pr(A|B), is not the same as the probability of

A and B, Pr(A & B). In terms of countable subjects, the probability of A given B only

considers those subjects that are B. It is as if we are using only a part of the original

whole population as our population, the part for whom B is true. The probability of

A and B refers to a selection made from the entire population, not just the part of

the population for whom B is true.

SURVIVAL STRATEGIES

One trick for remembering the equation for conditional probability is that the

conditional probability is based on selecting from the smaller group where B has also

happened. This means that the denominator must be changed from the total for the

entire population to the subtotal for just the B’s. Dividing by the proportion of the

B’s replaces the total with the subtotal. (The proportion of B’s is just the subtotal of

B’s divided by the total, which is why it always works.)

The relationship of conditionality works for all sorts of events, not just

those that are causally related. In fact, the two events we have been

considering, drawing a woman’s card and drawing a Republican’s card are

not even necessarily separate events, at least not in the ordinary sense. When

a Republican woman’s card is picked, that single action (in ordinary terms) is

both the picking of a Republican’s card and the picking of a woman’s card

at the same time. It all depends on how you describe it.
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This is an important point for understanding probability. A single event,

described in two different ways, will often be treated by probability theorists

as two different ‘‘events,’’ using their terminology. So long as the equations

give the right answer, the mathematician and the theoretical statistician will

be unconcerned. The trick to understanding this is that, when the equation

works for any A and B, it will work for two events in the ordinary sense, just

like it works for one.

Of course, if we are going to talk about causality (don’t worry, we will get

there soon), we have to talk about two events in the ordinary sense, because

the cause has to happen before the effect. When we draw one card from the

stack of business cards, the fact that we drew a Republican’s card can’t be the

cause of the fact that that same card is also a woman’s card. So we need an

example where an earlier event can affect the probabilities of a later event.

Recalling our definition of sampling with replacement, we know that, by

definition, an earlier sample cannot affect the odds for a later one. So that

sort of example won’t do. And sampling without replacement is much too

complicated. Here’s a simpler example:

The old rule for eating oysters is to eat them only in months spelled with

an ‘R’. (This is due to the warm weather, so it’s not true in the Southern

Hemisphere.) Let’s borrow our lassoist shepherdess for a moment, since

she is already blindfolded, and have her throw a dart at a calendar in order

to pick a month so that every month has the same chance of getting

picked. The probability that she hits a month where oysters are safe,

Pr(safe), is 8/12. The probability that she hits a month where they are

unsafe, Pr(unsafe), is 4/12. The probability that she hits a month where

they are safe and they were unsafe the previous month, Pr(safe & unsafe), is

1/12. (The only month where this is true is September.) The probability that

she hits a safe month given that the previous month was unsafe,

Pr(safe|unsafe), is 1/4. This is because there are five unsafe months, any

one of which can be the previous month to the month picked, but only one

of them, August, is followed by a safe month. Pr(safe | unsafe) ¼ Pr(safe &

unsafe) /Pr(unsafe) ¼ 1/12� 4/12 ¼ 1/12� 12/4 ¼ 1/4. So the rule for

conditional probabilities also works for events where one event happens

before the second.

What is a random variable?

We have been careful not to use the word ‘‘random’’ too much up to this

point, because, both in statistics and in ordinary English, the word can mean

more than one thing. Instead of having our shepherdess blindfolded and

lassoing or throwing darts, we could just have said, pick a sheep or a month
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‘‘at random,’’ but that phrase is ambiguous. Sometimes ‘‘at random’’ just

means ‘‘unpredictably.’’ What was necessary for our examples is that each

subject have an equal chance of being selected (our definition of a random

sample) and that sampling be done with replacement, so that taking one

sample doesn’t change the odds on any later sample. So, instead of just

saying ‘‘at random,’’ we were very precise (and silly) about how things got

picked. Being precise about specifying how samples are (or should be) taken

is extremely important throughout statistics, as we will see at the end of the

next section, on statistical independence.

In statistics, the word ‘‘random’’ also has two uses. In the phrase

‘‘random’’ sample, it means that everything has the same chance of being

selected. But there is also a concept in theoretical statistics called a ‘‘random

variable’’ and, here, the word random means something quite different.

A random variable is the way that statistical theorists use to talk about

the ordinary variables we have seen that measure our subjects in

mathematical language. Random variables can be defined either in terms

of classical or frequentist probability. Technically, a random variable gives a

number for each simple event (in classical probability) or for each outcome

of a simple experiment (in frequentist probability). For example, we could

assign the number 1 to each of our fine wool sheep, 2 to each heavy

wool sheep, and 3 to each mutton. This provides a convenient mathematical

way to talk both about events and data. Since we can calculate the

probabilities for each event (or outcome), we can link each probability

to one of the three numerical codes. We could call this random variable,

breed.

In the case of a numerical measurement, such as Judy’s height, the purpose

of a random variable is clearer. Let’s expand this example to include some of

Judy’s friends. The theoretical model of the data variable, height, is the

random variable also named height. The random variable called height

assigns a number to each person in the population of Judy and her friends,

that happens to be the same as the number we get when we measure that

person’s height. In terms of data measurement, we pick Judy (or Tom, or Ng)

and measure their height and get a number, 62 inches (or 71, or 63). In terms

of statistical theory, we write: height(Judy) ¼ 62. (Note that inches, the units

of measurement, are not part of the value of the random variable.) And we

can do this the same way for every measure we take of our subjects. For

instance, sex(Judy) ¼ 1 (for female), sex(Tom) ¼ 2 (for male), age(Hassan) ¼
20, and yearsOfEducation(Ng) ¼ 13 (Ng is a college sophomore).

More generally, the concept of a random variable allows us to deal with

combinations of simple events (called complex events) and describe their

probabilities in a mathematically convenient way. We leave off the name of
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the subject to indicate that we are talking about a sample from the entire

population and write: sex ¼ 1 to indicate the complex event of selecting any

one of Judy and her friends who is female or age<21 to indicate the complex

event of selecting any one of Judy and her friends who cannot drink legally.

We can even do something odd like writing: breed<3 to indicate the

complex event of selecting any one of our wool merinos. (It is probably safer

to indicate this complex event by writing breed ¼ (1 or 2), because the

variable breed is nominal, not ordinal.)

Now that we can describe these events conveniently (and with less

possibility of ambiguity), we can improve our notation for probability:

Pr(breed¼ 1) ¼ 2/12 and Pr(height<64) ¼ 7/24.

HANDY HINTS

The use of random variable notation for specifying probabilities shows us another

difference between probability theory and statistical theory. In the notation,

Pr(variable¼ value), the formula inside the parentheses names an event. In

probability theory, events are defined in practical, real-world terms and are the

basis for all of the other definitions. In statistical theory, events are defined in terms

of specific variables having specific values. This fits in exactly with Thomsett’s (1990)

point about the difference between probability and statistics. In probability, we need

to understand the process (like rolling dice or lassoing sheep) to define events. In

statistics, events are defined strictly in terms of the results.

Statistical dependence and independence

At last, we now have enough background to talk about how statisticians

detect possible causal relations. If the likelihood of an event is not different

due to the presence or absence of an earlier event, then that earlier event

cannot be a cause of the later event. At a very minimum, the presence or

absence of a cause should make the effect somewhat more likely or unlikely.

This relationship is defined in terms of statistical dependence.

Statistical dependence or independence is a property that can apply either

to events or to random variables, but it means something different in each

case. These differences relate to the way we might ask questions about causes.

Suppose we are interested in knowing whether the weather affects sales in our

industry. This is a question about variables. The weather can have many

values (sunny, rainy, hot, cold, etc.) and sales can have at least three (up,

down, or steady). On the other hand, we might want the answer to a more
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specific question, such as whether sales go down on rainy days. This is a

question about events. We are asking about the relationship between when

weather ¼ ‘‘rainy’’ and salesTrend<0. Statistics can help us in both cases,

but we have to be clear about our question.

For events, the definition of independence goes as follows: Two events, A

and B, are independent if Pr(A) ¼ Pr(A|B). In other words, if the probability

of A is the same whether or not B happened (and even whether or not we

know if B happened), then A is independent of B.

The importance of statistical independence is that it is the minimum

guarantee we can have that there is no causal relationship between two

events. It may be hard to detect causes, but if the first event makes no

difference to the second event, we can be as sure as we can ever be that that

first event was not the cause of the second. Statistical independence is easier

to define, but harder to find, than statistical dependence.

HANDY HINTS

In statistics, the focus is almost always on statistical independence, rather than on

statistical dependence. The reason for this is that almost all statistical techniques

require certain things (usually variables) to be statistically independent. These

requirements, of course, take the form of assumptions for this or that technique, and

are thus of the utmost importance in choosing which statistical technique to use.

What tends to get left out of these discussions is why all of these statistical techniques

require statistical independence. Remember that almost all of these techniques are

intended to help identify cause–effect relations, which show up as statistical

dependencies. In order to be able to spot causal relations, everything about the

design of our study and the organization of our data must be free from statistical

dependencies, so that any statistical dependencies that show up in the results are due

to what was found in the study. We need to have statistical independence almost

everywhere in order that the true underlying causal relationships show up as the only

statistical dependencies in a field of independence.

In order to ensure the complete absence of dependencies between events

required by statistical procedures, statisticians have defined statistical

independence between random variables. Two random variables are

statistically independent if every event defined in terms of any individual

values for the first variable is independent of every event defined in terms of

any individual values for the second variable. For instance, it might be that

rainy weather doesn’t decrease sales, but that cold weather does increase

sales. The event, sales decrease, is independent of the event, a rainy day, but
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the variable, sales, is dependent on the variable, weather. In short, if there is

any dependency anywhere between events described using the two random

variables, then the random variables are not independent.

TIPS ON TERMS

The distinction we are using here, between the theoretical notion of a random

variable and the practical concept of a measurement variable, is not usually defined

in statistics textbooks, but it does reflect the way statistics is done in the real world.

In Business Statistics Demystified, ‘‘random variable’’ is a theoretical notion related

to populations and ‘‘variable’’ is a practical notion related to samples.

CRITICAL CAUTION

Statistical dependence is not the same thing as a random sample (defined as every

individual unit having an equal chance of being sampled). It is entirely possible to

have a non-random sample where everything is entirely statistically independent. In

rolling a pair of dice, each roll is independent, but snake eyes is less likely than an

eleven. (In classical probability, where we define each simple event uniquely, five on

the first die and six on the second is a separate event than six on the first die and five

on the second, this confusion doesn’t usually happen. But in frequentist probability,

it is entirely possible. Remember, in actual business practice, we can’t always define

simple events and must use frequentist probability.) We may very often want to have

certain sampling events more likely than others, but we will almost never want to

have one sampling event change its likelihood due to a previous one.

Errors in sampling

The most important reason that statistical independence is required by so

many statistical procedures is that really horrible errors can happen when

statistical dependencies creep into our methods. The examples of these errors

are legion. One of the worst, and most common types of errors arises when

we cannot use a truly random sample, because things are happening

sequentially in time in an order that we cannot control. We can see an

extreme case of this in our example of the safe and unsafe months for eating

oysters (in the preceding section). Suppose that the safe and unsafe months

were scattered about throughout the year. Then the likelihood of a safe

month following an unsafe month would be far greater than it is. The reason

that this probability is so low is that (a) safe and unsafe months cluster
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together and (b) unless we have a calendar, some darts, and a blindfold, we

have no control over the order in which the months appear. The oyster

example is an extreme one (by design), but this type of problem occurs all too

often in real life in ways severe enough to cause real problems for statistics.

Let’s return to our example, from our definition of systematic sampling

(in Chapter 2 ‘‘What Is Statistics?’’) of taking every tenth product unit off of

the assembly line for testing. If defects in manufacture tend to cluster, then

taking every tenth unit may work, so long as the clusters are either much

bigger than, or smaller than ten. If defects tend to cycle rhythmically, showing

up regularly after every somany good units, then we had better be sure that the

cycle isn’t a multiple of ten. For instance, if our stamping machine stamps out

molds for our products 100 at a time, and the 47th one is always bad, because

that part of the stamp is broken, then testing every 10th unit will not catch the

problem. One possible way of avoiding these types of problems would be to

wait until the units are in bins and pick our test samples from the bins. This

gives us much more control over the order in which things are sampled. Even

here, we have to be careful, as units that come off the assembly line one after

another may tend to cluster together in the bin. We should pick a test sample

from the bin, stir things about a bit, and then pick another, and so forth.

If things are this difficult in a nicely structured, organized place like an

assembly line, imagine how much more difficult they are out in the world,

where our customers and vendors are. Let’s look again at the example of the

Supreme Court. Suppose we are big fans of the Court and want to catch sight

of the justices. We go to the court, find ourselves a place to sit in The Great

Hall, and wait for a glimpse of each justice. There are some good things about

this strategy. The Great Hall is on the main floor, as are all the justices’

chambers. We can expect them to go back and forth while consulting with one

another. It is even sampling with replacement, because if one justice crosses the

Hall leaving her office, she may also be the very next justice we see, on her way

back. In fact, this may be a problem, because having just left one’s office may

increase (or decrease) the likelihood that that same justice will be seen again

soon. Worse, Republicans may spend more time with Republicans than with

Democrats. So, when they gather to go to lunch, seeing a Republican first may

mean it is more likely that the next person we see will be a Republican as well.

Of course, these statistical dependencies (whether or not they are the

results of clustering) are only a problem if they interfere with getting useful

information for our decision. A few examples will illustrate how bad these

problems can get. First, there is the classic goof (discussed by Huff & Geis,

1954) by the Literary Digest (a magazine in olden days), which predicted that

Republican Alf Landon would defeat the then-President Franklin Delano

Roosevelt in a landslide in the election of 1936. (FDR won in a landslide.)
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Part of the problem was that this political opinion poll was taken by

telephone. Back in 1936, at the height of the Great Depression, a lot of folks

couldn’t afford phones, and those people didn’t much like the Republicans,

whom they blamed for the Great Depression. If only people with telephones

voted, Alf Landon might have become President.

Another big problem is the post-hoc hypothesis, where someone decides

what causal relationship to look for after they check the data. The problem

here is that, after the data are collected, the conditional probabilities change.

Suppose that we are playing cards and we think that someone is cheating and

that the deck is stacked. We predict that if a third party turns over the top

card, it will be the Jack of Spades. Someone steps up and turns over the card

and, lo and behold, it is the Jack of Spades. If the deck were not stacked, the

odds on our making that prediction successfully would be 51 to 1 against.

Either we just got very lucky, or else the deck was stacked. Now, suppose,

instead of making a prediction, we wait until the card is turned over. It is a

Jack of Spades, which is bad for us and we lose the hand. Then, we say, ‘‘It’s

the Jack of Spades. I knew it! This deck is stacked!’’ Should any of the other

players believe us? The likelihood that the deck is stacked given that the

card we predict appears is very different from the likelihood that the deck is

stacked given that a card we don’t like appears. (Using conditional

probabilities, this can be shown mathematically as well, but the calculations

are complex and beyond the scope of this book.)

A common form of post-hoc hypothesis is the multiple comparisons

problem. The problem here is that, with a lot of data, even when it is properly

selected, some patterns are bound to show up. Suppose we measure all our

sales in order to see if the weather affects sales. We sell hundreds of products.

Instead of checking to see if overall sales change with the weather, we check

the sales of each and every product to see if the sales change with the weather.

And, lo and behold, the sales of Part #36503 match the weather exactly!

This is a case of asking too many questions on just one topic. Ask enough

questions and, just by sheer luck, the answer to one of them will be ‘‘yes.’’

The thing that all of these examples have in common is that the sampling

procedure affects the probabilities of the events of interest. Sampling from

the assembly line in tens increased the probability of missing certain defects.

Using the telephone for the political opinion poll increased the probability of

sampling Republicans. Waiting until we saw the Jack drawn (dramatically)

increased the probability that we would say that the card was a Jack.

Sampling each product’s sales separately increased the probability that we

would find at least one pattern that matched the weather. This is yet another

reason why, when we do statistics, we must be very careful about how we

sample and we must document the sampling procedure very precisely.
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WHAT IS A PROBABILITY DISTRIBUTION?

Central to statistical theory is the notion of a probability distribution. Every

random variable has a probability distribution which specifies the likelihood

of each value for that variable occurring. Understanding the mathematical

theory behind distributions is not especially important for doing statistics, but

important decisions as to which statistical techniques to use to answer certain

types of questions require knowing whether or not our data variables are

distributed according to one or another theoretical probability distributions.

As we will see in Part Three, most standard statistical techniques require that

our data be distributed in a certain way. If it is not, an entirely separate set

of statistical techniques, called nonparametric techniques (see Chapter 14

‘‘Nonparametric Statistics’’) must be used instead. Therefore, we need to

understand the basics of what a probability distribution is.

Sampling distributions

Probability distributions are theoretical aspects of random variables related

to populations, but there are also distributions that are not theoretical at all.

These are sample distributions, and they can be of enormous practical use in

all sorts of statistical analysis. A sampling distribution is just the way the

different values for one single variable vary over our sample. We will return

to our examples of shepherding and Judy and her friends in order to illustrate

all this.

First, let’s look at the distribution of the breeds of our merino sheep in

Fig. 3-1. The distribution of a categorical variable is easily shown with a bar

chart (see Chapter 7 ‘‘Graphs and Charts’’ for more on bar charts).

Fig. 3-1. Breed of merino.
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The order of the bars is arbitrary, because the variable, breed, is nominal

and not ordinal. Because of this, there is very little more to say about the

distribution. So let us move on to Judy and her friends.

First, we need to take a look at the distribution of heights of Judy and 13

of her female friends. Before we graph it, let’s take a look at it in Table 3-1.

The best way to take a look at the distribution of this sort of data is to

build a stem-and-leaf diagram. We start by taking all but the last digit of each

number as the stem. Since our data are rounded to half inches, the fractional

part (either .0 or .5) is the last digit. Here is our first try at a stem-and-leaf.

First, we put all the numbers in a table, with the stems in the left column and

the leaves in the right, as you can see in Table 3-2.

Table 3-1 Heights of Judy and friends.

Name Height (inches)

Judy 64

Angela 64

Betty 66 1
2

Caroline 63

Donna 67

Francie 69 1
2

Hannah 63 1
2

Liora 68

Maria 66 1
2

Ng 63 1
2

Rita 64

Shizuko 65 1
2

Tammy 61

Wai-Jung 64 1
2
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Next, we sort the table, creating Table 3-3.

Then, we combine all of the rows with the same stem in Table 3-4, by

stacking the leaves in the right-hand column and adding any missing stems.

(Here the only missing stem is 62.)

As we can see, the stem and leaf lists all the data and, at the same time,

creates a horizontal bar chart of the distribution. It is quick and easy and can

be done by hand or by computer. Because the heights of these people are

numerical values, these bars are ordered, so we can see how the number of

people varies with their heights. There is only one person, Tammy, who is

Table 3-2 Stems and leaves (unsorted).

Height Data, Split

Stem Leaf

64 .0

64 .0

66 .5

63 .0

67 .0

69 .5

63 .5

68 .0

66 .5

63 .5

64 .0

65 .5

61 .0

64 .0
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under 5 foot 2. Most of the women are between 5 foot 3 and 5 foot 6. Three

of the women are over 5 foot 6. A table could tell us this, but not so easily.

Now we can see that most of the women are of middle-height, with a few

shorter and a few taller. This is the famous bell curve we have heard so much

about. It shows up clearly in the stem-and-leaf diagram.

If we turn the stem-and-leaf on its side and make it into a histogram with

polygon, we can see the shape even more clearly in Figs. 3-2 and 3-3.

What makes a bell-shaped curve bell-shaped is that there are more of the

middle values than of either high or low values. In nature, this is very

Table 3-3 Stems and leaves, sorted.

Height Data, Sorted

Stem Leaf

61 .0

63 .0

63 .5

63 .5

64 .0

64 .0

64 .0

64 .0

65 .5

66 .5

66 .5

67 .0

68 .0

69 .5
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common. Most people are not very short or very tall, nor very rich or very

poor, etc. This is true for all sorts of units and for all sorts of variables. Most

businesses are neither enormously profitable nor perpetually at the verge of

bankruptcy. Most real estate properties are neither very large nor very small.

Most stocks neither collapse in value nor soar. The bell curve describes this

very general fact about the world.

As we can see from the figure showing the heights of Judy’s friends, the

curve of a distribution has all of the possible values of the variable along the

Fig. 3-2. Female height distribution (bar graph).

Table 3-4 Stem-and-leaf.

Stem Leaf

61 0

62

63 055

64 0005

65 5

66 55

67 0

68 0

69 5
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horizontal axis (called the x-axis) and the count (called the frequency) of each

value along the vertical axis (called the y-axis). Because the variable is

numerical, the x-axis is just a number line, which you may remember from

grammar school.

The numbers along the x-axis (called the scale) correspond to the values of

the variable in question. The bump in the middle of the bell curve, which

shows what values are most common, is called the central tendency. For the

women in the graph of Judy’s female friends, the central tendency is around

64 inches. If we graph some of Judy’s male friends as well, we can see the first

way that two different bell curves can differ. Men tend to be taller than

women. In Fig. 3-4, we have placed the heights of Judy’s male friends in gray

next to those of her female friends. Looking at the graph, we see that the

central tendency for the distribution of the heights of Judy’s male friends is

about 68 inches.

Fig. 3-3. Female height distribution (histogram with frequency polygon).

Fig. 3-4. Male and female height distribution (bar graph).
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We can also see that the distribution of the heights of Judy’s friends does

not look much like a bell. This is because there are only a few people being

used to make up the numbers for the curve. Were we to graph the heights of

30 or 40 women, instead of just 14, we would find that the curve would be

very much bell-shaped, like in Fig. 3-5.

In a case like that with the heights of males and females, we can have two

bell-curves with exactly the same shape that have different central tendencies.

In that case, the only difference will be the position of the curve along the

x-axis, as in Fig. 3-6.

Even when there are lots of data, and the curves are smooth, there are

many variations on the shape of the bell-curve found in real data. Another

way that bell curves can vary is in how much the values stray from the central

tendency. The weights of a large flock of mutton merinos might vary less than

Fig. 3-5. Normal bell-shaped curve.

Fig. 3-6. Two bell-curves with different means.
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the weights of an equally large number of wild goats, because the mutton

merino is bred to produce as much mutton as possible. Sheep tend to be

pretty uniform in size. In Fig. 3-7, we can see two bell curves with the same

central tendency, but with different amounts of variability.

As we saw in the case of the heights of Judy’s friends, bigger values can be

more common than smaller values, or vice versa. More of Judy’s female

friends were taller than 5 foot 4 than were shorter than 5 foot 4. If something

has caused lower values or higher values to be more common, we will see

curves like those in Fig. 3-8, called skewed left (or negatively skewed) and

skewed right (or positively skewed, respectively).

The size of real estate lots, measured in acres, will be skewed left, because

bigger lots are more expensive and get broken up into little ones, and because

real estate lots can only get so small. The incomes of unionized workers may

Fig. 3-7. Two normal curves with different variances.

Fig. 3-8. Two skewed distribution curves.
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be skewed right, because the highest paying jobs in the firm are non-union.

If the salaries of all employees fall into a bell-shaped curve, when we consider

only the unionized employees, we are, in essence, chopping the bell-shape

somewhere near the middle, which can create a severe skew. This type of

curve in Fig. 3-9 is called a truncated curve.

Very often, we will find that there are slightly more very high and very

low values than in a true bell curve. This causes the bump in the middle of the

bell curve to be slightly flattened. The amount that the middle of the bell

curve is sharpened or flattened is called the kurtosis, as seen in Fig. 3-10.

Theoretical distributions

As we can see, a distribution is just the way of showing how many times each

value occurs for a single variable. By ordering the values numerically, we get

Fig. 3-9. Truncated curve.

Fig. 3-10. Two curves with different kurtotic indices.
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a sense of how larger and smaller values are more or less common. The

distributions above are sample distributions, because they show the frequency

of each value that is actually found in our sample. If we were dealing with a

population, particularly a population of unknown size or infinite in size, we

wouldn’t know exactly how many subjects would have each value for the

variable. This is where the notion of a random variable comes in. For a

population, instead of the exact count of each value, we will need to know the

probability that each value will occur.

A theoretical distribution for a variable is a curve with all of the possible

values of the variable along the x-axis and the relative probability of each

value along the y-axis. The height of the curve of a theoretical distribution is

re-scaled so that the total area under the curve is exactly equal to one.

Together, these two features mean that the area under any part of the curve is

exactly equal to the probability that the variable will have the values that

appear within that part of the curve.

Theoretical distributions are built from mathematical equations that are

designed to match the shapes of the real sample distributions of various kinds

of data. The most common formula is the normal distribution, which has the

true bell-curve shape. Figure 3-11 shows the standard normal curve, which

has a central tendency of zero and whose variability is standardized to a value

of one using a unit called sigma (symbolized by ‘‘�’’).

The exact formula for the curve normal distribution is too complicated for

us here, and we can manage just fine without it. It is important to understand

that the normal curve is defined by its specific formula and that having an

exact formula for the normal curve gives it specific features that are vital

to understanding statistical inference, and therefore applies to all the

Fig. 3-11. Normal distribution.
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conclusions about consequences of business decisions drawn from statistics

(the subject of Part Four of Business Statistics Demystified ).

Because the normal curve has a specific shape, the proportion of the area

under each part of the curve is always the same, no matter what the specific

values of the population distribution are. In the standard normal curve, these

areas are marked out in units of sigma. If we know any two points on the

x-axis under the standard normal curve in terms of sigma, we know the

probability that the variable will have a value between those two points.

By adjusting the standard normal curve to the central tendency and the

variability of our data, we can use the shape of the normal curve to link

values of a variable to the probability that those values will occur. We slide

the curve to the right or left (as in Fig. 3-8) to match the central tendency of

our data. Then we widen or narrow it (as in Fig. 3-9) to match the variability.

Now we can link any value of the variable to the corresponding sigma value.

Suppose we handle financial transactions for the auto parts industry. We

know that the price per sale is normally distributed. Small sales and big sales

are costly to handle, so we want to offer a special rate to new customers for

all transactions between $200 and $2000. In order to set the special rate, we

need to know what proportion of sales will fall between these two values. If

we know the central tendency and the variability of the price per sale, we can

use the shape of the standard normal curve to calculate the probability of a

sale being covered by our special rate. Even without looking at sales records,

we can set our special rate.

This is the genius of statistical inference. Using distribution curves, we can

associate real values measured from the real world with probabilities, which

help us answer questions about the likelihoods of events, including future

events, important to us.

In fact, the general technique shown above is even more powerful than

that. So long as we know the precise mathematical form of the curve of the

distribution of the variable in the population, that distribution does not even

have to follow the normal curve. There are dozens and dozens of

mathematical formulas for other sorts of distributions. And, for each

mathematical formula, there is a way of calculating a probability and

associating it with every point along the number line.

The trick is that we can never know for sure what the population

distribution is. All we can ever really know is the sample distribution. There

is a mathematical proof, called the Law of Large Numbers, which assures us

that, so long as we take a big enough sample, the statistics for that sample

will be close to the statistics for the population distribution. That means that

we can look at the sample distribution and be reasonably confident that it is

close to the population distribution. Then, if the sample distribution matches
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the shape of the normal distribution, or some other mathematically

understood distribution, we can use the technique above to make inferences.

And the above approach is even more powerful than that. Even if the

sample distribution is so oddly shaped that it doesn’t match any distribution

we know of, there is a less powerful form of statistical inference, called

nonparametric statistical tests (discussed in Chapter 14 ‘‘Nonparametric

Statistics’’) that works without the mathematical formula of the population

distribution.

We can now see a little bit of how the logic of statistical inference relates to

probability. The most important thing to know is that statistics works

whether or not we understand statistical theory and probability theory. We

need to understand the logic of statistical inference in order to do quality

statistics. We only need to know statistical theory and probability theory if it

is on the test.

The Laws of Probability
This section summarizes the basic terminology and rules that underlie

probability theory and the laws of probability, which say what sorts of

calculations can be used to determine complex probabilities from simple ones.

TIPS ON TERMS

Here are a few definitions of the basic terms from probability theory.

Simple event. One of a specific set of types of events. Simple events are defined to be

mutually exclusive, which means that, on one specific occasion, only one simple event

from the set can occur.

Complex event. A single event defined in terms of more than one simple event.

Rolling an even number on a single die is a good example. This event occurs

whenever any one of the three simple events (rolling a two, four, or six) occurs.

Complementary event. Also called the complement. A single event defined in terms of

another event not happening. The complement of a simple event may be complex

and vice versa. (The complement of rolling a six on a single die is the complex event

of rolling any one of 1, 2, 3, 4, or 5.)

Joint event. An event that has two or more characteristics. For example, a red king

is a joint event because the card is red and it is a king.

Simple experiment. A theoretical procedure that can be described in enough detail

and that involves processes that are not too variable, so that when performed

multiple times on different occasions, will tend to have the same proportion of

different types of outcome on each occasion.

The outcome. One of a specific set of types of outcomes of a simple experiment.
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Mutually exclusive events. Two events (and the probabilities of those events) are

mutually exclusive if the fact that one happens means that the other cannot possibly

have happened.

There are a few simple rules that define how probabilities are measured.

TIPS ON TERMS

The range. Probabilities are scaled from zero to one, in real numbers. This is mostly

due to convention, but it is used universally because it makes the math easier.

The null event. An event that has no possibility of happening in the specific situation

defined. For the null event, the probability is zero.

The certain event. An event that is certain to happen in the specific situation defined.

For the certain event, the probability is one. The complex event corresponding to all

simple events is a certain event.

There are a few simple rules that define how probabilities are combined.

TIPS ON TERMS

The addition rule. When more than one mutually exclusive event can happen, the

probability of the complex event corresponding to all of those mutually exclusive

events is equal to the sum of the probabilities of all of the mutually exclusive events.

The multiplication rule. When more than one independent event can happen, the

probability of the joint event is the product of the probabilities of the two

independent events.

Quiz
1. For understanding business statistics, the most important way that prob-

ability fits in with statistics is that it shows us . . .

(a) The way that numbers are calculated from the population relate to the

sample.

(b) The way that the numbers calculated from the sample relate to the

population.

(c) Both (a) and (b)

(d) Neither (a) nor (b)
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2. The Rule of Insufficient Reason, which states that when we have no reason to

think that one possibility is more or less likely than another we can assume

that the two likelihoods are exactly the same, is related to which type of prob-

ability?

(a) Classical probability

(b) Frequentist probability

(c) Subjective probability

(d) We cannot calculate probability

3. Which of the following is the advantage to Frequentist probability and their

use of the concept of the simple experiment over Classical probability?

(a) Simple experiments work even when the underlying simple events are

equally likely

(b) Simple experiments work even when the underlying simple events are

mutually exclusive

(c) Simple experiments work even when the underlying simple events are

not equally likely

(d) There is no advantage of Frequentist probability over Classical

probability

4. If we have a case where we cannot count things and we cannot expect things

to be repeatable, which type of probability should we apply?

(a) Classical probability

(b) Frequentist probability

(c) Subjective probability

(d) We cannot calculate probability

5. Which of the following statements illustrate the importance of statistical

independence?

(a) It is the minimum guarantee we can have that there is no causal

relationship between two events

(b) It is the maximum guarantee we can have that there is no causal

relationship between two events

(c) It is the minimum guarantee we can have that there is a causal relation-

ship between two events

(d) It is the maximum guarantee we can have that there is a causal relation-

ship between two events

6. Which of the following is not a problem of introducing statistical dependen-

cies between variables?

(a) They introduce sampling errors

(b) They introduce the problem of post-hoc hypotheses

(c) They cloud our ability to spot real causal relationships

(d) All of the above are problems
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7. What is the value of organizing data in to a stem-and-leaf diagram?

(a) It allows us to see a rough estimate of causal relationships

(b) It allows us to see a rough estimate of the sampling distribution

(c) It allows us to see sampling error

(d) It allows us to see probability

8. If two bell curves differ in their central tendency, the curves will differ in

which of the following ways?

(a) The skew of the curves

(b) The truncation of the curves

(c) The position along the x-axis

(d) The kurtosis of the curves

9. A sample distribution shows the _______ of each value that is actually

found in the sample.

(a) Population value

(b) Organization

(c) Probability

(d) Frequency

10. In a theoretical distribution, the x-axis represents the _______ and the y-axis

represents the _______.

(a) All possible values of the variable; the frequency of values in the data

(b) All possible values of the variable; relative probability of each value

(c) The range of values in the data; the frequency of values in the data

(d) The range of values in the data; the relative probability of each value
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Exam for Part One

1. Which of the following does not lead to the underuse of statistics in

business?

(a) A failure to set up statistical systems in advance of decision

making

(b) A poor understanding of the limits of the available facts or the

statistical techniques useful for converting those facts into infor-

mation

(c) Lack of statistical knowledge on the part of business persons

(d) The time pressure to make business decisions

2. Which of the following does not lead to the overuse of statistics in

business?

(a) Mistaken assumptions about how complicated or difficult to use

or costly statistics can be

(b) Requirements made by bosses and standards organizations and

legal authorities that fail to recognize limitations of statistics

(c) A desire to justify a decision with the appearance of a statistical

analysis

(d) Failures by decision makers to determine the value of statistics

as a part of their analysis
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3. The key to knowing when to apply one statistical technique instead of

another is to understand the _______ of the techniques.

(a) Error

(b) Statistical assumptions

(c) Mathematics

(d) History

4. Which of the following is not one of the three things we need to

know, and can know, before statistics can be useful for a business

decision?

(a) We need to be able to characterize the current decision we face

precisely

(b) There needs to be a history of similar situations that we can rely

upon for guidance

(c) We need to know specific facts about the future outcome of our

decision

(d) There needs to be a history of similar decisions that we can rely

upon for guidance

5. Which of the following is a question that can adequately be answered

by descriptive statistics?

(a) How many units failed quality checks today?

(b) Did our lowest priced vendor give us enough of a price break on

our key component last quarter to impact profits?

(c) Have men or women purchased more of our product in the past

year?

(d) Do our employees rate their work experience more highly than

do our competitors’ employees?

6. Which of the following is a question that can adequately be answered

by inferential statistics?

(a) How many of our employees rate their work experience as very

good or excellent?

(b) How many women between 18 and 34 have purchased our pro-

duct in the past year?

(c) Which vendor gave us the best price on our key component last

quarter?

(d) Did enough units fail quality checks today to justify a mainte-

nance call?
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7. What are the advantages of conducting a statistical study over using

a statistical technique on a one-time only basis?

(a) It is cheaper to collect a lot of statistics at once that may help

with a lot of decisions later on than to collect statistics one by

one as they are needed

(b) A single statistical study can collect and describe a large

amount of information that can be used to help make an

even larger number of decisions

(c) Both (a) and (b) are advantages

(d) Neither (a) nor (b) are advantages

8. Which of the following components of a statistical study is not neces-

sary to present in a statistical report?

(a) The calculations of the statistical techniques used in the statis-

tical study

(b) The circumstances of the statistical study

(c) The assumptions of the statistical study

(d) The results of the statistical study

9. Which of the following is not an advantage of understanding how to

lie with statistics?

(a) It is the best way to learn that sound judgment is vital to

making statistics work for us

(b) It allows us to create convincing advertising campaigns

(c) It helps us to learn the strengths and limitations of statistical

measures and techniques

(d) It helps us to be cautious about incomplete measurements and

undefined terms in statistical reports

10. What is the correct order of the first 3 steps in performing statistics?

(a) Analysis, sampling, and measurement

(b) Sampling, measurement, and analysis

(c) Analysis, measurement, and sampling

(d) Measurement, sampling, and analysis

11. Which of the following statements about measurement is not true?

(a) Measurement is a formalized version of observation

(b) Measurement is different from ordinary observation

(c) Measurement provides a specific description of the world

(d) Measurement provides a general description of the world
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12. How is a variable used in statistics?

(a) A variable usually corresponds to some measurable feature of

the subject

(b) A variable is a person, object, or event to which a measurement

can be applied

(c) A variable is the result of a particular measurement

(d) A variable is the collection of values resulting from a group of

measurements

13. The series ‘‘President, Vice-President, Secretary, Treasurer, Board

Member’’ is on which type of scale?

(a) Nominal

(b) Ordinal

(c) Interval

(d) Ratio

14. Which of the following components of statistics contain error?

(a) Measurement

(b) Statistical analysis

(c) Sampling

(d) All of the above

15. If we have a set of measurements that are valid, but not very reliable,

they will . . .

(a) Be clustered around the right value, but in a wide cluster

(b) Be clustered very closely together, but around the wrong

answer

(c) Be in a wide cluster around the wrong value

(d) Include at least one measurement that is exactly the right value

16. Validity is how statisticians talk about minimizing _______ error;

Reliability is how statisticians talk about minimizing _______ error.

(a) Biased; biased

(b) Biased; unbiased

(c) Unbiased; biased

(d) Unbiased; unbiased

17. When a comprehensive sample is not possible, what is the best sam-

pling technique to use in order to avoid introducing additional bias?

(a) Convenience sample

(b) Stratified sample
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(c) Random sample

(d) Systematic sample

18. Which of the following is the end product of the procedures used for

calculating a statistical measure?

(a) A single summary number that characterizes all of the values

used in the calculation

(b) A statistical technique

(c) A range of numbers that characterize the population of interest

(d) A valid and reliable measure

19. Every inferential statistic is _______, but most descriptive statistics

are not _______.

(a) Inferential; inferential

(b) Inferential; descriptive

(c) Descriptive; inferential

(d) Descriptive; descriptive

20. The Rule of Insufficient Reason, which states that when we have no

reason to think that one possibility is more or less likely than another

we can assume that the two likelihoods are exactly the same, is

related to which type of probability?

(a) Classical probability

(b) Frequentist probability

(c) Subjective probability

(d) We cannot calculate probability

21. Which of the following is the advantage to frequentist probability

and their use of the concept of the simple experiment over classical

probability?

(a) Simple experiments work even when the underlying simple

events are equally likely

(b) Simple experiments work even when the underlying simple

events are mutually exclusive

(c) Simple experiments work even when the underlying simple

events are not equally likely

(d) There is no advantage of frequentist probability over classical

probability
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22. Which of the following statements illustrate the importance of statis-

tical independence?

(a) It is the minimum guarantee we can have that there is no causal

relationship between two events

(b) It is the maximum guarantee we can have that there is no causal

relationship between two events

(c) It is the minimum guarantee we can have that there is a causal

relationship between two events

(d) It is the maximum guarantee we can have that there is a causal

relationship between two events

23. Which of the following is not a problem of introducing statistical

dependencies between variables?

(a) They introduce sampling errors

(b) They introduce the problem of post-hoc hypotheses

(c) They cloud our ability to spot real causal relationships

(d) All of the above are problems

24. In a theoretical distribution, the x-axis represents the _______ and

the y-axis represents the _______.

(a) All possible values of the variable; the frequency of values in

the data

(b) All possible values of the variable; relative probability of each

value

(c) The range of values in the data; the frequency of values in the

data

(d) The range of values in the data; the relative probability of each

value

25. If two bell curves differ in their central tendency, the curves will differ

in which of the following ways?

(a) The skew of the curves

(b) The truncation of the curves

(c) The position along the x-axis

(d) The kurtosis of the curves
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PART TWO

Preparing a
Statistical Report

Part Two is written as a step-by-step guide to preparing a statistical report,

from the initial idea for the statistical study, up through the presentation of

the report. This organization is particularly useful if you are asked to prepare

a statistical report as a homework assignment, or if you are preparing a

report on the job.

Chapter 4 ‘‘What Is a Statistical Study?’’ defines a statistical study and the

process of creating a statistical report. In Chapter 5 ‘‘Planning a Statistical

Study’’ you will learn how to plan the study to get the results needed to

support the business decision you are working on. Chapter 6 will guide you

through ‘‘Getting the Data,’’ whether you are gathering freely available

statistics, buying data, or performing a study yourself. Chapter 7 introduces

many varieties of ‘‘Graphs and Charts’’ you can use to convey information

clearly. Chapter 8 introduces the most ‘‘Common Statistical Measures.’’

Chapter 9 ‘‘Meaningful Statistics’’ addresses the questions of significance and

meaning, allowing us to decide whether our statistical results support

particular business decisions. And, in Chapter 10 ‘‘Reporting the Results,’’

we learn how to prepare and present a statistical report.
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Our practical organization, while it supports planning, preparing, and

delivering statistical reports, deals with things in a somewhat different order

than is found in most statistics textbooks. If you need to read these topics in

the order taken by your textbook, please consult the web page for this book

www.qualitytechnology.com/books/bsd.htm, where we maintain an up-to-date

cross-reference to the most popular business statistics textbooks. Don’t

worry that you will be reading these chapters out of order. Now that you

have the basics of Chapters 1, 2, and 3 down, you can read Part Two in any

order that works for you.

One thing we will not be covering in Part Two are the more sophisticated

statistical procedures, particularly those used to calculate inferential

statistics. Statistical procedures are the subject of Part Three.
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CHAPTER
4

What Is a Statistical
Study?

At some point early in your business career, if it has not happened already,

you will be confronted by a statistical report. It will not differ much from any

other business report, except that it will be chock full of statistics in the form

of graphs, figures, numbers, and tables. It may be large or small, readable or

unreadable, fair or biased. The statistics reported will most likely be the

results of a statistical study. A statistical study is just a project whose outputs

are statistics. The statistical report makes those statistics available to an

audience.

Here are the keys to making a good statistical report for business:

. Focus on the business decision. Make it useful, don’t focus on the

statistics.

. Open with a one-page summary. In the summary, identify the decision

to be made, or the decision already made. Identify the questions asked,

and their answers.
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. Put supporting material last. In the body of the report, explain what

you did and what it means. End with a conclusion guiding or support-

ing the decision. In this section, do not include any justifications or

detailed explanations.

. Save the details for the back of the report. Whether you call this an

appendix or additional chapters doesn’t really matter. But put all sup-

porting materials: your logic for choosing the statistical procedures

you chose, your methods, your demonstrations of statistical signifi-

cance, and your data, in the back of the report.

HANDY HINTS

Business is the Opposite of School
In school, you will learn what to put into a business report, but you may not learn

how to write one. In fact, most school training and scientific training teaches you to

do the exact opposite of what is needed for business. In school and science, we are

taught to present our data first, our reasoning second, and our conclusions last. Also,

the assumption is that we are not experts, that we have to prove ourselves.

In business, the opposite is true. The technical worker who prepares a report is

assumed to be the expert. The business people want answers—your answers. Be the

expert, and answer their questions up front. Reserve your reasons for when you are

asked—if you ever are.

In short, do good work, present your results, and be able to explain or justify your

work, but figure you won’t have to.

The first key to a successful statistical report for business is the way the

statistical work supports a business decision. Your first job should be to

understand the questions being asked and the decision to be made. If you

keep that focus and work through Part Two, you will be able to plan a

simple statistical report, though you will probably want some help from

an experienced statistician. If you are involved in a large or complicated

statistical report, you can help by keeping the focus on the business needs,

and coordinating the efforts of expert statisticians toward solving the busi-

ness problem. Equally important, you will be able to review a statistical

report, determining whether you believe the report’s conclusions to be valid

and to be relevant to the business decision it is intended to support.
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Why Do a Study?
In a business context, there are three reasons for doing a statistical study.

. Providing information in support of answers to questions that are likely

to arise. A business believes that it can anticipate certain questions

that will arise, such that the data we collect will be useful in answer-

ing future questions. This type of study is usually done by compa-

nies that sell the results of their statistical studies, or inside large

companies.

. Providing general information about a situation, such as a business

market, in order to define what questions should be asked. In this case,

a company realizes that gathering information is useful, but doesn’t

know exactly what information would be most useful. This kind of

study is often performed by—or contracted out by—a small to

medium-sized business that wants to learn more about its customers

or employees. These studies often use standard questions that are

generally accepted as being useful in business. These studies answer

the question: What questions should we be asking?

. Providing support to answer specific business questions and make specific

business decisions. The most common reason is that we have a decision

(or decisions) to make, and we believe that general (statistical) infor-

mation about the world can help us make that decision more

effectively.

In any case, our first step is to determine what data need to be collected

and what statistics need to be calculated. The best way to do this is to phrase

a question or questions that, if we knew the answer, we would understand

our subject, or our decision would be easier to make. That question will lead

us to our data. The form of the question will help us decide what type of

statistical measures or procedures are appropriate. These are the core

elements that will drive our plan for the statistical study.

Why Use Statistics?
The executive functions within a business by making decisions that lead the

company in a particular direction. Management functions by making and

enacting decisions that improve the effectiveness and efficiency of moving

in the right direction. If the executives and managers don’t make good
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decisions, the company will head in the wrong direction or not move quickly

enough.

Good decisions require good information. That is the basis of the busi-

ness fields called decision support and knowledge management, and business

statistics is part of those. There are only three kinds of information available

for a business decision:

. Hard facts. If the quantity of information is small, we don’t need

statistics. For example, if a sales manager has names, corporate infor-

mation, and degree of interest information about five hot prospects,

and knows the sales team, the manager doesn’t need statistics to make

a good decision regarding which prospect goes to which salesperson,

or what advice to give each salesperson to close the deal.

. Data plus statistics. When the information we need to evaluate is too

large to handle all at once—that is, we are working with a large popu-

lation—we turn to data sampling plus statistics. It replaces the com-

plete picture that hard facts would give us in a smaller situation. And if

the statistical work is good, the sample represents the population

adequately, and our statistics tell us what we want to know, then

the statistical study will support good decisions. This is what a sales

manager would need, for instance, in deciding how to grow business

in five different cities with tens of thousands of potential consumers

in each city.

. Assumptions and guesses. If we don’t get the hard facts or use statistics,

we are left with assumptions and guesswork. All too often, business

runs this way. For example: A small business hears that a nearby city is

one of the fastest-growing in the country and decides to open a new

store. Unfortunately, the business sells childrens’ toys, and the city is

the fastest-growing retirement community in the country. The store

fails because of the assumption that a fast-growing city has lots of

children. This is the kind of error that a good statistical study can

prevent.

KEY POINT

When the dataset we need to look at is large, statistics is a lot better than

assumptions and guesses.
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Here is how we can make sure that we can use statistics well in support of a

business decision:

. some general information about the world must be useful in helping

make a business decision

. that general information must be calculable from specific information

about the world that can be measured reliably and validly

. the specific information must be obtainable at a reasonable cost

. we must be able to present the results of the statistical work in a form

useful to making the business decision

. the total cost of obtaining the statistical information must be lower

than the estimated benefit of having the information when we make

our decision

It is often not possible to determine, or even estimate, whether or not using

statistics will net a benefit to our business for any given decision. Most often,

we use statistics when standard business practices dictate that statistics have

been of net value in the past. Sometimes, we need to use common sense and

good judgment. If the cost of a statistical study is modest relative to the rest of

our operations involving the decision in question, and the value of the

information to that decision is clear and obvious, a statistical study is justified.

What Are the Key Steps in a Statistical Study?
The steps in a statistical study are:

. Define the business decision to be supported, and the questions to be

answered. Most likely, you will be assigned to do the study by an

executive or manager. This is just the beginning. You will need to

meet with that person, and others, to make sure you have a thorough

understanding of the issues, so that you can determine what data and

what statistics will support the decision.

. Create a research plan. Creating a research plan is essential, and

Chapter 5 ‘‘Planning a Statistical Study’’ will show you how. As part

of the plan, you will decide what statistics support the business deci-

sion. This is a big challenge, and Chapter 9 ‘‘Meaningful Statistics’’

explains why statistical rules developed for science don’t do so well for

business, and what you can do about it.

. Collect the data. Chapter 6 ‘‘Getting the Data’’ will show you how.

. Analyze the data using the appropriate statistical procedures from

Chapter 8 ‘‘Common Statistical Measures’’ and Part Three.
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. Report the results choosing from the charts and graphs described

in Chapter 7 ‘‘Graphs and Charts’’ and methods for written and

oral presentation from Chapter 10 ‘‘Reporting the Results.’’

We must create the research plan before we jump in and get to work

because all of the other steps are linked in a complicated way. Also the links

do not run in just one direction. The decisions to be made can tell us what

questions we want answered, but which questions can be answered depend

upon the availability of the right data (or our ability to collect it) and

applicable statistical techniques. We need to choose the right statistical

procedures to answer our questions, and then collect the right data in the

right way to use those procedures. But if our data sources are limited, we

might not be able to. Then we have to rely on other, less optimal statistical

techniques. All of this should be worked out in planning. If we work it out as

we go along, costs will skyrocket as we are forced to do rework, perhaps even

having to run a second survey or experiment.

During the planning stage, we consider all the issues of data and methods

at once. In contrast, the statistical study itself must be conducted in a strict

order. To avoid potential problems with post-hoc hypotheses and other

problems of sampling discussed in Chapter 3 ‘‘What is Probability?’’ after we

have our plan, we must follow this order:

. Collect the data

. Analyze the data

. Answer the questions

. Make the decisions (or allow our readers to make them)

Finally, when we write our statistical report, we must re-order things one

more time, for clarity:

. Present a one-page summary of the decisions, questions, and answers

. Describe the decisions to be made

. State the questions

. Describe the data

. Report the analysis, showing the answers to the questions (or that we

didn’t get answers), and, if appropriate, recommending a direction on

the decisions to be made, or explaining how the statistics supported the

decision that was made.

In order to determine what data and what statistical techniques are

needed for each question, we will need to understand the requirements and

assumptions of the statistical procedures that will be used. This book, and

our statistics training, will help us with that.
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Planning a Study
There are two reasons why it is essential to plan a statistical study well.

. The business reason is that a well-planned study costs much less than a

poorly planned—or unplanned—study

. The statistical reason is that, without careful planning, we can easily

get the wrong data and be unable to run our statistical tests, or

work in the wrong order, and invalidate the entire study by introducing

bias

As in almost every facet of business, the key to an effective statistical study

is good planning. Because of the costs and complexities of even moderately

simple statistical studies, the value of planning is even greater. The real work

of statistics is in planning what to do more than doing it. This is because

most of the really dangerous and costly mistakes happen in the planning,

not in the execution. In Chapter 5 ‘‘Planning a Statistical Study,’’ we will

present the planning process in order. Here are the most important issues.

KEY POINT

Everything that is true of a business report is also true of a statistical report. We need

to do all the things that make a good business report, plus all of the things needed to

make the statistics good as well.

Once we have our research questions listed, we need to make a practical

assessment of whether or not we can realistically (and economically) obtain

this information. This sort of practical assessment is not as easy as it seems. It

requires thought and hard work. Lots of information that seems unobtain-

able may be sitting out there on a government website for free. Lots of

information that seems straightforward and easy to obtain may be impossible

to get. Only training and experience will teach us how to find out what sort of

information is and is not available in our industry. And sources of informa-

tion are changing all the time. The Internet has tons of information today

that it didn’t have yesterday, but much of this information is unreliable.

Government restrictions and changing cultural norms make information that

was easy to obtain 50 years ago almost impossible to obtain today.

The important thing to understand is that many statistical studies are

begun without a clear understanding of the need to establish the costs and

CHAPTER 4 What Is a Statistical Study? 101



availability of the data required. Often, such studies are never completed, and

large amounts of money and resources are wasted because no one took the

time to find out if the data could be obtained at a reasonable cost.

Once a source or sources of data have been identified, a detailed plan for

collecting the data must be constructed. The data collection plan must take

into account the limitations and restrictions on how the data can be collected,

whether due to costs, government regulations, or whatever. In addition, the

data collection plan must use sound sampling procedures to ensure that the

data are appropriate for whatever statistical techniques might be applied.

Some of the restrictions on sound sampling apply to any sort of statistics we

might do, and some of them are required only if we are going to do certain

specific procedures.

A good example is sample size.Generally, the more information we collect,

the better off we will be statistically. However, some statistical procedures

require a great deal more data than others. We need to consult carefully with

the project statistician before we make our data collection plan in detail.

What Are Data and Why Do We Need Them?
In Chapters 1, 2, and 3, we learned the theory of what data are. Here we will

take a closer look at the practical side of that same question. Lots of

information we use every day in business is data, even though we don’t think

about it that way. We need to be able to take advantage of opportunities

to get high quality data at low cost. In order to do that, we need a better

understanding of what data are, in practical, day-to-day business terms.

Collecting data for their own sake is a waste of time and money. If we want

to apply statistics to our data, the data must be of the right type and quality.

We need data only if we can calculate statistics from the data, and the

statistical results will support the business decisions our audience is tasked to

make. It is our responsibility to ensure that this chain, from population to

data to statistical analysis to decisions support, is unbroken and carefully

documented before we go forward with the study.

After we have determined that data can help with the business decisions

our audience is tasked to make, we need to figure out what sort of data are

needed. Some issues are always important to consider: Can the data be

obtained? Can the data be specified precisely enough that they can be

encoded symbolically or numerically? What form will the data have to be in,

in order for the statistical analysis to be performed?

What we need here is a measurement plan. As with many sorts of plan,

working backwards from what we need to how to get it is a good idea.
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Given our research questions, we should be able to envision what the answer

should look like. From that, we (or our consulting statistician) should be able

to specify precisely not only what information we need, but precisely what

form it must be in. We create the measurement plan last, and use it first. The

measurement plan will tell us how to take the information from the world

and put it into the precise numerical or symbolic form required by the

statistical analysis.

The part of measurement where the information is converted into numbers

or symbols is called encoding. Coding systems can be very elaborate, and

we will consider only the simplest here in Business Statistics Demystified.

The most important thing to understand here is that not all information can

be encoded easily, and some cannot be encoded at all. Practically, our

measurement plan will describe how we will encode the data so that they are

useful for our decision. After we prepare our data collection plan, we may

revise our measurement plan to make it work with the data collection

process.

Once we have determined the type of data we need and what form we need

them in, we need to ensure that we can obtain them in usable shape. In order

to ensure that the information provided to us is valuable, we need to ensure

that it is correct. In order to ensure that it is correct, we need to ensure that

(a) it really comes from the world and not from somewhere else, and (b) it

has been extracted from the world in reasonably good shape. (These two

desiderata are more or less the notions of validity and reliability, discussed in

Chapter 2 ‘‘What Is Statistics?’’) Whatever data collection procedures we

ultimately choose, those procedures must be carefully planned and those

plans must be carefully documented. We need to ensure two things: Are the

measurements taken reliable? Are the data collection procedures designed

and implemented so as to ensure the minimum possibility that error will be

introduced from the point when measurements are taken up until the

statistical analysis begins?

CRITICAL CAUTION

The issue of protecting data from error contamination after measurements are taken

is very often neglected, even by professional statisticians. It is extremely important

and requires careful planning and implementation. Recall the last time you met

someone new and exchanged email addresses. Did they tell you their email address

while you tried to memorize it? Did you write it down as they said it? Did they give

you a business card with the email address on it instead? Or did they tell you how to

find their address on the Web, so you could copy and paste their email address into

your email program? Each one of these ways of getting the data (the email address)
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onto your computer has different problems and different possibilities of error. Each

one, in order, is less likely to introduce error than the one before it.

The important thing is to apply common sense: Computers are more accurate

than people; automatic transfer is better than copying; copying (or cutting and

pasting) is better than retyping; typing is better than handwriting. Also, whenever

possible, use two different methods of gathering data, rather than just one. If you

can’t do that, gather the data twice and compare them. Whenever possible, use both

your eyes and your ears. If you can’t use both, use your eyes as first choice. Make

copies of everything, and verify everything you can.

The most practical output of measurement planning is a data collection

form with instructions on how it is to be filled out.

Gathering Data: Where and How to Get Data
Once we have decided what type of data we need, we need to figure out the

most effective way to get them. Usually, cost is the overriding concern. And

the most important determinant of cost is the means by which we collect

the data.

Assume that we know what kind of data we need, in what format, and that

we have determined that, at least in principle, it is possible to measure the

world in a way that will produce data in that form, we need to consider where

and how to get the data. Our measurement plan shows us the form we want

our data to be in. Our data collection plan will tell us where and how we will

get the data to put into the form.

WHERE TO GET DATA: THEFT VERSUS HONEST TOIL

The first big issue in planning our data collection is: Do we already have the

data we need somewhere in our own company? If not, has someone else

already collected the data we need, and could we get the data from them?

Tons of data have been collected and stored and made available for all sorts

of purposes. Some of them are free and some of them we have to pay for.

Before we begin the difficult and complex (and costly!) process of planning

our own data collection and measurement, we need to see what is already

available.

We need the data to be available at a reasonable price and also in a

form we can use. Sometimes, someone else has collected the right data, but

cannot, or will not, provide them to us in the right form. We may need daily
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records and the vendor may only sell monthly records, even if they originally

measured things day-by-day and summarized them later. The data may have

been encoded in a way that cannot be used for our planned statistical

analysis, perhaps with inappropriate categorization or level of precision.

Very often, the data may have been collected in a way perfectly appropriate

for their original purpose, but useless for ours.

If data are out there in a form we can use, or in a form we can convert into

something we can use, we need to establish that it will cost less to acquire

the data from this source than it will be to collect them ourselves. It is usually

cheaper to buy than to build, but not always.

HOW TO GET DATA: METHODS

If we decide to collect our own data, the big issue is what method to use. Very

often, the method will be dictated by the nature of our research question,

as we will see in Part Three. The two main methods are surveys and

experiments. Quasi-experiments are a good compromise when practical

limitations, such as cost, make experiments problematic.

Surveys

In a survey, we go out and gather data from the world, more or less taking it

as we find it. The best known type of surveys are polls, where we contact

various individuals and ask them for the information. The best known type

of polls are opinion polls, where the information we ask for is the opinion of

the person contacted. But actually, there are a number of types of surveys

and polls:

. An opinion poll is where we survey people to get their opinions. We will

probably also get some facts (such as their age) from them at the same

time. Correlating demographic facts with opinions and preferences is

important to marketing strategy.

. A poll of people can be used to obtain facts (as the sample perceives

them) and preferences, as well as opinions. A good example is an exit

poll, at election time.

. A survey does not have to ask people questions at all. When a surveyor

measures land, he is doing a survey of the landscape, defining measure-

ments that go onto a map (a data collection tool). In business, one

common type of survey is the inventory, where we either count all

items, or, for large inventories, use sampling and estimate inventory

size and condition.
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Experiments

Experiments differ from surveys and other non-experimental studies in that

an intervention, called an experimental manipulation, is performed. The

experimental manipulation is usually intended to model some change that

might happen in the real world. This change is directly connected to our

research question. For instance, if we wanted to know whether our new

ingredient improved the flavor of a soft drink, we might add the new

ingredient to some bottles of the soft drink and not to others.

In an experiment useful in a business context, the goal is to determine

whether or not there is a correlation between the intervention and some

desirable, or undesirable results. Ordinarily, we think of the intervention as

causing the changed results, if any. Within the context of a properly designed

experiment, statistics provides information that may lead to a conclusion

about causation. Statistical calculations alone can only demonstrate the

presence or absence of correlation, not causation.

When we conduct an experiment, we are looking to see if there is a change

resulting from the intervention. Therefore, it is very common in experimental

studies that the intervention is only done to some subjects or units. The

subjects or units that are modified are part of what is called the experimental

group, because they receive the experimental manipulation. The other subjects

or units do not receive the intervention. They are part of the control group.

KEY POINT

The comparison between the results for the control group and the results for

the experimental group will show us a difference that may have been caused by

the intervention, if there is a difference. Without the control group, it would be

hard—perhaps impossible—to demonstrate that the intervention was the cause of a

particular effect.

Ideally, we want to choose which subjects or units receive the intervention

on a random basis. In that way, the experimental and control groups are

random (or at least quasi-random) sub-samples of our overall sample for our

experimental study. Just as there are many ways to sample from our

population, there are even more ways to divide our sample into groups who

receive different interventions (or no intervention at all for the control

group). This process is called assignment to groups and is a key feature to

different kinds of experimental designs.
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Quasi-experiments

Between surveys and experiments are quasi-experiments. Quasi-

Experimentation: Design and Analysis Issues by Cook and Campbell (1979)

is the best source of information on quasi-experimental studies. Quasi-

experiments are used when proper control groups cannot be used or are too

expensive (or unethical), but something more capable of finding possible

causes is needed than a survey can provide. Quasi-experiments include

interventions, but who gets what intervention (or any intervention) is not

determined in the best way possible. Group assignment is performed in a

non-random fashion.

There are many, many kinds of experiments and quasi-experiments. Each

of them presents its own unique statistical challenges. In Business Statistics

Demystified, we will focus on the most common experimental designs used in

business.

Writing a Statistical Report for Business
Statistics can be intimidating. (You probably know that already.) While

clarity is vital in any business report, it is much more important and much

more difficult in a statistics report. As with any report, the first rule is to keep

your target audience in mind. How often do they read this type of report?

How sophisticated are they in terms of mathematics and statistics? Knowing

how to present statistics with a minimum of numbers is a critical skill.

Finally, remember the old seminary school adage: ‘‘Tell ’em what you’re

gonna tell ’em. Tell ’em. Tell ’em what you told ’em.’’ Both the introduc-

tion and the conclusion should be expressed in straightforward ordinary

language, laying out the business decision and relevant information.

Reading a Statistical Report
If you can plan and write a good statistical report, you also know most

of what you need to be able to read and evaluate a statistical report.

Why is it harder to read a statistical report than to write one? Because,

here in Business Statistics Demystified, we are teaching you to write a

good, honest, accurate, useful statistical report. But many of the reports

you will read will be poorly done, biased, vague, or useless. And

those problems may be hidden under layers of pristine prose and clear

charts.
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KEY POINT

One of the most common uses of a basic understanding of statistics for business is

the ability to read a statistical report and answer the questions: Is this report any

good? Is it relevant? Will it support the decisions we need to make?

The problem of bad statistics is not a new one. In fact, Huff and Geis

wrote the best manual on reading statistics and seeing through bias in 1954,

How to Lie With Statistics. We highly recommend this entertaining and

educational little volume. In it, on pages 122–142, they encourage readers

to watch for these misleading techniques found in statistical reports, and

in articles and advertisements that present themselves as being based on

statistics:

. Who says so? Does the corporate or individual source of the informa-

tion imply a possibility of conscious or unconscious bias?

. How does he know? Examine issues of population, sample size, and

sample bias. Sample bias can arise from intentionally biased selection,

from poor design, or from self-selection.

. What’s missing? Watch for an average that doesn’t specify mean, med-

ian, or mode, and for conclusions not based on comparisons. If results

are presented as an index, we must ask whether the index varied

because of a change in the factor being discussed, or a change in the

base of the index. And we have to pay attention to extraneous factors

that may affect report results in such a way that the claims of correla-

tion remain unproven.

. Did somebody change the subject? The link from data to statistics to

conclusions may not be valid. For example, a survey may get people’s

self-report of their behavior, but that may be biased, and not represent

what they actually do.

. Does it make sense? Sometimes, the underlying theory is invalid. In

researching the rapid growth of the cellular telephone industry, the

second author found numerous projections that indicated that, if cur-

rent trends continued, everyone in the world would own five or ten cell

phones in another decade or so. But that just isn’t going to happen.

And, if we go back in time, we will find out that this very kind of error

was cautioned against in 1954, in How to Lie with Statistics.

Unfortunately, many of these misrepresentations and errors are hard to

detect unless the survey data and research methods are available. If we have
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only the results of the study in hand, all we can do is be suspicious. If we

can’t acquire original data and a record of methods used, and we don’t trust

the source to be making a better effort than we could to be accurate

and unbiased, we should gather our own data and do our own statistics.

Otherwise, our company is making a business decision based on opinions and

assumptions, disguised as a statistical report.

Quiz
1. A statistical study is . . .

(a) A project that makes statistics available to an audience

(b) A project whose outputs are statistics

(c) A summary of the statistics

(d) A document containing charts and graphs

2. What is not a key to making a good statistical report for business?

(a) Focus on the business decision

(b) Save the details for the back of the report

(c) Put supporting materials first

(d) Put supporting materials last

3. Which of these is not a type of information available for a business decision?

(a) Hard facts

(b) Data plus statistics

(c) Assumptions and guesses

(d) All of the above are types of information available for business deci-

sions.

4. The first step in conducting a statistical study is . . .

(a) Define the business decision to be supported, and the question to be

answered

(b) Create a research plan

(c) Collect the data

(d) Analyze the data

5. The _______ stage can be conducted in any order; the _______ stage must be

conducted in a specific order.

(a) Study; planning

(b) Planning; study

(c) Planning; report

(d) Report; planning
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6. The business reason for a well-planned statistical study is to reduce _______.

(a) Error

(b) Bias

(c) Bad data

(d) Costs

7. The process of converting information into numbers is . . .

(a) Sample size

(b) Statistical analysis

(c) Encoding

(d) Data

8. Which is not a method for collecting data?

(a) Survey

(b) Experiment

(c) Quasi-experiment

(d) All of the above are methods

9. The _______ group receives the intervention; the _______ group does not

receive the intervention.

(a) Control; experimental

(b) Experimental; control

(c) Assignment; experimental

(d) Experimental; assignment

10. What should you ask yourself when reading a statistical report?

(a) Who says so?

(b) What’s missing?

(c) Does it make sense?

(d) All of the above
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CHAPTER
5

Planning a
Statistical Study

The need for planning in business is illustrated by the 1:10:100 rule for

Planning : Building :Using. Missing a step in planning that would take one

hour adds ten hours of work time to a project. If the work is missed during

the project, it costs the customer a hundred hours of lost operations to fix the

problem. For example, if an architect makes a mistake that he needs to fix, it

would take him one hour of architectural work (planning) to fix it. But, if the

error didn’t get caught until after construction started, it would take ten

hours (and cost ten times as much) for the construction team to fix it. And if

the error was missed during construction, it would take 100 hours (with four

days of lost rental income) to move everyone out and fix the problem once

the building was in use. In construction, this is not surprising. What is

amazing, but true, is that this rule applies in every project we do, whether we

are building something, or gathering and analyzing data, or making a phone

call, or preparing a report. It has been measured and proven over and over.

The 1:10:100 rule is about as close to a universal law as you will get in
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business. You can reduce the costs of your statistical study by a factor of ten

by planning it well.

BIO BITES

The first author spent a brief time as an assistant account executive at a small mid-

town Manhattan advertising agency. I shared an office with three other junior

executives. My boss had asked me to gather some information, via telephone, from

five or ten companies. I had done such small, informal phone surveys before, so I felt

confident. I stumbled through the first phone call so badly that my office mate, who

was not a particularly nice guy, took pity on me. He sat me down and showed me

how to plan a five-minute phone call.

I remember how shocked I was that something that small was worth planning for.

My office mate had a nice, simple system that took no more than three minutes,

using a pencil and one sheet of paper. The plan was no more than a list of topics,

in order, that I needed to cover in the phone call. I use it to this day.

The lesson: No matter the size of the task, so long as the planning process takes

less than ten or twenty percent of the time the task will take, it is worth taking the

time to plan.

For a number of especially obvious reasons, statistics benefits more from

planning than do most areas of business. In statistics, because of all the

calculations and the need for both precision and accuracy, tiny mistakes can

have catastrophic consequences. In addition, in business statistics, we have to

present to an audience that doesn’t know statistics. If we spend half our time

planning, that is probably not too much, and may not be enough.

We will need a detailed research plan in order to conduct the research that

will produce the contents of our statistical report. The structure of our plan

will differ depending on whether we will be collecting our own data or

obtaining pre-collected data from some source. In either event, these are the

steps for creating a research plan:

. determine the plan objectives

. state the research questions

. assess the practicality of the study

. plan the data collection

. plan the data analysis

. plan the statistical report

. prepare a budget

. writing up the plan and getting it approved

This chapter will show you how to do this process from beginning to end.

PART TWO Preparing a Statistical Report112



Determining Plan Objectives
A statistical study begins with a directive, perhaps from your boss, that may

be written or verbal. It could be as simple as your boss saying, ‘‘Find out

about our customers in Chicago.’’ Or it could be a full, clear list of questions,

a sample report for how the results should look, and a date it is due. In all

probability, the directive will not contain enough information for your plan.

By meeting with your boss and others, try to get clear answers to all these

questions:

. When is the report due?

. How much money and time are budgeted for the statistical study?

. What decision(s) will the information support? What is the issue, and

what are the specific questions? Is there a specific act of planning,

opportunity under consideration, or problem to be solved?

. What questions need to be answered?

. Is there a sample of a similar report or study, done in the past, or

done by another company, that you could use as a model? If not,

find some, and show them to your boss and have the boss define

what is needed.

. Will the report be presented orally, in writing, or both?

. Are there any rules or restrictions governing how you do the study?

For example, does your boss want you to use available data, or to do a

survey or experiment, or is it left up to you?

In an ideal business, you would get all this information right up front. In

reality, getting it may be like pulling teeth. If so, figure that you were asked to

create the study, and be creative! Trust your judgment, come up with what

you think is best, and then outline what you plan to do. Illustrate it with a

similar report from another study, or a mock-up of the report you will create.

Bring it to your boss, and get an okay, or, if your boss has some ideas, there

may be changes. Once you have the business issues, format, budget, and

deadline defined, you are ready to turn the business questions into statistical

research questions.

Defining the Research Questions
Now is the time to bring in a statistician to help with the plan. Together, you

can translate the business questions into a series of statistical issues that will
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define the study:

. What is our population?

. What is our sample size? How will we obtain our sample?

. Will we gather our own data, or use data from someone else?

. Will we generate our own statistics, or use statistical results from some-

one else?

. What statistical measures and procedures will give us information that

will support our business decision?

There is no easy way to do all this, and it definitely requires a consulting

statistician. As we explain in detail in Chapter 9 ‘‘Meaningful Statistics,’’

statistics has been defined primarily to serve science, and the notion of

statistical significance, in particular, was defined in ways useful to science.

As a result, it is very difficult to translate business value and business

significance into statistical significance. This is exactly what a statistician can

help you do.

CRITICAL CAUTION

Many statistical consultants will charge more per hour to rescue a project than to

plan for one, so we save money both in terms of hours spent and on the hourly rate.

As you work with the statistician, your job is to keep all the business

requirements and constraints in mind. The statistician suggests methods of

getting the data and the statistics, and statistical procedures that will provide

useful results. The structure of the research questions will tell that statistician

what statistical procedures are most useful. The content of the questions will

help you define the population, the sample size, and where to get the data.

Together, you seek a cost-effective way of creating a study that will provide

statistical results that support the decision to be made.

For example, the decision to start a new advertising campaign requires a

lot of information. Knowing the answer to the question: ‘‘Who will like our

product?’’ might be helpful, but it is poorly phrased. A question like: ‘‘What

demographic groups who are prone to purchase our product are currently

unaware of it?’’ is better. A question such as: ‘‘Is this product more likely to

be purchased by older or younger people?’’ is too general. Rephrase it as:

‘‘Which age groups, 8–18, 19–34, 34–50, 50 and over, are most likely to

purchase our product?’’
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Turning a general or vague business question into a good research

question requires the following:

. Defining the population. In the above example, are we talking about

potential customers in the USA, or in just one city, or worldwide?

. Defining the attributes of the population you want to measure. Age is one

attribute. Gender is another. What about household income level,

buying for self or others, spending power, or ethnicity? All might be

valuable.

. Defining the required precision for each attribute. For example, an age

range may be just as useful as an age exact to the year.

. Align all of these elements with business and statistical standards. For

example, certain age ranges are used by magazines in describing their

readership. If we use a different set of age ranges, we may not be able

to use our study to decide which magazines we should advertise in.

Even if we get all of this right, have we really supported a business

decision? It’s not clear that we have. If all we know is the demographics of

people in the right market associated with likely interest in our product, we

probably still don’t know how to reach these people. This study, or another

study, or expert advice, will be needed to determine whether we reach the

target audience by print ads, television ads, posters in a supermarket,

demonstrations at health expositions, household parties with personal

networking, or whatever. Why? Because the real business question is not

‘‘Who buys our product?’’ That’s not enough; we need to know, ‘‘How do we

reach people who would want to buy our product?’’ and ‘‘What information,

in what context, influences people who would want to buy our product to

actually make the purchase?’’

As we work to define the population, the sample, the questions, and

measures, we also have to think about how we will get that sample, and how

we will ask the questions and take the measurements. From the business side,

the key issue is cost. From the statistical side, we have to address two other

concerns:

. Preventing bias. In various situations, people will report consistently

inaccurate results, or tell others what they think others want to hear.

See Chapter 15 ‘‘Creating Surveys’’ for more about this. If we are using

experiments or quasi-experiments, we will have to avoid bias as well.

For this, take a look at Chapter 6 ‘‘Getting the Data’’ and consult with

a statistician.

. Ensuring data meet the requirements of the assumptions of the statis-

tical procedures we will use. Each statistical procedure has certain
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assumptions which are, essentially, requirements about the data and

certain statistical measures of the data.

Working with a statistician, and considering all of these factors, we build

the plan to gather the data, analyze them, and prepare the report.

Assessing the Practicality of the Study
Once we have a clear set of questions, we know our population and sample

size, and we have a rough idea of how we will get the data, we can do a cost

and time estimate. We then compare our estimate with our budget and

delivery date. Is it possible to do a useful statistical study with the time and

money we have? If so, we move ahead to create a detailed plan. If not, it’s

time to tell the boss, and work out whether to drop the study, or to give it

enough time and money to do it well.

Preparing the Data Collection Plan
Where and how will we get our data? Our first question is: Do we want

opinions, or facts? We will get opinions from an opinion poll. We will get

facts from a survey, an experiment, or a quasi-experiment. But, if we try to

get facts from a survey of people, we need to be particularly careful about

biased self-reporting. The question we need to ask is which of the following

methods is the least expensive acceptable source for our data and statistics?

Items are listed from what is typically least expensive to what is typically

most expensive.

. Using data the company already own

. Acquiring (for free) or buying statistical results and, if available and

affordable, the data that they are drawn from

. Acquiring (for free) or buying data, and generating our own statistical

results

. Performing a survey

. Performing a quasi-experiment

. Performing an experiment

In all likelihood, the first option that is sufficient to the business purpose

will be the least expensive. But, if the budget is available, consider more

expensive options if they will give higher quality information and better

decision support. If your company is making a major decision, then the cost
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of making the wrong decision may outweigh the added cost of a better

statistical study.

Refer to Chapter 4 ‘‘What Is a Statistical Study?’’ for issues concerning the

validity, reliability, and business relevance of these different sources of data

and statistics. Later in this chapter, and in Chapter 6 ‘‘Getting the Data,’’

we provide methods for planning and performing data acquisition. It is also

very important to understand Chapter 9 ‘‘Meaningful Statistics’’ as you pre-

pare your data collection plan. Before you finish the data collection plan, you

and the statistician will have to choose measures and statistical procedures

from Chapter 8 ‘‘Common Statistical Measures’’ and from Part Three and

ensure that your data collection methods result in data that meet the

requirements of the assumptions of the statistical procedures you will be using.

CRITICAL CAUTION

A Self-Description is an Opinion, Not a Fact
You may think that if you conduct a survey and ask a factual question, such as

‘‘How old are you?’’ that you would get a fact as the result. This is not true. When

people report on themselves, you have only their answer to your question, which

may not represent reality. For example, hospital emergency rooms track the age a

person reports themselves to be, and also the age they are later shown to be through

some form of verification. This is crucial to their business. In an emergency-room

setting, a doctor may make a crucial decision based on the age the patient reported.

Suppose that the patient—out of vanity, perhaps—claimed to be ten years younger

than he actually was. The procedure led to serious complications due to the patient’s

age. Now, in a review or lawsuit, the hospital will have to know both how old the

patient actually was to explain the medical events, and how old the patient said he

was, to explain the doctor’s decision. This inaccurate self-reporting happens

frequently enough that hospitals maintain systems to track it.

In some cases, such as rating an employee’s quality of work, we may have both

objective facts and opinions. In other cases, such as measuring social or

psychological values such as trust on a team, we have only opinions, and no

definable facts. In addition, we have difficulty being sure that everyone we survey has

similar understanding of the meaning of the term. This is a major problem in

psychological, sociological, and business surveys.

OTHER PEOPLE’S DATA

Most often, the least expensive data are data someone else has already

collected. The US government collects a lot of valuable business data and
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makes it available for free. In addition, many companies are in the business

of collecting data and selling them to businesses. It is always easiest to find

data that someone wants to sell you, or to give you.

In addition, the data we want may have been collected in the ordinary

course of business by our customers, our vendors, or even our competitors.

In this case, the data are likely to be proprietary, and we may not be able to

get ahold of it. Before we abandon this alternative, however, it cannot hurt to

ask. Just recently, the second author of this book wanted some information

held by a client, which he was sure was proprietary. He asked, and the vendor

was happy to provide it. Very often, companies are willing to share

information they have, if only for a price. This is especially true if you find a

business that is in your market, but is not a direct competitor.

Finding data already collected is much like finding anything else. A web

search is a good start. There are also books that catalogue various sources of

data. You can get some excellent information about many places to look for

data, either for sale or for free, from the authors’ web site, www.quality

technology.com/books/bsd.htm.

Planning Data Analysis
The best way to plan the data analysis is to use a backward pass, followed by a

forward pass. Start with the business decision, and then go to what you hope

to show in the statistical report. From that, working with the statistician,

determine which statistical procedures you want to apply to your data. Then

plan to collect the data in a way that will allow you to do those procedures.

Now, do the forward pass. With these data, as collected, do you meet the

requirements of the assumptions of the statistical procedures you want to

use? Can you modify data collection procedures, or the data collection form,

to make it easier to do the statistical work? Then define what computer

programs and other tools you will use to generate and check the statistics.

If appropriate, also write up the step-by-step procedures. Then define

what tables, graphs, and charts will display the data in the statistical report.

Can you derive all these report items from the statistical procedures you are

using? Will they give the business what it needs to make a good decision?

Along the way, you may have to make trade-offs. For example, data

meeting the requirements of a certain procedure may be too expensive to

collect. In that case, you drop the procedure, and see if you can find an

alternate way of supporting the business decision. When you are done, you

should have an affordable process of collecting data, analyzing them, and

preparing the report.
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Planning the Preparation of the Statistical
Report

You can build a mock-up of your final report using these resources:

. The beginning of Chapter 4 ‘‘What Is a Statistical Study?,’’ where we

discuss the focus and features of a good statistical report for business.

. A report used by your business, or seen by your boss or customer, that

the boss or customer likes.

. Other books on writing good business reports and delivering business

presentations. One good source is Budgeting for Managers, by Sid

Kemp, from McGraw-Hill. Chapters 6 and 7 discuss how to check a

report for errors and prepare for a presentation.

. Chapter 7 ‘‘Graphs and Charts,’’ which will let you choose the best

charts and graphs to present your ideas.

Now, let’s turn our attention to the fact that we are throwing statistics at

a bunch of business people. Consider the audience, and consider their goal.

They want to make a business decision. The statistical report is coming in as

input, and probably not to be evaluated. Therefore, proof that it is a good

report is not an issue. A clear presentation of results that they can use in

making a decision is what matters. Of course, if your audience is familiar with

statistics, you have more leeway. And if some of your audience might have

reason to challenge your work, you need to be prepared to respond to

questions. But the focus should be on the business at hand, and the

presentation, in length and format, should fit the situation.

Some things that are considered good statistics can be bad business

presentations. For example, consider precision. In statistics, engineering,

and science, precision is considered very valuable. But often it is not

needed for business. It is a common fallacy to think that numbers and

technical terminology are needed in order to be correct and accurate.

Numbers only lend precision to a presentation. Numbers can’t add clarity,

and can often detract from it. Remember on Star Trek, when the Captain

asked Mr. Spock how long before they arrived at the planet and Mr.

Spock said something like, ‘‘Three days, 4 hours, 8 minutes, and 13.436

seconds.’’ How useful was that information about the last .036 seconds?

This is overprecision, time and resources taken conveying useless

information. In addition to being only as precise as we need to be, we

might consider that the most useful answer is not presented in numbers

at all. Mr. Spock could have said, ‘‘We’ll get there Thursday afternoon,’’
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a much more digestible answer for a human audience. Similarly, the best

answer to the question, ‘‘How much money will we make if we do this?’’

might simply be, ‘‘A lot more than if we don’t.’’

CRITICAL CAUTION

Don’t Assume Your Results will be Useful Until the Study is Done
In all of this planning, it is easy to make the mistake of assuming that you will be

able to get useful results. Even if your planning, data collection, and analysis are

excellent, it may simply be the case that the data you gather do not provide useful

information. Suppose you are supporting a decision of which city of two cities to

expand into with a new store. You gather statistical attributes of your customers.

You gather data on the two cities. All along, you are assuming that, when you are

done, there will be a significant difference between the potential customers in the two

cities.

And there just isn’t. The best that the statistical study can tell the decisionmaker

is: ‘‘As far as statistics can tell us, both cities are equally good opportunities.’’ Then

that is just what your report should say. Even if that isn’t what you had hoped

and planned.

Writing Up the Plan
Once you have worked out all of the details of the statistical study, you

should write up a plan. The first page should be a summary with these

headings:

. Purpose. State the decision you will support and the questions you will

answer.

. Process. Describe, in one or two sentences each, how you will gather

the data, do the statistical analysis, and prepare the report.

. Report. Describe the length of the report, the number of charts and

graphs, and whether you will deliver an oral presentation, a

PowerPoint slide show, or something else.

. Delivery date. When will you deliver the report? If you are not starting

the study right away, when will you start?

. Cost. What is the total cost?

That page is for your boss, and you will use it to get the plan approved.

The rest of the plan is for you, the statistician, and the team working on the
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study. Using the same headings as in the summary, write up a detailed, step-

by-step procedure of how you will prepare the report. Include data collection

forms and anything else that will make the job easy. You might even build

the data tables for your final graphs and charts, put in dummy numbers, and

get everything looking nice. That way, if you are rushed at the end, you can

drop in the data, run the statistics, drop in the results, and the report will be

nearly done. Of course, you should be very careful that you adjust the charts

and graphs to match the actual data before you deliver the report.

A large statistical study is a major project. For major projects, best

practices should be used for time and cost estimation, and also for risk and

quality planning. This topic goes beyond this book, but we can recommend

another text in the series, Project Management Demystified, by Sid Kemp.

PREPARING A BUDGET

Your plan needs to contain a budget, an estimate of the money you will need

to spend to complete the statistical study. Depending on your company, you

may or may not count work hours for permanent staff in the budget. Even if

that is not part of the budget, you should do what is called a time budget, so

that you can get approval for in-house staff to work on this project, instead

of something else that they might be assigned to do. In preparing the budget,

consider these four elements:

. Internal staff time

. Consulting fees, either a fixed fee, or per hour with an estimate. If you

get a per-hour rate, you may want to request a guaranteed maximum.

. Items to be purchased, if any

. Tools, such as computer software or #2 pencils, to be purchased, if any

To prepare the budget, simply estimate the time and purchase costs for

each work item in your plan. For more detailed explanations of how to

prepare time estimates and budgets, see either Project Management

Demystified or Budgeting for Managers, both by Sid Kemp.

GETTING THE PLAN APPROVED

Sometimes, the plan is automatically approved when you are assigned the

work of creating the statistical report. Other times, either the budget or the

plan needs review and approval. In either case, you should present the plan

and the budget, and get an okay to go ahead. That approval may be formal
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or informal, depending on how your company works and how much the

statistical study is going to cost.

As you go for approval, there are some extra items to consider. We have

guided you in preparing the plan as if your only goal is to provide a report

supporting one set of business decisions. And that may well be best. But you

should also look to the future, and ask if you can create additional value

while you are doing this statistical study.

. Making the study repeatable. Is it likely that the business will want this

information again in the future, perhaps even on a regular schedule,

such as quarterly or annually? If so, you can plan things that will make

the study easy to repeat, and show the value of reducing the cost of

repeating the study in the future.

. Gathering all the data that you can afford. If you are doing a survey, a

quasi-experiment, or an experiment, you will probably find that doing

it at all is expensive, but getting more data while you do it does not add

much to the cost. Getting more data than you think you need has three

advantages. If the statistician decides that additional statistical proce-

dures are useful for this study, you are more likely to be able to do

them. If the business audience thinks of additional questions when they

see your report, you may be able to answer them. And if another

business audience, such as another department, could use data from

the same population, they may be willing to pitch in and pay for part

of the study.

. Making the study a model. Even if this exact study will not be repeated

on this population in the future, similar studies might be useful for

your audience. For example, if this study examines a few new cities to

determine if they are viable markets for your company, you may want

to set up the plan so that a similar study can be done in different cities

in the future.

As you go for approval, you will probably have a sense of whether what

you are proposing is about what was expected, or if you discovered that

things are going to cost a lot more than your boss would like. If cost seems

like it might be a problem, prepare options. For example, you can show the

possibility of purchasing data, rather than collecting them, but point out that

the data are somewhat out of date and also don’t allow you to run some of

the statistical procedures that you want. There is a possibility that all your

planning will lead to a decision that the study is too expensive, that it is not

worth doing. That is not a bad thing. By doing careful planning, you have

saved the company from the mistake of spending too much money.
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But we should end on a happy note. In all likelihood, your study will be

approved. Why? Because the cost of a statistical study is a lot less than the

cost of running a business on guesswork. You are adding real value to the

company by preparing this study. And you have planned it well enough that

it is likely to be an excellent study, and easy to carry through.

Quiz
1. The 1:10:100 rule demonstrates the importance of . . .

(a) Writing clearly

(b) Conducting good statistical analysis

(c) Planning

(d) Fixing problems after they occur

2. What information do you need to determine the Plan Objectives?

(a) When is the report due?

(b) What decisions will the information support?

(c) What is the budget?

(d) All of the above

3. Working with a consulting statistician is critical to which phase of planning?

(a) Stating the research questions

(b) Writing up the plan and getting it approved

(c) Determining the plan objectives

(d) Planning the statistical report

4. Comparing the cost and time estimates to our budget and delivery date help

us determine . . .

(a) The research plan

(b) Stating the research questions

(c) The practicality of the study

(d) Planning the statistical report

5. The most expensive method of data collection is . . .

(a) Using data the company already owns

(b) Performing a survey

(c) Performing a quasi-experiment

(d) Performing an experiment
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6. The best way to plan the data analysis is to use a _______ pass, followed by

a _______ pass.

(a) Backward; backward

(b) Backward; forward

(c) Top-down; bottom-up

(d) Bottom-up; top-down

7. The most important aspect of planning a statistical report is to . . .

(a) Be as precise as possible

(b) Look at a report from your company

(c) Consider the audience

(d) Use as many numbers as possible

8. The first page of the written plan should contain . . .

(a) The purpose of the report

(b) The process you will use

(c) The cost of the study

(d) All of the above

9. Your budget should contain what information?

(a) Costs of man hours and materials to be purchased

(b) Costs of man hours only

(c) Costs of materials to be purchased only

(d) Costs of preparing the report

10. How can you create additional value of your statistical study?

(a) Make the study repeatable

(b) Gather all the data that you can afford

(c) Make the study a model

(d) All of the above
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CHAPTER
6

Getting the Data

Quality data collection means obtaining reliable, valid data at low cost that is

suitable for our planned statistical analyses. Happily, a properly planned

data collection gives not only higher quality, but usually lower cost as well.

There are three things we need to plan:

. We need to identify the best source for our data.

. We need to choose methods that ensure reliable and valid data.

. We need to choose a research design that ensures the suitability of our

data for our planned analysis.

This chapter will be devoted mostly to considering various sources for our

data. We will also discuss proper data collection methods. Research design

will be addressed in Part Three.

Stealing Statistics: Pros and Cons
When data are available, either for free or for sale, the data providers usually

also provide summary statistics describing the data. If the summary statistics

they provide are suitable for our needs, it will save us time on the analysis.
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Some statistics can be calculated from other statistics, even without the detail

data. Sometimes, we can just use the summary statistics provided directly.

A big advantage to using someone else’s statistical results is that

sometimes the detail data cannot be supplied, for security or privacy

reasons. Medical data are a very good example. It is perfectly legal to provide

information as to how many American citizens have AIDS, including

breakdowns by state and ethnicity. It would be a very different matter to give

out their names and addresses.

The two biggest problems in using someone else’s statistics are that we

cannot double-check the calculations done by the provider and we cannot

calculate any statistical results the provider left out. Also, if the provider

made any errors, we will inherit those errors and they will contaminate any

further analyses we do using those statistics. If the provider failed to calculate

particular statistics we need, there is no way to calculate those statistics

without the detail data.

CRITICAL CAUTION

Inheriting Errors
Inheriting the errors of others is far more common—and far more costly—than you

might think. One study traced small factual errors that got into textbooks and found

that they stayed for decades, through several generations of authors.

FREE STATISTICS

There are free statistics everywhere. Many are worth just what we pay for

them. Others are of excellent quality. Governments and non-governmental

organizations (NGOs) usually provide free statistics as a public service. Other

sorts of organizations often provide statistics for their own purposes. It is

important to make sure we understand the provider’s motivations. Even a

well-intentioned provider with a particular agenda may be unintentionally

swayed to provide inaccurate information. Without access to the original

detail data, we must be able to trust the provider. That is, we must believe

that the provider had at least as strong a motive and ability to provide

reliable, valid data as we have.

Most free statistics are provided without much guarantee of their

reliability or validity. The news media and public relations organizations

and private firms and professional and industry associations deluge us with
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statistics every minute, whether we like it or not. These statistics should be

used with great care, or not at all.

Often, free statistics are provided along with the detailed data as a

convenience. Very large datasets are often accompanied by smaller datasets

containing summary statistics. If we have any doubts about the statistics, we

can double-check some or all of the statistics by calculating them ourselves

from the detail data. If we plan to use the statistical results directly, it is

always a good idea to check a random sample of the summary statistics

against the detail data in order to make sure that the provider’s calculations

are sufficiently free from error.

NOT-SO-FREE STATISTICS

When we pay for statistics, we have a right to expect a certain guarantee of

quality. If the original data are available, and we can afford it, we should

buy it along with the statistical results calculated from the data. If the data

are not available, the first question we must ask ourselves is, why not?

If the detail data are not available for reasons of privacy or security, we

have a right to expect that the statistics we purchase are calculated at as

detailed a level as possible. One example of this is US census data. Although

census data are free, it is an excellent example of how summary statistics can

be provided at many levels of detail, while still maintaining the security of the

data and the privacy of the persons surveyed. The detail data are secure by

law. You will not get names and addresses from the U.S. Census Bureau.

Summary statistics are only provided down to a level of detail where private

information about citizens cannot be calculated in reverse. (For instance, if

there is only one Hindu family in a particular area and we are told that the

average family size for Hindu families in that area is five, then we know that

that one family has five members.) The Census Bureau takes great pains to

ensure that such reverse calculations cannot be done.

The Census Bureau demonstrates that data can be provided without

endangering security or privacy. Therefore, if someone offers to sell us

summary statistics without the detail data to back it up, we need to inquire

carefully as to why.

Someone Else’s Data: Pros and Cons
In general, obtaining detail data from an outside source is preferable to

obtaining only summary statistics. The cost of computer power is so low,

and the ease with which most summary statistics can be calculated using
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spreadsheets or simple statistical software is so great, that the benefits of

having a vendor calculate summary statistics for us are usually negligible.

The only issue that usually arises is whether it is better to use someone else’s

data or collect them ourselves. Other people’s data are usually cheaper, but

we do not have control over how it was collected, so we need to worry about

quality.

The data collection procedures used by the vendor need to be documented

in detail. If the vendor has a good reputation and our statistician informs us

that the methods used by the vendor to collect the data make them suitable

for our planned statistical analyses, then acquiring the vendor’s data is

probably preferable to collecting our own.

FREE DATA

When the data are free, the only issues are quality and suitability. As with

free statistics, we need to be sure that the provider of free data does not have

an agenda—conscious or unconscious—that might cause bias in the data.

Having the data at a detail level limits the sources of bias, but unreliability

and invalidity can enter the picture from three causes: conscious bias,

unconscious bias, or poor data collection methods. The best insurance we can

have of the quality of the data is detailed documentation of exactly how the

data were collected. If that documentation is certified by an independent

agency, so much the better. Documentation as to the data collection method

will also allow our statistician to determine if the data are suitable for our

planned analyses.

Archived data

Most commonly, data we acquire were collected formally by the vendor,

using standard methods, whether survey or experimental, or some other.

These data are then archived and we can purchase copies from the archive.

Of course, with archived data, we have to ask: Is it out of date for our

purposes?

Non-archived data

There is another source of free data. Lots of data are collected for reasons

other than statistical studies. Sometimes, these data can be obtained with

proper concern for privacy and security. In a sense, these non-archival data

are halfway between obtaining archived data and collecting the data

ourselves. Finding usable non-archival data requires some creativity, since

the data were collected for some other purpose.
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CASE STUDY

A Data Shake-Up
A wonderful example of using non-archival data happened a few years ago in Japan.

Japan is subject to earthquakes, many of which are severe and dangerous. Recent

research in seismology suggested that detailed information as to how the earth moves

during an earthquake may be very useful in determining future risk and in

developing safety measures. A very clever seismologist realized that the information

he needed was being collected throughout the urban areas of Japan 24 hours a day.

Security cameras in stores provided moving images from which the seismologist

could collect detailed data about movements of the earth. The cameras were

distributed across the area. All he had to do was to acquire the data after an

earthquake from the area where the quake had occurred. The tapes were normally

erased and re-recorded only after 24 hours. By notifying hundreds of stores

throughout the city in advance, and arranging for the tapes to be saved after an

earthquake, the seismologist was able to obtain more than enough data the next time

a serious earthquake hit the area.

NOT-SO-FREE DATA

Paid data are to free data as paid statistics are to free statistics. We need to

worry less about bias, since the vendor’s motive is usually profit. However,

we need to worry more about quality. We do not want to purchase data from

a vendor who has skimped on data collection procedures in order to increase

profits. Poor methods make for data that are not a bargain at any price. Once

again, thorough documentation of the data collection methods, preferably

audited by an independent agency, is the best solution. The reputation of the

vendor is also important.

Doing it Yourself: Pros and Cons
The most common reason to collect our own data is if suitable data are not

available from other sources. Data collection is almost always expensive.

Collecting data using quality methods is more expensive. Failing to use

quality methods is the most expensive of all, because the errors in the data

will eventually cost us more than doing it right the first time.

The main advantage to collecting our own data is that we can have

complete control over the data collection process. Proper detailed planning

in consultation with our statistician is our best guarantee of quality data at
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low cost. In addition, collecting our own data means we can collect exactly

the data we need using the methods most suitable to our statistical analyses.

DATA YOU ALREADY HAVE

Before planning an expensive data collection operation, we need to make

sure that we don’t already have the data we need. Many questions can be

answered with data from within our own operation, even without conducting

a research study. The answers to some of our questions can be found in

company records, accounting records, personnel records, financial records,

inventories, computer event logs, and business records of all types. This

information is free and, because we don’t have to take it outside the

company, it can stay secure. Even so, planning for security is critical.

Whenever data are moved from their home computer, even within the

company, security can be compromised. A detailed plan for keeping data

secure during every transfer and at every location is vital.

If the data available, either within the firm or outside, are inappropriate

to answering our research questions, we will have to collect data, either by

survey, experiment, or quasi-experimental study.

Here are some examples of data that are readily available inside most

companies:

. Financial records. The detailed data unit of a financial record is the

transaction, which records the date, the account that money moved

from, the account it moved to, and the amount of money involved. The

general ledger is the record of all transactions, and statistical analysis

of these transactions can often show us things that standard financial

analysis would miss.

. Human resources (HR) records. Stripped of names to protect confi-

dentiality, records from HR can be the basis of statistical studies

providing crucial input on key business issues.

. Timesheets. Timesheets are only accurate records if they are pro-

duced during the day, or, at latest, at the end of each workday.

Studies have shown that, no matter how well intentioned, a time-

sheet prepared at the end of the week is essentially an act of fiction.

Accurate timesheets, however, become the basis of statistical studies

of productivity.

. Manufacturing process records. In the field of total quality management

(TQM), data have been collected about manufacturing processes, both

from totally automated production and from assembly lines, and then

used to improve the processes.
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. Computer data logs. Most computer systems have built-in methods

of logging, that is, capturing computer transactions and events and

recording them into a log file.

CASE STUDY

Sometimes, the Data Lead to the Survey
So far, we’ve assumed that a business decision, or a set of business questions,

instigates the statistical study. That is not always the case. The second author of this

text had a business client come to him and say, ‘‘We’re getting all this data about

how our customers use our web site. What can we do with it?’’ In this case, the

proliferation of available data led to an astute entrepreneur seeing an opportunity.

We evaluated the data and statistics the site provided, and worked with him to

prioritize the business questions we could answer.

COLLECTING DATA FROM YOUR OWN OPERATION

If the data we need have not already been collected, often the simplest and

least expensive method of data collection is to alter our usual business

procedures in order to collect data on our ongoing operations. Sometimes,

this can be as simple as turning on an automatic log on a computer, or

purchasing and installing data collection equipment or software.

In other situations, we may need to change manual procedures. We may

want managers or workers to record their activities. If we are going to do

this, we plan and implement with attention to these issues:

. Design the data collection form so that it gives us the data we

need, in the form we need, to apply the statistical procedures we

want to use.

. Keep data collection as simple and automatic as possible. For example,

it is easier, and more accurate, to gather productivity data for workers

using computers from the computers than it is to ask workers to fill in

timesheets.

. Follow the rules for preventing error and data contamination from

Chapter 4 ‘‘What Is a Statistical Study?.’’

. Be aware of concern—founded or unfounded—from managers and

workers about privacy, misinterpretation or misuse of the data, job

security, and micromanagement. Many people feel that holding onto

their work methods is a form of job security, and sometimes they are
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right. You may need to consult with an HR expert to work through

these issues.

. Ensure the confidentiality and security of the data.

If we take care of these concerns, we can create an environment where

the business generates the data it needs as part of ongoing operations. This

radically reduces the cost of future statistical studies, and provides the addi-

tional value from having reliable data collected using consistent methods

over a long period of time.

CLEANING UP OUR DATA

Every business faces problems—often major problems—in cleaning up data

so that they can be used for various purposes. Here are a number of things

to look at when we evaluate how we will clean up the data collected from

our business:

. How do we find and correct recording errors?

. How do we handle missing records?

. How do we handle records that are in the data, but do not represent

our population?

. How do we determine if elimination of erroneous records biases our

sample? For example, if the data were collected by people at different

stores, and one person consistently made errors, then we may have no

good sample from that store.

. Once we have a set of valid data, we have to consider that to be a

sample and evaluate its relationship to the population we want to

examine.

. We then need to organize the data to meet the input requirements of

our statistical analyses.

When using existing data from our company, we need to make a plan, and

budget time and money to the work of evaluating and cleaning up the data.

Survey Data
By survey, we mean any non-experimental method for collecting data, that is,

data collection without an intervention. When a survey involves contacting

individual people and asking them questions (as opposed to a survey of

Websites, or public records, or weather conditions, or land, or anything else),

we call the survey a poll. When the questions used in the poll ask people their
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opinions, we call that poll an opinion poll. Chapter 15 ‘‘Creating Surveys’’

introduces the topic of preparing surveys and analyzing survey data. If your

area of interest is marketing or human resources, you might well want to take

an entire course on preparing and using surveys.

The most important issue in conducting a survey is to define our

population and ensure a representative sample, as we discussed in Chapter 2

‘‘What Is Statistics?.’’ Once a good sampling technique has been planned,

the issue in terms of data collection specifically is to measure things in a way

that avoids bias. This is especially difficult in a poll, where we must develop

specific questions that get the information we want from the folks we

interview. Good question design is the most difficult challenge in polling, and

we address it in Chapter 15.

The other issues related to data collection in surveys are more general,

applying not only to customer surveys and polls, but to surveys of all kinds.

We will address these issues here:

. redundancy, validation, and calibration

. storage

. database design

REDUNDANCY, VALIDATION, AND CALIBRATION

When we are not conducting a poll, it is very often the case that our

measurements involve converting information from one form into another.

For instance, we may need information that has been stored in non-

computerized records. The most common way to extract the information we

need is to have people survey the situation and enter what they find onto

a computer. This process, called data entry, is one of the most error-prone

processes in all of statistics. The only method for ensuring reliability is to

have two or more people enter every single piece of data. This procedure is

called data validation. Obviously, data validation doubles the data collection

cost, at a very minimum. However, this doubling of cost is far, far less

expensive than the disasters that can befall us if we do not validate.

We also need to minimize the number of times the information is

transformed and/or transported. Every time data are copied or moved or

translated from one form into another, there is a potential for additional

error. Once data have been safely and reliably collected, the less that is done

to disturb them, the better.

Another issue is whether automatic computerized translations and

copying of data are ‘‘better’’ than doing things by hand. When the procedure
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is just a matter of copying, then automatic means, whether mechanical or

computer-based, are much better than doing things by hand.

On the other hand, using the computer is not always the best answer.

It is not so much that computers make fewer errors than people, but that

they make different kinds of errors. When the risk of computer-type error is

high, we should use people. When the risk of human error is high, we should

use the computer.

SURVIVAL STRATEGIES

The problem with people doing data entry is called garbage in, garbage out. On the

other hand, the problem with automated data collection is summed up in the adage:

To err is human, but to really foul things up takes a computer.

The lesson: We are responsible for ensuring the accurate input and translation of

data, whether by computer, by machine, or by people.

The most reliable form of data entry is probably the electromechanical

device, where a piece of mechanical equipment, such as a thermometer with a

bimetallic strip or an infrared detector, measures temperature or the length

of products coming off the assembly line, or some other physical attribute.

The measurement is translated into an electrical impulse and recorded on

computer-readable media. Even these systems are prone to error, but that is a

problem for engineers, not statisticians. Even in these situations, redundancy,

either by repeated entry of the same data, plus comparisons, or by entry and

checking of known data, is the best method of calibration for the elimination

of bias and error.

We can use computer input devices, such as optical scanners, to input

survey data in a similar fashion. Or we can design a computer interface, such

as a web page, where our population enters the data directly. These methods

can be highly reliable, but it is important to realize that the reliability does

not happen automatically, or by default. Computer interface design and

testing is an engineering discipline and art in its own right, and we should

make sure that we work with experts who understand bias and its sources,

redundancy, testing, calibration, and error correction.

If people are entering the data, there are several possible systems, including

manual recording with later transcription, standardized forms to be scanned,

or direct data entry.

Each of these has advantages and disadvantages. It may seem that

direct data entry is best. But consider this: suppose the survey workers

are under pressure to meet an impossible deadline. They might stay up
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late, just punching numbers into the computer—making up data. If they

filled out paper forms, there would be physical evidence of this, such as

the pattern of handwriting. The computer data entry leaves no physical

trace. So, we would need to devise other means, such as a hidden time-

stamp on each survey, showing when it was done and how long it took,

perhaps tied to the phone system used for the survey, to detect such

sources of error.

STORAGE

If we design a convenient, secure data storage system that will allow for easy

input, secure storage, storage for all the types of data and file formats we

need, an easy, appropriate retrieval that does not compromise security, we

will need to copy and transfer the data fewer times, and we will have fewer

errors. The data should also be backed up and archived appropriately, with

proper security on the archives. Good security is a balance of security plus

appropriate access. We should review all of these issues with the appropri-

ate data systems manager, because the storage, encryption, and security

requirements for a statistical study, especially one with HR or other sensitive

data, are different than the requirements for storage of ordinary business

data.

CRITICAL CAUTION

Change of Data Systems can Prevent Data Retrieval
Sometimes, we need to retrieve old data onto a new computer. Due to the rapid

change of computer technology, this can be very difficult. When archiving data for

long-term storage (which could be as little as a year or two), we should work to

ensure that the physical medium of the storage is something that we will be able to

read on a computer that we will have in two, five, or twenty years. The second author

remembers magnetic tape, 8 00 floppy disks, 5 1
4
00 floppy disks, and numerous other

media that have come and gone, leaving data irretrievable.

DATABASE DESIGN

Just as we must plan the type of physical storage and location, we must also

plan for the logical form in which the data are stored. There are many ways

to ensure the safety and accessibility of our data, and we need to use them.

Data should be encoded in a way that will allow either us or the computer to
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detect any errors that may occur during storage. The technology of error

detection and error correction is far beyond the scope of this book, but we

need to know that our system has such features and that they are turned on

and working. If data need to be analyzed in a different form than that in

which it was collected, both forms must be stored. When data are cleaned or

edited to correct errors, the earlier ‘‘dirtier’’ versions must be archived in

order to keep an audit trail. Redundancy is vital in data storage as well as in

data collection. In addition, the audit trail should include an appropriate

record of the processes used to clean up data, and it may be possible to link

those process records to the data records in a well-designed database.

The single most important aspect of quality database design is never to

throw any data away. Data should be recorded as they are observed and/or

collected. Never, ever summarize data before recording them in the database.

CASE STUDY

The Case of the Sinister Statistician
The first author worked for a while assisting graduate students in doing the statistics

for their research. One Master’s student decided to give all her subjects a test that

had ten or twenty questions. The score for each test was only three numbers,

calculated from the questions. The student decided to score each test by hand and

then record only the scores and not the individual answers to the individual

questions. The first author practically got down on his knees and begged the student

to enter all the answers and use the computer to calculate the scores.

The student explained her logic: She would have to score each test anyway. The

scoring procedure was very easy to do by hand. By doing it this way, she only had to

type in three numbers for each subject, rather than ten or twenty! (The study had

fewer than 30 subjects.) She had already gotten her statistical analysis plan approved

by her Master’s committee and was not required to do any analysis of the original

numbers, only on the three scores.

The first author (still on his knees, now practically weeping) pointed out that:

Scoring by hand tremendously increased the possibility of calculation error. There

weren’t that many subjects. The author knew many tricks to make data entry easier

and less prone to error. The author was willing to help. There would only be one

copy of the original data (on the paper test forms) and it might get lost. What if the

committee changed its mind?

The student, now entirely convinced of the author’s sinister intent, proceeded to

score the tests by hand. After her preliminary oral examination, one of the faculty

members on the committee decided that a more detailed statistical analysis was

needed based upon the individual test questions. The student had to return to the lab

and spend half the night entering data in order to graduate that semester. By her own

estimate, she more than doubled her own workload by scoring the tests by hand.
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The moral to the story is this: The authors of Business Statistics Demystified are

not sinister. We are not trying to make things harder on anyone. We have learned

from years of our own experience and our own mistakes how to lessen the likelihood

of making extra work for ourselves. It all boils down to this: Planning pays off, and

it is better to get it right the first time. We are just trying to pass that information

along.

Experimental and Quasi-Experimental Data
The first and most important thing to know is that all of the rules that apply

to collecting survey data (above) also apply to data derived from experiments

or quasi-experiments. As we will see in Part Three, the biggest difference

between collecting survey data and collecting experimental or quasi-

experimental data is that, in the latter case, we collect data sampled from

more than one population. So all the rules for collecting data from a single

population still apply. In addition, it is critical to store the information that

identifies the population each subject unit comes from in a way that is as safe

and error-free as possible.

In addition, for many purposes, in experimental studies, the information

that identifies the population must be kept secret until data collection is

complete. (This is called a double-blind study and ensures that the

psychological predispositions of the people being studied, the people

conducting the study, and the people collecting the data do not create bias

and error in the results.) Population information may also be kept secret for

privacy reasons. Often, the information that identifies the population from

where the subject comes, together with their other data, is enough to reveal

their identity. In these two sorts of cases, the population information must

not only be stored safely, it must also be encoded and stored separately from

the rest of the data and there must be a way to reconnect the two parts of the

data when necessary.

In experimental studies, the methods used for the type of sampling may

also be used to determine the population. For instance, in addition to

random sampling, subjects may be randomly assigned to groups. (The group

determines from which population the subject is assumed to come from.)

In this case, every step in the random sampling and assignment procedures

must be stored as well, in order to ensure an audit trail that reflects how

each subject came from its respective population.

In quasi-experiments, there are a variety of methods used where a true

control group, or a truly random assignment of members is not possible.
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In some cases, there may still be multiple populations, and proper procedures

for managing data and statistics from multiple populations apply.

Quiz
1. What is a disadvantage of using someone else’s summary statistics?

(a) We cannot double-check the calculations

(b) We cannot calculate any new statistics

(c) Both (a) and (b) are disadvantages

(d) Neither (a) nor (b) are disadvantages

2. Free statistics . . .

(a) Is always of the highest quality

(b) Can be found everywhere

(c) Is always worth what we pay for them

(d) Always have the data available

3. _______ is the best insurance we can have of the quality of free data?

(a) Data collection documentation

(b) The assurance of the vendor

(c) The source of any bias

(d) Archived data

4. Non-archived data is data that is collected . . .

(a) For the purposes of statistical studies

(b) For reasons other than for statistical studies

(c) By a vendor for the purposes of selling you the data

(d) With the highest quality standards

5. What source(s) within our own company may be the source of data?

(a) Financial records

(b) Human Resource records

(c) Computer data logs

(d) All of the above

6. Dealing with missing data, erroneous records, and correcting recording

errors in the data is . . .

(a) Cleaning data

(b) Coding data

(c) Falsifying data

(d) Analyzing data
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7. The method for ensuring reliability in data entry is . . .

(a) Data collection

(b) Data redundancy

(c) Data validation

(d) Data calibration

8. The single most important aspect of database design is to . . .

(a) Summarize the data as much as possible

(b) Never throw any data away

(c) Make good decisions about what data to record and what to throw

away

(d) Perform error correction

9. How does experimental and quasi-experimental data collection differ from

survey data collection?

(a) Data is sampled from more than one population

(b) The rules of collecting survey data do not apply

(c) Both (a) and (b)

(d) There is no difference

10. A quasi-experiment occurs when . . .

(a) A true control group is not possible

(b) Random assignment is not possible

(c) Either random assignment or a true control group is not possible

(d) Both random assignment and a true control group are not possible
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CHAPTER
7

Statistics Without
Numbers: Graphs
and Charts

There are two critical uses for graphics in statistics: first, in order to perform

statistical analyses, the distribution of the data must be examined visually,

not only to ensure that the required assumptions for that particular statistical

technique are met, but also in order to note any unusual characteristics of the

data that might affect our interpretation of the results of the analyses.

Second, graphics plays a pivotal role in communicating the results in support

of the business decision, either in the written report or oral presentation.

Some types of graphs are not particularly useful for the first purpose of

examining a distribution, but all types of graphs have their role in com-

municating results to an audience. This chapter shows you the sorts of graphs

most useful for business presentations, indicates some of the uses of each, and
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gives guidelines for using graphs and charts to make a statistical report

for business.

TIPS ON TERMS

Is it a Chart or is it a Graph? The terms ‘‘chart’’ and ‘‘graph’’ tend to be used more or

less interchangeably, without a clear distinction between the two. In Business

Statistics Demystified, chart and graph are two words for the same thing. We follow

common usage, so we talk about pie charts and line graphs, rather than pie graphs

and line charts.

When to Use Pictures: Clarity and Precision
Before we choose what type of graph or chart to use, we need to decide

whether or not to use a chart or graph or other graphical element at all.

There are really three ways we can tell our audience about quantitative

(numerical) information. We can leave it as numbers (and put those numbers

in a table), rephrase it as text, or convert it to a chart or graph.

Our goal is clarity, and graphics convey lots of information clearly. The

decision as to how to present numerical information should be based, first

and foremost, on how much information we need to present. If we can

present all of the key information in a chart or graph, that should be our first

choice. Even if there is additional information that is not as important as the

key information, we should present the key information in a graph, and place

the remainder of the less important information in a table, possibly stashing

the table itself in an appendix.

KEY POINT

Graphs and Charts Support Business Decisions
Use graphics to support the business decision. Then, in your report, if you need to

explain no more than six or seven numbers, put them in your text. If you need to

show more numbers than that, use a table. And if you need to show all of your data,

put the tables in the appendix. Business Statistics Demystified, itself, is a very good

model of how to present information in figures, tables, and appendices.

Often, we think of graphics as improving clarity at the cost of a loss of

precision. This is not really true. If our graph provides us with all the
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precision we need, then there is no effective loss of precision from changing

from numbers to graphics. In addition, a well-designed graph can deliver a

good deal more precision than we would imagine at the outset. Finally, even

if the graph delivers less precision than we need, we can supplement the graph

with a numerical table.

HANDY HINTS

A Picture and a Thousand Words
Graphs and words together make the most effective business presentation. And you

don’t need a thousand words. One to three well-written paragraphs per chart is

about right. We’ve filled this chapter with a variety of examples of explanations of

business points illustrated by graphs. As you read, learn to explain graphs, as well as

to create them.

It is essential to use the right type of graph or chart. The wrong type of

chart can easily make things much less clear and confuse the reader. In this

chapter, you will learn which charts to use for different types of data and

different presentation purposes.

CRITICAL CAUTION

Take Time to Learn to Create Good Graphs
Please read through this chapter to learn about the uses of different types of graphs.

At the end, you will find a section called Do’s and Don’ts. Read it carefully, or you

may end up creating confusing or misleading graphs. Then grab a pen and paper and

do a quick sketch of what you want your graph to look like. At that point, you will

be ready to use—or learn to use—Microsoft Excel� or a statistical program that will

generate graphs from numbers.

Parts is Parts: The Pie Chart
The pie chart is a dramatic way to show the proportions, that is, the ratios of

several types that, together, constitute a whole. For example, the entire pie

can represent our flock of sheep, with each pie slice representing one breed, as

in Fig. 7-1. We could do another pie chart to show the proportions of groups

of a different attribute, such as color. But it is essential that a pie chart divides
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a whole into parts where each part is a different value of a single variable. So

we would do one pie chart for breed, and another one for color. In business, a

very common use of pie charts is for budgeting. The whole budget is the pie,

and the slices can either represent different sources of revenue, or different

allocations (but not both in the same chart).

HANDY HINTS

Requirements for a Pie Chart
. There must be an identifiable whole whose parts need to be identified

. Every single individual unit that is included in the whole must be uniquely

identifiable as belonging to one and only one of the parts

. There must be a single, reliably measured variable that measures the propor-

tion of the whole for each part

. The sum of the measures of the parts cannot exceed 100% of the whole

. If the sum of the largest and most important parts is less than 100% of the

whole, the remainder of the parts must be grouped together to form a special

category of ‘‘other.’’ It must be possible to treat ‘‘other’’ category as a part, in

a sensible and meaningful fashion. The ‘‘other’’ part is sometimes called

‘‘miscellaneous,’’ and should be small. Some hold that it must be smaller

than any other part.

As a general rule, the pie chart is best used for displaying counts of the

different values of a single categorical variable as proportions of the whole.

Because, in a pie chart, there is no set order to the values, it is used more

often for nominal than ordinal variables. If the order of the values is

important, another type of chart (perhaps a bar chart) should be used. If the

comparison of values to each other is more important than comparison of

each value to the whole, a bar chart should also be used.

Fig. 7-1. Pie chart: breeds of sheep in our flock.
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HANDY HINTS

Serving up a Good Pie
When presenting a pie chart, be sure to define what the whole is. In statistics, be very

clear whether the whole is the population or the sample. If presenting multiple pie

charts, be sure to define what the whole is, and what the group of divisions are, for

each chart.

Compare and Contrast: The Bar Chart
One of the most common types of chart is the bar chart. In a basic bar chart,

there is one bar for each value of the variable being illustrated. The length (or

height) of the bar indicates the count, called the frequency of each value of the

variable. The bar chart allows us to look at the sample distribution of a single

variable, but it also has other uses. There are many variations on the bar

chart. Some have their own special names, others do not. Those that have

been named may have more than one name, each derived from different

fields. The bar chart can also be combined with other types of charts. In this

section, we will take a look at some of the more common and more useful

types of bar charts, and try to keep track of their names.

ORIENTATION OF THE BAR CHART

Bar charts can be either vertical, with the bars running up and down, or

horizontal, with the bars running side to side. There are guidelines as to when

one or the other type is best, but there are no hard and fast rules.

Vertical bar charts

The vertical bar chart is more common, for a number of reasons. In many

cultures, the difference between up and down has much stronger connota-

tions than does the difference between left and right. The length of a bar in a

bar chart is the measure of the count or quantity of that particular value of

the variable. When the bars stand vertically, bigger counts and more quantity

make a taller bar. This fits nicely into our cultural notion that taller means

bigger or more important. Take a look at Fig. 7-2 for an example of a vertical

bar chart.

Note that this chart displays exactly the same data as our pie chart, Fig.

7-1. However, it displays it with a different focus. Here, instead of showing
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proportions of the total, we are showing the counts in relation to one

another, but not in relation to an image of the total. When displaying the

same data in two or more different figures, it is useful to keep the color or

shading consistent from one to the next, as we have done here.

Horizontal bar charts

When the length of the bar indicates something other than count or quantity,

a horizontal bar chart should be considered. Time, for example, is best

understood when laid out on a horizontal axis, often called a timeline. For

example, the field of project management uses a variety of specialized

horizontal bar charts, including the Gantt chart, to lay out project schedules

over time.

Another important use of the horizontal bar chart is in the side-by-side

Bar Chart. In the side-by-side chart, also called the mirrored chart, two

distributions are compared by placing two bar charts, reflected back-to-back.

If we use a vertical bar chart, then one of the two distributions points upward

and the other points downward. This gives a strong impression that the first

distribution is a measure of something positive or ‘‘good’’ and the second is

a measure of something negative or ‘‘bad.’’ Unless this is what we want to

communicate, we should place the two distributions side-by-side with

horizontal bars. Figure 7-3 uses a horizontal bar chart to show the

percentage distribution of stocks in a personal portfolio compared to the

distributions in the S&P 500. In general, people make this comparison to

improve their investment strategy. Variance of one’s personal portfolio from

the S&P 500 might be a matter of investment history or personal preference.

It could also be an indicator of conservatism (more manufacturing and

retail), or a less risk-averse approach (more technology stocks). If you find

that your portfolio has had significantly better—or worse—performance

than the S&P 500 during the prior year, a table like this could help you

Fig. 7-2. Vertical bar chart: breeds of sheep in our flock.
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identify reasons for the success—or issues—of your strategy. Just glancing

at the chart, we can see that this portfolio has significantly less investment

in pharmaceuticals, and somewhat less in manufacturing, than the S&P 500,

while holding more in retail and financial, and matching the S&P 500 in

technology stocks. (Note: the figures for the S&P 500 are illustrative, and do

not actually represent that index.) On the graphical side, it would be better if

the items lined up exactly with one another. Unfortunately, Microsoft Excel�

does not offer a side-by-side bar chart option, and we dummied this up using

a grouped horizontal bar chart with negative numbers.

Figure 7-4 illustrates why we do not generally use vertical mirrored bar

charts. Here, we see a diagram showing the difference of ethnic diversity and

opportunity between the free peoples of Middle-Earth and the dominion of

the Dark Lord, Sauron, in J. R. R. Tolkien’s The Lord of the Rings. In each

society, those who achieve the highest honor are members of ‘‘the nine.’’ For

the good peoples, this is the nine walkers; for the evil Land of Mordor, this is

the nine riders. If we note that there is, in fact, a diverse population of goblins

Fig. 7-3. Side-by-side bar chart: comparative portfolio weights.

Fig. 7-4. Vertical side-by-side (not recommended): Good versus evil.
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(or, to use the more proper term, orcs), trolls, evil men, evil wizards, spiders,

and others who all support the Dark Lord, we realize that this is a society

with a glass ceiling. Sauron will allow only undead to rise to the highest

positions of power, leadership, and recognition, becoming members of the

nine riders. While statistics cannot establish causality, it may be the case that

this inequality of opportunity is one of the aspects of Sauron’s realm which

causes it legitimately to be considered evil.

PARETO CHARTS

The first specialized bar chart we need to look at is the Pareto chart, also called

a Pareto diagram. A Pareto chart is just the name for a bar chart of values of a

nominal variable. In the Pareto bar chart, the position of each bar along the x-

axis (or, in the case of a horizontal chart, the y-axis) is arbitrary, or at least

does not convey order. Figure 7-2, our vertical bar chart, is a Pareto chart.

Since there is no order to the breeds, we could pick any order we wanted for

the order of the bars in Fig. 7-2. In this case, we put the wool sheep next to each

other. Very often, in a Pareto chart, the bars are ordered from tallest to

shortest, or from most important to least important. You can find an example

of a Pareto diagram of that type in Chapter 17 ‘‘Quality Management.’’

HISTOGRAMS, AREA CHARTS, AND FREQUENCY
POLYGONS

A histogram, also called an area chart, is a type of bar chart used to show the

frequency distribution of a numerical (interval or ratio) variable. (Some

textbooks define a histogram differently and may specify somewhat different

rules for constructing them.) There are two key rules for histograms (and a

number of other less important standards).

First, the data must be grouped into equal-sized intervals. The data should

be sorted in order using the values of the variable. Based on N, we need to

estimate the number of intervals. So long as N is between about 50 and a few

hundred, we should pick a number between 10 and 20. Next, we divide the

range by the estimated number of intervals. If the result is not a whole

number (integer), we choose the next largest whole number. This number is

the interval size. Now, we choose the highest number, less than or equal to

the minimum, that is evenly divisible by the interval size. That number is the

bottom of the lowest equal-sized interval. The data can now be grouped. The

length of each bar will be proportional to the number of units whose value

for the variable is within each interval.
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Second, the width of each bar is made equal to the interval size. Each bar

is centered over the midpoint of the interval on the x-axis. This means that

there will be no space between the bars.

When we eliminate the spaces between bars and use equal intervals, the

bars have a total area equal to our total sample size, and we see the

distribution of the sample across the X-axis. If we connect the tops of the bars

with a line, instead of using separate bars, our histogram becomes a special

kind of line chart called an area chart or frequency polygon. In fact, some

people use the terms interchangeably. Figure 7-5 is called a brightness

histogram because that is the standard term in the digital photography

industry, but the actual figure is an area chart, because we used Microsoft

Excel� to prepare charts for this book, and Excel� has area charts, but does

not generate bar charts with no space between the bars.

Digital cameras produce a histogram that is an excellent illustration of

their function. The X-axis measures brightness of pixels (picture elements),

from solid black to pure white. The Y-axis is the count of pixels with that

level of brightness. A good photograph has a majority of pixels in the middle

of the range, not too dark, nor too light. Figure 7-5 provides an example of

a histogram based on the pixel count from a photograph. A photograph’s

brightness histogram is one measure of the quality of the photograph. A

sophisticated brightness histogram, like this one, shows the pixels on a gray

scale from black to white. If most pixels are in the middle 60% of the image,

and there is some interesting variation in that central area, the picture is likely

to be pleasing. It will have a nice range of grays or middle colors, plus some

interesting contrast. If an image is too dark or too light, we see it in the

histogram, and we can use a computer graphics program to adjust the

brightness of the image until it has a good histogram, and looks good, as

Fig. 7-5. Brightness histogram.
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well. Unfortunately, adjusting the graph of our earnings portfolio in a

computer program doesn’t have a similar effect on the value of our portfolio.

The purpose of the histogram, like the stem-and-leaf discussed in Chapter 3

‘‘What Is Probability?’’ is to illustrate the shape of the sample distribution.

Critical to this is that the data be grouped into the right number of intervals.

As we saw with the stem-and-leaf, too many small intervals flatten the data

out across the graph and hide the differences in counts across the range that

are, in essence, the distribution. Likewise, too few big intervals stack the data

up into the middle of the graph and also hide the differences. If the ups and

downs of the distribution are not clear in the histogram, change the number

of intervals and try again.

KEY POINT

Any graph designed to show a sample distribution needs to emphasize, visually, the

changes in counts across the range. Key to creating this visual emphasis is the

interval size used to group the data, which is determined by the number of intervals.

Histograms and frequency polygons have a function in the evaluation

of statistical results. They are used to show—and to visually analyze—the

distribution of the values of a single variable. For histograms with many

intervals (that is, many bars), the line graph looks smoother and begins to

look like a bell curve if the distribution is bell-shaped. Also, a frequency

polygon can also be smoothed to approximate the shape of the population

distribution from which the sample was drawn, in part because it retains the

all important relationship between area under the line and the proportion

of counts in each part of the range. Using these visual approaches, we

can examine our data and see the mean and kurtosis, and see if we find

unusual variation or truncation, as described in Chapter 3. If we see these

effects, we can perform the appropriate statistical analyses to learn more

about them.

SEGMENTED AND STACKED BAR CHARTS

A segmented bar chart is a way of displaying the relationship between two

variables. We create a bar chart for the first variable. Then, we split each bar

across, and use two different shadings within each bar. The shading sub-

divides the first variable according to how many of the individuals within that

variable have each of the values of the second variable. Ordinarily, the second
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variable should be nominal and not ordinal, since shading is not a good way

to show order. In Fig. 7-6, we have a segmented bar chart of our sheep flock,

with the first variable being breed and the second variable being color (black

or white). If we take a look at the third bar, it tells us that, of the four mutton

sheep, three are white and one is black.

For a more sophisticated example of a segmented bar chart, take a look at

Fig. 7-7. This shows the height of people, split out as men and women. This

is a good example of the uses of a segmented bar chart. We see how many

people are of each height on the chart, and also how many women, and how

many men. Because men and women are sensible divisions of the group

people (on the variable, gender), the segmented bar chart makes sense. Note

that a vertical segmented bar chart is often called a stacked bar chart. If you

want to contrast a stacked bar chart and a multiple bar chart of the same

data, compare Fig. 7-7 with Fig. 3-4.

MULTIPLE BAR CHARTS

A multiple bar chart is a different way of showing the relationship between

two variables. It is a better choice when neither variable is nominal. We

Fig. 7-6. Segmented bar chart: sheep breeds and colors.

Fig. 7-7. Stacked bar chart: male and female height distribution.
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construct a multiple bar chart by dividing up our sample into sub-samples,

based on the value of the second variable. Then we construct separate bar

charts for each sub-sample. The multiple bar chart in Fig. 7-7 has the bars

from each sub-sample interleaved across the x-axis.

Figure 7-8 could be used to illustrate the 1:10:100 rule, as follows. In

Fig. 7-8, we see the expenses of three projects, broken out by project stage.

The black bar, indicating total project cost goes down. Why? Because, as

we moved from Project A to Project B to Project C, we put more effort into

earlier planning. Project A represents our old ‘‘just do it’’ approach. In

Project B, we spent more time and money on design, reducing rework during

development, lowering development cost, and lowering the project cost.

Encouraged by this, we tried out a new project approach with a great deal of

effort for planning in both the analysis and design stages. The result was a

much shorter development stage. These projects were of similar size and

value to the company. Yet the improved methods used in Project C delivered

the same result as project A for $10 million instead of $17 million, a savings

of $7 million dollars, or 41%.

A multiple bar chart is also a good way to compare the distribution of a

single variable for two or more samples that are parts of a survey or poll, as

in Fig. 7-9. Instead of constructing sub-samples from a second variable, we

just use the multiple samples. By looking at the bar graph of each sample, in

this case an opinion poll of employees, stating how much they liked the

company, broken out by interviewer, we have a chance to evaluate the data

visually. Given that two of the three interviewers got results pretty close to a

normal curve, but Interviewer C got a truncated curve with no zeros, and

mostly fives and fours, we might ask if something biased Interviewer

C’s work. If this was a survey done using a quota sample, as described in

Chapter 2 ‘‘What Is Statistics?,’’ we might suspect that Interviewer C used a

biased method for picking subjects. Or perhaps Interviewer C asked the

question in a way that—intentionally or otherwise—encouraged people to

Fig. 7-8. Multiple bar chart: comparative project costs.
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say they like the company. Or, perhaps, it wasn’t Interviewer C’s fault at all,

and his work was timed when the annual bonus checks had just been

distributed. In any case, there appears to be a bias, either in Interviewer C’s

results, or in the results of both Interviewer A and Interviewer B. A further—

mathematical—statistical analysis would show us if the bias is significant

enough that we can be assured that it has some cause, and is not within the

range random variation.

Change: The Line Graph
The basic line graph shows the relative frequencies of values of a single

variable, just like the bar chart. However, by connecting the counts for each

value with a line, the reader’s eye is drawn to the change in frequency from

one value to the next. Because the focus is on the relationship between

adjacent values of the variable, the line graph rarely makes much sense for

nominal variables, and we should avoid using it for them. For ordinal,

interval, and ratio variables, the line in a line graph shows the change in

count across the order of the values of the variable.

SINGLE-LINE GRAPHS

The simplest way to think of a single-line graph is as a chart where a point is

placed at the top of the center of each bar in a bar chart, all of the bars are

erased, and the points are connected with a line. You can see an example of a

single-line graph in Fig. 7-10. This shows number of customers served on

Saturday nights over a 4 month period, January through April. The spike

on February 14th is due to the popularity of fine dining on Valentine’s Day.

The line emphasizes the general trend of the growth of the restaurant’s

popularity.

Fig. 7-9. Multiple bar chart to compare samples: survey results.

PART TWO Preparing a Statistical Report152



Line graphs can be modified in many ways. Two of the most basic

changes are the choice of whether to show the points, or to show only the

line. We can show the points if presenting specific figures is important, or

to illustrate our data set. In Fig. 7-10, we used the points because the data

are for each Saturday night, and not for the entire week. In our report or

presentation, we would be sure to say that the line shows the trend for

Saturday nights, not the number of people coming on other nights of the

week. The other change is that, for some trends, it is appropriate to

smooth the line into a curve, instead of a series of disjointed line

segments. We do this when the shape of the curve is significant. We

smoothen the curves for two reasons: to show a forecast; or to show

whether our data are normally curved, biased, or truncated.

MULTI-LINE GRAPHS

A multi-line graph is just a combination of multiple-line graphs, one for each

of a number of variables, superimposed on one pair of x and y-axes. It is very

important that all of the variables being graphed have the same range

of values. This is best for interval variables that only take on a small number

of values, usually integer values. Figure 7-11 is a multiple-line graph that

illustrates a growing business with a problem. Business, as measured by net

revenue (in white), is growing nicely every quarter. Unfortunately, expenses

(in gray) are growing to match, and as a result, net income (in black) is flat.

Net income is net revenue less expenses. This graph illustrates how a graph

can help focus a business discussion on the right issue. This graph makes it

clear that net revenue is growing well, but that there is a problem because

expenses are rising as fast as net revenue. This graph answers the question:

Where do we have to look to find out why net income isn’t growing?

Fig. 7-10. Single-line graph: restaurant customers served on Saturday night.
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The answer: we need to take a look and see why expenses are growing as

rapidly as net revenue.

AREA GRAPHS

An area graph is a multi-line graph, where none of the lines cross and the

difference between the frequency of each variable for each value is important.

The differences in frequency are highlighted by adding different shadings

between the adjacent lines of the graph. Note the confusing terminology:

an area chart is a histogram, with only one variable, while an area graph is

a line graph with multiple lines where the areas between the lines are

important.

We could have used an area graph for our Fig. 7-11, Why Isn’t My

Business Making Money? We would have left out the black line (net income)

and shaded the area between the two other lines black, to show that it’s

height did not vary. This would focus attention on the area with the

unchanging height, net income, which is the problem we want our readers to

focus on. For an example of an area graph, see Fig. 7-17.

Comparing Two Variables: The Scatter Plot
The scatter plot is a type of graph used to show the relationship between the

distributions of two different numeric variables. (Scatter plots are most

valuable when both variables have real number, rather than just integer,

values.) Scatter plots are different than the other graphs we have looked at so

far, because each and every unit is shown as a dot on the graph. For each

individual subject unit, a point is placed on the graph. Each point is placed

directly above the position on the x-axis equal to the unit’s value on the first

Fig. 7-11. Multiple-line graph: Why isn’t my business making money?
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variable and directly to the right of the position on the y-axis equal to the

unit’s value on the second variable. The result is a graph with N points

scattered over the chart.

What does a scatter plot show? A scatter plot shows how being high or low

on one numeric variable relates to being high or low on a second numeric

variable. This sort of relationship is very important to statistical techniques

such as correlation and regression, which we will discuss in Chapter 12

‘‘Correlation and Regression.’’ If two variables measure features of the world

that are involved in some of the same causal processes, then that can result in

relationships that can show up in a scatter plot. To illustrate this, here are

two scatter plots of Judy and her friends, Fig. 7-12, showing the relationship

between their weights and their heights, and Fig. 7-13, showing the

relationship between their weights and their I.Qs.

Note that the cloud of points in the first scatter plot is oval shaped and the

cloud in the second plot is rounder. An oval cloud is an indication that there

is a relationship between the two variables. As we might expect, taller folks

Fig. 7-12. Scatter plot of weight and height of Judy’s friends.

Fig. 7-13. Scatter plot of weight and I.Q. of Judy’s friends.
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tend to weigh more. That means that, across a population, there are fewer

folks who are tall and light (points on the upper left) or short and heavy

(points on the lower right). (Even tall, skinny people weigh a fair amount

because they are tall. And short, overweight people do not weigh as much as

a tall overweight person might.) Because there are fewer points on the upper

left and lower right, the overall cloud of points looks more oval. In short, the

relationship between weight and height shows up in terms of the shape of the

cloud of points in the scatter plot. We have gone one step further and created

a line, called a regression line, on this scatter plot. Microsoft Excel

automatically performed a linear regression for us and inserted the line.

The regression line is a description of the relationship between the variables,

and is discussed in Chapter 12.

In the case of weight and I.Q., where there is no relationship, we get a

roughly circular cloud of points. This indicates that there is no visible

correlation between the two variables; that is, they seem to be independent. If

that happens, we do not draw a regression line. The set of points in Fig. 7-13

may not look very circular due to our small sample size. But it certainly does

show that there is no indication of a correlation.

In some data sets, the regression line could slope downwards instead

of upwards. Picture this chart: If we have two variables such as hours of

television watched per week on the X-axis and grade-point-average on the

Y-axis, we will see an oval cloud that starts high on the left (less TV, higher

grades) and ends low on the right (more TV, lower grades). The regression

line would slope from the upper left to the lower right, indicating a significant

negative correlation between the two variables.

Don’t Get Stuck in a Rut: Other Types of
Figures

There are many more types of statistical charts than can be shown in this one

chapter. There are box-and-whisker plots, pictograms, ideograms, digitdot

plots, cross diagrams, bubble charts, contour plots, diamond charts, and

statistical maps, among others. Some are specialized developments from one

particular industry, or for one particular statistical application. It is good to

have a nodding acquaintance with many different types of charts and graphs.

It is important to be familiar with all of the types of charts and graphs used

in our own industry. And, most important of all, we must understand how to

use the basic charts well, and how to use the sophisticated charts of our

industry making full use of all their features.
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When the occasion arises, we should be able to scout around for the best

type of graph to use. Often, the best chart doesn’t fit into any of the standard

categories, but may be a mixture of different standard chart types, or inspired

by aspects of standard types we have seen. Here, we will look at mixing chart

types, using 3-dimensional graphs, and creating statistical maps.

MIXING CHART TYPES

One of the most common ways to create a non-standard chart is by

combining different chart types. Two different variables that extend over the

same range may be compared by showing one with bars and the other with

a line. The bubble chart combines aspects of a scatter plot with an ideogram,

by having the size of each point increase with the values of a third variable.

So long as things don’t get too crowded or complex, there can be real value in

combining chart types.

VOYAGE TO THE THIRD DIMENSION: 3-D CHARTS

In print, on a slide, or on the computer screen, there is no real third

dimension. When we talk about 3-dimensional (3-D) graphs and charts, we

mean graphs and charts where shading or perspective is used to give the

appearance of a third dimension. There are two principle purposes of 3-D

graphs, readability and additional information.

3-D charts allow us to compare counts of two different variables, with the

count shown vertically, and the two variables shown on two axes at right

angles to one another. This is useful when we want to highlight the

comparison of the variables. Take a look at the 3-D chart in Fig. 7-14. This

Fig. 7-14. 3-D Bar Chart: comparative frequency of heights of men and women.

CHAPTER 7 Statistics Without Numbers 157



chart makes a point visually: men are generally taller than women, but when

we take into account variance (and not just the central tendency), many

individual women are taller than many men. Compare Fig. 7-13 to the

stacked bar chart Fig. 7-7. See how it is easier to make our point when

women’s and men’s heights are put on the same 3-D chart beside one

another.

Figure 7-14 has a vertical axis (or Z-axis) of count, an X-axis (heading to

the right) of various heights of people, and a Y-axis (heading to the left and

forward) of gender. A more advanced use of 3-D charts is to use the Y-axis to

present a variable with more than two options. The 3-D variant on the line

graph is called the contour plot. We can use a contour plot to see the

interactive effects of two variables on a third variable.

In Fig. 7-15, the vertical axis shows the percent of product meeting

customer requirements as a result of temperature variation and humidity

variation during manufacturing. This chart might help with a business

decision as follows. A company runs a manufacturing process in an old facility

with poor humidity and temperature control. They are losing money due to a

high percentage of rejected products. They want to choose among several

options, from insulating the roof to acquiring a new building. These options

have a wide range of costs, and they want to estimate the relative benefit of the

different options over a ten-year period. Figure 7-15 shows the results of

controlled experiments that shed light on the problem. Both temperature

variation (in degrees) and humidity variation (in percent) during manufactur-

ing have a significant deleterious effect on product quality. And the two

interact in such a way that if both temperature and humidity vary, the

cumulative effects are even worse.

Fig. 7-15. Contour plot: product quality by temperature and humidity variation.
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This graph helps everyone at the meeting understand the problem clearly.

Once everyone is on the same page, a discussion of the different solutions will

be much easier than it would be otherwise. For example, an engineer might

say, ‘‘just insulating the roof will not do a lot of good, because it doesn’t fully

control temperature variation, and it has no effect on humidity variation.

If we insulate the roof and install air conditioning with humidity control,

we can keep acceptability above 70%, because we will keep temperature

variation within five degrees, and humidity variation within 2%. However, if

we build a new facility, we can keep temperature variation to a fraction of

a degree, and humidity variation to a fraction of a percent, maintaining a

percentage of acceptable product above 90%.’’ This technical information

would feed into financial estimates. The financial estimates would compare

the return on investment among the options leading to a recommendation for

a solution.

CRITICAL CAUTION

Good 3-D Requires Care
There are three errors that are easy to make in preparing 3-D charts or graphs:

. Hiding lower values behind higher ones. Our readers don’t have x-ray vision.

Higher values on a contour plot or 3-D bar chart, when they are further to the

left on the X-axis, or further to the right on the Y-axis, may hide the values

behind them. Sometimes, we can manipulate the order of the axis to get

around this, but we must then be very careful in explaining our chart. It

might be better just to use two graphs.

. Getting confused and confusing our audience. To avoid this, think through

variables and values.

. Adding bias through 3-D. Volumes give a different impression of variance or

change than more representative 1-dimensional lines do.

MAPS

Among the specialized charts, the statistical map deserves special mention.

When the values of a variable change from one place to another, we can show

those changes on a map that shows both the places and the values. There are

two common types of statistical maps. One simply uses shading to indicate

different values or ranges of values as they apply to different places on the
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map. (For example, states with Republican governors might be in one color,

and states with Democratic governors in a different color.) Another common

statistical map shows 3-D bars like standing towers at the relevant locations.

This could be used to indicate sales in different cities or regions.

Do’s and Don’ts: Best Practices in Statistical
Graphics

This section is a basic introduction to a good way to prepare graphics for

business reports and to the most important errors to avoid. This section,

alone, is not enough to allow you to be sure that you are not accidentally

misrepresenting the data in your charts, especially if you choose to

manipulate the axes, add 3-D effects, add color, or other flashy items.

Read this section, read How to Lie with Statistics, be conservative in your

style, and, if you can, have someone with more experience check your work.

Otherwise, a chart can accidentally become an invalid, biased representation

of the data all too easily.

DOING IT RIGHT

There are seven steps to including graphics in a statistical report with

excellent results:

. Plan the list of figures. Here, we lay out the logic of our report.

. Plan each chart or graph. First, we prepare a chart type. Then we think

through—and write down—the details.

. Prepare each chart or graph. Here, we generate the graph from the

numbers.

. Prepare text to go with each chart or graph. Work with the examples in

this chapter so that you can talk to your audience through each chart.

Then write one to three paragraphs that do just that, whether people

will be reading the report, or you will be giving a presentation.

. Checking each chart or graph against the numbers. Does everything

look right? Check titles, axes, variables, and values.

. Checking each figure against the table of graphs representing statistics.

. Do a final copy-edit and proofreading of the entire report, figures

included. Be sure to have someone else check your work. We catch

each other’s mistakes much better than we catch our own.

Several of these steps are worth a bit more explanation.
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Planning the list of figures

If we make a logical list of the points we want to make, we can build a series

of images that help our readers or listeners move from knowing nothing

about a subject to knowing what we know. Each point should require a

relatively small amount of information, and especially, it should not

introduce many new types of information all at once. Once we have our

logical presentation—or argument, or case, although we’re not going to

argue with anyone—we can look at each point and decide if it needs a graph,

and what kind of graph would be best. If we skip this step, we are likely to

find that we are creating very complicated graphs because we are packing too

many points into one picture.

HANDY HINTS

Get Some Style and Save Some Time With Templates and Procedures
If we have several graphs of the same style—all line graphs or all bar charts, for

instance—we should put them all in the same style, using consistent borders, fonts,

line weights, and so forth. We can do this by creating a template, a procedure, or

both. A template is a file with the basic settings for the graph all ready to go.

To prepare each graph, we just drop in the data and make final adjustments.

A procedure is a written series of steps that tells you—and others—what settings to

choose in your graphics program to get the results you want.

The best approach is to make your first graph and play with it until it is exactly

the way you want it. Then copy the axes and settings without the data to make the

template, and note the steps and settings to write the procedure. Templates and

procedures are particularly useful when graphics are being created by different

people or with different tools. And, of course, you can keep them for your next

project, producing high-quality graphs time after time.

To go to the last step, be willing to change style where it helps the presentation,

but keep changes small. And, if you make an improvement that you like, be

sure to change the template and procedure so you can use it the next time, and the

next.

Planning each chart or graph

Here, we choose the type of chart or graph that we will use for each point

we want to make in our report. Remember that we may not need a graphic at

all, if plain text or a simple table will do. When we do need a graph, we can

choose the type from Table 7-1.
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Table 7.1 Chart types.

Chart name Purpose or example

Pie chart For showing proportional values of a variable in relation to

the total.

Bar charts

Horizontal bar chart For comparing values in relation to one another, especially where

we usually think of the item in horizontal terms, such as time,

or where it is easiest to lay the graphic out horizontally.

Simple vertical bar chart For comparing values in relation to one another, especially

where we are comparing quantities or value.

Side-by-side or mirrored bar chart For comparing two sets of values where the names of the

values are the same, but the populations are different.

Segmented and stacked bar chart The major variable is shown as a simple vertical bar chart. Each

bar is then segmented into two or three parts, so that each

variable is split into ranges, marked by color or shading, that

indicate the values of another variable, most often a sub-category.

Multiple bar chart Here, we cluster sets of bars in order, so that the chart can be

read two ways to see how variables interact with one another.

We might plot time, in quarters or years, and cluster divisions

within each time or year, showing net income on the vertical axis.

That would allow a comparison across time of each division, and

a comparison across divisions within each time period.

Pareto diagram A specialized bar chart for a single nominal variable.

Histogram or area chart A chart—bar chart in the case of a histogram, or line graph in

the case of an area chart—where the area shown on the chart

shows the proportion of values in the sample. This requires

meeting a number of specifications for the data and the graph.

It allows visual inspection and representation of the sample for

statistical and other purposes.

Line graphs

Single line graph To show how a single variable changes across the X-axis.

Very often, the X-axis is time.
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Table 7.1 Chart types (Continued ).

Chart name Purpose or example

Multiple line graph To show how multiple variables change across the X-axis.

Area graph To emphasize the areas on a line graph. We might want to emphasize one

area that is, effectively, the subtraction of one value from another. Or we

might want to compare several areas.

3-D graphs

3-D Bar chart To compare two different variables in relation to a third variable.

Contour plot To compare the effects of two different variables on a third

variable.

Other types of graphs

Scatter plot To evaluate the relationship between two different variables in a sample.

This is specifically a statistical tool related to regression. Each sample is

shown as a dot on an area, its location indicating its value for the variable

of each of the two axes.

Statistical map To show values of a variable across a region. This could be a geographical

region. However, we can also consider some astronomical charts to be

statistical maps of space, and it is possible to create statistical maps of other

actual or theoretical regions, as well.

Stem-and-leaf To get a quick look at the shape of a distribution, especially

when no computer is available.

Box-and-whisker plot To detect extreme values or other unusual characteristics of a

sample distribution.

Bubble chart To add a third variable to a scatter plot or map, where the third

variable indicates a magnitude.

Contour plot To show a third continuous variable that is dependent on the first

two continuous variables.

Diamond chart To show the relationship between actual performance on four

variables against a standard.
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CRITICAL CAUTION

Crucial Exceptions
There are times when a certain type of chart may seem like the right one, but using

it would give the wrong impression. Be sure to read Errors to avoid when planning

your figures.

Any list of options is incomplete, and prone to error. Think of Table 7-1

as a sample of the population of types of graphs you might use. There are

some graphs you will encounter—especially the specialized graphs of your

industry—which are not listed. In addition, there are some graphs that don’t

fall easily into our categories. For instance, we can put a line through a bar

graph, to illustrate both value and change.

Also, the lengths of our bars and the heights of our lines do not need to

indicate frequency. They can indicate count, or any numerical value. Line

graphs can show cumulative values. There are many options, and the best

way to learn them is to know the graphs in your industry, find good

examples, and use them as templates. Another excellent way to learn is to

find bad graphs, understand what is wrong with them, and fix them, as

illustrated in our case study.

CASE STUDY

What Type of Graph to Use? The Case of the Bad Weather Graph
Picking the right sort of graph is a complex process. There are certain rules of thumb,

but there is also a real need for applied common sense. Here is a lovely case of using

a multiple bar chart when an area chart would be a much better choice. A prominent

Cable TV channel that specializes in weather forecasts (we will mention no names!)

also has a website that allows the user to display local weather and related

information, including information about the local climate. The local climate,

broken out by months, is displayed on the website in a multiple bar chart.

The original—in orange and blue—was a bit easier to read. Let that be a caution

to those who rely on color in a world still full of black-and-white copiers and

printers! First, note the poor spacing. When creating a multi-component bar chart, it

is always a good idea to have all of the bars in each cluster close together—or even

touching—and have greater separation between clusters. These allow the reader to

see the clusters more easily. In Fig. 7-16, the only graphical element that tells you

that two bars belong to the same month are the clumsy, distracting grid lines in the

background.
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Second, bars are usually used to indicate amounts, and temperatures are not

amounts of anything. Even absolute, or Kelvin, temperatures are not amounts of

heat, and, on the Fahrenheit temperature scale, the zero point is arbitrary.

Third, bar charts, whether vertical or horizontal or histogram, are designed to

compare relative values. We might want to compare average temperature between

January and June (although that is unlikely), but we would never need to compare

the average high temperature for a month to the average low. We know before we

look at the graph. The high will be higher than the low.

Now that we’ve shown a bar graph is not a good chart, let’s see why a line graph

might do what we want. What is it that our reader might like to know from these

data? Most likely, it is the trend of changing temperature across the seasons. Trends

are better shown with line graphs. (Since trends in time are about change, always

consider a line graph before a bar graph, when the x-axis is time.) Since we have two

variables (high and low), we will need a multi-line graph. As we look at this graph,

we see that the value of one variable is always higher than the other, so we should

Fig. 7-16. Wrong choice of graph: monthly average temperature.
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consider an area chart. An area chart is a good idea when the area between two lines

on a line graph is meaningful. Here, the area between the average low and the

average high for the month is the range of temperatures you can expect to feel on an

average day. Above in Fig. 7-17, we have taken the data (kindly supplied by this

same website) and created a simple area chart using Microsoft Excel�.

Note that we could have easily added the record lows and highs for each month,

since they would be below and above the average lows and highs. We could probably

have actually used daily, instead of monthly information, keeping only the months

labeled along the x-axis. While the bar chart above looks crowded and cramped with

only the little bit of information it displays so poorly, the area chart is so uncluttered

that we could probably add more information without either distracting or confusing

our readers.

There are tons of examples of bad graphs. This particular firm is doing no worse

of a job than are many, many others. We should appreciate the bad examples, and

use them as cautions and tools to learn to make good graphs.

ERRORS TO AVOID

There are so many ways to make errors in our graphics that the most

important guidelines are to focus on making our point in a simple, clear way

with the simplest, clearest graph we can use. Then, we use each part of the

graph to represent the appropriate part of the information in our statistics.

Graphs representing statistics

Each element of a graph represents an element of the organization of our

statistical data and statistical measures, as shown in Table 7-2.

Fig. 7-17. Area chart: climate at a glance.
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Table 7.2 Graphical elements representing statistics.

Graphical element Statistic represented Do’s and Don’ts

Title The population

or sample

Do

. be clear whether you are speaking of a

population or a sample

Don’t

. leave out the title

. use a cute, but unclear name

Primary axis The frequency, count, or

other value being

focused on

Do

. have the scale clearly marked with proper

units.

. for a ratio scale, have the axes cross at the

zero point of the primary axis

Don’t

. leave the zero point off the chart for a

ratio scale

. make a break in the chart between the zero

point and representative values along the

primary axis. (A marked break is sometimes

acceptable, but introduces biased perception.)

Primary axis label The variable shown

on the primary axis

Do

. include it

. define units in parentheses, for example

(in thousands)

Secondary axis Shows the various values

of the variable, or the

most significant variable

Do

. make it continuous or separated, whichever

represents the actuality of the data

. make a conscious choice of order for

nominal scales

. label the values, or show a scale, whichever is

appropriate

. place ordinal scales in order

. show interval scales proportionally

. show the zero-point of a ratio scale, either

crossing the primary axis, or clearly labeled

and perhaps marked with a vertical line

. show appropriate intervals
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Clear labeling

There are a couple of things we can do to make our graphs very clear for our

readers. One is to choose labels in the language of our reader—business

language or everyday usage—and avoid statistical or engineering terms. We

can create a glossary presentation terms to statistical terms in our appendix

to show how we translated the statistics into usable English. Another is to

make sure that our labels are a good size and in a good position in relation

to the items that they identify.

Bias and nonlinear representation

Four manipulations of the Y-axis on graphs are quite common and should be

avoided in most cases. They should be avoided because, even when clearly

marked, they still introduce a visual bias that changes the reader’s perception

Table 7.2 Graphical elements representing statistics (Continued ).

Graphical element Statistic represented Do’s and Don’ts

Secondary axis

label

The variable shown

on the secondary axis

Do

. include it

Tertiary axis Shows a variable less

important than the one

on the secondary axis.

May be shown as a third

dimension, or as the

variable shown by

segments or clusters

Do

. on a 3-D graph, follow all the

rules for a secondary axis

. on another type of graph, use a

key to provide all that

information

Tertiary axis

label

The variable shown

on the tertiary axis

Do

. include it

Key Any information that

cannot easily be shown

by labels on the graph

Do

. use a key whenever it makes

interpretation easier, more

certain, or clearer

. proofread your key against

the graph

. use consistent keys and color

choices across related graphs

whenever possible

PART TWO Preparing a Statistical Report168



of significance. In general, do not:

. Leave out the zero on a ratio scale. This makes variance or change seem

more significant than it is.

. Have a break—marked or unmarked—on a ratio scale between the zero

point and the values. This also makes a variance or change seem more

significant than it is. When all of the values are far from zero, but close

to each other, it may be necessary to have a break in the scale. If so,

always mark the break clearly. Better a break than to leave out the

zero. If you do this, also note in the text that the heights of the bars do

not indicate relative values.

. Use nonlinear scales. Logarithmic and other nonlinear scales have their

place in engineering, but not in business. The visual meaning of items

on these scales is not what it appears to the untrained audience, and

they can be used to deceive, even causing lines that should be parallel

or divergent to converge.

. Use unfamiliar or undefined indices. An index is a ratio. In business

graphs, we can use familiar ratios that our audience uses all the time.

We should avoid unfamiliar ratios. If we do include unfamiliar ratios,

we must explain them carefully and define them consistently.

A more general form of statistical misrepresentation that often finds its way

into graphs is the redefinition of the base of an index. We should avoid this

scrupulously. Consider the following example. A company introduces a

temporary 20% pay cut during difficult times. Your annual salary goes from

$50,000 to $40,000. When things improve, the company gives everyone a 20%

raise to restore their salaries. But 20% of what? A 20% raise on $40,000

is $8,000, and now you have your salary as $48,000, $2,000 below the

original $50,000. Where did the $2,000 go? It was lost in the change of the base

of the index. Twenty percent of $40,000 is $2,000 less than 20% of $50,000.

Cute pictures are often used to replace bar charts. The problem is that,

when we do this, we create 2-dimensional or 3-dimensional images

representing linear changes, which misrepresents them, making the change

or variance appear much more significant than it really is. For good examples

of this and other crucial cautions, see How to Lie with Statistics.

Too clever by half: the whens and wheres of color,
cartoons, and photographs

As you become more sophisticated in preparing graphs, you may want to

jazz them up a bit. After all, if your audience falls asleep during your

presentation, you are not supporting a business decision very well!
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However, we recommend that you focus on being relevant and clear first, and

flashy a good deal later. If you come to the point that you want to make your

charts fancier, we suggest you work cautiously. It is very easy to take

creativity too far when showing data in a graph or chart. The colors that

highlight the important features of our data rapidly become distractions

when there are too many or too much. The clever combination of chart types

that allow us to compare two variables may rapidly become completely con-

fusing when we try to compare three. Use color and fancy types of charts to

support the clarity of communications.

The same thing applies to appeals to the emotions. Charming cartoon

characters can help make our point more memorable, but they can also

distract. In addition, a poorly designed icon or ideogram can actually

mislead. It is a classic, and misleading, error in graphing to have pictures

whose size varies with some value when, actually, the height illustrates the

difference in value, but the difference in area or volume gives a false

impression of a larger difference than is actually there.

We will look into this further in Chapter 10 ‘‘Reporting the Results,’’

where we discuss presenting statistical information in different business

contexts, including decision support and advertising.

SOMETHING EXTRA

Technology: A Plus or a Minus?
Everything we have said about flashy effects, color, and emotional appeal applies

even more to special effects we can add through computer graphics and new

technology. Whenever a new technology becomes available, there is a tendency,

called the ‘‘gee-whiz’’ effect, to overuse it. This is not a new thing; excessively gaudy

print and photographs were used where a simple paragraph would have been clearer,

all the way back in the 1800s. Snazzy changing color and moving pictures hide more

than they reveal. They have no place in decision support, and their place in

advertising based on statistics is questionable.

In addition, the more we rely on new technology, the more risk there is that things

won’t come out the way we planned. Could you present your report if the bulb blew

on your data projector? What happens to your color-coded bar charts when

extra people come to the meeting, and you are quickly making extra copies—on a

black-and-white printer or copier? When we KISS—Keep It Simple, Sam—we also

Play It Safe, Susie. (The acronym is left for the reader to develop.)

PART TWO Preparing a Statistical Report170



Quiz
1. Charts and graphs . . .

(a) May be useful for examining the distribution of the data

(b) Communicate the results of a statistical study

(c) Both (a) and (b)

(d) Neither (a) nor (b)

2. A pie chart is useful for illustrating _______.

(a) Proportions

(b) Comparisons

(c) Change in frequency

(d) All of the above

3. The length (or height) of a bar in a bar chart indicates the _______ of each

value of the variable.

(a) Probability

(b) Ratio

(c) Proportion

(d) Frequency

4. A Pareto chart is used when the data are on a _______ scale.

(a) Ratio

(b) Nominal

(c) Ordinal

(d) Interval

5. We can use a _______ chart by dividing the sample into sub-samples.

(a) Line graph

(b) Histogram

(c) Multiple bar

(d) All of the above

6. The Line graph allows you to focus on the _______ from one value to the

next.

(a) Distribution

(b) Frequency

(c) Ratio

(d) Change
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7. A _______ shows each subject unit on the graph.

(a) Scatter plot

(b) Line graph

(c) Histogram

(d) Pie chart

8. Using templates or procedures when planning charts and graphs saves

you . . .

(a) Time

(b) Cost

(c) Effort

(d) All of the above

9. The primary axis label on a graph should be . . .

(a) Included

(b) Defined in units

(c) Both (a) and (b)

(d) Neither (a) nor (b)

10. The use of color and flashy effects in graphs should only be used to . . .

(a) Add to the ‘‘gee-whiz’’ factor

(b) Provide clarity

(c) Distract from the results

(d) All of the above
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CHAPTER
8

Common Statistical
Measures

We have reached the point where we are ready to talk specifically about

statistical measures, one by one. Calculating statistical measures, like any

other sort of calculation, means following a specific procedure. In the world

of mathematics, procedures are specified using the special language of

equations. We can’t avoid equations in this chapter, but at least we can say

why they are necessary. (If you are uncomfortable with equations or think

you need a review of the basic rules, see Appendix A for a review of basic

math.)

SURVIVAL STRATEGIES

The keys to getting the most out of equations are: First, remember that the symbol

for the statistical measure being defined is always alone on the left of the equals sign.

Second, everything on the right of the equals sign is just a short-hand for the rules for
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calculating the value of the statistical measure. The detailed version of those rules

will be given in the adjoining text.

Recall that statistical measures are summaries. They are single numbers

that describe some aspect or feature of a group of numbers. So, the

procedures we will be using will be applied to many numbers and will end up

producing one number. We will explain what feature of the group of numbers

is described by each statistical measure as we go along.

Fundamental Measures
Most complex statistical measures are based on simpler ones. We calculate

the simple statistics from the numerical data and then calculate the more

complex statistics from the simpler ones. The two simplest and most basic

statistics are the count and the ratio, which we saw earlier in Chapter 3

‘‘What Is Probability?’’ These two statistics are so simple that most statistics

books don’t even talk about them. However, they are the basis for many,

many other statistics, so we will discuss them here.

COUNTING: N AND DEGREES OF FREEDOM: df

The count, symbolized by N, is such a simple statistic that it doesn’t even have

an equation. We all learned to count before we knew any other sort of

arithmetic. Counting is the most basic sort of procedure in mathematics and

statistics. It is also the simplest sort of measurement. When we count

something in the real world, we get a number. That sort of count is a

measure, not a statistic.

Counting in statistics

But what happens when we count numbers instead of things? We start with a

group of numbers and we end up with a single number that describes one

feature of that group, namely, how big a group it is. When we count sheep,

we get a number that is a measure of the flock. When we count numbers, like

the number of the weights of all the sheep in the flock, we are calculating the

statistic, N. (Of course, this is a distinction without a difference. The number

of sheep will be the same as the number of numbers we get when we weigh

them.)
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The count of all the numbers in a group of numbers is the basis for almost

every other statistic. When we look at the equations for almost every other

statistic, we will see N on the right-hand side of the equals sign.

Usually, we use the symbol, N, to indicate the size of the entire sample.

When we are talking about smaller groups that are part of the sample, we

usually add a subscript to the N to show the difference. For example, if we

wanted to talk about only our black sheep, we might use N¼ 12 as the

equation for the entire flock and Nb¼ 5 as the equation for the count of just

the black sheep.

HANDY HINTS

Note that, in these first equations, we are not specifying a procedure. When there is

just a number to the right of the equals sign, the equation is being used to specify the

value of the variable in that particular case. Mathematicians (and statisticians) use

equations for a lot of different sorts of things, and don’t always warn us when they

shift gears.

CRITICAL CAUTION

In statistical theory, when the population is finite, N is sometimes used to mean the

size of the entire population. The symbol, n, is then used to describe the size of the

sample. We won’t be doing much theory here in Business Statistics Demystified, but

elsewhere, this can get a bit confusing.

What are degrees of freedom?

There is a very sophisticated notion in statistical theory that we will need

later on when we talk about more complicated types of statistical techniques.

This notion is called the degrees of freedom. Even though it is a difficult idea,

it is calculated from a very simple statistic, the sample size, n. Equation 8-1

shows that the degrees of freedom (df ) is equal to the sample size.

df ¼ n ð8-1Þ
Every time we observe the world, we gather information about it. In

statistics, each observation contributes one unit to the sample. The sample

size, n, is the number of units in the sample, and thus is a measure of how

much information we have obtained about the world with that sample.
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When we use n as a measure of the amount of information in our sample, we

call it the degrees of freedom.

Now, suppose we calculate a statistic from our sample. That gives us one

piece of information about the world, taken from the sample. As it turns out,

there is an important sense in which each number we calculate is worth the

same as each number we collect. So, when we calculate a statistic from the

sample, we have one less piece of information in the sample.

At first, this may seem odd. After all, we still have all N numbers from our

sample. We still know what they are. What has been lost? The answer is that

we may very well want to calculate more statistics from the same sample.

How many times can we use the same N numbers, our data, to calculate

statistics and still be finding out about the world, instead of just spinning our

wheels? The answer is that we can calculate N statistics from N numbers

before we run out of information. As we examine various statistical measures

throughout this chapter, we will take a few more looks at degrees of freedom.

Degrees of freedom will also be very important when we get to Part Three

and talk about statistical techniques.

RATIOS, ALSO KNOWN AS PROPORTIONS

We took our first look at ratios back in Chapter 3 ‘‘What Is Probability?,’’

when we learned about samples. Ratios are another very basic statistic.

Ratios are calculated using two counts and nothing else. Just as we said at the

outset, each more complex statistic will tend to use the simpler statistics as a

starting point. As we noted in Chapter 3, the symbol for a ratio is p, because a

ratio is our best estimate of the probability that a single subject unit sampled

from the population will have that characteristic value on that variable.

TIPS ON TERMS

In Chapter 3 we distinguished between the terms, ratio, proportion, probability,

and odds. While other texts may treat this differently or not treat it at all, in Business

Statistics Demystified, we use the term ratio to mean the underlying relationship

between two values. Odds, which are not used as often in statistics, involve a different

sort of calculation than do both proportion and probability. The difference between

a proportion and a probability is that proportions are measures taken on samples

that show a ratio, while probabilities are theoretical values related to events with

populations. A proportion of a sample gives the best estimate of the probability, but

the probability itself, because it is a theoretical aspect of the population, is something
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we can never know for certain. We will hear a good deal more about estimates as we

go forward.

Calculating the ratio

While there are other uses for ratios, the ratio statistic is most often used to

estimate probabilities by comparing the count of some subgroup of interest

to the count of a larger group to which that subgroup belongs. (It does not

matter here whether we think of these counts as counts of things or counts of

numbers.) This is not as complicated as it sounds. When we have a sample,

that is a group. If we have a categorical variable, any value of that variable

forms a subgroup. Our example of this is our flock of sheep (a group) and the

variable, color. The value, black, of the variable, color, defines a subgroup.

The ratio of the count of black sheep to the total count of sheep gives us

the ratio or proportion of black sheep. In general, if the value is represented

by x, the equation defining the proportion is:

p ¼ Nx

N
ð8-2Þ

All we have to do in Equation 8-2 is divide the count of the individual units

having a value of x by the count of all the units in the group. And that is our

second statistical equation. See how easy that was!

It is important to note here that we can calculate proportions for other

types of variables as well as categorical ones. Remember that numerical

variables (either interval or ratio) contain more information than do

categorical variables. It is a common trick in statistics to redefine a numerical

variable as a categorical variable in order to use it for categorical things,

including calculating proportions.

The trick to creating categories from a numerical variable uses ranges of

numbers. While we have not yet discussed the range as a statistic, we already

know about ranges from algebra. (Refer to Appendix A for a refresher on the

number line if you need to.) Ranges of numbers are things like, less than or

equal to ten, greater than �8.34, or greater than or equal to 8 and less than 11.

For any numerical variable, we can define a category as when the value of a

numerical variable falls within a particular range. (The complementary

category is when the value falls outside that range.) We saw this trick used in

Chapter 3 where the probability of a value was defined using the normal curve.

If we redefine x to be a range for a numerical variable instead of a value

for a categorical variable, we get the definition of the ratio for values of

numerical variables, without even having to use a new equation!
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FUN FACTS

In probability theory, mathematicians use the concept of a set to define x so that they

only have to use one equation for both types of variables. Even the mathematicians

like to keep some equations to a minimum.

Estimating population values

Finally, we need to understand the critical importance of the ratio to the

statistical process called estimation. By estimation, statisticians mean taking a

statistical measure of a sample and inferring the value of that same measure

for the entire population. Very often, the value of a statistic for the

population is a terrific help in making a business decision. For example,

knowing how many people in the general public might be interested in buying

our product would be very helpful in our marketing plan. But we can’t very

well ask every person in the country what they think. We can, however, ask a

sample of the population of the country what they think. If we can use those

data to estimate how many folks in the whole population feel the same way,

we will be better able to make our marketing decisions. As we move through

this chapter, we will see how each of the various statistics can be valuable in

making business decisions, but usually only if we can use them to speak

about their value for more than just the sample we have taken.

Recall from High School algebra that ratios always mean the same thing,

no matter what the size of what is measured. If we have the same amount of

plain chocolate bars as almond chocolate bars, then the total number of

almond chocolate bars depends on how many chocolate bars we have in

total. If we have six chocolate bars, then three of them are almond. If we

have 50,000 chocolate bars, then 25,000 of them are almond. It is the ratio

called a ‘‘half’’ that describes what is the same about these two batches of

chocolate bars that differ so much in size. No matter how many or how few

chocolate bars we have, a half is always a half.

HANDY HINTS

One way to think about what ratios do in statistics is that they, in effect, erase the

information about the size of the sample, by dividing the count of objects of interest

by N, the sample size.
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The importance of this feature of ratios to estimation is that, in the end,

the size of our sample is unimportant in terms of what we want to know

about the whole population. (Make no mistake, the size of the sample is

vitally important to calculating the statistics we need to help make our

business decisions, but it is not a piece of information about the world, only

about our study, and thus is only important as a part of the process.) If we

talk to a random sample of the population and find that one-third of the

people we talk to like our product, then our best estimate is that one-third of

the general population will like our product as well. Just as in arithmetic,

one-third is one-third is one-third.

The ratio is the key to making samples make sense. The value of the ratio

always falls between zero and one. Its value doesn’t change the size of the

total group, whether the total group is the sample we happened to take, or

the group is the total population we want to know about. If we can express

an important value as a proportion of the sample using ratios, statistical

theory tells us that that same value will apply—more or less, given error due

to sampling—to the entire population, and can even tell us how much error

to expect. That is how the process of estimation works.

CRITICAL CAUTION

Sample Size Does Matter
When we make an inference from a ratio calculated on a sample to a proportion of

the population, how do we know our inference is valid? Here, sample size is a key

factor. The larger the sample size, the smaller the possible error of our estimate.

If our sample size is too small, then we can’t make any reliable estimates about

the whole population.

Descriptive Statistics: Characterizing
Distributions

In statistics, our sample is our only source of information about the world.

Statistics we calculate from the sample will be used to estimate population

values. Recall from our discussion of samples in Chapter 3 ‘‘What Is

Probability?’’ that, for each variable, there are N values that make up our

sample distribution of that variable. The most basic statistics that provide

values that are estimates of population values are called descriptive statistics.
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Descriptive statistics describe features of the distribution. Each sample

descriptive statistic describes a feature of the sample distribution. If the

sample is large enough, the distribution of the sample will resemble the popu-

lation distribution. Because of this, descriptions of the sample distribution

will also describe (via estimation) the population distribution. Descriptions of

the population can be the facts we need to help with our business decisions.

HANDY HINTS

While some descriptive statistics can be defined for ordinal variables, the theory of

estimation for descriptive statistics assumes that the variables are numeric. For the

remainder of this chapter, we will only be dealing with numeric variables.

(Estimation of categorical variables usually involves only proportions, as estimated

by ratios, which we learned about in the previous section.)

THE RANGE: MINIMUM AND MAXIMUM VALUES

For ordinal and numerical variables, where every value is higher or lower

than every other value, there is at least one value in the sample distribution

that is the lowest and one that is the highest. The lowest value is called the

minimum. The highest value is called the maximum. Together, these two

values, called the limits of the distribution, tell us the range of values of the

sample distribution.

CRITICAL CAUTION

In statistics, the term, range, is used to mean two different things. Mathematically,

the range is all the numbers on the number line between the minimum and the

maximum. The range is described with both numbers. The size of the range is the

maximum minus the minimum. The size of the range is a single number, a statistical

measure, which is also (confusingly) called the range. In order to be consistent with

other statistics books, we will use the term, range, for both the pair of limits and for

the algebraic difference between the two. When things get too confusing, we will refer

to the range statistic (the single number) as the ‘‘size of the range.’’

In some ways, the range of a numerical variable tells us the most basic fact

about the distribution. It tells us what values are and are not to be found in
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our sample. For example, the range of heights of Judy’s female friends in

Table 8-1 is from Tammy at 5 01 00 to Francie at 5 091
2
00. Knowing the range

means knowing that none of Judy’s female friends is 5 010 00 or taller.
The size of the range tells us something different. It is a statistic that tells

us how spread out the values are. The size of the range, a.k.a. the range

statistic, of the heights of Judy’s female friends is 81
2
inches. The range

statistic tells us how much the heights of Judy’s female friends vary.

However, it is not a very good measure of variability. Imagine that all of

Judy’s female friends ranged in height from 5 01 00 to 5 03 00, except for Francie
at 5 091

2
00. This would mean that, overall, the heights clustered together a lot

Table 8-1 Heights of Judy and female friends (sorted).

Name Height (inches)

Tammy 61

Caroline 63

Hannah 63 1
2

Ng 63 1
2

Judy 64

Angela 64

Rita 64

Wai-Jung 64 1
2

Shizuko 65 1
2

Betty 66 1
2

Maria 66 1
2

Donna 67

Liora 68

Francie 69 1
2
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more than they actually do, but the value of the range statistic would be the

same. The range statistic is a poor measure of the variability of a sample

because it only depends on two values. As a result, it doesn’t change with

different intermediate values—and doesn’t tell us anything about them,

either. Different patterns of clustering between the minimum and the

maximum don’t change the range.

The range is simple to calculate, as we see in Equation 8-3, and it is

important because it relates to the distribution limits. It is not used much in

statistical inference, in part because it is not a very good measure of

variability, but also because the mathematics of estimating using limits is

very hard.

range ¼ max�min ð8-3Þ
The range gives us a good first example of how degrees of freedom work. If

our sample size is N¼ 2, and we know the maximum and the minimum, there

is nothing more to know. If we lost our original data, but knew the sample

size was two, and also knew the minimum and the maximum, we could

reconstruct our data from that information. On the other hand, if our sample

size is three or more, we wouldn’t be able to reconstruct all of the original

data. The two statistics, the minimum and the maximum, contain as much

information as a sample of size, N¼ 2. A larger sample contains more infor-

mation, which is why N is a good measure of the amount of information, or

degrees of freedom, of our sample.

As an example of using ranges in business, consider a craftsperson

choosing what items to make to sell at two upcoming crafts fairs. She looks

at her sales results from the same fairs last year, when she brought all of her

items, at different prices, to two fairs. One, a Christmas fair, had a lot of

college students buying gifts. The least expensive item she sold had a price of

$1, and the most expensive had a price of $79. At a fair sponsored by the art

museum, the least expensive item she sold was $10, and the most expensive

was $350. As she plans what to do this year, she can decide to bring items

in a price range of $1 to $100 for the college Christmas fair, and $10 to $500

to the art fair. (She figures she can bring a few higher-end items and cross her

fingers that they will sell.) But if she knew how many items she sold at each

price, she could plan her production even more accurately.

TYPICALITY: MEANS, MEDIANS, AND MODES

The range uses two numbers to tell us about where on the number line our

values fall. The size of the range (one number) doesn’t include that

information. It only tells us about variability. Neither one is a terrific
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measure, because values in the middle can shift around and not change the

range. Suppose we were interested in selling sports equipment to Judy and

her friends. We might want to know if, overall or on the average, Judy’s

female friends are ‘‘tall,’’ because that might indicate how interested they are

in basketball.

Of course, ‘‘tall’’ is a very imprecise term. How tall is tall? In statistics,

when we want to have a precise numerical measure of where the values fall,

we speak of an average. An average is a single number that summarizes how

big or small all the values of a variable are. Because an average, unlike the

range, is a single number, we can anticipate that that number will be

somewhere in the middle of our distribution. For the most part, that is true.

There are many, many types of averages. Three of the most common are

the mean, the median, and the mode. An average value is a typical value for

the distribution, with ‘‘typical’’ defined differently for each type of average.

In statistics, measures of typicality are often called measures of central

tendency because, when the distribution is bell-shaped, the most typical

values tend to be in the center of the curve.

The mode

The mode, like the minimum and the maximum, is a specific value that is

actually found in our data. The way that this value is typical is that it is the

value that appears the most times in our sample distribution. The mode of

the distribution of the heights of Judy’s female friends is 64, because three of

these women are 5 04 0 0 and no more than two of the rest are the same height

as each other.

There are four important things to know about the mode. First, the mode

tends to fall in the middle of the range for bell-shaped curves, but less so, the

less bell-shaped the distribution is.

Second, the mode is not a terrific measure of how big the values are

because it only depends on a few values. As with the range, we could change

a lot of values and still end up with the same mode, or we could change just

a few values and get a completely different mode, with almost the same

distribution. Suppose that Wai-Jun was an inch taller and Donna was just

half an inch shorter. With just those two changes, the mode changes from

64 to 661
2
, which is a big change in describing what is typical.

Third, when we calculate the mode, we don’t always get a single number.

Suppose that Wai-Jun was half an inch shorter. Then there would be three

women who are 5 031
2
00 tall and also three women at 5 04 00. Both would be

modes. This sort of distribution is called multi-modal, because it has more

than one mode.
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Fourth, the mode depends critically on how we measure our data. Suppose

we had measured each of the heights to the 1/100th of an inch. There would

probably be no two women with exactly the same height and there would be

no unique mode at all. Every value would be a mode. Ordinarily, when we

need to calculate the mode, we need to be careful as to how we group our data.

As we discussed in Chapter 3 ‘‘What Is Probability?’’ on sample distributions,

with numerical data, grouping is done by rounding. If the grouping is right for

the graph of our distribution, it will probably give us a good mode. We can try

out a variety of stem-and-leaf diagrams to choose the best grouping for our

data.

The median

The median is usually, but not always, a specific value that is actually found

in our data. The way that this value is typical is that it is the value found

in the middle of the sample distribution, sorted by size. Of course, when

we graph our distribution with a stem-and-leaf (or, as we saw in Chapter 7

‘‘Graphs and Charts,’’ a histogram or frequency polygon), we are effectively

sorting the numbers in order by size. That is what makes the shape of each

distribution what it is.

If N is odd, calculating the median is trivial. If there are three numbers,

and we sort them (for example, in a spreadsheet), the second number is the

middle number and that value is the median. If there are seven numbers, the

fourth number in order is the median. For any odd N, the median is just

the ((Nþ1)/2)th value when the numbers are sorted in order. Just add one

to N and divide by two. Count down the sorted list to that number and

that’s the median. For example, let’s look at all of Judy’s female friends,

not including Judy herself. What is the median height for this group?

Judy has 13 friends, so we want the ((13þ1)/2)th or 7th height in order sorted

by size. The 7th height is 641
2
, which is the median of that distribution.

If N is even, then things get a tiny bit more complicated. If there are four

numbers, then the second number and the third number have equal claim on

being the ‘‘middle’’ number. Similarly, if there are ten numbers, then the fifth

and the sixth numbers are both in the middle. If both numbers are the same,

then there is no problem. If they are different, we use the number halfway

between the two. For example, if we consider Judy and her female friends,

there are 14 numbers. The 7th number is 64, and the 8th is 641
2
. The number

halfway between them is 641
4
, and that is the median.

The median, like the mode, is also affected by the grouping of data. There is

a more complex formula for the median, which some textbooks teach. That

formula is based on the notion that the true values are never identical, but
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are grouped together, either by imprecision in our measurements or by

rounding. The heights of Judy’s friends are a good example.We record heights

as real numbers, but we usually measure them only with enough precision to

record them to the half inch or so. (A person’s height changes as much as a half

inch throughout the course of the day, and probably changes a fewmillimeters

just from breathing, so more precise measurements of human height don’t

really make much sense.) We can, therefore, feel confident that Judy, Angela,

and Rita are not all exactly the same height, even though the data have them

all at 64 inches. The formula for the median with grouped data assumes that

the real heights of the three women are evenly spaced from 633
4
inches to 641

4

inches, which is the range over which we would round up or down to 64. Of

course, that assumption may not be true, but the formula at least takes into

account what we know to be true, that no measurement (other than counting)

is perfectly precise. To keep things simple, we will not be using this more

complex calculation of the median in Business Statistics Demystified.

The mean

Unlike the mode and the median, the mean is almost never an actual value

found in the original data. (We will see why in a minute.) The mean is the

most commonly used type of average and probably the best known formula

in statistics. It is also the first full-fledged statistic that has all of the numerical

and statistical properties we will see in most of the more complex statistics

from here on out. Three of these properties are worth looking at now. The

mean is sufficient. It is a parameter. And it is a moment.

A sufficient statistic is a statistic that uses all of the information available

in the sample to calculate the feature that statistic describes. The mean, like

the mode and the median, describes what a typical value looks like.

Calculations for the mode and the median attempt to locate a single value in

the data that is typical. This is why other parts of the data can change

without affecting the value of the mode or the median. Calculations for

the mean involve using all of the data to produce just one representative

number. This is why the mean is rarely an actual number found in the data.

It is like all of the numbers, but usually isn’t exactly the same as any of them.

The trick for seeing if a statistic is sufficient is to see if there is any way to

change the value of just one piece of data, even by a little bit, and still get the

same value for the statistic. As we have seen for the mode and the median,

this is true for them. We can change just one value, and the mode and median

might not change. So they are not sufficient statistics. As we will see soon,

if we change just one value—even by a tiny bit—we will change the mean.

And that is what makes it a sufficient statistic.
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CRITICAL CAUTION

There are ways to change the data and not change the value of a sufficient statistic.

For instance, for the mean, if we raise the value of one number a bit and lower the

value of some other number the same amount, the mean will stay the same. The rule

for sufficiency is that you cannot change just one number even a little bit without

changing the value of the statistic. Think of it like the old slogan for Lays� potato

chips: ‘‘Betcha can’t change just one!’’

The mean is also a parameter. The first thing to know about a parameter

is that it can be calculated both for the sample and for the population,

although usually not using the same formula. Remember that N was a

characteristic of the sample, and had no corresponding value in the population

(unless the population is finite, which we can’t assume). The maximum,

minimum, and range also do not necessarily have population values, even

though we can always calculate them for the sample. The mode can always be

calculated for the population, but the relationship between the mode of the

sample and the mode of the population is highly unpredictable and not very

useful. The sample median, as we calculated it above, does not have a

corresponding formula for the population. The sample median for grouped

data, which is the more complicated formula given in some textbooks, does

have a corresponding formula for the population, but it is mostly used in

specific kinds of statistical procedures, like some of the ones we will discuss in

Chapter 14 ‘‘Nonparametric Statistics.’’

The mean, on the other hand, not only has a definition and a formula

for the population, but there is a specific relationship between the way we

calculate the sample mean and the population mean. As a result, mathe-

maticians have proven that the sample mean will be a good estimate of the

population mean, which is critical for statistical inference.

The other thing that makes a statistic a parameter is that the theoretical

formula for some types of population distributions uses that statistic to

define differences between distribution curves of the same type. For example,

if the population distribution is normal, that means that not only is it

bell-shaped, but it is a very specific bell shape. However, as we saw in

Chapter 3 ‘‘What Is Probability?’’ a normal curve can lie on the left or on the

right on the number line, and it can be skinny or fat and still be normal. The

way that we distinguish between two different normal curves is by using

numbers called parameters.

As it turns out, the only two ways a normal curve can be different and still

be normal is by moving to the left or right, and by getting fatter or skinnier.
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Where on the number line the normal curve lies is defined by the horizontal

position of the middle of the curve, which is also the highest point. As it turns

out, the middle of a normal curve also happens to be (you guessed it!) the

value of the population mean. So, the population mean is the first parameter

of the normal distribution. The second parameter is the variance, which we

will be discussing in the next section.

As we mentioned earlier, there are many, many different kinds of

theoretical distributions besides the normal distribution, but they all have

a few things in common. They are all defined over the number line using

a formula. And that formula contains parameters, which allow us to define a

specific example of that type of distribution that has a slightly different shape

or location or whatever. Parameters are very important to statistical

inference. The general idea is that, if we know what type of distribution

the population is, then all we need to know is the values of the parameters to

know everything we can know about the population. If, as in the case of the

mean, we can estimate the population value (the parameter) using the sample

value, then we have a direct way of using our data to calculate valuable

information about the rest of the world.

Finally, we said that the mean is a moment. Moments are less

important in statistical inference, but they are helpful in understanding the

important notion of degrees of freedom discussed earlier in this chapter.

Geometrically, a distribution is a curve drawn above the number line that

shows the relative likelihoods for values at each point. There is an infinite

series of statistics, called moments, which can be used to specify precisely

any distribution, even if the distribution cannot be defined with a

theoretical formula. Each moment captures a bit of information about the

overall shape of the distribution not captured by any of the previous ones.

Together, all of the moments describe the shape of the distribution

entirely.

In principle, we could calculate all of the corresponding sample statistics

for each moment and determine the exact shape of the population

distribution. (This is actually a little-used statistical inference technique

called ‘‘the method of moments.’’) The problem is that there is no way to

calculate an infinite number of statistics from a finite amount of data. The

degrees of freedom of our data, equal to the number of values, N, sets a

maximum on the number of sample statistics we can calculate without

exhausting the information in our sample.

Because our data are so often bell-shaped, or else fall into some other

well-known and well-defined shape, it turns out to be a better idea to assume

that we know the formula for the distribution and just estimate the two or

three parameters, rather than an infinite number of moments.
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Now that we know what the mean does, and why it is so important, we can

learn the exact formula. Equation 8-4 gives the formula for the sample mean:

m ¼ �x

N
ð8-4Þ

This equation requires a bit of explanation. The symbol, m, stands for the

sample mean. We will see the equation for the population mean below. After

the equals sign, we see a new symbol, �, which is the upper-case Greek letter,

sigma. Sigma is the Greek equivalent for ‘‘S’’ and, here, in upper-case, it

stands for sum. �, called the summation sign, is a standard shorthand

notation for adding a whole bunch of numbers. It is not only easier to write

than a long series of plus signs, but it also has the additional advantage

that it tells us to add a bunch of numbers, even if we don’t know exactly how

many numbers we have to add.

In Business Statistics Demystified, when we use the summation sign

without anything above or below it, we mean that the values of the part of

the equation after the sign should be added for every individual unit in the

sample. In this case, following the summation sign, we have x, which stands

for the variable. So, �x means we should add up the values of the variable

for every unit in the sample. (There is also an extended summation sign,

which allows us to specify exactly what values to add up.) In the case of Judy

and her friends, this means adding up all the heights to get the sum total.

Below the division sign, in the denominator, we have our old friend, N, so,

the procedure for calculating the sample mean is simply to add up all the

numbers and divide by the number of numbers (the count). This is what we

ordinarily call the ‘‘average’’ when we aren’t doing statistics. The mean of the

height of Judy and her female friends is 65 inches or 5 05 00, which is not the

height of any of those individual women.

The benefit of having the exact equation is that we can understand the

statistic better. For example, we can see that the mean is sufficient. If we

change any one value even a little bit, that will change the sum, but it won’t

change the count. That means it will change the mean by a small fraction of

a bit, so the mean is sufficient. We can also see why the mean is not usually

one of the original values from our sample. We have added all those numbers

up together and there is no easy way to undo that.

HANDY HINTS

If we think about it a bit, we can use the equation to see why the mean gives us a

measure of typicality. When we add all the numbers together, we mix the little

numbers in with the big ones. The little ones make up less than their fair share of the
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sum and the big ones make up more than their fair share. And what is their fair

share? There are N numbers, so a fair share would be one Nth of the sum, which is

the mean, exactly. This is easier to think about with values we can exchange, like

money, rather than things like heights. There is a joke that runs like this: Three men

are sitting in a bar. Bill Gates walks into the bar. The median salary of customers at

the bar jumps to over a hundred billion of dollars, but that doesn’t help the three

guys who got there first. On the other hand, if everyone in the bar agrees to share

their money equally, putting it all into one pot, and giving each patron 1
4
of the pot,

the three men would be much better off.

KEY POINT

There is also an equation for the population mean, at least when the population is

finite. The equation is identical. The only difference is that the symbol for the

population mean is �, the Greek lower-case version of ‘‘m.’’ (When the population

is infinite, things get much more complicated, because we can’t divide by infinity.)

In general, population values are symbolized using Greek letters to distinguish

them from the sample values.

When to report which type of average

There are dozens of types of averages, of which we have only learned three.

This leaves the question of when to use what kind of average in a report. The

mean is the best type to use when the distribution is bell-shaped, even if it is

not exactly normal. People’s heights and weights are good examples, so long

as the people are all of the same sex.

The median is a better average when the distribution is skewed, either to

the right or to the left. A classic example is income. In the United States,

most samples of income are sharply skewed left. If everyone at Microsoft

except Bill Gates worked for $10/hour, the mode and median would be $10/

hour, and the mean would be much higher. The mean can be a perfectly

dreadful measure of average income.

The mode can be a good measure when the most common values are not

near one another in the distribution and the common value is what you want

to know. Suppose we are concerned with highway tolls on the Interstate.

Tolls are charged per axel. We want to know the average number of axels per

vehicle. Out past the city limits, we find lots of cars and big-rig trucks,

but very few panel trucks. Most vehicles have two axels or five axels;
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a few—panel trucks—have three; none have one. The mean and median

might both be close to three, which is deceptive. The mode is two most times

of day, and might be five in the middle of the night, when the 18-wheelers are

rolling.

The relationship between the mean and the median and the mode for

differently shaped distributions is shown in Fig. 8-1. The particular case of

the bimodal distribution is shown in Fig. 8-2. As you can see from Figs. 8-1

and 8-2, if we know the mean, the median, and the mode, we know a lot more

about our sample than if we just know one type of average. And if we plot the

curve for the sample, we know even more.

CRITICAL CAUTION

Bimodal Distribution: Stop the Presses!
If you see a bimodal or multimodal distribution in your data, stop work and take a

close look at it. There are very few statistical tests that are meaningful for

multimodal distributions. In any event, the mere fact that our data are multimodal

almost certainly is a more important and useful fact to know in making our business

decisions than we will get from the snazziest statistical test.

If you can examine your data and determine the cause of the bimodal distribution,

youmay be able to break your data into two workable sets. For example, suppose that

your data show a bimodal distribution of the weight of sacks of your product from

one plant. You might check with the plant manager and discover that there are two

filling machines. If you get the data from each machine, it may be unimodal. Then you

can perform statistical tests on the sample data from the output of each machine.

Fig. 8-1. Mean, median, and mode for normal and truncated curves.
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Averages—especially means and medians, but modes also—have a place in

business. A good example would be the manufacture and pricing of various

sizes of clothing. Consider men’s shirts. If we know the distribution of sizes

of men’s shirts, we will know how many of each to manufacture. But even

if the quantity of sizes purchased falls over a standard distribution curve,

where mean, median, and mode are all the same, it would be a mistake to

make just one size of shirt! A bigger challenge happens at a small men’s store

with little storage space. Given the small number of customers, the sample of

people who come into the store month-by-month may vary greatly from the

population distribution. Is it better to stock a lot of sizes of a few shirt styles

and colors, or to have more styles and colors, but not offer as many sizes of

some? These problems—which we can describe statistically—are more often

solved through trial-and-error and specific business practices than they are

through application of statistical analysis. One small shop owner might

simply get to know his clients well. Another might handle special orders

promptly. Another might open a store especially for tall men. However, at

the aggregate level—including manufacturing and purchasing for entire store

chains—up-to-date knowledge of the averages and distribution is crucial for

business success.

FUN FACTS

One-Size-Fits-All Houses
Huff and Geis (1954) give a wonderful example of the misuse of averages. After

World War II, home builders correctly figured out that the average American family

was having 2.3 children. They built thousands of housing developments nationwide

with just one size of house that was too small for many and too big for many others.

Fig. 8-2. Bimodal distribution, showing mean, median, and mode.
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They built for the mean, but their revenue—and their customer’s comfort—would

have been better served if the variance had been taken into account. A little statistics

can be a dangerous thing.

VARIABILITY: THE VARIANCE AND THE STANDARD
DEVIATION

The next two statistics, like the range, give us a measure of how spread out

the values in the distribution are. In statistics, measures of spread are called

measures of dispersion. Unlike the range, but like the mean, they are both

sufficient statistics, taking in information from all the values in the

distribution.

The variance

The variance is a parameter of the normal distribution and also a moment.

Technically, it is the second moment about the mean. This means that it is

the second moment in the infinite sequence of moments that starts with the

mean. This fact tells us a bit about the logic of moments. For its particular

definition of typicality, the mean captures all of the information available.

Given that we know all we can know about what is a typical value for a

distribution, the next logical thing to know would be how the values differ

from that typical value. The variance does just that. In a sense, it is a measure

of the average distance between each value and the mean. Its formula is:

s2 ¼
X

ðx�mÞ2=ðN� 1Þ ð8-5Þ

Equation 8-5 is not as complex as it looks, but it does require a bit of an

explanation. The first thing to see is that the symbol for variance is a bit odd

in that it is two symbols, an ‘‘s’’ and a ‘‘2’’ that makes the variance look like

it should be read as ‘‘s-squared,’’ which is a perfectly good thing to call it.

While the formula on the right is not the square of anything, we will see in

the next section that we define an s—the standard deviation—so that the

variance is the square of it.

The next thing to see is that, just like with the mean, we have a sum divided

by a count. So, once again, we are working with the ‘‘fair share’’ principle.

Inside the sum, we have our new friend, the mean, and it is being subtracted

out. This is because the mean is the first moment, and we want the variance,

as second moment to include the information not included by the mean. The

mean is subtracted from each and every value, which leaves us with N

numbers that tell us how atypical each original value is.
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Now, we come to the little number ‘‘2’’ which, of course, means

‘‘squared.’’ The squaring looks complicated, but it is just for convenience.

Remember that when we square a negative number, we get a positive

number. (�3)� (�3)¼ (�3)2¼ 9. In the equation for the variance, we

square the difference between the value and the mean so that all of the

differences are positive. (We could have used some other function, like the

absolute value function, to make everything positive, but the absolute value

function tends to make pretty curves, like the bell-curve, into very ugly ones,

at least from a mathematical point of view.)

And why do we need all the differences to be positive? First, we are going

to get a mix of negative and positive numbers. Every value that is less than

the mean will be negative when the mean is subtracted from it. All of the

values greater than the mean will be positive. If we were just to add all these

differences, they would tend to cancel out and give us zero. We would lose

the information about how much the data are spread out away from the

mean overall.

The sum at the top of our fraction will add up all of the spread of each

value of the mean (modified somewhat by the squaring). When we divide by

the count, we get a measure of how much each unit varies from the mean,

independent of the sample size.

Note that, in this case, we don’t divide by the exact sample size, N. Instead,

we divide by one less than the sample size. This has to do with the degrees of

freedom. In the case of the mean, the total amount of information depends

on the sample size, so we divide by the sample size to get one consistent value

for the population. In the case of the variance, we have already used up a

small amount of information from our sample when we calculated the mean.

Because we subtract out the mean from the total at the top of the fraction,

the total amount of information is based on one less number, so we divide by

N�1. This ensures that the mean and the variance are both scaled to the same

size, corresponding to one individual unit.

KEY POINT

The variance for the population, when the population is finite, is based on N,

not N�1.

The standard deviation

The variance has several mathematical advantages. However, because of the

squaring, it is no longer scaled to the same size as the original differences.
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As we saw in Chapter 3 ‘‘What Is Probability?’’ in our discussion of

probability and the normal curve, the differences between numbers on the

number line can be extremely valuable in calculating probabilities from dis-

tributions. We need a measure of the spread of the distribution that is scaled

like a difference. The solution is simple. In Equation 8-6, we just take the

square root of the variance and we get exactly the measure we need. It is

called the standard deviation and it is symbolized with an s. Here is how it is

defined:

s ¼
ffiffiffiffi

s2
p

ð8-6Þ
The standard deviation acts like a unit of measurement, like the inch or the

pound. No matter what the scale of the original measurement, so long as

the distribution of our measures is bell-shaped, the standard deviation marks

out specific areas under the bell curve, starting from the mean at the center

of the distribution. And, as we learned in Chapter 3, each area under the bell

curve stands for a specific probability that our measurements will have

that value. We describe differences along the number line as being ‘‘one

standard deviation,’’ or ‘‘three and a half standard deviations,’’ etc. From the

standard normal curve (which has a mean of zero and a standard deviation

of one), we know exactly what proportion of the values will fall between

any two points measured in standard deviations.

As always, we are really concerned with things in the world, not just in our

study, so the standard deviation we are concerned with is the standard

deviation of the population, not of the sample. The standard deviation of the

population is symbolized with a Greek letter, �, pronounced ‘‘sigma.’’

HANDY HINTS

The normal curve with all values translated as in Fig. 8-3 so that the mean is zero

and the standard deviation is one is called the standard normal curve. The values

for a standard normal curve are called z-scores. Equation 8-7 shows the formula for

translating the value of any normally distributed variable into a z-score:

z ¼ ðx� �Þ=� ð8-7Þ
where � is the population mean and � is the population standard deviation. The

probability associated with any z-score can be calculated using a computer, or a

printed numerical table of the kind often still provided in statistics texts.

In Fig. 8-3, we see a translation from standard deviations into

probabilities. Each vertical line is exactly one, two, or three standard
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deviations (called 1-, 2-, or 3-sigma) above or below the mean. The numbers

below each line give the precise probability of a value falling further from

the mean (at 0-sigma) than that line. From these standard points above and

below the mean, we can calculate the probability of any value occurring. We

have added two additional x-axes below the curve, one for the heights of

women in their 20s (like Judy’s friends) and another for their weights. These

are merely examples to show that no matter what the original measurements,

we can use standard deviations to link the values to probabilities.

When we want to talk about values very much larger or very much smaller

than the mean, we measure in units of standard deviation from the mean. We

speak of ‘‘five standard deviations below the mean,’’ or ‘‘three standard devi-

ations above themean.’’ This refers to the probability of being further from the

mean than that vertical line. Under a normal curve, the probability of being

either three standard deviations above or below the mean is just about one in a

hundred. That is where the expression, ‘‘more than three sigma’’ comes from.

It is just statisticalese for ‘‘one in a hundred.’’ In Part Four, Chapter 17

‘‘Quality Management,’’ we will see a discussion of ‘‘six sigma,’’ which means

that we are looking for items beyond six sigma above, or six sigma below, the

mean. Those are very rare events, so six-sigma quality is very high quality.

Measuring Measurement
Early on, we said that statistics not only allows us to measure things while

controlling error, but that it also allowed us to measure the error. This

involves taking statistics that measure other statistics. In addition, statistics

Figure 8-3. The standard normal curve.
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can measure relations between two different variables as well as characteriz-

ing the distribution of one variable.

ERRORS AND DEVIATIONS

If we want statistics that measure error, we need to understand about error

measurement. And that means we have to understand about measurement

error. Measurement error is the errors that occur in measuring things. Error

measurement is the measurement of measurement errors. An example

(adapted from Huff and Geis, 1954) will make this clear:

In the days before GPS and lasers, people used to measure distances by

pacing them off. A person would measure her pace (two normal steps) from

heel mark to heel mark, and then walk along a fence or a property line,

counting her own paces. Twenty 5-foot paces would mean a distance of 100

feet, sixty would be 100 yards, etc.

Of course, walking over uneven terrain, without military training (where

every step is intended to be the same length), pacing is not as accurate as a

laser, or even a GPS. Suppose one person paces off 100 yards, based upon

their own pace length, and then measures the distance paced more exactly,

with a laser land surveying instrument. The exact length of the distance paced

would be approximately 100 yards, but almost certainly not exactly 100

yards. Let’s say it is 100.837 yards. The difference between the distance we

paced off and 100 yards, þ0.837 yards, is the measurement error.

We repeat the procedure, and this time we get 99.128 yards. (Our

measurement error is �0.872 yards.) We repeat the procedure 10 or 20 times.

By this time, we are getting tired, but we also have 10 or 20 numbers

representing our attempts to measure off exactly 100 yards using the

measurement technique called ‘‘pacing.’’ We subtract 100 from each number

and we get the measurement error for each attempt. These data represent

how far off we are when we try to pace out exactly 100 yards. The limit to our

exactness is based on our measurement technique, pacing. If we can take

these data and summarize them into a single number, that number will be the

error measurement for that particular technique. When we use one measuring

method (the laser) to check repeated measurements of another method

(pacing), we are calibrating the second method against the first. Calibration

is the way we determine how accurate our measurement methods are.

Error measures: the probable error and the standard error

The collection of measurement errors is, of course, a distribution, and we

can characterize it in any number of ways. For instance, we could use a
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measure of dispersion, like the variance. The problem with this is that the

variance is a measure of dispersion about the mean. Ideally, we would like

it if the mean of all of our measurements was the exact true value, but we

cannot be assured of that. Recall from our discussion of reliability and

validity that, independent of how close we come to the target, there is also

the issue of whether or not our attempts center around the target. Do we fall

short as often as we go long? If not, then our measurements are biased.

We need a measure of dispersion around the target, whether or not that

target is at the center of our attempts.

The two most common measures of error are the probable error and the

standard error. The probable error is the distance above or below the true

value of what we are trying to measure where half of our measurements will

fall. So, if we find that, half of the time, when we try to pace out exactly 100

yards, the distance we actually pace out falls between 98 and 102 yards, then

our probable error is �2%. (We use percentage here because everything is

measured out in proportions.) If we then walk out and pace a fence line and

find that, according to our measurement, it is 150 yards long, we should

record that measurement as 150�3 yards (because 2% of 150 is 3). We add

the plus-or-minus sign to indicate that we know that our pacing is not a

perfectly accurate measurement.

TIPS ON TERMS

Error bounds. The values above and below a measurement showing the uncertainty

of the measurement due to measurement error. Usually indicated with the plus-or-

minus (�) symbol.

The plus-or-minus notation assumes that our measurement is unbiased. If

we had found out that, when we paced, we tended to overestimate or

underestimate the 100-yard standard, then the real plus and minus would not

be equal. We might have found that half of our measurements fell between

99 and 103 yards. Biased measurements have skewed distributions, not bell-

shaped ones. In order to use error measures like the probable error and the

standard error, we need bell-shaped curves when we calibrate. In measure-

ment, we have to accept some error, but we want to remove all bias, if we

can. If our measurements are truly unbiased, the mean of our calibration

measurements will be 100 yards.

The standard error is based on the assumption that not only is our

measurement method unbiased, but that the distribution of errors is truly
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normal (bell-shaped). We can check this when we calibrate. We measure the

same thing over and over again and we check the shape of our distribution to

make sure that the mean of our measurements is 100 yards and that the

distribution is bell-shaped. As we saw earlier, every set of numbers that is

normally distributed can be translated into probabilities using the standard

deviation. The standard error of measurement is just the standard deviation

applied to the distribution of errors found in calibration, instead of to the

distribution of measurements for a sample from a population. Instead of

listing the values around the mean where half of our measurements fall, we

use the values corresponding to plus or minus one sigma. As we can see from

Fig. 8-3, .6826, or about two-thirds of our measurements, will fall between

these values. (.1587 of our measurements fall below this range and .1587 fall

above it. And 1 � (.1587� 2)¼ .6826.)

CRITICAL CAUTION

It is very important to distinguish between the ordinary standard deviation and the

standard error. Take the example of the heights of Judy’s friends. Judy’s friends are a

sample of women in their 20s. When we measure each woman once, the distribution

of heights will have a standard deviation of about 21
2
inches. We would have

measurements for women as short as 5 01 00 and as tall as 5 09 00 in our sample.

On the other hand, if we are calibrating our method for measuring people’s

heights, we would measure just one woman, let’s say Caroline, over and over again.

Since Caroline is 5 03 00, almost all of our measurements would be close to 63 inches.

In other words, the spread of the distribution of measures of Caroline’s height will be

much less than the spread of the distribution of measures of the heights of all of

Judy’s female friends. The standard error of measurement is always much smaller

than the standard deviation of the sample or the population.

We can see an example of different ranges of acceptable error in the field

of project management. Early in a project, our first estimate of time and

cost—before we know many details of what we are doing, or how we are

doing it—is called an order of magnitude estimate, and should be in the range

of �25% to þ75% of the actual project cost. Later, as we refine our project

plan, we prepare a budget estimate, in the range of �10% to þ25%. A

definitive estimate meets the more demanding standard of �5% to þ10%,

and is used only when project activities are tightly controlled. The

asymmetrical error ranges indicate that a good estimation process, over

time, will have actual results fall somewhat below the halfway point of the

range of the estimate. If we track estimated and actual project results in
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detail, we create a historical record of information about our estimated and

actual work effort. These data can be used for fine-tuning our estimation

procedure, that is, to calibrate it.

Sampling distributions: the standard error of the mean

There is a big problem in using the standard error of measurement to

describe our measurement error. In order to determine the standard error of

measurement, we need to be able to calibrate our measurement method

against a more precise and accurate method (like the laser for distance). This

is useful for the measurement of physical quantities, where the most accurate

method may be too expensive or cumbersome to use in the field. But, for

many measurements, particularly psychological measurements, we may be

using the most accurate measurement we have.

For example, how are we to calibrate our measurements of I.Q. for

prospective job candidates? We can give the same I.Q. test over and over

again to one person, and we will get slightly different results each time, and

the distribution will be bell-shaped, but there is no magic ruler we can apply

to this person to determine her ‘‘true’’ I.Q. It is as if we had a long fence and

we paced it 20 times, but we had no laser or measuring tape to determine the

exact length of the fence. We would know how long, in paces, the fence

seemed to be each time we measured it, but we could not subtract off the

exact length of the fence from those measurements. We have only one

measurement method, pacing, and only one scale, paces.

Of course, if we had a short measuring tape, we could translate the

length of our pace into feet, even if we could not measure the entire fence.

For example, if we knew our pace was exactly five feet long, we could

translate each of our measurements of the fence into yards, just as before.

But we would still have 20 different measurements of the fence, and no

way to know the true length. (There is an old saying that a person with a

watch always knows the time, but a person with two watches is never

sure.)

In order to solve this problem, statisticians make two critical assumptions

about measurement error:

. measurement error is unbiased

. measurement error is normally distributed

Only the second of these assumptions can be tested, and then only to a

certain degree. We can measure and re-measure one individual subject. If the

distribution of the measurements is not bell-shaped, we know that the

distribution is not normal.
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With these two assumptions, we can estimate the exact, true value of the

variable we are measuring. We measure the one individual over and over

again. If the measurements are unbiased, then the true value will fall in the

middle of the distribution of measurements. If the distribution is normal,

then the best estimate of the central tendency of the distribution is the mean.

So our best estimate of the true value of the variable is simply the mean of

the measurements taken.

Of course, the ‘‘true value’’ is just an abstraction. Suppose we measure

Caroline’s height over and over again, and take the mean of all the

measurements. Because Caroline is 5 03 00, the mean will come out very close

to 63 inches. We could take thousands of measurements if we liked, and be

able to calculate the mean to many, many decimal places. Suppose we did

this, and got a mean of 63.003861. Would this mean that Caroline’s height

was exactly 63.003861 and not, say, 63.003862? Of course not. During the

course of a day, human height varies as much as half an inch. Caroline’s

height changes as her spine compresses, as she shifts her weight, as she

breathes. Caroline has no single height, exact to within a tiny fraction of

an inch. There is no one ‘‘true’’ value for the variable. Even a steel rod has

no exact length, if we consider the molecular motion of the atoms at

either end.

So, how many times should we measure the heights of each of Judy’s

friends before we can be confident we have enough information to calculate

the height accurately enough? As it turns out, we only need to measure each

height once and we will still be able to list the error bounds based on the

exactness of our measurement method. This is due to a trick called a sampling

distribution.

A sampling distribution is a distribution of statistics, rather than a

distribution of individual data values. For example, we have been thinking

of Judy and her female friends as a sample from the population of women

in their 20s. Instead, we can think of them as the entire population of Judy

and her female friends. Suppose we did not have access to all 14 of these

women. We might measure a sample of 4 or 5 of them. Any statistic calculated

from this sample could be used to estimate the value of that statistic for

the population of all 14 women. Let’s use the mean as an example.

Because it is an estimate, the mean of our small sample will not be exactly

the mean of the whole population. Because the sample is so small, it will not

be very close, on average. But suppose we drew a number of samples and

took the mean of each. Then we would have a distribution of means (or any

other statistic). This distribution would itself have a mean, a standard

deviation, and the like. Essentially, a sampling distribution is a way of

calculating statistics for statistics. The standard error of a statistic is just the

PART TWO Preparing a Statistical Report200



standard deviation of the sampling distribution of that statistic, where each

number in the sampling distribution is a statistic based on a separate sample

of size, N.

What does the standard error for a statistic tell us? If we take a sub-

sample, such as the heights of four of Judy’s female friends, and take the

mean, we can feel confident that there is about a 68% chance that the mean

of the heights of Judy and all her female friends is within the range of the

mean we have, plus or minus the standard error of that mean. The larger our

sub-sample, the closer the mean of our sub-sample will be to the mean of the

population. So, the standard error will get smaller as N gets larger. As it turns

out, there is a simple formula (Equation 8-8) for calculating the standard

error of the mean if we already know the standard deviation for the entire

population.

sm ¼ s=
ffiffiffiffi

N
p

ð8-8Þ
The standard deviation of the heights of Judy and all her female friends

is 2. If we take any four of these women, for example, Hannah, Liora, Maria,

and Ng, the standard error of the mean will be 1 inch (2 divided by the square

root of 4). The mean of their heights is 65.5 inches, which is only half an

inch from the mean of the entire population, which is 65. Even if we did

not know the mean of all of the population, we could state with confidence

that there was a two-thirds chance that the mean of the heights of Judy and

all her female friends was 65.5� 1 inches.

The example above was done with the empirical distribution of a small

population, but the formula works just as well for a theoretical distribution

of an infinite population. This is key to making use of the standard error of

the mean. Judy and her 13 female friends are a sample (N ¼ 14) of the

population of women in their 20s. From previous studies of women’s

heights, we know that the standard deviation of young women’s heights is

21
2
inches. If Judy does not pick her friends on the basis of their height, we

can say with confidence that the mean height of the women in the entire

population is 65 (the mean of the sample) plus-or-minus .67 (2.5 divided by

the square root of 14).

EXERCISE

A brief exercise will illustrate how the standard deviation, the standard error of

measurement, and the standard error of the mean, differ from one another and are

all useful in different ways.

Suppose a particular department is having trouble getting effective performance

out of their employees. The supervisors blame the training program for not giving
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effective training. The trainers blame the department for not hiring people smart

enough to learn the job. We can’t afford to screen all job applicants with an I.Q. test,

but we can afford to either (a) hire a training consultant to revise the training

program or (b) initiate a recruiting campaign to attract smarter job candidates, but

not both. If we can find out the average I.Q. of the job applicant pool, we can decide

how to spend our money.

We can’t calculate the average I.Q. for the entire job applicant pool. We don’t

even know who they are. The job applicant pool is all the folks who will eventually,

some day, apply for this sort of job with us. However, we do know that the standard

deviation of I.Q. scores across many different populations is 15 points. We can pay a

small number of our current job applicants (say, 16) to take an I.Q. test while they

are waiting for their interviews. Whatever the mean I.Q. we get for these 16

applicants, we can state with confidence that the mean for the entire job applicant

pool will be that number plus or minus 3.75 with a 68% probability. As an exercise,

explain why this is so.

Another way to assess the effectiveness of the training program is to see if the

problem employees in fact have low I.Q.s. Suppose we are informed that folks with

an I.Q. below 110 cannot be expected to perform this job effectively, no matter what

the training. We decide to re-assign any problem employees with I.Q.s below 110,

which, unfortunately, means a reduction in pay. George works at this job and has

had problems. However, he is highly motivated and is willing to take additional

training. His I.Q. is 108. The standard error of measurement for this I.Q. test is �3

points. From a statistical point of view, we should retrain George, not reassign him.

For your exercise, explain this. (Note that we do not need to test George over and

over again. The standard error of measurement for the test tells us how far off any

score may be for any person tested.)

HANDY HINTS

There is another way of thinking about these sorts of questions that does not involve

error bounds directly. Suppose we want to know if our applicant pool for the jobs in

the exercise above have the same I.Q. as the general population. We know that the

I.Q. of the general population has a mean of 100 with a standard deviation of 15. We

measure the I.Q.s of our sample of 16 job applicants and find that they have a mean

I.Q. of 105. We can create a standardized z-score from the sample mean, based on

the population mean and the standard error of the mean. This z-value can be

translated into a probability that a sample mean could be that far from the

population mean solely by random chance.

The formula is in Equation 8-9:

z ¼ m� �ð Þ
�

ð8-9Þ
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where � is the population mean and � is the standard error of the mean calculated

based on the population standard deviation.

For our example, this means the z-score is (105�100)/3.75 ¼ 1.33. If the mean

I.Q. of applicant pool is really 100, the likelihood of getting a sample mean five

points or more away from 100 is .1836 or less than one in five. There is a better than

80% chance that our job applicant pool has a higher than average I.Q.

We will learn more about this way of thinking about sample means when we

discuss significance testing.

RELATEDNESS: THE CORRELATION COEFFICIENT

As we saw in Chapter 7 ‘‘Graphs and Charts,’’ we can examine the

relationship between the distribution of two different variables for the same

sample with a scatter plot. The correlation coefficient is a statistic that

summarizes the relationship we can see in a scatter plot in a single number.

The equation for the correlation coefficient (called the Pearson product-

moment correlation to distinguish it from other measures of correlation) is:

r ¼ Nð
P

xyÞ � ð
P

xÞð
P

yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
P

x2 � ð
P

xÞ2
q

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
P

y2 � ð
P

yÞ2
q

� � ð8-10Þ

There are a number of different forms of Equation 8-10, but this one can

be explained easily. The two elements under the square root signs in the

denominator are measures of the variability of each of the two variables.

Note the similarity of the numerator to the two parts of the denominator.

The numerator is a measure of how much the two variables vary together, or

covary. The covariance is a measure of how much one variable goes up above

the mean (or down below the mean) when the other variable goes above or

below the mean.

The Pearson correlation coefficient is a ratio of a measure of the

covariance to the total variability of both variables. It ranges from –1.0 to

þ1.0. A correlation of þ1.0 means that however much the value of x differs

from the mean, the value of y differs exactly proportionately. The covariance

is exactly the same as total variance of both variables. In a scatter plot, all

of the points would lie on a straight line going from the lower left to the

upper right. (This is sometimes called a perfect correlation.) A correlation of

�1.0 means that however much the value of x differs from the mean, the

value of y differs exactly proportionately, but in the opposite direction. When
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x is above the mean, y is below it, and vice versa. In a scatter plot, all of the

points would lie on a straight line going from the upper left to the lower

right. A correlation of 0 means that the two variables are completely

unrelated. There is no pattern relating the variability of one variable and the

other. In a scatter plot, all of the points would be scattered uniformly in a

filled circle.

There are many uses of correlation in business. We can search for cor-

relations in the market—do customers who purchase one product tend to like

certain other products? This sort of information can guide our market-

ing efforts with current customers. We will hear more about correlation when

we learn about regression, which is a statistical way of looking at cause and

effect using the values of individual subject units.

VARIABILITY OF A DIFFERENCE: THE t STATISTIC

The first key to statistical inference is the ability to translate numerical values

into the probability that those values occur. This is accomplished by

translating the values into z-scores. However, there is a problem with this

method. We can only calculate a z-score if the standard deviation of our

sample is the same as the standard deviation of the population. If the two

standard deviations are different, we do not know which one to use to

calculate the z-scores.

Suppose that, in the earlier example, we are not only unsure that our job

applicant pool have an average I.Q. of 100, but we are also unsure that the

standard deviation of their I.Q.s is 15 (as it is for the general population).

We could, of course, calculate the sample standard deviation from our

sample of 16 applicants, but this uses up some of the information from our

sample. (Remember our discussion of degrees of freedom!) The larger

our sample, of course, the better our estimate of the mean will be and the

lower the proportion of information spent on calculating the sample standard

deviation.

The normal curve is based on an infinite population. There is no way to

include the size of the population (or the sample) in calculating probabilities

from z-scores. However, there is another bell-shaped curve, called Student’s

t distribution, that does change shape depending on N. When N gets very

large, Student’s t distribution approximates the normal distribution. With

lower values of N, it is shorter and stubbier.

We can calculate probability values from a t distribution just as we

can from a normal distribution (either using a computer or a printed numeri-

cal table), by using Equation 8-11. The standard score translated from the
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sample mean of a sample of size n with sample standard deviation, s (not �) is:

t ¼
�XX� �

sx=
ffiffiffi

n
p ð8-11Þ

where n is the population mean we are comparing the sample mean to.

Unlike z-scores, the calculation above only works for means and not

individual scores, because there is no way to calculate the standard deviation

for a sample of size n¼ 1. This limitation is offset by the fact that, unlike the

normal curve, the t distribution can be used to compare two sample means

when the population mean is unknown. We will hear more about this use

of the t statistic when we learn about hypothesis testing, which is a statistical

way of looking at cause and effect using summary values from groups of

subject units.

There are many other statistics used for many other purposes. We will

see a small sample of these in the context of different statistical techniques

we will learn about in Part Three.

Quiz
1. The _______ of all the numbers in a group of numbers is the basis for almost

every other statistic.

(a) Ratio

(b) Count

(c) Frequency

(d) Proportion

Fig. 8-4. t-Score distributions.

CHAPTER 8 Common Statistical Measures 205



2. _______ is taking a statistical measure of a sample and inferring the value of

that same measure for the entire population.

(a) Ratio

(b) Count

(c) Estimation

(d) Proportion

3. The minimum and maximum values in the sample distribution tell us the

_______.

(a) Range

(b) Estimation

(c) Count

(d) Ratio

4. The _______ is a type of average.

(a) Mean

(b) Median

(c) Mode

(d) All of the above

5. The _______ is the square root of the variance.

(a) Mean

(b) Normal curve

(c) Standard deviation

(d) Error

6. The _______ is the distance above or below the true value of the measure

where half of our measurements will fall.

(a) Probable error

(b) Standard error

(c) Standard deviation

(d) Variance

7. The _______ is the standard deviation applied to the distribution of errors

found in the calibration.

(a) Probable error

(b) Standard error or measurement

(c) Variance

(d) Distribution
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8. If we can assume that measurement error is _______ , we can estimate the

exact true value of the variable we are measuring.

(a) Unbiased

(b) Normally distributed

(c) Both (a) and (b)

(d) Neither (a) nor (b)

9. The range of a correlation coefficient is . . .

(a) 0 to þ1

(b) �1 to 0

(c) 1 to 2

(d) �1 to þ1

10. The _______ can be used to compare two sample means when the popula-

tion mean is unknown.

(a) t-distribution

(b) Correlation coefficient

(c) Standard deviation

(d) Standard error
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CHAPTER
9

A Difference That
Makes a Difference.
When Do Statistics
Mean Something?

In Chapter 1 ‘‘Statistics for Business,’’ we defined inferential statistics as

statistics that allowed us to draw conclusions (find answers to specific quest-

ions) from data. The hallmark of inferential statistics is the notion of statistical

significance. To say that something is statistically significant is really to say

two things: First, enough evidence has been put together to state a conclusion

with confidence. Second, the evidence taken from the data has leaned far

enough one way or the other to give a decisive answer to our question. We will

examine both parts of statistical significance later on in this chapter.
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In a business context, the most important thing to know about statistical

significance is that the rules for saying how much evidence is enough, either

to be confident or decisive, were developed for the social sciences, not for

business. The kinds of questions asked in science can be very different from

those asked in business. Scientific questions come from the overall goals of

the scientific enterprise, which are very different from the goals of business.

As we will see, the specific statistical measures that tell us when we can be

confident and decisive do not always measure up to the requirements of

business decisions. We need to be very careful in adapting the scientific

notion of statistical significance to answering questions that arise in the

context of making business decisions.

The Scientific Approach
The goal of science is to find out about how the world works, mostly by

asking questions. The goals of business are to make a sustainable profit, to

grow the business, to expand market share, and so forth. In business, we can

often make use of the answers to questions about the world in making

decisions that improve our chances of achieving business goals. However, we

need to understand exactly how what makes for a good scientific answer

relates to what makes for a good answer to a business question. For that, we

need to understand how the notion of statistical significance relates to what

makes for a good scientific answer.

A LITTLE HISTORY OF SCIENCE

Round about 1926, the famous scientist and mathematician, Sir Ronald A.

Fisher, laid out the rules for statistical significance. Fisher believed that

science was about discovering causes. He developed several principles of

statistical inference that led to the definition of statistical significance as the

criterion for accepting a statistical conclusion in science. In his view, scientific

progress was all about abandoning old theories for new, better theories. (This

was a popular view back then.) The question for science was how much

evidence for the new theory is enough to abandon the old theory.

The big problem with statistical inference is that even if we have all our

facts right, there is a possibility that our conclusion will be wrong. In the

context of science, we might abandon a good theory for a bad one. According

to Fisher’s view of scientific progress, this was the worst possible outcome.

So Fisher invented the principle of conservatism, which can be stated as:

Place an upper limit on the probability of wrongly deciding in favor of the novel
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theory. The scientific community would decide on a standard and would

agree always to collect enough evidence in favor of any new theory to a point

where the likelihood that the new theory was wrong dropped below that

standard point. Only then would the new theory be accepted. Fisher called

the standard the �-level (pronounced ‘‘alpha-level’’) and suggested a ratio of

1/20, or �¼ .05.

In the social sciences, this inferential strategy has proved remarkably

durable. Despite many problems over the decades, it remains the dominant

method for using inferential statistics across the social sciences, both basic

and applied.

CAPITALIZING ON CHANCE

The key to using an �-level is understanding another of Fisher’s concepts,

capitalizing on chance. Suppose the current theory says that a particular

variable will have a particular value and the new theory says it will have a

different value. We collect data and estimate the value of this variable using

our statistical techniques. As we learned in Chapter 8 ‘‘Common Statistical

Measures,’’ the further the mean of our data from the value predicted by the

current theory, the more likely it is that the current theory is wrong.

Now suppose that the current theory is correct. That means that the

true value of the variable is exactly as predicted. The difference between

the mean of our data and that value is due to some combination of

sampling error and measurement error. Even if we assume that our

measurements are perfect (which they never are), there is some error due

to the fact that we can only afford to measure a sample of our population.

The reason that the mean of our data is not exactly what the current

theory predicts is because we just happened to select subject units with

slightly higher or slightly lower values on the variable in question. For

example, we might have selected 20 women to find out their height. The

likelihood that the mean height for this group is exactly the mean height

of all American women in that age group is vanishingly small. All

statistics assures us is that the mean will be close to the true value so long

as our sample is big enough.

Fisher wants to use this statistical assurance as the basis for statistical

inference. His idea is to disregard any small difference between the predicted

value and the mean of the data, because this is most likely due to either

measurement error or sampling error. Were we to take this small difference

as evidence that the current theory is wrong and the new theory is right, we

would be capitalizing on chance. That is, we would be relying on the luck of

having drawn a sample that favored the new theory to wrongly choose the
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new theory over the old one. Fisher’s rule says to move to a new theory only

when the odds are at least 19:1 that the evidence for the new theory is due to

actual effects and not luck.

CONFIDENCE AND DECISIVENESS

There are a number of problems with Fisher’s approach. The most important

one for our purposes is that Fisher’s criterion is based on avoiding coming to

a false conclusion when the evidence is weak, rather than coming to a true

conclusion when the evidence is strong. In order to understand this problem,

we need to understand the difference between a conclusion we can state with

confidence and a conclusion that is decisive.

The larger our sample, the smaller the error of the mean will be. Whatever

result we get, we can be confident that that value is close to the true value.

Confidence comes with large samples. Fisher’s strategy addresses this

problem by requiring an �-level. We must take a large enough sample to

lower the probability of capitalizing on chance.

If we have two theories that predict different values for a variable, even if

we take a huge sample and get a very good estimate of the value, it still might

fall halfway between the two values. We would be able to say with confidence

that our data did not decide between the two theories. This might be satis-

fying in an abstract sense, but it would not be very practical for decision-

making. Fisher’s strategy addresses this problem by biasing the entire

inferential strategy against the new theory. If our data aren’t strong enough

on which to base a decision, we must decide in favor of the status quo. As we

will see further on, the entire mathematical structure of Fisherian statistical

inference is asymmetrical in order to create this bias.

Now, suppose that the two values predicted by the two theories are very

close. We collect enough data to be confident that, if the new theory is wrong,

the odds of abandoning the old theory are below the �-level. But this does

not guarantee that if the new theory is correct, we will have a very good

chance of deciding in its favor. The Fisherian strategy only protects us from

falsely abandoning the current theory, not from falsely rejecting the new

theory.

In principle, we can take an even bigger sample. A big enough sample will

assure us that, if the new theory is correct, we will choose it over the old one,

despite the bias in the system. In practice, bigger samples cost more money

and resources. The bias in the system makes changing theories expensive.

In science, cost is not supposed to be an issue. In business, cost is a very big

issue. The goals of business are always affected by cost.
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Hypothesis Testing
In the preceding section, we mentioned that Fisher believed that science was

about discovering causes. It should go without saying that the information

needed to make a business decision may very often not be information about a

cause–effect relation. After all, it is a lot more important to know that 90% of

women between age 19 and 34 want to buy your new product than it is to know

precisely what caused that fact. It should go without saying, but, unfor-

tunately, it does not. Much of statistics comes from work in the sciences, and,

in particular, the social sciences, where understanding cause–effect relations

is taken to be of utmost importance. Because of this, statistics texts often

spend a great deal of time focused on techniques for establishing cause–effect

relations without even explaining why cause–effect relations are important,

much less taking the time to consider when, in business, other sorts of statis-

tics providing other sorts of information, may be more important.

One strategy in business statistics is to re-cast our decisions so that the

information we need is expressed in terms of questions about causes and

effects. This strategy may be awkward, but it also ignores the bias in the

system. Fisher’s view of science involved a view of progress. In Fisher’s view,

science has to move forward from one theory to a better theory. Business is

not about progress; it is about profit and loss. We need to bias our inferential

system toward profit and away from loss, not toward the status quo and

away from new ideas. The remainder of this chapter will show how the

Fisherian strategy works so that we can apply it usefully in business.

THE ROLE OF EXPERIMENTS

In order to connect his inferential strategy to the detection of causes, Fisher

had to formalize a particular sort of experiment that would generate the right

sort of data; data that could be analyzed according to his rules for good

statistical inference. Fisher established a basic design for experiments that

could be analyzed in terms of statistical significance. This design was based

on Gossett’s experiment that illustrated the first use of the t test. Because it

involved comparisons of groups of subjects, the general term for this new

type of statistical analysis is group tests.

Fisher proposed a great variety of group test designs, and, in the decades

since, applied statisticians working in various fields have greatly expanded

the variety of experimental designs that will allow statistical significance to be

determined. (It should be noted that there are many types of experiments,

including experiments that have won Nobel prizes, that do not fit in with
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Fisher’s design, and where ascertaining statistical significance is impossible.)

We will learn about a number of the types of experiments that permit

statistical significance to be calculated in Part Three. In the remainder of this

section, we will examine one experimental design, the two-group test, to see

how the notion of causes and effects fits in with statistical significance.

The need for experimental control

The first question we need to answer is why use experiments at all? There are

lots of ways to collect data, and, mathematically, we can do the calculations

for statistical significance no matter where the data come from. But it is only

in the case of experiments (and quasi-experiments) that we can be assured

that our calculations for statistical significance will provide Fisher’s

guarantee of conservatism.

The answer has to do with random sampling, which we discussed earlier in

Chapter 2 ‘‘What Is Statistics?.’’ Fisher’s idea for detecting causes was based

on intervention. If we suspect that event A is the cause of event B, we

deliberately intervene and do A to a subject and see if B happens. The

question then is whether or not B would have occurred even if we had not

done A. (This is the same question that perplexed John Stuart Mill, and

Fisher’s answer is based on Mill’s.)

For example, if we want to improve sales, we can put our salespeople

through training. (We will develop this example throughout this chapter.)

How would we design the training as a properly controlled experiment? How

would we design it for the best business results? If the best experiment does

not lead to the highest, or most immediate return on investment, is the value

of the knowledge we gain through the experiment worth the cost of choosing

the controlled experiment over the optimal immediate business solution?

TIPS ON TERMS

Recall that events are designated with upper-case Roman letters (A, B, C, etc.)

and that a corresponding variable is designated with an upper-case Italic letter (A, B,

C, etc.).

The first addition Fisher needed to make to the basic notion of an

intervention work statistically, was to introduce the idea of a group. If we

do A to just one subject, we will not have a large enough sample to calculate

a reliable mean value. We need to select N subjects and do A to all of

them and then measure the value of the variable, B for each. This will

give us useful measures of error and ensure that our sample mean is a good
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estimate of the true mean. So, for our Fisherian experiment to see if

training salespeople increases sales, we will need to train a group of N

salespeople.

The next thing Fisher needed to add was the idea (also originally due to

Mill) of a control. We need another group of subjects. These subjects will not

receive the intervention. That is, we will create a control group of salespeople

who will not receive training. In all other respects, they will be treated exactly

the same as our experimental subjects. At the end of the experiment, we will

measure the value of B for all subjects in both groups. This will give us a

mean value for B where A happened and another value where A did not

happen. The difference between these two mean values of B will be our

experimental measure of the causal relation for the effect of A on B. For the

minimum group test, we need two groups, the experimental group and the

control group.

TIPS ON TERMS

Dependent variable. The variable whose values are used in the calculation of the

results of the experiment. The value of this variable is intended to measure the effect

of the experimental intervention. Also called the outcome measure.

Independent variable. The variable whose values are used to define the different groups

in a group test experiment. The value of this variable is intended to measure whether

or not, or to what degree, the experimental intervention is applied to the subjects. In

more complex experiments, there may be multiple independent variables.

For the basic two-group experiment, the measure of the effect of our

intervention will be the difference between the two group means. As we

mentioned in Chapter 8, a difference between means can be converted into a

probability value using the t distribution. As we will see in Chapter 13, where

we discuss the statistical tests for group designs, this is the basis of the t test,

the first method of statistical inference, which was developed by Gossett

(writing under the name of Student).

KEY POINT

The key to understanding the need for experimental controls is found in the notion

of a random sample. Suppose we were to perform a two-group experiment and the

subjects in our experimental group had higher B values to begin with. At the end of

our experiment, we might find a higher mean value for B in the experimental group
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than in the control group, not due to our intervention, but due to the random chance

that our sample was biased. This would violate the principle of conservatism,

because we would claim that a causal relationship existed solely due to chance

affecting the results of our experiment.

Fisher’s solution is the random assignment to groups. First, we sample from our

population, and then, for each subject, we flip a coin (or the equivalent) to decide

whether that subject gets assigned to the control group or to the experimental group.

Random chance will ensure that, in the long run, there will be no systematic

differences between the groups on any variable, except for those caused by our

intervention. Of course, for any particular sample, there is a chance that our random

assignment will produce a spurious difference in B values between the groups, but

Fisher’s design ensures that that chance will not exceed the �-level.

The P-value for a hypothesis test

In order to make the results of our experiment fit in with Fisher’s principles,

the results need to be translated into a probability that expresses the

likelihood that the results are due to chance alone. This is the final step in

Fisher’s scheme. By using our trick for converting a statistical value into a

probability, we translate the numerical value of our experimental results into

a probability value expressing the likelihood that those results are due to

chance. Using a Fisherian design, the stronger our results (relative to the

error variance, of course), the less likely those results are due to chance. This

probability value is called the P-value. If the P-value is lower than the �-level,

then the results are strong enough to reject the old theory in favor of the

new. (The P-value goes down as the outcome measure goes up.)

In the case of the two-group test, the results of our experiment must

be measured as the difference in means between the two groups. This differ-

ence will increase as the size of the effect of our intervention increases.

This means that the role of the ‘‘new’’ theory is filled by the claim that

the causal relationship does exist, that A does cause B. Other experimen-

tal designs use different outcome measures, often very complex ones, but the

same rules apply. A larger value for the outcome measure always makes for

a statistically significant result. And the outcome measure increases as the

effect of our intervention increases. Significance means that A did cause B.

FUN FACTS

You may have noticed an odd fact about Fisher’s approach. Significance means

that the causal relationship exists. Significance also means that the old theory can be
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rejected for the new. That means that the new theory must predict at least one causal

relationship not predicted by the old theory. Such a situation is not uncommon in

science, but there are certainly cases, including famous Nobel prize-winning cases,

where the discovery was that A did not cause B.

In the social sciences—particularly in psychology, where hypothesis testing

dominates experimental work—the various limitations the types of theories that can

be tested have had interesting effects. In some areas, theories have been replaced

by hypotheses. Our understanding in these fields amounts to a growing list of

(somewhat disconnected) statements of causal relations. In other areas, elaborate

theories are constructed and compared with regard to a small number of claims

where a new theory predicts a causal relation that the current theory does not. This

tends to lead to more and more complex theories that only explain a little more data.

The most profound problem created by this strict adherence to Fisher’s strategy

has been that, if, due to that 1/20 chance, a causal relation that does not really exist

comes to be accepted by science, it is extremely difficult to prove that it does not. It is

always difficult to prove a negative, but Fisher’s strategy makes it much harder in the

social sciences. Recently, in psychology, there have been some efforts to eliminate

some false theories that have been around for decades. It has been an uphill battle in

all cases.

Fisher’s model has some limitations in business situations. We will look at

these in more detail, returning to our case study of sales training throughout

this chapter. But one limitation is important to mention now: In business,

there may be no current theory. There is no prevailing theory in business as

to whether sales training will increase sales. Some folks—biased folks, like

the ones who are trying to sell us the training, and unbiased folks, like

researchers in our own company—may hold that they believe it will help.

Others—both biased and unbiased—may believe that sales training does not

help. But neither theory is the current or prevailing theory. They are just two

theories—or perhaps more accurately, hypotheses—to be tested in the

experiment. As a result, Fisher’s model, which includes a built-in bias toward

one theory over the other, does not apply. It would be a mistake to assign

either theory to the role of the current theory.

In the simplest case, we can consider our current business practices to be the

accepted view, because almost any change will involve additional expenditures

(such as the costs of implementing a new training program). This works out

well if our business question is whether a change in our current practices will

cause an improvement in return on investment (ROI) or some other positive

business result. Here, the analogy to the scientific context is sound. We don’t

want to change our current business practices unless we can be confident that

the intervention will make a worthwhile difference.
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Businesses are conservative for different reasons than science, but Fisher’s

logic can still apply. In this context, the only real limitation to this approach

is that there is no reasonable way to set the �-level. Later on in this chapter,

we will see a better approach that allows us to decide just how conservative

to be in making a specific business decision.

The null hypothesis

While Fisher’s general inferential strategy was modeled on the t test, it can be

expressed much more generally in terms of what Fisher called ‘‘hypotheses.’’

Call the outcome variable Y. (In the case of the two-group experiment, the

outcome is the mean difference between the two groups. For other types of

experimental or quasi-experimental designs, the outcome variable may be

something else entirely, so long as it increases with the increasing effect of our

experimental intervention.) We assume that the current theory predicts a

specific value for the mean of the outcome variable. Call that predicted value,

�0. Fisher called a prediction of the value of the outcome variable a

hypothesis and called the prediction made by the current theory, the null

hypothesis, H0. Symbolically,

H0 : �Y ¼ �0

where �Y is the population mean for the outcome variable.

FUN FACTS

Fisher’s use of the term ‘‘hypothesis’’ is rather unusual in the philosophy of science.

Ordinarily, ‘‘hypothesis’’ means a statement that connects up different facts by

explaining some facts in terms of others. Fisher used ‘‘hypothesis’’ to mean a

prediction of the outcome of an experiment based on a pre-existing theory.

According to the principle of conservatism, we need to concern ourselves

with the case where the current theory is true and the new theory is false.

In that case, we can assume that the true value of the mean for the outcome

variable is �0. Any experiment we perform will result in a measurement value

of the outcome variable that differs from �0 only due to error. On the other

hand, if the new theory is true, then the mean of the outcome variable

will have some other value, �1 6¼�0. Fisher called this the alternative

hypothesis, H1. So long as we know the distribution of the outcome variable

where the null hypothesis is true, we can ensure the principle of conserva-

tism by insisting that the measured value of the outcome variable be far
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enough from �0 that the probability of a result that far or further be less than

�. Figure 9-1 illustrates this relation.

In Fig. 9-1, the shaded regions are called the ‘‘region of rejection,’’

because, if the mean falls in one of those regions, we are justified in rejecting

the null hypothesis. Note that we always talk about acceptance or rejection of

the null hypothesis and not the alternative hypothesis. Because our criterion

is based on the principle of conservatism, we are not truly accepting the

alternative. We are merely rejecting the null hypothesis and taking up the

alternative tentatively. Every new theory is subject to further testing. This

one experiment gives us reason to prefer the alternative hypothesis to the null

hypothesis for this one outcome variable. Other experiments will have to be

done to solidify this new theory.

HANDY HINTS

Because the �-level is specified as a probability, under a normal curve it always

corresponds to one specific value of �. In Fig. 9-1, we show the � values for an �-level

of .05 for the case where the alternative hypothesis is that the mean is either higher

or lower than �0. This case is called the two-tailed test, because the rejection region

is split between the two tails of the bell curve.

ERROR IN HYPOTHESIS TESTING

We have seen how Fisher’s principle of conservatism ties the rules for

drawing statistical conclusions to the theory of error. It is only when the

Fig. 9-1. A mean beyond the �-values (gray areas) permits rejection of the null hypothesis

where the null hypothesis predicts the mean, �0.
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mean of the outcome variable differs from the prediction of the null

hypothesis by more than what error theory would predict that we reject the

possibility that no causal relation exists. We have also discussed the fact that

rejecting the null hypothesis does not mean that the data show that the

alternative hypothesis is more likely than the null, but only that the null

hypothesis was less likely than our community standard for acceptance, �.

This conundrum can be illustrated by explaining the two types of error

possible in statistical inference.

In Table 9-1, we see the four possible situations we can find ourselves in

when we make a statistical inference. Because we have defined the alternative

hypothesis as any possibility other than the null hypothesis, the only two

possible ways the world can be are for either the null or the alternative

hypothesis to be true. We can either retain the current theory (called

accepting the null) or reject it (called rejecting the null). Accepting the null

when it is true, or rejecting it when it is false are the two ways of being

correct. Rejecting the null when it is true is called Type I error. Failing to

reject the null when it is false is called Type II error.

CRITICAL CAUTION

Note that � is not a name for Type I error. It is the conditional probability of Type I

error given that the null hypothesis is true. Likewise � is not a name for Type II

error. It is the conditional probability of Type II error given that the null hypothesis

is false.

In Fig. 9-2, we see the relationship between the two types of error and the

probability distribution of the possible experimental results. We will only

Table 9-1 The four possible results of a statistical inference.

Actual Situation

Conclusion H0 is True H0 is False

Reject H0 Type I error

p ¼ �

Correct rejection

p ¼ 1� �

(power)

Do not reject H0 Correct acceptance

p ¼ 1��

Type II error

p ¼ �
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reject the null if the value of the outcome variable is far enough from �0

(under the light gray area). Note that � (the dark gray area), the probability

of a Type II error, is only partially determined by �, the probability of a Type

I error. We base our decision solely upon the light shading of the left-hand

curve. If the alternative hypothesis is true, then a Type II error happens when

the value of the outcome variable is under the dark area of the right-hand

curve. This is when the true value of the outcome variable was far from �0,

but error variance caused the experimental value to be low enough that we

could not reject the null.

Type I error: saying it is, when it ain’t

Type I error is when the true value of the outcome variable is �0, but the

error variance made the experimental results so far from �0 that we reject the

null. The principle of conservatism directs us to limit the probability of this

type of error to a fixed and agreed upon value, called the significance level.

This means that, over many experiments, we will only commit Type I error �

percent of the time. In the social sciences, this is almost always 5%.

In the scientific formulation, avoiding Type I error is considered

paramount, far more important than avoiding Type II error. The reason

for this is that the current theory is presumably in place because of previous

research. Science can only make progress if it demands a preponderance of

the evidence over time before changing any of its views. If science is subject to

every popular fad that comes along, it will vacillate so wildly from point to

point that any forward progress that would be driven by the data would be

overwhelmed. (At least, that was the 20th century view shared by Fisher.)

The principle of conservatism is based on the goal of science to build a body

of knowledge based on evidence. This long-term goal is rarely of value in

making business decisions unless we can tie conservatism to lower cost.

Fig. 9-2. Diagram showing the relationships among Type I and Type II error, and

power (1��).
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And, of course, distinguishing Type I error from Type II error requires

defining one hypothesis as the null hypothesis, which may not make sense in

a business context.

Type II error, beta probability, and power of test

Type II error is when the true value of the outcome variable is �1, but the

error variance made the experimental results so close to �0 that we retain the

null. When a Type II error occurs, we lose out on an opportunity to improve

our view of the world by adopting a better theory. We stick to our old, less

correct, theory. In science, this is a low-cost error, because, eventually, as

science moves forward and other experiments are tried, the truth will be out.

Science is an enterprise without a horizon. The value of keeping on course is

far more important than actually reaching our destination at any particular

time. The same cannot be said of business, where results must be delivered on

schedule.

KEY POINT

Statistical power is a measure of the ability of the statistical test to detect the

effectiveness of an intervention. In business, this is often what we are paying for

when we request inferential statistics.

CRITICAL CAUTION

The biggest problem with Type II error is that, because the entire process of

statistical inference is based around limiting Type I error, the actual probability of a

Type II error is hard to calculate. It depends not only upon N, but also upon the

difference between �0 and �1. The closer the two predicted means are, the larger N

must be in order to distinguish between the two hypotheses. Figure 9-3 shows a case

where the two means are much closer together. The rejection region (light gray) does

not change. There is now a larger region (in dark gray) where the experimental

results would be closer to �1 than �0, but we would still reject the alternative hypo-

thesis and retain the null. In fact, the value of the outcome variable could equal the

value predicted by the alternative hypothesis exactly and we would still reject the

alternative! (We can see this in Fig. 9-3, because �1 is underneath the dark gray

shaded region.)

All too often, the value of �1 is unknown and can only be guessed at. A set of

complex calculations, called power calculations, which differ depending on the design
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of the experiment, can be used to estimate how large N must be in order to detect a

difference between the two predictions as small as some particular value. (Recall

from Fig. 8-4 that the larger our N, the narrower our bell curve, and the closer the

rejection region will be to �0.) Many experiments are performed that fail to reject the

currently accepted theory solely because enough data were collected to guarantee

conservatism, but not enough data were collected to guarantee power. Increased

statistical power means having the rejection region close enough to �0 to be able to

distinguish between theories that predict very similar means.

STURDY STATISTICS: NONPARAMETRIC TESTS

Up until this point, we have been talking about hypothesis testing in terms of

means and errors. However, so long as we can translate our results into a

probability that the intervention has had no effect, we can assert that the

results are statistically significant whenever that probability is below the

significance level. Statisticians have developed dozens of techniques for

translating different types of effects on different types of data into measures

of statistical significance. These inferential techniques are divided into two

broad classes: parametric and nonparametric tests.

Parametric tests involve sampling distributions of a statistic, usually the

mean. The test measures the effect of the intervention in terms of some

specified change in that statistic. The translation of that change into a

probability value is based on assumptions about the error that produces the

sampling distribution for the statistic. The theoretical distributions of these

sampling distributions are defined in terms of a few numbers, usually the

mean, the variance, and possibly the degrees of freedom. These defining

numbers are called parameters, hence the name, parametric tests.

Fig. 9-3. If the two hypotheses predict results close to one another, it is possible to reject the

new hypothesis even when results land directly on the mean score predicted by the

new hypothesis.
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Nonparametric tests, also known as distribution-free tests, is a catch-all

term for any other kind of inferential statistical method. The most common

thing they share is that they require that the data satisfy fewer assumptions

(such as interval level scale, normal distribution, etc.) in order to work. As

such, Mosteller and Rourke, in Sturdy statistics: Nonparametric and order

statistics (1973) have called them ‘‘sturdy statistics.’’

STUDY REVIEW

A Sturdy Statistic is Like an SUV
What makes a four-wheel drive SUV (Sport Utility Vehicle) sturdier than an

ordinary small car? It is able to handle rougher roads. In the same way, sturdy

statistics are statistical tools that can handle rougher data. If our data do not follow

the normal curve, or if it is multi-modal, we are not going to be able to use

parametric statistics, because our data do not meet the parameters. If we think of the

normal curve as the highway of data, then sturdy, nonparametric statistics let us go

off the road—work with data that aren’t characterized by simple parameters—and

still reach our destination; informative statistical results.

And, like a four-wheel drive vehicle, there is usually a price to pay for being able

to traverse such rugged territory. Just as off-road vehicles tend to have lower gas

mileage than economy cars and lower top speeds than sports cars, nonparametric

statistics tend to have lower statistical power than parametric statistics.

As we will see in Part Three, different parametric tests are designed to

handle different types of experiments. So are the different nonparametric

tests. In fact, for the most part, there is usually a nonparametric test available

for almost any situation in which there is a parametric test available.

When to choose a sturdy statistic

There are a number of differences between parametric and nonparametric

tests. The decision as to whether to use a parametric or a nonparametric test

depends on understanding the advantages of each.

The traditional trade-off for choosing parametric over nonparametric tests

is the need to satisfy statistical assumptions versus the need for statistical

power. As we will see in Part Three, parametric tests only work if certain pre-

existing conditions are true. The most common of these involve the level of

measurement and the distribution of the data. The mathematical proofs that

demonstrate that a particular test will generate an accurate P-value almost

always involve assumptions. Traditional parametric tests are proven to work

when the data are measured at, at least an interval level and when the
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population distribution of the variable is normal. There are usually a few

other assumptions. The bottom line is that, unless these assumptions are met,

we cannot be assured that the P-value will be accurate enough to ensure

conservatism. In science, the absence of such a guarantee means that the

inference is invalid.

Many parametric tests are robust under violations of some (but not all)

of these assumptions. This means that the particular assumption has to be

dramatically and extravagantly violated in order that the test be invalid.

Robustness means that a parametric test can be used so long as the violation of

the assumption is not too extreme. It is important to know where a parametric

test is robust. (We can think of a parametric test that is robust as a four-wheel-

drive car or a light-duty SUV. It can’t go far off the road, but it can ride

rougher roads than a parametric test that is less robust.)

The most important assumption that can be neglected for most parametric

tests is the assumption of an interval level of measurement. So long as

the data are scaled at an ordinal level with at least five levels, traditional

parametric tests can be used reliably. (This is one reason why so many ques-

tionnaires allow five levels of response, such as ‘‘never,’’ ‘‘rarely,’’ ‘‘some-

times,’’ ‘‘often,’’ and ‘‘all the time.’’) Many parametric tests, especially the

t test for two-group experiments, are robust to violations of normality. If the

variables are distributed somewhat non-normally, the test is still good. The

bad news is that the most common violation of normality, called a ‘‘heavy-

tailed distribution’’ is also the one to which most parametric tests are most

sensitive. Finally, there is an important assumption that cannot be violated.

In general, parametric tests are not robust when different groups have

different variances.

CRITICAL CAUTION

Most computer programs that do statistical tests also automatically check for

violations of their assumptions. Any warnings issued should be taken seriously.

When the data violate assumptions of a test beyond the limits of its

robustness, an alternative test must be used. Nonparametric tests tend to

require fewer assumptions and those assumptions are different than those of

the corresponding parametric tests. The traditional reason for using a

parametric test when possible is that parametric tests are generally more

powerful for the same N. A parametric test is more likely to tell us when an

intervention has had an effect at lower cost.
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KEY POINT

In business, statistical power often translates into cost savings. A more powerful test

means a greater ability to detect the effectiveness of an intervention for the same cost.

Power means more bang for the buck.

SURVIVAL STRATEGIES

The world is changing. Faster and cheaper computers mean that complex cal-

culations cost hundreds of times less than they did only a few years ago. There is one

kind of nonparametric test, called a permutation test, that is not generally

less powerful than a parametric test. Permutation tests may be more or less power-

ful than parametric tests, depending on the data. They require very few assumptions.

The reason they were not used very often in the 20th century is that they require

an enormous amount of computation. However, there are now commercially

available computer programs that do permutation tests on personal computers.

The 21st century is here. Knowing about permutation tests can make you a hero at

your firm.

The key to parametric tests is their simplicity. They test for changes in a

specific parameter, such as the mean, and require that other aspects of the

data be well-behaved. When what we want to know can be detected by a

change in the mean of some variable, and the data are good, parametric tests

are the standard. Sometimes, however, we are interested in changes to other

features of the data. A nonparametric test may be available that tests for

exactly the change we care about. If not, many nonparametric tests test for

any change in the distribution between the groups.

Chi-squared tests for count data

There is one very common situation where nonparametric tests are needed

and there is a favored nonparametric test, called the �
2 test (pronounced

‘‘chi-squared’’) that handles it. The �
2 test will be discussed in detail in

Chapter 14 ‘‘Nonparametric Studies.’’ For now, it is a good illustration of the

value of nonparametric tests.

Up until now, we have been concerned with numerical variables, where the

mean is a meaningful statistic. But what about our sheep? The different
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breeds and colors of sheep are not ordered. There is no ‘‘average breed’’ or

even an ‘‘average color.’’ If we are interested in seeing if an intervention

affects the distribution of a nominal variable, we definitely need a non-

parametric test. The �
2 test is designed exactly for such a situation.

Suppose we wanted to see if the breed of sheep affected the color. If so, the

proportion of black sheep for one breed would be significantly different from

another. There are a number of different ways to define a proportion as

significantly different. The �2 test defines a difference in proportions between

groups in terms of the overall ratio of the dependent variable (in this case,

color) for the entire population (in this case, the flock).

The �2 test is based upon a cross-tabulation of the two variables of interest.

Table 9-2 shows a cross-tabulation for a flock of two types of wool sheep. (One

of the requirements of the �
2 test is that there be at least five subjects in

each cell in the table, so we need to use a bigger flock than we did earlier.)

The bottom row of the table contains the marginal totals for color. The right-

most column contains the marginal totals for breed. The �2 test uses a statistic,

called the �2 statistic, which compares each number in each cell to what that

number would have been had the subpopulations defined by each value of each

variable had the same proportions of the other variable as do the marginals. If

the proportion of black and white sheep differs in any way between the two

types of merinos, then the proportion for one breed will be higher than the

proportion for the whole flock and the proportion for the other breed will be

lower. In such a case, the �2 statistic rises.

The distribution of the �2 statistic for different degrees of freedom (that is,

values of N) is known. As with the normal distribution and the t distribution,

this means that whenever we can calculate the value of the �
2 statistic, we

can translate this into the probability of Type I error. The �
2 test is called

distribution-free not because there is no distribution for the �
2 statistic, but

because we do not need to know the shape of the theoretical distribution of

color or breed in order to use the �
2 test.

Table 9-2 Cross-tabulation for �2 test: Sheep by color and type of wool.

White Black Total

Heavy wool 42 6 48

Fine wool 76 14 90

Total 118 20 138
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Statistical Significance In Business
As we suggested above, because the idea of statistical significance was

developed in a scientific context, we have to be careful in applying it to

business decisions. We can still make use of the concepts of Type I and Type

II error, but we need to think about them in the context of business with the

goal of maximizing return on investment.

Both the practices and the goals of science that guided Fisher’s con-

servatism are different from the practices and goals of a business. In terms

of practices, Fisher assumed that the current theory—expressed as the null

hypothesis—had been established over the long term, through scientific

inquiry. In a business, we may often think that the current theory or business

model is the result of blind conservatism and unwillingness to look at facts.

Or there may be no way to establish which theory is currently accepted; we

may be simply looking at two alternate theories. For example, in our case

study, one group of executives within the company may hold that sales

training is not cost-effective, and another group holds that it is. Science

moves forward by consensus. In business, consensus is only valuable when

it serves higher goals.

In science, a standard �-level is set to limit Type II error over time and

across experiments in order to keep the overall body of scientific knowledge

stable as scientific progress causes it to change. These sorts of global, long-

term concerns are not relevant to business decision support, where the goal is

to make a decision that maximizes return on investment. It is important to

note that the projected return on investment is not a purely financial figure.

We must consider risks and ancillary effects that may improve or damage the

long-term viability of the business. For example, doubling our profits for a

year may not be worth the trouble if it forces the company to bankruptcy in

13 months. Therefore, we should do the following in planning to use the

results of an experiment or study in support of a business decision.

. Turn our business questions into statistical questions for the experi-

ment, and define the expected results in terms of hypotheses.

. Determine if one hypothesis has a genuine basis for being favored over

the other(s), and should therefore be considered the null hypothesis.

A null hypothesis must involve lower cost and predict no effect of the

intervention.

. Define the business results that would arise from the predicted values

based on different business models or hypotheses, using return on

investment measures if possible.
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. Define what non-statistical considerations, including corporate values

and qualitative risk factors, should go into the decision-making process.

. Define the range of statistical results that would favor each hypothesis,

and the range of results would be statistically non-significant, such that

the results of this experiment or study should not influence the decision

either way

This discussion is most applicable to studies that compare two options, and

seek to determine which one is best for the business. However, in business, we

almost always have more than two options. In these cases, the work of

determining the direction that the results of our study truly support is

challenging, and can be disputed easily. In such cases, it might be better to take

an approach we suggested in Chapter 4 ‘‘What Is a Statistical Study?’’ and use

the study to gather information and understand the issues, rather than to come

to a particular decision. In this case, the study would be designed to help us

understand:

. What are the most important questions to ask?

. What are the factors that appear to have significant correlation to

desirable results?

. What further studies should be done?

. What conclusions or courses of action, if any, are supported through

this initial study?

USING HYPOTHESES FOR BUSINESS DECISIONS

If we do a power analysis, we can determine the likelihood of both Type I and

Type II error. If we can determine the costs and benefits of each type of error,

we can use planning techniques to determine, first, whether it is worth the cost

of the experiment to do the statistical testing at all, and, second, howwe should

act on our business decision depending on the results of the statistical analysis.

Designing the experiment to deliver maximal information
value as an experiment

In this subsection, we will assume that we want to maximize the effectiveness

of the statistical analysis. To do so, we design the experiment to maximize the

variance due to the intervention, and minimize the amount of variance due to

everything else.

Let us return to our example. We are designing a study to support a

business decision regarding whether or not to institute a particular training
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program for our salespeople. We know the cost of setting up the program, as

well as the cost per salesperson of providing the training. We know how

much each additional dollar in sales means in increased profits to the

company. A simple experiment would be to take the next N new hires to the

sales force, divide them into two groups, train all the new salespersons in one

group, and measure the difference in average sales between the two groups

over a period of time. If the trained salespersons can collectively earn more

for the company than the cost of the training, then the right decision is to

start the training program.

But how big should our experiment be? The more new hires we train, the

more expensive our experiment will be. We need to make N large enough so

that it gives us an accurate enough measure of the effect of training, so that

we can base our decision on it. We need to minimize both Type I and Type II

error. We don’t want to spend money on an experiment that gives us the

wrong advice. The cost of a Type I error (where we mistakenly initiate the full

training program, despite the fact that it is not worthwhile) is the cost of the

experiment, plus the cost of the training program. The cost of a Type II error

(where we mistakenly choose not to have a training program, despite the fact

that it would increase our profits) is the cost of the experiment, plus the loss

of the net benefit of having the training program.

The Type II error depends upon the variability of the amount of sales

made by our untrained salespersons. We can estimate this variability by

measuring the variability found amongst our current salespersons. (Our

current salespersons are a sample of the population of all salespersons we

might have, in the past or in the future.)

In order to do a power analysis to determine the likelihood of Type II

error, we will need to know how big an increase in sales the training is going

to produce. Unfortunately, this is the thing we hope to learn from our

experiment. How do we make a determination of the size of our experimental

effect before we do the experiment? There are two approaches. We could look

at the experience of similar firms who have used similar training programs

and guesstimate the smallest effect the training might have. We would then

calculate the N required to detect that small of an improvement.

A better approach would be to pretend we have already done the

experiment and use our planning tools to see just how big a difference a

training program would have to make in order to have it pay for itself. This is

an application of the return on investment (ROI) model to the design of our

experiment. When looking at the value of training, ROI is called ROTI

(return on training investment). If the training had a beneficial effect too small

to pay for itself, we wouldn’t want the new training program in any case, so

that is the smallest effect we need to be able to detect. We do a power analysis
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and find out just how large an N we need in order to detect that much

improvement due to training.

If the N required is so large that we cannot even afford the experiment,

then we will need to make our decision without the benefit of statistics. If we

can afford the experiment, of course, we should do it. The results will give us

an estimate of how much sales will increase per salesperson over time. We

don’t even need to translate this estimate into a probability that the training

program has had a significant effect. We already know that there is some

probability of both Type I and Type II error, but we have lowered both of

these probabilities to the point where we can afford to rely on our estimate.

We can now use the results of our experiment directly with our planning

technique in order to decide whether or not to institute the new training

program.

Designing the experiment for optimal business results

If this experiment is going to guide long-term business results resulting in a

very large change to net revenue, then a well-designed experiment—aimed at

the greatest chance of providing useful information to guide our decision—

may be the single most important consideration in our planning of the

experiment. However, realistic business considerations are likely to intervene,

requiring a change away from the best possible experimental design, due

either to constraints or to competing objectives.

Let us look first at the issue of constraints. Here are some examples of

constraints that might cause us to alter the experimental design.

. If we have a small, or medium-sized firm, our total number of sales

people may be too small to allow for a study that will produce statis-

tically significant figures.

. If our financial situation is desperate, not training some salespeople

might drive us out of business by the time we see that training would

work. If operating as we are now is too costly, it might be better to take

the risk based on immediate professional judgment, rather than incur-

ring the opportunity cost of the study, including the lack of improve-

ment of sales figures for the control group.

. If there is a hiring freeze, we may have to choose to create an experi-

mental group and a control group from our current sales staff, rather

than from a group of new hires. From an experimental perspective, this

is a disadvantage, because the population is more diverse in age and

experience, introducing many new variables that might end up being

the cause of error variation in the experimental result.
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In short, a medium-sized or large company in good financial condition is

more in a condition to try an experiment than is a smaller company, or one

with fewer resources.

The study designed in this chapter so far has been focused on asking a

rather idealized question: Will this one method of training increase gross

sales for new hires enough to justify the investment in the training? Business

decisions are rarely so simple. In the business world, we are more likely to

have many options. For example, we may want to compare two training

programs or we may want to choose to train certain employees, and to ask

which ones would be most likely to benefit from training.

Fortunately, statistics has many tools that can help with these more

complicated decisions, including both the design of quasi-experiments and

the application of particular statistical techniques. Here are some examples of

useful design of quasi-experiments and statistical analysis.

. Creating a pair study. Consider the case mentioned above, where we

want to test the value of training for current employees. Rather than a

random division of our sales staff into a control group and an experi-

mental group, we could design an experiment called a pair study. In a

pair study, we organize our random sample of subjects into pairs, just

like in the buddy system. Each pair consists of two subjects who are as

similar as possible in all criteria we consider relevant: age, years of

experience in sales, years of experience in our company, gender, and

so forth. Then, for each pair, we flip a coin and assign one member to

the experimental group and the other to the control group. The control

subjects do not receive the training, and we compare their results to

their buddies who do.

. Using additional surveys and polls. It will be useful to gather as much

information as possible about both our experimental group and our

control group before, at the beginning of, during, and at the end of our

study as possible. This information will support us in making the best

decision among many choices, rather than a simple binary decision:

provide training, yes or no? When we begin an experiment, we don’t

know what the results might be. That is obvious, but it is worth restat-

ing, because we easily fall into the trap of picturing two normal curves

next to each other, and some result that falls somewhere on them. But

consider this possibility. We conduct the experiment, and the outcome

for the experimental group is bimodal. One mode centers around the

old mean. For this subgroup, the training had little or no effect. The

other mode is well above our goal based on desired ROTI, indicating

that, for this subgroup, the training was highly successful. If that’s all
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we know, we’re dead in the water. But if we know a lot more about our

experimental group, we may be able to define the common factor(s)

that make them a unique subgroup. We may find they were enthusias-

tic about the training, either before it started, or when they came back.

We may find that they had one particular trainer, or work under one

particular sales manager. We may find that they all did one particular

step the trainer recommended, where the other group did not.

Whatever the case might be, the more data we have, the more likely

we are to be able to recommend a particular training plan—who

should be trained, in what ways, with what kind of follow-through—

to maximize return on training investment.

. Creating more complex experiments. If we want to evaluate two or more

different training programs, we can create a control group plus several

experimental groups. Or, if we know we are going to do some training,

but don’t know which, we could create a quasi-experiment with no

control group, and just groups who receive different kinds of training.

When business objectives conflict with good
experimental design

Consider the following scenario. Due to the seasonal nature of our business,

we have determined that we need a full year of gross sales figures from the

experimental group and the control group to determine ROTI before we

decide whether to adopt a ten-year training program. We run the study. In

the first six months, we see a significant difference between the trained group

and the untrained group. However, in the second six months, the two are

much closer to one another.

One explanation is that the benefit of training is temporary. But there is

another possibility. Suppose some friendly salespeople, or a smart sales

manager, said to the control group, ‘‘Hey, those guys who got the training

are doing a lot better than you in the control group. Let’s set up a learn-at-

lunch seminar, and they’ll teach you what they’re doing right. Your sales will

improve.’’ Well, that’s a brilliant business idea—in-house cross training. And

we’ve just ruined the experiment by contaminating the control group with

what the experimental group learned in training. The result—the company

makes an extra $10 million during the year of the experiment, but loses the

benefit of the experimental study.

Sometimes, we might make such a choice intentionally. Every once in a

while, a new drug being tested is found so effective that, before final Food

and Drug Administration (FDA) approval, the FDA allows for treatment
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of individuals in the experiment—experimental subjects, control group

members, or both, to receive the medication on a compassion basis. This

requires violating the double-blind protocol, but it is done in the interest of

compassion. Similarly, we need to decide when canceling or modifying a

study makes good business sense. However, it is better that we know and

manage what is going on, than that we find out after the fact that someone

has taken an action—however good for the business—that reduces the

integrity or value of our study.

WHAT’S SIGNIFICANT IN SCIENCE MAY NOT BE
IMPORTANT TO BUSINESS, AND VICE VERSA

Some books of business statistics recommend the use of an �-level of .10,

double the scientific level of .05. The idea is that being 90% sure is enough

certainty to make a business decision. Certainly, an �-level of .05 is both

arbitrary and was invented for a scientific purpose that has no meaning

in business. As such, it is hard to justify keeping the scientific standard

for business. On the other hand, an �-level of .10 is equally arbitrary.

Furthermore, there is no reason for there to be a single standard for all

business decisions. Science is a communal enterprise and needs a community

standard. Business requires individual business decisions, each made on their

own merits. As we saw in the preceding examples, a combination of planning

methods and power analysis will help us make our business decision more

effectively than a simple determination of statistical significance.

Of course, sophisticated decision analysis requires expertise. The use of the

.10 standard can be appropriate if we are careful about the costs of

Type II error and understand what an �-level of .10 actually means.

THE NEED FOR THEORIES DOESN’T APPLY TO
BUSINESS

One element of the Fisherian system clearly has no place in most business

decisions. There is no need to tie our hypotheses to competing theories of the

world. In business, we are not seeking greater knowledge, but greater profits.

Instead of linking the various hypotheses to theories, we need to link them to

alternative actions in our business decisions. As shown in our example above,

one way of doing this is to link the probability of Type I and Type II errors to

their costs and benefits. But different types of decisions will make different

uses of the results of our statistical analyses. The important thing to realize is
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that statistical significance requires a concept of hypothesis. We need to make

effective use of statistical hypotheses in our business decisions in order to

make effective use of inferential statistics.

THE NEED FOR EXPERIMENTS

Inferential statistics was invented around the idea of evaluating controlled

experiments. It is entirely possible to use inferential statistics outside of

experimental settings, or even when there is no intervention. The example of

using the �2 test to see if breed affects the color of sheep is a good example.

There is no intervention that magically transforms a sheep from one breed to

another. If the �2 test for the sheep is significant, we know that it is unlikely

that the different proportions of black sheep found among the different

breeds is due to something other than the difference in breed.

What we lose when we don’t do an experiment are the benefits of

experimental control. If we don’t do the intervention based on random

assignment to groups, the difference we detect with our inferential statistics

may be due to something entirely outside our control that just happened to

correlate with our dependent measure. For example, suppose that, instead of

training half of our newly hired salespersons as in our earlier example, we just

compared N of our new hires to N new graduates of an independent train-

ing institute. If the graduates of the training institute outperformed our

untrained hires, it might be because of the training, but it might be because

better salespersons tend to go to the training program rather than answer our

employment ads. Or it might be something else entirely.

However, the statistically significant result would still apply to the

difference between graduates of the training institute and our hires. We

might want to seriously consider recruiting from the graduating class of the

institute.

Almost any descriptive statistic can be converted into an inferential statistic,

or, at least, an equivalent inferential statistic can be found. Inferential

statistics, in the last analysis, are just descriptive statistics with a limit placed

on Type I error. The benefits of statistical significance do not transfer when

we simply measure something with an inferential, rather than a descriptive,

statistic. It is the entire structure of experimentation, or, at the very least,

quasi-experimentation, that makes inferential statistics valuable in assuring

that our Type I and Type II error levels are accurate and mean something

useful. It is a very bad practice to simply calculate the P-value for a statistic

that is just a measure of some event in our business. People associate P-values

with a certification that the results are reliable indicators of a cause and effect
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relation. P-values are only truly meaningful in the context of a properly

controlled intervention. Using them elsewhere can be deceptive.

The most common misuse of P-values is with the correlation coefficient.

Correlations can be taken between any two variables at any time. It is

common (and useful) to take correlations outside of an experimental setting.

There is also a way to derive a P-value from any correlation. Under very

narrow and rarely realized conditions, the P-value for a correlation coeffi-

cient tells us that the correlation is not due to chance alone. Outside of

an experimental setting, the best solution is to report just the correlation

coefficient and leave the statistical significance alone.

CRITICAL CAUTION

Correlation is Not Causality
Within the context of a well-designed experiment, we can assert that correlation

between the intervention and a difference between a value for a particular variable in

the experimental group from the value found in the control group is an indicator that

supports the idea that the intervention caused the difference in the value of the

variable. However, this assertion depends on many aspects of a well-designed

experiment. For example, experimental design ensures that the intervention preceded

the measurement of the variable, that no other event might have caused both the

intervention and the difference in the value of the variable, and that many other

possible sources of variance were minimized.

None of those is true for statistics gathered from real-world (non-experimental)

data, from surveys, or from polls. As a result, if we find a strong statistical cor-

relation between variables A and B in data gathered, but not from an experiment, all

we can do is assert a correlation. We may not be able to determine whether A always

preceded B, or vice versa. We can’t know if there was some preceding factor C, that

we never thought to measure, which caused both A and B.

The lesson: Correlations outside experimental contexts do not necessarily point

toward causality.

On the other hand, there is good news for business. Sometimes, it is enough to

establish correlation. In certain business situations, we can make use of a correlation

for business purposes, even if we don’t know its cause. For example, if we find that

fans of a certain pop singer buy our brand of toothpaste, we can advertise at her

concerts, even if we never find the interview in People Magazine where she said that

our toothpaste was the key to her fame and fortune.

Statistical significance always looks impressive, but it is not always

meaningful.
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Quiz
1. The ‘‘alpha-level’’ for accepting a new theory over the old theory is . . .

(a) 1 in 5

(b) 1 in 20

(c) .20

(d) .50

2. Fisher’s strategy of statistical inference protects us from . . .

(a) Falsely abandoning the current theory

(b) Falsely abandoning the new theory

(c) Falsely accepting the new theory

(d) All of the above

3. What type of research design provides Fisher’s guarantee of conservatism?

(a) Correlation

(b) Ratio

(c) Experiment

(d) Proportion

4. For a minimum group test, we need . . .

(a) Control group

(b) Experimental group

(c) Both (a) and (b)

(d) Neither (a) nor (b)

5. The variable that is measured is the _______ variable.

(a) Dependent

(b) Independent

(c) Control

(d) Experimental

6. The variable that defines the groups in a group test experiment is the _______

variable.

(a) Dependent

(b) Independent

(c) Control

(d) Outcome
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7. If each subject has an equal chance of being in the control group or the

experimental group, they have been _______ to groups.

(a) Hypothesized

(b) Null hypothesized

(c) Randomly sampled

(d) Randomly assigned

8. A Type I error occurs when we . . .

(a) Reject the null hypothesis when it is true

(b) Reject the null hypothesis when it is false

(c) Accept the null hypothesis when it is true

(d) Accept the null hypothesis when it is false

9. Which of the following is an example of a quasi-experimental design?

(a) Pair studies

(b) Polls

(c) Surveys

(d) All of the above

10. In a business context, a correlation cannot tell us . . .

(a) The relationship between two variables

(b) Statistical significance

(c) Causality

(d) Error
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CHAPTER
10

Reporting the
Results

This chapter shows you how to take the last step in creating a statistical

report—the preparation and delivery of the written report, oral presentation,

or presentation in any other medium appropriate to the business goals of the

statistical report that presents the results of the study or research you have

performed.

Three Contexts for Decision Support
Our statistical research will, in most cases, be used to support decisions in one

of these three situations:

. Input to a decision. We will deliver our report internally to a group

holding a meeting or series of meetings, or to an executive making a

decision. Our report will be one input for the decision process.
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. Support for a decision when it is announced. Once a decision is

made, if it was supported by statistics, our company is likely to want a

version of the statistical report presented as a justification for the deci-

sion. This may be an internal document, or it may be intended for

stockholders, employees, vendors, customers, or the general public.

. Advertising. Advertising is a special case of decision support where the

decision is being made by the company’s customer, not by anyone

inside the company. The information from our study or research can

be used to guide the customer in making an informed choice of

whether or not to purchase our products or services, and which ones

to acquire for what uses.

First we will offer some guidelines for creating good reports and pre-

sentations in general, and then we will look at each of these three specific

situations, and how to create a report or presentation for each.

Good Reports and Presentations
A good report has the qualities of a good technical specification, plus other

qualities that make it appropriate for our audience. Table 10-1 shows a

modified and simplified version of the qualities of a good technical

specification taken from the IEEE (Institute of Electrical and Electronic

Engineers) specification, as presented in Karl Weigers’ Creating a Software

Engineering Culture.

We should prepare a complete set of technical results in tabular format,

with the most important charts and graphs as well, meeting all of the

requirements in Table 10-1 before we begin to prepare the reports we will

deliver to our audiences. If we prepare this set of master documents well, then

generating high-quality reports in various formats will be much easier.

GOOD REPORTS

Once our master documents are prepared, we can turn our attention to our

audience. For the design of a good report, see Chapter 4 ‘‘What Is a

Statistical Study?’’ Some people find it easiest to write the summary first,

because it works well to begin with the audience in mind. Others—especially

those trained in research methodology—will prefer to begin with the data

and statistics, and work towards the conclusion. Either approach is fine.

However, as we edit, we should work in the opposite direction from the way

we wrote. If we began with the conclusion, we should validate our results by
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Table 10-1 Characteristics of a good report.

Characteristic Description How we ensure this quality

Complete Nothing is missing:

The entire topic is covered

to meet the reader’s needs

Define the goals of the study for all audiences.

Create an outline of the study that meets

these goals.

Review a draft of the study for completeness.

Consider what appendices and extras would meet

reader goals.

Consistent The report contains no internal

contradictions. Where it

contradicts existing ideas or

published works, it identifies

that clearly.

Create a data dictionary, variables list, and glossary

early. Maintain them throughout, and check

all tables and graphs against them to ensure

consistency, as well as the final report itself.

Audience: Know your audience and the language

and ideas they already accept and understand.

Have the report edited by someone who can

understand the topic. Ensure two pairs of eyes see

every table, figure, and paragraph.

Prepare lists of tables and figures as you create the

report.

Correct The book accurately reports the

process and results of the

research, experiments, and

analysis.

Follow appropriate protocols and standards for

research and analysis.

Define your fact checking needs, and get the

work done early.

Feasible The study or research is a

well-defined project delivered

with quality, on time, and

within budget.

The report is available

in both summary and

full form.

Use a level of project management appropriate to

the size and complexity of the project.

Get expert help for statistical and experimental

design.

Work with the report recipients early to define

the forms of the report that will be useful for

them. Prepare a mock-up of the report and get

the format approved.

Modifiable The report can be changed

or emended, if necessary.

If the work is to be done only once, simply

maintain version control of the document and

retain an editable electronic copy.

If similar studies might be conducted in the future,

prepare a research plan and templates so that

future editions can easily be prepared in the

same format.
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Table 10-1 Characteristics of a good report (Continued).

Characteristic Description How we ensure this quality

Necessary Meets a need or needs of the

reader, providing appropriate

decision support.

For the entire report, this is established at the

beginning of the study.

Be sure to link each section, figure, and table of the

report to the purposes of the decision meeting.

Prioritized Results are ranked by

significance.

Evaluate significance of each finding in relation to

the decision being supported. Note that reporting

of results that show the study cannot support one

decision over another are significant to the

business.

Testable Experiments, quasi-experiments,

studies, and analyses can be

reviewed or repeated.

All activities of the study have a full set of

notes and an audit trail. This information is

listed in the appendix and available in

an appropriate archive.

Traceable Each element is uniquely

identified so that its origin

and purpose can be traced to

ensure that it is necessary,

appropriate, and accurate.

We may not include full notes in the presentation

copy of our report, but we retain a master

copy that allows us to trace each figure, table,

and assertion in the report back to the analysis

data that support it.

All of our planning, research, experiments, and

analysis include a thorough audit trail, set of

research notes, and copies of questionnaires, design

documents, and data at all stages of our work.

Unambiguous Each element has only

one possible interpretation.

Have an editor who did not participate in the work

read and edit the report, identifying any uncertain

or unclear ideas.

Make sure that the report is in language

understandable to the audience.

Be sure that any terms that have different meanings

in different fields present in the report are used

clearly. For example, the term ‘‘significant’’ has

different meanings in decision support and in

statistics.

CHAPTER 10 Reporting the Results 241



walking through the logic from our data to that conclusion. If we began with

our data, we should read the report from the executive perspective, making

sure that the results are presented in a way that supports the decision, or

justifies it, or supports advertising, in accordance with our objectives.

STUDY REVIEW

Input for the Next Step
Remember that your reports and presentations are your deliverables, but, for

business purposes, what matters is that they are inputs for the next step—the

decision process, publication, or advertisement. Therefore, quality is measured

primarily by usability. If your work is questioned, you should be able to defend it,

but a review of your process is not a normal part of the next steps. Business tends

to move forward, not to look back.

GOOD PRESENTATIONS

Presentations, whether given at meetings or telemeetings, or presented in

automated formats—anything from web sites to TV commercials—are

different from reports in one major way. Our audience can read a report at

their own pace, and re-read it if necessary. However, in a presentation, the

information comes by only once. As a result, we need to be very careful to

design in appropriate emphasis of key points, and repetition where it is

helpful. Of course, if the audience of the presentation receives the executive

summary or report before or during the presentation, this will help them

understand the material.

In preparing to present, we face the same challenge. In writing a report,

every correction accumulates, improving the document. In preparing a

presentation, we must rehearse many times, and, even so, we may make

mistakes on the big day that we have corrected over and over.

SURVIVAL STRATEGIES

Practice, Practice, Practice
Find the time to rehearse your presentation. Repetition, plus observing yourself, is

irreplaceable. A good guideline is that you should rehearse a presentation in full

three to six times before giving it. Even professional speakers follow this rule. This

applies to all oral presentations, both in business and in the classroom.
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Here are some tips for organizing a presentation:

. Create an outline. Include an introduction, the body, and a conclusion.

. Know your role. Are you simply presenting the report? Or are you

guiding the discussion? Who speaks before you, and after?

. Be ready to ask questions. Asking questions and doing other things that

make the presentation interactive helps ensure your audience under-

stands.

. Be ready to answer questions. Prepare a document with notes, ques-

tions, and answers for your own reference. When people ask questions,

feel free to refer to your notes.

. Prepare a presentation of the appropriate length. If you are creating a

slide show, plan for two slides per minute of the presentation, but less

when you are explaining figures and tables at length. Rehearse and

measure the time. Plan the presentation to end a few minutes early,

and have some optional material ready in case there are no questions.

Here are some tips for getting ready to give a presentation:

. Know your material. Rehearse to the point where you only need to look

at your notes occasionally. Practice—or simplify—difficult words and

concepts.

. Go slowly. You can stop and breathe after each slide, and people will

not think you are going to slow. An intentional pause, like an inten-

tional gesture, gives rhythm and sets the pace. Actually, you will seem

slower if you keep talking longer without focus, or if you fill pauses

with ums and ahs.

. Do what is comfortable. If it is easier, stay behind a podium. If you are

comfortable moving around, making gestures, and so forth, do so.

Anything you do with clear, focused intention works. But shifting or

rocking back and forth unconsciously is a distraction.

. Stand with one foot in front of the other. This will keep you from

rocking back and forth.

. Get comfortable with your presentation tools. Whether you use a data

projector, a flip chart, or anything else, learn to handle these tools

effectively, so that you can keep your focus on your audience.

. Get help from experienced presenters. Colleagues, or a local chapter

of ToastMasters or the National Speaker’s Association are great

resources, and very generous with help and guidance.

. Know that your audience supports you. Know that everyone wants

you to succeed—as much for their own sake as for yours. No one enjoys

being at a poor-quality presentation, or seeing someone make an
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embarrassing mistake. If you handle any mistakes professionally,

moving past them, others will overlook the errors with you.

Reports and Presentations Before the Decision

When providing a statistical report as input to a decision process, our focus

should be on presenting the question and presenting whatever guidance the

results of the statistical study or research offers in making the decision. The

clearer the question is to everyone, the easier it is to present the study in

support of the decision.

It is sometimes difficult to present the idea that the study returned no

significant results. Work carefully to explain how a lack of statistical

significance is a valid result of a study. Also explain what it implies for the

decision to be made.

As you plan your reports and presentations, be clear what you are trying

to accomplish in each section of the report or presentation. Here are the

different goals you may have:

. Define the decision to be made, including two or more options, one or

more of which will become the course of action.

. Define the questions being asked.

. Explain technical or statistical issues to a non-technical audience.

. Explain the course of action recommended by the statistics.

. Explain how the statistics returned no statistically significant results,

and what implication this has for the business decision.

. Make recommendations for further study, if appropriate.

CRITICAL CAUTION

Be Wary of Political Pressure
Some people—perhaps your superiors—may enter the decision meeting already

biased or decided about the way the decision should go. You may be asked to alter

your conclusions or recommendations. Or you may be asked to minimize the

significance of your results. On the one hand, you should be willing to present

findings in appropriate and inoffensive ways. On the other hand, it is essential that

you not compromise the truth.
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Reports and Presentations After the Decision
If a decision is made, and a new course of action is being launched, then there

will be some sort of announcement—internal or public—of the decision. This

is likely to include some explanation of the reasons for the decision, including

the statistical results that support it. This could be a simple sentence, or it

could be a summary of the statistical report, including some tables or charts.

If the document is to be a formal report—such as a corporate annual

report—or a page on the corporate web site, then you will need to coordinate

the format of your report with the people responsible for the design of these

documents. If you are preparing a report or presentation for the public, be

sure to coordinate your work with the publicity department or other official

spokespeople for your company.

You may be asked to prepare or present multiple reports or presentations

for different audiences. In that case, be sure you understand each audience,

their needs, and what information the company desires each audience to

receive, with what focus. At worst, this is a matter of putting different spins

on the same information. At best, it is a positive effort to engage the support

and understanding of groups with different interests and concerns.

If you are asked to give a presentation in an unfamiliar forum—such as a

presentation to a large, public audience—request whatever support you need

to prepare.

CRITICAL CAUTION

Statistics Gathered After the Fact
Sometimes, you may be asked to prepare a statistical report that supports a decision

after it has already been made. Or you may be asked to alter results so that they

support a decision. In the first case, this risks the post-hoc fallacy. In the second case,

there is a risk of falsifying results. If such a situation arises, it is best to provide only

those statistics that support the decision, if any. If it is possible to gather statistics

that genuinely support the decision without falling into the post hoc fallacy, that is

also all right. It is within a company’s right not to publish data and study results

it owns that goes against a business decision it has made, but it is inappropriate,

and, in the long run, disadvantageous, for a company to present results that are not

statistically supported, or worse, fallacious.
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Advertisements and Sales Tools Using
Statistics

There are many ways that statistical studies can be used in the design

of advertising campaigns and in the content of advertisements. Marketing

studies can be used to define the audiences, themes, and content that

are likely to convince people to buy our products and services. In addition,

data about the benefits of our products and services can be gathered through

a study, analyzed with statistical techniques, and presented to customers.

In almost all cases, advertising will simplify—perhaps dangerously

oversimplify—the results of statistical studies. As we provide material to be

used in advertising, we should try to do the following:

. Write simple, clear statements that are appropriate to your company’s

potential customers. This way, advertisers will be less likely to need to

make changes—and perhaps introduce error—in the presentation of

statistical results as advertising content.

. Make a list of statements that cannot be supported by the statistics.

Think of things that the advertising writing team is likely to want to

say, and let them know what is, and is not, supported.

. If possible, join in some of the brainstorming sessions.

. If possible, ask to review the advertisements before they go final. This

may give you a chance to correct misstatements before they are dis-

tributed. Make sure that you know whether you have the authority

to correct errors, or only the right to advise.

This work will be easier if you familiarize yourself with the types of

advertising and campaigns that your company engages in. In some cases, you

may be asked to offer more sophisticated studies in support of customer

decisions. For example, if your company’s clients are businesses who

purchase large contracts or quantities of products from your company, you

may be able to perform statistical analyses in support of proposals that show

the value of your company’s services for a particular contract.

CRITICAL CAUTION

Advertising Knows How to Misuse Statistics
Many techniques for exaggerating and distorting statistics have been used in

advertising for over half a century. For a good list, read How to Lie With Statistics,
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which was written in 1954. Many practices which are unacceptable to statisticians

are common in the field of advertising. This leads to tension, to say the least. It can

be challenging to present a case for the business value of honesty in this environment.

Quiz
1. Statistical research will be used to support which of the following decisions?

(a) A decision before it is made

(b) Support for a decision when it is announced

(c) Advertising

(d) All of the above

2. By linking each section, figure, and table of the report to the purposes of the

decision, we establish the _______ of the report.

(a) Feasibility

(b) Necessity

(c) Testability

(d) Consistency

3. By determining that the report contains no internal contradictions, we estab-

lish the _______ of the report

(a) Consistency

(b) Necessity

(c) Testability

(d) Feasibility

4. As we edit a report, we should work . . .

(a) In the same order in which we wrote the report

(b) From the executive perspective

(c) In the opposite order in which we wrote the report

(d) From the data to the conclusion

5. When organizing a presentation, it is good to . . .

(a) Create an outline

(b) Be ready to ask questions

(c) Be ready to answer questions

(d) All of the above
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6. A report presented before a decision is made should focus on . . .

(a) Clarifying the question and how the results support the question

(b) How the results can be used in advertising

(c) Being as technically specific as possible

(d) Statistics gathered after the fact

7. In almost all cases, advertising will _______ the results of statistical studies.

(a) Falsify

(b) Simplify

(c) Exaggerate

(d) Misuse

8. A good guideline for rehearsing presentations is to rehearse it _______ times

before giving it.

(a) Once

(b) 2 to 3

(c) 3 to 6

(d) 10 or more

9. To avoid the problems associated with using statistical studies in advertis-

ing, we should . . .

(a) Write clear statements that are appropriate to your customers

(b) Make a list of statements that cannot be supported by the statistics

(c) Ask to review advertising content before they are final

(d) All of the above

10. A good report has the qualities of a good _______ , plus other qualities that

make it appropriate for our audience.

(a) Technical specification

(b) Advertising campaign

(c) Decision

(d) All of the above
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Exam for Part Two

1. Which of the following is not a reason for conducting a statistical study in a

business context?

(a) Providing information in support of answering questions that are likely

to arise

(b) Providing general information about a situation in order to define what

questions should be asked

(c) Providing support to answer specific business questions and make

specific business decisions

(d) All of the above are good reasons for conducting a statistical study

2. Which of the following methods does not necessarily involve asking ques-

tions of people?

(a) Opinion poll

(b) People poll

(c) Survey

(d) All of the above involve asking questions of people
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3. The process of determining which subjects will be in the control group and

which will be in the experimental group is known as _______.

(a) Assignment

(b) Sampling

(c) Polling

(d) Encoding

4. Turning a vague business question into a good research question requires

which of the following?

(a) Defining the population

(b) Defining the attributes of the population you want to measure

(c) Defining the significant precision for each attribute you want to

measure

(d) All of the above are required

5. Self-descriptions are examples of . . .

(a) Facts

(b) Opinions

(c) Unbiased data

(d) Always accurate

6. Including numbers in a statistical report adds _______ to the presentation.

(a) Precision

(b) Clarity

(c) Correctness

(d) All of the above

7. What three components need to be carefully planned for data collection?

(a) The source of the data

(b) The methods that ensure reliable and valid data

(c) The research design that ensures the suitability of our data for our

planned analysis

(d) All of the above

8. In general, obtaining _____ is preferable to obtaining _____.

(a) Archived data; non-archived data

(b) Non-archived data; archived data

(c) Detailed data; summary statistics

(d) Summary statistics; detailed data

9. The advantage of collecting data yourself is that . . .

(a) It is less expensive than purchasing data from a vendor

(b) It gives you complete control over the data collection process

(c) Both (a) and (b)

(d) Neither (a) nor (b)
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10. Every time data are copied, moved, or translated from one form into

another adds the potential for _______.

(a) Calibration

(b) Redundancy

(c) Data validation

(d) Error

11. What is probably the most reliable form of data entry?

(a) Humans

(b) Audio/Video tape

(c) Electromechanical devices

(d) Computers

12. Which of the following is not true of a pie chart?

(a) Each individual unit that is included in the whole must be uniquely

identifiable as belonging to one and only one of the parts

(b) The sum of the measures can exceed 100%

(c) There must be an identifiable whole whose parts need to be identified

(d) All of the above

13. A histogram should be used when the data are on a _______ scale.

(a) Nominal

(b) Ratio

(c) Ordinal

(d) Interval

14. A _______ shows how being high or low on one numeric variable relates to

being high or low on a second numeric variable.

(a) Scatter plot

(b) Histogram

(c) Line graph

(d) Area graph

15. If ‘‘Time’’ is a variable in your study, you should use a _______ to represent

it in a graph.

(a) Bar chart

(b) Line graph

(c) Area plot

(d) Scatter plot

16. The degrees of freedom is equal to . . .

(a) Standard error

(b) Variance

(c) Sample size

(d) Population size
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17. If the sample size is large enough, the distribution of the sample will

resemble the _______.

(a) Population distribution

(b) Variance

(c) Standard deviation

(d) Correlation coefficient

18. Which statistic is sufficient, a parameter, and a moment?

(a) Mode

(b) Mean

(c) Median

(d) All of the above

19. The _______ give us a measure of the dispersion of the distribution

(a) Variance

(b) Standard deviation

(c) Both (a) and (b)

(d) Neither (a) nor (b)

20. The hallmark of inferential statistics is . . .

(a) Statistical significance

(b) Correlation

(c) Capitalizing on chance

(d) All of the above

21. A Type II error occurs when we . . .

(a) Reject the null hypothesis when it is true

(b) Reject the null hypothesis when it is false

(c) Accept the null hypothesis when it is true

(d) Accept the null hypothesis when it is false

22. The most important assumption that can be neglected for most parametric

tests is . . .

(a) The assumption of ordinal level of measurement

(b) The assumption of ratio level of measurement

(c) The assumption of interval level of measurement

(d) The assumption of categorical level of measurement

23. To determine the likelihood of both Type I and Type II error, we conduct a

_____ analysis.

(a) Frequency

(b) Power

(c) Significance

(d) Ratio
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24. By determining that each element in the report has only one possible

interpretation, we establish the _______ of the report

(a) Unambiguousness

(b) Modifiability

(c) Traceability

(d) Feasibility

25. Statistics gathered to support a decision that has already been made can

introduce __________.

(a) The risks of making the post-hoc fallacy

(b) Falsification of the results

(c) Both (a) and (b)

(d) Neither (a) nor (b)
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PART THREE

Statistical Inference:
Basic Procedures

Part Three of Business Statistics Demystified covers the most common

inferential procedures used in business statistics. An inferential statistical

procedure is a method for generating a statistical measure along with a

second statistical measure (usually a P-value) that tells us how confident we

can be that the first measure accurately reflects the actual world. We have

divided Part Three into four chapters. In Chapter 11 ‘‘Estimation’’ we

introduce procedures for estimating population measures from samples. In

Chapter 12 ‘‘Correlation and Regression,’’ we look at procedures that

provide measures that tell us about the relationship between variables,

including the possibility that one variable measures a cause and another one

measures an effect. In Chapter 13 ‘‘Group Differences,’’ we explain analysis

of variance (ANOVA) and designed experiments, offering procedures that

measure whether or not an intervention on one group (or groups) has caused

a difference between those group(s) and the control group(s). In Chapter 14

we will look at ‘‘Nonparametric Statistics,’’ alternatives to the procedures in

Chapters 11, 12, and 13, that may be less powerful, but aren’t as picky about

the quality of our data.

255

Copyright © 2004 by The McGraw-Hill Companies, Inc. Click here for terms of use.



Part Three is a concise review of the most important tools for business

statistics. It is a catalog. You will learn the details of each procedure from

your professor and a textbook that covers these materials in depth. When it

comes to running the procedure, any computerized tool will guide you. Our

goal is to demystify the tools for you by providing a clear review of the most

important issues, and to explain how they are used in business.

Note that throughout Part Three, N will be used to indicate the sample

size. The population size is assumed to be infinite unless otherwise indicated.

Also, because each chapter is short, we have not included quizzes. There is

just one final exam for all of Part Three.
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CHAPTER
11

Estimation:
Summarizing Data
About One Variable

In this chapter, we address statistical estimation, the process of determining

what we can say about the population based on a sample. In previous

chapters, we discussed the importance of estimation, the general strategy

for how to estimate, and the relationship between estimation and statistical

inference more generally. In business, we may often want to know—or be

able to claim—things about our population from just one sample. We may

have contracts with our customers that promise a minimum proportion of

some ingredient, a maximum amount of some impurity, a specific weight per

unit, etc. Similar requirements may be imposed by various governmental or

non-governmental regulatory authorities. Even if there is no contract or

regulations, our advertising may promise that we meet some such standard.

In these circumstances, it is useful to be able to assert our estimates with

respect to some specific value with confidence in order to be able to guarantee
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our customers or the regulatory authorities that we have achieved some

standard.

CRITICAL CAUTION

In Statistics, Estimates are About the Present, not the Future
In statistics, the term estimation refers to making statements about a population

from a sample or samples. The population already exists, so the estimation is about

the unknown present—the values of the population—not about the future. This will

seem odd to many business analysts, including those who prepare budget estimates

and time estimates, which are about the future. When statisticians talk about the

future, they call it forecasting. When statisticians and business people get together

in the same room, all get confused.

In this chapter, we will cover some of the more common estimation

procedures used in business, step by step. Before proceeding with this chapter,

it is a good idea to review the idea of estimation presented in Chapter 8

‘‘Common Statistical Measures.’’

Basic Principles of Estimation
The idea behind estimation is that there is a value out in the world that is

characteristic of a population and that by measuring some variable (called

the estimate) from a sample of that population, we can get a good idea of

what that population value is. The most common method of estimation is to

take a sample of the population and calculate a statistical measure from the

sample. The inferential method then allows us to calculate a second number

that tells us how confident we can be about that statistical measure. Most

often, this second number (or numbers) provides a measure of probability

related to a numerical interval. It tells us how likely or unlikely it is that the

actual population value differs from the sample value by that interval.

For example, we may want to list the weight of the contents of our snack-

sized bags of potato chips as 1.5 ounces. Yet we don’t weigh every bag, so

how do we know? We weigh a sample of the bags, and collect those measures.

The sample will have a mean weight, a variance, and a known distribution.

And, of course, we know both the sample size and the population size.

(Technically, the population size might be considered indefinitely large, since

the label will be on the bag long after the estimation process is over.) With

these figures, we will be able to say something like, ‘‘Our bags of potato chips

weigh 1.515 ounces, �1%, 99.73% of the time. Note that we’ve used three

PART THREE Statistical Inference258



statistical figures: the sample mean (which estimates the population mean),

the size of the confidence interval (which is a measure of the variability

of the sample mean), and the type of the confidence interval (which relates

the variability to the likely value of the true population mean). In this case,

the confidence level is 3 sigma. And, since the lower end of our range is 1.505

ounces, we’ve left a small margin for error beyond that. If we can keep to such

tight tolerances, we can ensure that we almost never sell underweight—a

crime—while minimizing the extra cost of potatoes, oil, and salt due to

over-stuffing our bags of chips.

POINT ESTIMATORS: ESTIMATING POPULATION
VALUES FROM SAMPLE VALUES

Not all statistical measures of samples relate well to the corresponding

measure for the population. For example, the minimum and the maximum

of the sample do not relate to the minimum and the maximum of the

population. (An infinite population may not even have a minimum or

maximum.) An important reason why the mean is so commonly used in

statistics is because it has a number of useful properties.

. The mean is what is known as a consistent estimator. No matter what

the shape of the population distribution, as the sample size increases,

the sample mean gets closer and closer to the population mean. (This is

called the Law of Large Numbers. Of course, this is all a matter of

probability. The sample mean does not get steadily closer. It is just

that, the larger the sample, the more likely the sample mean is close to

the population mean.)

. No matter what the shape of the population distribution, as the sample

size increases, the sample mean is itself normally distributed. (This is

called the Central Limit Theorem.) In other words, even if the popula-

tion distribution is not close to a bell curve, the distribution of means

of repeated samples of N>30 will be normal. This is a very important

property for making estimates, because it allows us to use the prob-

ability values of the normal distribution to express our confidence

about how close the sample mean is to the population mean.

. The mean is what is known as an unbiased estimator. This means that,

even for a given sample size, the mean of the sample distribution equals

the population mean. In a sense, an unbiased estimator points at the

true value exactly.

. The mean is what is known as a relatively efficient estimator for the

normal distribution. Think of two different statistical measures, like
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the mean and the median, which both measure the same characteristic

of the population. If, for any sample size, one measure has a consis-

tently smaller sample variance around the population value, then it is

said to be more efficient than the other. If the population is normal, the

sample mean is the most efficient estimator of the population mean.

. As we discussed earlier in Chapter 8 ‘‘Common Statistical Measures’’

the mean is a sufficient statistic. To say that a statistic is a sufficient

estimator means that it uses all of the available information in the

sample useful for estimating the population statistic. While the mean

is a sufficient statistic, it is not always a sufficient estimator of the

population mean.

So long as the population is normally distributed, the mean is a terrific

measure for estimating the central tendency. Even if the population is non-

normal, the mean is a very, very good measure. Whenever we can cast our

business decision in terms answerable by finding out a central tendency for

some population distribution, we can look to the mean as the best measure to

use. This is why so many statistical procedures use the mean. On occasion, we

may need to estimate some other characteristic of the population distribution.

Under these circumstances, we should try to use a statistical measure that has

as many of the above desirable properties as possible for doing the estimate.

FUN FACTS

A Baker’s Dozen
Before it was possible to run production lines with close tolerances, the minimum

was much more important than the mean when it came to delivery weight. The cost

of a bit of extra for the customer was less more important than the cost of being

caught selling underweight. The term ‘‘baker’s dozen’’ for thirteen items comes from

one solution to this practice. In England in centuries past, it was a serious crime for

a baker to sell under weight. Government officials would come and check. But, with

every roll hand-made, some would certainly be a bit too light. A baker could protect

himself from criminal prosecution through the custom of selling a baker’s dozen,

thirteen for the price of twelve.

STANDARD ERRORS AND CONFIDENCE INTERVALS

When we estimate, we get at least two numbers. The first number is our best

guess of the true population value. The second number (or numbers) is our
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best guess as to how far off our first number is likely to be, in other words, the

error. When we report these two numbers, we need to add a third number

that clarifies how the absolute size of the error relates to the likelihood

of where the true population value lies. There are a number of ways of

specifying this third number. As we discussed in Chapter 8, one way

of characterizing the size of the error is by giving the standard deviation of

the sampling distribution, the standard error. In terms of estimation, this is

a somewhat awkward way to present the error. What the standard error

tells us is that, should we repeat our study, our next value of the estimate is

most likely to fall within the error bounds listed. In short, the standard error

is not described in terms of what is being estimated.

An alternative for presenting error is a confidence interval. The type of

confidence interval, expressed either as a percentage or in terms of sigma is

our third number. The advantage to a confidence interval is that, the third

number can be related to the population value. A ninety-five percent confi-

dence interval for instance, is an interval surrounding the estimated value

in which the true population value is 95% likely to fall. While true, this

statement is slightly misleading. In ordinary English, when we say that a

point is 95% likely to fall within some interval, we mean that the point could

be in various places, but is 95% likely to be in the fixed region specified as the

interval. We might express the expertise of an archer by saying that there is a

95% chance that her arrow, once fired, will land on the target. The location

of the target is fixed. The arrow is yet to be fired. However, when we say that

the population value is 95% likely to fall within the stated interval around the

sample value, it is the population value that is fixed and the interval which

would vary if we were to repeat our study.

It is sort of like the old joke about the guy who shoots an arrow at a fence

and then paints a bull’s eye around it. A confidence interval is like that guy

having very poor eyesight. He hits the fence with the arrow and then feels

around for the arrow and paints a circle around it. His eyesight is so poor

that he can only be sure of surrounding the arrow with the circle 95% of

the time.

Another analogy may help. Statistical estimation almost always involves

fishing for an unmoving fish using a net. We toss the net, but then we are

prevented from pulling it in. We can never verify that our net caught the

fish, but we can express our confidence in our net-throwing accuracy by

stating that, were we able to pull the net in, there would be a 95%

(or however much) chance that the fish would be caught in our net.

This percentage describes the proportion of our throws that would

catch the lazy fish, not the likelihood that one throw would catch a

moving fish.

CHAPTER 11 Estimation: Summarizing Data 261



THE z TEST

As shown in Table 11-1, the z test is a statistical procedure that allows the

estimation of the population mean when the population variance is known.

Single-Sample Inferences: Using Estimates to
Make Inferences

It is only in rare cases that the population variance is known with such

certainty that the z test can be used. When we have no independent source

Table 11-1 The z test.

Type of question answered

Is the population mean significantly different from a specified value?

Model or structure

Independent variable A single numerical variable whose mean value

is of interest.

Dependent variable None

Equation model
z ¼

�XX� �

�x=
ffiffiffiffi

N
p

Other structure The P-value calculated from the z-score is the

estimate of the probability that the sample mean

would fall this far or further from the specified

value, �.

Corresponding nonparametric test None

Required assumptions

Minimum sample size 20

Level of measurement Interval

Distributional assumptions Normal, with known variance.
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of information as to the variance of the population, we must use our

best estimate of the population variance, the sample variance, instead. For

example, we can’t know the variance of the weight in the entire population

of every bag of potato chips we sell, because we can’t realistically weigh

every bag. When we use the sample variance instead of the (unknown)

population variance, we lose a degree of freedom. But the sample variance

is also a consistent estimator of the population variance, so the quality of

the estimate gets better with increasing sample size. We need to adjust our

test to account for the sample size as a source of error in estimation. Recall

from Fig. 8-4 that the t distribution changes with the sample size. As it turns

out, the adjustment we need is just to use the t distribution for the

appropriate degrees of freedom instead of the normal distribution used in the

z test.

The single-sample t test is an excellent example of a common occurrence

in statistics. The t distribution, which was originally invented to deal with

the distribution of differences between normally distributed variables

also turns out to be the distribution of a difference in means with a sample

variance. The most common distributions have many different uses, because

various kinds of estimates turn out to be distributed in that shape. On

a practical level, the t test can be used easily because all of the input

numbers are drawn from a single sample, like our sample of bags of potato

chips.

HYPOTHESIS TESTING WITH THE t DISTRIBUTION

As shown in Table 11-2, the one-sample t test is a statistical procedure that

allows the estimation of the population mean when the population variance

is unknown and also must be estimated.

COMPARING PAIRS

As shown in Table 11-3, the paired t test is a statistical procedure that allows

the determination of whether an intervention on individual members of

multiple pairs of subjects has had a significant effect by estimating the

population mean for the value of the differences.

From a design perspective, in terms of the type of question answered,

the paired t test is really a group test, in that it can be used to measure the

effects of an experimental intervention. We include it here, rather than in

Chapter 13 ‘‘Group Differences,’’ because in terms of the statistical

calculations, the difference measure, D, is assumed to be calculated from a

single sample of differences.
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TEST OF PROPORTIONS

As shown in Table 11-4, the one-sample z test of proportions is a statistical

procedure that allows the estimation of the proportion of a population

having some characteristic. This test can be used for categorical variables

with two possible values.

The one-sample z test of proportions is useful in surveys and in process

control. Suppose we want to introduce a new flavor to our line of soft drinks.

We estimate that the additional flavor will be profitable if over 20% of our

current customers like it. We take a sample of our customers and have them

try the new flavor. The z test can tell us if the proportion of the population

Table 11-2 The one-sample t test.

Type of question answered

Is the population mean significantly different from a specified value?

Model or structure

Independent variable A single numerical variable whose mean

value is of interest.

Dependent variable None

Equation model
t ¼

�XX� �

sx=
ffiffiffiffi

N
p

Other structure The P-value calculated from the t-score and the

degrees of freedom, N�1, is the estimate of the

probability that the sample mean would fall this

far or further from the specified value, �.

Corresponding nonparametric test Wilcoxon signed rank test

Required assumptions

Minimum sample size 20

Level of measurement Interval

Distributional assumptions Normal
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who will like the new flavor is significantly greater than p¼ .20. Or suppose

we are manufacturing widgets and our contract with the customer commits

us to less than a 1% rejection rate for quality. We can sample from the

production line and use the z test to ensure that the population proportion

of rejects is significantly below 1%.

Table 11-3 The paired t test.

Type of question answered

Is the mean difference between scores taken from paired subjects different from zero?

Model or structure

Independent variable Assignment to groups, one group to each

member of pair.

Test statistic Difference, D, between numerical scores

of pair members.

Equation model
t ¼

P

D=N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðD� �DDÞ2=NðN� 1Þ
q

Other structure The P-value calculated from the t-score and

the degrees of freedom, N�1, is the probability

that the observed difference would be this large

or larger if there were no difference between

the groups.

Corresponding nonparametric test None

Required assumptions

Minimum sample size 20 pairs

Level of measurement Dichotomous/categorical for groups.

Interval for scores.

Distributional assumptions Scores must be normally distributed

for both groups.

Other assumptions Pairs must be well matched on extraneous

variables or else linked on a prior basis

(e.g., a married couple).
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The same equations, used differently, allow us to calculate confidence

intervals around a sample proportion. This means that we can take a survey

and, depending on the sample size, give error bounds around the proportion

of persons who respond in a certain way to a certain question. There is a big

difference between a survey that says that 24� 2% of those surveyed use our

product and one that says that 24� 10% do.

Table 11-4 The one-sample z test of proportions.

Type of question answered

Is the proportion of the population with a specific characteristic significantly different

from a specified value?

Model or structure

Independent variable A single dichotomous categorical variable.

Test statistic The sample proportion, p, calculated as the

number of individuals in the sample possessing

the characteristic, divided by the sample size.

Equation model z ffi px � p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ=N
p

Other structure The P-value calculated from the z-score is the

estimate of the probability that the sample

proportion would fall this far or further

from the specified value, p.

Corresponding nonparametric test The �
2 test of proportions.

Required assumptions

Minimum sample size Both np and n(1�p) must be greater than five.

Level of measurement The independent variable must be

dichotomous/categorical.
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CHAPTER
12

Correlation and
Regression

This chapter covers the techniques involved in correlation and regression.

Correlation and regression are ways of looking at data based on the scatter

plot, which we saw in Figs. 7-12 and 7-13. The major difference between

correlation and regression is that regression is a way of looking at causality.

In regression, one set of variables (called the independent variables) are

assumed to be possible causes. Another set (called the dependent variables)

are assumed to be the possible effects. Using regression, the values of the

independent variables for a specific individual can be used to predict the

values of the dependent variable for that same individual. Correlation, on

the other hand, is just a measure of the degree that higher or lower values on

one variable have some correspondence to higher or lower values on another

variable for a sample.
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Relations Between Variables
The study of correlation and regression always begins with the simplest case,

with just two variables measured for each individual in a sample drawn

from the population. Later on, we will see how these relatively simple tech-

niques can be expanded to deal with more variables (and the complexities

that arise when we do).

INDIVIDUALS WITH CHARACTERISTICS

Key to understanding both correlation and regression is the underlying

model of a population of individuals, each measured on a number of different

variables. For any given individual, the values of those variables characterize

that individual. We saw this in the example of Judy and her friends. Each

person is characterized by height, weight, and I.Q. Of course, in a real study,

there would be many more variables and, often, many more subjects. Note

also that this model applies to both experimental and non-experimental

studies. In an experimental study, we would have to distinguish carefully

between variables measured before and after each intervention.

PLOTTING THE CORRELATION

Recall from Chapter 7 ‘‘Graphs and Charts’’ that we can draw the

relationship between the values of two variables measured on the same

subjects with a scatter plot. This is the geometric basis for the mathematics

behind both correlation and regression. In Chapter 8 ‘‘Common Statistical

Measures,’’ we discussed a way of calculating the correlation coefficient that

illustrated how it was a ratio of the variances relating the two variables. Here,

we look at another way of calculating the same correlation coefficient that

shows how it captures the geometry of the scatter plot. Here is another

definition for the Pearson correlation coefficient:

r ¼
P

ðx� �XX Þð y� �YY Þ
ðN� 1Þsxsy

ð12-1Þ

Here, �XX and �YY are the means of each of the two variables, and sx and sy
are the standard deviations.

As we discussed in Chapter 8, standardizing values of a variable converts

a normally distributed variable into a variable with a mean of zero and a

standard deviation of one. As a matter of fact, standardization works

with non-normally distributed variables. Standardization cannot make a

PART THREE Statistical Inference268



non-normal distribution normal, but it will give it a mean of zero and a

standard deviation of one. To standardize a variable, we take each value and

subtract the mean of all the values and then divide by the standard deviation.

Note that this new equation for the correlation coefficient shows its similarity

to standardizing the product of the two values for each subject and adding

them all together.

When the value of a variable is converted into a standard score, it becomes

negative if it was below the mean and positive if it was above the mean. In

terms of the sample, above the mean means high and below the mean means

low. If two variables are directly related, when one value is high (or low), the

other value will be high (or low) as well. In this case, most of the time, the

standardized x-value and the standardized y-value will both be positive or

both be negative, which means that the product will be positive. This will

make the correlation coefficient higher. If the two variables are inversely

related, when the value of one variable is high, the other will tend to be low,

and vice versa. With the standardized values, most of the products will be

negative and the correlation coefficient will be lower.

The relation between this formula and the geometry is illustrated in

Fig. 12-1.

The points in the upper right-hand and lower left-hand portions will add

to the correlation. The other points will lower the correlation. In Fig. 12-1,

the correlation will be positive, with a value of .81, because most of the points

fall in the places that raise the correlation above zero. If the two variables

were unrelated, there would tend to be the same number of points in each of

the four corners, and the correlation would be close to zero.

Fig. 12-1. The geometry of correlation.
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THE t TEST FOR THE CORRELATION COEFFICIENT

There is a one-sample significance test for the correlation coefficient. For

reasons discussed below, we do not recommend it. We include it here because

it is discussed in a number of business statistics texts.

Table 12-1 The t test for the correlation coefficient.

Type of question answered

Is the correlation in the population significantly different from zero?

Model or structure

Independent variables Two numerical variables measured on the same sample.

Test statistic The Pearson product-moment correlation.

Equation model t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2Þ=ðN� 2Þ
p

Other structure The P-value calculated from the t-score and the degrees of freedom, N�2, is

the probability that the observed correlation would be this far from zero or

further if the true population correlation is zero.

Corresponding

nonparametric test

Any of a number of alternative indices, including the Spearman rank-order

correlation coefficient. (These are not presented in Business Statistics

Demystified.)

Required assumptions

Minimum sample size 20

Level of measurement Interval (ordinal may not be used)

Distributional

assumptions

Both variables must be normally distributed with equal variances. The

conditional distributions of each variable dependent upon all values of the

other variable must also be normally distributed with equal variances.

Other assumptions The errors of each variable must be independent of one another. The values

of each variable must be the product of random (not systematic) sampling.

The true relationship between the variables must be linear.
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CRITICAL CAUTION

There are a number of reasons to be very cautious in using the t test for the correlation

coefficient. As we can see from Table 12-1, there are a number of assumptions, which,

if violated, render the significance test invalid. While the test is moderately robust to

violations of some of these assumptions, some of the assumptions, particularly the

equality of variances for the conditional distributions, are often violated in real data.

The linearity assumption can also be particularly troublesome, because it is an

assumption about the relationship being measured. Many studies that use cor-

relations involve either systematic sampling of at least one variable, or sampling

procedures that create non-independent errors. The test is not very robust to these

sorts of violations. Some texts even recommend restricted sampling over a range in

which the relationship can be presumed linear, which violates the random sampling

assumption in order to satisfy the linearity assumption.

There are two additional problems that relate to the meaning of the test itself.

First, it is almost never the case in nature that two variables measured on the same

subjects have a correlation precisely and exactly equal to zero, which is the null

hypothesis for this test. This means that, given a large enough sample, every

measured correlation will be significant! While this is a very general problem with

any null hypothesis, it is especially troublesome for studies in which there is no

intervention or control group, which is often the case in correlational studies.

Furthermore, because interventions cost money, correlational studies tend to be

larger than experimental studies, producing larger sample sizes. This gives rise to odd

results, such as very small correlations that are statistically significant. What does it

mean to say that two variables are significantly correlated with a coefficient of .01?

Second, the correlation coefficient is used when the relation between the variables

cannot be assumed to be causal. If one of the variables is thought to be measuring

the cause and the other the effect, regression tests, which have many advantages, can

be used. The use of correlation instead of regression means that either we are

ignorant of the true underlying causal relations, or we are unable to measure some

additional variable or variables believed to be the cause of both of the two variables

measured. In either case, the value of the correlation makes sense as a measure of the

relationship found. However, the additional information that the correlation found

is unlikely to be due to chance is difficult to interpret sensibly. All it really means is

that we took a large enough sample, which is a fact entirely under our control and

not reflective of anything about the nature of the data.

In an experimental study, the null hypothesis allows us to ask the question: Did

our intervention have an effect? In a survey, the null hypothesis for the correlation

only allows us to ask whether we collected enough data to get accurate measures of

correlations of the size actually found, which is something we should have planned

out in the first place.
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EXERCISE

Note that, in the case of the heights and weights of Judy and her friends, we

cannot assert that the correlation is significantly different from zero, despite the

fact that we have a large enough sample and that the correlation is very large. As

an exercise, say why the t test for the correlation coefficient cannot be used in this

case.

CORRELATION AND CAUSALITY: POST HOC,
PROPTER HOC

When two variables, A and B, are correlated, there are three standard possi-

bilities. Either A causes B, or B causes A, or there is some third variable, C

that causes both A and B. But the real world is much more complicated.

Consider our simple example of height and weight. There is a sense in which

being very tall necessitates having enough weight to fill out one’s frame. The

minimum weight for a short person is less than the minimum weight for a tall

person. This fact could generate some correlation and probably accounts for

part of the observed correlation. But is this truly a cause? Instead, we might

say that there is a third characteristic of people, call it overall size, that is a

possibly genetic cause of both weight and height. Perhaps, but certainly there

are causes of height (like good diet and health in childhood) that are not

causes of weight and vice versa. The values of every variable have multiple

causes.

In addition, there is the problem of time. Our Western notion of causality

includes the assumption that the cause must precede the effect in time. But

our studies often do not measure a single subject across a long enough period

of time to measure both causes and effects. Furthermore, many variables

interact mutually over time, with increases in one leading to increases in the

other, which lead to more increases in the first, etc. For example, if we track

the number of employees of a company and its net worth, and both grow

over time, it may well be that each is causing the other. The increase in net

worth allows more hiring, and the larger workforce can be used to increase

total sales, increasing net worth.

In all of these cases, both correlation and regression have very real

limitations as techniques for assessing what is really going on.
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Regression Analysis: The Measured and the
Unmeasured

When we are in a position to assert that one or more variables measure

causes and other variables measure their effects, we can use regression. The

best case is when the independent variables measure the amount of inter-

vention applied to each individual (such as fermentation time, weeks of

training, or number of exposures to our advertisements) and the dependent

variable measures change that would not be expected to occur without the

intervention (such as sourness of the dough, number of sales, or amount of

purchases). So long as certain additional assumptions are met, some form

of regression analysis is the statistical technique of choice.

THE LINEAR REGRESSION MODEL

The most basic form of regression is simple linear regression. Simple linear

regression is used in the case where there is one independent variable, X,

presumed to measure a cause, one dependent variable, Y, presumed to

measure an effect, and the relationship between the two is linear. In the

scatter plot, the independent variable is graphed along the horizontal axis

and the dependent variable is graphed along the vertical axis. We talk about

the regression of X on Y.

When there are more variables, non-linear relationships, or other

violations of basic assumptions, some other, more complex form of

regression (discussed below) must be used. We will discuss simple linear

regression in detail not because it is the most commonly used, but because

it is the easiest to understand, and is the basis for all of the other forms.

What is a linear relationship?

Returning to Fig. 7-12, we see that a line has been drawn through the scatter

plot. This line is called the regression line, and it is the heart and soul of the

logic of regression analysis. While correlation attempts to summarize the

relation shown in a scatter plot with a single number, regression attempts to

summarize that same relation with a line. The rules for regression ensure that

for every scatter plot there is one and only one ‘‘best’’ line that characterizes

the cloud of points. That line defines an expected y-value for each x-value.

The idea is that, if X causes Y, then knowing X should allow us to predict Y.
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You may recall from algebra that any line can be expressed as an equation

with two constants,

ŶY ¼ �1Xþ �0 ð12-2Þ
where �1 is the slope of the line, describing how slanted it is, and �0 is the

y-intercept, indicating the point at which the line crosses the vertical axis

when X¼ 0. Note that this means that whenever we know the value of X,

we can calculate the value of ŶY.

TIPS ON TERMS

We use the variable, ŶY, instead of Y, because the points on our scatter plot are not

in an exact line. ŶY is the variable that contains the values of our predictions of the

y-values, not the exact y-values themselves.

Suppose we take one individual from our sample, let’s use Francie, and

look just at the x-value (height), and try to predict the y-value, weight. Figure

12-2 shows the scatter plot of heights and weights, with Francie’s data point

highlighted. Using the equation for the regression line to calculate a y-value is

the way to use a regression analysis to estimate y-values. Geometrically, this

is the same as drawing a vertical line from that x-value to the regression line,

then drawing a horizontal line from that point on the regression line to the

y-axis. The place where we hit the y-axis would be our estimate for Francie’s

weight. As we can see from Fig. 12-2, this procedure would give us an

estimated weight of about 170 lbs for Francie, considerably above her actual

Fig. 12-2. Regression residuals for weights and heights.
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weight of 152. The vertical line from Francie’s data point up to the regression

line indicates the difference between her actual weight and the expected

weight calculated by regression. It is called the residual.

The regression line is defined in terms of the residuals and the uniqueness

of the regression line is determined by the values of the residuals. As it turns

out, there is one and only one line that minimizes all of the residuals. That

line is the regression line. If we use the regression line to predict y-values from

x-values, we will do as well as we can for the items in our sample in the sense

that our overall errors will be minimized.

KEY POINT

The regression line is the line passing through the data points that has the shortest

possible total sum for the square of all the residuals. (This is called the least-squares

criterion.) The regression line is unique for every set of points in two dimensions.

HANDY HINTS

Regression is Asymmetrical
Looking at Fig. 12-2, we note that, geometrically, the residuals for the regression of

X on Y are all lined up parallel to the y-axis. Imagine that we are interested in the

regression of Y on X. The scatter plot for this regression would be flipped around

and the residuals would be parallel to the height axis instead of the weight axis.

The lengths would be different and the regression line would not necessarily be the

same.

In contrast, note that both of the equations for the correlation coefficient are

symmetrical for X and Y. This means that, if we swap X and Y, the equation for the

correlation coefficient does not change. This is because the correlation of X with Y

is the same as the correlation of Y with X.

Causality is directional and so is regression. Of course, as we normally use

regression, we put the possible cause, the intervention which occurred first in time,

on the x-axis, calculating the regression of Y on X. Ordinarily, there is no reason to

calculate the regression of X on Y, unless we wanted to claim a later event caused an

earlier one.

There is, however, a precise mathematical relationship between correlation and

regression. The Pearson product moment correlation is the slope of the regression

line, adjusted for the difference in the standard deviations of the two variables.

The correlation coefficient takes the differences in scale between the two variables

into account in order to keep things symmetrical and to ensure that any Pearson
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product moment correlation for any two variables is scaled the same way. The

regression line, on the other hand, is calculated for the values of the variables in their

own original scales. The slope of the regression line is proportional to the

correlation.

Significance in simple linear regression

Given that there is a regression line for every set of points, what does it mean

for a regression to be statistically significant? Regression analysis is an

attempt to find a causal relation. If there is a correlation, there may not be a

causal relation, but if there is a causal relation, there must be a correlation.

Therefore, we can use the absence of a correlation as our null hypothesis.

This is the same significance test given in Table 12-1.

Another way of looking at this is that a significant regression means the

ability to predict Y from X. The null hypothesis is that we cannot predict

anything about Y from X. If X tells us nothing about Y, then being low or

high on X has no effect on Y. A regression line where moving along the

x-values does not change the y-values is horizontal. (Recall from algebra that

the slope of a horizontal line is zero.) So, the appropriate null hypothesis is

that the slope of the regression line is zero. Because the slope of the regression

line is proportional to the correlation coefficient, if one is zero, the other is

zero. So the two null hypotheses are equivalent.

As shown in Table 12-2, linear regression is a statistical procedure that

allows the calculation of a significance level for the degree to which the values

of one numerical variable (called the independent variable) predict the values

of a second numerical variable (called the dependent variable).

REGRESSION ASSUMPTIONS

Note that the assumptions for regression given in Table 12-2 are basically

the same as those for correlation in Table 12-1. The relevance of these

assumptions is different because regression is intended to be used in the

context of a controlled study where we have other reasons to assume a causal

relation. In principle, it is possible to conduct a regression study with a large

enough sample such that a very small correlation between the independent

and dependent variable would be recorded as significant. However, there are

separate statistics that can be used to evaluate the amount of error we can

expect when we estimate the dependent variable. If our independent variable

does not allow us to predict the dependent variable with sufficient accuracy
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to be practically useful in the context of making our business decision,

statistical significance is irrelevant.

In addition, there are also techniques (not covered here) that allow us to

measure the degree to which various assumptions, particularly the linearity

and independence of error assumptions, are violated. If there is any doubt

about these assumptions, those tests should be performed.

Table 12-2 Linear regression.

Type of question answered

Can we predict values for one numerical variable from another numerical variable?

Model or structure

Independent variable A single numerical variable assumed to measure a cause.

Dependent variable A single numerical variable assumed to measure an effect.

Equation model ŶY ¼ �1Xþ �0

Other structure The estimate of the slope, divided by the estimate of its standard error, is

distributed as a t statistic. The equation is complex, but is equivalent to the

equation in Table 12-1. The P-value calculated from the t-score and the

degrees of freedom, N�2, is the probability that the observed slope would be

this far from zero or further if the true population slope is zero.

Corresponding

nonparametric test

None

Required assumptions

Minimum sample size 20

Level of measurement Interval

Distributional

assumptions

Both variables should be normally distributed. The conditional distribution of

the dependent variable at all values of the independent variable must also be

normally distributed with equal variances.

Other assumptions The errors of each variable must be independent of one another. The values

of each variable must be the product of random (not systematic) sampling.

The true relationship between the variables must be linear.
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Alternative types of regression

A special mention should be made of the linearity assumption. A causal

relation may result in any one of an infinite number of systematic and

important relations between two variables. Many of these relations are not

linear. Recall from algebra that a linear equation is just the simplest of the

polynomial equations. There are also quadratic equations, cubic equations,

etc. Suppose low and high values of the independent variable lead to low

values of the dependent variable, but middling values of the independent

variable lead to high values of the dependent variable. For example, years of

education is related to salary in this way. Up through college, increasing years

of education tend to lead to increased income. But folks with Ph.D.s tend to

make less money and bring down the average for everyone with more than

16 years of education. Or the situation may be reversed, with middling

values of the independent variable leading to low values of the dependent

variable. For example, one might find such a relationship between number of

errors and team size. If a team is too small, the pressure to get all the work

done would lead to errors. On a right-sized team, errors would decrease.

When a team gets large, communication, training, and quality control are all

more difficult, and we might find an increase in error again. These are very

reasonable relationships and useful to know about. They are captured by

quadratic equations and there are forms of regression analysis that allow

us to assess them.

There are other forms of non-linearity that are not well handled by any

polynomial function. In many cases, one or more of the variables can be

transformed by some preliminary calculation so that the relation between

these new variables is linear. Another form of non-linearity is when one

relation holds for a particular range of x-values and another relation holds at

other points along the x-axis. Complex forms of regression, using a technique

called splines, are useful in these cases.

SOMETHING EXTRA

Get Ahead of the Curve—Use Splines
There is a marketing concept called the product life cycle. Total sales of a product

start very slow, grow rapidly, drop at saturation, level off at maturity, and then drop

to very low levels—or cease altogether—at obsolescence. An example might be total

annual sales of new typewriters between the years 1880 and 2000. Traditionally, this

is drawn with a smooth curve. The latest statistical techniques use splines—mixes

of different lines and curves—to generate what some statisticians hope will be more
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accurate models. We might begin with an S-curve—slow start, exponential growth,

leveling off at saturation. The mature phase might be a horizontal line, indicating flat

sales. As typewriters entered obsolescence, probably about when Windows word

processors with relatively high-quality printers came to consumers, we would see a

steep S-curve for the decline to the point where few, or no, new typewriters are being

sold every year.

Businesses plan very different survival and growth strategies based on their beliefs

about the maturity of their market. Statisticians think splines will help. Be ready to

use them!

When an independent variable is non-normally distributed, or even

categorical, instead of numerical, regression analysis is relatively robust.

Even dichotomous variables (called dummy variables) may be used.

However, when a dependent variable is dichotomous, regression analysis is

not robust with respect to this violation of distributional assumptions.

Another complex, specialized type of regression, called logistic regression,

can be used.

SURVIVAL STRATEGIES

The important thing to know is that there are many alternatives to simple linear

regression that may serve our business needs. When in doubt, call on an expert to see

if there are better ways to analyze the data.

While these other types of regression require other assumptions and are

useful in other situations, the basic logic of simple linear regression applies to

all of them. They are all attempts to characterize relationships between causes

and effects in terms of mathematical functions. The shape of the function

is always determined by the errors made in predicting the dependent

variables. (There is one technical difference. For some types of regression

more complicated than quadratic, cubic, or exponential, the least-squares

method cannot be used and an alternative, called the maximum likelihood

method, is used.)

Problems in prediction

Prediction is always a risky business. The large number of assumptions

required for regression are an indication of this. In addition, there are specific

problems in regression related to making predictions.
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CRITICAL CAUTION

Predicting isn’t Always About the Future
In statistics, prediction has many different uses. Relating to regression, it means

determining the value of one variable for an individual from another variable or

variables. It does not necessarily mean predicting the future. In fact, predicting the

future, or forecasting, is a particularly difficult case of prediction.

In a regression context, making a prediction means taking an x-value that

is not found in our sample, and calculating a y-value for that individual.

The ability to make these sorts of predictions is very valuable in business,

simply because measurement costs money. If we can measure just some of the

variables and then calculate the rest, we can save money, time, and resources.

If the number of contacts to current customers from salespeople predicts the

number and value of sales by that customer, we can predict the optimal

number of sales contacts to make per customer. This is an example where we

would expect a nonlinear result. Up to a point, more sales contacts increase

sales. Beyond that point, the customer may feel intruded upon, and sales

may drop.

Of course, our prediction is just an estimate, based on our sample. There

will be error. Furthermore, if the new individual is importantly different from

those in our original sample, the prediction may go awry.

There is one way that new individuals may differ from those in our sample

that can be easily measured. If the values of any of the independent variables

for a new individual are outside the range of the independent variables found

in our study sample, the prediction cannot be justified in a regression context.

For example, none of Judy’s friends are over six feet tall. If Judy makes a new

friend who is 6 02 00, our prediction of this new friend’s weight may not be valid.

TIPS ON TERMS

When we make a prediction for values of the dependent variable(s) based upon

values of the independent variable(s) within the range of the sample values, the

prediction is called an interpolation. When we make a prediction for values of

the dependent variable(s) based upon values of the independent variable(s) outside

the range of the sample values, the prediction is called an extrapolation.

The problems of extrapolation are particularly difficult in the case of

forecasting. If our independent variable is time, then our predictions will
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always be extrapolations because our study is over and any new subjects will

be measured in the future. The range of time used in our regression analysis is

always in the past, because we took our sample in the past. A good example is

predicting stock prices or our profits. Forecasting is always a battle against

the problems of extrapolation. If these problems were easy to solve, we could

all just play the stock market for a little while and then retire. We will discuss

this in more detail in Chapter 16 ‘‘Forecasting.’’

Multiple Regression
Multiple regression (sometimes called multivariate regression) involves the

use of more than one independent variable to predict the values of just one

dependent variable. (In Business Statistics Demystified, we reserve the term

‘‘multivariate regression’’ for the much more complex situation where there

are multiple dependent variables.) Here, we will discuss linear multiple

regression only.

Earlier, we mentioned that we might predict income based on years of

education. True, and we can get a much better prediction of income if we

know years of education, age, race, family income of parents, marital status,

and other factors. Having many such factors, and using them to increase the

precision of our estimate, is very useful in business. Marketing companies sell

statistical data using such factors to determine the likelihood of customers

buying a company’s product or service. Often the marketing companies

provide general statistics organized by residential zip code to avoid giving

away personal information about individual families. Although a corporate

customer may use the data based on one variable—say, by mailing to selected

residential zip codes—the value of the data lies in the fact that it aggregates

a great number of variables about the population and their spending habits,

and these multiple variables (per zip code, rather than per family) can be used

to estimate the likelihood that people in a particular zip code are likely to buy

the product. For example, we could go to a marketing company and say,

‘‘We know our product sells to young women between 14 and 17 years old in

families with incomes over $50,000 per year. What zip codes have a large

number of families in that income range with children that age?’’

THE MULTIPLE REGRESSION MODEL

Statistically, multiple regression is a straightforward extension of simple

regression. The chief advantage is that we are using more information about
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each subject in order to predict the value of the dependent variable. Multiple

regression allows us to use many different measures to predict one. For

example, we can use the customer’s age, sex, income, type of residence, etc.,

to predict how much they will spend on an automobile. The use of multiple

independent variables does create additional problems however. We will

discuss these below.

As shown in Table 12-3, multiple regression is a statistical procedure that

allows the calculation of a significance level for the degree to which the values

Table 12-3 Multiple regression.

Type of question answered

Can we predict values for one numerical variable from multiple other numerical variables?

Model or structure

Independent variable Multiple numerical variables assumed to measure causes.

Dependent variable A single numerical variable assumed to measure an effect.

Equation model ŶY ¼ �0 þ �1X1 þ �2X2 þ �3X3 þ Kþ �kXk

Other structure The formula for testing the null hypothesis, which is expressed as a ratio of

variances, is distributed as an F statistic. The equation is complex and is not

covered here. The P-value calculated from the F-score and the degrees of

freedom, N�k�2, is the probability that the observed slope would be this far

from zero or further if the true population slope due to all variables is zero.

Corresponding

nonparametric test

None

Required assumptions

Level of measurement Interval

Distributional

assumptions

All variables should be normally distributed. The conditional distribution of

the dependent variable at all values of all independent variables must also be

normally distributed with equal variances.

Other assumptions The errors of each variable must be independent of one another. The values

of each variable must be the product of random (not systematic) sampling.

The true relationship between the variables must be linear.
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of more than one numerical variable (called the independent variables)

predict the values of a separate numerical variable (called the dependent

variable).

The null hypothesis for the F test in Table 12-3 is that there is no relation

between the Y variables and any of the X variables. If any independent

variable gives any information useful for predicting the dependent variable,

the result will be significant. There is also a separate test, called the partial

F-test, where the null hypothesis is that one independent variable contributes

no additional information for the prediction beyond that provided by the

other independent variables already in the model. The partial F-test is used in

a number of complex procedures for deciding whether or not to include each

of several candidate independent variables. There are different measures that

can be used to make these decisions and they do not always give the same

answers.

The issues of minimum sample size to establish significance are complex

and a more advanced text (or an expert) should be consulted.

Any of the more complex forms of regression discussed in the preceding

section on simple regression can also be part of a multiple regression model.

In addition, there is a type of non-linear function specific to multiple

regression models called an interaction model. This is where one independent

variable has the effect of magnifying the effect of another. Interactions are

very complex in a regression context, but a simple form found in a group

context will be discussed in Chapter 13 ‘‘Group Differences.’’

MULTIPLE REGRESSION ASSUMPTIONS

All of the assumptions for simple regression apply to multiple regression as

well. There is also the problem of collinearity. If some of the information

contained in one independent variable useful in predicting the dependent

variable is duplicated in another independent variable, then those two

independent variables will be correlated. For example, salary, value of home,

and years of education may all help predict the price of a person’s car, but

much of this information may reflect the amount of disposable income. In

this sort of a case, we may get a good prediction of the dependent variable

overall, but measures of the contribution of each independent variable to the

prediction will be hard to determine. If we include salary first, the value of the

home or the years of education may not make a significant contribution to

the prediction, even though they may make a big contribution if included

earlier.

Because there is no principled reason for including variables into the

equation in any particular order and many variables are correlated to some
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degree, there is very often a problem with multiple regression in assessing the

true contribution of any one variable. This can create very real problems in

decision-making. For example, all studies that involve either the contribution

of intelligence to some dependent measure, such as success, or which treat

intelligence as a dependent measure and try to find out what makes folks

smart, use a measure of the contribution to the regression called percent

variance accounted for. All of these studies are subject to problems of col-

linearity. Despite this fact, proponents of these studies often propose serious

policy decisions based on the notion that genetics determines intelligence, or

intelligence determines success in life, and so forth.

The most conservative solution is simply not to take any measure of

the relative contribution of any one independent variable too seriously. At

a very minimum, genuine care must be taken to establish whether or not

independent variables are correlated. Even with a study that includes only a

few independent variables, other variables are not included in the study

because they were too hard to measure or just not thought of, may be the real

contributors.

Finally, we have the interventionist fallacy, also known as the Law of

Unintended Consequences. Just because poverty leads to drug addiction does

not mean that raising everyone’s salary will lower the rate of drug use. Even

if A causes B, changing the amount of A won’t necessarily have the desired

effect on B. The act of intervening may change the structure of the underlying

causal relations.
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CHAPTER
13

Group Differences:
Analysis of Variance

(ANOVA) and
Designed

Experiments

In Chapter 9 ‘‘Meaningful Statistics,’’ we used the example of a group

experiment to explain the concept of statistical significance. Here, we will

cover the variations on group tests and discuss issues that arise from them.

We will also show the relationship between group tests and regression.
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Making Sense of Experiments With Groups
Recall from Chapter 9 that, historically, significance testing began with the

notion of experiments where an experimental group received an intervention

and a control group received none. Significance testing was designed to help

make inferences as to whether or not the intervention had an effect measured

in terms of a single, numerical dependent variable. Since that time, group

testing has evolved to deal with many groups and multiple independent and

dependent variables, similar to regression.

TIPS ON TERMS

When there are only two groups being compared, the statistical test used is called

the t test, named after the statistical distribution used. When there are more than

two groups, the statistical test is called ANOVA, short for the Analysis of Variance.

The statistical distribution used is the F statistic.

While the underlying model for group tests is very different than for

regression, it turns out that the underlying mathematics is identical, as we will

see. The choice of which type of test to use is based on study design, not on

any advantages of one technique over the other. In addition, regression has

come to be more commonly used in non-experimental studies than have

group tests. This is partly due just to tradition and partly due to the

availability of many statistical measures in regression analysis for evaluating

aspects of the data secondary to the overall significance. (These measures

include ways of looking at the contribution of individual independent

variables and even the influence of individual data points.)

WHY ARE GROUP DIFFERENCES IMPORTANT?

The main reason why group differences, and the group testing procedures

used to analyze them, are important is that experiments with groups are the

best way we know of to determine the effects of interventions. In business, we

are often confronted with decisions as to whether or not to take some action.

We most often want to make this decision based on the consequences of

this action, its effects on profits, good will, return on investment, long-

term survivability of our business, etc. If we can design an experiment

(or quasi-experiment) to model this action as an intervention and then
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measure its effects, then the best way to analyze those effects is most often in

terms of group differences.

THE RELATION BETWEEN REGRESSION AND
GROUP TESTS

We mentioned in Chapter 12 ‘‘Correlation and Regression,’’ that regression

is robust if the independent variables are non-normal, even if they are

ordinal/categorical. As it turns out, when all of the independent variables are

categorical, regression procedures are mathematically identical to group

tests. This is not a hard concept to see, at least in the simplest case.

Figure 13-1 shows a regression for Judy and her friends of height on sex.

The diagram looks a bit silly because the independent variable, sex, is

dichotomous. But notice that everything works out. The regression line is

real. Its slope indicates that Judy’s male friends tend to be somewhat taller

than her female friends. If the regression is significant, that would mean that

they are significantly taller.

The analysis shown in Fig. 13-1 is exactly equivalent to a t test of mean

height between two groups, the men and the women. As it happens, when the

independent variable is dichotomous, the regression line passes through the

mean for each group. If the mean height for women is the same as the mean

height for men, then the regression line will be horizontal (having a slope of

zero). Thus, the null hypothesis for the t test, that the two means are the

same, is identical to the null hypothesis of the regression, that the slope is

Fig. 13-1. The geometry of group tests.
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zero. In the case where there are more than two groups, the situation is more

complex and we need to use an F test, but the regression and the group test

are still mathematically equivalent tests of statistical significance.

Of course, in terms of our sampling procedures, we have not played

strictly by the rules. We did not flip a coin to decide which of Judy’s

friends should have an intervention that would make them male. (Judy

runs with a more circumspect crowd.) However, we have resolved the

problem of the non-normal distribution of heights. The distribution of the

dependent variable (height) is non-normal, but the two conditional

distributions of height at the two values of the independent variable

(female and male) are normal, which satisfies the normality assumption of

the regression model.

EXERCISE

As an exercise, say why the regression line will pass through the mean of each group

in Fig. 13-1. (Hint: Remember that the regression line is defined as the line that

minimizes the residuals along the y-axis. Then remember the definition of the

variance.) Will the regression line always pass through the mean of each group when

the independent variable is ordinal, but has more than two values? If not, why not?

DESIGNS: GROUPS AND FACTORS

Let us consider the case where we regress a numerical variable on a

categorical variable with more than two values. For example, we might

regress the prices of a sample of used books on their condition, coded as:

As New/Fine/Very Good/Good/Fair/Poor. In this case, we have a number of

groups defined by their value on a single independent categorical variable.

The variable is referred to as a factor. The values are referred to as levels.

Corresponding to multiple regression, we can regress a numerical variable

on multiple categorical variables. In this case, we have multiple factors, each

with multiple levels. Usually, this is pictured as a k-dimensional rectangular

grid, with each dimension standing for one factor. Every group is defined in

terms of a value for each categorical variable. For example, we could regress

gas mileage on number of cylinders (4, 6, or 8), type of exhaust (with or

without catalytic converter), and transmission (automatic, 4-speed, or

5-speed). Each car is assigned to one of the 18 groups based on its value

for each of the three variables. Figure 13-2 shows this design.
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HANDY HINTS

Note that, in the case of a categorical independent variable with more than two values,

the significance tests for regression and group tests are equivalent even if the

independent variable is just nominal and not ordinal. The reason is this: In general,

the regression line does not pass through the mean of each group. And, should the

means differ from group to group, the equation for the regression line does depend on

the order of the groups. However, if the null hypothesis is true, the regression slope

will be zero and the regression line will pass horizontally through the mean of all

groups. In this case, the regression line will be exactly the same, even if the order of the

groups is changed. Under the null hypothesis, the order of the groups does not matter,

and should any of the groups have a different mean, the slope of the regression line

will be non-zero, no matter what the order of the groups. In other words, the order of

the groups affects the slope of the regression line, but does not affect whether or not

the slope is zero, which is the only thing tested by the overall test of significance.

Group Tests
This section introduces the various statistical procedures for group tests.

COMPARING TWO GROUPS

The simplest group design is the two group design, which is analyzed using

the t test. The two-tailed test asks if the group means differ in any way.

Fig. 13-2. A 3-factor design.
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The one-tailed test asks if the experimental group mean is higher than the

control group mean. (Alternatively, for the one-tailed test, we could ask if the

experimental group mean is lower than the control group mean. What we

cannot do is ask if it is either higher or lower. We must decide ahead of time

which direction we care about. This is why the one-tailed test is said to use a

directional hypothesis.)

As shown in Table 13-1, the t test is a statistical procedure that determines

whether or not the mean value of a variable differs significantly between

two groups.

COMPARING MORE THAN TWO GROUPS

The next simplest type of group test is when we have different varieties of

intervention (called treatments). For example, we might assign our sales-

persons either one of two types of sales training, a motivation seminar, or no

intervention. This would be a one-factor, four-level design. As shown in

Table 13-2, the one-factor ANOVA test is a statistical procedure that

determines whether or not the mean value of a variable differs significantly

between multiple groups distinguished by a single categorical variable.

When more than two groups are studied, additional questions can be

asked. The most common of these is whether two of the groups differ.

Returning to our example, if we were to discover that our experiment with

our sales staff had a significant effect, that would only mean that one of the

treatments had produced a different mean. Any difference would be detected.

For instance, it might be the case that the motivation seminar had lessened

the performance of those salespersons. Overall significance for multiple

groups by itself is often not helpful in making a business decision. If we find

overall significance, we will want to see if one or more of the treatments has

increased the mean performance of the sales persons beyond that of the

control group. There is a separate F test for making these specific

comparisons.

For reasons explained below, we will want to limit the number of specific

comparisons made, especially if the decision as to which comparisons are

desired is made after the data have been collected. After the overall sig-

nificance test is done, we can examine themeans to see what information about

specific comparisons is most likely to help us make our business decision.

For example, suppose the mean for one training program is much higher

than all the other means. A comparison of this group to the control group

is in order. But suppose that the group who took the motivation seminar

(which happens to be much less expensive than either training program)
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Table 13-1 The t test.

Type of question answered

Does the mean of the dependent variable differ between two groups?

Model or structure

Independent variable A dichotomous variable designating group assignment. Usually zero for

the control group and one for the experimental group.

Dependent variable A numerical variable measuring some quantity predicted to be affected

by the differing treatments/interventions applied to each group.

Equation model
t ¼

�XX1 � �XX2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N1 � 1ð Þs21 þ N2 � 1ð Þs22
N1 þN2 � 2

� �

1

N1

þ 1

N2

� �

s

Other structure N1 and N2 are the sizes of the two groups. s1 and s2 are the sample

standard deviations. The P-value calculated from the t-score and the

degrees of freedom, N1þN2�2, is the probability that the observed

difference would be this large or larger if there was no difference between

the groups.

Corresponding

nonparametric test

Wilcoxon rank sum test

Required assumptions

Minimum sample size 20 per group

Level of measurement Interval for dependent variable.

Distributional assumptions Normal for dependent variable. Highly robust to violations.

Other assumptions Random sampling for each group. Assignment of one individual to

one group is independent of assignment of all other individuals to either

group. (Random assignment to groups achieves this.) Group variances do

not differ by more than a factor of three. Distribution of mean difference

is normal.
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Table 13-2 The one-factor ANOVA test.

Type of question answered

Are the means of any of the groups unequal?

Model or structure

Independent variable A single categorical variable designating group assignment.

Dependent variable A numerical variable measuring some quantity predicted to be

affected by the differing treatments/interventions applied to each

group.

Equation model Not applicable. The analysis of variance is described with a set of

equations (not covered here) that relate differences in means between

groups to two different variances: the variance of the means of the

different groups (called the between-groups variance) and the variance

of each score around the mean for its group (called the

within-groups variance). These equations are designed so that if there

is no true difference amongst the means, the two variances will be

equal.

Other structure The formula for testing the null hypothesis, which is expressed as

a ratio of the two variances, is distributed as an F statistic. The

P-value calculated from the F-score is the probability that the

observed ratio would be this large or larger if the true group means

were all equal. (Note that there are two separate degrees of freedom

included in the ratio.)

Corresponding

nonparametric test

Kruskal–Wallis

Required assumptions

Minimum sample size 20 per group

Level of measurement Interval for dependent variable.

Distributional assumptions Normal within each group for dependent variable. (Moderately robust

to violations.) The values of the independent variable must be

predetermined.

Other assumptions Random sampling for each group. Assignment of one individual

to one group is independent of assignment of all other individuals to

other groups. (Random assignment to groups achieves this.) Group

variances do not differ by more than a factor of three.
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also did somewhat better. We may want to see if this group did significantly

better than the control group as well.

TWO FACTOR DESIGNS

When there is more than one type of intervention, we have a multiple factor

design. This is equivalent to multiple regression in that there are multiple

independent variables. The simplest case is when we have two interventions.

We randomly assign individuals to four groups. The control group receives

no intervention. Two of the groups receive one intervention each. The final

group receives both interventions. This is called a two-by-two design.

For example, we might want to ask about the effects of both a sales

training program and a motivational seminar. One group gets neither. One

group gets sales training. One group gets the motivational seminar. One

group gets both. Table 13-3 shows this design.

The advantage of a multi-factor design is that we can test to see if one

independent variable has more or less of an effect depending on the level of

some other factor. For example, perhaps the motivational seminar does not

help untrained folks, but does improve the sales of those who have also

received the sales training. This sort of effect is called an interaction. The

other sort of effect we can test for is a difference between the means for

just one factor. This sort of effect is called a main effect.

As shown in Table 13-4, the two-factor ANOVA test is a statistical

procedure that determines whether or not the mean value of a variable differs

significantly between multiple groups distinguished by two categorical

variables.

Detecting interactions requires a great deal of statistical power. Often,

even 20 subjects per group is not enough to detect important differences.

In addition, if an interaction is found, the test for separate factors cannot

Table 13-3 Motivational seminar and training, a 2� 2 design.

Factor B Training

b1 Did not receive b2 Received

Factor A

Motivational seminar

a1 Did not take No intervention Trained only

a2 Took Motivated only Trained and motivated
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Table 13-4 The two-factor ANOVA test.

Type of question answered

Are the means of any of the groups for any one factor unequal? Are the means for any factor affected

by any combination of other factors?

Model or structure

Independent variable Multiple categorical variables determining group assignments.

Dependent variable A numerical variable measuring some quantity predicted to be affected by the

differing treatments/interventions applied to each group.

Equation model Not applicable. The analysis of variance is described with a set of equations

(not covered here) that relate differences in means between groups to two

different variances: the variance of the means of the different groups (called

the between-groups variance) and the variance of each score around the mean

for its group (called the within-groups variance). These equations are designed

so that if there is no true difference amongst the means, the two variances

will be equal.

Other structure This design results in multiple F tests: one for each factor and one for the

interaction. The formula for testing the null hypotheses, which are expressed

as ratios of the two variances, are distributed as an F statistic. The P-value

calculated from the F-score is the probability that the observed ratio would

be this large or larger if the true group means were all equal. (Note that

there are two separate degrees of freedom included in each ratio.)

Corresponding

nonparametric test

None

Required assumptions

Minimum sample size 20 per group

Level of measurement Interval for dependent variable.

Distributional

assumptions

Normal within each group for dependent variable. (Moderately robust to

violations.) The values of the independent variable must be predetermined.

Other assumptions Random sampling for each group. Assignment of one individual to one

group is independent of assignment of all other individuals to other groups.

(Random assignment to groups achieves this.) Group variances do not differ

by more than a factor of three.
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be relied upon. Check the interaction test first. If it is not significant, check

the main effects for each factor.

MANY FACTORS, MANY GROUPS

The ANOVA test for two factors can be used for many factors. Separate F

tests can be calculated for each factor and for every combination of factors.

Things can get pretty confusing. The studies can also get very large, as

individuals must be assigned to every group. Recall that, in our example of

gas mileage, with just three factors, we had 18 groups. The number of

individual subjects needed to achieve the needed statistical power can easily

reach up to the hundreds. Big studies can be costly and that cost must be

justified.

Specific comparisons between groups can be used with multiple factor

designs, just as with one-factor designs. The problems associated with

performing too many specific comparisons (discussed below) still apply.

Fun With ANOVA
Just as there are many additional types of regression not covered in Business

Statistics Demystified, there are also many other types of ANOVA. Just as

there are complexities that arise in larger regression studies, there are also

issues with larger group studies.

BIGGER ISN’T NECESSARILY BETTER: THE PROBLEM
OF MULTIPLE COMPARISONS

The problems associated with collinearity in regression are not a problem in

ANOVA because separate F tests are used for each main effect and

interaction. Instead, another problem arises: the problem of multiple

comparisons. For main effects and interactions, the problem can be avoided,

or at least skirted, by checking interactions first and then checking main

effects only if the interactions are non-significant. This procedure is slightly

more complex when more than two factors are involved. Higher-order

interactions (interactions involving more factors) must be checked before

lower-order interactions. For example, if we have three factors, A, B, and C,

we must check the interaction of all three factors for significance first. If that

is non-significant, we can check all three pairwise interactions next: A with B,

B with C, and C with A. If all of those are non-significant, then we can check
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for main effects. The problem is much more serious when we deal with

specific comparisons between groups.

We discussed the problem of multiple comparisons briefly in Chapter 3

‘‘What Is Probability?’’ It is time for a little more detail and mention of some

techniques used for solving it. The problem of multiple comparisons arises

due to the fact that all statistical inferences involve probable events and,

given enough attempts, even the most unlikely event is bound to occur

eventually. In inferential statistics, we ensure conservatism by limiting Type I

error to a small probability, the �-level, which is often set to .05. Suppose

we had a large batch of random numbers instead of real data. By definition,

there would be no real relations between these numbers. Any statistical test

performed on random data that gives a significant result will be a Type I

error.

However, if we performed 20 statistical tests of any variety on this random

data, each with an �-level of .05, the odds are that one of the tests would give

a statistically significant result, just because 20 times .05 is equal to one.

We might perform all 20 tests and get no significant results, but eventually, if

we kept on performing statistical tests on this random data, one or more

would turn up significant, and false.

This is the same as rolling a pair of dice and trying to avoid a specific

number coming up. The odds of rolling an eleven are one in eighteen, which

is close to .05. Try rolling a pair of dice without rolling any elevens. See how

far you get.

When we do a large study, whether it is a regression study or a group

study, we are likely to have a lot of questions and want to perform a lot of

tests. Even if there are no real relations in our data (equivalent to the case of

having a big batch of random numbers), one out of every twenty tests is likely

to come out significant. This undermines the principle of conservatism, which

we must preserve if we are to have any justification for our conclusions.

The way statisticians deal with the problem of multiple comparisons is

simple, but the details of the computations can get very complicated and we

will not address them here. The solution that statisticians have adopted is to

lower the �-level when multiple tests are performed on the same data or in

order to answer related questions. There are many formulas for how much to

lower the �-level for how many additional tests performed. One of the best

and simplest is the Bonferroni, which is often available in standard statistical

computer software. Unless a statistical consultant advises you otherwise, the

Bonferroni technique is recommended.

One final note about multiple comparisons is that they are a specific case

of the post hoc hypothesis, also discussed in Chapter 3. As such, the

adjustment to the �-level required if we pick our specific comparisons before
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we collect our data is less than if we wait until afterwards. This is an

important aspect to planning any large statistical study. If there are specific

tests we anticipate will be of interest no matter what happens with our overall

significance tests, we should plan them in advance and document them. This

will allow us to use higher �-levels and get more statistical power.

ADVANCED TECHNIQUES

The various more advanced types of regression tend to focus on dealing with

nonlinear relations between variables and variables that are scaled in ways

that make it hard to detect linear relations. That is because regression is not

especially robust to violations of these assumptions. For ANOVA, most of

the advanced techniques address the definitions of the groups and the

assignment of subjects to these groups, because ANOVA is not especially

robust to violations of these assumptions.

Standard ANOVA techniques use what is called a fixed-effects model,

because the levels of the factors are set by the experimenter. We choose which

types of training to give to our sales people. In principle, however, there is a

population of training techniques out there somewhere and the particular

training techniques we are familiar with and have decided to evaluate in our

study are a distinctly nonrandom sample from that population of training

techniques. On occasion, we may select the levels of a factor randomly and

must use a different type of ANOVA calculation to get the correct results.

These ANOVA techniques use random-effects models. There are also

techniques for studies where some factors are fixed and others are random.

These are called mixed models.

Standard multi-factor ANOVA techniques require that all groups be the

same size. More advanced techniques are available if there are different

values of N for different groups. Critical to standard ANOVA is that subjects

assigned to one group have no relation to any subject in any other group.

Advanced techniques referred to as repeated-measures ANOVA allow for

related subjects, or even the same subjects, to be assigned to different groups.

Repeated measures, as the name implies, are very useful for measuring the

effects of an intervention over time, such as at different points during an

extended training program. There is also a version of ANOVA corresponding

to multivariate regression, which uses multiple dependent measures. This is

called MANOVA. MANOVA shares the same problems as multivariate

regression in that the equations have multiple solutions.
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CHAPTER
14

Nonparametric
Statistics

We discussed the theory behind nonparametric statistics in Chapter 9

‘‘Meaningful Statistics.’’ Here we will present some popular nonparametric

tests. For more nonparametric tests, we recommend a book such as Mosteller

and Rourke (1973).

Problems With Populations
As we discussed in Chapter 9, the most common reason to use a

nonparametric test is when the appropriate parametric test cannot be used

because the data do not satisfy all of its assumptions.

POORLY UNDERSTOOD POPULATIONS

It is rare that we have an extensive history of studies with the specific

population we are studying. An exception is I.Q. The I.Q. test has been around
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for just over 100 years and the distribution of different I.Q. scores for different

populations is well known. The distributions are normal and the means and

standard distributions and standard errors are known and can be used safely.

For almost every other sort of data, we need to look at our sample and test for

or estimate the various characteristics of the population from which it is

drawn. For example, in the manufacturing environment, we need to

constantly monitor production processes with statistical process control,

as we discuss in Chapter 17 ‘‘Quality Management.’’ At any time, some factor

could come in and change the mean, change the variance, or introduce bias to

some important quality measure of our manufacturing process.

UNKNOWN POPULATIONS

Measurements are easy to make. We can measure physical characteristics of

our products. We can ask questions of our customers. We can make calcul-

ations from our financial records, and so forth. It is not so easy to imagine the

nature of the population from which our samples are drawn. When we lasso a

few sheep from our flock, the flock is our population. But the flock is a

sample as well. We can think of the flock as a sample of all living sheep, or of

all sheep past, present, and future, or of sheep of those breeds we own, or

even as a sample of all sheep we will own over time. Each of these populations

is different and would be appropriate to asking different statistical questions.

For example, when looking at the relationship between color and breed,

we should consider the population to be all sheep of that breed at the present

time. It might be that, 100 years ago, a particular breed of sheep had many

more black sheep than today. On the other hand our questions might have to

do with the breeding patterns of our flock over time. We might want to know

if our sheep have been breeding so as to increase or decrease the proportion

of black sheep over time. In that case, our current flock is a sample from the

population of all the sheep we have and will own over time.

Knowing the relationship between our questions and the theoretical

population we are using is a crucial step in determining how to estimate the

shape and the parameters of the population. Knowing the shape and

parameters of the population are, in turn, critical in determining what sort of

statistical test we can use.

A Solution: Sturdy Statistics
The questions we want to ask will narrow down our search for a statistical

test. Parametric tests tend to answer only questions about parameters (such
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as the mean and the variance) of the population distribution. If we cannot

phrase our question in terms of a population parameter, we should look to

nonparametric tests to see if we can phrase our question in terms that can be

answered by one of those. If our question can be answered by both

parametric and nonparametric tests, the nature of the population will limit

which tests we can use. If the assumptions required cannot be met for a

parametric test, we can look to the corresponding nonparametric test, which

is likely to have fewer assumptions that are more easily met.

REDUCING THE LEVEL OF MEASUREMENT

The most common nonparametric tests are used either when the level of

measurement assumptions or the distributional assumptions cannot be met.

These sorts of problems often come in tandem. For example, we may suppose

that our customers’ attitudes towards our products lie along some numerical

continuum dictated by unknown psychological functions. How many levels

of liking and disliking are there? Is there a zero point? What is the range of

possible values?

In measuring attitudes, we ignore all of these rather metaphysical

questions. Instead, we provide our subjects with a scale, usually using either

five, or at most seven, levels, ranging from strongly dislike to strongly like.

Most of the time, given a large enough sample size, attitudes measured in this

way are close enough to being normally distributed that we can analyze the

data with parametric tests. However, it may be the case that the limits of the

precision of our measurement create very non-normal distributions. For

example, if we are sampling current customers, it is unlikely that any will

strongly dislike any of our products that they currently use. We might find

ourselves with insufficient variance to analyze if, for instance, all of the

customers either like or strongly like a particular product.

The good news is that such problems will be easy to detect, at least after

the fact. A quick stem-and-leaf of our data will reveal narrow ranges,

truncated distributions and other types of non-normality. (One solution is to

pre-test our measurement instruments. We give the questionnaire to a small

number of subjects and take a look at the data. If it looks bad, we consider

rephrasing the questions.) On the other hand, if the data are already

collected, there is not much we can do except to look for a statistical test that

can handle what we have collected. The nonparametric tests designed as

alternatives to parametric group tests, presented below, only assume an

ordinal, rather than an interval, level of measurement. They often use the

median, instead of the mean, as the measure of central tendency.
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THE TRADEOFF: LOSS OF POWER

As we mentioned in Chapter 9 ‘‘Meaningful Statistics,’’ the traditional

tradeoff in choosing a nonparametric test is a loss of power. When the

population is normal, the sample mean approximates the population mean

closely with relatively small sample size. For other statistics, for other

distributions, a close approximation takes a larger sample. As a result, tests

that do not assume a normal distribution, or do not attempt to estimate the

mean, tend to have less power.

Under these circumstances, the lowest cost solution is to pre-test our

measurements and see if we can find a way to get numbers from our

measurement techniques that are normally distributed. A little more effort in

developing good measures can payoff in statistical power down the road.

If we work at our measures, then we will only have to use lower-powered

nonparametric tests when the population itself is non-normal, the mean is not

a good measure of the central tendency, or the question we need answered

cannot be answered in terms of the mean.

Popular Nonparametric Tests
There are many, many nonparametric tests. Themost commonly used are tests

of proportions, including tests of association, and rank tests, which replace

common parametric group tests when their assumptions cannot be met.

DEALING WITH PROPORTIONS: x2 TESTS

As we discussed in Chapter 9, an important set of nonparametric tests are

those that generate a statistical measure that is distributed as a �
2. Like the t

and F distributions, the �2 distribution is a theoretical curve that turns out to

be the shape of the population distribution of a number of complex but

useful statistics used in a number of different inferential statistical

procedures. Its precise shape is known and, given the correct degrees of

freedom, a P-value can be calculated.

Comparing proportions to a standard

Recall our example from Chapter 9 for using the �2 test to discover whether

or not the breed of sheep in our flock affected the proportion of black sheep.

The �
2 test, more formally known as the Pearson �

2 test, will provide an

answer to this sort of question by determining whether the proportions in
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each individual data row are significantly different than the proportion across

the summary total row at the bottom (called the column marginals).

Suppose we had a slightly different sort of question similar to our

questions used in Chapter 11 ‘‘Estimation,’’ in the test of proportions section,

to illustrate the z test for proportions. Suppose that, instead of having to

deliver ball bearings, 99% of which are to specification, we have a contract to

deliver all of the production of our plant to a wholesaler, so long as the

proportion of precision ball bearings, standard ball bearings, and bee–bees is

20/30/50. (All three items are manufactured by the same process, with a

sorting machine that determines into which category the items fall.) Our

wholesaler can only sell so many of each item. More precision ball bearings

could be as problematic as more bee–bees. In order to ensure that we are

shipping the right proportions, we sample a few minutes production every so

often and obtain a count of each type of item.

We need to be able to determine if these three counts are in significantly

different proportions from our contractual requirements. We can adapt the �2

test to this purpose by putting our data in the top row and then fake some data

for the bottom row that corresponds exactly to the standard proportions

required by our contract. In this case, our second row would just read: (20 30

50 100). We create the table with the totals as in Table 9-3. If the test is

significant, then we know that we have not met the standard. The advantage to

the �2 test over the z test is that we can use it for a multi-valued, rather than

just for a dichotomous (two-valued) categorical variable. The disadvantage is

that we cannot construct a true one-tailed test using the �
2. Using the �

2,

we cannot ask if the actual proportions fail to meet the standard, only if they

are different from the standard (either failing it or exceeding it).

As shown in Table 14-1, the �
2 test for proportions is a nonparametric

statistical procedure that determines whether or not the proportion of items

classified in terms of a categorical variable (with different values in different

columns) differs from some fixed standard proportion.

Tests of association

In Chapter 9 ‘‘Meaningful Statistics’’ and also in Chapter 12 ‘‘Correlation

and Regression,’’ we discussed the difference between relations between

variables in general and those that are due to underlying cause–effect

relationships. When a relationship between two variables is not assumed to

be one of cause and effect, the relationship is usually measured using some

sort of correlation coefficient. Some statisticians think of a correlation as

something specifically measurable by the Pearson product moment correla-

tion and use the term association for a general, non-causal relation. When
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dealing with two categorical variables, the Pearson product moment

correlation cannot be used. Instead, there are a very large number of

measures used depending upon the type of question being asked and the

assumptions made about the two categorical variables and the relationship

between them. These measures are universally called tests of association.

Understanding tests of association involves understanding how the

notions of dependence and independence, discussed in Chapter 3 ‘‘What Is

Probability,’’ apply to categorical variables. Recall that our notion of

statistical dependence relied upon the idea that knowing the value of one

Table 14-1 The �
2 test for proportions.

Type of question answered

Do the proportions of a mixture of items differ from a standard set of proportions?

Model or structure

Independent variable A categorical variable containing counts of each item falling into

one of c categories.

Required calculation The expected value for each cell in the table, Ejk, calculated as the

row marginal times the column marginal, divided by the grand total.

Equation model
�
2 ¼

X

j

X

k

ðOjk � EjkÞ2

Ejk

Other structure For the top row, j¼ 1, the observed values in the cells, Ojk, are the

data. For the bottom row, j¼ 2, the observed values in the cells, Ojk,

are the integer values corresponding to the standard proportions.

The P-value calculated from the �
2-value, with degrees of freedom,

(c�1), is the estimate of the probability that the sample proportion

would fall this far or further from the specified standard.

Corresponding parametric test One-sample z test of proportions

Required assumptions

Minimum sample size 5 per cell

Level of measurement Nominal/categorical

Distributional assumptions None
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variable as providing information as to the probability of the value of

another variable. In terms of our example of breeds and colors of sheep in

Table 9-3, a dependency would mean that knowing which breed of sheep a

particular sheep is, will tell us something about what color it is likely to be (or

vice versa). If each breed of sheep has exactly the same proportion of black

and white sheep, then knowing the breed tells us nothing more about the

likelihood that the sheep is black than does the overall proportion of black

sheep in the flock. So a test of independence is designed to ask if the

proportions in one row or column differ significantly from another. A

difference in proportions means information and dependence. Conveniently,

this is exactly the same question as for our �
2 test of proportions, so the

calculations are identical. When we test two variables for independence, we

are also testing to see if the proportions in the rows differ from column to

column, and vice versa.

TIPS ON TERMS

Contingency table. A table showing the relationship between two categorical

variables. Each cell contains the count of items with the corresponding values for

each variable. The totals for each row and each column, plus the grand total are

calculated. A theoretical contingency table contains proportions in each cell, with a

grand total of one.

CRITICAL CAUTION

It is extremely important to note that the calculations for the Pearson �
2 test, which

is the only test of association we will cover here, are symmetrical for rows and

columns. In other words, in Chapter 9 ‘‘Meaningful Statistics,’’ had we elected to

discover whether the color of sheep affected the breed (an admittedly odd way of

looking at things), we would get the exact same numbers and the exact same results.

The �2 test looks for any statistical dependencies between the rows and the columns,

in either direction.

As shown in Table 14-2, the �
2 test of independence is a nonparametric

statistical procedure that shows whether or not two categorical variables are

statistically independent. This test is equivalent to the Pearson �
2 test for

comparing proportions, which is a nonparametric statistical procedure that

determines whether or not the proportion of items classified in terms of one
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categorical variable (with different values in different columns) is affected by

the value of another categorical variable (with different values in different

rows).

Two notes on the calculations: The value of the Pearson �
2 test statistic is

higher when the observed cell values, Ojk, differ more from the expected cell

values, Ejk. The observed cell values are just the data. The expected cell values

are the counts that would be in the cells if the two variables were independent

and there were no error. The equation given for calculating the expected cell

values, Ejk (listed as Required calculation in Table 14-2), is much simpler than

it appears. We assume that all of the totals are the same and use the totals to

calculate the cell values in reverse. If the variables were truly independent,

then all of the proportions in all of the rows would be equal, as would all

Table 14-2 The �
2 test of independence.

Type of question answered

Is one variable related to another?

Model or structure

Independent variable Two categorical variables, the first containing counts of each item

falling into one of r categories and the second having c categories.

Required calculation The expected value for each cell in the table, Ejk, calculated as the

row marginal times the column marginal, divided by the grand total.

Equation model
�
2 ¼

X

j

X

k

ðOjk � EjkÞ2

Ejk

Other structure The P-value calculated from the �
2-value, with degrees of freedom,

(r�1)(c�1), is the estimate of the probability that the sample

proportion would fall this far or further from the specified standard.

Corresponding parametric test None

Required assumptions

Minimum sample size 5 per cell

Level of measurement Nominal/categorical

Distributional assumptions None
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of the proportions in all of the columns. The proportion for a row (or

column) is just the row (or column) total divided by the grand total. The

count for any one cell is just the total for that column (or row) times the

proportion for the row (or column).

The degrees of freedom, ðr� 1Þðc� 1Þ, is based on the size of the table,

r� c. We subtract one from the number of rows and one from the number of

columns because we have used up these degrees of freedom when we

calculated the totals. One easy way to think about this is to take a look at an

almost empty 2�2 table with the totals calculated:

EXERCISE

The number of degrees of freedom for the �2 test of a contingency table is the same

as the number of cells that can be varied freely without altering the totals.

The number of degrees of freedom for a 2�2 table is (2�1)(2�1)¼ 1. One cell

in Table 14-3 is filled in. This means that none of the other three cells can vary.

As an exercise, use the totals to calculate the counts that must go into the other

three cells. Do not refer to Table 9-2.

Estimating the population variance

Sometimes, we need to know about the variance of a population, instead of

the mean. While this is technically the estimation of a parameter of a normal

distribution and, as such, is a parametric procedure, but the test statistic is

distributed as a �2, so we cover it here. As shown in Table 14-4, the �2 test for

population variance is a parametric statistical procedure that evaluates an

estimate of the population variance with respect to some specific value.

Table 14-3 Degrees of freedom for the �
2 test: Sheep by color and type of wool.

Sheep by Color and Type of Wool

White Black Total

Heavy wool 42 48

Fine wool 90

Total 118 20 138
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As we will see in Chapter 17 ‘‘Quality Management,’’ the proportion of

precision ball bearings, standard ball bearings, and bee–bees in our ball

bearing example is dependent upon the variance of the diameter of the balls

produced. To ensure that the desired proportions are being manufactured, we

could monitor the production line using statistical process control and test to

see if the variance differed significantly from the desired variance.

ALTERNATIVES TO t TESTS: WILCOXON RANK TESTS

Among the many available nonparametric tests are two tests that can be used

in place of t tests when the population distribution is so non-normal that the

t test is not robust. Both tests were developed by Wilcoxon, both use the

Table 14-4 The �
2 test for population variance.

Type of question answered

Does the sample variance differ significantly from a specified value?

Model or structure

Independent variable A single numerical variable whose variance is of interest

Dependent variable None

Equation model
�
2 ¼ N� 1ð Þs2

�2

Other structure The P-value calculated from the �
2-value and the degrees of

freedom, N�1, is the estimate of the probability that the sample

variance would fall this far or further from the specified value, �2.

Corresponding nonparametric test None

Required assumptions

Minimum sample size 20

Level of measurement Interval

Distributional assumptions Normal
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median instead of the mean, and the calculations for both involve ranking

the data.

Ranking data is a common technique in nonparametric testing. When the

numerical values for a variable are derived from an unknown or radically

non-normally distributed population, the precise numerical values do not

provide especially useful information about the central tendency. By

renumbering all the data points with their ranks, we actually lessen the

amount of information in the data, but we retain all the information needed

to estimate the median. So long as the median is a reasonable measure of the

central tendency (which is true for roughly symmetrical distributions),

ranking provides a convenient means of generating a test statistic from which

a P-value can be calculated.

Single-samples: the signed rank test

As shown in Table 14-5, the Wilcoxon signed rank test is a nonparametric

statistical procedure that evaluates an estimate of the population median with

respect to some specific value. The details as to how to perform the

calculations for this procedure are a bit cumbersome, and are covered in most

textbooks on business statistics.

Two groups: the rank sum test

As shown in Table 14-6, the Wilcoxon rank sum test is a nonparametric

statistical procedure that determines whether the difference between the

medians of two groups is significant. It is a good replacement for the t test

when the population distribution is non-normal. It works for ordinal data

with less than five levels.

MULTI-GROUP TESTING: THE KRUSKAL–WALLIS TEST

The Kruskal–Wallis test is to one-factor ANOVA as the Wilcoxon rank sum

test is to the two-group t test. As shown in Table 14-7, the Kruskal–Wallis

test is a nonparametric statistical procedure that determines whether the

difference between the medians of several groups is significant.
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Table 14-5 The Wilcoxon signed rank test.

Type of question answered

Is the population median significantly different from a specified value?

Model or structure

Independent variable A single numerical variable whose mean

value is of interest

Dependent variable None

Equation model
z ¼

W� N0 N0 þ 1
� �

=4
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN0 N0 þ 1ð Þ 2N0 þ 1ð Þ=24Þ
p

Other structure First, the data values are converted to difference

scores by subtracting the median and taking the

absolute value. Any scores of zero are omitted

and the number of non-zero scores, N 0, is used

in place of N. Ranks are assigned and the positive

and negative signs are put back in. The Wilcoxon

value, W, is the sum of the positive ranks. For

N<20, the P-value is calculated directly from the

Wilcoxon score and the value of N. For larger

sample sizes, a z-score is calculated as given in the

equation above. In both cases, the P-value is the

estimate of the probability that the sample median

would fall this far or further from the specified

value, M.

Corresponding parametric test One-sample t test

Required assumptions

Minimum sample size 5

Level of measurement Interval

Distributional assumptions Any roughly symmetrical distribution

Other assumptions The true population values are continuous.
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Table 14-6 The Wilcoxon rank sum test.

Type of question answered

Does the median of the dependent variable differ between two groups?

Model or structure

Independent variable A dichotomous variable designating group assignment. Usually zero

for the control group and one for the experimental group.

Dependent variable A numerical variable measuring some quantity predicted to be

affected by the differing treatments/interventions applied to each

group.

Equation model
z ¼

T1 � �T1

�T1

Other structure Ranks are assigned to all values, irrespective of group. The test

statistic, T1, is the sum of the ranks of the data points in the first

group. (The first group is the smaller group if the Ns are unequal.)

For N<20, the P-value is calculated directly from the values of T1

and N. For larger sample sizes, a z-score is calculated as given in

the equation above. In both cases, the P-value is the probability

that the observed difference would be this large or larger if there were

no difference between the groups.

Corresponding parametric test The t test (for independent groups).

Required assumptions

Minimum sample size 8 (4 per group)

Level of measurement Ordinal

Distributional assumptions None
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Table 14-7 The Kruskal–Wallis test.

Type of question answered

Are the medians of any of the groups unequal?

Model or structure

Independent variable A single categorical variable designating group assignment

for k groups.

Dependent variable A numerical variable measuring some quantity predicted to be

affected by the differing treatments/interventions applied to

each group.

Equation model
H ¼ 12

N Nþ 1ð Þ
XT2

j

Nj

" #

� 3 Nþ 1ð Þ

Other structure Ranks are assigned to all values, irrespective of group. Nj is the

size of the j th group. Tj is the sum of the ranks assigned to the

j th group. The P-value calculated from the H-score and the degrees

of freedom, k�1, is the probability that the observed difference would

be this large or larger if there were no difference between the groups.

Corresponding parametric test One-factor ANOVA test

Required assumptions

Minimum sample size 5 per group

Level of measurement Ordinal

Distributional assumptions If the group populations are assumed to have the same shape and

variability, the null hypothesis is that the medians are equal. If not,

the null hypothesis is that there is no difference between the

distribution of the groups.

Other assumptions The true population values are continuous.
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Exam for Part Three

1. Which of the following is not a property of the mean?

(a) It is consistent

(b) It is unbiased

(c) It is sufficient

(d) All of the above

2. A 95% confidence interval is the interval in which the _______ value is 95%

likely to fall.

(a) Estimated

(b) True population

(c) Confidence

(d) Error

3. When we have no independent source of information as to the variance of the

population, we must use our best estimate of the population variance. That is

the _______.

(a) Confidence interval

(b) Error

(c) Sample variance

(d) None of the above
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4. In terms of the type of question answered, the _______ test is a group test.

(a) Paired t

(b) z

(c) Mean

(d) Population variance

5. The one-sample Z test of proportions is useful for calculating _______

around a sample proportion.

(a) Difference test

(b) Confidence interval

(c) Both (a) and (b)

(d) Neither (a) nor (b)

6. The geometric basis for the mathematics behind both correlation and

regression is the _______.

(a) t test

(b) Z test

(c) Bar graph

(d) Scatter plot

7. When the value of the variable is converted into a standard score, it

becomes _______ if it is below the mean and _______ if it is above the mean.

(a) Positive; positive

(b) Positive; negative

(c) Negative; positive

(d) Negative; negative

8. The correlation coefficient’s assumption of _______ is often violated in real

data.

(a) Equality of variances for the conditional distributions

(b) Linearity

(c) Independent errors

(d) All of the above

9. Which of the following is a standard possibility when 2 variables, A and B,

are correlated?

(a) A causes B

(b) B causes A

(c) A third variable causes both A and B

(d) All of the above are standard possibilities

10. When drawing a regression line, you want to _______ the residuals.

(a) Maximize

(b) Minimize

(c) Estimate

(d) Predict
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11. The problems of _______ are particularly difficult in the case of forecasting.

(a) Extrapolation

(b) Interpolation

(c) Both (a) and (b)

(d) Neither (a) nor (b)

12. Multiple regression allows us to use many different _______ variables to

predict one _______ variable.

(a) Dependent; dependent

(b) Dependent; independent

(c) Independent; dependent

(d) Independent; independent

13. The problem of _______ in multiple regression is not found in simple

regression.

(a) Equality of variances for the conditional distributions

(b) Collinearity

(c) Independent errors

(d) Error

14. Experiments with groups are the best way to determine the _______.

(a) Effects of interventions

(b) Correlation coefficient

(c) Regression line

(d) All of the above

15. The null hypothesis for a _______ test is that the difference between groups

is exactly zero.

(a) One-tailed

(b) Two-tailed

(c) Both (a) and (b)

(d) Neither (a) nor (b)

16. Regression procedures are mathematically identical to group tests when all

of the _______ variables are categorical.

(a) Null

(b) Error

(c) Dependent

(d) Independent
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17. In designs, variables are referred to as _______, and values are referred to as

_______.

(a) Levels; levels

(b) Levels; factors

(c) Factors; levels

(d) Factors; factors

18. The _______ test is a statistical procedure that determines whether or not

the mean value of a variable differs significantly between multiple groups

distinguished by two categorical variables.

(a) Two-factor ANOVA

(b) One-factor ANOVA

(c) Correlation

(d) Regression

19. With ANOVAs, the problem of _______ may arise.

(a) Main effects

(b) Interactions

(c) Multiple comparisons

(d) Collinearity

20. If we cannot phrase our question in terms of a population parameter, we

should look to _______ tests.

(a) ANOVA

(b) Regression

(c) Parametric

(d) Nonparametric

21. Nonparametric tests are _______ powerful than parametric tests.

(a) More

(b) Less

(c) Equally

22. The _______ is a statistical procedure that can determine whether the pro-

portion of items classified as a categorical variable differs from some fixed

standard proportion.

(a) �
2 test of proportions

(b) �
2 test of population variance

(c) �
2 test of independence

(d) All of the above
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23. The _______ is a statistical procedure that can evaluate an estimate of the

population variance with respect to some specific value.

(a) �
2 test of proportions

(b) �
2 test of population variance

(c) �
2 test of independence

(d) All of the above

24. The _______ is a statistical procedure that evaluates an estimate of the

population median with respect to some specific value.

(a) �
2 test of independence

(b) Wilcoxon rank sum test

(c) Wilcoxon signed rank test

(d) Kruskal–Wallis test

25. The _______ is a nonparametric statistical procedure that is similar to the

one-factor ANOVA.

(a) �
2 test of independence

(b) Wilcoxon rank sum test

(c) Wilcoxon signed rank test

(d) Kruskal–Wallis test
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PART FOUR

Making Business
Decisions

Part Four of Business Statistics Demystified is about Making Business

Decisions. Here, we take all the statistics we’ve learned and apply it to

different areas of business decision making and management. Of course,

statistics is actually applied to dozens of areas. In a short introductory text,

we chose to focus on three illustrative examples that show the most

important issues in applying statistics to business, and also a sample of the

very different ways in which statistics is used in business.

In Chapter 15 ‘‘Creating Surveys,’’ we look at a common challenge for the

young manager applying statistics in marketing, and also in HR, designing

and conducting an opinion poll. Chapter 16 ‘‘Forecasting’’ shows why

predicting the future is such a challenge, and what statisticians have to offer

in that regard. In Chapter 17 ‘‘Quality Management,’’ we show how

statistical techniques have moved from the manufacturing environment into

the realm of business processes, supporting decisions that create real

improvements in the bottom line.
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CHAPTER
15

Creating Surveys

Here, we focus on how to design and carry out surveys in an effective and

statistically valid manner so that our business surveys will provide

information we can use to support business.

The need for expertise and experience in surveys is far more critical even

than in other areas of business statistics. A poorly designed or executed

survey can do irreparable damage to our business. The detailed work of

setting up even the simplest survey is very easy to do, but very hard to know

how to do correctly. The guidelines below are for opinion polls. All of the

rules for other kinds of surveys apply to opinion polls, and opinion polls have

important rules of their own. The steps in performing a survey are: Planning

and design, conducting the survey, and interpreting and reporting the results.

Planning and Design
To plan our survey, we must define our goals and objectives, identify our

target population, choose our data-gathering methods, pick a sampling

procedure, and write the survey questions.
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STATE GOALS AND OBJECTIVES

As always, we start with our business questions. What information will be

useful in answering them? By the time our plan is in draft form, our questions

must be phrased clearly and precisely. And the questions must be clear to the

people we interview, not just to us and our team.

We need to state our objectives clearly and precisely and most of all

simply. What is the goal of the survey? State it in one sentence. What are the

sub-goals? Make sure that everyone signs off on all objectives and the

wording describing them.

IDENTIFY TARGET POPULATION

As in an experimental study, we are going to take a sample and make

inferences about a population. All of the concerns discussed earlier in

Business Statistics Demystified apply here as well. In addition, in a survey, the

choice of a target population has enormous impacts on our survey method.

Do we want to find out about customers or potential customers or

competitors? The way we contact our respondents and obtain information

from them may depend critically upon who they are and what sort of

relationship we have with them (if any).

CHOOSE METHOD(S)

There are four basic types of survey method:

. Mail-out surveys.

. Advantages: This is the least expensive method (except for online

Internet surveys). It is convenient for the respondent and allows

him or her ample time to reply. The questionnaire, any supporting

documents, and the envelopes (in the case of snail-mail) can be

printed so as to make clear that we are who we say we are and

that we are established, credible, and responsible. The absence of

an interviewer gives the respondent a greater sense of privacy.

. Disadvantages: This is the slowest method. It also has the lowest

average response rate, which means lots of follow-upmailings to get

a large enough sample. We can never be sure that it was our target

who actually filled out the questionnaire. Secretaries and assistants

answer a lot of mail-out surveys. If the respondent doesn’t

understand the question, there is generally no one to ask. Most

importantly, there is a strong self-selection bias to the sample.
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. Telephone surveys. Potential respondents are contacted by interviewers

by telephone.

. Advantages: This is the fastest method. Large numbers of respon-

dents, spread over a very wide area, can be contacted in a very

short time, and, by using professional telephone survey banks, at

very low cost. (Automated telephone surveys can be even less

expensive, but these seem to have lower response rates and the

advantages of having a live interviewer are lost.) The interviewer

can control the order in which questions are asked and make sure

the respondent understands them.

. Disadvantages: Before almost everyone had a telephone, there was

a built in sampling bias to the telephone survey. Now that some

people are abandoning their landlines for cell phones, this bias is

re-appearing. Even if it becomes legal to survey by calling cell

phones, cell phones sample people and not places, so the two

methods may not be easy to mix. No visual materials can be pre-

sented. And, of course, the respondent can always end the inter-

view prematurely by hanging up.

. In-person interviews. The interviewers meet with each respondent in

person.

. Advantages: This method can provide the most detailed data.

The interviewer may have pictures, charts, and especially pro-

duct samples. (This is the only method when we want to do a

taste test.) It may be the only way to reach hard-to-reach

populations, such as the homeless, incarcerated prisoners, or

CEOs. This method also has the highest response rate, which

can mean less sampling bias.

. Disadvantages: This is the most expensive method. The personal

presence of the interviewer increases the likelihood of bias intro-

duced by the individual psychological makeup or personal biases

of the interviewer. The interview is not as safe for the interviewer,

nor as private for the respondent, as other methods.

. Online (Internet) surveys. Potential respondents are invited to visit a

website where the questionnaire is presented by the computer. Online

surveys are too new for their advantages and disadvantages to be well

understood, but a few things are clear:

. Advantages: Potentially, this method can combine an even lower-

cost than mail-out surveys with some of the flexibility of telephone

surveys. Graphics, and even video and audio are available. If we

sell our products online, we can reach our customers at the point

and time of purchase.
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. Disadvantages: Only computer users can be reached. Snazzy gra-

phics and audio–visual materials will only run on some computers.

Skillful programming will be needed to provide the flexibility of

ordering the questions depending upon the response. Computers

are not interviewers. There is only a limited ability to clarify a

respondent’s questions. Computer graphics are not print graphics.

They have neither the quality, nor convey the authority, of print

graphics. Most importantly, sampling bias may be created by the

method by which respondents are invited to participate. The so-

called unscientific online surveys popular on TV news and entertain-

ment shows are barely surveys at all.

In order to get the sample we want, we may use one method initially and

follow-up with others.

PICK THE SAMPLING PROCEDURE

The order of the above elements of planning and designing our survey is not

locked in stone. However, we must state goals and objectives so that we can

identify our target population, and then make good decisions about how to

reach our sample. Picking the sampling procedure and choosing our overall

survey method are closely interlinked. For example, initial random sampling

by phone or by mail is possible, but different sorts of bias are introduced by

the choice of method. Also, sample size may be constrained by the costs of

one method over another.

Survey sampling is very complex, far more so than other types of sampling

we have discussed in Business Statistics Demystified. (Deming’s, 1950, non-

comprehensive classic on survey sampling, Some Theory of Sampling, is 602

pages long, and it is over 50 years old.) Expert advice should be sought in all

cases. In order to be an intelligent consumer of that expert advice, we

recommend a class in survey research, or a good book, such as Rea and

Parker’s (1997) Designing and Conducting Survey Research.

The important thing to understand about survey sampling is that, we may

want to know how many demographic variables, such as age, sex, economic

status, etc., relate to our respondents’ opinions. Ensuring that our sample

is correctly representative of our population on all of these variables is no

easy matter.
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WRITE THE SURVEY QUESTIONS

The most difficult and important part of any survey is writing the questions.

There are even entire books about writing effective survey questions, such as

Converse and Presser (1986). But no book can teach everything about writing

good survey questions. Experience is the key. If no one in our organization

has the experience, we need to hire someone who does. We can draft our own

questions, of course, but an expert should edit them before we use them.

Here are some different types of questions:

. Dichotomous. A yes–no or true–false question.

. Multiple-choice. Questions that allow a limited number of predefined

answers, usually measured as a nominal variable.

. Ratings scale. A question answered with values on an ordinal scale.

For example: Strongly disagree. Disagree. No opinion. Agree. Strongly

agree.

. Completion. A fill in the blank question. Used most often for nominal

variables with large numbers of possible options. Example: What is

your occupation?

. Open-ended. A question that allows the respondent to answer freely.

This type of question provides the most information, but the answers

are hardest to analyze.

Except for open-ended questions, all questions should be carefully phrased

so that as many of our respondents as possible can choose one of the

available alternatives. For example, we can offer many options for selection,

and then leave an ‘‘other’’ field to get the benefits of both multiple-choice

and completion questions.

Here are some guidelines for writing good questions:

. Reduce error

. Write short questions

. Avoid double-negatives

. Use simple language

. Use simple concepts. Avoid abstract, complex, technical, special-

ized, or otherwise unfamiliar language.

. Be specific and avoid ambiguous expressions

. Be personal. Whenever possible, ask about the respondent’s own

experience and knowledge.

. Be current. Most people have poor memory. Ask about recent

events. Tie less recent times to specific, memorable occasions,

rather than to dates.
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. Reduce bias

. Avoid leading questions. Ask ‘‘What do you think is the most

important issue in buying a new car?’’ Not, ‘‘Do you think safety

is the most important issue in buying a new car?’’

. Avoid name dropping. Ask about the hiring freeze, not the new

CEO’s hiring freeze.

. Avoid suggestive language. Colorful adjectives, like ‘‘dangerous’’

and ‘‘charming,’’ as well as inflammatory verbs like ‘‘prohibit’’ and

‘‘cater,’’ can change people’s answers.

. Check for problems with question order. Asking about Securities

and Exchange Commission (SEC) regulations immediately after

asking about insider trading may get you a different answer than

asking about it after asking about the effects of deregulation.

. Increase information

. Ask for opinions instead of facts. When asking a respondent about

him or herself, phrasings such as, ‘‘Do you consider yourself a . . .’’

may be better than, ‘‘Are you a . . .’’ because a person may not be

sure how they fit in various social categories.

. Use open follow-ups for fixed-response questions. Fixed-response

questions are easier to tabulate, but always leave the respondent

room to expand, clarify, explain, or comment. They will feel better

and the information may be useful.

After our questions are written, it is important to pre-test them with a

small sample of our population to make sure the questionnaire works. We

should also test tabulation and encoding of our sample survey. Many small

companies run surveys and only realize after the fact that they’ll never have

time to evaluate all different answers to their open-ended questions.

Conducting the Survey
Once the plan and the budget are in place, and the materials are prepared,

the next step is to actually conduct the survey. We may do this ourselves, or

hire a service provider to do it for us. Here are the steps:

. Train the interviewers. Even professional interviewers need an intro-

duction to the job.

. Pick the starting time, selecting a time that will reduce bias.

. Collect the data and protect confidentiality while you do it.

. Follow-up with incentives to increase sample size.
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Interpreting and Reporting the Results

For a well-planned study, where a statistician has been brought in early,

the interpretation and reporting of results can go smoothly and easily.

For the poorly planned study, this is the point where disaster is likely to

strike.

. Code and tabulate the data. Except for open-ended questions, coding

was built into the survey. Issues related to coding and tabulation were

discussed in Chapters 2, 4, and 6.

. Analyze the data. Be sure to determine the margin for error, that is, the

point where a difference in value is not meaningful.

. Evaluate unexpected results. People are less predictable than most

other subjects of statistical study. When we get unexpected results,

we should consider further study, a special report, or action.

WRITE THE REPORT

The guidelines for report writing are in Chapter 10 ‘‘Reporting the Results.’’

An important additional issue is privacy. The report must not allow a reader

to identify any respondents.

Quiz
As a gift to our readers—a bonus. You have only five questions to answer—

short chapter, short quiz!

1. What is the purpose of a survey?

(a) To be mathematically correct

(b) To please the boss

(c) To answer the question

(d) None of the above

2. What is the advantage of a Mail Out survey?

(a) Lowest cost

(b) Respondent convenience

(c) Interviewer bias

(d) Postal costs
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3. Which of these is a disadvantage of a Telephone survey?

(a) Speed of response

(b) Large numbers

(c) Accuracy

(d) Cell phones

4. A true or false question is a _____ question.

(a) Multiple-choice

(b) Dichotomous

(c) Completion

(d) Open-ended

5. When writing a good survey question, you should . . .

(a) Reduce error

(b) Reduce bias

(c) Reduce both (a) and (b)

(d) Increase both (a) and (b)
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CHAPTER
16

Forecasting

Specialists in finance, marketing, and economics all claim to be able to

predict the future and are prepared to charge us for their services. Of course,

if they can really predict the future, why can’t they just make a few million

on the stock market and give us their services for free? More seriously, the

complexities of forecasting are intimidating. We need to learn how to be

intelligent consumers of statistical forecasts.

FUN FACTS

In his classic book, A Random Walk Down Wall Street, Malkiel (1973) argues both

that random portfolios will perform as well as those selected by experts and that

short-term predictions of the stock market are impossible. In forecasting, long-term

forecasts are less reliable than short-term forecasts.
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The Future Is Good To Know
Forecasting is the product of two opposing forces. Nothing could be more

valuable in making business decisions than knowing certain facts about

the future course of our business. However, no amount of statistics or

mathematics or computer power can change the simple fact that the future

can always surprise us.

THE PAST IS PROLOGUE: OR MAYBE NOT

The most important thing to realize in using statistics for forecasting is that

past numbers are not the cause of future numbers. Yesterday’s numbers were

created by yesterday’s actions and events. Tomorrow’s numbers will be

caused by tomorrow’s actions and events. When we use statistics for fore-

casting, we are trying to use the numbers as representative of past actions and

events, and then project the numbers forward, implying a certain set of future

events that we believe will happen, leading to the future numbers in our

forecast. However, if future actions and events are different from past actions

and events, then future numbers will not be predicted by past numbers.

TIPS ON TERMS

Planning estimates. Predictions where the probabilities of various relevant events,

usually provided by experts, are coordinated within a mathematical system. We will

see how this is done in the final section of this chapter. (Remember that this use

of the term, estimate, has absolutely nothing to do with the statistical estimates

discussed earlier in Business Statistics Demystified.)

Forecasting projections. Predictions derived from one of a number of statistical

procedures that take a series of data measurements drawn at equal intervals over

time and extrapolate from that series into the future. The remainder of this chapter

will focus on these techniques.

CROSS-SECTIONAL AND TIME-SERIES DATA

In terms of statistics, we can think of this in terms of the structure of a

regression model. At regular time intervals, we take a number of individual

measures, some of which are important to our business decisions. In a

cross-sectional approach, we regress the important variables on the other

variables, either measured at the same time, or with the other variables
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measured at some earlier time period. In a time-series approach, we regress

the important variables (or an aggregate combining them) on the time

variable measuring when the measurements were taken. The goal is always to

be able to predict the values of these important variables for a time period

in the near future.

The cross-sectional approach can be handled by a regression analysis. The

problems are as discussed above. If we regress the variables of interest on

other variables measured at the same time, we will not really be looking at the

future. The values for the independent variables will not be available before

the time when we can measure the dependent variables for ourselves. What

we need is a set of independent variables measured at one time that predicts

the values of dependent variables at some later time. In economic forecasting,

these sorts of predictive independent variables are called leading indicators.

If such indicators can be found, the rest of the problem is just a matter of

regression.

The time-series approach is more complex. As we will see below, although

it is structured like a regression problem, certain vital assumptions are

violated, and regression per se cannot be used. In this chapter we will consider

time-series analysis, in terms of regression-like and other types of methods.

The Measurement Model
The first step in understanding time-series analysis is to understand what a

time series is and the basic model of how it can be analyzed.

WHAT IS A TIME SERIES?

In a time series, we measure the same variables over and over again at equal

time intervals. In a business context, this could be every day, or every week,

month, quarter, or year. The variables, of course, are variables whose values,

if we knew them in advance, would be helpful in making our business

decisions. Each set of values is recorded, labeled with the time when the

measurement was taken. A forecast involves using the entire set of values

collected up to the present time to predict the next few values, sometimes just

the next value, for the next few time periods.

In some cases, we will want to examine individual variables. In other cases,

we will want to combine variables that measure similar things into one

variable, called an aggregate or an index. The U.S. Government calculates

and publishes many such indices, which measure everything from the prices

of different types of oil, the amounts of various products and services sold,
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to the interest rates one bank charges another for borrowing money. The

advantage in creating an aggregate index to analyze is that it provides a

single dependent variable, which as in regression and ANOVA, simplifies

the technical problems considerably.

THE CLASSICAL MULTIPLICATIVE MODEL

In considering how to analyze a time-series variable, a general model, called

the classical multiplicative time-series model, is used. The equation for that

model is:

Yt ¼ Tt � Ct � St � It ð16-1Þ
where Yt, Tt, Ct, St, and It are the values of the dependent variable, the trend,

the cyclical, the seasonal, and the irregular components of the time-series.

The subscript, t, indicates a separate value for each time period in which data

are collected.

The idea is that, at each point in time, the overall y-value that we want to

predict is composed of four different numbers. The first number, the trend,

either rises or falls (but not both) according to some specific rule, over the

length of time being measured. The cyclical component rises and then falls

and then rises again slowly over time. The seasonal component also

periodically rises and falls, but does so in synchrony with the time of year.

The irregular component consists of non-repeating ups and downs due to

events not involved in any of the other components.

Note that the equation for the multiplicative model does not include an

explicit error component. The irregular component is random in the sense

that it is not predictable from the time variable, but it is not due to error.

Each of the four components has its own equation (at least in theory) and

each component equation includes the error variance for that component

separately.

HANDY HINTS

Why Does the Time-Series Model Use Multiplication?
In previous chapters, whenever we combined separate elements in an equation,

we almost always used addition rather than multiplication. Why does the classical

time-series model use multiplication instead? The reason is mathematical conve-

nience. For certain types of time-series analysis, it is easier to extract out the different

components if we assume that they are combined using multiplication, rather than

addition. For other types of analysis, it is assumed that addition is used. For those

types, another model, the additive model, which is identical to the multiplicative
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model except for using addition instead of multiplication, is used. The two models

can even be converted back and forth mathematically, if need be. The only difference

is the scale of measurement. In the real world, influences combine to create an effect.

The choice of which type of mathematics to use is ours.

We discuss each component below:

Trends: patterns of growth

The trend is defined as the systematic change in the dependent variable (that

is, the variable of interest to us) that does not cycle over time. As such, it is a

pattern either of growth or decay over time. The trend is either up or down,

but not both. In product sales, it represents the increase in sales from

introduction until saturation. In terms of personnel, it represents the number

of employees from the company’s start until it reaches its full size. The

different types of trends correspond to the different patterns of fast and

slow change over time.

Most forecasting is about how fast, and in what way, something will grow.

We can identify four basic growth patterns, and then discuss cycles.

. Flat growth is no growth at all. This is what we will see in the sales-

man’s results in the story below. Year after year, $5,000 per month.

Mathematically, a horizontal line, with a slope of zero.

. Linear growth is a steady rate of growth, adding a fixed amount per

month or per year. Mathematically, a sloped straight line.

. Exponential growth is accelerating growth. It can be a slow acce-

leration, or a fast one. Mathematically, a positively accelerating expo-

nential curve.

. S-curve growth is growth according to a more complex model. Here,

we have a slow beginning, a rapid increase, and then a leveling off.

The mathematics is complex.

SOMETHING EXTRA

When Does the S-curve Curve?
The S-curve model is used because it matches the observed reality of many systems in

business and in nature, such as: Slow startup, rapid growth of sales until the market

is saturated or matures, and then sales level off; and slow increase of size from seed to

sprout, followed by rapid growth of a plant, followed by slow growth as the plant

reaches maturity. What creates this common pattern? The slow initial growth is due

to internal constraints: in a business, not enough money or employees; in a plant, not
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enough leaves and roots. The rapid period is when, due to exponential initial growth,

the internal limits are released, and no external limits are yet met. This period ends

when external limits—such as saturation or complete use of local resources—are

reached, or when new internal limits—such as too many communications channels—

arise.

The key to S-curve forecasting, then, is to know what limits growth, and when

these limits will hit. Statistics can help with this, but we also use modeling and expert

judgment.

Let’s take a look at each of these five types of growth in Table 16-1.

We will start with an investment of $100. The first column shows what you

will have over ten years if you hide your money in your mattress and earn

nothing—there is no growth. The second column is an example of linear

growth—a simple bank account at 5% interest, but you remove the interest

every year and stuff it in your mattress. The third column shows slowly

accelerating growth achieved by leaving the interest in the bank account. The

fourth is the result of a very successful—or lucky—entrepreneur who invests

in a series of venture capital deals with a 30% annual return, and all the

businesses succeed. Such exponential success is unlikely. The fifth column

shows the S-curve, a more realistic example. It might show the results of a

savvy entrepreneur who invests her own money in her own new company. At

first, while she is getting the business started, she gets very little money back.

Then business takes off and the money rolls in. Finally, business reaches

saturation and there is slow growth. Soon, it is time to retire. Note that the

same proportions would arise with more realistic investment numbers in the

tens or hundreds of thousands of dollars. Note also that each pattern of

growth is also a pattern of shrinkage if the direction of the trend is reversed.

In these examples it was fairly easy to forecast how much money we would

have in each future year. Why? Because we knew the model; that is, we knew

the rules. We clearly understand the consequences of each action we take—at

least for the first three columns. With venture capital and investing in our

own company, there are no guarantees. We are hoping and guessing.

Predicting business growth or stock market results is much more complex.

And therein lies the danger. If we have a desire—such as a political

motivation—to show a certain result, we can always find assumptions that

will lead to that result. The challenge in forecasting—and in evaluating the

forecasts of others—is not so much the application of the statistics as it is the

choice of underlying assumptions. We must also be aware of tunnel vision.

The moment we say, ‘‘given these assumptions,’’ we should take time and

energy to ask, ‘‘Should we accept these assumptions? Should we accept that

they will continue to be true in the future?’’
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CRITICAL CAUTION

Assumptions, Assurances, and Control
From a business perspective, there are three critical issues in evaluating the reliability

of a forecast. The first is the assumptions. The business assumptions in a forecast

include the statistical assumptions, and a whole lot more. They include assumptions

about the accuracy of data and about the behavior of people and businesses. For

Table 16-1 Five types of growth.

Flat Linear Slow acceleration Fast acceleration Life cycle

Investment Mattress Bank account,

remove interest

Bank account,

retain interest

Venture capital Own

company

Initial investment $100.00 $100.00 $100.00 $100.00 $100

End of year

1 $100.00 $105.00 $105.00 $130.00 $105.00

2 $100.00 $110.00 $110.25 $169.00 $110.25

3 $100.00 $115.00 $115.76 $219.70 $115.76

4 $100.00 $120.00 $121.55 $285.61 $137.99

5 $100.00 $125.00 $127.63 $371.29 $166.26

6 $100.00 $130.00 $134.01 $482.68 $202.36

7 $100.00 $135.00 $140.71 $627.49 $248.59

8 $100.00 $140.00 $147.75 $815.73 $307.98

9 $100.00 $145.00 $155.13 $1,060.45 $323.38

10 $100.00 $150.00 $162.89 $1,378.58 $339.54

Growth over 10 years 0% 50% 63% 1279% 240%
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example, the predictions of continued rapid growth in the U.S. energy industry

around the year 2000 were based on two assumptions that turned out to be false: that

earnings were being reported accurately, and that the markets were not being

manipulated. Due to the alleged activities of Enron and other companies, these

assumptions were not true, and the forecasts turned out to be woefully inaccurate.

An assurance is a special case of an assumption. Interest on a bank account is a

good example. We have more confidence in our assumption because banks are

regulated and monitored, and because our investment is insured (up to a point) by

the U.S. government. Regulation, monitoring, and insurance increase our assurance

that an assumption will continue to hold true in the future.

Lastly, there is the issue of control. Forecasts of what our own company will do

are—if carefully prepared—inherently more reliable than forecasts of what other

businesses, the general market, or consumers will do. Why? Because, as executives,

we can direct our company to engage in the activities we have determined will bring

about forecasted desirable results. To the extent that we have effective control, we

can work to make our forecasts of our future happen.

Cycles

By definition, the cyclic component of the multiplicative model is a measure

of a cycle that repeats over the course of more than a year’s time. So,

ordinarily, if our sales regularly rise and fall over the course of the week,

those short-term components will not be counted as part of the cycle. Cycles

usually repeat every 2–10 years. It is important to have data collected over a

long enough time period to capture the cyclic component in our statistical

analysis.

A major cycle in most forecasting models is the cycle of the overall

economy from boom to bust and back again. Almost any aspect of our

business we want to measure over time will be affected to some degree by the

business cycle, and that is why a cyclic component is included as part of the

model. Our overall sales may be increasing as our company grows, but, if

the economy starts its downturn next month, next month’s sales may be

lower than this month’s despite our growth. This is a good example of how

the time-series model works. Each component is thought of as one thing

influencing the overall value. We put all the influences together and we can

predict the value for the next time period.

Seasonal

Many business variables of interest to us are affected by the seasons. Retail

sales of gardening equipment sell more in the spring. Different grades of oil

are used in cars during the winter than in the summer. If we are predicting

PART FOUR Making Business Decisions334



values of these variables for periods less than a year, we will need to adjust

for seasonal variations, and that is what the seasonal component of the

model allows us to do.

Irregular

A new competitor enters the market. A new trade agreement lowers the price

of a key ingredient. A snowstorm increases sales of shovels. Individual events

that are not part of any pattern over time are modeled with the final

component, called the irregular component. Since these events are not related

to time in a reliable way, we usually measure the irregular component by

extracting the other components and seeing what is left.

Descriptive Statistics
In time-series analysis, there are two principal uses for descriptive statistics.

We can combine, or aggregate our dependent measures into one single

variable that measures what we want to forecast. We can alter, or smooth

the shape of the curve across time to make the patterns easier to see (and

analyze).

AGGREGATE INDICES

Before we can make forecasts, we need to be able to graph out our data as a

time series. This requires that we have a single variable that measures the

value we want to predict to aid in our business decisions. Each forecast

involves predicting the values for just a single variable only one or two,

perhaps three, time periods out into the future. It is often a good idea to limit

the number of forecasts we make to just a few critical numbers, unless we

have a way of combining the forecasts for each separate variable in order to

help make our business decision. (Some planning systems combine things in

this way.)

If we are interested in our overall sales, we need to aggregate sales of all

our products in all our sales territories. If we are interested in food prices, we

need to aggregate prices of different foods. If we are interested in demand for

our products, we need to aggregate sales of all products of that type, or else

get ahold of the numbers from someone else who has aggregated them for us.

Governments, NGOs, and private firms all publish various indices that may

be useful in our forecasts.
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There are two basic approaches to aggregation. We can just add up the

different related variables for each time period. Or we can weight the different

variables according to some measure of their importance. For example,

depending on what we will use it for, we might not want to count the price

of bread the same as the price of caviar in our index of food prices. Not

only is bread a lot less expensive than caviar, but lots more bread is sold,

the proportion of food budgets spent on bread is much higher, a larger

proportion of the buying public buys bread, bread is purchased more

regularly, bread comes in a lot more varieties, etc. There are many ways to

weight the different variables.

Unweighted indices involve a choice of which variables to include.

Weighted indices also involve a choice of how to do the weighting. In either

case, there are many, many ways to build each index. The advantage to

designing our own index is that we can customize the formula to best help

make our business decisions. The advantage to using a standard, published

formula or index is that our analyses can be compared to those done by other

organizations, which is often valuable. The disadvantage is that, over time,

we are locked into whatever changes the builders of that index make to adjust

their formula.

SMOOTHING: FINDING TRENDS

After we have selected or calculated our dependent variable, we graph it on

the y-axis, with time as the x-axis. There are simple ways to modify these

graphs to make the various regular components more visible for inspection,

by ourselves or the decision makers. These measures are called smoothing

functions. The two most common smoothing techniques are the moving

average and exponential smoothing. Both of these techniques average the

values of the variable over time, which tends to eliminate individual changes

that occur only once. Smoothing always tends to erase the irregular com-

ponent. Some smoothing, correctly applied, also eliminates cyclic or seasonal

components as well.

A moving average involves taking the average of all of the values for a

variable over a fixed number of time periods and graphing the data point at

the place on the x-axis corresponding to the middle of that time range. If our

data are collected more often than once a year and the moving average is

calculated for a whole year around each data point, we can use the ratio-to-

moving-averagemethod to deseasonalize the data, so we can see the seasonally

adjusted values. In terms of the multiplicative model, the moving average

for each time point includes only the trend, Tt, and cyclic, Ct, components.

When we take a ratio, dividing the data values by the moving average, that
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leaves us with a time-series that, in principal, only contains the seasonal,

St, and irregular, It, components. Then we average the ratio over all the years

of the time-series (averaging out the irregular component). This final number

is called the seasonal index. We divide the original data by the seasonal index

and get a look at our data without the seasonal fluctuations. Seasonal indices

for many industries and markets are also published by the government

and can be used with the same advantages and disadvantages of other

published indices.

Exponential smoothing takes an average extending backward in time,

weighting the most recent data points most heavily. The idea is that, while the

future may be like the past, the near future will be more like the most recent

past than the distant past. The exponentially smoothed time series allows us

to predict the very next value of time series based on the available data, but

taking the most recent data more seriously. In a situation where irregular

influences tend to last longer than one time period, the exponential method

can be very useful.

Inferential Statistics
There are many methods for making inferences about time-series to predict

the next few values of the dependent measure for a few time periods into the

future. Most of these are very technical and complex. The simplest use the

smoothing techniques discussed above. Each smoothing formula involves

accumulating data from other time periods. For each smoothing formula,

a separate formula for calculating the next value in the time-series can be

constructed. These sorts of inferences can be used only to predict one or two

future values.

The next more complex type of inferential method are those based on

least-squares measures of residuals, the same sort of mathematics used in

regression. We discuss these and other more advanced techniques below. The

most important issue in using any sort of inferential technique for time-series

analysis is to validate the method against our data. Because time-series

forecasts always involve extending a time-series past its original range, there

is a very simple method for validating even the most complex inferential

technique. Just pick a time in the past, say four-fifths of the way through the

time-series. Apply the inferential method(s) to the first four-fifths of the data

and match the forecasts created to the last fifth of the data. In seeing how

well our forecasting model has performed on recent data, we can assess its

ability to perform in the next time period or periods.
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LEAST SQUARES TECHNIQUES

Recall that the regression lines are just the unique line that passes through

our data with the minimum of the sum of squares of the length of all the

residuals. This measure is called the least-squares. We can perform this same

calculation on our time-series, with our dependent variable, Y, and the

independent variable, time, t. If our trend is linear, the least-squares line may

capture it nicely. Even if our trend is non-linear, the least-squares line will

show us the direction of the trend. We can also use non-linear regression

calculations to detect non-linear trends in the least-square curve.

Using the least-squares line (or curve) will be slightly different from most

regression in that there will be only one data point for every value of the

independent variable. More importantly, this analysis will violate a critical

assumption of regression. Because each data point is a measure of the same

variable taken from the same individuals, but at a different time, we can

expect that the values will not be independent. This makes sense in terms of

the notion of independence and information. One of the best sources of

information about next month’s sales is this month’s sales.

Forecasting is extrapolation

Note that, in regression terms, any inferential prediction from time-series

data is an extrapolation. Our data are about the past. The range of the

independent variable, time, stops at today. Forecasting means predicting

Y-values for the future, outside the range of the data. All of the problems of

extrapolation apply.

The problem of autocorrelation

More serious than the problem of extrapolation is the problem of the non-

independence of the data points. Various inferential techniques attempt to

help correct this problem by eliminating the influence of earlier data points

on each of the later data points. The effect of the influence of earlier data

points on later data points is called autocorrelation. There are a number of

different ways of measuring autocorrelation. We can examine these measures

graphically to help decide whether a particular inferential technique is

appropriate. Some inferential techniques automatically incorporate certain

measures of autocorrelation into the inferential process.

Choosing among models

Even if we just restrict ourselves to least-squares techniques, we have many,

many options. There are linear, quadratic, cubic, and exponential functions
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just for a start. An expert in forecasting is the most important thing to have

in choosing among models. Computers and statistical software make it much

too easy for the non-expert to perform forecasts using one or many different

techniques. The computer gives us lots of useful numbers, but it can’t provide

the experience and expertise to use them effectively.

There are not only many, many inferential techniques, there are also many

ways of comparing how well different techniques work. These comparisons

help us choose which techniques to use in making our forecasts. The basic

strategy in comparing techniques is to run each technique against our data

and see how well the predicted values match the actual values over the range

of past times. The match is calculated by combining the residuals and is

called a fit.

In general, more complex inferential techniques involving more param-

eters will give us a closer fit to the data. Choosing a model means picking the

one that fits the data best, given the number of parameters. This is a complex

process, involving judgment and a comprehensive understanding of the

details of the differences between the models being compared. Each step in

the process can be assisted by the computer, but each step involves more and

more numbers to understand and evaluate.

ADVANCED TECHNIQUES

Some advanced inferential techniques use more complex smoothing

techniques. Some, like the Holt-Winters technique, combine the prediction

based on the smoothing technique with other predictions. (In the case of

Holt-Winters, the smoothing is combined with a trend prediction.) Many

advanced techniques use more advanced types of least-squares techniques.

The most common of these attempt to fit a non-linear trend to the data.

When the shape of the curve gets sufficiently complex (for instance, an

S-shaped curve), least-square calculations cannot be used to get a solution.

An alternative calculation technique, called maximum likelihood, is used to

fit the data to these more complex trends.

Maximum likelihood methods used to match S-shaped trends to data

require a specific mathematical form of the S-shaped curve. The two most

common mathematical functions used are the logistic function and the

Gompertz function. Maximum likelihood methods can also match data to

much more complex curves. For example, when irregular changes affect the

shape of the time-series curve, different functions may provide the best fit for

different segments of the time range. If we can identify the times when these

changes occur, the use of splines may be effective.
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As mentioned above, there are techniques called autoregressive (or AR)

techniques that use an underlying model of autoregression to predict future

values in the time series. The most common of these is the Box–Jenkins

technique. The underlying model is that each Y-value is predicted from the

preceding Y-values instead of from the time. AR methods do this by taking

into account the autocorrelation, which measures the correlation between

earlier and later values. There is also a sophisticated forecasting method

called ARMA (or ARIMA), which combines the autoregressive and moving

average techniques.

There is also an inferential technique based directly on the classical model.

Spectral analysis uses the mathematics of Fourier transforms to decompose

the time series into a set of cyclical curves. This is a very complex technique.

Its use and interpretation requires an expert.

In recent years, various types of mathematical modeling, including neural

networks (which are equivalent to a form of non-linear regression and can

also model autocorrelation using additional calculations called recursive

connections) and genetic algorithms (a non-statistical technique originally

developed for modeling biological systems), have become available for

forecasting, especially forecasting stock market prices. The jury is still

out, but some of these techniques have been shown to work well for specific

kinds of data for periods of time.

Cautions About Forecasting
Using statistics or other mathematical or computational techniques to

attempt to predict the future, even if only in the limited terms of a stock price

or next quarter’s profits, is somewhat more reliable than using tea leaves or

a crystal ball. However, there are essentially insoluble problems faced by

forecasters that are not faced in any of the statistical techniques we have

discussed earlier in Business Statistics Demystified. A crucial aspect of

understanding forecasting will be to understand the limitations of its

methods. We divide the discussion of these limitations into problems of the

methods and problems of the world.

METHODOLOGICAL LIMITATIONS

We have already discussed the problems of extrapolation, single values at each

time point, and non-independent, autocorrelated measures. These problems

seriously limit what we can prove about the effectiveness of forecasting
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techniques. However, there are inherent limitations to the methods used that

are not due to these considerations.

Graphics versus calculations

The simplest techniques for time-series analysis rely on graphics. We change

the data values and look to see the new curve and attempt to interpret it.

However, extraordinarily complex mathematical techniques used in time-

series analysis sometimes have a step where mathematics is abandoned and

human judgment, assisted by a graph, must be employed. This is particularly

true when different models are compared for fit.

The problem with this is that, as psychologists have long known, people

see what they want to see. If we want our market share to be increasing, we

are more likely to see an increasing trend even when one is not there.

(Psychologists call this experimental bias.) This phenomenon is far more

pervasive and far more powerful than most folks imagine. Psychologists have

demonstrated that even when the person making the judgment has no bias,

just being in the room with an experimenter who is biased can affect the

results! At a very minimum, we must be very cautious about both expert and

non-expert judgments. No amount of complicated mathematics will eliminate

the effects of a biased judgment applied somewhere in the process. If possible,

we should have disinterested third parties double-check our assessment of

trends and be sure not to give them any hint of what we are looking for.

However, this is difficult, time-consuming, and expensive.

Conservatism

Notice that we have not talked about �-levels or Type I errors here. Because

of all of the problems with predicting the future, there is no way to put an

upper limit on the probability of our forecasts being wrong. The inferences

made in time-series analysis are not conservative. We are given no guarantee

that our forecasting techniques will give accurate predictions, even if those

techniques have produced accurate predictions in the past. The only

guarantee we have is that predictions for events further in the future will

be less reliable than predictions of events sooner to come.

Correlation of variables and results

Underneath every forecast is a model of how reality works. That model may

be wrong. It is best to know what our model is.

An old story illustrates this point well. There was a salesman who, starting

as a young man, was given a small territory. He generated $5,000 a month in
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sales. That was spectacular for such a small territory. The business evaluated

his sales dollars per customer. It was really high, so they thought he was a

great salesman. They gave him a bigger territory, expecting great things. In

the new territory, he generated $5,000 a month in sales. That was reasonably

good, measured in sales dollars per customer. And he stuck with it.

Eventually, due to seniority, he was given a bigger territory. He generated

$5,000 a month in sales. That was a really poor return, measured in sales

dollars per customer. And he was getting old, too. So they gave him the

smallest territory they had. He generated $5,000 a month in sales, which was

pretty remarkable, measured in sales dollars per customer.

Looking back, it is easy to see that the company was correlating to the

wrong variable. Dollars of sales was a function independent of number of cus-

tomers. The correlation was with the salesman. He was a $5,000-a-month

man. If they’d known that from the beginning, they would have kept

him in the smallest territory all those years, and everyone would have been

better off.

So, before we dig into the numbers, there are some questions we should

ask about our model:

. Does the model have a strong theoretical foundation? Do we under-

stand it?

. Is the model proven through long use delivering accurate results? Has

it been modified or improved? Have the changes been tested?

. If the model is being borrowed from another situation, have we inves-

tigated the underlying assumptions that worked there, to see if they

apply to our situation?

. What are the assumptions of the model? Have they been reviewed and

evaluated recently?

. Is the model, or are certain elements of the model, being chosen in

order to achieve a desired prediction? We see this every year with the

different predictions about the size of the national debt. One political

party uses one set of economic projections, another uses a different

one. But they choose the projections to get the result they want. These

are not really projections at all; they are something closer to wishful

thinking or spin.

EXTRINSIC FACTORS

Nature seems to resist our attempts to know the future. This not only shows

up in all of the various technical difficulties with forecasting, but also in our

commonsense understanding of the world.
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Error and change

Things change. As discussed above, the success of any forecasting technique

depends critically on our model of the world. When the world changes, the

variables that used to provide wonderful predictions may provide terrible

ones and previously useless variables may become useful. The best example

of this is published indices. The formulas for the various published indices of

the economy, the stock market, trade, particular industries, etc., are regularly

modified by the organizations that calculate and publish those numbers. The

Dow Jones Industrials is a group of companies whose stock prices is intended

to measure the state of the stock market and to some extent, of the economy

as a whole. Only one company included amongst the Dow Jones Industrials

at the stock market crash of 1929 was still included in 1945. Not only do the

firms change, the relative contributions of different industries change as well.

Imagine how the relative contributions to the economy of manufacturing,

natural resources, energy, retail, transportation, and communications have

changed over the last 100 years.

Changes that are due to disruptive events, such as wars, flood, and famine,

can be modeled as part of the irregular component. But changes that alter the

underlying causal structure will tend to change which model and which type

of model make the best forecasts. Even if the same variables are useful in

predicting the things we want to know about, changes to the way things work

can alter the underlying causal relations and thus change which model fits

best. For example, changes to regulations, such as SEC, FCC, or FAA

regulations may not alter what we need to measure, but may radically alter

the shape of the curve.

Nothing grows forever

In the wake of the burst of the Dot-Com bubble, we have to re-examine

how we think about forecasts. Almost everyone predicted the bubble would

burst. Corporate growth driven by investment of venture capital doesn’t

last, it has to be replaced by earned revenue. But why were our projections

so unrealistic, and why did we believe them for so long? The authors

suggest two main reasons. First, each company was predicting success of its

own audacious business plan, but not looking at the big picture of the

whole industry. Second, everyone was invested, not only financially, but

personally. Anyone with money in the system wanted to believe their

phenomenal success would keep growing. But nothing grows forever.

And no prediction about when growth will stop is proven until after it

happens.
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Quiz
1. Predictions that take a series of data measurements drawn at equal intervals

over time and extrapolate from that series into the future are known as . . .

(a) Planning estimates

(b) Forecasting projections

(c) Both (a) and (b)

(d) Neither (a) nor (b)

2. Combining several variables that measure similar things into a single variable

will result in a _______ variable.

(a) Aggregate

(b) Time-series

(c) Forecast

(d) Regression

3. The _______ component of the classical multiplicative time-series model

describes the pattern of either growth or decay over time.

(a) Cyclical

(b) Seasonal

(c) Irregular

(d) Trend

4. The _______ component of the classical multiplicative time-series model

describes a pattern that repeats over the course of more than a year’s time.

(a) Cyclical

(b) Seasonal

(c) Irregular

(d) Trend

5. Which of the following involve descriptive statistics?

(a) Moving average

(b) Exponential smoothing

(c) Both (a) and (b)

(d) Neither (a) nor (b)

6. The main problem with using the least squares technique is . . .

(a) Extrapolation

(b) Autocorrelation

(c) Interpolation

(d) Smoothing
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7. In general, more complex inferential techniques involving more parameters

give us a closer _______ to the data.

(a) Comparison

(b) Smooth

(c) Fit

(d) Autocorrelation

8. Most time-series analyses rely on _______, which are subject to interpreta-

tion bias.

(a) Graphics

(b) Experts

(c) Non-experts

(d) Conservatism

9. When evaluating our model, we should ask . . .

(a) Does the model have a strong theoretical foundation?

(b) Is the model proven through long use delivering accurate results?

(c) What are the assumptions of the model?

(d) All of the above

10. Which of the following is an extrinsic factor for forecasting failures?

(a) Error

(b) Change

(c) Nothing grows forever

(d) All of the above
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CHAPTER
17

Quality Management

Quality management is a very interesting application area for the business

statistics student because we can see how statistical methods are integrated

with engineering and business processes to create process changes that lead to

measurable improvements. Although quality management is a very broad

field, including both harder engineering applications and softer, team and

people-focused techniques, the statistical processes fall on the more technical,

more defined, and measurable, engineering side of the field.

Key Quality Concepts
To understand how we use statistics to improve quality, we need to see how a

quality engineer looks at the world. Although there are larger, more general

definitions of quality used on the softer side, the most relevant definition of

quality for our purposes is: quality is conformance to specifications. For

today, let us presume that the soft-skilled managers have done their job well,

and that we have a specification, which, if met, will deliver what the customer

wants. Now, it is our job to ensure that the process we manage delivers a

product that conforms to that specification. This kind of quality management
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can apply in manufacturing environments, where the process is an assembly

line and the products are mass-produced, and it can also apply in project

environments where we are producing a single result—perhaps a large

computer program—and we want it to be free of defects.

TIPS ON TERMS

Defect. A single instance in which one product has a single variable whose

measurement does not conform to specifications.

Error. An event that leads to a defect, being its cause or part of its cause. Note that

error has one meaning in statistics, and another in quality management.

Root cause. A single cause identified as being at the root of many problems.

If eliminated, many defects go away.

Incident. A single event in which some cause leads to some defect.

Event. A single occurrence of a single input or process.

We can think of quality management for process control as the effort

to reduce the defects from a defined process to an acceptable level. Our

specification is a set of standards applied to measurable aspects of each

product, usually presented as a range of acceptable values for each

measurement. If we measure our product, and a variable falls outside the

acceptable range, that is a defect. We also measure various aspects of our

work processes. If we can correlate a value in a measurable process element

with occurrence of a particular defect, that correlation may indicate that the

error is a cause of the defect. If we eliminate the error in the process, we then

reduce the frequency of the defect, increasing quality.

KEY POINT

There are Always Errors
A key principle of quality management is that errors are always present. We seek to

reduce their number and consequence, and keep them at an acceptable level.

This kind of quality management calls for a combination of engineering

and statistical methods with one unified focus: reducing the level of defects

to an acceptable level and keeping it that low. We will look at two different

quality management methods that use statistical tools: root cause analysis,

which uses a Pareto diagram, and process control, which uses statistical

sampling and measures variance.
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Root Cause Analysis
Root cause analysis can be applied to any environment where we control

a process—either a physical process performed by machines, or a business

process with work done by people—that has measurable outcomes. Root

cause analysis is a very effective method of process improvement because it

identifies the relatively few causes of a large number of defects. Correcting

those causes leads to a very quick reduction in the number of incidents in

which defects occur. To perform a root cause analysis, we combine an

engineering tool (the fishbone diagram) and a statistical technique (Pareto

analysis).

The fishbone diagram, also called an Ishikawa diagram, was developed as

a process improvement tool as part of the Total Quality Management (TQM)

movement in its early years in Japan. As you see in Fig. 17-1, the Ishikawa

diagram is a map of a repeating process where a variety of inputs are

combined through a variety of processes to produce a product. Our first step

would be to create such a map of our production or work environment. Our

own diagram may have any number of inputs and processes, and we may

define intermediate sub-components and series of processes. The goal is to

have a complete picture of all the events that lead to the creation of a

product.

To ensure quality, we measure all relevant features of a sample of our

products. We also measure as many features as possible of a sample of the

inputs and of our processes. The principle underlying the Ishikawa diagram

is that a defect in the product can be traced back to one or more causes that

appear as variations from the norm—or variations from internal specifica-

tions—in the inputs or processes. The engineer’s goals are to define all inputs

Fig. 17-1. Generic fishbone or Ishikawa diagram.
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and processes, and define the relevant variables for each of these, and to

specify the quality requirements for each input and process. Theoretically, if

each input meets specifications and each process is within tolerances, every

product is defect free on all features. In practice, iterative application of this

method does produce amazingly high levels of quality that meet business

requirements and, when appropriate, approach zero defects.

HANDY HINTS

Sometimes, Zero Defects is Really What We Want
The cost of creating a defect-free product is extremely high. However, sometimes it

is worth the effort. For example, when we are creating a system with very tight

tolerances where human life is on the line, such as microsurgical robotic devices, jet

fighters, or the space shuttle, we aim for zero defects. In such systems, any defect or

combination of defects could lead to a catastrophic failure, which then leads to the

death of people. Zero-defect initiatives were designed to support such projects. In

other situations, some degree of risk is acceptable. One alternative to zero defects is

redundancy. For example, elevators have three separate braking systems. Any one of

them might fail. But, given regular inspection, the odds that all three will fail

simultaneously and the elevator will plunge are extremely low.

In the data we gather, we will have a series of product defects, D1, D2,

D3, . . .. We also have a set of potential causes, defined as measured results

where our data about inputs and processes indicate a variable outside its

specified tolerance. Let’s call these causes C1, C2, C3, . . . . Each defect has

one or more causes, and we can identify those through a combination of

statistical and engineering analysis where a particular cause C(x) will be

linked to a particular defect D(x). This linkage defines an incident, I(x), where

we can say that some cause or set of causes resulted in a particular defect.

Over a period of time, different incidents will repeat with greater or lesser

frequency. If we plot the frequency of incidents, by type of incident (a

nominal variable), we find that the distribution of incidents has a particular

pattern described by Pareto’s law. The derivation of Pareto’s law is beyond

the scope of this text, but it has a solid foundation in both theory and tested

practice. Pareto’s law—also called the 80/20 rule—states that 80% of all

defects arise from only 20% of the underlying root causes. In order to

prioritize our quality improvement work, we generate a Pareto diagram, a

bar chart with a nominal variable on the X-axis.

Let us look at an example of how this works. This example is based loosely

on a consulting contract performed by the second author of this text. It is
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an interesting case because it shows how root cause analysis, originally

developed for improvement of automated manufacturing, can be applied to a

more loosely defined work environment with people engaged in many

different activities. A large agency had a computer support desk supporting

over 3,000 computer users. The agency was in the middle of the rollout of

new workstations for every user. For a variety of technical and adminis-

trative reasons, the rollout was not going well, and there were many defects in

the new operating system and computer system that users were getting. When

users had trouble, they called the help desk.

Our population of incidents was all events when a user experiences

difficulty completing work on one of the new workstations. Our sample—

large, but probably biased—was the incidents that were called in to the help

desk. The help desk call log provided our raw data. We cleaned up our data

by analyzing calls and consolidating multiple calls from one person about

one problem into a single incident.

For each incident, the help desk sought to identify the activity the user was

trying to perform, the applications in use and running, and the symptom seen

by the user. These problems defined by the help desk went to the engineering

staff as their input to root cause analysis.

The engineering team—led by the secondary author—engaged in root

cause analysis. We had the help desk’s list of problems. We had technicians

going out to fix problems and submitting reports of the causes discovered,

and how the problem was resolved. We had engineers review the components

and processes used in assembling the computers and for installing each

software component. We had managers contact vendors and send samples of

the most difficult or urgent problems to get the vendor’s information about

whether their input might be the cause of the problem.

SOMETHING EXTRA

Finding and Remedying a Root Cause
In this type of process improvement, it is important to identify root causes,

to distinguish them from intermediate causes, and to perform an action that

permanently eliminates the root cause and all resulting problems. For example,

customers reported two problems: complete failure of the machine to start, and

complete lockup of the machine, requiring a power-off restart. Individual technicians

reported many of these incidents as being caused by the problem ‘‘memory module

failure,’’ and the solution as ‘‘replaced all memory modules.’’ That one computer

was now fixed. However, the engineers were able to trace almost all of these incidents

to one brand of machine in which the memory modules did not meet the specification
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required by the operating system. We took a proactive approach, replacing all the

memory modules on all of the computers of that brand, whether or not failures had

been reported. And, due to a well-written contract with the vendor, we were able

to initiate action that led to the vendor paying for the repairs. As a result, all

workstations met the operating system specification, and we were confident that we

could say that, throughout the organization, this incident would not happen again.

When a solution to a root cause is applied across an organization, that is called

permanent preventative solution. Note that a permanent preventative solution has

the result that incidents of that type drop to nearly zero. We are not seeking to

manage incidents better when they happen, we are seeking to eliminate incidents of

error altogether.

At the peak of the crisis, let us say that the help desk was experiencing an

average of 550 calls per day. Our root cause analysis identified 22 different

root causes that, together, explained all of these incidents. Our full Pareto

diagram has 22 bars, as illustrated in Fig. 17-2. (Note that Pareto diagram

and Pareto chart both mean the same thing.)

Each type of incident is a single defect attributed to a particular cause or

set of causes. A partial list of defects might include:

. Failure to boot: brand X computer with bad memory modules

. Failure to boot: computer with mixed brand of memory modules

. Failure to convert word processor document: incompatible printer type

. Failure to convert word processor document: embedded graphic

conversion failure

It may seem odd that we can apply Pareto’s law, which is based on a

statistical distribution, when our list of incidents is a list of cause–effect pairs.

Fig. 17-2. Pareto chart: computer help desk incidents by cause.
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We are able to because, while there is a cause–effect relationship within each

incident, the incidents are independent of one another. One incident does

not cause another, and therefore they are independent. As a result, their

frequency falls on a curve determined by Pareto’s law.

This helps our help desk. Here’s how. Prior to this effort, the help desk was

snowed under and trying to handle each call individually. A team of fewer

than fifty people can’t handle 550 calls per day when all of them involve

new equipment, and many involve replacing parts, reinstalling software,

or contacting vendors who may take days to provide support.

The Pareto diagram cuts to the root and defines the most important work

to be done. In Fig. 17-2, we have ordered the incident types from highest

frequency of occurrence to lowest. The descending gray line—and the bars—

show frequency of each incident, while the rising line shows the cumulative

frequency. We now see that if we can fix the first four or five problems (20%

of 22 problems), we will eliminate 456 out of 550 (or 82%) of incidents.

That’s very close to the Pareto’s law prediction of 80%. Fixing these

problems means going from 550 calls per day to 99 calls per day. The

engineering team did just that.

The result was a whole new environment. Productivity increased in the

agency. Customers were more willing to call the help desk because they saw

problems being solved. As a result, our sample became more complete. In

some cases, new problems were found. Most of this was due to one problem

masking another. When my computer won’t start, I can’t convert any

documents. Now that my computer starts, I find that I can’t convert

documents, and I place another call.

The engineering team generates a Pareto diagram for the new environ-

ment. This is much easier, because most incident types have been defined,

although new ones may always arise. Due to hidden and previously

unreported errors, we find that, instead of 99 calls per day (18% of 550),

we are at 125 calls per day, from 17 different causes. Performing permanent

preventative solutions on the three or four most common problems should

reduce that to about 25 calls per day. This is a manageable number for the

help desk, and too small a figure for Pareto analysis. If we want to continue

to improve performance, we will now analyze data weekly, then monthly,

then annually. Pretty soon, our help desk staff will feel like the Maytag

repairman.

This process is called iterative (repeating) Pareto optimization. When it is

applied in a rapidly changing environment, or an environment where many

inputs and processes are not fully under management control, it leads to a

low level of incidents—a manageable amount of interference with work, and

a manageable load for the help desk—in an environment where new causes of
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problems constantly arise. We also find that, as we proceed down this road,

some causes are extremely expensive to fix. For example, once all hardware

and software technical problems are resolved to a manageable level, most

incidents will arise from a need for user training, which can be costly.

If Pareto optimization is applied in a stable, controlled environment, such

as automated manufacturing, extremely low error levels can be reached very

quickly. This brings us to the realm of quality control for process control,

our next topic.

Statistical Process Control
We now move to a manufacturing environment that produces millions of

products—say computer chips or flat screens for TVs or computers. Each

product contains millions of components. (For example, a single 512-

megabyte computer memory module has over 36 million transistors, and if

one of them doesn’t work, the module won’t work.) Or, we could look at

automobile manufacturing, where we make hundreds of thousands of cars

with tens of thousands of components. In either case, each input and process

is highly specified. In fact, our company has probably been working with its

vendors for decades, sharing process improvement methods to reduce the

frequency of defects in our inputs. So, our Ishikawa diagrams and Pareto

charts are already in place.

In this kind of environment, engineers define quality goals in terms of

statistical variance or sigma (�). Through a variety of processes, including

Pareto optimization, Total Quality Management (TQM) brought many U.S.

manufacturing environments—steel production, automotive assembly, and

electronics, among others—to the 3-sigma level—that is, to fewer than 27

defects per 10,000 events—from the 1970s to the early 1990s. The exact

conversions from statistical terms of 3-sigma and 6-sigma to the same terms

as used in the quality management field are complicated by two factors. One

is that sometimes we want to eliminate extreme variations on both sides of

the mean, and other times, we are concerned about the range entirely on one

side of the mean. The other is that there is an observed phenomenon that,

given a sigma value over a short period of time in a manufacturing

environment, the sigma value over a longer period for that environment will

be 1.5 sigma less. So that a measured short-term of 6 sigma is expected to

give a long-term result of only 4.5 sigma. Given these interpretations, the

derivation of sigma value is beyond the scope of this text. Table 17-1 shows

generally accepted sigma values.
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An opportunity for defect can be seen as either an event in a process, or as a

component in a product. The goal is to have the target number of nondefects

per million opportunities, that is, the target number of results within accept-

able quality specifications, for each measured variable. Of course, a great deal

of engineering goes into deciding what should be measured, setting acceptable

limits, and discovering interactions among processes and their consequences.

In the 1990s, various companies then raised the bar to 4-sigma, 5-sigma,

and 6-sigma, or fewer than 3.4 defects per million events. Six sigma became

an industry buzzword after GE announced an intention to reach this level in

all its business areas in 1996. In reality, some industries—such as computer

chip manufacture—need and achieve far higher levels of quality, and others

find moving from 4- or 5-sigma to 6-sigma costs more than it is worth.

Manufacturing quality goals should be set by calculated return on our

investment of quality, or a cost of quality study, which is beyond the scope of

this text.

One commonly used tool for improving quality is statistical process control,

which is illustrated in Fig. 17-3. Here, we are looking at variation from the

mean of a single variable in our product with samples taken over time.

As samples are taken over time, they are plotted on the graph. Sample

values are shown as circles in Fig. 17-3. The mean value for the variable is

targeted to be the optimal value for the product. It is centered between the

specification limits shown as lines at the top and bottom of the diagram. For

example, if we are producing ball bearings, we may aim to produce them with

a mean diameter of 1 mm, and a specified limit of variance of þ/� 0.01 mm.

In the ideal case where there are no errors in our manufacturing process, the

diameter of our ball bearings will vary in a normal distribution around the

mean due to random variations in the process, called chance or common

causes. Interestingly, if we have lots of problems, the diameter of our ball

Table 17-1 Industry accepted sigma (�) values.

Sigma Nondefects per

million opportunities

Defects per

million opportunities

Nondefect

percent

Defect

percent

3 993,200 66800 93.32% 6.68%

4 993,790 6210 99.379% 0.621%

5 999,680 320 99.968% 0.032%

6 999,996.6 3.4 99.99966% 0.00034%
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bearings will also vary around the mean in a normal distribution. Each

problem will tend to make the bearings too large, or too small, by a different

amount. Individually, each problem will cause some degree of invalidity—a

difference from the mean. Collectively, the problems in our process will create

greater variance—lower reliability—as some problems create bearings that

are too large, and others that are too small.

According to quality management theory, any variation that appears

unlikely to be due to random factors, by definition, has a cause. It becomes

the engineer’s responsibility to figure out what is wrong, to assign a cause to

the error. There are two elements on our chart that would be defined as

having an assignable cause. Both are marked with dotted ovals. At the lower

right, we see a single data point below our �3 sigma lower control limit. The

likelihood of being outside our þ/�3 sigma control limits due to random

chance is low enough so that we want to assign a cause to that event. The

same would be true for a point above the upper control limit (not shown on

this diagram).

Near the center of the diagram, we see seven sequential data points all

above the mean. On a chart with þ/� 3 sigma control limits, seven sequential

points either above or below the mean are also evidence of some cause of

bias. How did statisticians come up with that figure? By definition, there is a

50% chance that each point will fall either above or below the line. For any

two points, there are four possibilities (both above; above-then-below, below-

then-above, both below), each equally likely, with a 25% chance. The chance

of two sequential points being either both above or both below is, therefore

50%, or 0.5. As we add more points, remaining above or below becomes

Fig. 17-3. Statistical process control chart.
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less likely by a factor of two for each additional point. So, the formula for

the probability P that n sequential items will all be either above or below the

line is:

PrðnÞ ¼ 1

2ðn�1Þ ð17-1Þ

If n¼ 7, then P¼ 1/64¼ 0.015625. This number is very close to the

probability of one point lying outside þ/� 3 sigma (0.027). As a result, it

is about equally unlikely that seven sequential events will be either above or

below the mean without a cause as it is that one event will be outside our

control limits without a cause. (The actual calculations for the likelihood of

a run of seven sequential points depend upon the sample size and are much

more complicated. However, the principle is based on the equation above.)

In both cases, seven sequential events on one side of the mean, or one event

outside our limits, our statistics indicate that there must be some non-

random, assignable cause to these events. It is up to our engineers to find

that cause and develop a permanent preventative solution so that our

manufacturing process will remain within our control limits.

Note that an actual process control chart would have hundreds—or

perhaps millions—of data points, and a computer would be used to examine

the data and find important information about assignable causes. In our

example, production requirements have set the specification limit just outside

our 3-sigma level, called our control limit, so our goal is to maintain process

control within 3-sigma variation for our sample. Since we can’t sample every

item, we seek to keep all sampled items within a narrower range than that

required for our population.

It is important to remember that we see data points from our sample set,

and not from our entire population. One way to picture this is to imagine

many other invisible points between the points we see. If we find one item

outside our control limits, then there are probably many others, and some of

them are defective, that is, outside our specification limits. If we find seven

sequential items all on one side of the line, there are probably a few items

produced in that time period that are outside our control or specification

limits, as well.

We use statistical process control to define what changes are needed to our

manufacturing or work processes. The result of these processes is our

product. Because we do not sample every component, and because a single

product will have specification limits on many variables and be the result of

many processes, we may need very tight tolerances on many variables to

create an acceptable product. It is a mistake to think that six sigma process

control would give us only 3 or 4 rejects per million products. Errors combine
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in complicated ways to create unacceptable products. Extensive planning and

analysis are used to define what are the most important variables to monitor

and control.

At the right-hand end of our control chart, we see a plot of the variance,

grouped by sigma ranges, turned sideways. (Look for the light gray squares.)

If everything is going well in our manufacturing process, that will

approximate a normal curve. Looking at the curve, we see a bias above

the mean, and an extreme point below �3 sigma. This plot gives us a picture

of our assignable causes.

A 6 sigma process control chart would be nearly identical to the 3 sigma

chart, except that our control limits would be set to 6 sigma, and our

requirements for the number of sequential items on one side of the mean

having an assignable cause would be stricter. One interesting aspect of 6

sigma theory is the proposition that any non-normal variance must have a

cause, no matter how small it is. If we can’t find a cause, then we need to

refine our measurements so that we can. Iterating process improvement with

data from statistical process control applied through Pareto optimization,

root cause analysis, and permanent preventative action, it is theoretically

possible to reduce error levels until those levels approach zero.

SOMETHING EXTRA

How Good is Good Enough?
Just because we can improve quality and eliminate errors doesn’t mean it is good for

business. Once good quality management practices are in place, the more we improve

our process, the more it costs to find and eliminate the next error. At a certain point,

it may be cheaper to have a certain number of errors than it is to try to prevent them.

The solution is a complex process called analyzing the cost of quality. Perhaps

it should be called analyzing the cost of error. If we can’t fix a problem in

manufacturing, but we can find all defects in QA before we go to the customer, then

the cost of each error is either the cost of rework to fix the unit, or the cost of

scrapping the unit, whichever we decide to do.

But what if we can’t catch all the errors, and some customers receive defective

products? Then cost of quality depends on the consequences for us and for the

customer. There have been some famous cases—the gas tank location in the Ford

Pinto, and some more recent issues where SUV tires suffered tread separation—

leading to fatalities. In these cases, companies considered only their own legal

liability, and not the lives of their customers, and they got into very big trouble.

When lives are not at risk, then, below a certain number of defective products, it is

cheaper to pay off on warranties and guarantees than to improve our process.

There is one other solution. We can turn lemons into lemonade. Our defective

products may be useful products in some other forms. There are many examples of
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this. In ball bearing manufacture, a single manufacturing process makes precision

ball bearings for high-speed motors and sensitive medical and engineering

equipment, lower-grade ball bearings for roller skates, and bee-bees for b-b guns.

Products that are too low grade for one purpose are sold as a cheaper item. I’ve seen

lopsided ping-pong balls sold as cat toys, and defective carabiners (mountain-

climber’s hooks) sold as keychains.

Most interestingly, the LCD sheets that become flat screens for TVs and computer

monitors have millions of transistors per square inch. In manufacturing, a few

defective transistors are inevitable. Huge sheets are produced and tested. Whenever a

large area (say 36 0 0 by 27 0 0) is perfect, it becomes a very expensive large-screen TV.

Smaller defect-free areas are used for smaller high-resolution devices. Areas that

have too many defects for high-resolution can be used for lower-resolution devices

such as large-print displays. Smaller pieces make LCD watches. At the very lowest

end, we have $1.99 LCD watches with just three numbers on them, which require a

few dozen working transistors.

By finding uses for many grades of our manufacturing product, we make money

from a product that would otherwise be considered defective. Then our goal is to

generate the optimal product mix over time to satisfy the demand for each product.

We may actually lower the manufacturing quality of our product periodically in order

to increase production of lower-quality items, if demand for those items exceeds

supply.

Quiz
1. Which of the following is not part of quality management?

(a) Engineering processes

(b) Statistical tools

(c) Quality analysis

(d) Defined process changes

2. Quality is . . .

(a) Freedom from error

(b) Conformance to specifications

(c) Return on investment

(d) Reduction of error incidents

3. The goal of quality management is

(a) To reduce errors to the lowest possible level

(b) To bring errors to an acceptable level and maintain them at that level

(c) To identify and eliminate errors

(d) To maintain processes within control limits
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4. Pareto diagrams are used primarily in association with:

(a) Root cause analysis

(b) Statistical process control

(c) Zero-defect initiatives

(d) Quality management

5. In a Pareto diagram, types of incidents are:

(a) An ordinal list, arranged from highest count to lowest

(b) An ordinal list, arranged from lowest count to highest

(c) A nominal list, arranged from highest count to lowest

(d) A nominal list, arranged from lowest count to highest

6. For a statistical process control diagram, which of the following is not

necessarily an event with an assignable cause?

(a) Seven sequential events above the mean

(b) Seven sequential events below the mean

(c) One event outside the control limits

(d) A skewed variance plot

7. Which of these is not true? Six sigma is

(a) A goal of fewer than 3.4 defects per million events

(b) A measure of variance

(c) An industry buzzword for a particular school of quality management

(d) A replacement for Total Quality Management

8. Which of these is not a way of reducing the cost of quality?

(a) Ensuring that all measured variables conform to the tightest possible

requirements

(b) Finding ways of selling, rather than scrapping, items that do not meet

quality assurance requirements

(c) Permanently eliminating the most common sources of error

(d) Emphasizing prevention over reviewing and testing

9. Pareto’s law is also known as

(a) The six sigma rule

(b) The 80:20 rule

(c) The 20:80 rule

(d) The law of the mean

10. You have reached the optimal level of quality when

(a) Your help desk staff is as lonely as the Maytag repairman

(b) You have reduced defects to the 6 sigma level

(c) You have minimized the cost of quality, that is, the cost of error

(d) All data points in your sample are within control limits
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APPENDIX
A

Basic Math for
Statistics

One reason why some people have trouble learning statistics is that they

find the math confusing. Our first challenge is that, when statistics uses

numbers, it uses different types of numbers. The number line in Fig. A-1

illustrates some different types of numbers.

The simplest numbers are the counting numbers: 1, 2, 3 . . . . These are

called positive integers. If we add zero, we have the non-negative integers. If

we add negative numbers, we have the whole set of integers, zero, positive,

and negative. We use these numbers for counting, addition, and subtraction.

The number line extends forever in each direction, because we can always add

one to any number, making a higher number.

If we multiply and divide integers, we find that the answers to certain

division problems fall between the integers. For example 5/2¼ 2.5, or 2 1
2
. All

of the numbers we calculate through division are called rational numbers.

That includes all integers, and an infinite number of rational numbers

between each integer. In fact, there are an infinite number of rational
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numbers between any two rational numbers, as well. They are called rational

because they can be created by division, and they are a kind of ratio.

There are more numbers on our number line, called irrational numbers.

Some of them are found through questions like this: 22 ¼ 4, so
ffiffiffi

4
p

¼ 2. What

is the square root of 2 (
ffiffiffi

2
p

)? It turns out that there is no rational number

that, multiplied by itself, equals 2. So,
ffiffiffi

2
p

is an irrational number,

approximately equal to 1.414. All of the numbers on the number line,

rational and irrational together, are called the set of real numbers.

Things get interesting when we compare the scales used in statistics

(introduced in Chapter 2 ‘‘What Is Statistics?’’) with the types of numbers on

the number line.

. A nominal scale has no actual relationship to numbers at all. But we

sometimes assign numbers instead of names, so that we can use statis-

tics. We can sort a nominal scale in any order we want, because it is

names (nominal) only, and not intrinsically ordered.

. An ordinal scale has some of the qualities of positive integers—count-

ing numbers. There is no need for a zero or negative numbers. And

each item is discrete, as the integers are. So we often use counting

numbers for an ordinal scale. But there is one important difference.

We know that integers are evenly spaced. We don’t know that about

the values in an ordinal statistical scale.

. An interval scale maps very well to integers, because it has both order

and evenly spaced intervals. However, it has no definitive, meaningful

zero point. As a result, calculating ratios on an interval scale makes no

sense. (We know that two is one more interval than one, but we don’t

know that two is twice one.)

. A ratio scale has a meaningful zero point. Our data may be in integers

for example, because we collected data by counting items—or it may

be in real numbers. Our statistics will be in real numbers, both rational

and irrational. The mean is always a rational number, as it is calculated

by division of rational numbers. Other statistics, such as the standard

Fig. A-1. The number line.
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deviation, which is calculated with a square root, can be irrational

numbers. Sometimes, statistics are rounded to real numbers or integers

for convenience.

Learning statistics will be easier if you can work with basic algebra easily.

If you want to bone up on your basic math, be sure to cover these topics:

mathematical symbols; signed numbers; addition and subtraction; multi-

plication and division; fractions and how to reduce them; percentages;

significant figures; properties of zero and one; factorials and exponents;

binomials and binomial expansion; square roots; the commutative, associa-

tive, and distributive properties of mathematical operations; and methods for

simplifying equations.

Where can you learn more about these topics? Start with the back of your

business statistics textbook. If you want more, be sure to take a look at

Algebra Demystified from McGraw-Hill.
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APPENDIX
B

Answers to Quizzes
and Exams

Chapter 1 1. c 2. b 3. a 4. b 5. c 6. a 7. d 8. c 9. a 10. b

Chapter 2 1. b 2. d 3. a 4. b 5. d 6. a 7. b 8. c 9. a 10. c

Chapter 3 1. b 2. a 3. c 4. c 5. a 6. d 7. b 8. c 9. d 10. b

Exam: Part One 1. b 2. a 3. b 4. c 5. a 6. d 7. c 8. a 9. b

10. b 11. d 12. a 13. b 14. d 15. a 16. b 17. c 18. a 19. c

20. a 21. c 22. a 23. d 24. b 25. c

Chapter 4 1. b 2. c 3. d 4. a 5. b 6. d 7. c 8. d 9. b 10. d

Chapter 5 1. c 2. d 3. a 4. c 5. d 6. b 7. c 8. d 9. a 10. d
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Chapter 6 1. c 2. b 3. a 4. b 5. d 6. a 7. c 8. b 9. a 10. c

Chapter 7 1. c 2. a 3. d 4. b 5. c 6. d 7. a 8. d 9. c 10. b

Chapter 8 1. b 2. c 3. a 4. d 5. c 6. a 7. b 8. c 9. d 10. a

Chapter 9 1. b 2. a 3. c 4. c 5. a 6. b 7. d 8. a 9. d� 10. c

Chapter 10 1. d 2. b 3. a 4. c 5. d 6. a 7. b 8. c 9. d 10. a

Exam: Part Two 1. d 2. c 3. a 4. d 5. b 6. a 7. d 8. c 9. b

10. d 11. c 12. b 13. d 14. a 15. b 16. c 17. a 18. b 19. c

20. a 21. d 22. c 23. b 24. a 25. c

Exam: Part Three 1. d 2. b 3. c 4. a 5. b 6. d 7. c 8. a

9. d 10. b 11. a 12. c 13. b 14. a 15. b 16. d 17. c 18. a

19. c 20. d 21. b 22. a 23. b 24. c 25. d

Chapter 15 1. c 2. a 3. d 4. b 5. c

Chapter 16 1. b 2. a 3. d 4. a 5. c 6. b 7. c 8. a 9. d 10. d

Chapter 17 1. c 2. b 3. b 4. a 5. c 6. d 7. d 8. a 9. b 10. c

�Answer D for question 9 in quiz for Chapter 9 should read ‘‘None of the above,’’

rather than ‘‘All of the above.’’ The confusion results from unclarity in the text and

the first author apologizes.
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APPENDIX
C

Resources for
Learning

We are constantly learning more about business statistics, and we want to

share it with you. Rather than putting a lot of material here, and having it

go out of date, we have created a web page for the book. Please go to

www.qualitytechnology.com and click on Books, and select Business Statistics

Demystified, or go directly to www.qualitytechnology.com/books/bsd.htm. On

this web page, you will find a complete glossary for this book, introducing

statistical terms for business, and a good deal more. We provide an up-to-

date cross reference for the textbooks most commonly used for classes in

business statistics, so that you can know which chapters of Business Statistics

Demystified match particular chapters of the textbook you are using.

Also, we love to keep improving. Send comments or questions to

sid@qualitytechnology.com.
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Preparing for Exams
Our focus has been to help you understand statistics and use it to support

business decisions. You probably want to pass your exams, as well. If you are

looking for a book that provides drills, practice exams, and lists of equations

to memorize, you will need to supplement Business Statistics Demystified

with one of the workbooks specifically designed for that purpose. Several

books are available. Two we would recommend are:

. Schaum’s Easy Outline of Business Statistics by Leonard J. Kazmier,

McGraw-Hill.

. Flash Review: Introduction to Statistics by Julie Sawyer and David

Frey, Pearson Addison Wesley, 2002.

References

The following books were cited in or helped guide in the writing of Business

Statistics Demystified:

Berenson, M. L. and Levine D. M. (1996). Basic business statistics:

Concepts and applications. (6th Edition.) Englewood Cliffs, NJ: Prentice Hall.

Converse, J. M. and Presser, S. (1986). Survey questions: Handcrafting the

standardized questionnaire. (Series: Quantitative Applications in the Social

Sciences, No. 07-063.) Newbury Park, CA: Sage.

Cook, T. D. and Campbell, D. T. (1979). Quasi-Experimentation: Design

and analysis issues for field settings. Boston: Houghton Mifflin.

Deming, W. E. (1986). Some theory of sampling. New York: Dover.

Huff, D. (1954). How to lie with statistics. (Pictures by Irving Geis.) New

York: Norton.

Malkiel, B. G. (1973). A random walk down Wall Street. New York:

Norton

Mosteller, F. and Rourke, R. E. K. (1973). Sturdy statistics:

Nonparametrics and order statistics. Reading, MA: Addison-Wesley

Publishing Co.

Rea, L. M. and Parker, R. A. (1997). Designing and conducting survey

research: A comprehensive guide. (2nd Edition.) San Francisco: Jossey-Bass.

Thomsett, M. C. (1990). The little black book of business statistics. New

York: AMACOM.

Weigers, K. E. (1996). Creating a software engineering culture. New York:

Dorset House.

APPENDIX C Resources for Learning 367



This page intentionally left blank 



INDEX

A Random Walk Down Wall Street, 327

accuracy, 32–34, 112

addition, 54

addition rule, 84

advertising

and misuse of statistics, 246–247

decision support, 239

statistical studies, 246

age groups, 114

age ranges, 115

aggregate index, 329–330

in forecasting, 335–336

aggregation, basic approaches, 336

algebra, basic definitions, 12

Algebra Demystified, 363

�-levels, 210, 215, 217–218, 233, 296–297,

341

alternative hypothesis, 217, 219

analysis, 42–45

Analysis of Variance see ANOVA

ANOVA, 286

advanced techniques, 297

two-factor test, 293–295

types, 295–297

arbitrary, 27

archived data, 128

area chart, 147–149, 164, 166

area graph, 154

ARMA (or ARIMA) method, 340

assignable cause, 355

assignment, 106, 137

association tests, 302–306

assumptions, 11, 28, 68

attributes of population, defining, 115

audit trail, 136–137

autocorrelation, 338, 340

autoregressive (AR) techniques, 340

average

definition, 183

misuse, 191–192

reporting, 189–192

role of, 191

bad data, 31

baker’s dozen, 260

bar chart, 144–147, 162

3-dimensional (3-D), 157

horizontal, 145–147

mirrored, 145–147

multiple, 150–152, 164

orientation, 144

segmented, 149–150

side-by-side, 145–147

stacked, 150

vertical, 144–145

bar graph, 77, see also bar chart

Bayes’ Law, 61

Bayes’ rule, 61

Bayesian probability, 61

bell curve, 77–78, 81

beta probability, 221–222

bias, 35, 39, 41, 108, 129, 216, 324

elimination, 134

in graphs, 168–169

369
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bias (Continued)

preventing, 115

reducing, 33

sampling, 321

sources of, 128

bimodal distribution, 190–192

binary variables, 29

Bonferroni technique, 296

Box-Jenkins technique, 340

bubble chart, 157

budget

estimate, 198

preparing, 121

Budgeting for Managers, 121

business problems, 9

business questions, 131

business relevance, 117

business statistics

definition, 7, 12

use of term, 1–5

calibration, 133–135

capitalizing on chance, 210–211

categorical data, 23

categorical values, 29

categorical variables, 50, 180, 288, 302–303

causal relationship, 215–216

causality, 62, 65, 267

and correlation, 235, 272

cause–effect relationships, 62, 205, 302

causes

discovering, 212–214

ignoring, 49

Census Bureau, 127

census data, 127

Central Limit Theorem, 259

central tendency, 77, 82

certain event, 84

chance

capitalizing on, 210–211

mathematical measure, 48

use of term, 49

charts, 140–172

and words, 142

best practices, 160–170

combining different types, 157

errors to avoid, 164, 166–170

false impressions, 169–170

new technology, 170

non-standard, 157

planning the list of figures, 161

principal steps to including in statistical

report, 160–166

role of, 140–141

templates, 161

three-dimensional (3-D), 157–159

types, 161–166

uniformity of style, 161

use of term, 141

use to support business decisions,

141–142

variety of types, 156

when to use, 141–142

see also graphs, specific types

chi-squared tests, 225–226, 234

for population variance, 306–307

for proportions, 301–307

see also Pearson chi-squared test

classical multiplicative time-series model,

330–335

classical probability, 53, 56, 60–61

classical probability theory, 58

cleaning data, 24, 30–32, 132, 136

codes and coding systems, 31–32, 103

common sense, 60–62, 99, 104

complementary event (complement), 54, 83

complex events, 66, 83

complex experiments, 232

complex statistics, 174

comprehensive sample, 38, 40

computer data logs, 131

computer interface design and testing, 134

computer programs, 224

computer support desk, 350–353

computers

applications, 3, 11–12, 44–45

errors due to, 134

conditional likelihoods, 63–65

conditional probability, 63

calculating, 64

equation for, 64

conditionality, 62, 64

confidence, 211

confidence intervals, 260–261, 266

conservatism, principle of, 209–210, 215,

217–218
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consistent estimator, 259

contingency table, 304

contour plot, 158–159

control group, 106, 137, 214–215, 233

control limit, 356

convenience sample, 40

correlation, 267–284

and causality, 235, 272

geometry, 269

perfect, 203

plotting, 268–269

correlation coefficient, 203–204

calculating, 268–269

equations, 275

t test for, 270–272

assumptions, 271

count and counting, 14, 44, 50, 58–59,

174–175

count statistics, 29

counting number, 26

Cox, Gertrude, 31

cross-sectional data, 328–329

cross-tabulation, 226

cycles in forecasting, 334

data

already available, 130

definition, 23

paid, 129

proprietary, 118

protecting from error contamination, 103

use of term, 24

what is it and why do we need it?,

102–104

data analysis

planning, 118

trade-offs, 118

data cleaning, 24, 30–32, 132, 136

data collection, 32, 114, 125–130

additional data, 122

automated, 131, 134

costs, 105

design of form, 131

documentation, 128–129

doing it yourself, 129–132

errors, 126

experiments, 137–138

from own operation, 131

methods, 105–107

ongoing operations, 131

other people’s data, 117–118, 125–128

planning, 97, 102, 116–117, 125

quality methods, 129

quasi-experiments, 137–138

security and privacy issues, 126–128, 132

simple, 131

survey, 132–133

theft versus honest toil, 104–105

validity, 126

where and how to get data, 104–107

data entry, 133

electromechanical, 134

error, 133–134

data recording, 136

data requirement, 115–116

data retrieval problems, 135

data security, 135

data sources, 102, 114, 117–118

data storage, 135

redundancy in, 136

data validation, 133

data values, 24

database design, 135–137

decision-making, 1, 3–4, 12–13, 284, 317

and management function, 97–98

information for, 99

information required for, 13

outcomes, 12–13

support for, 97

decision support

advertising, 239

as justification for decision, 239

contexts for, 238–239

input, 238–239

use of term, 98

Decision Theory, 61

decisiveness, 211

defect, use of term, 347

defective products, 357–358

definitive estimate, 198

degrees of freedom, 175–176, 182, 306

Deming, W.E., 322

dependent variables, 214, 267, 280–283,

329–331

descriptive statistics, 4, 43, 179–195,

234
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descriptive statistics (Continued)

applications, 14

time-series analysis, 335–337

deseasonalizing data, 336

Designing and Conducting Survey Research,

322

dichotomous variables, 29

digital cameras, 148

dispersion, measures of, 192

distribution-free tests, 223, 226

distributions, theoretical, 80–83

double-blind protocol, 233

double-blind study, 137

Dow Jones Industrials, 243

dummy variables, 279

economies of scale, 16

80/20 rule, 349

encoding, 103, 135

equations, 12, 42, 173–174

error, 8, 21, 24, 30–32

and statistical dependence, 69

computers, 134

cost analysis, 357

costs, 129

data collection, 126

data entry, 133–134

definition, 30

elimination, 134

human, 134

in hypothesis testing, 218–222

in sampling, 69–71

inheriting, 126

kinds of, 32

possibilities of, 104

preventing, 98, 108, 131

reducing number and consequence, 347

sources of, 135

statistical, 36, 39

use of term, 347

see also measurement error; Type I error;

Type II error

error bounds, 197

error correction, 136

error detection, 136

error distribution, 197–198

error measures, 196–199

estimates, business, 198–199, 258

estimation

basic principles, 258–262

summarizing data about one variable,

257–266

use of term, 178, 258

using estimates to make inferences,

262–266

events

defined, 67

use of term, 347

exit poll, 105

experimental control, 234

experimental group, 106, 214–215, 235

experimental subjects, 233

experiments, 106, 122, 130

business objectives conflicting with good

design, 232–233

data collection, 137–138

design, 228–230

constraints, 230

for optimal business results, 230–232

need for, 234–235

need for control, 213–215

role of, 212–218

see also quasi-experiments

exponential growth, 331–332

exponential smoothing, 336–337

extrapolation, 280–281, 338

F statistic, 286

F tests, 290, 295

factors, 288–289

facts

before statistics, 8

use of term, 25

financial records, 130

fishbone diagram, 348

Fisher, Sir Ronald A., 44, 209–217,

227, 233

fit, definition, 339

fixed-effects model, 297

flat growth, 331–332

forecasting, 281, 327–345

aggregate indices in, 335–336

assumptions, 332–334

assurance, 333

cautions, 340–343

control, 334

INDEX372



correlation of variables and results,

341–342

cycles in, 334

error and change in, 243

extrinsic factors, 342–343

growth patterns, 243, 331–334

irregular component, 335

methodological limitations, 340–342

seasonal components in, 334–335

formal procedure, 45

formula, 187–188

free data, 128–129

free statistics, 126–127

frequency, 81

frequency approach, 56–60

frequency change, 152

frequency distribution, 147

frequency polygon, 148–149

frequentist approach, 59

frequentist probability, 59–61

gambling, 53, 61

gaming, 55

Gantt chart, 145

garbage in, garbage out, 134

Geis, I., 9, 70, 108, 191

Gompertz function, 339

graphics see charts; graphs

graphs, 140–172

and words, 142

best practices, 160–170

bias in, 168–169

creating, 142

errors to avoid, 164, 166–170

false impressions, 169–170

labeling, 168

miscellaneous types, 163

new technology, 170

nonlinear representation, 168–169

nonlinear scales, 169

planning the list of figures, 161

principal steps to including in statistical

report, 160–166

representing statistics, 166–168

role of, 140–141

templates, 161

three-dimensional (3-D), 157–159, 163

types, 161–166

uniformity of style, 161

use of term, 141

use to support business decisions,

141–142

variety of types, 156

when to use, 141–142

wrong choice, 165

see also area graph; line graphs

group, notion of, 213–214

group assignment, 107

group differences, 285–297

importance of, 286–287

group experiments, 286–289

group tests, 212, 263, 289–295

and regression, 287–288

comparing more than two groups,

290–293

comparing two groups, 289–290

geometry of, 287

groups, random assignment to, 215

growth patterns, forecasting, 243,

331–334

hand-held computer, 32

histograms, 147–149

key rules, 147–148

history of similar decisions, 14

history of similar situations, 14

Holt-Winters technique, 339

How to Lie with Statistics, 9, 108, 160,

169, 246

Huff, D., 9, 70, 108, 191

human resources (HR) records, 130

Hume, David, 13

Humean dilemma, 13

hypothesis

concept of, 234

for business decisions, 228–233

use of term, 217–218

hypothesis testing, 205, 212–226

error in, 218–222

social sciences, 216

t distribution, 263

ideogram, 157

incident, use of term, 347

independent variables, 214, 267,

279–284, 329

INDEX 373



index, 108

redefinition of base, 169

undefined, 169

individuals with characteristics, 268

inference, validity, 179

inferential statistical measures, 44

inferential statistics, 4, 25, 29, 43–44,

208–237

application, 14–15

social sciences, 210

time-series analysis, 337–340

see also statistical inference

inferential techniques, 29

advanced, 339–340

information

for decision-making, 99

use of term, 24

useless, 119

information sources, 101

assumptions and guesses, 98

data plus statistics, 98

hard facts, 98

in-person interviews, 321

integers, 26–29

interaction, 293

interaction model, 283

Internet surveys, 321–322

interpolation, 280

interval scale, 28, 362

intervention, 213–214

interviews, 321

intuition, 13

I.Q. test, 298–299

irrational numbers, 362

Ishikawa diagram, 348, 353

iterative Pareto optimization,

352–353

joint event, 83

Joint Method of Agreement and Difference,

63

Kemp, Sid, 121

knowledge management, 98

Kolmogorov’s axioms, 54, 61

Korzybski, Alfred, 24

Kruskal–Wallis test, 308

kurtosis, 80, 149

Law of Large Numbers, 82, 259

Law of Unintended Consequences, 284

LCD sheets, 358

leading indicators, 329

least-squares techniques, 338–339

choosing among models, 338–339

legal values, 31

likelihoods

calculation, 50

in terms of numbers, 50

measuring, 48–52

notion of, 49

Lincoln, Abraham, 12–13

line graphs, 152–154, 162–163

modifying, 153

multi-line graphs, 153–154

single-line graphs, 152

linear growth, 331–332

linear regression model, 273–276

linear relationship, 273–276

linearity assumption, 278

logistic regression, 279

mail-out surveys, 320

main effect, 293

Malkiel, B.G., 327

MANOVA, 297

manufacturing process records, 130

maps, 159–160

market information, 97

mathematical modeling, 340

mathematics, 4, 11–12

basics, 361–363

role of, 2–3

maximum likelihood methods, 279, 339

mean, 10–11, 149, 185–190, 205

of the outcome variable, 217

use for estimating the central tendency,

260

measurement, 21–30

concept of, 21

levels of, 25–30

non-numerical, 26

measurement error, 30, 36–37, 196–197,

199, 210

assumptions, 199–200

measurement plan, 102–103

measurement variable, random variable, 69
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median, 10–11, 184–185, 189–190,

300, 308

medical data, 126

Method of Agreement, 63

Method of Concomitant Variation, 63

Method of Difference, 63

Method of Residues, 63

Microsoft Excel, 142, 148

Mill, John Stuart, 63, 213

Mill’s method, 63

missing data, 31

mode, 183–184, 189–190

models, 3–5

moments, 187

Mosteller, F., 223, 298

moving average, 336

multi-group testing, 308

multiple comparisons, problem of, 71,

295–297

multiple factor design, 293–295

multiple populations, 138

multiple regression, 281–284

assumptions, 283–284

model, 281–283

multiplication rule, 84

mutually exclusive events, 56, 84

neural networks, 340

nominal scale, 28, 362

nominal variable, 29

non-archived data, 128–129

non-linearity, 278

non-negative integers, 26

non-negative real number, 26

nonparametric statistics, 83, 298–311

nonparametric technique, 29

nonparametric tests, 83, 222–226

loss of power, 301

reducing the level of measurement,

300

normal curve, 82, 194–195, 204, 218

normal distribution, 81, 83, 204, 260

null event, 84

null hypothesis, 217–219, 271, 283, 289

number line, 361

numbers, types, 25, 361

numerical data, 23

numerical variable, 288

objective probability, 60

occasion, 22

odds, 51, 176, 211

and ratio, 50

notion of, 50

one-factor ANOVA test, 290, 292

one-sample z test of proportions, 264–266

one-tailed test, 290

1:10:100 rule, 111, 151

online (Internet) surveys, 321–322

opinion polls, 105, 132–133, 231

optical scanners, 134

order of magnitude estimate, 198

ordinal data, 28

ordinal scale, 28, 362

ordinal variables, 28, 180

origin, 28

outcome

definition, 57, 83

possible, 53–56

outcome measure, 214

outcome variable, mean of the, 217

overprecision, 119

paid data, 129

pair study, 231

paired t test, 263

parameters, 186–187, 222

parametric technique, 29

parametric tests, 222–225

Pareto chart, 147, 351, 353

Pareto diagram, 347, 349, 352

Pareto’s law, 349, 352

Parker, R.A., 322

partial F-test, 283

Pascal, 53

Pearson chi-squared test, 301

calculations, 304–306

Pearson correlation coefficient, 203, 268

Pearson product moment correlation, 203,

302–303

percent variance, 284

percentages, 51

permanent preventative solution, 350–351

permutation test, 225

philosophy, role of, 1

pie chart, 142–144, 162

defining, 144
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pie chart (Continued )

multiple, 144

presentation, 144

requirements, 143

uses, 143

planning estimates, use of term, 328

plus-or-minus notation, 197

plus-or-minus one sigma, 198

point estimators, 259–260

polls, 105, 132, 231

population, 37–38, 114

definition, 37, 115

estimating, 178

from sample values, 259–260

need to specify, 38

poorly understood, 298–299

survey, 133

unknown, 299

variance for, 193

population attributes, defining, 115

population distributions, 82, 149, 186

population mean, 189, 259

population variance, 262

chi-squared test for, 306–307

positive integers, 361

post-hoc hypothesis, 71, 296

power

analysis, 229

calculations, 221–222

loss of, in nonparametric tests, 301

of test, 221–222

statistical, 221, 225

precision, 32–34, 112, 119, 141–142

prediction, problems in, 279–281

probability, 4–5, 47–86, 176, 218

and situations, 50

and statistics, 48, 62–71

basic rules of, 54

concept of, 45

formula, 356

in real world, 55–56

measures of, 55

of an event, 48, 55

probability distribution, notion of, 72–83

probability theory, 48, 53, 67, 178

basic terms, 83

probable error, 197

process control

quality control, 353

quality management, 347

product defects and their causes, 349

product life cycle, 278

project management, 145, 198

Project Management Demystified, 121

projections, forecasting, 328

proportions, 48, 51, 55, 176

calculation, 51

chi-squared tests for, 301–307

comparing to a standard, 301–302

equation, 177

psychology, 216

P-value, 215, 223–224, 234–235, 301

quality, definition, 346

quality control for process control, 353

quality management, 346–359

applications, 346–347

costs, 357

for process control, 347

key concepts, 346–347

quasi-experiments, 107, 122, 130

data collection, 137–138

design of, 231–232

quota sample, 41

random, use of term, 66

random assignment to groups, 215

random factors, 355

random sample, 40

notion of, 214

random sampling, 137

random variables, 65–67

measurement variable, 69

statistical independence between, 68

range, 177

calculating, 182

minimum and maximum values, 180–182

probability, 84

size of, 181

statistic, 181–182

use of term, 180–182

ranking data, 308

ratio, 50–51, 174, 176

and odds, 50

calculating, 177

expressed as numbers, 51
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role of, 178–179

unfamiliar, 169

ratio scale, 28, 362

ratio-to-moving-average method, 336

rational numbers, 29, 361

rationality, 61

raw data, 24

Rea, L.M., 322

real numbers, 26–27, 29

recursive connections, 340

redundancy, 133–135

in data storage, 136

region of rejection, 218

regression, 267–284

alternative types, 278

and group tests, 287–288

assumptions, 276–278

asymmetrical, 275

regression analysis, 273–281, 329

regression line, 273–276, 288–289

relatedness, 203–204

relative frequency, theory of, 57

relatively efficient estimator, 259

reliability, 32–36, 39–40, 103, 117, 128

repeatability, 60

replication, 56

research plan, 101

creating, 99–100, 112

research questions, defining, 113–116

return on investment (ROI), 216, 229

robust tests, 224

robustness, 224

ROI, see return on investment

root cause

analysis, 348–353

finding and remedying, 350–353

use of term, 347

Rourke, R.E.K., 223, 298

rule of insufficient reason, 53, 55, 61

S-curve, 279, 339

growth, 331–332

sample, 38, 178

common types, 40–41

notion of, 39–41

systematic, 40, 70

sample bias, 108

sample distribution, 82, 149, 179–180

sample mean, 259

sample size, 102, 175, 179, 259

sampling, 36–41

errors in, 36, 39, 69–71, 210

model of, 57

surveys, 322

systematic, 40, 70

with replacement, 57–58, 65

without replacement, 58

sampling bias, 321

sampling distribution, 72–78,

199–203

definition, 200

role of, 200–201

Savage Axioms, 62

Savage, L.J., 62

scalability, 54

scale, 77

scatter plot, 154–156, 267

science vs. business, 209, 217

seasonal components in forecasting,

334–335

seasonal index, 337

second variable, 151

self-description, 117

self-selected sample, 41

sequential data points, 355

set, concept of, 178

sigma, plus-or-minus one, 198

sigma values, 81–82, 218, 353–357

significance testing, 203, 286

simple events, 56, 66, 83

simple experiments, 57–61, 83

simple linear regression, 279

statistical significance, 276

simple statistics, 174

single event, 65

single-sample inferences, 262–266

situations, 22

and probability, 50

six-sigma quality, 195

skewed left, 79

skewed right, 79

smoothing formula, 337

smoothing functions, 336

social sciences

hypothesis testing, 216

inferential statistics, 210

INDEX 377



Some Theory of Sampling, 322

splines, 278–279, 339

standard deviation, 193–195,

198, 201

standard error, 197–198, 201, 260–261

of measurement, 201–202

of the mean, 199–203

standard normal curve, 81–82,

194–195

standard score, 204–205, see also

standardization

standardization, 268–269

statistic, 36, 42

statistical analysis, 9, 22, 28, 42

effectiveness of, 228

examples, 231–232

statistical assumptions, 11, 28, 68

holding/not holding, 11

statistical consultants, 114

statistical dependence, 70

and errors, 69

and independence, 67–69

statistical error, 36, 39

statistical estimation see estimation

statistical independence, 62

between random variables, 68

statistical inference, 28, 45, 81, 83, 204–205,

219

basic procedures, 255–256

definition, 209

genius of, 82

possible results, 219

principles of, 209

see also inferential statistics

statistical measures, 10, 42,

173–207

and procedures, 114

calculating, 43

definition, 43

examples of, 42

statistical methods, 10

statistical power, 221, 225

statistical procedure, 42

statistical process control, 353–358

statistical process control chart, 355

statistical programs, 142

statistical report, 93–94

basic requirements, 95–96

business vs. school, 96

definition, 17

guidelines for creating good reports,

239–242

misleading techniques, 108

mock-up, 119

planning, 96, 119–120

preparation and delivery, 238–247

presentations, 242–244

after the decision, 245

before the decision, 244

reading, 107

results, 120

writing, 107

statistical significance, 114

role of, 209

in business, 227–235

rules for, 209

science vs. business, 233

scientific notion, 209

simple linear regression, 276

tests, 42

use of term, 208

statistical study, 16–17, 95–110

advertising, 246

as model, 122

basic order, 100

costs, 111–112

definition, 17

determining plan objectives, 113

getting the plan approved, 121–123

justifying cost, 99

key steps, 99–100

planning, 100–102, 111–124

practical assessment, 101

practicality assessment, 116

reasons for, 97

re-ordering, 100

repeatable, 122

use of term, 95

value of, 123

writing up the plan, 120–121

statistical techniques, 10–11, 28,

42–45, 58

statistical theory, 67, 175

statistical variance see sigma values

statistics

and probability, 67
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application, 4, 8–9

business, 1–5, 7, 12

case study, 16

central notion, 13

definition, 7

doing without, 7–8

how it works, 20–46

key to understanding, 12

limitations, 9

overuse, 9

rules for effective communication, 17

strengths and limitations, 10

underuse, 9

use of term, 3

using, 7–8

when to use, 8

stem-and-leaf diagram, 73–78, 149, 184, 300

stratified sample, 40–41

Student’s t distribution, 204

Student’s t test, 44, 214

sturdy statistics, 222–226, 299–301

selection, 223–225

Sturdy Statistics: Nonparametric and Order

Statistics, 223

subject, 22

subjective likelihoods, 60–62

subjective probability, 60–61

sub-samples, 151

subscript, 175

sufficient statistics, 185–186, 192, 260

summary statistics, 125–128

surveys, 105, 122, 130, 231

basic types, 320–322

conducting, 324

creating, 319–326

data collection, 132–133

goals and objectives, 320

interpretation and reporting of results,

325

planning and design, 319–324

population, 133

sampling procedure, 322

target population, 320

writing the questions, 323–324

systematic sample/sampling, 40, 70

t distribution, 214, 263

hypothesis testing, 263

t statistic, 43, 204–205

t test, 43–44, 212, 214, 263, 286, 290–291

alternatives to, 307–308

for correlation coefficient, 270–272

assumptions, 271

one-sample, 263

paired, 263

tables, role of, 141–142

target audience, 107, 119

telephone surveys, 321

terminology, 20

theories, use of term, 3

Thomsett, M.C., 48, 67

time-series, use of term, 329–330

time-series analysis

descriptive statistics, 335–337

graphics versus calculations, 341

inferential statistics, 337–340

measurement model, 329

time-series data, 328–329

time-series model, use of multiplication,

330–331

timelines, 145

timesheets, 130

total quality management (TQM), 130,

348

trends

definition, 331–334

finding, 336–337

true zero point, 28

truncated curve, 80

Tukey, John, 3, 44

two-by-two design, 293

two-factor ANOVA test, 293–295

two-tailed test, 289–290

Type I error, 219–221, 226–227, 229–230,

233–234, 296, 341

Type II error, 219–222, 227, 229–230,

233–234

typicality, 182–192

unbiased estimator, 259

unconditional probabilities, 63

unit, definition, 23

validation, 133–135

validity, 32–36, 39, 103, 117, 128, 179

determining, 36
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values, 22

non-numerical, 23, 25

variability, 192–195

of a difference, 204–205

variables

comparing, 154–156

definition, 22–23

relations between, 268–273

relevant, 22

variance, 192–193

vicious circle, 13

weighted/unweighted indices, 336

Wilcoxon rank sum test, 308

Wilcoxon rank tests, alternatives to t tests,

307–308

Wilcoxon signed rank test, 308

z-scores, 194–195, 204

z-test, 262–266

z-value, 202

zero defects, 349
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