
How I Learned to Program
http://rdegges.com/how-i-learned-to-program

Programming is, without a doubt, the most mentally rewarding thing I've ever done. Programming 

taught me that life should be fun, filled with creativity, and lived to the fullest. Programming taught

me that anything is possible; I can do anything I want using only my mind.

Programming also taught me that learning is fun. It showed me that the more you know, the more 

power you have. Programming showed me that a life filled with learning is a life worth living. 

Programming revealed to me who I am inside, and has continuously helped me work towards my 

goals.

I feel extremely lucky to have had the means and opportunity to learn programming early in my 

life. While my methods are certainly not optimal for everyone, they worked well for me.

I have no regrets.

So I figured I'd share my methods with you, in hopes that a beginner will read this and get some 

value out of it.

If you don't want to read all this, the important takeaway here is to, above all else, have fun.

1

http://rdegges.com/how-i-learned-to-program


Install Linux on Your Box

While in my own life, I actually learned quite a bit about computers through video games on 
MSDOS computers--my real learning started the first day I installed a linux operating system on 
my home computer.

It doesn't matter whether or not you use Windows on your laptop, or if you have a Macbook Air--if 

you want to learn to program well, you need to use linux. Sure, there are a ton of great 

programmers out there using other systems, but you cannot beat linux as a learning machine.

Despite what you may think, programmers don't just "program". Programming as you probably 

think of it is nothing more than input and output. You type things, and stuff happens. This is 

incorrect.

2



Programming is a way of life.

Programmers are people obsessed with knowledge. Programmers use this obsession to fuel a life of 

learning, discovery, and creation. That is the true definition of a programmer.

A big reason to use linux for your day to day work is that it helps you passively learn about 

programming as you use it. On Windows, if you want to copy a file from one box to another, you 

drag and drop. On linux, if you want to copy a file from one box to another, you use scp or rsync. 

Learning how to use the command line teaches you basic technical logic and problem solving skills.

Another important skill you passively acquire by using linux is self sufficiency. Unlike many other 

lines of work, programming does not require you to memorize a million things, or repeatedly do the

same thing over and over again; instead, programming requires intense self motivation and 

determination.

Even the best programmers typically have no idea what they're doing when they start a new project.

If I could summarize one thing I do more than anything else as a programmer, it would 

be research. Programmers must know how to lookup information, and how to process and use 

that information in a useful manner. This skill is typically acquired over long periods of time--but 

linux can help.

3



Using linux will require you to actively seek out solutions to problems. If you don't know how to 

setup an SSH tunnel--you will learn. Using linux will drive you to discover new things you never 

would have thought of while using Mac or Windows. As you slowly become a better and better linux

user, you will coincidentally become a better and better programmer and pragmatist. You'll learn 

how to go about solving problems. How to hunt down errors. How to use your combined knowledge

to create new things and make your life (and others' lives) easier.

Furthermore, since linux (as well as a majority of its applications) is open source, you're in a great 

position to learn more about programming culture. At one point or another, I can almost guarantee

you will:

• Find a bug in an application you use.

• You'll search for an answer online.

• You'll find either a ticket system or a forum for the software you're using.

• You'll submit a ticket about the bug, or post on the forum stating your problem.

• Interact with other users like yourself to help resolve the issue.

While this may not sound cool now, just wait. Once you've done the above, you'll really be 

acquainted with the tech community. Finding problems, discussing them with others, and solving 

problems is what makes the technical community thrive.

If everything was perfect and there were no problems to solve in the world--life would be boring. 

Getting out there and fixing stuff--fighting chaos--that makes life worth living. So enjoy it!

Linux can help teach you these things, and more.

4



Have an Intense Desire
Why do you want to program? What is motivating you? What drives you? Unless you desperately 

want to learn programming, you will fail.

When I started coding, it was because I had an intense desire to hack video games. Back when I was

a kid, video games were my life. I would rush home from school and spend as long as I could on the 

computer playing old classics. Some of my fondest memories are playing epic Starcraft matches 

against my brother (we'd have no rush 2 hour games where we'd max out our units and have battles

that would cause our GPUs to quake in terror).

More than anything, I wanted to hack the shit out of those games. I wanted to dominate them. I 

wanted toenslave my computer and have it do my bidding.

While my old motivations are silly to me now, back then I felt them intensely. I'd dream about it at 

night, constantly think about it during the day, and obsess about it while I was on the computer in 

the afternoon.

When I set my mind towards learning to program, I knew I would make it happen. I knew that no 

matter what happened in my life, I'd either learn to program or I'd die trying. It was what I can only

describe as a glorious feeling. It was similar to that feeling you have where you want something so 

bad, so intensely, that you feel it with every muscle in your body.

Regardless of the fact that I had absolutely no idea what I was doing--that I knew absolustely no 

technical people whatsoever--that I had no resources--and that I had zero guidance--I found a way. 

I ruthlessly read through internet tutorials on random webpages. I spend hundreds of hours 

scouring random forums looking for bits of information.

The most important thing, however, is that because I wanted it so bad, it felt easy. I've always been 

an all-or-nothing type of person, and I think that this helped me break through the initial barriers 

and eventually become a half decent programmer.

5



Build Small Command Line 
Programs

A lot of people now-a-days seem to be learning programming by diving head first into web 
development. While this may work for some people, it seems pretty damn crazy to me. Not only are 
web technologies complex and vast (building a modern website requires a ton of separate skills that
take years to mature), but they're frustrating and discouraging for new developers.

Maybe I'm old school (I'm only 23 :x), but there is nothing more satisfying (and educational!) than 

writing a ton of simple, command line programs.

6



I can't even begin to express how useful this was in my programming education. For the longest 

time (after I gained a basic understanding of programming) I'd rush home from school, sit down at 

my computer, and spend 5 or 6 hours writing a simple command line utility. I'd write tons of 

things:

• A simple program that takes in filenames as input, and stores those files all in an organized 

directory hierarchy depending on the file type.

• An IRC bot that logs all channel activity to a text file.

• A simple program that downloads all the images on a given web page.

• A tool to convert base 10 numbers to any other base on the CLI.

• A provisioning script that installs all my OS customizations: wallpapers, themes, etc.

• A basic screenshot program that automatically uploads screenshot to an image hosting 

website, and copies the resulting URL into the clipboard for instant copy-paste fun.

• And a million other things.

I got so much value out of these small exercises. Each one was simple enough to be written in 

several hours (no more), and each one taught me stuff: either a new language, library, or strategy. 

There's no doubt in my mind that I gained a good portion of my programming knowledge through 

building these apps.

The other benefit to building these small apps is confidence. Each app I built was a huge personal 

accomplishment. I felt proud of each one. I'd maintain all of them, and periodically rewrite the code

using all the new strategies I'd learn. This taught me basic iterative programming (making 

improvements over time), and how to really contribute to the open source world.

If you're a new programmer, I doubt there's anything better (or more fun) than writing a ton of 

small command line utilities. Don't believe me? Try it, and tell me you aren't addicted after the first 

one!

7



Write, Write, Write

Writing is a bit controversial. When I started programming, nerds had a reputation for being bad at
everything except computers. For a while, I assumed that since I was good at computers, I was 
naturally worse at everything else: writing included.

That's bullshit.

I've come to realize over the years that programmers are, in particular, excellent writers. The ability

to think logically and solve problems is a great writing asset. It's particularly hard to explain your 

thoughts in writing. In my opinion, having strong programming skills makes this much easier, 

since as a programmer, you're used to arguing with logic and use it everyday in your work.

Through the process of writing a lot, you'll greatly improve your reasoning ability, and 

consequently, become a better programmer.

8



As a programmer, having a blog is a great way to practice writing. It's a great way to keep track of 

the things you learn, and help ensure you are always making progress. Through the process of 

writing about things, techincal things in particular, you'll greatly increase your knowledge on the 

subject.

For instance, if you're writing a CLI app that orders pizza through Dominos, it would be hard to 

write about that without going into detail describing the technology you're using, how the Domino's

API works, etc. By taking the time to write about your experiences working with their API, you'll 

consequently learn a lot more than you would if you didn't.

Writing can be amazingly helpful when used to describe technical stuff, as it really simplifies and 

clarifies the root of the problem--forcing you to think of the problem in the simplest way possible. I 

can't tell you how many times I've worked on a really tough problem, then taken the time to write 

about it and realized that I vastly overcomplicated the issue.

One of my biggest regrets is that over the years I threw away a vast majority of my articles. Over 

time I rewrote my website frequently, mismanaged servers, and slowly lost most of my writing. This

blog you're reading now exists primarily as the result of my decision to save all my future writings 

and provide a home for them that I won't mistakely lose. Don't make the same mistake I did!

9



Join an Online Community

The internet is a big place. Programming is a big field. While it is certainly possible to become an 
excellent programmer by yourself, completely isolated--it is much easier to do it with the help of 
friends.

When I started programming I was lucky enough to meet some amazing like-minded programmers 

online using IRC. The people I met were some of the smartest, passionate, and most motivated 

individuals I've ever met in my life. We're still friends today!

Having other insanely passionate and driven friends kept me motivated, and helped push me to be 

the best I could. We wrote articles for one another to share things we learned--we critiqued each 

other's code. We talked about projects we were working on, and what the best way to implement 

them was.

Having a group of people with the same passion and drive as yourself cannot be understated.

Finding a group like this, on the otherhand, is extremely difficult. I highly recommend using IRC 

(as a lot of bright people seem to use it), and gradually joining new channels and chatting with 

people who share similar interests. If, in the offchance you're like me, and want to hang out in the 

same circle, you're invited to check out #heapify.

10

http://irc/irc.oftc.net/#heapify
http://en.wikipedia.org/wiki/Internet_Relay_Chat


Have Fun

Programming is fun. Programming is really, insanely fun. Just writing about it makes me feel 

happy inside. It's hard to contain my excitement.

The most important part of learning to program is to always HAVE FUN! Regardless of whether 

you're just getting into programming, or whether you've been a programmer for a long time: having

fun is the most important thing you can do.

Let's say you're just starting to learn python (Dive Into Python is still one of the best python books 

ever written, by the way)--don't start by writing some boring project. Write something new! 

Something that you will find useful. Have fun with it, and challenge yourself.

If your sole motivation for working on a project is to get it done, you're cheating yourself. Part of 

being a good programmer is building stuff that YOU find cool. There is plenty of dreary software in

the world, what the world needs is more AWESOME software. And the only way to make 

awesome software is to have fun building it!

I could literally go on ranting about how much fun programming is indefinitely. But instead, I want 

to challenge YOU (ya, you!). Think of something you'd really love to build: maybe it's a file sharing 

site, maybe a video editor--whatever excites you and gives you that warm fuzzy feeling inside. Got 

it?

OK, now go build it!

11

http://www.amazon.com/gp/product/1590593561/ref=as_li_ss_tl?ie=UTF8&tag=projectb14ck-20&linkCode=as2&camp=1789&creative=390957&creativeASIN=1590593561
http://python.org/


Regardless of where you are in your programming career: always have fun, and keep pushing 

yourself!

12


	How I Learned to Program

