

HIDEO NITTA
MASAFUMI YAMAMOTO
KEITA TAKATSU

PRAISE FOR THE MANGA GUIDE SERIES

"Highly recommended."
-CHOICE MAGAZINE ON THE MANGA GUIDE TO DATABASES
"Stimulus for the next generation of scientists."
-SCIENTIFIC COMPUTING ON THE MANGA GUIDE TO MOLECULAR BIOLOGY
"A great fit of form and subject. Recommended."
-OTAKU USA MAGAZINE ON THE MANGA GUIDE TO PHYSICS
"The art is charming and the humor engaging. A fun and fairly painless lesson on what many consider to be a less-than-thrilling subject."
-SCHOOL LIBRARY JOURNAL ON THE MANGA GUIDE TO STATISTICS
"This is really what a good math text should be like. Unlike the majority of books on subjects like statistics, it doesn't just present the material as a dry series of pointlessseeming formulas. It presents statistics as something fun, and something enlightening." -GOOD MATH, BAD MATH ON THE MANGA GUIDE TO STATISTICS
"I found the cartoon approach of this book so compelling and its story so endearing that I recommend that every teacher of introductory physics, in both high school and college, consider using it."
-AMERICAN JOURNAL OF PHYSICS ON THE MANGA GUIDE TO PHYSICS
"A single tortured cry will escape the lips of every thirtysomething biochem major who sees The Manga Guide to Molecular Biology: 'Why, oh why couldn't this have been written when I was in college?"'
-THE SAN FRANCISCO EXAMINER
" A lot of fun to read. The interactions between the characters are lighthearted, and the whole setting has a sort of quirkiness about it that makes you keep reading just for the joy of it."
—HACK A DAY ON THE MANGA GUIDE TO ELECTRICITY
"The Manga Guide to Databases was the most enjoyable tech book l've ever read."
—RIKKI KITE, LINUX PRO MAGAZINE
"For parents trying to give their kids an edge or just for kids with a curiosity about their electronics, The Manga Guide to Electricity should definitely be on their

"This is a solid book and I wish there were more like it in the IT world."
-slashdot on the manga guide to databases
"The Manga Guide to Electricity makes accessible a very intimidating subject, letting the reader have fun while still delivering the goods."
—GEEKDAD BLOG, WIRED.COM
"If you want to introduce a subject that kids wouldn't normally be very interested in, give it an amusing storyline and wrap it in cartoons."
-make on the manga guide to statistics
"This book does exactly what it is supposed to: offer a fun, interesting way to learn calculus concepts that would otherwise be extremely bland to memorize."
-daily tech on the manga guide to calculus
"The art is fantastic, and the teaching method is both fun and educational."
-active anime on the manga guide to physics
"An awfully fun, highly educational read."
-frAZZLEDDAD ON THE MANGA GUIDE TO PHYSICS
"Makes it possible for a 10-year-old to develop a decent working knowledge of a subject that sends most college students running for the hills."
-Skepticblog on the manga guide to molecular biology
"This book is by far the best book I have read on the subject. I think this book absolutely rocks and recommend it to anyone working with or just interested in databases."
-Geek at large on the manga guide to databases
"The book purposefully departs from a traditional physics textbook and it does it very well."
-Dr. MARINA MILNER-BOLOTIN, RYERSON UNIVERSITY ON THE MANGA GUIDE TO PHYSICS
"Kids would be, I think, much more likely to actually pick this up and find out if they are interested in statistics as opposed to a regular textbook."
-GEEK BOOK ON THE MANGA GUIDE TO STATISTICS
"The Manga Guide to Statistics offers a visualization of statistics that can't be found in any mere textbook."
-ANIME 3000
"A great introduction for readers of any age, and an exemplar of technical communication." -LINUX USERS OF VICTORIA ON THE MANGA GUIDE TO ELECTRICITY

THE MANGA GUIDE'" TO RELATIVITY

THE MANGA GUIDE"' TO RELATIVITY

THE MANGA GUIDE TO RELATIVITY. Copyright © 2011 by Hideo Nitta, Masafumi Yamamoto, and TREND-PRO Co., Ltd.
The Manga Guide to Relativity is a translation of the Japanese original, Manga de wakaru soutaiseiriron, published by Ohmsha, Ltd. of Tokyo, Japan, © 2009 by Hideo Nitta, Masafumi Yamamoto, and TREND-PRO Co., Ltd.

This English edition is co-published by No Starch Press, Inc. and Ohmsha, Ltd.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and the publisher.
$1514131211 \quad 123456789$
ISBN-10: 1-59327-272-3
ISBN-13: 978-1-59327-272-2
Publisher: William Pollock
Supervising Editor: Hideo Nitta
Author: Masafumi Yamamoto
Illustrator: Keita Takatsu
Producer: TREND-PRO Co., Ltd.
Production Editor: Serena Yang
Developmental Editor: Tyler Ortman
Translator: Arnie Rusoff
Technical Reviewers: David Issadore and John Roeder
Compositor: Riley Hoffman
Copyeditor: Paula L. Fleming
Proofreader: Serena Yang
Indexer: Sarah Schott
For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com/
Library of Congress Cataloging-in-Publication Data
Nitta, Hideo, 1957-
[Manga de wakaru soutaiseiriron. English]
The manga guide to relativity / Hideo Nitta, Masafumi Yamamoto, Keita Takatsu ; Trend-pro Co., Ltd. -- English ed. p. cm.

Includes index.
ISBN-13: 978-1-59327-272-2
ISBN-10: 1-59327-272-3

1. Relativity (Physics)--Comic books, strips, etc. 2. Graphic novels. I. Yamamoto, Masafumi, 1947- II. Takatsu, Keita. III. Trend-pro Co. IV. Title.
QC173.57.N5813 2010
530.11--dc22

2010038111
No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

All characters in this publication are fictitious, and any resemblance to real persons, living or dead, is purely coincidental.

TABLE OF CONTENTS

PREFACE ix
PROLOGUE: OUTRAGEOUS CLOSING CEREMONY 1
1
WHAT IS RELATIVITY? 9

1. What Is Relativity 14
2. Galilean Principle of Relativity and Newtonian Mechanics 17
3. Mystery of the Speed of Light 23
4. Einstein Discarded Newtonian Mechanics 34
What Is Light? 40
Light Is Constant (and They Prove It Every Day in a Lab Called SPring-8) 43
What's Simultaneous Depends on Whom You Ask! (Simultaneity Mismatch) 44
Case of Newtonian Velocity Addition (Nonrelativistic Addition) 44
Case in Which the Speed of Light Is Constant (Relativistic Addition of Velocity). 46
Galilean Principle of Relativity and Galilean Transformation. 47
Differences Between the Galilean Principle of Relativity and Einstein’s Special Principle of Relativity 48
Wait a Second-What Happens with the Addition of Velocities? 48
2
WHAT DO YOU MEAN, TIME SLOWS DOWN? 51
5. Urashima Effect (Time Dilation) 54
6. Why Does Time Slow Down? 56
7. The Slowing of Time Mutually Affects Each Party Equally 64
8. Looking at the Slowing of Time Using an Equation 73
Using the Pythagorean Theorem to Prove Time Dilation 78
How Much Does Time Slow Down? 80
3
THE FASTER AN OBJECT MOVES, THE SHORTER AND HEAVIER IT BECOMES? 83
9. Does Length Contract When You Go Faster? 86
10. Do You Get Heavier When You Go Faster? 92
Using an Equation to Understand Length Contraction (Lorentz Contraction) 106
Muons with Extended Life Spans 108
Mass When Moving. 109
Galilean Transformation 109
Newton's Second Law of Motion 109
Lorentz Transformation. 111
Relationship Between Energy and Mass 112
Does Light Have Zero Mass? 113
4
WHAT IS GENERAL RELATIVITY 115
11. Equivalence Principle 120
12. Light Is Bent by Gravity 133
13. Time Is Slowed Down by Gravity 143
14. Relativity and the Universe 149
The Slowing of Time in General Relativity 158
The True Nature of Gravity in General Relativity 162
Phenomena Discovered from General Relativity 162
Bending of Light (Gravitation Lensing) Near a Large Mass (Such as the Sun) 162
Anomalous Perihelion Precession of Mercury 164
Black Holes 164
Global Positioning System and Relativity 165
EPILOGUE 167
INDEX 175

PREFACE

Welcome to the world of relativity!
Everyone wonders what relativity is all about. Because the theory of relativity predicts phenomena that seem unbelievable in our everyday lives (such as the slowing of time and the contraction of the length of an object), it can seem like mysterious magic.

Despite its surprising, counterintuitive predictions, Einstein's theory of relativity has been confirmed many times over with countless experiments by modern physicists. Relativity and the equally unintuitive quantum mechanics are indispensable tools for understanding the physical world.

In Newton's time, when physicists considered velocities much smaller than the speed of light, it was not a problem to think that the measurement of motion, that is, space and time, were independent, permanent, and indestructible absolutes. However, by the end of the 19th century, precise measurements of the speed of light combined with developments in the study of electromagnetism had set the stage for the discovery of relativity. As a result, time and space, which had always been considered to be independent and absolute, had to be reconsidered.

That's when Einstein arrived on the scene. Einstein proposed that time and space were in fact relative. He discarded the idea that space and time were absolute and considered that they vary together, so that the speed of light is always constant.

This radical insight created a controversy just as Galileo's claim that Earth orbited the Sun (and not vice versa) shocked his peers. However, once we ventured into space, it was obvious that Earth was indeed moving.

In a similar way, relativity has given us a more accurate understanding of concepts regarding the space-time in which we are living. In other words, relativity is the result of asking what is actually happening in our world rather than saying our world should be a particular way.

Although this preface may seem a little difficult, I hope you will enjoy the mysteries of relativity in a manga world together with Minagi and his teacher, Miss Uraga. Finally, I'd like to express my deep gratitude to everyone in the development bureau at Ohmsha; re_akino, who toiled over the scenario; and Mr. Keita Takatsu, who converted it into such an interesting manga.

Well, then. Let's jump into the world of relativity.

OUTRAGEOUS CLOSING CEREMONY

WHAT?

HEY, YOU CAN'T JUST
SPRING THIS ON US!
HEY, YOU CAN'T JUST
SPRING THIS ON US!

THE WHEEL OF DESTINY IS A FARCE! YOU'RE JUST TORMENTING US.

(2)
 (2)
 (2)

6 PROLOGUE

WHAT IS RELATIVITY?

THAT FREAK OF A
HEADMASTER GAVE ME AN IMPOSSIBLE TASK.

THIS IS AWFUL. IT'S SUMMER VACATION...

HONESTLY, WHEN HE STARTED TALKING ABOUT RELATIVITY, I THOUGHT THAT THIS WAS MY BIG OPPORTUNITY!

1. WHAT IS RELATIVITY?

THE THEORY OF
PASSAGE OF TIME, DISTANCE, AND MASS DEPEND ON THE MOTION OF WHOEVER MAKES THE OBSERVATION. IN SPECIAL RELATIVITY, WE ONLY CONSIDER OBSERVERS AT REST OR WHO MOVE AT A CONSTANT VELOCITY. WE CALL THIS VANTAGE POINT AN INERT
REFERENCE FRAME.

STARS HAVE SO MUCH MASS THAT THEY DISTORT SPACE AND TIME ENOUGH THAT WE CAN OBSERVE LIGHT BEND AS IT PASSES BY.

THE OBSERVATION OF LIGHT BENDING AS IT PASSES BY A LARGE STAR WAS ACTUALLY THE FIRST CONFIRMATION OF THE THEORY OF GENERAL RELATIVITY.

2. GALILEAN PRINCIPLE OF RELATIVITY AND NEWTONIAN MECHANICS

LET'S BEGIN WITH SOME HISTORICAL BACKGROUND SO YOU CAN UNDERSTAND RELATIVITY A LITTLE BETTER.

FOR EXAMPLE, IF I TOSS A BALL STRAIGHT UP IN A PLACE THAT IS AT REST, IT WILL COME BACK TO MY HAND, RIGHT?

IN THE SAME WAY, IF I TOSS A BALL STRAIGHT UP IN A TRAIN THAT IS MOVING AT A CONSTANT SPEED, IT WILL ALSO RETURN TO MY HAND.

3. MYSTERY OF THE SPEED OF LIGHT

IT CAN'T BE EXPLAINED SINCE IT'S LIKE THE RULES CREATED BY OUR CRAZY HEADMASTER...

THEY THOUGHT THAT THERE WAS ETHER IN SPACE JUST LIKE THERE IS AIR ON EARTH.

HOWEVER, ETHER ONLY EXISTED CONCEPTUALLY AND COULD NOT ACTUALLY BE PROVEN TO EXIST.

THINK OF SPACE AS A FISH TANK FILLED WITH WATER KNOWN AS "ETHER," WHICH IS INVISIBLE, DOES NOT MOVE, AND EVEN HAS NO RESISTANCE.

THE EDGE OF THE FISH TANK HAS COORDINATES

4. EINSTEIN DISCARDED NEWTONIAN

Maxwell's equations tell us that light is an electromagnetic wave. The color of light is determined by the wavelength of the electromagnetic wave. Red light has a wavelength of 630 nm , and blue light has a shorter wavelength of approximately 400 nm , where one nanometer $(1 \mathrm{~nm})=$ one billionth of a meter $\left(10^{-9} \mathrm{~m}\right)$. Electromagnetic radiation at different wavelengths takes many forms, such as radio waves, \mathbf{X}-rays, and gamma (γ) rays (see Figure 1-1).

Light is just one small section of the spectrum of electromagnetic radiation.

Figure 1-1: Light is an electromagnetic wave.
Although light may seem common enough-it is all around us, after all-it is fundamental to both relativity and quantum theory, the cornerstones of modern physics.

But before we delve into light's true nature, let's introduce the properties of light that have been known for a long time.

First, you know that light is reflected by a mirror or the surface of water. You also know about the refraction of light-you only need to look at your feet the next time you take a bath or see how your straw "bends" when you put it in a glass of water. Any change in medium changes a wave's direction, due to a change in the wave's speed through that medium.

Some mediums refract light of different wavelengths different amounts. In other words, light of different colors is bent to different degrees, a property known as dispersion. This causes white light, which consists of light of all colors, to be spread out into a spectrum of light from red to violet. We can see the seven colors of a rainbow because of dispersion.

These properties of reflection, refraction, and dispersion have been used to create precision camera lenses and telescopes. Figure 1-2 shows what happens to light when it is reflected, refracted, or dispersed.

Figure 1-2: Dispersion, reflection, and refraction

Next, more subtle phenomena called interference and diffraction can be observed. These phenomena stem from the fact that light is a wave. Interference describes what happens when two light waves come together. When the two waves come together, the result is either constructive interference, where the waves' amplitudes are added together, or destructive interference, where one wave's amplitude is subtracted from the other's. Figure 1-3 shows the different kinds of interference.

Interference between light waves

If a crest is superimposed upon a trough, they will cancel each other out and become flat.
Figure 1-3: Interference can make waves stronger or weaker.

Diffraction can be observed when light passes through a tiny hole about the same size as the wavelength of the light. Due to the constructive and destructive interference of different parts of the light wave with itself, passing through a tiny aperture can cause the light to spread out or bend, as shown in Figure 1-4. Diffraction is often what limits the resolution of microscopes.

Figure 1-4: Diffraction comes about from interference.

Another property of light is called polarization, a property that describes the orientation of the transverse electric and magnetic components of the electromagnetic wave. This property is very useful; it allows special filters to be made (called polarizing filters) that allow only light with a specific polarization to pass (see Figure 1-5).

Figure 1-5: Polarization

In scattering, light collides with dust and other particles in the air, thereby changing direction (see Figure 1-6). Since blue light (with shorter wavelengths) is scattered by water molecules in the air more than red light (with longer wavelengths), the sky appears blue.

Figure 1-6: Scattering

LIGHT IS CONSTANT (AND THEY PROVE IT EVERY DAY IN A LAB CALLED SPRING-8)

Various tests have been conducted to verify that the speed of light is truly constant. This is important because it is one of the fundamental premises of relativity.

One way that we can test this property is to measure the speed of light coming from an object that is moving very fast. If the speed of light is not constant, the Newtonian notion of "adding" relative velocities predicts that light coming from an object moving towards the observer will be the speed of light plus the speed of the moving object; for example, if the object is moving near the speed of light, then the light from the object should be moving nearly twice the speed of light. If the speed of light is constant, on the other hand, than the light coming from the fast-moving object will just be the speed of light. Measurements confirm that the speed of light is always the same, regardless of the speed of the object from which it comes (see Figure 1-7).

Light emitted from electrons that are traveling at nearly the speed of light is observed to be moving at the speed of light.

Figure 1-7: Verification that the speed of light is constant at SPring-8

Moving objects near the speed of light for these experiments is extremely difficult, and these experiments are performed at very specialized scientific facilities. SPring-8 is a synchotron radiation facility in Japan's Hyogo Prefecture that performs experiments by smashing together electrons traveling at extremely fast speeds (99.9999998 percent of the speed of light). Besides verifying that the speed of light is constant, these experiments help scientists uncover the basic building blocks of matter.

WHAT'S SIMULTANEOUS DEPENDS ON WHOM YOU ASK! (SIMULTANEITY MISMATCH)

If we consider the principle that "the speed of light is constant," various phenomena appear strange. One of these is the phenomenon called the simultaneity mismatch, which means that what is simultaneous for me is not the same as what is simultaneous for you.

I can imagine that you are thinking, "What in the world are you saying?" So let's consider the concept of "simultaneous" again. We will compare the case of Newtonian velocity addition (nonrelativistic addition of velocity) with the case in which the speed of light is constant (relativistic addition of velocity).

Consider Mr. A, who is riding on a rocket flying at a constant velocity, and Mr. B, who is observing Mr. A from a stationary space station. Assume that Mr. A is in the middle of the rocket. Sensors have been placed at the front and back of the rocket. Mr. A throws balls (or emits light) toward the front and back of the rocket. We will observe how those balls (or light beams) hit the sensors at the front and back of the rocket.

CASE OF NEWTONIAN VELOCITY ADDITION (NONRELATIVISTIC ADDITION)

First, we will use the motion of the balls to consider the case in which velocities are added in a Newtonian mechanical manner (before considering relativity).

First, let's look at Mr. A as shown in Figure 1-8. Since from Mr. A's perspective the rocket is not moving, the balls, which are moving at the same velocity from the center toward the sensors at the front and back of the rocket, arrive at the sensors "simultaneously."

Next, when observed by Mr. B from the space station, the rocket advances in the direction of travel. In other words, using the point of departure of the balls (dotted line) as a reference, the front of the ship moves away from the dotted line, and the back of the ship approaches the dotted line. However, since the velocity of the rocket is added to the velocity of the ball in the forward direction, according to normal addition, the ball's velocity increases and it catches up with the front of the ship. On the other hand, the velocity of the ball toward the back of the ship is reduced by the velocity of the rocket (indicated by the short arrow in the figure), and the back of the ship catches up to the ball. Therefore, Mr. B also observes that the balls arrive at the front and back of the ship "simultaneously."

Nonrelativistic addition:

Mr. A observes the motion of the balls inside the rocket.

Nonrelativistic addition:

Mr. B observes the motion of the balls inside the rocket from his space station. Since the balls are moving together with the rocket, the velocity of the ball is increased by the velocity of the rocket toward the front of the rocket and decreased by the velocity of the rocket toward the back of the rocket. Therefore, the balls arrive "simultaneously" (the lengths of the arrows indicate the difference in the velocities of the balls).

Figure 1-8: Newtonian velocity addition

CASE IN WHICH THE SPEED OF LIGHT IS CONSTANT (RELATIVISTIC ADDITION OF VELOCITY)

Now let's consider the case in which the speed of light is constant. Instead of throwing balls, Mr. A will emit light while traveling at nearly the speed of light (see Figure 1-9).

When the speed of light is constant: Mr. A observes the motion of the light inside the rocket.

When the speed of light is constant: Mr. B observes the motion of the light from the space station. Since the light is moving at a constant speed, it will arrive first at the back of the ship and not arrive at the front of the ship for a long time.

Mr. B on space station

The light arrived at the back of the rocket first! Since it still hasn't arrived at the front of the rocket, its arrival was not "simultaneous"!

Figure 1-9: Case in which the speed of light is constant (relativistic addition of velocity)
You may have already realized what is at issue: Mr. B's observation will differ from that of Mr. A.

For Mr. A, even when the speed of light is constant, the light will arrive "simultaneously" at the front and back of the rocket.

However, when observed by Mr. B, the light moving towards the front of the ship does not arrive for a long time. It has to overtake the ship, which is moving away at nearly the speed of the light. Therefore, the light arrives at the back of the ship before it reaches the front of the ship.

That's right; when observed by Mr. B, the light does not arrive "simultaneously" at the front and back of the ship.

The simultaneity property of light differs in this way depending on the standpoint of the observer. This is called simultaneity mismatch.

GALILEAN PRINCIPLE OF RELATIVITY AND GALILEAN TRANSFORMATION

The Galilean principle of relativity says that "the laws of physics are the same regardless of whether the coordinate system from which the observation is made is at rest or moving at a constant velocity." In other words, Newtonian mechanics (the physical laws that govern motion) are always the same, regardless of whether observations are made in a reference frame that is at rest or one that is moving at a constant velocity. This principle was derived from an experiment in which an iron ball was dropped from the mast of a ship, as shown in Figure 1-10. The iron ball fell directly under the mast whether the ship was moving or at rest.

Figure 1-10: Galilean principle of relativity

Since the laws of physics are the same in any reference frame, Galileo arrived at a straightforward way to describe how observations look different depending on which reference frame you are in. Today we use algebraic equations called the Galilean transformation to help understand the notion of "adding" relative velocities.

Let's take two coordinate systems, one with the coordinates (x, t) and the other with coordinates (x^{\prime}, t^{\prime}), where x and x^{\prime} describe position and t and t^{\prime} describe time. One can go from one coordinate system to the other, by considering the relative velocity between the two coordinate systems v.

$$
\begin{aligned}
& x^{\prime}=x-v t \\
& t^{\prime}=t
\end{aligned}
$$

The above equations show the relationship between coordinates from a coordinate system at rest and a coordinate system moving at a constant velocity v relative to the coordinate system at rest. Inertial frames are mutually linked in this way by the Galilean transformation. If we compare them using Newton's equation of motion, we can prove that Newton's equation of motion takes the same form in each inertial frame. In other words, when the Galilean principle of relativity holds, Newtonian mechanics will hold.

DIFFERENCES BETWEEN THE GALILEAN PRINCIPLE OF RELATIVITY AND EINSTEIN'S SPECIAL PRINCIPLE OF RELATIVITY

As just described, the Galilean principle of relativity indicates that Newtonian mechanics apply across inertial frames when linked with the Galilean transformation.

On the other hand, the assumption that the speed of light is constant in any reference frame forced scientists to reformulate the Galilean transformation to be consistent with relativity. This new transformation is called the Lorentz transformation.

The Lorentz transformation is shown by the equations below, which show the relationship between coordinates from a coordinate system at rest and a coordinate system moving at a constant velocity v relative to the coordinate system at rest. The variables with the prime symbol (') attached represent coordinates observed from the coordinate system at rest; the variables without the prime symbol represent coordinates observed from the system in motion. Note that the speed of light c appears in the equations here. Another point to notice is that time t is transformed in a manner similar to that of length; time does not exist independently but must be considered to be unified with space.

$$
\begin{aligned}
& x^{\prime}=\frac{x-v t}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \\
& t^{\prime}=\frac{t-\frac{v}{c^{2}} x}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
\end{aligned}
$$

WAIT A SECOND-WHAT HAPPENS WITH THE ADDITION OF VELOCITIES?

When we assume that the speed of light is constant, what happens when velocities are added to the mix?

According to the principle of relativity, when calculated based on the Lorentz transformation, the addition of velocities is indicated by the following equation.

$$
w=\frac{u+v}{1+\frac{v u}{c^{2}}}
$$

This equation describes the resulting addition of velocities of a missile w when the velocity of a rocket is v and the velocity (observed from the rocket) of the missile shot from the rocket is u, as shown in Figure 1-11. The difference is apparent when this equation is compared with the normal addition (nonrelativistic) equation $w=u+v$.

If we enter specific velocities in the above equations, we'll obtain some interesting results.

Figure 1-11: Addition of velocities
For example, when the rocket velocity v is 50 percent of the speed of light ($0.5 c$) and the missile velocity u observed from the rocket is 50 percent of the speed of light (also 0.5 c), then the missile velocity w observed by Mr . B will be 80 percent of the speed of light (0.8 c).

$$
w=\frac{(0.5 c+0.5 c)}{\left(1+\frac{(0.5 c)^{2}}{c^{2}}\right)}=\frac{c}{1.25}=0.8 c
$$

This equation also yields an interesting result when v and u are their maximum values. If the rocket velocity v is 100 percent of the speed of light (practically speaking, $v=c$ is impossible for an object with mass, like a rocket) and the missile velocity u observed from the rocket is 100 percent of the speed of light, then the missile velocity w observed by Mr. B will be the speed of light.

$$
w=\frac{(c+c)}{\left(1+\frac{c^{2}}{c^{2}}\right)}=\frac{2 c}{2}=c
$$

The speed of light cannot be exceeded under any circumstances!

WHAT DO YOU MEAN, TIME SLOWS DOWN?

$1 / 3 \mathrm{~ns}$

5/3 ns
3. THE SLOWING OF TIME MUTUALLY AFFECTS EACH PARTY EQUALLY

WHEN OBSERVED FROM THE ROCKET, THE SPACE STATION IS MOVING.

THE YOUNGER SISTER CLAIMS, "MY OLDER SISTER'S
TIME SLOWS DOWN" SINCE THE ROCKET

4. LOOKING AT THE SLOWING OF TIME USING AN EQUATION
 WILL SLOW DOWN APPEARED BRIEFLY EARLIER. WE CAN PROVE THIS EQUATION BY

USING THE PYTHAGOREAN THEOREM TO PROVE TIME DILATION

We learned that according to the theory of relativity, time slows down for an object that is moving at a velocity close to the speed of light. But how much does time slow? When we used the Pythagorean theorem earlier, we considered this question using a triangle. Now we can consider it using a formula.

Let t denote the amount of time that has passed according to Space-Station Man looking at the rocket's light clock and t^{\prime} denote the amount of time that has passed according to Rocket Man looking at his own clock (see Figure 2-1).
t : Time observed by Space-Station Man
t^{\prime} : Time observed by Rocket Man

Figure 2-1: Rocket Man and Space-Station Man
When Rocket Man observes his own light clock, the light just goes up and down because the light clock is moving together with Rocket Man. Therefore, if c denotes the speed of light, when the light advances by the height of the light clock, it will have moved a distance of $c t^{\prime}$.

Now if Space-Station Man observes the movement of the light in the rocket's light clock, the light, of course, moves at the speed of light c along an upward slanted path accompanying the movement of the rocket. That slanted line points towards the mirror (at the top) of the rocket's light clock. Measured using Space-Station Man's time t, that distance is $c t$. Similarly, since Space-Station Man sees the bottom of the rocket's light clock (from where the light was emitted) moving horizontally at the rocket's velocity v, the bottom will move by a distance of $v t$ to the right in the time t that the light takes to reach the top.

This determines the three sides of a triangle (see Figure 2-2).

Figure 2-2: Distances moved by light as viewed on rocket and space station, expressed as sides of a right triangle

Therefore, from the Pythagorean theorem, we have $c^{2} t^{2}=c^{2} t^{\prime 2}+v^{2} t^{2}$.
Move the v^{2} term to the left side of the equation:

$$
\left(c^{2}-v^{2}\right) t^{2}=c^{2} t^{\prime 2}
$$

And switch the left and right sides:

$$
c^{2} t^{\prime 2}=\left(c^{2}-v^{2}\right) t^{2}
$$

Dividing by c^{2}, we now have this:

$$
t^{\prime 2}=\left(1-\frac{v^{2}}{c^{2}}\right) t^{2}
$$

Now take the square root of both sides and use the positive solution:

$$
t^{\prime}=\sqrt{1-\frac{v^{2}}{c^{2}}} \times t
$$

This is the relationship between Rocket Man's time t^{\prime} and Space-Station Man's time t.
Note that $t^{\prime}<t$ since $\sqrt{1-\frac{v^{2}}{c^{2}}}<1$.
A second (1 s) measured on the Rocket Man's light clock thus corresponds to a longer time measured by the Space-Station Man. So Space-Station Man sees the Rocket Man's clock tick off seconds at a slower rate than his own. In other words, time advances more slowly for Rocket Man than for Space-Station Man.

It is also apparent by considering the term

$$
\sqrt{1-\frac{v^{2}}{c^{2}}}
$$

that this time-slowing effect is greater the closer v is to c.
With this formula, we can calculate the time dilation effect for an object moving at any relative speed.

HOW MUCH DOES TIME SLOW DOWN?

We have learned that time slows down for a moving object. Let's now determine exactly how much it slows down. We will use space travel as an example for this calculation.

As we saw above, the slowing of time is related to the velocity of the moving object. Recall that the closer the velocity of the moving object is to the speed of light, the greater the time-slowing effect becomes.

As a destination for our space travel, let's pick the star that is closest to our SunAlpha Centauri (see Figure 2-3). If we chose a destination inside our solar system, we wouldn't put the theory of relativity to the test because we can go to Mars or Venus in just a few years even with current technology, going nowhere near the speed of light.

If we went on the Shinkansen bullet train ($300 \mathrm{~km} / \mathrm{h}$),
it would take 15,840,000 years.

Alpha Centauri, α star of the Centaurus constellation

If we go in a rocket at 90 percent of the speed of light, the time on Earth would be 4.4 light-years $\div 0.9$ speed of light $=4.9$ years, and the time in the rocket would be 2.1 years.

In the rocket,

$$
\begin{aligned}
t^{\prime} & =\sqrt{1-\frac{v^{2}}{c^{2}}} \times 4.9 \text { years } \\
& =\sqrt{1-\frac{(0.9 c)^{2}}{c^{2}}} \times 4.9 \text { years } \\
& =2.1 \text { years }
\end{aligned}
$$

Figure 2-3: Traveling to Alpha Centauri

Alpha Centauri (the α star of the Centaurus constellation) is 4.4 light-years away from Earth. A light-year, which is the distance that light travels in one year, is approximately $9,460,800,000,000 \mathrm{~km}$. ${ }^{*}$ Traveling 4.4 light-years on the Shinkansen bullet train (at $300 \mathrm{~km} / \mathrm{h}$) would take approximately $15,840,000$ years. But if we fly that distance to Alpha Centauri at 90 percent of the speed of light, the journey will take us only 2.1 years. This is despite the fact that 4.9 years will pass on Earth!

If astronauts were sent out from Earth to Alpha Centauri, even if they returned as soon as they got there, news reports on Earth would follow them for approximately 10 years, but when their families welcomed them home, they would have aged only 4.2 years.

This relativistic time slowing effect is even greater if you move faster.
To understand this relationship, let's consider traveling from the Milky Way galaxy, which contains our Sun, to the Andromeda galaxy (M31), which is near the Milky Way. The Andromeda galaxy is visible in a dark, clear winter sky as a faint smudge in the Andromeda constellation. It is approximately 2,500,000 light-years away. Because light from the galaxy takes $2,500,000$ years to reach us, the Andromeda galaxy that we see now is actually the galaxy 2,500,000 years ago. Even if an explosion occurred in the Andromeda Galaxy today, we wouldn't see it until 2,500,000 years later; the light would still take that long to reach us.

If astronauts travel to the Andromeda galaxy at 99.999999999 percent of the speed of light, 11.2 years will pass for the one-way trip in the spaceship, but nearly 2,500,000 years will pass on Earth! Therefore, when the spaceship returns, although the astronauts will have aged 22.4 years, the people on Earth who will greet them will be from a time 5,000,000 years later.

Let's do the math: If a spaceship traveled to the Andromeda galaxy at 99.999999999 percent of the speed of light, people on Earth will have to wait 2,500,000 years for the spaceship to reach Andromeda and another 2,500,000 years for the spaceship to return. In all, 5 million years will pass before the spaceship returns to Earth. The amount of time that passes for the astronauts on the spaceship during this journey t^{\prime} can be calculated using the time dilation formula that we derived above, using the time that it takes for the spaceship to travel to Andromeda as measured on earth ($t=2,500,000$ years) and the velocity of the spaceship ($v=0.99999999999 c$).

$$
\begin{aligned}
& t^{\prime}=\sqrt{1-\frac{v^{2}}{c^{2}}} \times t \\
& t^{\prime}=\sqrt{1-\left(\frac{0.99999999999 c}{c}\right)^{2}} \times t \\
& t^{\prime}=11.2 \text { years }
\end{aligned}
$$

[^0]For the astronauts on the spaceship, the round-trip to Andromeda will take 22.4 years, as shown in Figure 2-4. For the people on Earth, the astronauts will return only 22.4 years older than when they left 5 million years earlier!

Figure 2-4: Traveling to the Andromeda galaxy

THE FASTER AN OBJECT MOVES, THE SHORTER AND HEAVIER IT BECOMES?

1. DOES LENGTH CONTRACT WHEN YOU GO FASTER?

THAT MEANS AN OBJECT CONTRACTS BECAUSE OF THE RESISTANCE OF AIR OR SOMETHING, DOESN'T IT?

2. DO YOU GET HEAVIER WHEN YOU GO FASTER?

IF WE'RE ONLY TALKING ABOUT EVERYDAY LIFE ON EARTH, WEIGHT AND MASS ARE BOTH THE SAME...

MINAGI ON THE SURFACE OF THE MOON WEIGHS 25 LBS.

THE MOON'S GRAVITY IS 1/6 THAT OF EARTH'S.

IN NEWTON'S EQUATION OF MOTION, THE MASS OF AN OBJECT IS INVERSELY PROPORTIONAL TO THE ACCELERATION, WHICH IS THE RATE AT WHICH ITS VELOCITY INCREASES.

NOW THAT YOU MENTION IT, I REMEMBER THAT ONE...

NEWTON'S THREE LAWS OF MOTION

1st Law: Law of inertia	An object not subjected to a force remains at rest or continues in uniform linear motion.
2nd Law: Equation of motion	The acceleration of an object is directly proportional to an applied force and inversely proportional to its mass.
3rd Law: Law of action and reaction	If a force is exerted on an object, the object on which that force was exerted will exert a force of the same size in the opposite direction.

* A US PENNY WEIGHS ABOUT 2.5 GRAMS.

THE MASS OF THE
ANNIHILATED ELECTRON AND POSITRON IS CONVERTED TO ENERGY ACCORDING TO $E=m c^{2}$ TO PRODUCE...

USING AN EQUATION TO UNDERSTAND LENGTH CONTRACTION (LORENTZ CONTRACTION)

Let's use an equation to see how length contracts.
In this case, let's assume that a rocket is flying at a constant velocity v (see Figure 3-1).

Figure 3-1: A person riding in the rocket measures the positions of the front and back ends of the rocket.

When the person riding in the rocket measures the positions of the front and back ends of the rocket, he finds the front end is at position $x^{\prime}{ }_{2}$, and the back end is at position $x^{\prime}{ }_{1}$. Therefore, the rocket's length is $I_{0}=x_{2}^{\prime}-x_{1}^{\prime}$.

Now what happens if this situation is observed from outside the rocket, for example, from a space station as in Figure 3-2?

Figure 3-2: The rocket viewed from a space station

To calculate the contraction in the length of a rocket as it moves past an observer at close to the speed of light, let's consider two points in the rocket's frame of reference: $x^{\prime}{ }_{1}$ at the front of the ship and $x^{\prime}{ }_{2}$ at the back of the ship. Using the Lorentz transformation, introduced in "Wait a Second-What Happens with the Addition of Velocities?" on page 48, we can calculate how an observer who watches the ship pass measures the points at the front x_{1} and back of the ship x_{2}, in his reference frame. The length that the observer on the outside of the ship measures will be shorter than length that the astronaut measures. This effect, relativistic length contraction, comes from the contraction of space at speeds close to the speed of light.

Using the Lorentz transformation $x^{\prime}=\frac{x-v t}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}$, we calculate the following positions:

$$
\begin{aligned}
& x_{1}^{\prime}=\frac{x_{1}-v t_{1}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \\
& x_{2}^{\prime}=\frac{x_{2}-v t_{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
\end{aligned}
$$

If we let $l=x_{2}-x_{1}$ represent the rocket's length as observed from outside the rocket, then since

$$
I_{0}=x_{2}^{\prime}-x_{1}^{\prime}=\frac{x_{2}-v t_{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}-\frac{x_{1}-v t_{1}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\frac{\left(x_{2}-x_{1}\right)-\left(t_{2}-t_{1}\right) v}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

is measured at the same time, $t_{1}-t_{2}=0$ because $t_{2}=t_{1}$, so I_{0} is calculated as follows:

$$
l_{0}=\frac{\left(x_{2}-x_{1}\right)-\left(t_{2}-t_{1}\right) v}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\frac{\left(x_{2}-x_{1}\right)}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

The length of the spaceship measured from outside the spaceship,

$$
I=I_{0} \sqrt{1-\left(\frac{v}{c}\right)^{2}}
$$

is therefore less than the length I_{0} of the same spaceship measured from inside the ship. We know this to be true because the coefficient

$$
\sqrt{1-\left(\frac{v}{c}\right)^{2}}<1
$$

due to the fact that the speed of the spaceship must be slower than the speed of light ($v<c$).

MUONS WITH EXTENDED LIFE SPANS

Our discussion of time slowing down and length contracting is not just a theoretical proposition. The slowing of time is observed every day.

High-energy elementary particles called cosmic rays are raining down on Earth all day, every day. When those cosmic rays collide with molecules in Earth's upper atmosphere, muons are generated with a certain probability. A muon is a type of elementary particle that is similar to an electron. The life span of a muon is approximately 2 millionths of a second in a laboratory on the ground at rest. Therefore, when a muon is produced in the upper atmosphere, several tens to several hundreds of kilometers from the ground, it would fly only $300,000 \mathrm{~km} / \mathrm{s} \times 2 / 1,000,000 \mathrm{~s}=0.6 \mathrm{~km}$, even if it were flying at a velocity extremely close to the speed of light. Based on these calculations, it should not reach the surface of Earth. But muons are observed on the surface of Earth! This seemingly impossible event occurs because the muon's life span is extended according to the special theory of relativity (see Figure 3-3). The extension of the lifetime of muons by time dilation has been verified in the laboratory by accelerating muons to near the speed of light.

Figure 3-3: Muon life span

Let's now apply the concept of length contraction to the example of the muon. In the reference frame of the muon, the muon's lifetime is not extended-it is still 2 millionths of a second. From the reference frame of the muon, Earth is rushing toward the particle at close to the speed of light. The length between Earth and the muon contracts, however, as shown in Figure 3-4. And because the distance between Earth and the muon contracts, the muon reaches the planet's surface within its lifetime

Both the dilation of time from Earth's perspective and the contraction of length from the muon's perspective are consistent. In this way, the dilation of time and the contraction of length change together according to the theory of relativity.

Figure 3-4: Distance contracts as well as time.

MASS WHEN MOVING

Now let's consider how the mass of an object is related to its velocity according to relativity. Let's start by reviewing the laws of motion. Before relativity was understood, the Galilean transformation and Newton's law of motion were used to describe motion.

GALILEAN TRANSFORMATION

The Galilean transformation describes the relationship between coordinate systems moving at velocity v :

$$
x^{\prime}=x-v t \text { and } t^{\prime}=t
$$

where x^{\prime} and t^{\prime} represent position and time, respectively, in one system and x, v, and t represent position, velocity, and time, respectively, in the other system.

NEWTON'S SECOND LAW OF MOTION

Newton's second law of motion is represented as follows:

$$
f=m a=m \frac{d^{2} x}{d t^{2}},
$$

where f represents force, m represents mass, a represents acceleration, and acceleration can be considered the second derivative of displacement with respect to time:

$$
a=\frac{d^{2} x}{d t^{2}}
$$

According to Galileo's principle of relativity, the laws of physics operate exactly the same way, whether measured while at rest or while moving. In other words, whether you toss a ball in the air inside an elevator that is at rest or inside an elevator that is moving at a constant velocity, the ball will move up and down and return to your hand in the same way.

Now, let's look at the laws of motion in two different reference frames and verify that the laws of physics do not change when we don't take into account relativity. We'll look at the laws of motion in a reference frame that is at rest, in which the position of the ball is measured x, and in the reference frame of the moving elevator, in which the position of the ball is measured x^{\prime} (see Figure 3-5).

Figure 3-5: Elevator moving at a constant velocity
In this case, the velocity of the ball, which is moving in the x^{\prime} direction inside the elevator, is given by

$$
\frac{d x^{\prime}}{d t^{\prime}}
$$

If we substitute the Galilean transformation $x^{\prime}=x-v t$ here, we obtain the following:

$$
\frac{d x^{\prime}}{d t^{\prime}}=\frac{d}{d t^{\prime}}(x-v t)=\frac{d x}{d t^{\prime}}-v \frac{d t}{d t^{\prime}}=\frac{d x}{d t}-v
$$

We used the relationship $\frac{d t^{\prime}}{d t}=1$ here, because $d t^{\prime}=d t$.

If we differentiate again, we obtain the following:

$$
\frac{d^{2} x^{\prime}}{d t^{\prime 2}}=\frac{d}{d t^{\prime}}\left(\frac{d x}{d t}-v\right)=\frac{d^{2} x}{d t^{2}}
$$

Since the only force acting on the ball here is gravity, if we let g denote gravity, we have this:

$$
g=f=m a=m \frac{d^{2} x}{d t^{2}}
$$

Note that g is a force, not accleration due to gravity in this equation. Now, if we let a^{\prime} denote the acceleration inside the elevator, which is moving at a constant velocity, and let f^{\prime} denote force, we have

$$
m \frac{d^{2} x}{d t^{2}}=m \frac{d^{2} x^{\prime}}{d t^{\prime 2}}=m a^{\prime}=f^{\prime}=g
$$

and the form of the equation of motion is unchanged. Since the form of the equation of motion does not change, the laws of physics remain the same.

Let's consider how the situation described above changes when we consider relativity and replace the Galilean transformation with the Lorentz transformation.

LORENTZ TRANSFORMATION

$$
\begin{gathered}
x^{\prime}=\frac{x-v t}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \\
t^{\prime}=\frac{t-\frac{v}{c^{2}} x}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
\end{gathered}
$$

As we have shown in this chapter, time and space become intermixed within the framework of relativity. Therefore, when describing the coordinates of an object, it is not sufficient to give its position in three-dimensional space (x, y, z) -we must also consider its time (t). Because the units of position and time are different (meters and seconds, respectively), we multiply time by the speed of light so that we can describe the coordinate position of an object with four dimensions that all have the same unit: length. The following shows that two reference frames are mutually transformed; note that time and space are transformed together.

$$
(c t, x, y, z) \leftrightarrow\left(c t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

If we use this thinking to extend the equation of motion so that its form does not change even when a Lorentz transformation is used, it is apparent that mass, which had been considered constant in Newtonian mechanics, is represented in a form similar to the Lorentz transformation:

$$
m=\frac{m_{0}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

Here, m_{0}, which is called the rest mass or invariant mass, is the mass measured in a coordinate system at rest ($v=0$).

RELATIONSHIP BETWEEN ENERGY AND MASS

In the same way, if we consider energy in a form that matches the Lorentz transformation, it is represented as follows:

$$
E=\frac{m_{0} c^{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

If we substitute the earlier relationship,

$$
m=\frac{m_{0}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

we derive the famous relationship between energy and mass: $E=m c^{2}$.
Now when $|x| \ll 1$, if we use the approximation $(1+x)^{\alpha} \approx 1+\alpha x$ under the condition

$$
\left(\frac{v}{c}\right)^{2} \ll 1
$$

(velocity v is sufficiently small compared with the speed of light), we obtain the following:

$$
E=\frac{m_{0} c^{2}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=m_{0} c^{2}\left[1-\left(\frac{v}{c}\right)^{2}\right]^{-\frac{1}{2}} \cong m_{0} c^{2}\left[1+\frac{1}{2}\left(\frac{v}{c}\right)^{2}\right]=m_{0} c^{2}+\frac{1}{2} m_{0} v^{2}
$$

The total energy of an object is the sum of its kinetic energy

$$
E_{k}=\frac{1}{2} m_{0} v^{2}
$$

and its rest energy $\left(E=m c^{2}\right)$. This means that even when an object is not moving, it has energy associated with its mass. Rest energy $E=m c^{2}$ is similar in form to the kinetic energy in Newtonian mechanics, where

$$
E_{k}=\frac{1}{2} m_{0} v^{2}
$$

and $m_{0} c^{2}$ is called the rest energy.

DOES LIGHT HAVE ZERO MASS?

The equation that we derived above for the mass of an object in motion,

$$
m=\frac{m_{0}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

tells us that as the velocity of an object approaches the speed of light, its energy approaches infinity (see Figure 3-6). Therefore, the only way that light can exist (without having infinite energy) is if its mass is 0 .

Figure 3-6: Relationship between mass and velocity

WHAT IS GENERAL RELATIVITY?

1. EQUIVALENCE PRINCIPLE

THEREFORE, EINSTEIN THOUGHT HE WOULD INCORPORATE GRAVITY OR ACCELERATION INTO RELATIVITY...

AND CAME UP WITH THE IMPORTANT IDEA CALLED THE EQUIVALENCE PRINCIPLE, WHICH IS THE FOUNDATION OF GENERAL RELATIVITY.

IT'S THE SAME FEELING AS THE BACKWARD FORCE YOUR BODY RECEIVES WHEN A TRAIN STARTS TO MOVE, ISN'T IT?

ChUG-A-LUG CHUG-A-LUG

IN OTHER WORDS, THIS HAPPENS BECAUSE YOUR BODY OBEYS THE LAW OF INERTIA.

THE FORCE YOU FEEL AT THAT TIME IS CALLED THE INERTIAL FORCE.

DUE TO NEWTON'S FIRST LAW, WHEN THE ELEVATOR ACCELERATES UPWARD, THE PEOPLE INSIDE THE ELEVATOR EXPERIENCE AN INERTIAL FORCE

AMUSEMENT PARK SWING RIDE

2. LIGHT IS BENT BY GRAVITY

INSIDE THE FREE-FALLING

ROCKET, THE LIGHT TRAVELS THE SHORTEST DISTANCE IN SPACE IN THE INERTIAL

FRAME...OR, IN OTHER WORDS, IN A STRAIGHT LINE.

AND WHEN THE INTERIOR OF THE FREE-FALLING ROCKET IS OBSERVED FROM THE GROUND... THE LIGHT BENDS.

IT CERTAINLY APPEARS TO BE A ROUNDABOUT PATH THAT IS NOT TRAVELING ALONG THE SHORTEST DISTANCE.

DOESN'T THE WAY IN WHICH THE LIGHT TRAVELS APPEAR TO DIFFER WHEN IT IS OBSERVED FROM INSIDE THE ROCKET AND WHEN IT IS OBSERVED FROM THE GROUND?

WHEN THE PATH OF LIGHT INSIDE THE ACCELERATING ROCKET IS OBSERVED FROM THE GROUND, LIGHT MUST BE OBSERVED TO TAKE THE SHORTEST PATH THROUGH SPACE. HOWEVER, BECAUSE THE ROCKET IS ACCELERATING RELATIVE TO THE OBSERVERS ON EARTH, SPACE-TIME BECOMES BENT...
...SUCH THAT THE
SHORTEST PATH FOR THE LIGHT APPEARS TO THEM TO BE A PARABOLA. THAT'S HOW EINSTEIN CONCEPTUALIZED IT.

* A GREAT CIRCLE IS ONE THAT EVENLY DIVIDES A SPHERE INTO TWO EQUAL HALVES. THE SHORTEST DISTANCE BETWEEN TWO POINTS ON A SPHERE IS ALWAYS A PORTION (OR A MINOR ARC) OF GREAT CIRCLE.

3. TIME IS SLOWED DOWN BY GRAVITY

4. THEREFORE, THE CLOCK INSIDE THE ELEVATOR ADVANCES WITH CONSTANT TIME INTERVALS.

THE ELEVATOR IS PULLED BY GRAVITY,

IF MS. B WERE VIEWED AT THAT TIME BY MR. C FROM INSIDE THE ELEVATOR, HE WOULD OBSERVE HER TO BE MOVING FROM THE BOTTOM TOWARDS THE TOP...

WHICH IS THE REVERSE OF HIS OWN MOTION OF FALLING FROM THE TOP OF THE TOWER

ACCORDING TO SPECIAL RELATIVITY, AT THE INSTANT THAT MR. C PASSES MS. B, MR. C OBSERVES MS. B'S TIME SLOW DOWN DUE TO TIME DILATION.

SINCE MR. C IS FREE FALLING, HE IS IN A PERFECT INERTIAL REFERENCE FRAME; THEREFORE, THE RATE AT WHICH HIS CLOCK ADVANCES IS CONSTANT.

LET'S ORGANIZE ALL
THIS USING MR. C AS THE REFERENCE. WHEN THE ELEVATOR STARTED TO FALL, THE TEMPOS OF MS. A'S AND MR. C'S CLOCKS WERE THE SAME.

WHEN MR. C FINALLY HITS THE GROUND, WE TAKE A LOOK AT ALL THREE OF THE CLOCKS. MS. BIS CLOCK HAS GONE SLOWER THAN MR. CIS BECAUSE OF

AND BECAUSE MR. C'S AND MS. AIS CLOCKS STARTED AT THE SAME TEMPO, MS. B'S CLOCK HAS GONE SLOWER THAN MS. A'S.

THE FLOW OF TIME IS SLOWER AT A LOCATION AFFECTED BY STRONG GRAVITY, ISN'T IT!

THAT'S RIGHT. TIME GOES SLOWER IN REFERENCE FRAMES CLOSE TO SOURCES OF GRAVITY, SUCH

ER

H

TO SAY IT MORE PRECISELY, THE LOWER THE GRAVITATIONAL POTENTIAL IS, THE MORE SLOWLY TIME PASSES.
4. RELATIVITY AND THE UNIVERSE

...MUST BE CONSIDERED TOGETHER WITH MATTER. MUTUALLY INTERACTIVE RELATIONSHIPS AMONG THEM HAVE BEEN REVEALED.

IT IS KNOWN THAT THE UNIVERSE MAY BE EXPANDING OR CONTRACTING AS SPACE-TIME.
 WITH MATTER.

ALTHOUGH NEWTONIAN MECHANICS CONSIDERED MATTER TO BE SPREAD OUT IN "SPACE," WHICH HAD AN INFINITE EXPANSE, IT DID NOT ASSUME THAT SPACE ITSELF WAS SPREADING OUT.

FROM HUBBLE, WE CLEARLY UNDERSTAND THAT THE UNIVERSE IS EXPANDING.

HUBBLE OBSERVED THAT THE UNIVERSE IS EXPANDING AND THAT THE DISTANCE BETWEEN GALAXIES IN THE UNIVERSE IS GROWING.

AS A RESULT, THE BIG BANG THEORY WAS PROPOSED. IT STATES...
"THE UNIVERSE BEGAN WITH A GIANT EXPLOSION FROM A SINGLE POINT, WHICH IS CALLED THE BIG BANG."

FROM THESE OBSERVATIONS, THE BIG BANG THEORY WAS PROPOSED, WHICH STATES THAT THE UNIVERSE BEGAN WITH A GIANT EXPLOSION FROM A SINGLE POINT.

THE SLOWING OF TIME IN GENERAL RELATIVITY

Let's use some equations to look at the "slowing of time" in general relativity based on the explanation in the manga.

As in the manga, we assume that Ms. A is at the top of a tall tower, Ms. B is at the bottom of the tower, and Mr. C is inside the elevator next to the tower, as shown in Figure 4-1.

We also assume that each of the three people has the same clock. However, since space-time is warped by gravity, we don't know whether the time of each and the rate at which each one passes (tempo) are the same.

Therefore, we will check the rate at which time passes due to gravity under the following three conditions:

1. Inside the free-falling elevator, there is a state of weightlessness.
2. Since special relativity holds there, the clock inside the elevator advances with constant time intervals.
3. Ms. A's clock at the top of the tower and Ms. B's clock at the bottom of the tower each advance with different constant time intervals.

In addition, we will use the following procedure to check the rate at which time passes due to gravity.

1. Align the rates at which time passes for Mr. C's clock inside the elevator and Ms. A's clock at the beginning of the descent.
2. Compare the rates at which time passes for Mr. C's clock inside the elevator and Ms. B's clock at the end of the descent.

At first, since Ms. A and Mr. C are at the same height, they are affected by the same gravity.

Let z denote the height direction at that location, and let ϕ_{1} denote the gravitational potential. The gravitational potential is the quotient of the potential energy divided by the mass of an object. For example, the potential energy of gravity near the surface of the Earth is $m g h$, and the gravitational potential is $g h$.

Therefore, we will align Ms. A's and Mr. C's times and the rates at which time passes.
Let $\Delta \tau_{1}$ denote the time that passes at Ms. A's location, and let $\Delta \tau_{2}$ denote the time that passes at Ms. B's location.

Now let's assume that the cable that is holding the elevator is cut and the elevator starts to free-fall. Since the falling velocity immediately after the cable is cut (the velocity at which Ms. A is flying upward when viewed from Mr. C's perspective) is $v=0$, the tempos of Ms. A's and Mr. C's clocks are the same.

$$
\text { (1) } \Delta \tau_{1}=\Delta \tau_{3}
$$

The elevator is pulled by gravity, and its velocity gradually increases. The elevator passes alongside Ms. B at a certain velocity (v).

If Ms. B were viewed at that time by Mr. C inside the elevator, he would observe her to be moving upward toward himself, which is the reverse of his own motion (falling from the top of the tower toward the bottom) viewed from his surroundings (see Figure 4-2).

Figure 4-1: Aligning the rates at which time passes for Mr. C's clock inside the elevator and Ms. A's clock at the beginning of the descent

Figure 4-2: Comparing the rates at which time passes for the clocks of Mr. C inside the elevator and Ms. B at the end of the descent

According to special relativity, at the instant that Mr. C passed Ms. B, we have

$$
\text { (2) } \Delta \tau_{2}=\Delta \tau_{3} \sqrt{1-\left(\frac{v}{c}\right)^{2}} \text {, }
$$

and from equations (1) and $\boldsymbol{2}$, we eliminate $\Delta \tau_{3}$ to obtain

$$
\text { (3) } \frac{\Delta \tau_{2}}{\Delta \tau_{1}}=\sqrt{1-\left(\frac{v}{c}\right)^{2}}<1 \text {. }
$$

This shows that the tempo of Ms. B's clock becomes slower than the tempo of Mr. C's clock. The rate at which time passes for Ms. B's clock, where the gravitational potential is low (ϕ_{2}, close to the source of gravity), is slower than the rate at which time passes for Ms. A's clock, where the gravitational potential is high (ϕ_{1}, far from the source of gravity).

In other words, the lower the gravitational potential is, the slower time will pass.
Let's assume that the velocity v is low and that we can use Newtonian mechanics (if we let $x=\frac{v}{c}$, then $x \ll 1$).

Therefore, when ϕ_{1} denotes the gravitational potential at Ms. A's location and ϕ_{2} denotes the gravitational potential at Ms. B's location, we have $\phi_{1}>\phi_{2}$.

Due to the conservation of energy, at the instant before the elevator hits the ground, all of its potential energy has been converted to kinetic energy, and its velocity v is given by this expression:

$$
\left(\phi_{1}-\phi_{2}\right) m=\frac{1}{2} m v^{2}
$$

We obtain the following:

$$
\text { (4) } \quad \phi_{1}-\phi_{2}=\frac{1}{2} v^{2}
$$

When $x \ll 1$, we can use the following approximation formula:

$$
(1+x)^{\alpha} \approx 1+\alpha x
$$

Since $x \ll 1$ because $x=\frac{v}{c}$, we have the following:

$$
\sqrt{1-\left(\frac{v}{c}\right)^{2}}=\left(1-x^{2}\right)^{\frac{1}{2}} \approx 1-\frac{1}{2} x^{2}=1-\frac{1}{2}\left(\frac{v}{c}\right)^{2}
$$

If we use this together with equation $\mathbf{3}$, we obtain the following equation:

$$
\boldsymbol{\epsilon} \frac{\Delta \tau_{2}}{\Delta \tau_{1}}=\sqrt{1-\left(\frac{v}{c}\right)^{2}} \approx 1-\frac{1}{2}\left(\frac{v}{c}\right)^{2}
$$

If we substitute $\frac{1}{2} v^{2}=\phi_{1}-\phi_{2}$ from equation (4) into equation $\boldsymbol{\Theta}$, we obtain the following equation:

$$
\text { (6) } \frac{\Delta \tau_{2}}{\Delta \tau_{1}} \approx 1-\frac{1}{2}\left(\frac{v}{c}\right)^{2}=1-\frac{\phi_{1}-\phi_{2}}{c^{2}}
$$

Also, if we rearrange the above equation slightly, since $\frac{\phi_{1}-\phi_{2}}{c^{2}} \approx 1-\frac{\Delta \tau_{2}}{\Delta \tau_{1}}=\frac{\Delta \tau_{1}-\Delta \tau_{2}}{\Delta \tau_{1}}$ holds, we have the following:

$$
\text { © } \quad \frac{\Delta \tau_{1}-\Delta \tau_{2}}{\Delta \tau_{1}} \approx \frac{\phi_{1}-\phi_{2}}{c^{2}}
$$

In other words, gravitational potential is related to the slowing of time (time dilation), as shown in equation

As shown in Figure 4-3, the difference in gravitational potential $\phi_{1}-\phi_{2}$ between the ground and an object at a height h is given by the gravitational potential $g h$.

Figure 4-3: State of relatively weak gravity on the ground

If we let $\phi_{2}=0, h$ denote the height up to ϕ_{1}, and g denote the gravitational acceleration near the ground and then substitute $\phi_{1}=g h$ and $\phi_{2}=0$ into equation $\boldsymbol{\theta}$, we obtain the following:

$$
\frac{\Delta \tau_{1}-\Delta \tau_{2}}{\Delta \tau_{1}} \approx \frac{\phi_{1}-\phi_{2}}{c^{2}}=\frac{g h-0}{c^{2}}=\frac{g h}{c^{2}}
$$

The clock at the higher altitude measures a time $\Delta \tau_{1}$ that is ahead of the clock below, which reads $\Delta \tau_{2}$. We know this to be true, because in the equation above, $\mathrm{gh} / \mathrm{c}^{2}$ and $\Delta \tau_{1}$ are both greater than zero, and therefore $\Delta \tau_{1}-\Delta \tau_{2}>0$; hence, $\Delta \tau_{1}>\Delta \tau_{2}$.

THE TRUE NATURE OF GRAVITY IN GENERAL RELATIVITY

Space-time surrounding the existence of matter is warped, as explained in the manga. It is apparent that this warping of space-time has the same effect as gravity in attracting surrounding matter.

Einstein unified these effects in a set of equations called the Einstein field equations. The Einstein field equations showed that time and space (space-time), which were previously thought to exist as a framework for measuring the motion of matter, were fundamentally connected with matter itself.

PHENOMENA DISCOVERED FROM GENERAL RELATIVITY

This section introduces the following phenomena, which were discovered from general relativity:

- Gravitational lensing
- Anomalous perihelion precession of Mercury
- Black holes

BENDING OF LIGHT (GRAVITATIONAL LENSING) NEAR A LARGE MASS (SUCH AS THE SUN)

Gravitational lensing is the phenomenon that when light passes in the vicinity of the Sun, the path of that light bends.

Space is bent in the vicinity of the Sun because of the large mass of the Sun, as shown in Figure 4-4. Since light advances along that curvature, the light from a distant star bends, and the direction of the star is observed with a slight shift. This effect was verified during a total solar eclipse. It is noted as the first proof discovered of general relativity.

Also, when light is coming from a distant galaxy, as shown in Figure 4-5, if a massive object (such as a galaxy) lies at an intermediate point, it will bend the light from the distant galaxy as though there were a condensing lens at that intermediate point. This bend may make the distant galaxy seem distorted. Many instances of this effect have been observed. This is another instance of gravitational lensing.

Figure 4-4: Bending of light near a large mass

Figure 4-5: Gravitational lensing

ANOMALOUS PERIHELION PRECESSION OF MERCURY

The perihelion is the point in the orbit of a planet that is closest to the Sun, as shown in Figure 4-6. We know that the perihelion of Mercury moves by approximately 574 arc seconds per century. Note that the "seconds" mentioned here are angular units rather than units of time. A minute of an arc is $1 / 60$ of 1 degree, and a second is $1 / 60$ of that. In other words, an arc second is $1 / 3600$ of a degree. If the shift revolves by approximately 547 arc seconds per century, it is a shift of only approximately 0.16 degree per century.

Figure 4-6: The anomalous shift in the perihelion of Mercury
Various causes of this shift, such as the effects of gravity of other planets, were investigated using Newtonian mechanics. However, none of these investigations were able to account for 43 arc seconds of perihelion movement. But when general relativity was used to check the shift in the perihelion of Mercury by calculating the Sun's warping of spacetime, it was found to be shifted by exactly 43 arc seconds.

BLACK HOLES

A black hole is a condition in which mass is extremely concentrated and gravity becomes so strong that not even light can escape from it.

A supernova stellar explosion occurs at the end of the life of a star having a mass several times that of the Sun. This event forms a region in space in which mass is extremely concentrated and gravity becomes stronger. Gravity becomes so strong that even light may not be able to escape. That region is a black hole.

Since light cannot escape from it, a black hole cannot be directly observed. However, if other stars exist in the vicinity of the black hole, gas from those stars will stream toward the black hole and form an accretion disk, that is, a cloud of diffuse matter around the black hole. When gas streams into the black hole from that accretion disk, X-rays and gamma rays are emitted.

A black hole candidate was discovered in 1971 in the constellation Cygnus, and currently, supermassive black holes are believed to exist at the center of galactic systems.

GLOBAL POSITIONING SYSTEM AND RELATIVITY

The Global Positioning System (GPS) uses 24 satellites orbiting the Earth to determine position. Each satellite broadcasts a signal toward Earth that includes the radio broadcast time. A receiver on the ground (such as a car navigation system) receives those signals. The radio waves of the signals reach the receiver at the speed of light (approximately $300,000,000 \mathrm{~m} / \mathrm{s}$).

When the time the signal was received is compared with the broadcast time, and that time difference is multiplied by the speed of light, the distance to the satellite is known. In other words, if we assume that the distance between the satellite and receiver is $20,000 \mathrm{~km}$, then the radio waves reach the receiver in $20,000,000 \mathrm{~m} \div 300,000,000 \mathrm{~m} / \mathrm{s}=0.067 \mathrm{sec}$ onds. That calculation is performed using radio waves from three satellites to accurately determine the position on the ground.

However, if there is an error in that time difference, an error will also occur in the calculation of the distance between the satellite and receiver. For example, if the satellite broadcast time is offset by 1 microsecond (10^{-6} second), the distance will be offset by 300 meters ($300,000,000 \mathrm{~m} / \mathrm{s} \times 0.000001 \mathrm{~s}=300 \mathrm{~m}$).

A GPS satellite orbits the Earth at an altitude of $20,000 \mathrm{~km}$ and a velocity that causes it to make 1 revolution in approximately 12 hours. At that velocity, the effect of special relativity causes its time to slow by 7.1 microseconds per day. However, since it is located high above the surface of the Earth, the effect of general relativity causes its time to pass faster than time on the surface of the Earth by 46.3 microseconds per day (the effect of general relativity is represented by equation $\boldsymbol{\theta}$ on page 161). As a result, the time broadcast from the GPS is slowed by 39.2 microseconds per day (see Figure 4-7). The design of the GPS system takes into consideration the effects of both special and general relativity with extreme precision.

Figure 4-7: The Global Positioning System compensates for the effects of relativity.

INDEX

A

absolute stationary space, 26 , 28-31, 33, 35
acceleration, 14-16, 69-72, 95-96, 120, 124-132. See also equivalence principle
action and reaction, law of, 22, 95
adding velocity, 43, 44-46, 48-49
Alpha Centauri, 80-81
Andromeda galaxy, 81-82
anomalous perihelion, 162, 164
antiparticles, 102-103

B

bending light, 16, 133-142, 162-163
Big Bang theory, 150-152
black holes, 162, 164

c

centrifugal force, 127-129
centripetal force, 129
conservation of energy, law of, 97-99
conservation of mass, law of, 97-98
constructive interference, 41-42
contraction of length, 86-91, 106-109
calculating, 106-107
and muons, 108-109
coordinate systems, 28-29
and Galilean transformation, 47-48, 109
space-time, 37
and special relativity theory, 70-71, 120
cosmic rays, 108-109
curvatures, in space-time, 140, 162
Cygnus, 164

D

destructive interference, 41-42
diffraction, light, 41-42
dispersion, light, 40-41

E

Earth's movement, 20-21, 35, 94
Einstein, Albert
on gravity and acceleration, 120, 131
on Newtonian Mechanics, 34-36
on speed of light, 34-37
Einstein field equations, 162
electrical energy, 98
electromagnetic radiation, 24-26,

$$
\text { 40, } 103
$$

electrons, 43, 102-103
elementary particles, 108-109
$E=m c^{2}$ (mass-energy equivalence), 99-102, 112-113
energy
conservation of, law of, 97-99
electrical, 98
kinetic, $98,113,160$
mass-energy equivalence

$$
\left(E=m c^{2}\right), 99-102
$$

112-113
pair annihilation, 102-103
equivalence principle, 72 , 120-121, 131
ether, 26-30
ether wind, 31-33

F

$F=$ ma equation, 22, 47, 95, 109, 111-112
Friedman, Alexander Alexandrovich, 150

G

Galilean principle of relativity, 17-22, 33, 47-48, 109-111
Galilean transformation, 47-48, 109-111
Galilei, Galileo, 17
gamma (γ) rays, 40, 102-103
general relativity theory. See relativity, general theory of
Global Positioning System (GPS), 165
gravitational lensing, 162-163
gravitational potential, 158, 160-162
gravity, 16
acceleration and, 14-16, 69-72, 95-96, 124-132
elimination of, 131-133
equivalence principle and, 72 ,
120-121, 131
light bending, 16, 133-142,
162-163
moon's vs. Earth's, 94
time dilation and, 70-72, 143-148
warped space-time, 136, 141-144, 158, 162, 164
zero-gravity space, 94-95
great circles, 140

Hubble, Edwin, 150-152

I

inertia, law of, 18, 22, 95, 123
inertial forces
centrifugal force, 127-129
centripetal force, 129
examples of, 120-129
inertial reference frames, 15
and Newton's three laws of motion, 18
and the Galilean principle of relativity, 19, 22, 47
and space-time, 139
and special relativity theory, 34, 69-70, 120-122
infrared light, 40
interference, light, 41-42

K

kinetic energy, 98, 113, 160

L

law of action and reaction, Newton's, 22, 95
law of conservation of energy, 97-99
law of conservation of mass, 97-98
law of inertia, Newton's, 18, 22, 95, 123
laws of motions. See Newton's three laws of motion
length, contraction of, 86-91, 106-109
calculating, 106-107
muons and, 108-109
lensing, gravitational, 162-163
life spans, muon, 108-109
light
bending of, 16, 133-142, 162-163
as electromagnetic wave, 24-26, 40
electrons and, 102
Maxwell's equations, 40-41
measuring time by, 58, 60-65, 78-79
properties of
dispersion, 40-41
interference and diffraction, 41-42
polarization, 42
reflection, 40-41, 58-59
refraction, 40-41
scattering, 42
speed of. See speed of light
types of, 40-42
light clocks, 58, 60-65, 78-80
Lorentz transformation, 48, 106-107, 111-112

M

mass, 94
conservation of mass, law of, 97-98
$F=m a$ equation, 22, 47, 95, 109, 111-112
positron/electron collisions, 102-103
speed of light and, 92-97, 109-113
vs. weight, 93-94
mass-energy equivalence ($E=m c^{2}$), 99-102, 112-113
maximum velocity, 92-93
Maxwell, James Clerk, 24
Maxwell's equations, 24-26, 40
medium(s), 26-27, 40. See also ether
Mercury, anomalous perihelion procession of, 162, 164
Michelson, Albert Abraham, 32
Milky Way galaxy, 35, 81-82
Morley, Edward Williams, 32
motion. See also Newtonian Mechanics
of Earth, 20-21, 35
laws of,
action and reaction, 22, 95
$F=m a$ equation, 22, 47,
95, 109, 111-112
inertia, 18, 22, 95, 123
perceived motion, 20-21
uniform linear motion, 18, 69, 95, 134
muons, 108-109

N

near-light speeds. See also speed of light
and length contraction, 86-91
and mass, 92
muons traveling at, 108-109
and time dilation, 54-55, 57-63, 73-75
and the twin paradox, 65-68
Newtonian Mechanics
basis for, 22
Einstein on, 34-36
Galilean principle of relativity and, 47-48
expansion of space, 151
speed of light and, 25, 32, 43, 112-113
time and space as separate, 37
Newtonian velocity addition, 43, 44-45, 48-49
Newton's three laws of motion, 22, 95
equation of motion ($F=m a$), 22, 47, 95, 109, 111-112
law of action and reaction, 22, 95
law of inertia, 18, 22, 95, 123 non-inertial reference frames, 15 nonrelatavistic addition of velocity, 43, 44-45, 48-49

P

pair annihilation, 102-103
parabolas, 134, 137-139
particles, 102-103
perceived motion, 20-21
perihelion, 162, 164
polarization, light, 42
polarizing filters, 42
positrons, 102-103
Pythagorean theorem, 61-63, 73-75, 78-80

R

radio waves, 40, 165
reference frames
inertial references frames. See inertial reference frames
non-inertial references frames, 15
reflection, light, 40-41, 58-59
refraction, light, 40-41
relativistic addition of velocity, 44, 46, 47
relativity
Galilean principle of, 17-22
general theory of, 14-16 bending light, 16, 133-142, 162-163
Big Bang theory and, 150-152 equivalence principle and, 72, 120-121, 131 time dilation, 70-71, 158-162 universe, expanding and contracting, 150-151
special theory of, 14-15, 34-37
time and space as coordinate system, 37, 91
twin paradox and time dilation, 67-73
and the universe, 149-152

S

scattering, light, 42
simultaneity mismatch, 44-46
slowing of time. See time dilation solar system, 35, 80
space-time, 37, 139-144, 158, 162, 164
special relativity theory. See relativity, special theory of
speed of light, 22-24. See also
near-light speeds
as a constant, $24-26,30,33$, 36-37, 43, 57
and Einstein, 34-37
electromagnetic waves and, 24-26, 40
ether and, 26-30
ether wind and, 31-33
mass-energy equivalence ($E=m c^{2}$), 99-102, 112-113
maximum velocity, 92-93
Maxwell's equations and, 24-26, 40
Newtonian Mechanics and, 25, 32, 43, 112-113
relativistic addition of velocity, 44, 46, 47
weight/mass and, 92-97
SPring-8 Lab, 43
stars
Alpha Centauri, 80-81
black holes and, 162, 164

T

time dilation, 53-66
calculating, 80-82
equation for, 88,90
general relativity theory and, 70-71, 143-148, 158-162
measuring with light clocks, $58,60-65,78-80$
twin paradox and, 67-73
transformation, Galilean, 47-48, 109-111
transformation, Lorentz, 48, 106-107, 111-112
twin paradox, 67-73

U

ultraviolet rays, 40
uniform linear motion, 18, 69, 95, 134
universe, relativity and, 149-152
Urashima effect. See time dilation

V

velocity,
adding of, 43, 44-46, 48-49
and length, contraction of, 86-91
mass and, 96-97, 113
maximum, 92-93
visible light, 40

W

wavelengths, 40, 42
weight, 92-94. See also mass
weightlessness, 94-95, 121, 131-132, 145
white light, 40-41

x

x-rays, 40, 164

Z

zero-gravity space, 94-95

ABOUT THE SUPERVISING EDITOR

Hideo Nitta completed his doctorate at Waseda University Graduate School of Science and Engineering, 1987, majoring in Theoretical Physics and Physics Education. He is currently a professor in the Department of Education at Tokyo Gakugei University. He is also the author of The Manga Guide to Physics (Ohmsha, No Starch Press).

ABOUT THE AUTHOR

Masafumi Yamamoto completed his doctorate at Hokkaido University Graduate School of Engineering Division of Applied Physics, 1984. He is currently Representative Director of Yaaba, Ltd.

PRODUCTION TEAM FOR THE JAPANESE EDITION

Production: Trend Pro/Books Plus Co., Ltd.
Founded in 1988, Trend Pro produces various media advertisements incorporating manga for a wide range of clients from government agencies to major corporations and associations. Books Plus is the service brand that takes Trend Pro's production knowhow, which has achieved the best results in Japan, and specializes in book production. The brand is renowned for its preeminent professional team who provides complete design, editing, and production services.
http://www.books-plus.jp/
Ikeden Bldg., 3F, 2-12-5 Shinbashi, Minato-ku, Tokyo, Japan.
Telephone: 03-3519-6769, Fax: 03-3519-6110

Scenario writer: re_akino

Illustration: Keita Takatsu
DTP: Mackey Soft Corporation

MORE MANGA GUIDES

The Manga Guide series is a co-publication of No Starch Press and Ohmsha, Ltd. of Tokyo, Japan, one of Japan's oldest and most respected scientific and technical book publishers. Each title in the best-selling Manga Guide series is the product of the combined work of a manga illustrator, scenario writer, and expert scientist or mathematician. Once each title is translated into English, we rewrite and edit the translation as necessary and have an expert review each volume for technical correctness. The result is the English version you hold in your hands.

Find more Manga Guides at your favorite bookstore, and learn more about the series at http://www.edumanga.me/.

COLOPHON

The Manga Guide to Relativity was laid out in Adobe InDesign. The fonts are CCMeanwhile and Chevin.

This book was printed and bound by Transcontinental, Inc. at Transcontinental Gagné in Louiseville, Quebec, Canada. The paper is Domtar Husky 60\# Smooth, which is certified by the Forest Stewardship Council (FSC). The book has an Otabind binding, which allows it to lie flat when open.

UPDATES

Visit http://www.nostarch.com/mg_relativity.htm for updates, errata, and other information.

PRAISE FOR THE MANGA GUIDE SERIES

"HIGHLY RECOMMENDED." - CHOICE MAGAZINE
"STIMULUS FOR THE NEXT GENERATION OF SCIENTISTS." - SCIENTIFIC COMPUTING "A GREAT FIT OF FORM AND SUBJECT. RECOMMENDED." - OTAKU USA MAGAZINE

A CHARMING CARTOON GUIDE TO THE THEORY OF RELATIVITY

EVERYTHING'S GONE SCREWY AT TAKAI ACADEMY. WHEN THE CRAZY HEADMASTER FORCES MINAGI'S ENTIRE CLASS TO STUDY EINSTEIN'S THEORY OF RELATIVITY OVER SUMMER SCHOOL, MINAGI VOLUNTEERS TO GO IN THEIR PLACE. THERE'S JUST ONE PROBLEM: HE'S NEVER EVEN HEARD OF RELATIVITY BEFORE! LUCKILY, MINAGI HAS THE PLUCKY MISS URAGA TO TEACH HIM.

FOLLOW ALONG WITH THE MANGA GUIDE

 TO RELATIVITY AS MINAGI LEARNS ABOUT THE NON-INTUITIVE LAWS THAT SHAPE OUR UNIVERSE. BEFORE YOU KNOW IT, YOU'LL MASTER DIFFICULT CONCEPTS LIKE INERTIAL FRAMES OF REFERENCE, UNIFIED SPACE-TIME, AND THE EQUIVALENCE PRINCIPLE. YOU'LL EVEN SEE HOW RELATIVITY AFFECTS MODERN ASTRONOMY AND DISCOVER WHY GPS SYSTEMS AND OTHER EVERYDAY TECHNOLOGIES DEPEND ON EINSTEIN'S EXTRAORDINARY DISCOVERY.THE MANGA GUIDE TO RELATIVITY ALSO
TEACHES YOU HOW TO:

- UNDERSTAND AND USE $E=M C^{2}$, THE WORLD'S MOST FAMOUS EQUATION
- calculate the effects of time dilation USING THE PYTHAGOREAN THEOREM
- UNDERSTAND CLASSIC THOUGHT EXPERIMENTS LIKE THE TWIN PARADOX, AND SEE WHY LENGTH CONTRACTS AND MASS INCREASES AT RELATIVISTIC SPEEDS
- GRASP THE UNDERPINNINGS OF EINSTEIN'S SPECIAL AND GENERAL THEORIES OF RELATIVITY

IF THE IDEA OF BENDING SPACE AND TIME REALLY WARPS YOUR BRAIN, THE MANGA GUIDE TO RELATIVITY WILL STRAIGHTEN THINGS OUT.
the finest in geek entertainment ${ }^{\text {m }}$ www.nostarch.com
$\$ 19.95$ ($\$ 22.95$ CDN)

ISBN: 978-1-59327-272-2

[^0]: * Let's do the math: $\frac{300,000 \mathrm{~km}}{1 \text { secont }} \times \frac{60 \text { seconds }}{1 \text { minute }} \times \frac{60 \text { minutes }}{1 \text { hour }} \times \frac{24 \text { houts }}{1 \text { day }} \times \frac{365 \text { days }}{1 \text { year }}$
 = 9,460,800,000 km!

