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Preface

In both theory and practice, condensed matter physics is concerned with the phys-
ical properties of materials that are comprised of complex many-particle systems.
Modeling the systems’ behavior is essential to achieving a better understanding of
the properties of these systems and their practical use in technology and industry.

Maximal knowledge about a many-particle system is gained by solving the
Schrödinger equation. However, an exact solution of the Schrödinger equation is
not possible, so resort is made to approximation schemes based on perturbation
theory. It is generally true that, in order to properly describe the properties of
an interacting many-particle system, perturbation theory must be carried out to
infinite order. The best approach we have for doing so involves the use of Green’s
function and Feynman diagrams. Furthermore, much of our knowledge about a
given complex system is obtained by measuring its response to an external probe,
such as an electromagnetic field, a beam of electrons, or some other form of
perturbation; its response to this perturbation is best described in terms of Green’s
function.

Two years ago, I set out to put together a guide that would allow advanced
undergraduate and beginning graduate students in physics and electrical engineer-
ing to understand how Green’s functions and Feynman diagrams are used to more
accurately model complicated interactions in condensed matter physics. As time
went by and the book was taking form, it became clear that it had turned into a
reference manual that would be useful to professionals and educators as well as
students. It is a self-contained place to learn or review how Feynman diagrams are
used to solve problems in condensed matter physics. Great care has been taken to
show how to create them, use them, and solve problems with them, one step at a
time. It has been a labor of love. My reward is the thought that it will help others
to understand the subject.

The book begins with a brief review of quantum mechanics, followed by a short
chapter on single-particle states. Taken together with the accompanying exercises,
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xiv Preface

these two chapters provide a decent review of quantum mechanics and solid state
physics. The method of second quantization, being of crucial importance, is dis-
cussed at length in Chapter 3, and applied to the jellium model in Chapter 4. Since
Green’s functions at finite temperature are defined in terms of thermal averages,
a review of the basic elements of statistical mechanics is presented in Chapter 5,
which, I hope, will be accessible to readers without extensive knowledge of the
subject.

Real-time Green’s functions are discussed in Chapter 6, and some applications of
these functions are presented in Chapter 7. Imaginary-time functions and Feynman
diagram techniques are dealt with in Chapters 8 and 9. Every effort has been
made to provide a step-by-step derivation of all the formulas, in as much detail
as is necessary. Rules for the creation of the diagrams and their translation into
algebraic expressions are clearly delineated. Feynman diagram techniques are then
applied to the interacting electron gas in Chapter 10, to electron–phonon and
electron–photon interactions in Chapter 11, and to superconductivity in Chapter 12.
These techniques are then extended to systems that are not in equilibrium in
Chapter 13.

Many exercises are given at the end of each chapter. For the more difficult
problems, some guidance is given to allow the reader to arrive at the solution.
Solutions to many of the exercises, as well as additional material, will be provided
on my website (www.calstatela.edu/faculty/rjishi).

Over the course of the two years that it took me to finish this book, I received
help in various ways from many people. In particular, I would like to thank David
Guzman for extensive help in preparing this manuscript, and Hamad Alyahyaei for
reading the first five chapters. I am indebted to Linda Alviti, who read the whole
book and made valuable comments. I am grateful to Professor I. E. Dzyaloshinski
for reading Chapter 9 and for his encouraging words. I also want to thank Dr. John
Fowler, Dr. Simon Capelin, Antoaneta Ouzounova, Fiona Saunders, Kirsten Bot,
and Claire Poole from Cambridge University Press for their help, guidance, and
patience. I would also like to express my gratitude to my wife and children for
their encouragement and support. Permission to use the quote from Russell’s The
Scientific Outlook (2001) was provided by Taylor and Francis (Routledge). Copy-
right is owned by Taylor and Francis and The Bertrand Russell Foundation Ltd.
Permission to use Gould’s quote from Ever Since Darwin (1977) was provided by
W.W. Norton & Company.

This book is dedicated to the memory of my parents, who, despite adverse
conditions, did all they could to provide me with a decent education.

Los Angeles, California R. A. J.
July, 2012



1
A brief review of quantum mechanics

Come forth into the light of things,
Let nature be your teacher.

–William Wordsworth,
The Tables Turned

The main focus of this book is many-particle systems such as electrons in a crystal.
Such systems are studied within the framework of quantum mechanics, with which
the reader is assumed to be familiar. Nevertheless, a brief review of this subject will
provide an opportunity to establish notation and collect results that will be used
later on.

1.1 The postulates

Quantum mechanics is based on five postulates, listed below with some explanatory
comments.

(I) The quantum state

The quantum state of a particle, at time t , is described by a continuous, single-
valued, square-integrable wave function �(r, t), where r is the position of the
particle. In Dirac notation, the state is represented by a state vector, or ket, |�(t)〉,
which is an element of a vector space V. We define a dual vector space V∗ whose
elements, called bras, are in one-to-one correspondence with the elements of V: ket
|α〉 ∈ V ↔ bra 〈α| ∈ V∗, as illustrated in Figure 1.1. The bra corresponding to ket
c |α〉 is c∗ 〈α|, where c∗ is the complex conjugate of c. The inner product of kets
|α〉 and |β〉 is denoted by 〈β|α〉, and it is a complex number (c-number). Note that
the inner product is obtained by combining a bra and a ket. By definition, 〈β|α〉 =
〈α|β〉∗. The state vectors |�(t)〉 and c |�(t)〉, where c is any nonzero complex
number (c ∈ C− {0}), describe the same physical state; because of that, the state

1



2 A brief review of quantum mechanics

V V*

Figure 1.1 Vector space V of kets and the corresponding dual space V∗ of bras.
A one-to-one correspondence exists between kets and bras.

Figure 1.2 The probability of finding the particle, at time t , in the cube of volume
d3r , centered on r, is |�(r, t)|2d3r .

is usually taken to be normalized to unity: 〈�(t)|�(t)〉 = 1. The normalized wave
function has a probabilistic interpretation: �(r, t) is the probability amplitude
of finding the particle at position r at time t ; this means that |�(r, t)|2d3r is the
probability of finding the particle, at time t , in the infinitesimal volume d3r centered
on point r (see Figure 1.2).

Note that the description of a quantum state is completely different from the one
used in classical mechanics, where the state of a particle is specified by its position
r and momentum p at time t .

(II) Observables

An observable is represented by a linear, Hermitian operator acting on the state
space. If A is an operator, being linear means that

A (c1|α〉 + c2|β〉) = c1A|α〉 + c2A|β〉, |α〉, |β〉 ∈ V, c1 , c2 ∈ C,

and being hermitian means that A† = A, where A† is the adjoint of A, defined by
the relation

〈β|A†|α〉 = 〈α|A|β〉∗.
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In particular, the position of a particle is represented by the operator r, its momentum
p by −ih̄∇, and its energy by the Hamiltonian operator H ,

H = − h̄2

2m
∇2 + V (r, t). (1.1)

V (r, t) is the operator that represents the potential energy of the particle, m is the
particle’s mass, and h̄ is Planck’s constant h divided by 2π .

As with states, the representation of observables in quantum mechanics is com-
pletely different from that of their classical counterparts, which are simply repre-
sented by their numerical values.

(III) Time evolution

The state |�(t)〉 of a system evolves in time according to the Schrödinger equation

ih̄
∂

∂t
|�(t)〉 = H |�(t)〉. (1.2)

If the Hamiltonian H does not depend explicitly on time, then

|�(t)〉 = e−iH t/h̄|�(0)〉. (1.3)

The operator e−iH t/h̄ is called the time evolution operator. Defining the station-
ary states |φn〉 as the solutions of the eigenvalue equation, known as the time-
independent Schrödinger equation,

H |φn〉 = En|φn〉, (1.4)

it is readily verified that |φn〉e−iEnt/h̄ is a solution of Eq. (1.2); the general solution
of Eq. (1.2), when H is independent of t , is then given by

|�(t)〉 =
∑

n

cn|φn〉e−iEnt/h̄.

In contrast, the evolution of the classical state of a particle is determined by Hamil-
ton’s function H via Hamilton’s equations of motion which, in one dimension,
are

ẋ = ∂H/∂p, ṗ = −∂H/∂x. (1.5)

(IV) Measurements

Let an observable be represented by the linear, Hermitian operator A, and consider
the eigenvalue equation

A|φn〉 = an|φn〉, (1.6)
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where a1, a2, . . . are the eigenvalues, and |φ1〉, |φ2〉, . . . the corresponding eigen-
vectors, or eigenkets. In general, there may be infinitely many eigenvalues and
eigenkets. If k eigenkets correspond to the same eigenvalue al , then al is said to be
k-fold degenerate. The following is postulated:

1. The outcome of any measurement of A is always one of its eigenvalues.
2. The eigenkets |φ1〉, |φ2〉, . . . form a complete set of states, i.e., they form a basis

set that spans the state vector space.
3. If the state of a system is described by the normalized state vector |�(t)〉,

and if the states |φ1〉, |φ2〉, . . . are orthonormal, then the probability of finding
the system in state |φn〉 (in which case a measurement of observable A yields
the eigenvalue an) at time t is given by |〈φn |�(t)〉 |2. That is, 〈φn |�(t)〉 is the
probability amplitude for a system, in state |�(t)〉, to be found in state |φn〉 at
time t .

4. The state of a system, immediately following a measurement of A that gave
the value an, collapses to the state |φn〉 (if an is degenerate, the state col-
lapses to the subspace spanned by the degenerate states corresponding to the
eigenvalue an).

We note that the eigenvalues of a hermitian operator are real; hence, the out-
come of any measurement of an observable is a real number, as it should be.
Further, for a hermitian operator, the eigenkets corresponding to different eigen-
values are necessarily orthogonal. In the case of a k-fold degeneracy, where k

eigenkets correspond to the same eigenvalue, every ket in the k-dimensional sub-
space that the eigenkets span is an eigenket of A with the same eigenvalue. It
is always possible to choose within this subspace a set of k eigenkets that are
orthogonal to each other. By normalizing the eigenkets, it is always possible to
choose the eigenkets |φ1〉, |φ2〉, . . . so as to form a complete orthonormal basis that
spans the vector space of state vectors. Orthonormality means that 〈φi|φj 〉 = δij

where

δij =
{

0 i 
= j

1 i = j
(1.7)

is the Kronecker delta, occasionally written as δi ,j with a comma inserted between
the indices if its absence could cause confusion. Completeness means that states
|φ1〉, |φ2〉, . . . form a basis set: any state vector |�(t)〉 ∈ V can be expanded as

|�(t)〉 =
∑

n

cn(t)|φn〉. (1.8)
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If the basis is chosen to be an orthonormal one, i.e., if |φ1〉, |φ2〉, . . . form an
orthonormal set, then for an arbitrary state |�(t)〉,

|�(t)〉 =
∑

n

cn(t)|φn〉 ⇒ 〈φm |�(t)〉 =
∑

n

cn(t)〈φm|φn〉 =
∑

n

cn(t)δnm

= cm(t) ⇒ |�(t)〉 =
∑

n

〈φn |�(t)〉 |φn〉 =
∑

n

|φn〉〈φn |�(t)〉

⇒
∑

n

|φn〉〈φn| = 1. (1.9)

Equation (1.9) expresses mathematically the property of completeness of the
orthonormal states |φ1〉, |φ2〉, . . .. Note that |φn〉〈φn| is an operator: it acts on a
ket to yield another ket, and the 1 on the right hand side (RHS) of Eq. (1.9) is the
identity operator.

An important complete orthonormal set of states is formed by the eigenkets of
the position operator r,

r|r〉 = r|r〉. (1.10)

On the left hand side (LHS), r is the position operator, sometimes written as r̂ or
rop to emphasize that it is an operator, while r on the RHS is the eigenvalue of the
position operator. The ket |r〉 is the state of a particle with a well defined position
r. Since the operator r is hermitian, the states |r〉 form a complete orthonormal set.
Because r is continuous, the orthonormality and completeness of the states now
read

〈r|r′〉 = δ(r− r′) (orthonormality),
∫
|r〉〈r|d3r = 1 (completeness). (1.11)

δ(r− r′) is the Dirac-delta function, defined as follows:

δ(r) =
{

0 r 
= 0

∞ r = 0
(1.12)

and ∫
δ(r)d3r = 1, (1.13)

the integration being over all space. In one dimension, δ(x − x′) is represented
graphically as in Figure 1.3.

One important property of δ(r− r′) is the sifting property,∫
f (r)δ(r− r′)d3r = f (r′). (1.14)
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Figure 1.3 Dirac-delta function δ(x − x ′). It is zero for all values of x except for
x = x ′ where it is infinite. However, its integral over any interval containing x′ is
unity.

We also note that δ(r− r′) = δ(r′ − r) and δ(ar) = δ(r)/|a|d , where d is the dimen-
sion of space: d = 3 if r is a three-dimensional vector. A particularly useful repre-
sentation of the Dirac-delta function is the following:

δ(r) = 1
(2π )3

∫
e±ik.rd3k. (1.15)

Another useful representation of the Dirac-delta function is

δ(x) = dθ (x)/dx (1.16)

where θ (x) is the step function:

θ (x) =
{

0 x < 0

1 x > 0.
(1.17)

Note that dθ (x)/dx = 0 for x 
= 0, dθ (x)/dx = ∞ for x = 0, and the integral of
dθ (x)/dx over any interval that includes x = 0 is equal to 1.

Introducing a resolution of identity (1 = ∫ |r〉〈r|d3r), the state vector |�(t)〉
may be written as

|�(t)〉 =
∫
|r〉〈r |�(t)〉 d3r.

This is the continuous analog of the discrete case for which |�(t)〉 =∑
n |φn〉〈φn |�(t)〉.
|〈φn |�(t)〉|2 has been interpreted as the probability for a particle in state |�(t)〉

to be found at time t in state |φn〉. By analogy, should |〈r |�(t)〉|2 be interpreted as
the probability for a particle in state |�(t)〉 to be found at time t in state |r〉, i.e., to
be at position r at time t? Two problems beset this interpretation:

(a) |�(t)〉 and |φn〉 are dimensionless (〈�(t) |�(t)〉 = 1, 〈φn|φn〉 = 1); hence,
|〈φn |�(t)〉|2 is dimensionless and can be interpreted as a probability. However,
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the orthonormality and completeness relations for states |r〉, as expressed in
Eq. (1.11), reveal that states |r〉 have dimension 1/Length3/2. Thus, |〈r |�(t)〉|2
has dimension 1/Volume, and it cannot be interpreted as a probability; rather,
it is more properly interpreted as a probability density.

(b) Suppose that a particle is in state |�(t)〉 and a measurement is carried out to
determine its position. No detector could ever pinpoint the location of a particle
to exactly one point; the best a detector could do is to “click” whenever the
particle is in some small volume d3r surrounding the position r. Assuming that
〈r |�(t)〉 does not change appreciably within the volume d3r , the probability
that the detector clicks should be proportional to |〈r |�(t)〉|2d3r . The constant
of proportionality is determined by requiring that the probability of finding the
particle somewhere in space be unity. Noting that∫

|〈r |�(t)〉|2d3r =
∫

d3r〈r |�(t)〉∗ 〈r |�(t)〉 =
∫

d3r〈�(t)|r〉〈r |�(t)〉

= 〈�(t) |�(t)〉 = 1,

the proportionality constant is seen to be 1. 〈r |�(t)〉|2d3r is thus interpreted
as the probability for a particle in state |�(t)〉 to be found at time t in the
infinitesimal volume d3r centered on r. Comparing this with the probabilistic
interpretation of �(r, t) given in postulate I, the following identification is
made:

〈r |�(t)〉 = �(r, t). (1.18)

The state vector |�(t)〉 may now be written as

|�(t)〉 =
∫
|r〉〈r |�(t)〉 d3r =

∫
�(r, t)|r〉d3r.

In other words, the wave function �(r, t) is the component of state vector
|�(t)〉 along |r〉.

In the r-representation, the orthonormality of states |φ1〉, |φ2〉, . . . reads

δij = 〈φi|φj 〉 =
∫
〈φi|r〉〈r|φj 〉d3r =

∫
φ∗i (r) φj (r) d3r , (1.19)

and their completeness is expressed as

1 =
∑

n

|φn〉〈φn| =
∑

n

∫∫
|r〉〈r|φn〉〈φn|r′〉〈r′|d3r d3r ′

=
∫∫ ∑

n

φn(r) φ∗n(r′)|r〉〈r′|d3r d3r ′.
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For the above to be true, it must be that∑
n

φn(r) φ∗n(r′) = δ(r− r′). (1.20)

This expresses the completeness property in the r-representation.
We note that if operators A and B, representing two observables, commute

(AB = BA), a complete set of states can be chosen so as to be simultaneous
eigenstates of A and B; A and B may then be measured simultaneously.

So far, the fact that particles have spin has been ignored. To specify the state of
a particle, its spin state must also be specified. For example, an electron has spin
s = 1/2, and the z-component Sz of the spin operator has eigenvalues +h̄/2 and
−h̄/2,

Sz |↑〉 = h̄

2
|↑〉, Sz |↓〉 = −h̄

2
|↓〉. (1.21)

The spin-up state |↑〉 is also denoted by |1/2〉, or |+〉, or α, while the spin-down
state may also be written as | − 1/2〉, or |−〉, or β. A general spin state, denoted by
|χ〉, is a linear combination of the basis states |↑〉 and |↓〉,

|χ〉 = a |↑〉 + b |↓〉

where a = 〈↑|χ〉 and b = 〈↓|χ〉. If |χ〉 is normalized (〈χ |χ〉 = 1), the probability
of finding the spin up is |a|2 and that of finding it down is |b|2.

The spin states |↑〉 and |↓〉 span a two-dimensional complex vector space, the
spin space Vspin: they form an orthonormal basis for Vspin,

〈↑|↑〉 = 〈↓|↓〉 = 1, 〈↑|↓〉 = 0, |↑〉〈↑| + |↓〉〈↓| = 1. (1.22)

The above equations express, respectively, normalization, orthogonality, and com-
pleteness of the spin states. In general, for a particular spin s, the spin projection
σ = −s,−s + 1, . . . , s; the spin space is a (2s + 1)-dimensional complex vector
space. The orthonormality and completeness relations are

〈σ |σ ′〉 = δσσ ′ ,
∑

σ

|σ 〉〈σ | = 1 (1.23)

where σ, σ ′ = −s,−s + 1, . . . , s.
On the other hand, the states |φn〉, which are eigenstates of a linear hermitian

operator that depends on spatial coordinates, span a spatial vector space Vspatial.
The states |φν〉 = |φn〉 ⊗ |σ 〉, σ = −s,−s + 1, . . . , s and n = 1, 2, . . . form an
orthonormal basis for the direct product space V= Vspatial⊗Vspin , known as the
Hilbert space. The state of a particle is a vector |�(t)〉 ∈ V; hence, it can be
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expanded in the basis states,

|�(t)〉 =
∑
nσ

cnσ (t) |φn〉 ⊗ |σ 〉 =
∑

ν

cν(t)|φν〉. (1.24)

Here, ν is a collective index that specifies the spatial and spin quantum numbers.
For example, four quantum numbers specify the eigenstates of a hydrogen atom:
the principal quantum number n that determines the energy of the state, l which
determines the value of L2 (the square of the orbital angular momentum), m which
determines the value of Lz (the z-component of the orbital angular momentum),
and σ which is either ↑ or ↓. In this case ν = [nlmσ ], while the index n in |φn〉
stands for the spatial quantum numbers [nlm]. The ket |φν〉 = |φn〉 ⊗ |σ 〉, being a
direct product of an orbital (spatial) state and a spin state, is called a spin orbital.

The orthonormality and completeness of the states |φν〉 mean that

〈φν |φν ′ 〉 = 〈φn|φn′ 〉〈σ |σ ′〉 = δnn′δσσ ′ = δνν ′ (1.25)

∑
ν

|φν〉〈φν | =
∑

n

|φn〉〈φn| ⊗
∑

σ

|σ 〉〈σ | = 1spatial ⊗ 1spin = 1. (1.26)

Here, 1spatial (1spin) is the identity operator in Vspatial (Vspin), and 1 on the RHS is the
identity operator in the Hilbert space (the direct product space).

So far, we have restricted the discussion to a one-particle system. We now
consider a system comprised of N identical particles. Identical particles, such as
electrons, are truly indistinguishable in quantum mechanics. The stationary states
(eigenfunctions of the Hamiltonian H ) of a system of N identical particles will
be written as �(1, 2, . . . , N ), depending on the spatial and spin coordinates of
the particles. Because of the indistinguishability of the particles, the Hamiltonian
remains unchanged if any two particles are interchanged. This means that H

commutes with Pij , the permutation operator which interchanges particles i and
j . It follows that the eigenfunctions of H can be chosen to be simultaneously
eigenfunctions of Pij . Denoting the eigenvalues of Pij by λ, we can write

Pij�(1, . . . , i, . . . , j, . . . , N ) = λ�(1, . . . , i, . . . , j, . . . , N).

Applying Pij to both sides of the above equation, and noting that P 2
ij = 1, we obtain

�(1, . . . , i, . . . , j, . . . , N) = λ2�(1, . . . , i, . . . , j, . . . , N).

Thus, λ2 = 1 ⇒ λ = ±1. For λ = +1(−1), the wave function is symmetric (anti-
symmetric) under the exchange of coordinates (spatial and spin) of any two par-
ticles. In nature, particles with integral spin (0, 1, 2, . . . ), known as bosons, have
symmetric wave functions under the exchange of the coordinates of two particles,
and they obey Bose–Einstein statistics. On the other hand, particles with half inte-
gral spin (1/2, 3/2, . . . ), known as fermions, have antisymmetric wave functions
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under the exchange of the coordinates of two particles, and they obey Fermi–Dirac
statistics. The Pauli exclusion principle is a direct consequence of this antisym-
metry of the fermionic wave function. The last postulate of quantum mechanics
follows.

(V) Wave function of a system of identical particles

Under the interchange of all coordinates (spatial and spin) of one particle with
those of another, the wave function of a collection of identical particles must
be symmetric if the particles are bosons, and antisymmetric if the particles are
fermions:

�(1, . . . , j, . . . , i, . . . , N) =
{

�(1, . . . , i, . . . , j, . . . , N) Bosons

−�(1, . . . , i, . . . , j, . . . , N) Fermions.
(1.27)

We close this section by remarking that some exotic quasiparticles, known as
anyons, which arise as excitations of a two-dimensional electron gas in a magnetic
field, are believed to obey some fractional statistics, which are neither Bose–
Einstein nor Fermi–Dirac statistics (Wilczek, 1982).

1.2 The harmonic oscillator

We briefly review the solution of the harmonic oscillator problem in quantum
mechanics. For a particle of mass m confined to a harmonic potential, the Hamil-
tonian is given by

H = p2

2m
+ 1

2
mω2x2 , (1.28)

where ω is the oscillator frequency. We introduce two new operators

a =
(mω

2h̄

)1/2
(

x + i

mω
p

)
, a† =

(mω

2h̄

)1/2
(

x − i

mω
p

)
. (1.29)

Since x and p are hermitian, a† is the adjoint of a, and vice versa. The operators x

and p = −ih̄d/dx do not commute: xp 
= px. We define the commutator of any
two operators A and B by

[A, B] = AB − BA. (1.30)

By letting the commutator [x , p] act on an arbitrary differentiable function f (x), it
is found that [x , p] = ih̄. It follows that [a, a†] = 1. In terms of the new operators,

H = h̄ω(N + 1/2), N = a†a. (1.31)
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The hermitian operator N is called the number operator. Let the eigenvalues of N

be denoted by n and the corresponding eigenkets by |n〉,

N |n〉 = n|n〉. (1.32)

The relation [AB, C] = A[B, C]+ [A, C]B, easily verified, implies that

[N, a] = −a, [N, a†] = a†.

With the help of these commutation relations we can easily show that

Na|n〉 = (n− 1)a|n〉, Na†|n〉 = (n+ 1)a†|n〉.

Hence, we can write

a|n〉 = c|n− 1〉, a†|n〉 = c′|n+ 1〉

where c and c′ are constants. The first relation implies that 〈n|a† = c∗〈n− 1|.
Therefore 〈n|a†a|n〉 = c∗c〈n− 1|n− 1〉. But 〈n|a†a|n〉 = n〈n|n〉; if we thus
require that the eigenkets be normalized (〈n|n〉 = 〈n− 1|n− 1〉 = 1), then c∗c =
n, and we may choose c = √n. Similar considerations yield c′ = √n+ 1. Thus,

a|n〉 = √n|n− 1〉, a†|n〉 = √n+ 1|n+ 1〉, H |n〉 = (n+ 1/2)h̄ω|n〉.
(1.33)

From the above equation we find that a|0〉 = 0.
Let |β〉 = a|n〉, then 〈β| = 〈n|a†, and 〈β|β〉 = 〈n|a†a|n〉 = n〈n|n〉 = n. But

〈β|β〉 ≥ 0; hence n ≥ 0. Starting with a ket |n〉, we can apply the operator a

repeatedly, each time lowering n by 1. If n is not an integer, we will end up with
kets |n〉 having negative values of n, which is not allowed since n ≥ 0. If n is an
integer, then upon repeatedly applying the operator a we end up with the ket |0〉;
further application of a gives a|0〉 = 0. Therefore n must be an integer, and the
eigenvalues of the Hamiltonian are (n+ 1/2)h̄ω, where n = 0, 1, 2, . . . ; the energy
is quantized in steps of h̄ω. Since a† increases n by 1, it increases the energy by one
quantum; in other words, it creates a quantum of energy and it acquires the name
“creation operator.” In contrast, a annihilates (destroys) one quantum of energy,
and it is called the annihilation, or destruction, operator. The ground state wave
function is obtained from the equation

a|0〉 = 0 ⇒
(mω

2h̄

)1/2
(

x + i

mω
p

)
|0〉 = 0,
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Figure 1.4 Eigenfunctions corresponding to the three lowest energy levels of a
one-dimensional harmonic oscillator.

which, upon replacing p by −ih̄d/dx, translates to(
x + h̄

mω

d

dx

)
φ0 = 0

=⇒ φ0(x) =
(mω

πh̄

)1/4
exp

(
−mω

2h̄
x2
)

. (1.34)

The first excited state |1〉 is given by |1〉 = a†|0〉; we find

φ1(x) =
(

b

2
√

π

)1/2

(2bx) exp(−b2x2/2) (1.35)

where b = (mω/h̄)1/2. We can continue in this fashion; in general,

φn(x) = AnHn(bx) exp(−b2x2/2). (1.36)

An is a normalization factor and Hn is the Hermite polynomial of order n,

Hn(ξ ) = (−1)n exp(ξ 2)
dn

dξn
exp(−ξ 2). (1.37)

The eigenfunctions corresponding to a few of the lowest energy levels are shown in
Figure 1.4. Note that for n even (odd) the eigenfunctions are even (odd) functions
of x.

In the traditional approach to the harmonic oscillator problem, one instead
employs a power series solution to the time-independent Schrödinger equation,
which is a second-differential equation. It is through the requirement that the wave
function vanish at infinity that a truncation of the series is brought about. This,
in turn, leads to the quantization of energy. One might ask where the bound-
ary conditions (the wave function vanishes at x = ±∞) were used in the above
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discussion. They were used indirectly when it was required that the stationary states
|n〉 be normalized to unity. This can only be true if the corresponding eigenfunctions
vanish at infinity.

Further reading

Griffiths, D.J. (2005). Introduction to Quantum Mechanics, 2nd edn. Upper Saddle River,
NJ: Pearson Education, Inc.

Sakurai, J.J. (1994). Modern Quantum Mechanics, rev. edn. Reading, MA: Addison-Wesley
Publishing Company, Inc.

Problems

1.1 Operators.
(a) Evaluate the commutators [x, p], [x2, p], and [p, V (x)].
(b) Show that (AB)† = B†A†.
(c) Show that T r(ABC) = T r(CAB), where T r is the trace.
(d) Show that by setting S = (h̄/2)σ , the Pauli spin matrices

σx =
[

0 1
1 0

]
, σy =

[
0 −i

i 0

]
, σz =

[
1 0
0 −1

]

provide a valid representation for the spin operator S.
(e) Find Sx |↑〉, Sx |↓〉, Sy |↑〉, and Sy |↓〉.

1.2 Delta-function representation. Show that
∫∞
−∞ eikxdk = 2πδ(x).

1.3 Another delta function representation. Show that

lim
a→∞

sin2(ax)
πax2 = δ(x).

1.4 Periodic boundary conditions. An electron is confined to a cube of side L.
Assume that the eigenfunctions obey periodic boundary conditions,

φ(x, y, z) = φ(x + L, y, z) = φ(x, y + L, z) = φ(x, y, z+ L).

Under these boundary conditions, opposite faces of the cube are identified;
for example, the faces x = 0 and x = L are the same. The ranges of values
of x, y, and z are 0 ≤ x < L, 0 ≤ y < L, 0 ≤ z < L. Find the normalized
eigenfunctions and show by explicit calculation that they form a complete
orthonormal set of states.
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1.5 Singlet and triplet states. Consider a two-electron system (for exam-
ple, the two electrons in a helium atom). The total spin S = S1 + S2,
where S1 and S2 are the spin operators of electrons 1 and 2. Con-
sider the singlet state 1√

2
[α(1)β(2)− β(1)α(2)] and the three triplet states

α(1)α(2), 1√
2
[α(1)β(2)+ β(1)α(2)], and β(1)β(2). Show that these are

eigenstates of S2 and Sz.

1.6 A particle bound by a delta-function potential. A particle of mass m, moving
in one dimension, is bound by the delta-function potential V (x) = −λδ(x)
where λ is a positive constant.
(a) Determine the energy of the bound state (for a bound state, in this case,

E < 0).
(b) The potential energy is suddenly changed from −λδ(x) to −bλδ(x),

where b is a dimensionless positive constant. What is the probability that
the particle remains bound?

1.7 Harmonic oscillator. For a one-dimensional harmonic oscillator of mass m

and frequency ω, in the ground state, show that 〈p2/2m〉 = 〈1
2mω2x2〉 =

h̄ω/4.

1.8 Coherent states. For a one-dimensional harmonic oscillator, show that:
(a) The operator a† does not have any eigenstates.
(b) The state |z〉 = e−z∗z/2eza† |0〉, for any complex number z, is a normalized

eigenstate of the annihilation operator a with eigenvalue z.

1.9 Time-independent perturbation. Suppose that for a given system the Hamil-
tonian is H = H0 + V , where H0 and V have no explicit time dependence.
Assume that the solutions of the eigenvalue equation H0|n〉 = En|n〉 are
known, and that the energy levels are nondegenerate. If V is small, in the
sense that the shift in the energy of the states brought about by the presence
of V is small compared to the energy difference between neighboring states,
i.e., |�En| � |En±1 − En|, one can show that

�En = 〈n|V |n〉 +
∑
m 
=n

|〈m|V |n〉|2
En − Em

+ · · · .

Consider a one-dimensional harmonic oscillator subjected to a perturbation
V = λx.
(a) Calculate the shift in the energy of the ground state to second order in V .
(b) Solve the problem exactly.
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1.10 Heisenberg picture of quantum mechanics. In the Schrödinger picture, the
usual picture of quantum mechanics, the state evolves in time, but the
operators representing observables are time-independent. Assuming that the
Hamiltonian does not depend explicitly on time, the state evolves in time
according to

|ψS(t)〉 = e−iH (t−t0)/h̄|ψS(t0)〉.
Setting t0 = 0, for simplicity, |ψS(t)〉 = e−iH t/h̄|ψS(0)〉. The expectation
value of an operator A varies with time according to

〈A〉(t) = 〈ψS(t)|A|ψS(t)〉 = 〈ψS(0)|eiHt/h̄Ae−iH t/h̄|ψS(0)〉.
The above suggests a second approach to quantum mechanics, the Heisenberg
picture, in which the state is frozen at what it was at t = 0, but the operator
A evolves in time. In this picture,

|ψH 〉 = |ψS(0)〉, AH (t) = eiHt/h̄Ae−iH t/h̄.

(a) Derive the Heisenberg equation of motion

d

dt
AH (t) = i

h̄
[H, AH (t)].

(b) Show that for the harmonic oscillator of frequency ω,

a(t) = a(0)e−iωt , a†(t) = a†(0)eiωt

where a(t) and a†(t) are the annihilation and creation operators in the
Heisenberg picture.

1.11 The interaction picture. Let the Hamiltonian for a system be given by

H = H0 + V (t)

where H0 is time-independent. The state in the Schrödinger picture is |ψS(t)〉.
In the interaction picture, the state is defined by

|ψI (t)〉 = eiH0t/h̄|ψS(t)〉.
If, in the Schrödinger picture, an observable is represented by the operator
A, the corresponding operator in the interaction picture is

AI (t) = eiH0t/h̄Ae−iH0t/h̄.

(a) Show that d
dt

AI (t) = i
h̄

[H0, AI (t)].
(b) Show that ih̄ ∂

∂t
|ψI (t)〉 = VI (t)|ψI (t)〉.
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(c) The evolution operator in the interaction picture, UI (t, t0), is defined by
|ψI (t)〉 = UI (t, t0)|ψI (t0)〉. What is the differential equation satisfied by
UI (t, t0)?

(d) Show that

UI (t, t0) = 1− (i/h̄)
∫ t

t0

dt1VI (t1)+ (−i/h̄)2
∫ t

t0

dt1

∫ t1

t0

dt2VI (t1)VI (t2)+ · · · .

(e) If at time t0 the system is in an eigenstate |i〉 of H0, then at time t the
state will be U (t, t0)|i〉, where U (t, t0) = e−iH (t−t0)/h̄ is the time evolution
operator in the Schrödinger picture. The probability of finding the system
in an eigenstate |f 〉 of H0 at time t is Pi→f = |〈f |U (t, t0)|i〉|2. Show
that Pi→f = |〈f |UI (t, t0)|i〉|2.

1.12 Fermi golden rule. The Hamiltonian for a system is given by H = H0 + V (t)
where

V (t) =
{

0 t < 0

V t ≥ 0.

V has no explicit dependence on time, but it may depend on position,
momentum, and spin. At t = 0, the system is in an eigenstate |i〉 of H0.
The probability of finding the system at time t in an eigenstate |f 〉 of H0 is
Pi→f (t) = |〈f |UI (t)|i〉|2, as shown in the previous problem. By expanding
UI (t) in VI , we can calculate Pi→f to various orders of the perturbation. Let
ωf i = (Ef − Ei)/h̄.
(a) By expanding UI (t) to first order in V , show that

Pi→f (t) = 4|〈f |V |i〉|2
h̄2

sin2(ωf it/2)
ω2

f i

.

(b) Now let t →∞ (steady state). The transition rate, wi→f , is defined as
wi→f = d

dt
lim
t→∞Pi→f (t). Prove the Fermi golden rule,

wi→f = 2π

h̄
|〈f |V |i〉|2δ(Ef − Ei).

1.13 Harmonic perturbation. The Hamiltonian for a system is H = H0 + V (t),
where V (t) is a harmonic perturbation turned on at t = 0,

V (t) = Aeiωt + A†e−iωt t ≥ 0.

A is a time-independent operator. For t < 0, the system is in state |i〉, where
H0|i〉 = Ei|i〉. Expanding UI (t) to first order in the perturbation:
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(a) Show that the probability of finding the system in state |f 〉, also an
eigenstate of H0 with energy Ef = Ei + h̄ωf i , is

Pi→f = 1
h̄2

∣∣∣∣1− ei(ωf i+ω)t

ωf i + ω
〈f |A|i〉 + 1− ei(ωf i−ω)t

ωf i − ω
〈f |A†|i〉

∣∣∣∣
2

.

(b) Show that, as t →∞, the transition rate is given by

wi→f = 2π

h̄

[
|〈f |A|i〉|2δ(Ef − Ei + h̄ω)+ |〈f |A†|i〉|2δ(Ef − Ei − h̄ω)

]
.



2
Single-particle states

Good order is the foundation of all good things.
–Edmund Burkes, Reflections on the

Revolution in France

2.1 Introduction

Let us consider a system of N identical, interacting particles whose Hamiltonian is

H (1, 2, . . . , N ) =
N∑

i=1

h(i)+ 1
2

N∑
i 
=j

v(i, j ). (2.1)

h(i) is the sum of the kinetic energy and potential energy, due to some external
field, of particle i,

h(i) = − h̄2

2m
∇2 + v(i). (2.2)

For example, if the interacting particles are the electrons in an atom, then v(i) is the
potential energy of electron i due to its interaction with the nucleus. For electrons
in a crystal, v(i) is the interaction of electron i with the ionic lattice. The last term in
Eq. (2.1) represents the interaction between the particles, taken as a sum over pairs
(i, j ). The summation is carried over both indices i and j , but terms with i = j are
excluded. The factor 1/2 ensures that each pair is counted only once. In general,
H may depend on the spatial as well as the spin coordinates of the particles.

Recall, from the fourth postulate of quantum mechanics, that the wave function
of a particle can be expanded in terms of a complete set of states |φν〉. Similarly, the
N-particle wave function can be expanded in terms of a complete set of N-particle
states. These are constructed as properly symmetrized products of single-particle
states (SPSs), as we will show in Chapter 3. Although any complete set of SPSs is

18
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Figure 2.1 (a) The free electron model: the interactions of the electrons with each
other and with the ions are ignored; each electron moves freely within the crystal
and its wave function obeys periodic boundary conditions. (b) The jellium model:
the electrons interact with each other and with a uniform positive background.

adequate for this purpose, a more convenient set is generated by the single-particle
Hamiltonian h through the eigenvalue equation

h|φν〉 = εν |φν〉. (2.3)

Each SPS |φν〉 is characterized by a set of quantum numbers that are collectively
denoted by ν. In the following sections we describe convenient SPSs for free
electrons, electrons in a periodic potential, and electrons in a two-dimensional
system that is in the presence of a magnetic field.

2.2 Electron gas

Consider a system of N electrons confined to a cube of side L and volume V = L3.
In the description of a metal within the free electron model, the interactions of
the electrons with each other, and with the ions, are ignored. The Hamiltonian
is then simply the sum of the kinetic energies of the electrons. In the so-called
jellium model, the lattice ions are replaced by a uniform positive background,
i.e., the positive charges on the ions are smeared so as to fill the crystal in such
a way that the charge density is constant, and the electron–electron, electron–
background, and background–background interactions are taken into account. The
two models are illustrated in Figure 2.1. For either model, the convenient SPSs
are those of a free electron confined to a cube of side L, with periodic boundary
conditions,

φ(x, y, z) = φ(x + L, y, z) = φ(x, y + L, z) = φ(x, y, z+ L). (2.4)

The SPSs are found by solving the Schrödinger equation

− h̄2

2m
∇2φ = εφ , (2.5)
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subject to the periodic boundary conditions given above. We obtain

φkσ (r) = 1√
V

eik.r|σ 〉, εkσ = h̄2k2/2m. (2.6)

The periodic boundary conditions determine the allowed values of k,

kx , ky , kz = 0, ±2π/L, ±4π/L, · · · = 2nπ/L, n ∈ Z. (2.7)

The spin ket |σ 〉 is either |↑〉 or |↓〉. In Dirac notation, the SPSs are denoted by
|kσ 〉. An SPS is thus described by four quantum numbers: kx, ky, kz, and σ . The
SPSs form an orthonormal set,

〈k′σ ′|kσ 〉 = 1
V

∫
ei(k−k′).rd3r〈σ ′|σ 〉 = δkk′δσσ ′ , (2.8)

and the set is complete,∑
kσ

φkσ (r)φ∗kσ (r′) = 1
V

V

(2π )3

∫
d3keik.(r−r′)

∑
σ

|σ 〉〈σ | = δ(r− r′). (2.9)

In the above equation, we have made the replacement∑
k

F (k) → V

(2π )3

∫
d3k F (k).

This is justified as follows. Consider a volume d3k in k-space, which is large
compared to (2π )3/V , but sufficiently small on the scale of variation of F (k),
i.e., F (k) has almost the same value within the cube d3k centered on k. Since the
volume in k-space occupied by one k-point, as deduced from Eq. (2.7), is (2π )3/V ,
the volume d3k contains V d3k/(2π )3 k-points. We have also used

∑
σ |σ 〉〈σ | = 1

and the representation of the Dirac-delta function given in Eq. (1.15).
In the ground state at zero temperature, electrons fill the states of lowest

energy. Within the free electron model, where εkσ = h̄2k2/2m, electrons fill states
inside a sphere in k-space, known as the Fermi sphere, which is depicted in
Figure 2.2. The volume of the sphere is 4πk3

F /3, where kF , the Fermi wave vector
(or wave number), is the radius of the Fermi sphere. Since each k-point occupies
a volume (2π )3/V in k-space, the number of k-points within the Fermi sphere is
4πk3

F /3/(2π )3/V . Each k-point can accommodate two electrons, one with spin up
and one with spin down. It follows that

N = 2(number of k-points within the Fermi sphere) = V k3
F /3π2.

In terms of the electron number density n = N/V , the Fermi wave vector is thus
given by

kF = (3π2n)1/3. (2.10)
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Figure 2.2 Fermi sphere of radius kF . At zero temperature the states within the
sphere are all occupied, while the states outside the sphere are all empty.

The mean energy of an electron is ε̄ = E/N , where E is the total energy,

E =
∑
kσ

h̄2k2/2m = 2
∑

k

h̄2k2/2m.

The factor 2 arises from summing over σ (↑or↓). The sum over k runs over all
vectors within the Fermi sphere; replacing the sum by an integral,

E = 2
V

(2π )3

∫
d3k h̄2k2/2m = Vh̄2

2π2m

∫ kF

0
k4dk = Vh̄2

10π 2m
k5
F =

V

5π2 k3
F EF

where EF = h̄2k2
F/2m is the Fermi energy. Since k3

F = 3π2N/V (see Eq. [2.10]),

ε̄ = E/N = 3EF /5. (2.11)

2.3 Bloch states

In the free electron model, lattice ions are ignored. In the jellium model, a uniform
positive background replaces the ions. These models cannot explain why some
crystals are metals while others are insulators. In reality, the ions vibrate about
their equilibrium positions, which form a periodic structure. If the ions were fixed
at their equilibrium positions, they would produce a fixed potential in which an
electron would move, and the resulting stationary states of the electron would be
the Bloch states. Ionic vibrations result in a time-dependent potential that causes
scattering among the stationary states.

A three-dimensional lattice, generated by three noncoplanar vectors a1, a2, a3,
and one point in space, is the set of all points that can be obtained from this point
by all translations by vectors Rn1n2n3 = n1a1 + n2a2 + n3a3, where n1, n2, n3 are
integers (n1, n2, n3 ∈ Z). That is, if we start from any lattice point and undergo a
displacement Rn1n2n3 , for any integers n1, n2, and n3, we will encounter another
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Figure 2.3 Graphene, a two-dimensional crystal. The primitive lattice vectors are
a1 and a2, and the basis consists of two carbon atoms, A and B. The parallelogram
formed by a1 and a2 is the unit cell.

lattice point. The vectors a1, a2, and a3 are called the primitive lattice vectors, and
the parallelepiped they form is the primitive, or unit, cell. A crystal is obtained
if one or more atoms, called the basis, are placed in each unit cell. We may thus
write

Crystal = Lattice + Basis.

For example, the two-dimensional crystal graphene (Figure 2.3) has a honeycomb
structure, with carbon atoms occupying the hexagonal corners. The primitive lattice
vectors are a1 and a2, and the basis consists of two carbon atoms, A and B. The
unit cell is the parallelogram formed by a1 and a2.

From the definition of a lattice, we infer that when the ions are at their equilibrium
positions, the environment surrounding any point P in the crystal is identical to
that surrounding any other point Q which is separated from P by a lattice vector
Rn1n2n3 (see Figure 2.4). It follows that, if the ions sit at their equilibrium sites,
the potential energy V (r) of an electron (due to its interaction with the ions) has
the same value at points P and Q. V (r) is thus a periodic function of position, its
periodicity being that of the lattice.

In a crystal, Bloch states form a convenient set of single-particle states (SPSs).
These are solutions to the Schrödinger equation

hφν = [−(h̄2/2m)∇2 + V (r)]φν = εν φν. (2.12)

Here, V (r) is a periodic potential with periodicity R,

V (r+ R) = V (r) (2.13)

where R = n1a1 + n2a2 + n3a3 , n1, n2, n3 ∈ Z.
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Figure 2.4 Two-dimensional crystal with primitive lattice vectors a1 and a2. The
points P and Q are separated by a lattice vector equal to 2a1 + a2. The potential
felt by an electron at point P, due to its interaction with the ions, is identical to that
felt by the electron at point Q.

An elegant way to solve the Schrödinger equation is by introducing the transla-
tion operator TR, defined by its action on an arbitrary function f (r),

TR f (r) = f (r+ R). (2.14)

Note that

TRTR′f (r) = TRf (r+ R′) = f (r+ R+ R′) = TR+R′f (r) ⇒ TRTR′ = TR+R′ .

Now consider

TRh(r)f (r) = TR [h(r)f (r)] = h(r+ R)f (r+ R) = h(r)TRf (r). (2.15)

The periodicity of the Hamiltonian, namely that h(r+ R) = h(r), results from (i)
∇2

r+R = ∇2
r and (ii) V (r+ R) = V (r). Since f (r) is arbitrary, Eq. (2.15) implies

that h and TR commute. Furthermore,

TRTR′ f (r) = TRf (r+ R′) = f (r+ R′ + R) = TR′ f (r+ R) = TR′ TRf (r).

Hence, TR and TR′ commute. We conclude that {h, TR, TR′, . . . } is a set of commut-
ing operators. The eigenstates of h can thus be chosen so as to be simultaneously
eigenstates of the translation operator TR for every lattice vector R. Let the eigen-
values of TR be λ(R): TRφ = λ(R)φ. Since

TR′ TRφ = TR′ λ(R)φ = λ(R)TR′φ = λ(R)λ(R′)φ,

and

TR′ TRφ = TR+R′φ = λ(R+ R′)φ,

it follows that λ(R) satisfies the equation

λ(R)λ(R′) = λ(R+ R′).



24 Single-particle states

This holds if λ(R) = eik.R for some vector k. For different values of k, we get dif-
ferent values of the eigenvalue λ(R), and correspondingly different eigenfunctions
φ(r). Thus, TRφk(r) = eik.Rφk(r). From the definition of the translation operator,
it follows that, for any lattice vector R,

φk(r+ R) = eik.R φk(r). (2.16)

We have not yet indicated what values k may assume. These are determined by the
periodic boundary conditions. If there are N1 primitive cells along the direction of
lattice vector a1, N2 primitive cells along a2, and N3 primitive cells along a3, the
periodic boundary conditions take the form:

φk(r+Niai) = φk(r), i = 1, 2, 3. (2.17)

These boundary conditions are adopted under the assumption that the bulk proper-
ties of a crystal do not depend on the choice of boundary conditions on its surface.
Periodic boundary conditions are more convenient for mathematical analysis than
fixed boundary conditions, for which the wave function vanishes on the surface of
the crystal. From Eq. (2.16), we can write

φk(r+Niai) = eiNik.ai φk(r), i = 1, 2, 3.

Combined with the periodic boundary conditions, the above equation gives

eiNik.ai = 1, i = 1, 2, 3. (2.18)

In order to solve for k, we introduce the reciprocal lattice vectors b1, b2, and b3

defined by

b1 = 2πa2 × a3/�, b2 = 2πa3 × a1/�, b3 = 2πa1 × a2/�. (2.19)

Here, � = |a1.a2 × a3| is the volume of the primitive cell. The vectors b1, b2, and
b3 have the dimension of 1/Length. It is readily checked that

bi .aj = 2πδij . (2.20)

If we write k = β1b1 + β2b2 + β3b3, then k.ai = 2πβi , and Eq. (2.18) becomes
exp(2πiβiNi) = 1 ⇒ βi = mi/Ni , where mi is an integer. Therefore

k = m1

N1
b1 + m2

N2
b2 + m3

N3
b3 , m1, m2, m3 ∈ Z. (2.21)

Equation (2.16), with k given in Eq. (2.21), is the first form of Bloch’s theorem.
An alternative and useful form of Bloch’s theorem is obtained as follows. Let

uk(r) = e−ik.r φk(r). Using the first form of Bloch’s theorem, we find

uk(r) = e−ik.r e−ik.Rφk(r+ R) = e−ik.(r+R)φk(r+ R) = uk(r+ R).
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Hence, uk(r) is a periodic function with the same periodicity as the lattice. The
stationary states are given by

φk(r) = eik.ruk(r). (2.22)

The stationary states are thus plane waves modulated by a function that has the peri-
odicity of the lattice; this is the second form of Bloch’s theorem. The Schrödinger
equation is now written as

[−(h̄2/2m)∇2 + V (r)]eik.ruk(r) = εkeik.ruk(r).

Noting that

∇ [eik.r uk(r)] = uk(r)∇eik.r + eik.r ∇uk(r)

= uk(r)(ik)eik.r + eik.r ∇uk(r) = eik.r (∇ + ik)uk(r),

we obtain [
− h̄2

2m
(∇ + ik)2 + V (r)

]
uk(r) = εkuk(r). (2.23)

This is viewed as an eigenvalue equation for uk(r), to be solved within a primitive
cell, subject to the periodic boundary conditions

uk(r) = uk(r+ ai), i = 1, 2, 3.

For each k there are infinitely many eigenvalues ε1k, ε2k, . . . with corresponding
eigenfunctions u1k(r), u2k(r), . . .. The periodic functions should thus be written
as unk(r), where n = 1, 2, . . . is called the band index. Because the separation
between nearby k-points is extremely small in comparison with the magnitude of
the reciprocal lattice vectors, the eigenvalues εnk may be considered as continuous
functions of k. For example, in a cubic crystal, where a1, a2, and a3 have the
same magnitude a and are at right angles with each other, the reciprocal lattice
vectors b1, b2, and b3 are also at right angles with each other, having the magnitude
b = 2π/a. In contrast, the separation between nearby k-points is 2π/L; for a crystal
with 1024 atoms, a/L is 10−8. Thus, we see that the separation between adjacent
k-points is much smaller than the size of the reciprocal lattice vector.

According to Eq. (2.21), the set of allowed values for k is infinite. However,
there is redundancy in the resulting set of energies and eigenfunctions, and the
values of k can be restricted to a finite set. We prove this assertion as follows. The
reciprocal lattice vectors b1, b2, and b3, treated as primitive vectors, generate a
lattice in reciprocal space where a general lattice vector is

G = m1b1 +m2b2 +m3b3 , m1, m2, m3 ∈ Z.
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We remark that for any reciprocal lattice vector G and any real lattice vector R, the
relation eiG.R = 1 is satisfied. Equation (2.23) implies that[

− h̄2

2m
(∇ + ik+ iG)2 + V (r)

]
uk+G(r) = εk+G uk+G(r). (2.24)

Let fkG = eiG.ruk+G(r). Following some algebraic manipulations, Eq. (2.24)
reduces to [

− h̄2

2m
(∇ + ik)2 + V (r)

]
fkG = εk+G fkG.

Since eiG.R = 1, the boundary condition uk+G(r+ R) = uk+G(r) implies that
fkG(r+ R) = fkG(r). Noting that fkG satisfies the same eigenvalue equation as
uk(r), and that it obeys the same boundary conditions, the theorem regarding
existence and uniqueness of the solutions of differential equations asserts that
fkG(r) = uk(r) and εk+G = εk. Moreover,

φk+G(r) = ei(k+G).ruk+G(r) = eik.rfkG(r) = eik.ruk(r) = φk(r).

Inserting the band index, we can write

φnk+G(r) = φnk(r), εnk+G = εnk. (2.25)

This is the redundancy we mentioned earlier. The above relations allow us to restrict
the values of k to one primitive cell in reciprocal space, since any k-point outside
the primitive cell can be reached from a k-point inside the primitive cell by adding
some reciprocal lattice vector G. It is conventional to choose a Wigner–Seitz cell,
known as the first Brillouin zone (FBZ), as the primitive cell in reciprocal space. It
is constructed by drawing all reciprocal lattice vectors that emanate from a chosen
point in the reciprocal lattice, and then drawing the perpendicular bisector planes
of these vectors. The volume bounded by these planes, and centered on the chosen
point, is the FBZ. This procedure is illustrated in Figure 2.5 for a two-dimensional
square lattice.

Taking into account the spin state of the electron, the single-particle states,
expressed as Bloch functions, are given by

φnkσ (r) = eik.r unk(r)|σ 〉. (2.26)

Five quantum numbers characterize the single-particle states: the band index n =
1, 2, . . . , the three components kx, ky, kz, of the wave vector k ∈ FBZ, and the spin
index σ =↑ or ↓.

From the above discussion, we see how bands arise once the static potential
produced by the ions at their equilibrium positions is taken into account. It takes
2N1N2N3 electrons, i.e., twice the number of primitive cells in the crystal, to fill
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Figure 2.5 A square lattice, in real space, of side a (left figure), and the reciprocal
lattice, also a square lattice, of side 2π/a (right figure). The shaded area is the first
Brillouin zone.

one band, as deduced from the following argument. From Eq. (2.21), neighboring
k-points along the bi direction (i = 1, 2, 3) are separated by bi/Ni . The volume
in reciprocal space occupied by one k-point is thus b1.b2 × b3/N1N2N3, i.e., the
volume of a primitive cell in reciprocal space divided by N1N2N3. Hence, the
FBZ, whose volume is equal to that of a primitive cell in reciprocal space, contains
N1N2N3 k-points. Since each state with quantum numbers n and k can accommo-
date two electrons, with opposite spin projections, each band can accommodate up
to 2N1N2N3 electrons. In the ground state, at zero temperature, electrons fill the
lowest energy states. If we end up with a situation where some bands are completely
filled while the rest are empty, the crystal will be an insulator. If we do not, the
crystal will be a metal.

Finally, we note that, in a metal with a partially filled band, it is generally the
case that to a good approximation, we may set uk(r) = 1/

√
V , and take εk =

h̄2k2/2m∗, where m∗ is an effective electron mass. This is known as the effective
mass approximation. In many metals, m∗ ≈ m, the free electron mass. A similar
situation occurs in semiconductors with partially occupied bands, due to either
thermal excitations or doping. In this case, however, m∗ may be very different from
m; in GaAs, for example, the effective electron mass is m∗ = 0.067m.

2.4 Example: one-dimensional lattice

Consider a chain of N identical atoms. The equilibrium separation between the
atoms is a. If a is large, the chain will be a collection of isolated atoms. Each atom
has its own orbitals: 1s, 2s, 2p, . . . with the lowest energy orbitals being occupied by
electrons. As the atoms are brought closer together so that atomic wave functions
begin to overlap, electrons tunnel from one atom to another, becoming delocalized,
and the overlapping orbitals form bands. For example, whereas the 3s orbitals have
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Figure 2.6 A line of identical atoms where the separation between adjacent atoms
is a. The periodic potential seen by an electron is V (x), and it is produced by the
ions sitting at their equilibrium sites.

a well-defined energy in isolated atoms, they broaden into a band when atoms
are brought closer together. The one-electron Hamiltonian is H = p2/2m+ V (x),
where V (x) = V (x + a) is the periodic potential seen by the electron. This is
sketched in Figure 2.6.

Now consider the band formed by the broadening of one type of atomic orbital,
e.g., the 3s orbitals. Let |φm〉 be the atomic orbital centered on atom number m,
located at x = ma, m = 1, . . . , N . We assume that 〈φm|H |φm〉 = ε, and that for
n 
= m, 〈φn|H |φm〉 = −tδn,m±1, i.e., we assume that the overlap of atomic wave
functions is appreciable only between nearest-neighbor atoms. We take t to be real.
Our goal is to find the energy dispersion Ek for this band.

We want to solve the eigenvalue equation H |�k〉 = Ek|�k〉. We take the N

atomic orbitals centered on the N atoms as the basis states in which |�k〉 is
expanded,

|�k〉 =
∑
m

cmk|φm〉 ⇒ �k(x) =
N∑

m=1

cmkφ(x −ma).

The coefficients cmk are not arbitrary; they are chosen so that �k(x) is a Bloch
function, being a stationary state of an electron in a periodic potential. We thus
require that �k(x + a) = eika�k(x); this, in turn, implies that∑

m

cmkφ(x + a −ma) = eika
∑
m

cmkφ(x −ma). (2.27)

The LHS of the above equation is

LHS =
∑
m

cmkφ[x − (m− 1)a] =
∑

n

cn+1,kφ(x − na) =
∑
m

cm+1,kφ(x −ma).

(2.28)



2.5 Wannier states 29

Note that, strictly speaking, in the summation over n, n ranges from 0 to N − 1,
and the series is∑

n

cn+1,kφ(x − na) = c1kφ(x)+ c2kφ(x − a)+ · · · + cNkφ[x − (N − 1)a].

Periodic boundary conditions, however, mean that φ(x) = φ(x −Na). Identifying
cN+1,k with c1k, the index n in the summation over n may be taken to range from 1
to N . From Eqs (2.27) and (2.28), we can write

N∑
m=1

cm+1,k φ(x −ma) = eika

N∑
m=1

cmk φ(x −ma) ⇒ cm+1,k = eika cmk.

Therefore, cmk = eimka . Summarizing, the Bloch state is given by

|�k〉 = 1√
N

∑
m

eimka |φm〉.

The factor 1√
N

is a normalization factor. The eigenvalue equation now reads

∑
m

eimkaH |φm〉 =
∑
m

eimkaEk |φm〉.

Multiplying by 〈φn| on both sides, we obtain∑
m

eimka〈φn|H |φm〉 =
∑
m

eimkaEk 〈φn|φm〉. (2.29)

On the LHS, the matrix element vanishes unless m = n, n− 1, or n+ 1,

LHS = ε einka − t ei(n−1)ka − t ei(n+1)ka.

On the RHS of Eq. (2.29), 〈φn|φm〉 is the overlap of the atomic orbitals centered
on sites n and m. Although it is nonzero, we will neglect it if n 
= m and take
〈φn|φm〉 = δnm. The RHS thus reduces to Eke

inka. Therefore,

Ek = ε − t e−ika − t eika = ε − 2t cos(ka). (2.30)

2.5 Wannier states

For electrons subjected to the periodic potential produced by a lattice of ions, we
have considered in Section 2.3 the basis set of Bloch states |nkσ 〉 characterized by
a band index n, wave vector k ∈ FBZ, and spin projection σ . These are modulated
plane waves that extend throughout the crystal. Another basis set of states, consist-
ing of localized orbitals centered on lattice sites, may be constructed. For a given
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band index n, lattice site Ri , and spin projection σ , consider the states

|niσ 〉 = 1√
N

∑
k∈FBZ

e−ik.Ri |nkσ 〉. (2.31)

These are called Wannier states; they have the following properties:

� The Wannier function φniσ (r) = 〈r|niσ 〉 is centered on Ri ; hence it is written as
φnσ (r− Ri).

� The Wannier states form a complete, orthonormal set.
� The Wannier function φnσ (r− Ri) is localized on the lattice site i.

The first property follows directly from the second form of Bloch’s theorem. From
the definition of the Wannier state, we can write

φniσ (r) = 1√
N

∑
k∈FBZ

e−ik.Ri eik.runk(r)|σ 〉.

Since unk has the periodicity of the lattice, we can rewrite the above as

φniσ (r) = 1√
N

∑
k∈FBZ

eik.(r−Ri )unk(r− Ri)|σ 〉.

This shows that the Wannier function is a function of r− Ri , and we can write it
as φnσ (r− Ri); it is centered on Ri .

Since the Bloch states are orthonormal: 〈n′k′σ ′|nkσ 〉 = δnn′δkk′δσσ ′ ,

〈n′jσ ′|niσ 〉 = 1
N

∑
kk′

eik′.Rj e−ik.Ri 〈n′k′σ ′|nkσ 〉

= δnn′δσσ ′
1
N

∑
k

eik.(Rj−Ri ) = δnn′δσσ ′δij . (2.32)

In the last step, we used the results of Problem 2.1. Wannier states are thus orthonor-
mal. Furthermore, since the number of lattice sites is N , which is the same as the
number of k-points in the FBZ, the set of states |niσ 〉 is complete: it forms a basis
for the expansion of any state.

To see that φnσ (r− Ri) is localized on the lattice site Ri , we consider a one-
dimensional lattice and assume that unk(x) = 1/

√
L, so that the Bloch states are

plane waves. For any lattice vector R of magnitude R = ma, where m is an integer,

φnσ (x −ma) = 1√
NL

∑
k

e−imkaeikx |σ 〉 = 1√
NL

∑
k

eik(x−ma)|σ 〉.
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Figure 2.7 Wannier function centered on site m in a one-dimensional crystal.

Replacing the sum over k by an integral, the spatial part becomes

φn(x −ma) = 1√
NL

L

2π

∫ π/a

−π/a

dk eik(x−ma) =
√

L

π
√

N

sin[π (x −ma)/a]
x −ma

.

A plot of φn(x −ma) shows that most of the weight of the function is at x = ma

(see Figure 2.7). The localization of the Wannier function is not as strong as that
of an atomic orbital. The damped oscillations are necessary for Wannier functions
centered on different sites to be orthogonal.

2.6 Two-dimensional electron gas in a magnetic field

A two-dimensional electron gas (2-DEG) is produced at semiconductor interfaces
and in metal–oxide–semiconductor (MOS) structures. Electrons move freely in the
x-y plane but are localized in the z-direction. Absent a magnetic field, the most
convenient single-particle states are plane waves |kσ 〉, which are characterized by
three quantum numbers: kx, ky , and σ . In the presence of a magnetic field, however,
these states are not very convenient.

Consider an electron gas, confined to a rectangular sheet of length Lx and width
Ly , i.e., in the presence of a static, uniform magnetic field B in the z-direction.
What is the Hamiltonian for a charged particle in a magnetic field B? To answer
this question we go back to classical mechanics. The force on a particle of charge q

and velocity v is, in cgs units, F = (q/c)v× B; in SI units, q/c → q. Defining the
vector potential A by B = ∇ × A, it is not difficult to check that the Lagrangian
L, given by

L = 1
2
mv2 + q

c
v.A, (2.33)

does indeed produce the correct equation for the force. The proof consists in using
the Euler–Lagrange equation of motion

d

dt

∂L

∂ẋ
= ∂L

∂x
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with similar equations for y and z, along with the following two equations:

v× B = v× (∇ × A) = ∇(v.A)− (v.∇)A
dA
dt
= ∂A

∂t
+ ∂A

∂x

dx

dt
+ ∂A

∂y

dy

dt
+ ∂A

∂z

dz

dt
= (v.∇)A.

The first equation is checked easily. In the second, ∂A/∂t = 0 because A does not
depend explicitly on time, since B is a static field.

From the Lagrangian, we construct the canonical momentum,

px = ∂L/∂ẋ = mẋ + (q/c)Ax ,

along with similar equations for py and pz. It follows that mv = p− (q/c)A, and
the kinetic energy is given by

T = 1
2
mv2 = 1

2m

(
p− q

c
A
)2

.

Thus, for a charged particle in a magnetic field, the kinetic energy portion of the
Hamiltonian is obtained by p→p− qA/c.

For a given B, there are infinitely many choices for A, because for any A, the
vector potential A′ = A+∇f , for an arbitrary function f , is an equally valid
choice (since ∇ ×∇f = 0). Making a particular choice for A is called “fixing
the gauge.” For a uniform magnetic field B in the z-direction, we may choose
A = (−By, 0, 0); this is the Landau gauge.

The Hamiltonian for the 2-DEG is H =∑i h(i)+ 1
2

∑
i 
=j v(i, j ). The second

term describes the electron–electron interaction. The single-particle Hamiltonian
is given by

h = 1
2m

(
p+ e

c
A
)2
+ (gμB/h̄)S.B, (2.34)

where−e is the charge of the electron, g is the gyromagnetic factor for the electron
spin (g � 2), μB = eh̄/2mc is the Bohr magneton, and S is the electron spin
operator. The second term in h may be written as−μ.B, and it is the potential energy
of a magnetic moment μ in a magnetic field B; for an electron, μ = −(gμB/h̄)S.
In actual systems realized at interfaces, m should be replaced by m∗, the effective
mass of the electron.

A convenient set of single-particle states is formed by the eigenstates of h.
Ignoring the spin part for the time being, we have, in the Landau gauge,

h = 1
2m

(
px − eB

c
y

)2

+ 1
2m

p2
y. (2.35)
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Inserting φ(x, y) = f (y)eikx/
√

Lx into the Schrödinger equation hφ = εφ, we
obtain [

1
2m

(
h̄k − eB

c
y

)2

+ 1
2m

p2
y

]
f (y) = εf (y).

This may be rewritten, in terms of ω = eB/mc, the cyclotron frequency, and with
y0 = h̄ck/eB, as [

1
2m

p2
y +

1
2
mω2(y − y0)2

]
f (y) = εf (y). (2.36)

This is the eigenvalue equation for a harmonic oscillator of frequency ω, cen-
tered at y0. The eigenvalues are εn = (n+ 1/2)h̄ω, n = 0, , 1, 2, . . . , and the
corresponding eigenfunctions are AnHn(a(y − y0))exp(−a2(y − y0)2/2), where
Hn is the Hermite polynomial of degree n, An is a normalization constant, and
a = (mω/h̄)1/2. The eigenfunctions of h are given by

φnk(x, y) = 1√
Lx

Ane
ikxHn(a(y − y0))e−a2(y−y0)2/2. (2.37)

The periodic boundary conditions determine the allowed values of k: k =
0, ±2π/Lx , ±4π/Lx , . . .. The energy levels εn, known as the Landau levels,
do not depend on k; hence, they are degenerate. The orbital degeneracy of a Lan-
dau level, NL, is the number of allowed values of k. This is determined by the
requirement that y0, the harmonic oscillator center, lies between 0 and Ly , which
means that k lies between 0 and eBLy/h̄c. With a separation of 2π/Lx between
consecutive values of k, the number of allowed values of k is (eBLy/h̄c)/(2π/Lx);
hence, NL = eBA/hc, where A = LxLy is the sample area, and h is Planck’s con-
stant. An equivalent expression is NL = �/�0, where � = BA is the magnetic
flux through the sample, and �0 = hc/e is the flux quantum.

Taking into account the spin part of the single-particle Hamiltonian, the single-
particle states are φnkσ = φnk|σ 〉, where φnk(x, y) is given in Eq. (2.37), and the cor-
responding energies are εnkσ = (n+ 1/2)h̄ω + gμBBσ , where σ = −1/2, +1/2.
Here, single-particle states are described by three quantum numbers: n, k, and σ .

Further reading

Ashcroft, N.W. and Mermin, N.D. (1976). Solid State Physics. Philadelphia: Saunders
College.

Kittel, C. (2005). Introduction to Solid State Physics, 8th edn. New York: Wiley.
Omar, M.A. (1993) Elementary Solid State Physics: Principles and Applications, revised

printing. Boston: Addison-Wesley.
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Problems

2.1 Important sums.
(a) ∀k ∈ FBZ, show that

∑
n

eik.Rn = Nδk ,0 , where N is the number of prim-

itive cells and the sum runs over all lattice sites.
(b) For every lattice vector R, show that

∑
k∈FBZ

eik.R = NδR ,0.

2.2 Free electron model at zero temperature. Consider a system of N free elec-
trons confined to a cube of volume V, at T = 0 (ground state). Define the
dimensionless parameter rs through the relation (4π/3)(rsa0)3 = V/N , where
a0 is the Bohr radius.
(a) Express the mean energy per electron in terms of rs .
(b) Show that dσ (εF ), the density of states per unit volume, per spin orientation,

at the Fermi energy, is given by mkF /2π2h̄2.

2.3 Free electron model in lower dimensions. Consider the free electron model in
one and two dimensions at T = 0.
(a) Show that the Fermi wave vector is given by

kF =
{√

2πn 2D

πn/2 1D

where n is the electron number density (in 2D, n is the number of electrons
per unit area, while in 1D, it is the number of electrons per unit length).

(b) Show that the mean energy per electron is given by ε̄ = εF d/(d + 2),
where d is the dimension of space and εF is the Fermi energy.

2.4 Graphene bands. Graphene (see Figure 2.3) has two atoms per unit cell,
denoted by A and B. The x- and y-axes are chosen such that a1 =
a(
√

3/2,−1/2), a2 = a(0, 1), where a = 0.246 nm is the lattice constant.
An isolated carbon atom has the electronic configuration 1s2 2s2 2p2. To form
graphene, one electron is excited from 2s to 2p, and the new configuration
is 1s2 2s1 2p1

x 2p1
y 2p1

z . The 2s, 2px , and 2py orbitals get hybridized (mixed)
and form three sp2 orbitals that are oriented in the x–y plane at 120◦ with
each other. The sp2 orbitals on nearby atoms form strong bonds in the plane,
giving rise to a honeycomb structure, and they broaden into the σ -bands that
lie very low in energy. The pz orbital on each atom is perpendicular to the
graphene plane and is occupied by one electron. The pz orbitals broaden into
two π -bands (there are two atoms, hence two pz orbitals, per unit cell).

Let us take atom A to sit at the origin of coordinates. The pz orbital on this
atom is φ(r), and that on any atom of type A, that can be reached from A by a
lattice vector Rn, is φ(r− Rn). The pz orbital on B is φ(r− δ), where δ is the
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vector from A to B, and that on any atom of type B, separated from B by Rn,
is φ(r− δ − Rn). We have∫

φ∗(r− Rn)Hφ(r− Rn)d3r =
∫

φ∗(r− δ − Rn)Hφ(r− δ − Rn)d3r = ε.

We may shift the zero of energy and set ε = 0. The equality of the matrix
elements in the above equation is due to the symmetry of graphene under
reflection in a plane that is a perpendicular bisector of the bond connecting
atoms A and B. For simplicity, we make two assumptions:
� Only nearest-neighbor atoms interact; the matrix element of the Hamiltonian

between orbitals on neighboring atoms is −t (t � 3eV ):∫
φ∗(r− δ)Hφ(r)d3r = −t .

� The ovelap between pz orbitals on different sites is ignored, i.e., we assume
that

∫
φ∗(r− δ)φ(r)d3r = 0.

From the pz orbitals on atoms of type A and B, the Bloch functions

ψA
k (r) = 1√

N

∑
n

eik.Rnφ(r− Rn), ψB
k (r) = 1√

N

∑
n

eik.Rnφ(r− δ − Rn)

are constructed. To solve the Schrödinger equation H�k(r) = Ek�k(r), we
try a solution of the form �k(r) = aψA

k (r)+ bψB
k (r).

(a) Find the primitive reciprocal lattice vectors b1 and b2 and draw the first
Brillouin zone.

(b) Show that Ek = ±t |gk|, where

gk = 1+exp
[
i
(
−
√

3kxa/2+kya/2
)]
+exp

[
−i
(√

3kxa/2+ kya/2
)]

.

(c) Reduce Ek to the form:

Ek = ±t
[
3+ 4cos

(√
3kxa/2

)
cos

(
kya/2

)+ 2cos
(
kya
)]1/2

.

(d) In the vicinity of the points K(2π/
√

3a, 2π/3a) and K′(0, 4π/
√

3a) in
the first Brillouin zone, show that Ek = ±h̄vF k where vF =

√
3ta/2h̄ is

the Fermi velocity, k = |k− (2π/
√

3a, 2π/3a)| (near point K), or k =
|k− (0, 4π/

√
3a)| (near point K′). The energy dispersion is thus linear in

the vicinity of K and K′.
(e) Assuming linear dispersion, show that the density of states per unit area is

d(E) = 8|E|/(3πa2t2).

2.5 More on graphene. Assume that the pz orbital on each site in graphene is
described by the wave function φ(r) = Ar cos θ exp(−Zr/2a0), where A is a
normalization constant, a0 is the Bohr radius, θ is the angle r makes with the
c-axis (the axis perpendicular to the graphene plane), and Z is the effective
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charge on the nucleus (the nuclear charge is screened by the two core electrons
in the 1s orbital, and to a lesser extent by the valence electrons; Z ≈ 3). Show
that ∫

φ∗(r)e−iq.rφ(r)d3r = [1+ (qa0/Z)2]−3
.

2.6 Matrix elements in graphene.
(a) Using the results of Problems 4 and 5, evaluate 〈ψA

k |X|ψA
k+q〉,

〈ψB
k |X|ψB

k+q〉, 〈ψv
k |X|ψv

k+q〉, and 〈ψ c
k|X|ψv

k+q〉, where X = e−iq.r, and
v(c) stands for the valence (conduction) band.

(b) Let Fss ′(k, q) =
∣∣∣〈ψs

k|e−iq.r|ψs′
k+q〉

∣∣∣2. Show that

Fss′(k, q) = 1
2

(
1+ ss′

k + q cos φ

|k+ q|
)

where cos φ = k.q/kq, and s, s ′ = −1(+1) if s, s′ = v(c). For more
details, see (Shung, 1986).

2.7 Density of states D(ε). The total number of states within a shell in k-space
bounded by the two constant energy surfaces Ek = ε and Ek = ε + dε is
D(ε)dε. The number of states within this shell is twice the number of k-points
within the shell because of spin degeneracy. Therefore,

D(ε)dε = 2
V

(2π )3

∫
shell

d3k = 2
V

(2π )3

∫
dSεdk⊥

where dSε is an area element on the inner surface and dk⊥ is the perpendicular
distance between the two surfaces of the shell. Show that

D(ε) = 2
V

(2π )3

∫
dSε

|∇kEk|Ek=ε

.
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Second quantization

Nothing can be made out of nothing.
–William Shakespeare, King Lear

Historically, quantization of the motion of particles was developed first. The state
was described by a wave function and observables by operators. When dealing with
interactions between particles and fields, such as the electromagnetic field, the fields
were treated classically. Classical field equations look like the quantum mechanical
equations for the wave function of the field quanta. For example, the Klein–Gordon
classical field equation is similar to the quantum mechanical wave equation for a
relativistic spinless particle. Quantizing the fields, leading to quantum field theory,
appears to be quantizing a theory that has already been quantized; hence the name
“second quantization.” In reality, there is only one quantization and one quantum
theory.

The method of second quantization is important in the study of many-particle
systems. It enables us to express many-body operators in terms of creation and
annihilation operators, thus rendering calculations less cumbersome. Moreover,
the method makes it possible to treat systems with a variable number of particles;
that is why the method initially emerged in the context of quantum field theory.

In Chapter 1 we indicated that any one-particle wave function may be expanded
in a complete set of states. In this chapter, we show that products of single-particle
states, when properly symmetrized, form an orthonormal basis for the expansion
of the wave function of an N-particle system. We then introduce creation and
annihilation operators and show how to express one-body and two-body operators
in those terms.

3.1 N-particle wave function

Suppose that we have a complete, orthonormal set of single-particle states |φν〉,
where ν is an index that represents all the quantum numbers that characterize the

37
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state. Orthonormality and completeness mean that

〈φν |φν ′ 〉 = δνν ′ (orthonormality)
∑

ν

|φν〉〈φν | = 1 (completeness). (3.1)

We will show that the N-particle wave function �(1, 2, . . . , N ) can be expanded
in terms of products of the single-particle states. We may proceed as follows.
Suppose that we fix the spatial and spin coordinates of particles 2, 3, . . . , N . Then
�(1, 2, . . . , N ) is a function of the coordinates of particle 1 alone; hence, we can
expand it in a complete set of states φν(1),

�(1, 2, . . . , N ) =
∑
ν1

Aν1 (2, 3, . . . , N )φν1 (1).

If we now allow the coordinates of particle 2 to vary, Aν1 (2, 3, . . . , N ) becomes a
function of these coordinates, and we may expand it as

Aν1 (2, 3, . . . , N ) =
∑
ν2

Bν1ν2 (3, 4, . . . , N )φν2 (2).

Continuing in this fashion, we end up with

�(1, 2, . . . , N ) =
∑

ν1ν2...νN

Cν1ν2...νN
φν1 (1)φν2 (2) . . . φνN

(N).

There is an alternative way to arrive at this result. States |φν1〉1, for all values of ν1,
form an orthonormal basis for vector space V1, the Hilbert space of the states of
particle 1. States |φν2〉2 form an orthonormal basis for V2, the vector space of the
states of particle 2, and so on. The state vector |�〉 of the N-particle system belongs
to the direct product space V(N) = V1 ⊗ V2 ⊗ · · · ⊗ VN , whose orthonormal basis
consists of the direct product states |φν1〉1 ⊗ |φν2〉2 ⊗ · · · ⊗ |φνN

〉N . It follows that

|�〉 =
∑

ν1ν2...νN

Cν1ν2...νN
|φν1〉1 ⊗ |φν2〉2 ⊗ · · · ⊗ |φνN

〉N. (3.2)

3.2 Properly symmetrized products as a basis set

Although the products φν1 (1)φν2 (2) . . . φνN
(N) of single-particle states may serve

as a basis for the expansion of the N-particle wave function, they are not useful
as such. This is because �(1, . . . , i, . . . , j, . . . , N) must be symmetric (antisym-
metric) under the exchange of i and j if the N identical particles are bosons
(fermions). The product φν1 (1)φν2 (2) . . . φνN

(N) lacks this property, and the sym-
metry (antisymmetry) property must be buried in the constants Cν1ν2...νN

. It is far
more convenient to incorporate the appropriate symmetry into the product of the
functions, so that Cν1ν2...νN

will be completely symmetric upon the exchange of any
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two indices. For bosons, we can achieve this by summing the product over the N!
permutations of 1, 2, . . . , N ; the basis states are thus given by

�B
ν1ν2...νN

(1, 2, . . . , N ) = 1∏
μ

√
nμ!

1√
N!

∑
P

φν1 [P (1)]φν2 [P (2)] . . . φνN
[P (N)].

(3.3)

Here P (1), P (2), . . . , P (N) is a permutation of 1, 2, . . . , N , and nμ is the number
of times the index μ appears in the product. The factor before the summation
ensures that �B is normalized.

For fermions, a similar expression for the basis states is used, except for the
following two modifications. First, nμ is either 0 or 1 (Pauli exclusion principle),
so that nμ! = 1 (0! = 1 and 1! = 1). Second, we must insert a minus sign whenever
P (1), P (2), . . . , P (N) is an odd permutation of 1, 2, . . . , N . The fermionic basis
functions are given by

�F
ν1ν2...νN

(1, 2, . . . , N ) = 1√
N!

∑
P

(−1)P φν1 [P (1)]φν2 [P (2)] . . . φνN
[P (N)].

(3.4)
Equivalently, we may permute the indices instead of the coordinates

�F
ν1ν2...νN

(1, 2, . . . , N ) = 1√
N!

∑
P

(−1)P φP (ν1)(1)φP (ν2)(2) . . . φP (νN )(N). (3.5)

The above expression for �F may be written in the form of a determinant,

�F
ν1ν2...νN

(1, 2, . . . , N ) = 1√
N!

∣∣∣∣∣∣∣∣∣

φν1 (1) φν1 (2) . . . φν1 (N)
φν2 (1) φν2 (2) . . . φν2 (N)

...
φνN

(1) φνN
(2) . . . φνN

(N)

∣∣∣∣∣∣∣∣∣
. (3.6)

This is the Slater determinant. We make the following remarks:

1. The antisymmetry property is built into the determinant. Interchanging i and j

amounts to the interchange of two columns, which changes the determinant’s
sign.

2. If particles i and j occupy the same state, i.e., νi = νj , then rows i and j become
identical and the determinant vanishes, as it should (Pauli exclusion principle).

3. In the first row, only the single-particle state φν1 appears; in the second row,
only φν2 appears, and so on. Therefore, there is no confusion in representing the
Slater determinant by the ket |φν1φν2 . . . φνN

〉.
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Figure 3.1 A system of three noninteracting bosons. Two bosons occupy the
single-particle state φ1 and one boson occupies φ2.

In terms of the basis functions �B,F , the N-particle wave function is now expanded
as

�B,F (1, . . . , N ) =
∑

ν1...νN

Aν1...νN
�B,F

ν1...νN
(1, . . . , N ). (3.7)

3.3 Three examples

1. A system consists of three identical bosons. Denote the single-particle states by
φ1, φ2, φ3 . . . . Two bosons occupy the state φ1, and one occupies the state φ2

(see Figure 3.1). In this case, N = 3, n1 = 2, n2 = 1, and n3 = n4 = · · · = 0.
There are 3! = 6 permutations of 1 2 3; they are 1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2,
and 3 2 1. Therefore,

�B
112(1, 2, 3) = 1√

2!1!0!0! · · ·
1√
3!

∑
P

φ1[P (1)]φ1[P (2)]φ2[P (3)]

= 1√
12

[φ1(1)φ1(2)φ2(3)+ φ1(1)φ1(3)φ2(2)+ φ1(2)φ1(1)φ2(3)

+φ1(2)φ1(3)φ2(1)+ φ1(3)φ1(1)φ2(2)+ φ1(3)φ1(2)φ2(1)]

= 1√
3

[φ1(1)φ1(2)φ2(3)+ φ1(1)φ1(3)φ2(2)+ φ1(2)φ1(3)φ2(1)] .

2. Three noninteracting electrons in a box of volume V occupy the states φk↑(r) =
1√
V
eik.r|↑〉, φk↓(r) = 1√

V
eik.r|↓〉, and φk′↑(r) = 1√

V
eik′.r|↑〉. The wave func-

tion for the system is the Slater determinant

�SD(1, 2, 3) = 1√
3!V 3

∣∣∣∣∣∣
eik.r1 |↑〉1 eik.r2 |↑〉2 eik.r3 |↑〉3
eik.r1 |↓〉1 eik.r2 |↓〉2 eik.r3 |↓〉3
eik′.r1 |↑〉1 eik′.r2 |↑〉2 eik′.r3 |↑〉3

∣∣∣∣∣∣ . (3.8)

3. A system consists of two noninteracting electrons. The Hamiltonian is H =
h(1)+ h(2). Let us assume that h is spin-independent. Being spin-independent,
the Hamiltonian H commutes with S2 and Sz,

[H, S2] = [H, Sz] = [S2, Sz] = 0.
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Figure 3.2 A system of two noninteracting electrons. One electron, with spin up,
occupies the single-particle state φ1. Another electron, with spin down, occupies
φ2. The energy of the system is ε1 + ε2.

Here, S is the total spin operator, and Sz is its projection on the z-axis,

S = S1 + S2 , Sz = S1z + S2z.

The single-particle states are solutions of hφnσ = εnφnσ , where n is the set of
spatial quantum numbers and σ =↑ or ↓. Suppose that one electron occupies
the state φ1↑ = φ1(r)α, where α = |↑〉, while the other electron occupies the
state φ2↓ = φ2(r)β, where β = |↓〉 (see Figure 3.2). The state of the system is
given by the Slater determinant

�SD = 1√
2!

∣∣∣∣φ1(r1)α(1) φ1(r2)α(2)
φ2(r1)β(1) φ2(r2)β(2)

∣∣∣∣ .
Expanding the matrix, we find

�SD = 1√
2

[φ1(r1)φ2(r2)α(1)β(2)− φ1(r2)φ2(r1)α(2)β(1)] .

The energy of the state is ε1 + ε2. This particular example allows us to
discuss the following point. Since the Hamiltonian is spin-independent, we
can write the stationary states as the product of a spatial function and a spin
function. However, the Slater determinant given above is not amenable to such
a factorization. Is something wrong? The answer is no. The problem is that
�SD, even though it is an eigenfunction of both H , with eigenvalue ε1 + ε2,
and Sz, with eigenvalue 0, nevertheless is not an eigenfunction of S2. However,
since H, S2, and Sz commute among themselves, stationary states can be chosen
that are eigenstates of all three operators simultaneously. We may construct two
degenerate, antisymmetric eigenfunctions of H , with energy ε1 + ε2, which are
also eigenfunctions of S2 and Sz. Consider

�(1, 2) = 1√
2

[φ1(r1)φ2(r2)+ φ1(r2)φ2(r1)]
1√
2

[α(1)β(2)− α(2)β(1)]

� ′(1, 2) = 1√
2

[φ1(r1)φ2(r2)− φ1(r2)φ2(r1)]
1√
2

[α(1)β(2)+ α(2)β(1)] .
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�(1, 2) is an eigenstate of S2 and Sz with s = 0 and ms = 0; it is a spin singlet.
On the other hand, � ′(1, 2) is an eigenstate of S2 and Sz with s = 1 and ms = 0;
it is the ms = 0 component of the spin triplet (see Problem 1.5). It is readily
verified that

�SD(1, 2) = 1√
2

[
�(1, 2)+� ′(1, 2)

]
.

Since �(1, 2) and � ′(1, 2) are degenerate stationary states, �SD is also a sta-
tionary state with the same energy. If we take the difference of � and � ′, we
obtain

� ′
SD(1, 2) = 1√

2

[
�(1, 2)−� ′(1, 2)

]
.

It is easy to verify that � ′
SD(1, 2) is the Slater determinant which describes the

configuration where the electron in orbital φ1 has spin down while the electron
in orbital φ2 has spin up. This is also a stationary state of H = h(1)+ h(2),
with energy ε1 + ε2. In other words, we may choose �(1, 2) and � ′(1, 2) as
the two degenerate stationary states; each is expressed as the product of a
spatial part and a spin part. Since �(1, 2) and � ′(1, 2) are degenerate, the Slater
determinants �SD(1, 2) and � ′

SD(1, 2), which are linear combinations of �(1, 2)
and � ′(1, 2), are also stationary states with the same energy, even though they
cannot be factored into the product of a spatial part and a spin part.

3.4 Creation and annihilation operators

Dealing with determinants or with sums of the permutations of products of single-
particle states is very cumbersome. It is worthwhile to try to encode the symmetry
properties of the basis states into the algebraic properties of operators. We do this
by introducing creation and annihilation operators. We treat the case of fermions
in detail, and briefly give the corresponding results for bosons.

3.4.1 Fermions

Each single-particle state |φν〉 is associated with a creation operator c
†
ν , defined by

c†ν |φν1 · · ·φνN
〉 = |φνφν1 · · ·φνN

〉. (3.9)

The operator c
†
ν thus creates a fermion in the single-particle state |φν〉; it adds a row

to the Slater determinant, which becomes the first row of the new (N + 1)× (N +
1) determinant. The action of the creation operator is illustrated in Figure 3.3. The
action of c

†
ν on a Slater determinant yields 0 if ν coincides with any of the indices
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Figure 3.3 The action of the creation operator c
†
2 on a system of fermions: if the

state φ2 is empty, the operator creates a particle in that state, but if the state is
occupied by one particle, the result of the action of c

†
2 is zero.

ν1 . . . νN , for then the resulting determinant would have two identical rows. Stated
differently, we cannot create a fermion in a state that is already occupied (Pauli
exclusion principle).

For an arbitrary Slater determinant |φν1φν2 . . . φνN
〉 (arbitrary in the sense that

the single-particle state indices ν1 . . . νN are arbitrary), consider

c
†
νc

†
ν ′ |φν1 · · ·φνN

〉 = c
†
ν|φν ′φν1 · · ·φνN

〉 = |φνφν ′φν1 · · ·φνN
〉

c
†
ν ′c

†
ν |φν1 . . . φνN

〉 = |φν ′φνφν1 . . . φνN
〉 = −|φνφν ′φν1 . . . φνN

〉.
The minus sign results from the interchange of the first two rows. Since |φν1 . . . φνN

〉
is arbitrary, adding the above two equations gives us

c†νc
†
ν ′ + c

†
ν ′c

†
ν = 0 =⇒ {c†ν , c

†
ν′ } = 0,

where, for any operators A and B, we define the anticommutator {A, B} by

{A, B} = AB + BA. (3.10)

Note, in particular, that if ν = ν′, we have (c†ν)2 = 0: we cannot put two fermions
in the same state, as Figure 3.3 illustrates.

Next, we define an annihilation operator cν that annihilates a particle in state
|φν〉,

cν |φνφiφj · · · 〉 = |φiφj · · · 〉. (3.11)

The annihilated state must be on the left, i.e., it must be the first row in the Slater
determinant. If φν is not on the left, then it must be moved to the leftmost position,
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Figure 3.4 The action of the annihilation operator c2 on a system of identical
fermions. If φ2 is occupied by one particle, c2 renders the state empty. If the state
is empty, the action of c2 yields zero.

introducing a minus sign every time it is interchanged with another state. For
example,

cν |φiφνφj . . . 〉 = −cν |φνφiφj . . . 〉 = −|φiφj . . . 〉.
Clearly, the state occupied by the particle to be annihilated must be among the
collection of states in the Slater determinant; otherwise the action of cν is defined
to yield zero,

cν |φν1 . . . φνN
〉 = 0 if ν /∈ {ν1, . . . , νN }.

The action of an annihilation operator on a system of identical fermions is depicted
in Figure 3.4.

The notation we have adopted suggests that cν is the adjoint (hermitian conjugate)
of c

†
ν and vice versa. This is indeed the case, as shown by the following argument.

Consider the ket |�〉 = |φνφν1 . . . 〉 = c
†
ν|φν1 . . . 〉. Then the bra 〈�| is equal to

〈φν1 . . . |(c†ν)†. It follows that

1 = 〈�|�〉 = 〈φν1 . . . |(c†ν)†|φνφν1 . . . 〉.
For this to be true, the following must hold

(c†ν)†|φνφν1 . . . 〉 = |φν1 . . . 〉,
which shows that (c†ν)† = cν . Taking the adjoint of {c†ν, c†ν ′ } = 0, we obtain

0 = (c†νc
†
ν ′ + c

†
ν′c

†
ν)† = (c†νc

†
ν′)

† + (c†ν′c
†
ν)† = (c†ν ′)

†(c†ν)† + (c†ν)†(c†ν ′)
†

= cν ′cν + cνcν′ = {cν, cν′ }.
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In particular, if ν = ν ′, we obtain c2
ν = 0: a fermion cannot be annihilated twice;

once it has been annihilated, it is no longer there, and a nonexistent particle cannot
be annihilated.

What about {cν, c
†
ν}? Consider an arbitrary Slater determinant |�〉 =

|φν1 . . . φνN
〉. If the single-particle state |φν〉 is not occupied,

(cνc
†
ν + c†νcν)|�〉 = (cνc

†
ν + c†νcν)|φν1 . . . φνN

〉 = cν |φνφν1 . . . φνN
〉 + 0

= |φν1 . . . φνN
〉 = |�〉.

Now suppose that the state |φν〉 is occupied, say with ν = νj+1. Then

(cνc
†
ν + c†νcν)|�〉 = (cνc

†
ν + c†νcν)|φν1 . . . φνj

φνφνj+2 . . . φνN
〉

= 0+ (−1)j c†νcν |φνφν1 . . . φνj
φνj+2 . . . φνN

〉
= (−1)j c†ν |φν1 . . . φνj

φνj+2 . . . φνN
〉 = (−1)j |φνφν1 . . . φνj

φνj+2 . . . φνN
〉

= (−1)j (−1)j |φν1 . . . φνj
φνφνj+2 . . . φνN

〉 = |φν1 . . . φνN
〉 = |�〉.

Note that in order to move φν to the leftmost position, j interchanges are carried
out, hence the first (−1)j factor. To move φν back to its original position, j more
interchanges are undertaken. We thus see that in both cases, whether |φν〉 is vacant
or occupied, the action of {cν, c

†
ν} leaves an arbitrary Slater determinant unaltered.

We conclude that

{cν, c
†
ν} = 1.

We now calculate {cν, c
†
ν ′ } for ν 
= ν′. Consider (cνc

†
ν ′ + c

†
ν′cν)|φν1 . . . φνN

〉. This is
equal to zero unless ν ∈ {ν1, . . . , νN } and ν ′ /∈ {ν1, . . . , νN }. Let us assume that
this is indeed the case. Then

(cνc
†
ν ′ + c

†
ν ′cν)|φν1φν2 . . . φν . . . φνN

〉 = −(cνc
†
ν ′ + c

†
ν ′cν)|φνφν2 . . . φν1 . . . φνN

〉
= −cν |φν ′φνφν2 . . . φν1 . . . φνN

〉 − c
†
ν′ |φν2 . . . φν1 . . . φνN

〉
= cν|φνφν ′φν2 . . . φν1 . . . φνN

〉 − |φν ′φν2 . . . φν1 . . . φνN
〉

= |φν ′φν2 . . . φν1 . . . φνN
〉 − |φν′φν2 . . . φν1 . . . φνN

〉 = 0.

In the first step, the interchange of φν1 and φν introduces the minus sign. We thus
see that whichever way ν and ν ′ are related to the indices ν1, . . . , νN , the action
of {cν, c

†
ν ′ }, for ν 
= ν ′, on an arbitrary Slater determinant, yields zero. Hence,

{cν, c
†
ν ′ } = 0 for ν 
= ν ′. Below we summarize our results,

{cν, cν ′ } = {c†ν, c†ν ′ } = 0, {cν, c
†
ν ′ } = δνν′ . (3.12)
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Let us conclude this subsection by considering the following question: what
space do creation and annihilation operators act upon? Suppose that we have
a complete set of single-particle states |φ1〉, |φ2〉, . . . that are ordered in some
fashion, e.g., ε1 ≤ ε2 ≤ . . . . The Slater determinant lists the occupied states; for
example, |φ1φ3〉 represents a configuration where one particle occupies |φ1〉 and
another particle occupies |φ3〉. We can represent this state as |1 0 1 0 0 · · · 〉,
which tells us that states |φ1〉 and |φ3〉 are occupied, each by one particle, while
all the other states are empty. The states |φ1φ3〉 and |1 0 1 0 0 · · · 〉 carry exactly
the same information. In general, a state of noninteracting particles, where n1

particles occupy |φ1〉, n2 particles occupy |φ2〉, and so on, may be represented as
|n1n2 · · · 〉. For fermions, ni = 0 or 1, but for bosons, ni can vary from 0 to N ,
the total number of particles. Representation of states in this fashion is known
as number-representation. The vacuum state, with no particles at all, is written
as |0〉, and is defined by cν|0〉 = 0 for all ν. For N = 1, the states |φ1〉, |φ2〉, . . .
span the Hilbert space V(1) of the quantum states of the one-particle system, as
do the states |1 0 0 0 · · · 〉, |0 1 0 0 · · · 〉, . . . . For N = 2, the basis states that
span V(2) (the vector space of the quantum states of the two-particle system) are
|1 1 0 0 · · · 〉, |1 0 1 0 · · · 〉, |0 1 1 0 · · · 〉, |0 1 0 1 · · · 〉, . . . . We can continue in
this fashion for any value of N .

Let us consider an extended Hilbert space, called the Fock space, which is
obtained as a direct sum,

F = V(0) ⊕ V(1) ⊕ V(2) ⊕ · · · .

Here, V(0) is the Hilbert space (vector space) for N = 0, i.e., it contains only the
vacuum state |0〉; V(1) is the vector space for a one-particle system, and so on. The
operator c

†
ν , by creating a particle in state |φν〉, increases the number of particles

by 1; hence, if |�〉 ∈ V(k), then c
†
ν|�〉 ∈ V(k+1), while cν |�〉 ∈ V(k−1). The vector

spaces V(k), V(k+1), and V(k−1), are parts of F; hence, creation and annihilation
operators act upon the Fock space.

Finally, we note that, in the number-representation, c†ν and cν act in the following
way

c
†
ν |n1 · · · nν · · · 〉 = (−1)n1+n2+···+nν−1 (1− nν)|n1 · · · nν + 1 · · · 〉 (3.13)

cν |n1 · · · nν · · · 〉 = (−1)n1+n2+···+nν−1nν |n1 · · · nν − 1 · · · 〉. (3.14)

Since nν = 0 or 1, these relations are easily verified.

3.4.2 Bosons

We only give a brief account of creation and annihilation operators for the case of
bosons. We define a creation operator a

†
ν by the following relation,

a†
ν |n1 · · · nν · · · 〉 =

√
nν + 1|n1 · · · nν + 1 · · · 〉. (3.15)
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The operator a
†
ν creates a particle in state |φν〉. Similarly, an annihilation operator

aν , which annihilates a particle in state |φν〉, is defined by

aν |n1 · · · nν · · · 〉 = √nν |n1 · · · nν − 1 · · · 〉. (3.16)

If the state |φν〉 is vacant (nν = 0), the action of aν yields zero. By using an
argument similar to the one used in the case of fermions, one shows that aν is the
adjoint (hermitian conjugate) of a

†
ν . The symmetry of the state of identical bosons,

under the exchange of coordinates of any two particles, leads to the following
commutation relation between the creation and annihilation operators

[aν , a
†
ν ′] = δνν′ . (3.17)

Equations (3.15–3.17) should be familiar from the study of the quantum harmonic
oscillator.

3.5 One-body operators

The Hamiltonian for a system of N identical, interacting particles is generally the
sum of a one-body operator

∑N
i=1 h(i) and a two-body operator (1/2)

∑
i 
=j v(i, j ).

For now, we will focus on the one-body operator and give its expression in terms
of creation and annihilation operators.

Let H0 =
∑N

i=1 h(i), where h(i) is an operator that depends on the coordinates of
particle i. For example, h(i) could be the kinetic energy−(h̄2/2m)∇2

i of particle i,
or it could be the sum of the kinetic energy and the potential energy v(i) produced by
some external field. In general, h may depend on both spatial and spin coordinates.

Suppose that |φ1〉, |φ2〉, . . . constitute a complete, orthonormal set of single-
particle states. For example, if for a system of electrons |φ〉 = |kσ 〉, the complete
set of single-particle states will be |k1 ↑〉, |k1 ↓〉, |k2 ↑〉, . . . .

We can express the operator H0 in terms of the creation and annihilation operators
c
†
ν and cν . The derivation of such an expression is somewhat lengthy; it is given in

Appendix A. Here, we merely state the result:

H0 =
∑
νν ′
〈φν ′ |h|φν〉c†ν ′ cν. (3.18)

This is the second quantized form of H0, and it holds true for both fermions and
bosons. The expression is plausible: a one-body operator is the sum of single-
particle operators h(1), h(2), . . . , h(N). The effect of a single-particle operator is
to scatter a particle from a state |φν〉 into a state |φν ′ 〉. The scattering process can
be viewed as the annihilation of a particle in state |φν〉, followed by the creation
of a particle in state |φν′ 〉. The amplitude for this process is the matrix element
〈φν ′ |h|φν〉.
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3.6 Examples

In the following we give a few examples that illustrate how to express one-body
operators in second quantized form.

3.6.1 Kinetic energy of a system of N electrons

The kinetic energy of a system of N electrons is

T =
N∑

i=1

p2
i /2m =

N∑
i=1

−(h̄2/2m)∇2
i .

The second quantized form of the operator depends on the basis set of single-
particle states. Let us choose the plane waves |kσ 〉 as basis states. The electrons are
assumed to move within a box of volume V = L3. Assuming periodic boundary
conditions, we have

φkσ (r) = 〈r|kσ 〉 = 1√
V

eik.r|σ 〉,

where σ =↑ or ↓ (+1/2 or −1/2), and kx, ky, kz = 0, ±2π/L, ±4π/L, . . . .
Being a one-body operator, T can be written as

T =
∑
kσ

∑
k′σ ′

〈
k′σ ′

∣∣∣∣− h̄2

2m
∇2
∣∣∣∣kσ

〉
c
†
k′σ ′ckσ .

Since −(h̄2/2m)∇2|kσ 〉 = (h̄2k2/2m)|kσ 〉 and 〈k′σ ′|kσ 〉 = δkk′δσσ ′ , the second
quantized form of the kinetic energy is

T =
∑
kσ

h̄2k2

2m
c
†
kσ ckσ . (3.19)

3.6.2 External potential

The potential energy of a system of N particles due to interaction with an external
field is

Vext =
N∑

i=1

v(i)

In a crystal, v(i) could be the interaction of electron i with a periodic lattice of
ions. In general, v(i) may depend on the spin of particle i; e.g., v(i) may include
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spin-orbit coupling. Using a basis set of plane waves,

Vext =
∑
k′σ ′

∑
kσ

〈k′σ ′|v|kσ 〉c†k′σ ′ckσ .

The matrix elements are given by

〈k′σ ′|v|kσ 〉 = 1
V

∫
ei(k−k′).r〈σ ′|v|σ 〉d3r.

If v is spin-dependent, the matrix element 〈σ ′|v|σ 〉 is evaluated first; the result will
be a function of r, and the r integration is then carried out. In the simpler case
where v is spin-independent, 〈σ ′|v|σ 〉 = v(r)δσσ ′ , and

〈k′σ ′|v|kσ 〉 = δσσ ′
1
V

∫
e−i(k′−k).rv(r)d3r = 1

V
vk′−kδσσ ′ .

Here, vq is the Fourier transform of v(r),

vq =
∫

e−iq.rv(r)d3r. (3.20)

We note, in passing, that the inverse Fourier transform is

v(r) = 1
V

∑
q

eiq.rvq. (3.21)

In conclusion, the second quantized expression for Vext is

Vext = 1
V

∑
kk′σ

vk′−kc
†
k′σ ckσ = 1

V

∑
kqσ

vqc
†
k+qσ ckσ . (3.22)

3.6.3 Particle-number density

If a system consists of one particle at position r′, what is the particle-number
density n(r)? Since n(r) = 0 if r 
= r′, and the integral over all space of the density,∫

n(r)d3r , must give the total number of particles, which is 1, it follows that
n(r) = δ(r− r′), the Dirac-delta function. In a system of N particles at positions
r′1, r′2, . . . , r′N , the particle-number density is

n(r) =
N∑

i=1

δ(r− r′i). (3.23)
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This is a one-body operator of the form
∑N

i=1 f (i). In the basis |kσ 〉,

n(r) =
∑
k′σ ′

∑
kσ

1
V

∫
e−ik′.r′δ(r− r′)eik.r′d3r ′ 〈σ ′|σ 〉c†k′σ ′ ckσ

=
∑
kσ

∑
k′

1
V

ei(k−k′).r c
†
k′σ ckσ = 1

V

∑
q

eiq.r
∑
k′σ

c
†
k′σ ck′+qσ

= 1
V

∑
q

eiq.rnq. (3.24)

We have introduced nq, the Fourier transform of n(r), and it is given by

nq =
∑
kσ

c
†
kσ ck+qσ . (3.25)

3.7 Two-body operators

Consider the two-body operator H ′ = (1/2)
∑

i 
=j v(i, j ). The sum extends over
both i and j , but terms with i = j are excluded. H ′ represents the pairwise interac-
tion between particles, such as the Coulomb interaction between electrons. Let us
assume that we have a complete set |φ1〉, |φ2〉, . . . of orthonormal single-particle
states. A detailed derivation of the second quantized form of the two-body operator
is given in Appendix A. Here we only state the result, which holds equally true for
both fermions and bosons,

H ′ = 1
2

∑
klmn

〈φkφl|v|φmφn〉c†kc†l cncm. (3.26)

In the above equation, we have introduced |φkφl〉 and 〈φkφl| defined by

|φkφl〉 = |φk〉 ⊗ |φl〉 ≡ |φk〉|φl〉, 〈φkφl| = 〈φk| ⊗ 〈φl| ≡ 〈φk|〈φl|.
Similar definitions apply to |φmφn〉 and 〈φmφn|.

Adopting a simplified notation, the Hamiltonian given by

H =
∑

i

h(i)+ 1
2

∑
i 
=j

v(i, j )

is written in second quantized form as

H =
∑
kl

〈k|h|l〉c†kcl + 1
2

∑
klmn

〈kl|v|mn〉c†kc†l cncm. (3.27)

Notice that the order of n and m in the matrix element differs from the order in the
operators.
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3.8 Translationally invariant system

In a translationally invariant system, the interaction between two particles at r1 and
r2 depends only on r1 − r2 and not on r1 and r2 separately: v(r1, r2) = v(r1 − r2).
The system acquires its name because if two particles within it at positions r1 and r2

are translated by the same vector R to new positions r′1 = r1 + R and r′2 = r2 + R,
their interaction energy does not change: v(r′1 − r′2) = v(r1 − r2). For N particles,
the total interaction energy is

Vint = 1
2

∑
i 
=j

v(ri − rj ).

Using the basis states |kσ 〉, the second quantized form of Vint is

Vint = 1
2

∑
k1σ1

∑
k2σ2

∑
k3σ3

∑
k4σ4

〈k1σ1k2σ2|v|k3σ3k4σ4〉c†k1σ1
c
†
k2σ2

ck4σ4ck3σ3 .

Assuming, as is often the case, that v is spin-independent, the matrix element
M = 〈k1σ1k2σ2|v|k3σ3k4σ4〉 is given by

M = 1
V 2

∫
d3r1

∫
d3r2 e−ik1.r1 e−ik2.r2 v(r1 − r2)eik3.r1 eik4.r2 〈σ1|σ3〉〈σ2|σ4〉

= 1
V 2 δσ1σ3δσ2σ4

∫
d3r1

∫
d3r2 ei(k3−k1).r1 ei(k4−k2).r2 v(r1 − r2).

To proceed further, we replace v(r1 − r2) by (1/V )
∑

q eiq.(r1−r2)vq,

M = 1
V 3

δσ1σ3δσ2σ4

∑
q

vq

∫
d3r1 ei(k3−k1+q).r1

∫
d3r2 ei(k4−k2−q).r2

= 1
V

δσ1σ3δσ2σ4

∑
q

vqδq,k1−k3 δq,k4−k2 .

Therefore, in the expression for Vint, the sum vanishes unless k1 = k3 + q, k2 =
k4 − q, σ1 = σ3, and σ2 = σ4; hence

Vint = 1
2V

∑
q

∑
k3σ3

∑
k4σ4

vqc
†
k3+qσ3

c
†
k4−qσ4

ck4σ4ck3σ3 .

Finally, relabeling indices: k3σ3 → kσ, k4σ4 → k′σ ′, we obtain

Vint = 1
2V

∑
q

∑
kσ

∑
k′σ ′

vqc
†
k+qσ c

†
k′−qσ ′ ck′σ ′ ckσ . (3.28)

Each term in the summation represents a scattering process in which two particles
in states |kσ 〉 and |k′σ ′〉 are annihilated, and two particles are created in states
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Figure 3.5 Schematic representation of the interaction of two particles. The two
particles initially have wave vectors k and k′. The interaction is viewed as a
collision in which one particle transfers momentum h̄q to the other.

|k+ qσ 〉 and |k′ − qσ ′〉. The scattering process may be represented pictorially, as
shown in Figure 3.5.

3.9 Example: Coulomb interaction

In a system of N interacting electrons, the electron–electron interaction is

VC = 1
2

∑
i 
=j

v(i, j ) = 1
2

∑
i 
=j

e2

|ri − rj | (cgs).

In SI units, e2 is replaced by e2/4πε0. The system is translationally invariant. In
order to express the Coulomb interaction VC in second quantized form, we need to
determine vq, the Fourier transform of v(r) = e2/r ,

vq = e2
∫

1
r
e−iq.rd3r = e2

∫ ∞

0
r2dr

∫ 1

−1
d(cos θ )

∫ 2π

0
dφ

1
r

e−iqrcosθ .

Integration over φ gives 2π . Integrating over cos θ , we find

vq = 2πe2
∫ ∞

0

eiqr − e−iqr

iq
dr = 4πe2

q

∫ ∞

0
sin(qr)dr.

The oscillatory behavior at infinity complicates the evaluation of the integral.
We also note that the integral diverges at q = 0 because in the limit q →
0, sin(qr)/q → r , and

∫∞
0 rdr = ∞. What is to be done?

Rather than Fourier transforming the Coulomb potential, let us Fourier transform
the Yukawa potential vY = (e2/r)e−μr . At the end, we replace μ by 0. Integration
over φ and θ proceeds as before; we find

vq = lim
μ→0+

e2
∫

e−μr

r
e−iq.rd3r = lim

μ→0+

2πe2

iq

∫ ∞

0

[
e(iq−μ)r − e(−iq−μ)r] dr

= lim
μ→0+

2πe2

iq

[ −1
iq − μ

− 1
iq + μ

]
= lim

μ→0+

4πe2

q2 + μ2 =
4πe2

q2 .
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The expression for the Coulomb interaction thus becomes

VC = lim
μ→0

1
2V

∑
q

∑
kσ

∑
k′σ ′

4πe2

q2 + μ2 c
†
k+qσ c

†
k′−qσ ′ck′σ ′ckσ

= 1
2V

∑
q

∑
kσ

∑
k′σ ′

4πe2

q2 c
†
k+qσ c

†
k′−qσ ′ck′σ ′ckσ . (3.29)

Here, V is the system’s volume. The Coulomb energy diverges because of the q = 0
term. We shall see in the next chapter that the q = 0 term drops out of the sum as a
result of charge neutrality: in a crystal, there are both electrons and positive ions.

3.10 Electrons in a periodic potential

We have discussed the second quantized formulation of the Hamiltonian for a
system of N electrons using a basis set of plane waves. This is the convenient
set to use in the study of the jellium model of a metal, where a uniform positive
background replaces the lattice of positive ions. In the jellium model, the uniform
positive background produces a constant potential, and the eigenstates of the single-
particle Hamiltonian are plane waves. This is why an orthonormal basis of plane
waves is most convenient. However, when the discrete nature of the lattice is taken
into account, the eigenstates of the single-particle Hamiltonian are the Bloch states,
and these form a more adequate basis in which to express the Hamiltonian.

Another important orthonormal basis is the set of Wannier states. Even though
these are not eigenstates of the single-particle Hamiltonian, the formulation of the
Hamiltonian in terms of Wannier states is at the heart of the tight binding methods
that play an important role in the theoretical analysis of the electronic properties of
crystals. In this section, we discuss the second quantized form of the Hamiltonian
in terms of Bloch and Wannier states.

3.10.1 Bloch representation

A Bloch state |nkσ 〉 is characterized by a band index n, a wave vector k, and a spin
projection σ . The electronic Hamiltonian is

H = H0 + VC (3.30)

H0 =
∑

i

[
p2

i /2m+ v(ri)
]
, VC = 1

2

∑
i 
=j

e2

|ri − rj | . (3.31)

v(r) is the potential produced by the static periodic lattice of ions (the effects of
ionic vibrations are studied in Chapter 11), and VC is the Coulomb interaction
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between electrons. Using the Bloch states as a basis,

H0 =
∑
nkσ

∑
n′k′σ ′

〈n′k′σ ′| − h̄2

2m
∇2 + v(r)|nkσ 〉c†n′k′σ ′cnkσ .

Since the Bloch states are eigenstates of the single-particle Hamiltonian,[
p2/2m+ v(r)

] |nkσ 〉 = εnk|nkσ 〉, (3.32)

the above expression for H0 reduces to

H0 =
∑
nkσ

εnk c
†
nkσ cnkσ . (3.33)

Setting |r1 − r2| = r12, the second quantized form of VC is

VC = 1
2

∑
n1k1σ1

∑
n2k2σ2

∑
n′1k′1σ

′
1

∑
n′2k′2σ

′
2

〈n′1k′1σ
′
1n
′
2k′2σ

′
2|

e2

r12
|n1k1σ1n2k2σ2〉

× c
†
n′1k′1σ

′
1
c
†
n′2k′2σ

′
2
cn2k2σ2cn1k1σ1 .

The matrix element M = 〈n′1k′1σ
′
1n
′
2k′2σ

′
2| e2

r12
|n1k1σ1n2k2σ2〉 is given by

M = δσ1σ
′
1
δσ2σ

′
2

∫
ψ∗

n′1k′1
(r1)ψ∗

n′2k′2
(r2)

e2

|r1 − r2|ψn1k1 (r1)ψn2k2 (r2)d3r1d3r2.

The Fourier transform of the Coulomb potential is vq = 4πe2/q2; hence,

e2

|r1 − r2| =
1
V

∑
q

4πe2

q2 eiq.(r1−r2) (3.34)

where V is the volume of the system. The expression for M becomes

M = δσ1σ
′
1
δσ2σ

′
2

∑
q

4πe2

V q2

∫
ψ∗

n′1k′1
(r1) eiq.r1 ψn1k1 (r1) d3r1

×
∫

ψ∗
n′2k′2

(r2) e−iq.r2 ψn2k2 (r2) d3r2.

Recall that, for any lattice vector R, the Bloch function satisfies the relation

ψnk(r+ R) = eik.Rψnk(r). (3.35)

This is the first form of Bloch’s theorem (Section 2.3). If we now make a change
of variable: r1 → r1 + R, the integral does not change, but the integrand gets
multiplied by the factor ei(k1−k′1+q).R ; this factor must be equal to unity. Since
this is true for every lattice vector R, it follows that k′1 = k1 + q+G, where
G is a reciprocal lattice vector. However, since k1, k′1 ∈ FBZ, G will vanish if
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k1 + q ∈ FBZ, but if k1 + q /∈ FBZ, then G is the reciprocal lattice vector that
brings k1 + q back into the first Brillouin zone. We thus require that k′1 = k1 + q,
with the understanding that k1, k1 + q ∈ FBZ. A similar argument shows that
k′2 = k2 − q. Hence,

M = δσ1σ
′
1
δσ2σ

′
2

∑
q

4πe2

V q2 δk′1,k1+qδk′2,k2−q

∫
ψ∗

n′1k′1
(r1)eiq.r1ψn1k1 (r1)d3r1

×
∫

ψ∗
n′2k′2

(r2)e−iq.r2ψn2k2 (r2)d3r2.

Therefore, the second quantized form of VC , in the Bloch representation, is

VC = 1
2V

∑
n1n

′
1k1σ1

∑
n2n

′
2k2σ2

∑
q

4πe2

q2 F
n1n

′
1

k1,k1+qF
n2n

′
2

k2,k2−q

× c
†
n′1k1+qσ1

c
†
n′2k2−qσ2

cn2k2σ2cn1k1σ1 . (3.36)

The matrix elements in the above expression are defined as follows:

Fnn′
k,k±q = 〈n′k± qσ |e±iq.r|nkσ 〉. (3.37)

The plane wave, or momentum, representation is recovered from the Bloch
representation by removing the sum over the band indices and setting ψnkσ =
1/
√

V eik.r|σ 〉, in which case F
n1n

′
1

k1,k1+q = F
n2n

′
2

k2,k2−q = 1.

3.10.2 Wannier representation

Let us consider a metal with one partially filled band. In terms of the Bloch states
|nkσ 〉, the Wannier states |niσ 〉 are expressed as (see Eq. [2.31])

|niσ 〉 = 1√
N

∑
k

e−ik.Ri |nkσ 〉. (3.38)

Here, n is a band index, i is a lattice site index, Ri is the lattice vector from the
origin (chosen as some lattice point) to the lattice site i, and the sum is over all
k-points in the first Brillouin zone (FBZ). Since our interest is only in the electrons
in one band, we may drop the band index and write the Wannier state as |iσ 〉 and
the Bloch state as |kσ 〉. We define the operator c

†
iσ that creates an electron in the

state |iσ 〉,

c
†
iσ |0〉 = |iσ 〉 =

1√
N

∑
k

e−ik.Ri |kσ 〉 = 1√
N

∑
k

e−ik.Ri c
†
kσ |0〉 (3.39)
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where |0〉 is the vacuum state. The Wannier and Bloch operators are thus related
according to

c
†
iσ =

1√
N

∑
k

e−ik.Ri c
†
kσ , ciσ = 1√

N

∑
k

eik.Ri ckσ . (3.40)

The first equation, connecting the creation operators, is obtained directly from
Eq. (3.39), while the second equation, connecting the annihilation operators, is
obtained from the first equation by taking the adjoints on both sides of the equal
sign. These equations can be inverted,

c
†
kσ =

1√
N

∑
i

eik.Ri c
†
iσ , ckσ = 1√

N

∑
i

e−ik.Ri ciσ . (3.41)

Using the Wannier states as a basis, the Hamiltonian is represented as follows:

H =
∑
iσ

∑
jσ ′
〈jσ ′|h|iσ 〉c†jσ ′ciσ

+ 1
2

∑
iσ1

∑
jσ2

∑
i′σ ′1

∑
j ′σ ′2

〈
i ′σ ′1j

′σ ′2

∣∣∣∣ e2

r12

∣∣∣∣iσ1jσ2

〉
c
†
i′σ ′1

c
†
j ′σ ′2

cjσ2ciσ1 .

Since H0 and VC are spin-independent,

〈jσ ′|h|iσ 〉 = δσσ ′ 〈j |h|i〉 ≡ δσσ ′ tij

〈i ′σ ′1j ′σ ′2|v(1, 2)|iσ1jσ2〉 = δσ1σ
′
1
δσ2σ

′
2

〈
i′j ′
∣∣∣∣ e2

r12

∣∣∣∣ij
〉
≡ δσ1σ

′
1
δσ2σ

′
2
Uij i′j ′ .

The Hamiltonian in the Wannier representation takes the form:

H =
∑
ijσ

tij c
†
jσ ciσ + 1

2

∑
σσ ′

∑
ij i′j ′

Uij i ′j ′ c
†
i′σ c

†
j ′σ ′cjσ ′ciσ . (3.42)

The matrix element Uij i ′j ′ depends on the degree of overlap of the Wannier func-
tions. When the overlap is very weak, the onsite Coulomb repulsion dominates
the interaction. In this case, we ignore Uij i′j ′ except when i = j = i ′ = j ′, and
set Uii ii = U . Keeping only nearest-neighbor contribution to the hopping matrix
element tij , the Hamiltonian reduces to

H =
∑

<ij>σ

tij c
†
jσ ciσ + U

∑
i

ni↓ni↑ (3.43)

where niσ = c
†
iσ ciσ is the operator that represents the number of electrons at site

i, and <ij > indicates that i and j are nearest-neighboring sites. In writing the
interaction term, we have used the fact that c2

iσ = 0 and that c
†
iσ ′ciσ = −ciσ c

†
iσ ′ for

σ 
= σ ′. The model described by Eq. (3.43) is the Hubbard model (Hubbard, 1963).
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It describes a situation where electrons are essentially localized on atomic sites,
but they can tunnel to neighboring sites, with tij being the tunneling amplitude.
Double occupancy of a site, however, is penalized through a rise in energy equal
to the amount U .

3.11 Field operators

3.11.1 Definition

Thus far, we have expressed various operators mainly in the k-representation
(momentum representation): a complete set of single-particle states |kσ 〉, that are
eigenstates of the momentum operator, has been used. The position kets |rσ 〉 form
another important set of single-particle states. |rσ 〉 is the state of a particle with
a definite position r and spin projection σ . Given a complete set of orthonormal
states |φ1〉, |φ2〉, . . . , we write

|rσ 〉 =
∑

ν

|φν〉〈φν |rσ 〉,

where ν is a collective index that includes spin. It is advantageous to display the
spin index explicitly; thus, we write |φν〉 = |φnλ〉, where λ is the spin quantum
number and n stands for orbital (spatial) quantum numbers. Then

|rσ 〉 =
∑
nλ

|φnλ〉〈φnλ|rσ 〉 =
∑
nλ

|φnλ〉〈φn|r〉〈λ|σ 〉 =
∑
nλ

|φnλ〉φ∗n(r)δλσ

=
∑

n

|φnσ 〉φ∗n(r) =
∑

n

φ∗n(r)c†nσ |0〉.

The field operator �
†
σ (r) is defined as the operator that creates a particle with spin

projection σ (↑ or ↓ for an electron, for example) at position r,

�†
σ (r)|0〉 = |rσ 〉.

A comparison with the previous expression for |rσ 〉 gives

�†
σ (r) =

∑
n

φ∗n(r)c†nσ . (3.44)

The field operator that annihilates a particle with spin projection σ , located at r, is
the adjoint of �

†
σ (r),

�σ (r) =
∑

n

φn(r)cnσ . (3.45)

For example, if |φν〉 = |kσ 〉, then φk(r) = (1/
√

V )eik.r, where V is the volume of
the system and kx, ky, kz = 0,±2π/L,±4π/L . . . ; in this case,

�†
σ (r) = 1√

V

∑
k

e−ik.rc
†
kσ , �σ (r) = 1√

V

∑
k

eik.rckσ . (3.46)
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3.11.2 Commutation relations

The commutation relations of field operators can be deduced from the correspond-
ing relations for creation and annihilation operators. For fermions,

{�σ (r), �†
σ ′(r

′)} =
∑
nn′

φn(r)φ∗n′(r
′){cnσ , c

†
n′σ ′ } =

∑
nn′

φn(r)φ∗n′(r
′)δnn′δσσ ′

= δσσ ′
∑

n

φn(r)φ∗n(r′).

Using the completeness property of single-particle states (see Eq. [1.20]),

{�σ (r), �†
σ ′(r

′)} = δσσ ′δ(r− r′). (3.47)

Since {cν, cν ′ } = {c†ν, c†ν′ } = 0, it immediately follows that

{�σ (r), �σ ′(r′)} = {�†
σ (r), �†

σ ′(r
′)} = 0. (3.48)

For bosons, the commutators of field operators are given by

[�σ (r), �σ ′(r′)] = [�†
σ (r), �†

σ ′(r
′)] = 0 (3.49)

[�σ (r), �†
σ ′(r

′)] = δσσ ′δ(r− r′). (3.50)

3.11.3 One-body operators

We can express the one-body operator H0 =
∑N

i=1 h(i) in terms of field operators
as follows:

H0 =
∑
nσ

∑
n′σ ′
〈φn′σ ′ |h|φnσ 〉c†n′σ ′cnσ =

∑
nσ

∑
n′σ ′

∫
d3rφ∗n′(r)〈σ ′|h|σ 〉φn(r)c†n′σ ′cnσ

=
∑

σ

∑
σ ′

∫
�

†
σ ′(r)hσ ′σ (r)�σ (r)d3r. (3.51)

Here, hσ ′σ (r) = 〈σ ′|h|σ 〉, and use is made of Eqs (3.44) and (3.45).
For the case of spin-1/2 particles, such as electrons, H0 may be written in a

more compact form. We define the two-component field operators

�(r) =
(

�↑(r)
�↓(r)

)
�†(r) =

(
�

†
↑ �

†
↓
)

.

We also define the matrix h(r) by

h(r) =
[
h↑↑(r) h↑↓(r)
h↓↑(r) h↓↓(r)

]
.
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Then it is straightforward to check that

H0 =
∫

�†(r)h(r)�(r)d3r. (3.52)

Although the above equation looks like an expectation value formula, it is cer-
tainly not; �†(r) and �(r) are field operators, not wave functions. If h(i) is spin-
independent, the expression for H0 may be simplified,

H0 =
∑
σσ ′

∫
�

†
σ ′(r)h(r)δσσ ′�σ (r)d3r =

∑
σ

∫
�†

σ (r)h(r)�σ (r)d3r.

3.11.4 Two-body operators

In terms of field operators, the two-body operator Vint = (1/2)
∑

i 
=j v(i, j ) is
expressed as follows:

Vint = 1
2

∑
{nσ }

∫
d3r1

∫
d3r2 φ∗n1

(r1)φ∗n2
(r2)〈σ1σ2|v(1, 2)|σ3σ4〉φn3 (r1)φn4 (r2)

× c†n1σ1
c†n2σ2

cn4σ4cn3σ3

= 1
2

∑
σ1σ2σ3σ4

∫
d3r1

∫
d3r2�

†
σ1

(r1)�†
σ2

(r2)vσ1σ2σ3σ4�σ4 (r2)�σ3 (r1). (3.53)

Here, {nσ } = n1σ1n2σ2n3σ3n4σ4. For spin-1/2 particles, each of σ1, σ2, σ3, and σ4

is either ↑ or ↓, and Vint is the sum of 16 terms. We can recast the above expression
into a more compact form. We define

�(r2)�(r1) =
(

�↑(r2)
�↓(r2)

)
⊗
(

�↑(r1)
�↓(r1)

)
=

⎛
⎜⎜⎝

�↑(r2)�↑(r1)
�↑(r2)�↓(r1)
�↓(r2)�↑(r1)
�↓(r2)�↓(r1)

⎞
⎟⎟⎠

�†(r1)�†(r2) =
(
�

†
↑(r1) �

†
↓(r1)

)
⊗
(
�

†
↑(r2) �

†
↓(r2)

)
=
(
�

†
↑(r1)�†

↑(r2) �
†
↑(r1)�†

↓(r2) �
†
↓(r1)�†

↑(r2) �
†
↓(r1)�†

↓(r2)
)

.

We also define the 4× 4 matrix,

v(r1, r2) =

⎡
⎢⎢⎣

v↑↑↑↑ v↑↑↓↑ v↑↑↑↓ v↑↑↓↓
v↑↓↑↑ v↑↓↓↑ v↑↓↑↓ v↑↓↓↓
v↓↑↑↑ v↓↑↓↑ v↓↑↑↓ v↓↑↓↓
v↓↓↑↑ v↓↓↓↑ v↓↓↑↓ v↓↓↓↓

⎤
⎥⎥⎦ .



60 Second quantization

Although not shown explicitly, each of the 16 matrix elements in the above matrix
is a function of r1 and r2. It is left as an exercise for the reader to show that Vint

may be written as

Vint =
∫

�†(r1)�†(r2)v(r1, r2)�(r2)�(r1) d3r1 d3r2. (3.54)

If v(i, j ) is spin-independent, i.e., v(1, 2) = v(r1, r2), then

〈σ1σ2|v(1, 2)|σ3σ4〉 = v(r1, r2)δσ1σ3δσ2σ4,

and we can write

Vint = 1
2

∑
σ1σ2

∫
�†

σ1
(r1)�†

σ2
(r2)v(r1, r2)�σ2 (r2)�σ1 (r1) d3r1 d3r2.

3.11.5 Examples

3.11.5.1 Particle-number density

The particle-number density operator n(r) =∑i δ(r− r′i) is given in terms of field
operators, by

n(r) =
∑

σ

∫
�†

σ (r′)δ(r− r′)�σ (r′)d3r ′ =
∑

σ

�†
σ (r)�σ (r). (3.55)

3.11.5.2 Kinetic energy

The kinetic energy operator for a system of N particles is
∑N

i=1(−h̄2/2m)∇2
i . In

terms of field operators, it is

T = − h̄2

2m

∑
σ

∫
�†

σ (r)∇2�σ (r)d3r.

From the following equality

∇ ·
(
�†

σ (r)∇�σ (r)
)
= ∇�†

σ (r) ·∇�σ (r)+�†
σ (r)∇2�σ (r),

it follows that

T = h̄2

2m

∑
σ

∫
∇�†

σ (r) ·∇�σ (r)d3r − h̄2

2m

∑
σ

∫
∇ ·

(
�†

σ (r)∇�σ (r)
)

d3r.

By the divergence theorem, the volume integral in the last term is converted into a
surface integral,∫

∇ ·
(
�†

σ (r)∇�σ (r)
)

d3r =
∫ (

�†
σ (r)∇�σ (r)

)
· n̂da
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where n̂ is an outward unit vector normal to the surface. If the surface is at infinity,
the field operator �

†
σ (r) =∑n φ∗n(r)c†nσ vanishes at the surface because φ∗n(r)

vanishes at infinity. On the other hand, if the particles are enclosed within a box
of volume V = L3 and periodic boundary conditions are employed, �†

σ (r)∇�σ (r)
will be the same on opposite faces of the box, but the unit vector normal to one
face will be opposite to the unit vector normal to the opposite face. In either case,
the surface integral vanishes, and

T = h̄2

2m

∑
σ

∫
∇�†

σ (r).∇�σ (r)d3r. (3.56)

Further reading

Fetter, A.L. and Walecka, J.D. (1971). Quantum Theory of Many-Particle Systems. New
York: McGraw-Hill.

Schwabl, F. (2008). Advamced Quantum Mechanics, 4th edn. Berlin: Springer.
Taylor, P.L. and Heinonen, O. (2002). A Quantum Approach to Condensed Matter Physics.

Cambridge: Cambridge University Press.

Problems

3.1 Noninteracting electrons on a square lattice. Identical atoms sit at the lattice
sites of a square lattice with lattice constant a. Assume that there is one
Wannier orbital on each site, so that one band is formed from these orbitals.
Neglecting electron–electron interaction, and assuming that an electron can
hop from one site to only one of the nearest-neighboring sites, the hopping
matrix element being −t , the Hamiltonian is

H = −t
∑

<ij>σ

c
†
iσ cjσ .

Calculate the dispersion of the energy band.

3.2 Graphene revisited. In Problem 2.4, the energy bands in graphene are calcu-
lated using the tight binding method. Here, the calculation is repeated using
the second quantized form of the Hamiltonian. Graphene consists of two sub-
lattices, one of type A and one of type B. Sublattice A consists of all the sites
of type A, and sublattice B consists of all the sites of type B. Assume that
there is only one orbital centered on each site (pz orbital). Neglect overlap
between orbitals on different sites, and assume that an electron on one site
can hop to only one of the three neighboring sites. With these assumptions,
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the tight binding Hamiltonian is

H = −t
∑
iσ

3∑
δ=1

a
†
iσ bi+δ,σ − t

∑
iσ

3∑
δ=1

b
†
i+δ,σ aiσ

where a
†
iσ (aiσ ) creates (annihilates) an electron with spin projection σ on site

i of type A, b
†
iσ (biσ ) creates (annihilates) an electron with spin projection σ

on site i of type B, −t is the hopping matrix element, and the sites i + δ are
the nearest neighbors of site i.

For a given σ , there are N operators aiσ , where N is the total number of
primitive cells in the crystal. Define N new operators akσ , k ∈ FBZ,

akσ = 1√
N

∑
i

e−ik.Ri aiσ , a
†
kσ =

1√
N

∑
i

eik.Ri a
†
iσ .

Similar definitions are made for bkσ and b
†
kσ . Show that

H = −t
∑
kσ

(
a
†
kσ b

†
kσ

)( 0 gk
g∗k 0

)(
akσ

bkσ

)

where gk =
∑

δ eik.δ = exp
(
i kxa√

3

)
+ exp

[
i
(
−kxa

2
√

3
+ kya

2

)]
+

exp
[
i
(
−kxa

2
√

3
− kya

2

)]
. Reduce H to the form:

H =
2∑

n=1

∑
kσ

Enkc
†
nkσ cnkσ

where E1k = −t |gk|, E2k = t |gk|, and c1kσ and c2kσ are electron operators
that are linear combinations of akσ and bkσ .

3.3 Commutators. Calculate [ckσ ,
∑
kσ

εkc
†
kσ ckσ ] and [c†kσ ,

∑
kσ

εkc
†
kσ ckσ ].

3.4 Field and number operators. Show that, for bosons and fermions, the field
operators and the total number of particles operator satisfy the following:

[N, �σ ] = −�σ , [N, �†
σ ] = �†

σ .

Define �̃σ (θ ) = eiNθ�σ e−iNθ . Show that �̃σ (θ ) = e−iθ�σ and �̃
†
σ (θ ) =

eiθ�
†
σ . Since operators representing observables, when expressed in sec-

ond quantized form, contain an equal number of creation and annihilation
operators (to be Hermitian), they are invariant under the transformation
�σ → �̃σ (θ ), �

†
σ → �̃

†
σ (θ ). Hence, in a many-particle system, any opera-

tor A that represents an observable satisfies the equation eiNθAe−iNθ = A ⇒
[A, N ] = 0.
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3.5 Spin. For a system of N electrons, S =
N∑

i=1
Si . Let S = (Sx, Sy, Sz). Using the

states |kσ 〉 as a basis, show that

S = h̄

2

∑
k

([
c
†
k↑ck↓ + c

†
k↓ck↑

]
, i
[
c
†
k↓ck↑ − c

†
k↑ck↓

]
,
[
c
†
k↑ck↑ − c

†
k↓ck↓

])
.

3.6 Number-density operator. In a crystal, single-particle states are characterized
by the quantum numbers n, k, and σ , where n is the band index, k ∈ FBZ,
and σ is the spin projection. Show that the Fourier transform of the electron
number-density operator is given by

nq =
∑
kσ

∑
nn′
〈nkσ |e−iq.r|n′k+ qσ 〉c†nkσ cn′k+qσ .

3.7 Electron current density. In a course on electricity and magnetism, the elec-
tron current density is written as j = −env, where −e is the charge of the
electron, n is the number of electrons per unit volume, and v is the average
velocity of the electrons. The contribution of electron i to the current density
is −eδ(r− ri)vi = −eδ(r− ri)pi/m. The quantum mechanical expression
for the current density is thus given by

j(r) = − e

2m

∑
i

[piδ(r− ri)+ δ(r− ri)pi].

We write it this way to ensure that j(r) is Hermitian (ri and pi do not
commute). In the presence of a magnetic field, pi → pi + eA(ri)/c, where
A is the vector potential. Show that the current-density operator is given by

j(r) = jP (r)+ jD(r)

where jP , the paramagnetic current density, and jD , the diamagnetic current
density, are given by

jP (r) = ieh̄

2m

∑
σ

[
�†

σ (r)∇�σ (r)−
(
∇�†

σ (r)
)

�σ (r)
]

jD(r) = − e2

mc
A(r)n(r), n(r) =

∑
σ

�†
σ (r)�σ (r).

Show that the Fourier transform of jP (r) is given by

jPq = −
eh̄

m

∑
kσ

(k+ 1
2

q)c†kσ ck+qσ .
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3.8 Contact potential. Consider a system where particles interact with each other
via the contact potential

V = g

2

∑
i 
=j

δ(ri − rj ).

Express V in second quantized form.

3.9 Spin waves. Consider a system of N particles, each of spin s, localized at the
N lattice sites of a crystal. We assume that there exists an interaction between
the particles that tends to align their spins. The Hamiltonian is assumed to be

H = −(J/2)
∑
<ij>

Si .Sj

where J > 0 and the summation is over nearest-neighboring sites. Here, J has
units of energy, so the spin operators are dimensionless. The spin operators
satisfy the usual commutation relations; e.g.,

[Sx
i , S

y
j ] = iδijS

z
i .

Define the operators S+i and S−i by

S+i = Sx
i + iS

y
i , S−i = Sx

i − iS
y
i .

We now transform to two bosonic operators, ai and a
†
i ,

S+i = (2s)1/2[1− a
†
i ai/2s]1/2ai , S−i = (2s)1/2a

†
i [1− a

†
i ai/2s]1/2.

This is known as the Holstein–Primakoff transformation (Holstein and Pri-
makoff, 1940).
(a) Using (Sz

i )2 = s(s + 1)− (Sx
i )2 − (Sy

i )2, show that Sz
i = s − a

†
i ai

(b) Define ak and a
†
k by

ak = 1√
N

∑
i

eik.Ri ai , a
†
k =

1√
N

∑
i

e−ik.Ri a
†
i .

Show that, to second order in the a-operators,

H = const+
∑

k

h̄ωka
†
kak.

What is the value of ωk? The excitations of energy h̄ωk describe the
spin-wave excitations of the ferromagnet.



4
The electron gas

All exact science is dominated by the idea of approximation.
–Bertrand Russell

A metallic crystal has a large number of mobile electrons, of the order of Avogadro’s
number, and a correspondingly large number of ions. If our interest is in the bulk
properties of a crystal, we may take the volume V of the crystal to be infinite, and
the number of electrons N to be infinite, while keeping N/V , the number density of
electrons, finite; this is called the thermodynamic limit. The ions incessantly vibrate
about their equilibrium positions, but due to their large mass, they move very slowly
in comparison with the electrons, so that the electrons quickly adjust their state
to reflect whatever positions the ions occupy at any given time. Consequently, to
a good approximation, one may solve the Schrödinger equation for electrons by
assuming that the ions are fixed; this is the Born–Oppenheimer approximation.
The influence of the ionic vibrations on the electronic states, described through
the electron–phonon interaction, may be treated by perturbation theory; this is
discussed in Chapter 11.

A more drastic approximation in the description of a metal is to replace the
mesh of positive ions with a uniform positive background, which results in the so-
called jellium model. In a model such as this, any results obtained are necessarily
qualitative in nature. In this chapter, we study the jellium model. One of our
goals in this study is to show that the divergent term in the Coulomb interaction,
corresponding to q = 0 (see Eq. [3.29]), is cancelled by contributions to the total
energy from the positive background. This cancellation is a consequence of the
charge neutrality of the crystal, and it holds true even if the approximation of a
uniform positive background is relaxed. Another goal of this chapter is to show
the necessity of performing perturbation expansions to higher, generally infinite,
orders. We will later proceed to study Green’s functions, whereby such a program
may be carried out more easily.
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4.1 The Hamiltonian in the jellium model

Let us consider the jellium model in thermodynamic limit: N→∞, V →∞, while
N/V remains constant. The Hamiltonian consists of three terms,

H = He +Hb +He−b. (4.1)

The first term is the sum of the kinetic energies of the electrons and their Coulomb
interactions. From Eqs (3.19) and (3.29),

He =
∑
kσ

h̄2k2

2m
c
†
kσ ckσ + lim

μ→0

1
2V

∑
q

∑
kσ

∑
k′σ ′

4πe2

q2 + μ2 c
†
k+qσ c

†
k′−qσ ′ck′σ ′ckσ .

(4.2)

The second term, Hb, represents the Coulomb energy of the uniform positive
background. To find the correct expression for Hb, consider a collection of point
charges q1, q2, . . . at positions r1, r2, . . . . Their Coulomb energy is

ECoul = 1
2

∑
i 
=j

qiqj

|ri − rj | (cgs units).

The factor 1/2 ensures that pairs of point charges are counted only once. For a
continuous charge distribution, qi is replaced by ρ(ri)d3ri , where ρ(r) is the charge
density, and the summation is replaced by integration. Therefore,

Hb = lim
μ→0+

1
2

∫
ρ(r)ρ(r′)e−μ|r−r′|

|r− r′| d3rd3r ′ = lim
μ→0+

N 2e2

2V 2

∫
e−μ|r−r′|

|r− r′| d
3rd3r ′.

(4.3)

For the uniform positive background, ρ(r) = Ne/V . We have introduced an expo-
nential term, as in the case of the Coulomb interaction between electrons (see
Section 3.9). Why? Since we replaced the Coulomb potential in He with a Yukawa
potential, we need to do the same for Hb and He−b, for the sake of consistency.
More importantly, He, Hb, and He−b diverge. While He and Hb are positive, He−b

is negative. We have to add and subtract infinities; to obtain meaningful results, we
consider the infinities to arise in some limit.

Returning to Hb, we evaluate the integral in the limit V →∞, keeping μ fixed.
As V →∞, we may shift the variables of integration without worrying about the
limits of the integral. Defining x = r− r′ and x = |x|, we find

Hb = lim
μ→0+

lim
V→∞

N 2e2

2V 2

∫
d3r ′

∫
d3x

e−μx

x
= lim

μ→0+
lim

V→∞
N 2e2

2V

∫
d3x

e−μx

x
. (4.4)
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Note how the limits are taken: first V →∞, then μ → 0+. The above integral is
easily evaluated,∫

d3x
e−μx

x
= 4π

∫ ∞

0
xe−μxdx = −4π

∂

∂μ

∫ ∞

0
e−μxdx = −4π

∂

∂μ

(
1
μ

)
= 4π

μ2

=⇒ HB = lim
μ→0

lim
V→∞

2πN2e2

V μ2 . (4.5)

The last term in the Hamiltonian is Heb, the electron–background interaction.
Denoting the positions of the electrons by r1, r2, . . . , rN , we find

Heb = −e lim
μ→0+

N∑
i=1

∫
d3r

ρ(r)
|r− ri|e

−μ|r−ri | = − lim
μ→0+

Ne2

V

N∑
i=1

∫
d3r

e−μ|r−ri |

|r− ri| .
(4.6)

Replacing r− ri by x, the integral is evaluated in the limit V →∞

He−b = − lim
μ→0+

lim
V→∞

Ne2

V

N∑
i=1

∫
d3x

e−μx

x
= − lim

μ→0
lim

V→∞
Ne2

V

N∑
i=1

4π

μ2

= lim
μ→0

lim
V→∞

−4πN 2e2

V μ2 . (4.7)

We thus find

Hb +He−b = lim
μ→0

lim
V→∞

−2πN2e2

V μ2 . (4.8)

The above expression approaches −∞ because N →∞ while N/V is finite.
The Coulomb interaction part of He diverges because of the q = 0 term,

VC,q=0 = lim
μ→0

lim
V→∞

2πe2

V μ2

∑
kσ

∑
k′σ ′

c
†
kσ c

†
k′σ ′ck′σ ′ckσ . (4.9)

The term comprising the product of operators may be rewritten as follows:

c
†
kσ c

†
k′σ ′ck′σ ′ckσ = −c

†
kσ c

†
k′σ ′ckσ ck′σ ′ = −c

†
kσ (δkk′δσσ ′ − ckσ c

†
k′σ ′)ck′σ ′

= c
†
kσ ckσ c

†
k′σ ′ck′σ ′ − δkk′δσσ ′c

†
kσ ck′σ ′

⇒ VC,q=0 = lim
μ→0

lim
V→∞

2πe2

V μ2

[∑
kσ

c
†
kσ ckσ

∑
k′σ ′

c
†
k′σ ′ck′σ ′ −

∑
kσ

c
†
kσ ckσ

]

= lim
μ→0

lim
V→∞

2πe2

V μ2

(
N̂2 − N̂

)
.
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The number of electrons operator, N̂ , is given by N̂ =∑kσ c
†
kσ ckσ . Since N̂

commutes with the Hamiltonian H , the eigenstates of H are also eigenstates of
N̂ with eigenvalue N , the number of electrons, and we may replace the operator N̂

by the number N . Hence,

E ′/N ≡ (VC,q=0 +Hb +He−b

)
/N = lim

μ→0
lim

V→∞
−2πe2

V μ2 = 0. (4.10)

On the other hand, the average kinetic energy per electron is 3EF /5, where EF

is the Fermi energy (see Section 2.2); we are thus totally justified in ignoring E′.
The effect of the positive background is thus to remove the q = 0 term in the
electron–electron interaction Hamiltonian. This is reasonable; after all, crystals are
stable, so the energy per electron should be finite.

The reader may feel uneasy about the results we obtained; they rely on
the mathematical artifact of introducing an exponential damping term, and on
the sequence in which the limits are taken. The reader may rest assured that the
results are correct. In fact, the same results are obtained without introducing
the exponential term. Setting μ = 0 while keeping the thermodynamic limit:
V →∞, N→∞, N/V = constant, Eqs (4.4) and (4.6) yield

Hb = N 2e2

2V

∫
d3r

r
, He−b = −N2e2

V

∫
d3r

r
.

The q = 0 term in VC is

VC,q=0 = 1
2V

vq=0
∑
k′σ ′

∑
kσ

c
†
kσ c

†
k′σ ′ck′σ ′ckσ = 1

2V
vq=0(N2 −N)

= (N 2 −N)e2

2V

∫
d3r

r
.

Therefore,

E′

N
= 1

N

(
VC,q=0 +Hb +He−b

) = − e2

2V

∫
d3r

r
.

If the linear dimension of the crystal is L, the integral
∫

d3r/r is of the order L2,
whereas V = L3; hence E′/N = O(L−1), and E′/N → 0 as L →∞. We arrive
at the same conclusion as before: the effect of Hb and He−b is to cancel the q = 0
term in the electron–electron interaction. With this in mind, the Hamiltonian for
the electron gas can be written as

H =
∑
kσ

h̄2k2

2m
c
†
kσ ckσ + 1

2V

∑′

q

∑
kσ

∑
k′σ ′

4πe2

q2 c
†
k+qσ c

†
k′−qσ ′ck′σ ′ckσ . (4.11)
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The prime over the q-summation means that q = 0 is excluded. H is given above
in cgs units; to obtain H in SI units, simply replace e2 with e2/4πε0.

4.2 High density limit

Under what conditions could the Coulomb interaction between electrons be treated
as a small perturbation? To answer this question, we define a dimensionless param-
eter rs by

(4π/3)r3
s a3

0 = V/N , (4.12)

where a0 = h̄2/(me2) is the Bohr radius (in SI units, e2 → e2/4πε0). rsa0 is the
radius of a sphere whose volume is equal to the average volume occupied by one
electron. Defining the dimensionless quantities

V ′ = V/(rsa0)3 , K = rsa0k, Q = rsa0q,

we may recast the Hamiltonian in Eq. (4.11) into the following form:

H = e2

r2
s a0

⎡
⎣∑

Kσ

K2c
†
kσ ckσ + rs

V ′
∑′

Q

∑
kσ

∑
k′σ ′

2π

Q2 c
†
k+qσ c

†
k′−qσ ′ck′σ ′ckσ

⎤
⎦ .

(4.13)

This expression for H is very telling: compared to the kinetic energy of electrons,
the Coulomb interaction is negligible in the high density limit, rs → 0. This con-
clusion appears to be counterintuitive, but a moment’s reflection reveals its validity.
Coulomb repulsion scales as 1/rs , and from Heisenberg’s uncertainty principle,
the electron’s momentum also scales as 1/rs . Therefore, the kinetic energy scales
as 1/r2

s . Thus, as rs → 0, even though the Coulomb energy grows larger, the
kinetic energy of the electrons grows larger at a faster rate. We conclude that in the
high-density limit, the Coulomb repulsion is weak in comparison with the kinetic
energy, and it is permissible to treat it within the framework of perturbation theory.
In real metals, rs = 2− 6, which is neither too small nor too large. Nevertheless, in
most metals, the single-particle approximation explains many of their low energy
properties. This is because the Coulomb interaction, even when it is strong, is not
very effective at changing the momentum distribution of the electrons; most of the
states into which they could scatter are already occupied.

This ineffectiveness of the Coulomb interaction, due to phase space limitations,
lies at the heart of Landau’s Fermi liquid theory (Landau, 1957a, 1957b, 1959).
Consider an electron with wave vector k outside the Fermi sphere, k > kF . At low
temperatures, where almost all the states within the Fermi sphere are occupied, the
electron can only decay, through Coulomb interaction, into states within a shell
of width k − kF just above the Fermi sphere. The number of states in this shell is
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Figure 4.1 When an electron in a state of wave vector k above the Fermi surface
is scattered out of this state, an electron-hole pair is created. At low temperatures,
energy and wave vector conservation restricts the final state into which the electron
can scatter to a shell of width k − kF just above the Fermi sphere. It also restricts
the states of the holes created to the shaded regions, which lie within a shell of
width k − kF just below the Fermi surface.

proportional to k − kF . The decay process is accompanied by the creation of an
electron-hole pair: an electron from within the Fermi sphere makes a transition to
a state outside the Fermi sphere, leaving a hole behind. The requirement of energy
and wave vector conservation restricts the state of the hole to a shell of width
k − kF (see Figure 4.1). The number of states in the shaded regions of k-space
is also proportional to k − kF . The probability of decay is thus proportional to
(k − kF )2, and it vanishes as k → kF . That is, low energy excited states (for which
k � kF ) are long-lived, since the probability of scattering out of these states due to
Coulomb interaction is small.

4.3 Ground state energy

An interacting electron gas is described by the Hamiltonian H = H0 + VC . In
the high density limit, the Coulomb term, VC , is treated as a perturbation. In
the absence of VC , the Hamiltonian is simply the sum of the kinetic energies of
the electrons, and the ground state of the noninteracting system at zero tempera-
ture, denoted by |F 〉, is obtained by filling all states within the Fermi sphere. In
Chapter 2, we found that the average energy per electron in this case is E0/N =
3EF /5, where EF = h̄2k2

F /2m is the Fermi energy, and kF = (3π2N/V )1/3 is the
Fermi wave vector. It is easily shown that

E0/N � 2.21/r2
s Ry

where one Rydberg (Ry) is equal to e2/2a0, which is about 13.6 eV.
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4.3.1 First order perturbation

Treating VC as a perturbation, the energy per electron in the ground state is written
as a perturbation series

E/N = E0/N + E1/N + E2/N + · · · . (4.14)

E1 is given by

E1 = 1
2V

∑′

q

∑
kσ

∑
k′σ ′

4πe2

q2 〈F |c†k+qσ c
†
k′−qσ ′ck′σ ′ckσ |F 〉. (4.15)

The action of ck′σ ′ckσ on |F 〉, for k, k′ < kF , removes two electrons in states |kσ 〉
and |k′σ ′〉; the action of c

†
k+qσ c

†
k′−qσ ′ must restore the two electrons into these

states if the matrix element is not to vanish. There are only two possibilities:
(1) k+ q = k, k′ − q = k′ and (2) k+ q = k′, σ = σ ′, k′ − q = k. The first
case holds if q = 0, but the term q = 0 is excluded, so we are left with only the
second possibility. Therefore,

E1 = 1
2V

∑′

q

∑
kσ

4πe2

q2 〈F |c†k+qσ c
†
kσ ck+qσ ckσ |F 〉.

Since q 
= 0, it follows that c
†
kσ ck+qσ = −ck+qσ c

†
kσ , and

〈F |c†k+qσ c
†
kσ ck+qσ ckσ |F 〉 = −〈F |c†k+qσ ck+qσ c

†
kσ ckσ |F 〉.

The operator c
†
kσ ckσ represents the number of electrons in state |kσ 〉, which is

occupied by one electron if k < kF and vacant if k > kF . Hence

c
†
kσ ckσ |F 〉 = θ (kF − k)|F 〉,

where θ (kF − k) is the step function,

θ (kF − k) =
{

0 kF < k

1 kF > k
. (4.16)

The first-order correction to the energy is now given by

E1 = −
∑′

q

∑
kσ

2πe2

V q2 θ (kf − k) θ (kF − |k+ q|).

Summation over σ gives a factor of 2. The sums over k and q are replaced by
integrals,

E1 = −4πe2

V

V 2

(2π )6

∫
d3q

1
q2

∫
d3k θ (kf − k) θ (kF − |k+ q|). (4.17)
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Figure 4.2 (a) Two spheres in k-space, one centered at k = 0 and the other at
k = −q. Each sphere’s radius is kF . The volume of the intersection region is V�.
(b) The shaded region has a volume of V�/2 = V�/2.

The integral over k is simply the volume V� of the region in k-space defined by
k < kF and |k+ q| < kf . The expression for E1 reduces to

E1 = −4πe2 V

(2π )6

∫
d3q

1
q2 V�. (4.18)

� is the region of overlap of two spheres, each of radius kF , one centered at k = 0
and the other at k = −q (see Figure 4.2a). Note from the figure that only in the
overlap region are the conditions k < kF and |k+ q| < kf satisfied. Since the two
spheres have equal radii, V� = 2V�/2, where V�/2 is the volume of the shaded
region in Figure 4.2b. By inspection,

V�/2 = 4π

3
k3
F

�

4π
− Vcone.

Here, � is the solid angle subtended at the center by the shaded region in Figure
4.2b, and Vcone is the volume of a cone with a half angle θ = cos−1(q/2kF ) at the
vertex and a height h = q/2. They are given by

� =
∫ θ

0
sin θ ′dθ ′

∫ 2π

0
dφ′ = 2π (1− q/2kF ), Vcone = πq

6
(k2

F − q2/4).

Assembling the pieces together, and setting q/2kF = x, we find

V� = 4πk3
F

3

[
1− 3x

2
+ x3

2

]
. (4.19)

The integration over q in Eq. (4.18) is now carried out, noting that q varies from 0
to 2kF ; for q > 2kF the spheres do not intersect. We find

E1 = −4πe2 V

(2π )6

4πk3
F

3
(4π )(2kF )

∫ 1

0
(1− 3x/2+ x3/2)dx = −e2 (V k4

F /4π3) .
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Since kF = (3π2N/V )1/3 (see Eq. [2.10]), it follows that

E1/N = −3e2

4π
kF .

Using the definition of rs , and that e2/2a0 = 1 Ry, we obtain

E1/N = − 3
2π

(
9π

4

)1/3 1
rs

Ry � −0.916
rs

Ry.

Hence, to first order in the perturbation

E/N � 2.21
r2
s

− 0.916
rs

Ry. (4.20)

The first term is the kinetic energy per electron, while the second term is known
as the exchange energy per electron. The name is acquired because this term arises
in the evaluation of the matrix element by having the creation operator c

†
k′−qσ ′

restore the electron annihilated by ckσ , while c
†
k+qσ restores the electron annihilated

by ck′σ ′ . The exchange term is attractive, which may seem odd since it arises from
the Coulomb interaction. The explanation for this situation is that the term arises
when σ = σ ′. Electrons in the same spin state cannot be located at the same point
in space (Pauli exclusion principle), and they tend to stay away from each other,
hence reducing the repulsive Coulomb interaction. This effect, which is quantum
mechanical in nature, is not taken into account in the classical expression of the
Coulomb interaction. In a way, the exchange term represents a quantum correction
to an otherwise overestimated classical Coulomb repulsion.

4.3.2 Second order perturbation

The second order shift in energy, per one electron, is given by

E2/N = 1
N

∑′

m

〈F |VC|m〉〈m|VC |F 〉
E|F 〉 − E|m〉

. (4.21)

The prime indicates that the sum is over all intermediate states |m〉 
= |F 〉. Consider
〈m|VC |F 〉. VC annihilates two electrons in states |kσ 〉 and |k′σ ′〉 below the Fermi
surface and creates two electrons in states |k+ qσ 〉 and |k′ − qσ ′〉; hence, if |m〉 
=
|F 〉, the two created electrons must lie outside the Fermi sphere, as shown in Figure
4.3. If the two electrons simply interchange their states, so that |k+ qσ 〉 = |k′σ ′〉
and |k′ − qσ ′〉 = |kσ 〉, then |m〉 and |F 〉 will be the same. Therefore, 〈m|VC |F 〉
is nonzero if kF > k, kF > k′, kF < |k+ q|, and kF < |k′ − q|. Considering the
other matrix element, 〈F |VC|m〉, we see that VC must restore |m〉 to |F 〉. This can
be done by either a direct or an exchange process (see Figure 4.4). The contribution
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Figure 4.3 (a) Ground state |F 〉 corresponding to a filled Fermi sphere FS .
(b) The action of VC on |F 〉: two electrons are annihilated from inside FS , and
two electrons are created outside FS .

Figure 4.4 (a) A direct process: each electron recombines with the hole it left
behind. (b) An exchange process: each electron recombines with the hole left
behind by the other electron.

of the direct process to E2/N is

E2,D

N
= 1

N

∑′

q

∑
kσ

∑
k′σ ′

(
2πe2

V q2

)2 ( 1
E|F 〉 − E|m〉

)

× θ (kF − k)θ (kF − k′)θ (|k+ q| − kF )θ (|k′ − q| − kF ). (4.22)

Evaluation of the RHS of Eq. (4.22) is not easy, but we can see from the following
argument that it is divergent.

E|F 〉 − E|m〉 = h̄2

2m

[
k2 + k′2 − (k+ q)2 − (k′ − q)2]

= h̄2

2m

[
2(k′ − k).q− 2q2] = O(q) as q → 0.
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Figure 4.5 The region of integration over k in Eq. (4.22) is the shaded region. The
centers of the spheres are separated by −q and each has radius kF .

Replacing summation over k in Eq. (4.22) by integration, the presence of the prod-
uct θ (kF − k) θ (|k+ q| − kF ) in the integrand restricts the region of integration
to the shaded space in Figure 4.5, whose volume V�k is equal to the volume of
one sphere minus the volume of the overlap region of the two spheres (this was
evaluated in the previous subsection). Therefore,

V�k =
4πk3

F

3

[
3
2

(q/2kF )− 1
2

(q/2kF )3
]
= O(q) as q → 0.

Similarly, the volume of the region of integration over k′ can be calculated; again
we find

V�k′ = O(q) as q → 0.

The integral over k and k′ in Eq. (4.22) can be written as

I =
∫

�k

d3k

∫
�k′

d3k′
1

E|F 〉 − E|m〉
= m

h̄2

∫
�k

d3k

∫
�k′

d3k′
1

q
[
k′z − kz − q

] .
In evaluating E|F 〉 − E|m〉, we have taken the z-direction as that of q. In the limit
q → 0, the above integral gives

I = m

h̄2q
〈(k′z − kz)−1〉V�kV�k′ = O(q) as q → 0.

Here, 〈(k′z − kz)−1〉 is the average of (k′z − kz)−1 over the regions of integration �k
and �k′ . Considering now the integration over q, we obtain

E2,D

N

q→0−−→ V 3

NV 2

∫
d3q

O(q)
O(q4)

= V

N

∫
dq

O(q)
.

The second-order correction to the energy, which arises from the direct processes,
diverges logarithmically. Even though q = 0 is excluded from the sum, in the
thermodynamic limit, as the crystal’s volume V →∞, q may get arbitrarily close
to zero, leading to the logarithmic divergence. In the above expression, V 3 in
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the numerator arises from replacement of the summations over k, k′, and q by
integration, while V 2 in the denominator results from VC squared. We note, for
completeness’ sake, that the exchange term, following a similar analysis, turns out
to be finite.

What we have found is that the second-order correction, rather than being smaller
than the first-order correction, as one might expect, is actually divergent. Since the
crystal is stable, this divergence must be eliminated somehow. Our only hope is
to consider higher order terms in the perturbation. However, these also turn out to
be divergent, so a sum of terms to infinite order needs to be carried out. Green’s
function formalism will provide a suitable framework within which to carry this
out.

Finally, we note that the need to sum perturbation terms to infinite order arises
as a mathematical necessity due to their divergence, which in turn results from
the small values of q, or, equivalently, from the long-range nature of the Coulomb
interaction. Physically, one needs to sum perturbation terms to infinite order to
capture the effect of screening (this is discussed in detail in Chapter 10), which
renders the Coulomb interaction short-ranged. In empty space, two electrons i and
j would interact by exchanging momentum, but in the presence of a medium, the
interaction can proceed in an infinite number of ways. Electron i may scatter, but
the momentum it transfers could be picked up by an electron below the Fermi
surface, which would then make a transition to a state above the Fermi surface,
leaving behind a hole. The electron and hole could then recombine, transferring
momentum to electron j . Alternatively, the electron–hole recombination could lead
to the creation of another electron–hole pair which, upon recombination, would
transfer momentum to electron j . This argument could be carried on at length,
showing that there are infinite ways in which the interaction between two electrons
could proceed. The net effect is that the Coulomb interaction becomes screened.

Further reading

Bruus, H. and Flensberg, K. (2004). Many-Body Quantum Theory in Condensed Matter
Physics. Oxford: Oxford University Press.

Fetter, A.L. and Walecka, J.D. (1971). Quantum Theory of Many-Particle Systems. New
York: McGraw-Hill.

Kittel, C. (1963). Quantum Theory of Solids. New York: Wiley.

Problems

4.1 Constrained ground state. In the ground state of a noninteracting electron gas
at T = 0, there are N/2 spin-up electrons and N/2 spin-down electrons; the
ground state is unpolarized (Sz = 0). A spin polarized state has N↑ spin-up
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electrons and N↓ spin-down electrons: N↑ = (1+ p)N/2, N↓ = (1− p)N/2,
where p is the fractional spin polarization:−1 < p < 1. The state of minimum
energy, for a given value of p, is obtained by filling two Fermi spheres in k-
space, one of radius kF↑ and one of radius kF↓. Show that, in three dimensions,
the energy per electron in this constrained ground state is

E

N
= E0

N

(1+ p)5/3 + (1− p)5/3

2
where E0/N = 3EF /5 is the energy per electron in the unpolarized ground
state.

4.2 Correlation function. For a system of noninteracting electrons at T = 0, define
the following correlation function

Gσ (r, r′) = 〈�0|�†
σ (r)�σ (r′)|�0〉.

This is the probability amplitude for the state |α〉 = �σ (r′)|�0〉, in which a
particle at r′ is removed from the system in the ground state, to be found in
state |β〉 = �σ (r)|�0〉. |β〉 is the state obtained by removing a particle, with
coordinates (rσ ), from the ground state. Obtain an expression for Gσ (r, r′) in
terms of x = |r− r′|.

4.3 Pair correlation function. For a noninteracting electron gas in the ground state
|�0〉, evaluate 〈�0|�†

σ (r)�†
σ ′(r′)�σ ′(r′)�σ (r)|�0〉 in terms of x = |r− r′| for

σ 
= σ ′ and for σ = σ ′. What physical conclusion can you draw from your
answer?

4.4 Coulomb interaction in two dimensions. Show that, in two dimensions, the
Fourier transform of the Coulomb potential is 2πe2/q.
Hint: J0(x) = 1

2π

∫ 2π

0 e−ixcosθdθ .

4.5 Exchange energy in two dimensions. In three dimensions we found that the
exchange energy per electron is −3e2kF /4π . Show that, in two dimensions,
the exchange energy per electron is −4e2kF /3π .
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A brief review of statistical mechanics

Hence the importance of the role that is played in the physical
sciences by the law of probability. We must thoroughly
examine the principles on which it is based.

–Henri Poincare, Science and Hypothesis

Since we will be dealing with systems at finite temperatures, we will need concepts
that have been developed in the context of statistical mechanics. We devote this
chapter to a brief review of the basic elements of statistical mechanics.

5.1 The fundamental postulate of statistical mechanics

Consider an isolated system of N noninteracting, identical particles confined to
a region of volume V . The Hamiltonian is H =∑N

i=1 h(i), where h(i) is the
operator that represents the energy of particle i. The single-particle states are
obtained by solving the Schrödinger equation h|φν〉 = εν |φν〉, where ν stands for
all the quantum numbers that characterize the state. The energy εν depends on
V . For example, for a system of noninteracting particles confined to a cube of
side length L, εkσ = h̄2k2/2m, and if periodic boundary conditions are adopted,
then kx, ky, kz = 0,±2π/L,±4π/L, . . . . The total energy of the system is E =∑

ν nνεν , where nν is the number of particles in state |φν〉, and the total number of
particles is N =∑ν nν . A macrostate of the system is defined by specifying the
values of N, V , and E.

At the microscopic level, there are many different ways to distribute the
energy E among the N particles that comprise the system. Each of these dif-
ferent ways defines a particular microstate that is consistent with the given
macrostate. A microstate is a quantum state of the system described by a wave
function ψ(1, 2, . . . , N ). The number of microstates that are consistent with a
given macrostate is a function of N, V , and E, and it is denoted by �(N, V, E).
For a macroscopic system consisting of a large number of particles, of the
order of Avogadro’s number (6.22× 1023), �(N, V, E) will be, in general, a

78
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Figure 5.1 An isolated system A consists of two subsystems, A1 and A2, that are
in thermal contact. Neither E1 (the energy of A1) nor E2 (the energy of A2) is
constant, but E1 + E2 is constant.

fantastically large number. The fundamental postulate of statistical mechanics
asserts the following: an isolated system in equilibrium, in a given macrostate,
is equally likely to be in any of the microstates that are consistent with the given
macrostate.

5.2 Contact between statistics and thermodynamics

Consider an isolated system A which consists of two subsystems, A1 and
A2, that are in thermal contact and can exchange energy (see Figure 5.1).
A1, in macrostate (N1, V1, E1), has �1(N1, V1, E1) microstates, while A2 has
�2(N2, V2, E2) microstates. Due to energy exchange, E1 and E2 are not constants,
but the combined system A, being isolated, has a constant energy E = E1 + E2 .
Since A1 is equally likely to be in any of its microstates, as is A2, the total number
of microstates of A is �1(E1)�2(E2) = �1(E1)�2(E − E1) = �(E, E1), where
the dependence on N1, V1, N2, and V2 is suppressed (these latter quantities are con-
stants). Energy exchange between A1 and A2 persists until equilibrium is attained.
Let the values of E1 and E2 at equilibrium be Ē1 and Ē2, respectively. We assert
that at equilibrium �(E, E1) is maximum. The idea is that a system, left to its
own devices, settles into a macrostate that affords the largest possible number of
microstates (e.g., a gas confined by a partition to the left half of a box will fill the
box uniformly upon removal of the partition). Hence, at equilibrium

0 = ∂�

∂E1

∣∣∣∣
Ē1

= ∂�1(E1)
∂E1

∣∣∣∣
Ē1

�2(Ē2)+ �1(Ē1)
∂�2(E2)

∂E1

∣∣∣∣
Ē1

= ∂�1(E1)
∂E1

∣∣∣∣
Ē1

�2(Ē2)+ �1(Ē1)
∂�2(E2)

∂E2

∣∣∣∣
Ē2

∂E2

∂E1
.
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Since E1 + E2 is constant, ∂E2/∂E1 = −1, and the above relation yields

∂ ln �1(E1)
∂E1

∣∣∣∣
Ē1

= ∂ ln �2(E2)
∂E2

∣∣∣∣
Ē2

.

The condition for equilibrium of A1 and A2 thus reduces to

β1 = β2 (5.1)

where

βi = ∂ ln �i(Ni, Vi, Ei)
∂Ei

∣∣∣∣
Ni,Vi

i = 1, 2. (5.2)

The parameters Ni and Vi , being held constant, are now written explicitly.
From thermodynamics, we know that at equilibrium the temperatures of both

subsystems are equal

T1 = T2 , (5.3)

where T is given in terms of the entropy S by the thermodynamic relation

1
T
= ∂S

∂E

∣∣∣∣
N,V

. (5.4)

Comparing Eqs (5.1) and (5.3), and (5.2) and (5.4), we are tempted to identify β

with 1/T . However, β has units of 1/Energy; hence, we write

β = 1/kT , S = k ln � (5.5)

where k = 1.38× 10−23 J/K (Joules/degrees Kelvin) is Boltzmann’s constant.
Since, for a given system, the number of microstates � depends on N, V , and
E, we can write

d(ln �) = ∂ ln �

∂E

∣∣∣∣
N,V

dE + ∂ ln �

∂V

∣∣∣∣
N,E

dV + ∂ ln �

∂N

∣∣∣∣
V,E

dN. (5.6)

Using Eqs (5.4) and (5.5), the above relation is rewritten as

dS = 1
T

dE + ∂S

∂V

∣∣∣∣
N,E

dV + ∂S

∂N

∣∣∣∣
V,E

dN

=⇒ dE = T dS − T
∂S

∂V

∣∣∣∣
N,E

dV − T
∂S

∂N

∣∣∣∣
V,E

dN. (5.7)
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Comparing this with the fundamental formula of thermodynamics

dE = T dS − PdV + μdN , (5.8)

where P is the pressure and μ is the chemical potential, we find

P = kT
∂ ln �

∂V

∣∣∣∣
N,E

, μ = −kT
∂ ln �

∂N

∣∣∣∣
V,E

. (5.9)

The expressions for the thermodynamic quantities T , S, P , and μ, in terms of �,
establish the connection between thermodynamics and statistics.

5.3 Ensembles

Given a system in a specific macrostate, what is the probability of finding the
system in a particular microstate |ψi〉? Imagine a large collection or ensemble of
systems, Nens, with all systems in the same macrostate. We perform measurements
on each system in the ensemble to determine its microstate. If Ni systems were
found to be in state |ψi〉, we would say that the probability of the system being in
state |ψi〉 is Ni/Nens.

The information available about a system determines its macrostate. For exam-
ple, a system may be isolated, in which case N, V, and E are fixed. A system may
be in contact with a heat reservoir, in which case its temperature T is fixed, but
only its mean energy is fixed. Whatever the constraints are, an ensemble is con-
structed such that all of its members are under the same physical conditions as the
system of interest. Since one may imagine systems under various constraints, we
are led to consider different kinds of ensembles. Below we discuss three important
ensembles.

5.3.1 The microcanonical ensemble

Such an ensemble is representative of an isolated system with fixed energy. In
fact, the exact value of a system’s energy cannot be obtained by any measurement
performed in a finite amount of time (�E�t ∼ h̄); all we can tell is that the energy
of an isolated system is in a range (E, E + δE), where δE � E. The fundamental
postulate of statistical mechanics asserts that the probability of finding the system
in state |ψn〉 is given by

pn =
{

c if E ≤ En ≤ E + δE

0 otherwise
(5.10)

where c is a constant equal to 1 divided by the total number of states accessible to
the system.
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Figure 5.2 An isolated system consisting of a system A in thermal contact with a
much larger heat reservoir R at temperature T . A and R exchange energy, but the
total energy EA + ER remains constant.

5.3.2 The canonical ensemble

A canonical ensemble is representative of a system at a fixed temperature T . We
consider a small system A in contact with a heat reservoir R at temperature T

(see Figure 5.2). The combined system, A+ R, is isolated, and its total energy is
E0, which is a constant. System A is small in the sense that its degrees of freedom
are far fewer than those of R. What is the probability pn of finding A in state |ψn〉
with energy En, once equilibrium has been attained? If A is in state |ψn〉, then
the number of states of the combined system is simply �R(E0 − En), which is the
number of states accessible to R. Therefore, pn is proportional to �R(E0 − En),

pn = C�R(E0 − En) = Celn�R(E0−En).

We can expand ln �R(E0 − En),

ln �R(E0 − En) = ln �R(E0)− ∂ ln �R

∂E

∣∣∣∣
E0

En +O(E2
n)

= ln �R(E0)− ∂ ln �R

∂E

∣∣∣∣
ER+En

En +O(E2
n)

= ln �R(E0)− ∂ ln �R

∂E

∣∣∣∣
ER

En +O(E2
n).

Since En � E0, we neglect terms of order higher than En. Using Eq. (5.2), the
above equation may be written as

ln �R(E0 − En) = ln �R(E0)− βEn

where β = 1/kT and T is the temperature of the reservoir. Therefore,

pn = Celn�R(E0)−βEn = C�R(E0)e−βEn = C ′e−βEn.
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The constant C ′ is determined by the normalization condition

∑
n

pn = 1 ⇒ pn = e−βEn

Z
(5.11)

where Z, known as the partition function, is given by

Z =
∑

n

e−βEn. (5.12)

The Helmholtz free energy, F , of a system is defined by

F = E − T S (5.13)

where E is the average energy of the system and S is its entropy. Since its derivation
is too lengthy for a brief review such as this, we shall state without proof the
following result, which establishes the connection between F and Z,

F = −kT lnZ. (5.14)

5.3.3 The grand canonical ensemble

A grand canonical ensemble is representative of a system at fixed temperature but
consisting of a variable number of particles. Consider a system A in contact with
a heat reservoir R at temperature T . The systems A and R exchange energy and
particles (the particles in A and R are the same). Neither EA nor NA is fixed, but
EA + ER = E0 and NA +NR = N0 are fixed. For any given number of particles
Ns of system A, let the quantum states of A be labeled by r; the microstates of A are
then labeled by (r, s). Following the same argument as in the previous subsection,
the probability of finding system A in a particular state |ψrs〉, with energy Er and
number of particles Ns , is

prs = C�R(E0 − Er, N0 −Ns).

Expanding ln �R , and using Eqs (5.2) and (5.9), we find

ln �R(E0 − Er, N0 −Ns) = ln �R(E0, N0)− ∂ ln �R

∂E

∣∣∣∣
E0

Er − ∂ ln �R

∂N

∣∣∣∣
N0

Ns

= ln �R(E0, N0)− βEr + βμNs.

Higher orders in the expansion are neglected since Er � E0 and Ns � N0. Fol-
lowing the same steps as we did in the case of the canonical ensemble, we find the
probability that the system is in state |ψrs〉 ≡ |r, s〉 to be

prs = e−β(Er−μNs )

ZG

, (5.15)
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where

ZG =
∑
rs

e−β(Er−μNs ) (5.16)

is the grand partition function. Note that ZG may be written as

ZG =
∑
rs

〈r, s|e−β(H−μN)|r, s〉 = Tr
[
e−β(H−μN)] , (5.17)

where H is the Hamiltonian, N is the number of particles operator for system A,
and Tr[B] stands for the trace of operator B, the sum of the diagonal elements of
the matrix that represents B.

Given an operator A acting on a system with a variable number of particles, its
mean value in the state |r, s〉 is Ā = 〈r, s|A|r, s〉. Since the system is in state |r, s〉
with probability prs , the ensemble average 〈A〉 is given by

〈A〉 =
∑
rs

prsĀ =
∑
rs

e−β(Er−μNs )〈r, s|A|r, s〉
ZG

=
∑
rs

〈r, s|e−β(H−μN)A|r, s〉
ZG

.

Defining the statistical operator for the grand canonical ensemble by

ρG = e−β(H−μN)

Tr
[
e−β(H−μN)

] (5.18)

we can write

〈A〉 = Tr
[
e−β(H−μN)A

]
Tr
[
e−β(H−μN)

] = Tr(ρGA). (5.19)

Finally, we note that when a macroscopic system is in contact with a reservoir
with which it can exchange energy and particles, the fluctuations about the mean
energy and the mean number of particles are exceedingly small. Because this is
so, physical properties of the system do not change in any appreciable way if it is
removed from contact with the reservoir, resulting in it having fixed energy and
a fixed number of particles. Therefore, when calculating mean values of various
quantities, it makes no difference whether the system is isolated, in contact with
a heat reservoir, or in contact with a reservoir with which it can exchange energy
and particles. In other words, it makes no difference whether we are calculating
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mean values within a microcanonical, canonical, or grand canonical ensemble;
mathematical convenience usually dictates the most appropriate choice.

5.4 The statistical operator for a general ensemble

5.4.1 Definition

Let us consider a system of identical particles under certain physical conditions, i.e.,
in a certain macrostate. For example, the system may be isolated, in which case the
number of particles N , the volume V , and the energy E, are fixed. Alternatively,
our system may be in contact with a heat reservoir, in which case N, V , and
its temperature T are fixed. Regardless, we proceed to construct an ensemble of
systems having exactly the same physical conditions as our original system. Let us
assume that any particular microstate, characterized by the state vector |ψi〉, occurs
in the ensemble with probability pi . Clearly

∑
i pi = 1. The ensemble average of

an observable, represented by the hermitian operator A, is given by

〈A〉 =
∑

i

pi〈ψi |A|ψi〉. (5.20)

Notice that two types of averages are involved in writing the ensemble average.
〈ψi |A|ψi〉 is the usual quantum mechanical expectation value of A in state |ψi〉.
The above equation also tells us that the quantum mechanical averages must be
further weighted by the corresponding fractional occupation of the state |ψi〉; this
second averaging is classical in nature.

Given a complete set |1〉, |2〉, . . . of single-particle states, we introduce two
resolutions of identity (

∑
n |n〉〈n| = 1) into Eq. (5.20),

〈A〉 =
∑
nm

∑
i

pi〈ψi|n〉〈n|A|m〉〈m|ψi〉 =
∑
nm

∑
i

pi〈m|ψi〉〈ψi |n〉〈n|A|m〉.

In this form, the dependence of the average on the ensemble is factored out. We
define the statistical, or density, operator as follows:

ρ =
∑

i

pi|ψi〉〈ψi|. (5.21)

The ensemble average of A is now written as

〈A〉 =
∑
nm

〈m|ρ|n〉〈n|A|m〉 =
∑
m

〈m|ρA|m〉 = Tr[ρA]. (5.22)

Since the trace is independent of the basis set of single-particle states, Tr[ρA] may
be evaluated in any convenient basis set.
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5.4.2 General properties

There are two important properties of the statistical operator:

(1) The statistical operator ρ is Hermitian; this follows from its definition:

ρ =
∑

i

pi|ψi〉〈ψi| ⇒ ρ† =
∑

i

pi(|ψi〉〈ψi|)† =
∑

i

pi |ψi〉〈ψi| = ρ.

(2) The trace of ρ is unity,

Tr[ρ] =
∑

n

∑
i

pi〈n|ψi〉〈ψi|n〉 =
∑

i

pi

∑
n

〈ψi|n〉〈n|ψi〉 =
∑

i

pi〈ψi |ψi〉

=
∑

i

pi = 1.

5.4.3 Time evolution

At time t0 the statistical operator is given by

ρ(t0) =
∑

i

pi|ψi(t0)〉〈ψi(t0)|.

How does ρ change with time? pi is the probability of finding the microstate |ψi〉
in the ensemble. If the ensemble is left undisturbed, pi cannot change with time.
The evolution of ρ with time is thus completely governed by the time evolution of
the states |ψi〉,

ρ(t) =
∑

i

pi|ψi(t)〉〈ψi(t)|. (5.23)

The equation of motion of the statistical operator is

ih̄
∂ρ

∂t
=
∑

i

pi

(
ih̄

∂

∂t
|ψi(t)〉

)
〈ψi(t)| +

∑
i

pi|ψi(t)〉ih̄ ∂

∂t
〈ψi(t)|.

From the Schrödinger equation and its complex conjugate:

ih̄
∂

∂t
|ψi(t)〉 = H |ψi(t)〉, −ih̄

∂

∂t
〈ψi(t)| = 〈ψi(t)|H , (5.24)

we obtain

ih̄
∂ρ

∂t
=
∑

i

piH |ψi(t)〉〈ψi(t)| −
∑

i

pi|ψi(t)〉〈ψi(t)|H.

Using the definition of ρ, we can write

ih̄
∂ρ

∂t
= Hρ − ρH = [H, ρ]. (5.25)
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We will discuss the time evolution of ρ again in Chapter 13, when we discuss the
nonequilibrium Green’s function.

5.5 Quantum distribution functions

Consider a system of noninteracting, identical particles. Let us denote the single-
particle states by φ1, φ2, . . . , with corresponding energies ε1, ε2, . . . . The quantum
states of the system are given in the number-representation by |n1 n2 . . . 〉, where
ni is the number of particles in single-particle state φi . The energy of the state
|n1 n2 . . . 〉 is

∑∞
i=1 niεi , and the number of particles in the state is

∑∞
i=1 ni . We

take the system to be a member of a grand canonical ensemble. The grand partition
function is

ZG = Tr
[
e−β(H−μN)] = ∑

n1n2...

〈n1 n2 . . . |e−β(H−μN)|n1 n2 . . . 〉

=
∑

n1n2...

exp

[
−β

∞∑
i=1

(niεi − μni)

]
=
∑
n1

e−β(ε1−μ)n1
∑
n2

e−β(ε2−μ)n2 . . .

=
∞∏
i=1

∑
ni

e−β(εi−μ)ni . (5.26)

The ensemble average of the total number of particles is

〈N〉 = Z−1
G Tr

[
e−β(H−μN)N

] = Z−1
G

∑
n1n2...

〈n1n2 · · · |e−β(H−μN)N |n1n2 · · · 〉

= Z−1
G

∑
n1n2...

(n1 + n2 + · · · )e−β[(n1ε1+n2ε2+··· )−μ(n1+n2+··· )] = β−1 ∂

∂μ
ln ZG.

(5.27)

At this point, distinction is made between bosons and fermions. For bosons, ni is
unrestricted; it can vary from 0 to ∞. Equation (5.26) gives

ZB
G =

∞∏
i=1

1
1− e−β(εi−μ) ⇒ ln ZB

G = −
∞∑
i=1

ln
[
1− e−β(εi−μ)] . (5.28)

Using Eqs (5.27) and (5.28), we find

〈N〉 =
∑

i

e−β(εi−μ)

1− e−β(εi−μ) =
∑

i

1
eβ(εi−μ) − 1

=
∑

i

nBE
i ,
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Figure 5.3 The Fermi–Dirac distribution function. The dashed line corresponds
to the case of zero temperature.

where nBE
i , the Bose–Einstein quantum distribution function, is the average number

of particles in the single-particle state |φi〉. It is given by

nBE
i = 1

eβ(εi−μ) − 1
bosons. (5.29)

For fermions, ni in Eq. (5.26) is either 0 or 1; hence

ZF
G =

∞∏
i=1

[
1+ e−β(εi−μ)]⇒ ln ZF

G =
∑

i

ln
[
1+ e−β(εi−μ)] . (5.30)

The ensemble average of the number of particles is

〈N〉 =
∑

i

e−β(εi−μ)

1+ e−β(εi−μ) =
∑

i

1
eβ(εi−μ) + 1

=
∑

i

f FD
i ,

where f FD
i , the Fermi–Dirac distribution function, is the average occupation num-

ber of single-particle state φi . It is given by

f FD
i = 1

eβ(εi−μ) + 1
fermions. (5.31)

Unless confusion may arise, we write f FD
i simply as fi . The Fermi–Dirac distribu-

tion function is depicted in Figure 5.3. In particular, for a system of noninteracting
particles whose Hamiltonian is H =∑kσ εkσ c

†
kσ ckσ , the occupation number of

the single-particle state |kσ 〉 is given by

〈nkσ 〉 = 〈c†kσ ckσ 〉 =
{

nBE
kσ =

[
eβ(εkσ−μ) − 1

]−1 bosons

fkσ =
[
eβ(εkσ−μ) + 1

]−1 fermions.
(5.32)
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For a system with a fixed number of particles N , the chemical potential μ is
obtained from the relation

N =
∑

i

1
eβ(εi−μ) ∓ 1

(5.33)

where the lower (upper) sign refers to fermions (bosons).

Further reading

Huang, K. (2001). Introduction to Statistical Physics. London: Taylor and Francis.
Pathria, R.K. (1996). Statistical Mechanics, 2nd edn. Oxford: Butterworth-Heinemann.
Reif, F. (1965). Fundamentals of Statistical and Thermal Physics. New York: McGraw-Hill.

Problems

5.1 Stirling’s formula for N!. Starting from

N! =
∫ ∞

0
e−t tNdt ,

replace t with N +√N x. Show that

N! =
√

NNNe−N

∫ ∞

−√N

f (x)dx, f (x) = e−
√

Nx

(
1+ x√

N

)N

.

f (x) is maximum at x = 0 and falls to zero on both sides of the maximum.
Write f (x) = elnf (x), and expand ln f (x) around x = 0. Show that

N! =
√

NNNe−N

∫ ∞

−√N

exp
(
−x2

2
+ x3

3
√

N
− . . .

)
.

For N � 1, keep only the leading order in the expansion. For x < −√N ,
e−x2/2 is exceedingly small, and the lower limit of integration may be pushed
to −∞. Show that

N! �
√

2πNNNe−N.

Hence, prove Stirling’s formula, valid for N � 1,

ln N! � N ln−N.

5.2 Vacancies and interstitials in graphene. In graphene, assume that it costs
energy ε to form a vacancy–interstitial pair. The pair is obtained by removing
a carbon atom from a lattice site (the site becomes a vacancy) and placing it at
the center of a hexagon (an interstitial site). The total number of carbon atoms
is N , and the total energy is E = Mε, where M is the number of vacancies (M
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is also the number of interstitials). Also assume that N and M are much, much
greater than 1. Determine (a) the system’s entropy and (b) E as a function of
temperature T .

5.3 Magnetic susceptibility. Consider a crystal where each atom has spin 1/2 and
magnetic moment μ. The number of atoms per unit volume is n. A magnetic
field B is applied. Choose one atom as the small system and treat the rest of
the crystal as a heat reservoir at temperature T .
(a) Show that the magnetization (the mean magnetic moment per unit volume)

of the crystal is M = nμ tan h(μB/kT ).
(b) For the case μB/kT � 1, show that the magnetic susceptibility, defined

as χ = ∂M/∂B, varies as 1/T (Curie’s law).

5.4 Entropy and probabilty. For a given macrostate of a system of n identical
particles, let pn be the probability that the system is in state |ψn〉. Using the
relation F = E − T S = −kT ln Z, show that the system’s entropy is given
by S = −k

∑
n pn ln pn.

5.5 Statistical operator. Show that Tr(ρ2) ≤ 1.

5.6 Ising model in one dimension. The one-dimensional Ising model describes
localized particles on a line, where each particle carries a spin s. The
Hamiltonian is

H = −J

N∑
i=1

sisi+1 − h

N∑
i=1

si

where −J represents the strength of the interaction between neighboring
particles (J > 0) and h is proportional to a constant applied magnetic field.
Assume periodic boundary conditions: sN+1 = s1. The model also assumes
that si = 1 or −1.
(a) Show that the partition function is given by Z = Tr[T N ], where T is a

real, symmetric matrix, given by

T =
(

eβ(J+h) e−βJ

e−βJ eβ(J−h)

)
.

(b) By diagonalizing T , show that, as N→∞,

Z = −NJ −NkT ln
[
cosh(βh)+

√
sinh2(βh)+ e−4βJ

]
.

(c) Show that the mean magnetic moment, 〈∑i si〉/N , vanishes as h → 0.



6
Real-time Green’s and correlation functions

Facts do not ‘speak for themselves’, they are read in
the light of theory.

–Stephen Jay Gould

A many-particle system is intrinsically quite complex. Its energy level spectrum is
almost continuous, and the eigenfunctions that correspond to those energy levels
are complicated functions of the particles’ coordinates. The detailed form of its
energy spectrum and wave functions is neither exactly calculable nor measurable;
hence, we shall not be concerned with it.

In a typical experimental measurement that involves a many-particle system, a
system in equilibrium is weakly perturbed in one or more ways: a particle may be
added or removed, a weak electromagnetic field may be applied, a beam of electrons
or neutrons may strike the system, a thermal gradient may be established across the
system, and so on. Rather than attempting to calculate the full spectrum of a many-
particle system, it is more useful to concentrate on understanding how a system
responds to such external perturbations. The method of Green’s function serves
this purpose well. In this chapter, we focus on real-time functions for systems
in equilibrium. Imaginary-time functions will be introduced in Chapter 8. For
systems out of equilibrium, such as those featuring a metallic island between two
metal electrodes and an applied bias voltage that causes current to flow through the
island, another formalism, that of the nonequililbrium Green’s function, is needed;
it will be discussed in Chapter 13.

There are various types of real-time Green’s and correlation functions. In this
chapter, we develop the theory of these functions, with particular emphasis on
retarded functions (the most useful). As we will see later, retarded correlation
functions determine the response of a system to external probes, such as electro-
magnetic fields, electrons, or neutrons, and thus are directly related to experimen-
tally measured quantities.

91
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6.1 A plethora of functions

Consider a system of interacting particles, with a time-independent Hamiltonian H ,
at temperature T . It is convenient to allow the number of particles to vary, i.e., the
system can exchange energy and particles with a reservoir. The system is a member
of a grand canonical ensemble (see Section 5.3). Consider an operator A(c, c†),
represented in terms of fermion or boson annihilation and creation operators c and
c†, acting upon the state space of the system. We define a modified Heisenberg
picture operator A(t) as follows:

A(t) = eiH̄ t/h̄Ae−iH̄ t/h̄ , (6.1)

where

H̄ = H − μN, (6.2)

N is the number of particles operator, and μ is the chemical potential. The standard
Heisenberg picture is obtained if H̄ → H .

6.1.1 Correlation functions

Considering now any two operators A and B, we define the real-time causal, or
time-ordered, correlation function by

CT
AB(t, t ′) = −i〈T A(t)B(t ′)〉 (6.3)

where 〈· · · 〉 stands for the grand canonical ensemble average,

〈· · · 〉 = Z−1
G Tr

[
e−βH̄ · · ·

]
.

Here, β = 1/kT (k is Boltzmann’s constant), ZG = Tr[e−βH̄ ] is the grand canoni-
cal partition function, and Tr stands for the trace. In Eq. (6.3), T is the time-ordering
operator, sometimes written as Tt in order to distinguish it from the temperature.
Acting on a product of operators, T orders them in increasing time order from
right to left, and, in the process, introduces a minus sign every time two fermion
operators are interchanged. Thus,

T A(t)B(t ′) =
{

A(t)B(t ′) t > t ′

±B(t ′)A(t) t < t ′.
(6.4)

The lower (upper) sign refers to the case when A and B are fermion (boson)
operators. Note that the operator A(c, c†) is bosonic if c and c† are boson operators,
or if it is of even order in c and c†; e.g., if c and c† are fermion operators, an operator
such as c†c is considered a boson operator.
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The retarded correlation function CR is defined as follows. If A and B are
fermion operators, then

CR
AB(t, t ′) = −iθ (t − t ′)〈{A(t), B(t ′)

}〉 (6.5)

where {A, B} = AB + BA is the anticommutator of A and B, and θ (t − t ′) is the
step function,

θ (t − t ′) =
{

0 t < t ′

1 t > t ′.
(6.6)

CR
AB(t, t ′) is nonzero only if t > t ′; hence the name “retarded.” For the case when

A and B are bosonic operators,

CR
AB(t, t ′) = −iθ (t − t ′)〈[A(t), B(t ′)

]〉 (6.7)

where [A, B] = AB − BA is the commutator of A and B. We may combine both
cases and write

CR
AB(t, t ′) = −iθ (t − t ′)〈[A(t), B(t ′)

]
∓〉. (6.8)

The lower (upper) sign refers to fermions (bosons). Similarly, we define the
advanced correlation function, which is nonvanishing only if t < t ′, as follows:

CA
AB(t, t ′) = +iθ (t ′ − t)〈[A(t), B(t ′)

]
∓〉. (6.9)

As we will see later, athough the different functions introduced above have different
analytic properties, they are in fact closely related. Finally, we define one more
correlation function, without a label,

CAB(t, t ′) = 〈A(t)B(t ′)〉. (6.10)

This function also turns out to be important in analyzing experimental data.

6.1.2 Time dependence

A general property of correlation functions is that, if the Hamiltonian is time-
independent, they depend on t − t ′ and not on t and t ′ independently. We prove
this assertion for the retarded correlation function; similar proofs can be worked
out for all other correlation functions. Consider

CR
AB = −iθ (t − t ′)Z−1

G

{
Tr
[
e−βH̄ eiH̄ t/h̄Ae−iH̄ (t−t ′)/h̄Be−iH̄ t ′/h̄

]
∓Tr

[
e−βH̄ eiH̄ t ′/h̄BeiH̄ (t−t ′)/h̄Ae−iH̄ t/h̄

]}
.
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In the second term on the RHS the lower (upper) sign refers to fermions (bosons).
The time-independence of H̄ makes possible the replacement of eiH̄ t/h̄e−iH̄ t ′/h̄

with eiH̄ (t−t ′)/h̄. The trace is invariant under cyclic permutations: Tr[AB · · ·CD] =
Tr[DAB · · ·C]; hence, we can move e−iH̄ t ′/h̄ in the first term (e−iH̄ t/h̄ in the second
term) to the leftmost position, and using the fact that e−iH̄ t ′/h̄ (or e−iH̄ t/h̄) commutes
with e−βH̄ , we can write

CR
AB = −iθ (t − t ′)Z−1

G

{
Tr
[
e−βH̄ eiH̄ (t−t ′)/h̄Ae−iH̄ (t−t ′)/h̄B

]
∓Tr

[
e−βH̄ e−iH̄ (t−t ′)/h̄BeiH̄ (t−t ′)/h̄A

]}
.

The above expression shows that CR
AB is a function of t − t ′; consequently, we may

set t ′ = 0 and consider CR
AB to be a function of t . The same conclusion applies to

CT
AB, CA

AB , and CAB .

6.1.3 Single-particle Green’s functions

An important special case of the correlation function is when A = �σ (r) and
B = �

†
σ (r), where �σ (r) (�†

σ (r)) is the field operator that annihilates (creates)
a particle with spin projection σ at position r (see Section 3.11). In this case,
the causal, retarded, and advanced correlation functions are known as the single-
particle real-time Green’s functions, or simply real-time Green’s functions. They
are given by

G(rσ t, r′σ ′t ′) = −i〈T �σ (r t)�†
σ ′(r

′ t ′)〉 (causal) (6.11)

GR(rσ t, r′σ ′t ′) = −iθ (t − t ′)〈[�σ (r t), �†
σ ′(r

′ t ′)]∓〉 (retarded) (6.12)

GA(rσ t, r′σ ′t ′) = iθ (t ′ − t)〈[�σ (r t), �†
σ ′(r

′ t ′)]∓〉 (advanced). (6.13)

The lower (upper) sign refers to fermions (bosons). At this point we introduce two
other single-particle functions that play an important role in the study of transport.
The greater and lesser functions are defined by

G>(rσ t, r′σ ′t ′) = −i〈�σ (r t)�†
σ ′(r

′ t ′)〉 (greater) (6.14)

G<(rσ t, r′σ ′t ′) = ∓i〈�†
σ ′(r

′ t ′)�σ (r t)〉 (lesser). (6.15)

We note in passing that the ensemble average of the local particle number density
can be expressed in terms of the lesser function,

〈nσ (r, t)〉 = 〈�†
σ (rt)�σ (r t)〉 = ±iG<(rσ t, rσ t). (6.16)

The single-particle correlation function is defined by

C(rσ t, r′σ ′t ′) = 〈�σ (r t)�†
σ ′(r

′ t ′)〉; (6.17)
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it is simply iG>(rσ t, r′σ ′t ′). The above definitions can be generalized: for any
complete set |φ1〉, |φ2〉, . . . of single-particle states, Green’s functions may be
defined in terms of the corresponding annihilation and creation operators. The
retarded Green’s function, in the φν-representation, is defined by

GR(νt, ν ′t ′) = −iθ (t − t ′)〈[cν(t), c†ν ′(t
′)]∓〉.

Similar definitions can be made for the causal, advanced, greater, lesser, and corre-
lation functions. For example, consider an atom with single-particle states |φnlmσ 〉,
where n, l, m, and σ are, respectively, the principal, orbital, magnetic, and spin
quantum numbers. We may define a retarded Green’s function for electrons in this
atom as

GR(nlmσ t, n′l′m′σ ′t ′) = −iθ (t − t ′)〈{cnlmσ (t), c†n′l′m′σ ′(t
′)}〉.

6.2 Physical meaning of Green’s functions

Let us consider the causal Green’s function and assume that t > t ′,

iG(rσ t, r′σ ′t ′) = 〈�σ (r t)�†
σ ′(r

′ t ′)〉 = Z−1
G Tr

[
e−βH̄ �σ (r t)�†

σ ′(r
′ t ′)
]
.

Given a complete set of states |n〉,
Tr[· · · ] =

∑
n

〈n| · · · |n〉.

Taking the states |n〉 to be eigenstates of H̄ (H̄ |n〉 = Ēn|n〉),
iG(rσ t, r′σ ′t ′) = Z−1

G

∑
n

e−βĒn〈n|eiH̄ t/h̄�σ (r)e−iH̄ (t−t ′)/h̄�
†
σ ′(r

′)e−iH̄ t ′/h̄|n〉.
(6.18)

Defining the states |α〉 and |β〉 by

|α〉 = e−iH̄ (t−t ′)/h̄�
†
σ ′(r

′)e−iH̄ t ′/h̄|n〉, |β〉 = �†
σ (r)e−iH̄ t/h̄|n〉,

the matrix element in Eq. (6.18) may be written as

〈n| · · · |n〉 = 〈β|α〉;
it is the probability amplitude for a system in state |α〉 to be found in state |β〉. Let
us look more closely at state |α〉. Starting from state |n〉 at t = 0, e−iH̄ t ′/h̄|n〉 is the
state after it has evolved to time t ′. At this time, �

†
σ ′(r′) injects a particle with spin

projection σ ′ into the system at position r′, and the operator e−iH̄ (t−t ′)/h̄ carries the
system to time t . Thus, |α〉 is the state of the system at time t if a particle with
coordinates (r′σ ′) was added to it at an earlier time t ′. Similarly, |β〉 is the state of
the system when it has an extra particle with coordinates (rσ ), added at time t . The
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Figure 6.1 Definition of the causal Green’s function in terms of an overlap of
states |α〉 and |β〉. State |α〉 is obtained by letting state |n〉 evolve to time t ′, adding
a particle with coordinates (r′σ ′), and allowing the system to evolve to time t .
State |β〉 is obtained by letting |n〉 evolve and adding to it, at time t , a particle with
spin projection σ at position r.

matrix element 〈n| · · · |n〉 is thus the probability amplitude of finding the system
with an extra particle with coordinates (rσ ) at time t if a particle with coordinates
(r′σ ′) was injected at an earlier time t ′. Loosely speaking, it is the probability
amplitude for an added particle to propagate from (r′σ ′t ′) to (rσ t), though we
should be careful to note that, since the particles are indistinguishable, it is not
meaningful to think of the particle with coordinates (rσ ) as the same particle with
spin projection σ ′ that was injected earlier at r′. Since different states |n〉 occur
with probabilities Z−1

G e−βĒn, iG(rσ t, r′σ ′t ′) represents the ensemble average of
the aforementioned propagation amplitude. For t < t ′, iG(rσ t, r′σ ′t ′) represents
the ensemble average of the propagation amplitude of a hole from (rσ t) to (r′σ ′t ′).
Similar meanings can be attached to the other Green’s functions. The definition of
iG(rσ t, r′σ ′t ′) is depicted pictorially in Figure 6.1.

The above discussion indicates that single-particle Green’s functions are impor-
tant tools in analyzing experiments where particles are added to or removed from a
system. Examples include experiments that involve tunneling of electrons between
two systems, at different chemical potentials, which are placed in contact with
each other; and optical experiments whereby a photon removes an electron from a
solid. Another example is the introduction of magnetic impurities into a host metal;
tunneling takes place there between localized states on the impurity sites and the
delocalized host states. We will explore some applications of Green’s functions in
the next chapter.

6.3 Spin-independent Hamiltonian, translational invariance

Let us assume that the Hamiltonian is spin-independent, i.e., that the system under
consideration is nonmagnetic. Suppose that a particle with spin projection σ ′ is
injected into the system at time t ′. In the absence of any interactions that could flip
the spin of a particle, we cannot expect that, at a later time t , the system will have
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an extra particle with a spin projection σ 
= σ ′. The retarded Green’s function thus
vanishes unless σ = σ ′,

GR(rσ t, r′σ ′t ′) = δσσ ′G
R(rσ t, r′σ ′t ′).

The same conclusion applies to all the correlation functions that we have introduced.
We also note that, since H̄ is assumed to be time-independent, GR , being a special
case of the more general retarded correlation functions, depends on t − t ′, and not
on t and t ′ separately, as was shown in the preceding section. This being the case,
we may set t ′ = 0, and consider GR to be a function of t .

Generally, we will be dealing with translationally invariant systems, where any
function f (r, r′) of the positions of two particles (e.g., the interaction energy
between two particles at positions r and r′) does not change if both r and r′ are
shifted simultaneously by any vector R. It follows that f (r, r′) depends only on
r− r′, and not on r and r′ separately. In particular, the single-particle Green’s
functions are functions of r− r′. The proof of this statement is the subject of
Problem 6.2. Hence, in a translationally invariant system, with a time- and spin-
independent Hamiltonian, we write the retarded Green’s function as

GR(r− r′σ, t) = −iθ (t)〈[�σ (r t), �†
σ (r′0)]∓〉, (6.19)

and do so similarly for the other Green’s and correlation functions.
Considering a complete set of single-particle momentum states |kσ 〉 for which

φkσ = V −1/2eik.r|σ 〉, V being the system’s volume, the field operators are given
by

�σ (r t) = 1√
V

∑
k

eik.rckσ (t), �†
σ (r, t) = 1√

V

∑
k

e−ik.rc
†
kσ (t) (6.20)

(see Section 3.11). The operator c
†
kσ (ckσ ) creates (annihilates) a particle in state

|kσ 〉. Inserting the above relations into Eq. (6.19), we obtain

GR(r− r′σ, t) = −iθ (t)
1
V

∑
kk′

eik.re−ik′.r′ 〈[ckσ (t), c†k′σ (0)]∓〉

= −iθ (t)
1
V

∑
kk′

eik.(r−r′)ei(k−k′).r′ 〈[ckσ (t), c†k′σ (0)]∓〉.

Since GR depends only on r− r′, it does not change if r and r′ are shifted simul-
taneously to r+ R and r′ + R, for any vector R; hence,

GR(r− r′σ, t) = −iθ (t)
1
V

∑
kk′

eik.(r+R−r′−R)ei(k−k′).(r′+R)〈[ckσ (t), c†k′σ (0)]∓〉.
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Comparing the above two expressions for GR , we find

ei(k−k′).R = 1, ∀R ∈ R
3.

This is satisfied only if k′ = k. Therefore,

GR(r− r′σ, t) = −iθ (t)
1
V

∑
k

eik.(r−r′)〈[ckσ (t), c†kσ (0)]∓〉

= 1
V

∑
k

eik.(r−r′)GR(kσ, t). (6.21)

We have introduced GR(kσ, t), the spatial Fourier transform of GR(r− r′σ, t),

GR(kσ, t) = −iθ (t)〈[ckσ (t), c†kσ (0)]∓〉. (6.22)

Similarly,

GA(kσ, t) = iθ (−t)〈[ckσ (t), c†kσ (0)]∓〉 (6.23)

G(kσ, t) = −i〈T ckσ (t)c†kσ (0)〉 (6.24)

G>(kσ, t) = −i〈ckσ (t)c†kσ (0)〉 (6.25)

G<(kσ, t) = ∓i〈c†kσ (0)ckσ (t)〉 (6.26)

and

C(kσ, t) = 〈ckσ (t)c†kσ (0)〉. (6.27)

6.4 Spectral representation

What does a spectral representation mean? And why is it useful? To get an idea
of what a spectral representation is, consider a system with Hamiltonian H and
orthonormal eigenkets |n〉: H |n〉 = En|n〉. Introducing two resolutions of identity
(1 =∑ |n〉〈n|), we write H as

H =
∑
nm

|n〉〈n|H |m〉〈m| =
∑
nm

Enδnm|n〉〈m| =
∑

n

En|n〉〈n|.

The expression on the RHS forms a spectral representation of H , in the sense that H
is written in terms of its spectrum of energy levels and eigenstates. We will follow
a similar procedure in deriving the spectral representation of Green’s functions: we
shall introduce resolutions of identity and express the functions in terms of the exact
energy spectrum and eigenstates of the system. An answer to the second question
will unfold in later chapters. For now, it suffices to note that merely expressing
Green’s function in terms of the exact eigenstates of the system is not, in and of
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itself, a worthwhile goal. After all, the exact eigenstates are not known; if they were,
the problem would be completely solved. At finite temperature, real-time Green’s
(or correlation) functions are not amenable to a treatment of interacting systems
by means of perturbation theory. The burden will fall upon the imaginary-time
Green’s function, which will be discussed in Chapter 8. Nevertheless, experiments
are carried out in real time, and their interpretation requires knowledge of real-
time Green’s functions. How do we find the real-time Green’s function if we
know the imaginary-time function? By studying the spectral representations of
these functions, we will arrive at a simple method for obtaining the real-time
Green’s function from its imaginary-time counterpart. With this in mind, let us
next proceed to determine the spectral representations of GR(kσ, t), C(kσ, t), and,
more generally, CR

AB(t) and CAB(t).

6.4.1 Retarded and advanced Green’s functions

The retarded Green’s function is given by

GR(kσ, t) = −iθ (t)〈ckσ (t)c†kσ (0)〉 ± iθ (t)〈c†kσ (0)ckσ (t)〉 = A∓ B. (6.28)

The lower (upper) sign refers to fermions (bosons). Consider the first term,

〈ckσ (t)c†kσ (0)〉 = Z−1
G Tr

[
e−βH̄ eiH̄ t/h̄ckσ e−iH̄ t/h̄c

†
kσ

]
(6.29)

where ckσ = ckσ (t = 0) and c
†
kσ = c

†
kσ (t = 0). The trace of an operator is the sum

of its diagonal elements,

〈ckσ (t)c†kσ (0)〉 = Z−1
G

∑
n

〈n|e−βH̄ eiH̄ t/h̄ckσ e−iH̄ t/h̄c
†
kσ |n〉

= Z−1
G

∑
nm

〈n|e−βH̄ eiH̄ t/h̄ckσ |m〉〈m|e−iH̄ t/h̄c
†
kσ |n〉

= Z−1
G

∑
nm

e−βĒne−i(Ēm−Ēn)t/h̄〈n|ckσ |m〉〈m|c†kσ |n〉

= −
∫ ∞

−∞
P (kσ, ε)e−iεt dε

2π
. (6.30)

Here Ēi = Ei − μNi , where Ni is the number of particles in state |i〉, and

P (kσ, ε) = −2πZ−1
G

∑
nm

e−βĒn

∣∣∣〈m|c†kσ (0)|n〉
∣∣∣2 δ

(
ε − (Ēm − Ēn)/h̄

)
(6.31)
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is a spectral function (we will call it the P -spectral function). Therefore,

A = iθ (t)
∫ ∞

−∞
P (kσ, ε)e−iεt dε

2π
.

Next, we consider the second term in Eq. (6.28),

〈c†kσ (0)ckσ (t)〉 = Z−1
G Tr

[
e−βH̄ c

†
kσ eiH̄ t/h̄ckσ e−iH̄ t/h̄

]
.

Using the invariance property of the trace under cyclic permutations, we first move
e−iH̄ t/h̄ to the leftmost position, then move ckσ (0) to the leftmost position, and
finally move eiH̄ t/h̄ to the leftmost position; the result is

〈c†kσ (0)ckσ (t)〉 = Z−1
G Tr

[
eiH̄ t/h̄ckσ e−iH̄ (t−iβh̄)/h̄c

†
kσ

]
.

Introducing 1 = e−βH̄ eβH̄ at the leftmost position, we obtain

〈c†kσ (0)ckσ (t)〉 = Z−1
G Tr

[
e−βH̄ eiH̄ (t−iβh̄)/h̄ckσ e−iH̄ (t−iβh̄)/h̄c

†
kσ

]
.

The RHS of the above equation is the same as the RHS of Eq. (6.29) with t →
t − iβh̄; hence,

〈c†kσ (0)ckσ (t)〉 = −
∫ ∞

−∞
P (kσ, ε)e−iε(t−iβh̄) dε

2π
= −

∫ ∞

−∞
e−βh̄εP (kσ, ε)e−iεt dε

2π
.

(6.32)

The expression for B in Eq. (6.28) is thus obtained. The Fourier transform of
GR(kσ, t) is given by

GR(kσ, ω) =
∫ ∞

−∞
eiωtGR(kσ, t)dt. (6.33)

Noting that GR(kσ, t) vanishes for t < 0, we can write

GR(kσ, ω) =
∫ ∞

0
eiωtGR(kσ, t)dt =

∫ ∞

0
eiωt (A∓ B)dt

= i

∫ ∞

−∞
P (kσ, ε)(1∓ e−βh̄ε)

dε

2π

∫ ∞

0
ei(ω−ε)t dt.

The integral over t is oscillatory at infinity; we evaluate it as follows:∫ ∞

0
ei(ω−ε)t dt = lim

η→0+

∫ ∞

0
ei(ω−ε+iη)t dt = lim

η→0+

ei(ω−ε+iη)t

i(ω − ε + iη)

∣∣∣∣
∞

0

= lim
η→0+

−1
i(ω − ε + iη)

. (6.34)
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Introducing the spectral density function A(kσ, ε), defined by

A(kσ, ε) = −P (kσ, ε)(1∓ e−βh̄ε)

= 2πZ−1
G

∑
nm

e−βĒn

∣∣∣〈m|c†kσ |n〉
∣∣∣2 (1∓ e−βh̄ε)δ

(
ε − (Ēm − Ēn)/h̄

)
, (6.35)

the spectral representation of GR(kσ, ω) reduces to

GR(kσ, ω) = lim
η→0+

∫ ∞

−∞

A(kσ, ε)
ω − ε + iη

dε

2π
. (6.36)

A similar derivation yields the spectral representation of the advanced Green’s
function GA(kσ, ω),

GA(kσ, ω) = lim
η→0+

∫ ∞

−∞

A(kσ, ε)
ω − ε − iη

dε

2π
. (6.37)

The derivation of the above result, as well as the spectral representation of the
causal Green’s function, is relegated to the Problems section.

6.4.2 Single-particle correlation function

Turning now to the correlation function, the same initial steps as above yield

C(kσ, t) = −
∫ ∞

−∞
P (kσ, ε)e−iεt dε

2π
.

The Fourier transform is given by

C(kσ, ω) =
∫ ∞

−∞
eiωtC(kσ, t)dt = −

∫ ∞

−∞
P (kσ, ε)

dε

2π

∫ ∞

−∞
ei(ω−ε)t dt. (6.38)

The integral over t is straightforward (see Eq. [1.15])∫ ∞

−∞
ei(ω−ε)t dt = 2πδ(ω − ε). (6.39)

Substituting this into Eq. (6.38), we find

C(kσ, ω) = −P (kσ, ω). (6.40)

We can establish a relationship between GR(kσ, ω) and C(kσ, ω). Using

1
x ± i0+

= P

(
1
x

)
∓ iπδ(x) (6.41)
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where P (1/x) is the principal value of 1/x, and noting that A(kσ, ε) is real,
Eq. (6.36) gives

GR(kσ, ω) = 1
2π

∫ ∞

−∞
A(kσ, ε)

[
P

(
1

ω − ε

)
− iπδ(ω − ε)

]
dε

=⇒ A(kσ, ω) = −2 Im GR(kσ, ω). (6.42)

On the other hand, Eqs (6.35) and (6.40) give

C(kσ, ω) = (1∓ e−βh̄ω)−1A(kσ, ω) = A(kσ, ω)

{
(1+ nω) bosons

(1− fω) fermions
(6.43)

where fω and nω are the Fermi–Dirac and Bose–Einstein distribution functions,
respectively, for the case when energy is measured from the chemical potential,
i.e., when μ is set equal to zero,

fω = 1
eβh̄ω + 1

, nω = 1
eβh̄ω − 1

. (6.44)

The above expressions for GR(kσ, ω) and C(kσ, ω) imply that

C(kσ, ω) = −2 Im GR(kσ, ω)

{
(1+ nω) bosons

(1− fω) fermions.
(6.45)

This relation is one form of the fluctuation–dissipation theorem. The correlation
function measures the mean square fluctuation in the operator. However, energy
dissipation in the system is proportional to the imaginary part of some retarded
function. Further discussion of the fluctuation–dissipation theorem will occur at
the end of this section.

We end this subsection by deriving a relationship between the number of particles
in state |kσ 〉 and GR . Setting t = 0 in Eq. (6.32), we can write

〈c†kσ ckσ 〉 = −
∫ ∞

−∞
P (kσ, ε)e−βh̄ε dε

2π
=
∫ ∞

−∞

A(kσ, ε)e−βh̄ε

1∓ e−βh̄ε

dε

2π

=
∫ ∞

−∞

A(kσ, ε)
eβh̄ε ∓ 1

dε

2π
=
∫ ∞

−∞

dε

2π
A(kσ, ε)

{
nε bosons

fε fermions.

With the help of Eq. (6.42), the above relation is rewritten as

〈c†kσ ckσ 〉 =
∫ ∞

−∞
dε

(−1
π

)
Im GR(kσ, ε)

{
nε bosons

fε fermions.
(6.46)

This equation provides a method for calculating the number of particles in a given
state once the retarded Green’s function has been found.
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6.4.3 Retarded correlation function

Consider the retarded correlation function generated by operators A and B,

CR
AB(t) = −iθ (t)〈[A(t), B(0)]∓〉.

The lower (upper) sign refers to the case where A and B are fermion (boson)
operators. Expanding the anticommutator/commutator, we can write

CR
AB(t) = −iθ (t) [〈A(t)B(0)〉 ∓ 〈B(0)A(t)〉]

= −iθ (t)Z−1
G Tr

[
e−βH̄ eiH̄ t/h̄Ae−iH̄ t/h̄B ∓ e−βH̄BeiH̄ t/h̄Ae−iH̄ t/h̄

]
= −iθ (t)Z−1

G

∑
n

e−βĒn

[
eiĒnt/h̄〈n|Ae−iH̄ t/h̄B|n〉∓e−iĒnt/h̄〈n|BeiH̄ t/h̄A|n〉

]

= −iθ (t)Z−1
G

∑
nm

[
e−βĒnei(Ēn−Ēm)t/h̄〈n|A|m〉〈m|B|n〉

∓ e−βĒne−i(Ēn−Ēm)t/h̄〈n|B|m〉〈m|A|n〉
]
.

Relabeling indices in the second term: n → m, m → n, we obtain

CR
AB(t) = −iθ (t)Z−1

G

∑
nm

ei(Ēn−Ēm)t/h̄〈n|A|m〉〈m|B|n〉
(
e−βĒn ∓ e−βĒm

)
.

We now take the Fourier transform,

CR
AB(ω) =

∫ ∞

−∞
eiωtCR

AB(t)dt

= −iZ−1
G

∑
nm

〈n|A|m〉〈m|B|n〉
(
e−βĒn ∓ e−βĒm

) ∫ ∞

0
ei(h̄ω+Ēn−Ēm)t/h̄dt

= Z−1
G

∑
nm

〈n|A|m〉〈m|B|n〉
(
e−βĒn ∓ e−βĒm

)
ω − (Ēm − Ēn)/h̄+ i0+

. (6.47)

This is the spectral representation of the retarded correlation function. Notice that
all the poles lie below the real ω-axis; the retarded function is analytic in the upper
half of the complex ω-plane. Of course, the same conclusion applies to the retarded
single-particle Green’s function GR(kσ, ω), since it is a special case of the more
general retarded correlation function.

We can go a step further and express the spectral representation in a form similar
to Eq. (6.36). Define the spectral density function by

S(ε) = 2πZ−1
G

∑
nm

e−βĒn〈n|A|m〉〈m|B|n〉 (1∓ e−βh̄ε
)
δ
(
ε − (Ēm − Ēn

)
/h̄
)
.
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The spectral representation of the retarded correlation is now given by

CR
AB(ω) =

∫ ∞

−∞

S(ε)
ω − ε + i0+

dε

2π
.

6.4.4 Correlation function

Consider two operators A and B, and the correlation function

CAB(t) = 〈A(t)B(0)〉 = Z−1
G

∑
n

e−βĒneiĒnt/h̄〈n|Ae−iH̄ t/h̄B|n〉

= Z−1
G

∑
nm

e−βĒnei(Ēn−Ēm)t/h̄〈n|A|m〉〈m|B|n〉. (6.48)

Taking the Fourier transform,

CAB(ω) = Z−1
G

∑
nm

e−βĒn〈n|A|m〉〈m|B|n〉
∫ ∞

−∞
ei(h̄ω+Ēn−Ēm)t/h̄dt.

The integral over t gives 2πδ
(
ω − (Ēm − Ēn

)
/h̄
)
; hence,

CAB(ω) = 2πZ−1
G

∑
nm

e−βĒn〈n|A|m〉〈m|B|n〉δ (ω − (Ēm − Ēn

)
/h̄
)
.

The function CR
AB(ω) is given in Eq. (6.47). Using Eq. (6.41), we find

Im CR
AB(ω) = −πZ−1

G

∑
nm

e−βĒn〈n|A|m〉〈m|B|n〉
(

1∓ e−β(Ēm−Ēn)
)

× δ
(
ω − (Ēm − Ēn

)
/h̄
)

= −πZ−1
G

∑
nm

e−βĒn〈n|A|m〉〈m|B|n〉 (1∓e−βh̄ω
)
δ
(
ω− (Ēm−Ēn

)
/h̄
)
.

In the last step, we replaced the exponent (Ēm − Ēn)/h̄ with ω (this is made possible
by the presence of the delta function). Comparing CAB(ω) with ImCR

AB(ω), we
obtain

CAB(ω) = −2 Im CR
AB(ω)

(
1∓ e−βh̄ω

)−1 =⇒

CAB(ω) = −2 Im CR
AB(ω)

{
(1+ nω) bosons

(1− fω) fermions.
(6.49)

This is the fluctuation–dissipation theorem (Nyquist, 1928; Callen and Welton,
1951). To better understand the content of this theorem, we assume that A = B,
and let Ã(t) = A(t)− 〈A〉; i.e., Ã is the deviation of A from its thermal average
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value. 〈A〉 does not depend on time, since the Hamiltonian is assumed to be time-
independent. The correlation function CÃÃ(t) = 〈Ã(t)Ã(0)〉 = 〈A(t)A(0)〉 − 〈A〉2
describes the quantum thermal fluctuations in the operator A. On the other hand,
as we shall see later in this chapter, CR

ÃÃ
(t) describes the response of the system

to an external field; its imaginary part is usually related to energy dissipation.
For example, an external electromagnetic field couples to the current density j.
In this case A = j. Whereas CÃÃ(t) describes the quantum thermal fluctuations
in the current density, the imaginary part of CR

ÃÃ
(t) turns out to be related to the

resistance in the system, and hence to the mode of dissipation of energy supplied
to the system by the external field. Thus, it is usually the case that the LHS of
Eq. (6.49) represents fluctutations, while the RHS describes dissipation.

To see more explicitly that the imaginary part of the retarded correlation func-
tion describes dissipation, consider an applied external field that couples to some
observable of the system. We take the perturbation to be

H ′ = f A†e−iωt + f ∗Aeiωt (6.50)

where f is proportional to the strength of the applied field, and A is the operator
that represents the observable of the system (such as the current density) to which
the field is coupled. Since A is hermitian (A† = A), it must have an equal number
of creation and annihilation operators when it is expressed in second quantized
form; hence, it is a bosonic operator. The transition rate (transition probability
per unit time) from stationary state |n〉 to stationary state |m〉 (eigenstates of the
unperturbed Hamiltonian) is

wn→m = 2π

h̄
|f |2|〈m|A|n〉|2 [δ(Ēm − Ēn − h̄ω)+ δ(Ēm − Ēn + h̄ω)

]
(6.51)

(see Problem 1.13). Assuming that the system is a member of a grand canonical
ensemble, the energy absorbed by the system per unit time (the power delivered by
the field to the system) is given by

P = Z−1
G

∑
nm

e−βĒn(Ēm − Ēn)wn→m

= 2π

h̄
|f |2h̄ωZ−1

G

∑
nm

e−βĒn|Amn|2
[
δ(Ēm − Ēn − h̄ω)− δ(Ēm − Ēn + h̄ω)

]
.

where Amn = 〈m|A|n〉. Interchanging n and m in the second summation, and noting
that δ(−ax) = δ(ax) = (1/|a|)δ(x), we obtain

P = 2π

h̄
|f |2ωZ−1

G

∑
nm

|〈m|A|n〉|2(e−βĒn − e−βĒm)δ
[
ω − (Ēm − Ēn)/h̄

]
.

(6.52)
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From the spectral representation of the retarded correlation function, as given in
Eq. (6.47), we find

ImCR
AA(ω) = −πZ−1

G

∑
nm

|〈m|A|n〉|2(e−βĒn − e−βĒm)δ
[
ω − (Ēm − Ēn)/h̄

]
.

The power (energy per unit time) dissipated in the system is thus given by

P = 2
h̄

ω|f |2 [−ImCR
AA(ω)

]
. (6.53)

We note that it is indeed proportional to the imaginary part of the retarded correla-
tion function.

6.5 Example: Green’s function of a noninteracting system

As an example, we shall calculate the retarded Green’s function GR,0(kσ, ω) of a
system of noninteracting particles. The Hamiltonian is given by

H̄ =
∑
kσ

(εkσ − μ)c†kσ ckσ =
∑
kσ

ε̄kσ c
†
kσ ckσ

where ε̄kσ is the single-particle state energy relative to the chemical potential.
Below, we calculate GR,0(kσ, ω) using two different methods.

6.5.1 Derivation from the spectral density function

The spectral density function is given by Eq. (6.35),

A(kσ, ε) = 2πZ−1
G

∑
nm

e−βĒn

∣∣∣〈m|c†kσ |n〉
∣∣∣2 (1∓ e−βh̄ε)δ

(
ε − (Ēm − Ēn)/h̄

)
.

For 〈m|c†kσ |n〉 to be nonzero, |m〉 must differ from |n〉 by an extra particle in state
|kσ 〉. Since the system is noninteracting, Ēm − Ēn = ε̄kσ , and

A(kσ, ε) = 2πZ−1
G δ(ε − ε̄kσ /h̄)(1∓ e−βh̄ε)

∑
nm

e−βĒn〈n|ckσ |m〉〈m|c†kσ |n〉.

The sum over m gives 1 (
∑ |m〉〈m| = 1). Therefore,

A(kσ, ε) = 2πZ−1
G δ(ε − ε̄kσ /h̄)(1∓ e−βh̄ε)

∑
n

e−βĒn〈n|ckσ c
†
kσ |n〉

= 2πδ(ε − ε̄kσ /h̄)(1∓ e−βh̄ε)〈ckσ c
†
kσ 〉. (6.54)
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The definition of the grand canonical ensemble average is used in the last step.
From the commutation property of the c-operators, we can write

〈ckσ c
†
kσ 〉 = 〈1± c

†
kσ ckσ 〉 =

{
1+ nkσ bosons

1− fkσ fermions.

nkσ = (eβε̄kσ − 1)−1 and fkσ = (eβε̄kσ + 1)−1 are the Bose–Einstein and Fermi–
Dirac distribution functions, respectively. The spectral density function reduces
to

A(kσ, ε) = 2πδ(ε − ε̄kσ /h̄)(1∓ e−βh̄ε)

{
1+ nkσ bosons

1− fkσ fermions.

The Dirac-delta function has the property: δ(x − a)f (x) = δ(x − a)f (a) for any
function f (x). The factor (1∓ e−βh̄ε) in the above expression is thus replaced with
(1∓ e−βε̄kσ ). It is then straightforward to show that

A(kσ, ω) = 2πδ(ω − ε̄kσ /h̄). (6.55)

This is the spectral density function for noninteracting particles. Inserting this into
Eq. (6.36) gives the noninteracting retarded Green’s function

GR(kσ, ω) = 1
ω − ε̄kσ /h̄+ i0+

. (6.56)

We note that the poles of GR(kσ, ω) occur at the excitation energies of the system.
In the presence of interactions, the spectral density function will no longer be a
delta function; instead, the sharp peak representing the delta function will broaden,
yielding information about the energies of the excited states and their lifetimes.

6.5.2 An alternative derivation

For any modified Heisenberg picture operator A(t),

dA(t)
dt

= d

dt

(
eiH̄ t/h̄Ae−iH̄ t/h̄

)
= i

h̄
H̄A(t)+ eiH̄ t/h̄ ∂A

∂t
e−iH̄ t/h̄ − i

h̄
A(t)H̄

= i

h̄

[
H̄ , A(t)

]+ ∂A

∂t
(t).

We have assumed that H̄ is time-independent, and used the fact that H̄ commutes
with e−iH̄ t/h̄. The last term in the above equation is a Heisenberg operator. If
A = ckσ , we find

d

dt
ckσ (t) = i

h̄

[
H̄ , ckσ (t)

]
.



108 Real-time Green’s and correlation functions

For a system of noninteracting particles,

H̄ =
∑
kσ

ε̄kσ c
†
kσ ckσ .

It follows that

d

dt
ckσ (t) = i

h̄

[
H̄ , eiH̄ t/h̄ ckσ e−iH̄ t/h̄

]
= i

h̄
eiH̄ t/h̄

[
H̄ , ckσ

]
e−iH̄ t/h̄. (6.57)

The commutator is given by[
H̄ , ckσ

] =∑
k′σ ′

ε̄k′σ ′[c
†
k′σ ′ck′σ ′, ckσ ].

Using the relation [AB, C] = A{B, C} − {A, C}B, or, [AB, C] = A[B, C]+
[A, C]B, the above commutator gives, for fermions,

[c†k′σ ′ck′σ ′, ckσ ] = c
†
k′σ ′ {ck′σ ′, ckσ } − {c†k′σ ′, ckσ }ck′σ ′ = 0− δkk′δσσ ′ck′σ ′

and, for bosons,

[c†k′σ ′ck′σ ′, ckσ ] = c
†
k′σ ′[ck′σ ′, ckσ ]+ [c†k′σ ′, ckσ ]ck′σ ′ = 0− δkk′δσσ ′ck′σ ′ .

It follows that

[H̄ , ckσ ] = −
∑
k′σ ′

ε̄k′σ ′δkk′δσσ ′ck′σ ′ = −ε̄kσ ckσ . (6.58)

Putting this into Eq. (6.57), we find

d

dt
ckσ (t) = (−iε̄kσ /h̄)ckσ (t). (6.59)

This is easily solved,

ckσ (t) = e−iε̄kσ t/h̄ ckσ (0). (6.60a)

Taking the adjoint on both sides, we obtain

c
†
kσ (t) = eiε̄kσ t/h̄ c

†
kσ (0). (6.60b)

The retarded Green’s function is given by

GR(kσ, t) = − iθ (t)〈[ckσ (t), c†kσ (0)]∓〉 = −iθ (t)e−iε̄kσ t/h̄〈[ckσ (0), c†kσ (0)]∓〉
= −iθ (t)e−iε̄kσ t/h̄〈1〉 = −iθ (t)e−iε̄kσ t/h̄. (6.61)
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Its Fourier transform is

GR(kσ, ω) =
∫ ∞

−∞
GR(kσ, t)eiωtdt = −i

∫ ∞

0
ei(ω−ε̄kσ /h̄)t dt

= −i lim
η→0+

∫ ∞

0
ei(ω−ε̄kσ /h̄+iη)tdt = 1

ω − ε̄kσ /h̄+ i0+
.

This is the same expression obtained earlier from the spectral density function.

6.6 Linear response theory

A typical measurement on a system is carried out by perturbing the system in
the vicinity of a point r′, at time t ′, by a probe such as an electromagnetic field,
electrons, or neutrons, and measuring the response of the system near a point r at a
later time t . For example, if a weak electromagnetic field impinges on a metal, the
scalar potential φ(r, t) couples to the local electronic charge density ρ(r) = −en(r),
where n(r) is the electron number density, causing a disturbance that propagates to
other parts of the system. Similarly, the vector potential A(r) couples to the local
current density j(r). On the other hand, neutrons couple to the local spin density;
neutron scattering is used to characterize the state of a magnetic system. If the
interaction of the probe with the system is weak, which is usually the case (if the
interaction was strong, the probe would modify the properties of the system, and
we would be studying a system different from the original one), a calculation of
the system’s response to first order (linear) in the external perturbation provides a
good approximation.

The external field couples locally to a system’s operator A. In general, the
perturbation produced by the external field is given by the Hamiltonian

H ext(t) =
∫

d3rF (r, t)A(r). (6.62)

F (r, t) is a “generalized force.” For example, the scalar potential φ(r, t) of the
electromagnetic field couples to the number density of electrons n(r),

H ext(t) = −e

∫
d3rφ(r, t)n(r).

The generalized force in this case is −eφ(r, t) and A(r) = n(r). The external
perturbation drives the system out of its unperturbed state, leading to a measurable
effect: the ensemble average 〈A〉 shifts to a new value 〈A〉ext. For example, in
the absence of the scalar potential, 〈n(r, t)〉 is constant, but it will no longer be
constant once φ(r, t) is turned on, or a current (nonexistent in an isolated metal)
begins to flow upon the application of an external voltage. The experiment measures
δ〈A〉 = 〈A〉ext − 〈A〉 as a function of the generalized force F . From a theoretical
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perspective, we can say that, if F is weak, the response of the system, δ〈A〉, will
be, to a good approximation, linear in F ,

δ〈A〉(r, t) =
∫

d3r ′
∫

dt ′χ (rt, r′t ′)F (r′, t ′). (6.63)

In an experiment, F is varied at will (input) and δ〈A〉 is measured (output). On the
other hand, χ (rt, r′t ′), the generalized susceptibility, is an intrinsic property of the
system, and it determines how the system responds to external perturbations; its
calculation is one of the goals of the theory. As we will see later, the generalized
susceptibility is expressed as a retarded correlation function.

Consider a system of identical particles with a time-independent Hamiltonian
H , subjected to a time-dependent external perturbation H ext(t) (the effect of the
probe). We assume that H ext(t) is turned on at time t0. For t < t0, the state of the
system evolves according to H ,

|�(t)〉 = e−iH t/h̄|�(0)〉 t < t0.

For t > t0 , the state evolves according to the Schrödinger equation

ih̄
∂

∂t
|�(t)〉 = (H +H ext(t)

) |�(t)〉. (6.64)

We consider a solution of the form:

|�(t)〉 = e−iH t/h̄U (t)|�(0)〉 (6.65)

where U (t) is an operator to be determined. We note that

U (t) = 1 t ≤ t0. (6.66)

Inserting this solution into the Schrödinger equation, we find

ih̄
∂

∂t

[
e−iH t/h̄ U (t)

] |�(0)〉 = [H +H ext(t)
]
e−iH t/h̄ U (t)|�(0)〉

⇒ [
He−iH t/h̄ U (t)+ ih̄ e−iH t/h̄ ∂U/∂t

] |�(0)〉
= [He−iH t/h̄ U (t)+H ext(t) e−iH t/h̄ U (t)

] |�(0)〉
⇒ ih̄ e−iH t/h̄ ∂U/∂t = H ext(t) e−iH t/h̄ U (t).

The last equality is obtained since |�(0)〉 is arbitrary. Multiplying both sides by
eiHt/h̄ on the left, we obtain

ih̄ ∂U/∂t = H ext
H (t)U (t) (6.67)
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where H ext
H (t) is H ext(t) in the Heisenberg picture,

H ext
H (t) = eiHt/h̄H ext(t)e−iH t/h̄. (6.68)

The operator U (t) is determined by Eq. (6.67), a differential equation, along with
the boundary condition, Eq. (6.66). We integrate both sides of this equation from
t0 to t ; since U (t0) = 1, we obtain

U (t) = 1− i

h̄

∫ t

t0

H ext
H (t ′)U (t ′)dt ′. (6.69)

This is an integral equation for U (t); it can be solved by iteration

U (t) = 1− i

h̄

∫ t

t0

dt ′H ext
H (t ′)

[
1− i

h̄

∫ t ′

t0

H ext
H (t ′′)U (t ′′)dt ′′

]

= 1− i

h̄

∫ t

t0

dt ′H ext
H (t ′)+

(−i

h̄

)2 ∫ t

t0

dt ′
∫ t ′

t0

dt ′′H ext
H (t ′)H ext

H (t ′′)U (t ′′).

We can continue to iterate; we find

U (t) = 1− i

h̄

∫ t

t0

dt1H
ext
H (t1)+

(−i

h̄

)2∫ t

t0

dt1

∫ t1

t0

dt2H
ext
H (t1)H ext

H (t2)+ · · · . (6.70)

We now consider the response of the system to the external perturbation. In partic-
ular, we are interested in the effect of H ext on the expectation value of an operator
A that represents an observable of the system, such as its charge or current density.
Let the eigenstates of H (interacting, but unperturbed Hamiltonian) and the number
operator N be denoted by |n〉,

H |n〉 = En|n〉 , N |n〉 = N |n〉.

The states |n〉 are time-independent; they may be considered the stationary states
at t = 0, and they evolve in time, in the absence of H ext, as

|n, t〉 = e−iH t/h̄|n〉.

In the absence of H ext, the expectation value of A, in state |n〉, at time t , is

〈n, t |A|n, t〉|H ext=0 = 〈n|eiHt/h̄Ae−iH t/h̄|n〉 = 〈n|AH (t)|n〉

where AH (t) is operator A in the Heisenberg picture.
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In the presence of H ext, on the other hand, the state evolves according to
Eq. (6.65); the expectation value of A at time t > t0 is

〈n, t |A|n, t〉 = 〈n|U †(t)eiHt/h̄Ae−iH t/h̄U (t)|n〉 = 〈n|U †(t)AH (t)U (t)|n〉

= 〈n|
[

1+ i

h̄

∫ t

t0

dt ′H ext
H (t ′)+ · · ·

]
AH (t)

[
1− i

h̄

∫ t

t0

dt ′H ext
H (t ′)+ · · ·

]
|n〉

= 〈n|AH (t)|n〉 + i

h̄

∫ t

t0

dt ′〈n| [H ext
H (t ′)AH (t)− AH (t)H ext

H (t ′)
] |n〉 + · · ·

= 〈n|AH (t)|n〉 − i

h̄

∫ t

t0

dt ′〈n| [AH (t), H ext
H (t ′)

] |n〉 + · · · . (6.71)

If H ext is weak, we are justified in ignoring higher-order terms in H ext and keeping
only the first-order term. The first term on the RHS is just the expectation value of
A in the absence of H ext; hence, the change in the expectation value of A, brought
about by H ext, is given by

δ〈n, t |A|n, t〉 = − i

h̄

∫ t

t0

dt ′〈n| [AH (t), H ext
H (t ′)

] |n〉. (6.72)

For t < t0, the system is in equilibrium and state |n〉 is occupied with probability
pn = Z−1

G e−β(En−μN). We thus consider the change δ〈A〉 in the ensemble average
of A, caused by H ext. Taking the ensemble average on both sides of Eq. (6.72), we
obtain, for t > t0 ,

δ〈A〉(r, t) = − i

h̄

∫ t

t0

dt ′〈[AH (r, t), H ext
H (t ′)

]〉. (6.73)

On the RHS of the above equation, the ensemble average is taken over the inter-
acting, but unperturbed, system. One may object to this because pn may change as
a result of the perturbation. However, the above expression for δ〈A〉 is already first
order in H ext; any modification brought about by considering a change in pn will
be of higher order. Thus, within a linear response theory, where δ〈A〉 is calculated
only to first order in H ext, we are justified in taking the ensemble average over the
unperturbed system. Another way to arrive at this conclusion is as follows. Before
the external perturbation is turned on at t0, the system has been in contact with a
reservoir, with which it exchanges energy and particles, for a sufficiently long time
for equilibrium to be established. If we assume that the time t − t0, during which
the system is observed, is too short in comparison with the equilibration time, the
probabilities of occupation of the states |n〉 will remain unchanged. Stated differ-
ently, the process of measuring of the system’s response is finished long before
the reservoir is able to cause a repopulation of the states of the system through
exchange of energy and particles.
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For H ext of the form given in Eq. (6.62), the response of the system is

δ〈A〉(r, t) = − i

h̄

∫ t

t0

dt ′
∫

d3r ′〈[AH (r, t), AH (r′, t ′)
]〉F (r′, t ′)

= 1
h̄

∫ t

t0

dt ′
∫

d3r ′DR(rt, r′ t ′)F (r′, t ′) (6.74)

where

DR(rt, r′ t ′) = −iθ (t − t ′)〈[AH (r, t), AH (r′, t ′)
]〉. (6.75)

Since t > t ′, the integration over t ′ being from t0 to t > t0, the step function θ (t − t ′)
is equal to 1, and its introduction into Eq. (6.74) is a totally innocuous step. Equation
(6.74) is Kubo’s formula for the linear response of a system in equilibrium to an
external perturbation (Kubo, 1957). Since the operator A represents an observable,
it commutes with the number operator N (see Problem 3.4). Because H also
commutes with N , we can write

AH (r, t) = eiHt/h̄A(r)e−iH t/h̄ = ei(H−μN)t/h̄A(r)e−i(H−μN)t/h̄

= eiH̄ t/h̄A(r)e−iH̄ t/h̄ = AH̄ (r, t)

⇒ DR(rt, r′ t ′) = −iθ (t − t ′)〈[AH̄ (r, t), AH̄ (r′, t ′)
]〉. (6.76)

DR is thus a retarded correlation function. The generalized susceptibility χ (r t, r′ t ′)
is given by

χ (r t, r′ t ′) = 1
h̄

DR(rt, r′ t ′). (6.77)

Since H̄ is time-independent, the retarded correlation function, and hence χ , depend
on t − t ′, and not on t and t ′ separately. Furthermore, if the system is translationally
invariant, χ depends on r− r′. Thus,

δ〈A〉(r, t) =
∫ t

t0

dt ′
∫

d3r ′χ (r− r′, t − t ′)F (r′, t ′)

=
∫ ∞

−∞
dt ′
∫

d3r ′χ (r− r′, t − t ′)F (r′, t ′). (6.78)

Changing the limits of integration over t ′ is justifiable: for t ′ < t0, F (r′, t ′) vanishes,
and the value of the integral is unchanged by extending the integration range to
−∞; similarly, for t ′ > t , χ (r− r′, t − t ′) vanishes due to the factor θ (t − t ′)
contained in DR(rt, r′ t ′). Taking the Fourier transform with respect to time, we
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find

δ〈A〉(r, ω) =
∫ ∞

−∞
dteiωtδ〈A〉(r, t)

=
∫ ∞

−∞
dt

∫ ∞

−∞
dt ′
∫

d3r ′eiω(t−t ′)χ (r− r′, t − t ′)eiωt ′F (r′, t ′).

Noting that ∫ ∞

−∞
dt

∫ ∞

−∞
dt ′ · · · =

∫ ∞

−∞
dt ′
∫ ∞

−∞
d(t − t ′) . . . ,

we obtain

δ〈A〉(r, ω) =
∫

d3r ′χ (r− r′, ω)F (r′, ω). (6.79)

Similarly, we can Fourier transform with respect to spatial coordinates,

δ〈A〉(q, ω) =
∫

d3re−iq.rδ〈A〉(r, ω)

=
∫

d3r

∫
d3r ′e−iq.(r−r′)χ (r− r′, ω)e−iq.r′F (r′, ω).

In the thermodynamic limit, where the volume V →∞,∫
d3r

∫
d3r ′ · · · =

∫
d3r ′

∫
d3x . . .

where x = r− r′. Although less transparent, the above replacement is valid if V is
finite and periodic boundary conditions are adopted. The reader should convince
himself/herself of this. From the above, it follows that

δ〈A〉(q, ω) = χ (q, ω)F (q, ω). (6.80)

Thus, the system responds at the wave vector and frequency of the external field; if
these match the wave vector and frequency of an intrinsic excitation of the system,
a resonance effect occurs and a peak in δ〈A〉 is registered.

6.7 Noninteracting electron gas in an external potential

As an example, let us consider the response of a noninteracting electron gas to an
external electric potential φ(r, t). In this case

H ext(t) = −e

∫
d3rφ(r, t)n(r). (6.81)
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Within linear response theory, the change in the ensemble average of n is

δ〈n〉(r, t) = (−e/h̄)
∫ t

t0

dt ′
∫

d3r ′DR(rt, r′ t ′)φ(r′, t ′) (6.82)

where DR is the retarded density–density correlation function of the noninteracting
system,

DR(rt, r′ t ′) = −iθ (t − t ′)〈[nH̄ (r, t), nH̄ (r′, t ′)]〉. (6.83)

Since H̄ is time-independent and the system is translationally invariant, DR depends
on r− r′ and t − t ′: DR(rt, r′ t ′) = DR(r− r′, t − t ′). Hence

DR(rt, r′ t ′) = 1
V

∑
q

eiq.(r−r′)DR(q, t − t ′). (6.84)

Similarly, decomposing nH̄ (r, t) and nH̄ (r′, t ′) into Fourier components, we find

DR(rt, r′ t ′) = −iθ (t − t ′)
1

V 2

∑
qq′

eiq.reiq′.r′ 〈[nH̄ (q, t), nH̄ (q′, t ′)]〉

= −iθ (t − t ′)
1

V 2

∑
qq′

eiq.(r−r′)ei(q+q′).r′ 〈[nH̄ (q, t), nH̄ (q′, t ′)]〉. (6.85)

Since the RHS must depend on r− r′ and not independently on r′, it follows that
q′ = −q. Alternatively, we may argue that if r and r′ are shifted simultaneously
by any vector R, the RHS must remain unchanged since it depends only on r− r′.
However, such a shift brings a factor of ei(q+q′).R into Eq. (6.85); this factor should
be equal to 1 for any vector R, and we conclude that q′ = −q. Removing the
summation over q′, replacing q′ with−q, and comparing Eq. (6.84) with Eq. (6.85),
we obtain

DR(q, t − t ′) = −iθ (t − t ′)
1
V
〈[nH̄ (q, t), nH̄ (−q, t ′)]〉. (6.86)

Using Eq. (3.25), we can write

nH̄ (q, t) = eiH̄ t/h̄ nq e−iH̄ t/h̄ =
∑
kσ

eiH̄ t/h̄ c
†
kσ ck+qσ e−iH̄ t/h̄

=
∑
kσ

eiH̄ t/h̄ c
†
kσ e−iH̄ t/h̄ eiH̄ t/h̄ ck+qσ e−iH̄ t/h̄ =

∑
kσ

c
†
kσ (t) ck+qσ (t). (6.87)

Up to this point, our treatment applies to an interacting electron gas. In the simpler
case of a noninteracting electron gas, ckσ (t) and c

†
kσ (t) are given by Eq. (6.60), and

nH̄ (q, t) =
∑
kσ

c
†
kσ ck+qσ ei(ε̄kσ−ε̄k+qσ )t/h̄. (6.88)
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The retarded function is now expressed as follows:

DR,0(q, t − t ′) = −iθ (t − t ′)
1
V

∑
kσ

∑
k′σ ′

ei(ε̄kσ−ε̄k+qσ )t/h̄ ei(ε̄k′σ ′−ε̄k′−qσ ′ )t ′/h̄

× 〈[c†kσ ck+qσ , c
†
k′σ ′ ck′−qσ ′]〉.

The commutator is evaluated using the general formula

[AB, CD] = A{B, C}D − AC{B, D} + {A, C}DB − C{A, D}B (6.89)

which can be easily verified; we find

[c†kσ ck+qσ , c
†
k′σ ′ ck′−qσ ′] =

(
c
†
kσ ck′−qσ ′ − c

†
k′σ ′ ck+qσ

)
δσσ ′ δk+q,k′ .

The retarded correlation function can now be written as

DR,0(q, t − t ′) = −iθ (t − t ′)
1
V

∑
kσ

ei(ε̄kσ−ε̄k+qσ )(t−t ′)/h̄〈c†kσ ckσ − c
†
k+qσ ck+qσ 〉

= −iθ (t − t ′)
1
V

∑
kσ

ei(ε̄kσ−ε̄k+qσ )(t−t ′)/h̄ (fkσ − fk+qσ

)
.

where fkσ is the Fermi–Dirac distribution function. Taking the Fourier transform
with respect to time,

DR,0(q, ω)=
∫ ∞

−∞
dteiωtDR,0(q, t)=−i

V

∑
kσ

(
fkσ − fk+qσ

)∫ ∞

0
dte[iω+(ε̄kσ−ε̄k+qσ )/h̄]t

= −i

V

∑
kσ

(
fkσ − fk+qσ

)
lim

η→0+

∫ ∞

0
dtei[ω+(ε̄kσ−ε̄k+qσ )/h̄+iη]t

= 1
V

∑
kσ

fkσ − fk+qσ

ω + (ε̄kσ − ε̄k+qσ )/h̄+ i0+
. (6.90)

According to our general result, Eq. (6.80), the response of the system, δ〈n〉(q, ω),
is given by

δ〈n〉(q, ω) = χ 0(q, ω)F (q, ω) = −e

h̄
DR,0(q, ω)φ(q, ω) (6.91)

where F (q, ω) = −eφ(q, ω) is the generalized force, and

χ0(q, ω) = 1
h̄

DR,0(q, ω) = 1
h̄V

∑
kσ

fkσ − fk+qσ

ω + (ε̄kσ − ε̄k+qσ )/h̄+ i0+
(6.92)

is the polarizability of the noninteracting electron gas. The function on the RHS of
Eq. (6.92) is known as the Lindhard function (Lindhard, 1954). Equation (6.91) is
also valid for an interacting electron gas if DR,0 → DR .
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6.8 Dielectric function of a noninteracting electron gas

The dielectric function ε(q, ω) is defined by the relation

φtot(q, ω) = φext(q, ω)/ε(q, ω)

The total potential φtot is the sum of the external and induced potentials,

φtot(q, ω) = φext(q, ω)+ φind(q, ω)

=⇒ ε(q, ω) = [1+ φind(q, ω)/φext(q, ω)]−1 . (6.93)

The induced potential results from the induced charge density ρind = −eδ〈n〉; it is
given by

φind(r, t) =
∫

d3r ′
ρind(r′, t)
|r− r′| (cgs).

Multiplying both sides by e2, and noting that e2/|r− r′| is the Coulomb interaction,
which we can expand in a Fourier series, we obtain,

e2φind(r, t) =
∫

d3r ′ρind(r′, t)
1
V

∑
q

vqe
iq.(r−r′) = 1

V

∑
q

vqe
iq.rρind(q, t)

where vq = 4πe2/q2 is the Fourier transform of the Coulomb potential. The above
expression implies that

e2φind(q, ω) = vqρind(q, ω) = −evqδ〈n〉(q, ω) = e2

h̄
vqD

R(q, ω)φext(q, ω).

In the last step, Eq. (6.91) was used. The total potential is thus given by

φtot(q, ω) = [1+ (1/h̄)vqD
R(q, ω)

]
φext(q, ω).

Thus, for a noninteracting electron gas,

ε(q, ω) = [1+ (1/h̄)vqD
R,0(q, ω)

]−1 = [1+ vqχ
0(q, ω)

]−1
. (6.94)

The polarizability χ0(q, ω) of the noninteracting electron gas is given in
Eq. (6.92).

6.9 Paramagnetic susceptibility of a noninteracting electron gas

Let us consider another example of the application of linear response theory, the
spin response of a noninteracting electron gas to a magnetic field B(r, t) applied
at t = t0. The effect of the magnetic field on the orbital motion of the electrons
complicates the situation considerably. Here, we ignore the orbital response of the
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electrons and consider only the interaction of the magnetic field with the electrons’
spins.

The magnetic moment of an electron is μ = −(ge/2mc)S � −(e/mc)S, where
g � 2 is the gyromagnetic factor, −e is the charge of the electron, m is its mass, S
is its spin, and c is the speed of light (in SI units, μ � −(e/m)S). Since the energy
of a magnetic dipole in a magnetic field is −μ.B, the external perturbation due to
the applied field is written as

H ext(t) = −
∫

m(r).B(r, t)d3r t > t0. (6.95)

Here, m(r) is the magnetic moment density operator; it is given by

m(r) = − e

mc
s(r) (6.96)

where s(r) is the spin-density operator. H ext(t) has the standard form:

H ext(t) =
∫

A(r).F(r, t)d3r (6.97)

where A(r) = −m(r) and the generalized force F(r, t) = B(r, t). Using Kubo’s
formula (see Eq. [6.74]), derived within linear response theory,

δ〈−mi〉(r, t) = −i

h̄

∫ t

t0

dt ′
∫

d3r ′
∑

j

〈[−mi(r, t), −mj (r′, t ′)]〉Bj (r′, t ′)

where i, j = x, y, z. Since t > t ′, we can introduce θ (t − t ′) on the RHS,

δ〈mi〉(r, t) = −e2

h̄m2c2

∫ t

t0

dt ′
∫

d3r ′
∑

j

DR
ij (rt, r′ t ′)Bj (r′, t ′). (6.98)

DR
ij is the retarded spin-density correlation function

DR
ij (rt, r′ t ′) = −iθ (t − t ′)〈[si(r, t), sj (r′, t ′)]〉. (6.99)

For N electrons at positions r1, r2, . . . , rN , the spin-density operator is

s(r) =
N∑

i=1

δ(r− ri)Si (6.100)
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where Si is the spin operator for electron i. Employing a basis set of plane waves
|kσ 〉, we cast the spin-density operator into second quantized form:

s(r) =
∑
kσ1

∑
k′σ ′1

〈kσ1|δ(r− r′)S|k′σ ′1〉c†kσ1
ck′σ ′1

= h̄

2V

∑
σ1σ

′
1

〈σ1|σ |σ ′1〉
∑
kk′

∫
d3r ′e−ik.r′δ(r− r′)eik′.r′c

†
kσ1

ck′σ ′1

= h̄

2V

∑
σ1σ

′
1

∑
kq

eiq.r〈σ1|σ |σ ′1〉c†kσ1
ck+qσ ′1 =

1
V

∑
q

eiq.rs(q) (6.101)

where s(q) is the Fourier transform of s(r),

s(q) = h̄

2

∑
kσ1σ

′
1

〈σ1|σ |σ ′1〉c†kσ1
ck+qσ ′1 . (6.102)

In Eq. (6.101), we have replaced the spin operator S withh̄σ/2, where σx, σy , and σz

are the Pauli spin matrices. For the noninteracting electron gas, c
†
kσ (t) = c

†
kσ eiε̄kt/h̄

and ckσ (t) = ckσ e−iε̄kt/h̄. It follows that

s(q, t) = h̄

2

∑
kσ1σ

′
1

〈σ1|σ |σ ′1〉c†kσ1
ck+qσ ′1e

i(ε̄k−ε̄k+q)t/h̄. (6.103)

Owing to the time-independence of the unperturbed Hamiltonian and the transla-
tional invariance of the unperturbed system, an analysis similar to the one carried
out in Section 6.7 shows that

D
R,0
ij (q, t) = −iθ (t)〈[si(q, t), sj (−q, 0)]〉 = −iθ (t)

h̄2

4

×
〈⎡⎣∑

k1σ1σ
′
1

〈σ1|σi|σ ′1〉c†k1σ1
ck1+qσ ′1e

i(ε̄k1−ε̄k1+q)t/h̄ ,
∑

k2σ2σ
′
2

〈σ2|σj |σ ′2〉c†k2σ2
ck2−qσ ′2

⎤
⎦〉

= − iθ (t)
h̄2

4

∑
σ1σ

′
1σ2σ

′
2

〈σ1|σi|σ ′1〉〈σ2|σj |σ ′2〉

×
∑
k1k2

ei(ε̄k1−ε̄k1+q)t/h̄
〈
[c†k1σ1

ck1+qσ ′1 , c
†
k2σ2

ck2−qσ ′2 ]
〉
.

The commutator is evaluated using Eq. (6.89),〈
[c†k1σ1

ck1+qσ ′1 , c
†
k2σ2

ck2−qσ ′2 ]
〉
= δk2,k1+qδσ ′1σ2〈c†k1σ1

ck1σ
′
2
〉

− δk2,k1+qδσ1σ
′
2
〈c†k1+qσ2

ck1+qσ ′1〉 = δk2,k1+qδσ ′1σ2δσ1σ
′
2
(fk1 − fk1+q)
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where fk1 and fk1+q are Fermi–Dirac distribution functions. Therefore,

D
R,0
ij (q, t) = −iθ (t)

h̄2

4

∑
σ1σ2

〈σ1|σi|σ2〉〈σ2|σj |σ1〉
∑

k

(fk − fk+q)ei(ε̄k−ε̄k+q)t/h̄.

(6.104)
Using the completeness property of the spin states (

∑
σ2
|σ2〉〈σ2| = 1),∑

σ1σ2

〈σ1|σi |σ2〉〈σ2|σj |σ1〉 =
∑
σ1

〈σ1|σiσj |σ1〉 = Tr(σiσj )

= 1
2

[
Tr(σiσj )+ Tr(σjσi)

] = 1
2

Tr{σi, σj } = 1
2

Tr[2δij I ] = 2δij . (6.105)

We have made use of the invariance of the trace under cyclic permutations:
Tr[σiσj ] = Tr[σjσi], and the fact that {σi, σj } = 2δij I , where I is the 2× 2 identity
matrix. The expression for the retarded function thus reduces to

DR,0
ij (q, t) = −iθ (t)δij

h̄2

2

∑
k

(fk − fk+q)ei(ε̄k−ε̄k+q)t/h̄.

Its Fourier transform is

D
R,0
ij (q, ω) = δij

h̄2

2V

∑
k

fk − fk+q

ω + (ε̄k − ε̄k+q)/h̄+ i0+
. (6.106)

Hence,

δ〈mi〉(q, ω) = −h̄2e2Bi(q, ω)
2m2c2V

∑
k

fk − fk+q

h̄ω + ε̄k − ε̄k+q + i0+
. (6.107)

The paramagnetic susceptibility is

χP
ij (q, ω) = ∂

∂Bj (q, ω)
δ〈mi〉(q, ω) = χP (q, ω)δij . (6.108)

We thus find

χP (q, ω) = −μ2
B

1
V

∑
kσ

fk − fk+q

h̄ω + ε̄k − ε̄k+q + i0+
(6.109)

where μB = h̄e/(2mc) is the Bohr magneton, and we have used
∑

k F (k) =
(1/2)

∑
kσ F (k). The Lindhard function has made another appearance, as it often

does in the theory of the electron gas.
The paramagnetic susceptibility can be evaluated at zero temperature for the

case of a static field (ω = 0) in the long wave length limit (q → 0); χP is then real
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(it is easy to see that ImχP = 0 when ω = 0) and is given by

χP (q → 0, ω = 0) = −μ2
B

1
V

∑
kσ

lim
q→0

fk − fk+q

ε̄k − ε̄k+q
= μ2

B

1
V

∑
kσ

(
−∂fk

∂ε̄k

)
.

At T = 0, fk = 1 for ε̄k < 0 (εk < εF ), and fk = 0 for ε̄k > 0 (εk > εF ); hence
−∂fk/∂ε̄k = δ(εk − εF ). Therefore, at T = 0,

χ (q → 0, ω = 0) = μ2
B

1
V

∑
kσ

δ(εk − εF ) = μ2
B d(εF ) (6.110)

where d(εF ) is the density of states, per unit volume, at the Fermi energy. The
above expression for χ is the well-known Pauli paramagnetic susceptibility of
noninteracting, or independent, electrons.

6.10 Equation of motion

Next, we shall develop an equation of motion satisfied by the retarded Green’s
function. This approach allows us to calculate GR for an interacting system provided
that we adopt some approximations. We focus here on fermionic systems; the
bosonic case is considered in the Problems section.

Consider a system of interacting fermions whose time-independent Hamiltonian
is

H̄ = H̄0 + V =
∑
kσ

ε̄kσ c
†
kσ ckσ + V

where V represents the interaction between the particles, or the interaction of the
particles with an external field. The retarded Green’s function is

GR(kσ, t) = −iθ (t)
〈{

ckσ (t) , c
†
kσ (0)

}〉
.

Recalling that the derivative of the step function is the Dirac-delta function, we can
write

i
∂

∂t
GR(kσ, t) = δ(t)

〈{
ckσ (t) , c

†
kσ (0)

}〉
+ θ (t)

〈{
∂

∂t
ckσ (t) , c

†
kσ (0)

}〉
.

Since δ(x)f (x) = δ(x)f (0), the first term on the RHS is written as

δ(t)
〈{

ckσ (t) , c
†
kσ (0)

}〉
= δ(t)

〈{
ckσ (0) , c

†
kσ (0)

}〉
= δ(t)〈1〉 = δ(t).

As for the second term,

∂

∂t
ckσ (t) = i

h̄

[
H̄ , ckσ (t)

] = i

h̄

[
H̄0(t), ckσ (t)

]+ i

h̄
[V (t), ckσ (t)] .
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We have made use of the fact that since H̄ is time-independent, H̄ = H̄ (t). In
the equation above, the first commutator [H̄0(t), ckσ (t)] is equal to −ε̄kσ ckσ (t). It
follows that

∂

∂t
ckσ (t) = − i

h̄
ε̄kσ ckσ (t)+ i

h̄
[V (t), ckσ (t)] .

The equation of motion for GR(kσ, t) becomes(
ih̄

∂

∂t
− ε̄kσ

)
GR(kσ, t) = h̄δ(t)+ FR(kσ, t) (6.111)

where

F R(kσ, t) = −iθ (t) 〈{− [V (t), ckσ (t)] , ckσ (0)}〉 (6.112)

is a retarded correlation function that describes the effect of the interactions in the
system. To proceed further, we would need to evaluate FR(kσ, t). In general, an
exact solution is not possible; an approximation scheme must be used.

6.11 Example: noninteracting electron gas

We use the equation of motion to evaluate GR for a system of noninteracting
electrons: V = 0. In this case, Eq. (6.111) simplifies to(

i
∂

∂t
− ε̄kσ /h̄

)
GR(kσ, t) = δ(t).

This equation can be solved by Fourier decomposition(
i
∂

∂t
− ε̄kσ /h̄

)
1

2π

∫ ∞

−∞
e−iωtGR(kσ, ω)dω = 1

2π

∫ ∞

−∞
e−iωtdω.

The integral on the RHS is one of the representations of the Dirac-delta function.
Hence, ∫ ∞

−∞
(ω − ε̄kσ /h̄) e−iωtGR(kσ, ω)dω =

∫ ∞

−∞
e−iωtdω

⇒ GR(kσ, ω) = 1
ω − ε̄kσ /h̄

.

There is one problem with this expression for GR(kσ, ω). Suppose that we try to
calculate GR(kσ, t) from GR(kσ, ω),

GR(kσ, t) = 1
2π

∫ ∞

−∞

e−iωtdω

ω − ε̄kσ /h̄
.
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The integral is problematic because of the pole at ε̄kσ /h̄. To circumvent this problem,
we can shift the pole slightly, either above or below the real ω-axis. For t < 0, the
integral along the semicircle at infinity in the upper half of the complex ω-plane
vanishes because of the e−iωt factor in the integrand. In this case, GR(kσ, t) is
equal to the contour integral along the closed contour consisting of the real ω-axis
and the semicircle at infinity in the upper half ω-plane. Since GR(kσ, t) = 0 for
t < 0, the pole should not lie above the real axis, because the residue theorem
would then yield a nonvanishing value for GR(kσ, t). Causality thus dictates that
the pole needs to be shifted slightly below the real axis to ε̄kσ /h̄− i0+. Hence, the
correct expression for GR(kσ, ω) is

GR(kσ, ω) = 1
ω − ε̄kσ /h̄+ i0+

,

in conformity with the expression obtained earlier.

6.12 Example: an atom adsorbed on graphene

In the Problems sections of Chapters 2 and 3, the dispersion of the two energy
π -bands of graphene was calculated. Let us now consider a system consisting of
one atom adsorbed on graphene, with a model Hamiltonian

H =
∑
nkσ

εnkc
†
nkσ cnkσ+

∑
σ

εdd
†
σ dσ +

∑
nkσ

Vnkdc
†
nkσ dσ +

∑
nkσ

V ∗
nkdd

†
σ cnkσ + Und↑nd↓.

In the first term, n is a band index which can take two values, 1 and 2, k = (kx, ky)
is a vector in the first Brillouin zone of graphene, and σ =↑ or ↓. We assume that
the adsorbed atom has one orbital of energy εd ; because of Coulomb repulsion,
the energy increases by U if this orbital is doubly occupied, as indicated by the
last term in the Hamiltonian. The operator d

†
σ (dσ ) creates (annihilates) an electron

with spin projection σ in the atomic orbital. The third and fourth terms in H

describe the hybridization between the orbital on the adsorbed atom and the π -
states of graphene: electrons can hop from the adsorbed atom onto graphene, and
vice versa. In this example, we assume that U = 0, and we calculate the spectral
density function of the adsorbed atom. For the isolated atom, this is a Dirac-delta
function, peaked at h̄ω = εd ; we will see that interactions broaden the peak into a
Lorentzian.

The retarded Green’s function of the adsorbed atom is given by

GR(ddσ, t) = −iθ (t)
〈{

dσ (t), d†
σ (0)

}〉
.
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Taking the derivative with respect to t , we obtain

i
∂

∂t
GR(ddσ, t) = δ(t)+ i

h̄
θ (t)

〈{
[H, dσ (t)] , d†

σ (0)
}〉

.

Note that H (t) = eiHt/h̄He−iH t/h̄ = H . The commutator is given by

[H, dσ ] =
∑
σ ′

εd

[
d
†
σ ′dσ ′, dσ

]
+
∑
nkσ ′

V ∗
nkd

[
d
†
σ ′cnkσ ′, dσ

]

= −
∑
σ ′

εd

{
d
†
σ ′, dσ

}
dσ ′ −

∑
nkσ ′

V ∗
nkd

{
d
†
σ ′, dσ

}
cnkσ ′ = −εddσ −

∑
nk

V ∗
nkdcnkσ .

We have used the relation [AB, C] = A{B, C} − {A, C}B and the commutation
relations of fermion annihilation and creation operators. Thus,

i
∂

∂t
GR(ddσ, t) = δ(t)+ εd

h̄
GR(ddσ, t)+ 1

h̄

∑
nk

V ∗
nkdG

R(nkdσ, t). (6.113)

We have introduced the graphene-adsorbed-atom retarded Green’s function

GR(nkdσ, t) = −iθ (t)
〈{

cnkσ (t), d†
σ (0)

}〉
. (6.114)

Its equation of motion is

i
∂

∂t
GR(nkdσ, t) = εnk

h̄
GR(nkdσ, t)+ 1

h̄
Vnkd GR(ddσ, t). (6.115)

Upon Fourier decomposition:

GR(ddσ, t) = 1
2π

∫ ∞

−∞
e−iωtGR(ddσ, ω)dω, δ(t) = 1

2π

∫ ∞

−∞
e−iωtdω,

and similar decomposition for GR(nkdσ, t), we obtain

(ω − εd/h̄) GR(ddσ, ω) = 1+ (1/h̄)
∑
nk

V ∗
nkdG

R(nkdσ, ω) (6.116)

and

(ω − εnk/h̄) GR(nkdσ, ω) = (1/h̄)VnkdG
R(ddσ, ω). (6.117)

These equations can be solved for GR(ddσ, ω); we find

GR(ddσ, ω) = h̄

h̄ω − εd −
∑
nk

|Vnkd |2
h̄ω − εnk

.
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At this point, an argument is made similar to the one outlined in the previous
section: causality dictates that ω → ω + i0+; hence,

GR(ddσ, ω) = h̄

h̄ω + i0+ − εd −
∑
nk

|Vnkd |2
h̄ω − εnk + i0+

= h̄

h̄ω − εd −
∑
nk

P

( |Vnkd |2
h̄ω − εnk

)
+ iπ

∑
nk
|Vnkd |2 δ(h̄ω − εnk)

where P stands for the principal value. To proceed further, we assume that Vnkd is
small except for k-points in the first Brillouin zone near K and K ′, where it takes
the constant value V̄ . Under this assumption,∑

nk

|Vnkd |2 δ(h̄ω − εnk) = V̄ 2
∑
nk

δ(h̄ω − εnk) = V̄ 2Dσ (h̄ω).

Dσ (h̄ω) is the density of states, per spin, in graphene (see Problem 2.4). The spectral
density function, A(ddσ, ω) = −2 ImGR(ddσ, ω), is thus given by

A(ddσ, ω) = 2πh̄V̄ 2Dσ (h̄ω)[
h̄ω − εd −

∑
nk

P

( ∣∣V̄ ∣∣2
h̄ω − εnk

)]2

+ [πV̄ 2Dσ (h̄ω)
]2 . (6.118)

As expected, the presence of interactions causes a shift, and a broadening into a
Lorentzian, of the Dirac-delta peak, which characterizes the spectral density of a
noninteracting system. The shift is equal to the change in the energy of the atomic
orbital, while the width of the Lorentzian determines the lifetime of the atomic
state.

Further reading
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Cambridge University Press.
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Problems

6.1 Time independence. If H is time-independent, show that the time-ordered
correlation function −i〈T A(t)B(t ′)〉 depends on t − t ′ and not on t and t ′

separately.

6.2 Translational invariance. In a translationally invariant system, the Hamilto-
nian does not change if the positions of all the particles are shifted by the same
vector R: H (r1, . . . , rN ) = H (r1 + R, . . . , rN + R). H thus commutes with
the translation operator. Since the momentum operator P is the generator of
translations, H and P commute. P is given by

P =
∑

j

(−ih̄∇j ) =
∑

σ

∫
�†

σ (r)(−ih̄∇)�σ (r)d3r.

(a) Show that [�†
σ (r), P] = −ih̄∇�σ (r). Deduce that

�σ (r) = e−iP.r/h̄�σ (0)eiP.r/h̄ = T (r)�σ (0)T −1(r)

where T (r) = e−iP.r/h̄ is the translation operator that translates the posi-
tions of all particles by r.

(b) Let C(rσ t, r′σ ′t ′) = 〈�(rσ t)�†(r′σ ′t ′)〉. Using the fact that T (r) com-
mutes with e−βH̄ , along with the cyclic property of the trace, show that C

is a function of r− r′. Deduce that in a translationally invariant system,
all single-particle Green’s functions are functions of r− r′.

6.3 Spectral density function. Show that the spectral density function A(kσ, ω)
satisfies the normalization condition∫ ∞

−∞
A(kσ, ω)dω = 2π.

6.4 Advanced Green’s function. Derive the spectral representation of GA

(kσ, ω).

6.5 Advanced correlation function. Derive the spectral representation of the
advanced correlation function CA

AB(ω). Show that all the poles lie above
the real ω-axis.

6.6 Greater and lesser functions. Show that, for fermions

iG>(kσ, ω) = A(kσ, ω)[1− fω], iG<(kσ, ω) = −A(kσ, ω)fω
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while for bosons

iG>(kσ, ω) = A(kσ, ω)[1+ nω], iG<(kσ, ω) = A(kσ, ω)nω.

6.7 Causal Green’s function. Derive the spectral representation of the causal
(time-ordered) Green’s function.

6.8 Relation among Green’s functions.
(a) Show that Re G(kσ, ω) = Re GR(kσ, ω) = Re GA(kσ, ω).
(b) Show that for fermions

ImGR(kσ, ω) = −ImGA(kσ, ω) = [tan h(βh̄ω/2)]−1ImG(kσ, ω)

while for bosons

ImGR(kσ, ω) = −ImGA(kσ, ω) = tan h(βh̄ω/2) ImG(kσ, ω).

6.9 Greater and lesser correlation functions. For two observables represented
by operators A and B, iC>

AB(t) = 〈A(t)B(0)〉, and iC<
AB(t) = 〈B(0)A(t)〉.

Assuming that H is time-independent, show that C>
AB(t − iβh̄) = C<

AB(t).
Deduce that C<

AB(ω) = e−βh̄ωC>
AB(ω).

6.10 Susceptibility. Let h̄χAB(t) = −iθ (t)〈[A(t), B(0)]〉, where A and B are her-
mitian operators.
(a) Show that χAB(t) is real.
(b) Deduce that [χAB(ω)]∗ = χAB(−ω). This shows that Re χAB(ω) is an

even function of ω, while ImχAB(ω) is an odd function of ω.

6.11 Kramers–Kronig relations. Assume that a function χ (ω) satisfies the
following:
(a) The poles of χ (ω) are all below the real ω-axis.
(b)

∫
dωχ (ω)/ω = 0 if the integration is around a semicircle at infinity in

the upper half ω-plane.
(c) The real part of χ (ω) is an even function of ω, while the imaginary part

of χ (ω) is an odd function of ω.
Show that

Re χ (ω) = 2
π

P

∫ ∞

0

ω′ Imχ (ω′)dω′

ω′2 − ω2
, Imχ (ω)= 2ω

π
P

∫ ∞

0

Re χ (ω′)dω′

ω′2 − ω2

where P stands for the principal value. To prove this, consider the integral

I =
∫

C

χ (ω′)dω′

ω′ − ω
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Figure 6.2 The contour C. The large semicircle is at infinity, while the radius of
the small semicircle is infinitesimal.

where C is the contour shown in Figure 6.2. The large semicircle is at infinity,
while the radius of the small semicircle is infinitesimal. Show that

χ (ω) = 1
iπ

P

∫ ∞

−∞

χ (ω′)dω′

ω′ − ω

and then equate the real and imaginary parts on both sides of the above
equation.

6.12 Polarizability. Starting from the spectral representation of the retarded corre-
lation function, derive the expression for the polarizability of a noninteracting
electron gas.

6.13 Equation of motion. Derive the equation of motion for the retarded Green’s
function for an interacting system of bosons.

6.14 Mixed retarded function. Derive Eq. (6.115).

6.15 Polarizability at zero temperature. The polarizability of a noninteracting
electron gas is given by Eq. (6.92). Show that, at T = 0

Re χ 0(q, ω) = −d(εF )
[

1
2
+ 1− z2

−
4q/kF

ln
∣∣∣∣1− z−
1+ z−

∣∣∣∣− 1− z2
+

4q/kF

ln
∣∣∣∣1− z+
1+ z+

∣∣∣∣
]

Imχ 0(q, ω) = −d(εF )
π

4q/kF

[(1− z2
−)θ (1− z2

−)− (1− z2
+)θ (1− z2

+)]

where z± = ω/qvF ± q/2kF , kF is the Fermi wave vector, vF = h̄kF /m is
the Fermi velocity, and d(εF ) = mkF /π2h̄2 is the density of states, per unit
volume, at the Fermi energy.
Hint: The expression for χ0(q, ω) consists of two terms, each involving a
sum over k and σ . In the second term, replace k with −k− q. The second
term becomes the same as the first term, but with h̄ω + i0+ → −h̄ω − i0+.
Now replace the sum over k with integration. Also note that∫

x ln|x + a|dx = x2 − a2

2
ln|x + a| − 1

4
(x − a)2.
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6.16 Polarizability. Show that, at zero temperature

χ0(q, ω = 0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d(εF )
[

1
2
− 4− q ′2

8q ′
ln
∣∣∣∣2− q ′

2+ q ′

∣∣∣∣
]

3D

−d(εF )

[
1− θ (q ′ − 2)

√
q ′2 − 4
q ′

]
2D

−d(εF )
[

1
q ′

ln
∣∣∣∣2+ q ′

2− q ′

∣∣∣∣
]

1D

where q ′ = q/kF .



7
Applications of real-time Green’s functions

Theory leads to application, and application brings to mind the
Source of all theory and the theory itself. He who never applies
a theory will find that he has lost it. He who does apply a theory
will find he can’t exhaust it.

–Niffari, tenth century mystic, Mawaqif (Spiritual Stations)

We are now ready to apply the analytical methods developed in Chapter 6. We
begin by studying a single-level quantum dot, a system which has one energy level
that can accommodate up to two electrons. Next, we consider a system consisting
of a single-level quantum dot in contact with a metal, where electrons can tunnel
back and forth from the metal to the dot. Finally, we consider two metal electrodes
separated by a thin insulating layer, and derive an expression for the tunneling
current as a function of the bias voltage utilizing linear response theory. We will
return to these model systems in Chapter 13, when we discuss transport in terms
of the nonequilibrium Green’s function method.

7.1 Single-level quantum dot

The model Hamiltonian for the single-level quantum dot is

HD = ε
∑

σ

d†
σ dσ + Un↑n↓. (7.1)

Here, ε is the energy of the level, d
†
σ (dσ ) creates (annihilates) an electron of spin

projection σ in that level, n↑ (n↓) is the number operator for spin-up (-down)
electrons, and U > 0 is the onsite Coulomb repulsion. The second term in the
Hamiltonian tends to prevent double occupancy of the energy level. If only one
electron occupies the level, the energy of the dot is ε. If two electrons, one with

130
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Figure 7.1 Energy of a quantum dot with a single level. If only one electron
occupies the level, the energy of the dot is ε. If there are two electrons in the dot,
the energy is 2ε + U .

spin up and the other with spin down occupy the level, in accordance with the Pauli
exclusion principle, then the energy of the dot is 2ε + U (see Figure 7.1).

The retarded Green’s function of the system is

GR
σ (t) = −iθ (t)〈{dσ (t), d†

σ (0)}〉 (7.2)

where 〈· · · 〉 stands for thermal averaging, θ (t) is the step function, and {A, B} =
AB + BA is the anticommutator of operators A and B. We proceed to determine
the retarded function by the equation of motion approach,

i
∂

∂t
GR

σ (t) = δ(t)+ θ (t)〈{ḋσ (t), d†
σ (0)}〉 (7.3)

where ḋσ (t) = ∂dσ (t)/∂t . The Heisenberg equation of motion gives

ḋσ (t) = − i

h̄
[dσ (t), HD(t)] . (7.4)

The commutator on the RHS of the above equation is easily determined:

[dσ ,
∑
σ ′

d
†
σ ′dσ ′ ] = dσ

[
dσ , n↑n↓

] = n↑
[
dσ , n↓

]+ [dσ , n↑
]
n↓ = n↑

[
dσ , d

†
↓d↓
]
+
[
dσ , d

†
↑d↑
]
n↓

= n↑d↓δσ↓ + d↑n↓δσ↑ = nσ̄ dσ

where σ̄ = −σ . In obtaining these results, we have used the relation [A, BC] =
B[A, C]+ [A, B]C = {A, B}C − B{A, C}, and the fact that dσ commutes with
nσ̄ . Therefore,

ḋσ = −i

h̄
[ε + Unσ̄ (t)] dσ (t). (7.5)

Upon substituting the above result into Eq. (7.3), we obtain

i
∂

∂t
GR

σ (t) = δ(t)+ ε

h̄
GR

σ (t)+ U

h̄
�R

σ (t). (7.6)
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The retarded correlation function �R
σ (t) is defined by

�R
σ (t) = −iθ (t)〈{nσ̄ (t)dσ (t), d†

σ (0)}〉. (7.7)

Next, we construct the equation of motion for �R
σ (t),

i
∂

∂t
�R

σ (t) = δ(t)〈{nσ̄ (0)dσ (0), d†
σ (0)}〉 + θ (t)〈{ṅσ̄ (t)dσ (t), d†

σ (0)}〉

+ θ (t)〈{nσ̄ (t)ḋσ (t), d†
σ (0)}〉.

Since nσ̄ commutes with dσ and d
†
σ , the first term is simply δ(t)〈nσ̄ 〉. The second

term vanishes because nσ̄ commutes with the Hamiltonian HD. Evaluating the third
term, with the help of Eq. (7.5), we obtain a term containing the product nσ̄ (t)nσ̄ (t).
Noting that

nσ̄nσ̄ = d
†
σ̄ dσ̄ d

†
σ̄ dσ̄ = d

†
σ̄

(
1− d

†
σ̄ dσ̄

)
dσ̄ = d

†
σ̄ dσ̄ − d

†
σ̄ d

†
σ̄ dσ̄ dσ̄ = d

†
σ̄ dσ̄ = nσ̄ ,

the equation of motion for the retarded correlation function reduces to

i
∂

∂t
�R

σ (t) = δ(t)〈nσ̄ 〉 + 1
h̄

(ε + U )�R
σ (t). (7.8)

Fourier transforming Eqs (7.6) and (7.8), we find

(ω − ε/h̄+ i0+)GR
σ (ω) = 1+ (U/h̄)�R

σ (ω) (7.9)

(ω − ε/h̄− U/h̄+ i0+)�R
σ (ω) = 〈nσ̄ 〉. (7.10)

These equations are readily solved,

GR
σ (ω) = 1− 〈nσ̄ 〉

ω − ε/h̄+ i0+
+ 〈nσ̄ 〉

ω − (ε + U )/h̄+ i0+
. (7.11)

This is the exact retarded Green’s function for an isolated single-level quantum
dot. The spin-resolved density of states Dσ , given by−(1/πh̄) Im GR

σ (ω), has two
delta-function peaks, one at h̄ω = ε with a weight of 1− 〈nσ̄ 〉, which corresponds
to the level being singly occupied, and another at h̄ω = ε + U , with a weight of
〈nσ̄ 〉, which corresponds to double occupancy of the level.

The result (7.11) is plausible: if we add an electron, of spin projection σ , to an
empty quantum dot (〈nσ̄ 〉 = 0), GR

σ (ω) will be the first term in Eq. (7.11), with
〈nσ̄ 〉 = 0, and it will have one pole at ε/h̄; hence, the energy of the added electron
is ε. Now suppose that we add an electron, of spin projection σ , to a single-level
quantum dot which is already occupied by one electron. For this to be possible,
the electron initially present in the quantum dot must have spin projection σ̄ and
energy ε. In this case, 〈nσ̄ 〉 = 1, and GR

σ (ω) consists of only the second term in
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Figure 7.2 A thin insulating layer separates a metal and a quantum dot. Electrons
tunnel back and forth from the metal to the dot.

Eq. (7.11), which has a pole at (ε + U )/h̄. The energy of the added electron is thus
ε + U , and the total energy of the two electrons is 2ε + U , as expected.

7.2 Quantum dot in contact with a metal: Anderson’s model

We now consider a system which consists of a single-level quantum dot in contact
with a metal surface (see Figure 7.2), paying particular attention to the effect of
the interaction between the dot and the metal on the energy level in the dot. The
system is described by the following model Hamiltonian:

H = He +HD +HT . (7.12)

He is the Hamiltonian for the metal, HD is that for the dot, and HT describes the
interaction between the metal and the dot. We assume that the electrons in the metal
are noninteracting, or that each electron interacts with other electrons through a
self-consistent average potential. Thus,

He =
∑
kσ

εkc
†
kσ ckσ (7.13)

where εk = h̄2k2/2m∗ − μ, m∗ is the effective electron mass, and μ is the chem-
ical potential of the metal (the Fermi energy). As in the previous section, the
Hamiltonian for the single-level quantum dot is

HD = ε
∑

σ

d†
σ dσ + Un↑n↓. (7.14)

The interaction between the metal and the dot is described by a tunneling Hamil-
tonian:

HT =
∑
kσ

(
Vkc

†
kσ dσ + V ∗

k d†
σ ckσ

)
. (7.15)
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The first term in HT describes tunneling of an electron from the dot to the metal, a
process whose matrix element Vk is assumed to be spin-independent. The second
term describes tunneling from the metal to the dot. In writing HT , we have assumed
that no spin flipping occurs during tunneling. The model described above, summa-
rized by Eqs (7.12–7.15), is known as Anderson’s impurity model. It was first used
to describe the localized states of a magnetic impurity inside a metal (Anderson,
1961).

We proceed as before; the retarded Green’s function of the dot, now denoted by
GR

dσ (t), satisfies the following equation of motion

ih̄
∂

∂t
GR

dσ (t) = h̄δ(t)+ εGR
dσ (t)+ U�R

dσ (t)+
∑

k

V ∗
k GR

kdσ (t) (7.16)

where

GR
kdσ (t) = −iθ (t)

〈{
ckσ (t), d†

σ (0)
}〉

(7.17)

is a mixed retarded Green’s function whose equation of motion is

ih̄
∂

∂t
GR

kdσ (t) = εkG
R
kdσ (t)+ VkG

R
dσ (t). (7.18)

In Eq. (7.16), the term �R
dσ (t) is given by

�R
dσ (t) = −iθ (t)〈{nσ̄ (t)dσ (t), d†

σ (0)}〉. (7.19)

The equation of motion for this term is

ih̄
∂

∂t
�R

dσ (t) = h̄δ(t)〈nσ̄ 〉 + (ε + U )�R
dσ (t)+

∑
k

V ∗
k BR

kdσ (t)−
∑

k

VkC
R
kdσ (t)

−
∑

k

V ∗
k DR

kdσ (t) (7.20)

where

BR
kdσ (t) = −iθ (t)〈{nσ̄ (t)ckσ (t), d†

σ (0)}〉 (7.21)

CR
kdσ (t) = −iθ (t)〈{c†kσ̄ (t)dσ̄ (t)dσ (t), d†

σ (0)}〉 (7.22)

DR
kdσ (t) = −iθ (t)〈{ckσ̄ (t)d†

σ̄ (t)dσ (t), d†
σ (0)}〉. (7.23)

We have generated three new retarded functions. Equations of motion for these
functions will clearly generate complicated functions whose equations of motion
will produce even more complicated functions. It is a never-ending story, and we
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have to be satisfied with a truncated version of it if we want to obtain expressions
in closed form. We use a mean field (Hartree–Fock) approximation and write

BR
kdσ (t) � −iθ (t)〈nσ̄ 〉〈{ckσ (t), d†

σ (0)}〉 = 〈nσ̄ 〉GR
kdσ (t). (7.24)

Within mean field approximation, CR
kdσ and DR

kdσ vanish, because quantities such
as 〈c†d〉, 〈dσ̄ dσ 〉, and 〈d†

σ̄ dσ 〉 are equal to zero, and Eq. (7.20) reduces to

ih̄
∂

∂t
�R

dσ (t) = h̄δ(t)〈nσ̄ 〉 + (ε + U )�R
dσ (t)+ 〈nσ̄ 〉

∑
k

V ∗
k GR

kdσ (t). (7.25)

In Fourier space, Eqs (7.16), (7.18), and (7.25) take the following forms:

(h̄ω − ε + i0+)GR
dσ (ω) = h̄+ U�R

dσ (ω)+
∑

k

V ∗
k GR

kdσ (ω) (7.26)

(h̄ω − εk + i0+)GR
kdσ (ω) = VkG

R
dσ (ω) (7.27)

(h̄ω − ε − U + i0+)�R
dσ (ω) = 〈nσ̄ 〉

(
h̄+

∑
k

V ∗
k GR

kdσ (ω)

)
. (7.28)

Solving these equations, we find the dot’s retarded Green’s function

GR
dσ (ω) = h̄ω − ε − U + 〈nσ̄ 〉U

(ω − ε/h̄)(h̄ω − ε − U )−�R(ω)(h̄ω − ε − U + 〈nσ̄ 〉U )
(7.29)

where �R(ω) is a self energy term given by

�R(ω) = 1
h̄

∑
k

|Vk|2
h̄ω − εk + i0+

. (7.30)

If we assume that �R is independent of ω and that h̄|�R| << U , the poles of
GR

dσ (ω) will occur at ω � ε/h̄+ (1− 〈nσ̄ 〉)�R and ω = (ε + U )/h̄+ 〈nσ̄ 〉�R.
Under these assumptions, the retarded function is approximately given by

GR
dσ (ω) � 1− 〈nσ̄ 〉

ω − ε/h̄− (1− 〈nσ̄ 〉)�R
+ 〈nσ̄ 〉

ω − (ε + U )/h̄− 〈nσ̄ 〉�R
. (7.31)

We saw that the density of states in the isolated quantum dot consists of two delta-
function peaks at ε and ε + U (see Eq. [7.11]). We now see that the effect of the
quantum dot’s interaction with the metal is to shift the two peaks and to broaden
them: the amount of shift is proportional to the real part of �R , and the amount of
broadening is proportional to the imaginary part of �R.

7.3 Tunneling in solids

As a final example, we calculate the tunneling current between two semi-infinite
metal electrodes separated by a thin insulating layer. A current flows upon the
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Figure 7.3 Two metallic electrodes separated by a thin insulating layer (usually
metal oxide). In (a) no bias voltage is applied; the system is in equilibrium and the
chemical potentials on the left and right sides of the tunnel junction are equal. In
(b) a bias voltage V is applied; eV = μL − μR and a tunneling current flows.

application of a bias voltage which raises the chemical potential of one electrode
relative to the other (see Figure 7.3). We assume that the electrodes are metals
in the normal state; at sufficiently low temperatures all states below the chemical
potential are occupied. The treatment, however, could be generalized to allow either
one or both electrodes to be superconductive. For a detailed treatment of tunneling
in solids, the reader is referred to the book by Duke (Duke, 1969).

The model Hamiltonian for the tunnel junction is written as

H = HL +HR +HT ,

where HL (HR) is the Hamiltonian for the left (right) electrode, and HT is the
tunneling Hamiltonian. In general, HL may include the interparticle interactions in
the left electrode, and HR may include those in the right electrode. The tunneling
Hamiltonian takes the form:

HT =
∑
kqσ

(
Vkqb

†
qσ ckσ + V ∗

kqc
†
kσ bqσ

)
, (7.32)

where c
†
kσ (ckσ ) creates (annihilates) an electron in the left electrode in the single-

particle state |kσ 〉, and b
†
qσ (bqσ ) creates (annihilates) an electron in the right elec-

trode in the single-particle state |qσ 〉. We assume that the creation and annihilation
operators in the left electrode anticommute with those in the right electrode.

The first term in HT describes tunneling of an electron from the state |kσ 〉 in the
left electrode to the state |qσ 〉 in the right electrode; the amplitude for this process
is the matrix element Vkq, which is assumed to be spin-independent. The second
term in HT describes tunneling in the opposite direction. We assume that no spin
flipping takes place during tunneling, which is generally true if the metal electrodes
and the insulating layer are nonmagnetic. In general, a tunneling process is either
elastic, in which case the energy of the electron does not change, or inelastic,
whereby electron tunneling is accompanied by an excitation in the insulating layer.
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Figure 7.4 In (a) the left and right electrodes are separated: HT = 0. In (b) the
electrodes are brought into contact with an insulating layer: HT 
= 0.

In an experimental setup, the system is initially in equilibrium, both chemical
potentials μL and μR being the same. Current flows in response to a bias voltage
which raises the chemical potential on one side relative to the other. The external
perturbation thus corresponds to a constant upward shift in the energies of the
electrons on only one side.

Our approach to the calculation of the current, however, will differ. We assume
that the left and right electrodes are initially in equilibrium at their own chemical
potentials, such that μL = μR + eV , but that no tunneling takes place. The initial
Hamiltonian is H0 = HL +HR; the left and right electrodes are separated. The
two electrodes are then brought into contact with the insulating layer at t = t0, and
tunneling is switched on:

H =
{

H0 = HL +HR t < t0

HL +HR +HT t ≥ t0.
(7.33)

The external perturbation is HT , and the current flows in response to this perturba-
tion. This is illustrated in Figure 7.4.

The electron current is obtained from the rate of change in the number of
electrons in one of the electrodes, say the left electrode,

I = −e〈ṄL〉 (7.34)

where NL is the number of electrons operator for the left electrode,

NL =
∑
kσ

c
†
kσ ckσ . (7.35)

The rate of change of NL is given by the Heisenberg equation of motion,

ṄL = − i

h̄
[NL, H0 +HT ] = − i

h̄
[NL, HT ]. (7.36)

The last equality follows since NL commutes with HL and HR . The commutator
on the RHS is easily evaluated,

ṄL = i

h̄

∑
kqσ

(
Vkqb

†
qσ ckσ − V ∗

kqc
†
kσ bqσ

)
. (7.37)
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According to linear response theory (see Section 6.6), 〈ṄL(t)〉ext is given by Kubo’s
formula

〈ṄL(t)〉ext = 〈ṄL(t)〉0 − i

h̄

∫ t

t0

dt ′〈[ṄL(t), HT (t ′)]〉0. (7.38)

The zero subscript means that the operators evolve according to H0,

ṄL(t) = eiH0t/h̄ṄLe−iH0t/h̄ , HT (t) = eiH0t/h̄HT e−iH0t/h̄. (7.39)

Since 〈c†kσ bqσ 〉0 = 〈b†qσ ckσ 〉0 = 0, it follows that 〈ṄL(t)〉0 = 0, which merely
expresses the fact that, in the absence of tunneling, the current is zero. Hence,

〈ṄL(t)〉ext = − i

h̄

∫ t

t0

dt ′ 〈[ṄL(t), HT (t ′)]〉0. (7.40)

To express the RHS of Eq. (7.40) as a retarded correlation function, we need to
rewrite the Heisenberg operators ṄL(t) and HT (t) as modified Heisenberg operators
that evolve according to H̄0 = H0 − μLNL − μRNR . Care must be exercised, since
ṄL and HT do not commute with NL and NR .

Since both ṄL and HT are linear combinations of b
†
qσ ckσ and c

†
kσ bqσ , we first

rewrite these as modified Heisenberg operators. We note that

eiH0t/h̄ = eiH̄0t/h̄ ei(μLNL+μRNR)t/h̄.

This equality is valid because [H̄0, NL] = [H̄0, NR] = 0. Now consider

b†qσ (t)ckσ (t) = eiH0t/h̄b†qσ ckσ e−iH0t/h̄

= eiH̄0t/h̄ei(μLNL+μRNR)t/h̄b†qσ ckσ e−i(μLNL+μRNR)t/h̄e−iH̄0t/h̄

= eiH̄0t/h̄ X(t) e−iH̄0t/h̄

where we have defined the operator

X(t) = ei(μLNL+μRNR)t/h̄ b†qσ ckσ e−i(μLNL+μRNR)t/h̄.

To determine X(t), we take its derivative with respect to time,

Ẋ(t) = i

h̄
ei(μLNL+μRNR)t/h̄

[
μLNL + μRNR , b†qσ ckσ

]
e−i(μLNL+μRNR)t/h̄.

The evaluation of the commutator on the RHS is straightforward; we find

Ẋ(t) = − (ieV/h̄)X(t) ⇒ X(t) = X(0)e−ieV t/h̄ = b†qσ ckσ e−ieV t/h̄

where eV = μL − μR and V is the bias voltage. Therefore,

b†qσ (t)ckσ (t) = e−ieV t/h̄ eiH̄0t/h̄ b†qσ ckσ e−iH̄0t/h̄.
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Taking the adjoints on both sides of the above equation, we obtain

c
†
kσ (t)bqσ (t) = eieV t/h̄ eiH̄0t/h̄ c

†
kσ bqσ e−iH̄0t/h̄.

The expression for the current now becomes

I (V, T ) = −e〈ṄL〉 = e

h̄2

∫ t

t0

dt ′
〈⎡⎣∑

kqσ

(
e−ieV t/h̄Vkqb†qσ (t)ckσ (t)−H.C.

)
,

∑
kqσ

(
e−ieV t ′/h̄Vkqb†qσ (t ′)ckσ (t ′)+H.C.

)⎤⎦〉
0

where H.C. stands for hermitian conjugate. The current depends on the bias voltage
V and temperature T (from thermal averaging). In the above expression, the time
development of the creation and annihilation operators is governed by H̄0 = HL +
HR − μLNL − μRNR . Defining the operator A(t) by

A(t) =
∑
kqσ

Vkqb
†
qσ (t) ckσ (t), (7.41)

the expression for the current takes the form:

I (V, T ) = e

h̄2

∫ t

t0

dt ′
〈[

e−ieV t/h̄ A(t)− eieV t/h̄ A†(t) ,

e−ieV t ′/h̄ A(t ′)+ eieV t ′/h̄ A†(t ′)
]〉

0
.

Since the electrodes are normal metals, 〈A(t)A(t ′)〉0 = 〈A†(t)A†(t ′)〉0 = 0, because
quantities such as 〈c†kσ (t)c†kσ (t ′)〉0 and 〈ckσ (t)ckσ (t ′)〉0 vanish; however, this is not
true if the electrodes are superconductors, as we will see in Chapter 12.

We are interested in evaluating the current long after the external perturbation
has been turned on: t � t0 (steady state); equivalently, we set t0 = −∞. Under this
assumption, the current is given by

I = e

h̄2

∫ t

−∞
dt ′
{
e−ieV (t−t ′)/h̄

〈
[A(t), A†(t ′)]

〉
0
− eieV (t−t ′)/h̄

〈
[A†(t), A(t ′)]

〉
0

}
.

A simplification of the above expression results from noting that

[A†(t), A(t ′)] = −[A(t), A†(t ′)]† ⇒
〈
[A†(t), A(t ′)]

〉
0
= −

〈
[A(t), A†(t ′)]

〉∗
0
.

The expression for the current thus reduces to

I (V, T ) = 2e

h̄2 Re

∫ t

−∞
dt ′e−ieV (t−t ′)/h̄

〈
[A(t), A†(t ′)]

〉
0
.
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Since H̄0 is time-independent, the ensemble average on the RHS of the above
equation depends on t − t ′ and not on t and t ′ separately. Moreover,∫ t

−∞
dt ′ · · · = −

∫ 0

∞
d(t − t ′) · · · =

∫ ∞

0
d(t − t ′) · · · =

∫ ∞

−∞
d(t − t ′) θ (t − t ′) · · · .

Relabeling t − t ′ as t , we obtain

I (V, T ) = 2e

h̄2 Re

∫ ∞

−∞
dt θ (t) e−ieV t/h̄

〈
[A(t), A†(0)]

〉
0
.

Finally, introducing the retarded correlation function

DR
AA(t) = −i θ (t)

〈
[A(t), A†(0)]

〉
0

(7.42)

the following is obtained:

I (V, T ) = −2e

h̄2 ImDR
AA(ω)|ω=−eV/h̄. (7.43)

We have succeeded in expressing the tunneling current in terms of a retarded cor-
relation function. We stop here, since the evaluation of this function is most easily
carried out by evaluating the corresponding imaginary-time function, followed by
analytic continuation. Imaginary-time Green’s functions will be discussed in the
next chapter. In one special case, however, the retarded function can be evaluated
directly. If we assume that tunneling is elastic, and that the electrons in the left and
right electrodes are noninteracting, the evaluation of the current is not difficult (see
Problem 7.4).

Further reading

Bruus, H. and Flensberg, K. (2004). Many-Body Quantum Theory in Condensed Matter
Physics. Oxford: Oxford University Press.

Mahan, G.D. (2000). Many-Particle Physics, 3rd edn. New York: Kluwer Academic/Plenum
Publishers.

Problems

7.1 Equation of motion for GR
kdσ . Derive Eq. (7.18).

7.2 Equation of motion for �R
dσ . Derive Eq. (7.20).

7.3 The dot and metal. For a single-level quantum dot in contact with a metal,
assuming that �R is independent of ω and that |�R| � U/h̄, derive Eq. (7.31).
Calculate the spin resolved density of states and show that it consists of two
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Lorentzians. Calculate the width of each Lorentzian. What is the physical
interpretation of this result?

7.4 Tunneling current at T = 0. In Section 7.3, the tunneling current was obtained
in terms of a retarded correlation function. Assume that

H0 =
∑
kσ

εkc
†
kσ ckσ +

∑
qσ

εqb
†
qσ bqσ

where operators with k-subscript are for electrons in the left electrode, while
those with q-subscript refer to electrons in the right electrode. Creation and
annihilation operators with k-subscript anticommute with creation and anni-
hilation operators with q-subscript.
(a) Show that the current is given by

I = 4πe

h̄

∑
kq

|Vkq|2
(
fq − fk

)
δ
(
ε̄q − ε̄k − eV

)

where ε̄k(q) = εk(q) − μL(R) , fk =
(
eβε̄k + 1

)−1
, fq =

(
eβε̄q + 1

)−1.
(b) Now assume that T = 0, and that the bias voltage is small so that only

electrons near the Fermi surface are involved in tunneling. Replace
∑

k
with DL(0)

∫
dε̄k, and

∑
q with DR(0)

∫
dε̄q; DL(0) and DR(0) are the

densities of states at the Fermi energy in the left and right electrodes,
respectively. Assume that Vkq is independent of k and q, and is given by
V̄ . Under these conditions, show that the current in the tunnel junction
obeys Ohm’s law: I = V/R, where

1/R = 4πe2

h̄
|V̄ |2DL(0)DR(0).

7.5 Magnetic impurity in a metal host. An impurity with a single level is embedded
in a metal host with Fermi energy εF . The model Hamiltonian is given in
Eq. (7.12). The equations of motion for GR

dσ (t) and GR
kdσ (t) are given in

Eqs (7.16) and (7.18). However, instead of writing an equation of motion for
�R

dσ (t) and then resorting to mean field approximation, as we did in Section 7.2,
let us apply the mean field approximation directly to �R

dσ (t),

�R
dσ (t) = −iθ (t)〈{nσ̄ (t)dσ (t), d†

σ (0)}〉 � −iθ (t)〈nσ̄ 〉〈{dσ (t), d†
σ (0)}〉

= 〈nσ̄ 〉GR
dσ (t).

(a) Show that, with this approximation

GR
dσ (ω) = [ω − ε/h̄− (U/h̄)〈nσ̄ 〉 −�R(ω)

]−1
.
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(b) Ignoring Re�R(ω), and assuming that � ≡ −h̄Im�R(ω) is independent
of ω, show that, at zero temperature

〈nσ 〉 = 1
π

cot−1 ε + U 〈nσ̄ 〉 − εF

�
.

(c) Let m = 〈n↑〉 − 〈n↓〉. Find the transcendental equation satisfied by m.
Under what conditions is m 
= 0?



8
Imaginary-time Green’s and correlation functions

No white nor red was ever seen
So amorous as this lovely Green.

–Andrew Marvel, The Garden

In studying the properties of a many-particle system at finite temperature, one
usually calculates the system’s free energy, from which its equilibrium properties
may be derived. If interactions are present, we need to use perturbation theory, since
an exact solution is generally not possible. It often turns out that a perturbation
expansion to lowest orders is insufficient, mainly due to the occurrence of divergent
terms; we saw an example of this in Chapter 4. In general, we must carry out
perturbation theory to infinite order. Clearly, however, a straightforward application
of perturbation theory is not feasible (to appreciate the difficulty, try to write down
the third and fourth order terms in the perturbation expansion). The Feynman
diagram technique offers us a way out, since it allows for systematic study of the
structure of perturbation terms of any order. At finite temperature, the diagram
technique can be constructed for a particular quantity, the imaginary-time Green’s
function.

Real-time Green’s or correlation functions, which were discussed in the previous
two chapters, involve the ensemble average of the product of two operators at
different times. Consider

〈A(t)B(0)〉 = Z−1
G Tr [e−βH̄ eiH̄ t/h̄Ae−iH̄ t/h̄B],

where ZG = Tr [e−βH̄ ] is the grand canonical partition function. The main problem
arises from a mismatch in the exponents; whereas −βH̄ is real, ±iH̄ t/h̄ is imag-
inary. This renders a perturbation expansion of the RHS a most difficult task. To
circumvent this difficulty, we replace it → τ (hence the name “imaginary time”)
and treat τ as a real quantity. As a result of this replacement, perturbation expansion
becomes possible. Once the imaginary-time function is calculated, a simple recipe
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will yield the real-time functions that are more intimately connected to experi-
ments. Not only that! We will find that the imaginary-time Green’s function is not
merely a means to an end, but that it stands on its own as a quantity of intrinsic
significance: it yields the equilibrium thermodynamic properties of the system.

A perturbation expansion is also possible for the real-time Green’s function
at zero temperature. At T = 0, the ensemble average of A(t)B(0) reduces to the
expectation value of this quantity in the ground state; the factor e−βH̄ disappears,
and, along with it, the problem noted earlier of the mismatch of exponents.

8.1 Imaginary-time correlation function

Given two operators A(c, c†) and B(c, c†) expressed through fermion or boson anni-
hilation and creation operators, we define the imaginary-time, or finite-temperature,
or Matsubara correlation function as follows

cT
AB(τ, τ ′) = −〈T A(τ )B(τ ′)〉 (8.1)

where

A(τ ) = eH̄τ/h̄Ae−H̄ τ/h̄ , B(τ ′) = eH̄τ ′/h̄Be−H̄ τ ′/h̄ (8.2)

are modified Heisenberg operators, H̄ = H − μN , μ is the chemical potential, N

is the number of particles operator, and 〈· · · 〉 stands for a grand canonical ensemble
average. In Eq. (8.1), T is the time-ordering operator introduced in Chapter 6,

T A(τ )B(τ ′) =
{

A(τ )B(τ ′) if τ > τ ′

±B(τ ′)A(τ ) if τ < τ ′.
(8.3)

The lower (upper) sign refers to the case when A and B are fermion (boson)
operators. As discussed in Chapter 6, A(c, c†) is considered a boson operator if the
annihilation and creation operators c and c† are boson operators, or if A consists
of an even number of creation and annihilation operators (e.g., if A = c†c, then A

is a boson operator).
From the definition of the T -operator, we may rewrite Eq. (8.1) as

cT
AB (τ, τ ′) = −θ (τ − τ ′)〈A(τ )B(τ ′)〉 ∓ θ (τ ′ − τ )〈B(τ ′)A(τ )〉, (8.4)

where θ (τ − τ ′) is the step function,

θ (τ − τ ′) =
{

0 τ < τ ′

1 τ > τ ′.



8.1 Imaginary-time correlation function 145

8.1.1 Time-dependence

If H̄ does not depend on time, as is often the case, the imaginary-time correlation
function depends on τ − τ ′, not on τ and τ ′ separately. The proof of this statement
is as follows:

cT
AB (τ, τ ′) = − θ (τ − τ ′) Z−1

G Tr [e−βH̄ eH̄τ/h̄Ae−H̄ (τ−τ ′)/h̄Be−H̄ τ ′/h̄]

∓ θ (τ ′ − τ ) Z−1
G Tr [e−βH̄ eH̄τ ′/h̄BeH̄ (τ−τ ′)/h̄Ae−H̄ τ/h̄].

Using the cyclic property of the trace, we move e−H̄ τ ′/h̄ in the first term to the
leftmost position, and then commute it through e−βH̄ . In the second term we
commute eH̄τ ′/h̄ with e−βh̄, then move it to the rightmost position; we obtain

cT
AB(τ, τ ′) = − θ (τ − τ ′) Z−1

G Tr [e−βH̄ eH̄ (τ−τ ′)/h̄Ae−H̄ (τ−τ ′)/h̄B]

∓ θ (τ ′ − τ ) Z−1
G Tr [e−βH̄BeH̄ (τ−τ ′)/h̄Ae−H̄ (τ−τ ′/h̄]

= − θ (τ − τ ′)〈A(τ − τ ′)B(0)〉 ∓ θ (τ ′ − τ )〈B(0)A(τ − τ ′)〉
= − 〈T A(τ − τ ′)B(0)〉 = cT

AB(τ − τ ′).

Thus, we may set τ ′ = 0 and consider cT
AB to depend only on τ :

cT
AB(τ ) = −〈T A(τ )B(0)〉. (8.5)

8.1.2 Periodicity

Now suppose that τ > 0. Then

cT
AB (τ > 0) = −〈A(τ )B(0)〉 = −Z−1

G Tr [e−βH̄ eH̄τ/h̄Ae−H̄ τ/h̄B]

where A = A(0) and B = B(0). Now perform the following three steps in succes-
sion: (1) move B to the leftmost position, (2) introduce 1 = e+βH̄ e−βH̄ at the far
right, and (3) move e−βH̄ from the rightmost to the leftmost position. We end up
with

cT
AB(τ > 0) = −Z−1

G Tr [e−βH̄BeH̄ (τ−βh̄)/h̄Ae−H̄ (τ−βh̄)/h̄]

= −Z−1
G Tr [e−βH̄B(0)A(τ − βh̄)]

= −〈B(0)A(τ − βh̄)〉. (8.6)

To make use of the above result, we assume that τ is restricted to vary between
−βh̄ and βh̄: τ ∈ [−βh̄, βh̄]. Then, if τ > 0, τ − βh̄ will be negative, and the RHS
of Eq. (8.6) will be ±cT

AB(τ − βh̄). Hence, if τ > 0,

cT
AB(τ ) = ±cT

AB (τ − βh̄). (8.7)
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The lower (upper) sign refers to fermions (bosons). Since −βh̄ ≤ τ ≤ βh̄, we can
decompose cT

AB(τ ) into a Fourier series

cT
AB(τ ) = 1

βh̄

∑
n

cT
AB(ωn)e−iωnτ . (8.8)

The constraint imposed by Eq. (8.7) implies that

e−iωnτ = ±e−iωn(τ−βh̄) ⇒ eiωnβh̄ = ±1

⇒ ωn =
{

2nπ/βh̄ n ∈ Z bosons

(2n+ 1)π/βh̄ n ∈ Z fermions.
(8.9)

We can obtain cT
AB(ωn) in terms of cT

AB(τ ): multiply Eq. (8.8) by eiωmτ and integrate
over τ from −βh̄ to βh̄,∫ βh̄

−βh̄

eiωmτ cT
AB(τ )dτ = 1

βh̄

∑
n

cT
AB(ωn)

∫ βh̄

−βh̄

ei(ωm−ωn)τ dτ.

Since ωm − ωn = 2(m− n)π/βh̄, the integral on the RHS vanishes unless n = m,
in which case it is equal to 2βh̄. Hence,

cT
AB(ωn) = 1

2

∫ βh̄

−βh̄

cT
AB(τ )eiωnτ dτ. (8.10a)

This is true for both fermions and bosons. We proceed further,

cT
AB(ωn) = 1

2

[∫ 0

−βh̄

cT
AB(τ )eiωnτ dτ +

∫ βh̄

0
cT
AB(τ )eiωnτ dτ

]
.

Making use of cT
AB (τ < 0) = ±cT

AB(τ + βh̄) and eiωnβh̄ = ±1, we can write∫ 0

−βh̄

cT
AB(τ )eiωnτ dτ =

∫ 0

−βh̄

cT
AB(τ + βh̄)eiωn(τ+βh̄)dτ =

∫ βh̄

0
cT
AB(τ )eiωnτ dτ.

In the last step, we have made a change of variable: τ → τ + βh̄. Hence,

cT
AB (ωn) =

∫ βh̄

0
cT
AB(τ )eiωnτ dτ. (8.10b)

8.2 Imaginary-time Green’s function

The imaginary-time Green’s function, also known as the finite-temperature Green’s
function, or Matsubara Green’s function, is defined as

g(rστ, r′σ ′τ ′) = −〈T �σ (rτ )�†
σ ′(r

′τ ′)〉 (8.11)
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where the τ -dependent field operators are given by

�σ (rτ ) = eH̄τ/h̄�σ (r)e−H̄ τ/h̄ , �†
σ (rτ ) = eH̄τ/h̄�†

σ (r)e−H̄ τ/h̄.

The imaginary-time Green’s function is a special case of the imaginary-time cor-
relation function cT

AB(τ, τ ′), obtained by setting A = �σ (r) and B = �
†
σ ′(r′). We

note that �
†
σ (rτ ) is not the adjoint of �σ (rτ ).

From the definition of the T -operator, we can write

g(rστ, r′σ ′τ ′) =
{
−〈�σ (rτ )�†

σ ′(r′τ ′)〉 τ > τ ′

∓〈�†
σ ′(r′ τ ′)�σ (rτ )〉 τ < τ ′.

(8.12)

The lower (upper) sign refers to fermions (bosons). For τ > τ ′, g(rστ, r′σ ′τ ′) is
the probability amplitude of finding the system with one extra particle of spin
projection σ at position r and time τ if a particle with spin projection σ ′ was added
to the system at position r′ at an earlier time τ ′. For τ < τ ′, g(rστ, r′σ ′τ ′) is the
probability amplitude of finding the system with one less particle of spin projection
σ ′ at time τ ′ if one particle with spin projection σ was removed from position r at
an earlier time τ . We note the following:

1. In the absence of spin-dependent interactions that could flip a particle’s spin, σ

and σ ′ must be the same.
2. Since H̄ is time-independent, g(rστ, r′σ ′τ ′) depends on τ − τ ′, not on τ and τ ′

independently.
3. For a translationally invariant system, g(rστ, r′σ ′τ ′) does not change if r →

r+ R, r′ → r′ + R; hence, g(rστ, r′σ ′τ ′) depends on r− r′, not on r and r′

independently.

With these thoughts in mind, the imaginary-time Green’s function is written
g(r− r′σ, τ ), and we consider its spatial Fourier transform g(kσ, τ ),

g(r− r′σ, τ ) = 1
V

∑
k

eik·(r−r′)g(kσ, τ ) (8.13)

where V is the system’s volume, and

g(kσ, τ ) = −〈T ckσ (τ )c†kσ (0)〉. (8.14)

This expression for g(kσ, τ ) is obtained by expanding the field operators:

�σ (rτ ) = 1√
V

∑
k

eik·rckσ (τ ), �†
σ (rτ ) = 1√

V

∑
k

e−ik·rc†kσ (τ ) (8.15)

and using the translational invariance property, exactly as we did in Chapter
6 when we found GR(kσ, t). Equations (8.11) and (8.14) are the definitions
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of the imaginary-time Green’s function in the position and momentum repre-
sentations, respectively. We may consider a more general definition using the
ν-representation,

g(ντ, ν′τ ′) = −〈T cν(τ )c†ν ′(τ
′)〉

where {|φν〉} is a complete set of single-particle states, ν stands for all the quantum
numbers that characterize the states, and c

†
ν (cν) creates (annihilates) a particle in

the single-particle state |φν〉.

8.3 Significance of the imaginary-time Green’s function

Once Green’s function is determined, the thermodynamic equilibrium properties
of the system can be found. Let τ+ = τ + 0+, and consider

∑
σ

g(rστ, rστ+) = −
∑

σ

〈T �σ (rτ )�†
σ (rτ+)〉 = ∓

∑
σ

〈�†
σ (rτ+)�σ (rτ )〉

= ∓Z−1
G

∑
σ

Tr [e−βH̄ eH̄τ/h̄�†
σ (r)�σ (r)e−H̄ τ/h̄].

The lower (upper) sign refers to fermions (bosons). Using the cyclic property of
the trace, we move e−H̄ τ/h̄ to the far left and commute it through e−βH̄ ,

∑
σ

g(rστ, rστ+) = ∓Z−1
G

∑
σ

Tr [e−βH̄ �†
σ (r)�σ (r)]

= ∓Z−1
G Tr [e−βH̄

∑
σ

�†
σ (r)�σ (r)] = ∓〈n(r)〉 (8.16)

where n(r) is the particle-number density operator. The ensemble average of the
number of particles in a system of volume V is

N(V, T , μ) =
∫

V

〈n(r)〉d3r = ∓
∫

V

∑
σ

g(rστ, rστ+)d3r. (8.17)

The dependence of N on T and μ results from βH̄ = β(H − μN) in the ensemble
average of n(r). We can solve the above equation for μ(N, T , V ) and determine
the Helmholtz free energy F from the relation

μ = ∂F

∂N

∣∣∣∣
T ,V

. (8.18)
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Once F is found, the thermodynamic properties of the system can be derived. For
a translationally invariant system, we can also write

N(V, T , μ) =
∑
kσ

〈c†kσ ckσ 〉 =
∑
kσ

〈c†kσ (0)ckσ (0)〉 = ±
∑
kσ

〈T ckσ (0)c†kσ (0+)〉

⇒ N(V, T , μ) = ∓
∑
kσ

g(kσ, τ = 0−) (8.19)

where g(kσ, τ = 0−) = −〈T ckσ (0)c†kσ (0+)〉. In this case, the dependence of N on
V results from the replacement

∑
k → V/(2π )3

∫
d3k.

In general, we can express the ensemble average of any one-body operator, such
as the number density n(r), in terms of Green’s function. Consider a one-body
operator F =∑i f (i). Its second quantized form is

F =
∑
ν,ν ′
〈φν′ |f |φν〉c†ν ′cν (8.20)

where ν stands for all the quantum numbers that characterize the single-particle
state |φν〉. Taking the ensemble average, we obtain

〈F 〉 =
∑
ν,ν ′
〈φν ′ |f |φν〉〈c†ν ′cν〉. (8.21)

The matrix element, a c-number, has been moved outside the ensemble average.
Writing φν as φn(r)|σ 〉, where n represents the orbital (spatial) quantum numbers,
and denoting 〈σ ′|f |σ 〉 by fσ ′σ (r), Eq. (8.21) becomes

〈F 〉 =
∑
σ,σ ′

∑
n,n′

∫
d3r φ∗n′(r)fσ ′σ (r)φn(r)〈c†n′σ ′cnσ 〉

=
∑
σ,σ ′

∫
d3r lim

r′→r
fσ ′σ (r)〈�†

σ ′(r
′)�σ (r)〉.

We have used the relations connecting the field operators to the creation and
annihilation operators,

�σ (r) =
∑

n

φn(r)cnσ , �†
σ (r) =

∑
n

φ∗n(r)c†nσ . (8.22)

Note the necessity of introducing r′ and taking the limit r′ → r: fσ ′σ (r) is an
operator that acts on φn(r); by introducing r′, we make it possible for fσ ′σ (r) to act
on the product 〈ψ†

σ ′(r′)ψσ (r)〉. For any two operators A and B,

〈A(r′τ )B(rτ )〉 = Z−1
G Tr[e−βH̄ eH̄τ/h̄A(r′)B(r)e−H̄ τ/h̄]

= Z−1
G Tr[e−βH̄A(r′)B(r)] = 〈A(r′)B(r)〉.
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In the penultimate step, e−H̄ τ/h̄ was moved to the left and commuted through e−βH̄ .
It follows that

〈F 〉 =
∑
σ,σ ′

∫
d3r lim

r′→r
fσ ′σ (r)〈�†

σ ′(r
′, τ )�σ (r, τ )〉

=
∑
σ,σ ′

∫
d3r lim

r′→r
lim

τ ′→τ+
fσ ′σ (r)〈�†

σ ′(r
′, τ ′)�σ (r, τ )〉

= ±
∑
σ,σ ′

∫
d3r lim

r′→r
lim

τ ′→τ+
fσ ′σ (r) 〈T �σ (r, τ )�†

σ ′(r
′, τ ′)〉

= ∓
∫

d3r lim
r′→r

lim
τ ′→τ+

∑
σσ ′

fσ ′σ (r)g(rστ, r′σ ′τ ′). (8.23)

As an example, the ensemble average of the kinetic energy is

〈T 〉 = ∓
∫

d3r lim
r′→r

∑
σ

(
− h̄2

2m
∇2
)

g(rστ, r′στ+).

Likewise, we can express 〈V 〉, the ensemble average of the potential energy
(assumed to arise from pairwise interaction), in terms of Green’s function; it is

〈V 〉 = ∓1
2

∫
d3r lim

r′→r
lim

τ ′→τ+

(
−h̄

∂

∂τ
+ h̄2

2m
∇2 + μ

)∑
σ

g(rστ, r′στ ′). (8.24)

The internal energy E(N, V, T ) of a system of interacting particles, given by
〈T 〉 + 〈V 〉, can be expressed as

E(N, V, T ) = ∓1
2

∫
d3r lim

r′→r
lim

τ ′→τ+

[
−h̄

∂

∂τ
− h̄2

2m
∇2 + μ

]∑
σ

g(rστ, r′στ ′).

(8.25)
The thermodynamic potential, �(T , V, μ), is given by

�(T , V, μ) = �0(T , V, μ)∓ 1
2

∫ 1

0

dλ

λ

∫
d3r lim

r′→r
lim

τ ′→τ+

(
−h̄

∂

∂τ
+ h̄2

2m
∇2 + μ

)

×
∑

σ

gλ(rστ, r′στ ′) (8.26)

where gλ(rστ, r′στ ′) is Green’s function for a system with Hamiltonian H̄ (λ) =
H̄0 + λV , and �0 is the thermodynamic potential for a system of noninteracting
particles. In Problems 8.1 and 8.2, the method used to derive expressions for
〈V 〉, E, and � is outlined.
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8.4 Spectral representation, relation to real-time functions

Our next task is to derive spectral representations of imaginary-time Green’s and
correlation functions. We shall obtain the real-time functions from their imaginary-
time counterparts.

8.4.1 Imaginary-time Green’s function

To evaluate g(kσ, ωn), we proceed as follows. From Eq. (8.10b),

g(kσ, ωn) =
∫ βh̄

0
g(kσ, τ )eiωnτ dτ =

∫ βh̄

0
g>(kσ, τ )eiωnτ dτ (8.27)

where

g>(kσ, τ ) = g(kσ, τ > 0) = −Z−1
G Tr[e−βH̄ ckσ (τ )c†kσ (0)]

= −Z−1
G Tr[e−βH̄ eH̄τ/h̄ ckσ e−H̄ τ/h̄ c

†
kσ ]

= −Z−1
G

∑
n,m

〈n|e−βH̄ eH̄τ/h̄ckσ |m〉〈m|e−H̄ τ/h̄c
†
kσ |n〉

= −Z−1
G

∑
n,m

e−βĒne−(Ēm−Ēn)τ/h̄〈n|ckσ |m〉〈m|c†kσ |n〉

=
∫ ∞

−∞
P >(kσ, ε)e−ετ dε

2π
(8.28)

where

P >(kσ, ε) = −2π Z−1
G

∑
n,m

e−βĒn |〈m|c†kσ |n〉|2δ
(

ε − 1
h̄

(Ēm − Ēn)
)

. (8.29)

This is exactly the same function which we obtained in Chapter 6 (see Eq. [6.31])
when we developed the spectral representation of the retarded Green’s function.
Equation (8.27) now becomes

g(kσ, ωn) =
∫ ∞

−∞
P >(kσ, ε)

dε

2π

∫ βh̄

0
e(iωn−ε)τ dτ

=
∫ ∞

−∞
P >(kσ, ε)

dε

2π

e(iωn−ε)τ

iωn − ε

∣∣∣∣
βh̄

0
= −

∫ ∞

−∞
P >(kσ, ε)

(1∓ e−βh̄ε)
iωn − ε

dε

2π

=
∫ ∞

−∞

A(kσ, ε)
iωn − ε

dε

2π
(8.30)

where

A(kσ, ε) = −P >(kσ, ε)(1∓ e−βh̄ε) (8.31)
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is the spectral density function, and the lower (upper) sign refers to fermions
(bosons). The P -greater function can be written as

P >(kσ, ε) = −A(kσ, ε)
1∓ e−βh̄ε

=
{
−(1+ nε)A(kσ, ε) bosons

−(1− fε)A(kσ, ε) fermions.
(8.32)

Using the periodicity/antiperiodicity property of the boson/fermion Green’s func-
tion, we can also write for g<(kσ, τ ) = g(kσ, τ < 0),

g<(kσ, τ ) =
∫ ∞

−∞
P <(kσ, ε)e−ετ dε

2π
(8.33)

where

P <(kσ, ε) =
{
−nεA(kσ, ε) bosons

fεA(kσ, ε) fermions.
(8.34)

On the other hand, the retarded Green’s function is given by Eq. (6.36),

GR(kσ, ω) =
∫ ∞

−∞

A(kσ, ε)
ω − ε + i0+

dε

2π
.

Assuming that g(kσ, ωn) is found for all positive values of iωn (these form discrete
points on the upper half of the imaginary axis in the complex ω-plane), how do we
construct GR(kσ, ω)? Consider the function F (kσ, z) of the complex variable z,
defined by

F (kσ, z) =
∫ ∞

−∞

A(kσ, ε)
z− ε

dε

2π
.

This function is analytic everywhere except on the real axis. Furthermore,

GR(kσ, ω) = F (kσ, z = ω + i0+), g(kσ, ωn) = F (kσ, z = iωn).

Therefore, both GR and g can be found once F is known. From knowing g(kσ, ωn),
we can know F (kσ, z) only on a discrete set of points along the imaginary axis.
To obtain F (kσ, z) everywhere in the upper half-plane, we need to analytically
continue F (kσ, iωn) from the discrete set of points onto the entire upper half-
plane. If we succeed in doing that, replacement of z in F (kσ, z) by ω + i0+ will
produce GR(kσ, ω). In other words

GR(kσ, ω) = g(kσ, iωn)|iωn→ω+i0+ . (8.35)

This is the analytical continuation recipe for obtaining the real-time retarded
Green’s function from its imaginary-time counterpart. We note that the advanced
real-time Green’s function is obtained from the imaginary-time Green’s function
by a similar recipe: iωn → ω − i0+.
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The construction of GR from g hinges on the ability to analytically continue g,
from a discrete set of points on the upper half of the imaginary ω-axis, onto the
upper half ω-plane. Although there is no definite algorithm for doing so, in practice,
we first calculate g(kσ, ωn), then replace iωn with z; if the resulting function is
analytic in the upper half-plane, then we have found F (kσ, z), and GR(kσ, ω) is
obtained by replacing z with ω + i0+. If this procedure fails, we can still obtain
the retarded Green’s function by analytically continuing the Feynman diagrams of
the imaginary-time Green’s function. This is discussed in Chapter 9.

8.4.2 Imaginary-time correlation function

The imaginary-time correlation function and its Fourier transform are given by
Eqs (8.1) and (8.10b),

cT
AB(τ ) = −〈T A(τ )B(0)〉, cT

AB(ωn) = −
∫ βh̄

0
〈A(τ )B(0)〉eiωnτ dτ.

In writing cT
AB (ωn) we dropped the T -operator since τ > 0, the integration over τ

being from 0 to βh̄. We rewrite the ensemble average, introducing a resolution of
identity,

〈A(τ )B(0)〉 = Z−1
G Tr [e−βH̄ eH̄τ/h̄Ae−H̄ τ/h̄B]

= Z−1
G

∑
n,m

〈n|e−βH̄ eH̄τ/h̄A|m〉〈m|e−H̄ τ/h̄B|n〉

= Z−1
G

∑
n,m

e−βĒne−(Ēm−Ēn)τ/h̄〈n|A|m〉〈m|B|n〉.

Therefore,

cT
AB(ωn) = −Z−1

G

∑
n,m

e−βĒn〈n|A|m〉〈m|B|n〉
∫ βh̄

0
e[iωn−(Ēm−Ēn)/h̄]τ dτ.

Since eiωnβh̄ = ±1, the above expression reduces to

cT
AB (ωn) = Z−1

G

∑
n,m

〈n|A|m〉〈m|B|n〉(e−βĒn ∓ e−βĒm)
iωn − (Ēm − Ēn)/h̄

. (8.36)

Comparing this expression with that for CR
AB(ω), Eq. (6.47), and bearing in mind

our discussion in the previous subsection regarding analytic continuation and its
possible complications, we deduce that

CR
AB(ω) = cT

AB(ωn)
∣∣
iωn=ω+i0+ . (8.37)
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Therefore, in order to calculate CR
AB(ω), we first calculate cT

AB(ωn) and then replace
iωn with ω + i0+. As a final cautionary remark, we note that Eq. (8.37) is valid
only if 〈A〉 and/or 〈B〉 vanish (see Problem 8.8).

8.5 Example: Green’s function for noninteracting particles

As an example, let us calculate the imaginary-time Green’s function for a system
of noninteracting particles. The Hamiltonian is given by

H̄0 =
∑
kσ

(εkσ − μ)c†kσ ckσ =
∑

k

ε̄kσ c
†
kσ ckσ . (8.38)

ε̄kσ is the single-particle state energy relative to the chemical potential.

8.5.1 Derivation from the spectral density function

The spectral density function for noninteracting particles is given by

A0(kσ, ε) = 2πδ(ε − ε̄kσ /h̄) (8.39)

(see Eq. [6.55]). Thus, the imaginary-time Green’s function for a system of nonin-
teracting particles (bosons or fermions) is given by

g0(kσ, ωn) =
∫ ∞

−∞

A0(kσ, ε)
iωn − ε

dε

2π
=
∫ ∞

−∞

δ(ε − ε̄kσ /h̄)
iωn − ε

dε

⇒ g0(kσ, ωn) = 1
iωn − ε̄kσ /h̄

. (8.40)

The retarded Green’s function, obtained from g0(kσ, ωn) through the replacement:
iωn → ω + i0†, is

GR,0(kσ, ω) = 1
ω − ε̄kσ /h̄+ i0†

. (8.41)

This is in agreement with the expression obtained in Chapter 6.

8.5.2 An alternative derivation

Starting from ckσ (τ ) = eH̄τ/h̄ckσ e−H̄ τ/h̄, we find

d

dτ
ckσ (τ ) = 1

h̄
[H̄ , ckσ (τ )].

For the noninteracting system, H̄ = H̄0. It is easily verified that

[H̄0, ckσ (τ )] = −ε̄kσ ckσ (τ ). (8.42)
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Therefore,

d

dτ
ckσ (τ ) = − ε̄kσ

h̄
ckσ (τ ) ⇒ ckσ (τ ) = ckσ (0)e−ε̄kσ τ/h̄ (8.43a)

Similarly,

c
†
kσ (τ ) = c

†
kσ (0)eε̄kσ τ/h̄. (8.43b)

Note that c
†
kσ (τ ) is not the adjoint of ckσ (τ ). The imaginary-time Green’s function

is given by

g0(kσ, τ ) = −〈T ckσ (τ )c†kσ (0)〉 = −θ (τ )〈ckσ (τ )c†kσ (0)〉 ∓ θ (−τ )〈c†kσ (0)ckσ (τ )〉
=
[
−θ (τ )〈ckσ (0)c†kσ (0)〉 ∓ θ (−τ )〈c†kσ (0)ckσ (0)〉

]
e−ε̄kσ τ/h̄

=
[
−θ (τ )

{
1+ nkσ

1− fkσ

}
∓ θ (−τ )

{
nkσ

fkσ

}]
e−ε̄kσ τ/h̄.

The Fourier transform g0(kσ, ωn) is

g0(kσ, ωn) =
∫ βh̄

0
g0(kσ, τ )eiωnτ dτ = −

{
1+ nkσ

1− fkσ

}∫ βh̄

0
e(iωn−ε̄kσ /h̄)τ dτ

=
{

1+ nkσ

1− fkσ

}
1∓ e−βε̄kσ

iωn − ε̄kσ /h̄
⇒ g0(kσ, ωn) = 1

iωn − ε̄kσ /h̄
.

8.6 Example: Green’s function for 2-DEG in a magnetic field

In Chapter 2, we considered a two-dimensional electron gas confined in the x–y

plane in the presence of a uniform static magnetic field B that is in the z-direction.
We showed that the single-particle states are described by three quantum numbers:
n, k, and σ . The spatial functions are given by

φnk(x, y) = An√
Lx

eikxHn(a(y − yo))e[−a2(y−yo)2/2].

Lx is the sample length in the x-direction, k = 0,±2π/Lx,±4π/Lx, . . . , n =
0, 1, 2 . . . , Hn is the Hermite polynomial of degree n, An is a normalization
constant, a = (mω/h̄)1/2, m is the electron mass, ω = eB/mc is the cyclotron
frequency, and yo = h̄ck/eB. The corresponding single-particle energies are
εnkσ = (n+ 1/2)h̄ω + gμBBσ , where g is the gyromagnetic factor for the electron
spin, μB is the Bohr magneton, and σ = −1/2,+1/2. The field operators are given



156 Imaginary-time Green’s and correlation functions

by

�σ (r) =
∑
nk

φnk(r)cnkσ , �†
σ (r) =

∑
nk

φ∗nk(r)c†nkσ .

Assuming that the electrons are noninteracting, the imaginary-time Green’s func-
tion g0(rστ, r′σ ′0) = −〈T �σ (rτ )�†

σ ′(r′0)〉 is given by

g0(rστ, r′σ ′0) = −
∑
nk

∑
n′k′

φnk(r)φ∗n′k′(r
′)〈T cnkσ (τ )c†n′k′σ ′(0)〉

=
∑
nk

∑
n′k′

φnk(r)g(nkστ, n′k′σ ′0)φ∗n′k′(r
′)

where

g0(nkστ, n′k′σ ′0) = −〈T cnkσ (τ )c†n′k′σ ′(0)〉 = −e−ε̄nkσ τ/h̄ [θ (τ )〈cnkσ c
†
n′k′σ ′ 〉

− θ (−τ )〈c†n′k′σ ′ cnkσ 〉] = −e−ε̄nkσ τ/h̄ [θ (τ )(1− fnkσ )− θ (−τ )fnkσ ]δnn′δkk′δσσ ′ .

Hence,

g0(rστ, r′σ ′0) = −δσσ ′
∑
nk

φnk(r)φ∗nk(r′)e−ε̄nkσ τ/h̄ [θ (τ )(1− fnkσ )− θ (−τ )fnkσ ].

The Fourier transform of the Green’s function

g0(rσ, r′σ ′, ωm) =
∫ βh̄

0
g0(rστ, r′σ ′0)eiωmτ dτ

is readily obtained; we find

g(rσr′σ ′, ωm) = δσσ ′
∑
nk

φnk(r)φ∗nk(r′)
iωm − εnkσ /h̄

.

The presence of a magnetic field breaks the translational invariance of the two-
dimensional electron gas; Green’s function in this case does not depend on r− r′,
but rather on r and r′ separately.

8.7 Green’s function and the Û -operator

In Section 8.5 we calculated Green’s function for a system of noninteracting parti-
cles. In the presence of interactions, it is generally true that the Schrödinger equation
is not exactly soluble, and it would be too much to hope that Green’s function would
be exactly calculable; we must resort to perturbation theory. Before applying per-
turbation theory, however, Green’s function must be recast into a different form.
Towards that end we introduce the interaction picture and the Û -operator.
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8.7.1 The Interaction picture

Consider an interacting system with a time-independent Hamiltonian,

H̄ = H0 − μN + V = H̄0 + V (8.44)

where V represents the interaction terms. We have already introduced the modified
Heisenberg picture where an operator A(τ ) is given by

A(τ ) = eH̄τ/h̄Ae−H̄ τ/h̄.

In the interaction picture, the operator Â(τ ) is defined by

Â(τ ) = eH̄0τ/h̄Ae−H̄0τ/h̄. (8.45)

Note that a hat “∧” above an operator identifies it as an interaction picture operator.
This definition differs from that of the standard interaction picture of quantum
mechanics (see Problem 1.11) in that it → τ and H0 → H̄0. In a way, Â(τ ) is
a modified interaction picture operator, but we will refer to it as an interaction
picture operator. Since the imaginary-time Green’s function is defined in terms of
a product of two Heisenberg operators, we consider the product

A(τ )B(τ ′) = eH̄τ/h̄Ae−H̄ τ/h̄eH̄τ ′/h̄Be−H̄ τ ′/h̄

= eH̄τ/h̄e−H̄0τ/h̄Â(τ )eH̄0τ/h̄e−H̄ (τ−τ ′)/h̄e−H̄0τ
′/h̄B̂(τ ′)eH̄0τ

′/h̄e−H̄ τ ′/h̄.

We have used Eq. (8.45) to express A and B in terms of Â(τ ) and B̂(τ ′).

8.7.2 The Û -operator

The above equation motivates the definition of the Û -operator,

Û (τ, τ ′) = eH̄0τ/h̄e−H̄ (τ−τ ′)/h̄e−H̄0τ
′/h̄. (8.46)

The product of the Heisenberg operators, then, reduces to

A(τ )B(τ ′) = Û (0, τ )Â(τ )Û (τ, τ ′)B̂(τ ′)Û (τ ′, 0). (8.47)

The following two properties of the Û -operator are easily verified

Û (τ, τ ) = 1 (8.48)

Û (τ, τ ′)Û (τ ′, τ ′′) = Û (τ, τ ′′). (8.49)



158 Imaginary-time Green’s and correlation functions

We can express a Heisenberg operator in term of the interaction picture operator
as follows:

A(τ ) = eH̄τ/h̄Ae−H̄ τ/h̄ = eH̄τ/h̄e−H̄0τ/h̄Â(τ )eH̄0τ/h̄e−H̄ τ/h̄

= Û (0, τ )Â(τ )Û (τ, 0). (8.50)

From the definition of Û (τ, τ ′), Eq. (8.46), we find

∂

∂τ
Û (τ, τ ′) = 1

h̄
H̄0Û (τ, τ ′)− 1

h̄
eH̄0τ/h̄H̄ e−H̄ (τ−τ ′)/h̄e−H̄0τ

′/h̄.

Writing H̄ in the second term as H̄0 + V , and noting that H̄0 commutes with eH̄0τ/h̄,
the above equation reduces to

∂

∂τ
Û (τ, τ ′) = −1

h̄
eH̄0τ/h̄V e−H̄ (τ−τ ′)/h̄e−H̄0τ

′/h̄

= −1
h̄

eH̄0τ/h̄V e−H̄0τ/h̄eH̄0τ/h̄e−H̄ (τ−τ ′)/h̄e−H̄0τ
′/h̄ = −1

h̄
V̂ (τ )Û (τ, τ ′).

Integrating both sides from τ ′ to τ , we find∫ τ

τ ′

∂

∂τ1
Û (τ1, τ

′)dτ1 = −1
h̄

∫ τ

τ ′
V̂ (τ1)Û (τ1, τ

′)dτ1

⇒ Û (τ, τ ′)− Û (τ ′, τ ′) = −1
h̄

∫ τ

τ ′
V̂ (τ1)Û (τ1, τ

′)dτ1

⇒ Û (τ, τ ′) = 1− 1
h̄

∫ τ

τ ′
V̂ (τ1)Û (τ1, τ

′)dτ1. (8.51)

This is an integral equation for Û ; we solve it by iteration,

Û (τ, τ ′) = 1− 1
h̄

∫ τ

τ ′
dτ1V̂ (τ1)

[
1− 1

h̄

∫ τ1

τ ′
V̂ (τ2)Û (τ2, τ

′)dτ2

]

= 1− 1
h̄

∫ τ

τ ′
dτ1V̂ (τ1)+

(
−1

h̄

)2 ∫ τ

τ ′
dτ1

∫ τ1

τ ′
dτ2 V̂ (τ1)V̂ (τ2)Û (τ2, τ

′).

We continue to iterate in the same fashion; we find

Û (τ, τ ′) = 1− 1
h̄

∫ τ

τ ′
dτ1V̂ (τ1)+

(
−1

h̄

)2 ∫ τ

τ ′
dτ1

∫ τ1

τ ′
dτ2 V̂ (τ1)V̂ (τ2)

+
(
−1

h̄

)3 ∫ τ

τ ′
dτ1

∫ τ1

τ ′
dτ2

∫ τ2

τ ′
dτ3 V̂ (τ1)V̂ (τ2)V̂ (τ3)+ · · · . (8.52)
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Let us consider the double integral on the RHS of the above equation,

I ≡
∫ τ

τ ′
dτ1

∫ τ1

τ ′
dτ2 V̂ (τ1)V̂ (τ2) =

∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2 V̂ (τ1)V̂ (τ2)θ (τ1 − τ2)

=
∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2 V̂ (τ2)V̂ (τ1)θ (τ2 − τ1).

The step function θ (τ1 − τ2) ensures that τ2 < τ1. The last equality is obtained by
interchanging the variables of integration τ1 and τ2. Therefore,

I = 1
2

∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2 [V̂ (τ1)V̂ (τ2)θ (τ1 − τ2)+ V̂ (τ2)V̂ (τ1)θ (τ2 − τ1)]

= 1
2

∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2 T V̂ (τ1)V̂ (τ2).

where T is the time-ordering operator.
Encouraged by the above result, we consider the nth order term,∫ τ

τ ′
dτ1

∫ τ1

τ ′
dτ2 · · ·

∫ τn−1

τ ′
dτn V̂ (τ1)V̂ (τ2) · · · V̂ (τn)

=
∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2 · · ·

∫ τ

τ ′
dτn V̂ (τ1) · · · V̂ (τn)θ (τ1 − τ2) θ (τ2 − τ3) · · · θ (τn−1 − τn)

=
∫ τ

τ ′
dτ1

∫ τ

τ ′
dτ2 · · ·

∫ τ

τ ′
dτn V̂ (τP (1))V̂ (τP (2)) · · · V̂ (τP (n))

× θ (τP (1) − τP (2)) θ (τP (2) − τP (3)) · · · θ (τP (n−1) − τP (n)).

P (1), P (2), . . . , P (n) in any permutation of 1, 2, . . . , n. The last equality holds
because the last integral is obtained from the preceding one by relabeling the
integration variables: τ1, τ2, ..., τn → τP (1), τP (2), ..., τP (n). Since there are n! per-
mutations of 1, 2, ..., n, we can write∫ τ

τ ′
dτ1

∫ τ1

τ ′
dτ2 · · ·

∫ τn−1

τ ′
dτn V̂ (τ1)V̂ (τ2) . . . V̂ (τn) = 1

n!

∫ τ

τ ′
dτ1 . . .

∫ τ

τ ′
dτn∑

P

V̂ (τP (1)) . . . V (τP (n))θ (τP (1) − τP (2)) . . . θ (τP (n−1) − τP (n))

= 1
n!

∫ τ

τ ′
dτ1 . . .

∫ τ

τ ′
dτn T [V̂ (τ1) . . . V̂ (τn)].

Note that when the time-ordering operator T rearranges V̂ (τ1), ..., V̂ (τn) in ascend-
ing time order, from right to left, no minus sign is introduced whenever V̂ (τi) and
V̂ (τj ) are interchanged, even if V̂ describes interactions among fermions. This is
because V̂ , when expressed in second quantized form, consists of an even number
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of operators; i.e., V̂ is a bosonic operator. The Û -operator now has the following
perturbation expansion:

Û (τ, τ ′) =
∞∑

n=0

1
n!

(
−1

h̄

)n∫ τ

τ ′
dτ1 . . .

∫ τ

τ ′
dτn T [V̂ (τ1) . . . V̂ (τn)]. (8.53)

8.7.3 Green’s function and the Û -operator

The Û -operator was defined by

Û (τ, τ ′) = eH̄0τ/h̄e−H̄ (τ−τ ′)/h̄e−H̄0τ
′/h̄.

If we set τ = βh̄ (βh̄ and τ have the same units) and τ ′ = 0, we obtain

Û (βh̄, 0) = eβH̄0e−βH̄ ⇒ e−βH̄ = e−βH̄0Û (βh̄, 0). (8.54)

We may thus write the imaginary-time Green’s function as follows:

g(kσ, τ ) = −〈T ckσ (τ )c†kσ (0)〉 = −Z−1
G Tr[e−βH̄ T ckσ (τ )c†kσ (0)]

= −Z−1
G Tr[e−βH̄0Û (βh̄, 0)T ckσ (τ )c†kσ (0)].

Using Eq. (8.50), the Heisenberg operators ckσ (τ ) and c
†
kσ (0) are written as

ckσ (τ ) = Û (0, τ )ĉkσ (τ )Û (τ, 0), c
†
kσ (0) = ĉ

†
kσ (0). (8.55)

First, consider the case τ > 0,

g(kσ, τ > 0) = −Z−1
G Tr[e−βH̄0 Û (βh̄, 0)Û (0, τ ) ĉkσ (τ )Û (τ, 0) ĉ†kσ (0)]

= −Z−1
G Tr[e−βH̄0 Û (βh̄, τ ) ĉkσ (τ )Û (τ, 0) ĉ†kσ (0)] (8.56)

where Eq. (8.49) is used to establish the second equality. Consider the following
expression:

T [Û (βh̄, 0) ĉkσ (τ ) ĉ†kσ (0)] = T [Û (βh̄, τ )Û (τ, 0) ĉkσ (τ ) ĉ†kσ (0)].

Equation (8.53) shows that all operators V̂ in the expansion of Û (τ, 0) occur at
times between 0 and τ , and all operators V̂ in the expansion of Û (βh̄, τ ) occur at
times between τ and βh̄ (recall that τ ≤ βh̄); hence,

T [Û (βh̄, τ )Û (τ, 0) ĉkσ (τ ) ĉ†kσ (0)] = Û (βh̄, τ ) ĉkσ (τ )Û (τ, 0) ĉ†kσ (0).

No minus signs are introduced in the above reordering because V̂ consists of an
even number of creation and annihilation operators. Thus, Eq. (8.56) may be written
as

g(kσ, τ > 0) = −Z−1
G Tr[e−βH̄0 T Û (βh̄, 0) ĉkσ (τ ) ĉ†kσ (0)]. (8.57)
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Next, we consider the case when τ < 0,

g(kσ, τ < 0) = −〈T ckσ (τ )c†kσ (0)〉 = ∓〈c†kσ (0)ckσ (τ )〉
= ∓Z−1

G Tr[e−βH̄0 Û (βh̄, 0)c†kσ (0)ckσ (τ )]

= ∓Z−1
G Tr[e−βH̄0 T Û (βh̄, 0)c†kσ (0)ckσ (τ )].

The introduction of the T operator is justified by the fact that in the product
Û (βh̄, 0)c†kσ (0)ckσ (τ ), the operators are already ordered in increasing time order
from right to left (recall that τ < 0). Thus

g(kσ, τ < 0) = −Z−1
G Tr[e−βH̄0T Û (βh̄, 0)ckσ (τ )c†kσ (0)]

where the interchange of the creation and annihilation operators brought about
a minus sign in case they were fermion operators. Expressing the creation and
annihilation operators in the interaction picture, we obtain

g(kσ, τ < 0) = −Z−1
G Tr[e−βH̄0 T Û (βh̄, 0)Û (0, τ ) ĉkσ (τ )Û (τ, 0) ĉ†kσ (0)].

Since the operators V̂ that appears in Û (0, τ ) are bosonic, we can interchange
Û (0, τ ) and ĉkσ (τ ) without incurring a minus sign. Using Û (0, τ )Û (τ, 0) =
Û (0, 0) = 1, the above expression reduces to

g(kσ, τ < 0) = −Z−1
G Tr[e−βH̄0T Û (βh̄, 0) ĉkσ (τ ) ĉ†kσ (0)],

which is the same expression as in Eq. (8.57).
In summary, we found that the imaginary-time Green’s function can be expressed

in terms of interaction picture operators as

g(kσ, τ ) = −Z−1
G Tr[e−βH̄0T Û (βh̄, 0) ĉkσ (τ ) ĉ†kσ (0)].

The grand partition function is given by

ZG = Tr[e−βH̄ ] = Tr[e−βH̄0 eβH̄0 e−βH̄ ] = Tr[e−βH̄0 Û (βh̄, 0)],

where we used Eq. (8.54). Therefore, we can write

g(kσ, τ ) = −Tr[e−βH̄0 T Û (βh̄, 0) ĉkσ (τ ) ĉ†kσ (0)]
Tr[e−βH̄0Û (βh̄, 0)]

.

Dividing the numerator and denominator by ZG,0 = Tr[e−βH0 ], we arrive at the
following formula, which is the main goal of this subsection,

g(kσ, τ ) = −〈T Û (βh̄, 0) ĉkσ (τ ) ĉ†kσ (0)〉0
〈Û (βh̄, 0)〉0

. (8.58)
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The subscript “0” indicates that the ensemble average is over the noninteracting
system,

〈· · · 〉0 = Tr[e−βH̄0 · · · ]
Tr[e−βH̄0 ]

.

Finally, we note that in Eq. (8.58) we can move ĉkσ (τ ) to the left, or move the
product ĉkσ (τ )ĉ†kσ (0) to the left, without incurring a minus sign because the V̂

operators in Û (βh̄, 0) are bosonic. Hence, g(kσ, τ ) is also given by

g(kσ, τ ) = −〈T ĉkσ (τ ) ĉ†kσ (0)Û (βh̄, 0)〉0
〈Û (βh̄, 0)〉0

. (8.59)

8.7.4 Perturbation expansion of the imaginary-time Green’s function

Using the perturbation series for the Û -operator, Eq. (8.53), we can write

g(kσ, τ ) = −
∑∞

n=0
1
n!

(−1
h̄

)n〈∫ βh̄

0 dτ1 · · ·
∫ βh̄

0 dτnT ĉkσ (τ )ĉ†kσ (0)V̂ (τ1) . . . V̂ (τn)〉0∑∞
n=0

1
n!

(− 1
h̄

)n 〈∫ βh̄

0 dτ1 . . .
∫ βh̄

0 dτnT V̂ (τ1) . . . V̂ (τn)〉0
.

(8.60)
Although the denominator appears to make the above expression unwieldy, it actu-
ally makes matters simpler. As we will discuss later, it cancels out the disconnected
Feynman diagrams in the numerator.

8.8 Wick’s theorem

In order to evaluate g(kσ, τ ), Eq. (8.60), we need a method to determine the
ensemble average, over the noninteracting system, of the time-ordered product of
interaction picture operators. This is provided by Wick’s theorem (Wick, 1950). In
the following discussion, we assume that the operators in the time-ordered product
are fermion operators. The theorem is valid for both fermions and bosons (the proof
in the case of bosonic operators is left as an exercise for the reader). In the following,
we proceed in a series of steps leading to the proof of this important theorem.

8.8.1 Contractions

Given two interaction picture operators Â and B̂, we define a contraction of Â and
B̂ by

Â B̂ = 〈T ÂB̂〉0 = Tr[e−βH̄0T ÂB̂]/Tr[e−βH̄0 ].

For example,

ĉkσ (τ ) ĉ
†
kσ (0) = 〈T ĉkσ (τ )ĉ†kσ (0)〉0 = −g0(kσ, τ ).
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We note that g0(kσ, τ ) is the single-particle imaginary-time Green’s function for a
noninteracting system. For such a system, the Heisenberg and interaction pictures
coincide; hence, the above replacement of the time-ordered product of interaction
picture operators by −g0 is certainly valid. Since the expectation value, in any
eigenstate of H̄0, of two annihilation or two creation operators, is zero, the ensemble
average of two annihilation or two creation operators is zero. Hence,

ĉkσ (τ1) ĉk′σ ′(τ2) = ĉ
†
kσ (τ1) ĉ

†
k′σ ′(τ2) = 0.

8.8.2 Statement of Wick’s theorem

Wick’s theorem states that the ensemble average over a noninteracting system of
the time-ordered product of interaction picture operators is equal to the sum over
all possible contracted pairs,

〈T [ÂB̂ĈD̂ . . . ]〉o = ÂB̂ĈD̂ · · · + ÂB̂ĈD̂ · · · + ÂB̂ĈD̂ · · · + · · · . (8.61)

If Â, B̂, Ĉ, D̂ · · · are fermion operators, a term such as ÂB̂ĈD̂ · · · is to be inter-

preted as −ÂĈB̂D̂ · · · , since we need to interchange B̂ and Ĉ.
We can write Wick’s theorem in a more compact way. Clearly, for the ensemble

average of the time-ordered product of operators to be nonzero, there must be
an equal number of creation and annihilation operators. Assuming that the total
number of operators is 2n, Wick’s theorem states that

〈T
2n∏
i=1

âi〉o =
∑

(−1)P
∏
〈T âj âk〉o (8.62)

where âi is a creation or an annihilation operator, and the sum is over all possible
ways of picking n pairs from among the 2n operators. On the RHS of the above
equation, P = 1 if the permutation of fermion operators required to arrange the
pairs as they appear on the RHS, starting from the arrangement on the LHS, is odd;
otherwise P = 0. Each summand on the RHS consists of a product of n contracted
pairs.

8.8.3 An example

Let us use Wick’s theorem to evaluate

A = 〈T ĉkσ (τ )ĉ†kσ (0)ĉ†k′σ ′(τ1)ĉk′σ ′(τ1)〉0
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where 0 ≤ τ1 ≤ τ , and the operators are fermion operators. Excluding pairs of
annihilation or creation operators (their ensemble average in zero), we are left with
two possible ways to pick pairs from among the four operators,

A = 〈T ĉkσ (τ )ĉ†kσ (0)〉0〈T ĉ
†
k′σ ′(τ1)ĉk′σ ′(τ1)〉0

− 〈T ĉkσ (τ )ĉ†k′σ ′(τ1)〉0〈T ĉ
†
kσ (0)ĉk′σ ′(τ1)〉0.

The minus sign in the second term arises from the interchange of the second and
third operators in the original time-ordered product. The first term on the RHS is
somewhat problematic: it involves a time-ordered product of two operators with
equal time arguments, a case for which time ordering is ill-defined. How should we
interpret 〈T ĉ

†
k′σ ′(τ1)ĉk′σ ′(τ1)〉0? We note that when an operator of a many-particle

system is written in second quantized form, creation operators always occur on the
left of annihilation operators. When this operator acts on any state, annihilation
operators act first, followed by creation operators. We therefore assign to creation
operators a time that is infinitesimally later than the time assigned to annihilation
operators. We thus interpret 〈T ĉ

†
k′σ ′(τ1)ĉk′σ ′(τ1)〉0 as follows:

〈T ĉ
†
k′σ ′(τ1)ĉk′σ ′(τ1)〉0 = 〈T ĉ

†
k′σ ′(τ

+
1 )ĉk′σ ′(τ1)〉0 = 〈ĉ†k′σ ′(τ+1 )ĉk′σ ′(τ1)〉0

= −〈T ĉk′σ ′(τ1)ĉ†k′σ ′(τ
+
1 )〉0 = g0(k′σ ′, 0−).

With this in mind, we can write

A = −g0(kσ, τ )g0(k′σ ′, 0−)+ g0(kσ, τ − τ1)g0(kσ, τ1)δkk′δσσ ′ .

We have used the fact that an expression such as 〈ĉkσ (τ )ĉ†k′σ ′(τ1)〉0 vanishes unless
k = k′ and σ = σ ′; this is easily verified by writing the trace as a sum over diagonal
elements and introducing one resolution of identity.

8.8.4 Some useful results

(a) First we prove that the anticommutator of two interaction picture single-particle
fermion operators is a number. Since ĉkσ (τ ) = eH̄0τ/h̄ckσ e−H̄0τ/h̄,

d

dτ
ĉkσ (τ ) = 1

h̄
[H̄0, ĉkσ (τ )] = 1

h̄

[∑
ε̄kσ ĉ

†
kσ (τ )ĉkσ (τ ), ĉkσ (τ )

]
.

The commutator is given by Eq. (8.42). Hence,

ĉkσ (τ ) = ĉkσ (0)e−ε̄kσ τ/h̄ , ĉ
†
kσ (τ ) = ĉ

†
kσ (0)eε̄kσ τ/h̄.

Thus,

{ĉkσ (τ1), ĉk′σ ′(τ2)} = {ĉ†kσ (τ1), ĉ†k′σ ′(τ2)} = 0 (8.63)

{ĉkσ (τ1), ĉ†k′σ ′(τ2)} = eε̄kσ (τ2−τ1)/h̄δkk′δσσ ′ . (8.64)
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(b) Let B̂ be any operator; e.g., B̂ could be a product of fermion creation and
annihilation operators. Consider the ensemble average of the anticommutator

〈{ĉkσ , B̂}〉o = Z−1
G,0 Tr [e−βH̄0 ĉkσ B̂ + e−βH̄0B̂ĉkσ ]

= Z−1
G,0

(
Tr[e−βH̄0 ĉkσ B̂]+ Tr[ĉkσ e−βH̄0B̂]

)
. (8.65)

The second equality results from the invariance of the trace under cyclic per-
mutations. We now evaluate ĉkσ e−βH̄0 . Since [ĉkσ , H̄0] = ε̄kσ ĉkσ ,

ĉkσ H̄0 = (H̄0 + ε̄kσ )ĉkσ

ĉkσ H̄ 2
0 = ĉkσ H̄oH̄0 = (H̄0 + ε̄kσ )ĉkσ H̄0 = (H̄0 + ε̄kσ )2ĉkσ

...

ĉkσ H̄ n
0 = (H̄0 + ε̄kσ )nĉkσ .

Consequently,

ĉkσ e−βH̄o =
∞∑

n=0

(−β)n

n!
ĉkσ H̄ n

0 =
∞∑

n=0

(−β)n

n!
(H̄o + ε̄kσ )nĉkσ

= e−β(H̄o+ε̄kσ )ĉkσ = e−βε̄kσ e−βH̄0 ĉkσ .

The last equality follows from the relation eA+B = eAeB , which is true if
[A, B] = 0. In our case, βH̄o commutes with βε̄kσ since the latter is simply a
number. Equation (8.65) now becomes

〈{ĉkσ , B̂}〉0 = Z−1
G,0Tr[e−βH̄0 ĉkσ B̂ + e−βε̄kσ e−βH̄0 ĉkσ B̂]

= (1+ e−βε̄kσ )〈ĉkσ B̂〉0. (8.66a)

Following exactly the same steps as above, we can show that

〈{ĉ†kσ , B̂}〉0 = (1+ eβε̄kσ )〈ĉ†kσ B̂〉0. (8.66b)

(c) Let b1, b2, . . . , b2n be interaction picture fermion operators. We want to find
the anticommutator {b1, b2b3 . . . b2n}. First consider the case n = 2,

{b1, b2b3b4} = b1b2b3b4 + b2b3b4b1 = {b1, b2}b3b4 − b2b1b3b4 + b2b3b4b1.
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We have replaced b1b2 with {b1, b2} − b2b1. Next we replace b1b3 with
{b1, b3} − b3b1,

{b1, b2b3b4} = {b1, b2}b3b4 − b2{b1, b3}b4 + b2b3b1b4 + b2b3b4b1

= {b1, b2}b3b4 − b2{b1, b3}b4 + b2b3{b1, b4}
= {b1, b2}b3b4 − {b1, b3}b2b4 + {b1, b4}b2b3.

In the last step we used the result from (a) above, namely that the anticommu-
tator is a number, so that we could move it to the left.

We can generalize the above result to any positive integer n,

{
b1,

2n∏
k=2

bk

}
=

2n∑
m=2

(−1)m{b1, bm}
2n∏′

k=2

bk (8.67)

where the prime on
∏

means that k = m is excluded. The general result given
above is proven by mathematical induction. The result is true for n = 2 as
shown above (and trivially so for n = 1). We assume that it is true for n = r ,
and show that it is true for n = r + 1. We thus consider

I = {b1, b2 . . . b2rb2r+1b2r+2} = {b1, P b2r+1b2r+2}

where P = b2 . . . b2r . Using {A, BC} = {A, B}C − B[A, C], and [A, BC] =
{A, B}C − B{A, C}, we can write,

I = {b1, P }b2r+1b2r+2 − P [b1, b2r+1b2r+2]

= {b1, P }b2r+1b2r+2 − P {b1, b2r+1}b2r+2 + Pb2r+1{b1, b2r+2}
= {b1, P }b2r+1b2r+2 − {b1, b2r+1}Pb2r+2 + {b1, b2r+2}Pb2r+1.

Since the result is assumed to be true for n = r , it applies to {b1, P }. Therefore,

{b1, b2 . . . b2r+2} =
2r∑

m=2

(−1)m{b1, bm}b2 . . . bm−1bm+1 . . . b2rb2r+1b2r+2

− {b1, b2r+1}b2 . . . b2rb2r+2 + {b1, b2r+2}b1 . . . b2rb2r+1

=
2r+2∑
m=2

(−1)m{b1, bm}
2r+2∏′

k=2

bk

which shows that Eq. (8.67), if assumed to be true for n = r , will be true for
n = r + 1.
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8.8.5 Proof of Wick’s theorem

We prove Wick’s theorem by mathematical induction. For n = 1,

〈T
2∏

i=1

ai〉0 = 〈T a1a2〉0.

Wick’s theorem is true in this case since there is only one pair. We now assume
that the theorem is true for n− 1, i.e.;

〈T
2n−2∏
i=1

ai〉0 =
∑

(−1)P
∏
〈T aiaj 〉0

and we prove that the theorem is true for n.
Let b1, b2, ..., b2n be a permutation P1 of a1, a2, ..., a2n such that b1, b2, ..., b2n

are arranged in descending time order from left to right. Then

〈T
2n∏
i=1

ai〉0 = (−1)P1〈
2n∏

k=1

bk〉0 = (−1)P1〈b1

2n∏
k=2

bk〉0.

Using Eq. (8.66) with B =
2n∏

k=2

bk , we can write

〈T
2n∏
i=1

ai〉0 = (−1)P1
(
1+ e±βε̄k

)−1 〈{b1,

2n∏
k=2

bk}〉0

= (−1)P1
(
1+ e±βε̄k

)−1

〈
2n∑

m=2

(−1)m{b1, bm}
2n∏′

k=2

bk

〉
0

.

In e±βε̄k , the −(+) sign is for the case when b1 is an annihilation (a creation)
operator. In the last step, we have used Eq. (8.67). Since {b1, bm} is a number, it
can be moved outside the ensemble average,

〈T
2n∏
i=1

ai〉0 = (−1)P1
(
1+ e±βε̄k

)−1
2n∑

m=2

(−1)m{b1, bm}〈
2n∏′

k=2

bk〉0.

Being a number, {b1, bm} may be replaced by its ensemble average,

{b1, bm} = 〈{b1, bm}〉0 =
(
1+ e±βε̄k

) 〈b1bm〉0 =
(
1+ e±βε̄k

) 〈T b1bm〉0
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where use is made of Eq. (8.66), and the fact that b1, b2, ... are arranged in descend-
ing time order. Thus,

〈T
2n∏
i=1

ai〉0 = (−1)P1

2n∑
m=2

(−1)m〈T b1bm〉0〈T
2n∏′

k=2

bk〉0. (8.68)

The introduction of T into the last factor is justified, since b2, ..., b2n are arranged
in descending time order.

Note that 〈T
2n∏′

k=2

bk〉o is the ensemble average of the time-ordered product of

2n− 2 operators (recall that k = m is excluded by the prime on
∏

). By assumption,

Wick’s theorem is true for such a product. In other words, 〈T
2n∏′

k=2

bk〉o is the sum

over all contracted pairs that can be formed from the 2n− 2 operators. By summing
over m in Eq. (8.68), we exhaust all pairs that can be formed from the 2n operators.
Therefore, Wick’s theorem is true for n, assuming that it is true for n− 1, as
long as the sign of each term in the sum over m is the right sign. To show that
(−1)P1 (−1)m is the right sign in each term, consider the original arrangement
a1, a2, ..., a2n. First we rearranged the operators to b1, b2, ..., b2n, which brought

about (−1)P1 . Then, in order to form the contraction b1 bm, b1 must be moved m− 2
steps to the right (or bm moved m− 2 steps to the left), which brings about a factor
(−1)m−2 = (−1)m. Thus, (−1)P1 (−1)m is indeed the correct sign in each term in the
summation.

8.8.6 Some remarks on Wick’s theorem

We state without proof the following remarks regarding Wick’s theorem:

(a) We have proved the theorem for the case when each of a1, a2, ... is either a
fermion creation or annihilation operator. It is not difficult to extend the theorem
to the case when each of a1, a2, ... is a linear combination of a creation and an
annihilation operator.

(b) Although the proof is given for fermion operators, the same steps may be
followed to show that Wick’s theorem is also valid for boson operators; in that
case, one has to replace anticommutators with commutators.

(c) The theorem is also valid if some of the operators a1, a2, ... are fermion oper-
ators while the rest are boson operators; in this case, the permutation P in the
factor (−1)P is the permutation of the fermion operators.



8.9 Case study: first-order interaction 169

Figure 8.1 (a) A particle is created at time 0 in state |kσ 〉, and a particle in state
|kσ 〉 is annihilated at time τ . (b) g0(kσ, τ ) is represented by a solid line directed
from point τ to point 0.

8.9 Case study: first-order interaction

As an example, let us use Wick’s theorem to calculate the imaginary-time
Green’s function, to first order in the interaction, in a translationally invariant
system of fermions interacting via pairwise interactions. The interaction term is
given by

V̂ (τ ) = 1
2

∑
q

∑
k1σ1

∑
k2σ2

vqĉ
†
k1+qσ1

(τ )ĉ†k2−qσ2
(τ )ĉk2σ2 (τ )ĉk1σ1 (τ ).

In the perturbation expansion for Green’s function, Eq. (8.60), let us first consider
the numerator. The zeroth order term, n = 0, gives

−〈T ĉkσ (τ )ĉ†kσ (0)〉0 = g0(kσ, τ ).

We can give a graphical representation to g0(kσ, τ ). In the time-ordered product
−〈T ĉkσ (τ )ĉ†kσ (0)〉0, the time arguments 0 and τ of the ĉ-operators are repre-
sented by two points arranged horizontally, where the point with time τ is on
the left. At time 0, a particle is created in state |kσ 〉; this process is represented
by an arrow entering the point with time argument 0. At time τ , a particle in
state |kσ 〉 is annihilated; this is represented by an arrow leaving the point with
time argument τ . These processes are depicted in Figure 8.1a. The noninteracting
Green’s function, g0(kσ, τ ), can then be represented by a solid line directed from
point τ to point 0, as shown in Figure 8.1b. We note that another convention is
sometimes used where g0(kσ, τ ) is represented by a line directed from 0 to τ ;
here we follow the convention used by Abrikosov, Gorkov, and Dzyaloshinski
(1963).

The first-order term, n = 1, gives

δg(1)
num =

1
h̄V

∫ βh̄

0
dτ1

∑
q

∑
k1σ1

∑
k2σ2

1
2
vq

×
〈
T ĉkσ (τ )ĉ†kσ (0)ĉ†k1+qσ1

(τ1)ĉ†k2−qσ2
(τ1)ĉk2σ2 (τ1)ĉk1σ1 (τ1)

〉
0
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where the superscript and subscript on δg indicate that this is the first-order cor-
rection in the numerator. Applying Wick’s theorem, we find

〈T ĉkσ (τ )ĉ†kσ (0)ĉ†k1+qσ1
(τ1)ĉ†k2−qσ2

(τ1)ĉk2σ2 (τ1)ĉk1σ1 (τ1)〉0 =
− 〈T ĉkσ (τ )ĉ†kσ (0)〉0〈T ĉ

†
k1+qσ1

(τ1)ĉk2σ2 (τ1)〉o〈T ĉ
†
k2−qσ2

(τ1)ĉk1σ1 (τ1)〉0 (a)

+ 〈T ĉkσ (τ )ĉ†kσ (0)〉0〈T ĉ
†
k1+qσ1

(τ1)ĉk1σ1 (τ1)〉0〈T ĉ
†
k2−qσ2

(τ1)ĉk2σ2 (τ1)〉0 (b)

− 〈T ĉkσ (τ )ĉ†k2−qσ2
(τ1)〉0〈T ĉ

†
kσ (0)ĉk2σ2 (τ1)〉0〈T ĉ

†
k1+qσ1

(τ1)ĉk1σ1 (τ1)〉0 (c)

+ 〈T ĉkσ (τ )ĉ†k1+qσ1
(τ1)〉0〈T ĉ

†
kσ (0)ĉk2σ2 (τ1)〉0〈T ĉ

†
k2−qσ2

(τ1)ĉk1σ1 (τ1)〉0 (d)

− 〈T ĉkσ (τ )ĉ†k1+qσ1
(τ1)〉0〈T ĉ

†
kσ (0)ĉk1σ1 (τ1)〉0〈T ĉ

†
k2−qσ2

(τ1)ĉk2σ2 (τ1)〉0 (e)

+ 〈T ĉkσ (τ )ĉ†k2−qσ2
(τ1)〉0〈T ĉ

†
kσ (0)ĉk1σ1 (τ1)〉0〈T ĉ

†
k1+qσ1

(τ1)ĉk2σ2 (τ1)〉0 (f )

= go(kσ, τ )g0(k2σ2, 0)g0(k1σ1, 0)δσ1σ2δk2,k1+q (8.69a)

− g0(kσ, τ )g0(k1σ1, 0)g0(k2σ2, 0)δq,0 (8.69b)

+ g0(kσ, τ − τ1)g0(kσ, τ1)g0(k1σ1, 0)δσσ2δkk2δq,0 (8.69c)

− g0(kσ, τ − τ1)g0(kσ, τ1)g0(k1σ1, 0)δσσ1δσσ2δk,k1+qδkk2 (8.69d)

+ g0(kσ, τ − τ1)g0(kσ, τ1)g0(k2σ2, 0)δσσ1δkk1δq,0 (8.69e)

− g0(kσ, τ − τ1)g0(kσ, τ1)g0(k2σ2, 0)δσσ1δσσ2δkk1δk,k2−q. (8.69f)

We can represent the above terms graphically. The time arguments τ , τ1, and 0 are
arranged from left to right. At time 0, a particle is created in state |kσ 〉. At time
τ , a particle in state |kσ 〉 is annihilated. At time τ1, two particles in states |k1σ1〉
and |k2σ2〉 are annihilated, while two particles are created in states |k1 + qσ1〉 and
|k2 − qσ2〉. These processes are depicted in Figure 8.2. The interaction process
at time τ1 is represented by a dashed line carrying wave-vector q, two solid lines
going out, and two solid lines coming in. A contraction of an annihilation operator
and a creation operator corresponds to connecting an arrow that is leaving a point
to an arrow that is entering the same or a different point, forming a directed solid
line. The line represents a noninteracting Green’s function. Wick’s theorem tells
us to sum over all possible ways of picking pairs for contraction, from amongst
all the operators. Each possible way corresponds to connecting arrows in pairs. A
pair consists of one arrow leaving a point and one arrow entering a point. Each
possible way thus results in a particular diagram, known as a Feynman diagram
or a Feynman graph. Representation of perturbation theory in terms of diagrams
was originally developed by Feynman in his work on quantum electrodynamics
(Feynman, 1949a, 1949b). Hence, we can restate Wick’s theorem pictorially as
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Figure 8.2 A particle is created in state |kσ 〉 at time 0, while a particle in state |kσ 〉
is annihilated at time τ . At time τ1, two particles in states |k1σ1〉 and |k2σ2〉 are
annihilated, while two particles are created in states |k1 + qσ1〉 and |k2 − qσ2〉.

follows: connect all arrows in pairs (an arrow leaving a point to an arrow entering
a point), and do so in all possible ways; each possible way produces a diagram,
then add all the diagrams. Contemplation of Figure 8.2 reveals that we can form
six Feynman diagrams (see Figure 8.3), corresponding to the six different ways of
contracting the pairs.

In Chapter 9, we will develop rules for translating the diagrams into algebraic
expressions. For now, we only note the following:

� Each diagram in Figure 8.3 contains three solid lines; hence the analytical expres-
sion for each diagram contains a product of three noninteracting Green’s func-
tions. This is in conformity with Eq. (8.69).

� The Kronecker deltas which appear in Eq. (8.69) can be directly read off the
diagrams, since each solid line may contain only one wave vector and one
spin projection. For example, looking at Figure 8.3c, the following product of
Kronecker deltas can be read directly off the diagram: δk,k2−qδk,k2δk1,k1+qδσ,σ2 =
δk,k2δq,0δσ,σ2 .

� With the products of the three Green’s functions and the Kronecker deltas deter-
mined, the six terms in Eq. (8.69) can be written directly from the diagrams. The
only remaining question is the sign: diagrams a, c, and e produce a positive sign,
while diagrams b, d, and f produce a negative sign. For now, we state without
proof that the sign is given by (−1)n+F , where n is the perturbation order (n = 1
in this case) and F is the number of closed fermion loops: (−1)1+1 = +1 for
diagrams a, c, and e. Diagram b has two fermion loops, and diagrams d and f

have zero fermion loops; hence their negative signs.
� Diagrams a and b are disconnected, whereas diagrams c, d, e, and f are con-

nected.
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Figure 8.3 The six Feynman diagrams corresponding to the six terms in Eq. (8.69).

In the remainder of this section, we will show that, to first order in the interaction, the
contribution of the disconnected diagrams to δg(1)

num is cancelled by the denominator
in Eq. (8.60).

To first order (n = 1), the numerator N in Eq. (8.60) is given by

N = g0(kσ, τ )+ 1
2h̄V

∫ βh̄

0
dτ1

∑
q

∑
k1σ1

∑
k2σ2

vq

× 〈T ĉkσ (0)ĉ†kσ (τ )ĉ†k1+qσ1
(τ1)ĉ†k2−qσ2

(τ1)ĉk2σ2 (τ1)ĉk1σ1 (τ1)〉0.
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We have already seen that the time-ordered product decomposes into six terms, the
first two of which correspond to disconnected diagrams:

N = g0(kσ, τ )+ 1
2h̄V

∫ βh̄

0
dτ1

∑
q

∑
k1σ1

∑
k2σ2

vq

[
−〈T ĉkσ (τ )ĉ†kσ (0)〉0

]

×
{
〈T ĉ

†
k1+qσ1

(τ1)ĉk2σ2 (τ1)〉0〈T ĉ
†
k2−qσ2

(τ1)ĉk1σ1 (τ1)〉0

−〈T ĉ
†
k1+qσ1

(τ1)ĉk1σ1 (τ1)〉0〈T ĉ
†
k2−qσ2

(τ1)ĉk2σ2 (τ1)〉0
}
+ connected diagrams

= g0(kσ, τ )

⎡
⎣1+ 1

2h̄V

∫ βh̄

0
dτ1

∑
q

∑
k1σ1

∑
k2σ2

vqI (k1k2qσ1σ2, τ1)

⎤
⎦+ conn. dgs.

We have explicitly written the first two terms that correspond to the disconnected
diagrams, lumped together the remaining four terms as “connected diagrams,” and
denoted the term in braces by I (k1k2qσ1σ2, τ1). It is clear, using Wick’s theorem,
that

I (k1k2qσ1σ2, τ1) = −〈T ĉ
†
k1+qσ1

(τ1)ĉ†k2−qσ2
(τ1)ĉk2σ2 (τ1)ĉk1σ1 (τ1)〉0.

We thus deduce that

1
2V

∑
q

∑
k1σ1

∑
k2σ2

vqI (k1k2qσ1σ2, τ1) = −〈T V̂ (τ1)〉0.

Noting that, to first order in the interaction, the denominator is given by

D = 1− 1
h̄

∫ βh̄

0
dτ1〈T V̂ (τ1)〉0 ,

we conclude that, to first order in V̂

g(kσ, τ ) = N
D = g0(kσ, τ )+ connected diagrams. (8.70)

Dividing the connected diagrams (which are already first order in V̂ ) by the denomi-
nator gives the same connected diagrams plus diagrams of higher order in V̂ ; hence,
to first order in V̂ , Eq. (8.70) is exact.

Thus, to first order in the interaction, the denominator cancels out the discon-
nected diagrams in g(kσ, τ ). As we show in the next section, this cancellation
persists to all orders in the perturbation expansion.
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Figure 8.4 External points at times τ and 0, and internal points at times τ1, τ2, ...τn.
It is assumed that V̂ is a two-body operator.

Figure 8.5 A connected Feynman diagram.

Figure 8.6 A disconnected Feynman diagram.

8.10 Cancellation of disconnected diagrams

All Feynman diagrams (graphs) are either connected or disconnected. For the nth

order term in the expansion of g, we draw points representing time coordinates.
There are two external points, one at time τ on the far left, and one at time 0 on the
far right. In between are internal points at times τ1, τ2, ..., τn. A line starts at the
external point τ and a line ends at the external point 0. At each internal point, one
line goes in and one line goes out if V̂ is a one-body operator. If V̂ is a two-body
operator, two lines go in and two lines go out at each internal time. This is depicted
in Figure 8.4 for the case when V̂ is a two-body operator.

By a “connected” diagram we mean a diagram in which every internal point
is connected, via a series of connected lines, to the external points. A connected
diagram looks like Figure 8.5, while a disconnected diagram looks like Figure 8.6.
In a connected diagram, ĉ(τ ) is paired with a ĉ†(τi), a ĉ(τi) is paired with a ĉ†(τj ),
a ĉ(τj ) is paired with a ĉ†(τk), and so on, until we reach ĉ†(0) without missing
any internal τ -point. The diagrams in which one or more internal points are not
connected to the external points are “disconnected.”
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Regarding the order-n correction to Green’s function, diagrams in which m

internal points are connected to the external points, while n−m are not, arise from
the following expression in the numerator of Eq. (8.60)

− 1
n!

(
−1

h̄

)n ∫
dτ1 . . .

∫
dτm 〈T ĉkσ (τ )ĉ†kσ (0)V̂ (τ1) . . . V̂ (τm)〉0,c

×
∫

dτm+1 . . .

∫
dτn 〈T V̂ (τm+1) . . . V̂ (τn)〉0.

The subscript c means “connected.” We have chosen the internal points
τ1, τ2, . . . , τm to be the ones connected to the external points. However, had we
chosen any other set of m internal points, the expression above would not change,
since it would simply amount to a relabeling of the integration variables. The
number of such identical expressions is equal to the number of ways of picking m

points out of n points; this is n!/m!(n−m)!. Hence, the nth order correction in the
numerator of Eq. (8.60) is

δg(n)
num = −

n∑
m=0

1
m!(n−m)!

(
−1

h̄

)n ∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτm

× 〈T ĉkσ (τ )ĉ†kσ (0)V̂ (τ1) . . . V̂ (τm)〉0,c

∫ βh̄

0
dτm+1 . . .

∫ βh̄

0
dτn〈T V̂ (τm+1) . . . V̂ (τn)〉0.

Diagrams in which all internal points are connected to the two external points corre-
spond to m = n in the above sum, while diagrams in which only one internal point
is not connected to the two external points correspond to m = n− 1. Diagrams in
which none of the internal points are connected to the external points correspond
to m = 0. Summing over m from 0 to n generates all the diagrams, as required by
Wick’s theorem.

The summation over m in the above expansion may be rewritten as

n∑
m=0

1
m!(n−m)!

· · · =
∞∑

m=0

∞∑
j=0

δn,m+j

1
m!j !

· · · .

The Kronecker delta ensures that the summand is nonvanishing only when j =
n−m and m ≤ n. Summing over all orders, the numerator in Eq. (8.60) becomes

N = −
∞∑

n=0

∞∑
m=0

∞∑
j=0

δn,m+j

1
m!j !

(
−1

h̄

)n ∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτm

× 〈T ĉkσ (0)ĉ†kσ (τ )V̂ (τ1) . . . V̂ (τm)〉0,c

∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτj 〈T V̂ (τ1) . . . V̂ (τj )〉0.
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We relabeled τm+1, ..., τn as τ1, ..., τj , a step made possible by the fact that in sum-
ming over j , only terms with j = n−m make a nonzero contribution. Summing
first over n amounts to removing the Kronecker delta and replacing n by m+ j , so
that (−1/h̄)n = (−1/h̄)m(−1/h̄)j ; thus

N = −
∞∑

m=0

1
m!

(
−1

h̄

)m∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτm〈T ĉkσ (τ )ĉ†kσ (0)V̂ (τ1) . . . V̂ (τm)〉0,c

×
∞∑

j=0

1
j !

(
−1

h̄

)j ∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτj 〈T V̂ (τ1) . . . V̂ (τj )〉0.

But the second factor,
∑∞

j=0 · · · is simply the denominator in Eq. (8.60); hence

g(kσ, τ ) = −
∞∑

n=0

1
n!

(
−1

h̄

)n∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτn〈T ĉkσ (τ )ĉ†kσ (0)V̂ (τ1) . . . V̂ (τn)〉0,c.

(8.71)
We have proven that the denominator in Eq. (8.60) cancels out the disconnected
diagrams of the numerator. Importantly, we have shown that Green’s function is
obtained by summing over all connected diagrams. Of course, there remains the
question of how to translate Feynman diagrams into analytical expressions. We
will take this up in the next chapter.

Further reading

Abrikosov, A.A., Gorkov, L.P., and Dzyaloshinski, I.E. (1963). Methods of Quantum Field
Theory in Statistical Physics. New York: Dover Publications.

Fetter, A.L. and Walecka, J.D. (1971). Quantum Theory of Many-Particle Systems. New
York: McGraw-Hill.

Mills, R. (1969). Propagators for Many-Particle Systems. New York: Gordon and Breach
Science Publishers, Inc.

Problems

8.1 〈V 〉 and 〈E〉. For a translationally invariant system of interacting particles,
assume that v(r1 − r2) is spin-independent. The Hamiltonian is

H̄ =
∑

σ

∫
�†

σ (r)
(
− h̄2

2m
∇2 − μ

)
�σ (r)d3r

+ 1
2

∑
σ1σ2

∫
d3r1

∫
d3r2�

†
σ1

(r1)�†
σ2

(r2)v(r1 − r2)�σ2 (r2)�σ1 (r1).
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(a) Using the Heisenberg equation of motion, show that

h̄
∂

∂τ
�σ (rτ ) = A(r, τ )�σ (rτ )

where

A(r, τ ) =
[

h̄2

2m
∇2 + μ−

∑
σ1

∫
�†

σ1
(r1τ )v(r− r1)�σ1 (r1τ )d3r1

]
.

(b) Using the result from part (a), show that〈∑
σ1

∫
d3r1�

†
σ (r′τ )�†

σ1
(r1τ )v(r− r1)�σ1 (r1τ )�σ (rτ )

〉

= ∓ lim
τ ′→τ+

(
−h̄

∂

∂τ
+ h̄2

2m
∇2 + μ

)
g(rστ, r′στ ′).

(c) Take the limit r′ → r, sum over σ , multiply by 1/2, and integrate over
d3r . Show that the result is Eq. (8.24):

〈V 〉 = ∓1
2

∫
d3r lim

r′→r
lim

τ ′→τ+

(
−h̄

∂

∂τ
+ h̄2

2m
∇2 + μ

)∑
σ

g(rστ, r′στ ′).

(d) Using the result from part (c), derive Eq. (8.25).

8.2 Thermodynamic potential. Define H̄ (λ) = H0 − μN + λV = H̄0 + λV ,
ZG(λ) = Tr

[
e−βH̄ (λ)

]
, �(λ) = −kT lnZG(λ).

(a) Show that

∂

∂λ
Tr
[
(H̄0 + λV )n

] = nTr
[
(H̄0 + λV )n−1V

]
.

(b) Using the above result, show that
∂

∂λ
ZG(λ) = −βZG(λ)〈V 〉λ where

〈V 〉λ = Tr
[
e−βH̄ (λ)V

]
/ZG(λ).

(c) Show that
∂

∂λ
�(λ) = 〈V 〉λ = 1

λ
〈λV 〉λ.

(d) Integrate both sides over λ from 0 to 1 and use the result of the previous
problem to derive Eq. (8.26).

8.3 Discontinuity in g0. For a system of noninteracting electrons, plot g0(kσ, τ ) as a
function of τ . Show that g0 is discontinuous at τ = 0 and that the discontinuity
is equal to −1.

8.4 Equation 8.66b. Verify Eq. (8.66b).

8.5 Wick’s theorem: bosons. Prove Wick’s theorem for bosons.
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8.6 Wick’s theorem. Using Wick’s theorem, evaluate 〈N̂(τ )N̂ (τ ′)〉0, where N̂ is
the total number of particles operator in the interaction picture.

8.7 An equation for g0.
(a) Show that, for a translationally invariant system(

− ∂

∂τ
+ h̄2

2m
∇2 + μ

)
g0(r− r′ σ, τ − τ ′) = δ(r− r′)δ(τ − τ ′).

(b) By Fourier transforming, deduce the expression for g0(kσ, ωn).

8.8 Analytic continuation. Given two operators A and B, let Ã = A− 〈A〉 and
B̃ = B − 〈B〉. Let

CR
AB(t) = −iθ (t)〈[A(t), B(0)]〉, cT

AB(τ ) = −〈A(τ )B(0)〉.
It is clear that CR

AB(t) = CR
ÃB̃

(t) and CR
AB(ω) = CR

ÃB̃
(ω).

(a) Starting from the spectral representations of CR
AB(ω) and CR

ÃB̃
(ω), show

explicitly that

CR
AB(ω) = CR

ÃB̃
(ω).

(b) Show that, if 〈A〉 and 〈B〉 do not vanish, then cT
AB(τ ) 
= cT

ÃB̃
(τ ).

(c) Find the relation between cT
AB (ωn) and cT

ÃB̃
(ωn). Show that

CR
ÃB̃

(ω) = cT
ÃB̃

(ωn)
∣∣
iωn=ω+i0+ .



9
Diagrammatic techniques

So without these we all in vain shall try
To find the thing that gives them unity–
The thing to which each whispers, “Thou art thou”–
The soul which answers each, “And I am I.”

–Titus Lucretius Carus, No Single Thing Abides
Translated by W. H. Mallock

We now consider in detail the rules for the construction and evaluation of Feynman
diagrams. At the end of the previous chapter, we expressed the imaginary-time
single-particle Green’s function as a perturbation series in connected diagrams,

g(kσ, τ ) = −
∞∑

n=0

1
n!

(
−1

h̄

)n∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτn

〈
T ckσ(τ)c†kσ (0)V (τ1) . . . V (τn)

〉
0,c

.

(9.1)
To simplify notation, the hat “∧” above the operators is dropped. Additionally,
throughout this chapter, all operators are interaction picture operators, unless stated
otherwise. We show how to write g(kσ, τ ) as a sum of Feynman diagrams, and
develop rules for translating diagrams into algebraic expressions.

To develop diagram rules, we begin by investigating, in sufficient detail, the
second-order correction to g(kσ, τ ) in a system of fermions, where V is a two-
particle interaction. We determine diagram rules, and later derive them for any
order in the interaction.

9.1 Case study: second-order perturbation in a system of fermions

The second-order contribution to g(kσ, τ ) is given by

δg(2)(kσ, τ ) = − 1
2!

(
−1

h̄

)2∫ βh̄

0
dτ1

∫ βh̄

0
dτ2

〈
T ckσ(τ)c†kσ (0)V (τ1)V (τ2)

〉
0,c

(9.2)
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Figure 9.1 External fermion lines at τ and 0, and internal ones at τ1 and τ2. Dashed
lines are interaction lines. a and b represent the coordinates (kσ ), c = (k1 + qσ1),
d = (k2 − qσ2), e = (k1σ1), f = (k2σ2), g = (k3 + q′σ3), h = (k4 − q′σ4), i =
(k3σ3), and j = (k4σ4).

Figure 9.2 Connected and disconnected diagrams. The diagram on the left,
denoted by (ac)(eg)(f d)(ib)(jh), is connected. The diagram on the right, denoted
by (ac)(eb)(f d)(ig)(jh), is disconnected.

where, for a system of volume V ,

V (τ ) = 1
V

∑
k1σ1

∑
k2σ2

∑
q

1
2

vqc
†
k1+qσ1

(τ)c†k2−qσ2
(τ)ck2σ2

(τ)ck1σ1
(τ). (9.3)

We need to evaluate〈
T ckσ(τ)c†kσ (0)c†k1+qσ1

(τ1)c†k2−qσ2
(τ1)ck2σ2

(τ1)ck1σ1
(τ1)

c
†
k3+q′σ3

(τ2)c†k4−q′σ4
(τ2)ck4σ4

(τ2)ck3σ3
(τ2)

〉
0,c

.

The evaluation proceeds by using Wick’s theorem: we sum over all possible con-
tractions that result in connected diagrams. Referring to Figure 9.1 and its descrip-
tion, this corresponds to summing all connected diagrams obtained by connecting
the directed fermion lines: one line leaving a vertex to another line entering the
same, or a different, vertex. For example, one diagram (see Figure 9.2) results from
connecting a to c, e to g, f to d, i to b, and j to h; this diagram is denoted by
(ac)(eg)(f d)(ib)(jh). On the other hand, a diagram such as (ac)(eb)(f d)(ig)(jh)
is disconnected and should not be counted.
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Table 9.1 Connected diagrams that can be drawn
in Figure 9.1 by connecting a to either c or d.

1. (ac)(eb)(jd)(f h)(ig) 21. (ac)(ib)(eh)(f d)(jg)
2. (ac)(eb)(jd)(fg)(ih) 22. (ac)(ib)(eh)(fg)(jd)
3. (ac)(eb)(id)(f h)(jg) 23. (ad)(jb)(f c)(eh)(ig)
4. (ac)(eb)(id)(fg)(jh) 24. (ad)(jb)(f c)(eg)(ih)
5. (ac)(f b)(jd)(eh)(ig) 25. (ad)(jb)(f h)(ec)(ig)
6. (ac)(f b)(jd)(eg)(ih) 26. (ad)(jb)(f h)(eg)(ic)
7. (ac)(f b)(id)(eh)(jg) 27. (ad)(jb)(fg)(eh)(ic)
8. (ac)(f b)(id)(eg)(jh) 28. (ad)(jb)(fg)(ec)(ih)
9. (ad)(eb)(f h)(jc)(ig) 29. (ac)(jb)(f d)(eh)(ig)
10. (ad)(eb)(f h)(jg)(ic) 30. (ac)(jb)(f d)(eg)(ih)
11. (ad)(eb)(fg)(jc)(ih) 31. (ac)(jb)(f h)(ed)(ig)
12. (ad)(eb)(fg)(jh)(ic) 32. (ac)(jb)(f h)(eg)(id)
13. (ad)(f b)(eg)(jh)(ic) 33. (ac)(jb)(fg)(ed)(ih)
14. (ad)(f b)(eg)(jc)(ih) 34. (ac)(jb)(fg)(eh)(id)
15. (ad)(f b)(eh)(ic)(jg) 35. (ad)(ib)(f c)(eh)(jg)
16. (ad)(f b)(eh)(ig)(jc) 36. (ad)(ib)(f c)(eg)(jh)
17. (ac)(ib)(ed)(f h)(jg) 37. (ad)(ib)(f h)(ec)(jg)
18. (ac)(ib)(ed)(fg)(jh) 38. (ad)(ib)(f h)(eg)(jc)
19. (ac)(ib)(eg)(f d)(jh) 39. (ad)(ib)(fg)(ec)(jh)
20. (ac)(ib)(eg)(f h)(jd) 40. (ad)(ib)(fg)(eh)(jc)

What is the total number of connected diagrams that can be drawn in Figure
9.1? The external line a can be connected to c, d, g, or h, and line b can be
connected to e, f , i, or j . We start by counting all connected diagrams that can
be obtained by connecting a to either c or d; there are 40 such diagrams, listed in
Table 9.1.

What about diagrams that can be obtained by connecting a to g or h? It is
clear that there are also 40 such diagrams, which can be obtained from the 40
diagrams listed in Table 9.1 by the following interchanges: τ1 ↔ τ2 , (k1σ1) ↔
(k3σ3), (k2σ2) ↔ (k4σ4), and q ↔ q′. Since τ1 and τ2 are integrated over, and
k1σ1 , k2σ2 , k3σ3 , k4σ4 , q , and q′ are summed over, the 40 diagrams obtained by
connecting a to g or h make exactly the same contributions as the 40 diagrams
enumerated in Table 9.1. Hence, we may consider only the 40 diagrams in Table
9.1 and cancel the factor 2! in the denominator of Eq. (9.1).

Next, we observe that when we draw the 40 Feynman diagrams listed in Table
9.1, we find that there are only 10 generically different (topologically distinct)
diagrams. Each of these 10 diagrams occurs four times. The ten connected, topo-
logically distinct diagrams are shown in Figure 9.3. The diagrams in Figure 9.3 are
sometimes drawn in a different but equivalent way (see Figure 9.4). Table 9.2 lists
the diagrams from Table 9.1 that are topologically equivalent to the diagrams in
Figure 9.3.
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(a) (b) (c) (d)

(e) (f)

(i) (j)

(g) (r)

Figure 9.3 The ten connected, topologically distinct diagrams that arise in second
order perturbation theory. Solid lines are fermion lines, while dashed lines are
interaction lines.

(a) (b) (c) (d)

(e) (f)

(i) (j)

(g) (r)

Figure 9.4 An alternative way of drawing the diagrams from Figure 9.3.

Our next observation is that topologically equivalent diagrams make the same
contribution to δg(2), since they differ from each other only by virtue of a
relabeling of their internal time, wave vector, and spin coordinates, which are
integrated over. For example, diagram #20 in Table 9.1 makes the following
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Table 9.2 Topologically equivalent
diagrams listed in Table 9.1.

Diagrams in Table 9.1 Diagram in Fig. 9.3

1, 4, 13, 16 A
2, 3, 14, 15 B
5, 8, 9, 12 C
6, 7, 10, 11 D
17, 24, 33, 35 E
18, 23, 31, 36 F
19, 25, 29, 39 G
20, 26, 34, 40 R
21, 28, 30, 37 I
22, 27, 32, 38 J

contribution to δg(2):

δg
(2)
#20 = −

(
−1

h̄

)2 1
V 2

∫ βh̄

0
dτ1

∫ βh̄

0
dτ2

∑
qq′

(
1
2
vq

)(
1
2
vq′

)∑
k1σ1

∑
k2σ2

∑
k3σ3

∑
k4σ4

〈T ckσ c
†
kσ c

†
k1+qσ1

c
†
k2−qσ2

ck2σ2ck1σ1c
†
k3+q′σ3

c
†
k4−q′σ4

ck4σ4ck3σ3〉0. (9.4)

The time arguments of the operators are not shown explicitly: the first operator has
argument τ , the second has 0, the next four have τ1, and the last four have τ2. We
have ignored the factor 1/2!, since, as noted earlier, this factor cancels out if we
restrict ourselves to the 40 diagrams listed in Table 9.1. The ensemble-averaged
term gives

〈· · · 〉0 = −〈T ckσ(τ)c†k1+qσ1
(τ1)〉0 〈T ck3σ3

(τ2)c†kσ (0)〉0 〈T ck4σ4
(τ2)c†k2−qσ2

(τ1)〉0
〈T ck2σ2

(τ1)c†k4−q′σ4
(τ2)〉0 〈T ck1σ1

(τ1)c†k3+q′σ3
(τ2)〉0.

Using the relation

−〈T ckσ(τ)c†k′σ ′(τ
′)〉0 = δkk′ δσσ ′ g

0(kσ, τ − τ ′),

we find

δg
(2)
#20 = −

(
− 1

h̄V

)2 ∫ βh̄

0
dτ1

∫ βh̄

0
dτ2

∑
q

1
4
vqv−q

∑
k′σ ′

g0(kσ, τ − τ1)g0(kσ, τ2)

g0(k′σ ′, τ2 − τ1)g0(k′ + qσ ′, τ1 − τ2)g0(k− qσ, τ1 − τ2). (9.5)
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Figure 9.5 Diagram (R), a ring diagram.

Upon evaluating δg
(2)
#34, as an illustrative example, we obtain the same expression

as above, except that v2
q replaces vqv−q. Since v(r1 − r2) = v(r2 − r1), it follows

that vq = v−q ; hence, diagram #34 makes exactly the same contribution to δg(2) as
diagram #20. The fact that topologically equivalent diagrams yield the same alge-
braic expression means that we may sum only the topologically distinct diagrams
and drop the factor 1/4 in front of v2

q . In other words, we sum only connected,
topologically distinct diagrams, but we replace a dashed line carrying a wave vector
q with (vq/V ) instead of (1/2)vq/V . Thus, diagram (R), reproduced in Figure 9.5,
is given by

(R) = −
(
− 1

h̄V

)2∫ βh̄

0
dτ1

∫ βh̄

0
dτ2

∑
q

∑
k′σ ′

v2
qg0(kσ, τ − τ1)g0(k− qσ, τ1 − τ2)

g0(k′σ ′, τ2 − τ1)g0(k′ + qσ ′, τ1 − τ2)g0(kσ, τ2). (9.6)

This expression may be written from Figure 9.5 if we adopt the following
rules:

(1) To each fermion line with coordinates (kσ ), running from τi to τj , assign the
noninteracting single-particle Green’s function g0(kσ, τi − τj ).

(2) To each dashed line with wave vector q, assign the factor vq/V .
(3) Conserve wave vector and spin at each vertex.
(4) Sum over all internal coordinates (in Figure 9.5, these are k′, σ ′, and q).
(5) Integrate over internal times from 0 to βh̄ (τ and 0 are external times).
(6) Multiply by (−1/h̄)n, where n is the order of the interaction (n = 2 in Figure

9.5).
A factor of −1 is needed to reproduce Eq. (9.6). We note that diagram (R) has
one closed fermion loop. The last rule is:

(7) Multiply by (−1)F , where F is the number of closed fermion loops.
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We are usually interested in calculating g(kσ, ωn). To find the contribution of
diagram (R) in Figure 9.5 to δg(2)(kσ, ωn), we write

δg
(2)
R (kσ, τ ) = 1

βh̄

∑
n

δg
(2)
R (kσ, ωn)e−iωn τ , ωn = (2n+ 1)π/βh̄.

On the RHS of Eq. (9.6), we also Fourier-expand the Green’s functions,

RHS = −
(
−1

h̄

)2( 1
βh̄

)5 ∑
qk′σ ′

(vq

V

)2
∫ βh̄

0
dτ1

∫ βh̄

0
dτ2

∑
n

g0(kσ, ωn)e−iωn (τ−τ1)

×
∑
n1

g0(k− qσ, ωn1 )e
−iωn1 (τ1−τ2)

∑
n2

g0(k′σ ′, ωn2 )e
−iωn2 (τ2−τ1)

×
∑
n3

g0(k′ + qσ ′, ωn3 )e
−iωn3 (τ1−τ2)

∑
n4

g0(kσ, ωn4 )e
−iωn4τ2 .

Collecting the exponentials, we find

I = e−iωn τ

∫ βh̄

0
dτ1 ei(ωn−ωn1+ωn2−ωn3 )τ1

∫ βh̄

0
dτ2 ei(ωn1−ωn2+ωn3−ωn4 )τ2 .

Since the frequencies are odd, ωn − ωn1 + ωn2 − ωn3 and ωn1 − ωn2 + ωn3 − ωn4

are both even; hence

I = (βh̄)2e−iωn τ δωn+ωn2 , ωn1+ωn3
δωn4+ωn2 , ωn1+ωn3

.

Thus, I = 0 unless ωn4 = ωn . Setting ωn − ωn1 = ωm (ωm is even), we find ωn1 =
ωn − ωm and ωn3 = ωn2 + ωm. Relabeling ωn2 as ωn′ , we obtain

δg
(2)
R (kσ, ωn) = −

(−1
βh̄2

)2∑
qk′σ ′

(vq

V

)2∑
m,n′

g0(kσ, ωn)g0(k− qσ, ωn − ωm)

× g0(k′σ ′, ωn′)g0(k′ + qσ ′, ωn′ + ωm)g0(kσ, ωn). (9.7)

In Figure 9.6, we redraw diagram (R), this time in momentum-frequency space.
The above expression for δg

(2)
R (kσ, ωn) can be read off Figure 9.6 if we adopt the

following rules:

(1) Assign coordinates (kσ, ωn) to the two external fermion lines. To each inter-
action line, assign a wave vector and an even frequency.

(2) To each internal fermion line, assign wave vector, spin, and frequency coordi-
nates. At each vertex, conserve wave vector, spin, and frequency.

(3) To each fermion line with coordinates (kσ, ωn), assign g0(kσ, ωn). To each
interaction (dashed) line with coordinates (q, ωm), assign vq/V . Form the
product of all the g0’s and (vq/V )’s.
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Figure 9.6 Diagram (R) in momentum-frequency space.

(4) Sum over all internal coordinates (wave vector, spin, and frequency).
(5) Multiply the resulting expression by

(−1/βh̄2)n (−1)F , where n is the order of
the interaction and F is the number of closed fermion loops.

9.2 Feynman rules in momentum-frequency space

For a system of fermions with spin-independent two-particle interaction, the order
n correction to g(kσ, τ ) is

δg(n)(kσ, τ ) = − 1
n!

(
−1

h̄

)n ∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτn〈

T ckσ(τ) c
†
kσ (0) V (τ1)V (τ2) . . . V (τn)

〉
0,c

. (9.8)

We make the following observations:

(a) Each connected diagram results from a particular set of contractions, e.g.,
c(τ )c†(τ1), c(τ2)c†(0),. . . , c(τm)c†(τn). Let i1, i2, . . . , in be a permutation of
1, 2, . . . , n. The diagram which results from the set of contractions c(τ )c†(τi1 ),
c(τi2 )c

†(0), . . . , c(τim)c†(τin) is topologically equivalent to the first diagram
mentioned above, since the two diagrams differ only by a relabeling of their
time indices. The two diagrams have the same numerical value since the contri-
bution of the second diagram differs from that of the first only by a replacement
of the product V (τ1)V (τ2) . . . V (τn) by V (τi1 )V (τi2 ) . . . V (τin) in the integral,
and the dummy time variables are integrated over. Furthermore, no minus sign
is incurred by this rearrangement since V contains an even number of fermion
operators. Because there are n! permutations of 1, 2, . . . , n, we conclude that
there are n! topologically equivalent diagrams which differ only by the permu-
tation of their time indices, and that all of them have the same algebraic value.
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Therefore, we consider only one diagram from this set and cancel the n! factor
in Eq. (9.8).

(b) Going back to the example used in Section 9.1, we note that the 40 diagrams
listed in Table 9.2 are divided into ten groups, each of which contains four
diagrams. The four diagrams in each group are topologically equivalent and
have the same algebraic value. Consider, for example, these four diagrams:
#20, #26, #34, and #40, which are all of type (R). Diagram #34 is obtained
from diagram #20 by interchanging the two vertices of the interaction line at
τ1. Diagram #40, in turn, is obtained from diagram #20 by interchanging the
two vertices of the interaction line at τ2. Diagram #26 is obtained from #20
by interchanging the two vertices at τ1 as well as the two vertices at τ2. The
four diagrams make the same contribution to g(kσ, τ ) because they differ only
by a relabeling of their internal momentum and spin coordinates, which are
summed over.

Similarly, at order n, any interchange of the two vertices of a given interaction
(dashed) line yields a diagram that is topologically equivalent to the original
diagram, with the same algebraic value. Since there are n interaction lines,
each of which has two vertices, there are 2n topologically equivalent diagrams
with the same algebraic value that differ only by a relabeling of their internal
momentum and spin indices. If we were to construct a table of these order n

diagrams, similar to Table 9.2, we would find that each of the groups consists
of 2n diagrams (in Table 9.2, n = 2). Since a factor (vq/2V ) appears for each
interaction line of wave vector q, we may consider only one diagram from each
group and assign vq/V to each interaction line, rather than (1/2)vq/V .

(c) Let

Pg = −〈T ckσ (τ )c†kσ (0)c†1 c
†
1′ c1′c1 · · · c†nc

†
n′ cn′ cn〉0,c.

Here, we have dropped the internal momentum, spin, and time coordinates, and
the notation adopted is as follows. The interaction line at τi has two vertices,
denoted by i and i ′. The creation (annihilation) operator associated with vertex
i is denoted by c

†
i (ci). The operators can be rearranged such that

Pg = −〈T ckσ (τ )c†1 c1c
†
1′ c1′ · · · c†n cn c

†
n′ cn′ c

†
kσ (0)〉0,c.

In applying Wick’s theorem to evaluate Pg, we sum over all possible ways of
contracting pairs of operators. Let us consider the following particular way:
every annihilation operator is contracted with the creation operator immediately
on its right side (ckσ is contracted with c

†
1, c1 is contracted with c

†
1′ , and

so on). This way of contracting operators produces a term in Pg which is
a product of 2n+ 1 g0’s with an overall positive sign; the corresponding
Feynman diagram has no loops. Other diagrams without any closed loops can
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be obtained by interchanging two internal vertices and following the same
contraction procedure. For example, if we interchange c

†
1′c1′ and c

†
2c2 and

contract every annihilation operator with the creation operator immediately to
its right, we obtain another diagram without any loops. Since no minus sign
is introduced by interchanging of one pair of operators with another, every
diagram without loops that is generated by applying Wick’s theorem to Pg is
a product of 2n+ 1 single-particle Green’s functions with an overall positive
sign.

(d) A closed fermion loop is formed if a fermion line leaves a vertex and then
reenters the same vertex, possibly after entering and leaving a number of other
vertices. For example, let us consider again the time-ordered product Pg, and
let us interchange c1 and c1′ . This interchange introduces a minus sign; hence,

Pg = 〈T ckσ (τ )c†1 c1′ c
†
1′ c1 · · · c†n cn c

†
n′ cn′ c

†
kσ (0)〉0,c.

We now follow the same contraction procedure outlined earlier: every annihi-
lation operator is contracted with the creation operator immediately on its right
side. This way of contracting pairs of operators produces a term in Pg which
is a product of 2n+ 1 g0’s with an overall negative sign. The corresponding
Feynman diagram contains one fermion loop which results from contracting
c1′ with c

†
1′ . As another example, if we interchange c1 and c2 and follow the

same contraction procedure as above, we end up with a Feynman diagram with
one loop, where a line starts at vertex 1′, runs to vertex 2, and back to 1′. Once
again, the corresponding term in Pg contains a product of 2n+ 1 g0’s with an
overall negative sign. Thus, a factor of −1 is assigned to each closed fermion
loop.

If a fermion line closes on itself or is joined by the same interaction line, it
corresponds to the contraction c

†
k′σ ′(τ

′)ck′′σ ′′(τ ′). Since a contraction at equal
times is ill-defined, and since in V (τ ′) the creation operators always occur to the
left of the annihilation operators, the contraction at equal times is interpreted
as

c
†
k′σ ′(τ

′)ck′′σ ′′(τ ′) = c
†
k′σ ′(τ

′ + 0+)ck′′σ ′′(τ ′) = 〈T c
†
k′σ ′(τ

′ + 0+)ck′′σ ′′ (τ
′)〉0

= −〈T ck′′σ ′′ (τ
′)c†k′σ ′ (τ

′ + 0+)〉0 = δσ ′σ ′′δk′k′′g
0(k′σ ′, 0−).

When Fourier-transformed, it yields

(βh̄)−1
∑
n′

g0(k′σ ′, ωn′)e−iωn′0− = (βh̄)−1
∑
n′

g0(k′σ ′, ωn′)eiωn′0+ .

(e) Each interaction (dashed) line of wave vector q, occurring at time τ ′, has two
vertices. At each vertex, one fermion line enters and another one leaves, such
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Figure 9.7 Two fermion lines, coming from vertices at τa and τb, enter the inter-
action line at τ ′ and then leave to vertices at τc and τd .

that momentum and spin are conserved. Let us represent the two fermion lines
entering vertices 1 and 2 of the interaction by g0(τa − τ ′) and g0(τb − τ ′),
respectively, for some τa and τb. The two fermion lines leaving vertices 1 and 2
of the interaction are represented by g0(τ ′ − τc) and g0(τ ′ − τd), respectively,
for some τc and τd (see Figure 9.7). In terms of frequency, we write

g0(τa − τ ′) = (βh̄)−1
∑
n1

g0(ωn1 )e−iωn1 (τa−τ ′)

g0(τb − τ ′) = (βh̄)−1
∑
n2

g0(ωn2 )e−iωn2 (τb−τ ′)

g0(τ ′ − τc) = (βh̄)−1
∑
n3

g0(ωn3 )e−iωn3 (τ ′−τc)

g0(τ ′ − τd) = (βh̄)−1
∑
n4

g0(ωn4 )e
−iωn4 (τ ′−τd ).

Since τ ′ is integrated over, we obtain a factor of∫ βh̄

0
dτ ′ei(ωn1+ωn2−ωn3−ωn4 )τ ′ = βh̄δωn1+ωn2 , ωn3+ωn4

.

Setting ωn1 − ωn3 = ωm (even), we find that ωn3 = ωn1 − ωm and ωn4 = ωn2 +
ωm. Thus, we can associate a wave vector q and an even frequency ωm with an
interaction line, and demand momentum, spin, and frequency conservation at
each vertex, as shown in Figure 9.8.

(f) Each diagram occurring in the expansion of δg(n)(kσ, τ ) has 2n+ 1 fermion
lines and n interaction lines at τ1, τ2, . . . , τn. Each fermion line, when
Fourier-transformed, produces a factor of (βh̄)−1, while the integration over
τ1, τ2, . . . , τn produces a factor of (βh̄)n. Hence on the RHS of the expres-
sion for δg(n)(kσ, τ ), there is a factor of (βh̄)−n−1. Since δg(n)(kσ, τ ) =
(βh̄)−1∑

n δg(n)(kσ, ωn)e−iωnτ , the expression for δg(n)(kσ, ωn) contains the
factor (βh̄)−n. Combining this factor with the prefactor (−1/h̄)n which occurs in
the expansion of δg(n)(kσ, τ ), we conclude that the expression for δg(n)(kσ, ωn)
contains the factor (−1/βh̄2)n.
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Figure 9.8 Momentum, spin, and frequency conservation at each vertex of an
interaction (dashed) line.

We are now in a position to state Feynman rules, in momentum-frequency space,
for the construction and evaluation of diagrams that contribute to the correction
δg(n)(kσ, ωn), in order n, to Green’s function g(kσ, ωn). The rules for two-particle
interaction are as follows:

1. Draw all connected, topologically distinct diagrams with n interaction lines and
2n+ 1 directed fermion lines. Two of the fermion lines are external lines, and
the rest (2n− 1) are internal lines.

2. The two external fermion lines have coordinates (kσ, ωn). With each internal
fermion line, associate momentum, spin, and frequency coordinates. To each
interaction line assign a direction, a wave vector, and an even frequency. Con-
serve wave vector, spin, and frequency at each vertex.

3. Assign g0(kσ, ωn) to each of the two external fermion lines. To each internal
fermion line of coordinates (k′σ ′, ωn′), assign g0(k′σ ′, ωn′). For each fermion
line with frequency ωn′ that closes on itself or runs from one vertex of an
interaction line to the other vertex, insert the factor eiωn′0+ .

4. Assign to each interaction line with wave vector q and frequency ωm the factor
vq/V , where V is the system’s volume.

5. Form the product of all the g0’s and all the (vq/V )’s, and then sum over all
internal wave vectors, spins, and frequencies.

6. Multiply by the factor (−1/βh̄2)n(−1)F , where F is the number of closed
fermion loops.

Finally, we consider the following question: when we draw the connected,
topologically distinct diagrams, how do we know whether we have exhausted them
all? To restate the question, what is the number CT D(n) of connected, topologically
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distinct diagrams that contribute to δg(n)(kσ, τ )? According to the discussion above,
two diagrams are topologically equivalent if one is obtained from the other either
by a relabeling of internal time indices, or by interchanging the two vertices of one
or more interaction lines; therefore,

CT D(n) = C(n)
n!2n

(9.9)

where C(n) is the number of connected diagrams of order n. In calculating
δg(n)(kσ, τ ), the ensemble average is taken over a product involving 2n+ 1 cre-
ation operators and 2n+ 1 annihilation operators. In forming contractions, an
annihilation operator is contracted with a creation operator. Each possible way of
contracting the 2n+ 1 annihilation operators with the 2n+ 1 creation operators
produces one diagram. The first annihilation operator can be contracted with any of
the 2n+ 1 creation operators; the second annihilation operator can be contracted
with any of the remaining 2n creation operators, and so on. The total number of
diagrams, connected or not, is therefore equal to (2n+ 1)!. A disconnected dia-
gram is obtained if the operators in one or more V -operators are contracted among
themselves.

Consider the case where the creation and annihilation operators in m V -operators
are contracted among themselves. We note the following:

(a) In these m V -operators, there are 2m annihilation operators and 2m creation
operators. The number of diagrams formed by contractions of these operators
is (2m)!.

(b) The number of connected diagrams formed by the remaining 2(n−m)+ 1
annihilation operators and 2(n−m)+ 1 creation operators is C(n−m); it is
simply the number of connected diagrams of order n−m.

(c) There are n!/m!(n−m)! ways of choosing m V ’s from among n V ’s.

The number of connected diagrams is thus given by the recursion formula

C(n) = (2n+ 1)!−
n∑

m=1

n!
m!(n−m)!

(2m)!C(n−m) (9.10)

along with

C(0) = 1. (9.11)

Equations (9.9–9.11) determine the number of connected, topologically distinct
diagrams. For n = 1,

C(1) = 3!− 2!C(0) = 4, CT D(1) = C(1)
2

= 2.
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Figure 9.9 The two first-order connected, topologically distinct diagrams arising
from the correction to g(kσ, ωn ) in first order of the interaction (n = 1). (a) is a
direct interaction diagram and (b) is an exchange interaction diagram.

For n = 2,

C(2) = 5!− 2!
1!1!

2!C(1)− 2!
2!0!

4!C(0) = 80, CT D(2) = 80
222!

= 10.

For n = 3, we find CT D(3) = 74. Clearly, the number of connected, topologically
distinct diagrams grows rapidly with increasing perturbation order.

9.3 An example of how to apply Feynman rules

Consider the correction to g(kσ, ωn) in first order of the interaction (n = 1). There
is one interaction line and three fermion lines, two of which are external lines
with coordinates (kσ, ωn). There are two connected, topologically distinct dia-
grams, shown in Figure 9.9. Using the Feynman rules, we can readily write the
contributions of these two diagrams:

δg(1)
a (kσ, ωn) = −

(−1
βh̄2

)
v0

V
[g0(kσ, ωn)]2

∑
k′σ ′

∑
n′

g0(k′σ ′, ωn′)eiωn′0+ (9.12)

δg
(1)
b (kσ, ωn) =

(−1
βh̄2

)
[g0(kσ, ωn)]2

∑
qm

vq

V
g0(k− qσ, ωn − ωm)ei(ωn−ωm)0+

δg(1)(kσ, ωn) = δg(1)
a (kσ, ωn)+ δg

(1)
b (kσ, ωn). (9.13)

The first minus sign in δg(1)
a results from the existence of a closed fermion loop in

diagram (a). The convergence factor eiωn′0+ is inserted because the fermion line with
coordinates (k′σ ′, ωn′) closes in on itself. On the other hand, the convergence factor
ei(ωn−ωm)0+ in δg

(1)
b arises because the fermion line with coordinates (k− qσ, ωn −

ωm) is joined by an interaction line. These convergence factors are important;
without them, the summation over frequencies would diverge (see Problem 9.3).
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Frequency sums, as in the above expression for δg(1)
a (kσ, ωn) and δg

(1)
b (kσ, ωn),

often arise in applications of the finite temperature Green’s function. Here we
record the following formula:

∞∑
n=−∞

eiωn0+

iωn − ε̄/h̄
=
{
−βh̄nε̄ bosons

βh̄fε̄ fermions
(9.14)

(see Problem 9.3). In the above equation, nε̄ and fε̄ are the Bose–Einstein and
Fermi–Dirac distribution functions, respectively.

9.4 Feynman rules in coordinate space

The perturbation expansion for Green’s function, derived in the previous chapter,
applies to both momentum and coordinate space; hence

g(rστ, r′σ ′τ ′) = −
∞∑

n=0

1
n!

(−1/h̄)n
∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτn

〈T �σ (rτ )�†
σ ′(r

′τ ′)V (τ1) . . . V (τn)〉0,c. (9.15)

All operators are interaction picture operators. For two-particle interactions (see
Eq. [3.53]),

V (τ ) = 1
2

∑
λλ′

∑
μμ′

∫
d3r

∫
d3r ′�†

λ(rτ )�†
μ(r′τ )vλμ,λ′μ′(r, r′)�μ′(r′τ )�λ′(rτ )

where λ, λ′, μ, and μ′ are spin projection indices and vλμ,λ′μ′(r, r′) =
〈λμ|v(rσ, r′σ ′)|λ′μ′〉. If v is spin-independent, vλμ,λ′μ′(r, r′) = v(r, r′)δλλ′δμμ′ . Let
U (rστ, r′σ ′τ ′) = v(rσ, r′σ ′)δ(τ − τ ′), where 0 < τ, τ ′ < βh̄. V (τ ) may be written
as

V (τ ) = 1
2

∑
λλ′μμ′

∫
d3r

∫
d3r ′

∫ βh̄

0
dτ ′�†

λ(rτ )�†
μ(r′τ ′)Uλμ,λ′μ′(rτ, r′τ ′)

×�μ′(r′τ ′)�λ′(rτ ). (9.16)

The interaction is depicted in Figure 9.10. The two vertices of the interaction line
are assigned coordinates (rτ ) and (r′τ ′). The first-order correction is given by

δg(1)(rστ, r′σ ′τ ′) = 1
2h̄

∫
d3r1

∫ βh̄

0
dτ1

∫
d3r ′1

∫ βh̄

0
dτ ′1

∑
λλ′

∑
μμ′
〈T �σ (rτ )�†

σ ′(r
′τ ′)

ψ
†
λ(r1τ1)ψ†

μ(r′1τ
′
1)Uλμ,λ′μ′(r1τ1, r′1τ

′
1)ψμ′(r′1τ

′
1)ψλ′(r1τ1)〉0,c. (9.17)
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Figure 9.10 Graphical representation of the two-particle interaction in coordinate
space.

The notation can be simplified by introducing the four-dimensional coordinate
x = (r, τ ). Setting

∫
d3r

∫ βh̄

0 dτ = ∫ dx, Eq. (9.17) reduces to

δg
(1)
σσ ′(x, x ′) = (1/2h̄)

∫
dx1

∫
dx ′1

∑
λλ′

∑
μμ′
〈T ψσ (x)�†

σ ′(x
′)�†

λ(x1)�†
μ(x ′1)

Uλμ,λ′μ′(x1, x
′
1)�μ′(x ′1)�λ′(x1)〉0,c.

Similar to the momentum space, the following observations apply:

(a) Diagrams that differ from each other by a permutation of τ1, τ2, . . . , τn are topo-
logically equivalent; they make identical contributions to δg

(n)
σσ ′(x, x ′). There

are n! such diagrams. We select one diagram from this set and cancel the factor
1/n! in Eq. (9.15).

(b) In order n, there are 2n topologically equivalent diagrams that differ only by
some interchange of the interaction vertices (riτi) ↔ (r′iτ

′
i ), along with the

corresponding spin indices. These diagrams make identical contributions to
δg(n), since the interaction is symmetric under such an interchange:

Uλμ,λ′μ′(xi, x
′
i) = Uλ′μ′,λμ(x′i , xi).

The symmetry occurs because the particles comprising the system are indistin-
guishable: since the particles are identical, interchanging the position and spin
coordinates of any two particles does not change the interaction between them.
Hence, it is sufficient to count each topologically distinct diagram only once,
assigning to each interaction line with vertices x and x′ the factor Uλμ,λ′μ′(x, x′)
rather than (1/2)Uλμ,λ′μ′(x, x′).

(c) For each fermion loop, a factor of −1 is assigned.

Following these observations, we write below the Feynman rules for calculating
the correction, of order n, to the Green’s function g(rστ, r′σ ′τ ′):

(1) Draw all connected, topologically distinct diagrams with 2n vertices (i.e., n

interaction, or dashed lines) and two external fermion lines. At each vertex,
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Figure 9.11 Connected, topologically distinct diagrams that contribute to the first-
order correction to Green’s function.

one fermion line enters and another one leaves. If the interaction is spin-
independent, conserve spin at each vertex.

(2) To each fermion line directed from (rστ ) to (r′σ ′τ ′), assign g0(rστ, r′σ ′τ ′).
(3) To each interaction line with vertices (ri τi) and (r′i τ

′
j ), assign the matrix element

Uλμ,λ′μ′(ri τi, r′i τ
′
i ).

(4) Integrate over all vertex coordinates (2n space and 2n time integrations).
(5) Sum over all internal spin indices.
(6) Multiply the resulting factor by (−1/h̄)n(−1)F , where F is the number of

fermion loops.
(7) Any Green’s function at equal times is interpreted as g0(rστ, r′σ ′τ+).

As an example, consider a system of fermions with spin-independent two-
particle interaction: Uλμ,λ′μ′(x, x′) = Uλμ,λμ(x, x ′)δλλ′δμμ′ . The first order correc-
tion δg(1)(rστ, r′σ ′τ ′) is obtained below. There are two connected, topologically
distinct, diagrams (see Figure 9.11). Using the diagram rules,

δg(1)(rστ, r′σ ′τ ′) ≡ δg
(1)
σσ ′(x, x ′) = δg

(1)
σσ ′,a(x, x′)+ δg

(1)
σσ ′,b(x, x ′) ≡ A+ B

A = 1
h̄

∫
dx1

∫
dx ′1

∑
λμ

g0
σλ(x, x1)Uλμ,λμ(x1, x

′
1)g0

μμ(x ′1, x
′
1)g0

λσ ′(x1, x
′)

= δσσ ′
1
h̄

∫
dx1

∫
dx ′1

∑
μ

g0
σσ (x, x1)Uσμ,σμ(x1, x

′
1)g0

μμ(x′1, x
′
1)g0

σσ (x1, x
′)

(9.18)

where Uσμ,σμ(x1, x
′
1) = v(r1, r′1)δ(τ1 − τ ′1) and g0

μμ(x′1, x
′
1) = g0

μμ(r′1τ
′
1, r′1τ

′+
1 ).

B = −1
h̄

∫
dx1

∫
dx ′1

∑
λμ

g0
σλ(x, x1)Uλμ,λμ(x1, x

′
1)g0

λμ(x1, x
′
1)g0

μσ ′(x
′
1, x

′)

= δσσ ′
−1
h̄

∫
dx1

∫
dx ′1g

0
σσ (x, x1)Uσσ,σσ (x1, x

′
1)g0

σσ (x1, x
′
1)g0

σσ (x′1, x
′). (9.19)
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Figure 9.12 Graphical representation of Green’s function in terms of the self
energy. The directed solid double-line represents g(kσ, ωn), the directed solid
single line represents g0(kσ, ωn), and the dashed line is the two-particle interaction.
The hatched circle represents the self energy �(kσ, ωn).

9.5 Self energy and Dyson’s equation

It is clear from our previous analysis that every connected diagram in the per-
turbation expansion for Green’s function contains two external particle lines
at its ends. Thus, every connected diagram has an algebraic value given by
g0(kσ, ωn)B(kσ, ωn)g0(kσ, ωn), for some B(kσ, ωn) that is determined by the
structure of the diagram. Hence, we may write

g(kσ, ωn) = g0(kσ, ωn)+ g0(kσ, ωn)�(kσ, ωn)g0(kσ, ωn)

where �(kσ, ωn), known as the particle’s self energy, is obtained by summing
B(kσ, ωn) over all connected, topologically distinct diagrams of all orders in the
perturbation. Graphically, the equation for g(kσ, ωn) is represented in Figure 9.12,
where the self energy �(kσ, ωn) is written as an infinite sum of terms, called
self-energy terms.

An examination of the diagrams appearing in the expansion of �(kσ, ωn) reveals
that there are two types of diagrams: those that can be separated into two pieces
by cutting a single-particle line (third, fourth, and fifth diagrams), and those that
cannot. If we add up all the self energy diagrams that cannot be separated into two
pieces by cutting a single-particle line, we obtain what is known as the proper, or
irreducible, self energy �∗(kσ, ωn). It is clear that

�(kσ, ωn) = �∗(kσ, ωn)+�∗(kσ, ωn)g0(kσ, ωn)�∗(kσ, ωn)+ · · · .

This is depicted graphically in Figure 9.13. It follows that Green’s function may
be written as

g(kσ, ωn) = g0(kσ, ωn)+ g0(kσ, ωn)�∗(kσ, ωn)g0(kσ, ωn)

+ g0(kσ, ωn)�∗(kσ, ωn)g0(kσ, ωn)�∗(kσ, ωn)g0(kσ, ωn)+ · · ·
=⇒ g(kσ, ωn) = g0(kσ, ωn)+ g0(kσ, ωn)�∗(kσ, ωn)g(kσ, ωn). (9.20)
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Figure 9.13 The shaded circle is the proper self energy �∗(kσ, ωn), while the
hatched circle is the self energy �(kσ, ωn).

This is Dyson’s equation (Dyson, 1949a, 1949b). An exact expression for Green’s
function, in terms of the proper self energy, follows:

g(kσ, ωn) = g0(kσ, ωn)
1− g0(kσ, ωn)�∗(kσ, ωn)

= 1
g0−1 (kσ, ωn)−�∗(kσ, ωn)

= 1
iωn − ε̄kσ /h̄−�∗(kσ, ωn)

. (9.21)

where ε̄kσ = εkσ − μ. We should note that even though the above expression is
exact, the calculation of �∗(kσ, ωn) is generally a formidable task; in practice,
�∗(kσ, ωn) is approximated by a few diagrams.

9.6 Energy shift and the lifetime of excitations

We recall, from Section 8.4, that the retarded Green’s function is obtained from its
imaginary-time counterpart by using the replacement iωn → ω + i0+. Therefore,

GR(kσ, ω) = 1
ω − ε̄kσ /h̄− Re�∗R(kσ, ω)− iIm�∗R(kσ, ω)

where �∗R(kσ, ω) = �∗(kσ, iωn → ω + i0+) is the retarded proper self energy.
We assume that Im�∗R(kσ, ω) is nonzero so that the additional i0+ in the denom-
inator can be neglected. The spectral density function, equal to−2ImGR (see Eq.
[6.42]), is given by

A(kσ, ω) = −2 Im�∗R(kσ, ω)
[ω − ε̄kσ /h̄− Re�∗R(kσ, ω)]2 + [Im�∗R(kσ, ω)]2 .

For fermions, A(kσ, ω) ≥ 0 (see Eq. [6.35]). Hence, Im�∗R(kσ, ω) ≤ 0 for
all values of ω. While A(kσ, ω) is a Dirac-delta function for a noninteract-
ing system, the above expression shows that, in the presence of interactions,
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Figure 9.14 The contour C in Eq. (9.22) consists of the real axis, from −∞ to
+∞, and a semicircle at infinity in the lower half-plane.

A(kσ, ω) is a Lorentzian with a shifted center and half-width at full maxi-
mum given by (1/2)Im�∗

R(kσ, ω0), where ω0 is the solution of the equation
ω − ε̄kσ /h̄− Re�∗R(kσ, ω) = 0.

Going next to the time domain,

GR(kσ, t) = 1
2π

∫ ∞

−∞
GR(kσ, ω)e−iωt dω = 1

2π

∫ ∞

−∞

e−iωtdω

ω − ε′kσ /h̄+ iγ

where ε′kσ � ε̄kσ + h̄Re�∗
R(kσ, ε̄kσ /h̄) and γ � −Im�∗

R(kσ, ε′kσ /h̄) > 0. Since
t > 0 (GR(kσ, t) vanishes for t < 0), the above integral vanishes if taken over the
semicircle at infinity in the lower half ω-plane. Hence,

GR(kσ, t) = 1
2π

∫
C

e−iωtdω

ω − ε′kσ /h̄+ iγ
(9.22)

where C is the closed contour shown in Figure 9.14. The position of the pole is
given by ωpole = ε′kσ /h̄− iγ . By the residue theorem, we obtain

GR(kσ, t) = −iθ (t)e−iε′kσ t/h̄e−γ t .

The minus sign arises because we go around the contour in a clockwise direction,
and the step function ensures that the retarded function vanishes for t < 0. In fact,
if t < 0, we consider a contour consisting of the real axis and a semicircle at infinity
in the upper half-plane. The contour integral then vanishes, since the pole is outside
the contour. Furthermore, for t < 0, the integral over the semicircle at infinity in
the upper half-plane also vanishes; hence, the integral along the real axis vanishes,
and GR(kσ, t < 0) = 0.

The retarded function of the noninteracting system is given by

GR,0(kσ, t) = −iθ (t)e−iε̄kσ t/h̄

(see Eq.[6.61]). A comparison of the expressions for GR(kσ, t) and GR,0(kσ, t)
shows that the effects of the interaction are shifting the energy of the single-
particle excitation by h̄Re�∗

R(kσ, ε̄kσ /h̄) and causing a damping of this excitation.
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Figure 9.15 Two equivalent drawings of the ring diagram.

The lifetime of the excitation, τ , is defined by γ τ = 1/2; hence,

τ = −1
2 Im�∗

R(kσ, ε ′kσ /h̄)
.

9.7 Time-ordered diagrams: a case study

For a system of interacting fermions, let us consider the ring diagram again, shown
in Figure 9.15. Diagram (b) is an equivalent way of representing the ring diagram
if we assign vq/V to each filled circle. Its contribution is given by

δg(2) = c(2)
∫ βh̄

0
dτ1

∫ βh̄

0
dτ2

∑
k′σ ′q

v2
q

V 2 g0(kσ, τ − τ1)g0(kσ, τ2)F (kk′qσσ ′, τ1 − τ2)

where c(2) = −(−1/h̄)2, and

F (kk′qσσ ′, τ1 − τ2) = g0(k− qσ, τ1 − τ2)g0(k′σ ′, τ2 − τ1)g0(k′ + qσ ′, τ1 − τ2).

Fourier-expanding the external Green’s functions,

g0(kσ, τ − τ1) = (βh̄)−1
∑
n1

g0(kσ, ωn1 )e
−iωn1 (τ−τ1) ,

g0(kσ, τ2) = (βh̄)−1
∑
n2

g0(kσ, ωn2 )e−iωn2τ2 ,

we obtain

δg(2) = c(2)(βh̄)−2
∑
k′σ ′q

v2
q

V 2

∑
n1n2

g0(kσ, ωn1 )g
0(kσ, ωn2 )e−iωn1 τ I

I =
∫ βh̄

0
dτ1

∫ βh̄

0
dτ2 eiωn1τ1e−iωn2τ2F (kk′qσσ ′, τ1 − τ2).
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Noting that∫ βh̄

0
dτ1

∫ βh̄

0
dτ2 · · · =

∫ βh̄

0
dτ1

∫ τ1

0
dτ2 · · · +

∫ βh̄

0
dτ2

∫ τ2

0
dτ1 . . . ,

the expression for I is written as

I = I1 + I2

I1 =
∫ βh̄

0
dτ1

∫ τ1

0
dτ2 eiωn1 τ1e−iωn2 τ2F ><>

I2 =
∫ βh̄

0
dτ2

∫ τ2

0
dτ1 eiωn1τ1e−iωn2τ2F<><

where

F><> = g0>(k− qσ, τ1 − τ2)g0<(k′σ ′, τ2 − τ1)g0>(k′ + qσ ′, τ1 − τ2)

F <>< = g0<(k− qσ, τ1 − τ2)g0>(k′σ ′, τ2 − τ1)g0<(k′ + qσ ′, τ1 − τ2).

Here, g0>(kσ, τ ) = g0(kσ, τ > 0) and g0<(kσ, τ ) = g0(kσ, τ < 0).
We recall some results from Chapter 8,

g0>(kσ, τ ) =
∫ ∞

−∞
P 0>(kσ, ε)e−ετ dε

2π
, P 0>(kσ, ε) = −(1− fε)A0(kσ, ε)

g0<(kσ, τ ) =
∫ ∞

−∞
P 0<(kσ, ε)e−ετ dε

2π
, P 0<(kσ, ε) = fεA

0(kσ, ε)

(see Eqs (8.28) and (8.32–8.34)). A0(kσ, ε) is the spectral density function for the
noninteracting system. Using the above expressions for g0> and g0<, we can write

I1 =
∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π

∫ ∞

−∞

dε3

2π
P 0>(k− qσ, ε1)P 0<(k′σ ′, ε2)P 0>(k′ + qσ ′, ε3)

×
∫ βh̄

0
dτ1e

(iωn1−ε1+ε2−ε3)τ1

∫ τ1

0
dτ2e

(−iωn2+ε1−ε2+ε3)τ2 . (9.23)

The time integrals are easily evaluated,∫ βh̄

0
dτ1e

(iωn1−ε1+ε2−ε3)τ1

∫ τ1

0
dτ2e

(−iωn2+ε1−ε2+ε3)τ2

= βh̄

−iωn1 + ε1 − ε2 + ε3
δωn1ωn2

−
∫ βh̄

0
dτ1

e(iωn1−ε1+ε2−ε3)τ1

−iωn2 + ε1 − ε2 + ε3
. (9.24)
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Therefore,

I1 = βh̄δωn1ωn2

∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π

∫ ∞

−∞

dε3

2π

B

−iωn1 + ε1 − ε2 + ε3

−
∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π

∫ ∞

−∞

dε3

2π
B

∫ βh̄

0
dτ1

e(iωn1−ε1+ε2−ε3)τ1

−iωn2 + ε1 − ε2 + ε3
(9.25)

where

B = P 0>(k− qσ, ε1)P 0<(k′σ ′, ε2)P 0>(k′ + qσ ′, ε3). (9.26)

Similarly, defining D by

D = P 0<(k− qσ, ε1)P 0>(k′σ ′, ε2)P 0<(k′ + qσ ′, ε3) (9.27)

we can write an expression for I2

I2 = βh̄δωn1ωn2

∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π

∫ ∞

−∞

dε3

2π

D

iωn1 − ε1 + ε2 − ε3

−
∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π

∫ ∞

−∞

dε3

2π
D

∫ βh̄

0
dτ2

e(−iωn2+ε1−ε2+ε3)τ2

iωn1 − ε1 + ε2 − ε3
. (9.28)

The expression for δg(2) now becomes

δg(2)(kσ, τ ) = δg(2)
a (kσ, τ )+ δg

(2)
b (kσ, τ )

δg(2)
a (kσ, τ ) = c(2)(βh̄)−1

∑
k′σ ′q

(vq/V )2
∑

n

[g0(kσ, ωn)]2e−iωnτ

∫ ∞

−∞

dε1

2π

×
∫ ∞

−∞

dε2

2π

∫ ∞

−∞

dε3

2π

[
B

−iωn + ε1 − ε2 + ε3
+ D

iωn − ε1 + ε2 − ε3

]
(9.29)

δg
(2)
b (kσ, τ ) = −c(2)(βh̄)−2

∑
k′σ ′q

(vq/V )2
∑
n1n2

g0(kσ, ωn1 )g0(kσ, ωn2 )e
−iωn1τ

×
∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π

∫ ∞

−∞

dε3

2π

[
B

∫ βh̄

0
dτ1

e(iωn1−ε1+ε2−ε3)τ1

−iωn2 + ε1 − ε2 + ε3

+D

∫ βh̄

0
dτ2

e(−iωn2+ε1−ε2+ε3)τ2

iωn1 − ε1 + ε2 − ε3

]
. (9.30)

Denoting the term in brackets in Eq. (9.30) by J , we find

J = − B[1+ eβh̄(−ε1+ε2−ε3)]+D[1+ eβh̄(ε1−ε2+ε3)]
(iωn1 − ε1 + ε2 − ε3)(−iωn2 + ε1 − ε2 + ε3)

≡ −X

Y
.
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To arrive at this expression, we used exp(iωn1βh̄) = exp(iωn2βh̄) = −1. Replacing
B and D by their values given in Eqs (9.26) and (9.27), we find

X = P 0>(k− qσ, ε1)P 0<(k′σ ′, ε2)P 0>(k′ + qσ ′, ε3)[1+ eβh̄(−ε1+ε2−ε3)]

+ P 0<(k− qσ, ε1)P 0>(k′σ ′, ε2)P 0<(k′ + qσ ′, ε3)[1+ eβh̄(ε1−ε2+ε3)]

= A0(k− qσ, ε1)A0(k′σ ′, ε2)A0(k′ + qσ ′, ε3)

× {(1−fε1 )fε2 (1−fε3 )[1+eβh̄(−ε1+ε2−ε3)]− fε1 (1−fε2 )fε3 [1+ eβh̄(ε1−ε2+ε3)]
}
.

(9.31)

Miraculously, the term in braces vanishes, which can be easily verified. In fact, the
vanishing of this term is not coincidental; it follows from general considerations:
only the term in δg(2) which is proportional to δωn1ωn2

should survive. We conclude
that δg

(2)
b = 0 and δg(2) = δg(2)

a . Fourier-expanding δg(2),

δg(2)(kσ, τ ) = (βh̄)−1
∑

n

δg(2)(kσωn)e−iωnτ ,

we finally obtain

δg(2)(kσ, ωn) = c(2)
∑
k′σ ′q

(vq/V )2[g0(kσ, ωn)]2
∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π

∫ ∞

−∞

dε3

2π

×
[
P 0>(k− qσ, ε1)P 0<(k′σ ′, ε2)P 0>(k′ + qσ ′, ε3)

−iωn + ε1 − ε2 + ε3

+ P 0<(k− qσ, ε1)P 0>(k′σ ′, ε2)P 0<(k′ + qσ ′, ε3)
iωn − ε1 + ε2 − ε3

]
. (9.32)

We recall the spectral representation of g(kσ, ωn) and GR(kσ, ω):

g(kσ, ωn) =
∫ ∞

−∞

A(kσ, ε)
iωn − ε

dε

2π
, GR(kσ, ω) =

∫ ∞

−∞

A(kσ, ε)
ω − ε + i0+

dε

2π
.

GR(kσ, ω) is analytic and well-defined everywhere in the upper half ω−plane; it
is also well-defined on the positive imaginary axis. Thus,

GR(kσ, iωn) = g(kσ, ωn), ωn > 0.

Now consider the function F (kσ, ω) defined by

F (kσ, ω) = δg(2)(kσ, iωn → ω + i0+).

This function is analytic everywhere above the real axis, as can be seen from Eq.
(9.32). Furthermore, it coincides with δGR,(2)(kσ, ω) on an infinite sequence of
points, along the positive imaginary axis, whose limit lies in the region of ana-
lyticity (the limit point is at infinity on the positive imaginary axis). A theorem
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Figure 9.16 The two time-ordered diagrams corresponding to the diagram in
Figure 9.15: (a) τ1 > τ2. (b) τ2 > τ1.

to that effect, in the theory of complex functions, assures us that the functions
F (kσ, ω) and δGR,(2)(kσ, ω) coincide everywhere in the upper half-plane. There-
fore, the expression for δGR,(2)(kσ, ω) is obtained from δg(2)(kσ, ωn) by simply
replacing iωn by ω + i0+. We conclude that by using the approach outlined in this
section, resolving the problem of analytic continuation, which was mentioned in
the previous chapter, is straightforward: obtain g(kσ, ωn) as a sum of time-ordered
diagrams and replace iωn by ω + i0+ to obtain GR(kσ, ω).

There remains the problem of how to develop a set of rules for writing the
algebraic expression that corresponds to any particular diagram. It took a great
effort to arrive at the expression for δg(2)(kσ, ωn), and this approach becomes
worthless if a similar effort is required for the evaluation of each diagram.

We observe that the expression for δg(2)(kσ, ωn) can be written directly if we
redraw Figure 9.15 as in Figure 9.16, and if we adopt the following rules. Arrange
the time coordinates of the vertices so that they decrease from top to bottom.
Consider all possible time orderings; in this case, there are two time orderings:
τ1 > τ2 (Figure 9.16a) and τ2 > τ1 (Figure 9.16b). The two external lines are
drawn vertically. To each external line, assign g0(kσ, ωn) and frequency iωn. To
each vertex which corresponds to an interaction with wave vector q, assign vq/V .
To each internal line, assign the coordinates (kiσi, εi) such that momentum and spin
are conserved at each vertex. Draw a horizontal dashed line, called a section, which
separates one vertex from the one below it. To each internal line with coordinates
(kiσi, εi) which crosses a section, assign P 0>(kiσi, εi) if it is directed downward
and P 0<(kiσi , εi) if it is directed upward. To each section, assign a denominator
equal to the sum of the frequencies of the lines that intersect the section, with each
frequency carrying a plus sign if the line is directed downward and a minus sign if
it is directed upward. Sum over the internal momentum and spin coordinates and
integrate over εi’s, the internal frequency coordinates. Finally, multiply the resulting
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expression by c(n), which is determined by the original Feynman diagram (here,
n = 2).

9.8 Time-ordered diagrams: Dzyaloshinski’s rules

We indicated in the example given in the previous section that the vanishing of
δg

(2)
b is not coincidental. In fact, it follows from the general property that Green’s

function, along with all Feynman diagrams, depends only on a difference of time
coordinates. Consider any Feynman diagram, denoted by �N , of order N . One
external line runs from τ to τN , and another runs from τ1 to τ ′. The algebraic
expression corresponding to this diagram is

δg�N (τ, τ ′) =
∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτN g0(τ − τN )g0(τ1 − τ ′)A(τ1, . . . , τN )

where A(τ1, . . . , τN ) is some function of the internal time coordinates, and the
wave vector and spin arguments are suppressed. Fourier-expanding the external
lines,

δg�N (τ, τ ′) = 1
(βh̄)2

∑
n,n′

g0(ωn)g0(ωn′)
∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτNe−iωn(τ−τN )e−iωn′ (τ1−τ ′)

× A(τ1, . . . , τN ) = 1
(βh̄)2

∑
n,n′

g0(ωn)g0(ωn′)e−iωn(τ−τ ′)e−i(ωn−ωn′ )τ ′

×
∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτNeiωnτN e−iωn′ τ1A(τ1, . . . , τN ). (9.33)

Since δg�N depends on τ − τ ′ and not on τ and τ ′ separately, it follows that

∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτNeiωnτN e−iωn′ τ1A(τ1, . . . , τN ) ∝ δn,n′ .

That is, since τ and τ ′ do not appear in the above integral, the integral must vanish
unless ωn = ωn′ ; if it did not, then δg�N would depend on τ ′ because of the term
exp[−i(ωn − ωn′)τ ′]. In other words, the frequencies of the two external lines,
along with their momentum and spin coordinates, have to be the same; we have
assumed this all along.

The derivation of the rules for the time-ordered diagrams is given below. These
rules were enunciated, but not derived, in a paper by Dzyaloshinski (Dzyaloshinski,
1962). A similar set of rules were derived by Baym and Sessler (Baym and Sessler,
1963). An alternative derivation is provided in the remainder of this section. The
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Figure 9.17 A general Feynman diagram, of order N , denoted by �N . The external
lines, directed from τ to τN and from τ1 to 0, have momentum and spin coordinates
denoted by α. An internal line, directed from τi to τj , has momentum and spin
coordinates denoted by αij .

reader who is interested only in applying the rules may go to the end of the section,
where the rules are listed.

Consider any Feynman diagram �N of order N . We can represent it as in Figure
9.17. An external line is directed from τ to some vertex, whose time coordinate we
call τN . A second external line is directed from some vertex, whose time coordinate
we call τ1, to τ = 0. Inside the circle, there are N interaction time vertices, and
internal lines run between these vertices. The total number of internal lines depends
on the system under consideration and on the type of interaction involved. For a
system of fermions with two-particle interaction, the total number of internal lines
is 2N − 1. For other types of interactions, such as scattering due to impurities, or
for other kinds of systems, such as interacting electrons and phonons, the number
differs from 2N − 1.

The algebraic expression corresponding to the diagram in Figure 9.17 is

δg�N (τ ) = c�N

∑
{αij }

M
�N

{αij }

∫ βh̄

0
dτN . . .

∫ βh̄

0
dτ1g

0
α(τ − τN )g0

α(τ1)
∏
i,j

F[αij ](τi − τj ).

c�N
is a counting factor that depends on the structure of the diagram, and it

is determined by the Feynman rules. M
�N

{αij } is the product of the interaction
matrix elements (determined by the types of interactions at the vertices), and
it depends on internal momentum and spin coordinates, denoted collectively by
{αij }, which are summed over. The quantity M

�N

{αij } contains Kronecker deltas that
express momentum and spin conservation at the vertices. In the above expres-
sion, F[αij ](τi − τj ) is the product of Green’s functions corresponding to the lines
directed from τi to τj . If only one line with coordinates αij is directed from τi to τj ,
then F[αij ](τi − τj ) = g0

αij
(τi − τj ). If two lines, having coordinates αij and α′ij are

directed from τi to τj , then F[αij ](τi − τj ) = g0
αij

(τi − τj )g0
α′ij

(τi − τj ). If no lines
are directed from τi to τj , then F[αij ](τi − τj ) = 1. Fourier-expanding the external



206 Diagrammatic techniques

lines, we can write

δg�N (τ ) = c�N
(βh̄)−2

∑
{αij }

M
�N

{αij }
∑
n1n2

g0
α(ωn1 )g

0
α(ωn2 )e

−iωn1τ I1 (9.34)

I1 =
∫ βh̄

0
dτN . . .

∫ βh̄

0
dτ1eiωn1 τN e−iωn2τ1

∏
i,j

F[αij ](τi − τj ). (9.35)

Next, I1 is written as a sum of N! integrals corresponding to the N! permutations
of τ1, τ2, . . . , τN :

I1 =
∑
P

∫ βh̄

0
dτPN

∫ τPN

0
dτPN−1 . . .

∫ τP2

0
dτP1e

iωn1τN e−iωn2 τ1
∏
Pi,Pj

F[αPiPj
](τPi

− τPj
)

where P1, P2, . . . , PN is a permutation of 1, 2, . . . , N , and the sum over P is a
sum over all such permutations. Now we make use of the following:

g0>(τ ) =
∫ ∞

−∞
P 0>(ε)e−ετ dε

2π
, g0<(τ ) =

∫ ∞

−∞
P 0<(ε)e−ετ dε

2π

where, for bosons (B) and fermions (F),

P 0>(ε) =
{
−(1+ nε)A0(ε) B

−(1− fε)A0(ε) F
P 0<(ε) =

{
−nεA

0(ε) B

fεA
0(ε) F.

(9.36)

nε and fε are the Bose and Fermi distribution functions, respectively. To each
internal line directed from τi to τj we assign a frequency εij and replace g0

αij
(τi − τj )

by an integral over εij , as in the above expressions for g0> and g0<. We obtain

I1 =
∑
P

∫ ∞

−∞
. . .

∫ ∞

−∞

d{εPiPj
}

(2π )NL
F P
{αPiPj

}({εPiPj
})
∫ βh̄

0
dτPN

∫ τPN

0
dτPN−1 . . .

×
∫ τP2

0
dτP1e

iωn1 τN e−iωn2τ1
∏
Pi,Pj

e
−εPiPj

(τPi
−τPj

) (9.37)

where NL is the number of internal lines, and

FP
{αPiPj

}({εPiPj
}) =

∏
Pi

⎡
⎣ ∏

Pj <Pi

P 0>
αPiPj

(εPiPj
)
∏

Pj >Pi

P 0<
αPiPj

(εPiPj
)

⎤
⎦ .
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I1 may now be written as

I1 =
∑
P

∫ ∞

−∞
. . .

∫ ∞

−∞

d{εPiPj
}

(2π )NL
F P
{αPiPj

}({εPiPj
})I2P

I2P =
∫ βh̄

0
dτPN

∫ τPN

0
dτPN−1 . . .

∫ τP2

0
dτP1e

iωn1τN e−iωn2 τ1
∏
Pi,Pj

e−εPiPj
(τPi

−τPj
)

=
∫ βh̄

0
dτPN

eεPN
τPN

∫ τPN

0
dτPN−1e

εPN−1τPN−1 . . .

∫ τP2

0
dτP1e

εP1 τP1 (9.38)

where

εPi
= −

∑
Pj

εPiPj
+
∑
Pj

εPj Pi
+ iωn1δPi,N − iωn2δPi,1. (9.39)

Notice the form εPi
: it involves a sum over all the lines that enter or leave vertex

τPi
. If a line leaves τPi

, it carries a negative frequency; if it enters τPi
, it carries a

positive frequency. Also note that∑
Pi

εPi
= iωn1 − iωn2 . (9.40)

Since the N integrands are all exponentials, the evaluation of I2P is straightforward.
The evaluation must begin with the integral on the far right, then move left, one
step at a time. The integral on the far right gives∫ τP2

0
dτP1e

εP1 τP1 = eεP1 τP2 − 1
εP1

.

The next integral is∫ τP3

0
dτP2e

εP2 τP2

∫ τP2

0
dτP1e

εP1 τP1 = e(εP1+εP2 )τP3

εP1 (εP1 + εP2 )
+ other.

Continuing in this fashion, and using Eq. (9.40), we obtain

I2P = eβh̄(εP1+εP2+···+εPN
) − 1

εP1 (εP1 + εP2 ) . . . (εP1 + εP2 + · · · + εPN
)
+ others

= eβh̄(iωn1−iωn2 ) − 1
(iωn1 − iωn2 )εP1 (εP1 + εP2 ) . . . (εP1 + εP2 + · · · + εPN−1 )

+ others.

The first term in I2P is obtained by keeping only the upper limits when integrating
over τP1, τP2, . . . , τPN−1 . The second term, called “others,” consists of the rest of the
terms. If ωn1 
= ωn2 , then eβh̄(iωn1−iωn2 ) − 1 = 0, and the first term in I2P vanishes.
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For ωn1 = ωn2 , L’Hopital’s rule gives

eβh̄(iωn1−iωn2 ) − 1
(iωn1 − iωn2 )

= βh̄ =⇒

I2P = βh̄δn1,n2

εP1 (εP1 + εP2 ) . . . (εP1 + εP2 + · · · + εPN−1 )
+ others.

We showed in the previous section, by explicit calculations, that the terms repre-
sented by “others” combine to give a vanishing result. We can show that this is true
in general, for any order of the interaction (see Appendix B). For now, we assume
that this is indeed the case. I2P is then given by

I2P = βh̄δn1,n2∏
i<N ε̃P i

, ε̃P i =
i∑

j=1

εPj . (9.41)

The final expression for the Feynman diagram of Figure 9.17 can now be written.
Fourier expanding: δg�N (τ ) = (1/βh̄)

∑
n δg�N (ωn)e−iωnτ , we obtain

δg�N (ωn) = [g0
α(ωn)]2c�N

∑
{αij }

M
�N

{αij }
∑
P

∫ F P
{αPiPj

}({εPiPj
})∏

i<N ε̃P i

d{εPiPj
}

(2π )NL
. (9.42)

The rules for time-ordered diagrams follow directly from Eq. (9.42). Before writing
the rules, however, let us clarify the meaning of ε̃Pi

. Note that

ε̃Pi
=

i∑
j=1

εPj =
i∑

j=1

⎡
⎣−∑

Pk

εPj Pk
+
∑
Pk

εPkPj
+ iωnδPj .N − iωnδPj .1

⎤
⎦ .

Since
∑

Pk
· · · =∑k · · · =

∑i
k=1+

∑
k>i , the expression for ε̃Pi

reduces to

ε̃Pi
= −

i∑
j=1

∑
k>i

εPjPk
+

i∑
j=1

∑
k>i

εPkPj
+ iωn

i∑
j=1

δPj .N − iωn

i∑
j=1

δPj .1. (9.43)

Let us now arrange the time vertices vertically such that time decreases as we move
down. Since τPN

> τPN−1 > · · · > τP1 , the resulting arrangement is that shown in
Figure 9.18. A horizontal dashed line, called a section, is drawn between τPi+1 and
τPi

.
Regarding the above expression for ε̃Pi

,

(1) The first term is the sum of the frequencies of all internal lines that start at
τPi

, τPi−1, . . . , τP1 and end at the vertices above τPi
. That is, it is the sum of the

frequencies of the internal lines that are directed upward and that intersect the
section. These frequencies carry a minus sign.
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.  .  . 
.  .  . 

Figure 9.18 Arrangement of time vertices such that time decreases from top to
bottom. A horizontal dashed line between τPi+1 and τPi

is a section.

(2) The second term is the sum of the frequencies of the internal lines that start at
τPi+1, τPi+2, . . . , τPN

and end at τPi
, τPi−1, . . . , τP1 . That is, it is the sum of the

frequencies of the internal lines that are directed downward and that intersect
the section. These frequencies carry a positive sign.

(3) The third and fourth terms relate to the external lines. One external line enters
at τN and one leaves at τ1. We draw these two lines vertically as in Figure 9.16.
Note that if both lines enter and leave below the section, the combined contribu-
tion of the third and fourth terms is iωn − iωn = 0. Similarly, if both lines enter
and leave above the section, the contribution of each of the third and fourth terms
is zero. If one external line enters below the section (τN ∈ {τP1, τP2, . . . , τPi

})
and the other line leaves from a vertex above the section (τ1 ∈ {τPi+1, . . . , τPN

}),
the combined contribution of the third and fourth terms is iωn. On the other
hand, if one external line enters a vertex above the section and the other line
leaves from a vertex below the section, the combined contribution of the third
and fourth terms is −iωn.

These observations can be summarized as follows. If we assign a frequency iωn to
each of the two external lines, and a frequency εPiPj

to each internal line directed
from vertex τPi

to vertex τPj
, then ε̃Pi

is the sum of all the frequencies of the
lines (internal and external) that intersect the section between τPi+1 and τPi

. The
frequency carries a plus sign if the line is directed downward and a minus sign if
the line is directed upward.

We are now in a position to state Dzyaloshinski’s rules for time-ordered
diagrams:
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(1) Construct N! time-ordered diagrams corresponding to the N! permutations of
τ1, τ2, . . . , τN . In each diagram, time decreases as we go downward. External
lines must always be drawn vertically. Assign coordinates (kσ, iωn) to each of
the two external lines, and coordinates (kiσi, εi) to the ith internal line. Draw
a horizontal dashed line (a section) that separates each vertex from the one
below it (there are N − 1 sections for each time-ordered diagram).

(2) Assign to each vertex a matrix element M that depends on the momentum and
spin coordinates of the lines that meet at the vertex. Conserve momentum and
spin at each vertex.

(3) Assign g0(kσ, ωn) to each of the two external lines. To each internal line with
coordinates (kiσi, εi), assign (1/2π )P 0>(kiσi, εi) if it is directed down and
(1/2π )P 0<(kiσi, εi) if it is directed up.

(4) To each section assign a denominator equal to the sum of the frequencies of
the lines intersected by the section; line frequencies carry a plus sign if a line
is directed down and a minus sign if a line is directed up.

(5) Multiply all the factors in rules 2, 3, and 4, sum over all internal momentum
and spin coordinates, and integrate over the frequencies (ε’s) of the internal
lines.

(6) Sum all the contributions of the N! time-ordered diagrams.
(7) Multiply the resulting expression by c�N

, the counting factor that corresponds
to the original Feynman diagram.

Further reading

Abrikosov, A.A., Gorkov, L.P., and Dzyaloshinski, I.E. (1963). Methods of Quantum Field
Theory in Statistical Physics. New York: Dover Publications.

Bruus, H. and Flensberg, K. (2004). Many-Body Quantum Theory in Condensed Matter
Physics. Oxford: Oxford University Press.

Fetter, A.L. and Walecka, J.D. (1971). Quantum Theory of Many-Particle Systems. New
York: McGraw-Hill.

Mahan, G.D. (2000). Many-Particle Physics, 3rd edn. New York: Kluwer Academic/Plenum
Publishers.

Problems

9.1 A vanishing sum. Show that
∞∑

n=−∞
eiωn0+ = 0.

9.2 Thermodynamic potential. Using Eq. (8.26) for the thermodynamic potential,
show that, for a system of interacting electrons,

�(T , V, μ)=�0(T , V, μ)+ 1
2β

∫ 1

0

dλ

λ

∑
kσ

∞∑
n=−∞

eiωn0+�∗λ(kσ, ωn)gλ(kσ, ωn).
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9.3 Frequency sums. This problem shows how to evaluate
∞∑

n=−∞

eiωn0+

iωn − ε̄/h̄
.

Consider the contour integral

I = lim
η→0+

∫
C

eηz

z− ε̄/h̄

dz

eβh̄z ± 1

where C is a circle of infinite radius centered at z = 0. As |z| → ∞, if
Rez > 0, the absolute value of the integrand is of order (1/|z|)e−βh̄Rez. If
Rez < 0, the absolute value of the integrand is of order (1/|z|)eηRez. The
integrand is thus exponentially small as |z| → ∞; therefore, I = 0.
(a) For the case of bosons, consider

I = lim
η→0+

∫
C

eηz

z− ε̄/h̄

dz

eβh̄z − 1
= 0.

The poles of the integrand occur at z = 2nπi/βh̄, n ∈ Z, and at z = ε̄/h̄.
Use the residue theorem to show that

∞∑
n=−∞

eiωn0+

iωn − ε̄/h̄
= −βh̄nε̄

where ωn = 2nπ/βh̄ and nε̄ =
(
eβh̄ε̄ − 1

)−1.
(b) For the case of fermions, consider

I = lim
η→0+

∫
C

eηz

z− ε̄/h̄

dz

eβh̄z + 1
= 0.

The poles of the integrand are at z = (2n+ 1)πi/βh̄, n ∈ Z, and at z =
ε̄/h̄. Use the residue theorem to show that

∞∑
n=−∞

eiωn0+

iωn − ε̄/h̄
= βh̄fε̄

where ωn = (2n+ 1)π/βh̄, and fε̄ =
(
eβh̄ε̄ + 1

)−1.

9.4 An alternative method. Noting that 〈c†kσ ckσ 〉0 = nkσ (fkσ ) for bosons
(fermions), derive Eq. (9.14) for the frequency sum.

9.5 External potential. For a system of noninteracting particles in the presence
of a spin-independent static external potential, the Hamiltonian is

H̄ =
∑
kσ

ε̄kσ c
†
kσ ckσ +

∑
kqσ

vqc
†
k+qσ ckσ .

(a) Using Wick’s theorem, evaluate g(kσ, τ ) to second order in the pertur-
bation.
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(b) Calculate g(kσ, ωn) to second order in the perturbation.
(c) Deduce the Feynman rules in momentum-frequency space.

9.6 Impurity in a metal. Consider an impurity in a metal host. As a model
Hamiltonian we take H = H0 +H ′, where

H0 = ε
∑

σ

d†
σ dσ +

∑
kσ

εkc
†
kσ ckσ , H ′ =

∑
kσ

(
Vkc

†
kσ dσ + V ∗

k d†
σ ckσ

)
.

We ignore the onsite Coulomb repulsion that results when two electrons
occupy the impurity orbital.
(a) Write, graphically, Dyson’s equation for the impurity Green’s function

g(dσ, τ ) = −〈T dσ (τ )d†
σ (0)〉.

(b) By Fourier transforming, determine g(dσ, ωn).

9.7 An exchange diagram. Using the Feynman rules in momentum-frequency
space, write the algebraic value of diagram J in Figure 9.3.

9.8 Time-ordered diagrams. Using Dzyaloshinski’s rules for time-ordered dia-
grams, write the algebraic value of diagram J in Figure 9.3.

9.9 A frequency sum. Evaluate the frequency sum over n′ in the expression for
the ring diagram given in Eq. (9.7).

9.10 Diagrams without loops. For a system of interacting fermions (V is a two-
particle interaction), show that, at order n in the perturbation, the number
of connected, topologically distinct diagrams without any closed loops is
(2n)!/(n!2n).
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Electron gas: a diagrammatic approach

A subtle chain of countless rings
The next unto the farthest brings

–Ralph Waldo Emerson
Nature: Addresses and Lectures

In this chapter we apply diagram rules to the study of an interacting electron gas
in the high density limit. We saw in Chapter 4 that, in this limit, the Coulomb
repulsion between electrons is small compared to their kinetic energy, and that it
can be treated as a perturbation added to otherwise free electrons. We now show
that perturbation theory must be carried out to infinite order to yield meaningful
results (we previously caught a glimpse of this notion in Chapter 4). This is due
to the long-range nature of the Coulomb interaction: even though the Coulomb
energy between two electrons, e2/r , decreases with increasing distance between
the electrons, the number of electrons in a spherical shell of radius r and thickness
dr is proportional to r2dr , so the interaction of one electron with electrons far
away from it is still important. We then use perturbation theory to calculate the
linear response of an interacting electron gas to an external field, and apply this
technique to graphene.

10.1 Model Hamiltonian

Our model system consists of an interacting electron gas in the presence of a uniform
positive background, the so-called jellium model, which we first encountered in
Chapter 4. The Hamiltonian is

H̄ =
∑
kσ

ε̄kσ c
†
kσ ckσ + 1

2V

∑
k1σ1

∑
k2σ2

∑′

q

4πe2

q2 c
†
k1+qσ1

c
†
k2−qσ2

ck2σ2ck1σ1 (10.1)
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Figure 10.1 Proper self energy of an interacting electron gas in first-order pertur-
bation theory.

where ε̄kσ = εkσ − μ = h̄2k2/2m− μ is the energy of an electron in the single-
particle state |kσ 〉, measured relative to the chemical potential μ, and V is the
system’s volume. The prime on the summation over q indicates that the q = 0
term is excluded. We exclude this term because of the background–background
and electron–background interactions.

10.2 The need to go beyond first-order perturbation theory

The thermodynamic potential of the electron gas at temperature T is given by

�(T , V, μ) = �0(T , V, μ)+ 1
2β

∫ 1

0

dλ

λ

∑
kσn

eiωn0+�∗λ(kσ, ωn)gλ(kσ, ωn)

(10.2)
(see Problem 9.2). Here, �0 is the thermodynamic potential of the noninteract-
ing electron gas, β = 1/kBT , �∗λ(kσ, ωn) is the proper self energy when the
interaction is λvq, and gλ(kσ, ωn) is the corresponding imaginary-time Green’s
function. We have found in the previous chapter that, to first order in the interac-
tion, �∗(kσ, ωn) is a sum of two diagrams (see Figure 9.13). However, one diagram
has vq=0, and since the q = 0 term is excluded in Eq. (10.1), we are left with only
one diagram, as shown in Figure 10.1.

The expression for �∗
1 is readily written using the diagram rules,

�∗
1 (kσ, ωn) =

(
− 1

βh̄2V

)∑
qm

vqe
i(ωn−ωm)0+go(k− qσ, ωn − ωm). (10.3)

There is one internal wave vector q and one internal frequency ωm, and they
are summed over. The interaction line is replaced by vq/V , and the fermion line
by go(k− qσ, ωn − ωm). The factor ei(ωn−ωm)0+ arises because the fermion line
connects two vertices of the same interaction line, and the whole expression is
multiplied by (−1/βh̄2)n, where n = 1 is the order of the interaction. Defining ωn′
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by ωn′ = ωn − ωm, we obtain

�∗
1 (kσ, ωn) =

(
− 1

βh̄2V

)∑
q

vq
∑
n′

eiωn′0+go(k− qσ, ωn′).

The summation over n′ is given in Eq. (9.14); we obtain

�∗
1 (kσ, ωn) = − 1

h̄V

∑
q

vq fk−q (10.4)

where fk−q = (eβε̄k−q + 1)−1 is the Fermi–Dirac distribution function. It follows
that

�∗λ
1 (kσ, ωn) = − λ

h̄V

∑
q

vq fk−q.

Thus, to first order in the interaction, the thermodynamic potential of the electron
gas is

�(T , V, μ) = �0(T , V, μ)− 1
2βh̄V

∫ 1

0
dλ
∑
kqσ

vqfk−q
∑

n

eiωn0+g0(kσ, ωn)

= �0(T , V, μ)− 1
V

∑
k,q

vq fk fk+q (10.5)

where Eq. (9.14) is used again, and q is changed to −q, taking advantage of the
fact that v−q = vq. Note that in order to calculate �(T , V, μ) to first order in the
interaction, gλ(kσ, ωn) in Eq. (10.2) is replaced by the non-interacting Green’s
function g0(kσ, ωn), since �∗λ

1 (kσ, ωn) is already of first order in the interaction.
What is the problem with stopping at first order in the interaction? It turns

out that doing so leads to some anomalous predictions about the behavior of the
electron gas at low temperatures:

(a) As T → 0, the proper self energy �∗
1 becomes

�∗
1 (kσ, ωn) = −e2kF

πh̄

[
1+ 1− x2

x
ln
∣∣∣∣1+ x

1− x

∣∣∣∣
]

, (10.6)

where kF is the Fermi wave vector and x = k/kF (see Problem 10.1). Thus

d �∗
1 (kσ ; ωn)
dx

= −e2kF

πh̄

[
1
x
− 1+ x2

2x2 ln
∣∣∣∣1+ x

1− x

∣∣∣∣
]

(10.7)

which diverges logarithmically at x = 1, i.e., at the Fermi surface. Since the
energy is shifted by h̄Re�∗

1,ret, and �∗
1 is real and independent of ωn, Re�∗

1,ret =
�∗

1 . Therefore, the derivative of the energy, dEkσ /dk, diverges logarithmically
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Figure 10.2 The three second-order diagrams that contribute to the proper self
energy of an interacting electron gas.

at the Fermi surface. It follows that the density of states at the Fermi surface
vanishes (see Problem 2.7). However, no such behavior is observed in metals:
the density of states at the Fermi surface of metals is actually nonzero.

(b) From the expression for the thermodynamic potential, Eq. (10.5), the specific
heat of the electron gas at constant volume, CV , can be evaluated. It is found
that, as T → 0, CV → T lnT (Bardeen, 1936; Horovitz and Thieberger, 1974;
Glasser, 1981; Glasser and Boersma, 1983). The logarithmic dependence on
temperature of the specific heat, a measurable quantity, is not observed in
metals at low temperatures; in fact, the electronic specific heat varies linearly
with T .

The above discussion shows that, to obtain meaningful results, it is insufficient
to expand g(kσ, ωn) to first order in the interaction; we must go to higher orders.

10.3 Second-order perturbation theory: still inadequate

The proper self energy �∗(kσ, ωn) was given in Figure 9.13. Ignoring diagrams
that contain vq=0 (the q = 0 term is excluded from the Hamiltonian), we are left
with three second-order diagrams (see Figure 10.2). Using the Feynman diagram
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rules, we can write the algebraic expressions corresponding to these diagrams:

�∗
2,(D)(kσ, ωn) =

(
− 1

βh̄2V

)2∑
qm

∑
k′n′

vqvk−k′−qeiωn′0+ g0(k− qσ, ωn − ωm)

× g0(k′σ, ωn′)g0(k− qσ, ωn − ωm)

�∗
2,(J )(kσ, ωn) =

(
− 1

βh̄2V

)2∑
qm

∑
k′n′

vqvk′−k+q g0(k− qσ, ωn − ωm)

× g0(k′σ, ωn′) g0(k′ + qσ, ωn′ + ωm)

�∗
2,(R)(kσ, ωn) = −

(
− 1

βh̄2V

)2∑
qm

∑
k′σ ′n′

v2
q g0(k− qσ, ωn − ωm)

× g0(k′σ ′, ωn′) g0(k′ + qσ ′, ωn′ + ωm). (10.8)

In the expression for �∗
2,(D) , a factor eiωn′0+ is inserted because the line with

coordinates (k′σ, ωn′) connects two vertices of the same interaction line. In �∗
2,(R) ,

a factor of −1 results from the presence of one fermion loop.
In the expressions written above, if summation over the frequencies were to be

carried out, it would result in Fermi and Bose distribution functions. Summations
over wave vectors are replaced by integrals; e.g.,

∑
q

→ V

(2π )3

∫
d3q.

A close investigation of the integrations over the wave vectors, reminiscent of
the one carried out in Chapter 4, shows that �∗

2,(R) is divergent, while �∗
2,(D) and

�∗
2,(J ) are not. In �∗

2,(R), there is a term v2
q = (4πe2)2/q4 and one integration over

q:
∫

d3q = ∫ q2dq
∫

d cos θ
∫

dφ. We are left with an integral
∫

dq/q2 . . . , and
as q → 0, the integral can be shown to diverge. This situation does not occur in
diagrams (D) and (J), where the two interaction lines have different wave vectors.

The fact that �∗
2 (kσ, ωn) is divergent (due to the divergence of the ring diagram)

means that it is insufficient to carry out a perturbation expansion to second order.
Were we to stop at second order, the energy of an electron in the electron gas would
be infinite, and this is certainly not true. In fact, many diagrams in higher order also
yield divergent contributions. Among the diagrams at a given order of perturbation,
the most divergent diagram is the most important one. In what follows, our approach
will be to classify the diagrams at each order in the interaction according to their
degree of divergence, select the most divergent diagram at each order, and sum
only those most divergent diagrams.
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Figure 10.3 A collection of self energy diagrams.

10.4 Classification of diagrams according to the degree of divergence

Consider the self energy diagrams shown in Figure 10.3. How do we decide which
of these diagrams should be included in the proper self energy? We have seen
in the previous section that one criterion is the power of q in the denominator.
Diagram (a) is an integral

∫
d3q/q2 . . . , and diagram (b) is a similar integral with

the same power of q in the denominator. If we include diagram (a) in �∗, should
we also include diagram (b)? Diagram (c) is an integral

∫
d3q/q4 . . . , which has

q4 in the denominator, but so does diagram (d). If we include diagram (c) in �∗,
should we also include diagram (d)? We define the degree of divergence (DoD) of
a given diagram as the largest number of interaction lines, in the diagram, that have
the same wave vector q. Thus DoD(a) = DoD(b) = 1, DoD(c) = DoD(d) = 2,
and DoD(e) = DoD(f ) = 3. The following analysis answers the questions raised
above.

We assume that the electron gas is in the high density limit, rs → 0. The dimen-
sionless quantity rs is defined by the relation: 4π (rsa0)3/3 = V/N , where V is
the system’s volume, N is the number of electrons, and a0 is the Bohr radius. It is
easy to verify that rs = (9π/4)(1/3)/a0kF , where kF is the Fermi wave vector (see
Section 4.3). We now look at the contribution of each diagram and determine its
dependence on rs .

Every self-energy diagram of order n has n interaction lines and 2n− 1 fermion
lines (the total number of fermion lines in δg(n) is 2n+ 1; the number of external
lines is 2). Each diagram of order n also has n internal wave vectors and n internal
frequencies. Denoting the contribution of the ith self energy diagram of order n by
�∗

n,(i), we can write

�∗
n,(i) ∝ β−n

∫
d3p1 . . .

∫
d3pnvq1vq2 . . . vqn

∑
ωn1 ...ωnn

2n−1∏
j=1

g0(kjσj , ω̄j ).

Here, the internal wave vectors are denoted by p1, . . . , pn. The wave vectors
q1, . . . , qn, and k1, . . . , k2n−1 depend on the external wave vector k and the internal
wave vectors. Similarly, the frequencies ω̄1, . . . , ω̄2n−1 depend on the external
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frequency ωn and the n internal frequencies ωn1, . . . , ωnn
. To find the dependence

of �∗
n,(i) on rs , we rewrite �∗

n,(i) as a factor that depends on rs times a dimensionless
integral. This is accomplished by the following changes of variables:

pj→ kFp′j , qj→ kF q ′j , kj→ kF k′j , 1/β→ εF /β ′, ε̄kσ → εF ε̄′kσ , h̄ωn→ εF ω′n

where εF = h̄2k2
F /2m is the Fermi energy. The primed quantities are all dimen-

sionless. Thus,

β−n ∝ k2n
F β ′−n ,

∫
d3pj = k3

F

∫
d3p′j , vqj

= k−2
F vq ′j

g0(kjσj , ω̄j ) = (iω̄j − ε̄kj σj
)−1 ∝ k−2

F g0(k′j σj , ω̄
′
j )

⇒ �∗
n,(i) ∝ k2n

F k3n
F k−2n

F k
−2(2n−1)
F (D. I.) = k2−n

F (D. I.).

The dimensionless integral (D. I.) has no dependence on kF . Since rs ∝ k−1
F , the

dimensionless integral is independent of rs . We conclude that

�∗
n,(i) ∝ rn−2

s .

Thus, as rs → 0 (high density limit), given two diagrams with the same degree of
divergence (DoD), the diagram of lower order in the interaction makes a much larger
contribution to the self energy. For example, diagrams (a) and (b) in Figure 10.3 have
the same DoD, but �∗

1,(a) ∝ r−1
s , while �∗

2,(b) ∝ r0
s ; hence, as rs → 0, |�∗

1,(a)| �
|�∗

2,(b)|. Similarly, |�∗
2,(c)| � |�∗

3,(d)| and |�∗
3,(e)| � |�∗

4,(f )|. Thus, for any set of
diagrams with the same DoD, we retain only the one with the lowest order in the
interaction. From the set of diagrams in Figure 10.3, we retain only diagrams (a),
(c), and (e).

The above conclusion may be stated differently: at any order of the interaction,
only the diagram with the highest degree of divergence is retained. All diagrams
with the same order of interaction have the same rs dependence; hence, from among
these diagrams, the one with the highest degree of divergence makes the largest
contribution to the self energy.

10.5 Self energy in the random phase approximation (RPA)

On the basis of the above discussion, we can represent the proper self energy of an
interacting electron gas as an infinite sum of diagrams (see Figure 10.4). At each
order of the interaction, only the diagram with the highest degree of divergence
is retained. Besides the first-order exchange diagram, the proper self energy is
an infinite series of ring diagrams. Although each one of these ring diagrams is
divergent, the infinite sum turns out to be convergent. The expression for �∗ as
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Figure 10.4 The proper self energy of an interacting electron gas in the random
phase approximation.

a sum of the first-order exchange diagram and the ring diagrams is clearly an
approximation, since other diagrams are not included; it is known as the random
phase approximation (RPA).

10.6 Summation of the ring diagrams

Using the Feynman rules, the contribution of the ring diagrams to the proper self
energy can be readily written,

�∗
ring(kσ, ωn) = −

(
− 1

βh̄2V

)2∑
qm

v2
qg

0(k− qσ, ωn − ωm)B(q, ωm)

+
(
− 1

βh̄2V

)3∑
qm

v3
qg

0(k− qσ, ωn − ωm)B2(q, ωm)+ · · ·

(10.9)

where

B(q, ωm) =
∑

k′σ ′n′
g0(k′σ ′, ωn′)g0(k′ + qσ ′, ωn′ + ωm).

Defining the bare pair bubble �0(q, ωm) by

�0(q, ωm) = 1
βh̄2V

∑
k′σ ′n′

g0(k′σ ′, ωn′)g0(k′ + qσ ′, ωn′ + ωm), (10.10)

we can write

�∗
ring(kσ, ωn) = − 1

βh̄2V

∑
qm

v2
qg

0(k− qσ, ωn − ωm)�RPA(q, ωm), (10.11)

where

�RPA(q, ωm) = �0(q, ωm)+ vq
[
�0(q, ωm)

]2 + v2
q
[
�0(q, ωm)

]3 + · · · (10.12)
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Figure 10.5 The bare pair bubble, the dressed pair bubble in RPA, and the proper
self energy that results from summing over ring diagrams.

is the dressed pair bubble. Equations (10.11) and (10.12) are represented graphically
in Figure 10.5. The dressed pair bubble, in random phase approximation, is given
by

�RPA(q, ωm) = �0(q, ωm)+�0(q, ωm)vq

× [�0(q, ωm)+ vq[�0(q, ωm)]2 + v2
q[�0(q, ωm)]3 + · · · ]

= �0(q, ωm)+�0(q, ωm)vq�RPA(q, ωm)

=⇒ �RPA(q, ωm) = �0(q, ωm)
1− vq�0(q, ωm)

. (10.13)

The dressed bubble is also known as the polarizability of the interacting electron
gas, while the bare bubble is the polarizability of the noninteracting electron gas.
The nomenclature results from observing that a pair bubble represents a virtual
process (energy is not conserved) in which an electron–hole pair is created and then
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annihilated. An electron in state |k′σ ′〉 below the Fermi surface absorbs momentum
h̄q and moves above the Fermi surface; its absence from the Fermi sphere is
equivalent to the presence of a hole. The electron then surrenders the momentum
h̄q, and recombines with the hole. The electron and the hole, being of opposite
charges, their creation is tantamount to the creation of a dipole moment, which
causes the medium to become polarized.

The bare pair bubble is given by Eq. (10.10); thus,

�0(q, ωm) = 2
βh̄2V

∑
k

∞∑
n=−∞

1
(iωn − ε̄k/h̄)(iωn + iωm − ε̄k+q/h̄)

.

The factor 2 results from summing over the spin index. As n →±∞, the summand
→−1/ω2

n; hence, the series is convergent, and we are justified in introducing a
convergence factor eiωn0+ (redundant in this case). This allows us to evaluate
�0(q, ωm) by the method of partial fractions:

�0(q, ωm) = 2
βh̄2V

∑
k

∞∑
n=−∞

eiωn0+

(iωn − ε̄k/h̄)(iωn + iωm − ε̄k+q/h̄)

= 2
βh̄2V

∑
k

1
iωm − (ε̄k+q − ε̄k)/h̄

×
∞∑

n=−∞

(
eiωn0+

iωn − ε̄k/h̄
− eiωn0+

iωn + iωm − ε̄k+q/h̄

)
.

The sum over n (see Eq. [9.14]) is now evaluated,
∞∑

n=−∞

eiωn0+

iωn − ε̄k/h̄
= βh̄fk ,

∞∑
n=−∞

eiωn0+

iωn + iωm − ε̄k+q/h̄
= βh̄

eβε̄k+qe−iβh̄ωm + 1
,

e−iβh̄ωm = 1 (ωm = 2mπ/βh̄).

The polarizability of the noninteracting electron gas reduces to

�0(q, ωm) = 2
V

∑
k

fk − fk+q

ih̄ωm + εk − εk+q
. (10.14)

This is the Lindhard function which we encountered earlier in Chapter 6.

10.7 Screened Coulomb interaction

The contribution of ring diagrams to the proper self energy may be written in a
way that differs from, but is equivalent to, the way presented in Figure 10.5. This is
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Figure 10.6 Ring contribution to the proper self energy of an interacting electron
gas in terms of the screened Coulomb interaction.

shown in Figure 10.6. The double-dashed line is known as the screened Coulomb
interaction V (q, ωm), while the single-dashed line is now called the bare Coulomb
interaction vq. The expression for V (q, ωm) can be read directly from Figure 10.6:

V (q, ωm) = vq + vq�RPA(q, ωm)vq = vq
[
1+ vq�RPA(q, ωm)

]
= vq

[
1+ vq�

0(q, ωm)
1− vq�0(q, ωm)

]
= vq

1− vq�0(q, ωm)
= vq

ε(q, ωm)
.

(10.15)

The expression for �RPA(q, ωm) in Eq. (10.13) was used. ε(q, ωm) is the dielectric
function; as we will show later in the chapter, it measures the response of the
interacting electron gas to an external electric potential.

10.8 Collective electronic density fluctuations

In Section 6.7 we introduced the retarded density-density correlation function

DR(q, t) = −iθ (t)
1
V
〈[nH̄ (q, t), nH̄ (−q, 0)]〉=−iθ (t)

1
V
〈[ñH̄ (q, t), ñH̄ (−q, 0)]〉

where ñH̄ (q, t) = nH̄ (q, t)− 〈nH (q, t)〉 is the deviation of the electronic density
from its ensemble average. In the above equation, the last equality follows since
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〈nH̄ (q, t)〉 is simply a number, and numbers commute with operators. We have
already calculated DR,0(q, ω) for the noninteracting electron gas (see Eq. [6.90]).
Note that

DR,0(q, ω) = h̄�o(q, iωm → ω + i0+). (10.16)

In the presence of interactions, the retarded correlation function may be obtained
from the corresponding imaginary-time correlation function

DR(q, ω) = D(q, iωm → ω + i0+).

The imaginary-time correlation function D(q, τ ) is given by

D(q, τ ) = − 1
V
〈T ñH̄ (q, τ )ñH̄ (−q, 0)〉

= − 1
V
〈T {[nH̄ (q, τ )− 〈nH̄ (q, τ )〉] [nH̄ (−q, 0)− 〈nH̄ (−q, 0)〉]}〉

= − 1
V
〈T nH̄ (q, τ )nH̄ (−q, 0)〉 + 1

V
〈nH̄ (q, τ )〉〈nH̄ (−q, 0)〉 (10.17)

where use is made of the fact that

〈T nH̄ (q, τ )〉 =
∑
kσ

〈T c
†
kσ (τ )ck+qσ (τ )〉 =

∑
kσ

〈c†kσ (τ )ck+qσ (τ )〉 = 〈nH̄ (q, τ )〉.
(10.18)

In Eq. (10.18), the second equality holds because whenever a creation and an anni-
hilation operator share the same time argument, it is assumed that the time argument
of the creation operator is infinitesimally greater than that of the annihilation oper-
ator. This is because creation operators occur on the left in the Hamiltonian, while
annihilation operators occur on the right (see Eq. [10.1]). The correlation function
D(q, τ ) is known as the collective electronic density fluctuations. Note that, in
order to obtain DR from D by analytic continuation, D must be given in terms of
ñH̄ , as in Eq. (10.17), and not in terms of nH̄ (see Problem 8.8).

Employing the perturbation expansion for the time-ordered product of modified
Heisenberg picture operators, we can write

D(q, τ )− 1
V
〈nH̄ (q, τ )〉〈nH̄ (−q, 0)〉 = − 1

V

∑
kσ

∑
k′σ ′

∞∑
n=0

1
n!

(
−1

h̄

)n ∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτn 〈ĉ†kσ (τ ) ĉk+qσ (τ ) ĉ†k′σ ′(0) ĉk′−qσ ′(0)V̂ (τ1) . . . V̂ (τn)〉0,c. (10.19)

The operators in the expansion are now interaction-picture operators. We have
used Eq. (3.25) to express the number-density operators in terms of creation and
annihilation operators. When we consider the connected, topologically distinct
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Figure 10.7 Connected but disjoint diagrams that arise from the perturbation
expansion in Eq. (10.19).

diagrams, we encounter two different sets. One set consists of connected but disjoint
diagrams (see Figure 10.7). We emphasize that these diagrams are connected, since
every solid line is connected to one of the exterior points at τ and 0.

Upon inspecting any connected, disjoint diagram of order n, we observe that it
results from two sets of contractions. One set involves creation and annihilation
operators in n̂(q, τ ) and r V̂ -operators V̂ (τi1 ), . . . , V̂ (τir ) being contracted among
themselves. The other set involves contractions among n̂(−q, 0) and the remaining
s = n− r V̂ -operators. For example, in diagram (b) of Figure 10.7, the operators
in n̂(q, τ ) and V̂ (τ1) are contracted among themselves, while the creation and
annihilation operators in n̂(−q, 0) are contracted together. Thus, for diagram (b),
n = 1, r = 1, and s = 0. For diagram (c), n = 1, r = 0, and s = 1, while for
diagram (a), n = r = s = 0. Since all such diagrams must be summed, and since
there are n!/r!s! ways of choosing r V̂ -operators from among n V̂ -operators, the
contribution of all the connected, disjoint diagrams (cdd) on the RHS of Eq. (10.19)
is given by

cdd = − 1
V

∞∑
n=0

n∑
r=0

1
n!

(
−1

h̄

)n
n!

r!s!

∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτr〈T n̂(q, τ )V̂ (τ1) . . . V̂ (τr )〉0,c

×
∫ βh̄

0
dτr+1 . . .

∫ βh̄

0
dτn 〈T n̂(−q, 0)V̂ (τr+1) . . . V̂ (τn)〉0,c.

The above expression results from the fact that the arrangement of the density
and interaction operators in the time-ordered product is immaterial; since each
of these operators consists of an even number of fermion operators, no minus
sign is incurred upon any reordering of the operators. Since s = n− r , the above
expression may be recast in the following form:

cdd = − 1
V

∞∑
n=0

∞∑
r=0

∞∑
s=0

(
−1

h̄

)n 1
r!s!

δn,r+s

∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτr

〈T n̂(q, τ )V̂ (τ1) . . . V̂ (τr )〉0,c

∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτs 〈T n̂(−q, 0)V̂ (τ1) . . . V̂ (τs)〉0,c.
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The Kronecker delta ensures that r + s = n, allowing the summation over r and s

to extend to infinity. Summing over n first has the effect of removing the Kronecker
delta and replacing (−1/h̄)n by (−1/h̄)r (−1/h̄)s . Hence,

cdd = − 1
V

∑
r

1
r!

(
−1

h̄

)r ∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτr 〈T n̂(q, τ )V̂ (τ1) . . . V̂ (τr )〉0,c

×
∑

s

1
s!

(
−1

h̄

)s ∫ βh̄

0
dτ1 . . .

∫ βh̄

0
dτs 〈T n̂(−q, 0)V̂ (τ1) . . . V̂ (τs)〉0,c

= − 1
V
〈T nH̄ (q, τ )〉〈T nH̄ (−q, 0)〉 = − 1

V
〈nH̄ (q, τ )〉〈nH̄ (−q, 0)〉.

(10.20)

Thus, the sum over all connected, disjoint diagrams, which appears on the RHS
of Eq. (10.19), exactly cancels the second term on the LHS of that equation. We
conclude that D(q, τ ) is the sum of all connected (c), nondisjoint (nd) diagrams that
result from the expansion on the RHS of Eq. (10.19). The zeroth order contribution
to D(q, τ ) is thus

D0(q, τ ) = − 1
V

∑
kσ

∑
k′σ ′
〈T ĉ

†
kσ (τ ) ĉk+qσ (τ ) ĉ†k′σ ′(0) ĉk′−qσ ′(0)〉0,c,nd

= 1
V

∑
kσ

∑
k′σ ′
〈T ĉk+qσ (τ ) ĉ†k′σ ′(0)〉0 〈T ĉk′−qσ ′(0) ĉ†kσ (τ )〉0

= 1
V

∑
kσ

g0(k+ qσ, τ )g0(kσ,−τ ).

Going to the frequency domain,

1
βh̄

∑
m

D0(q, ωm)e−iωmτ = 1
V (βh̄)2

∑
kσnn′

g0(k+ qσ, ωn′)g0(kσ, ωn)e−i(ωn′−ωn)τ .

Therefore, ωm = ωn′ − ωn, and

D0(q, ωm) = 1
βh̄V

∑
kσ

∑
n

g0(k+ qσ, ωn + ωm)g0(kσ, ωn) = h̄�0(q, ωm).

(10.21)
As expected, (1/h̄)D0(q, ωm) is the bare pair bubble, which is the zeroth order
connected, nondisjoint diagram. In order to calculate D(q, ωm), we sum over all
connected, nondisjoint diagrams. This is carried out in Figure 10.8. In the random
phase approximation,

D(q, ωm) = h̄�RPA(q, ωm). (10.22)
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Figure 10.8 (a) The irreducible bubble is obtained by summing diagrams contain-
ing one bubble with all interaction lines connected to its legs. (b) In random
phase approximation, the irreducible bubble is replaced by the bare bubble.
(c) Collective electronic density fluctuations. (d) In random phase approxima-
tion, the collective electronic density fluctuations are given by the dressed bubble.

The retarded correlation function, in RPA, is thus given by

DR(q, ω) = h̄�RPA(q, iωm → ω + i0+). (10.23)

10.9 How do electrons interact?

As we saw earlier, in first-order perturbation theory, the proper self energy arises
from the exchange term, while in higher orders (n ≥ 2), the dominant contribution
to the proper self energy arises from direct processes involving n− 1 bubbles.
In higher orders, many diagrams involving only exchange interactions, or both
Coulomb direct and exchange interactions, make contributions to the self energy;
these contributions are dominated by those which arise from purely direct processes.
In order to come up with a reasonable classification scheme in which diagrams are
classified as either Coulomb direct or exchange diagrams, we take a closer look at
proper self energy diagrams of up to third order that involve one or more exchange
interactions (Figure 10.9). In third order, only diagrams containing a pair bubble
are retained, since these diagrams have a higher degree of divergence than diagrams
which contain three purely exchange interactions.

An examination of diagrams (a), (b), and (d), shows that they are parts of a
single diagram, similar to diagram (a), but with g0(k− qσ, ωn − ωm) replaced
by g(k− qσ, ωn − ωm), as shown in Figure 10.10a. Even though this diagram
contains both Coulomb direct and exchange interactions, we classify it as an
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Figure 10.9 Proper selfenergy diagrams involving at least one exchange interac-
tion. In third order, we show only diagrams containing one bubble.

Figure 10.10 Classification of diagrams: (A) and (B) are classified as exchange
diagrams, while diagrams in (C) are classified as Coulomb direct diagrams.

exchange diagram. Diagrams (c), (f), and (g) are also parts of diagram 10.10B, so
we classify them as exchange diagrams as well. However, diagrams (e), (h), (i), and
(j) are part of diagram 10.10C, so they are classified as Coulomb direct diagrams.

According to the above discussion, we may classify self energy diagrams of
an interacting electron gas as Coulomb direct or as exchange diagrams. This is
summarized in Figure 10.11.

Let us now take up the question of how electrons interact. The conventional
picture is that, since electron–electron scattering is a pairwise interaction, electrons
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Figure 10.11 (a) Proper self energy resulting from Coulomb direct processes. (b)
Proper self energy arising from exchange processes. Replacing the dressed Green’s
functions with bare ones amounts to retaining only the dominant diagrams at each
order of interaction. (c) The dressed Green’s function.

scatter off each other directly and in a pairwise manner. Allowance is made, how-
ever, for the collective motion of a dense electron gas by assuming that the pairwise
scattering potential is screened by the electronic dielectric function. Figure 10.11,
however, suggests an alternative, more subtle picture, namely that, in the dominant
Coulomb direct interaction processes, an electron can scatter off the fluctuating
potential generated by the collective electronic density fluctuations. This scattering
is caused by the bare fluctuating potential, as seen in Figure 10.11. The conven-
tional picture also holds, but only for the exchange scattering processes of order
n ≥ 2, as Figure 10.11 shows; these exchange processes constitute only a small
correction to the dominant form (Das and Jishi, 1990).

10.10 Dielectric function

The dielectric function was introduced in Section 6.8 as a measure of the response
of a system to an external electric potential. For an electron gas, we found that

ε(q, ω) =
[

1+ 1
h̄

vqD
R(q, ω)

]−1

(10.24)

where DR(q, ω) is the retarded density-density correlation function. In random
phase approximation, DR(q, ω) = h̄�RPA(q, ω). Using Eq. (10.13),

εRPA(q, ω) =
[

1+ vq�
o(q, ω)

1− vq�o(q, ω)

]−1

= 1− vq�
o(q, ω). (10.25)
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The screened Coulomb interaction, given in Eq. (10.15), is

V (q, ωm) = vq

1− vq�o(q, ωm)
= vq

εRPA(q, ωm)
. (10.26)

The dielectric function is thus a measure of both the screening of the Coulomb
potential in an interacting electron gas, and the response of an interacting electron
gas to an external electric potential

To obtain an expression in closed form for the dielectric function, we need to
carry out the sum over k in the expression for �o(q, ω), given in Eq. (10.14).
At high temperatures, this is very hard to do. At low temperatures (kBT � εF ,
where εF is the Fermi energy), an expression for �0(q, ω) is not difficult to obtain.
�0(q, ω) is given by �0(q, iωm → ω + i0+):

�0(q, ω) = 2
V

∑
k

fk − fk+q

h̄ω + εk − εk+q + i0+

= 2
V

∑
k

fk

h̄ω + εk − εk+q + i0+
+ 2

V

∑
k

fk+q

−h̄ω + εk+q − εk − i0+
.

Replacing k by −k− q in the second term, and noting that f−k = fk and ε−k =
εk = h̄2k2/2m,

�0(q, ω) = 2
V

∑
k

fk

h̄ω + εk − εk+q + i0+
+ 2

V

∑
k

fk

−h̄ω + εk − εk+q − i0+
.

(10.27)
First we evaluate the real part of �0(q, ω),

Re�0(q, ω) = 2
V

∑
k

fk

h̄ω + εk − εk+q
+ 2

V

∑
k

fk

−h̄ω + εk − εk+q

≡ A(q, ω)+ A(q,−ω). (10.28)

For kBT � εF , we may replace fk by the step function θ (εF − εk),

A(q, ω) = 2
V

V

(2π )3

∫
d3k

1
h̄ω − (h̄2/m)k · q− (h̄2/2m)q2

where the integration is over the Fermi sphere. Replacing k · q by kq cos θ ,
∫

d3k

by 2π
∫ kF

0 k2dk
∫ 1
−1 d cos θ , and defining x = k/kF , the integration over cos θ is

first carried out; it yields

A(q, ω) = mk2
F

2π2h̄2q

∫ 1

0
x ln

∣∣∣∣x + u−
x − u−

∣∣∣∣ dx
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where u± = ω/qvF ± q/2kF , and vF = h̄kF /m is the Fermi velocity. Using∫
x ln |x + b|dx = x2 − b2

2
ln |x + b| − 1

4
(x − b)2 , (10.29)

we obtain

A(q, ω) = d(εF )
kF

2q

[
u− +

1− u2
−

2
ln
∣∣∣∣1+ u−
1− u−

∣∣∣∣
]

, (10.30)

where d(εF ) = mkF /π2h̄2 is the density of states, per unit volume, at the Fermi
surface (see Problem 2.2). Equations (10.28) and (10.30) give

Re�o(q, ω) = −d(εF )
[

1
2
− 1− u2

−
4q/kF

ln
∣∣∣∣1+ u−
1− u−

∣∣∣∣+ 1− u2
+

4q/kF

ln
∣∣∣∣1+ u+
1− u+

∣∣∣∣
]

.

(10.31)

In the static limit, ω = 0, u± = ±q/2kF , and Eq. (10.31) reduces to

Re�0(q, 0) = −d(εF )
[

1
2
+ 4k2

F − q2

8kF q
ln
∣∣∣∣2kF + q

2kF − q

∣∣∣∣
]
= −d(εF )g(q ′) (10.32)

where q ′ = q/2kF , and

g(q ′) = 1
2
+ 1− q ′2

4q ′
ln
∣∣∣∣1+ q ′

1− q ′

∣∣∣∣ . (10.33)

Next, we evaluate the imaginary part of �0(q, ω). From Eq. (10.27), we find

Im �0(q, ω) = B1(q, ω)+ B2(q, ω) (10.34)

where

B1(q, ω) = −2π

V

∑
k

fkδ(h̄ω + εk − εk+q), B2(q, ω) = −B1(q,−ω).

(10.35)
In writing B1(q, ω) and B2(q, ω), we have used Im( 1

x±i0+ ) = ∓πδ(x). The Dirac-
delta function is given by

δ(h̄ω + εk − εk+q) = δ(h̄ω − h̄2

m
kq cosθ − h̄2q2

2m
)

= m

h̄2kq
δ

(
ω

h̄kq/m
− q

2k
− cosθ

)
. (10.36)

Replacing fk by θ (εF − εk), and
∑

k by V
(2π)3 2π

∫
k2dk

∫ 1
−1 d cosθ , we obtain

B1(q, ω) = − m

2πh̄2q

∫ kF

0
kdk

∫ 1

−1
d cosθ δ

(
ω

h̄kq/m
− q

2k
− cosθ

)
. (10.37)
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The integral over cosθ vanishes if
(

ω
h̄kq/m

− q
2k

)2
> 1, and is equal to unity if(

ω
h̄kq/m

− q
2k

)2
< 1; hence, it is the step function θ

[
1−

(
ω

h̄kq/m
− q

2k

)2
]

. Thus,

B1(q, ω) = − m

2πh̄2q

∫ kF

0
k θ

[
1−

(
ω

h̄kq/m
− q

2k

)2
]

dk

= − m

2πh̄2q

∫ kF

0
k θ

[
1− k2

F

k2

(
ω

qvF

− q

2kF

)2
]

dk

= − mk2
F

2πh̄2q

∫ 1

0
x θ (1− u2

−/x2)dx (10.38)

where a change of variable from k to x = k/kF is made. If u2
− > 1, then certainly

u2
−/x2 will be greater than 1 (since x varies from 0 to 1) and the integral will vanish.

On the other hand, if u2
− < 1, the integral is nonvanishing,∫ 1

0
x θ (1− u2

−/x2)dx =
{

0 u2
− > 1∫ 1

|u−| xdx = (1− u2
−)/2 u2

− < 1.
(10.39)

Therefore,

B1(q, ω) = − mk2
F

4πh̄2q
(1− u2

−)θ (1− u2
−) = −d(εF )

πkF

4q
(1− u2

−)θ (1− u2
−)

(10.40)

B2(q, ω) = −B1(q,−ω) = d(εF )
πkF

4q
(1− u2

+)θ (1− u2
+) (10.41)

Im�0(q, ω) = −d(εF )
πkF

4q

[
(1− u2

−)θ (1− u2
−)− (1− u2

+)θ (1− u2
+)
]
.

(10.42)

In the static limit, ω = 0 and u2
− = u2

+; hence, Im�o(q, 0) = 0. To summarize,
we collect below the results for �o(q, ω) at very low temperatures:

Re�0(q, ω) = −d(εF )
[

1
2
− 1− u2

−
4q/kF

ln
∣∣∣∣1+ u−
1− u−

∣∣∣∣+ 1− u2
+

4q/kF

ln
∣∣∣∣1+ u+
1− u+

∣∣∣∣
]

Re�0(q, 0) = −d(εF )
[

1
2
+ 4k2

F − q2

8kF q
ln
∣∣∣∣2kF + q

2kF − q

∣∣∣∣
]

Im�0(q, ω) = −d(εF )
πkF

4q
[(1− u2

−)θ (1− u2
−)− (1− u2

+)θ (1− u2
+)]

Im�0(q, 0) = 0

u± = ω/qvF ± q/2kF , d(εF ) = mkF /π2h̄2.
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The static dielectric function is given by

ε(q, 0) = 1− vq�
0(q, 0) = 1+ 4πe2d(εF )

q2

[
1
2
+ 4k2

F − q2

8kF q
ln
∣∣∣∣2kF + q

2kF − q

∣∣∣∣
]

.

(10.43)

This is known as the Lindhard dielectric function (Lindhard, 1954).

10.10.1 Thomas–Fermi screening model

In the Thomas–Fermi model (Thomas, 1927; Fermi, 1927), the dielectric function
ε(q, ω) is replaced by its value in the static, long wavelength limit,

εTF(q, ω) = lim
q→0

εRPA(q, 0) = lim
q→0

[1− vq�
0(q, 0)]. (10.44)

Since Im�0(q, 0) = 0, �0(q, 0) is real. Using limx→0 ln|1+ x| = x, we find that
limq→0 �0(q, 0) = −d(εF ). Hence,

εTF(q, ω) = 1+ d(εF )vq. (10.45)

The screened Coulomb interaction in the Thomas–Fermi model is given by

VTF(q, ω) = 4πe2

q2[1+ 4πe2d(εF )/q2]
= 4πe2

q2 + q2
TF

(10.46)

where

q2
TF = 4πe2d(εF ) (10.47)

is the square of the Thomas–Fermi wave number. At low temperatures, where elec-
trons occupy the states below the Fermi surface, d(εF ) = mkF /π 2h̄2 = kF /π2e2a0,
where a0 is the Bohr radius. Thus, q2

TF = 4kF /πa0. Since kF ∼ 1 Å−1 in metals,
we find that qTF ∼ 1 Å−1.

In the Thomas–Fermi model, the screened Coulomb interaction in real space is
the inverse Fourier transform of VTF,

v(r1 − r2) = e2

|r1 − r2|e
−qTF |r1−r2|. (10.48)

Suppose that an impurity of charge Ze is placed in a metal at the origin. The bare
Coulomb potential produced by the charged impurity is

Vbare(r) = Ze/r = 4πZe

(2π )3

∫
1
q2 eiq·rd3q. (10.49)

In writing the above equation, we have used 1/r = (1/V )
∑

q(4π/q2)eiq.r. Since
the charge is static (ω = 0), the screened Coulomb potential produced by the
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impurity is

Vsc(r) = 4πZe

(2π )3

∫
eiq·r

q2ε(q, 0)
d3q. (10.50)

The difference between the two potentials is caused by the induced charge density
ρind in the medium; hence, Poisson’s equation gives

4πρind(r) = −∇2[Vsc(r)− Vbare(r)]. (10.51)

Using Eqs. (10.49) and (10.50), along with ∇2eiq·r = −q2eiq·r, we obtain

ρind(r) = Ze

(2π )3

∫ [
1

ε(q, 0)
− 1

]
eiq·rd3q. (10.52)

The total induced charge is

Qind =
∫

ρind(r)d3r = Ze

∫
d3q

[
1

ε(q, 0)
− 1

]
1

(2π )3

∫
eiq·rd3r

= Ze

∫
d3q

[
1

ε(q, 0)
− 1

]
δ(q) = Ze

[
1

ε(0, 0)
− 1

]
. (10.53)

Since ε(0, 0) = 1+ d(εF )vq=0 = ∞, it follows that Qind = −Ze; the screening of
the charge impurity is complete. This result is reasonable. However, there is a defect
in the Thomas–Fermi model, namely that ρind(r) diverges at r = 0. Using Vsc(r) =
(Ze/r)e−qTFr , Vbare(r) = Ze/r , and ∇2 = (1/r)∂2/∂r2 r , Eq. (10.51) gives

ρind(r) = −ed(εF )
Ze2

r
e−qTFr , (10.54)

which is infinite at r = 0. Significantly, no such singularities are observed in
experiments that probe the electronic density near charged impurities. This defect
is remedied by using the Lindhard dielectric function (see Eq. [10.43]) instead of
the Thomas–Fermi dielectric function.

10.11 Plasmons and Landau damping

A dense electron gas is capable of supporting high-frequency longitudinal oscil-
latory modes known as plasmons. They can be observed when energetic electrons
scatter from a metallic crystal. When an energetic electron strikes a metal, it may
excite a plasmon, whose energy is ∼ 10 eV; the scattered electron would then be
downshifted in energy by an equal amount relative to the incident electron.

A classical treatment illustrates how plasmons can be formed. In the jellium
model, consider a small time-dependent density fluctuation: each electron at r is
given a small displacement u(r, t). In an infinitesimal volume d3r centered on r,
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nd3r electrons are each displaced by u(r, t), where n = N/V is the electron number
density at equilibrium. The induced dipole moment in d3r is−neu(r, t)d3r; hence,
the induced polarization in the medium (the dipole moment per unit volume) is
P(r, t) = −enu(r, t). The induced charge density is

ρind(r, t) = −∇.P = ne∇.u(r, t). (10.55)

If we Fourier-expand u(r, t):

u(r, t) = 1
V

∑
q

uq(t)eiq·r (10.56)

then

∇.u = i

V

∑
q

q.uq(t)eiq·r (10.57)

which is nonzero for longitudinal modes (q‖uq). The induced electric field is, by
Gauss’s law,

∇.E = 4πρind = 4πne∇.u(r, t). (10.58)

The above equation is to be solved subject to the boundary condition that E = 0 if
u = 0; hence E = 4πneu(r, t). Newton’s second law now gives

mü = −eE ⇒ ü = (−4πne2/m)u. (10.59)

Thus, the motion of the electrons is oscillatory, with a frequency of

ωp = (4πne2/m)1/2, (10.60)

which is the plasmon frequency. For metals, h̄ωp = 10−20 eV.

10.11.1 Plasmons

From a quantum mechanical point of view, the retarded correlation function is

CR
AB(ω) = h̄ Z−1

G

∑
n,m

〈n|A|m〉〈m|B|n〉(e−βĒn ∓ e−βĒm)
h̄ω − (Ēm − Ēn)+ i0+

(10.61)

(see Eq. [6.47]). The +(−) sign corresponds to the occurrence of fermionic
(bosonic) operators A and B. Setting

A = ñq = nq − 〈nq〉, B = ñ−q = n−q − 〈n−q〉
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and noting that n−q =
∑

kσ c
†
kσ ck−q =

∑
kσ c

†
k+qck = n

†
q, and that the density oper-

ator is bosonic, we obtain the retarded density–density correlation function

DR(q, ω) = h̄Z−1
G

∑
n,m

|〈m|ñq|n〉|2(e−βĒn − e−βĒm)
h̄ω − (Ēm − Ēn)+ i0+

. (10.62)

As this expression shows, the poles of DR(q, ω) are the excitation energies of
the system. Note that these energies are not the excitation energies of an added
particle; ñq represents electron density fluctuations, and it conserves the number
of particles. The poles of DR(q, ω) are thus the excitation energies of the density
fluctuations of the electron gas. In the random phase approximation,

DR(q, ω) = h̄�RPA(q, ω) = h̄�0(q, ω)
1− vq�0(q, ω)

= h̄�0(q, ω)
1− vqRe�0(q, ω)− ivqIm�0(q, ω)

. (10.63)

The imaginary part of �0(q, ω) gives rise to damping of the excitation modes.
To search for well-defined, long-lived excitations, we consider the region where
Im�0(q, ω) = 0. This occurs when ω/qvF > 1+ q/2kF (see Eq. [10.42]). The
poles are obtained by setting 1− vqRe�o(q, ω) = 0. We evaluate Re�0(q, ω) in
the low temperature limit (kBT � εF ), long wavelength limit (q � kF ), and high
frequency limit (ω � qvF ). The expression for Re�0(q, ω), given in Eq. (10.31),
can be written as

Re �0(q, ω) = −d(εF )
[

1
2
− 1− (ω/qvF − q/2kF )2

4q/kF

ln
∣∣∣∣1+ x−
1− x+

∣∣∣∣
+ 1− (ω/qvF + q/2kF )2

4q/kF

ln
∣∣∣∣1+ x+
1− x−

∣∣∣∣
]

(10.64)

where

x± = qvF

ω
(1± q/2kF ).

In the high frequency, long wavelength limit, x± � 1. By expanding

ln|1+ x| = x − x2

2
+ x3

3
− x4

4
+ x5

5
− x6

6
+ · · ·

and carrying out tedious calculations, we find

Re�o(q, ω) = n

m

( q

ω

)2
[

1+ 3
5

(qvF

ω

)2
+ · · ·

]
. (10.65)

Another method for obtaining the above result is outlined in Problem 10.4.
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The poles of DR(q, ω) are obtained by solving

1− 4πne2

mω2

[
1+ 3

5

(qvF

ω

)2
]
= 0

⇒ ω2 = ω2
p

[
1+ 3

5

(qvF

ω

)2
+ · · ·

]
= ω2

p

[
1+ 3

5

(
qvF

ωp

)2

+ · · ·
]

⇒ ω(q) = ωp

[
1+ 3

10

(
vF

ωp

)2

q2 + · · ·
]

. (10.66)

At q = 0, ω = ωp ; the quantum mechanical treatment reproduces the classical
result, and, in addition, yields the dispersion of the plasmon mode.

10.11.2 Landau damping

The plasmon mode is damped if Im�0(q, ω) 
= 0. From Eq. (10.42), this occurs
if u2

− < 1 or u2
+ < 1. Since u2

+ > u2
−, it is necessary and sufficient that u2

− < 1 for
Im�0(q, ω) to be nonzero:

u2
− < 1 ⇒−1 <

ω

qvF

− q

2kF

< 1 ⇒ −qvF + q2vF

2kF

< ω < qvF + q2vF

2kF

⇒ (q/kF )2 − 2q/kF < h̄ω/εF < (q/kF )2 + 2q/kF .

In the shaded region of the q-ω plane (see Figure 10.12), Im�0(q, ω) 
= 0. The
plasmon mode dispersion is also shown. For q > qc, the plasmon mode is damped,
and it becomes difficult to observe due to its short lifetime. This damping is
known as Landau damping. The shaded region is the region of single-particle
excitations, whereby an electron below the Fermi surface is excited to above the
Fermi surface. Outside this region, it is not possible to conserve energy and wave
vector in a single-particle excitation process. We can understand the situation as
follows. Suppose an external field with wave vector q and frequency ω impinges
on a metal at low temperature. Under what circumstances would it be possible for
an electron to absorb momentum h̄q and energy h̄ω (supplied by the field) that
would allow it to move from beneath to above the Fermi surface? For any given
q, the maximum energy that can be absorbed corresponds to a transition in which
an electron at the Fermi surface with wave vector k‖q, |k| = kF , transitions to a
state with wave vector k+ q, where |k+ q| = kF + q (depicted in Figure 10.13a).
The absorbed energy is h̄ω = h̄2q2/2m+ h̄2kF q/m. If h̄ω > h̄2q2/2m+ h̄2kF q/m

(corresponding to points to the left of the left-hand parabola in Figure 10.12), then
conservation of energy is not possible for any single-particle excitation.
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Figure 10.12 Plasmon damping: the shaded region is the region of ω − q plane
where single-particle excitations are possible. For x > qc/kF , the plasmon decays
by exciting electron–hole pairs.

Figure 10.13 (a) A single-particle excitation in which maximum energy is
absorbed, and (b) a single-particle excitation in which minimum energy is
absorbed.

Similarly, for any given q, the minimum energy that can be absorbed in a
single-particle excitation corresponds to a situation where an electron at the Fermi
surface, having a wave vector k in a direction opposite to that of q, transitions
to a state with wave vector k+ q, |k+ q| = q − kF (depicted in Figure 10.13b).
The absorbed energy is h̄ω = (h̄2/2m)(q2 − 2kF q). If h̄ω < h̄2q2/2m− h̄2kF q/m

(corresponding to points to the right of the right-hand parabola in Figure 10.12),
then no single-particle excitation is possible. Clearly, if q < 2kF , the minimum
energy absorbed is zero.
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We conclude that if an external field with wave vector q and frequency ω were
to strike a metal, where the point (q/kF ,h̄ω/εF ) lies outside the shaded region
shown in Figure 10.12, then the energy and momentum carried by the field could
not be absorbed through single-particle excitations. If the field’s wave vector and
frequency were to match those of the plasmon mode, then the plasmon mode would
be excited.

10.12 Case study: dielectric function of graphene

In this section we use results obtained in Problems 2.4, 2.5, 2.6, and 3.6. The
reader is advised to study the results of these problems before proceeding with this
section. We shall calculate the dielectric function for pure, undoped graphene. A
more general treatment that includes doped graphene is also possible (Hwang and
Das Sarma, 2007).

There are two valleys in the electronic band structure of graphene, one near
point K = (2π/

√
3a, 2π/3a) and one near point K ′ = (2π/

√
3a,−2π/3a) in the

first Brillouin zone (FBZ). In the vicinity of these points, the energy dispersion is
linear:

Ek = ±h̄vF k. (10.67)

The minus (plus) sign refers to the valence (conduction) band, k is measured from
K (or K ′), and k = |k|. In undoped, pure graphene at low temperatures, the valence
band is full while the conduction band is empty. We assume that q is small, so that
we can ignore intervalley scattering. The dielectric function is given by

ε(q, ω) = 1− vq�
0(q, ω) (10.68)

where vq = 2πe2/q, since graphene is two-dimensional (see Problem 4.4), and
�0(q, ω) = (1/h̄)DR,0(q, ω) is the polarizability of the noninteracting system. First
we evaluate D0(q, ωm), from which the retarded density–density correlation func-
tion DR,0(q, ω) is obtained by iωm → ω + i0+. We have

D0(q, τ ) = − 1
A
〈T n(q, τ )n(−q, 0)〉0,conn, nondisjoint (10.69)

where A is the area of the system. Consider the valley near K (or K ′). The number-
density operator (see Problem 3.6) is given by

n(q) =
∑
kσ

∑
ss ′
〈ψs

k|e−iq·r|ψs′
k+q〉c†skσ cs′k+qσ . (10.70)
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Here, s and s ′ are band indices: s, s ′ = v (valence) or c (conduction). Note that

n(r) = 1
A

∑
q

n(q)eiq.r = 1
A

∑
q

n(−q)e−iq.r. (10.71)

Since n(r) is a Hermitian operator,

n(r) = n†(r) = 1
A

∑
q

n†(q)e−iq·r ⇒ n†(q) = n(−q). (10.72)

Thus,

D0(q, τ ) = − 1
A
〈T n(q, τ )n†(q, 0)〉0,c,nd

= − 1
A

∑
kσss ′

∑
k′σ ′rr ′

〈ψs
k|e−iq·r|ψs′

k+q〉〈ψr
k′ |e−iq·r|ψr ′

k′+q〉∗

× 〈T c
†
skσ (τ )cs ′k+qσ (τ )c†r′k′+qσ ′(0)crk′σ ′(0)〉0,c,nd. (10.73)

The subscripts c and nd mean connected and nondisjoint, respectively. The
τ -ordered product is evaluated by means of Wick’s theorem; it is equal
to −〈T crk′σ ′(0)c†skσ (τ )〉0〈T cs ′k+qσ (τ )c†r ′k′+qσ ′(0)〉0, which, in turn, is equal to
−g0(skσ,−τ )g0(s ′k+ qσ, τ )δsrδs′r ′δσσ ′δkk′ . Hence,

D0(q, τ ) = 1
A

∑
kσ

∑
ss ′
|〈ψs

k|e−iq·r|ψs′
k+q〉|2g0(skσ,−τ )g0(s ′k+ qσ, τ ). (10.74)

Fourier transforming, we obtain

1
βh̄

∑
m

D0(q, ωm)e−iωmτ = 1
(βh̄)2A

∑
kσ

∑
ss ′

Fss ′(k, q)

×
∑
nn′

g0(skσ, ωn)g0(s ′k+ qσ, ωn′)e−i(ωn′−ωn)τ

(10.75)

where

Fss ′(k, q) = 1
2

(
1+ ss ′

k + q cosφ
|k+ q|

)
(10.76)

(see Problem 2.6). Here, φ is the angle between k and q, and s, s ′ = +1(−1) if
s, s ′ = c(v). It follows that ωn′ = ωn + ωm. The summation over n was carried out
in Section 10.6; we therefore have

D0(q, ωm) = 1
A

∑
kσ

∑
ss ′

Fss ′(k, q)
fsk − fs ′k+q

iωm + (εsk − εs ′k+q)/h̄
. (10.77)
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The bare polarizability �0(q, ω) = (1/h̄)DR,0(q, ω) is thus given by

�0(q, ω) = 4
A

∑
kss ′

Fss ′(k, q)
fsk − fs′k+q

h̄ω + εsk − εs′k+q + i0+
. (10.78)

A factor of 2 arises from the existence of two valleys, and another factor of 2
arises from summing over the spin index; hence we have a factor of 4 in the above
equation. Denoting fck by fk+, fvk by fk−, εck by εk+, εvk by εk−, and summing
over band indices, we obtain

�0(q, ω) = 4
A

∑
k

[
(fk+ − fk+q+)F++(k, q)
h̄ω + εk+ − εk+q+ + i0+

+ fk+F+−(k, q)
h̄ω + εk+ − εk+q− + i0+

− fk+q+F−+(k, q)
h̄ω + εk− − εk+q+ + i0+

]
+ 4

A

∑
k

[
(fk− − fk+q−)F−−(k, q)
h̄ω + εk− − εk+q− + i0+

+ fk−F−+(k, q)
h̄ω + εk− − εk+q+ + i0+

− fk+q−F+−(k, q)
h̄ω + εk+ − εk+q− + i0+

]

≡ �0,+(q, ω)+�0,−(q, ω). (10.79)

We restrict our calculations to the case of undoped, pure graphene at low tempera-
tures. Under these conditions, the conduction band is empty and the valence band
is full: fk+ = fk+q+ = 0, and fk− = fk+q− = 1. Hence �0,+(q, ω) = 0, and

�0(q, ω) = 2
A

∑
k

(
1− k + q cosφ

|k+ q|
)

×
[

1
h̄ω + εk− − εk+q+ + i0+

− 1
h̄ω + εk+ − εk+q− + i0+

]
.

(10.80)

First, we evaluate the imaginary part of �0(q, ω),

Im�0(q, ω) = −2π

A

∑
k

(
1− k + q cosφ

|k+ q|
)

×{δ [h̄ω − h̄vF (k + |k+ q|)]− δ [h̄ω + h̄vF (k + |k+ q|)]}
(10.81)

where we assume that q is small, so that the linear energy dispersion will be a good
approximation. Since δ(x) = δ(−x), the above expression implies that

Im �0(q,−ω) = −Im �0(q, ω). (10.82)
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Note further that, from Eq. (10.80), we have

Re �0(q,−ω) = Re �0(q, ω). (10.83)

It is thus sufficient to evaluate �0(q, ω) for ω > 0. In this case, the second Dirac-
delta function in Eq. (10.81) vanishes, and we end up with

Im�0(q, ω> 0) = − 1
2πh̄

∫∫
k

(
1− k + q cosφ

|k+ q|
)

δ(ω − vF k − vF |k+ q|) dkdφ.

(10.84)

We have used δ(ax) = δ(x)/|a| and made the replacement

∑
k

→ A

(2π )2

∫
kdk

∫ 2π

0
dφ.

Consider the argument f (cosφ) of the Dirac-delta function

f (cosφ) = ω − vF k − vF (k2 + q2 + 2kq cosφ)1/2. (10.85)

For the Dirac-delta function δ[f (cosφ)] to be nonvanishing, ω must be greater than
or equal to vF k: ω ≥ vF k. The root of f (cosφ) is

f (cosφ) = 0 ⇒ cosφ = (ω2 − 2vF kω − v2
Fq2)/2v2

F kq (10.86)

and

|∂f/∂ cosφ|root = v2
F kq/(ω − vF k), |k+ q|root = (ω − vF k)/vF . (10.87)

Using

δ[f (x)] =
∑

i

δ[x − xi]
|∂f/∂x|xi

,

where xi’s are the roots of f (x), we can write

δ(ω − vF k − vF |k+ q|) = |k+ q|
vF kq

δ

(
cosφ − ω2 − 2vF kω − v2

F q2

2v2
F kq

)
. (10.88)

Since −1 ≤ cosφ ≤ 1, for the Dirac-delta function to be nonzero, we should have
−1 ≤ (ω2 − 2vF kω − v2

F q2)/2v2
F kq ≤ 1. This is satisfied if the following two

conditions are satisfied:

(a) ω ≥ vF q

(b) vF (2k − q) ≤ ω ≤ vF (2k + q).
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We also note that∫ 2π

0
dφ · · · =

∫ π

0
dφ · · · +

∫ 2π

π

dφ · · · = −
∫ φ=π

φ=0

d cosφ
sinφ

· · · −
∫ φ=2π

φ=π

d cosφ
sinφ

· · · ,

(10.89)

and that sinφ > 0 for 0 < φ < π while sinφ < 0 for π < φ < 2π ; hence∫ 2π

0
dφ · · · =

∫ 1

−1

d cosφ
|sinφ| · · · +

∫ 1

−1

d cosφ
|sinφ| · · · = 2

∫ 1

−1

d cosφ
|sinφ| · · · . (10.90)

Finally, we note that, at the root of f (cosφ)

|sinφ|root =
[
(2v2

F kq)2 − (ω2 − 2vF kω − v2
F q2)2]1/2

/2v2
F kq. (10.91)

The integration over φ can now be carried out; it gives

Im�0(q, ω > 0) = − θ (ω − vF q)

πh̄vF

√
ω2 − v2

F q2

∫ [
v2

Fq2 − (ω − 2vF k)2]1/2

×{θ [ω − vF (2k − q)]− θ [ω − vF (2k + q)]} dk. (10.92)

The step functions ensure that conditions (a) and (b), which were given earlier, are
satisfied. Condition (b), enforced by the step functions inside the integral, implies
that ω/2vF − q/2 ≤ k ≤ ω/2vF + q/2. Thus,

Im�0(q, ω> 0) = − θ (ω − vF q)

πh̄vF

√
ω2 − v2

F q2

∫ ω
2vF
+ q

2

ω
2vF
− q

2

[
v2

F q2 − (ω − 2vF k)2]1/2
dk.

(10.93)
By a change of variable: ω − 2vF k → x, the integration is easily done,

Im�0(q, ω > 0) = − q2θ (ω − vF q)

4h̄
√

ω2 − v2
F q2

. (10.94)

As noted earlier, Re�0(q, ω) is an even function of ω, while Im�0(q, ω) is an odd
function of ω. The poles of �0(q, ω) are below the real axis, and �0(q, ω) → 0 as
|ω| → ∞. The Kramers–Kronig relations (see Problem 6.11) are thus applicable
to �0(q, ω):

Re�0(q, ω) = 2
π

P

∫ ∞

0

ω′Im�0(q, ω′)
ω′2 − ω2

dω′

= − q2

2πh̄
P

∫ ∞

0

ω′θ (ω′ − vF q)

(ω′2 − ω2)
√

ω′2 − v2
F q2

dω′. (10.95)
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The integral is carried out by making a change of variable,

ω′2 − ω2 = x ⇒ ω′dω′ = dx/2,

Re�0(q, ω) = − q2

4πh̄

∫ ∞

v2
F q2−ω2

dx

x

√
x + ω2 − v2

F q2
≡ − q2

4πh̄
J. (10.96)

This is a tabulated integral,

J =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1√
ω2 − v2

F q2
ln

∣∣∣∣∣∣
√

x + ω2 − v2
Fq2 −

√
ω2 − v2

Fq2√
x + ω2 − v2

Fq2 +
√

ω2 − v2
Fq2

∣∣∣∣∣∣
∞

v2
F q2−ω2

ω > vF q

2√
v2

F q2 − ω2
sec−1

√
x

v2
F q2 − ω2

∣∣∣∣∣
∞

v2
F q2−ω2

ω < vF q

=

⎧⎪⎨
⎪⎩

0 ω > vF q
π√

v2
F q2 − ω2

ω < vF q. (10.97)

Thus,

Re �0(q, ω) = −q2

4h̄
θ (vF q − ω)√
v2

F q2 − ω2
(10.98)

and

�0(q, ω > 0) = −q2

4h̄

⎡
⎣ θ (vF q − ω)√

v2
F q2 − ω2

+ i
θ (ω − vF q)√
ω2 − v2

F q2

⎤
⎦ . (10.99)

For ω < 0

�0(q, ω < 0) = [�0(q, ω > 0)]∗. (10.100)

The dielectric function is

ε(q, ω) = 1− 2πe2

q
�0(q, ω). (10.101)

Further reading

Bruus, H. and Flansberg, K. (2004). Many-Body Quantum Theory in Condensed Matter.
Oxford: Oxford University Press.

Fetter, A.L. and Walecka, J.D. (1971). Quantum Theory of Many-Particle Systems. New
York: McGraw-Hill.
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Mahan, G.D. (2000). Many-Particle Physics, 3rd edn. New York: Kluwer Academic/Plenum
Publishers.

Mattuck, R.D. (1976). A Guide To Feynman Diagrams in the Many-Body Problem, 2nd
edn. New York: McGraw-Hill.

Problems

10.1 First-order self energy. Show that the first-order contribution to the self
energy of an electron in an electron gas as T → 0 is given by

�∗
1 (kσ, ωn) = −e2kF

πh̄

[
1+ 1− x2

2x
ln
∣∣∣∣1+ x

1− x

∣∣∣∣
]

where x = k/kF . To obtain the above result, start from

�∗
1(kσ, ωn) = − 1

h̄V

∑
k′

4πe2

|k− k′|2 fk′ .

As T → 0, fk′ → θ (kF − k′). Replace sum over k′ by integration, and use
the formula∫

x ln|x + a|dx = x2 − a2

2
ln|x + a| − 1

4
(x − a)2.

10.2 Proper self energy in two dimensions. Calculate �∗
1 (kσ, ωn) for a two-

dimensional electron gas in the limit T → 0. Show that, at k = kF , it is
given by −2e2kF /(πh̄).

10.3 High frequency limit of ε(q, ω). Show that the high frequency limit of the
dielectric function of an electron gas is given by

lim
ω→∞ ε(q, ω) = 1− ω2

p/ω2

where ωp = (4πne2/m)1/2 is the plasmon frequency.

10.4 An alternative derivation of the plasmon dispersion.
(a) Show that

Re�0(q, ω) = 4
V

∑
k

fk(εk+q − εk)
(h̄ω)2 − (εk+q − εk)2 .

(b) In the long-wavelength limit (q � kF ), and high-frequency limit (ω �
qvF ), we have h̄ω � (εk+q − εk). Show that, in these limits,

Re�0(q, ω) = 4
V (h̄ω)2

∑
k

fk(εk+q − εk)
[

1+ (εk+q − εk)2

(h̄ω)2 + · · ·
]

.
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(c) As T → 0, fk → θ (kF − k). Using εk = h̄2k2/2m, show that
Re�0(q, ω) is given by Eq. (10.65), and hence, the plasmon mode dis-
persion is given by Eq. (10.66).

10.5 Thomas–Fermi wave number in two dimensions. Show that, in two dimen-
sions, qTF = 2/a0, where a0 = h̄2/me2 is the Bohr radius.

10.6 Plasmons in two dimensions. Show that, in a two-dimensional electron gas
with n electrons per unit area, the plasmon dispersion is given by

ωq =
√

2πne2q

m

[
1+ 3qa0

8
+ · · ·

]
.



11
Phonons, photons, and electrons

When the sky is illumined with crystal
Then gladden my road and broaden my path
And clothe me in light.
–From “The Book of the Dead,” Ancient Egypt

Translated by Robert Hillyer

In this chapter we turn to phonons, photons, and their interactions with electrons.
These interactions play an important role in condensed matter physics. At room
temperature, the resistivity of metals results mainly from electron–phonon inter-
action. At low temperature, this interaction is responsible for the superconducting
properties of many metals. On the other hand, the electron–photon interaction plays
a dominant role in light scattering by solids, from which we derive a great deal of
information about excitation modes in solids. Much of our knowledge about energy
bands in crystals has been obtained through optical absorption experiments, whose
interpretation relies on an understanding of how electrons and photons interact.

We begin by discussing lattice vibrations in crystals and show that, upon quanti-
zation, the vibrational modes are described in terms of phonons, which are particle-
like excitations that carry energy and momentum. We will see that the effect of
lattice vibrations on electronic states is to cause scattering, whereby electrons
change their states by emitting or absorbing phonons. Similarly, the interaction of
electrons with an electromagnetic field will be represented as scattering processes
in which electrons emit or absorb photons.

A discussion of lattice vibrations in the general case of a three-dimensional
crystal with a basis of more than one atom is somewhat complicated. To keep the
presentation simple, we consider in detail the simplest case, a one-dimensional
crystal with only one atom per unit cell. Next, we consider a diatomic chain, and
then indicate briefly how things look in three dimensions. The reader interested in
a treatment of the general case of a three-dimensional crystal with more than one
atom per primitive cell will find a detailed presentation in Appendix C.

247
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Figure 11.1 A line of atoms, each of mass M , connected by massless springs
of force constant k. (a) The atoms sit at their equilibrium positions, with the
equilibrium position of atom n being Rn. In equilibrium, the separation between
neighboring atoms is a. (b) The atoms are displaced from equilibrium, with the
displacement of atom n being un.

11.1 Lattice vibrations in one dimension

The simplest case we can deal with is a one-dimensional crystal with one atom per
unit cell. Consider a line of N atoms (N � 1), each of mass M . In equilibrium,
the position of atom n is Rn = na, and the separation between adjacent atoms is a.
We model the interatomic interactions by massless springs, each of force constant
k, which connect neighboring atoms (see Figure 11.1). When atoms vibrate, they
are displaced from equilibrium. Let un be the displacement from equilibrium of
atom n. We adopt periodic boundary conditions: u1 = uN+1. Newton’s second law
gives

Mün = k(un+1 − 2un + un−1). (11.1)

This is a set of N coupled differential equations (n = 1, 2, . . . N). The general
approach to solving such a set of coupled equations is to first find the normal
modes; the general solution is then obtained by writing the displacements as linear
combinations of these modes. In a normal mode all atoms vibrate with the same
wave vector and frequency. Denoting wave vector as q and frequency as ωq , atom
n in a normal mode has a displacement given by

un = A exp[i(qRn − ωqt)] = A exp[i(qna − ωqt)] (11.2)

where A is a constant. Inserting this into Eq. (11.1), we obtain

−Mω2
q = k(eiqa − 2+ e−iqa) = 2k [cos(qa)− 1].

Writing cos(qa) = 1− 2sin2(qa/2), the frequency can be expressed as

ωq = ωm|sin(qa/2)|, ωm = (4k/M)1/2. (11.3)
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Figure 11.2 A plot of ω vs. q for values of q in the first Brillouin zone. The crystal
is one-dimensional, with one atom per primitive cell.

The relation between ωq and q is known as the dispersion relation. We note the
following:

1. Periodic boundary conditions, applied to Eq. (11.2), give the allowed values for
q, namely

q = 0,±2π/L,±4π/L, . . .

where L = Na is the length of the line of atoms.
2. It follows from Eqs (11.2) and (11.3) that

ωq = ω−q = ωq+2π/a , un(q) = un(q + 2π/a).

3. As q → 0, ωq = vq, where v = ωma/2.

The second remark implies that it is sufficient to restrict the values of q to the first
Brillouin zone (FBZ):−π/a < q � π/a. The number of normal modes is equal to
the number of q-points within the FBZ, which is exactly equal to N . Since L � a,
the first remark means that the separation between neighboring values of q is too
small compared to the width of the FBZ; hence, when plotting ω vs q, we may
consider q to be continuous. Such a plot is shown in Figure 11.2. Regarding the
third remark, the fact that ω → 0 as q → 0 is obvious on physical grounds: as
q → 0, neighboring atoms undergo equal displacements during the vibration, and
the restoring forces vanish. The fact that ω approaches zero linearly in q in the long
wavelength limit (q → 0) assigns the name “acoustic branch” to the branch in the
dispersion in Figure 11.2; v is the speed of sound in this one-dimensional crystal.
The general solution of the equation of motion, Eq. (11.1), is a linear combination
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of the normal modes,

un = 1√
NM

∑
q∈FBZ

Qqe
iqRn , (11.4)

where the factor e−iωq t is absorbed into the expansion coefficients Qq and the
factor 1/

√
NM is inserted for later convenience. In effect, Eq. (11.4) is a Fourier

expansion of the displacement un. The expansion coefficients Qq are called normal
coordinates. They satisfy the relation Q∗

q = Q−q , which is a consequence of the
fact that the displacement un is real.

Our next task is to construct an expression for the energy of the line of atoms in
terms of the normal coordinates. The kinetic energy is given by

T = (M/2)
N∑

n=1

u̇2
n =

1
2N

∑
n

∑
qq ′

Q̇qQ̇q ′e
i(q+q ′)Rn ,

where q, q ′ ∈ FBZ. Summing first over n (
∑

n ei(q+q ′)Rn = Nδq ′,−q ), we find

T = (1/2)
∑

q

Q̇qQ̇−q . (11.5)

The potential energy is the elastic energy of the springs,

V = (k/2)
N∑

n=1

(un+1 − un)2. (11.6)

From Eq. (11.4), we can write

un+1 − un = 1√
NM

∑
q

Qqe
iqRn(eiqa − 1).

The potential energy is thus given by

V = k

2NM

∑
n

∑
qq ′

QqQq ′ (eiqa − 1)(eiq ′a − 1)ei(q+q ′)Rn.

Carrying out the summation over n first, we obtain

V = k

2M

∑
q

Qq Q−q |eiqa − 1|2 = 2k

M

∑
q

Qq Q−q sin2(qa/2).

Using Eq. (11.3), the above expression becomes

V = (1/2)
∑

q

ω2
qQqQ−q. (11.7)
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The Lagrangian L = T − V is thus a function of the normal coordinates. The
canonical momentum conjugate to Qq is

Pq = ∂L/∂Q̇q = Q̇−q . (11.8)

The Hamiltonian, in terms of the dynamical variables Qq and Pq , is

H =
(∑

q

PqQ̇q − L

)
Q̇q=P−q

. (11.9)

Substituting T − V for L, we find

H = 1
2

∑
q

(
PqP−q + ω2

qQqQ−q

)
. (11.10)

The quantum theory of lattice vibrations of the one-dimensional monatomic crystal
is obtained by treating the dynamical variables Qq and Pq as operators that satisfy
the commutation relations

[Qq , Qq ′] = [Pq , Pq ′] = 0, [Qq , Pq ′] = ih̄δqq ′ . (11.11)

Analogous to the case of the harmonic oscillator (see Section 1.2), we introduce
two new operators,

aq = (2h̄ωq)−1/2(ωqQq + iP−q), a†
q = (2h̄ωq)−1/2(ωqQ−q − iPq). (11.12)

These operators satisfy the commutation relations

[aq , aq ′] = [a†
q , a

†
q ′] = 0, [aq , a

†
q ′] = δqq ′ . (11.13)

It is straightforward to show that, in terms of these operators, the Hamiltonian is

H =
∑

q

h̄ωq(a†
qaq + 1/2). (11.14)

The Hamiltonian is seen to be a collection of N independent harmonic oscillators.
The eigenvalues are

∑
q h̄ωq(nq + 1/2), where nq is a non-negative integer. The

ground state is obtained when nq = 0 for all values of q. We interpret nq as the
number of particle-like excitations, called phonons, that occupy the normal mode
specified by q ; each phonon has energy h̄ωq and wave number q. The operator
a
†
q(aq) is interpreted as a creation (annihilation) operator that creates (annihilates)

a phonon of wave number q and energy h̄ωq . The commutation relations satisfied
by aq and a

†
q mean that phonons are bosonic particles. Since the quantum number

q ∈ FBZ completely specifies a vibrational mode, phonons are spinless particles.
A phonon of wave number q represents a traveling wave of wavelength λ =

2π/|q|. Therefore, a phonon of wave number q = 0 does not exist; the q = 0
normal mode represents a translation of the whole crystal, not a traveling wave.
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Figure 11.3 A linear diatomic chain with lattice constant a. The two different
atoms have masses M1 and M2. Neighboring atoms are connected by springs of
force constant k. In unit cell n, the displacements from equilibrium of the atoms
of masses M1 and M2 are un and vn, respectively.

11.2 One-dimensional diatomic lattice

We now consider a one-dimensional diatomic lattice (Figure 11.3). The two differ-
ent atoms in a unit cell have masses M1 and M2, and their equilibrium separation
is a/2. Neighboring atoms are assumed to be connected by massless springs, each
of force constant k. We denote by un and vn, respectively, the displacements from
equilibrium of the atoms of masses M1 and M2, located in unit cell n. Newton’s
second law yields the following equations:

M1ün = k(vn − 2un + vn−1) (11.15)

M2v̈n = k(un+1 − 2vn + un). (11.16)

These constitute a set of 2N coupled differential equations, where N is the number
of unit cells. To find the normal modes, we consider the trial solutions

un = uei(qRn−ωqt) , vn = vei(qRn−ωq t) , (11.17)

where Rn = na. Inserting these solutions into Eqs (11.15) and (11.16), we obtain
the following homogeneous algebraic equations involving u and v:

(−M1ω
2
q + 2k)u− k(1+ e−iqa)v = 0 (11.18)

−k(1+ eiqa)u+ (−M2ω
2
q + 2k)v = 0. (11.19)

A nontrivial solution exists only if the determinant of the coefficients of u and v

vanishes. The result is the following expression:

ω2
q =

k

μ
± k

√
1
μ2 −

4sin2(qa/2)
M1M2

(11.20)

where μ = M1M2/(M1 +M2) is the reduced mass of the two atoms in the unit
cell. A plot of ω vs q reveals that the dispersion curves consist of two branches
(see Figure 11.4). The lower branch is the acoustic branch, while the upper one is
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Figure 11.4 Dispersion curves for a linear diatomic chain with lattice constant a.
The lower (upper) branch is the acoustic (optical) branch.

the optical branch. As q → 0,

ω =
√

ka2

2(M1 +M2)
q (acoustic), ω =

√
2k/μ (optical). (11.21)

At the Brillouin zone edges (q = ±π/a) we find, based on Eq. (11.20), that

ω =
√

2k

max(M1, M2)
(acoustic), ω =

√
2k

min(M1, M2)
(optical)

(11.22)
where max(M1, M2) is the larger of M1 and M2, and min(M1, M2) is the smaller
of the two masses. At q = 0, Eqs (11.18), (11.19), and (11.21) give

u/v = 1 (acoustic), u/v = −M2/M1 (optical). (11.23)

At the Brillouin zone center (q = 0), all atoms vibrate in phase in the acoustic mode,
undergoing equal displacements; the vanishing of the frequency results from the
absence of any restoring forces. In the optical mode, on the other hand, adjacent
atoms vibrate out of phase (see Figure 11.5). We note that the optical mode is
excited by infrared light, hence the name “optical mode.”

If we were to construct a quantum theory of lattice vibrations for the diatomic
chain, we would find the following Hamiltonian:

H =
∑

q∈FBZ

2∑
λ=1

h̄ωqλ(a†
qλaqλ + 1/2). (11.24)
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Acoustic mode

Optical mode

Figure 11.5 The acoustic (upper figure) and optical (lower figure) modes at the
Brillouin zone center (q = 0) of a linear diatomic chain.

Here, the index λ refers to the phonon branch. There are two branches, an acoustic
one and an optical one. The operator a

†
qλ (aqλ) creates (annihilates) a phonon of

wave number q, branch index λ, and energy h̄ωqλ.

11.3 Phonons in three-dimensional crystals

We now briefly indicate how the one-dimensional case is generalized to three
dimensions. A detailed account is given in Appendix C.

We consider a crystal consisting of N unit cells with a basis of r atoms.
The displacement from equilibrium of atom l (l = 1, 2, . . . , r) in unit cell n (n =
1, 2, . . . , N ) is denoted by unl . Since there are Nr atoms in the crystal and each
atom vibrates in three dimensions, there are 3Nr degrees of freedom; consequently,
there is a total of 3Nr normal modes. In a normal mode, all atoms vibrate with the
same wave vector and frequency. A normal mode is specified by a wave vector q ∈
FBZ (there are N such vectors) and a branch index λ = 1, 2, . . . , 3r . In a normal
mode with coordinates (qλ),

unl ∝ (Ml)−1/2ε
(l)
λ (q)ei(q.Rn−ωqλt) ,

where Ml is the mass of atom l and ε
(l)
λ is a polarization vector that determines

the direction of the displacement unl relative to the wave vector q. In a purely
longitudinal normal mode, ε

(l)
λ ‖ q, while in a purely transverse mode, ε

(l)
λ ⊥ q.

The general solution of the equations of motion is a linear combination of the 3Nr

normal modes,

unl = (NMl)−1/2
∑
qλ

Qqλε
(l)
λ (q)eiq.Rn . (11.25)

The time-dependent coefficients Qqλ are called normal coordinates. Since u∗nl = unl

(displacements are real), it follows that Q∗
qλ = Q−qλ and ε

(l)∗
λ (q) = ε

(l)
λ (−q). The

Hamiltonian can be expressed in terms of the normal coordinates Qqλ and their
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conjugate momenta Pqλ :

H = (1/2)
∑
qλ

(PqλP−qλ + ω2
qλQqλQ−qλ). (11.26)

Passage to a quantum theory of lattice vibrations is accomplished by treating the
dynamical variables Qqλ and Pqλ as operators that satisfy the commutation relations

[Qqλ , Qq′λ′] = [Pqλ , Pq′λ′] = 0, [Qqλ , Pq′λ′] = ih̄δqq′ δλλ′ . (11.27)

We introduce two new operators aqλ and a
†
qλ such that

Qqλ =
√

h̄

2ωqλ

(aqλ + a
†
−qλ) (11.28)

Pqλ = i

√
h̄ωqλ

2
(a†

qλ − a−qλ). (11.29)

Note that Q−qλ = Q
†
qλ. The new operators satisfy the commutation relations

[aqλ , aq′λ′] = [a†
qλ , a

†
q′λ′] = 0, [aqλ , a

†
q′λ′] = δqq′ δλλ′ . (11.30)

In terms of these operators, the Hamiltonian can be written as

H =
∑
qλ

h̄ωqλ (a†
qλaqλ + 1/2). (11.31)

The operator a
†
qλ (aqλ) is interpreted as a creation (annihilation) operator of a

phonon of wave vector q, branch index λ, and energy h̄ωqλ.
Finally, we note that there are three acoustic phonon branches with a zero

frequency at the Brillouin zone center (q = 0), and 3r − 3 optical phonon branches
with nonvanishing frequencies.

11.4 Phonon statistics

The Hamiltonian given in Eq. (11.31) describes a system of noninteracting phonons.
Its eigenvalues are

∑
qλ(nqλ + 1/2)h̄ωqλ , where nqλ = 0, 1, 2 . . . is a non-negative

integer, interpreted as the number of phonons of wave vector q, branch index λ,
and energy h̄ωqλ. In the ground state, nqλ = 0 for all values of q and λ. We
now calculate 〈nqλ〉0, the average number of phonons occupying the normal mode
(qλ), for a system of noninteracting phonons in equilibrium at temperature T . The
subscript “0” refers to a noninteracting system.

When the system is in equilibrium at temperature T , any particular normal mode
(qλ) may be occupied by any number of phonons. The probability that n phonons
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occupy the mode (qλ) is e−βnh̄ωqλ/
∑∞

n=0 e−βnh̄ωqλ . Hence,

〈nqλ〉0 =
∞∑

n=0

ne−βnh̄ωqλ

/ ∞∑
n=0

e−βnh̄ωqλ .

The evaluation of the above expression is straightforward: the denominator is a
geometric series, while the numerator is proportional to the derivative, with respect
to β, of the same series. We obtain

〈nqλ〉0 = 1
eβh̄ωqλ − 1

≡ nωqλ
. (11.32)

As expected, phonons obey Bose–Einstein statistics. The important point here (and
the reason for going through the derivation) is the absence of a chemical potential:
μ = 0, as Eq. (11.32) indicates. The vanishing of the chemical potential results
from the fact that the number of phonons in the system is unrestricted: an arbitrary
number of phonons can occupy a normal mode (qλ).

11.5 Electron–phonon interaction: rigid-ion approximation

The basic idea underlying the electron–phonon interaction is simple, as illustrated
in Figure 11.6. When ions sit at their equilibrium positions, the state of an electron
is described by a Bloch function of wave vector k (and spin projection σ and band
index n). A phonon disturbs the lattice, and ions move out of their equilibrium
positions. This causes a change in the potential seen by the electron (the potential
no longer has the periodicity of the lattice). This change, in turn, scatters the
electron into another state with wave vector k′.

In this section, we calculate the electron–phonon interaction within the rigid-ion
approximation: in it, the potential field of an ion is assumed to be rigidly attached
to the ion as it moves. This is an approximation because, in reality, as a nucleus
moves, it does not rigidly carry along the electronic charge that surrounds it. In the
rigid-ion approximation, the interaction between an electron and an ion depends
on the distance that separates them. This approximation is reasonable for simple
metals, but it is not adequate for polar crystals, where ionic vibrations produce an
electric field which acts on the electron.

For simplicity of notation, we assume that there is one atom per unit cell; the
extension to a crystal with a basis is straightforward. The interaction of an electron
at position rj with the ions is given by

Ve−i =
∑

n

V (rj − Rn − un) �
∑

n

V (rj − Rn)−
∑

n

un.∇V (rj − Rn).
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Figure 11.6 (a) An electron is in the Bloch state |nkσ 〉. As long as the lattice is
static, the electron remains in this state. (b) In the presence of a phonon, the ions
in the lattice vibrate, and the electron sees a different ionic potential than it does
in (a). The change in the potential energy of the electron acts as a time-dependent
perturbation that can scatter the electron into the stationary states |n′k′σ 〉.

V (rj − Rn − un) is the interaction energy of the electron with the ion in unit cell
n when the ion is displaced from equilibrium by un. The gradient is with respect to
the electron coordinates. The above equation is no more than a Taylor expansion of
Ve−i to first order in the displacement; higher orders are ignored due to the smallness
of the ionic displacement as compared to the spacing between neighboring ions.
The first term in the expansion is the periodic potential energy which results from
the interaction of the electron with the static ions at their equilibrium positions;
when combined with the electron’s kinetic energy, this term gives rise to the Bloch
Hamiltonian whose eigenfunctions are the Bloch functions. The second term, when
summed over all electrons, is the electron–phonon interaction:

He−phonon = −
∑
jn

un.∇V (rj − Rn). (11.33)

The displacement un is now written in terms of the normal coordinates (see
Eq. [11.25]); we obtain

He−phonon = −1√
NM

∑
n

∑
qλ

Qqλe
iq.Rn

∑
j

ελ.∇V (rj − Rn). (11.34)

In this expression, the sum over the electrons is identified as a one-body operator
of the form

∑
j h(rj ); its second quantized form is

∑
j

ελ.∇V (rj − Rn) =
∑
kk′σ

(∫
ψ∗

k′σ (r)ελ.∇V (r− Rn)ψkσ (r)d3r

)
c
†
k′σ ckσ

(11.35)
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where ψkσ (r) and ψk′σ (r) are Bloch functions. In writing the above equation, we
have assumed that there is only one partially filled band (as is the case in simple
metals) and that electrons scatter within this band; we thus ignored the band index
when writing the Bloch functions. Furthermore, no spin flip can occur when an
electron is scattered by lattice vibrations.

We recall that, according to Bloch’s theorem (Section 2.3),

ψkσ (r+ Rn) = eik.Rnψkσ (r). (11.36)

We can take advantage of this property: in the integral in Eq. (11.35), we replace
the integration variable r with r+ Rn; then∑

j

ελ.∇V (rj − Rn) =
∑
kk′σ

ei(k−k′).Rn

(∫
ψ∗

k′σ (r)ελ.∇V (r)ψkσ (r)d3r

)
c
†
k′σ ckσ .

We insert this into Eq. (11.34) and carry out the summation over n:∑
n

ei(k−k′+q).Rn = N
∑

G

δk′,k+q+G , (11.37)

where G is a reciprocal lattice vector. Equation (11.34) becomes

He−phonon = −
√

N/M
∑
kσ

∑
qλ

∑
G

ελ.T(k, q, Gσ )c†k+q+Gσ ckσQqλ. (11.38)

Here,

T(k, q, Gσ ) =
∫

ψ∗
k+q+Gσ (r)∇V (r)ψkσ (r)d3r. (11.39)

We can proceed a bit further if we adopt the effective mass approximation: ψk(r) �
(1/
√

V )eik,r, εk � h̄2k2/2m∗, where V is the volume of the crystal and m∗ is
the effective electron mass. This approximation is adequate for simple metals.
Expanding V (r) in a Fourier series,

V (r) = (1/V )
∑

p

Vpe
ip.r ⇒ ∇V = (i/V )

∑
p

pVpe
ip.r ,

making use of the relation∫
ei(p−q−G).rd3r = V δp,q+G ,

and writing Qqλ in terms of phonon creation and annihilation operators (see
Eq. [11.28]), we finally obtain

He−phonon=− i

V

∑
kσ

∑
qλ

∑
G

√
Nh̄

2Mωqλ

Vq+G(q+G).ελ(q)c†k+q+Gσ ckσ (aqλ + a
†
−qλ).

(11.40)
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Figure 11.7 A pictorial representation of electron–phonon interaction. (a) An
electron is scattered from state |kσ 〉 into state |k+ q+Gσ 〉 by absorbing a
phonon of wave vector q and branch index λ. (b) Here, scattering occurs by the
emission of a phonon with coordinates (−qλ).

For a crystal with a basis of r atoms: l = 1, 2, . . . , r , the above expression is
modified as follows: M → Ml, Vq+G → V

(l)
q+G, ελ(q) → ε

(l)
λ (q), and an extra

summation
∑r

l=1 is carried out.
We make the following remarks regarding the electron–phonon interaction:

(1) The interaction is seen to be a sum of terms, with each term representing a
scattering process in which an electron is scattered from state |kσ 〉 into state
|k+ q+Gσ 〉 by either emitting or absorbing a phonon. The scattering process
is depicted in Figure 11.7.

(2) The wave vectors q, k, and k′ = k+ q+G must all lie in the first Brillouin
zone (FBZ). Hence, in summing over G, there is only one term in the summation
for any fixed k and q; G is the one reciprocal lattice vector which, when
added to k+ q, carries it back into the FBZ. If k+ q ∈ FBZ, then G = 0;
otherwise, G 
= 0. Electron scattering processes (by the emission or absorption
of a phonon) for which G = 0 are called normal processes. A process for
which G 
= 0 is called an Umklapp process. Normal and Umklapp processes
are depicted in Figure 11.8.

(3) We restrict further discussion to normal processes only: G = 0. The factor
q.ελ(q) in Eq. (11.40) implies that electrons interact only with longitudinal
phonons. In isotropic media, phonon polarization vectors are actually either
longitudinal or transverse.

(4) We write the electron–phonon interaction in the following form:

He−phonon =
∑
kσ

∑
qλ

Mqλc
†
k+qσ ckσ (aqλ + a

†
−qλ). (11.41)

The matrix element Mqλ is a measure of the strength of the electron–phonon
interaction. Its mathematical form depends on the kind of approximations one
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Figure 11.8 Normal and Umklapp processes in a two-dimensional square lattice
of lattice constant a. The square shown in the figure is the FBZ; its side is 2π/a.
In the scattering process, an electron of wave vector k absorbs a phonon of wave
vector q or emits a phonon of wave vector −q. (a) The wave vector k+ q ∈
FBZ; the scattering process is normal. (b) k+ q /∈ FBZ; a reciprocal lattice vector
G must be added to carry k+ q back into the FBZ, so the scattering process is
Umklapp.

makes (Ziman, 1960). Since He−ph is Hermitian, it follows that

M∗
qλ = M−qλ. (11.42)

Let us consider the case of an isotropic medium (a cubic crystal, for example)
with only one atom per unit cell. In this case, there is one longitudinal acoustic
branch and two transverse acoustic branches. Electrons interact only with the
longitudinal phonons. Assuming that the crystal is a metal, the Coulomb potential
of the ions is screened by the conduction electrons. Since ions move very slowly
compared to electrons, we can assume that the screening is static, similar to the
screening of a fixed charged impurity. The screened Coulomb potential of an ion
is thus taken to be 4πZe/q2ε(q, 0), where Ze is the ionic charge and ε(q, 0) is
the static dielectric function. For small values of q, this is given by 4πZe/(q2 +
q2

T F ) � 4πZe/q2
T F , where q

T F
is the Thomas–Fermi wave number. The electron–

ion interaction energy thus has the Fourier component Vq = −4πZe2/q2
T F . Under

these assumptions, it follows from Eq. (11.40) that the electron–phonon interaction
matrix element depends on q only and is given by

Mq = i

V

√
Nh̄

2Mωq

4πZe2

q2
T F

q.ελ(q). (11.43)

Note that because ελ(−q) = ε∗λ(q), Mq satisfies the relation M∗
q = M−q, as it

should. Often in the literature q.ελ(q) is replaced by q, which is the magnitude
of q; this is not quite accurate, for then the equality M∗

q = M−q is not satisfied.
Note further that Mq=0 = 0: in a normal mode, with q = 0, the periodicity of the
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lattice is preserved, Bloch states are still the stationary states of the system, and no
scattering takes place.

11.6 Electron–LO phonon interaction in polar crystals

We indicated in the previous section that the rigid-ion approximation is not adequate
for polar crystals, where the electric field associated with longitudinal optical (LO)
vibrations acts on the electrons. We consider the simplest case of a cubic polar
crystal with two ions per unit cell; the ions have equal but opposite charges.
Moreover, we only consider vibrations in the long wavelength limit. Even in this
case, the calculation of the electron–LO phonon coupling is not easy. We relegate
the details to Appendix D. Here, we simply summarize the main results.

(1) There is no electric field associated with transverse optical (TO) modes.
(2) The electric field associated with a longitudinal optical (LO) mode exerts a

restoring force on the ions, in addition to the short-range restoring forces that
are present in the absence of an electric field. The result is that the LO–phonon
frequency is higher than the TO–phonon frequency. In the long wavelength
limit (q → 0), we find

ω2
LO =

ε(0)
ε(∞)

ω2
TO , (11.44)

where ε(0) = ε(q → 0, ω = 0) is the static dielectric constant (measured
by applying a static electric field to the crystal) and ε(∞) = ε(q = 0, ω �
ωphonon) is the high-frequency dielectric constant of the crystal (it is the square
of the refractive index of the crystal). The above relation is known as the
Lyddane–Sachs–Teller (LST) relation.

(3) The electron–LO phonon interaction takes the form:

He−LO =
∑
ss ′

∑
kσ

∑′

q

Mss ′
q c

†
s ′k+qσ cskσ (aq + a

†
−q). (11.45)

The prime on the summation indicates that the q = 0 term is excluded, a
†
q(aq)

creates (annihilates) an LO–phonon of wave vector q, and c
†
skσ (cskσ ) creates

(annihilates) an electron in state |skσ 〉, where s is the band index. The matrix
element Mss ′

q is given by

Mss ′
q = iωLO

[
1

ε(∞)
− 1

ε(0)

]1/2( 2πh̄e2

V q2ωLO

)1/2

εL(q).q̂〈s′k+ qσ |eiq.r|skσ 〉.

(11.46)
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Here, V is the crystal volume, q̂ is the unit vector in the direction of q, and
εL(q) is the LO–phonon unit polarization vector.

If we assume that electron scattering by phonons takes place in only one
band, the sum over s and s ′ in Eq. (11.45) is no longer there. If we also
approximate the Bloch functions by plane waves, the matrix element 〈s′k+
qσ |eiq.r|skσ 〉 becomes equal to unity.

11.7 Phonon Green’s function

In previous chapters, we defined the retarded and advanced Green’s functions for
bosons in terms of the ensemble average of the commutator of an annihilation
and a creation operator. The imaginary-time Green’s function was also defined
in terms of the ensemble average of the time-ordered product of an annihilation
and a creation operator. Although a similar definition for the phonon Green’s
function may be adopted, this is not the most convenient one. This is because the
linear combination aqλ + a

†
−qλ appears in the electron–phonon interaction. It is this

particular combination that is employed in the definition of the phonon Green’s
function.

11.7.1 Definitions

The phonon retarded Green’s function is defined by

dR(qλ, t) = −iθ (t)〈[φqλ(t), φ†
qλ(0)]〉, (11.47)

where θ (t) is the step function,

φqλ = aqλ + a
†
−qλ (11.48)

is the phonon field operator, and φqλ(t) = eiHt/h̄φqλ(0)e−iH t/h̄. In Eq. (11.47), the
average is over a canonical ensemble,

〈· · · 〉 = T r(e−βH . . . )/T r(e−βH ). (11.49)

For phonons, canonical and grand canonical ensembles coincide because the chem-
ical potential vanishes, as discussed in Section 11.4.

The phonon imaginary-time (Matsubara) Green’s function is defined by

d(qλ, τ ) = −〈T φqλ(τ )φ†
qλ(0)〉 (11.50)

Here, φqλ(τ ) = eHτ/h̄φqλ(0)e−Hτ/h̄, and T is the time-ordering operator,

T φqλ(τ )φ†
qλ(0) =

{
φqλ(τ )φ†

qλ(0) τ > 0

φ
†
qλ(0)φqλ(τ ) τ < 0.

(11.51)
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No minus sign is incurred upon interchanging the operators, since they are bosonic.
We focus our attention on the imaginary-time Green’s function; from it, the retarded
function can be obtained by analytic continuation.

11.7.2 Periodicity

As discussed in Chapter 8, the time τ is restricted to the interval [−βh̄, βh̄]. Since
φqλ is a bosonic operator, it follows from the results of Chapter 8 that the phonon
Green’s function is periodic:

d(qλ, τ > 0) = d(qλ, τ − βh̄). (11.52)

The Fourier expansion of Green’s function is given by

d(qλ, τ ) = 1
βh̄

∞∑
m=−∞

d(qλ, ωm)e−iωmτ , ωm = 2πm/βh̄ (11.53)

and the Fourier transform is

d(qλ, ωm) =
∫ βh̄

0
d(qλ, τ )eiωmτdτ. (11.54)

11.8 Free-phonon Green’s function

For a noninteracting system of phonons,

d0(qλ, τ ) = θ (τ )d0>(qλ, τ )+ θ (−τ )d0<(qλ, τ ). (11.55)

The greater and lesser functions are given by

d0>(qλ, τ ) = −〈φqλ(τ )φ†
qλ(0)〉0 , d0<(qλ, τ ) = −〈φ†

qλ(0)φqλ(τ )〉0. (11.56)

In terms of phonon creation and annihilation operators,

d0>(qλ, τ ) = −
〈(

aqλ(τ )+ a
†
−qλ(τ )

) (
a
†
qλ(0)+ a−qλ(0)

)〉
0

(11.57)

where aqλ(τ ) = eHτ/h̄aqλ(0)e−Hτ/h̄ and a
†
−qλ(τ ) = eHτ/h̄a

†
−qλ(0)e−Hτ/h̄. Taking the

derivative with respect to τ , we obtain

ȧqλ(τ ) = (1/h̄)[H (τ ), aqλ(τ )], ȧ
†
−qλ(τ ) = (1/h̄)[H (τ ), a†

−qλ(τ )].

Note that H (0) = H (τ ). Since H =∑qλ h̄ωqλ(a†
qλaqλ + 1/2), the commutators

are evaluated easily; we find

aqλ(τ ) = e−ωqλτ aqλ , a
†
−qλ(τ ) = eωqλτ a

†
−qλ. (11.58)
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Inserting these into Eq. (11.57), and noting that the terms 〈aqλa−qλ〉0 and 〈a†
−qλa

†
qλ〉0

vanish, we obtain

d0>(qλ, τ ) = −
[
e−ωqλτ 〈aqλa

†
qλ〉0 + eωqλτ 〈a†

−qλa−qλ〉0
]
.

The commutation relation between the phonon annihilation and creation operators
implies that aqλa

†
qλ = 1+ a

†
qλaqλ. Moreover, in thermal equilibrium, 〈a†

qλaqλ〉0 is
the occupation number nωqλ

of the normal mode (qλ), given by Eq. (11.32). Since
ω−qλ = ωqλ, we can write

d0>(qλ, τ ) = − [e−ωqλτ (1+ nωqλ
)+ eωqλτ nωqλ

]
. (11.59)

The observation that 1+ nωqλ
= −n−ωqλ

(easily verified) allows us to write the
above expression in another way:

d0>(qλ, τ ) = − [nωqλ
eωqλτ − n−ωqλ

e−ωqλτ
]
. (11.60)

Similarly, following the same steps, we can show that

d0<(qλ, τ ) = − [nωqλ
e−ωqλτ − n−ωqλ

eωqλτ
]
. (11.61)

Before proceeding to calculate the free-phonon Green’s function, let us rewrite the
above expressions for d0> and d0< in the following way:

d0>(qλ, τ ) =
∫ ∞

−∞
P 0>

d (qλ, ε)e−ετ dε

2π
(11.62a)

d0<(qλ, τ ) =
∫ ∞

−∞
P 0<

d (qλ, ε)e−ετ dε

2π
(11.62b)

where

P 0>
d (qλ, ε) = 2πn−ε

[
δ(ε − ωqλ)− δ(ε + ωqλ)

]
(11.63a)

P 0<
d (qλ, ε) = −2πnε

[
δ(ε − ωqλ)− δ(ε + ωqλ)

]
. (11.63b)

The Fourier transform of the free-phonon Green’s function is

d0(qλ, ωm) =
∫ βh̄

0
d0(qλ, τ )eiωmτdτ =

∫ βh̄

0
d0>(qλ, τ )eiωmτdτ.

This is calculated by inserting the expression for d0>(qλ, τ ) from either Eq. (11.60)
or Eq. (11.62a); the result is

d0(qλ, ωm) = 2ωqλ

(iωm)2 − ω2
qλ

. (11.64)
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Figure 11.9 Pictorial representation of the phonon Green’s function: (a) d0(qλ, τ ),
(b) d(qλ, τ ), (c) d0(qλ, ωm), and (d) d(qλ, ωm). Here, d0 is the noninteracting
(free) phonon Green’s function, while d is the interacting function.

Figure 11.10 The two diagrams of second order in the electron–phonon
coupling.

In drawing Feynman diagrams, the phonon Green’s function is depicted as in
Figure 11.9.

11.9 Feynman rules for the electron–phonon interaction

Treating the electron–phonon interaction as a perturbation, we can expand the
electron Green’s function to various orders in the perturbation. Since the thermal
average of the product of an odd number of phonon field operators is zero, only even
orders in the perturbation expansion will survive. The derivation of the Feynman
rules from Wick’s theorem proceeds in exactly the same way as in Chapter 9. Here,
we simply write the rules for calculating the electron Green’s function.

(1) At order 2n in the electron–phonon interaction (since only even orders survive),
draw all topologically distinct diagrams with n phonon lines, two external
electron lines, and 2n− 1 internal electron lines.

(2) To each electron line of coordinates (kσ, ωn), assign g0(kσ, ωn).
(3) To each phonon line of coordinates (qλ, ωm), assign |Mqλ|2d0(qλ, ωm).
(4) At each vertex, conserve wave vector, frequency, and spin.
(5) Sum over all internal coordinates.
(6) Multiply each electron loop by −1.
(7) Multiply by the factor (1/h̄)2n(−1/βh̄)n.

For example, consider the two diagrams that arise in second-order perturbation
in the electron–phonon interaction (see Figure 11.10). In the first diagram,
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Figure 11.11 Some representative diagrams in the perturbation expansion of the
electron Green’s function. The perturbation is the electron–phonon interaction.

conservation of wave vector at the vertex implies that the phonon line has zero
wave vector. However, the term q = 0 is absent in the electron–phonon interaction,
and this diagram should be excluded. Using the Feynman rules, the contribution of
the second diagram in Figure 11.10 is

δg(kσ, ωn) = − 1
βh̄3

[
g0(kσ, ωn)

]2∑
qλm

|Mqλ|2g0(k− qσ, ωn − ωm)d0(qλ, ωm).

11.10 Electron self energy

In a simple metal with one partially filled band, electrical conductivity is given by
ne2τ/m∗, where n is the number of electrons per unit volume, m∗ is the effective
electron mass, and τ is the average lifetime of the electronic states near the Fermi
surface (see, e.g., [Omar, 1993]). In a pure metal, the lifetime of an electronic state
is determined by the electron–phonon interaction. Here, we calculate the electron
self energy that is due to interaction with phonons; the imaginary part of the self
energy is related to the lifetime of the electronic state.

We consider a system of electrons and phonons. The Hamiltonian is

H̄ =
∑
kσ

ε̄kc
†
kσ ckσ +

∑
qλ

h̄ωqλ(a†
qλaqλ + 1/2)+

∑
kσ

∑′

qλ

Mqλc
†
k+qσ ckσφqλ.

(11.65)
The first term describes a collection of electrons in the conduction band of a metal;
interactions among the electrons are taken in an average way, with the effect being
simply a renormalization of the electron mass. The second term is the Hamiltonian
for a system of noninteracting phonons, and the third term is the electron–phonon
interaction, with the term q = 0 excluded (Mq=0,λ = 0).

The perturbation expansion of the electron Green’s function is depicted in
Figure 11.11, where some representative diagrams are shown. The last two dia-
grams in Figure 11.11 are, in fact, similar to the one-phonon diagram (the second
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Figure 11.12 Diagrams that can be added to produce a single diagram with a
corrected vertex.

Figure 11.13 Electron and phonon Green’s functions for a system of coupled
electrons and phonons. Vertex corrections are ignored. The electron proper self
energy �∗ is approximated by replacing full (dressed, or interacting) electron and
phonon propagators with bare (noninteracting) propagators.

one on the RHS in the figure), except for some vertex corrections, as shown in
Figure 11.12. A remarkable theorem, due to Migdal (Migdal, 1958), states the
following:

◦ = •
[
1+O(

√
m∗/M)

]
(11.66)

where ◦ (•) is the electron–phonon interaction matrix element in the presence
(absence) of vertex corrections, m∗ is the effective electron mass, and M is the ion
mass. Thus, according to Migdal’s theorem, vertex corrections may be ignored,
since the error made is of the order of one percent (

√
m∗/M ≈ 0.01). With that in

mind, the electron Green’s function may now be expanded as in Figure 11.13.
In calculating the electron self energy, we approximate the interacting electron

and phonon Green’s functions by using bare ones. The calculation can be carried
out using the Feynman rules that were mentioned in the previous section. We
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Figure 11.14 The two time-ordered diagrams that are used to calculate the electron
self energy that is due to electron–phonon interaction. The external lines have
coordinates (kσ, ωn). The internal electron line has coordinates (k− qσ, ε1), while
the internal phonon line has coordinates (qλ, ε2). The horizontal dashed line is a
section.

relegate this approach to the Problems section. Here, we calculate the self energy
using Dzyaloshinski’s rules for time-ordered diagrams (see Section 9.8). There are
two time-ordered diagrams (see Figure 11.14). The self energy is given by

�∗(kσ, ωn) = − 1
h̄2

∑
qλ

|Mqλ|2
∫ ∞

−∞

dε1

2π

∫ ∞

−∞

dε2

2π

×P 0<
g (k− qσ, ε1)P 0<

d (qλ, ε2)− P 0>
g (k− qσ, ε1)P 0>

d (qλ, ε2)

iωn − ε1 − ε2
.

(11.67)

The electron spectral functions are

P 0>
g (k− qσ, ε) = −2π (1− fε)δ(ε − ε̄k−q/h̄)

P 0<
g (k− qσ, ε) = 2πfεδ(ε − ε̄k−q/h̄)

(see Eqs [6.55], [8.32], and [8.34]). The phonon spectral functions are given in
Eq. (11.63). Inserting these into the expression for �∗, and noting that nωqλ

=
−1− n−ωqλ

, we find that

�∗(kσ, ωn) = 1
h̄2

∑
qλ

|Mqλ|2
[

nωqλ
+ fk−q

iωn − ε̄k−q/h̄+ ωqλ

+ 1+ nωqλ
− fk−q

iωn − ε̄k−q/h̄− ωqλ

]
.

(11.68)
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The retarded self energy is obtained by replacing iωn with ω + i0+:

Im�∗
R(kσ, ω) = −π

h̄2

∑
qλ

|Mqλ|2
[
(nωqλ

+ fk−q)δ(ω − ε̄k−q/h̄+ ωqλ)

+ (1+ nωqλ
− fk−q)δ(ω − ε̄k−q/h̄− ωqλ)

]
. (11.69)

The first (second) term in the brackets corresponds to phonon absorption (emission).
The lifetime of an electron in state |kσ 〉 is given by

τkσ = −1
2Im�∗

R(kσ, ε̄k/h̄)
. (11.70)

In writing Eq. (11.70), we have replaced ω in �∗
R with ε̄k/h̄; this is an approxima-

tion. In fact, h̄ω should be replaced with the shifted energy, which is obtained by
solving the equation ω − ε̄k/h̄+ Re�∗

R(kσ, ω) = 0.

11.11 The electromagnetic field

In free space, away from charge and current sources, the electromagnetic field is
described by the following Maxwell’s equations:

∇.E = 0 (11.71a)

∇.B = 0 (11.71b)

∇ × E = −1
c

∂B
∂t

(cgs), ∇ × E = −∂B
∂t

(SI ) (11.71c)

∇ × B = 1
c

∂E
∂t

(cgs), ∇ × B = μ0ε0
∂E
∂t

(SI ). (11.71d)

In the following treatment, we use the cgs system of units. The second and third
Maxwell’s equations are automatically satisfied if we express E and B in terms of
a scalar potential �(r, t) and a vector potential A(r, t):

E = −∇�− 1
c

∂A
∂t

, B = ∇ × A. (11.72)

This is because the divergence of a curl is zero (∇.∇ × A) and the curl of a gradient
is zero (∇ ×∇� = 0). The first and fourth Maxwell’s equations are now written
as

∇2�+ 1
c

∂

∂t
(∇.A) = 0 (11.73)

∇ ×∇ × A = −1
c

∂

∂t
∇�− 1

c2

∂2

∂t2 A. (11.74)
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Using the identity

∇ ×∇ × A = −∇2A+∇(∇.A), (11.75)

we can rewrite Eq. (11.74) in the following form:

∇2A− 1
c2

∂2

∂t2 A = ∇
(

∇.A+ 1
c

∂�

∂t

)
. (11.76)

Simplification is achieved by exploiting a freedom in the choice of � and A: under
the gauge transformation,

A → A′ = A+∇�, � → �′ = �− 1
c

∂�

∂t
,

where �(r, t) is any smooth function, both E and B remain unchanged. Choosing a
particular function �(r, t) is called “fixing the gauge.” In one gauge, called the radi-
ation gauge, �(r, t) is chosen such that ∇2�(r, t) = −∇.A and (1/c)(∂�/∂t) = �.
Thus, in the radiation gauge, �′ = 0 and ∇.A′ = 0. Relabeling (�′, A′) as (�, A),
we can write

E = −1
c

∂A
∂t

, B = ∇ × A, (11.77)

where A satisfies the wave equation

∇2A− 1
c2

∂2A
∂t2

= 0. (11.78)

This equation is to be solved subject to the constraint ∇.A = 0. We assume that
the electromagnetic field is enclosed in a large cube of volume V = L3, and that it
obeys periodic boundary conditions. Our approach is similar to the one we followed
in studying atomic vibrations: we first find the normal modes and then write the
general solution as a linear combination of these modes. The normal modes are
given by

Anor
qλ (r, t) = 1√

V
ελ(q)ei(q.r−ωqλt)

where ελ(q) is a unit polarization vector. The requirement ∇.A = 0 ⇒ q.ελ(q) =
0; the normal modes are transverse modes, so λ = 1, 2. Inserting the above expres-
sion into the wave equation, we find that the equation is satisfied if ωqλ = cq,
independent of λ; henceforth, we write ωq and drop the subscript λ. The periodic
boundary conditions imply that the allowed values for q are

qx , qy , qz = 0, ±2π/L, ±4π/L, . . . .
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The general solution of the wave equation is written as

A(r, t) =
(

4πc2

V

)1/2∑
q

2∑
λ=1

Aqλελ(q)eiq.r. (11.79)

The factor e−iωqt is absorbed into Aqλ , which satisfies the equation

Äqλ = −ω2
qAqλ.

The expansion coefficients Aqλ are the normal coordinates of the electromagnetic
field. They are similar to the Qqλ coefficients that appear in the expansion of the
ionic displacements in a crystal. The additional factor (4πc2)1/2 in Eq. (11.79) is
inserted for later convenience. We note that, since A(r, t) is real, A∗(r, t) = A(r, t);
it follows that A∗qλ = A−qλ and ε∗λ(q) = ελ(−q). Orthonormality of the normal
modes implies that ε∗λ(q).ελ′(q) = δλλ′ .

The electric and magnetic fields are obtained by using Eq. (11.77):

E = −
√

4π/V
∑
qλ

Ȧqλελ(q)eiq.r , B = i
√

4πc2/V
∑
qλ

Aqλ q× ελ(q)eiq.r.

(11.80)
The Lagrangian for the electromagnetic field (Jackson, 1999) is given by

L = 1
8π

∫
(|E|2 − |B|2)d3r (cgs). (11.81)

Inserting the expressions for E and B from Eq. (11.80), and noting that |ελ(q)×
q| = q (since ελ(q) ⊥ q) and ωq = cq, we can show that

L = 1
2

∑
qλ

(
ȦqλȦ−qλ − ω2

qAqλA−qλ

)
. (11.82)

The momentum conjugate to Aqλ is Pqλ = ∂L/∂Ȧqλ = Ȧ−qλ. The Hamiltonian is
therefore given by

H = 1
2

∑
qλ

(
PqλP−qλ + ω2

qAqλA−qλ

)
. (11.83)

This is the Hamiltonian for a collection of harmonic oscillators. A quantum theory
is obtained in a similar way as we did for phonons:

H =
∑
qλ

h̄ωqλ

(
b
†
qλbqλ + 1/2

)
, (11.84)

where

Aqλ =
√

h̄

2ωq

(
bqλ + b

†
−qλ

)
, Pqλ = i

√
h̄ωq

2

(
b
†
qλ − b−qλ

)
. (11.85)
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The quanta of the electromagnetic field are called photons. The operator b
†
qλ(bqλ)

creates (annihilates) a photon of wave vector q and polarization λ.

11.12 Electron–photon interaction

In the presence of an electromagnetic field, described by the vector potential A, the
Hamiltonian for an electron in a crystal is

H = 1
2m

(
p+ e

c
A
)2
+ V (r). (11.86)

The electron charge is −e, and V (r) is the periodic potential produced by the
lattice of ions. We ignore the electron–phonon interaction for now. Expanding Eq.
(11.86), we obtain

H = H0 +H ′ , H0 = p2/2m+ V (r), H ′ = e

2mc
(p.A+ A.p)+ e2

2mc2 A2.

H0 is the Hamiltonian for the electron in the absence of the electromagnetic field;
its eigenstates |skσ 〉 are characterized by a band index s, a wave vector k, and
a spin projection σ . H ′, when summed over all electrons, is the electron–photon
interaction. The term in H ′ which is proportional to A2 involves two-photon scat-
tering processes. For weak fields, this term is generally far less important than the
other term which involves single-photon processes; henceforth, the A2 term will
be ignored.

In the radiation gauge (∇.A = 0), the two terms p.A and A.p are equal. To see
this, consider the action of p.A on any function f (r):

p.Af (r) = −ih̄∇.(Af (r)) = −ih̄(∇.A)f (r)− ih̄A.∇f (r)

= 0− ih̄A.∇f (r) = A.pf (r).

The electron–photon interaction Hamiltonian is obtained by summing H ′ over all
electrons:

He−photon = e

mc

∑
j

A(rj , t).pj . (11.87)

pj is the momentum of the j th electron whose position is rj . Since this is a one-body
operator, its second quantized form is

He−photon = e

mc

∑
skσ

∑
s′k′
〈s ′k′σ |A.p|skσ 〉c†s′k′σ cskσ .
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The matrix element is given by

〈s ′k′σ |A.p|skσ 〉 =
(

4πc2

V ε(∞)

)1/2∑
qλ

Aqλελ(q).〈s′k′σ |eiq.rp|skσ 〉.

Note that, in expanding A(r, t), we have modified Eq. (11.79), replacing c with
c/n = c/

√
ε(∞), where n = √ε(∞) is the index of refraction of the medium (the

crystal). This is because in He−photon , A(r, t) is the vector potential in the medium,
where the speed of light is c/n. The matrix element on the RHS of the above
equation is evaluated using Bloch’s theorem:

I = 〈s ′k′σ |eiq.rp|skσ 〉 =
∫

u∗s ′k′(r)e−ik′.reiq.rpusk(r)eik.rd3r.

Here, us ′k′(r) and usk(r) are periodic functions having the same periodicity as the
lattice. Changing variables from r to r+ Rn, where Rn is any lattice vector, and
using the periodicity property of us′k′(r) and usk(r), we find

I = Ie−i(k′−k−q).Rn .

This means that k′ = k+ q+G, where G is a reciprocal lattice vector. Since
k, k′ ∈ FBZ, G must carry k+ q into the FBZ. For visible light, q ≈ 105 cm−1,
which is too small compared to the width of the Brillouin zone (≈ 108 cm−1).
Thus, G is generally equal to zero unless k is extremely close to the Brillouin zone
edge. The electron–photon interaction is therefore given by

He−photon =
∑
ss ′

∑
kσ

∑
qλ

P ss ′
k,k+q(λ)c†s ′k+qσ cskσ (bqλ + b

†
−qλ) (11.88)

where

P ss′
k,k+q(λ) = e

m

(
2πh̄

V ωqε(∞)

)1/2

〈s′k+ qσ |eiq.rελ(q).p|skσ 〉. (11.89)

The electron–photon interaction is thus seen to be a sum of terms, each of which
represents a scattering process whereby an electron in state |skσ 〉 is scattered into
state |s ′k+ qσ 〉 by the absorption (emission) of a photon of wave vector q (−q)
and polarization λ.

11.13 Light scattering by crystals

In this section, we discuss the general theory of light scattering by crystals (Van
Hove, 1954; Loudon, 1963). In the next section we will focus on the specific case
of Raman scattering in insulators.
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Figure 11.15 Light scattering by a crystal: an incident photon of frequency ωq1λ1

is absorbed, and a photon of frequency ωq2λ2 is emitted. In the process, a quantum
of an excitation mode of the crystal is created or annihilated in order to conserve
energy and momentum.

Consider a process in which a photon of wave vector q1 and polarization λ1 is
absorbed by a crystal, and a photon of coordinates (q2λ2) is created. The process
is accompanied by the creation or annihilation of a quantum of an excitation
mode of the crystal, having coordinates (qλ), such that momentum and energy are
conserved. The process is depicted in Figure 11.15.

The scattering process is described by the Hamiltonian

H ′ =
∑
qλ

∑
q′λ′

∑
q′′λ′′

�(q′λ′, q′′λ′′, qλ)φ†
qλb

†
q′′λ′′bq′λ′ (11.90)

where b
†
qλ(bqλ) creates (annihilates) a photon of coordinates (qλ), and

φ
†
qλ = a

†
qλ + a−qλ (11.91)

is the field operator for the excitation mode (phonon or plasmon, for example)
of the crystal. � is the matrix element for the scattering process; it is determined
by considering the detailed mechanism through which the process takes place. In
the next section, we will calculate this quantity for the specific case of Raman
scattering by an insulating crystal.

The initial and final states of the system, which consists of the photons and the
crystal, are denoted by |I 〉 and |F 〉, respectively:

|I 〉 = |n1〉|n2〉|i〉, |F 〉 = |n1 − 1〉|n2 + 1〉|f 〉.

Here, n1 is the number of incident photons of coordinates (q1λ1), n2 is the number
of scattered photons of coordinates (q2λ2), |i〉 is the initial state of the crystal, and
|f 〉 is its final state.
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The probability per unit time (the transition rate) for scattering from the initial
state is given by the Fermi golden rule,

W = 2π

h̄

∑
F

|〈F |H ′|I 〉|2δ(EF − EI ). (11.92)

EI and EF are the energies of the initial and final states. Writing EI = h̄ωI , EF =
h̄ωF , and using

bqλ|nqλ〉 = √nqλ|nqλ − 1〉, b
†
qλ|nqλ〉 =

√
nqλ + 1|nqλ + 1〉,

we obtain

W = 2π

h̄2

∑
qλ

∑
q′λ′

∑
f

�(q1λ1, q2λ2, qλ)�∗(q1λ1, q2λ2, q′λ′)

×〈i|φq′λ′ |f 〉〈f |φ†
qλ|i〉n1(n2 + 1)δ(ωf − ωi − ω), (11.93)

where h̄ωi (h̄ωf ) is the energy of the crystal’s initial (final) state, and h̄ω = h̄ω1 −
h̄ω2 is the energy transferred to the crystal. Noting that

δ(ωf − ωi − ω) = 1
2π

∫ ∞

−∞
e−i(ωf−ωi−ω)t dt ,

the expression for W becomes

W = n1(n2 + 1)
h̄2

∑
qλ

∑
q′λ′

∑
f

�(q1λ1, q2λ2, qλ)�∗(q1λ1, q2λ2, q′λ′)

×
∫
〈i|φq′λ′ |f 〉〈f |φ†

qλ|i〉e−i(ωf−ωi−ω)t dt

= n1(n2 + 1)
h̄2

∑
qλ

∑
q′λ′

∑
f

�(q1λ1, q2λ2, qλ)�∗(q1λ1, q2λ2, q′λ′)

×
∫
〈i|eiHt/h̄φq′λ′e

−iH t/h̄|f 〉〈f |φ†
qλ|i〉eiωtdt ,

where H is the crystal Hamiltonian. The sum over the final states of the crystal is
now carried out (

∑
f |f 〉〈f | = 1); we obtain

W = n1(n2 + 1)
h̄2

∑
qλ

|�(q1λ1, q2λ2, qλ)|2
∫ ∞

−∞
〈i|φqλ(t)φ†

qλ(0)|i〉eiωtdt. (11.94)

The transition rate depends on the initial state of the crystal. At zero temperature,
|i〉 is the ground state |�0〉 of the crystal, and its energy is E0. At finite temperature,
other states |�n〉 with energy En have a nonzero probability of being occupied.
Hence, at finite temperature, the matrix element in Eq. (11.94) is replaced by the
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thermal average 〈φqλ(t)φ†
qλ(0)〉, which is the correlation function C(qλ, t) of the

excitation mode in the crystal. The integral in Eq. (11.94) then becomes the Fourier
transform of C(qλ, t),

W = n1(n2 + 1)
h̄2

∑
qλ

|�(q1λ1, q2λ2, qλ)|2C(qλ, ω). (11.95)

The differential scattering cross-section d2σ/dωd� is the number of transitions
per unit time per unit solid angle per unit frequency interval per unit incident flux.
The number of transitions per unit time into a solid angle d� and a frequency
interval (ω2, ω2 + dω) is obtained by multiplying W by the number of photon
states, of a given polarization, in the interval dωd�. The number of such photon
states is (V/8π3)q2

2dqd� = (V/8π3c3)ω2
2dωd�. The incident flux is the number

of photons striking a unit area of the crystal per unit time. During a time interval
�t , the photons in a volume Ac�t strike an area A of the crystal (the incident light
is assumed to be normal to the surface of the crystal). Since the number of incident
photons per unit volume is n1/V , the incident flux is n1c/V . Therefore,

d2σ

dωd�
= (n2 + 1)V 2ω2

2

8π3h̄2c4

∑
qλ

|�(q1λ1, q2λ2, qλ)|2C(qλ, ω).

Using the fluctuation–dissipation theorem (see Eq. [6.49]) which relates the cor-
relation function to the imaginary part of the retarded Green’s function, our final
result is

d2σ

dωd�
= − (nω + 1)(n2 + 1)V 2ω2

2

8π3h̄2c4

∑
qλ

|�(q1λ1, q2λ2, qλ)|2ImDR(qλ, ω)

(11.96)
where nω = (eβh̄ω − 1)−1 is the Bose–Einstein distribution function. We have man-
aged to express the differential scattering cross-section for light scattering by a
crystal in terms of the retarded function of the crystal excitation that participates
in the scattering process. This function is obtained by analytic continuation of the
corresponding imaginary-time function which, in turn, can be calculated using the
Feynman diagram techniques developed in previous chapters.

11.14 Raman scattering in insulators

In a Raman scattering experiment, a photon of frequency ω1, incident on a crystal,
is absorbed, and a photon of frequency ω2 is created. The process is accompanied
by the emission (Stoke’s scattering) or the absorption (anti-Stoke’s scattering) of
an optical phonon. At low temperatures, the optical phonon occupation number
is small; hence, Raman scattering processes in which a phonon is created are
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generally more important than those in which a phonon is absorbed. Here, we
consider Raman scattering with phonon emission.

Our system consists of a crystal (an insulator), the radiation (electromagnetic)
field, and lattice vibrations (phonons). The Hamiltonian is

H = H0 +HER +HEL = H0 +H ′. (11.97)

H0 is the sum of the Hamiltonians for the electrons in the crystal, the radiation
field, and the lattice vibrations. HER is the electron–photon interaction, and HEL is
the electron–phonon interaction:

HER =
∑
ss ′

∑
kσ

∑
qλ

P ss ′
k,k+q(λ)c†s ′k+qσ cskσ (bqλ + b

†
−qλ) (11.98)

HEL =
∑
ss ′

∑
kσ

∑
qλ

Mss ′
qλ c

†
s′k+qσ cskσ (aqλ + a

†
−qλ). (11.99)

The process of interest involves the annihilation of a photon, the creation of another
photon, and the creation of a phonon. This is a third-order process in which HER

acts twice and HEL acts once. We need to transform the Hamiltonian into a form
that contains an effective photon–phonon interaction in which a photon is scattered
and a phonon is created. The Hamiltonian, as given above, is written in terms of
a certain basis set that spans the Hilbert space of the system (electrons, phonons,
and photons). The basis consists of states |m〉 = |skσ 〉|qλ〉phonon|q′λ′〉photon. In this
basis, H0 is diagonal. We can transform to a new basis set of states |m̃〉 = U |m〉,
where U †U = 1. In the new basis, the Hamiltonian matrix elements are 〈m̃|H |ñ〉 =
〈m|U †HU |n〉 = 〈m|H̃ |n〉, where H̃ = U †HU . In other words, the change of basis
is equivalent to applying a similarity transformation to the Hamiltonian. We thus
consider the following similarity (canonical) transformation: (U = e−S)

H̃ = eSHe−S (11.100)

where S is an operator such that S† = −S. H̃ has the same eigenvalues as H , and its
eigenstates are obtained by the operator eS acting on the corresponding eigenstates
of H . Expanding e±S , we obtain

H̃ = (1+ S + S2/2!+ S3/3!+ · · · )H (1− S + S2/2!− S3/3!+ · · · )

= H + [S, H ]+ 1
2!

[S, [S, H ]]+ 1
3!

[S, [S, [S, H ]]]+ · · ·

= H0 +H ′ + [S, H0]+ [S, H ′]+ 1
2

[S, [S, H0]]+ 1
2

[S, [S, H ′]]

+ 1
6

[S, [S, [S, H0]]]+ · · · .
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The operator S is now chosen such that

[S, H0] = −H ′. (11.101)

With this choice,

H̃ = H0 + 1
2

[S, H ′]+ 1
3

[S, [S, H ′]]+ · · ·

= H0 +H2 +H3 + · · · . (11.102)

Consider any two eigenstates |I 〉 and |F 〉 of H0. Equation (11.101) gives

〈F |SH0|I 〉 − 〈F |H0S|I 〉 = −〈F |H ′|I 〉 ⇒ (EF − EI )〈F |S|I 〉 = 〈F |H ′|I 〉

=⇒ 〈F |S|I 〉 = 〈F |H ′|I 〉
EF − EI

. (11.103)

This shows that S is proportional to H ′. Since our interest is in third-order processes,
we consider the third term on the RHS of Eq. (11.102):

H3 = 1
3

[S, [S, H ′]] = 1
3

(S2H ′ − 2SH ′S +H ′S2).

Using Eq. (11.103) and two resolutions of identity, we can write

〈F |H3|I 〉 = 1
3

∑
m,n

〈F |H ′|n〉〈n|H ′|m〉〈m|H ′|I 〉
(EF − En)(En − Em)(Em − EI )

[EF − EI + 3(Em − En)].

In Fermi’s golden rule, the initial and final states have the same energy; setting
EF = EI , we obtain

〈F |H3|I 〉 =
∑
m,n

〈F |H ′|n〉〈n|H ′|m〉〈m|H ′|I 〉
(EI − En)(EI − Em)

. (11.104)

In Raman scattering with phonon emission, the initial state |I 〉 consists of an
incident photon of coordinates (q1λ1) and frequency ω1, and a crystal (an insulator)
in its electronic ground state (all of its valence bands are occupied and all of its
conduction bands are empty). The final state |F 〉 consists of a scattered photon
of coordinates (q2λ2) and frequency ω2 and a phonon of coordinates (qλ) and
frequency ω = ω1 − ω2. In state |F 〉, the crystal is still in its electronic ground
state. For these initial and final states, 〈F |H3|I 〉 corresponds to the matrix element
�(q1λ1, q2λ2, qλ) in Eq. (11.90).

Replacing H ′ by HER +HEL, the product of the three matrix elements on
the RHS of Eq. (11.104) becomes a sum of eight terms, each of which
is a product of three matrix elements. Of these eight terms, three are
nonzero: 〈F |HEL|n〉〈n|HER|m〉〈m|HER|I 〉, 〈F |HER|n〉〈n|HEL|m〉〈m|HER|I 〉 , and
〈F |HER|n〉〈n|HER|m〉〈m|HEL|I 〉; this follows from the definition of |I 〉 and |F 〉.
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Furthermore, in HER, a photon is either emitted or absorbed, so that we can write
HER = Hem

ER +Hab
ER, and each of the surviving three terms now becomes a sum of

four terms, only two of which are nonzero (the number of photons in |I 〉 and |F 〉
is the same). Therefore, the matrix element for Stoke’s Raman scattering (phonon
emission) is

〈F |H |I 〉 =
∑
m,n

1
(EI − En)(EI − Em)

[〈F |Hem
EL |n〉〈n|Hem

ER |m〉〈m|Hab
ER|I 〉

+ 〈F |Hem
EL |n〉〈n|Hab

ER|m〉〈m|Hem
ER |I 〉 + 〈F |Hem

ER |n〉〈n|Hem
EL |m〉〈m|Hab

ER|I 〉
+ 〈F |Hab

ER|n〉〈n|Hem
EL |m〉〈m|Hem

ER |I 〉 + 〈F |Hab
ER|n〉〈n|Hem

ER |m〉〈m|Hem
EL |I 〉

+ 〈F |Hem
ER |n〉〈n|Hab

ER|m〉〈m|Hem
EL |I 〉

]
. (11.105)

The various coupling Hamiltonians appearing in the above equation are

Hem
EL =

∑
ss ′

∑
kσ

Mss ′
−qλc

†
s ′k−qσ cskσ a

†
qλ (11.106a)

Hem
ER =

∑
ss ′

∑
kσ

P ss ′
k,k−q2

(λ2)c†s ′k−q2σ
cskσ b

†
q2λ2

(11.106b)

Hab
ER =

∑
ss ′

∑
kσ

P ss ′
k,k+q1

(λ1)c†s ′k+q1σ
cskσ bq1λ1 . (11.106c)

We have not summed over the wave vectors and polarizations of the photons
and phonons since we consider the absorption of a photon of specific coordinates
(q1λ1), the emission of a photon of specific coordinates (q2λ2), and the emission
of a phonon of specific coordinates (qλ). As for the insulator (the crystal), we only
consider transitions between the highest occupied band and the lowest empty band,
and we assume that the energy of the incident photon is lower than the energy gap,
so that the transitions are virtual processes. Now we consider the various terms in
Eq. (11.105).

The sequence of processes that occur in the first term on the RHS of Eq. (11.105)
is illustrated in Figure 11.16. Here, EI = h̄ω1, Em = εck+q1 − εvk � εck − εvk
(since q1 is much smaller than the width of the Brillouin zone). We also assume
that there is little dispersion in the bands such that εck − εvk � Eg , where Eg is the
energy gap. The first term on the RHS of Eq. (11.105) is thus approximately equal to

δq,q1−q2

∑
kσ

Mcv
qλ

[
P cc

k+q1,k+q1−q2
(λ2)+ P vv

k+q2,k(λ2)
]
P vc

k,k+q1
(λ1)

(h̄ω1 − h̄ω2 − Eg)(h̄ω1 − Eg)
.

We can simplify the notation: since the photon wave vector is very small compared
to the extent of the Brillouin zone, we can replace P cc

k+q1,k+q1−q2
(λ2) with P cc

k (λ2),
i.e., we assume that the electron–photon matrix element depends only on k. Similar
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Figure 11.16 The sequence of processes in the first term of Eq. (11.105). A photon
(q1λ1) is absorbed and an electron is promoted to the conduction band c (the upper
band), leaving behind a hole in the valence band v. The next step can proceed in
two different ways: in (a), the electron is scattered in the conduction band and a
photon (q2λ2) is emitted, while in (b) an electron in the valence band is scattered
and a photon (q2λ2) is emitted (we can also say that the hole is scattered). The
third step, common to both, is an electron–hole recombination accompanied by the
emission of a phonon (qλ). Note that for this sequence of processes, q = q1 − q2,
which is a statement of wave vector conservation.

replacements are made for other P -matrix elements. The above expression is now
written as

δq,q1−q2

∑
kσ

Mcv
qλ

[
P cc

k (λ2)+ P vv
k (λ2)

]
P vc

k (λ1)

(h̄ω1 − h̄ω2 − Eg)(h̄ω1 − Eg)
.

The remaining five terms are evaluated in a similar way; we obtain

�(q1λ1, q2λ2, qλ) = δq,q1−q2

∑
kσ

[
Mcv

qλ

[
P cc

k (λ2)+ P vv
k (λ2)

]
P vc

k (λ1)

(h̄ω1 − h̄ω2 − Eg)(h̄ω1 − Eg)

+Mcv
qλ

[
P cc

k (λ1)+ P vv
k (λ1)

]
P vc

k (λ2)

(h̄ω1 − h̄ω2 − Eg)(−h̄ω2 − Eg)
+

P cv
k (λ2)

[
Mcc

qλ +Mvv
qλ

]
P vc

k (λ1)

(h̄ω1 − h̄ωqλ − Eg)(h̄ω1 − Eg)

+
P cv

k (λ1)
[
Mcc

qλ +Mvv
qλ

]
P vc

k (λ2)

(h̄ω2 + h̄ωqλ + Eg)(h̄ω2 + Eg)
+ P cv

k (λ1)
[
P cc

k (λ2)+ P vv
k (λ2)

]
Mvc

qλ

(h̄ω2 + h̄ωqλ + Eg)(h̄ωqλ + Eg)

+ P cv
k (λ2)

[
P cc

k (λ1)+ P vv
k (λ1)

]
Mvc

qλ

(h̄ω1 − h̄ωqλ − Eg)(−h̄ωqλ − Eg)

]
. (11.107)

The Kronecker delta ensures that momentum is conserved. If the energy of the
incident photon is close to the energy gap (h̄ω1 � Eg), then the third term on the
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RHS of Eq. (11.107) dominates over the other five terms; this is called resonant
Raman scattering.

In obtaining the above result for �, we have assumed that the intermediate states
consist of an electron in the conduction band and a hole in the valence band.
The electron and the hole were treated as independent particles. In insulators, the
attraction between electrons and holes may be significant, leading to the formation
of excitons, which are bound electron–hole pairs (Kittel, 2005). A description of
Raman scattering in insulators which takes exciton formation into account can be
formulated (Ganguly and Birman, 1967), but we will stop here and not take that
road.

Further reading

Hayes, W. and Loudon, R. (2004). Scattering of Light by Crystals. New York: Dover.
Loudon, R. (2000). The Quantum Theory of Light, 3rd edn. Oxford: Oxford University

Press.
Madelung, O. (1978). Introduction to Solid State Theory. Berlin: Springer.
Venkataraman, G., Feldkamp, L.A., and Sahni, V.C. (1975). Dynamics of Perfect Crystals.

Cambridge, MA: MIT Press.
Ziman, J.M. (1960). Electrons and Phonons. Oxford: Oxford University Press.

Problems

11.1 Lesser free-phonon Green’s function. Derive Eq. (11.61).

11.2 Electron self energy. Using the Feynman diagram rules, derive the expression
for the electron self energy, given in Eq. (11.68), due to electron–phonon
interaction.

11.3 Phonon self energy. Consider a system of electrons and phonons with a
Hamiltonian

H =
∑
kσ

εkc
†
kσ ckσ +

∑
qλ

h̄ωqλ(a†
qλaqλ + 1/2)+

∑
kσ

∑
qλ

Mqλc
†
k+qσ ckσφqλ.

(a) Write down the perturbation expansion for the phonon Green’s function
d(qλ, τ ).

(b) Using Wick’s theorem, obtain d(qλ, τ ) to second order in the electron–
phonon interaction.

(c) Show that, to second order in the electron–phonon interaction,

d(qλ, ωm) = d0(qλ, ωm)+ V

h̄
|Mqλ|2d0(qλ, ωm)�0(q, ωm)d0(qλ, ωm),

where �0(q, ωm) is the polarizability of noninteracting electrons.
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Figure 11.17 Phonon Green’s function in the random phase approximation. The
shaded bubble is the polarizability of interacting electrons. The single wavy line
represents the bare (noninteracting) phonon Green’s function, while the double
wavy line represents the dressed (interacting) phonon Green’s function.

11.4 Electron–phonon interaction in the jellium model. In the jellium model of
a metal, the positive ions are replaced by a positive background of con-
stant charge density. The longitudinal phonon frequency reduces to the ionic
plasma frequency �q = (4πZ2e2ni/M)1/2, where M is the ionic mass, Ze is
the ionic charge, and ni = N/V is the number of ions per unit volume. The
longitudinal modes are assumed to be dispersionless. In reality, the phonon
frequency approaches zero as q → 0. The inclusion of electron–phonon inter-
action is necessary to produce the correct behavior.

In the jellium model, the electron–phonon interaction is obtained from Eq.
(11.40) by the replacements: ωqλ → �, G → 0, Vq →−4πZe2/q2. Thus,

He−phonon =
∑
kσq

Mqc
†
k+qσ ckσφqλ , Mq = i

4πZe2

V q

√
Nh̄

2M�
q̂.εL(q).

In the random phase approximation, the dressed phonon Green’s function is
depicted in Figure 11.17. It is given by

d(q, ωm) = d0(q, ωm)+ V

h̄
|Mq|2d0(q, ωm)�(q, ωm)d(q, ωm),

where �(q, ωm) is the polarizability of interacting electrons. Since the phonon
frequency is much smaller than the electron plasmon frequency, we are
justified in replacing �(q, ωm) with �(q, 0).

Show that, as q → 0 the renormalized phonon frequency is given by
ω = vq. What is the value of v?

11.5 Electromagnetic field Lagrangian. Define the 4-vectors

∂μ =
(

1
c

∂

∂t
,−∇

)
, ∂μ =

(
1
c

∂

∂t
, ∇
)

, Aμ = (φ, A), Aμ = (φ,−A)

and the tensors

F μν = ∂μAν − ∂νAμ , Fμν = ∂μAν − ∂νAμ.

Here, the indices μ and ν take the values 0, 1, 2, and 3. The Lagrangian is
given by

∫ Ld3r where L is the Lagrangian density. The Euler–Lagrange



Problems 283

Figure 11.18 The two diagrams that describe Raman scattering in insulators. Solid
lines are electron lines, dotted lines are photon lines, and wavy lines are phonon
lines.

equations (one for each ν) are

∂μ ∂L
∂(∂μAν)

= ∂L
∂Aν

,

where a repeated index (μ in the above equation) is summed over.
(a) Show that the Euler–Lagrange equations yield Maxwell’s equations in

free space if

L = − 1
16π

FμνF
μν.

(b) Show that

L = 1
8π

(E2 − B2).

(c) Derive Eq. (11.82).

11.6 Raman tensor. Raman scattering in insulators is described by the two Feyn-
man diagrams shown in Figure 11.18. Each diagram represents a process
in which a photon of coordinates (q1λ1) is annihilated, a photon of coor-
dinates (q2λ2) is created, and a phonon of coordinates (qλ) is created. In
each diagram there are three interactions (one electron–phonon interaction
and two electron–photon interactions) occurring at three different times. Use
Dzyaloshinski’s rules for time-ordered diagrams (there are six time-ordered
diagrams corresponding to each of the two Feynman diagrams) to calculate
the Raman tensor �(q1λ1, q2λ2, qλ).
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Superconductivity

False friends are common. Yes, but where
True nature links a friendly pair,
The blessing is as rich as rare.

–From the Panchatantra
Translated by Arthur W. Ryder

The magnet of their course is gone, or only points in vain
The shore to which their shiver’d sail shall never stretch again.

–Lord Byron, Youth and Age

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes soon after he
succeeded in liquefying helium (Onnes, 1911). He observed that the resistivity of
mercury dropped suddenly as its temperature was lowered below a certain critical
value TC (for Hg, TC = 4.2 K). Over the years, it was found that many additional
elements and compounds similarly transition to a superconducting state. In this
state, materials exhibit properties that are strikingly different from the normal
state. Below we discuss the most important features of superconductors.

12.1 Properties of superconductors

The first important property of a material that undergoes a superconducting transi-
tion is that its resistivity drops to zero below a critical temperature (see Figure 12.1).
In a superconducting ring, a persistent electric current flows without any observable
attenuation for as long as one is willing to watch.

The application of a sufficiently strong magnetic field destroys superconductivity
and returns a material to its normal state. The value of the critical magnetic field
is denoted in the literature by HC , and it is a function of temperature. HC(T ) is
largest at T = 0, dropping to zero at the transition temperature TC , as shown in
Figure 12.2. The temperature dependence of HC is approximated by

HC(T ) = HC(0)(1− T 2/T 2
C ). (12.1)

284
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Figure 12.1 At the superconducting critical temperature TC , the resistivity of a
material drops to zero.

Figure 12.2 The critical magnetic field that destroys superconductivity varies with
temperature.

Figure 12.3 The Meissner effect. In the normal state (T > TC ), a magnetic field
penetrates the material. In the superconducting state ( T < TC ), the magnetic field
is expelled from the bulk of the material.

Another crucial property of the superconducting state is perfect diamagnetism:
when a material is cooled in the presence of a magnetic field to below TC , the
magnetic flux is expelled from the inside of the superconductor, as illustrated
in Figure 12.3. This is known as the Meissner effect (Meissner and Ochsenfeld,
1933). The flux expulsion occurs due to the appearance of surface currents. These
produce a magnetic field which cancels out the applied one within the sample. The
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Figure 12.4 Electronic specific heat as a function of temperature in a superconduc-
tor. The dashed line is the would-be specific heat Ce(T ) had the metal remained in
the normal state (it is obtained experimentally by measuring Ce(T ) in the presence
of a magnetic field larger than the critical field).

Meissner effect is not a consequence of the vanishing of the resistivity; rather, it is
an independent property of the superconductor. Ohm’s law E = ρJ, together with
Maxwell’s equation ∇ × E = −(1/c)∂B/∂t , imply that if ρ = 0, the magnetic
field remains constant over time. Hence, if a magnetic field penetrates a sample
and temperature is lowered to below TC , the vanishing of its resistivity implies that
B remains frozen within the sample (the argument is a bit subtle and is developed
further in the next section). However, this is not how a superconductor behaves.
Zero resistivity and perfect diamagnetism are two independent properties of a
superconductor.

In the presence of an applied magnetic field, superconductors exhibit one of
two types of behavior. Type-I superconductors have only one critical field HC(T );
fields below HC are excluded from the bulk of the superconductor. By contrast, a
type-II superconductor has two critical magnetic fields. For an applied field below
its lower critical field HC1 (T ), flux expulsion is complete, similar to the type-I case.
For fields larger than its upper critical field HC2 (T ), superconductivity is destroyed,
and the applied field penetrates the sample completely. However, for fields in
between the two critical fields, HC1 (T ) < H < HC2 (T ), there is partial penetration
by the magnetic flux, and the sample contains both normal and superconducting
regions.

Specific heat also behaves anomalously in superconductors. In normal met-
als at low temperature, electronic specific heat varies linearly with tem-
perature: Ce = αT . In superconductors, as the temperature drops, electronic
specific heat suddenly jumps to a higher value at TC , then decreases, eventu-
ally falling below values expected for a normal metal, as illustrated in Figure 12.4.
Detailed analysis of experimental data indicates that, in the superconducting state,
Ce ∝ exp(−�/kBT ). This behavior is characteristic of a system whose excited
states are separated from the ground state by an energy gap of 2�. More evidence
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for the existence of a gap in the energy spectrum of a superconductor is provided by
tunneling experiments. When two metals are brought into close contact, separated
by only a thin insulating layer, electrons tunnel from one metal to the other; equi-
librium is established when the chemical potentials of both metals become equal.
An applied voltage raises the chemical potential of one metal relative to the other,
leading to a flow of electrons from the metal with the higher chemical potential to
the other metal. If one of the metals is a superconductor and the system is cooled to
below TC , no flow of electrons occurs until the applied voltage exceeds a threshold
value given by eV = �. This indicates that, in the superconducting state, chemical
potential sits in the middle of an energy gap of size 2�.

The last property of superconductors we discuss is the isotope effect. Accurate
measurements reveal that, in most superconductors, a slight shift in the value
of TC occurs as ionic mass changes through the use of different isotopes. This
effect indicates that electron–phonon interaction plays an important role in the
mechanism of superconductivity. It is the only plausible conclusion we can draw,
since changing the isotopes should have no effect on the energy bands or on the
Coulomb interaction between electrons.

It is worth noting that the superconducting transition temperature is generally
very low. Until 1986, the highest recorded TC was 23.3 K, and it belonged to Nb3Ge.
However, toward the end of 1986, a new era was ushered in with the discovery of
the high-TC copper oxide family of superconductors (Bednorz and Müller, 1986).
These compounds contain copper oxide planes separated by insulating layers.
The compound discovered by Bednorz and Müller belongs to the family of La-
based superconductors that are obtained by doping the insulating parent compound
La2CuO4 , whose crystal structure is shown in Figure 12.5.

In La2 CuO4 , the CuO2 planes are separated by two LaO layers, and each Cu ion
is surrounded by an elongated octahedron of oxygen ions. The configurations of the
valence electrons in the atoms of La2CuO4 are as follows: La: 5d16s2, Cu: 3d104s1,
O: 2s22p4. An oxygen atom needs two electrons to fill its outer shell; to fulfill this
need, every La atom loses its three valence electrons, and every Cu atom loses
two valence electrons. The compound is thus more appropriately represented as
La3+

2 Cu2+O2−
4 . With the loss of two electrons, the Cu2+ ion has the configuration

Cu2+ : 3d9. There is a hole on each Cu site. In an independent-electron model,
the compound would be metallic, since each hole could hop from one Cu site
to another. However, Coulomb repulsion between two holes on the same Cu site
tends to prevent such hopping from taking place, so the holes remain localized
on the Cu sites. The magnetic moments on neighboring Cu sites are aligned in
opposite directions, the result of a mechanism called superexchange that occurs
due to intervening oxygen ions. La2CuO4 is thus an antiferromagnetic insulator,
known as a Hubbard–Mott insulator.
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O

Cu

La

Figure 12.5 Crystal structure of La2CuO4. The separation between the CuO2

planes is 6.6 Å, Cu-O separation in the plane is 1.9 Å, while it is 2.4 Å perpendicular
to the plane.

Upon doping, which involves the replacement of a certain percentage of La3+

ions by Ba2+ or Sr2+ ions, fewer electrons are donated to the CuO2 planes, and some
mobile holes are produced on the oxygen sites. The resulting compound becomes
metallic, and for optimal doping, it is superconducting at a critical temperature of
36 K.

Shortly after Bednorz and Müller’s discovery, many compounds containing cop-
per oxide planes were synthesized and found to be superconducting at temperatures
exceeding 77 K, the temperature at which nitrogen is liquefied. Since liquid nitrogen
is much less expensive than liquid helium, this was a very important achievement.
However, the ultimate goal, room temperature superconductivity, remains elusive.

More recently, another class of layered, iron-based, high-temperature supercon-
ductors has been discovered (Kamihara et al., 2008). When compounds with the
general formula LnOFeAs, where Ln is a lanthanide (Ln = La, Ce, Pr, . . .) are
doped with fluorine, they become superconductive at a critical temperature ranging
from 25 K to 55 K. The parent compounds, LnOFeAs, consist of stacks of alter-
nating LnO and FeAs layers. Neutron scattering measurements (De la Cruz et al.,
2008) as well as numerical calculations (Yildrim, 2008; Alyahyaei and Jishi, 2009)
reveal that, in the ground state, the magnetic moments of the iron ions adopt an
antiferromagnetic order. As in the copper oxide family, the parent compounds are
antiferromagnetic insulators, becoming superconductive only upon doping.

As we will show later, superconductivity arises because of the existence of an
effective attraction between electrons in a thin shell near the Fermi surface. The
effective attraction between electrons in conventional (pre-1986) superconductors
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is mediated by phonons. In high-TC superconductors, the pairing mechanism may
be different. Nevertheless, the framework presented by the theory of conventional
superconductors is essential for understanding all classes of superconductors. This
theory is discussed later in this chapter. We begin, however, by considering a
phenomenological model of the magnetic properties of superconductors, since the
notions and ideas introduced in this model are relevant to the treatment (within
microscopic theory) of the response of a superconductor to an applied magnetic
field.

12.2 The London equation

We saw that a magnetic flux is expelled from the bulk of a superconductor (the
Meissner effect). In what way should the electrodynamics of a superconductor
differ from that of a normal metal in order to account for the Meissner effect? This
question was examined by the brothers F. London and H. London (London and
London, 1935) two years after the discovery of the Meissner effect.

In order to clearly elucidate the distinction between a perfect conductor and a
superconductor, let us begin by considering a normal metal containing n conduction
electrons per unit volume. In the presence of a static (time-independent) electric
field E, an electron is accelerated, but it is also scattered by phonons and impurities.
These scattering processes cause a damping of the electron’s motion. Taking the
damping force to be proportional to the electron’s velocity, Newton’s second law
gives

mv̇ = −eE−mv/τ (12.2)

where τ , the relaxation time, is the average time between scattering events. The
current density is J = −nev. Under steady-state conditions, J is constant: v̇ = 0,
and v = −eEτ/m; hence J = (ne2τ/m)E. Ohm’s law, E = ρJ, then implies that
the resistivity ρ = m/(ne2τ ).

In a perfect conductor, ρ = 0; the relaxation time τ is thus infinite, and Eq. (12.2)
becomes

mv̇ = −eE =⇒ J̇ = (ne2/m)E. (12.3)

Taking the curl on both sides of Eq. (12.3), and using Maxwell’s equation ∇ × E =
(−1/c)∂B/∂t (cgs), we find

∂

∂t

(
∇ × J+ ne2

mc
B
)
= 0. (12.4)
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Figure 12.6 (a) A magnetic field is perpendicular to the surface of a semi-infinite
superconducting slab. No field penetration takes place. (b) The field is parallel to
the slab surface. Inside the superconductor, the field decays exponentially.

This relation, along with the Maxwell equation (for a static E-field)

∇ × B = 4π

c
J, (12.5)

determines the magnetic field and the current density in a perfect conductor. Note
that any static B-field determines, through Eq. (12.5), a static J, and therefore
Eq. (12.4) will be automatically satisfied. Equations (12.4) and (12.5) are thus
consistent with the existence of an arbitrary static magnetic field inside a perfect
conductor. We pointed this out in the previous section. This behavior is, however,
incompatible with the observed Meissner effect in superconductors; hence, zero
resistivity is a necessary, but not sufficient, condition for superconductivity.

It was conjectured by the London brothers that the magnetic field and current
density in a superconductor satisfy the relation

∇ × J+ ne2

mc
B = 0. (12.6)

This is known as the London equation. Whereas for a perfect conductor the LHS of
Eq. (12.6) is only required to be time-independent (see Eq. [12.4]), it is identically
equal to zero for a superconductor.

Taking the curl on both sides of Eq. (12.5) and using the vector identity

∇ ×∇ × B = ∇(∇·B)−∇2B, (12.7)

along with Maxwell’s equation ∇·B = 0 and Eq. (12.6), we obtain

∇2B = 4πne2

mc2 B. (12.8)

Similarly, taking the curl on both sides of Eq. (12.6) and using Eq. (12.5), we find

∇2J = 4πne2

mc2
J. (12.9)

We solve Eq. (12.8) for B inside a superconducting semi-infinite (z ≥ 0) slab for
the following two cases, which are illustrated in Figure 12.6.
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� B is parallel to the z-axis and varies only along the z-direction, i.e., B =
(0, 0, B(z)). In this case, ∇·B = 0 ⇒ ∂B(z)/∂z = 0 ⇒ B(z) is constant, inde-
pendent of z. Equation (12.8) then implies that B(z) = 0 inside the supercon-
ductor.

� B is parallel to the x-axis and varies along the z-direction: B = (B(z), 0, 0). In
this case, Eq. (12.8) becomes

∂2B(z)
∂z2 = 4πne2

mc2 B(z), z ≥ 0.

Its solution is

B(z) = B(0)exp(−z/λL), z ≥ 0. (12.10)

The parameter λL, known as the London penetration depth, is given by

λL =
(

mc2

4πne2

)1/2

. (12.11)

In most superconductors, λL = 102 − 103 Å. The magnetic field decays expo-
nentially inside the superconductor, and it only penetrates a small distance, of
the order of λL, into the superconductor.

12.3 Effective electron–electron interaction

In addition to the weak, screened Coulomb interaction between electrons in a
metal, there is an attractive interaction which results from their coupling to
lattice vibrations. The existence of such an attraction and its possible role in
superconductivity was first noted by H. Frohlich (Frohlich, 1950). As an elec-
tron moves within a crystal, it pulls the positive ions in its vicinity. The ions
respond by moving toward the electron. However, by the time the ions have been
maximally displaced, the electron, due to its much higher speed, is long gone.
The region into which the ions move, however, now has excess positive charge;
a second electron that happens to pass by is attracted by this excess positive
charge. This state of affairs is illustrated in Figure 12.7. What we end up with,
in effect, is an attractive interaction between two electrons. In contrast to the
instantaneous Coulomb repulsion between electrons, the attractive interaction is
a retarded one. The time it takes for the ions to achieve maximal displacement
is of the order of 1/ωD , where ωD (Debye frequency) is a typical phonon fre-
quency: ωD ≈ 1013 s−1. In metals, the typical electron velocity is the Fermi velocity
vF ≈ 106 m/s. Thus, by the time the ions are maximally displaced, the first electron
is∼ 1000 Å away; the attractive interaction can operate between electrons that are
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Figure 12.7 Effective electron–electron interaction. (a) An electron attracts the
positive ions in its vicinity. (b) By the time the ions are maximally displaced,
the electron is very far away, but a second electron is attracted by the result-
ing excess positive charge. In effect, there is an attraction between the two
electrons.

Figure 12.8 A virtual process in which a phonon is exchanged between two
electrons, giving rise to an effective electron–electron interaction.

very far apart. At such distances the screened Coulomb repulsion is completely
negligible.

An alternative description of the lattice-mediated interaction between electrons
can be formulated using the language of phonons. The interaction between the
electrons and the ions may be viewed in terms of the electrons’ emission and
absorption of phonons. We can consider a virtual process whereby an electron
emits a phonon, which, in turn, is absorbed by another electron (see Figure 12.8).
Since the phonon energy is typically h̄ωD, the uncertainty principle, �E�t ∼ h̄,
implies that the phonon will live for a time τ ∼ 1/ωD ≈ 10−13 s. Since the typical
phonon velocity is ∼ 103 m/s (the speed of sound in solids), the electron that
absorbs the phonon should be very close (∼ 1 Å) to the location where the phonon
is emitted.
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The Hamiltonian for the electron–phonon system is

H = H0 +H ′ (12.12a)

H0 =
∑
kσ

εkc
†
kσ ckσ +

∑
qλ

h̄ωqλ(a†
qλaqλ + 1/2) (12.12b)

H ′ =
∑
kσ

∑
qλ

Mqλc
†
k+qσ ckσ (aqλ + a

†
−qλ). (12.12c)

H0 is the Hamiltonian that describes the conduction electrons and the free phonons,
and H ′ is the electron–phonon interaction. Here, c

†
kσ (ckσ ) creates (annihilates) an

electron in a state specified by the wave vector k and spin projection σ , and
a
†
qλ (aqλ) creates (annihilates) a phonon of wave vector q and branch index λ. We

have assumed that the metal has only one partially filled band, and that electrons
scatter within this band; hence, the band index has been dropped.

We can obtain an expression for the electron–electron interaction mediated
by phonons by carrying out a change of basis, as we did in Section 11.14. The
second quantized form of the Hamiltonian, as given in Eq. (12.12), is obtained by
using the basis set of states |n〉 = |kσ 〉|qλ〉. We transform to a new basis set of
states |ñ〉 = U |n〉, where U †U = 1. In the new basis, the matrix elements of the
Hamiltonian are given by

〈m̃|H |ñ〉 = 〈m|U †HU |n〉 = 〈m|H̃ |n〉. (12.13)

Thus, the change of basis is equivalent to applying a similarity transformation to
the Hamiltonian: H → H̃ = U †HU . Let U = eS , where S† = −S (in order for U

to be unitary). Then,

H̃ = e−SHeS. (12.14)

The operator S will be chosen so as to eliminate the electron–phonon interaction
in first order. Alternatively, we may define new electron and phonon operators
through a canonical transformation

c̃kσ = e−Sckσ eS , ãqλ = e−Saqλe
S ,

rewrite the Hamiltonian in terms of the new operators, and choose S so as to
eliminate the electron–phonon interaction in first order.

Expanding the exponential operators in Eq. (12.14),

H̃ = (1− S + S2/2!+ · · · )(H0 +H ′)(1+ S + S2/2!+ · · · )
and choosing S such that

[S, H0] = H ′ , (12.15)
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we obtain

H̃ = H0 + 1
2

[
H ′, S

]+ · · · . (12.16)

Note that, because H0 and H ′ are hermitian operators, the operator S, defined by
Eq. (12.15), does indeed satisfy the requirement that S† = −S. Considering any
two eigenkets, |m〉 and |n〉, of H0, with corresponding eigenvalues Em and En,
Eq. (12.15) gives

〈m|S|n〉 = 〈m|H ′|n〉
En − Em

. (12.17)

Since the effect of H ′ is to scatter an electron from a state with energy εk into
a state with energy εk+q either by the absorption of a phonon (qλ) or by the
emission of a phonon (−qλ), the energy difference En − Em is either εk + h̄ωqλ −
εk+q (corresponding to phonon absorption) or εk − h̄ωqλ − εk+q (corresponding to
phonon emission ). Therefore, S is given by

S =
∑
kσ

∑
qλ

Mqλc
†
k+qσ ckσ

(
aqλ

εk − εk+q + h̄ωqλ

+ a
†
−qλ

εk − εk+q − h̄ωqλ

)
. (12.18)

One can check that S, as given above, satisfies Eq. (12.15). The Hamiltonian in
Eq. (12.16) becomes

H̃ = H0 + 1
2

∑
kσ

∑
qλ

∑
k′σ ′

∑
q′λ′

MqλMq′λ′
[
c
†
k+qσ ckσ

(
aqλ + a

†
−qλ

)
,

c
†
k′+q′σ ′ck′σ ′

(
aq′λ′

εk′ − εk′+q′ + h̄ωq′λ′
+ a

†
−q′λ′

εk′ − εk′+q′ − h̄ωq′λ′

)]
.

Out of the many terms in the commutator, there are two terms that contain four
electron operators; they arise from commuting aqλ with a

†
−q′λ′ , and a

†
−qλ with aq′λ′ .

The other terms all contain two electron and two phonon operators. We thus write

H̃ = H0 + 1
2

∑
kσ

∑
qλ

∑
k′σ ′

MqλM−qλc
†
k+qσ ckσ c

†
k′−qσ ′ck′σ ′

×
(

1
εk′ − εk′−q − h̄ωqλ

− 1
εk′ − εk′−q + h̄ωqλ

)
+ (terms containing two electron and two phonon operators).

From the commutation relations of the electron operators, it follows that

ckσ c
†
k′−qσ ′ = δk′,k+qδσσ ′ − c

†
k′−qσ ′ckσ (12.19a)

ckσ ck′σ ′ = −ck′σ ′ckσ . (12.19b)
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Using these, along with M−qλ = M∗
qλ, we can write

H̃ = H0 +H1 +H2 + “others.”

where “others” are terms containing two electron and two phonon operators, and

H1 =
∑
kσ

∑
qλ

|Mqλ|2c†k+qσ ck+qσ

[
h̄ωqλ(

εk+q − εk
)2 − (h̄ωqλ

)2

]

=
∑
kσ

∑
qλ

|Mqλ|2
[

h̄ωqλ(
εk − εk−q

)2 − (h̄ωqλ

)2

]
c
†
kσ ckσ (12.20)

H2 =
∑
kσ

∑
k′σ ′

∑
qλ

|Mqλ|2
[

h̄ωqλ(
εk′ − εk′−q

)2 − (h̄ωqλ

)2

]
c
†
k+qσ c

†
k′−qσ ′ck′σ ′ckσ .

(12.21)

The term H1 can be absorbed into H0 ; it simply leads to a renormalization of the
single particle energy. On the other hand, the term H2 represents an interaction
between electrons. The electron–electron interaction, mediated by phonons, is thus
given by

H ′
int =

∑
kσ

∑
k′σ ′

∑
q

Vk′qc
†
k+qσ c

†
k′−qσ ′ck′σ ′ckσ (12.22)

Vk′q =
∑

λ

|Mqλ|2
[

h̄ωqλ(
εk′ − εk′−q

)2 − (h̄ωqλ

)2

]
. (12.23)

Consider a shell surrounding the Fermi surface. The inner and outer surfaces of
the shell are constant energy surfaces with energies EF − h̄ωD and EF + h̄ωD ,
respectively, where EF is the Fermi energy and h̄ωD is a typical phonon energy.
Equation (12.23) tells us that if two electrons remain in states that lie within this
shell, the phonon-mediated interaction between them is attractive.

12.4 Cooper pairs

At T = 0, the ground state of an electron gas is obtained by filling all states up to the
Fermi wave vector kF . Let us imagine adding two extra electrons to the system and
turning on an attractive interaction between them. We assume that the attractive
interaction between the two extra electrons exists only when the two electrons
occupy states in a shell of energy width h̄ωD (the typical phonon energy) that
surrounds the Fermi sphere (see Figure 12.9). We also assume that the two added
electrons interact with other electrons only through the Pauli exclusion principle:
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Figure 12.9 Two extra electrons are added to the Fermi sphere of radius kF . If the
added electrons are in a shell around the Fermi sphere of width �k, the interaction
between the two electrons is attractive; otherwise, the interaction is zero. Here,
(h̄2kF /m)�k = h̄ωD.

the role of the Fermi sea of electrons is simply to prevent the two added electrons
from occupying any state below the Fermi surface. Absent an attractive interaction,
the ground state of the two added electrons is obtained if each has energy EF . In
the presence of the attractive interaction, what is the ground state of the two added
electrons? The answer to this question was provided in a seminal paper by Cooper
(Cooper, 1956). The two extra electrons can scatter off each other from states
|k1σ1, k2σ2〉 into states |k1 + qσ1, k2 − qσ2〉. Conservation of momentum dictates
that k1 + k2 = K must remain unchanged. Since the two electrons are constrained
to remain within a shell of energy width h̄ωD surrounding the Fermi sphere, the
conservation of momentum means that for a given K, the wave vectors k1 and k2

will be restricted to the region of intersection of the two shells in k-space centered
on 0 and K (see Figure 12.10). Since we are interested in the lowest energy state,
it is sufficient for us to consider the case when the region of attractive interaction
is maximal; this occurs when K = 0, for then the shaded region in Figure 12.10
coincides with the whole shell. Henceforth, we assume that the two added electrons
have wave vectors k and −k. Denoting the positions of the two added electrons
by r1 and r2 , and their wave function by ψ(r1σ1, r2σ2), the Schrödinger equation
reads

[
p2

1/2m+ p2
2/2m+ U (r1 − r2)

]
ψ(r1σ1, r2σ2) = Eψ(r1σ1, r2σ2) (12.24)

where U (r1 − r2) is the interaction energy of the two electrons; it depends on
r1 − r2 due to the translational invariance of the system. Since the Hamiltonian is
spin-independent, the stationary states can be written as the product of a spatial
function and a spin function. The two electrons are continually scattered from
states |kσ1,−kσ2〉 into states |k′σ1,−k′σ2〉; hence, we consider a solution to the
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Figure 12.10 k1 and k2 are restricted to a shell of width �k surrounding a Fermi
sphere of radius kF . For a given K, the requirement that k1 + k2 = K is satisfied
only if k1 and k2 are restricted to the region where the two shells centered at O and
O′ intersect. O and O′ are two points in k-space that are separated by the vector
K. The region of intersection is the volume obtained by rotating the shaded area
in the figure around the OO′ axis.

Schrödinger equation of the form:

ψ(r1σ1, r2σ2) =
∑

k

g(k)
1
V

eik.(r1−r2)χ (σ1, σ2) (12.25)

where V is the system’s volume, (1/V )eik.(r1−r2) is the spatial part of the wave
function corresponding to the ket |kσ1,−kσ2〉, i.e., it is 〈r1, r2|k,−k〉, and the
expansion coefficients g(k) are to be determined. The spin function χ (σ1, σ2) can
be chosen to be antisymmetric (singlet) or symmetric (triplet). For the singlet state,
the antisymmetry of ψ(r1σ1, r2σ2) under the interchange (r1σ1) ↔ (r2σ2) requires
that the spatial part be symmetric, i.e., g(−k) = g(k). For the triplet state, the spatial
part of the wave function is antisymmetric, i.e., g(−k) = −g(k). Furthermore, the
restriction of the states to a shell of energy width h̄ωD around the Fermi sphere
implies that g(k) is nonvanishing only for EF < εk < EF + h̄ωD. Substituting the
wave function, as given in Eq. (12.25), into the Schrödinger equation, we obtain

∑
k′

(2εk′ − E)g(k′)eik′.r +
∑

k′
g(k′)U (r)eik′.r = 0 (12.26)

where r = r1 − r2. Multiplying by (1/V )e−ik.r, integrating over the system’s vol-
ume, and using

∫
V

ei(k′−k).rd3r = V δkk′ , (12.27)



298 Superconductivity

we obtain the following equation:

(2εk − E)g(k)+ 1
V

∑
k′

Ukk′g(k′) = 0, EF < εk , εk′ < EF + h̄ωD. (12.28)

Ukk′ is the Fourier transform of the attractive interaction,

Ukk′ =
∫

V

e−i(k−k′).rU (r)d3r. (12.29)

Note that, since U (r) is real, it follows that U ∗
kk′ = Uk′k. Moreover, since U (r) =

U (−r), Ukk′ must be real.
We solve for g(k) by considering a simple model for which

Ukk′ = −U0 , EF < εk , εk′ < EF + h̄ωD

where U0 > 0. For values of k and k′ such that εk or εk′ lies outside the range
indicated above, Ukk′ = 0. The fact that Ukk′ is negative reflects the assumption
that the interaction between the added electrons is attractive. Equation (12.28) now
reduces to

(2εk − E)g(k) = U0

V

∑
k′

g(k′) EF < εk , εk′ < EF + h̄ωD. (12.30)

For a triplet state, g(−k′) = −g(k′), and the RHS of Eq. (12.30) vanishes. Thus,
for the triplet state, E = 2εk ; the attractive interaction has no effect on the energy
of the two added electrons. For the singlet state, on the other hand, g(−k′) = g(k′),
and the RHS of Eq. (12.30) does not vanish. Further analysis is now restricted to
the singlet state, in which the two electrons have opposite spins.

Dividing both sides of Eq. (12.30) by (2εk − E), then summing over k, we
obtain

1 = U0

V

∑
k

1
2εk − E

, EF < εk < EF + h̄ωD.

The sum over k is a sum over states of one spin projection. Since the number of
such states in the energy range (ε , ε + dε) is Dσ (ε)dε, where Dσ (ε) is the density
of states per spin, the above equation may be written as

1 = U0

V

∫ EF+h̄ωD

EF

Dσ (ε)
2ε − E

dε.

Since it is generally true that in metals h̄ωD � EF (h̄ωD ≈ 20 meV, EF ≈ 5 eV),
we may assume that Dσ (ε) is equal to its value at the Fermi energy,

1 = U0Dσ (EF )
V

∫ EF+h̄ωD

EF

dε

2ε − E
= 1

2
U0dσ (EF )ln

(
2EF + 2h̄ωD − E

2EF − E

)
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where dσ (EF ) = Dσ (EF )/V is the density of states per unit volume per spin. This
equation is easily solved for E,

E = 2EF − 2h̄ωDexp {−2/ [U0dσ (EF )]}
1− exp {−2/ [U0dσ (EF )]} .

In the weak coupling limit (U0dσ (EF ) � 1),

E � 2EF − 2h̄ωDexp {−2/ [U0dσ (EF )]} . (12.31)

The following remarks are in order:

1. No matter how weak the attractive interaction is, the two electrons form a bound
state, known as a Cooper pair, whose energy is lower than 2EF .

2. The energy E of the bound state is not an analytic function of U0 as U0 → 0,
i.e., E cannot be expanded in powers of U0. Thus, the result for E cannot be
obtained by a perturbation expansion in powers of U0.

3. The binding energy of the Cooper pair increases as U0 increases; the stronger
the electron–phonon interaction, the larger the binding energy.

4. The binding energy increases as the density of states at the Fermi energy
increases.

12.5 BCS theory of superconductivity

A microscopic theory of superconductivity was presented in 1957 by Bardeen,
Cooper, and Schrieffer (BCS) (Bardeen et al., 1957). The idea that a weakly
attractive interaction between two electrons leads to the formation of a Cooper pair
was a major clue that led to a fuller description of the superconducting ground
state. The attractive interaction scatters a pair of electrons from states |k↑,−k↓〉
into states |k′ ↑,−k′ ↓〉 (see Figure 12.11). BCS considered the following model
Hamiltonian

HBCS =
∑
kσ

εkc
†
kσ ckσ +

∑
kk′

Ukk′c
†
k′↑c

†
−k′↓c−k↓ck↑ (12.32)

which describes the scattering processes mentioned above. In order to determine
the ground state, a variational approach is adopted, with a trial wave function
proposed and the corresponding energy minimized. The BCS trial state is taken as

|�〉 =
∏

k

(
uk + vkc

†
k↑c

†
−k↓
)
|0〉 (12.33)

where |0〉 is the vacuum state, uk and vk are parameters to be determined, and they
are assumed to be real. The state is normalized if

u2
k + v2

k = 1. (12.34)
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Figure 12.11 Scattering processes that contribute to the BCS Hamiltonian. Two
electrons in states |k↑〉 and | − k↓〉 are scattered into states |k′ ↑〉 and | − k′ ↓〉.
The matrix element for this scattering process is Ukk′ .

The form of the wave function implies that v2
k is the probability that the pair state

|k ↑,−k ↓〉 is occupied, and u2
k is the probability for it to be empty. Note that

|�〉 would describe the normal ground state if uk = 0, vk = 1 for k < kF , and
uk = 1, vk = 0 for k > kF .

If the state |�〉 is expanded, we see that it is a linear combination of states with
varying numbers of pairs, i.e., |�〉 is not an eigenstate of the number operator Nop

given by

Nop =
∑
kσ

c
†
kσ ckσ . (12.35)

This should not cause any alarm; the system is considered to be in contact with a
particle reservoir at T = 0. In other words, the system is assumed to be a member
of a grand canonical ensemble; as we know from Chapter 5, the properties of a
system may be obtained using any of various ensembles. What we require here is
that the average number of electrons, 〈�|Nop|�〉, be equal to N , the actual number
of conduction electrons in the crystal.

Our problem is thus to minimize the energy 〈�|H |�〉 subject to the constraint
that 〈�|Nop|�〉 = N . This is achieved by introducing a Lagrange multiplier μ

and minimizing 〈�|H |�〉 − μ〈�|Nop|�〉 = 〈�|H − μNop|�〉 without any con-
ditions. The Lagrange multiplier μ is then determined by the requirement that
〈�|Nop|�〉 = N . The parameter μ turns out to be nothing but the Fermi energy
EF . Defining ε̄k = εk − μ, we can write

H̄ = H − μNop =
∑

k

ε̄k

(
c
†
k↑ck↑ + c

†
−k↓c−k↓

)
+
∑
kk′

Ukk′c
†
k′↑c

†
−k′↓c−k↓ck↑.

(12.36)
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Using the commutation properties of the creation and annihilation operators, it is
not difficult to show that

Ē = 〈�|H̄ |�〉 = 2
∑

k

v2
kε̄k +

∑
kk′

Ukk′ukvkuk′vk′ . (12.37)

Ē is viewed as a function of uk and vk, and we seek the values of uk and vk that
minimize Ē. Since u2

k + v2
k = 1, there exists an angle θk such that

uk = cosθk , vk = sinθk. (12.38)

The expression for Ē becomes

Ē = 2
∑

k

ε̄ksin2θk + 1
4

∑
kk′

Ukk′sin(2θk)sin(2θk′). (12.39)

The minimization condition ∂Ē/∂θk = 0 yields

2ε̄ksin(2θk)+ cos(2θk)
∑

k′
Ukk′sin(2θk′) = 0. (12.40)

Reintroducing uk and vk: sin(2θk) = 2ukvk, cos(2θk) = u2
k − v2

k , the above equa-
tion becomes

2ε̄kukvk + (u2
k − v2

k)
∑

k′
Ukk′uk′vk′ = 0. (12.41)

We now define the energy gap parameter by

�k = −
∑

k′
Ukk′uk′vk′ (12.42)

and thus obtain

2ε̄kukvk −�k
(
u2

k − v2
k
) = 0. (12.43)

Keeping in mind that u2
k + v2

k = 1, the following solutions are obtained

u2
k =

1
2

⎡
⎣1+ ε̄k√

ε̄2
k +�2

k

⎤
⎦ , v2

k =
1
2

⎡
⎣1− ε̄k√

ε̄2
k +�2

k

⎤
⎦ . (12.44)

Note that if Ukk′ = 0, �k vanishes, and v2
k = 1 for ε̄k < 0, while v2

k = 0 for ε̄k > 0.
This is the situation in a normal metal where vk = 1 for εk < EF and vk = 0 for
εk > EF . Since ε̄k = εk − μ, it follows that μ is simply EF . A plot of v2

k vs. ε̄k
is shown in Figure 12.12. Using the above expressions for u2

k and v2
k, Eq. (12.42)

becomes

�k = −1
2

∑
k′

Ukk′
�k′√

ε̄2
k′ +�2

k′

. (12.45)
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Figure 12.12 A plot of v2
k vs. ε̄k in (a) the normal state, and (b) the superconducting

state.

In principle, this equation determines the gap parameter. In general, a solution is
difficult to come by, but a simple solution is obtained if we adopt the following
model for the attractive interaction:

Ukk′ =
{
−U0 − h̄ωD < ε̄k, ε̄k′ < h̄ωD

0 otherwise
. (12.46)

It follows from Eq. (12.42) that �k is constant, independent of k, for −h̄ωD <

ε̄k < h̄ωD , and zero otherwise. Writing the constant as �0, Eq. (12.45) becomes

U0

2

∑
k

1√
ε̄2

k +�2
0

= 1, − h̄ωD < ε̄k < h̄ωD.

Converting the sum over k into an integral over energy, we obtain

1 = U0Dσ (EF )
2

∫ h̄ωD

−h̄ωD

dε√
ε2 +�2

0

= U0Dσ (EF )sinh−1
(

h̄ωD

�0

)

=⇒ �0 = h̄ωD

sinh
[

1
U0Dσ (EF )

] . (12.47)

Dσ (EF ) is the density of states for one spin projection at the Fermi energy. In the
weak coupling limit (U0Dσ (EF ) � 1), the gap parameter is given by

�0 � 2h̄ωD exp
[ −1
U0Dσ (EF )

]
. (12.48)
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The energy of the BCS ground state is

ĒS =
∑

k

(
2v2

kε̄k −�kukvk
) =∑

k

⎡
⎣ε̄k − 2ε̄2

k +�2
k

2
√

ε̄2
k +�2

k

⎤
⎦ (12.49)

(see Eqs [12.37], [12.42], and [12.44]). Assuming, as before, that �k = �0 for
−h̄ωD < ε̄k < h̄ωD, and is zero otherwise, we see that the summand in the above
equation is equal to 2ε̄k for ε̄k < −h̄ωD and is equal to zero for ε̄k > h̄ωD. The
energy ĒN of the normal ground state is the sum over k of 2ε̄k up to ε̄k = 0. Hence

ĒS − ĒN =
∑′

k

⎡
⎣ε̄k − 2ε̄2

k +�2
k

2
√

ε̄2
k +�2

k

⎤
⎦− ∑′′

k

2ε̄k.

The prime over the sum means that the sum is restricted to values of k such
that −h̄ωD < ε̄k < h̄ωD, while the double prime indicates that the sum over k
is restricted so that −h̄ωD < ε̄k < 0. Writing the sum over k as an integral over
energy, we find

ĒS − ĒN = Dσ (EF )
∫ h̄ωD

−h̄ωD

⎡
⎣ε − 2ε2 +�2

0

2
√

ε2 +�2
0

⎤
⎦ dε −Dσ (EF )

∫ 0

−h̄ωD

2εdε

= Dσ (EF )h̄ωD

[
h̄ωD −

√
(h̄ωD)2 +�2

0

]
.

For weak coupling (�0 � h̄ωD), the above equation, upon expansion of the square
root, reduces to

ĒS − ĒN � −1
2
Dσ (EF )�2

0. (12.50)

The superconducting state is lower in energy than the normal state; hence, in the
presence of an attractive interaction between electrons near the Fermi surface,
the normal state becomes unstable, and the system undergoes a transition to a
superconducting state.

We note that the BCS theory, by replacing Ukk′ by −U0, it neglects the fact
that the attractive interaction between electrons (mediated by phonons) is retarded.
This is a good approximation in superconductors where the electron–phonon inter-
action is weak, but it does not provide an accurate description of strong-coupling
superconductors, where the electron–phonon interaction is strong. For a review of
strong-coupling theory of superconductivity, the reader is referred to the article by
Scalapino (1969).

Finally, we briefly touch upon a certain feature, mentioned earlier, of the super-
conducting ground state. The BCS Hamiltonian commutes with the number of
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particles operator, [HBCS, Nop] = 0, but the number of particles in the ground
state wave function is not constant. Stated differently, the Hamiltonian possesses a
certain symmetry which the ground state lacks. The superconducting state is thus
characterized by a broken symmetry. To elaborate this point further, we note that the
BCS Hamiltonian given in Eq. (12.32) is invariant under the global transformation

ckσ → e−iφckσ , c
†
kσ → eiφc

†
kσ .

Under this transformation, the normal state |F 〉 =∏′
kσ c

†
kσ |0〉 remains invariant;

it simply aquires a constant phase (the prime on the product sign indicates that
k < kF ). However, the BCS ground state, given in Eq. (12.33), is not invariant
under this transformation.

12.6 Mean field approach

The superconducting ground state may also be obtained using a mean field
approach. An additional benefit of this approach is the elucidation of the nature of
excited states. Our starting point is again the BCS Hamiltonian

H̄BCS =
∑
kσ

ε̄kc
†
kσ ckσ +

∑
kk′

Ukk′c
†
k′↑c

†
−k′↓c−k↓ck↑ = H̄0 +H ′.

We define a fluctuation operator dk that represents the deviation of c−k↓ck↑ from
its average in the ground state,

dk = c−k↓ck↑ − 〈c−k↓ck↑〉. (12.51a)

Similarly,

d
†
k = c

†
k↑c

†
−k↓ − 〈c†k↑c†−k↓〉. (12.51b)

In a normal metal, the quantities 〈c−k↓ck↑〉 and 〈c†k↑c†−k↓〉 vanish, but this is not
the case in a superconductor, where the ground state is not an eigenstate of the
number of particles operator. In terms of the fluctuation operators, the interaction
Hamiltonian is given by

H ′ =
∑
kk′

Ukk′
{
〈c†k′↑c†−k′↓〉dk + 〈c−k↓ck↑〉d†

k′ + 〈c†k′↑c†−k′↓〉〈c−k↓ck↑〉 + d
†
k′dk

}
.

In the mean field approximation, the last term in the above expression, which
is bilinear in fluctuation operators, is ignored. The assumption made is that the
fluctuations of c−k↓ck↑ and c

†
k↑c

†
−k↓ about their average values are small.

Defining the gap parameter by

�k = −
∑

k′
Uk′k〈c−k′↓ck′↑〉, (12.52)
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the mean field Hamiltonian may be written as

HMF =
∑
kσ

ε̄kc
†
kσ ckσ −

∑
k

(
�∗

kdk +�kd
†
k

)
−
∑

k

�∗
k〈c−k↓ck↑〉

=
∑
kσ

ε̄kc
†
kσ ckσ −

∑
k

�∗
kc−k↓ck↑ −

∑
k

�kc
†
k↑c

†
−k↓ +

∑
k

�k〈c†k↑c†−k↓〉.

(12.53)

HMF can be diagonalized by means of a canonical transformation known as the
Bogoliubov–Valatin transformation (Bogoliubov, 1958; Valatin, 1958):

γk↑ = ukck↑ − vkc
†
−k↓ , γ−k↓ = ukc−k↓ + vkc

†
k↑ (12.54a)

γ
†
k↑ = u∗kc

†
k↑ − v∗kc−k↓ , γ

†
−k↓ = u∗kc

†
−k↓ + v∗kck↑. (12.54b)

The new operators must satisfy the same commutation relations as the original
ones; we thus require that

{γkσ , γk′σ ′ } =
{
γ
†
kσ , γ

†
k′σ ′

}
= 0,

{
γkσ , γ

†
k′σ ′

}
= δkk′ δσσ ′ . (12.55)

These are satisfied provided that

|uk|2 + |vk|2 = 1. (12.56)

Using Eq. (12.54), we solve for the c-operators in terms of the γ -operators,

ck↑ = u∗kγk↑ + vkγ
†
−k↓ , c−k↓ = u∗kγ−k↓ − vkγ

†
k↑ (12.57a)

c
†
k↑ = ukγ

†
k↑ + v∗kγ−k↓ , c

†
−k↓ = ukγ

†
−k↓ − v∗kγk↑. (12.57b)

Inserting these terms into Eq. (12.53), and then laboring through some tedious
calculations, we find

HMF =
∑

k

[
ε̄k
(|uk|2 − |vk|2

)+�kukv
∗
k +�∗

ku
∗
kvk
] (

γ
†
k↑γk↑ + γ

†
−k↓γ−k↓

)

+
∑

k

(
2ε̄kukvk +�∗

kv
2
k −�ku

2
k
)
γ
†
k↑γ

†
−k↓

+
∑

k

(
2ε̄ku

∗
kv
∗
k +�kv

∗2
k −�∗

ku
∗2
k
)
γ−k↓γk↑

+
∑

k

[
2ε̄k|vk|2 −�kukv

∗
k −�∗

ku
∗
kvk +�k〈c†k↑c†−k↓〉

]
. (12.58)

The first term describes single-particle excitations, while the last term is a con-
stant that represents the energy of the system in the absence of single-particle
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excitations – the ground state energy. The troublesome terms are the third and
fourth ones; they are not diagonal. However, the only condition imposed on uk and
vk so far is Eq. (12.56). We can take advantage of the available freedom regarding
the choice of uk and vk by demanding that the troublesome terms vanish. We thus
impose the condition

2ε̄kukvk +�∗
kv

2
k −�ku

2
k = 0. (12.59)

To solve for uk and vk, we set

uk = |uk|eiθk , vk = |vk|eiφk , �k = |�k|e2iδk .

The condition on uk and vk becomes

2ε̄k|ukvk|ei(θk+φk) + |�k||vk|2e2i(φk−δk) − |�k||uk|2e2i(θk+δk) = 0.

Choosing θk, φk, and δk such that θk = −φk = −δk , we obtain

2ε̄k|uk||vk| + |�k|
(|vk|2 − |uk|2

) = 0.

This is to be solved along with the constraint |uk|2 + |vk|2 = 1; we find

|uk|2 = 1
2

⎡
⎣1+ ε̄k√

ε̄2
k + |�k|2

⎤
⎦ , |vk|2 = 1

2

⎡
⎣1− ε̄k√

ε̄2
k + |�k|2

⎤
⎦ . (12.60)

The phase of uk is not determined; it can be chosen arbitrarily. Setting θk = φk =
δk = 0 is tantamount to choosing uk , vk , and �k to be real. When the values given
above for uk and vk are inserted into Eq. (12.58), the first term in the Hamiltonian
takes a particularly simple form:

HMF =
∑

k

Ek

(
γ
†
k↑γk↑ + γ

†
−k↓γ−k↓

)
+
∑

k

[
2ε̄kv

2
k − 2�kukvk +�k〈c†k↑c†=k↓〉

]
(12.61)

where Ek =
√

ε̄2
k +�2

k. The second term is the ground state energy, while the first
term describes excitations above the ground state.

The ground state |�0〉 is the state with no excitations; it is defined by the
requirement that

γk↑|�0〉 = γ−k↓|�0〉 = 0, ∀k ∈ FBZ. (12.62)

The solution of the above equation is given by

|�0〉 =
∏

k

γk↑γ−k↓|0〉
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where |0〉 is the vacuum state. That |�0〉 satisfies Eq. (12.62) follows from the
commutation relations of the γ -operators. Using Eq. (12.54),

|�0〉 =
∏

k

(
ukck↑ − vkc

†
−k↓
) (

ukc−k↓ + vkc
†
k↑
)
|0〉

=
∏

k

(
ukvk − v2

kc
†
−k↓c

†
k↑
)
|0〉

=
(∏

k

vk

)∏
k

(
uk + vkc

†
k↑c

†
−k↓
)
|0〉.

Since u2
k + v2

k = 1, the normalized ground state is

|�0〉 =
∏

k

(
uk + vkc

†
k↑c

†
−k↓
)
|0〉. (12.63)

This is the same state we saw earlier using the variational method. Again, v2
k is the

probability that the pair |k ↑,−k ↓〉 is occupied, and u2
k is the probability that it is

empty.
The ground state energy is the second term of the Hamiltonian given in

Eq. (12.61). At T = 0, 〈c†k↑c†−k↓〉 = 〈�0|c†k↑c†−k↓|�0〉. We can evaluate this directly
by using the expression given for |�0〉 in Eq. (12.63); alternatively, we can use
Eq. (12.57) to write

c
†
k↑c

†
−k↓ = u2

kγ
†
k↑γ

†
−k↓ − v2

kγ−k↓γk↑ − ukvkγ
†
k↑γk↑ + ukvkγ−k↓γ

†
−k↓.

Since γk↑|�0〉 = 〈�0|γ †
k↑ = 0, γ−k↓γ

†
−k↓ = 1− γ

†
−k↓γ−k↓, and γ−k↓|�0〉 = 0, we

obtain

〈�0|c†k↑c†−k↓|�0〉 = ukvk. (12.64)

The ground state energy is thus given by

ĒS =
∑

k

(
2ε̄kv

2
k −�kukvk

)
. (12.65)

This is exactly the same expression obtained earlier using a variational approach
(see Eq. [12.49]).

An alternative expression for ĒS can be written. From Eq. (12.60),

ε̄k = Ek
(
1− 2v2

k
)
, u2

kv
2
k =

�2
k

4E2
k
. (12.66)
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Figure 12.13 Single-particle excitation energy as a function of ε̄k = εk − EF . The
excitation energy has a minimum value equal to �. The function Ek aymptotically
approaches the two dashed lines with slopes of ±1.

It follows that

ĒS = −
∑

k

4Ekv
4
k +

∑
k

(
2Ekv

2
k −

�2
k

2Ek

)
.

The last term may be written as

∑
k

(
2Ekv

2
k −

�2
k

2Ek

)
=
∑

k

2Ek

(
v2

k −
�2

k

4E2
k

)
=
∑

k

2Ek
(
v2

k − u2
kv

2
k
)

=
∑

k

2Ekv
2
k
(
1− u2

k
) =∑

k

2Ekv
4
k.

The ground state energy reduces to

ĒS = −2
∑

k

Ekv
4
k. (12.67)

Going back to the mean field Hamiltonian of Eq. (12.61), the first term describes
excitations above the ground state. The single-particle excitation has energy

Ek =
√

ε̄2
k +�2

k. If we adopt the approximation that �k is independent of k,
as we did in the previous section, we see that the minimum energy for a single-
particle excitation is equal to �, which corresponds to particles at the Fermi
surface (ε̄k = εk − EF = 0). The single-particle excitation energy is plotted in
Figure 12.13 as a function of ε̄k. Note that, in a normal metal, it is possible to excite
an electron from a state just below the Fermi surface to a state just above the Fermi
surface by adding an infinitesimal amount of energy. This is not the case for a
superconductor.

Finally, we note that even though the minimum single-particle excitation energy
is equal to �, the lowest excited state has energy 2� above the ground state energy.
This is because the lowest excited state involves breaking up a Cooper pair: an
electron is scattered out of the state |k↑〉, leaving behind an unpaired electron
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in the state | − k↓〉. If the pair state |k↑,−k↓〉 is occupied in the ground state
(v2

k = 1), then it is unoccupied in the excited state (v2
k = 0). Using Eq. (12.67), the

change in energy is 2Ek, which has a minimum value of 2�. Another way (Taylor
and Heinonen, 2002) to arrive at this result is by realizing that in a superconductor,
single-particle excitations are always created in pairs (never singly). Any pertur-
bation will scatter electrons between states; thus, any perturbation Hamiltonian
will contain an equal number of electron annihilation and creation operators (the
minimum is one of each kind). For example, consider a perturbation of the form:

H ′ =
∑

k
=k′σ

Vkk′c
†
k′σ ckσ =

∑
k
=k′

Vkk′c
†
k′↑ck↑ +

∑
k
=k′

Vkk′c
†
k′↓ck↓.

When this acts on the ground state, the first term in H ′ gives

∑
k
=k′

Vkk′c
†
k′↑ck↑|�0〉 =

∑
k
=k′

Vkk′
(
uk′γ

†
k′↑ + vk′γ−k′↓

)(
ukγk↑ + vkγ

†
−k↓
)
|�0〉

=
∑
k
=k′

Vkk′uk′vkγ
†
k′↑γ

†
−k↓|�0〉,

the other terms being zero. A similar expression is obtained if the second term in
H ′ acts on |�0〉. Therefore, only pairs of particles are excited, and the minimum
excitation energy, equal to 2�, is obtained if ε̄k = ε̄k′ = 0.

12.7 Green’s function approach to superconductivity

We now turn to Green’s function as a method for studying superconductivity. The
relevant Hamiltonian for describing superconductivity is the BCS Hamiltonian

H̄ =
∑
kσ

ε̄kc
†
kσ ckσ +

∑
kk′

Ukk′c
†
k′↑c

†
−k′↓c−k↓ck↑ = H̄0 +H ′. (12.68)

Here, ε̄k is the single-particle energy measured from the chemical potential, and
the sum over k and k′ is restricted to values that satisfy −h̄ωD < ε̄k, ε̄k′ < h̄ωD.
The imaginary-time Green’s function for spin-up electrons is

g(k↑, τ ) = −〈T ck↑(τ )c†k↑(0)〉 = −θ (τ )〈ck↑(τ )c†k↑(0)〉 + θ (−τ )〈c†k↑(0)ck↑(τ )〉.
(12.69)

The modified Heisenberg operator ck↑(τ ) is given by

ck↑(τ ) = eH̄τ/h̄ck↑e−H̄ τ/h̄ (12.70)
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where ck↑ = ck↑(0). The equation of motion for Green’s function is

∂

∂τ
g(k↑, τ ) = −δ(τ )〈ck↑c

†
k↑〉 − δ(τ )〈c†k↑ck↑〉 − θ (τ )

〈
∂

∂τ
ck↑(τ )c†k↑(0)

〉

+ θ (−τ )
〈
c
†
k↑(0)

∂

∂τ
ck↑(τ )

〉
.

Using {ck↑, c
†
k↑} = 1, the above equation reduces to

∂

∂τ
g(k↑, τ ) = −δ(τ )−

〈
T

∂

∂τ
ck↑(τ )c†k↑(0)

〉
. (12.71)

It follows from Eq. (12.70) that

∂

∂τ
ck↑(τ ) = 1

h̄

[
H̄ , ck↑(τ )

] = 1
h̄

[
H̄0, ck↑(τ )

]+ 1
h̄

[
H ′, ck↑(τ )

]
.

Note that

H̄ = eH̄τ/h̄H̄ e−H̄ τ/h̄ = H̄ (τ ) = H̄0(τ )+H ′(τ ).

The commutators are evaluated using the relation

[AB, C] = A[B, C]+ [A, C]B = A{B, C} − {A, C}B.

We find

[H̄0, ck↑] =
∑
k′σ ′

ε̄k′[c
†
k′σ ′ ck′σ ′, ck↑] = −ε̄kck↑

[H ′, ck↑] =
∑
k1k2

Uk1k2 [c
†
k2↑c

†
−k2↓c−k1↓ck1↑, ck↑]

=
∑
k1k2

Uk1k2 [c
†
k2↑c

†
−k2↓, ck↑]c−k1↓ck1↑ = −

∑
k′

Uk′k c
†
−k↓c−k′↓ck′↑.

The equation of motion for Green’s function becomes(
∂

∂τ
+ ε̄k

h̄

)
g(k↑, τ ) = −δ(τ )+ 1

h̄

∑
k′

Uk′k

〈
T c

†
−k↓(τ )c−k′↓(τ )ck′↑(τ )c†k↑(0)

〉
.

(12.72)
As is usually the case, the equation of motion of the one-particle Green’s func-
tion contains a two-particle Green’s function (the second term on the RHS of
Eq. [12.72]). Ideally, we would construct the equation of motion for this function
as well, but then a three-particle Green’s function would appear, and so on; the
system of equations never closes on itself. This, of course, reflects the fact that the
problem is not exactly solvable; we need to resort to some approximation scheme.
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We assume that the particles are weakly interacting; the effect of the interaction is
considered only to the extent that it leads to the formation of Cooper pairs whose
number is not constant. In other words, we evaluate the average of the time-ordered
product in Eq. (12.72) for a noninteracting system, one whose energy eigenstates
are not eigenstates of the number operator. We may then apply Wick’s theorem,〈

Tc
†
−k↓(τ )c−k′↓(τ )ck′↑(τ )c†k↑(0)

〉
= −

〈
T c−k′↓(τ )c†−k↓(τ )

〉〈
T ck′↑(τ )c†k↑(0)

〉
δkk′

− 〈T ck′↑(τ )c−k′↓(τ )
〉 〈

T c
†
−k↓(τ )c†k↑(0)

〉
.

In a normal metal, where all the stationary states can be chosen to be simultaneous
eigenstates of H and Nop, only the first term on the RHS of the above equation
survives, and the approximation is the Hartree–Fock approximation. This term is
simply g(k↑, τ ) multiplied by a time-independent function; it leads to a renormal-
ization of the single-particle energy, and it will be dropped in what follows. The
second term vanishes in a normal metal but does not vanish in a superconductor,
where states are not eigenstates of the number of particles operator. We thus define
two new “anomalous” Green’s functions,

F (k, τ ) = −〈T ck↑(τ )c−k↓(0)〉, F †(k, τ ) = −
〈
T c

†
−k↓(τ )c†k↑(0)

〉
. (12.73)

The equation of motion for g(k↑, τ ) is now written as(
∂

∂τ
+ ε̄k/h̄

)
g(k↑, τ ) = −δ(τ )− 1

h̄

∑
k′

Uk′kF (k′, 0)F †(k, τ )

= −δ(τ )+ 1
h̄

�kF
†(k, τ ). (12.74)

We have introduced the gap parameter �k defined by

�k = −
∑

k′
Uk′kF (k′, 0) = −

∑
k′

Uk′k
〈
c−k′↓ck′↑

〉
. (12.75)

To solve for g(k↑, τ ), we write the equation of motion for F †(k, τ ),

∂

∂τ
F †(k, τ ) = ∂

∂τ

[
−θ (τ )

〈
c
†
−k↓(τ )c†k↑(0)

〉
+ θ (−τ )

〈
c
†
k↑(0)c†−k↓(τ )

〉]

= −δ(τ )
〈
c
†
−k↓c

†
k↑ + c

†
k↑c

†
−k↓
〉
−
〈
T

∂

∂τ
c
†
−k↓(τ )c†k↑(0)

〉
.

Since {c†−k↓, c
†
k↑} = 0, the first term on the RHS vanishes. The second term is

obtained by evaluating the commutator [H, c
†
−k↓ ]. We end up with(

∂

∂τ
− ε̄k/h̄

)
F †(k, τ ) =

(
�∗

k
h̄

)
g(k↑, τ ). (12.76)
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The coupled equations for g(k↑, τ ) and F †(k, τ ) (Eqs (12.74) and (12.76)) are
solved by Fourier expanding

g(k↑, τ ) = 1
βh̄

∞∑
n=−∞

g(k↑, ωn)e−iωnτ , F †(k, τ ) = 1
βh̄

∞∑
n=−∞

F †(k, ωn)e−iωnτ

(12.77)
where ωn = (2n+ 1)π/βh̄ and n is an integer. The coupled equations become

(−iωn + ε̄k/h̄)g(k↑, ωn) = −1+ (�k/h̄)F †(k, ωn) (12.78)

(−iωn − ε̄k/h̄)F †(k, ωn) = (�∗
k/h̄)g(k↑, ωn). (12.79)

These are Gorkov equations in momentum-frequency space (Gorkov, 1958). Their
solution is straightforward:

g(k↑, ωn) = iωn + ε̄k/h̄

(iωn)2 − (ε̄2
k + |�k|2

)
/h̄2 (12.80)

F †(k, ωn) = −�∗
k/h̄

(iωn)2 − (ε̄2
k + |�k|2

)
/h̄2 . (12.81)

Green’s function can also be expressed another way. Using the expressions for u2
k

and v2
k given in Eq. (12.60), we can show that

g(k↑, ωn) = u2
k

iωn − Ek/h̄
+ v2

k
iωn + Ek/h̄

(12.82)

where Ek =
√

ε̄2
k +�2

k. The retarded Green’s function GR(k↑, ω) is obtained from
g(k↑, ωn) by replacing iωn with ω + i0+. The spectral density function A(k↑, ω)
is equal to −2 Im GR(k↑, ω); hence

A(k↑, ω) = 2πh̄
[
u2

kδ(h̄ω − Ek)+ v2
kδ(h̄ω + Ek)

]
. (12.83)

The spectral density function consists of two delta-function peaks. The first peak,
at Ek, corresponds to the energy of an electron added to the system in state |k↑〉.
The second peak, at−Ek, is the energy of an electron removed from state |k↑〉. To
add an electron into state |k↑〉, the pair state |k↑,−k↓〉 needs to be unoccupied;
the probability of that is u2

k. To remove an electron from state |k↑〉, the pair state
|k↑,−k↓〉 must be occupied; the probability of that is v2

k.
If the pair state |k↑,−k↓〉 is occupied, then u2

k = 0 and v2
k = 1, the spectral

density function has one peak at h̄ω = −Ek , and the energy of the electron in state
|k↑〉 is −Ek. If, on the other hand, the pair state |k↑,−k↓〉 is empty, then u2

k = 1
and v2

k = 0, the spectral function has one peak at ω = Ek/h̄, and the energy of
the electron in state |k↑〉 is Ek. If k is such that εk = μ, then the energy of the
electron in state |k↑〉 is either −�k or +�k, depending on whether the pair state
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Figure 12.14 Pictorial representation of the anomalous Green’s functions (a)
F (k, τ ) and (b) F †(k, τ ).

|k↑,−k↓〉 is occupied or empty. In a model where �k = �, independent of k,
there is a gap in the single-particle energy spectrum of 2�.

In obtaining the above results, we used the Hartree–Fock (mean field) approx-
imation. Alternatively, we could have started with the mean field Hamiltonian
(see Eq. [12.53]) and proceeded to calculate g(k↑, ωn) and F †(k, ωn). The results
obtained would be identical.

We have obtained Green’s function using the equation of motion approach.
Another way to obtain the same results is by means of a diagrammatic expansion.
Using this approach, we construct Dyson’s equation for g(k↑, ωn),

g(k↑, ωn) = g0(k↑, ωn)+ g0(k↑, ωn)�∗(k↑, ωn)g(k↑, ωn) (12.84)

where �∗(k↑, ωn) is the proper (irreducible) self energy. In the normal state, the self
energy consists of diagrams containing only Green’s function and interaction lines,
because when we apply Wick’s theorem in this situation, only contractions that
involve one annihilation and one creation operator are nonvanishing. By contrast,
in the superconducting state, anomalous Green’s functions appear, so we need to
expand our store of Green’s functions. Diagrammatically, the anomalous Green’s
functions are represented as in Figure 12.14. These functions have vanishing zero-
order values, i.e., they vanish in the noninteracting system. This is clearly so, since
the Hamiltonian is H0 in the absence of interactions and the system is in the normal
state.

Every Green’s function diagram consists of a series of self energy diagrams con-
nected by the zeroth-order Green’s function. In the normal state, a single line enters
the self energy part and another single line leaves it, as shown in Figure 12.15a. The
corresponding diagrammatic expansion for g(k↑, ωn) is shown in Figure 12.15b. In
the superconducting state, two new types of self-energy diagrams become possible:
two single lines enter or leave the self-energy part, as in Figure 12.15c. Ignoring
normal-state corrections, the diagrammatic expansion for g(k↑, ωn) is shown in
Figure 12.15d. An examination of this figure reveals that structures occurring after
the first self energy part correspond to a new function. Graphically, this new func-
tion is characterized by two external lines pointing outward; it is the function
F †(k, ωn). The analogue of Dyson’s equation is shown in Figure 12.15e.

We can now write Dyson’s equation for a superconductor. Ignoring normal-state
corrections, Dyson’s equation (in the Hartree–Fock, or mean field approximation)
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Figure 12.15 (a) In the normal state diagram, a single line enters the self energy
part and a single line leaves it. (b) The expansion of Green’s function in the normal
state. (c) In the superconducting state, additional diagrams appear in which two
single lines enter or leave the self energy part. (d) Diagrams that appear in the
expansion of Green’s function in a superconductor. (e) The Dyson-like equation
for Green’s function in a superconductor.

Figure 12.16 Diagrams of a superconductor in the Hartree–Fock approximation,
ignoring normal-state corrections. (a) The Dyson-like equation for g(k↑, τ ). (b)
The equation for F †(k, τ ). (c) Dyson’s equation for g(k↑, τ ), obtained by com-
bining (a) and (b).

is depicted graphically in Figure 12.16. The algebraic expressions corresponding
to diagrams 12.16a and 12.16b are, respectively,

g(k↑, τ ) = g0(k↑, τ )+ 1
h̄

∫ βh̄

0
dτ1g

0(k↑, τ − τ1)F †(k, τ1)
∑

k′
Uk′kF (k′, 0)

(12.85)

F †(k, τ ) = −1
h̄

∫ βh̄

0
dτ1g0(−k↓, τ1 − τ )g(k↑, τ1)

∑
k′

Ukk′F
†(k′, 0). (12.86)

The signs before the integrals may be checked by writing the first order perturbation
term and applying Wick’s theorem. Using the definition of the gap parameter
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�k (see Eq. [12.75]), with F †(k, τ = 0) = F ∗(k, τ = 0), and Fourier-expanding
g0(k↑, τ ), g(k↑, τ ), and F †(k, τ ), we obtain

g(k↑, ωn) = g0(k↑, ωn)− (�k/h̄)g0(k↑, ωn)F †(k, ωn) (12.87)

F †(k, ωn) = (�∗
k/h̄)g0(−k↓,−ωn)g(k↑, ωn). (12.88)

The solution of Eqs (12.87) and (12.88) is identical to the one shown in Eqs (12.80)
and (12.81).

To determine the gap consistency condition, we adopt the following simple
model, which was considered earlier:

Ukk′ =
{
−U0 − h̄ωD < ε̄k, ε̄k′ < h̄ωD

0 otherwise
. (12.89)

Within this model, the gap parameter is independent of k and is written as �; it is
given by

� = U0

∑′

k

F (k, τ = 0) ⇒ �∗ = U0

∑′

k

F ∗(k, τ = 0) = U0

∑′

k

F †(k, τ = 0).

The prime on the summation means that the sum is restricted to values of k such
that |ε̄k| < h̄ωD . Using

F †(k, τ = 0) = (βh̄)−1
∞∑

n=−∞
F †(k, ωn)

along with Eq. (12.81), we obtain

− U0

βh̄2

∑′

k

∞∑
n=−∞

1
(iωn)2 − (ε̄2

k + |�|2
)
/h̄2 = 1. (12.90)

Since ωn = (2n+ 1)π/βh̄, the summand reduces to−1/ω2
n as n →±∞; the series

is convergent. We may thus introduce the redundant convergence factor eiωn0+ ,
which allows us to evaluate the sum over n using the method of partial fractions,

∞∑
n=−∞

1
(iωn)2 − (ε̄2

k + |�|2
)
/h̄2 =

h̄

2Ek

∞∑
n=−∞

eiωn0+
[

1
iωn − Ek/h̄

− 1
iωn + Ek/h̄

]

= βh̄2

2Ek

(
fEk − f−Ek

)
(12.91)

where fEk =
(
1+ eβEk

)−1 is the Fermi distribution function. In evaluating the
frequency sum we have made use of Eq. (9.14). Since f−E = 1− fE , Eq. (12.90)
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may be written as

U0

2

∑′

k

1− 2fEk

Ek
= 1. (12.92)

Replacing the sum over k by an integral over the energy, we obtain

1
2
U0Dσ (EF )

∫ h̄ωD

−h̄ωD

tanh
(
β
√

ε2 + |�|2/2
)

√
ε2 + |�|2

dε = 1. (12.93)

This is the condition that the gap parameter must satisfy.

12.8 Determination of the transition temperature

The gap consistency condition, specified in Eq. (12.93), can be used to determine
TC , the transition temperature to the superconducting state. At T = 0, the gap
condition reduces to Eq. (12.47). As T increases, the numerator of the integrand
in Eq. (12.93) decreases, and in order to maintain the validity of the equation,
the denominator must also decrease. Hence, �(T ) is a decreasing function of
temperature. At T = TC , the system reverts to the normal state, where the gap
parameter vanishes and Eq. (12.93) reduces to

1 = U0Dσ (EF )
∫ h̄ωD

0
ε−1tanh (ε/2kBTC) dε = U0Dσ (EF )

∫ θ

0
x−1tanhx dx

where θ = h̄ωD/2kBTC . Integrating by parts,

1
U0Dσ (EF )

= lnx tanhx|θ0 −
∫ θ

0
sech2x lnx dx.

For weak coupling, θ � 1; we can then replace tanhθ by 1 and extend the upper
limit of integration to infinity (this is possible because sech2x is a rapidly decreasing
function of x for large x):

1
U0Dσ (EF )

= ln
(

h̄ωD

2kBTC

)
−
∫ ∞

0
sech2x lnx dx.

The integral on the RHS is tabulated; it is equal to ln(π/4)− γ , where γ � 0.577
is Euler’s constant. Therefore

1
U0Dσ (EF )

= ln
(

2h̄ωD

πkBTC

)
+ γ.
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Rearranging terms, we find

kBTC = 2
π

eγ h̄ωD exp
[ −1
U0Dσ (EF )

]

� 1.14h̄ωD exp
[ −1
U0Dσ (EF )

]
. (12.94)

12.9 The Nambu formalism

We now discuss another formalism, introduced by Nambu (Nambu, 1960), that
will be useful when we study the response of a superconductor to a weak magnetic
field. Since we have been using mean field theory, and will continue to do so,
it is convenient to start our analysis from the mean field Hamiltonian given in
Eq. (12.53):

HMF =
∑
kσ

ε̄kc
†
kσ ckσ −

∑
k

�∗
kc−k↓ck↑ −

∑
k

�kc
†
k↑c

†
−k↓ +

∑
k

�k〈c†k↑c†−k↓〉.

We define two new operators

αk =
(

ck↑
c
†
−k↓

)
, α

†
k =

(
c
†
k↑ c−k↓

)
. (12.95)

The Nambu Green’s function is defined by

g̃(k, τ ) = −
〈
T αk(τ )α†

k(0)
〉
. (12.96)

This is a matrix Green’s function,

g̃(k, τ ) = −
〈
T

(
ck↑(τ )
c
†
−k↓(τ )

)(
c
†
k↑(0) c−k↓(0)

)〉

= −
(
〈T ck↑(τ )c†k↑(0)〉 〈T ck↑(τ )c−k↓(0)〉
〈T c

†
−k↓(τ )c†k↑(0)〉 〈T c

†
−k↓(τ )c−k↓(0)〉

)

=
(

g(k↑, τ ) F (k, τ )
F †(k, τ ) −g(−k↓,−τ )

)
. (12.97)

The equation of motion is

∂

∂τ
g̃(k, τ ) = −δ(τ )−

〈
T

∂

∂τ
αk(τ )α†

k(0)
〉
. (12.98)
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The evaluation of the time derivative of the α-operator proceeds as follows:

h̄
∂

∂τ
ck↑(τ ) = [H, ck↑] = −ε̄kck↑(τ )+�kc

†
−k↓(τ ) (12.99)

h̄
∂

∂τ
c
†
−k↓(τ ) = [H, c

†
−k↓] = ε̄kc

†
−k↓(τ )+�∗

kck↑(τ ). (12.100)

In matrix form, these equations are written as

h̄
∂

∂τ

(
ck↑(τ )
c
†
−k↓(τ )

)
=
(−ε̄k �k

�∗
k ε̄k

)(
ck↑(τ )
c
†
−k↓(τ )

)
. (12.101)

Introducing the matrices

σ3 =
(

1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
(12.102)

we can recast Eq. (12.101) into the following form:

h̄
∂

∂τ
αk(τ ) = −ε̄kσ3αk(τ )+ (�kσ+ +�∗

kσ−)αk(τ ). (12.103)

The equation of motion for the Nambu Green’s function now becomes(
h̄

∂

∂τ
+ ε̄kσ3 −�kσ+ −�∗

kσ−

)
g̃(k, τ ) = −h̄δ(τ ). (12.104)

Fourier expanding g̃(k, τ ) = (βh̄)−1∑
n g̃(k, ωn)e−iωnτ , we obtain

g̃(k, ωn) = [iωn − (ε̄k/h̄)σ3 + (�k/h̄)σ+ + (�∗
k/h̄)σ−

]−1
. (12.105)

The matrix inversion is straightforward; the result is

g̃(k, ωn) = iωn + (ε̄k/h̄)σ3 − (�k/h̄)σ+ − (�∗
k/h̄)σ−

(iωn)2 − (ε̄2
k + |�k|2

)
/h̄2 . (12.106)

The Green’s function g(k↑, ωn) is simply g̃11(k, ωn); hence

g(k↑, ωn) = iωn + ε̄k/h̄

(iωn)2 − E2
k/h̄

2 . (12.107)

This is the same expression obtained earlier (see Eq. [12.80]).
It is possible to expand the Nambu Green’s function in a perturbation series and

apply Wick’s theorem. The resulting Feynman diagrams obey essentially the same
rules as do those for Matsubara Green’s function, except that:

1. A single electron line stands for the diagonal Green’s function whose entries are
g0(k ↑, ωn) and −g0(−k ↓,−ωn).

2. The electron–electron Coulomb matrix element carries an extra factor σ3, as
does the electron–phonon interaction matrix element.
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3. For a closed electron loop, the trace is taken over the matrix product of the
matrices that represent the lines that make up the loop.

In the normal state, there is no advantage whatsoever to using the Nambu
formalism instead of the Matsubara method. In the superconducting state, however,
there is an advantage to using the Nambu Green’s function: its perturbation series
is the same as that of the normal state. As a result, the Feynman diagrams that
appear in the expansion of the Nambu propagator are exactly the same diagrams
as those seen in the normal state.

12.10 Response to a weak magnetic field

In this section, we calculate the current that results in a superconductor from the
presence of a weak magnetic field B using linear response theory. The field is
represented by a vector potential A, where B = ∇ × A. In the presence of A, the
current-density operator is (per Problem 3.7)

J(r) = jD(r)+ jP (r). (12.108)

The first term is the diamagnetic current-density operator, while the second term is
the paramagnetic current-density operator,

jD(r, t) = − e2

mc
A(r, t)n(r), jP (r) = ieh̄

2m

∑
σ

[
�†

σ∇�σ −
(
∇�†

σ

)
�σ

]
(12.109)

where n(r) is the number-density operator and �σ (r) and �
†
σ (r) are field operators.

Within linear response theory (first order in A),

〈jD〉(r, t) = − e2

mc
〈n(r, t)〉0A(r, t) = −ne2

mc
A(r, t) (12.110)

where n is the number of electrons per unit volume. Note that since jD is already
proportional to A, the ensemble average of n(r, t) is taken over the unperturbed
system, i.e., over the system in the absence of the vector potential.

To determine 〈jP 〉 in the presence of A, we need to determine H ext, the pertur-
bation which arises from the presence of A; this is given by

H ext(t) = −1
c

∫
jP (r).A(r, t)d3r + e2

2mc2

∫
A2(r, t)n(r)d3r (12.111)
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(see Problem 12.6). In the absence of the vector potential, 〈jP (r, t)〉0 = 0. To first
order in A, 〈jP 〉 is given by Kubo’s formula (see Eq. [6.74])

〈jP
α 〉(r, t) = −

i

h̄

∫ t

−∞
dt ′〈[jP

α,H (r, t), H ext
H (t ′)]〉

= i

h̄c

∫ t

−∞
dt ′
∫

d3r ′
∑

β

〈[jP
α,H (r, t), jP

β,H (r′, t ′)]〉Aβ(r′, t ′) (12.112)

where α, β = x, y, z and jPH is the paramagnetic current-density operator in the
Heisenberg picture. Since both jP and H commute with the number of parti-
cles operator N , jPH = jP

H̄
, where H̄ = H − μN . Fourier transforming 〈J(r, t)〉 =

〈jD〉(r, t)+ 〈jP 〉(r, t), we find

〈Jα(q, ω)〉 = −ne2

mc
Aα(q, ω)− 1

h̄c

∑
β

DR
αβ(qω)Aβ(qω). (12.113)

DR
αβ(q, ω) is the Fourier transform of the retarded current–current correlation func-

tion DR
αβ(q, t),

DR
αβ(q, t) = −iθ (t)(1/V )〈[jP

α (q, t), jP
β (−q, 0)]〉 (12.114)

where θ (t) is the step function and V is the system’s volume. The operators inside
the commutator are modified Heisenberg picture operators.

The retarded function DR
αβ(q, ω) is obtained by analytic continuation from the

corresponding imaginary-time correlation function Dαβ(q, ω), which is the Fourier
transform of

Dαβ (q, τ ) = −(1/V )〈TjPα(q, τ )jPβ (−q, 0)〉. (12.115)

We evaluate the correlation function using Nambu’s formalism. We first need to
express the current-density operator in terms of the Nambu creation and annihilation
operators (the α-operators). The paramagnetic current-density operator is

jP (q) = − eh̄

2m

∑
kσ

(2k+ q)c†kσ ck+qσ

= − eh̄

2m

∑
k

(2k+ q)
[
c
†
k↑ck+q↑ + c

†
k↓ck+q↓

]
(12.116)
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Figure 12.17 Graphical representation of the paramagnetic current-density oper-
ator jP

α (q). The vertex • = − eh̄
2m

(2kα + qα).

(see Problem 3.7). In the last term on the RHS, we make a change of variable:
k →−k− q,

jP (q) = − eh̄

2m

∑
k

(2k+ q)
[
c
†
k↑ck+q↑ − c

†
−k−q↓c−k↓

]

= − eh̄

2m

∑
k

(2k+ q)
[
c
†
k↑ck+q↑ + c−k↓c

†
−k−q↓ − δq,0

]
.

Since
∑

k k = 0, the term containing the Kronecker delta yields zero. The remain-
ing two terms inside the brackets add up to α

†
kαk+q . Therefore,

jP (q) = − eh̄

2m

∑
k

(2k+ q)α†
kαk+q. (12.117)

The α-component of the paramagnetic current, jP
α (q), is represented graphically

in Figure 12.17. Inserting the above expression into Eq. (12.115) we obtain

Dαβ(q, τ ) = −e2h̄2

4m2V

∑
kk′

(2kα + qα)(2k′β − qβ)
〈
T α

†
k(τ )αk+q(τ )α†

k′(0)αk′−q(0)
〉
.

(12.118)
We can evaluate Dαβ(q, τ ) by means of a perturbation expansion followed by the use
of Wick’s theorem. Dαβ(q, τ ) is similar to the dressed pair bubble in the interacting
electron gas which we studied in Chapter 10. Graphically, Dαβ(q, ωm) is given in
Figure 12.18. In evaluating Dαβ(q, ωm) we keep only one pair bubble, as indicated
in Figure 12.18. In this case, k′ = k+ q; it follows that 2k′β − qβ = 2kβ + qβ .
Since we have a closed electron loop, there is an additional factor of −1, and the
trace must be taken over the matrix product. The Feynman rules thus yield the
following expression,

Dαβ(q, ωm) = h̄e2

4m2βV

∑
k,n

(2kα + qα)(2kβ + qβ)T r [g̃(k, ωn)g̃(k+ q, ωm + ωn)] .

(12.119)
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Figure 12.18 Perturbation expansion of Dαβ(q, ωm). In the lowest order, only one
pair bubble is retained. The double lines represent the Nambu matrix Green’s
function.

The frequency summation is best carried out by using the spectral representation
of the matrix Green’s function,

g̃(k, ωn) =
∫ ∞

−∞

Ã(k, ε)
iωn − ε

dε

2π
= −

∫ ∞

−∞

Im G̃R(k, ε)
iωn − ε

dε

π
(12.120)

where Ã(k, ε) = −2Im G̃R(k, ε) is the spectral density function and G̃R(k, ε) is
the retarded matrix Green’s function. Thus

Dαβ(q, ωm) = h̄e2

4m2βV

∑
k,n

(2kα + qα)(2kβ + qβ)
∫ ∞

−∞

dε1

π

∫ ∞

−∞

dε2

π

× T r
[
Im G̃R(k, ε1) Im G̃R(k+ q, ε2)

]
(iωn − ε1)(iωn + iωm − ε2)

. (12.121)

We now carry out the summation over n. Since the series is convergent (as n →∞,
the summand→−1/ω2

n), we introduce the (redundant) eiωn0+ factor,
∞∑

n=−∞

1
(iωn − ε1)(iωn + iωm − ε2)

=
∞∑

n=−∞

eiωn0+

iωm + ε1 − ε2

(
1

iωn − ε1
− 1

iωn + iωm − ε2

)
= βh̄

(
fε1 − fε2

)
iωm + ε1 − ε2

(12.122)

where we used the frequency summation formula (see Eq. [9.14]). Here, fε is the
Fermi distribution function,

fε = (eβh̄ε + 1)−1. (12.123)
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We can thus write

Dαβ(q, ωm) = h̄2e2

4m2V

∑
k,n

(2kα + qα)(2kβ + qβ)
∫ ∞

−∞

dε1

π

∫ ∞

−∞

dε2

π

× fε1 − fε2

iωm + ε1 − ε2
T r
[
Im G̃R(k, ε1) Im G̃R(k+ q, ε2)

]
. (12.124)

The retarded function G̃R(k, ε) = g̃(k, ωn)|iωn→ε+i0+ . The matrix function
g̃(k, ωn), given in Eq. (12.107), can be written as

g̃(k, ωn) = h̄

2Ek

(
1

iωn − Ek/h̄
− 1

iωn + Ek/h̄

)[
iωn + ε̄k/h̄ −�k/h̄

−�∗
k/h̄ iωn − ε̄k/h̄

]
.

(12.125)
Replacing iωn with ε + i0+ and taking the imaginary part, we find

Im G̃R(k, ε) = − πh̄

2Ek
[δ(ε − Ek/h̄)− δ(ε + Ek/h̄)]

[
ε + ε̄k/h̄ −�k/h̄

−�∗
k/h̄ ε − ε̄k/h̄

]
.

(12.126)
To simplify the calculations, we adopt the BCS model, where the electron–electron
interaction is a negative constant in a shell of energy width 2h̄ωD that encloses the
Fermi surface. In this model, �k is a real constant, independent of k. In this case,
a straightforward calculation yields

T r
[
ImG̃R(k, ε1) ImG̃R(k+ q, ε2)

] = π2h̄2 [δ(ε1 − Ek/h̄)− δ(ε1 + Ek/h̄)]

× [δ(ε2 − Ek+q/h̄)− δ(ε2 + Ek+q/h̄)
] ε1ε2 + ε̄kε̄k+q/h̄

2 +�2/h̄2

2EkEk+q
.

We now specify to the case of a static magnetic field: ωm = 0. The Dirac-delta
functions in the above expression for the trace of the matrix product make it
possible to carry out the integrations over ε1 and ε2 in Eq. (12.124). Noting that
f−ε = 1− fε , it is not difficult to show that

Dαβ(q, 0) = h̄3e2

4m2V

∑
k

(2kα + qα)(2kβ + qβ)
[(

1+ ε̄kε̄k+q +�2

EkEk+q

)
fEk − fEk+q

Ek − Ek+q

+
(

1− ε̄kε̄k+q +�2

EkEk+q

)
fEk + fEk+q − 1

Ek + Ek+q

]
. (12.127)

This is still a complicated expression. We restrict ourselves further to the case of a
uniform magnetic field: q → 0. In this case,

ε̄k+q → ε̄k , Ek+q → Ek , ε̄kε̄k+q +�2 → E2
k ,

fEk − fEk+q

Ek − Ek+q
→ ∂fEk

∂Ek
.
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The correlation function reduces to

Dαβ(q → 0, ωm = 0) → h̄3e2

4m2V

∑
k

4kαkβ

[
(1+ 1)

∂f

∂Ek
+ 0

]

= 2h̄3e2

m2V

∑
k

kαkβ

∂fEk

∂Ek
.

For α 
= β, the sum over k yields zero since E−k = Ek and fE−k = fEk . Therefore,

DR
αβ(q = 0, ωm = 0) = Dαβ(q = 0, ωm = 0) = 2h̄3e2

m2V
δαβ

∑
k

k2
α

∂fEk

∂Ek

= 2h̄3e2

3m2V
δαβ

∑
k

k2 ∂fEk

∂Ek
.

The current density is thus given by

〈Jα〉 = −ne2

mc
Aα − 2h̄2e2

3m2cV

∑
k

k2 ∂fEk

∂Ek
Aα.

We can rewrite this expression as follows:

〈J〉 = −nse
2

mc
A (12.128)

where

ns = n+ 2h̄2

3mV

∑
k

k2 ∂fEk

∂Ek
(12.129)

is interpreted as the density of superconducting electrons. Taking the curl of both
sides of Eq. (12.128) yields the London equation, which results in a Meissner effect
as long as ns 
= 0, as shown in Section 12.2.

At T = 0, ∂fEk/∂Ek = −δ(Ek) = −δ

(√
ε̄2

k +�2

)
= 0 since �2 > 0. In this

case, ns = n and the Meissner effect exists. As T increases from zero, ns decreases,
and at T = TC , � = 0 and Ek = ε̄k. Since TC is small, we assume that at TC the
electrons occupy all states below the Fermi energy EF ; in this case, ∂fEk/∂Ek =
∂f/∂ε̄k = −δ(ε̄k) = −δ(εk − EF ). Assuming that εk = h̄2k2/2m, then at T = TC

ns = n− 4
3V

∑
k

εk δ(εk − EF ) = n− 2
3V

∑
kσ

EF δ(εk − EF )

= n− 2
3
EF d(EF ) (12.130)



12.11 Infinite conductivity 325

where d(EF ) is the density of states, per unit volume, at the Fermi energy. A simple
calculation of d(EF ) shows that d(EF ) = 3n/2EF ; hence at T = TC , ns = 0, and
the Meissner effect disappears.

12.11 Infinite conductivity

If a superconductor is part of an electric circuit through which a current flows,
the voltage drop across the superconductor will be zero because of its infinite
conductivity (or zero resistivity). This means that the average electric field inside
a superconductor must be zero. Alternatively, we can say that the electric field in
a perfect conductor produces a current that increases with time; the circuit will
achieve a steady state only when the electric field inside the perfect conductor is
zero.

To test whether the BCS theory predicts infinite conductivity, we consider the
response of the superconductor to a uniform (constant in space) steady (constant in
time) electric field. The simplest approach is to consider a sinusoidal field and take
the limit as the frequency tends to zero. We thus consider a field E(q = 0, ω) =
E(ω). Since E(t) = −(1/c)∂A/∂t , the corresponding vector potential is such that
E(q = 0, ω) = (iω/c)A(q = 0, ω). In evaluating the current (see Eq. [12.113]), we
should first take the limit q → 0 followed by the limit ω → 0,

lim
ω→0

〈Jα(0, ω)〉 = −ne2

mc
lim
ω→0

Aα(0, ω)− 1
h̄c

∑
β

lim
ω→0

lim
q→0

DR
αβ(q, ω)Aβ(0, ω).

(12.131)
In studying the Meissner effect, the limits were taken in reverse order: first ω → 0,
then q → 0. It turns out that DR

αβ(0, 0) does not depend on the order in which the
limits are taken, and we arrive at essentially the same result as in the previous
section:

lim
ω→0

〈Jα(q = 0, ω)〉 = −nse
2

mc
lim
ω→0

Aα(0, ω) = lim
ω→0

inse
2

mω
Eα(0, ω). (12.132)

This means that for a slowly varying electric field (ω → 0)

∂J
∂t
= nse

2

m
E(t). (12.133)

This is precisely the equation for current density in a system containing ns free
electrons that are not subjected to any damping (J = −nsev ⇒ ∂J/∂t = −nsea =
nse

2E/m). The equation clearly shows that as long as ns 
= 0, a steady uniform
electric field produces a current that increases with time; this is the signature of a
perfect conductor.



326 Superconductivity
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Problems

12.1 The operator S. Show that S, given in Eq. (12.18), satisfies Eq. (12.15).

12.2 Ground state energy. Verify Eq. (12.37) for the ground state energy of a
superconductor.

12.3 The anomalous Green’s function. Derive Eq. (12.76), the equation of motion
for F †(k, τ ).

12.4 Dirac-delta function. In writing (12.78), we used the following equation:

δ(τ ) = 1
βh̄

n=∞∑
n=−∞

e−iωnτ ωn = (2n+ 1)π/βh̄.

Verify this equation. Hint: use the frequency sum formula (Eq. [9.14]) and
its complex conjugate. Also note that fε̄k=0 = 1/2.

12.5 Equation of motion. Starting from the mean field Hamiltonian, as given in
Eq. (12.53), show that the equations of motion for g and F † are given by
Eqs (12.74) and (12.76).

12.6 Perturbation due to an electromagnetic field. In the presence of a vector
potential A, the kinetic energy portion of the Hamiltonian is obtained by the
replacement p → p+ eA/c. Hence,

T =
∑

σ

∫
�†

σ (r)(−ih̄∇ + eA/c)2�σ (r)d3r.

Show that T = TA=0 +H ext, where H ext is given by Eq. (12.111).

12.7 Dαβ(q, 0). Verify the validity of Eq. (12.127).
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12.8 Pair fluctuations in the ground state. Define the operator χ by

χ = 1
V

∑
k

c−k↓ck↑

where V is the volume of the superconducting system. Define 〈χ〉 to be
equal to 〈�0|χ |�0〉, where |�0〉 is the BCS ground state. Show that, as
V →∞, 〈χ2〉 − 〈χ〉2 vanishes.

12.9 Superconductor in a magnetic field. In the presence of a magnetic field
described by the vector potential A(r), the superconducting system is not
translationally invariant. The various Green’s functions of the superconduc-
tor are

g(r↑τ, r′ ↑τ ′)=−〈T �↑(rτ )�†
↑(r′τ ′)〉, F (rτ, r′ τ ′)=−〈T �↑(rτ )�↓(r′ τ ′)〉,

and F †(rτ, r′τ ′) = −〈T �
†
↓(rτ )�†

↑(r′τ ′)〉. The Hamiltonian is

H̄ =
∑

σ

∫
d3r�†

σ (r)

{
1

2m

[
−ih̄∇ + eA(r)

c

]2

− μ

}
�σ (r)

− U0

∫
d3r�

†
↑(r)�†

↓(r)�↓(r)�↑(r).

The gap function is given by �(r) = U0F (rτ+, rτ ).
(a) Show that{

ih̄ωn + h̄2

2m

[
∇ + ieA(r)

h̄c

]2

+ μ

}
g(r, r′, ωn)+�(r)F †(r, r′, ωn)

= h̄δ(r− r′)

{
−ih̄ωn+ h̄2

2m

[
∇− ieA(r)

h̄c

]2

+μ

}
F †(r, r′, ωn)−�∗(r)g(r, r′, ωn) = 0

where �∗(r) = U0F †(rτ+, rτ ) = (U0/βh̄)
∑

n F †(r, r, ωn).
(b) Let g̃0(r, r′, ωn) be the temperature Green’s function of the metal in the

normal state in the presence of the vector potential A(r). The equation
for g̃0(r, r′, ωn) is obtained from the above equation for g(r, r′, ωn) by
setting �(r) equal to zero. Show that

g(r, r′, ωn) = g̃0(r, r′, ωn)− 1
h̄

∫
d3lg̃0(r, l, ωn)�(l)F †(l, r′, ωn)

F †(r, r′, ωn) = 1
h̄

∫
d3lg̃0(l, r,−ωn)g(l, r′, ωn)�∗(l).
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(c) As the magnetic field approaches the critical field, � → 0 and g → g̃0.
Show that, in this limit,

�∗(r)= U0

βh̄2

∑
n

∫
d3l g0(l, r,−ωn)g0(l,r, ωn)exp

(
2ie

h̄c

∫ r

l
A(s).ds

)
�∗(l)

where g0(l, r, ωn) = g0(l− r, ωn) is the temperature Green’s function
in the normal state in the absence of a magnetic field.

12.10 Two-band model of superconductivity. Consider a metal where two differ-
ent energy bands cross the Fermi surface. For example, when graphite is
intercalated with alkali atoms, such as K or Rb, partial charge transfer from
the alkali atoms to the graphite planes takes place. This results in a Fermi
surface which has two components: an almost two-dimensional graphite
π band at the zone edge, and an approximately spherical s band (associ-
ated with alkali-metal-derived orbitals) centered at the Brillouin zone center
(Dresselhaus and Dresselhaus, 1981). Let us consider a model in which
superconductivity in such compounds is due to a coupling between the s

and π bands. The model Hamiltonian is

H̄ =
∑
kσ

ε̄kc
†
kσ ckσ +

∑
pσ

ξ̄pb
†
pσ bpσ − U0

∑
kp

(
b
†
p↑b

†
−p↓c−k↓ck↑ + H.C.

)

where c
†
kσ (ckσ ) creates (annihilates) an electron, in the s band, of wave

vector k and spin projection σ , b
†
pσ (bpσ ) creates (annihilates) an electron,

in the π band, of wave vector p and spin projection σ , ε̄k = εk − μ is the
energy of an electron in the s band, measured from the chemical potential,
ξ̄p is the corresponding energy of an electron in the π band, and H.C.
stands for “hermitian conjugate.” The constant U0 is nonvanishing only if
−h̄ωD < ε̄k, ξ̄p < h̄ωD, where h̄ωD is a cutoff energy. For the s band, the
relevant Green’s functions are

gs(k↑, τ ) = −〈T ck↑(τ )c†k↑(0)〉, F †
s (k, τ ) = −〈T c

†
−k↓(τ )c†k↑(0)〉

and for the π band

gπ (p↑, τ ) = −〈T bp↑(τ )b†p↑(0)〉, F †
π (p, τ ) = −〈T b

†
−p↓(τ )b†p↑(0)〉.

The gap parameters are given by

�∗
s = U0

∑
k

F †
s (k, 0−), �∗

π = U0

∑
p

F †
π (p, 0−).
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(a) Show that

gs(k↑, ωn)= −h̄(ih̄ωn + ε̄k)
h̄2ω2

n + ε̄2
k + |�π |2

, gπ (p↑, ωn)= −h̄(ih̄ωn + ξ̄p)
h̄2ω2

n + ξ̄ 2
p + |�s|2

.

(b) Show that

�∗
s = U0kBT

∑
kn

�∗
π

h̄2ω2
n + ε̄2

k + |�π |2

�∗
π = U0kBT

∑
pn

�∗
s

h̄2ω2
n + ξ̄ 2

p + |�π |2
.

(c) Show that the superconducting critical temperature is given by

kBTC � 1.14h̄ωD exp
( −1

U0
√

Dσs(0)Dσπ (0)

)

where Dσs(0) and Dσπ (0) are, respectively, the densities of states per
spin orientation, at the Fermi energy, of the s and π bands.

(d) In the presence of a magnetic field described by the vector potential
A(r),

H =
∑
σ

∫
d3r�†

sσ (r)

[
1

2ms

(
−ih̄∇ + eA(r)

c

)2

− μ

]
�sσ (r)

+
∑

σ

∫
d3r�†

πσ (r)

[
1

2mπ

(
−ih̄∇ + eA(r)

c

)2

− μ

]
�πσ (r)

−U0

[∫
d3r�

†
π↑(r)�†

π↓(r)�s↓(r)�s↑(r)+ H.C.
]

where ms (mπ ) is the effective mass of an electron in the s (π ) band. gs

and F
†
s are now given by

gs(r ↑ τ, r′ ↑ τ ′) = −〈T �s↑(rτ )�†
s↑(r′τ ′)〉

F †
s (rτ, r′τ ′) = −〈T �

†
s↓(rτ )�†

s↑(r′τ ′)〉.

gπ and F
†
π are similarly defined. The gap functions are now given by

�∗
s (r) = U0

βh̄

∑
n

eiωn0+F †
s (r, r, ωn), �∗

π (r) = U0

βh̄

∑
n

eiωn0+F †
π (r, r, ωn).



330 Superconductivity

Show that, as the magnetic field approaches the critical field, the gap
functions satisfy the following equations:

�∗
s (r)= U0

βh̄2

∑
n

∫
d3l g0

s (l, r,−ωn)g0
s (l, r, ωn)exp

(
2ie

h̄c

∫ r

l
A(s).ds

)
�∗

π (l)

�∗
π (r)= U0

βh̄2

∑
n

∫
d3l g0

π (l, r,−ωn)g0
π (l, r, ωn)exp

(
2ie

h̄c

∫ r

l
A(s).ds

)
�∗

s (l)

where g0
i (i = s, π ) is Green’s function of an electron in band i in the

normal state in the absence of a magnetic field. These equations can be
used to determine the upper critical field Hc2 in a type-II superconductor
that is described by a two-band model (Jishi et al., 1991; Jishi and
Dresselhaus, 1992).



13
Nonequilibrium Green’s function

Back and forth, without a moment’s rest,
An endless flow
To where the field shall lead:
No more, no less

13.1 Introduction

Thus far, we have studied systems in equilibrium. In Chapter 8 we developed a
perturbation expansion for the imaginary-time Green’s function which was made
possible by the similarity between exp(−βH̄ ), which occurs in the statistical oper-
ator, and the time evolution operator exp(−iH̄ t/h̄). Such similarities do not always
fortuitously occur, however. A perturbation expansion is possible for the real-time
causal Green’s function at zero temperature, but not at finite temperature.

What approach can we use when a system is driven out of equilibrium by,
for example, a time-dependent perturbation that is switched on at time t0? In
Chapter 6, we developed a method that gave a system’s response to first order in
the perturbation (linear response). That method, however, is incapable of dealing
with the general case of nonlinear response. Moreover, when the Hamiltonian is
time-dependent, the time evolution operator is no longer exp(−iH t/h̄), and the
Matsubara technique becomes inadequate.

We should point out that it is not necessary for a perturbation to be time-
dependent to drive a system out of equilibrium. Consider the following example,
depicted in Figure 13.1. Two metallic leads and a quantum dot (a nanostructure,
for example) are initially separated. The left lead, the right lead, and the dot are
initially in equilibrium, with each part having its own chemical potential. Assume
that μL > μR . The Hamiltonian for the system is the sum of the Hamiltonians for
the leads and the dot. At time t0, the dot and the leads are brought into contact,
and a coupling between the dot and the leads is established. As a result, current

331
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Figure 13.1 A system driven out of equilibrium. (a) A three-component system
consisting of two metallic leads (left and right) and a central quantum dot. The
components are separated and each is in equilibrium. (b) The leads and the dot are
brought into contact, and a coupling is established between the leads and the dot.
The coupling causes a current to flow, driving the system out of equilibrium.

begins to flow, resulting in the dot now being out of equilibrium. In this case,
the perturbation is the coupling between the dot and the leads; apart from being
switched on at time t0, the perturbation is time-independent. The techniques we
used earlier employing Green’s function for systems in equilibrium cannot deal
with this situation; for example, the equilibrium methods cannot give the current
through the quantum dot.

To develop a method applicable to systems out of equilibrium, it is helpful to
understand why the equilibrium methods fail. Toward this end, we take a closer
look at the real-time causal Green’s function. Before doing so, however, we discuss
the Schrödinger, Heisenberg, and interaction pictures of quantum mechanics, in
the general case where the Hamiltonian is time-dependent. These pictures were
described earlier for a time-independent Hamiltonian.

13.2 Schrödinger, Heisenberg, and interaction pictures

We consider a many-particle system whose Hamiltonian is

H(t) = H0 + V +Hext(t) = H0 +H ′(t). (13.1)

H0 is the Hamiltonian for the noninteracting system, V is the interaction among
the particles, and Hext(t) is a (possibly) time-dependent potential.

13.2.1 The Schrödinger picture

In the Schrödinger picture, the usual picture of quantum mechanics, time depen-
dence resides in the state |ψS(t)〉, which evolves in time according to the
Schrödinger equation

ih̄
∂

∂t
|ψS(t)〉 = H(t)|ψS(t)〉. (13.2)
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On the other hand, dynamical variables are represented by hermitian operators that
have no explicit time dependence. Given the state |ψS(t0)〉 at some initial time t0,
the state at time t is given by

|ψS(t)〉 = U (t, t0)|ψS(t0)〉 (13.3)

where U (t, t0) is an evolution operator; it satisfies the equation

ih̄
∂

∂t
U (t, t0) = H(t)U (t, t0). (13.4)

This differential equation for U (t, t0), along with the boundary condition
U (t0, t0) = 1, can be converted into an integral equation,

U (t, t0) = 1− i

h̄

∫ t

t0

dt1H(t1)U (t1, t0). (13.5)

The integral equation is solved by iteration. Exactly as we did in Chapter 8, we can
write for t > t0,

U (t, t0) =
∞∑

n=0

(−i

h̄

)n 1
n!

∫ t

t0

dt1 . . .

∫ t

t0

dtnT [H(t1) . . .H(tn)]

≡ T exp
[−i

h̄

∫ t

t0

dt ′H(t ′)
]

, t > t0 (13.6)

where T is the time-ordering operator which orders operators with increasing time
arguments from right to left. For t < t0, it is possible to show that

U (t, t0) = T̃ exp
[−i

h̄

∫ t

t0

dt ′H(t ′)
]

t < t0. (13.7)

T̃ is the antitime-ordering operator: it orders operators with increasing time argu-
ments from left to right. It is not difficult to prove the following:

U (t, t) = 1 (13.8a)

U †(t, t0) = U−1(t, t0) = U (t0, t) (13.8b)

U (t, t ′′)U (t ′′, t ′) = U (t, t ′). (13.8c)

The average value in a pure quantum state of an observable represented by the
operator A varies with time according to

〈A〉(t) = 〈ψS(t)|AS |ψS(t)〉 (13.9)

where AS is the operator A in the Schrödinger picture. More generally, the system
may be in a statistical mixture of states, where we may have only limited information
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about the system; for example, we may know only its volume, temperature, and
chemical potential. Then

〈A〉(t) =
∑

n

pn〈ψnS
(t)|AS|ψnS

(t)〉 (13.10)

where pn is the probability of state |ψn〉 occurring in the ensemble. An equivalent
expression for the ensemble average is

〈A〉(t) = T r [ρS(t)AS] (13.11)

where ρS(t) is the statistical operator in the Schrödinger picture,

ρS(t) =
∑

n

pn|ψnS
(t)〉〈ψnS

(t)|. (13.12)

The statistical operator is time-dependent, due to the explicit time dependence of
the states. From the Schrödinger equation and its complex conjugate, it follows
that

ih̄
∂

∂t
ρS(t) = [H(t), ρS(t)]. (13.13)

This is the quantum Liouville equation; its solution, easily verified, is

ρS(t) = U (t, t0)ρS(t0)U †(t, t0). (13.14)

13.2.2 The Heisenberg picture

In contrast to the Schrödinger picture, states in the Heisenberg picture are time-
independent, while operators are time-dependent. By definition, the two pictures
agree at some time t0 that can be chosen at will,

|ψH〉 = |ψS(t0)〉, AH(t0) = AS(t0). (13.15)

The expectation value of an operator, a measurable quantity, must be the same in
both pictures:

〈ψH|AH(t)|ψH〉 = 〈ψS(t)|AS|ψS(t)〉 = 〈ψS(t0)|U †(t, t0)ASU (t, t0)|ψS(t0)〉
= 〈ψH|U †(t, t0)ASU (t, t0)|ψH〉.

We thus conclude that

AH(t) = U †(t, t0)AS U (t, t0). (13.16)
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The equation of motion of the Heisenberg operator is obtained by differentiating
both sides of the above equation,

ih̄
d

dt
AH(t) = [AH(t),HH(t)] (13.17)

where

HH(t) = U †(t, t0)H(t)U (t, t0). (13.18)

The statistical operator in the Heisenberg picture is given by

ρH = U †(t, t0)ρS(t)U (t, t0) = U †(t, t0)U (t, t0)ρ(t0)U †(t, t0)U (t, t0) = ρ(t0).
(13.19)

The statistical operator is time-independent in the Heisenberg picture. In a way, the
statistical operator is unusual: as opposed to other operators, it is time-dependent
in the Schrödinger picture and time-independent in the Heisenberg picture. In a
system with a statistical mixture of states,

〈A(t)〉 = Tr[ρHAH(t)] = T r[ρ(t0)AH(t)]. (13.20)

13.2.3 The interaction picture

The interaction picture is intermediate between the Schrödinger and Heisenberg
pictures. In the interaction picture, states and operators are related to those in the
Schrödinger picture as follows:

|ψI (t)〉 = eiH0(t−t0)/h̄|ψS(t)〉, Â(t) = eiH0(t−t0)/h̄ASe
−iH0(t−t0)/h̄. (13.21)

The caret or “hat” above an operator identifies it as an interaction picture operator.
The three pictures coincide at t = t0,

|ψS(t0)〉 = |ψH〉 = |ψI (t0)〉, AS = AH(t0) = Â(t0). (13.22)

It is straightforward to show that

ih̄
d

dt
Â(t) = [Â(t), H0], ih̄

∂

∂t
|ψI (t)〉 = Ĥ ′(t)|ψI (t)〉. (13.23)

The time evolution of the state |ψI (t)〉 is similar to that of |ψS(t)〉, except that Ĥ ′(t)
appears in place of H(t); hence,

|ψI (t)〉 = S(t, t0)|ψI (t0)〉 (13.24)

S(t, t0) =

⎧⎪⎨
⎪⎩

T exp
[
−i
h̄

∫ t

t0
Ĥ ′(t ′)dt ′

]
t > t0

T̃ exp
[
−i
h̄

∫ t

t0
Ĥ ′(t ′)dt ′

]
t < t0.

(13.25)
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Table 13.1 Relations between the three pictures of quantum
mechanics. The Hamiltonian is H(t) = H0 +H ′(t). At t = t0, the
three pictures coincide.

Schrödinger Heisenberg Interaction

|ψ〉 U (t, t0)|ψS(t0)〉 |ψH(t0)〉 S(t, t0)|ψI (t0)〉
A AS U †(t, t0)ASU (t, t0) eiH0(t−t0)/h̄ASe

−iH0(t−t0)/h̄

ρ U (t, t0)ρ(t0)U †(t, t0) ρ(t0) S(t, t0)ρ(t0)S†(t, t0)

The S-matrix, or scattering matrix, satisfies the following relations

S(t, t) = 1, S†(t, t0) = S−1(t, t0) = S(t0, t), S(t, t ′′)S(t ′′, t ′) = S(t, t ′).
(13.26)

A relation between S(t, t0) and U (t, t0) can be derived. For an arbitrary |ψI 〉,
S(t, t0)|ψI (t0)〉 = |ψI (t)〉 = eiH0(t−t0)/h̄|ψS(t)〉 = eiH0(t−t0)/h̄U (t, t0)|ψS(t0)〉

= eiH0(t−t0)/h̄U (t, t0)|ψI (t0)〉
=⇒ S(t, t0) = eiH0(t−t0)/h̄U (t, t0). (13.27)

In the interaction picture, the statistical operator is given by

ρ̂(t)=
∑

n

pn|ψnI
(t)〉〈ψnI

(t)| =
∑

n

pne
iH0(t−t0)/h̄|ψnS

(t)〉〈ψnS
(t)|e−iH0(t−t0)/h̄

=
∑

n

pne
iH0(t−t0)/h̄U (t, t0)|ψnS

(t0)〉〈ψnS
(t0)|U †(t, t0)e−iH0(t−t0)/h̄.

We thus find

ρ̂(t) = S(t, t0)ρ̂(t0)S†(t, t0). (13.28)

Finally, we relate operators in the Heisenberg and interaction pictures:

AH(t) = U †(t, t0)ASU (t, t0) = U †(t, t0)e−iH0(t−t0)/h̄Â(t)eiH0(t−t0)/h̄U (t, t0).

Using Eq. (13.27), we find

AH(t) = S†(t, t0)Â(t)S(t, t0). (13.29)

Table 13.1 provides a summary of the three pictures of quantum mechanics.

13.3 The malady and the remedy

We have stated that a perturbation expansion for the real-time Green’s function
is not feasible for a system at finite temperature, or for a system that is not in
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equilibrium. It is instructive to see exactly why such an expansion fails; this will
point the way to the construction of a Green’s function that is more appropriate for
the study of systems that are not in equilibrium.

Let us consider a system of interacting particles with a Hamiltonian

H = H0 + V.

At time t = t0, a (possibly) time-dependent perturbation Hext(t) is applied. The
Hamiltonian is now given by

H = H +Hext(t) = H0 + V +Hext(t) ≡ H0 +H ′(t)

where Hext(t < t0) = 0.
We now take a closer look at the real-time causal Green’s function G(1, 1′) ≡

G(rσ t, r′σ ′t ′) defined by

G(1, 1′) = −i〈T [ψH(1)ψ†
H(1′)]〉 (13.30)

where T is the time ordering operator; ψH(1) is the field operator (in the Heisenberg
picture) which annihilates a particle of spin projection σ at position r and time t ;
ψ

†
H(1′) creates a particle, at time t ′, of coordinates (r′σ ′); and 〈. . . 〉 stands for a

grand canonical ensemble average,

〈· · · 〉 = T r[ρ(t0) · · · ]
T r[ρ(t0)]

.

In writing the ensemble average, we used the fact that the statistical operator is
time-independent in the Heisenberg picture. Using Eqs (13.26) and (13.29), we can
write

T
[
ψH(1)ψ†

H(1′)
]
= θ (t − t ′)S†(t, t0)ψ̂(1)S(t, t ′)ψ̂†(1′)S(t ′, t0)

± θ (t ′ − t)S†(t ′, t0)ψ̂†(1′)S(t ′, t)ψ̂(1)S(t, t0).

The lower (upper) sign refers to fermions (bosons), and θ (t − t ′) is the step function:
θ (t − t ′) = 1 (0) if t > t ′ (t < t ′). Using S†(t, t0) = S(t0, t), the above relation may
be written in a more compact form:

T
[
ψH(1)ψ†

H(1′)
]
= S(t0, tm)T [S(tm, t0)ψ̂(1)ψ̂†(1′)]

where tm = max(t, t ′). We have used the fact that, under time ordering, S-operators
commute with field operators, since fermion operators come in pairs in the
S-operator. Green’s function is thus given by

iG(1, 1′) =
〈
S(t0, tm)T [S(tm, t0)ψ̂(1)ψ̂†(1′)]

〉
. (13.31)
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Multiplying by S(tm,∞)S(∞, tm) = 1 after S(t0, tm) in Eq. (13.31), and moving
S(∞, tm) inside the time-ordered product (this is allowed because S(∞, tm) is an
expansion in time-ordered products of operators and all the times in S(∞, tm) occur
later than the times inside the T -product), we obtain

iG(1, 1′) =
〈
S(t0,∞)T [S(∞, t0)ψ̂(1)ψ̂†(1′)]

〉
. (13.32)

Thus far, our treatment is applicable whether or not the system is in equilibrium,
and whether its temperature is zero or finite. We now consider a system in equilib-
rium (Hext = 0, H = H0 + V ) at zero temperature. The ensemble average reduces
to an average over the interacting ground state (in the Heisenberg picture):

iG(1, 1′) =
〈
ψ0H

∣∣∣S(t0,∞)T [S(∞, t0)ψ̂(1)ψ̂†(1′)]
∣∣∣ψ0H

〉
. (13.33)

Since the pictures coincide at t = t0, we may replace |ψ0H
〉 with |ψ0I

(t0)〉. The
difficulty in the above expression arises because the ground state of the interacting
system is unknown. Is there a way to express Green’s function in terms of the
noninteracting ground state? To accomplish this, we invoke the mathematical trick
of switching the interaction on and off adiabatically: we assume that V is turned
on and off with infinite slowness:

V (t) = e−ε|t−t0|V (13.34)

where ε is a small positive number that is eventually set equal to zero. In the
remote past and in the distant future, the particles are noninteracting. At t = −∞
the interaction is slowly turned on, and it attains its full strength at t = t0. The
noninteracting ground state |ψ0I

(−∞)〉 evolves adiabatically to the interacting
ground state at t = t0:

|ψ0H
〉 = |ψ0I

(t0)〉 = Sε(t0 ,−∞)|ψ0I
(−∞)〉. (13.35)

Here, Sε is the evolution operator determined by V (t) in Eq. (13.34). Putting this
into Eq. (13.33) and using Eq. (13.26), we obtain

iG(1, 1′) =
〈
ψ0I

(∞)|T [Sε(∞,−∞)ψ̂(1)ψ̂†(1′)]|ψ0I
(−∞)

〉
. (13.36)

The state |ψ0I
(∞)〉 = Sε(∞,−∞)|ψ0I

(−∞)〉 is the state obtained from the nonin-
teracting ground state in the remote past by adiabatic evolution to the distant future,
where the system is also noninteracting; hence, both |ψ0I

(−∞)〉 and |ψ0I
(∞)〉 are

ground states of H0. Since the ground state is nondegenerate, these two states can
only differ by a phase factor,

|ψ0I
(∞)〉 = eiφ |ψ0I

(−∞)〉

eiφ = 〈ψ0I
(−∞)|ψ0I

(∞)〉 = 〈ψ0I
(−∞)|Sε(∞,−∞)|ψ0I

(−∞)〉.
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Writing |ψ0I
(−∞)〉 ≡ |�0〉, Green’s function may be written as

iG(1, 1′) = 〈�0|T [Sε(∞,−∞)ψ̂(1)ψ̂†(1′)]|�0〉
〈�0|Sε(∞,−∞)|�0〉 .

Finally, we take the limit ε → 0. The existence of the above expression in this
limit is assured by a theorem to that effect (Gell-Mann and Low, 1951). The final
expression for the causal Green’s function for a system in equilibrium at zero
temperature is thus

iG(1, 1′) = 〈�0|T [S(∞,−∞)ψ̂(1)ψ̂†(1′)]|�0〉
〈�0|S(∞,−∞)|�0〉 . (13.37)

This form of Green’s function allows for a perturbation expansion, which in turn
gives rise, through the application of Wick’s theorem (applicable because the
average is over the noninteracting system), to a series of connected Feynman
diagrams.

We have shown that all is well in equilibrium at zero temperature. The cru-
cial property used in arriving at the above expression is that the ground state is
nondegenerate; consequently, states in the remote past and distant future coincide.
At finite temperature, however, an ensemble average is taken over all states. The
excited states of a many-particle system are generally degenerate, and the argument
we developed above will break down. In nonequilibrium, even at zero temperature,
the state at t = ∞ is not simply related to the ground state at t = −∞. For exam-
ple, a time-dependent perturbation would pump energy into the system, causing
transitions to excited states; even after the perturbation was turned off, the system
would not necessarily revert to the ground state. As another example, if we were
to couple two different metals by bringing them into contact with a thin insulating
layer, electrons would flow from the metal with the higher chemical potential to
the other metal. If the coupling was then turned off (by separating the metals),
the new ground state would not be the same as the initial one; the two metals
would no longer be charge-neutral. We are stuck with the term S(t0,∞) outside
the time-ordered product in Eq. (13.32). Thus, a perturbation expansion for the
real-time causal Green’s function is not valid if the system is at finite temperature
and/or out of equilibrium. In equilibrium at finite temperature, going to imaginary
time produces a Green’s function (Matsubara function) that admits a perturbation
expansion, but this approach is futile in the case of nonequilibrium.

How should we proceed when a system is out of equilibrium? For a clue, we go
back to Eqs (13.31) and (13.32); these equations hold in a general nonequilibrium
setting. Using Eq. (13.25), we can write

iG(1, 1′) =
〈
T̃
[
e−

i
h̄

∫ t0
tm

Ĥ ′(t1)dt1
]
T
[
e
− i

h̄

∫ tm
t0

Ĥ ′(t1)dt1ψ̂(1)ψ̂†(1′)
]〉

. (13.38)
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Figure 13.2 C = −→C ∪←−C . The contour runs along the real-time axis from t0 to
max(t, t ′), as in (a), or to∞, as in (b), and back along the real-time axis to t0. For
the sake of clarity,

−→
C and

←−
C are drawn above and below the real-time axis.

We can bring this expression into some formal similarity with the expression used
for states in equilibrium by proceeding as follows. We introduce a contour-ordering
operator TC , along a contour C which consists of two parts:

−→
C from t0 to tm (or

∞, if we start from Eq. [3.32]) and
←−
C from tm (or ∞) to t0, as depicted in Figure

13.2. The contour-ordering operator is defined by

TC[A(τ )B(τ ′)] =
⎧⎨
⎩A(τ )B(τ ′) τ

C
> τ ′

±B(τ ′)A(τ ) τ ′
C
> τ

(13.39)

where the lower (upper) sign refers to fermions (bosons), and the time along the

contour is denoted by τ . The statement τ
C
> τ ′ means that τ lies further along the

contour than τ ′, regardless of the numerical values of τ and τ ′. Thus, ordering along−→
C corresponds to normal-time ordering, whereas ordering along

←−
C corresponds

to antitime ordering:

T−→
C
= T , T←−

C
= T̃ .

We may rewrite Eq. (13.38) as

iG(1, 1′) =
〈
T←−

C

[
e−

i
h̄

∫
←−
C

Ĥ ′(τ1)dτ1

]
T−→

C

[
e−

i
h̄

∫
−→
C

Ĥ ′(τ1)dτ1ψ̂(1)ψ̂†(1′)
]〉

=
〈
TC

[
e−

i
h̄

∫
C

Ĥ ′(τ1)dτ1ψ̂(rστ )ψ̂†(r′σ ′τ ′)
]〉

, τ, τ ′ ∈ −→C . (13.40)

All operators are now under contour ordering. The above expression is simply
Eq. (13.32) rewritten. Equation (13.32) does not give a perturbation expansion
for G(1, 1′), so Eq. (13.40) does not either. However, the form of G(1, 1′) in
Eq. (13.40) suggests a generalization: rather than restricting τ and τ ′ and tying
them to

−→
C , they can be freed so as to lie anywhere on the contour C. This step, as

it turns out, produces a Green’s function that admits a perturbation expansion, one
that is relevant for systems that are out of equilibrium.
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X X

X X
X

X

Figure 13.3 The contour C consists of a forward part (
−→
C ) and a backward part

(
←−
C ). Both lie along the real-time axis but are shown displaced from it for the sake

of clarity. τ and τ ′ are the locations of t and t ′ on the contour. In (a) both t and t ′

are on the forward part
−→
C , while in (b) they are both on the backward part

←−
C . In

(c), t ∈ ←−C , t ′ ∈ −→C . Note that while t < t ′ on the real-time axis in this figure, as

contour times τ
C
> τ ′ in (b) and (c), while τ

C
< τ ′ in (a).

13.4 Contour-ordered Green’s function

We define the contour-ordered Green’s function by

Gc(rστ, r′σ ′τ ′) = −i〈TC ψH(rστ )ψ†
H(r′σ ′τ ′)〉, τ, τ ′ ∈ C. (13.41)

TC is the contour-time-ordering operator which places operators with time argu-
ments that are further along the contour on the left. The contour C starts at t0,
goes to tm = max(t, t ′) or to any point beyond tm on the real-time axis, and goes
back to t0, passing through t and t ′ exactly once, as shown in Figure 13.3. The
contour may pass through t along the forward path or along the backward path;
ditto for t ′. The ensemble average is over operators in the Heisenberg picture; here
the statistical operator is time-independent: ρ(t) = ρ(t0), where t0 is the time when
the external field is switched on. For times prior to t0, the system is assumed to be
in equilibrium; hence, the contour-ordered Green’s function is given by

Gc(1, 1′) =
−i T r

[
e−β(H−μN)TC ψH(1)ψ†

H(1′)
]

T r [e−β(H−μN)]
(13.42)

where H = H0 + V is the Hamiltonian for the interacting system in the absence
of an external field, (1) = (rστ ), and (1′) = (r′σ ′τ ′). Since the contour C is the
union of two segments,

−→
C and

←−
C , there are four possible outcomes depending on

the locations of t and t ′ on the contour:

1. t, t ′ ∈ −→C ; we saw in the previous section that in this case Gc(1, 1′) coincides
with the causal (time-ordered) Green’s function GT (1, 1′).

2. t ∈ −→C , t ′ ∈ ←−C ; in this case τ ′
C
> τ and

Gc(1, 1′) = ∓i〈ψ†
H(r′σ ′t ′)ψH(rσ t)〉 = G<(1, 1′).



342 Nonequilibrium Green’s function

3. t ∈ ←−C , t ′ ∈ −→C ; then τ
C
> τ ′ and

Gc(1, 1′) = −i〈ψH(rσ t)ψ†
H(r′σ ′t ′) = G>(1, 1′).

4. t, t ′ ∈ ←−C ; in this case TC = T←−
C
= T̃ and

Gc(1, 1′) = −i〈T̃ ψH(1)ψ†
H(1′)〉 = GT̃ (1, 1′)

where GT̃ (1, 1′) is the antitime-ordered (anticausal) Green’s function. We can
summarize the above results as:

Gc(1, 1′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

GT (1, 1′) t, t ′ ∈ −→C
G<(1, 1′) t ∈ −→C , t ′ ∈ ←−C
G>(1, 1′) t ∈ ←−C , t ′ ∈ −→C
GT̃ (1, 1′) t, t ′ ∈ ←−C .

(13.43)

Since

GT (1, 1′) = −iθ (t − t ′)〈ψH(1)ψ†
H(1′)〉 ∓ iθ (t ′ − t)〈ψ†

H(1′)ψH(1)〉,

GT̃ (1, 1′) = −i θ (t ′ − t)〈ψH(1)ψ†
H(1′)〉 ∓ i θ (t − t ′)〈ψ†

H(1′)ψH(1)〉,
it follows that

GT (1, 1′)+GT̃ (1, 1′) = −i〈ψH(1)ψ†
H(1′)〉 ∓ i〈ψ†

H(1′)ψH(1)〉
= G>(1, 1′)+G<(1, 1′). (13.44)

Therefore, three of the four functions contained in Gc(1, 1′) are independent. The
retarded and advanced Green’s functions, GR and GA, respectively, are given by

GR(1, 1′) = −i θ (t − t ′) 〈[ψH(1), ψ
†
H (1′)]∓〉

= −i θ (t − t ′)〈ψH(1)ψ†
H(1′)∓ ψ

†
H(1′)ψH(1)〉

= θ (t − t ′)
[
G>(1, 1′)−G<(1, 1′)

]
(13.45)

GA(1, 1′) = i θ (t ′ − t) 〈[ψH(1), ψ
†
H(1′)]∓〉

= i θ (t ′ − t)〈ψH(1)ψ†
H(1′)∓ ψ

†
H(1′)ψH(1)〉

= θ (t ′ − t)
[−G>(1, 1′)+G<(1, 1′)

]
. (13.46)

Finally, the following relations among the various functions can be verified:

GT = G< +GR = G> +GA, GT̃ = G< −GA = G> −GR. (13.47)
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Figure 13.4 C = C1 ∪ C2 ∪ C3. The contour segments actually lie along the time
axis, but are shown displaced from it for the sake of clarity. In both (a) and (b),

τ
C
> τ ′.

13.5 Kadanoff–Baym and Keldysh contours

In order to develop a perturbation expansion for Gc(1, 1′), we need to express it in
terms of interaction-picture operators. The Hamiltonian is

H(t) = H +Hext(t) = H0 + V +Hext(t) = H0 +H ′(t). (13.48)

The contour Green’s function, in terms of interaction-picture operators (identified
by hats), is given by

Gc(1, 1′) = −i
〈
TC

[
e−

i
h̄

∫
C

Ĥ ′(τ1)dτ1ψ̂(1)ψ̂†(1′)
]〉

(13.49)

where C is the contour depicted in Figure 13.2 or Figure 13.3. A proof of this result
is presented below.

We prove Eq. (13.49) for the case when t lies further along the contour than t ′; the

opposite case is proved in a similar way. For τ
C
> τ ′,

iG(1, 1′) = 〈ψH(1)ψ†
H(1′)〉 = 〈S(t0, t)ψ̂(1)S(t, t ′)ψ̂†(1′)S(t ′, t0)〉.

In writing this, we have used Eqs (13.26) and (13.29). To calculate the RHS of Eq.
(13.49), we divide the contour into three segments C1, C2, and C3 (see Figure 13.4).
The contour C = C1 ∪ C2 ∪ C3, and

∫
C
= ∫

C1
+ ∫

C2
+ ∫

C3
. The contour-ordered

product on the RHS of Eq. (13.49), denoted by B, can be written as

B = TC

[
e−

i
h̄

∫
C

Ĥ ′(τ1)dτ1 ψ̂(1)ψ̂†(1′)
]

=
∞∑

n=0

1
n!

(−i

h̄

)n ∫
C

dτ1 . . .

∫
C

dτnTC

[
Ĥ ′(τ1) . . . Ĥ ′(τn)ψ̂(1)ψ̂†(1′)

]
.

Let us consider the term of order n. Each integral over C is a sum of three integrals,
and the term of order n is thus the sum of 3n terms. Consider one such term that has k

integrals along C3 (k = 0, 1, . . . , n), l integrals along C2 (l = 0, 1, . . . , n− k), and
n− k − l integrals along C1. There is a total of n!/[k!l!(n− k − l)!] such terms that
differ only by a relabeling of their time indices; since the times are integrated over,
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these terms are equal. Therefore,

B =
∞∑

n=0

1
n!

(−i

h̄

)n n∑
k=0

n−k∑
l=0

n!
k! l! (n− k − l)!

×
∫

C3

dτ1 · · ·
∫

C3

dτk TC3 [Ĥ ′(τ1) · · · Ĥ ′(τk)]ψ̂(1)

×
∫

C2

dτk+1 · · ·
∫

C2

dτk+l TC2 [Ĥ ′(τk+1) · · · Ĥ ′(τk+l)]ψ̂†(1′)

×
∫

C1

dτk+l+1 · · ·
∫

C1

dτnTC1 [Ĥ ′(τk+l+1) · · · Ĥ ′(τn)].

Noting that

n∑
k=0

n−k∑
l=0

n!
k! l! (n− k − l)!

· · · =
∞∑

k=0

∞∑
l=0

∞∑
m=0

n!
k! l! m!

δn,k+l+m · · ·

the following expression for B is obtained by summing over n first,

B =
∞∑

k=0

(−i

h̄

)k 1
k!

∫
C3

dτ1 · · ·
∫

C3

dτk TC3 [Ĥ ′(τ1) · · · Ĥ ′(τk)]ψ̂(1)

×
∞∑
l=0

(−i

h̄

)l 1
l!

∫
C2

dτ1 · · ·
∫

C2

dτl TC2 [Ĥ ′(τ1) · · · Ĥ ′(τl)]ψ̂†(1′)

×
∞∑

m=0

(−i

h̄

)m 1
m!

∫
C1

dτ1 · · ·
∫

C1

dτmTC1 [Ĥ ′(τ1) . . . Ĥ ′(τm)]

≡ P ψ̂(1)Qψ̂†(1′)R.

C1 extends from t0 to t ′ > t0 ⇒ TC1 = T ⇒ R = S(t ′, t0). C3 extends from t to
t0 < t ⇒ TC3 = T̃ ⇒ P = S(t0, t). C2 extends from t ′ to t . If t > t ′ then TC2 = T

and Q = S(t, t ′); if t < t ′ then TC2 = T̃ and again (see Eq. [13.25]) Q = S(t, t ′). This

ends the proof of Eq. (13.49) for the case τ
C
> τ ′.

Returning to Eq. (13.49), we replace Ĥ ′ with V̂ + Ĥext ,

iGc(1, 1′) =
〈
TC

[
e−

i
h̄

∫
C(V̂ (τ1)+Ĥext(τ1))dτ1 ψ̂(1)ψ̂†(1′)

]〉
=
〈
TC

[
e−

i
h̄

∫
C

V̂ (τ1)dτ1e−
i
h̄

∫
C

Ĥext(τ1)dτ1 ψ̂(1)ψ̂†(1′)
]〉

. (13.50)

The last equality in the above equation is valid since V̂ and Ĥext contain an even
number of fermion operators, so they commute under contour ordering. Defining
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the operators

SV
C = exp

[
− i

h̄

∫
C

V̂ (τ )dτ

]
, Sext

C = exp
[
− i

h̄

∫
C

Ĥext(τ )dτ

]
, (13.51)

we can write

iGc(1, 1′) =
〈
TC

[
SV

C Sext
C ψ̂(1)ψ̂†(1′)

]〉
. (13.52)

From the definition of iGc(1, 1′), if ψ̂ is replaced by 1 and ψ̂† is also replaced
by 1, then iGc(1, 1′) reduces to 1. Hence, we deduce from Eq. (13.52) that TC(
SV

C Sext
C

) = 1.
Setting Hext(t) equal to zero in Eq. (13.27), which leads to U (t, t0) becoming

equal to exp[−iH (t − t0)/h̄], and using Eq. (13.25), we can write

S̄V (t, t0) = eiH0(t−t0)/h̄e−iH (t−t0)/h̄ (13.53)

where S̄V (t, t0) is defined by

S̄V (t, t0) = T

[
exp

(
− i

h̄

∫ t

t0

V̂ (t ′)dt ′
)]

. (13.54)

Comparing Eq. (13.53) with the following equation,

e−β(H−μN) = e−β(H0−μN)eβH0e−βH ,

which is valid since N commutes with H0 and H , we can write

e−β(H−μN) = e−β(H0−μN)S̄V (t0 − iβh̄, t0). (13.55)

The contour Green’s function (see Eq. [13.52]) may now be expressed as

iGc(1, 1′) = T r
[
e−β(H0−μN)S̄V (t0 − iβh̄, t0)TC[SV

C Sext
C ψ̂(1)ψ̂†(1′)]

]
T r
[
e−β(H0−μN)S̄V (t0 − iβh̄, t0)

] . (13.56)

We move S̄V (t0 − iβh̄, t0) through TC and combine it with SV
C ,

iGc(1, 1′) = T r
[
e−β(H0−μN)TC ′ [SV

C ′ S
ext
C ψ̂(1)ψ̂†(1′)]

]
T r
[
e−β(H0−μN) S̄V (t0 − iβh̄, t0)

] (13.57)

where

SV
C ′ = exp

[
− i

h̄

∫
C′

V̂ (τ )dτ

]
. (13.58)

Here C ′ = C ∪ [t0, t0 − iβh̄] is the Kadanoff–Baym three-branch contour shown
in Figure 13.5 (Kadanoff and Baym, 1962). The contour starts at t0, goes to



346 Nonequilibrium Green’s function

Figure 13.5 Kadanoff–Baym three-branch contour C ′; it starts at t0 and stretches
to max(t, t ′), then returns to t0, and down to t0 − iβh̄.

tm = max(t, t ′) or any time beyond tm, returns to t0 on the backward path, and
goes down to t0 − iβh̄. The operator TC′ is the contour-time-ordering operator
along C ′.

We may, if we choose, insert TC

(
SV

C Sext
C

) = 1 after S̄V (t0 − iβh̄, t0) in the
denominator of Eq. (13.57), and then divide the numerator and denominator by
Tr
[
e−β(H0−μN)

]
; the result is

iGc(1, 1′) =
〈[
TC′[SV

C ′S
ext
C ψ̂(1)ψ̂†(1′)

]〉
0〈

TC′
(
SV

C ′S
ext
C

)〉
0

(13.59)

where the ensemble average is now over the noninteracting system. Substituting the
perturbation expansion for SV

C ′ and Sext
C into the above expression, Wick’s theorem

(applicable here since the ensemble average is over the noninteracting system),
yields a perturbation series for Gc(1, 1′).

The above expression for Gc(1, 1′) can be used to study the behavior of a system
out of equilibrium at times t > t0, after an external perturbation has been switched
on at time t0, while taking into account the initial correlations at t = t0. Indeed, we
have used ρ(t0) = e−β(H−μN)/Tr[e−β(H−μN)], which includes interactions among
the particles. In many cases, however, we are only interested in studying the
behavior of a system for times t � t0. For example, regarding the system depicted
in Figure 13.1, we may be interested in its steady state after all transients have
died off. The steady state, if it develops at times t � t0, will not depend on the
initial state at time t0. In such a case, we may use the statistical operator of
the noninteracting system instead of that of the interacting system. Alternatively, if
we are only interested in the behavior of the system for times t � t0, we may take
t0 = −∞ and assume that interactions are turned on adiabatically (but not turned
off). In this case, the statistical operator ρ(t0 = −∞) is that of a noninteracting
system, and the branch of the contour C ′ that extends from t0 to t0 − iβh̄ may
be dropped, i.e., C ′ coincides with C. The contour C now extends from −∞ to
max(t, t ′) and back to −∞. We might as well extend the contour to +∞ so that
it runs from −∞ to +∞ and back to −∞; this is the Keldysh contour (Keldysh,
1965), depicted in Figure 13.6. The expression for the contour Green’s function in
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Figure 13.6 Keldysh contour C: it runs along the real time axis from−∞ to+∞
and back to −∞, passing through t and t ′ exactly once.

X

Figure 13.7 Dyson’s equation. A double line represents Gc, the contour Green’s
function for the interacting system, while a single line represents G0

c , the cor-
responding contour Green’s function for the noninteracting system. Uext is a
one-body external potential and �∗ is the irreducible self energy arising from
interparticle interactions. In the figure, 1 = (rστ ).

the Keldysh formalism becomes

Gc(1, 1′) = −i
〈
TC

[
SV

C Sext
C ψ̂(1)ψ̂†(1′)

]〉
0
. (13.60)

The above expression may also be written as

Gc(1, 1′) = −i
〈
TC

[
SV

C Sext
C ψ̂(1)ψ̂†(1′)

]〉
0〈

TC SV
C Sext

C

〉
0

. (13.61)

since the denominator in the above equation is equal to 1.
We may now expand SV

C and Sext
C in a power series in V̂ and Ĥext. In the second

quantized form, V̂ and Ĥext are written in terms of field operators in the interaction
picture. Since the ensemble average is over the noninteracting system, Wick’s
theorem applies, and we end up with a perturbation expansion similar to the one
for Matsubara Green’s function. The only difference is that contour time ordering
replaces time ordering, so that in the resulting Feynman diagrams, the Green’s
functions that appear are contour Green’s functions. As before, all disconnected
diagrams cancel out, and Gc(1, 1′) is a sum over connected diagrams.

13.6 Dyson’s equation

The perturbation expansion of Gc(1, 1′) can be expressed in the form of a Dyson’s
equation, much like Matsubara Green’s function. The interaction consists of two
parts: a perturbation Hext (due to an external field), which we take to be a one-
body operator, and the interparticle interaction V, which is a two-body operator. A
graphical representation of Dyson’s equation is depicted in Figure 13.7. Thus, the
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X

Figure 13.8 An alternative form of Dyson’s equation.

expression for Gc(1, 1′) is as follows:

Gc(1, 1′) = G0
c(1, 1′)+

∫
C

d2 G0
C(1, 2)Uext(2)Gc(2, 1′)

+
∫

C

d2
∫

C

d3 G0
c(1, 2)�∗(2, 3)Gc(3, 1′) (13.62)

where Uext is the external potential giving rise to the external perturbation,

Ĥext(t) =
∑

σ

∫
ψ̂†(rσ t)Uext(rσ t)ψ̂(rσ t)d3r ,

and �∗ is the irreducible self energy resulting from the pairwise interaction V

among the particles of the system. In Eq. (13.62),∫
C

d2 =
∑
σ2

∫
d3r2

∫
C

dτ2.

We can adopt a compact matrix notation and write Dyson’s equation as

Gc = G0
c +G0

cUGc +G0
c�

∗Gc (13.63)

where G0
cUGc and G0

c�
∗Gc stand for the second and third terms, respectively, in

Eq. (13.62).
We can also write Dyson’s equation in an alternative form. Noting that

Gc = G0
c(1+ UGc +�∗Gc) ⇒ 1+ UGc +�∗Gc = G0−1

c Gc

⇒ G−1
c + U +�∗ = G0−1

c ⇒ 1+GcU +Gc�
∗ = GcG

0−1
c ,

we can write the following:

Gc = G0
c +GcUG0

c +Gc�
∗G0

c. (13.64)

This form of Dyson’s equation is depicted in Figure 13.8. It is clear that Figures
13.7 and 13.8 produce identical perturbation series for Gc.

In practice, carrying out calculations with contour integrals is not convenient,
and they should be reexpressed in terms of real-time integrals. The procedure
for converting contour-time integrals into real-time integrals is known as analytic
continuation (a misnomer, since the contour is attached to the real-time axis and
no continuation from the complex plane takes place). The rules for this procedure
are taken up next.
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13.7 Langreth rules

The quantities directly related to observables are the lesser, greater, retarded, and
advanced functions G<, G>, GR, and GA, respectively; these are functions of
real times rather than contour times. We were forced to resort to the contour
Green’s function, not because it is directly related to observables, but because it
can be expanded in a perturbation series, whereas no such expansion exists for
G<, G>, GR , and GA. To make contact with physical quantities, these functions
must be extracted from the contour Green’s function; Langreth rules (Langreth,
1977) provide the vehicle for doing that.

We note that Dyson’s equation contains terms that involve one or two contour-
time integrals. In order to keep the discussion as general as possible, we introduce
a general function A(τ, τ ′), τ, τ ′ ∈ C, and the corresponding real-time functions,

A(τ, τ ′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AT (t, t ′) τ, τ ′ ∈ −→C
A<(t, t ′) τ ∈ −→C , τ ′ ∈ ←−C
A>(t, t ′) τ ∈ ←−C , τ ′ ∈ −→C
AT̃ (t, t ′) τ, τ ′ ∈ ←−C .

(13.65)

Properties of the function A(τ, τ ′) resemble those of the contour Green’s function
Gc(1, 1′). Analogous to Eqs (13.45) and (13.46), we define Ar (t, t ′) and Aa(t, t ′)
by the following relations

Ar (t, t ′) = θ (t − t ′)
[
A>(t, t ′)− A<(t, t ′)

]
(13.66)

Aa(t, t ′) = θ (t ′ − t)
[
A<(t, t ′)− A>(t, t ′)

]
. (13.67)

Now consider the contour integral of the form

C(τ, τ ′) =
∫

C

A(τ, τ1)B(τ1, τ
′)dτ1 (13.68)

where B is another function dependent on two contour times and C is the contour
shown in Figure 13.6. The lesser function C<(t, t ′) is given by

C<(t, t ′) = C(t ∈ −→C , t ′ ∈ ←−C ) ≡ C(t→, t ′←) =
∫

C

dτ1A(t→, τ1)B(τ1, t
′←)

=
∫ ∞

−∞
dt1A(t→, t→1 )B(t→1 , t ′←)+

∫ −∞

∞
dt1A(t→, t←1 )B(t←1 , t ′←)

=
∫ ∞

−∞
dt1
[
A(t→, t→1 )B(t→1 , t ′←)− A(t→, t←1 )B(t←1 , t ′←)

]

=
∫ ∞

−∞
dt1

[
AT (t, t1)B<(t1, t ′)− A<(t, t1)BT̃ (t1, t ′)

]
.
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From Eq. (13.47), we can write AT = A< + Ar, BT̃ = B< − Ba . Thus,

C<(t, t ′) =
∫ ∞

−∞
dt1
[
Ar (t, t1)B<(t1, t ′)+ A<(t, t1)Ba(t1, t ′)

]
. (13.69)

This provides an expression for the lesser function in terms of functions of real
time integrated over the real-time axis.

Similarly, we can obtain an expression for C>(t, t ′),

C>(t, t ′) = C(t ∈ ←−C , t ′ ∈ −→C ) ≡ C(t←, t ′→) =
∫

C

dτ1A(t←, τ1)B(τ1, t
′→)

=
∫ ∞

−∞
dt1A(t←, t→1 )B(t→1 , t ′→)+

∫ −∞

∞
dt1A(t←, t←1 )B(t←1 , t ′→)

=
∫ ∞

−∞
dt1

[
A>(t, t1)BT (t1, t ′)− AT̃ (t, t1)B>(t1, t ′)

]
.

It follows from Eq. (13.47) that BT = B> + Ba and AT̃ = A> − Ar . Hence,

C>(t, t ′) =
∫ ∞

−∞
dt1
[
Ar (t, t1)B>(t1, t ′)+ A>(t, t1)Ba(t1, t ′)

]
. (13.70)

From Eq. (13.66), Cr (t, t ′) = θ (t − t ′)
[
C>(t, t ′)− C<(t, t ′)

]
. Using Eqs (13.69)

and (13.70), we obtain

Cr (t, t ′) = θ (t − t ′)
∫ ∞

−∞
dt1
{[

A>(t, t1)− A<(t, t1)
]
Ba(t1, t ′)

+ Ar (t, t1)
[
B>(t1, t ′)− B<(t1, t ′)

]}
.

Using Eqs (13.66) and (13.67), we can write

Cr (t, t ′) = θ (t − t ′)

{∫ t ′

−∞
dt1
[
A>(t, t1)− A<(t, t1)

] [
B<(t1, t ′)− B>(t1, t ′)

]

+
∫ t

−∞
dt1
[
A>(t, t1)− A<(t, t1)

] [
B>(t1, t ′)− B<(t1, t ′)

]}

= θ (t − t ′)
∫ t

t ′
dt1
[
A>(t, t1)− A<(t, t1)

] [
B>(t1, t ′)− B<(t1, t ′)

]
.

Since t > t ′, due to the step function θ (t − t ′), it follows that, in the above integrand,
t > t1 > t ′; hence,

Cr (t, t ′) =
∫ ∞

−∞
dt1θ (t − t1)

[
A>(t, t1)− A<(t, t1)

]
× θ (t1 − t ′)

[
B>(t1, t ′)− B<(t1, t ′)

]
.
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With the help of Eq. (13.66), the above relation reduces to

Cr (t, t ′) =
∫ ∞

−∞
dt1A

r (t, t1)Br (t1, t ′). (13.71)

A similar calculation for Ca(t, t ′) yields

Ca(t, t ′) =
∫ ∞

−∞
dt1A

a(t, t1)Ba(t1, t ′). (13.72)

We can adopt a simplified matrix notation to summarize our results:

C = AB (13.73)

C< = ArB< + A<Ba (13.74)

C> = ArB> + A>Ba (13.75)

Cr = ArBr , Ca = AaBa. (13.76)

We now consider an expression with two integrations over contour time,

D(τ, τ ′) =
∫

C

dτ1

∫
C

dτ2 A(τ, τ1)B(τ1, τ2)C(τ2, τ
′). (13.77)

In matrix notation, D = ABC. Using Eqs (13.74) and (13.76),

D< = Ar (BC)< + A<(BC)a

= ArBrC< + ArB<Ca + A<BaCa. (13.78)

Similarly, we derive the following equations:

D> = ArBrC> + ArB>Ca + A>BaCa (13.79)

Dr = ArBrCr , Da = AaBaCa. (13.80)

13.8 Keldysh equations

Applying Langreth rules from Eqs (13.76) and (13.80) to the two forms of Dyson’s
equation, (13.63) and (13.64), we obtain

GR,A = G0R,A
(
1+ UGR,A +�∗R,AGR,A

)
(13.81a)

GR,A = (1+GR,AU +GR,A�∗R,A
)
G0R,A. (13.81b)

Note that since U depends on only one time, it is neither retarded nor advanced.
Although the above equations look like Dyson’s equation for the equilibrium
Green’s function, there is a subtle distinction: �∗R,A depends not only on G0R,A,
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but also on G< and G>. We rearrange the first of these equations as follows:

G0R,A = (1−G0R,AU −G0R,A�∗R,A
)
GR,A .

Putting this expression for G0R,A into Eq. (13.81b), we obtain(
1+GR,AU +GR,A�∗R,A

) (
1−G0R,AU −G0R,A�∗R,A

) = 1. (13.82)

If the rules presented in Eqs (13.74) and (13.78) are now applied to the first form
of Dyson’s equation, (13.63), the result is

G< = G0<
(
1+ UGA +�∗AGA

)+G0R�∗<GA + (G0RU +G0R�∗R
)
G<.

The same expression holds for G> if we replace < with > everywhere. Rearranging
terms, the above expression for G< is written as(

1−G0RU −G0R�∗R
)
G< = G0<

(
1+ UGA +�∗AGA

)+G0R�∗<GA.

Multiplying by
(
1+GRU +GR�∗R

)
on the left, and using Eqs (13.81b) and

(13.82), we obtain

G< = (1+GRU +GR�∗R
)
G0<

(
1+ UGA +�∗AGA

)+GR�∗<GA.

(13.83)
Similarly, we find, for the greater function,

G> = (1+GRU +GR�∗R
)
G0>

(
1+ UGA +�∗AGA

)+GR�∗>GA.

(13.84)
Equations (13.83) and (13.84) are the Keldysh equations for the lesser and greater
functions.

13.9 Steady-state transport

We now turn our attention to the application of the nonequilibrium Green’s function
to transport in a system consisting of a small structure, such as a quantum dot,
connected to two metallic leads (see Figure 13.1). The nonequilibrium problem
is formulated as follows. Initially, the left lead, the dot, and the right lead are
separated, and each is in equilibrium at its own chemical potential. Without any
loss of generality, we assume that the chemical potential in the left lead is larger
than that in the right lead: μL > μR . The statistical operator for the system is
simply the direct product of the equilibrium statistical operators of the system’s
three separate components:

ρ = ρ
eq
L ⊗ ρ

eq
D ⊗ ρ

eq
R . (13.85)

At time t0, the components are brought into contact, and a coupling between the
dot and the two leads is established, allowing electrons to tunnel from the leads to
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the dot and vice versa. The perturbation that drives the system out of equilibrium
is the coupling between the dot and the two leads.

We choose to analyze the problem in the setting described above, although other
choices are possible. For example, the three components may be initially in contact
and in equilibrium at a common chemical potential. In this approach, the initial
statistical operator is e−β(H−μN)/Tr e−β(H−μN), where H is the Hamiltonian that
includes the coupling between the dot and the leads, μ is the common chemical
potential, and N is the number of particles operator for the whole system. The
perturbation that drives the system out of equilibrium is the increase in the chemical
potential of the left lead due to an applied bias voltage (Cini, 1980; Stefanucci and
Almbladh, 2004). An increase in the chemical potential by � means an increase,
in the amount of �, of the energy of each single-particle state in the left lead.The
first approach is simpler, since our purpose is to study steady-state transport across
the quantum dot.

13.9.1 Model Hamiltonian

The Hamiltonian for the system, consisting of the left lead, the right lead, and the
dot, is written as

H = HL +HR +HD +HT . (13.86)

HL and HR are the Hamiltonians for the left and right leads, respectively,

Hα =
∑
kσ

εkαc
†
kσαckσα , α = L, R (13.87)

where σ is the spin projection, and k is a collective index representing the spatial
quantum numbers of the electronic states in the leads. In writing Hα, we have
assumed that the electrons in the leads are noninteracting, except for a possible
average interaction which can be taken into account through a renormalization of
the single-particle state energies εk . Neglecting correlations in metals generally
yields a good approximation, especially for simple metals. The term HD is the
Hamiltonian for the dot,

HD = HD({d†
nσ }, {dnσ }). (13.88)

HD is expressed in terms of creation (d†
nσ ) and annihilation (dnσ ) operators associ-

ated with single-particle states in the dot. These states are characterized by n and
σ . Again, n is a collective index that stands for the spatial quantum numbers of the
electronic states in the dot. Various model Hamiltonians for the dot may be chosen.
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Figure 13.9 In the Anderson impurity model, the dot has only one energy level,
and it can be occupied by up to two electrons. If there is only one electron, the
energy of the dot is ε ; if the level is doubly occupied, the energy of the dot is
2ε + U . The two electrons that occupy the level must necessarily have opposite
spin projections.

The simplest model describes the dot in terms of noninteracting electrons,

HD =
∑
nσ

εnd
†
nσ dnσ . (13.89)

This model is used to describe resonant tunneling through a quantum dot. Another
model is the Anderson impurity model (Anderson, 1961); here, it is assumed that
the dot has only one level of energy ε such that

HD = ε
∑

σ

d†
σ dσ + Un↑n↓ (13.90)

where nσ (σ =↑,↓) is the operator that represents the number of electrons in the
level with spin projection σ . If one electron occupies this level, the energy of the dot
is ε. However, if two electrons occupy the level, one with spin up and the other with
spin down, the energy of the dot is 2ε + U , where U > 0 is the Coulomb repulsion
energy of the two electrons (see Figure 13.9). Other model Hamiltonians for the
dot may be considered; e.g., one may be formulated that includes the interaction
between electrons and atomic vibrations in the dot.

The coupling between the dot and the leads is given by the last term in the
Hamiltonian, HT . The coupling is represented by terms that describe tunneling of
electrons from the dot to the leads, and vice versa:

HT =
∑
kσn

∑
α=L,R

(
Vkσα,nσ c

†
kσαdnσ + V ∗

kσα,nσ d†
nσ ckσα

)
. (13.91)

Vkσα,nσ is the matrix element for the tunneling of an electron from state |nσ 〉 in
the dot into state |kσ 〉 in lead α; it is determined by first-principles calculations,
but here we take it as a known quantity. The second term in HT is the hermitian
conjugate of the first term, and it describes tunneling from the leads into the dot. It
is assumed that in tunneling between the leads and the dot, an electron maintains
its spin orientation. The equilibrium Hamiltonian is HL +HR +HD , while HT is
the perturbation that drives the system out of equilibrium.
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In considering the model Hamiltonian for the three-component system, we
assume that no direct coupling exists between the left and right leads. Further-
more, we assume that the creation and annihilation operators in the Fock space
of one component anticommute with the operators in the Fock space of another
component.

13.9.2 Expression for the current

The electron current from the left lead into the dot is determined by the rate of
change in the number of electrons in the left lead:

IL(t) = −e〈dNL/dt〉 ≡ −e〈ṄL〉. (13.92)

The operator NL represents the number of electrons in the left lead,

NL =
∑
kσ

c
†
kσLckσL. (13.93)

Since ih̄ṄL = [NL, H ], and NL commutes with HL , HR , and HD ,

IL = (ie/h̄)〈[NL, HT ]〉. (13.94)

We can calculate the commutator

[NL, HT ] =
[∑

k′σ ′
c
†
k′σ ′Lck′σ ′L ,

∑
kσn

∑
α=L,R

(
Vkσα,nσ c

†
kσαdnσ + V ∗

kσα,nσ d†
nσ ckσα

)]

by using [AB, CD] = A{B, C}D − AC{B, D} + {A, C}DB − C{A, D}B,
{c†k′σ ′α′, c†kσα} = {ck′σ ′α′, ckσα} = 0, and {ck′σ ′α′, c

†
kσα} = δkk′δσσ ′δαα′ . The result is

IL(t) = (ie/h̄)
∑
kσn

{
VkσL,nσ

〈
c
†
kσL(t)dnσ (t)

〉
− V ∗

kσL,nσ

〈
d†

nσ (t)ckσL(t)
〉}

.

This expression motivates the definition of the mixed lesser functions

G<
n,kL(t, t ′; σ ) = i

〈
c
†
kσL(t ′)dnσ (t)

〉
(13.95)

G<
kL,n(t, t ′; σ ) = i

〈
d†

nσ (t ′)ckσL(t)
〉
. (13.96)

In terms of these functions, the expression for the current is

IL(t) = (e/h̄)
∑
kσn

{
VkσL,nσG<

n,kL(t, t ; σ )− V ∗
kσL,nσG<

kL,n(t, t ; σ )
}
.

For any two operators A and B, 〈AB〉∗ = 〈(AB)†〉 = 〈B†A†〉. Therefore,

G<
kL,n(t, t ; σ ) = − [G<

n,kL(t, t ; σ )
]∗

. (13.97)
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X

Figure 13.10 Graphical representation of the Dyson-like equation for the contour
Green’s function Gn,kL(τ, τ ′; σ ).

We can thus write

IL(t) = (2e/h̄)Re

[∑
kσn

VkσL,nσG<
n,kL(t, t ; σ )

]
. (13.98)

To determine G<
n,kL(t, t ; σ ), we first calculate the contour Green’s function

Gn,kL(τ, τ ′; σ ) = −i〈TC dnσ (τ )c†kσL(τ ′)〉, then apply Langreth rules. Recall that
the unperturbed Hamiltonian is HL +HR +HD, while the perturbation is HT .
In the absence of HT , the contour Green’s function G0

n,kL(τ, τ ′; σ ) vanishes, i.e.,
〈TC dnσ (τ )c†kσL(τ ′)〉0 = 0. A Dyson-like equation for the contour Green’s function
is shown in Figure 13.10.

The term
∑

kσn VkσL,nσ c
†
kσLdnσ in HT does not contribute to the contour func-

tion; Gn,kL(τ, τ ′; σ ) contains c
†
kσL , whose contraction with c

†
k′σ ′L is equal to zero

(unless the left lead is a superconductor), and the contraction of c
†
kσL with dnσ

also gives zero: 〈TCdnσ c
†
kσL〉0 = 0. The algebraic expression for the mixed contour

function can be read off Figure 13.10:

Gn,kL(τ, τ ′; σ ) = 1
h̄

∑
m

∫
C

dτ1Gnm(τ, τ1; σ )V ∗
kσL,mσ G0

kL(τ1, τ
′; σ ) (13.99)

where G0
kL(τ1, τ

′; σ ) is the noninteracting contour Green’s function of the electrons
in the left lead, and Gnm(τ, τ1; σ ) is the contour Green’s function of the electrons
in the dot:

G0
kL(τ1, τ

′; σ ) = −i
〈
TC ckσL(τ )c†kσL(τ ′)

〉
0

(13.100)

Gnm(τ, τ1; σ ) = −i
〈
TC dnσ (τ )d†

mσ (τ ′)
〉
. (13.101)

Alternatively, Eq. (13.99) can be derived by expanding Gn,kL(τ, τ ′; σ ) in a pertur-
bation series and applying Wick’s theorem to contract the creation and annihilation
operators of the electrons in the left lead (this is made possible by assuming that
the leads contain noninteracting electrons).
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We now apply the Langreth rule, Eq. (13.69), to obtain the lesser function

G<
n,kL(t, t ′; σ ) = 1

h̄

∑
m

∫ ∞

−∞
dt1
[
GR

nm(t, t1; σ )G0 <
kL (t1, t ′; σ )

+ G<
nm(t, t1; σ )G0 A

kL (t1, t ′; σ )
]
V ∗

kσL,mσ . (13.102)

As indicated earlier, our interest is in studying the system in the steady state, i.e., at
times long after the moment when the perturbation is switched on. In this state, the
current is independent of time, and all Green’s functions depend on the difference
between their time arguments. We can then Fourier transform the various functions
that appear in Eq. (13.102):

GR
nm(t, t1; σ ) = GR

nm(t − t1; σ ) = 1
2π

∫ ∞

−∞
dωGR

nm(ω; σ )e−iω(t−t1). (13.103)

Similar expressions are written for the other functions that appear on the RHS of
Eq. (13.102). Using the relation∫ ∞

−∞
dtei(ω−ω′)t = 2πδ(ω − ω′),

we obtain

G<
n,kL(t, t ′; σ ) = 1

2πh̄

∑
m

∫ ∞

−∞
dωe−iω(t−t ′)V ∗

kσL,mσ ×
[
GR

nm(ω; σ )G0 <
kL (ω; σ )+G<

nm(ω; σ )G0 A
kL (ω; σ )

]
. (13.104)

Setting t ′ = t gives us G<
n,kL(t, t ; σ ). Inserting this into Eq. (13.98), we find

IL = e

πh̄2

∫ ∞

−∞
dωRe

∑
nm

∑
kσ

VkσL,nσV ∗
kσL,mσ ×

[
GR

nm(ω; σ )G0 <
kL (ω; σ )+G<

nm(ω; σ )G0 A
kL (ω; σ )

]
. (13.105)

For the left lead

G0 <
kL (ω; σ ) = 2πifL(ω)δ(ω − εkσL/h̄) (13.106)

G0 A
kL (ω; σ ) = (ω − εkσL/h̄− i0+)−1 (13.107)

where fL(ω) is the Fermi function in the left lead (see Problem 6.6 and Eq. [6.56]).
We also note that

G<
nm(t − t ′; σ ) = i〈d†

m(t ′)dn(t)〉 = 1
2π

∫ ∞

−∞
dωe−iω(t−t ′)G<

nm(ω; σ )
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and that
1

2π

∫ ∞

−∞
dωe−iω(t ′−t)G<

mn(ω; σ ) = G<
mn(t ′ − t ; σ ) = i〈d†

nσ (t)dmσ (t ′)〉

= −
[
i〈d†

mσ (t ′)dnσ (t)〉
]∗
= − [G<

nm(t − t ′; σ )
]∗

= − 1
2π

[∫ ∞

−∞
dωe−iω(t−t ′)G<

nm(ω; σ )
]∗
= − 1

2π

∫ ∞

−∞
dωe−iω(t ′−t) [G<

nm(ω; σ )
]∗

.

We thus conclude that

G<
mn(ω; σ ) = − [G<

nm(ω; σ )
]∗

. (13.108)

A similar calculation yields

GR
mn(ω; σ ) = [GA

nm(ω; σ )
]∗

. (13.109)

Using Eqs (13.106–13.109), the following expression for the current is derived:

IL = ie

2πh̄

∑
σ

∫ ∞

−∞
dωT r

{
�L(ω; σ )

[
fL(ω)

(
GR(ω; σ )−GA(ω; σ )

)+G<(ω; σ )
]}

(13.110)
where the level-width function �L(ω; σ ) is given by

�L
mn(ω; σ ) = 2π

h̄

∑
k

V ∗
kσL,mσ VkσL,nσ δ(ω − εkσL/h̄). (13.111)

In Eq. (13.110), a matrix notation is adopted: �L, GR, GA, and G< are matrices
with matrix elements �L

nm, GR
nm, GA

nm, and G<
nm, respectively. The product is a

matrix product, and the trace of the resulting matrix is taken. Below, a derivation
of the current formula is given.

We rewrite Eq. (13.105) as follows:

IL = e

πh̄2

∫ ∞

−∞
dωX(ω)

X = Re
∑
nm

∑
kσ

VkσL,nσV ∗
kσL,mσ

[
GR

nm(ω; σ )G0 <
kL (ω; σ )+G<

nm(ω; σ )G0 A
kL (ω; σ )

]
The real part of a complex number z is (z+ z∗)/2; hence,

X = 1
2

∑
nm

∑
kσ

{
VkσL,nσV ∗

kσL,mσ

(
GR

nmG0 <
kL +G<

nmG0 A
kL

)
+ V ∗

kσL,nσVkσL,mσ

(
GR ∗

nm G0 <∗
kL +G< ∗

nm G0 A∗
kL

)}
.
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The arguments of the functions have been suppressed for now. Using Eqs (13.108)
and (13.109),

X = 1
2

∑
nm

∑
kσ

{
VkσL,nσV ∗

kσL,mσ

(
GR

nmG0 <
kL +G<

nmG0 A
kL

)
− V ∗

kσL,nσVkσL,mσ

(
GA

mnG
0 <
kL +G<

mnG
0 R
kL

)}
.

Interchanging n and m in the second term,

X = 1
2

∑
nm

∑
kσ

VkσL,nσV ∗
kσL,mσ

[(
GR

nm −GA
nm

)
G0 <

kL +G<
nm

(
G0 A

kL −G0 R
kL

)]
.

The zeroth-order functions that appear in the above expression are known,

G0 A
kL −G0 R

kL = (ω − εkσL/h̄− i0+
)−1 − (ω − εkσL/h̄+ i0+

)−1

= 2πiδ(ω − εkσL/h̄)

G0 <
kL = 2πifL(ω)δ(ω − εkσL/h̄).

Inserting these into the expression for X,

X(ω) = i

2

∑
nm

∑
kσ

VkσL,nσV ∗
kσL,mσ 2πδ(ω − εkσL/h̄)

× {fL(ω)
[
GR

nm(ω; σ )−GA
nm(ω; σ )

]+G<
nm(ω; σ )

}
.

We now introduce the level-width function (a matrix),

�L
mn(ω; σ ) = 1

h̄

∑
k

V ∗
kσL,mσVkσL,nσ 2πδ(ω − εkσL/h̄).

The expression for X(ω) reduces to

X(ω) = ih̄

2

∑
σnm

�L
mn(ω; σ )

{
fL(ω)

[
GR

nm(ω; σ )−GA
nm(ω; σ )

]+G<
nm(ω; σ )

}

= ih̄

2

∑
σ

T r
{
�L(ω; σ )

[
fL(ω)

(
GR(ω; σ )−GA(ω; σ )

)+G<(ω; σ )
]}

.

The expression for the current, Eq. (13.110), immediately follows.

The current from the right lead to the central dot has exactly the same expression
as IL except that R replaces L. In the steady state, I = IL = −IR. A symmetrical
expression for the current is obtained by writing I = (IL − IR)/2; it is given by

I= ie

4πh̄

∑
σ

∫ ∞

−∞
dωT r

{[
fL(ω)�L(ω; σ )− fR(ω)�R(ω; σ )

][
GR(ω; σ )−GA(ω; σ )

]
+ [�L(ω; σ )− �R(ω; σ )

]
G<(ω; σ )

}
. (13.112)
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Figure 13.11 Graphical representation of Dyson’s equation for the contour
Green’s function Gnm(τ, τ ′; σ ) of a quantum dot in contact with two metal leads.

This is the Meir–Wingreen formula (Meir and Wingreen, 1992) for the current in
the steady state; it expresses the current in terms of the Green’s functions of the
dot that is in the central region, between the two leads. In general, the calculation
of these functions is highly nontrivial.

A simplification is possible in the special case of proportional coupling, when
the left and right level-width functions are proportional: �L(ω) = λ�R(ω). Since
I = IL = −IR, we can write I = xIL − (1− x)IR for an arbitrary x. The current
is then given by

I = ie

2πh̄

∑
σ

∫ ∞

−∞
dω

× Tr
[
�R
{
[λxfL(ω)− (1− x)fR(ω)]

[
GR −GA

]+ [λx − (1− x)] G<
}]

.

The arbitrary parameter x is now fixed so as to eliminate the term multiplying
G< : x = 1/(1+ λ); then,

I = ie

2πh̄

∑
σ

∫ ∞

−∞
dω [fL(ω)− fR(ω)]

× Tr
{

�L(ω; σ )�R(ω; σ )
�L(ω; σ )+ �R(ω; σ )

[
GR(ω; σ )−GA(ω; σ )

]}
. (13.113)

The ratio of the coupling matrices is well defined, since �L and �R are proportional.
The condition of proportional coupling does not generally hold, but it may be a
reasonable approximation if the level-width functions have a weak dependence on
energy.

13.10 Noninteracting quantum dot

In the case of a noninteracting quantum dot, the dot Hamiltonian is

HD =
∑
nσ

εnd
†
nσ dnσ . (13.114)

To evaluate the current, given by Eq. (13.110) or Eq. (13.112), we need GR −GA

and G<. These are obtained from the contour Green’s function, which, in turn, is
determined by Dyson’s equation; this is shown graphically in Figure (13.11).
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Algebraically, Dyson’s equation reads

Gnm(ω; σ ) = G0
nm(ω; σ )+

∑
l,p

G0
nl(ω; σ )�lp(ω; σ )Gpm(ω; σ ) (13.115)

where the proper (irreducible) self energy is given by

�lp(ω; σ ) = 1
h̄2

∑
k,α=L,R

V ∗
kσα,lσG0

kα(ω; σ )Vkσα,pσ . (13.116)

The superscript “*” on � is dropped in this section and in the next one. We note
that G0

nm(ω; σ ) = G0
nn(ω; σ )δnm. In matrix notation, Dyson’s equation is written as

G = G0 +G0�G (13.117)

where G0 is a diagonal matrix. Applying the Langreth rule, Eq. (13.80),

GR = G0R +G0R�RGR , GA = G0A +G0A�AGA (13.118)

where G0R and G0A are diagonal matrices, and

h̄2�R,A
lp (ω; σ ) =

∑
kα

V ∗
kσα,lσG0R,A

kα (ω; σ )Vkσα,pσ . (13.119)

The self energy and the level-width function are related,

h̄
[
�R

lp(ω; σ )−�A
lp(ω; σ )

] = 1
h̄

∑
kα

V ∗
kσα,lσ

[
G0R

kα (ω; σ )−G0A
kα (ω; σ )

]
Vkσα,pσ

= 1
h̄

∑
kα

[−2πiδ(ω − εkσα/h̄)] V ∗
kσα,lσ Vkσα,pσ

= −i
[
�L

lp(ω; σ )+ �R
lp(ω; σ )

]
. (13.120)

From Eq. (13.118) for GR and GA, the following expression is derived

GR −GA = −(i/h̄)GR
(
�L + �R

)
GA. (13.121)

A proof of this statement is provided in the shaded area below.

Consider Eq. (13.118):

GR = G0R +G0R�RGR.

Multiply on the left by
(
G0R

)−1 and on the right by
(
GR
)−1; the result is(

G0R
)−1 = (GR

)−1 +�R.

Similarly, (
G0A

)−1 = (GA
)−1 +�A.
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Since the matrices G0R and G0A are diagonal,
(
G0R

)−1 and
(
G0A

)−1 are also
diagonal. Furthermore,(

G0R
)−1
nn
= ω − εn/h̄+ i0+ ,

(
G0A

)−1
nn
= ω − εn/h̄− i0+.

It follows that
(
G0R

)−1 = (G0A
)−1. Therefore,(

GR
)−1 +�R = (GA

)−1 +�A.

Multiplying by GR on the left and by GA on the right, we obtain

GA +GR�RGA = GR +GR�AGA =⇒ GR −GA = GR
(
�R −�A

)
GA.

Using Eq. (13.120) to replace
(
�R −�A

)
by (−i/h̄)

(
�L + �R

)
, Eq. (13.121) is

obtained.

In order to obtain G<, we use the Keldysh equation (13.83). Here, U = 0 (see
Eq. [3.117]), and the Keldysh equation reduces to

G< = (1+GR�R
)
G0<

(
1+�AGA

)+GR�<GA. (13.122)

From Eq. (13.81) we deduce that 1+�AGA = (G0A
)−1

GA. Thus,

G< = (1+GR�R
)
G0<

(
G0A

)−1
GA +GR�<GA. (13.123)

Since G0<
nm = 2πif (ω)δ(ω − εn/h̄)δnm and

(
G0A

)−1
nm
= (ω − εn/h̄− i0+)δnm, it

follows that G0<
(
G0A

)−1 = 0. The Keldysh equation thus takes the simple form

G< = GR�<GA. (13.124)

From the expression for �, Eq. (13.116), we find

�<
lp =

1
h̄2

∑
kα

V ∗
kσα,lσG0<

kα Vkσα,pσ = 2πi

h̄2

∑
α

fα

∑
k

V ∗
kσα,lσ δ(ω − εkσα/h̄)Vkσα,pσ

= (i/h̄)(fL�L + fR�R)lp. (13.125)

Therefore,

G< = (i/h̄)GR
(
fL�L + fR�R

)
GA. (13.126)

Putting Eqs (13.121) and (13.126) into the equation for the current, Eq. (13.110),
we obtain

I = e

2πh̄2

∫ ∞

−∞
dω [fL(ω)− fR(ω)] T (ω), (13.127)
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where

T (ω) =
∑

σ

T r
[
�L(ω; σ )GR(ω; σ )�R(ω; σ )GA(ω; σ )

]
. (13.128)

(1/h̄2)T (ω) is interpreted as a transmission probability. Equation (13.127) for the
current is known as the Landauer formula (Landauer, 1957, 1970). We note that it
is applicable only if the quantum dot is modeled as a noninteracting system.

13.11 Coulomb blockade in the Anderson model

We now consider the quantum dot to have a single energy level and onsite Coulomb
repulsion, which is the Anderson impurity model. The dot Hamiltonian is

HD =
∑

σ

εd†
σ dσ + Un↑n↓ (13.129)

where ε is the energy of the level, U > 0 is the onsite Coulomb repulsion, and
n↑(n↓) is the operator representing the number of electrons in the level with spin up
(down). For simplicity, we assume that �L = λ�R , so that we can use Eq. (13.113)
for the current. In this case, where there is only a single level in the quantum dot, the
quantities �L, �R, GR, and GA are all scalars. From the spectral representations
of GR and GA (see Eqs (6.36) and (6.37)) we deduce that ReGR = ReGA and
ImGR = −ImGA; it follows that GR −GA = 2i ImGR. The expression for the
current thus takes the form:

I = −e

πh̄

∑
σ

∫ ∞

−∞
dω [fL(ω)− fR(ω)] ×

Tr
{

�L(ω; σ )�R(ω; σ )
�L(ω; σ )+ �R(ω; σ )

[
Im GR(ω; σ )

]}
. (13.130)

Here, GR(ω; σ ) is the Fourier transform of the retarded Green’s function GR
σ (t)

of the single-level quantum dot in the presence of coupling to the leads. GR
σ (t) is

defined by

GR
dσ (t) = −iθ (t)

〈{
dσ (t), d†

σ (0)
}〉

. (13.131)

Let us denote the retarded Green’s function of the isolated quantum dot by DR
σ .

This function was calculated in Chapter 7 (see Eq. [7.11]); it is given by

DR
σ (ω) = 1− 〈nσ̄ 〉

ω − ε/h̄+ i0+
+ 〈nσ̄ 〉

ω − (ε + U )/h̄+ i0+
(13.132)

where nσ̄ = n−σ . This is the exact retarded Green’s function for the isolated single-
level quantum dot.
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XX

Figure 13.12 Dyson’s equation for the contour Green’s function of the quantum
dot placed between two noninteracting metal leads.

Our next step is to calculate the retarded Green’s function GR
σ of the quantum

dot in the presence of the tunneling Hamiltonian,

HT =
∑
kσα

(
Vkαc

†
kσαdσ + V ∗

kαd
†
σ ckσα

)
. (13.133)

We have assumed that the tunneling matrix elements are spin-independent; that
assumption, along with the assumption of a single level in the dot, makes it super-
fluous to add any additional subscripts to Vkα and V ∗

kα .
The exact calculation of the dot’s retarded Green’s function is not possible, so

we must resort to approximations. Our approach will be to treat the exact Green’s
function DR

σ of the isolated dot as the unperturbed function G0
dσ (ω), and then

calculate a correction resulting from the inclusion of tunneling. The assumption
made here is that the coupling between the dot and the leads is weak.

Dyson’s equation for the contour Green’s function of the dot, Gdσ (ω), is depicted
graphically in Figure 13.12. We can thus write

Gdσ (ω) = G0
dσ (ω)+G0

dσ (ω)�σ (ω)Gdσ (ω) (13.134)

where the proper self energy is given by

�σ (ω) = 1
h̄2

∑
kα

|Vkα|2 G0
kσα(ω). (13.135)

Applying Langreth’s rule, Eq. (13.80), we find

GR
dσ (ω) = G0R

dσ (ω)+G0R
dσ (ω)�R

σ (ω)GR
dσ (ω)

⇒ GR
dσ (ω) = 1[

G0R
dσ (ω)

]−1 −�R
σ (ω)

. (13.136)

Replacing G0R
dσ (ω) with the exact retarded Green’s function of the isolated dot (see

Eq. [13.132]), we obtain

GR
dσ (ω) = h̄ω − ε − U + 〈nσ̄ 〉U

(ω − ε/h̄)(h̄ω − ε − U )−�R
σ (ω)[h̄ω − ε − U + 〈nσ̄ 〉U ]

. (13.137)
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Figure 13.13 A plot of I vs V in the Coulomb blockade regime.

This is too complicated. As an approximation, we ignore the real part of �R
σ , which

only leads to a small shift in the energy level of the dot. If we also ignore the ω-
dependence of �R

σ , then, using Eqs (13.120) and (13.135), we obtain �R = −�A =
−i(�L + �R)/2h̄, where �L and �R are constants. However, the calculation of the
current is still complicated because of the presence of 〈nσ̄ 〉 in the expression for
GR

dσ (ω); this is given by

〈nσ̄ 〉 = 〈d†
σ̄ dσ̄ 〉 = −i

∫
dω

2π
G<

dσ̄ (ω). (13.138)

The lesser function is given by the Keldysh equation (13.83), which again reduces
to the simple form:

G<
dσ̄ (ω) = GR

dσ̄ (ω)�<
σ̄ (ω)GA

dσ̄ (ω) (13.139)

where

�<
σ̄ (ω) = 1

h̄2

∑
kα

|Vkα|2 G0<
kσ̄α(ω), G0<

kσ̄α(ω) = 2πifα(ω)δ(ω − εkα/h̄).

It follows that

�<
σ̄ (ω) = i

h̄

∑
α

fα(ω)�α (13.140)

where the ω-dependence in �L and �R is ignored. We thus see that 〈nσ̄ 〉 depends on
the retarded Green’s function of the quantum dot, GR

dσ̄ , which, in turn, depends on
nσ . A self-consistent solution for GR

dσ is called for, using numerical techniques. If
such a calculation is carried out, using reasonable values for the various parameters,
a plot of the current I versus the applied bias voltage V , as in Figure 13.13, will
be obtained (Pals and Mackinnon, 1996; Swirkowicz et al., 2004; Zimbovskaya,
2008).

A qualitative understanding of how the current varies with bias voltage is gained
by appealing to the so-called Coulomb blockade model. Current flow requires the
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addition of an electron to the dot between the metal leads. Adding an electron to
the dot costs an energy of e2/2C, where C is the capacitance between the dot and
the leads. Since the quantum dot is of nanoscale size, C is extremely small, and
e2/2C may attain a large value. There is thus an energy barrier, called a Coulomb
blockade, to the flow of current through the quantum dot: no current flow takes
place unless the bias voltage exceeds a threshold value. A plateau in the I–V plot
results from the fact that the energy barrier to the flow of two electrons is larger
than the barrier to the flow of one electron (Kastner, 1993).

The first step in the I–V plot corresponds to the addition of one electron to the
dot, while the second step results from the addition of two electrons. The first step
is twice as large as the second step: the first added electron may have its spin up or
down, but the second added electron can be of only one spin orientation, the one
opposite to that of the first added electron.

Further reading

Datta, S. (2005). Quantum Transport: Atom to Transistor. Cambridge: Cambridge Univer-
sity Press.

Di Ventra, M. (2008). Electrical Transport in Nanoscale Systems. Cambridge: Cambridge
University Press.

Haug, H. and Jauho. A.-P. (1996). Quantum Kinetics in Transport and Optics in Semicon-
ductors. Berlin: Springer.

Rammer, J. and Smith, H. (1986). Quantum Field-Theoretical Methods in Transport Theory
of Metals. Reviews of Modern Physics 58, 323–359.

Problems

13.1 Evolution operator. Derive Eq. (13.7).

13.2 Properties of the evolution operator. Verify Eq. (13.8).

13.3 Ensemble average of operators. Prove Eq. (13.11).

13.4 Scattering matrix. Show that S(t, t ′) satisfies the properties given in Eq.
(13.26).

13.5 Relations among G-functions. Derive Eq. (13.47).

13.6 Gc in terms of interaction picture operators. Prove the validity of Eq. (13.49)
for the case when t ′ lies further along the contour than t .

13.7 Langreth’s rule for the advanced function. Derive Eq. (13.72).

13.8 The Keldysh equation for the greater function. Derive Eq. (13.84).
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13.9 Retarded and advanced functions. Prove the validity of Eq. (13.109) which
relates the retarded and advanced Green’s functions.

13.10 Conductance. Using the Landauer formula for the current, show that the
low-temperature, zero-bias conductance, defined by G = dI/dV |V=0, is
given by

G = e2

2πh̄3

∑
n

τn(EF ).

EF is the Fermi energy, and τn’s are the eigenvalues of the matrix T (EF /h̄),
where T is given by Eq. (13.128).

13.11 Green’s operator. In the independent-electron approximation, the Hamilto-
nian for a system of electrons is

H =
∑

i

[
− h̄2

2m
∇2

i + V (ri)
]
≡
∑

i

H (i).

V (ri) is the potential energy of electron i; it includes the potential produced
by the nuclei, as well as the average interaction with other electrons. Let
H |φν〉 = εν |φν〉.
(a) Show that the retarded Green’s function is given by

G(r, r′; ω) =
∑

ν

φν(r)φ∗ν (r′)
ω − εν/h̄+ i0+

.

(b) Now define the retarded Green’s operator G(ω) by

G(r, r′; ω) = 〈r|G(ω)|r′〉.

Show that

G(ω) = [ω −H/h̄+ i0+]−1.

13.12 LCR system. Consider a system which consists of a semi-infinite left lead
(L), a semi-infinite right lead (R), and a molecule in the central region
(C). The molecule is in contact with both leads, but the leads are not in
direct contact with each other. Treat this problem using the independent-
electron approximation. The Hamiltonian for the system is written by using
a basis set of real atomic-like orbitals centered on the atoms. There may be
more than one orbital centered on any one atom. In terms of this basis, the
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Hamiltonian is a matrix of the form:

H =
⎡
⎣HLL HLC 0

HCL HCC HCR

0 HRC HRR

⎤
⎦ .

Assuming that there are N basis functions in the left lead (N →∞), N

basis functions in the right lead, and M basis functions in the molecule
(M is finite), HLL and HRR are each an N ×N matrix, while HCC is an
M ×M matrix. HLC and HRC describe coupling between the molecule and
the leads. The matrix H is real and symmetric.

The retarded Green’s operator is

G(ω) =
⎡
⎣GLL GLC GLR

GCL GCC GCR

GRL GRC GRR

⎤
⎦ .

According to the previous problem, G(ω) is obtained by solving the equation

(ω −H/h̄+ i0+)G(ω) = 1.

Show that

GCC(ω) = [ω −HCC/h̄−�(L)(ω)−�(R)(ω)
]−1

where

�(L)(ω) = HCL gL(ω) HLC , �(R)(ω) = HCR gR(ω) HRC.

gL (gR) is the retarded Green’s operator for the isolated left (right) lead:

gL(ω) = (ω −HLL + i0+)−1, gR(ω) = (ω −HRR + i0+)−1.



Appendix A
Second quantized form of operators

We present a detailed derivation of the second quantized form of one-body and
two-body operators. We consider a system of N identical fermions, and follow by
the case of a system of N identical bosons.

A.1 Fermions

A.1.1 One-body operators

Consider the one-body operator H0 =
∑N

i=1 h(i). Let |φ1〉, |φ2〉, . . . be a com-
plete set of orthonormal single-particle states. H0 acts upon the vector space
V(N) = V1 ⊗ V2 ⊗ · · · ⊗ VN , the direct product space of the spaces of the N

particles. The vector space Vi , the Hilbert space of particle i upon which h(i)
acts, is spanned by the basis set |φ1〉i , |φ2〉i , . . . . For any |φν〉i in this basis set,
〈r|φν〉i = φν(i); for example, 〈r|kσ 〉i = 1√

V
eik.ri |σ 〉i , where ri is the position vec-

tor of particle i and |σ 〉i is its spin state. The orthonormality of the basis states
means that i〈φν |φν ′ 〉i = δνν ′ , and completeness means that

∑
ν |φν〉i i〈φν | = 1.

For the case |φν〉 = |kσ 〉, these relations mean that i〈kσ |k′σ ′〉i = δkk′δσσ ′ and∑
kσ |kσ 〉i i〈kσ | = 1. Note that an expression such as i〈φν |φν ′ 〉j , for i 
= j , is not

an inner product because |φν〉i and |φν ′ 〉j belong to different vector spaces; it is,
in fact, the operator |φν ′ 〉j i〈φν |. Inserting the completeness relation into H0, we
obtain

H0 = h(1)+ · · · + h(N) =
∑
νν′
|φν ′ 〉1 1〈φν ′ |h(1)|φν〉1 1〈φν | + · · ·

+
∑
νν′
|φν′ 〉N N 〈φν ′ |h(N)|φν〉N N 〈φν | =

∑
νν ′

∑
i

|φν ′ 〉i i〈φν′ |h(i)|φν〉i i〈φν |.

369
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The matrix element i〈φν′ |h(i)|φν〉i is independent of i, since the coordinates of
particle i are integrated over, and it is written as 〈φν ′ |h|φν〉. Thus,

H0 =
∑
νν ′
〈φν ′ |h|φν〉

N∑
i=1

|φν ′ 〉i i〈φν | =
∑
νν ′
〈φν ′ |h|φν〉Rν ′ν. (A.1)

We have introduced the operator Rν ′ν ,

Rν ′ν =
N∑

i=1

|φν ′ 〉i i〈φν |. (A.2)

The Slater determinants form a properly symmetrized basis for the expansion of
the N-fermion wave function. We consider how Rν ′ν acts on an arbitrary Slater
determinant |�〉 = |φν1 . . . φνN

〉. If ν /∈ {ν1, . . . , νN } then ν /∈ {P (ν1), . . . , P (νN )},
since the sets {ν1, . . . , νN } and {P (ν1), . . . , P (νN )} are identical (the elements of
the second set are merely a permutation of the elements of the first set). Since
ν /∈ {P (ν1), . . . , P (νN )},

i〈φν|�〉 = 1√
N!

i〈φν|
∑
P

(−1)P |φP (ν1)〉1 · · · |φP (νi )〉i · · · |φP (νN )〉N

= 1√
N!

∑
P

(−1)P |φP (ν1)〉1 · · · i〈φν |φP (νi )〉i · · · |φP (νN )〉N = 0.

The last equality follows since ν 
= P (νi). Therefore, unless ν ∈ {ν1, . . . , νN } the
action of Rν′ν on |�〉 yields zero. So let us assume that ν = νj . Then

Rν ′ν |�〉 = 1√
N!

N∑
i=1

|φν ′ 〉i i〈φν |
∑
P

(−1)P |φν1〉P (1) · · · |φν〉P (j ) · · · |φνN
〉P (N).

The sum is now over the permutations of coordinates. Recall that the Slater deter-
minant has two equivalent forms: the sum in one form is over the permutations
of coordinates, while in the other form, it is over the permutations of indices. In
the summation over i from 1 to N , each i belongs to the set {P (1), . . . , P (N)},
its elements being a permutation of 1, . . . , N . Since the single-particle states are
orthonormal, only when i = P (j ) will Rν ′ν |�〉 be nonzero. When i = P (j ) ,
|φν ′ 〉i i〈φν |φν〉P (j ) = |φν ′ 〉i = |φν ′ 〉P (j ). Hence, the result of the action of Rν′ν on
|�〉 is simply to replace |φν〉 in |�〉 by |φν ′ 〉,

Rν′ν |�〉 = 1√
N

∑
P

(−1)P |φν1〉P (1) · · · |φν ′ 〉P (j ) · · · |φνN
〉P (N)

= |φν1 · · ·φν′ · · ·φνN
〉 = c

†
ν ′cν |φν1 · · ·φν · · ·φνN

〉 = c
†
ν ′cν |�〉.
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No minus sign is needed: φν is moved to the leftmost position, replaced by φν ′ ,
which is then moved back to the original position of φν . If the first movement
produced a minus sign, so would the second. Since |�〉 is an arbitrary Slater
determinant, we conclude that

Rν ′ν = c
†
ν′cν. (A.3)

The second quantized form of H0 =
∑N

i=1 h(i) is therefore

H0 =
∑
νν′
〈φν′ |h|φν〉c†ν ′cν. (A.4)

A.1.2 Two-body operators

Consider the two-body operator H ′ = 1
2

∑
i 
=j v(i, j ). Given a complete set

|φ1〉, |φ2〉, . . . of orthonormal single-particle states, we may write

H ′ = 1
2

[v(1, 2)+ v(2, 1)+ v(1, 3)+ · · · + v(N, N − 1)]

= 1
2

[∑
klmn

|φkφl〉1,2 1,2〈φkφl|v(1, 2)|φmφn〉1,2 1,2〈φmφn| + · · ·

+
∑
klmn

|φkφl〉N,N−1 N,N−1〈φkφl|v(N, N − 1)|φmφn〉N,N−1 N,N−1〈φmφn|
]

.

In the above equation,

|φkφl〉i,j = |φk〉i ⊗ |φl〉j = |φk〉i |φl〉j , i,j 〈φkφl| = i〈φk| j 〈φl|.

The matrix element i,j 〈φkφl |v(i, j )|φmφn〉i,j is independent of i and j , since the
coordinates of i and j are integrated over, and we write it simply as 〈φkφl |v|φmφn〉.
Hence,

H ′ = 1
2

∑
klmn

〈φkl|v|φmn〉
∑
i 
=j

|φk〉i|φl〉j i〈φm| j 〈φn| = 1
2

∑
klmn

〈φkl|v|φmn〉Aklmn

Aklmn =
∑
i 
=j

|φk〉i|φl〉j i〈φm| j 〈φn| =
∑

i

|φk〉i i〈φm|
∑
j,j 
=i

|φl〉j j 〈φn|.
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Aklmn is a product of two operators. We rewrite it as follows,

Aklmn =
∑

i

|φk〉i i〈φm|
⎡
⎣∑

j

|φl〉j j 〈φn| − |φl〉i i〈φn|
⎤
⎦

=
∑

i

|φk〉i i〈φm|
∑

j

|φl〉j j 〈φn| −
∑

i

|φk〉i i〈φm|φl〉i i〈φn|

= RkmRln − δmlRkn = c
†
kcmc

†
l cn − δmlc

†
kcn.

We have used Eqs (A.2) and (A.3). The anticommutator {cm, c
†
l } = δml; it follows

that cmc
†
l = δml − c

†
l cm. Hence,

Aklmn = c
†
k(δml − c

†
l cm)cn − δmlc

†
kcn = −c

†
kc

†
l cmcn = c

†
kc

†
l cncm.

We thus arrive at the second quantized form of the two-body operator,

H ′ = 1
2

∑
klmn

〈φkφl|v|φmφn〉c†kc†l cncm. (A.5)

A.2 Bosons

A.2.1 One-body operators

We assume that we have a complete set |φ1〉, |φ2〉, . . . of orthonormal single-particle
states. For a system of N identical bosons, the basis states are

|�B〉 = 1∏
μ

√
nμ!

1√
N!

∑
P

|φν1〉P (1) · · · |φνN
〉P (N). (A.6)

nμ is the number of times the state |φμ〉 appears in the product, i.e., nμ is the number
of particles that occupy the single-particle state |φμ〉. The one-body operator H0 =∑

i h(i) is given by

H0 =
∑
νν ′
〈φν ′ |h|φν〉Rν ′ν , Rν ′ν =

N∑
i=1

|φν′ 〉i i〈φν|. (A.7)

It is clear that if ν /∈ {ν1, . . . , νN } then Rν ′ν |�B〉 = 0. Let us assume that
ν ∈ {ν1, . . . , νN }. First we consider the case ν′ 
= ν. Suppose that nν particles
P (i1), P (i2), . . . , P (inν

) occupy the single-particle state |φν〉, and n′ν ′ particles
P (j1), P (j2), . . . , P (jn′

ν′
) occupy the single-particle state |φν ′ 〉. In the number rep-

resentation,

|�B〉 = | . . . nν · · · n′ν ′ · · · 〉. (A.8)
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Applying Rν′ν to |�B〉, we obtain

Rν′ν |�B〉 = 1√
nν!n′ν ′!

1∏
μ 
=ν,ν′

√
nμ!

1√
N!

∑
P

N∑
i=1

|φν ′ 〉i i〈φν |

[
· · · |φν〉P (i1) · · · |φν〉P (inν ) · · · |φν ′ 〉P (j1) · · · |φν ′ 〉P (jn′

ν′
) · · ·

]
. (A.9)

Whenever i ∈ {P (i1), . . . , P (inν
)}, the result of the action of |φν′ 〉i i〈φν| is to remove

one particle from state |φν〉 and add a particle into state |φν′ 〉, i.e., it produces a
state with nν − 1 particles in state |φν〉 and n′ν ′ + 1 particles in state |φν′ 〉. For
i /∈ {P (i1), . . . , P (inν

)}, the action of |φν ′ 〉i i〈φν | on |�B〉 yields zero. We thus find

Rν ′ν |�B〉 = nν√
nν!n′ν ′!

1∏
μ 
=ν,ν′

√
nμ!

1√
N!

×
∑
P

[
· · · |φν〉P (k1) · · · |φν〉P (knν−1) · · · |φν′ 〉P (l1) · · · |φν ′ 〉P (ln′

ν′ +1) · · ·
]
.

Noting that

nν√
nν!n′ν ′!

=
√

nν

√
nν ′ + 1√

(nν − 1)!(n′ν ′ + 1)!
,

we find, for ν 
= ν ′,

Rν ′ν | · · · nν . . . n′ν ′ · · · 〉 =
√

nν

√
n′ν ′ + 1 | · · · nν − 1 · · · n′ν′ + 1 · · · 〉

= a
†
ν ′aν | · · · nν · · · n′ν ′ · · · 〉.

Now consider the case ν ′ = ν. In Eq. (A.9), whenever i ∈ {P (i1), . . . , P (inν
)}, the

action of |φν〉i i〈φν | on |�B〉 leaves |�B〉 unchanged, since it simply removes a
particle from the single-particle state |φν〉 and adds a particle into the same state.
For i /∈ {P (i1), . . . , P (inν

)}, the action of |φν〉i i〈φν | on |�B〉 yields zero. Therefore,

Rνν |�B〉 = Rνν| · · · nν · · · 〉 =
N∑

i=1

|φν〉i i〈φν | · · · nν · · · 〉

=
∑

i∈{P (i1),...,P (inν )}
|φν〉i i〈φν | · · · nν · · · 〉 = nν | · · · nν · · · 〉 = a†

νaν | · · · nν · · · 〉.

We conclude that Rν′ν = a
†
ν ′aν . The one-body operator is thus given by

H0 =
∑
νν′
〈φν ′ |h|φν〉a†

ν ′aν. (A.10)
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A.2.2 Two-body operators

Following the same steps as in the case of fermions, we obtain the following
expression for the two-body operator

H ′ = 1
2

∑
klmn

〈kl|v|mn〉Aklmn

Aklmn = RkmRln − δmlRkn = a
†
kama

†
l an − δmla

†
kan.

The commutation relation [am, a
†
l ] = δml , for bosonic operators, implies that

ama
†
l = δml + a

†
l am; hence

Aklmn = a
†
k (δml + a

†
l am)an − δmla

†
kan = a

†
ka

†
l aman = a

†
ka

†
l anam.

The second quantized form of the two-body operator is therefore

H ′ = 1
2

∑
klmn

〈kl|v|mn〉a†
ka

†
l anam. (A.11)

This is the same expression as in the case of fermions.



Appendix B
Completing the proof of Dzyaloshinski’s rules

A Feynman diagram of order N is a sum of N! time-ordered diagrams correspond-
ing to the N! permutations of τ1, τ2, . . . , τN . Consider the diagram �N,1 obtained
from some permutation for which, say, τPN

> τPN−1 > · · · > τP1 . The contribution
of this diagram is

δg�N,1 ∝
∫ βh̄

0
dτPN

eεPN
τPN

∫ τPN

0
dτPN−1e

εPN−1 τPN−1 . . .

∫ τP2

0
dτP1e

εP1 τP1 .

We asserted in Section 9.8 that the sole surviving term is obtained by keeping
only the contribution at the upper limit of each integral for all integrations over
τP1, τP2, . . . , τPN−1 . To prove this assertion, consider the term obtained by keeping
only the lower limits on the first d1 integrals over τP1, τP2, . . . , τPd1

, then only the
upper limits on the next u1 integrals over τPd1+1, . . . τPd1+u1

, then only the lower limits
on the next d2 integrals, then only the upper limits on the next u2 integrals, and so
on. Only the upper limits are kept on the last uk integrals. Let S1 be this sequence of
lower and upper limits, S1 : ukdk . . . u2d2u1d1. The diagram �N,1, without external
lines, is represented in Figure B.1, where, for simplicity, times are arranged in
decreasing order from left to right (instead of top to bottom). In the figure, we lump
the uk vertices τPN

, . . . , τPN−uk+1 together into L1, and the vertices τPN−uk
, . . . , τP1

into L2. We show fermion and boson lines that connect the two lumps L1 and L2.
The term obtained by sequence S1 is denoted by δg

�N,1
S1

. We will show that this
term is cancelled out by another term that arises from a sequence in a different
time-ordered diagram.

Consider the time-ordered diagram �N,2 , obtained from a second permuta-
tion which orders the times as follows: τPN−uk

> · · · > τP1 > τPN
> · · · > τPN−uk+1 .

This diagram is the same as that in Figure B.1 except that the lumps L1 and
L2 are interchanged. As a result of this interchange, the lines connecting the
lumps have their directions reversed. In evaluating δg�N,2 , consider the sequence
S2 : dkuk−1dk−1 . . . u2d2u1(d1 + 1)(uk − 1). Note that, in S2 , the lower limit from
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376 Completing the proof of Dzyaloshinski’s rules

...

. . . . . .

Figure B.1 A time-ordered diagram, with time decreasing from left to right, is
divided into two lumps that are connected by fermion (solid) and boson (wavy)
lines. The external lines are not shown.

the integration over τPN
is the one that is kept. We will show that the term δg

�N,2
S2

exactly cancels out the term δg
�N,1
S1

. It is easy to check that, in both δg
�N,1
S1

and δg
�N,2
S2

,
time integrations produce the same denominators. We also note that δg

�N,2
S2

differs
from δg

�N,1
S1

by the following:

1. A factor of−1, which results from keeping the lower limit rather than the upper
limit in the integral over τPN

.
2. A factor of exp[−βh̄(εPN

+ · · · + εPN−uk+1 )]; this results from the fact that, in

δg
�N,1
S1

, we kept only the upper limits in the last uk integrals, which produces
the factor exp[βh̄(εPN

+ · · · + εPN−uk+1 ). In δg
�N,2
S2

we kept only the lower limit
in the integration over τPN

.
3. A factor of (−1)J exp[−βh̄

∑N
i=N−uk+1

∑N−uk

j=1 (εPiPj
− εPj Pi

)], where J is the
number of internal fermion lines connecting L1 to L2. The reason for this factor is
the following. As a result of interchanging L1 and L2 , all lines connecting L1 and
L2 are reversed. For each vertex τPi

in Figure B.1, i = N, N − 1, N − uk + 1,
the lines connecting τPi

to all τPj
∈ L2 are reversed. Upon reversal of lines, for

each fermion line directed from τPi
∈ L1 to τPj

∈ L2, the factor −(1− fεPiPj
)

must be replaced by fεPiPj
= −exp(−βh̄εPiPj

)[−(1− fεPiPj
)], whereas for each

fermion line directed from τPj
∈ L2 to τPi

∈ L1, the factor fεPj Pi
must be replaced

by −(1− fεPj Pi
) = −exp(βh̄εPj Pi

)fεPj Pi
. Also note that upon reversal of lines,

for each boson line directed from τPi
∈ L1 to τPj

∈ L2, the factor (1+ nεPiPj
)

must be replaced by nεPiPj
= exp(−βh̄εPiPj

)(1+ nεPiPj
), whereas for each boson

line directed from τPj
∈ L2 to τPi

∈ L1, the factor nεPj Pi
must be replaced by

(1+ nεPj Pi
) = exp(βh̄εPj Pi

)nεPj Pi
. Hence, the reversal of the lines produces the

factor given above.
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Summarizing,

δ
�N,2
S2

= −(−1)J e
−βh̄

(
εPN

+···+εPN−uk+1

)
exp

⎡
⎣−βh̄

N∑
i=N−uk+1

N−uk∑
j=1

(εPiPj
− εPj Pi

)

⎤
⎦ δ

�N,1
S1

.

Using the definition of εPi
,

εPN
+ · · · + εPN−uk+1 =

N∑
i=N−uk+1

εPi

=
N∑

i=N−uk+1

⎛
⎝− N∑

j=1

εPiPj
+

N∑
j=1

εPjPi
+ iωn1δPi,N − iωn2δPi,1

⎞
⎠ = N∑

i=N−uk+1⎛
⎝− N∑

j=N−uk+1

εPiPj
−

N−uk∑
j=1

εPiPj
+

N∑
j=N−uk+1

εPj Pi
+

N−uk∑
j=1

εPj Pi
+ iωn1δPi,N − iωn2δPi,1

⎞
⎠

=
N∑

i=N−uk+1

N−uk∑
j=1

(−εPiPj
+ εPj Pi

)+ iωn1

N∑
i=N−uk+1

δPi,N − iωn2

N∑
i=N−uk+1

δPi,1.

Therefore,

δg
�N,2
S2

= −(−1)J exp

⎡
⎣iβh̄ωn1

N∑
i=N−uk+1

δPi ,N − iβh̄ωn2

N∑
i=N−uk+1

δPi,1

⎤
⎦δg

�N,1
S1

.

If we are interested in the self energy of a boson, then J is even and ωn1 = 2πn1/βh̄,
ωn2 = 2πn2/βh̄; this gives δg

�N,2
S2

= −δ
�N,1
S1

. On the other hand, if we are interested
in the self energy of a fermion, then:

(a) If both external lines enter and leave L1, then J is even, and

δg
�N,2
S2

= −eiβh̄(ωn1−ωn2 )δg
�N,1
S1

= −δ
�N,1
S1

.

(b) If both external lines enter and leave L2, then J is even, and δg
�N,2
S2

= −δ
�N,1
S1

.
(c) If one external line enters L1 and the other line leaves L2, then J is odd, and

δg
�N,2
S2

= −(−1)oddeiωn1βh̄δg
�N,1
S1

= −δg
�N,1
S1

.

(d) If one external line enters L2 and the other line leaves L1, then J is odd and

δg
�N,2
S2

= −(−1)odde−iωn2βh̄δg
�N,1
S1

= −δg
�N,1
S1

.

In all cases, δg
�N,2
S2

= −δg
�N,1
S1

.



Appendix C
Lattice vibrations in three dimensions

C.1 Harmonic approximation

Consider a crystal having N unit cells with a basis of r atoms in each unit cell.
Choosing the center of one unit cell to be the origin, the instantaneous position of
atom l in unit cell n is

xnl = Rnl + unl. (C.1)

Rnl = Rn + dl is the equilibrium position of the atom, unl is its displacement from
equilibrium, Rn is the lattice vector from the origin to the center of unit cell n, and
dl is the equilibrium position vector of atom l, measured from the center of the unit
cell to which the atom belongs. The various terms are shown in Figure C.1.

Denoting the mass of atom l as Ml , the kinetic energy of the atoms is

T =
∑
nlα

P 2
nlα/2Ml , α = x, y, z. (C.2)

The potential energy V is assumed to be a sum of pairwise interactions between
the atoms. A Taylor expansion of V about equilibrium gives

V = V0 +
∑
nlα

∂V

∂unlα

∣∣∣∣
0
unlα + 1

2

∑
nlα

∑
n′l′α′

∂2V

∂unlα∂un′l′α′

∣∣∣∣
0
unlαun′l′α′ + · · · . (C.3)

V0 is the potential energy of the crystal when the atoms sit at their equilibrium
positions. Being merely a constant, V0 will be ignored (we can always set it equal
to zero by measuring energies relative to it). Since V is a minimum at equilibrium,
the second term in Eq. (C.3) vanishes. The harmonic approximation, which we
adopt here, consists in keeping only the third term in Eq. (C.3), ignoring higher
order terms. The justification for this is that the displacement from equilibrium is
very small compared to the lattice spacing (this is generally true for temperatures
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Figure C.1 A two-dimensional crystal with two atoms per unit cell. The center O
of one unit cell is chosen as the origin of coordinates. Rn is the vector from O to
the center of unit cell n. d1 and d2 are the equilibrium position vectors of the two
atoms relative to the center of the unit cell to which they belong. un1 and un2 are
the displacements from equilibrium of the two atoms that belong to unit cell n.

far below the melting point). Thus,

V = 1
2

∑
nlα

∑
n′l′α′

φ(nlα, n′l′α′)unlαun′l ′α′ . (C.4)

The force constants φ(nlα, n′l′α′) are given by

φ(nlα, n′l′α′) = ∂2V

∂unlα∂un′l′α′

∣∣∣∣
0
. (C.5)

C.2 Classical theory of lattice vibrations

The atoms’ equations of motion are given by Newton’s second law

Mlünlα = −∂V/∂unlα = −
∑
n′l′α′

φ(nlα, n′l′α′)un′l′α′ . (C.6)

This is a set of 3Nr coupled, linear, differential equations. The general solution
is written as a linear combination of the normal modes. This is analogous to the
situation in quantum mechanics where the general solution of the time-dependent
Schrödinger equation is written as a linear combination of the eigenfunctions of the
Hamiltonian. Here, normal modes play the role of the eigenfunctions in quantum
mechanics. We search for the normal modes of the system; their number is 3Nr ,
which equals the number of degrees of freedom. In a normal mode all atoms
vibrate with the same wave vector and frequency; we thus consider the following
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trial solution

unl = A√
Ml

ε(l)(q)ei(q.Rn−ωqt). (C.7)

The allowed values of q are determined by the periodic boundary conditions. ε(l)(q)
is a vector to be determined, A is a constant, and the factor 1/

√
M is inserted for

later convenience. Putting the above expression into Eq. (C.6), we obtain

ω2
qε

(l)
α (q) =

∑
n′l′α′

1√
MlMl′

φ(nlα, n′l′α′)ε(l′)
α′ (q)eiq.(Rn′−Rn). (C.8)

This is a set of 3r algebraic equations (l = 1, . . . , r; α = x, y, z). The translational
symmetry of the lattice implies that the force constants depend on Rn′ − Rn and not
on Rn′ and Rn separately (to convince yourself of this, think about how potential
energy changes if two atoms, one in unit cell n and another in unit cell n′, are
displaced from equilibrium, while all other atoms in the crystal remain fixed). We
define Dq(lα, l′α′) by

Dq(lα, l′α′) = (MlMl′)−1/2
∑
n′

φ(nlα, n′l′α′)eiq.(Rn′−Rn). (C.9)

Since the summand depends on Rn′ − Rn and not on Rn and Rn′ separately, we
may set Rn = 0. Relabeling n′ as n, we obtain

Dq(lα, l′α′) = (MlMl′)−1/2
∑

n

φ(0lα, nl′α′)eiq.Rn . (C.10)

Since the force constants are real, it follows that

D∗
q(lα, l′α′) = D−q(lα, l′α′). (C.11)

Using Eq. (C.9), we rewrite Eq. (C.8) as an eigenvalue equation,∑
l′α′

Dq(lα, l′α′)ε(l′)
α′ (q) = ω2

qε
(l)
α (q). (C.12)

To make this notion more manifest, we define the 3r × 3r dynamical matrix

D(q) =

⎡
⎢⎢⎢⎣

Dq(1, 1) Dq(1, 2) . . . Dq(1, r)
Dq(2, 1) Dq(2, 2) . . . Dq(2, r)

...
...

...
Dq(r, 1) Dq(r, 2) . . . Dq(r, r)

⎤
⎥⎥⎥⎦ . (C.13)

Here, Dq(l, l′) is a 3× 3 matrix whose αα′ entry is Dq,αα′(l, l′) = Dq(lα, l′α′). We
also define the 3r-column polarization vector

ε = (ε(1)
x ε(1)

y ε(1)
z . . . ε(r)

x ε(r)
y ε(r)

z )T = (ε(1) ε(2) . . . ε(r))T. (C.14)
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The superscript T means “transpose.” Equation (C.12) now becomes

D(q)ε(q) = ω2
qε(q). (C.15)

We note that the dynamical matrix is hermitian, since

D∗
q(lα, l′α′) = (MlMl′)−1/2

∑
n′

φ(nlα, n′l′α′)e−iq.(Rn′−Rn)

= (MlMl′)−1/2
∑
n′

φ(n′l′α′, nlα)eiq.(Rn−Rn′ )

= Dq(l′α′, lα). (C.16)

The first equality results from the definition of Dq(lα, l′α′) in Eq. (C.9) and
the fact that the force constants are real. The second equality is valid because
φ(nlα, n′l′α′) = φ(n′l′α′, nlα). The hermiticity of D(q) implies that:

� The eigenvalues ω2
qλ, λ = 1, . . . , 3r , are real. Furthermore, ωqλ is real; if it were

not, the displacement unl would be a monotonically increasing or decreasing
function of time, rather than an oscillatory one.

� The 3r eigenvectors ελ(q), λ = 1, . . . , 3r can be chosen to form a complete
orthonormal set; any 3r-column vector can be expanded in terms of them.

We also make the following remarks:

(1) The definition of Dq(lα, l′α′), as given in Eq. (C.9), along with the equality
eiG.Rn = 1, implies that Dq(lα, l′α′) = Dq+G(lα, l′α′) for any reciprocal lattice
vector G. The dynamical matrix thus satisfies the property D(q) = D(q+G);
consequently,

ωqλ = ωq+Gλ , ελ(q) = ελ(q+G). (C.17)

In other words, the mode (q+Gλ) is identical to the mode (qλ). It is therefore
sufficient to restrict the values of q to the first Brillouin zone: q ∈ FBZ; this
exhausts all possible normal modes. Since there are N q-points in the FBZ,
there are a total of 3Nr eigenvalues ωqλ and 3Nr corresponding eigenvectors
ελ(q), q ∈ FBZ, λ = 1, . . . , 3r .

(2) The dynamical matrix satisfies the relation D∗(q) = D(−q), a consequence of
Eq. (C.11). Since ωqλ is real, it follows that

ωqλ = ω−qλ , ε∗λ(q) = ελ(−q). (C.18)

(3) The orthonormality of the eigenvectors (polarization vectors) means that

ε
†
λ(q)ελ′(q) = δλλ′ ⇒

∑
lα

ε
∗(l)
λ,α (q)ε(l)

λ′,α(q) = δλλ′ . (C.19)
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(4) If we plot ωqλ vs q along a certain direction in the FBZ, we obtain a curve for
each value of λ. Therefore, along any given direction in the FBZ, there are 3r

curves, or branches. Of these, three are acoustic branches, while the remaining
3r − 3 branches are optical branches. For the three acoustic branches, ω → 0
as q → 0.

The general solution of the equation of motion, Eq. (C.6), is a linear combination
of the 3Nr normal modes,

unl = 1√
NMl

∑
qλ

Qqλ(t)ε(l)
λ (q)eiq.Rn (C.20)

where the factor exp(−iωqλt) is absorbed into the expansion coefficients Qqλ(t),
and the factor 1/

√
N is inserted for later convenience. The coefficients Qqλ(t) are

called normal coordinates. Using the equality∑
n

ei(q−q′).Rn = Nδqq′ ,

and Eq. (C.19), it is not difficult to show that Eq. (C.20) gives

Qqλ(t) = 1√
N

∑
nlα

√
Ml unlα(t)ε∗(l)

λ,α (q)e−iq.Rn . (C.21)

Since unlα is real and ε
(l)∗
λ,α (−q) = ε

(l)
λ,α(q), it follows that

Q∗
qλ(t) = Q−qλ(t). (C.22)

C.3 Vibrational energy

The total energy of the atoms can be expressed in terms of the normal coordinates.
The kinetic energy is given by

T = 1
2

∑
nlα

Mlu̇
2
nlα =

1
2N

∑
nlα

∑
qλ

∑
q′λ′

Q̇qλ Q̇q′λ′ ε
(l)
λ,α(q)ε(l)

λ′,α(q′)ei(q+q′).Rn .

Carrying out the summation over n:
∑

n ei(q+q′).Rn = Nδq′,−q , then over l and α:∑
lα ε

(l)
λ,α(q)ε(l)

λ′,α(−q) = δλλ′ , the expression for T reduces to

T = 1
2

∑
qλ

Q̇qλQ̇−qλ. (C.23)
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The potential energy is given by

V = 1
2

∑
nlα

∑
n′l′α′

φ(nlα, n′l′α′)unlαun′l′α′ = 1
2N

∑
nlα

∑
n′l′α′

∑
qλ

∑
q′λ′

(MlMl ′)−1/2

× φ(nlα, n′l′α′)QqλQq′λ′ ε
(l)
λ,α(q)ε(l′)

λ′,α′(q
′)eiq.Rn eiq′.Rn′ .

Writing eiq.Rneiq′.Rn′ = ei(q+q′).Rn eiq′.(Rn′−Rn), using Eq. (C.8), summing over n, and
using the orthonormality of polarization vectors, we find that

V = 1
2

∑
qλ

ω2
qλQqλQ−qλ. (C.24)

The Lagrangian L is equal to T − V . The canonical momentum conjugate to Qqλ

is

Pqλ = ∂L/∂Q̇qλ = Q̇−qλ. (C.25)

In terms of the dynamical variables Qqλ and Pqλ , the Hamiltonian is

H =
⎛
⎝∑

qλ

Pqλ Q̇qλ − L

⎞
⎠
∣∣∣∣∣∣
Q̇qλ=P−qλ

= 1
2

∑
qλ

(
PqλP−qλ + ω2

qλQqλQ−qλ

)
. (C.26)

C.4 Quantum theory of lattice vibrations

The quantum theory of lattice vibrations is obtained by treating Qqλ and Pqλ as
operators that satisfy the following equal-time commutation relations:[

Qqλ , Qq′λ′
] = [Pqλ , Pq′λ′

] = 0,
[
Qqλ , Pq′λ′

] = ih̄δqq′ δλλ′ . (C.27)

Analogous to the case of the harmonic oscillator (see Section 1.2), we define two
new operators:

aqλ =
√

1
2h̄ωqλ

(
ωqλQqλ + iP−qλ

)
, a

†
qλ =

√
1

2h̄ωqλ

(
ωqλQ−qλ − iPqλ

)
.

(C.28)
These operators satisfy the commutation relations

[aqλ , aq′λ′] = [a†
qλ , a

†
q′λ′] = 0, [aqλ , a

†
q′λ′] = δqq′ δλλ′ . (C.29)
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We can use Eq. (C.28) to express the normal coordinates and momentum operators
in terms of the new operators:

Qqλ =
√

h̄

2ωqλ

(aqλ + a
†
−qλ), Pqλ = i

√
h̄ωqλ

2
(a†

qλ − a−qλ). (C.30)

Using the above expressions, it is straightforward to show that

H =
∑
qλ

h̄ωqλ(a†
qλaqλ + 1/2). (C.31)

The values of q are restricted to the first Brillouin zone: q ∈ FBZ. The Hamiltonian
is thus a collection of 3Nr harmonic oscillators. The operator a

†
qλ(aqλ) is interpreted

as a creation (annihilation) operator for a particle-like entity, called a phonon, of
wave vector q, branch index λ, and energy h̄ωqλ.



Appendix D
Electron–phonon interaction in polar crystals

D.1 Polarization

Polar crystals are generally semiconductors or insulators that, at low temperatures,
have fully occupied valence bands and empty conduction bands. It is possible,
however, to introduce electrons into the conduction bands. For example, absorption
of photons of appropriate energy leads to the promotion of electrons from the
occupied valence bands to the empty conduction bands. Raising the temperature
produces a similar effect. In semiconductors, doping introduces free electrons into
the lowest conduction band (or free holes into the top valence band). The electron–
phonon interaction in these systems is not adequately described by the rigid-ion
approximation. In an optical mode, the ions in the unit cell move relative to each
other, resulting in an oscillating dipole moment which, in turn, gives rise to an
electric field that acts on the electrons. The electron–LO phonon interaction in
polar crystals is mainly the result of this coupling of electrons to the induced
electric field.

We consider the case of a cubic crystal with two atoms per unit cell. The ionic
charges are ±e∗. The volume of the crystal is V , and the number of unit cells is
N . In the long wavelength limit (q → 0), the two ions in the unit cell vibrate out
of phase, while the displacements in one cell are almost identical to those in a
neighboring cell. We denote by u+ (u−) the displacement of the positive (negative)
ion within a unit cell (see Figure D.1).

Due to ionic displacements, a dipole moment p = e∗u, where u = u+ − u−, is
induced in the unit cell. Since the ions are not rigid, the resulting electric field
further polarizes the ions; the polarization is thus

P = n(e∗u+ αElocal) (D.1)

where n = N/V , α = α+ + α− is the sum of the polarizabilities of the ions, and
Elocal is the electric field at the site of the dipole. The crystal is viewed as a
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Figure D.1 In a long wavelength optical mode, the motion in neighboring cells
of a lattice is essentially the same. Within a unit cell, the two ions vibrate out of
phase. The dipole moment in a unit cell is p = e∗u+ − e∗u−.

collection of dipoles, each of which occupies one unit cell. The local field acting
on a dipole differs from the average macroscopic field E in the crystal; they are
related by the Lorentz relation:

Elocal = E+ (4π/3)P (cgs), Elocal = E+ (1/3ε0)P (SI ). (D.2)

This relation is derived in standard electricity and magnetism textbooks (see, for
example, [Griffiths, 1999]). In what follows we adopt the cgs system of units.

In a long-wavelength optical mode, all positive ions in adjacent cells have almost
the same displacement u+, while all negative ions have almost the same displace-
ment u−, whose direction is opposite to that of u+. The short-range restoring force
acting on any one ion is proportional to u+ − u−. The equations of motion of the
ions are thus given by

M+ü+ = −γ (u+ − u−)+ e∗Elocal (D.3a)

M−ü− = −γ (u− − u+)− e∗Elocal . (D.3b)

γ is a constant related to the strength of the short-range restoring force between the
ions. Multiplying the second equation by M+/M− and subtracting the result from
the first equation, we obtain

Mü = −γ u+ e∗Elocal (D.4)

where M = M+M−/(M+ +M−) is the reduced mass of the two ions in a unit cell.
Defining w = √NM/V u, a bit of algebra shows that Eqs (D.1), (D.2), and (D.4)
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give the following:

ẅ = b11w+ b12E (D.5a)

P = b12w+ b22E. (D.5b)

The coefficients b11, b12, and b22 are constants. We can express these coefficients
in terms of experimentally measurable quantities. In the presence of an externally
applied static electric field, the ions are displaced from their equilibrium positions
to new equilibrium positions, and a polarization develops even in the absence of
ionic vibrations. In the static case, ẅ = 0, w = −(b12/b11)E, and P = (−b2

12/b11 +
b22)E. Since, in this case, ε(ω = 0)E = D = E+ 4πP, it follows that

b22 − b2
12/b11 = 1

4π
[ε(0)− 1] , (D.6)

where ε(0) = ε(q → 0, ω = 0) is the static dielectric constant.
If an external electric field with a frequency much higher than the vibrational

frequencies is applied, the ions will not be able to follow the fast variation of the
field; hence w = 0 and P = b22E. Since, in this case, ε(∞)E = D = E+ 4πP, we
obtain

b22 = 1
4π

[ε(∞)− 1] , (D.7)

where ε(∞) = ε(q → 0, ω � ωphonon) is the high-frequency dielectric constant.
We write the solution to Eq. (D.5) in the form

(w, E, P) = (w0, E0, P0)ei(q.r−ωt). (D.8)

Since ∇.D = 0 (there are no excess free charges in the crystal; it is neutral), it
follows that

q.(E+ 4πP) = 0. (D.9)

For a transverse optical mode, q.P = 0 ⇒ q.E = 0. Furthermore, in the electro-
static approximation, ∇ × E = 0 implies that q× E = 0; hence, for a transverse
optical mode, E = 0, and Eq. (D.5a) becomes ẅ = b11w. We therefore conclude
that

b11 = −ω2
T O , (D.10)

where ωT O is the frequency of the transverse optical phonon.
One may object to the conclusion that the electric field vanishes for the trans-

verse optical modes, based on the electrostatic approximation, since the correct
Maxwell’s equation is ∇ × E = (−1/c)∂B/∂t . This should be solved along with
∇.E = 0 (which is correct for the transverse modes) and ∇ × B = (1/c)∂D/∂t =
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(ε/c)∂E/∂t , where ε is the dielectric constant. Writing ∇ ×∇ × E = −∇2E+
∇(∇.E) = −∇2E, we obtain ∇2E = (ε/c2)∂2E/∂t2. This gives ε = c2q2/ω2.
Since D = εE = E+ 4πP , we see that E ≈ 0 if ε � 1. Since the optical mode
frequency ω ≈ 1013s−1, we find that ε � 1 for q � 105 m−1. Since the width of
the Brillouin zone is ≈ 1010 m−1, we conclude that, except for values of q in
an extremely tiny volume surrounding the Brillouin zone center, the electrostatic
approximation is indeed satisfied.

For the longitudinal optical mode (where w, E, and P are parallel to q), Eq. (D.9)
implies that E = −4πP. Writing for this case ẅ = −ω2

LOw, it is straightforward to
show, from Eqs (D.5), (D.6), (D.7), and (D.10), that

ω2
LO =

ε(0)
ε(∞)

ω2
T O (D.11)

where ωLO is the frequency of the longitudinal optical phonon. The above relation
is known as the Lyddane–Sachs–Teller (LST) relation.

When the relation E = −4πP, valid for longitudinal optical vibrations, is sub-
stituted into Eq. (D.5b), we obtain

P = b12

1+ 4πb22
w = b12

ε(∞)
w. (D.12)

In the last step we used Eq. (D.7). Solving for b12 from Eqs (D.6), (D.7), and
(D.10), and replacing w with

√
NM/V u, we obtain

P = ωLO

[
NM

4πV

(
1

ε(∞)
− 1

ε(0)

)]1/2

u. (D.13)

D.2 Electron–LO phonon interaction

In order to write the electron–LO phonon interaction, we make the approximation
of treating the crystal as a continuum, i.e., we express the polarization as a function
of position inside the crystal. To do this, we need to write u as a function of position.
The relative displacement un can be expanded as

un = 1√
NM

∑
q

QqεL(q)eiq.Rn .

where εL(q) is the unit polarization vector of the LO phonon, and the normal
coordinates Qq satisfy the equation Q̈q = −ω2

LOQq (the longitudinal optical modes
are assumed to be dispersionless: ωq = ωLO). In the continuum description we thus
write

u(r) = 1√
NM

∑
q

QqεL(q)eiq,r.

Inserting this into Eq. (D.13) gives polarization as a function of position.
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The interaction energy of an electron at position rj with the polarized medium is
−e�(rj ), where �(rj ) is the electric potential produced at rj by the polarization.
The polarization induces a charge density which, in turn, produces the electric
potential �(rj ). The induced charge density is

ρ(r) = −∇.P = −iωLO

[
1

4πV

(
1

ε(∞)
− 1

ε(0)

)]1/2 ∑′

q

Qq q.εL(q)eiq,r.

(D.14)
In the sum over q, the q = 0 term vanishes; the prime on the summation indicates
that the q = 0 term is excluded. The electron–LO phonon interaction is given by

He−LO = −e
∑

j

�(rj ) = −e
∑

j

∫
ρ(r)d3r

|r− rj |

= ieωLO

[
1

4πV

(
1

ε(∞)
− 1

ε(0)

)]1/2∑
j

∑′

q

Qq q.εL(q)
∫

eiq,rd3r

|r− rj |

= ieωLO

[
1

4πV

(
1

ε(∞)
− 1

ε(0)

)]1/2∑
j

∑′

q

Qq q.εL(q)eiq.rj

∫
eiq,(r−rj )d3r

|r− rj | .

A change of variable r → r+ rj shows that the above integral is simply the Fourier
transform of 1/r , which is equal to 4π/q2. We thus obtain

He−LO = ieωLO

[
1

4πV

(
1

ε(∞)
− 1

ε(0)

)]1/2∑′

q

Qq q.εL(q)(4π/q2)
∑

j

eiq.rj .

(D.15)
Finally, by writing

∑
j eiq.rj in second quantized form in terms of electron creation

and annihilation operators, and by expanding Qq in terms of the phonon creation
and annihilation operators, we obtain Eq. (11.46).
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antitime-ordering operator, 333
anticommutator, 43, 93, 3

of two interaction picture operators, 164
anyons, 10
Avogadro’s number, 78

BCS theory of superconductivity, 299
broken symmetry, 304
gap parameter, 301
ground state wave function, 299
model Hamiltonian, 299
weak coupling limit, 302

Bloch states, 21–27, 53, 54
Bloch’s theorem, 24, 25, 30
Bogoliubov-Valatin transformation, 305
Bohr
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radius, 34, 35, 69, 233, 246

Boltzmann constant, 80, 92
Born–Oppenheimer approximation, 65
Bose–Einstein

distribution function, 88, 102
statistics, 9

bosons, 10, 38, 42
one-body operator, 372–373
two-body operator, 374

cancellation of disconnected diagrams, 174–176
canonical ensemble, 82

partition function, 83

canonical transformation, 277, 305
causality, 123, 125
charged particle in a magnetic field, 31

Hamiltonian, 32
Lagrangian, 31

chemical potential, 81, 89, 92, 102, 144
collective electronic density fluctuations, 223–227,

229
commutation relations

bosons, 58
fermions, 58

commutator, 10, 13, 103, 122, 124
formula for [A, BC], 131
formula for [AB, CD], 116
formula for [AB, C], 11

completeness, 4, 5, 7–9
contact potential, 64
contour integral, 123, 211, 349
contour-ordered Green’s function, 341–343
contour-ordering operator, 340
contour-time-ordering operator, 341, 346
contraction, 162–163, 168, 170, 186, 188
convergence factor, 192, 222
Cooper pairs, 295–299
Coulomb blockade, 363–366

I -V plot, 366
energy barrier, 366
quantum dot, 363

Coulomb interaction, 52–53
direct process, 73
exchange process, 73
long range nature, 213
screening, 223
two dimensions, 77

creation operator, 11
creation operators, 15, 42–47
current density, 63, 289, 290, 324

diamagnetic, 63, 319
paramagnetic, 63, 319–321

current–current correlation function, 320
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Debye frequency, 291
dielectric function, 117, 223, 229

high frequency limit, 245
Lindhard, 233
noninteracting electron gas, 117
random phase approximation, 229
static, 233
Thomas–Fermi model, 233

Dirac notation, 1
Dirac-delta function, 5

representation, 6, 13
direct product space, 8, 9, 38
direct product states, 38
divergence theorem, 60
Dyson’s equation, 196

contour Green’s function, 348
imaginary-time Green’s function, 197

Dzyaloshinski’s rules, 204–210
applied to electron–phonon interaction, 268
counting factor, 205, 210
external lines, 205f
internal lines, 205

effective charge, 36
effective electron mass, 27, 133, 258
effective electron–electron interaction, 291–295

mediated by phonons, 293, 295
effective mass approximation, 27, 258
eigenvalue equation, 3, 14

eigenkets, 4
eigenstates, 8
eigenvalues, 4
eigenvectors, 4

electrical conductivity, 266
electromagnetic field, 269

4-vectors, 282
Hamiltonian, 271
Lagrangian, 271
Lagrangian density, 282
normal coordinates, 271
normal modes, 270
polarization vector, 270
scalar potential, 269
tensors, 282
vector potential, 269

electron gas, 214
dielectric function, 229–233
divergence of the ring diagram, 217
random phase approximation, 219
self energy in 2D, 245
self energy, first order, 214
specific heat, 216
thermodynamic potential, 214, 215

electron–phonon interaction, 256
electron self energy, 266–269
Feynman rules, 265
in the jellium model, 282
matrix element, 259–261

normal processes, 259
pictorial representation, 259
rigid-ion approximation, 256
Umklapp processes, 259

electron-photon interaction, 273
matrix element, 273

electrons in a periodic potential, 53
Bloch representation, 53, 55
Wannier representation, 55–57

energy shift, 197
ensemble, 81

canonical, 82–83
grand canonical, 83–85
microcanonical, 81

ensemble average, 84, 85, 92
change within linear response, 115
kinetic energy, 150
noninteracting system, 162, 163
number of particles, 87, 88, 148
one-body operator, 149
potential energy, 150

entropy, 80, 83, 90
and probability, 90

Euler’s constant, 316
Euler–Lagrange equations, 31, 283
even frequency, 185

Fermi
energy, 21, 34
golden rule, 16, 275, 278
sphere, 20, 21
surface, 215
velocity, 35
wave vector, 20, 34

Fermi–Dirac
distribution function, 87, 88, 102, 215
statistics, 10

fermion loop, 171, 184, 186, 188, 190, 192, 194,
217

fermions, 10, 38, 42
one-body operator, 369–371
two-body operator, 371

Feynman diagrams, 171
cancellation of disconnected diagrams,

174
classification, 218
connected, 171, 173, 174, 190
connected, disjoint diagrams, 225
connected, non-disjoint, 226
connected, non-disjoint diagrams, 226
degree of divergence, 218
disconnected, 171, 173, 174
disjoint diagrams, 225
non-disjoint diagrams, 226
rules in coordinate space, 193
rules in momentum-frequency space, 186
topologically distinct, 181, 184, 190
topologically equivalent, 181, 182, 184
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field operators
commutation relations, 58
definition, 57
one-body operator, 58
two-body operator, 59

finite-temperature Green’s function, see
imaginary-time Green’s function, 146

first Brillouin zone, 26
fluctuation–dissipation theorem, 102, 104–106,

276
Fock space, 46
frequency sums, 193, 211

bosons, 193
fermions, 193

fundamental postulate of statistical mechanics, 79

gauge transformation, 270
Gauss’s law, 235
Gell–Mann and Low theorem, 339
generalized force, 109, 116, 118
generalized susceptibility, 110, 113
Gorkov equations, 312
grand canonical ensemble, 83

grand partition function, 84
statistical operator, 84

grand partition function, 84
graphene

atom adsorbed on graphene, 123–125
bands, 34
density of states, 35
dielectric function, 239–244
lattice, 22
matrix elements, 35, 36
tight binding Hamiltonian, 62
vacancies and interstitials, 90

Green’s function approach to superconductivity,
309

anomalous Green’s functions, 311
Dyson’s equation, 313
equation of motion, 310
gap consistency condition, 315
gap parameter, 315
Gorkov equations, 312
Hamiltonian, 309
imaginary-time Green’s function, 309
spectral density function, 312
transition temperature, 316

gyromagnetic factor, 32, 118, 156

Hamilton
equations of motion, 3
function, 3

harmonic
approximation, 378
perturbation, 16

harmonic oscillator, 10–13
heat reservoir, 81–84
Heisenberg

equation of motion, 15, 131, 137
modified Heisenberg operators, 144
modified Heisenberg picture, 92
picture, 15, 334–335
uncertainty principle, 69

Heisenberg picture
operators, 334
states, 334

Helmholtz free energy, 83
hermitian operator, 2
Hilbert space, 8, 9, 38, 46
Holstein–Primakoff transformation, 64
Hubbard model, 57
Hubbard–Mott insulator, 287

imaginary-time correlation function, 144
Fourier series, 146
Fourier transform, 153
periodicity, 145
spectral representation, 153
time dependence, 145

imaginary-time Green’s function, 146
2-DEG in a magnetic field, 155
discontinuity in g0, 177
graphical representation, 169
momentum representation, 148
noninteracting particles, 154–155
perturbation expansion, 162
position representation, 148
significance, 148–150
spectral representation, 151–153
thermodynamic equilibrium properties, 148

Helmholtz free energy, 148
internal energy, 150
kinetic energy, 150
number of particles, 148
particle number density, 148
potential energy, 150
thermodynamic potential, 150

translationally invariant system, 147
impurity in a metal, 212
index of refraction, 273
interaction picture, 335–336

operators, 335
states, 335

internal coordinates, 184, 186, 265
ionic plasma frequency, 282
Ising model, 90

jellium model, 19, 65
Hamiltonian, 66

Kadanoff–Baym contour, 345
Keldysh contour, 346
Keldysh equations, 352
Kramers–Kronig relations, 127, 243
Kronecker delta, 4, 171, 175, 176, 205, 226, 280, 321
Kubo’s formula, 113, 118, 138
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Landau, 69
damping, 237–239
Fermi liquid theory, 69
gauge, 32
levels, 33

Landauer formula, 363
Langreth rules, 349–351

advanced function, 351
greater function, 350
lesser function, 350
retarded function, 351

lattice vectors, 22
primitive, 22
reciprocal, 24

lattice vibrations, 247
acoustic branch, 249, 252
diatomic lattice, 252–254
dispersion, 249, 252
Hamiltonian, 251, 383
in one dimension, 248
kinetic energy, 250, 378, 382
Lagrangian, 251, 383
normal coordinates, 250, 251, 254, 255, 257,

388
normal modes, 248, 249, 252, 254, 379,

381
longitudinal, 254
transverse, 254

optical branch, 253
potential energy, 250, 378, 383
quantum theory, 251, 253, 255, 383
speed of sound, 249
three dimensions, 254–255

LCR system, 367
lifetime, 107, 237

atomic state, 125
excitations, 197

light scattering, 273
differential scattering cross-section,

276
incident flux, 276

Lindhard, 116
dielectric function, 233, 234
function, 116, 120, 222

linear response theory, 109–114
London equation, 290
London penetration depth, 291
Lorentz relation, 386
Lorentzian, 123, 125, 141, 198
Lyddane–Sachs–Teller (LST) relation, 261

macrostate, 78, 79, 81, 85
magnetic impurity in a metal host, 141

mean field approximation, 141
magnetic moment, 32, 90

density operator, 118
mean magnetic moment, 90
of an electron, 118

mathematical induction, 166
and Wick’s theorem, 167

Matsubara Green’s function, see imaginary-time
Green’s function, 146

Maxwell’s equations, 269, 283
mean field approach to superconductivity, 304

fluctuation operator, 304
ground state energy, 306
mean field Hamiltonian, 305
normalized ground state, 307
single-particle excitations, 305

microcanonical ensemble, 81
microstate, 78, 85, 86

number of microstates, 78, 79
Migdal’s theorem, 267

vertex corrections, 267
momentum-frequency space, 185, 186, 190, 212,

312

Nambu formalism, 317
Nambu Green’s function, 317

Newton’s second law, 235, 248, 252, 289, 379
nonequilibrium Green’s function, 331
number of diagrams, 191

connected, 191
connected, topologically distinct, 190
without loops, 212

number of particles
in terms of Green’s function, 148

number-density operator, 63

orthonormality, 4, 8, 9

pair bubble, 221, 227
bare, 220, 222, 226
dressed, 221

pairwise interaction, 50, 150, 169, 228, 378
particle-number density

in terms of Green’s function, 148
partition function, 83, 90

canonical ensemble, 83
grand partition function, 87, 92, 143, 161

Pauli
exclusion principle, 10, 39, 43, 73, 131, 296
paramagnetic susceptibility, 121
spin matrices, 13, 119

periodic boundary conditions, 13, 19, 20, 24, 25,
29

permutation operator, 9
phonon Green’s function, 262–263

bare, 267, 282
dressed, 267, 282
for noninteracting phonons, 263–265
Fourier transform, 264
greater, 263
imaginary-time, 262
lesser, 263
retarded, 262
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phonons, 251
acoustic, 249, 252
annihilation operator, 251
branch index, 255, 384
creation operator, 251
field operator, 262, 274
Hamiltonian, 251, 253, 255
longitudinal, 259, 260
longitudinal optical, 261
optical, 253
polarization vector, 259, 388
self energy, 281
statistics, 255
transverse, 259
transverse optical, 261
wave vector, 255, 384

photon
absorption, 273
annihilation operator, 272
creation operator, 272
emission, 273
polarization, 273
wave vector, 273

Planck’s constant, 3
plasmons, 234–239

classical treatment, 234
density fluctuations, 234
frequency, 235
induced charge density, 235
induced dipole moment, 235
induced electric field, 235
polarization, 235

quantum mechanical, 235
dispersion, 237
high frequency limit, 236
long wavelength limit, 236
random phase approximation, 236

two-dimensional electron gas, 246
Poisson’s equation, 234
polar crystals, 256, 261
pressure, 81

quantum dot in contact with a metal,
133

Anderson’s impurity model, 134
density of states, 135
Hartree–Fock approximation, 135
mean field approximation, 135
model Hamiltonian, 133
retarded Green’s function, 134, 135
self energy, 135
tunneling Hamiltonian, 133

quantum Liouville equation, 334

radiation gauge, 272
Raman scattering, 276–281

anti-Stoke’s scattering, 276
electron-hole recombination, 280f

excitons, 281
phonon emission, 277
photon-phonon interaction, 277
Raman tensor, 283
resonant Raman scattering, 281
Stoke’s scattering, 276

random phase approximation, 219
real-time correlation function, 92

advanced, 93
causal, 92
retarded, 93
time dependence, 93

real-time Green’s function, 94
advanced, 94
causal, 94
equation of motion, 121
greater, 94
lesser, 94
noninteracting system, 106–109
physical meaning, 95–96
retarded, 94
translationally invariant system, 97

residue theorem, 123, 198, 211
resolution of identity, 85, 98, 153, 278
retarded density–density correlation function, 115,

223, 229, 236
retarded spin-density correlation function,

118

scattering matrix, 336
Schrödinger

equation, 3, 19, 22, 25, 33, 35, 78, 86, 110,
296

picture, 15, 332–334
Schrödinger picture

dynamical variables, 333
state, 332

second quantization, 37
creation and annihilation operators, 42–47
external potential, 48
kinetic energy, 48
particle-number density, 49

self energy, 196
irreducible self energy, 196
proper self energy, 196
self energy terms, 196

similarity transformation, 277, 293
single-level quantum dot, 130

density of states, 132
energy, 131
model Hamiltonian, 130
onsite Coulomb repulsion, 130
retarded Green’s function, 131

single-particle states, 18
Bloch states, 21
free electron model, 19

singlet, 14, 297
Slater determinant, 39
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three electrons, 40
two electrons, 41, 42

spectral density function, 101, 103, 106, 152,
197

noninteracting particles, 107, 154
spectral representation, 98

advanced Green’s function, 101
meaning, 98
retarded correlation function, 103–104
retarded Green’s function, 101
single-particle correlation function, 101–102

spin density, 109
spin waves, 64
spin-density correlation function, 118
spin-density operator, 118, 119
statistical operator, 84, 331, 352

definition, 85
general ensemble, 85
grand canonical ensemble, 84
Heisenberg picture, 335
interaction picture, 336
properties, 86
Schrödinger picture, 334
time evolution, 86

steady-state transport, 352–360
Anderson’s impurity model, 354
bias voltage, 353
current formula, 358
Landauer formula, 363
level-width function, 358
Meir–Wingreen formula, 360
mixed lesser function, 355
model Hamiltonian, 353
proportional coupling, 360
tunneling, 354

step function, 6, 71, 121, 131, 159, 198, 230, 232,
262, 320, 337, 350

Stirling’s formula, 89
superconductivity, 284

BCS theory, 299–304
Green’s function approach, 309–316
high-TC , 287
infinite conductivity, 325
mean field approach, 304–309
pair fluctuation, 327
properties of superconductors, 284–289
response to a weak magnetic field, 319–325
two-band model, 328

superconductors, 284
copper oxide family, 287
critical magnetic field, 284
critical temperature, 284
electronic specific heat, 286
flux expulsion, 286
iron-based superconductors, 288
isotope effect, 287
Meissner effect, 285
perfect diamagnetism, 285

resistivity, 284
tunneling experiments, 287
type-I, 286
type-II, 286

lower critical field, 286
upper critical field, 286

switching the interaction on and off adiabatically,
338

thermodynamic limit, 65
thermodynamic potential, 210

and self energy, 211
interacting electrons, 211

Thomas–Fermi model, 233–234
charge impurity, 234
dielectric function, 233
induced charge density, 234
screened Coulomb interaction, 233
wave number, 233
wave number in two dimensions, 246

tight binding method, 61
time evolution operator, 3, 16, 331
time-ordered diagrams, 199–210

example: a ring diagram, 199
internal frequency coordinates, 203
section, 203

time-ordered product, 162, 163, 173
equal time arguments, 164

time-ordering operator, 92, 144, 159, 262, 333
transition rate, 16, 17, 105, 275
translation operator, 23

eigenvalues, 23
translationally invariant system, 51, 126, 176
triplet, 14, 297
tunneling, 135

current, 137
elastic, 136
inelastic, 136
linear response theory, 138
model Hamiltonian, 136
Ohm’s law, 141
retarded correlation function, 140
steady state, 139

two-particle interaction, 179, 190, 193, 194, 196, 205,
212

spin-independent, 186, 195

uncertainty principle, 292
uniform positive background, 19, 21, 53, 65, 66, 213

vector space, 1
spatial, 8
spin, 8

Wannier states, 29–31
wave function, 1

bosons, 10
fermions, 10
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Wick’s theorem, 162, 168, 180, 187, 240, 265,
311, 313, 314, 318, 321, 339, 346, 347,
356

an example, 163
bosons, 177

fermions, 162
pictorially, 171
proof, 167
remarks, 168
statement, 163
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