ERED HOYLE: a. history of man's investigation of the universe \bullet
$\because \quad \therefore$

ASTRONOMY

FRED HOYLE

In this splendid marriage of words and illustrations, Fred Hoyle, one of the great contemporary astronomers, tells the history of astronomy with incomparable drama and authority. Not only is Astronomy brilliantly readable as firstrank history, but the scope of the text and the skillful conception of the more than 400 illustrations and diagrams make this a book for study and reference for many years to come. Hoyle reconstructs the triumphant story of the men who made the great discoveries in astronomy. At the same time, he traces in considerable detail the development of ever more powerful instruments and techniques for examination of the solar system, the stars, our galaxy, and the galaxies beyond.

Hoyle begins his story with accomplishments of the astronomers of the ancient world - the Babylonians, Mesopotamians, Egyptians, Greeks, and Romans - and their attempts to measure distances between heavenly bodies and to find order in the bewildering motions of the planets. Hoyle then recreates the richly varied lives and works of Copernicus, Kepler, Brache, and Galileo, showing how their work set the stage for Newton's epic achievements, which in turn paved the way for the researches of the great astronomers of modern times -

Digitized by the Internet Archive in 2010

Astronomy

F
r

Editor: M. H. Chandler
Art Editor: M. Kitson
Assistant: V. Zweig
Research: A. F. Walker
Research Consultants: Francis Maddison, Colin Ronan

Library of Congress Catalog Card No. 62-14108
(C) 1962 Rathbone Books Limited, London.

Printed in Great Britain by L. T. A. Robinson Ltd., London.

Astronomy

Fred Hoyle

Foreword

In this book I have attempted to take the reader from the earliestknown astronomical discoveries up to the latest modern developments. The illustrations, so amply and effectively provided by my colleagues in this enterprise, are intended as a real aid to following the text, not just as a means of making the book look well.

Astronomy is the oldest of the sciences, as has often been said. What has not been so often realized is that, in a certain sense, astronomy is also the newest of the sciences. The great adrances in physics during the first third of this century are bearing fruit in astronomy at the present day. Scientists are coming more and more to realize that only a very limited range of experiments can be performed in the terrestrial laboratory. The universe itself supplies a far subtler laboratory, and a far wider ranging one, with possibilities that can never be realized here on the Earth. A supernova will never be produced in a terrestrial laboratory, although many of the processes governing the explosion of these stars have indeed been studied in local experiments. It is just here that the point lies; for local experiments have fortunately been sulficient to discover physical laws which then turn out to have a wider range of applicat tion on the stage of the whole miverse.

This situation is not wholly new, however. Already in the nineteenth century, discoveries concerning the nature and properties of light had effects on astronomy, not only in extending the scope of already-existing lines of research, but in starting new lines and in shifting the balance of "importance" within astronomy in general.

With these thoughts in inind, I felt it would be wrong to write purely from an astronomical point of vies. In cight of the chapters I have been concerned with a histon of the development of astronomy. Since this development has been so intimately affected by discoveries in phesics, I have felt it essential to sat something about the meaning of those discoveries.

The reader will find quite extensive discussions on light, and on electricity and magnctism. Nuclear physics appears in later chapters,
where its important applications to modern astrophysics are described at some length. Quantum theory and relativity are briefly touched on.

I feel some personal comment on the historical chapters to be necessary. In a survey of astronomical discovery, Greek astronomy must be accorded a prominent place, since many major advances were quite certainly made by the Greeks. Yet an accurate description of exactly what occurred between, say, 500 b.c. and 200 b.c., is, I would think, irrecoverable by the modern world. Original manuscripts are few. Most of our knowledge of this period comes from corrupt Latin texts, which must be interpreted in the light of modern knowledge - and this may not always lead to a correct understanding of what really occurred! Eratosthenes' determination of the diameter of the Earth is a case in point. Was Eratosthenes 17 per cent wrong or was he only $\frac{1}{2}$ per cent wrong? A generation ago, scientific historians favored the worse result. On reading the evidence, I felt convinced of the opposite, however. The difference lies not in any change of documentary evidence but in a change of outlook. Nowadays, scientists are entirely willing to concede that men of the past, of the remote past too, were every bit as competent as we are. But to our grandfathers it seemed almost indecent that Eratosthenes, with only primitive instrmments at his disposal, could have achieved a wonderfully accurate result. He had no business to be so good!

I have also found that hindsight has influenced many scientific histories, particularly the more popular expositions. Very great work has been slightingly condemned, whenever later developments turned research in new directions. Probably no great man has been so contemptuously dismissed by posterity as Ptolemy, the perfector of the epicyclic theory of planetary motions. His theory fitted closely to the known facts in his own day. It survived for over a thousand years as the best description of the observed motions; and even after its overthrow, Ptolemy's geometrical methods still played an important role at a decisive stage in the work of Kepler. Yet Ptolemy has been devalued, at any rate in the popular eye, to negligible stature. Such attitudes arise, I am convinced, from ignorance. A few scholarly
presentations apart, it is not generally understood that Ptolemy was really grappling with the complexities of elliptic motion. Dreads in Greek times, the effects of the cecentricities of the planetary orbits had been observationally detected. A satisfactory theory could not treat the orbits as circles, even circles with the Sun as center. My suspicion is that even the most detailed descriptions of Ptolemy s work still fail to appreciate the mathematical basis of certain of his geometrical constructions. For this reason I have added a mathermatical appendix at the end of the book in which I have attempted to explain why Ptolemy was led to these constructions.

Lastly, a few words about new techniques. There is a fairly widespread present belief that the traditional observational methods of astronomy will soon be replaced by space research. It may prove to be so, but for my own part, I doubt it. All important new techniques appear at first sight to have unlimited possibilities. But after a decade or two experience shows that a process of diminishing returns sets in. Each significant new result then costs more in time, effort and money than was the case in the beginning. This process is already operating in radio astronomy. A few years ago, discoveries could be made in radio astronomy with the aid of only rather primitive equipment. Today, this is no longer true. New radio telescopes, if they are to be effective, mast now be financed and planned on a big scale. A similar situation must inevitably arise in space research. Moreover, we can hardly expert that the wealthiest nations will contime indefinitely to spend appreciable fractions of their incomes on the firing of instrumenes into space. For both these reasons I think space research, along with radio astronomy!, will eventually reach an equilibrium in relation to more traditional methexls, and I think that in this equilibrium the major part of astronomy will contime to advance in much the way it has done in the past.

This will explain why I have not written this book from the enthusiastic point of view that astronomy is due to be revolutionized tomorrow. I see astronomy as a continuing process, in which each new technique has a place in relation to the whole, but in which no particular technique overwhelms the rest.

Contents

Chapter 1 Earth and Sky page 10
2 Some Tools of Astronomy 30
3 Planetary Motion and Ancient Astronomy 66
4 Copernicus and Kepler 92
5 The Theory of Gravitation 120
6 The Post-Newtonian Era 142
7 Instruments and the Nature of Light 176
8 The Birth of Modern Astronomy 204
9 Stars as Thermonuclear Reactors 232
10 The Structure of Our Galaxy 252
11 Galaxies and the Expanding Universe 282
Appendix: The Epicyclic Constructions of Hipparchus and Ptolemy 306
Index 310
Acknowledgments 315

Chapter 1 Earth and Sky

In our moxlern world scientific discowery is in lull spate. So strong is the current now rmming that mothing, it seems, short of the utter ammihilation of man himself can hold back the flood. But this was not always so. The lirst steps in science were taken slowly and tentatively, thousands of years ago. And bet for astronomy it is well-nigh certain that these early, hesitant steps would never have ben taken at all. For astronomy is the progenitor of science.

So much is commonplace. What is not usualls: realized is that luck, in the sense of help from the heateons, has abo been exceedingly important. At feas four lucky circumstances made astronomy the ideal starting point for man's first major advance into an era in which natural phenomena can be explaned and predicted, in which the world no longer presents itself as a stage for the plaving out of a sequence of mysterious and uncorrelated cyents.

The liarth is not a cloud-bound plamet. This is be first piece of luck. lior it the larth had been wholly cloud-hound, as the planet Vemus is, man's intellectual emergence would scarcely have been possible. At any moment roughly half of the Darth's surlace is cloud-cosered and half is clear. The choud cover shifts about, however, so that although cloud
is much more frequent in some areas than in whers there are times everywhere when an olserver can look out into space. If man had not bect able to do so, it is doubthul whether he would ever have estabslished the directions north, south, east and west; and without that knowledge he would never have learned fo find his way to and fro over any considerable part of the liarth's surlace. Without sight of the regular rhythmical movements of Sun and stars across the shy, he would have found it next to inpossible to grasp the very concept of time; and without attempting to measure thene and direction it is highly improbable that he would have grappled with problems of simple geometry.

Simple geometry, often called Euclidean geometry, may be mederstood as geomotry in which Pythagoras's Theorem is true. If $1 / 3 C$ is a triangle with at right angle at B, Pythagoras's Theorem establishes that a square drawn on the line $A C$ is equal in area to the sum of the squares drawn on lines. $A B$ and $B C$. (By right angle we mean simply the angle which results when we bisect a straight line by orthodox rule-and-compass procedurc.)

However, systems of geometry exist in which Pythageras's Theorem is not true. Such geometries

Top: Moving clouds over the south of Greece. Bottom: Rocket-camera view of Earth's cloud-cover at a single moment. Because this cover is partial and shifting, early man everywhere could look out into space and gain from the heavens a sense of time and direction. Had the Earth been wholly cloud-bound like Venus he could never have done so.

Mesopotaman mathematicians knew of many cases in which the square on the longest side of a right-angled triangle is equal in area to the sum of squares on the two shorter sides. This early Arabic edition of Euclid shows Pythagoras's proof that the same is true of all such triangles
 Ricmatm, in the middle of the nincterat equtur!
 metry. fut they ate mult mote dillicult atod complicated to work with
 used in the solution al probleas of meastroment in

 his weloonce simpliftotion as ant indiandon that of
 "true" onte that the others are mere intelleethal

 s iery lase. It she la casc the getometry of Rematm
 miverse is the complex seomem ol Ramanm!
lhis brines us to the second slier of lach. 11 is possilhe to prowe mathematicall that Ramatmian

 lis simple seometry. Fomtmatels all distance inwhed in creriday poolsems of measurement ate

 mulating Ricmamsan gentert would hate por vided a serere, abd problabl inomprable, what

"whow mathentatical teok, man would have attatuod litele maderstandine of the world armand hitn.
A. att aside, we maty ask: leow hig doer a phesical triangle have to become Dedine Pothasoras Theor fom cease to lo : :ppmosimately true. Bigger thath He Larth, Han the Solar bsomm, ated even thous Wre Nilk! Wiat. Onl whon we conte tw probleme concorning much vatior regions af the universe do
 cotermer such problams in the last chapter.

The third lack! circtumstane which comeributed (1) thans intederthal emergence is more dificult to explain. Perhaps we can best begin ln asking how. in a phesical sense. we cab delineate a triange. The existence al a trianele 1 a a awomed mplielly it the almex argumemt. ()ate methed might be with rulers: but olsiously mbler small mangle cat te laid whe with rulers. The methed of delmeating lar latger triangles used in pratice is loy ligh mas. We make the initiad asomputien that light iratels in stratigh limes, se that ber sidesol a drimgle ram then In detormined to light rats amited at the wertices. For evaluple, a light ra! cmitted from at peone I abd wecived at at point B delineates the side $1 / B$ of the triansle . $B C$.

But is 'ои assumption correct? Dek light really trawe in straghat lime.' Theserict answer is no. 'This cath le demomstated be the exproment shown in
 called point whore. light from it lallsen an whersing sereot al 13 after passing throngle a loole in ath

日pague sereen at I. Whe light ralls trated consistenty in straight lines the size of the pratels of lighe on the observine weren would decrease steadiIs as the size of the hate at A cleerabed. Vixperiment shows that it actually deres so. prozithed that the hole remains strates than aiome w.o1 millimetro in diameter. But when the hole becomes smaller that this. the pateh of light on the observing screen, so lar from diminishing, actally begins fo ine rease agath. Hence. When we are concermed with the behavior of light ower distames of o.on mom. or less, the assmuption that light travels in tratigh limes Ixcomes altogether too crusle. But proxided we are tod comermed with the passage of light through very small apertures, the assomption leads ts into no appectiable errors.

The upsont is this. The delimeation of a triample In light rats is meessaril! incomplete, since the positums al the vertices. I, Band © cammot be determined within distamers ol alrout 0.01 mm . But lior most practical purposes this indetermiataty of the vertices is mimportant, since the lengths of the vides of the triangle are se emormonsly greater. Indeed, in astronomy the sides of the triangle are when greater that a millien million miles, in which case cerors of a traction ol a millimetor are obsionsly emirely megligithe. This, then, is man's third slice of luck. He can, lor most practial purposes, reduce the highte complex way in which ligh actually travels to a ver! simple picture. And this simplepicture is not only adequate for determining the penitions and distances of the Mown. Sun, planess and stans, but is alse sulficiently accurate lor use in the design of many optical instrmments, inchuling the telescopse, the mictoseope and the camera. Nevertheless. the lact remains that a physical riangle gate newer be determinerl whith aboblute preeisiom. Wie camot delineate a triangle in which the vertices are iclealized pemus Euclidean absorasdions having penition but no rlimension.

A fomrth circomstamer which helped wodevelopr matris intelleat, In sethes him at problem dithente

 arises Irom the Eremendems divatues of the stars
 a ver! distatu loxh haxtly seems we change, cvent thengh beth the distant lext! and the oberwer mat be mexing in dillemen dieretions.

In Figure 1.2. I and 13 are two object which mone with the same voere along paralle-i tracks. 0 is the ofowser. moving at the satme specel as 11 ams Bhat alone a track not parallel whth theirs. latially O is at $O_{1}, 1$ is at I_{1}, B is at B_{1}, what 1 and B lae in the same diretion from the observer. . It some later time O is at $O_{2,}, J$ is at I_{2}, B is at B_{2}. Ther distances I_{1} w. I_{2}, B_{1} 10 B_{2} and O_{1} to O_{2} arre the samer, since . I, B and O mowe at the same yperel. ()beomsly the diection from () to the distamt B has changed muth less than the daretion liom () te the much nearer. I.

To blee ancoms, the stars, beraner of their great distances, liomed an apparently constant background the baekgromel of the so-called fixed stars. Without that constant backgrembel they wonld afever haw found it pessible to determine the motion of the Earili. Wishout that seemingle unchanging batkeromal, wo direction whatever woml have secomed fived, and man wodld urver hase beron ableto orientate himself. Further, instead of amine to

Figure 1.1
Here light from a point source passes through a hole in an opaque screen on to a viewing screen. If light travels in straight lines, the illuminated area should decrease as the size of the hole decreases. In fact it does so until the diameter of the hole is reduced to about 0.01 mm . Then it begins to increase.

Actormine the monions af alt she Paxies of the miniwres as the mokern astronobere aime to dathe ame ietus conlel simplati the whele problem alantonoms (6) diverssion of the metions at onls the
 this reatricted problem demanded the contemerated ellarts of the fimest intellects one at periond conerine scorabal homsabel years.

In lact the problem proned whe ol just the rizla level af complexiss. It is trese that it it hat lewel casier it would hase luan solsed senmer. Bat daen mathematios would not hase developeed whe the stage where it sersed is at springleatel for the adsane of
 was mot ow tomg as to be insolable hat was le temgh emongh to exercise the mind of man to the uthone. It was ifleal as a stimulant whe arherement of maximutut powne

The (ielestial sphere

When we loesk at the stars with eres and mind mith prejudiced in proconceived notions aloot their relative distances from one another, they all apper
 striking is the illasion that the ancionts le lieved the heavens were inded a reah pphere. ()we carly (ireek view was thet a great spluerical shield protected the Earth from a distan fire. Through holes in the sheld the holes beine the stars llames fiom the liece conlel tre seco.

The sumewhat nawe concept of a celessial sphere on which lie all dee stars has alwas leeen, and still
 1.3. att ohserter O is on the liarth, and I. B. (i, and 1) are distant astrememical dojects stars, galavies. and sorm. The perime where light frem I wo, is to
 conter at O are marked as a, b, \therefore and d. The observers exe is quite incapabite of informing him whether the light which reathes it really comes from . 1. B. 6 and 1$)$ (in whether it comes trom a, b.
 with deserihing the diretteme of atemembical objects, it is topter far him co thinh al then all as lsine oft the sphere. Wre mas say that a, h, c, cte., rept resemt the prafectums ont the splece of the astrenter mical objects .I, B, C, Cts-

We should think of the sphere of l゙yure 1.3 as being very large compareal with the lath. This give the adsamtege that when the olserver of Changes his peationt on the liarth the poims a, b. .
 vers cerswhere on larth am heon agree within practical limits alunt the position al a, b, α, che.. ent the yphere.

Blementary textboohs sometimes state that we Shombl think of the celestial phere as treing intinitel! large. This is quite wrong. We mose not think of it as being so large that simple- Enelidean geot metry crases fole valide on its surface. In lact is can be as large as the Milk! Wat, hut it must mot lxe mush larger. Galaxios very distant fom the Milk! Way must evielenty then be taken w lie muside the celestial splace, as, inded, B and I are shown todo in the diagram. It is therefore wrong to imagime that all astromemical aheret lie whint the relestial spheres, as is ofter stated.

The Turning E:arth

At any givel boment the stars leorm a definite patteve on the cetestial splace: Olsertation, even with the naked eye and exen extended ener omls an hour or twot, shows dearly that this whole pattern mones with respect to our local surroumelings on the larth. 11 is as thongh the whole eelestial yphere were opinning rommd. 'This, again, is an illasion. The apparent meston of the celevtial sphere arive trom the actual retation of the Earth.

Strictl, this statemem is sulbece to the proviso that we aelbere wheal liutlidean geometrs. If we are prepared to depart from Vadidean geometro. not omh wer great distances but even lexally, the

Figure 1.2
How, at two different moments, an observer (O) on our moving Earth sights (A) near and (B) more distant objects which are moving at equal speeds along parallel paths.

Figure 1.3
In describing apparent positions of objects A, B, C and D, a terrestrial observer (O) is not concerned with their distances. He need only define their projections-a, b, c and d-on the celestial sphere.
assertion camot be made. At the expense of great geometria al complexity it is possible to regarel the Farth as lixed and the heavers as spioming romed it. When, in a later chapter, we eome to discuss the problem of the liarth's motion romel the Sun a similar situation will arise. Wie can then only assert the Copernican floctrine that the Varth meves round the Sun provided we spectily that our geometry has the simple binclielean lorm, based on Py thagoras's Theorem; the admission of a complex geometry into the context would allow us to say that the Sum moves aromed the Earth.

In fact, at the expense of appalting geometrical complexity, we can legitimatily assert that the Earth is flat! The error of the Hat-larth faddist lies in the fact that he imagines he can combine the notion of a bat barth wih simple geometry. The latter positively demands that we regard the Earth as round, just as it demands that we regard the Earth as moving round the Sum and not dice versa. Similarly, simple Euclidean geometry demands that we explain our observations of the celestial sphere in terms of a rotating larth.

When we take a long-expesure photograph of an area of the night sky, the rotation of the E.arth canses light from the stars to leave a trailing are on the plate. If we peint the camera toward the north, at the correct elevation, these ares become portions of circles, as showon on the following page. Moreower, all the ares are pertions of circles having the same center. The reason is casily seen. In liequre $1 . \frac{1}{}, P$ and Qare the geographical poles of the learth and O is the observer. The rotation of the Earth alout its geographieal axis produces exactly the same dpparent effect as would a rotation of the celestial sphere in the opposite direction about the axis from ptoq. These are simply points lying along a straight line representing an extonsion of the Earth's axis. and are the two possible penints towarel which a camera most be pointed in order to produce a plootographs of the kind we show. In fact, of course, a camera peinted from O loward q, would be obstructed hy the luxly of the Farth. We can poibt it toward q only from the somthern hemisplaces.)

The rotation of the Earth has no effect on the points p and q. They reman tixel. A star at a, however, will appear to moxe. It will appear to trail ont a circular path on the celestial splacere, the center of the circle being on the line Pp. Niter a half-rotation the star will appear to have shifted to a_{1}, the angles $a_{1} O p$ and $p(0 a$ being essentially equal. becatuse
the celestial sphere is ver! large compared with the Fantls. Nier a finlt rotation the apparemt position of the star returns to a.

A most important poibt enorges out of these simple considerations. If the olnerver O in Figure 1.5 takes the projection of the direction of p on to the horizontal plame, he obtains the direction O.V. This gives him the dirction along which he must travel in order to reach I ', the larth's morth geographical pole, in the shortest pessible distanere. In ohtaer words, the cliection of the palle p of the celestial sphere determines the points of the compass.

Evidemly it would be highly comsonicom if a bright star were to lie exactly at p. Sctually mone dees. But the star Polaris lies ouly a single degree away. The effee of the Earth's rotation is therefore to make Polaris appear te mowe in a very small circle, so smatl as not to be noticed by the casual eye. For all practical purpeses in which accuracy to wibhin one degree is mimportant, this star can therefore be used lor determining the abserver's mortherly diection. Probably many people at one time or another, when lost in some trackless place, have canse to be thanklin for the information supplied by this most useful star.

Mrasuring Positions on the Ciclestial Sphere

It is impertant, when referring to indivielual stars, to have some means of desoribine accurately their apparent pesitions on the celestial splares. 'lie few brightest stars can be relerred to by mathe, as we have just referred to Polaris, amel exery astronomer knows exactly where to look for Polaris, Mreturus, Capella, Canopos, and so ons. He identitis them from his memory ol the pattern of the sky. But obviously he cannot depend on his memory when be is faced with the problem of itentilying any one of the millions of laint stars which a pewerful modenn telescope may reveal.

Many of the most interesting stars are faint not becanse they are feeble specimens but because they are liar distant. When an astromomer discovers an musual case and wishes 10 talk about it 16 his colleagues, be must have some moms of sperefying precisely which among the multitule of stars is the one he has in mind. The ouly way to do this is by stating a precise pesitions, so precise that there can be no possibility of confusion with nearloy stars. In short. the accurate determination of the pesitions of stars is essential to the interchange of information among astronombers.

A long-exposure photograph of the night sky taken with camera pointed to the north shows that stars seem to trail out circular ares, all having a common center.

Figure 1.4
The rotation of the Earth about PQ explains the apparent rotation ol stars (in opposite sense) about pq

Figure 1.5
By taking the projection of the direction of p on to the horizontal plane, the observer O obtains the northerly direction ON.

The prethem is greall simplibel be the luch -ircmmstace, alreads memtomed, hat the star-
 the stars are mex ings. athe that their apparent pens-

 our problem is 10 delomane the pexitions of fixed feims on the surt.ase at the yphere. This is the kind of problem wilh which mankind has lone lreat familiar, since the deternining al positions on the surtace of the Darth is precisels similar

Poxitions on the larthe surlace are mormath stated in latitules and longitudes. Ihere quantities pla a crucial role in determining latitude athe longithde: the geographicat equator. the pelar axis. and an arlatrar! point outhe equator. In Figure 1.6. Dee peolar avis celts the surface of the Larth at the two poles. marked P ' and ($O:($ is the Larth's center: I is the arbitrary peint. To determine the latitude
 matrked I , we lake a platue which passer thremgh . 1 and throwg the polar asis. This plane cuts the equator at $/ 3$. Wie next join . I, B, and the arhitrar! point 1. all w the conter, C. The angle $A C . B$ now gives us the latitule of the perint I, while the angle BC.I gives us its longituele.

This is not quite the end. Tiwo further romvert tiens are needed. II. I, the perint we wish to define. is in the morthern bemisphere we designate its latitule \mathcal{N}. fore example $5^{0} \mathcal{N}$: it it is in the sombern Hemisphere we designate ite lateme 8 gos. The seond consemtion conteros the angle BC.I. Is drawn in the figure, B lies to the west of I, and the lengitude os therefore designated W saly 110 II II B were whe whereast of lithen the longiturte weuld lee designated I: sat 110 I:. What if the proint B should! fall diametricalls oppesite to . I's Shemble the
 is that either catt lxe tised. Xo longitule is ever sreater that 180 , while noldtitule is ere greater than go

The last geogryhic question concerns the arhi-
 dillicent sencrign states chone the perint at which the plane throush their administrative capitals athd the polar axis cuts the equater. This led terconsiderable combision. For clowe on a comtury I has been acepted. Is intomational agreememt, as the point at which the plate though the pelare oxis and the old Greomwids Obacoltory cuts the equator.

Before we go on to consider the determination of astronomical positions, a word about the measurement of angles may be useful. A movable straight arm $O B$ is pivoted at O. Initially at $O A$, it is moved around until ultimately it comes back to OA . The arm thus sweeps out one complete rotation. In practice angles are commonly measured according to a seale in which a whole turn- one sweep through a complete rotation-is divided into 360 equal parts of a degree cach. (There is another widely-used system of angular measurement, in which the unit is the radian, which does not here concern us.) In turn the degree is divided into 6 e equal parts called minutes, and each minute is divided into 60 equal parts called seconds; and we can achicve still greater precision by using decimal fractions of a sccond.

The decision to divide angles in this way is very inconvenient. It would be far better to divide a complete turn into 1000 equal parts, and then to subdivide each such part into 1000 . We should then have milliturns and microturns, and elementary calculations involving angles would consequently be much easier to perform.

The division of the circle into 360 equal parts was first made, perhaps 5000 years ago, in the rivervalley civilization of Mesopotamia, though the circle was similarly divided elsewhere at different timeswherever and whenever men had succeeded in defining the length of the year as approximately 360 days. The division into 360 parts was far more convenient for the people of ancient Mesopotamia than it is for us today, since they used 60 as a fixed base in calculation, whereas we use 10 ; and as a general rule the units in which quantities are measured should always bear a simple and convenient relationship to the number currently used as a fixed base in calculation.

It seems that it is easier to achieve space flight than to change our archaic system of angular measure. The Mesopotamians imposed the number 60 on us, and we seem powerless to escape from it. The same kind of absurdity shows itself in the divisions of the clock into 24 hours, 60 minutes, and 60 seconds. It also shows itself in the British monetary system, and in British and American units of linear measurement. Man's inability to rid himself of inconvenient conventions is a trait that could lead to his undoing.

But to return to our theme of defining positions on the celestial sphere: one might expect this to be an extremely complicated business, but in fact the
data can be even more limited than when we are defining terrestrial latitudes and longitudes. Provided we can specify the equator, it is not necessary initially to specify the polar axis. All we have to do is to take the plane of the equator, which passes through the center C, and draw a straight line through C perpendicular to this plane, as shown in Figure 1.7. This line is the required polar axis. Evidently, then, all we need in order to determine positions on the sphere is to specify an equator together with an arbitrary point on it.

Better still, we can simply specify any plane through C. This will cut the sphere in a great circle which we can regard as the equator. (A great circle is simply any circle of maximum diameter that can be drawn on the surface of a sphere, and the plane on which such a circle lies necessarily intersects the center of the sphere.) An arbitrary point on the equator must still be specified. So our recipe for determining positions on the celestial sphere is as follows: specify a plane through the center, that is, through the observer. Take the great circle in which this plane cuts the celestial sphere and specify a point on that circle. Then use a system of latitude and longitude.

In principle it is possible to choose the plane through the observer in an infinity of ways. In actual practice, however, there are four convenient

Figure 1.6
Principle of defining terrestrial
latitude and longitude.

For centuries different map-makers
chose different meridians from which to measure longitude. The top map (c. 1650) measures from the meridian of Cape Verde. That on page 19 (1708) uses two zero meridians, those of Paris and Ferro Island.

By international agreement longitude gverywhere is now reckoned from the meridian of Greenwich Observatory. A brass strip adjoining the building marks a small segment of the line.

and feasible ways of doing so. The four feasible planes are:
(1) the horizontal plane, determined simply by using a spirit level;
(2) a plane parallel to the plane of the Earth's geographical equator:
(3) the plane of the Earth's motion round the Sun;
(4) the plane of the Milky Way.

Case (1), known as the altazimuth system, has the advantage that it is very easy to set up the horizontal plane. It has, however, two very serious disadvantages. In the first place, the horizontal planes will not, in general, be parallel for different observers, and the great circles in which the planes cut the celestial sphere will therefore be different for different observers. Hence there can be no common agreement about the way in which points on the celestial sphere are located. Each observer has his own private system.

To understand the second disadvantage we must notice that for each given observer the horizontal plane cuts the celestial sphere in the horizon. Now stars rise above the horizon and set below it. No star stays permanently on the horizon (unless the observer happens to be at one or other of the geographical poles). This means that no star can be used to determine the arbitrary point without which positions cannot be specified. The arbitrary point must therefore be chosen by a geographical criterion rather than by an astronomical one; for example, we may elect to choose that point on the horizon which
lies directly to the south. This procedure has the profound drawback that the rotation of the Earth causes the measured positions of astronomical objects tu change from one moment to another. Hence the positions that each observer measures with his own private system are different at every moment of the day! As a basic method of catalogning the positions of the stars the altazimuth system is therefore obviously useless.

Let us look next at Case (2), using a plane parallel to the plane of the Earth's equator. This is free from the disadvantages inherent in the altazimuth system and the basic circte is, moreover, readily determined. All that need be done is to find the direction of one of the poles and draw a plane perpendicular to this direction, as in Figure 1.8. The circle in which this plane cuts the celestial sphere is the required equatorial circle. The situation now is that any star lying on the equator at one moment of the day also lies on it at any other moment of the day. In other words, the rotation of the Earth about the polar direction does not alter the latitude of a star as measured in this system. Hence any star lying on the equator can conveniently be chosen as the arbitrary point. A description of how this choice is made in practice will be deferred for the moment, until we have examined Case (3).

So far we have been concerned only with how to measure the positions of the stars. Here the problem is simplified by the fact that, taken over any reasonably short period of time, such as a few years, the

stars maintain an umehanging pattern. Measuring the persitions of the Moon, Sm and planets is made more difficult by the liact that these bexlies de not lorm a part of that unchanging pattern. Their pesitions change from day to day. If we use Case (2) as a system of measuring their positions, both their latitude and their longitude will change with time. If we use Case (3), however, only the longitude changes in a first approximation. Hence Case (3) is more convenient than Case (2) for the purpose of describing positions within the Solar System.

To understand how this comes about, we must first notice that the Earth moves in an orbit round the Sun which, over not too long a period of time, can be taken as lying in a plane. This plane cuts the celestial sphere in a circle known as the ecliptic. A simplification now arises because it so happens that the planets and the Moon lie very nearly in the same plane. Hence their positions on the celestial sphere fall nearly on the celiptic. This means that if the ecliptic circle is used to determine position, the planets will all have latitudes close to zero. Only their longitudes will change in any marked manner.

The ecliptic is readily determined by observation. The Sun lies always on the ecliptic, by the very definition of the word. As the Earth moves in its orbit, a line drawn from the Earth to the Sun changes in direction. This means that the Sun appears-as seen
from the Earth - to move relative tothestars. Jofact, the Sun simply moves along the eeliptic. So by tracing the path of the Sun among the stars we obtain the ecliptic itself:

The circle of Case (2) and the circle of Case (3) cill each other at two points. One of these two points, called the First Point of Aries, is marked by its traditional sign r in Figure 1.9. When the Sun is at γ, its direction is perpendicular to the polar direction. We then have the sithation as shown in the small diagram, when every place on the Earth has the same length of day. That is to say r indicates the position of the Sun at one or other of the equinoxes. If the polar direction is taken to point north, then r denotes the zernal, or spring, equinox. The opposite point to r, where the two circles again intersect, denotes the autumnal equinor. In other words, the Sun reaches r at about March 21. It reaches the point diametrically opposite to r at about Scptember 22.

The daily rotation of the Earth is equivalent to a rotation of the celestial sphere so far as the apparent motions of the heavenly bodies are concerned. Hence in relation to the observer's own horizon the Sun will appear to trace a diurnal path which is very nearly a sinall circle on the celestial sphere.

What this means to an observer living in the northern terrestrial hemisphere is shown in Figure 1. 10.

Figure 1.7
As a step to defining positions on the celestial sphere we can specify the equator, then draw through its center (C) a line perpendicular to it. This line is the polar axis.

Figure 1.8
Alternatively, we can find the polar direction and draw a plane at right angles to it. The circle in which this plane cuts the celestial sphere is the equatorial circle.

Figure 1.9
Celestial longitudes are measured from the First Point of Aries (γ), one of the two points at which the circle of the equator cuts the plane of the ecliptic.

The observer's position (at the point O), the polar direction, the olserver's zenith and his horizon are all to loe regarded as fixed the altazimuth system again. Suppose the Sun lies on the ecliptic at A. Then the Earth's diurnal rotation causes the Sun (and indeed the whole ecliptic) to appear to rotate about the polar direction. The Sun itself will appear to move nearly round the small circle $A N Y Z$. (Actually the Sun does not quite come back to its starting point at the end of a day, because of the apparent solar motion along the ecliptic.) The points X and r correspond to sunset and dawn respectively, while \approx corresponds to midday. From r to \tilde{z} to X the Sun lies above the observer's horizon, so that the time taken for this part of the Sun's apparent motion corresponds to the observer's daytime. From X to r the Sun lies below the observer's horizon, and this part of its apparent motion corresponds to his night-time.

The lengths of day and night are in general unequal. When the Sun lies on the ecliptic hetween C and D, the uight is longer than the day, whereas the section between D and B gives a day longer than the night. Thus the Sun is at B in midsummer and at C in midwinter. The point D again shows the vernal equinox, one of the two occasions in the year when day and night are equal. The point diametrically opposite to D indicates the autumnal equinox.

Figure 1.10
Position of ecliptic at noon on midsummerday (northern hemisphere). The Earth's rotation makes the Sun and the ecliptic appear to move in the day round the circle AXYZ.

The direction from the olserver to D is the olserver's west, which means that the Sun sets in the west (and rises in the east) at the equinoxes.

One point may seem puzzling. In the system in which the observer regards his own horizon as fixed -Case (1), the altazimuth system-the ecliptic has an apparent diurnal motion. This is also the case for our diagram (Figure 1.10). The ecliptic can lie in the position there shown only at one single moment of the day. But at what moment? Our diagram is drawn with the ecliptic in the position for midday at midsummer. 'The position would be the same at dawn at the autumnal equinox, at midnight at the winter solstice, or at sunset at the vernal equinox. Indeed, on any day there is always some moment when the ecliptic lies in the position depicted.

Returning once more to position measurement, we have still to see how the arbitrary point is chosen for Case (2) as well as for Case (3). If we choose the point γ (as shown in Figure 1.9 on page 20), it will serve equally well for both cases, since this point lies on both the fundamental circles concerned. Hence the position of the Sun among the stars at the vernal equinox defines the required arbitrary point for Case (2) as well as for Case (3).

We have examined the first three systems of posi-tion-measurement in ascending order of astronomical significance. Case (1) is entirely particular to the

Figure 1.11
One system of celestial co-ordinates makes use of the galactic circle, the central line of the Milky Way. Here we see the angle at which it cuts the celestial equator.

observer's location on the Earth. In contrast, Case (2) yields the same results for cucry location on the Earth. Even so, positions measured by this system have a special relatiou only to the larth; they would have no significance for ans observer not sitnated on the Earth. Positions measured according to Case (3) would have significance for ohservers on any planet within the Solar System, but they would not be significant for an olserver living on a planet moving round any star other than the Sum. To obtain a system which would be equally meaningful for all observers within the Milky Way we must move on to Case (4), explained in Figure 1.t.

The central line of the Milky: Way forms the basic circle of Case (4). Thus positions are referred in this case to the structure of the galaxy of stars in which we live. The circle of Case (2) cuts the circle of Case (4) at two points. One of these is chosen as the arbitrary point for Case (4). The angle at which the two circles cut is about 62°, as compared with the angle of about 23.5 which the plane of the ecliptic makes with the circle of Case (2).

In practice, the positions of astronomical objects are catalogued in accordance with Case (2). Although this system is related to the Earth's polar axis, and therefore has no general astronomical significance, the basic circle it employs is readily determined and is common to all observatories on the Earth. It is, moreover, a system that is convenient for use in relation to the setting and orientation of astronomical instruments.

A final point about Case (2). Although this is a system of latitude and longitude essentially similar to that used for determining geographical positions here on the Earth, two simall differences have been introduced in the astronomical measures. Instead of latitudes being designated \mathcal{N} or S, for example $30^{\circ} \mathrm{N}$ or $30^{\circ} \mathrm{S}$, the corresponding astronomical latitudes are written + or - , e.g., $+30^{\circ}$ or -30 . Written in this way, the latitudes are called declinations, for example a declination $+30^{\circ}$ or -30 . Longitudes are likewise written somewhat differently. Instead of being measured both east and west, they are measured only eastward, and thus rim from o to 360°. Divided into 24 intervals of 15 each, longitudes may be expressed in hours. Thus $15^{\circ}=1$ hour, $30=2$ hours, $45=3$ hours, and so on. Finer divisions into minutes and seconds arc also used. Expressed in this way, a longitude is relerred to as a right ascension.

An important frature of position-measurement is that referenees given in terms of one system can readily be converted into those of another by calculation. To convert measurements given in terms of Case (2) to measurements in terms of the other cases, the following data are used.

To obtain the allazimuth system, Case (1). Here we must know the location of the observer on the Earth, and also the time. (The latter is necessary since the position of an astronomical object changes with time in the altazimuth system.)

To obtain the celiptic system, Case (3). The angle at which the ecliptic cuts the basic circle of Case (2) must be known. This is sufficient to enable the position in the ecliptic system to be calculated. The angle is about 23.5 .

To obtain the galactic system, Case (4). Here we must know the right ascension of the point at which the galactic circle cuts the basic circle of Case (2). (The declination of this point is of course 0°, as is the declination of r.) Together with the angle of 62 at which the two circles cut each other, this is sufficient to determine the galactic co-ordinates of an object whenever its right ascension and declination are specified.

Nowadays conversions from Case (2) to the other systems can be performed almost instantanconsly with the aid of a high-speed computer. The extreme rapidity of modern methods of calculation permits the design of instruments which make special use of an altazimuth system of reference, as we shall see in the following chapter.

Sketch-Maps of the Heavens

In ancient times men divided the stars visible in adjacent portions of the sky into groups and gave each group a name - often the name of an animal, a deity or a hero. These constellntions are still used in modern astroummy as a rough and ready means of relerring to objects on the sky, though it should always be remembered that this grouping of stars in adjacent parts of the sky into constellations has no physical significance.
'The constellations to which the modern astronomer refers are listed on the opposite page, and the positions of most of the main ones are plotted on pages 26 to 28. The decorative star maps on pages 24,25 and 29 are fairly typical of the fancilul kind of way in which men have plotted the heavens over a period of several thousand years.

Constellation List

Name	Abbreviation
Andromeda	And
*Antlia	Ant
*Apus	Aps
Aquarius	Aqr
Aquila	Aql
Ara	Ara
Aries	Ari
Auriga	Aur
Bootes	Boo
*Caelum	Cae
*Camelopardalis	Cam
Cancer	Cnc
*Canes Venatici	CVn
Canis Major	CMa
Canis Minor	CMi
Capricornus	Cap
*Carina	Car
Cassiopeia	Cas
Centaurus	Cen
Cepheus	Cep
Cetus	Cet
* Chamaeleon	Cha
*Circinus	Cir
* Columba	Col
*Coma Berenices	Com
Corona Australis	CrA
Corona Borealis	CrB
Corvus	Crv
Crater	Crt
* Crux	Cru
Cygnus	Cyg
Delphinus	Del
*Dorado	Dor
Draco	Dra
Equuleus	Equ
Eridanus	Eri
-Fornax	For
Gemini	Gem
*Grus	Gru
Hercules	Her
*Horologium	Hor
Hydra	Hya
*Hydrus	Hyi
*Indus	Ind
*Lacerta	Lac
Leo	Leo
${ }^{*}$ Leo Minor	LMi
Lepus	Lep
Libra *	Lib

Name

Lupus	Lup
"Lynx	Lyn
Lyra	Lyr
*Mensa	Men
*Microscopium	Mic
*Monoceros	Mon
*Musca	Mus
*Norma	Nor
*Octans	Oct
Ophiuchus	Oph
Orion	Ori
*Pavo	Pav
Pegasus	Peg
Perseus	Per
*Phoenix	Phe
*Pictor	Pic
	Pisces

Pisces Psc
*Puppis Pup
*Pyxis Pyx
*Reticulum Ret
Sagitta Sge
Sagittarius $\quad \mathrm{Sgr}$
Scorpius Sco
*Sculptor Scl
*Scutum Sct
Serpens Ser
*Sextans Sex
Taurus Tau
*Telescopium Tel
Triangulum Tri
*Triangulum Australe TrA
*Tucana Tuc
Ursa Major UMa
Ursa Minor UMi
*Vela Vel
Virgo Vir
*(Piscis) Volans Vol
*Vulpecula Vul
*Of modern origin.

On the following two pages is a decorative map of the heavens made in 1660 by Andreas Cellerius.

The maps here and on the next two pages show the main constellations in eight regions of the heavens. The diagram at the top shows the breakdown of the celestial sphere into the eight regions.

Scale of apparent magnitude

- The top symbol indicates - the brightest stars. Each - of the following symbols, - reading downward, indicates - stars of steadily decreasing - degrees of brightness.

map 5

$$
\begin{array}{cccc}
100 & 9^{n} & 8^{n} & 7^{n} \\
0^{n} & 60
\end{array}
$$

Scale of apparent magnitude

©

-
- The top symbol indicates
- the brightest stars. Each
- of the following symbols,
- reading downward, indicates
stars of steadily decreasing
- degrees of brightness.

Part of the constellation Aquarius, as depicted in a Persian manuscript of about A.D. 1650
$\therefore 0$

Chapter 2 Some Tools of Astronomy

We have seen that it was only by observing the heavens that early man was able to develop a sense of time and to find direction. When we consider the complexity of the apparent motions of the Sun, Moon, stars and planets we may well wonder how he learned as much from them as he did. But it is astonishing just how much can be achieved with the simplest possible equipment. We can sce how true this is if we imagine ourselves faced with the same problems and possessed of only the same tools as our early forebears.

Suppose you were stranded on a desert island with only one companion. How would you goabout determining the time of day, the length of the year, the dates of midwinter, of midsummer, and of the equinoxes? How would you determine the points of the compass, measure the angle between the ecliptic and the equator, and fix your own geographical latitude? Could you possibly fix γ, the point of intersection of the ecliptic and the equator? And could you state the positions of the Sun, Moon, stars and planets, using the system of declination and right ascension outlined in Chapter t? The answer is that you could do all these things with very little apparatus. Provided you do not demand too high a standard
of accuracy, most of them require only a plumb-line, a stick, two cans, a supply of water and a little help from your companion.

First fix the stick in an upright position, using the plumb-line to make sure that it is placed as nearly vertical as possible. Then, on a really bright day, keep a close watch on the length of the sladow cast by the stick, noticing the moment when it is shortest. At that moment the Sun is at its zenith-in other words it is just crossing your meridian. Assuming your island to lie in the northern hensisphere the Sun then lies to the south. (If your island were in the southern hemisphere the Sun would then be to the north.) Now take a bearing toward the Sun, using some fixed object in the distant landseape to give a permanent indication of the direction. That fixed object will always lie to the south of your primitive observatory, irrespective of the time of day, and irrespective of whether the Sun bappens to be hidden by cloud or not.

But because the Sun is bright, and therefore blinding to the eye, your southerly direction would probably not yet be fixed very accurately. You could improve the result by observing some bright star, in the manner shown in Figure 2. t. Sit as nearly to the

Accuracy of astronomical observation depends largely on the degree of refinement of the tools employed. That, in turn, depends on technology. Left: Borneo tribesmen using upright gnomon to measure length of shadow cast by sun near summer solstice. Above: Interior photograph of the 200-inch Hale telescope on Palomar Mountain, the most refined tool of visual observation at the disposal of the modern astronomer.
north of the plumb-line as you can, using your stick as a ruler to measure your distance from it. Next keep watch on one particular bright star in the southern sky until the rotation of the Earth causes it to cross behind the phunb-line. Get your assistant to mark the point A on the plumb-line where the star crosses, and also the point B where the line from your eye to the distant horizon intersects the plumbline. Now incasure the distance $A B$, and take the ratio of $A B$ to $B O$ (your measured distance from the plumb-line).

For any star this ratio will be greatest when you lie dead north of the plumb-line. So carry ont the same observation on the same star for a number of nights, moving your position a little to right or left of the original position each time. When the ratio of $A B$ to $B O$ is greatest, take a bearing through the plumb-line to a distant fixed object. Your northsouth direction will then be determined with tolerable accuracy.

Alternatively, with the plumb-line now to your north, you could make a similar series of observations of some bright star in the northern sky, but this time seeking the direction in which the ratio of $A B$ to $B O$ is least. The plumb-line then gives a reasonably accurate determination of the north. Once you have determined south and north, you can bisect the line joining them to obtain the approximate directions of west and east. This you could do either by eye or, if you wanted greater accuracy, by means of pegs and string used as a compass.

Next, using your stick placed vertically in the ground, measure the length of the shadow it casts at noon each day. (Still assmming that your island is north of the tropics, noon is, of course, the moment when the Sun is due south of you, and the stick is casting a shadow due north.) The length of the stick's nom shadow will vary a little from day to day. It will reach its longest at midwinter and its shortest at midsummer.

If you are sufficiently energetic you can also observe the position of the Sun at dawn each day. On two occasions only during the whole year it will lie due cast. These are the times of the equinoxes, the vernal equinox occurring about halfway between midwinter and midsummer, and the autumnal equinox occurring about halfway between midsummer and midwinter. When you know the point at which the Sun lies at the vernal equinox you know r, for γ simply means that point. The Sun does not stay at Υ, of course, because of its apparent motion along

Figure 2.1
Method of determining north-south direction with plumb-line.

Figure 2.2
Fixing angle between observer, Sun's highest noon altitude and Sun's lowest noon altitude.

Figure 2.3
Angle between Earth's equator and plane of ecliptic is half that above.

Figure 2.4
Using observation of Figure 2.2 to determine terrestrial latitude.
the ecliptic; but any star that rises in the east at the moment of sundown at the autumnal equinox, does lie almost permanently close to γ. When you have located such a star you can use it as a reference point for determining right ascensions. We shall see how later.

The length of the year can also be worked out from these observations. For example, the number of days that elapse between successive annual passages of the Sun through the vernal equinox, or the number of days that elapse bet ween one midwinterday and the next, gives the length of the year.

The length of the year, and the dates of midsummer and midwinter, could also be determined with the aid of your plumb-line, provided you could construct some simple device for cutting down the glare of the Sun. A hollow tube with a thin, semitransparent slice of some vegetable substance fitted across one end would suffice as a simple sighting tube. Sitting at a fixed point due north of the plumb-line, you would merely lave to instruct your assistant to mark the point when the center of the Sun lies athwart the line at noon on each day. From midwinter to midsummer the point so determined moves up the plumb-line. From midsummer to midwinter it moves down again. The point is highest at midsummer, lowest at midwinter. The number of days required for one complete oscillation of the point determines the length of the year.

So far we have used only the most primitive equipment imaginable. To glean much further information from our observations we now need something more sophisticated-a large protractor for measuring angles. The highest and the lowest marks which our assistant made on the plumb-line during the last series of observations indicate the maximum change in the angle of elevation of the noon Sun during the course of the year. This change is equal to twice the angle between the plane of the Earth's equator and the plane of the ecliptic. Figure 2.2 shows that if you measure it you will find it to be about 47°, indicating that the Earth's equator makes an angle of about 23.5° with the ecliptic, as in Figure 2.3.

Furthermore, you can use these two extreme positions of the noon Sun to determine your latitude; for the line which bisects the angle between these positions-the line which marks the position of the noon Sun at the equinoxes, when it is directly overhead at the equator-itself makes an angle with the plumb-line. This latter angle, marked in Figure 2.4 , is your geographical latitude.

Figure 2.5
Measuring angle of elevation of Polaris gives observer's latitude.

Figure 2.6
Principle of measuring declination.

Even more simply, you could place yourself in a position where the plumb-line lies due north of you, anel piek out the star Polaris. Then with the plumbline, and using the methods described above, you could measure the angle of elevation of that star. This angle, as Figure 2.5 shows, is again your geographical latitude.

By the time you had been stranded long enough to prolit from all this to-it-yourself astronemy, you might well be fired with the ambition to compile a simple star catalog-one which wouldgive the declination and right ascension of each of the brightest and most easily recognized stars. Declinations are easy, as we can see from Figure 2.6. You would ouly need to measure the angle of elevation of each star at the moment it lay due south of your position and this you would do by the now-familiar plamb-line method. You then obtain the declination of the star by the simple process of subtracting your co-latitude from the angle of elevation. Your co-latitude is simply go minus your geographical latitude.)

The measurement of right ascensions would be equally easy provided you had a reliable watch or clock. If you have made your previous desert-island observations conscientiously, you will already have located some standard star near γ, some star that rises in the east at sundown at the time of the autumnal equinox. All you need do now is to note the time when that standard star crosses your plamb-line and the time when the star to be catalogued crosses it. The time difference, expressed in hours and minutes, is the right ascension of the staryou wish to catalog.

The snag, of course, is that you don't have a watch or clock. But it is here that your two cans and a supply of water come in handy. Fill one can with water and pierce a very small hole in the bottom of

Two instruments used for measuring time in ancient Egypt, a shadow-clock and a water-clock. Both measured hours of unequal length.

Not until the fifteenth century A.D. were mechanical clocks at all common. This clock-dial of about 1500 was calibrated to show day-hours and night-hours at Nuremburg. In late November there were 16 night-hours and 8 day-hours, in late May 16 dayhours and 8 night-hours.

it, so that the water trickles slowly into the second can, placed just leneath. Mark the level to which the water rises in this second can during one complete day, measured from one noon to the next. Then, judging carefully by eve, divide the distance between the bottom of the can and the water-level into twenty-four equal divisions. Each division, marked on the side of the can, represents one hour. Sou now have a water-clock-a very crude one, no doubt, but better than no clock at all. If you use only clear water and take care that the hole in your top can does not become clogged, you should be able, over not too long a period, to measure time to within a quarter of an hour. An error of that amount corresponds to an error of about 4° of celestial longitude. By repeating the observations of a star many times, however, and by taking a final average of all the determinations, it might be possible to reduce the error to about 1°. In a primitive survey of the sky, this would be an entirely acceptable measure of accuracy.

Simple Instruments of Antiquity

We are now in a position to understand the enormons importance of very crude, simple instruments in the early history of astronomy. Indeed, throughout the second millennium B.C., the astronomer-priests of Egypt and Mesopotamia were concerned essentially with problems of the kind we set ourselves on our desert island, and the instruments at their command were seldom much more complicated than those we used there.

By night, and possibly by day as well, they measured time by means of simple water-clocks. The astronomers of Mesopotamia seem to have favored outflow models-vessels from which water escaped
through a hole at a steady pace and in which the fall in water-level marked the passage of time. The legyptians used looth ontlow and inflow models, the latter being vessels into, which water dripped at a steady pace, the rise in water-level inarking the passing of the hours.

The ambition to achieve ever-increasing standards of accuracy must have been as strong in ancient Mesopotamia as it is in the modern world, for the astronomers of 3000 years ago had already discovered one important way of improving on our desert-island water-elock. If we use a cylindrical can as a crude clepsydra, one drawback is that the water runs out of the hole faster when the can is nearly full than when it is nearly empty, for as the water-level falls the pressure of water falls with it. Astronomers of the ancient world overcame this difficulty by using vessels made in the shape of a truncated cone. The water still runs out of such a vessel faster when it is ncarly full than when it is nearly empty, but for each inch of vertical height near the top of the vessel there is a greater volume to run out than for each inch of vertical height near the bottom of the vessel. Thus ten pints per hour may escape when the vessel is nearly full and only six pims per hour when it is nearly empty, but the fall in vertically-measured water-level is approximately the same in both cases. (On our desert island we could have come quite near this degree of accuracy simply by using a very large can with a very small outlet for the water, and by topping up frequently, so as to keep the head of water almost constant.) At a somewhat late stage in their development, water-clocks were frequently fitted with a floating pointer which rose or fell with the waterlevel, pointing toward a rod calibrated in hours.

Sundials with gnomons set at an angle equal to the latitude of their site measure hours of uniform length. When this one was drawn (about 1550), they were often used to check the accuracy of mechanical clocks.

The merkhet, a device consisting of sighting rod and two plumb-lines, used in ancient Egypt for observing the transit of stars.

'To the priests of Egypt and Mesojeotamia (as, ineleed, to the citizens of ancient Greece and Rome or to the burgesses of medieval Eurepe ath lenur did not commonly mean one twenty-lisurth part of a whole day. Rather it meant one ewellth of the period between sumrise aud sunset, or one welfits of the period between sumset and sunrise. In the latitude of nortlern ligype a daylight hour ol melsummer was about fe per cent longer than a daylight heour of midwinter. In the latituele of the medieval Hanscatic ports the diflerence was about 110 per cent.) The business of calibrating a rese to measure hours at all scasons of the year was therelore a complicated one. Comeiform tablets mocarthed in Mesopotamia sleew that mathematicians sometimes tackled the problem another way. They worked ont elaborate tables stating the amount of water that should be placed in water-clocks at each season of the year in order that they shonded empty between smeset and sunrise. One twelfth of the tetal lall in water-level during any night would then correspond to one twelfit of the period between sunset and sunrise at that particular season.

In both the great river-valley civilizations tall, slender columns of stone were commonly placed in the temple precincts. These, buit more accurately vertical than any desert island dweller could place a stick in the ground, and throwing shadows of far greater length, provided an excellent means of tixing the time of noon with comsiderable precision, by noting the moment of the day when the shadow was shortest. The dircetion in whieh the shadow pointed at that precise moment also gave a very close approximation to the due northerly direction. The length, and to some extemt the direction, of the shadow cast by such a tall collume coutd alse be used to measure the bour of day.

At some time between the tenth and eighth conturies B. C. the Egyptians developed a rather more athanced type of sharlow-clock. It consisted of a long, horizontal bar titted at one emil with a shorter horizontal bar placed at right angles to it and raised a lew inches above it. At dawn the instrument was placed so that the end fitted with the short bar faced due cast. Now althongh the Sun rises in the east at the equinoxes, nerth of east in midsnmmer and south of east in midwinter, this shore bar was of sulticient length to ensure that at any season at teast part of the dawn shadow shosuld fall on the longer horizontal bar. Thronglout the morning, as the Sun elimbed the heavens and
moved steadily through south-east to due south at noon, the short bar would throw at ever-shortening shadow on the long one, and the long bar was calibrated so that the length of the shadow could be read off as the hour of the day. At noon the whole instrument was turned round so that the short bar now faced due west. Then, as the Sun declined in the sky, moving steadily through south-west toward west, the short bar cast an ever-lengthening shadow on the long one. Again the length of the shadow could be read off as the hour of day.

Incidentally, it was not until about the time of the Crusades that astronomers of the Istamic Empire devised sundials which, at any fixed latitude, could be calibrated to show hours of uniform length at every season of the year. Instead of placing the gnomon, or shadow-casting rod, vertically, as in earlier sundials, they now set it parallel to the Earth's axis - that is, at an angle equal to the latitude of the place where the instrument was to be used. Sundials of this kind were not common in Europe until the close of the fifteenth century A.D., by which time crude mechanical clocks were already coming into use.

For observing the transit of stars, the astronomers of ancient Egypt used a device known as the merkhet, which consisted of a simple sighting rod with a slit sight, and two phumb-lines suspended in the plane of the observer's meridian. The observations were made in essentially the same way as that used on our desert island.

The common feature of all these primitive instruments is that they contain no moving parts, in the engineer's sense of the term. To be sure movement does occur the rise of the float in certain water clocks, for instance-but this demands no specially
difficult process of manufacture. And in olserving the transit of a star with a plumb-line there is ecrtainly one very important movement-that of the assistant who marks the peoints of transit across the line! By using an assistant we can oloviate the need for an instrument with moving meehanical parts. Equally, by using an instrument with moving mechanical parts, we can obviate the need for an assistant. Indeed, if we wanted to improve on our desert-island observations the next step in sophistication and convenience would be to dispense with the almost endless string of verbat instructions needed for the points of transit to be marked at all accurately lyy an assistant. We should seek to construct instruments that could be operated by a single observer.

Assuming we were still without workshop facilities, we should be obliged to confine ourselves to simple constructions in wood, perhaps with metal strips on which scales could be marked. In fact we should turn naturally to the sort of instrument used by the astronomers of the classical world, by men such as Hipparchus and Ptolemy. In particular we should want to construet instruments for measuring the angles of elevation of the Sun and the stars. Ptolemy describes an instrument used in his tineabout A.D. 150 -for measuring the angle of elevation of the Sun. A castaway on a descrt island, equipped with only a few simple tools, could probably make a replica of it, though he would doubtless have to work in wood instead of in stone.

The plinth that Ptolemy describes (Figure 2.7) was simply a block of stone with one face cut as smooth and as square as possible. The block was set level on the ground with the help of wedges, and so placed that the smooth face looked due east. At the

top sombern corner of this face was a horizontal peg, which served as a gnomon to cast a shadow on to a graduated quadrant of are engraved on the face. Abont halfway dewn the somthern edge of the face was a second peg. Whena phumb-line suspended from the top peg just grazed the fower one, the observer could be sure that the plinth was set dead level. Since the smooth lace looked due rast, the top peg cast a shadow on it only until nemen, when the Sun lay due south. At the moment immediately before the shadow disappeared, its angle, and therefore the angle of elevation of the now Sun, could be read off from the quadrant. By using the Sun's shadow the problem of glare was solved.

Ptolemy also mentions another instrment, the triquetrum, or Ptolemy's rules (Figure 2.8), whose purpose was to enable the astronomer to measure the angle of elevation of a star as it made its transit across his meridian. One of the problems of making such an instrument was to provide it with a reliably calibrated scale of angular measurenemt, for at the stage of technological developmemt reached in Poolemy's time it was no casy matter tw make a large are of metal and to mark it off into small and equal angular divisions. The triguetrum beyassed the problem. It consisted of a vertical post with two arms hinged to it, an upper arm and a lower one. The upper arm was provided with a ring or slot through which the lower arm was fitted. The essential condition was that the distance between the upper and lower hinges on the vertical pest had to be equat to the distance on the upper arm between the slot and the upper hinge, so that the two arms and the post formed an isosceles triangle. The upper arm was provided with sights at cither end, through which a star or a planet could be viewed. Now if we know the lengths of all three sides of a triangle, it is easy, with the felp of simple Euclidean geometry, 10 work out the angles of that triangle. In the case of the triquetrum, the lengths of two sides (the upper arm and the distance between the two hinges on the post) were known in advance. It only remained to measure the distance between the lower hinge and the point where the upper arm crossed the lewer one; and the lewer arm was calibrated in linear units to do just that jobl. So once the observer had taken a reading from the lower arm he had only to consult his table of "chords (a simple trigonometrical table) in find out the angle at the apex of the triangle. He could thus find the angle of elevation of the star sighted.

It is true that the use of the triguetrum demands access to a table of chords, but the instrument itself is still of a kind that we could construct for onrselves on a desert istand, using only hits of wood, scraps of metal and a few simple unols. Without far better facilities, however, that is probably as far as we should get. For the next step we should need some Swiss-Family-Robinsen stroke of luck that would enable us to set up a well-equipped workshop with a plentiful supply of metal. Instead of contining our seale engraving to a line, as in Pulemy's rules, we could then tackle the more difficull task of engraving a metal are. This would allow the construction of an engraved quadrant ring with motion about a vertical axis, as shown in Figure 2et. At the center, O, of the quadrant we could mount a movable arm in such a way that it could swing freety in the vertical plane of the quadrant. The free end of the arm would carry a peinter to facilitate the reading of the engraved scale. The arm would also carry: two holes through which a star could be sighted.

Such an instrument would have the obvious advantage of rigidity, and of consequent greater accuracy, over Polemy's rules. And because of the possible motion of the quadrant absut the vertical axis the ohservation of a star would not need to bed confined to its transit of the seuthern meridian. We could follow a star continuously; and by noting the moment of maximum elevation we could, in lact, determine the southern meridian with far greater precision than was possible either with primitive immovable instruments or with weoden moving instruments.

Our instrument would have essentially the features ol Tyeho Brahe's movable quadrant. Ptolemy's rutes belong to classical antiquity. Tycho Brahe's quadrant belongs to the sixteenth century: Alow fifteen lundred years were required to bridge the gap between them. The difliculty lay not at all in the intelfectual concepts, but in the development of the necessary techniques of metalwork.

Early Inalogue Computers

Analogue computer is the modern name for a model designed to simulate some feature of the natural world. We have already encountered one such analogue computer in the water-elock. The waterclock allows us to simulate the rotation of the Earth. We are able to estimate how mueb the Barth rotates between the transit of a star near r and the transit of some other star by the simple process of
measuring the amount of water that escapes from a vessel between the two transits.

Before the invention of the telescope many of the astronomical instruments in widespread use were skilfully-designed analogue computers. For the most part they depended on the simple fact that if we erect a plane disk, or a plane ring, parallel to the Earth's equator, the parallelism is not destroyed by the Earth's rotation. Nor is it destroyed by the motion of the Earth around the Sun.

The simplest instrument to make use of this property is a single rigidly-fastened thin metal ring. Such an instrument was probably used in the second century B.C. by Hipparchus, the great Alexandrian mathematician and astronomer, to determine the precise dates of the equinoxes. At the equinoxes the Sun lies in the plane of the Earth's equator, and at that time the shadow cast by the front of an Hipparchus ring therefore falls exactly on the back of the ring. At other times the shadow falls either above or below the back of the ring. It was probably in this simple way that Hipparchus was able to arrive at his great discovery of the precession of the equinoxes, a discovery that will be mentioned again in later chapters.

A far cry from the simple fixed circle of Hipparchus was Tycho Brahe's great equatorial armillary, another analogue computer type of instrument. Its construction can be understood from Figure 2.10. The $\operatorname{rod} P Q$ can rotate in bearings at P and Q, the direction of $P Q$ being arranged parallel to the axis of rotation of the Earth. A metal circle is rigidly fastened to the $\operatorname{rod} P Q$. The function of this circle is to carry the sight S, which can slide along the circumference of the circle. The sight is also fastened to an arm $S C$ which turns about the center C as S slides along the circle. A cylindrical peg is mounted at C perpendicular to the plane of the circle, the peg being used for sighting in the manner shown in Figure 2.10A.

A star, or planet, was sighted in turn through each of two slits, the arm SC of Figure 2. 10 being so turned that the star appeared equally bright through both slits, and so that it appeared on opposite sides of the cylinder in the two cases.

The position of the slide S on the circumference of the circle gave the declination of the star or planet, while the rotation of $P Q$ gave the longitude. In order to read off the longitude a further reading scalc had to be added to Figure 2.1o. This is shown in Figure 2.11. The circle was simply read against
this further scale. Onc single reading did not, of course, give the longitude. Since the reading changed continuously as the Earth rotated, a single reading evidently had no special significance. But if, in a short time interval, we make readings of two different stars, the difference between the readings is equal to the difference of longitude of the two stars. For a star at r the longitude is o°, since r is the arbitrary point on the equator from which longitudes are measured. Hence, if we choose a star very near to r as one of our two stars, our two readings give us the longitude of the other star.

Since longitude is simply the equivalent of right ascension-one hour of right ascension equals 15° of longitude-both the declinations and the right ascensions of the stars and planets are easily obtained with this important instrument. Indeed, it was through observations of the planets which Tycho Brahe made with the equatorial armillary and other instruments that Kepler was able to formulate his laws of planetary motions. And it was through these laws that Newton was able to arrive at his great system of universal dynamics.

The turning motion about $P Q$, necessary to follow any one particular star with the equatorial armillary, measures the passage of time, 15° to the hour. Hence the equatorial armillary could serve as a clock, a clock vastly more accurate than any mechanical timepiece available in the age of Tycho Brahe. It could therefore perform the important function of checking the accuracy of mechanical clocks, and Tycho Brahe did, in fact, so use it.

The equatorial armillary was a highly refined specialist instrument, however, as inaccessible to the average man as are the great modern telescopes. It therefore had no utility as an everyday method of time-measurement. This was the function of the sundial. But there was one other instrument which served the same purpose, and served it better, for a fairly wide range of professional men to whom time-measurement was important-the astrolabe. Although far less accurate in operation than the equatorial armillary, the astrolabe was of a convenient size to carry about, and it was not unduly expensive to manufacture. But the idea underlying its construction was of a level of subtlety hardly equalled in any other instrument of the period.

Some form of the astrolabe was probably known in antiquity, for Ptolemy seems to have referred to some such device. But no such instrument has survived from that period and we can speak of

The Quadrant

Figure 2.9
Metal quadrant, marked with angular scale and fitted with movable sighting arm, capable of rotation about a vertical axis. With such an instrument the observer can follow a star continuously, reading off its elevation at any given moment.

Tycho Brahe's great steel quadrant with a radius of over six feet was readably calibrated in small fractions of a degree, thus enabling him to measure star positions with unprecedented accuracy.

Using quadrants in modern and in medieval times.

Figure 2.10
The key to the construction of the armillary is the rotating rod, $P Q$, aligned parallel to the Earth's axis of rotation. The graduated circle fastened to the rod carries a sliding sight. Position of sight on circle at moment of observation gives declination of star or planet.

Figure 2.10A
Star or planet was sighted in turn through two slits in the sight S . The arm SC of Figure 2.10 was so turned that the object appeared equally bright through both.

Figure 2.11
Here a second graduated circle is added. This measures the rotation of the rod PQ of Figure 2.10. From two readings of this scale it was possible to determine the longitude of the star or planet.

Part of a manuscript of Chaucer's Treatise on the Astrolabe compiled, probably in 1391, from Latin and English translations of far older Arabic works on astronomy.
the astrolabe only as we know it-a device owing much of its ingenuity, if not its original conception, to Arab and Persian astronomers and craftsmen of the ninth to eleventh centuries, and remaining virtually unchanged after its introduction into north-west Europe a century or two later.

It consists essentially of a circular metal plate engraved with a projection of the celestial sphere on a plane parallel with the equator. This projection shows azimuths (great-circle arcs from the zenith to the horizon), and almucantars (circles of altitude parallel to the horizon), and is bounded by the

Tropic of Capricorn. Surrounding this projection is a scale for measuring the time in hours. Mounted above the main circular plate is a second plate, called the rele, cut away to form a kind of planisphere, or map of the brightest stars. On this star map (also bounded by the Tropic of Capricorn) the ecliptic is marked as an eccentric circle, divided according to the signs of the Zodiac. Worked into the tracery of the rete are several pointers, the tip of each marking the position of a bright star and each bearing the naine of the star to which it points. The rete and a rule are pivoted to the center of the main plate. On the back of the astrolabe is a scale for measuring angles in degrees, together with a sighting arm.

The observer suspends the astrolabe vertically from its ring and measures the altitude of a star with the help of the sighting arm and the angular scale. He then turns the rete on its pivot until the position of that star, as marked on the rete, lies on the almucantar that corresponds with the altitude of the star. Next he rotates the rule until it lies over the point in the ecliptic that corresponds to the Sun's position in the ecliptic. (This has to be known for the day in question, since the Sun's position varies day by day throughout the year.) The pointer of the rule then gives the correct time, on the engraved scale of hours.

One particularly ingenious analogue computer, the torquetum, was developed in Islamic countries to meet a difficulty which now no longer exists. We saw in Chapter I that once the position of a star is known in the system of right ascension and declination, it is only a matter of calculation to determine its position in ecliptic co-ordinates (Case 3 of Chapter 1). Nowadays such calculations can be performed almost instantancously with the aid of an automatic computer, but until long after the close of the Middle Ages these calculations were long and laborious. For this reason it was desirable to construct an instrument that enabled the observer to read off the ecliptic co-ordinates of a star (or more usually of a planet) directly. Perhaps the most highly-developed torguetum was that used by Regiomontanus.

To understand the curious construction of the torquetum we start with a plane fixed table, parallel to the Earth's equator. (This fixed plane is inclined to the horizontal by an angle equal to the olserver's co-latitude.) On the table is mounted a cylindrical column capable of turning alont its

Plate, carrying a projection of the celestial sphere, within a scale of hours numbered 1 to 12 twice.

The rete, which rotated within an engraved scale of hours.

The astrolabe, like the equatorial armillary, was used not only for observing but also for time-keeping Unlike the armillary, it was portable and not prohibitively expensive. The two pictures above show first the front then the back of an astrolabe of about 1430.

Rule (on front of instrument, over the rete), sighting arm (on the back). and pivot pin.
central axis. The mowable cylinder ends in a plane face inclined to the fixed table at an angle of 23.5°, the purpose being to orientate this end lace parallel (6) the plane of the ecliptic. Mounted on the end face is a sighting arm, pivoted so that it can rotate about an axis perpendicular (1) the face. All this is shown in Figure 2.12. The plane end also carries a circular scale graduated from 0° to 360°, the scale being oriented in such a way that the sighting arm points to 0° when a star near γ is being sighted.

Becanse the fixed table is parallel to the liarth's equator, a star near r lies essentially in the plane of the table. The olserver's aim is to lime up the movable cylinder so that such a star lies also in the plane of the iuclined end of the cylinder. For this purpose the cylinder must be turned and the arm moved until the star at γ lies in the sights on the arm. The cylinder is then correctly orientated, and provided the pointer on the arm reads 0° the scale on the cylinder end is correctly positioned.

In Figure 2.13 we see the complete torquetum. The sighting arm is now attached to a plate that projects from the inclined end of the cylinder, and this plate carries a circular graduated scale at its upper end. A second movable sighting arm is attached to the center of this circular scaie. With the cylinder correctly orientated, as just described, the ecliptic co-ordinates of any star or planet can immediately be read off by sighting the olject in the second arm. To make such a sighting it will in general be necessary to make two motions. First there will be a turning of the whole plate structure, which will move the lower arm over the scale on the cylinder end. By reading the position of the lower arm on the scale on the cylinder end, the observer then obtains the ecliptic longitude of the star or planet. Next there will be a rotation of the upper sighting arm. The observer then reads off the pesition of the star or planet on the upper circular plate, and this reading gives him its ecliptic latitude.

It is abundantly clear that there has never been any lack of ingennity in the design of astronomical instruments, nor in their use. Modern instruments are vastly superior to primitive devices for two reasons, weither being the product of superior intellect. 'Today we can handle much larger structures, we can divide far finer scales, and we can make reliable mechanical and electrical clocks. We also understind, as a consequence of the gencral advance of science, much more about the nature and behavior of light, and of the optical properties
of matter in general. It is because of this superior techoology and superior knowledge that our nodern instrmments trelong to a wholly different order of refincment from Tychob Brahe's moving quadrants and armillary spheres. The accuracy we can aclieve nowadays is about a thousand times greater than that of Tycho Bralue's age. Instead of angular errors of about : of are, we can now manage rather better than $9.1^{\prime \prime}$. Yet the problem of accuracy is as much with us coday as it was with Tycho Brahe, for the modern astronomer would dearly like to push his margin of error down to 0.001 ". The instruments change, but the intellectual problems remain.

Refraction and Reflection

As we have scen, the development of the tools of astronomy since Tycho Bralie's time has been very largely conditioned by an increasing understanding of the properties of light itself. To begin with, it was sufficient to think of light as being a collection of builets that travel in straight lines, except where they reach an interface between one medimm and another - for example, an interface between air and glass. Here it was necessary to understand the laws of reflection and refraction.

Figure 2.14 shows light along $A B$ incident on a glass block. There is a reflected ray $B C$ that comes off the glass at an angle exactly equal to that nade by the incident ray. There is also a refracted ray $B D$ comtinuing on iute the glass. This ray is bent toward the normal $X \gamma$, the normal being an imaginary line which passes through B at right angles to the surface of the block. The three rays $A B, B C, B D$, and also the normal $V V^{\circ}$, all lie in the same plane.

The fact that a ray of light behaves in this way when it impinges on glass was doubtless kuown in ancient times. But the precise specification of the direction of the refracted ray was not discovered mintil 1621 , more than a decade after the first telescopes were constructed. The man who made the diseovery was Willebrord Suell, a Duteh astroumer and mathematician.

What Suell's discovery implies is shown in Figure 2.15. We see the incident ray, the normal and the refracted ray. The two points A and D are chosen so that the distances $A B$ and $B D$ are equal. Snell discovered that where this is so the ratio of $D(Y$ to AX is alwavs the same for a given change of mediun. That is (e) say, if we change the angle which the incident ray makes with the normal, the ratio of

Figure 2.12
in the torquetum a fixed table is arranged parallel to the plane of the Earth's equator. The top face of the rotating cylinder mounted on the table is inclined to the table at an angle of 23.5°, thus lying in the plane of the ecliptic.

The oldest existing European torquetum, bought by Nicholas of Cusa in 1444.

Figure 2.13
Here is the complete torquetum with the above portion picked out in blue. The instrument enabled the observer to read off not only declination and right ascension of stars but also ecliptic co-ordinates

1) $)^{(1}$ A Al will remain unchanged. Once we know the value of that ratio for any specified change of medium it is therefore casy to determine the direetion of the refracted ray for any one particular incidene ray.

When we make nse of any translucent material, such as glass, in optical instruments, we are far more concerned with the refracted ray than with the reflected ray, for the reasons shown in Figure 2.16. Jight always undergoes some measure of absorption when it passes through matter, becoming progressively weaker the farther it penetrates. But in translucent materials the rate of loss is comparatively small, so that the refracted ray is a strong one. On the other hand, translucent materials also have the property of giving only a weak reflected ray whenever the angle of incidence is small; and in astronomical instruments we are almost always concerned with small angles of incidence. Thus, if we want 10 comstruct a refracting telescope, in which refracted rays are all-important and reflected rays of little or no importance, we shall obviously use lenses made of glass.

If we want to make a reflecting telescope, however, the choice of material for the mirror is not so obvious. Glass, as we have secn, gives only a weak reflected ray at small angles of incidence, and is therefore not suitalse. Metals, on the other hand, give a very strong reflected ray and, because they are powerfulabsorbers of light, virtually no refracted ray. At first sight it might seem that the choice lies clearly on the side of metals. But anfortunately metals expand and contract very considerably with changes of temperature, and a mirror composed entirely of metal would have the grave disadvantage that it would be subject to large changes of size and
shape, tooth of which would affect the direction of the reflected rays. Glass, on the other liand, is comparatively free from such thermal changes but is only a very poor reflector. The problem is 10 discover how the frecelom from thermal variations of glass can be combined with the high reflectivity of metal. And this problem was not solved satisfactorily until the threshold of the present century. It was indeed the solution of this technological probilem that opened the way to the construction of really large modern telescopes, the Go-inch Mount Wilson reflector, built in igo8, being the first of the new era.

The basis of a modern telescope mirror is a block or disk of glass shaped accurately to within about a millionth of an inch. Then on the surface of the glass a thin uniform layer of metal is deposited. Such a combination gives the best of looth worlds. The shafe of the surface is controlled by the glass and is hence not sulject to much change with temperature, particularly if a special low-expansion form of glass is used. The metal coating, even though very thin, is sufficient to give high reflectivity at small angles of incidence.

The firse metal surfaces were of silver. These gave a high reflectivity for red and green light, but the reflectivity was less good for blue light. It was soon found, however, that a layer of aluminum gave a uniform reflectivity over the whole normal color range of light, and for this reason aluminized mirrors are now used in all major observatories.

An aluminum coating does not, however, give good reflectivity for ultraviolet light. This is no embarrassment to the ground-based astronomer, for he is not concerned with ultraviolet light, since none penetrates the atmosphere. But the designer of equipment for sateilites and space rockets may,

Figure 2.14
At interface between air and glass refracted ray is bent toward normal. Reflected ray comes off at an angle equal to that made by incident ray.

Figure 2.15
If segments of incident ray $A B$ and refracted ray $B D$ are equally long, the ratio of DY to $A X$ is always the same for a given change of medium.
indeed, wish to work with ultraviolet light. He most, therefore solve the prohlem of tinding suitable new materials for coating his mirrors. Magnesium thorede layers have already been used with considerable suceess for this purpose, but much rescarch on this problem is still in progress.

Lenses and Refracting Telescopes

At the beginning of the seventecnth century, when the telescope first became a tool of astronomy, there was already an old-established industry of lensmaking in Europe, but the time had not yet come when mirrors ol high optical quality could be made. It is no wonder, therefore, that the first telescopes were all refractors. Before we can understand the principle of the refracting telescope we shall need to examine the behavior of light passing through glass lenses.

Figure 2.17 shows a cross section through a convex tens with central axis $O C$. (We assmme that the lens is made so that the section would be the same for any plane containing the line $O C O^{\prime}$.) O is an object emitting rays of light in all directions. We see that the ray along $O C$ travels through the lens whonot deviation, but all other rays refracted by the lens are deviated. The measure of deviation of any particular refracted ray can readily be worked out from the rule of refraction which Snell discosered, for il the surfaces of the lens are quite smooth the curvature of the glass at the points A and B can be neglected. The ray is therefore turned toward the nomal at A, and away from the normal at B in exactly the way we have discussed. Because of the symmetry of the lens, the ray emerging from B must continue to lie in the plane of $O C$ and $O A$. It can thus intersect the axis at O^{\prime}, say. The nearer

A is to the edge of the lens, the greater is the measure of deviation of $B O^{\prime}$ from O.A.

An important question now arises. Can all the rays from O which pass through the lens he made to pass through the same point O^{\prime} '? The answer is that if the two surlaces of the lens are tigured correctly the rays can indeed be made to pass through O^{\prime} to an extremely high degree ol accuracy. 'The aceuracy is lost, however, if the distance of the object point O from the lens is changed at all markedly. For this reason, lenses are not usually given the complicated shapes that would be required to produce a wellnigh perfect focus for one particular and precise position of O. Instead, the lens surfaces are made spherical. This leads always to imperfect focusing, the defeet known as spherical aberration. To minimize the spherical aberration, the iwo surfaces are ground to spherical shapes of different radii, as in Figure 2.17. This gives a much better result than a symmetrical lens would do. For the moment we shall ignore this question of spherieal aberration. That is to say, we shall assume a perfeet focus at O^{\prime}. We shall also assume a perfect focius when the object is off-axis, as in Figure 2.18, although in actual fact further imperfections of focus are thereby introduced. These are known as coma for objects that are slightly off-axis, and as astigmatism for objects that are far off-axis.

In a first attempt to understand the broad prineiple of the relracting telescope we maty indulge in the luxury olignoring the practical imperfections of lenses, but it is important to recognize that such imperfections do exist and that spherical aberration, coma and astigmatism are not the only ones. Before we proceed it will be as well to look at the others. In Figure 2.19 the plane p is perpendicular to the

Figure 2.17
Top: Focusing with a convex lens. Right: Surfaces of lens are given curved shapes of different radii to minimize spherical aberration.

axis of the lens. Supperse that a number of points of p are emitting light, perhaps in the form of some picture. In accordance with what we have already assumed, each point of emission will be brought to a sharp focus to the right of the lens. Will all the focal points lie in the same plane, p^{\prime}, say? In fact, they will not lie in exactly the same plane but in a curced field. Will the picture formed on $p^{\prime} \mid x$ a true representation of the picture on p, or will there be distortion? There will, in fact, le distortion. I astly, does a leus behave the same way for light of different colors? It does not. Going back to the law of refraction illustrated in Figure 2.15 , it is true that the ratio of $A A^{*}$ to $D P^{\circ}$ is independent of the angle of incidence, but the value of this ratio changes with the color of the light, because the glass changes its behavior with the color. This means that a given object point, such as O of Figure 2.17, will be brought to a different focal point O^{\prime} according 10 the color of the light. This effect is known as chromatic aherration.

No practical optical system is entirely free from spherical aberration, coma, astigmatism, curvature of field, distortion, and chromatic aberration. These imperfections can, however, be minimized by a careful attention to the layout of the system and to the conditions under which it is to be operated. The history of the telescope is in large measure the history of attempts to free it as far as possible from these imperfections. For the moment, however, we inay ignore all these difficulties, since our immediate aim is to understand the principle of the telescope, rather than the refinements of its design.

With that aim in mind we might look again at Figure 2.19 and ask how the size of the picture on f^{\prime} compares with its size on p. Is the picture magnified or is it reduced? The answer depends on

Figure 2.18
When object O is nff-axis there will be a defect of focus at 0^{\prime} : coma for objects slightly off-axis. astigmatism for those far off-axis.
the distance of the lens from p. If the lens is tar enongh awas from p the picture on p^{\prime} is smaller than the original. But as the lens is mosed toward p the size on p^{\prime} increases, until eventually it is larger than the original. And the size on p^{\prime} goes on increasing without limit as the lens is brought to a certain eritical distance from p known as the foral length of the lens. If the tens is brought still closer to p no plane ρ^{\prime} can be found at all.
'To make this clearer, it must be realized that p^{\prime} is not a fixed plane. As the lens moves (with p fixed) the plane p^{\prime} on which the rays conse to a focus alse moves. As the lens is moved toward p, the plane f^{\prime} moves farther and farther away to the right. And when the distance of the lens from p becomes equal to the focal length of the lens, the plane p^{\prime} moves off to infinity. After this, no plane p^{\prime} can le found.

What is this critical distance, this focal length of the lens, and what does it depend on? Simply on the two surfaces of the lens. If these are spherical surfaces with radii r_{1} and r_{2}, the reciprocal of the focal length is just the sum of the reciprocals of r_{1} and r_{2}. In wher words:
$\frac{1}{\text { focal length }}=\frac{1}{r_{1}}+\frac{1}{r_{2}}$.

We can express all this very simply. The two pictures, the original on p and the image picture on p^{\prime}, make the same angles at the center of the lens. If we imagine an observer situated at the center of the lens, he would therefore see the two pictures as having precisely the same sizc. This means that the image picture is magnified if the lens lies nearer to p than to p^{\prime}, otherwise it is reduced. Figure 2.20 shows that there is an important symmetry between p and p^{\prime} in the following sense. As the lens moves toward p, the plane p^{\prime} moves to the right to

Figure 2.19
Here all points of p (the object) lie in the same plane. Yet there will be some distortion and field curvature at the focal plane p^{\prime}.
infinity when the lens reaches its focal length from p. Similarly if p moves off to infinity the distance of the lens from p^{\prime} becomes equal to its focal length.

It is not difficult to see how this applies to photography. Distant objects we wish to photograph can be thought of as lying on one and the same distant plane, p. Film is placed in the camera on the plane p^{\prime} and an image is formed with the lens at its focal length from p^{\prime}. (Reference to Figure 2.19 shows that the image is formed upside down, and that left and right are reversed. But because the negative is transparent it is possible to look through it and to turn it in a way that restores the correct orientation of the original picture.) Now it is well known that nearby objects cannot usually be photographed accurately; some of them will be in focus and some out of focus. This is because we cannot by any stretch of imagination think of nearby threedimensional objects as lying in a single plane, whereas distant objects can be thought of as doing so-to an adequate degree of accuracy.

In astronomy, we are concerned with observing objects on the distant celestial sphere, and for the most part astronomers are content at any one moment to observe only a tiny portion of the celestial sphere. To an extremely high degree of accuracy, this tiny portion can be thought of as belonging to one and the same very distant plane. With p thus very distant, the image plane p^{\prime} is spaced from the large main lens of the telescope by an amount equal to the focal length of the lens.

Suppose we place a white screen at p^{\prime}. The size of the image on the screen will depend only on the focal length of the lens, and not at all on its diameter. (This is because the image would appear to an imaginary observer at the center of the lens to have the same size as the original object on p.) Hence if we take a series of lenses of increasing diameter but all with the same focal length, the image on p^{\prime} will have the same size in each case. But the images will not be equally bright. The lens of largest aperture will give the brightest image, simply because it receives most light from the object plane p; the lens of least diameter will give the faintest image because it receives least light from p.

Here, then, we can see what is the first important function of a telescope. It must serve as a gatherer of light. In this connection it may be worth noting that a telescope lens with a diameter of 20 inches gathers ro,000 times as much light as the dark-adapted naked eye.

In principle, we could use the large lens of a telescope as a camera leus for photographing the sky, simply by placing a film on p^{\prime}. In practice, such a procedure fails because the image on p^{\prime} is too small. Suppose we wish to photograph a fair-sized portion of the Moon, say the region around Mare Imbrium. The size of the image of Mare Imbrium on p^{\prime} depends on the focal length of the lens. For a small amateur's telescope, with a focal length of about 3 feet, the image has a diameter of less than a tenth of an inch. Even for a big telescope of focal length about 50 feet, the diameter of the image is still only about an inch. Hence zee must magnify the image on p^{\prime} before we attempt to make a photograph.

This is easily done. We simply place a second lens beyond p^{\prime}, as in Figure 2.21. This lens brings - the light from p^{\prime} to a second focus on a second image plane at $p^{\prime \prime}$. And provided the second lens is nearer to p^{\prime} than to $p^{\prime \prime}$ the image on $p^{\prime \prime}$ will be larger than that on p^{\prime}. Indeed, we can ensure that the image on $p^{\prime \prime}$ will reach a convenient size simply by placing the second lens at a distance from p^{\prime} that is sufficiently close to its own focal length. By placing film on $p^{\prime \prime}$, we can now photograph a small area of the celestial sphere to the required size. In short, we have a telescope with a camera.

We see, then, that a telescope consists essentially of two parts: a light-gatherer which must have a large diameter, and a magnifier which must be adjusted so as to give the final image a convenient size. The light-gatherer is usually referred to as the objective of the telescope, and the magnifier as the eye-piece.

Instead of making a photograph, we may wish to look through the telescope with the eye. In that case the second image must be formed on the retina of the eye. The situation is then a little more compli-

Figure 2.20
When lens is at focal length from p, plane p ' moves off to infinity. If p moves to infinity, distance of lens from p^{\prime} is equal to focal length.

Above: Region of Mare Imbrium as photographed through the 200 -inch Hale telescope, with a focal length of 55 feet. Right: Part of the Moon as Galileo drew it after seeing it through a telescope with a very small focal length.
cated, because the eye itself contains a lens, and the eye-lens works together with the eye-picee to produce the focusing of the sccond image on the retina. Because the eye-muscles can change the focal length of the eye-lens, there is no completely unique combination of eye-lens ant eye-piece. In practice, the observer adapts his eye to the position he finds most confortable, and this position differs from one observer to another, particularly if one is shortsighted and the other long-sighted. This explains why each observer must make his own individual adjustment of the eye-piece.

When we use a telescope with a camera, the image on $p^{\prime \prime}$ always appears less bright than the image on p^{\prime}, simply lsecause the second image is spread out over a larger area. Since in astronomical work light is nearly always precious, it is therefore unwise to make the image on $p^{\prime \prime}$ any larger than we are absolutely forced to. In the photography of very faint objects the astronomer is usually obliged to accept a compromise. A larger image would provide more detail but it would be fainter and harder to photograph. So in the case of the faintest objects, detail must perforce be sacrificed. But in the case of a brighter object a larger image can profitably be used, thereby allowing more detail to be seen. It is, however, a fact that a limit exists to the amount of detail. One cannot continue indefinitely to increase the detail by taking higher and higher degrees of magnification.

When we look through the telescope with the eye, an apparently different problem arises. In this case, if the second image is made too large, not all of the light from it will enter the eye. Some of the light that could otherwise focus on the retina will be blocked by the opaque front of the eye, as in Figure 2.22. In other words, part of the light collected by
the objective will be lost. To prevent this, the magnification between p^{\prime} and $p^{\prime \prime}$ must not exceed the ratio of the diameter D) of the objective to the diameter d of the opening of the eye.

For the purpose of olsorving the image on $p^{\prime \prime}$ in maximum detail it might nevertheless be thought worthwhile to lose some light, especially in the case of a bright object such as the Moon. Actually, it can be proved that this is not so, because the maximum degrec of detail, referred to above, has already been reached at precisely the stage at which the light begius to be blocked by the opaque front of the eye. Even so, almost all visual observers do employ magnifications larger than D/d. This is partly because visual ohservers almost always work on very bright objects where loss of light is not a grave matter; partly because a greater magnification is probably more restful to the eye; and partly because it is easicr to deceive oneself as to what is actually seen. There is, too, the better reason that a larger magnification helps to overcome the imperfections of the cye-distortion produced by the eye-lens, and the lack of discrimination caused by the finite size of the rods and cones of the retina. In the case of photography it may sometimes be necessary 10 exceed the D / d ratio so as to achieve a magnification sufficient to overcome the "graininess" of the film or plate.

A simpler but less convenient arrangement than that of Figure 2.21 is to place the second lens in front of p^{\prime}. In this case the second lens must be concave, as in Figure 2.23. This has the effect of increasing the distance of p^{\prime} from the objective and of increasing the size of the image. We now have only one image plane, that at p^{\prime}.

The first astronomical telescope, that of Galileo, was constructed in accordance with Figure 2.23 .

Figure 2.21
The objective of a telescope usually gives only a small image at p^{\prime}. This image is therefore enlarged for photographing at p^{*}.

Figure 2.22
We can look at the enlarged image with the eye. If the image is too large, some of the light is blocked by the opaque front of the eye.

The type of telescope mounting shown on the opposite page did not at first give great positional accuracy. But as mountings improved, star positions were measured to within 5 seconds of arc. Left is the 4 -foot transit circle of 1806 with which Groombridge mapped 4000 stars. The transit telescope above was used by W. H. Smyth in the 1830s to observe double stars.

Figure 2.23
Principle of Galileo's first astronomical telescope.

Figure 2.24
Usual placing of objective and adjustable eye-piece.

The far better system of Figure 2.21 was invented by Kepler. Irouically, Kepler referred to himself as dull in observation, awkward in mechanical work!

Figures 2.21 and 2.23 show only idealized telescopes. To make an actual telescope, the lenses must be monnted in some fashion. The nsual arrangement is to place the objective at one end of a tube and the eye-piece at the other, as in Figure 2.24. Because it is desirable to adjnist the eye-piece to allow for variability in the eye itself, the eye-piece must be capable of motion parallel to the axis of the tube. This is usually achicved with the aid of a ratehet device.

It remains now to mount the telescope. The way to do this is immediately clear from Tycho Brahe's equatorial armillary: In effect, all we need do is replace Tycho Brahe's sighting arm by the telcscope. But since the early telescopic observers were much more interested in viewing the Sun, Moon, and planets than they were in positional accuracy, they could dispense with a great deal of the complexity of the equatorial armillary, particularly with its circular metal rings. Today we can still dispense with these rings because we have other and better ways of measuring turning motion. So in the telescope mounting the outer part of the equatorial armillary is replaced by a couple of pillars supporting an axis on which the inuer part is mounted. This axis is conveniently orientated parallel to the Earth's rotational axis, exactly as in the armillary. The axis is permitted to turn in bearings fixed to the pillars. A second axis is rigidly fastened at right angles to the first one. The telescope is then mounted at one end of this second axis in such a way that it can turn around it. At the opposite end of the second axis there is usually some kind of counterweight, which serves to balance the turning
moment of the telescope aromend the first axis.
The direction of printing of the telescope can be determined from the degree of turning abont the two axes. The first axis gives right ascension, the second one gives declination. At lirst, these measures were cruder than Tycho Brahe's had been. But by the time astromomers again became interested in pesitional accuracy it was possible to measure the turning motions about the two axes with so great a precision that there was no necessity for returning to Tycho Brahe's system. In any case, positional accuracy could always be obtained with special quadrants fitted with telescopic sights. In Isaac Newton's time, the standard of positional accuracy was gradually pushed from Tycho's one minute of arc to about five seconds of arc. In modern times it has become rather better than one-tenth of a second of arc.

Mirrors and Reflecting Telesconpes

The telescope has an important advantage over many other optical instruments. Since the astronomer is not usually concerned with light coming into the objective at more than small angles, the imperfections of spherical aberration, coma, field curvature and distortion can be kept within reasonable bounds. But wherever lenses are employed, as they must be in refracting telescopes, there is one imperfection that is more difficult to overcome. An ordinary lens refracts light of different colors in different ways, and does not therefore bring light of all colors to the same focus.

Even in the carly days of the telescope this color aberration was considered a serious defect. In 1636 , no more than twenty-five years after Galileo's first telescope, Marin Mersenue, a Minorite friar, proposed the construction of a reflecting telescope. In

In its simplest form, the equatorial mounting merely dispenses with the metal rings of Tycho Brahe's equatorial armillary and replaces the sighting arm with a telescope.

1the3, James (iregory put forward a different design of reflecting telescope, while in the years $1670-72$, Isate Newtom and a Fremehman mamed Cassegrain suggested the most practical arrangements.

The idea of a reflecting telescope is to replace the sbjective of the refracting telescope by a mirror. That is to saty, a mirror is used as the light-gatherer instead of a lems. This hastwo important advantages, First, while a lens reliacts light of different colors in diflerent wass, a mirror reflects all colors in the same way, and thus brings light of all colors from the same object to the same focus. Next, if the mirror is shaped to the form of a paraboloid, light from a distant object lying in the direction of the axis of the parabolesid is brought to a focus withomt spherical aberration.

But with optical systems perfection in one respect usuallv implies a serious imperfection in some other respect. The paralooloidal mirror sulfers badly from coma, that is the focus becomes bad for objects that do not lie in directions very close to that of the axis. In modern instrmments this difficulty is overcome by correcting devices located in the magnifier. Instead of using a single lens as magnifier, we now use a complex optical system, and a prime concern in shaping and positioning the various lenses of the system is to correct errors due to the coma produced by the mirror.

The simplest form of reflecting telescope is shown in figure 2.25. The mirror brings objects on our distant plane p to a focus on p^{\prime}. Exactly as before, the picture on p^{\prime} is then magnified on to $p^{\prime \prime}$, where it can cither be photographed or viewed by ere. In

Sewton's time, bowever, only viewing beye was possible, and here there was the overriding difhentty that placing the hmman eye at p° would have blocked light from reaching the mirror, since the mirrors of those times were small, of course, combpared with human dimensions. So the simple device of Figure 2.25 was not then practicable. Vet precisely this system is now employed in the 200 -inch rellectingtelescopeat Mount Palomar. The mirror of the Palomar instrument has sogreat a diameter that a human being can indeed sit inside the telescope without blocking out very much of the light! The observer does not view the inage directly with the eye, however. He rides inside the telescope in order to operate the camera (and other instrmments) and (o) ensure that the image plane $p^{\prime \prime}$ is kept in the correct position in relation to the camera.

In many respects the 200 -inch teleseope is extremely simple in its design. The momuting is more elegant than that shown on page 53. Instead of a simple axis between the bearings on the fixed pillars, there is a cradle. inside which the telescope itself can ride. It again turns on a declination axis which passes through bearings fixed to the cradle. This declination axis is aligned perpendicular to the axis of the cradle. This system dispenses with the need for a counterweight.

When the 200-inch telesoope is used in the simple manner of Figure 2.25 it is said to be operated at the prime focus. As we shall later sce, it can also be used in other ways.

But such a solution of the reflector problem was not possible in the seventeenth century. Gregors

The Hale telescope is so big that an observer can sit inside it without blocking out much light. The arrangement of Figure 2.25 is then a practical proposition. Used in this way the telescope is said to be operated at prime focus.

Figure 2.25
Simplest form of reflecting telescope -impracticable in Newton's time.

mirror
suggested placing a small secondary mirror behind the plane p^{\prime}, while Cassegrain proposed a secondary mirror in front of p^{\prime}.

In Gregory's case (illustrated in Figure 2.26) the mirror was an ellipsoidal one with the intersection of the central axis on p^{\prime} as the nearer focus. A second focal plane $p^{\prime \prime}$ is then formed at the farther focus of the secondary mirror. The image on $p^{\prime \prime}$ can now be viewed with a normal eye-piece, a hole in the center of the main mirror being cut away for this purpose. In Cassegrain's case (Figure 2.27) the secondary mirror was hyperboloidal, a second focal plane $p^{\prime \prime}$ being again formed at the outer focus of the secondary mirror. The image on p^{\prime} is not acrually formed, as can be seen from Figure 2.27. The image plane p^{\prime} is said to be rirtual in this case. In the Gregorian telescope, on the other hand, the image on plane p^{\prime} is actually formed, and is said to be real.

But neither Gregory nor Cassegrain was able to put his proposal to a practical test. It was left to Newton to construct a working model of a reflecting telescope by the simple device of placing a flat mirror inclined at 45° in front of p^{\prime}, as in Figure 2.28. All light rays coming to p^{\prime} are reflected in the flat mirror and are thereby caused to form an image plane $p^{\prime \prime}$ at right angles to p^{\prime}. The observer views the image on $p^{\prime \prime}$ with a normal eye-piece mounted in the side of the telescope.

The immediate superiority of Newton's device lay in the fact that a flat mirror could easily be made, whereas at that date it was difficult to construct the carefully figured secondary mirrors which

Figure 2.26
Principle of Gregory's proposed reflecting telescope.

A 48-inch Cassegrain reflector erected in Melbourne, Australia, in the 1860s. It had at least one advantage over the Newtonian type. The observer was at the bottom, not perched precariously near the top.

Figure 2.27
Cassegrain reflector. Newton said "Its advantages are none".

Let Newron s first refiecting
Teless DDPE Duih in T6RE. \angle DDVE View down oren ene or relescope.
showing both mirrars ant alss position of eye-piece

Fipure 2.25
Principle of Newtonian telescope

This 48-inet Newtonian refiemor usser in Nialze in the "Byis nequet E Tnway wit E kint 0^{2} Sentrs abt TD ervable thi otosfuvat to reazt the
 the Diatrart carving the towet กH5 it to rntatec.
the desegs of Grogor aod Cascrerain demanded. Geegury mploped the best available London apticiars in an antempt tis belid hin velescope, but peile were discouragng And when conirunved by Casegrain's sugentione Niwtom wroce: The adrantage of this drvice ame none, but the diachvantages se great and uravoidable, that I fear if will never be put is proction with geod effer.- -

Pastestity's vendict $=0$ N-notan's scathing permounornt is contained in the aop-inch tolescope. drugned ion bor capable of ioperation in the manors of Cassegrain bar eik in that "Xewton! Frven the midern point of view. the Nintocion system bas the crave disadvantage that the observer must cflas bivir sipp aif the relescopr. Muecover be must move St viewing pusition wherever the relescope moves. This forcos them int witt-ruch mmastic crovocthous whirh must of course, be Fertiormed in the darts and which can be activelv danperous. In contrast with obsenation from a Newtonian platierm. an observet at the prime licus of the aco-inch velescope sits inside a bex that moves with the telescope He is tbenefiore in no danger of falling-a matuer that must be serioush considesed at a beight of 30 tis soo feet above ground level. With a telescope $=$ its noemal workine pesitioce pounting nearlv toward the zenith the Casserrain mberver is also piared in comparative saletv, since be is situated at the betrom of the telescope.

A tefler device than that of either Newsece or Cassegrain is a combination of the nook shown shematically in Figure 2ac. A Eat marror is ued in the manner of Newton, but in Enat of the plane of the Casregrain artangemeat. This impowement apprass to have theen made in the ttoex, bo James Nasmyth. the inventor of the steram-hammer.

The remariable ieature of Newnth's telescope was that it could be pointed to anv nobject in the heavens withour the nowerver being royumed mo mowe himseli: This eperaticeal simplicits was achieved at a serious oust, bowever. Jor Nasmuth's mounting wes of an alterimuth npe. not of the equatorali tope show we pase is 2. Thes meant that sil compenate for the Earth's rotuune it was necesar. in following ato object, to make two iveuttaneous motions of the telesupe. ane in atimath. the ocher in declimation.
The equatorat mounting has, wr course, the groat advantage of requiring solk noe movemest, abo the aus paralled is the Earth's rotatictal axis. Ooc final refinement of Nasmeth's idea nill allow the

2-00w Par or Nasmut s ze-inch Cassegran-Newtonian zesescode showing sosimen eरं eye-svece - eabon ta mounting Socom- Nastyth using hee nstument. arich could be sonted to any var zi the neavens without the obseners maving to move.

Sgare 209 (Blgh)
Refinement of Kasmyth s idea gres sasis of modern couce system.

observer to remain stationary even when an equatorial nounting is used. The lower flat mirror of Figure 2.29 , instead of remaining fixed in relation to the telescope, must be turned by a driving shaft placed through the back of the main mirror. If the drive is adjusted to compensate precisely for the motion of the telescope, the image plane $p^{\prime *}$ will then always be formed in a fixed direction. This is the basis of the modern coude system.

Until the middle of last century an important limitation to the design of reflecting telescopes arose from the fact that multiple reflections had to be avoided as far as possible. This was because a good deal of light was lost at each mirror owing to poor reflective efficiency. Even with modern mirrors, multiple reflections must be avoided whenever very faint objects are under investigation. This is exactly why the observer works at the prime focus of the 200-inch telescope (Figure 2.25) whenever he has to deal with extremely faint objects. He must perforce accept the discomfort of sitting inside the telescope, often for many hours on end, rather than use the far more comfortable system of Figure 2.29. The latter is used, of course, whenever comparatively bright objects are under investigation. (A candle at a distance of a hundred miles may be thought of as a bright object.)

Refractors zersus Reflectors

The early reflecting telescopes certainly overcame the problem of chromatic aberration but they raised another problem just as grave. The mirrors were solid disks of metallic alloy, and hence were subject to gross changes of form due to temperature fluctuations. So it is not surprising that when, in the mideighteenth century, a method was found of overcoming chromatic aberration in the refracting telescope, the reflector fell into immediate disfavor. And interest in the reflector did not revive until about a century later, when Foucault discovered a method of depositing a thin layer of silver on a glass surface.

Before we can understand how refracting telescopes overcame the problem of chromatic aberration we shall need to examine more closely just how the problem arises. In Figure 2.15 we saw that the ratio of the distances $A X$ to $D r$ is always the same for light of a particular color. But this ratio differs slightly with the color of the light. This causes the light that passes through the outer part of a lens to be separatedinto its constituent colors (Figure2.30).

It is said to be dispersed. In contrast, light of all colors passes straight through the center of the lens, and is therefore neither refracted not dispersed. If the leus has concave, instead of convex faces, the dispersion is simply reversed, as in Figure 2.31.

Thus one method of correcting for dispersion readily suggests itself. It is shown in Figure 2.32. We simply place a concave lens to the right of the convex one.

This explains a point that might otherwise seem puzzling. How was it that astronomers were so disturbed by the chromatic aberration introduced by the objective of a refracting telescope and yet were undisturbed by the chromatic effects of the eye-piece? For even reflecting telescopes make use of lenses in the cye-piece!

The answer is that eye-pieces were made with two lenses even in the time of Newton, the first example being due to Christian Huygens. The two lenses produced something of the effect shown in Figure 2.32, so that chromatic distortions produced in the eye-piece were much less serious than those produced by the oljective. The reason why an objective could not readily be corrected by the use of a second lens is that the two lenses, if made of the same glass, would need to be very widely spaceda serious inconvenience. Eye-pieces, on the other hand, being small, permit adequate separation without any such inconvenience arising.

But to come back to the objective of a refracting telescope: how is this to be corrected for chromatic aberration, widely spaced lenses being forbidden? Two quite different considerations are involved: the actual value of the ratio of $A X^{-}$to $D r$ (Figure 2.15) for light of a particular color, and the degree to which that ratio alters when the color is altered. These two factors do not change in exactly the same way when the material of a lens is changed, for example from one type of glass to another. This means that two lenses of different materials can have different ratios of $A X$ to $D r$ in yellow light, but the same degree of dispersion of the ratios with change of color. Then by making a convex lens from the material oflarger ratio and a concave lens from the material of smaller ratio, we can produce the desirable situation in which the opposite dispersive effects of the two lenses (Figures 2.30 and 2.3 I) compensate each other, but in which there is still a net degree of refraction. If, moreover, the lerises are suitably shaped they can be fitted together into a doublet of the form shown in Figure 2.33 which

In the coude system (above) eye-piece is at upper end of polar axis, which rotates to make changes in right ascension.
Changes in declination are made by the rotation of a plane mirror in front of the object glass.
A single observer can view any part of the sky without moving. Left: Large equatorial coudé used at the Paris Observatory near the close of last century.
then gives a focal plane p^{\prime} that is substantially the same for all colors.

There seems little doubt that the man who discovered this method of making achromatic objectives was Chester Moor Hall, a London harrister whose hobby was making optical experiments. Being by nature a somewhat secretive man, Hall, in 1733 , approached iwo different London opticians, one to grind the convex half of the doublet and the other to grind the concave half. Oddly enough, both ol them sub-contracted the work to the same craftsman, George Bass. Discovering that both lenses were destined for the same customer, Bass fitted them together and recognized their achromatic property. Bass was kess reticent than Hall, and within the next few years several Iondon opticians were in possession of the new idea and had begun to make achromatic lenses for themselves. Among them was John Dolland, a man of very high reputation in the scientific world, who eventually joined his more commercially-minded son Peter in a business enterprise at The Sign of the Golden Spectacles and Sea Quadrant in the Strand.

Peter Dolland persuaded his father to apply for a patent on the new device, and although nolody ever claincd that John Dolland was the inventor, the patent was duly granted. Nevertheless, throughout the remainder of John Dolland's life, other British opticians seem to have gone on making achronnatic objectives without let or hindrance. But soon after his father's death, Peter Dolland brought an action against one of them and was successful. Thereupon the London Opticians presented a petition to the Privy Council asking for the patent to be revoked. The legal proceedings which followed were long and complicated, but the upshot was that the Dolland patent was upheld. The court, presided over by Lord Canden, held that Chester Moor Hall, "the person who locked his invention in his scritoire", was not the person who ought to benefit by the patent. The right person to benefit was Dolland "who brought it forth for the benefit of the public."

In fact it is to be doubted whether the granting of such swecping patent rights is ever an expedient policy, for the interplay of ideas is thereby discouraged, and in the absence of competition the monopolist is apt to become lazy. Certainly, patent rights are hard to justify on moral grounds, for the bigger an idea the less it is patentable. You may make a fortune by patenting a better way of clip-
ping an indiarubtere to a pencil, but you will not make a cent in patent rights through the discovery of a new scientific theory of the scope and power of Einstein's. Society is well aware that only a king's ransom could pay for a really great scientific idea, so it makes no payment whatever.

At all events, the granting of the Dolland patent had an all but disastrous effect on the course of the optical industry in Britain. With the invention of the achromatic objective the stage was set for the uhimate struggle between the refracting telescope and the reflector. But the British, who had played so large a part in the carly development of the reflector and who had produced the first achromatic objective for the relractor, scarcely took any further part in the technological development of the two instruments. The monopoly accorded to the Dollands allowed them, without any great cffort, to produce better refracting telescopes than their immediate rivals could produce. Their rivals; discouraged by being debarred from using the correct technique, tended to wither away. Some fifty years after the Dolland case, the government, becoming alarmed by the rapid rise of the German optical industry, at last attempted through the Royal Society to encourage the mamufacture of better

Figure 2.30
Color dispersion produced near
periphery of a convex lens.

Figure 2.31
Use of a concave lens merely reverses the dispersion.
optical glass in Britain. But the project failed ignominiously, for by then all really high-grate professional optical work in England was well-nigh destroyed.

In Germany things took a very dillerent course. When, in the early years of the ninetecnth century, the Dolland telescopes were eritically examined by the young Gorman, Joseph liramholer, it was found that none of the really important problems of the refracting telescope had been solved during the bilty years since Lord Camden's decision. The essential problem of the reliaeting objective was to choose the material of the lenses and to shape their surlaces in such a way as to give not only chromatic correction tout also freedom from spherical aberration and coma in a distant object. This was among the first problems in human history to demand both an accurate mathematical insight and a stilled practical technology. The mathematical insight was available in lingland but the practical technology was sadly lacking.

The two requirements ware combined in the person of Fraunloofer. It is not too much to say that Fraumboler carried through, essentially by himself, a research program that would nowadays be assigned to a substantial team of scientists. A poor boy, Fraunholer was trained as a glass tcchnologist. later, he acquired mathematical knowledge. In an rnergetic foung man of genins the combination proved irresistible. Framboter realized that he must begin by measuring the refraction of diflerent kinds of glass in the separate colors, not with light of mixed colors. This led him to the basic technological discovery that one particular kind of glass tlint glass does not give reproducible results unless the conditions of its manulacture are controlled with extreme care. Impurities produce variations of behavior. Now Framboler's early training, together with a body of information acquired from the Frenchman, Pièrre Louis Guinand, came to his aid. Furnaces were designed and built in which glass disks of stable optical quality could be produced. Fraunhofer's practical skill as a lens grinder and his mathematical knowledge of opties did the rest. The resulting telescopic objectives were sensibly free from chromatic alorration, spherical aberration (distant objects), and coma.

To Fraunhofer it was a simple matter to improve the rigidity and the accuracy of the normal equatorial mounting of the telescope. The final product was of a degree of excellence lar surpassing any-
thing that had been seen before. His $9 \frac{1}{2}$-ineh Dorpat refractor eamed him freedom from the taxes of Munich. It did more than that. It shook the complacence of the British govermment sulficiently for the alorementioned glass-making project to be set under way. But all to no avail. With the failure of the glass-making project the government relapsed once more into technological sommolence.

Throughout most of his short lile (he died of tuberculosis at the early age of thirty-nine) Fraunholer was regarded by the scientific savants as a "mere techmologist." He was allowed to attend scientific meetings but wot to speak! It is therefore pleasant to record that in the course of his work he made basic discoveries which carried him far beyond the science of his own day, right into the science of the twentieth century. We shall meet his discovery of certain particularly important speetrum lines in a later chapter.

During the era of the Dolland refractors, the reflector was by no means entirely eelipsed. In the last quarter of the eighteenth contury, William Herschel, famed for his diseovery of the planet Uranus, constructed with consmmmate skill a series of reflecting telescopes, cuhminating in one of 4^{8-} inch aperture. But although great results were

Figure 2.32
Two widely-spaced lenses of same glass can cancel dispersion effect.

Figure 2.33
By using lenses of different glass need for spacing is avoided.
achieved with these instruments, they all suffered from the defects already remarked on.

The magnificent Framhofer refractors transformed the situation. Professional astronomers the world over now had no doulst that refractors were much to be preferred to reflectors. Everybody wanted a lraunhofer refractor. It was true that reflectors could be made with larger apertures, but because of the inefficiency of reflection at the mirror surfaces, a reffector of given aperture was reckoned to have no greater light-gathering power than a refractor of only half the aperture.

Reflectors were still constructed in England, but now mainly by amateur astronomers such as Nasmyth, whose ingenious instrument we have already scen, and the Earl of Rosse, whose largest reflector had a mirror of 6 -foot diameter. Yet Rosse, who saw the reflector as a better instrument than the refractor, was in a small minority. Most astronomers thought that Fraunhofer had brought about the final triumph of the refracting telescope.

Ironically, what Fraunhofer's discoveries had really demonstrated was the ultimate impracticability of the refractor. Fraunhofer's success was based on the superb optical quality of his glass. It had of necessity to be free from loubbles and internal striac. It had to have very precisely defined refracting properties. And these characteristics are extremely hard to achieie in lenses of appreciable aperture. The Dorpat refractor, Fraunhofer's masterpiece, had an aperture of only $9 \frac{1}{2}$ inches. In spite of the poor reflective efficiency of the mirrors of that time, there was no great difficulty in achieving a greater practical light-gathering power than this with a mirror. If a refractor was to achieve equality with the large Rosse mirror, the aperture would have to be pushed up to about 30 inches. Therefore strenuous efforts were made to increase the diameter of refractor objectives. In fact this was achieved only during the last twenty years of the nincteenth century. During the 1870 two American olservatories (Washington and McCormick, Charlottesville) installed 26 -inch refractors, while Vienna had one with a 27 -inch aperture. In the middle 1880 s the Pulkovo Observatory in Russia and the Bischoffstein Obscrvatory in France both lad 3^{0-} inch instruments. Not until 1888 was a refractor with a still larger objective installed-the 3^{6}-inch telescope at Lick Observatory in the U.S.A.

By that time Foucault had discovered how to silver a glass mirror. From then onward, therefore,
reflectors were no longer subject to gross losses of light nor to serious deformations due to temperature changes. The reflector now went rapidly ahead, for it made far less exacting demands upon glass technology than did the refractor.

The glass disk out of which a large mirror is to be made must certainly satisfy the requirements of rigidity and of a low temperature coefficient of expansion, but there is no need for the glass to be of high optical quality. There can even be a plethora of bubbles and striac inside the glass so long as they do not interfere with the grinding of the surface. In contrast, the glass required for a refractor objective must satisfy the most stringent optical requirements. Hence very large mirrors can lee made more casily and with less risk of inaccuracy than can very large lenses. For sound technological reasons, therefore, we seem to have reached the ultimate end of the race between refractor and reflector. The world's largest refractor, at present, is the fo-inch instrument at Yerkes, Williams Bay, U.S.A. By way of contrast there are many reflectors with apertures in excess of 50 inches. Some of the largest are listed below.

Observatory

Mount Wilson (U.S.A.)
Harvard, Bloemfontein

\quad (S. Africa)	60 in.	1933
Bosque Alegre (Argentina)	60 in.	194^{2}
Harvard, Oak Ridge		
\quad (U.S.A.)	$61 \mathrm{in}$.	1937
Perkins, Delaware (U.S.A.)	70 in.	1932
Dominion, Victoria (Canada)	$72 \mathrm{in}$.	1919
Dunlap, Toronto (Canada)	74 in.	1935
Radcliffe, Pretoria (S. Africa)	$74 \mathrm{in}$.	1948
Mount Stromlo (Australia)	74 in.	1955
Haute-Provence (France)	$74 \mathrm{in}$.	195^{8}
McDonald, Mount Locke		
\quad (U.S.A.)	$82 \mathrm{in}$.	1939
Mount Wilson (U.S.A.)	100 in.	1917
Lick, Mount Hamilton	120 in.	1959
(U.S.A.)	$200 \mathrm{in}$.	1948
Mount Palomar (U.S.A.)		

In addition to the fourteen large reflectors listed abowe, at least half-a-dozen others of comparable size are now either planned or actually under construction in various parts of the world. It is a matter of irony that in the days when reflect-

When refractors gained ascendancy reflectors were by no means eclipsed. The Earl of Rosse's 6 -foot reflector, set up near the Bog of Allen in the 1840 s, was known as the Leviathan of Parsonstown.

Fraunhofer's Dorpat refractor, with an aperture of $9 \frac{1}{2}$ inches, was equal in light-gathering capacity to a reflector with an aperture twice as big. But large lenses are harder to manutacture than large mirrors.

Not until near the end of last century was a telescope equipped with a lens of 3 -foot diameter. Today the world's largest refractor is the 40 -inch instrument at Yerkes, Williams Bay, shown above.
ing telescopes were equipped with metal mirrors, and were hence subject to penor reflectivity and to changes of figure, the largest reflectors were built in England. But since these diffienties were overconse, since it became possible to build a well-nigh perfect reflector, England has not presluced a single instrument of large aperture, though it is true that a 98 -inch retlector is now being planned. Several contributing reasons for this odd situation can be suggested, including lack of confidence occasioned by the success of Fraunhofer refractors and the lad climatic conditions encountered by the astronomers who used the large Rosse reflector. But a stronger reason is that British astronomers had become almost exclusively interested in the study of the Sun. For this no large reflector was necessary, because there is plenty of light from the Sun! It is probably not an exaggeration to say that the prosecution of general observational astronomy in Britain was all but killed by a grossly lop-sided concentration on solar studies.

There is one final issue concerning the refractor v. reflector struggle. Athough the reflector was finally established as the more powerful light-gatherer, the traditional paraboloidal reflector suffers more severely from coma than the refractor does. This means that the reflector cannot be usefully employed when the olject rays come into the mirror at more than a small angle with the axis of the mirror. In other words, the reflector necessarily has only a small field of view.

This disadvantage would probably have served to keep the refractor "in business" had it not been

Here we see first the big lens of the Yerkes refractor and next the main mirror of the Hale reflector. The difference in size is emphasized by the presence of the men in both pictures.

For the invention of a new type of reflector with far Iess coma than that inherent in the traditional paraboloidal mirror. The optical fiatures of the new system were insented by Kelloce in 1906, but the finst telescope cmbedying Kellan's ideas was wor conseructed until 193°, by Bernhard Schmidt. Such telescopes are now known as Schmidt telescopes.

11 rats are admitted through a circuiar opening on to a spherical mirror, as in Figure 2.34 , a change of direction of the object point makes little difference. The rays are brought to a focus without coma, astigmatism, or chemmatic aberration. But spherical aberration is now very scrious. To overcome this difliculty a correcting plate of geod guality optical glass is placed across the circular opening. The surfaces of the glass are carclully figured to give a weak refraction, just sufficient to compensate for the spherical aberration of the mirror. The glass itself introduces optical delects, of course, but these are not serions unless the aperture becomes very large, in which case chromatic aberration raises new difficulties.

A Schmidt telescope is in a sense a cross-breed between the reflector and the refractor. The mirror is borrowed from the reflector, the correcting plate from the refractor. Quite apart from the chromatic difficulty already noted, there is the difficulty at large aperturcs of obtaining and of slaping a large glass plate of adequate quality. So far, noloody has undertaken the figuring of a plate with a greater diameter than 48 inclies. Howeser, it is a less exacting task to shape a plate for only weak refraction than to grind an objective lens of equal aperture.

Figure 2.34
Principle of Schmidt telescope, which borrows mirror from reflector and correcting plate from refractor.

The 48 -inch Schmidt telescope with which the Mount Wilson and Palomar Observatories made a sky survey published in the 1950s.

In recent years, the Schmide telescope hat proved extremely pepular. Because of its large fied of view it enables the observer to accumblate astronomical material far more rapidly than with a traditional reflector. It was fir precisely this reason that the comprehensive sky survey carried oul ten years ago by the Monnt Wilson and Pahomar Ohservatories was made with the aid of a Schmide telescope. The instrment is naturally popular with olservatories situated in menfawable climates, for in the rare periods when astronomical conditions happen to be: goool much more material can be obtained. The Schmidt telescope is also well suited to handling statistical problems involving large mumbers of objects, stars or galaxies. Traditional reflectors are better suited twexamining particular objects, which they can do in greater detail than the Schmidt.

However, we have already noticed more than once that the resolution of one optical difficulty seems always to raise new ones. So it is with the Schmidt telescope. In practice the apertures of Sehmidt telescopes are limited by the difficulties of making correcting plates. To this we must now add that the Schmidt system suffers severely and inherently from field curvature. The focal image is not formed on a plane at all, as it is in the normal telescope, but on a spherical surface. For this reason photograpins must be taken on film or on plates that are curved to a spherical form. While this creates no immediate practical difficulty, it makes the Schmidt telescope awkward to use for precise metrical work. Research directed toward overcoming this difficulty is now being actively prosecuted.

Chapter 3 Planetary Motion and Ancient Astronomy

Men of like intelligence to ourselves have been looking ont into space for at least wenty-five thonsand yoars. Throughout the five to six thousand years lor which written records exist, we know that what they learned at different times and in different places depented partly on the driving interest that underlay their observations, partly on the instruments at the ir disposal, partly on the care with which they recorded the results of their olservations, and partly: on the skill and ingennity with which they interpreted lhose results.

W'e can be reasonably sure that until quite recent times there were no really serious attempts to assess the masses or the compositions of heavenly bedies. Without a knowledge of the universal laws of gravitation and without the aid of highly developed optical instrmenents, an! such attempts woulel have been foredowmed to lailure. So carly astromomers were interested almost exdmsively in uoting and in trying to interpret the apparent motions of the Sun, Monen, stars ant plancts.

The motious of the stars follewed a regularly recurring and comparatively smople pattern. Those of the Sum ant the Mexn, though certainly more complex, were clearly characterized by some fairly
regular rhythm. Most baffling of all were the motions of the planets, which fitted into we milyrecognizable and simple pattern. Hence planctary motion formed a major pre-ocelpation of astronomy in antipuity and, indeed, until long after the clase of the Mielelle Ages.

Mach of what follows in this and the next two chapters will therefore be considerably casier to understand if we begin by getting the problem inte perspective ourselves.

Three II ays of I'iewing the Problem

The motions of the planets are either very simphe or very complicated, according to the degree of refinement with which one looks at the problem, and it will be nsefin to define three stages of refinement. In the least sophisticated stage we maty regarel the planets as moving in circular orbits aromad the Sinn. 'The Sun lorms the reuter of each orbit and the planets move with mitorm speeds along their respective circles. These cireles, morower, all lie in the same plane.

This very simple peint of view is stmmed up by the entries which appear in Table 1 at the top of page 68.

The Babylonians were concerned with listing observed positions of planets. The Greeks thought of the motions of the planets in geometrical terms. Bottom: Part of a Babylonian record of positions of Jupiter during the first and second centuries B.C. Top: Seventeenth-century representation of geometrical picture of the planetary orbits.

Planet	Table 1			
	Wislance froms Sun		Sislereal Pa-rixal	sonerlir 1'triand
	Cimmared whth	In		
	Piartios distanc.	milliens	Y'an	Dass
	t.cxa)	of miles		
. Me (emer	0.307	36.0	10.2.963	1111
linus	10.723	67.2	0.135	5^{31}
Fiarth	1.1041	(13, ${ }^{\text {a }}$	1.0903	
Mas	1.52 .1	$1 .+1.7$	1.88 ca	-830
Jupiter	5.20%	$f^{83} 1$	11.8192	394
Saturn	9.539	887	20.157	378
I ranus	19.14	1785	8q.01?	376
Veptunc	30.07	274.51	16.4 .733	307
I'uto	34.52	3) 75	$21^{13} 120$	$3 \mathrm{B7}$

Here the full list of planets is given, although, of course, L ramus, Neptune and Plato were not hown to the ancient world. The lirst two columens give the radii of the circles for the various planets, colnmm one in terms of the radius of the Earth's orbit as unit, and column two in terms of a million miles as unit. The third colum states the number ol years required for the various planets to complete one circuit of the Sun. Niter such a complete circuit an imaginary observer on the Sun would see the plater as returning to its original position against the background of distant stars. Column four gives the period repuired for tioe piancts to return wheir origimal positions as seen by an obsever here on the Eath, a return being again judged to be mete when the planet returns to its initial position against the gencral stellar backgroumd.

The last two colamens dilfer because the motion of the Earth las no effect on the so-called siderea' period (the period as scen by an observer on the Sun) wherras the symodie period the period as viewed by: an observer on the Earth) is, ol course, murh affected by the liarth's motion. Indeed, the outermost pianets appear to complete their movements in dittle more than a single terrestrial year, though in that time they have scarcely moved at all in their orbits around the Sun. The apparent movement is, wl course, cansed be the Earth's own motion.

Figure 3.1 indicates what we can explain alout the apparent behavior of Venus if we accept the unsephisticated view that all the planes mowe in circular concentric orbits arownd the Sun. The ligure shows the orbit of Verus and that of the Eiarth. Because the two planets move aromel the Sum at
different rates, there are monnents when the line drawn from the Earth to Vinns lomms a tament to the orbit of the latter. Two such cases arise: first when Vemus lies to the right of the Sun tangent $E_{1} V_{1}$) and scond when it lies to the left (E:V2). If we remember that the Earth is spiming about an axis inclined at about 67 (1) the plane of the orbits shown in Figure 3.1, in the manner indicated by the arrow, it follows that Vemus is a morning star when it is at V_{1} and an evening star when it is at V_{2}. In one case Venus precedes the Sun, in the other case it follows the Sun.

In Figure 3.2 we have the situation when the line from the liarth to V'enus is in the same direction as the Sun. When at the peint V the planet is said to be at inferior conjunction, when at V_{1} it is at superior comjunction. Since bemus shines only by reflecting sumbight, as the Mon deres, it appears as a thin cresecnt when near I and as a foll disk when near V_{1}. Evidently, the apparent distance across the horns of the erescent at V will be considerabls greater than the apparent diameter of the disk at I_{1}, simply because I is much nearer wo than V_{1}.

Alt this relers to the first stage of sophistication. We have a picture of extreme regularity and simplicity. These qualities legein to disappear, however, When we move on to stage two. In this stage we must take accoment of the lact that the orbits of the planets are unt exact circies but nearly-circular ellipees. The orbit of the Earth, from this secomel point of viow, is shown in Figure 3.3, the cllipticity being exaggerated, however, to show up the new effect. Instead of the Sim lying at the center of a eircle, it now lies at one of the loci ol the e-llipse, marked S. The larth is nearest to the Sme at the point l^{\prime}, known as the perihelion of its orbit, ant most distant from the Sum at the aphelion point, marked A. If we write a for the radins of the pertiet cerele pestulated at stage one of sophistication, then the distance of the Parth from the Sme at peribelion is less than a by a quantity which we may write as the proetuct $a \times 6$. And it is a property of the ellipse that at the aphelion point, the Earth's slistance from the sun exceds a by precisels the same amonat as it lalls short of it at the perihelion point, namely by $a \times e$. Thus the distance of the barth loom the Sum always lies betwen two exterones, an upper extrome $a+a e$ and a lower extrme $a-a c$. For the Earth, the quathtye is equal to 0.0itiz. In other worls, the Larth varies its moan elistaner liom the Sun by approximately one-and-a-half per cent rach way.

This means that the Earth is nearcr to the Sun at perilaclion that it is at aphelion by about 3 per cent.

We saw in Chapter o that the plame of the ecliptic cuts the plate of the eelestial equator at twe points, one of which is the First Point of Aries (γ). The position of the line pointing from the Sun toward γ (as it was at the beginning of January, 1920) is shown in Figure 3.3, in relation to the direction from aphetion to periheclion. It will be recalled that at the vernal equinox, the Sun, as seen from the Earth, lies in the direction of γ whereas it lies in precisely the opposite direction at the autumnal equinox. The positions of the two equinoxes are marked in our figure, and because of the sense of the Earth's motion, summer lies th the left and winter to the right of the line pointing toward r.

If the Earth's axis of rotation were exactly at right angles to the phane of its orbit there would, of course, be no scasons of the year. Still thinking in terms of our second stage of sophistication, we may say that the Earth's axis of rotation keeps a constant direction in space, this constant direction being carried round the orbit slown in Figure 3.3 . In summer the axis of rotation leans toward the Sun and in winter away from it (summer and winter being here reckoned as experienced in the northern hemisphere). Because of the ellipticity of the Earth's orbit the journey from spring through the point I to autumn takes a little longer than the journey from antum through the point P back to spring. Thus in the second stage of sophistication we expect a slight inequality in the lengths of the scasms. In point of fact the difference amounts to about seven days, and was casily detected by means of the observational methods used by astronomers of the ancient world. In ancient times, therefore, evidence was already available for the elliptic character of the Larth's orbit, although that evidence was not correctly interpreted.

Also in the second stage of sophistication, we must take account of the fact that the orbits of the other planets are also clliptic. The corresponding values of the eccentricities (e) for all the planets known to antiqnity are shown in the first column of Table 2 , from which it is seen that the orbit of the Earth is less elliptic than that of any planet other than Vemus. Indeed, the fluctuations in distance from the Sun are quite substantial in the case of Mars and even more so in the case of Mercury, anounting roughly to plus or minus so per cent and plus or minus 20 per cent respectively.

Figure 3.1
Venus is a morning star when at V_{1}, and an evening star when at V_{2}.

Figure 3.2
\checkmark marks position of Venus at inferior conjunction, V_{1} marks its position at superior conjunction.

Figure 3.3
Earth's orbit is here an ellipse with the Sun at one of the foci. A is the aphelion point, P perihelion.

Table 2			
Ilaner	Ficentricit of orlat	langitude of Perribetion	$\begin{aligned} & \text { Inclination } \\ & \text { 10. Earilis ortait } \end{aligned}$
Mercury	0.205^{6}	7613	$7 \quad{ }^{\prime}$
Vomus	0.0988	130^{-27}	32.4
Earth	0.0167	$10 t^{\circ} 31^{\prime}$	
Mars	0.09333	$33.1{ }^{\circ}$ 35	151^{\prime}
7upiter	$0.018{ }_{4}$	$13^{\circ} \quad 2^{\prime}$	$118{ }^{\prime}$
Saturn	0.055^{8}	91.29	229°

We see from Figure 3.3 that the peribelion direction of the major axis of the Larth's orbit makes an angle of 10 3' with the direction of r, the lattor direction being judged from the pesitions of stars in the sky: The correspending angles for the ofler planets are given in the secomel column of Table: 2.

A further important peint in this second stage of refinement is that the orbits of the different planets do not lall in the same plane. Each orbit defines a separate plane, and the varions planes make small angles with each other. The angles which the planes of other planetary orbits make with the plane of the Earth's orbit are slown in the third colmmat of Table 2.

It is clear that there are vital differences between our two stages of refinement. In the first stage we have a simple picture in which the various planets all des essemtially the same thing, namely move in circular paths aromed the Sum with milorm speets. In the second stase there is nothing milorm about the orbits of the planets. Their eccemtricitiss are all elifferent, the orientations of their major axes are all different, and the planes of the orbits are all diflerent. We therelore pass from uniformity to extreme irregularity.

This irresularity becomes still more marked when we pass to the third stage of melinement. At that stage we have to recognize that the ofbits of the planets are mot exon true e:llipes. The orbit of a planet aromal the Sun would be an ellipse only if all gravitational inlluences execpt that of the Sun could be completely ingegeted. While it is true that the Sun's gravitational inthence is much greater than that of the platers themselves, the fact remains that all the planets are pulled by the gravitational fields of the other platers as well as ber the powerlial field of the Sum. These small effects prodace small irregularities in the paths that the plancts follew.

Fortumately lor the ateient work these fine irregularities in the motions of the planets could not be detected with the olsernational instruments then
available, otherwise the problem of deseribing planctar! motions in complete detail would have becn quite intractable. The irregularities of stage
 and this, as we shall see, turned ont to bre a disadvantage rather than ath advantage.

In addition, there were just two facets of the third stage of refincuem that alst laty within the grasp ef anciemt astronomers. These were refinements in the motions of the Earth and the Mexn. So far mothing has been said alout the wotion of the Mexm, and here again we can describe the sitnation in there stages. In the first cruble stage we can thank of the Moon as pursuing a circular orbit with a radius of about a quarter of a million miles with the Earth as its center. We can alse think of the plane of the Mesn's orbit as coimeiclent with the plane of the Parth's orbit aromel the Sum. In this simple pieture the orbit of the Menon is a tiny cirele compared is, that of the Earth's circle aromod the Sun. In fact, the radius of the latter is some 370 times greater than the radius of the Moron's orbit.

In the second stage we must take accomet of the lact that the Morm's orbit is elliptic, with an eccentricity of 0.0519 , ath that the plane of that orbit makes att angle of 5 !f with the plane of the larti's orbit.

When we come th slage three of refimememt, in Which we must take into aceosut more that one gravitational fiekl, we lind that this makes a far greater diference to the motion of the Mexn than it does to the motions of the planets. The dominating gravitational influme on the Meon comes From the Earth, wot from the Sum, simply because the Mosen is se close to the Earth. But althoughthe Somis very much farther away, its large mass produces very serious perturbations in the orbit of the Moon, lar more serions that ans perturbations which the gravitational fielel of onfe planet produces in the orbit of another planet. Thus the perturbations in the orbit of the Moon, that is to say the refinements of stage there, are far more moticeable than the perturbations in the orbits of the planets. Inderd, they are so marked that they lity reaclity within the grasp of the ancient worlel.

Tisming now to the fine sletail in the motion of the Barth, we have spoken of the Larth's axis of rotation as always preserving a constant sliection in space. Aetatly this is bot so. Whe axis moves slowly aremed a cone with its center at the exuter of the liarth and with its axis perpendionlar to the
plane of the Earthes orbit. The hall-angle of the cone is just the $23!$ which the Earth's axis always makes with the plane of the orbhit. The sithation is sluwn in Figure 6.1, (:hapter b.) The time required for one rotation of the axis aromed the cone is almout 26, (ho) sears. This mans that the poiles of the celestial sphere, disensed in Chapher 1, change slawly with time. Moreower, the line in whicla the plane of We Barthe equator cuts lae plate of the Earth's orbit also changes. This cames the line $S r$, marked in Fisure 3.3, to turn romd slowly, making one complete rotation in alxout 2 t, (40) ? cars.

Beranse at any given monem the plane of the Earth's equator can le eletermined with a considerable degree of acturact, cem with the aid of ouly primitior instrments, the monemt in the year when the Sm lirst lies in the plane of the Earth's equator can also be eletermined with fair precision. This mement, is, of comse, the mement of the verhal equines. Hence the line sor cam be determined to wibhin, say, a few minutes of are. And his ran be: done in any year. If, now, the line S γ turns stowly whth time, the effect must readily beome aniceable as some as observations are compared over a periond of a century or more, for in a century the line $S \gamma$ turns bey nerly $t!$, and this is muchgreater than any likely ertons of measuremem. It is true that the effect is not large cwer a period of a lew cruturies, but to a man of the ability of Hipparchus it was readils within the range of ohservation.

So, lar we have considered everything from the modern proint of view, in which the Sme is taken as the cemer of the Solar Sestem. But for early astronomers the natural thing to do was to consider the Barth as bering the center. The question therefore arises as to what the picture described alowe leoks like if we regard the Earth as being the center from which observations are made. 1f, lor instance, we assume the Earth to be fixed and not the Sum, theti in place of Figure 3.3 we must sulstitute Figure 3.4, where we have the Sun moving in an orlot aromal the Earth - an orbit of exactly similar shape to that in Figure 3.3 but with reflective symmetry: The matter of rellective ssmmetry can be undersuond more clearly with the help of the fantastic example shown in ligure 3.5 . Here we have a bexly E moving around a second body S, the drawing on the left giving the motion of E as determined byandoberver situated at S. The guestion now arises as to how an ohserver attached to EE would regard the apparent motion of S. The answer is shown in the drawing on
the righ, wherewe have an exactly similar curve but with reflective symmetry; that is to say the whole curve is turnod through an angle of 180 . This prop)crey is general for curves of any shape whatsoner.

When viewed from the Earth the direction of γ is, of course, the same as it was from the Sun, simply because r is a direction asseciated with the ste:lar tackgroned, and the stans are solar away that they appear to le in the same dircetion lion the Earth as they would do from the Sum.

The point in Figure ; $+\frac{1}{}$ where the Sum is nearest (1) the Darth is now called perigee and the poim of greatest distance is called apugce. The appropriate scasoms of the sear arr aho marked in the figure.

Look now at Figure 3.6, where the orlits of Vemis and the Darth are againshown in termsof the heliocentric picture. What does this look like if viewed by an olserver on the Earth? For simplicity, we may return wour lisst stage of sophistication and consider the case where the orbits are taken to be circles. The Sum may then be regarded as pmisuing a circular orbit aroutd the Earth, and since Venus is also, regareled as moning in a circular orbit

The stone depicted near the tuttom of this Greek red-figure vase marked "the navel of the world" at Delphi. To the ancients, who thought of their own locality as the center of the world, it was only natural to think of the Earth, rather than the Sun, as the center of the universe.

Figure 3.4
If we think of the Earth as center, Figure 3.3 must be re-drawn with reflective symmetry, as shown above.
Perigee corresponds with perihelion, apogee with aphelion.

Figure 3.5
Example of reflective symmetry. On left we regard S as fixed and E as moving. On right we regard E as fixed and S as moving.

Figure 3.6 (Left)
Orbits of Venus and Earth, with. Sun regarded as fixed center.

Figure 3.7 (Right)
Orbits of Venus and Sun, with Earth regarded as fixed center.
aromal the Sun, we must picture it in Figure 3.7 as moving in a circular orbit around the peint S. But the point Sitself is now moving, and therefore the: whole circular orbit of Vemus mones with it. So the: metion of Vemus is marke up of two parts: a motion around the circle with center S, and a motion of the center of the circ!e. Notion of this kinel is called epicyclic motion. Both in Figure 3.6 and in Figure 3.7 the heave dots show the positions of the Earth, the Sun and Venns at a particular momest. The triangles ESV have exactly the same shape in both cases, and corresponding sides of the two triangles are parallel to each other.

So lar we have considered only the motion of Vems, a planet nearer to the Sun than our Varth is. What happens if we change over from the heliocentric to the geocentric viewpoint in considering the motion of a planet that is more distant from the Sun than the Earth is. Figure 3.8 shows the orbits of the Earth and an outer planet in terms of the heliocentric picture. The first part of Figure 3.9 shows them in terms of the geocentric pieture. The Sun is now travelingareumelthe Earth in a circular orbit, and the outer planet is circling around the moving Sun. Since the first circle has a raclius equal to the radius of the liarth's orbit, and the second cirele has a radius equal to that of the orbit of the outer planet, it is clear that the second circle is larger than the first one. Both in Figure 3.8 and in Figure 3.9 the heavy dots represent the positions of the Earth, the Sun and a given outer planct at a particular moment. The triangles ESO are similar in looth cases; they are of the same size and their corresponding sides are parallel. The type of representation shown in Figure 3.9 is known as an eccentric circle picture, that in Figure 3.7 as an epicycle picture.

Now it is not hard to see that an eccentric circle picturecan beconverted intoanepieycle pict ure, and vice cersa. Take, for example, the case shown in Figure 3.9. Draw a line through E parallel to $5 O$ and a line through O parallel to $S E$, the two new lines intersecting at C Then SOCE is a parallelogram, as shown in the second part of Figure 3.9. Thus EC is equal to the radius of the orbit of the onter planet and $O C$ is equal w the radtiss of the Earth's orbit. This allows us to construct anepicycle pieture for the motionofanouterplanet, asshowninfigure 3.10. We now elraw a circle with the Earthas center, the radius of the circle being equal the that of the radius of the orbit of the outer planet, not equal to the radius of the Earth's orbit. (is a point on this circle. Now

Figure 3.8
Orbits of the Earth and an outer planet with Sun regarded as center.

Figure 3.9 Orbit of that same planet if we regard the Earih as center. The small figure hints now to turn the eccentric circle picture of the main figure into an epicycle picture like that of Figure 3.7

Figure 3.10
Epicycle picture of the orbit of the same outer planet.
whth Cas its center, draw a second circle with radins equat to that of the Earthe orbit. The motion of the outer planet cath now be represented as an epicyclic motion in which Cimoves around the targer circle in the period of motion of the outer planet around the Sun, and the outer planet itself moves aromed the smatl circle not in itsown period but in the periox of the Earth's motion aromel the Sm. This follows because in the second part of Figure 3.9 the line EC: is parallel to 50 , and therefore takes the period of the outer planet in its orhit aromed the Sun to swing reund once, while $O C$ is parallel to $S \mathscr{F}$ and therefore swings round once in a year-that is to say, in the periol of the Earth's motion aromed the Sim. The heary dots in Figure 3.10 show the positions of the Earth, the Sun and the onter planet, and of the epicyclic center C corresponding to the same moment as that in which the planets have the positions shown in Figure 3.9.*

In a similar way the epicycle pieture shown for Venus in Figure 3.7 can be replaced by an eccentric circle picture, and the method is exactly the same. Draw a line throngh E parallel to $S V$ and a line through I' parallel to $S E$, these new lines intersecting at C, as in second part of Figure 3.11 . The line $E C$ ' is equal in length to the radius of the orbit of Venus and swings through a complete rotation in the: period of Venus around the Sun. Hence the point C moves around the farth in a time equal to the motion of Venus around the Sum. This is shown in the other part of Figure $3-11$. And the line Cl° is equal in lengrh to the ratlius of the larth's orbit, and therefore makes one complete rotation in precisely a year. Hence the motion of Venns can be represented as being made up of two components: one, a motion around the center C where $C V$ equals the radius of the Earth's orbit, and where the time taken for this motion around C is a year; and two, a motion of C around a smaller circke with radius equal to the radius of the orbit of Venus, this latter

[^0]motion tahing place in a time equal to the periox of Vemss. A similar comstructon obviously applies to the case al the platee Meremer, while cemseruetions similar to these of Figures 3.9 and $;$. 10 apply toll phancts distant leyond the Vathe

This matter has treat comsidereal at hongli becatuse there sexms stme doubt as to whether the equivalence of the epicyele and the ecentric cime representationts was murlerstond by the carly astronemers fors the cases of Vemus and Nercory. It wats
 in particular being quite clear that the (wo pictures are entirely equivaleme. Others were probably much less clear alout the preint than l'talemy, and some ate satid to have latored obe picture athd some the other withou apparently realizing that they are exactly the same thing. There seroms to be some denber as 10 whether exen Poblemy realized the equivalence for the cases of Vems and Mercury: We shall later see that Pedeme suceeded by an ingenions construction in merliting the epicycle picture in such a way as to take partial accomest of the elliphic character of the planctary orthes so lar as Mars. Jupiter and Saturn were enncemed. The method alse, werked very well for Venus, Ime, for a reason explained in the mathenatical appentix on this book, it dicl not work lor Merchary. This latter lailure arose purely fonn the use of the epiesele pichme. If l'olemy had carried ont ancexatly similar constmeston for Merure as he difl for the other planets, but using the ecentric cercle pieture instead al the epicyclic one, his metherl would have been sucecssfal for Mercury also.

If the epieycle pioture is used in all cases, as in Figure 3.12, then the exterer C af the epictele represents the pexition al the Siun whly for planets menterion to the Fath. Fior plathets extorior to the lareh the Sun lies not at C lome on a line threnegh $f:$ drawn parallel w (P, and at a distance from $E:$ cqual to the distunce of l 'rom C, that is at the penint marked s.

Becanse of the motion in the epieycle, none of the planets appears to mone sumethly roburl the larth at at undorm rate. Instead, the appearame as seen be a terrestrial observer takes lle limen Stown in Figure 3.1; This slows that a line drawor from the Eirrth to a planet does not move smoxthly ronnd in an amticlechwise solose. Instead. at pater at I, falfowing the track of Fignre 3.13 , moves in suchat way that the line drawn from it to the liarth swimes romel in the anticlockwise seonse matil is waeles the pessition E. 1 , alter which it reverses its direetion and mowes in a clockwise sense hack io Fi.I. . Iherealier the line resumes its anticlockwise rotation motil the next lenp is reacleed. lines such as $E . L_{1}$ and E.1, at which the eliection of the planet reverses its angular motion are called stationary directions. Evidently, the angle $A_{1} E: I_{2}$ depeots on the radius of the orbit of the platere and on the sperel at which it meses around its orbit. Jagencral, the larger the radins of the epieveld in comparison to the ratlins of the langer circle, the greater is the angle $A_{1} E_{-} A_{2}$, the angle thenghl which the planet is saiel to retrograde. This motus that the angle is much langer lor Mars than it is for Jupiter, and it is greater for Jupicer than it is fon Satum. Similarly, the angle is greater for Venus than it is for Mercurs.

Figure 3.11
Here an eccentric circle picture replaces the epicycle picture of the orbit of Venus given in Figure 3.7. Small figure gives basis of change.

Figure 3.12
If we use the epicycle picture for all planets, C represents the Sun only for inner planets. For outer planets S shows Sun's position.

Figure 3.13
Apparent motion of a planet as seen from the Earth. Planet moves anticlockwise from X to line EA1, then clockwise back to line EAs.

This photograph was taken in the Munich planetarium, where the motions of the planets over a period of seventeen years are being simulated. It shows the apparent loops in the orbits of Mars, Venus and Mercury and also the retracting motions of Jupiter and Saturn. The very complexity of the pattern explains why planetary motions presented the astronomers of antiquity with such a baffling problem.

With these introductory remarks in mind we slanuld not only be more able to mulerstand why the problem of planctary motion formed such a dominant theme of early astromomy; we should also be in a better position to appreciate the ingennity of many attempts that were made to find a sattisfactory solution.

Ancient Astronomy in General

Ancient astronomy had two main focal points, one in Mesopeotamia and the other in Grecce. Although extensive claims have sometimes been made for the development of astronomy in India and in China, much of the work done there was probably derivative from Mesopotamia. The developments in Greece and in Mesopotamia were not contemporary, the latter in its phase of maximm achievement probably preceding the former by as much as lise centuries. Gertainly Greck astronomy before 1000 n.c. Was quite negligible, whereas in the Babỵonia of that time astronomy was aheady a strong development. And esen before Baloytonian times it is pessible that the Sumerians already possessed a considerable body of lairly refined astronomical data.

Becanse of the difference in their respective moments of greatest achievement, it is well-nigh certain that early Greek intronomy most have been influenced through the importation of ideas from the Near East. In recent years it has indeed been claned that Hipparchus, as late as 130 b.c., derived certain of his results from the Babytomians, and that they had already anticipated certain others. Nemgebaner, for example, has hinted that if credit for early developments could be appropriately apportioned, much that has previously been accorded to the Grecks would need to be transferred to the Babyonians. Athough this is probably in some degree true, the present writer tends to feel that the methods of working of the two groups were quite distinct, and that the main features of the Greck mode of thonght were not derived from

[^1]Babylomian astronomers. Indeed it seems likely that Greek ideas from the third century b.c. onward produced considerable reperonssions in Mesopotamia, as, for instance, the heliocentric theory of Aristarchus, which was studied by Sclencus, an astronomer from Scleuciat on the River Tigris.

My own suspricion is that the work of the Batylonians was largely mumerological. In other words, Babylonian astronomers shserved the positions of the planets, and more particularly of the Moon, with considerable precision, set ont to discoter regularities among their observations, and then used the discovered regularities to prediet the future positions of the Moon and planets. The regblarities were discosered empirically; they were then found to fit varions mathematical formulae, and these were used in predieting future positions.

The Gireck method was entirely different. Instead of viewing the problem as a species of codecracking, they conccived the motions of heavenly bodies in terms of a geometrical model. The planets and the Monn were assumed to move along certain geometrical paths, and the effects of their motions along these paths were calculated and then compared with observation. And so the validity of the model they conceived was either contimed or contradicted. In the latter case they attempted to improse the geometrical picture.

There is a crucial difference between the Babylonian and the Greck methods of approach. If one is seeking only algebraic formulac which will represent the actually observed positions of the planets. then it is quite moncessary w wory alsout where the planets are when they cannot be observed, that is, when they are set below the horizon. One does not have to lace up to the question of whether the planets and the stars continue their motion below the horizon along paths that take them below the Earth back to points at which they rise. But one canmot even begin to arrive at a sensible geometrical moxtel unless one can answer questions about the whereabouts of stars and planets both when they are above and below the horizon.

The opinion that the Greeks were first to think of astronomical problems in terms of a geometrical model is based on logical inference. We know that the carly Grecks, in the eighth and seventh centuries B.C., considered that the Sun, Moom, planets and stars did not continue their apparent daily circular motions on sctting in the west, that they did not continue on move in their daily circular
paths below the Larth. It was Indieved, instead, that thes changed their motions at the horizon, moving round to the morth just Inclow the harizon umtil the! reached alo appopriate rising perint in the eave again. In Bespt the Sum was thoupht to mate this tour from the west to the north and tach (1) He cast in a beat along a river. Now since Eyyptian astronomy, mathematics and science were in the main but poor rolation of Bohyhonian astromomy, mathematios and science, it secms elear that the Babydntians themetves had mot worried about geometrical mortels. Similarly, it is diflicult to believe that the Grecks of the eighth century B.C. combl hate emertained similar primition notions if more refined concepts had been available in BabeFomia. And in this comection it must be remenbered that the cighth century B.C. was very close to the bigh point of astromemy in the Near Lase.

This is not to saty that the Babstonians themselves beliewed any such nonsense as that the Sun was carried around the horizom in a lonat. Probably their interests in astromomy were simply not directed toward germetrical notions at all. And there is a wery gend reasem whe this shonkd have been so.

It is clear that the motion of the Atem had become womed into the cultural paterns of Mesopotamia and adjacent areas in a very intimate way; and the prediction of the finture motion of the Mem, particularly the moments of new moon, was regarded as a matter of the utmost importance. The Old Testament abounds in refereness to feasts and rites connected with the new monn, and ewen at the present day the date of one of the main

Cloristian festivals, Easter, is decided ly the first full moon occurring afier the spring equinox.

Now the cascof the Mixon is just theonc in whicha geomerical approach was quite imponsilde if high accuracy was demanded, for it is just the one in whicla our thirel stage of sophistications is needed. Wiblent the molern gravitational beory, the Babylomians could not possibly have determined the orbit of the Mown to the required degree of accuracy. A mumerical, empirical approach to the problem was their only hope. And if this was their approach to what dae? clearly regarded as the mont impretant problem, it is easy to see why the same mode of thought was probably applice to the planets and to the stans. Tor the Greeks, on the other hand, the Mown was far from being the most important case. It was not necessary to them above all else that the future pesitions of the Momin ise correctly predictat. Indeed, not until comparatively late times did they worry themselves alout the intricacies in the motion of the Mom.

It cannot be clamed that this peint of view is certainly correct, for the documentary evidence available, esen if it could te casily read and deciphered, is insulficient to determine the history of ancicnt astronomy in great detail, particularly with regard to motives. Sof far as Mesopotamia is concerned, information is derised from a few thousand tablets obtained from various excasations, and this camot be regarded as more than a very tiny representation of the thought and activities of a civilization that extended over several thomand years. A diflerent difficulty presents itsell in the

case of Greek civilization. Apart from Ptolemy's Almagest, very litule survives in uncorrupted form of the writings of the great Greek scientists. Existing texts are copied from carlier texts, and these were 110 doubt already copies of the originals. Following the decliae of Greck science in Roman times, the copyists were of lesser intellectual stature than the original Greek scientists and sometimes, indeed, were downright stupid. Hence gross distortions were introduced, and very likely priorities were wrongly distributed. Morcover, only those views of the Grecks that were popular in the carly centuries of the Christian era were preserved. Unpopular theories, such as the heliocentric theory of Aristarchus, survive only through casual remarks in the writings of other people. The tantalizing situation therefore arises that those Greek ideas which are of the greatest interest to the modern mind are commonly just the ones abont which we have the least certain information. The attempted reconstruction in the remainder of this chapter must therefore be viewed in a cautionary light.

The Seasons and the Calcndar

As soon as man passed from his earlier nomadic existence to an agricultural cconomy a knowledge of the lengths of the seasons became of paramount importance. The correct moment for planting seeds had to be known. One very simple prescription was available, a prescription implicit in the previous chapter. The daily motion of the Sun determines the direction of the south for any observer situated anywhere in the northern hemisphere. Hence the

[^2][^3]westerly and castorly dircetions can also be determined simply beberving the Sun on any one day of the year. There are only wo moments in the year when the Sun rises in the due easterly direction and sets in the due westerly diection the vernal and antumal equinoxes; and the equinox following winter was the appropriate one for determining the moment of spring sowing.

If the Earth had had no satellite, this method, or some refinement of it, would doubtless have been universally used and mankind would have had little trouble in arriving at a sensible calendar. But through a grotesque set of coincidences the Morn grearly complicated the situation.

The Moon completes a circuit of the Earth in about $27 \frac{1}{3}$ days, that is, in $27 \frac{1}{3}$ days it returns to essentially the same position when viewed against the background of stars. But the average lime between two successive new moons or full moons is about $29 \frac{1}{2}$ days. The difference arises because of the motion of the Earth around the Sun. This causes the Moon to have to make rather more than one complete circuit in order to get into a position directly in line with the Sun, which is, of course, the condition that produces new meon or full moon. The latter period of $29 \frac{1}{2}$ days is called the synodic month, and the true period of $27 \frac{1}{3}$ days is called the sidereal month.

If we speak roughly we can round of the synodic month to 3^{0} days. Then twelve synodic months make 3^{60} days, which is nearly the length of the year. To the modern mind it would seem remarkable if there were any connection between the

Fragment of a Babylonian tablet giving detailed information about positions, phases and eclipses of the Moon during the second century B.C. To the people of Mesopotamia it was a cultural imperative to forecast the Moon's movements accurately. This was just the one problem where a numerological approach gave better results than a geometrical approach.

On this boundary stone of 1100 B.C. the Moon appears between its two "children"-Venus (left) and the Sun (right). So important was the Moon in Mesopotamian culture that it was chosen as the calendrical basis in spite of all the practical difficulties the choice involved.

with fair accuracy. One must divide the 19 years into two sets: 12 years each with 12 humar months, and 7 years each with 13 lumar months.

Since looth 12 and 7 were mumbers of special mystical significance to the ancionts, this must have seemed a suggestive feature. A further unfortunate coincidence was that the 19 years of the Metonic cycle fall very close to the 18.6 years required for the turning of the plane of the Moon's orbit. (This will be considered in more detail in Chapter 6.) The existence of the latter period was certainly known to the Babylonians, since it formed an important clenent in their system lor the prediction of eclipses.

It may be appropriate here to add a few words on the construction of a calendar. For practical purposes it is important that a calendar year should contain an integral nomber of days. This means that a calendar year cannot agree with the astronomical year. Hence dates get further and lurther ont of step from year to year unless the number of days in the calendar year is uccasionally varied. Since the astronomical year is nearly $365 \frac{1}{4}$ days, the simplest system is clearly to take three calendar years each of 365 days followed by a lourth year in which there are 366 days. This is just the familiar system of the leap year, first introduced by Julius Caesar in 45 B.C.

But of course the astronomical year is not exactly $365 \frac{1}{4}$ days; it is less than this 1 y 11 minutes and 14 seconds. Although this is not very much it added up persistently over the centuries that followed Caesar's introduction of the so-called Julian calendar, and by A.I). 1582 the progressive discrepancy amounted to about ten days. To deal with the matter. Pope Gregory XIll ordered that the calendar should be corrected by dropping ten days, so that the day following October $4^{\text {th }} 1582$ should be called the 15 th instead of the 5 th. This change was immediately adopted by all Catholic coumtries, but the Greek Church and most Protestant nations refused to recognize the Pope's anthority. England did not come into step with most of western Europe until 1752, when, by Act of Parliament, eleven days were dropped from the year, the eleventh day having accumulated since Pope Gregory's proposal.

To ensure that the same difficulty did not arise again, Pope Gregory proposed that certain years which would have been counted as leap years in the system of Julius Cacsar should not now be comed as leap years. These were the years 1700,1800 ,

1900, $2100,2200,2300,2500$, ete., the rule being that where the mmber of the year ends in two zeros it should be comeded as a leap year only if the figures proceding the zeros are divisible by four. The new calendar with this extra refuement is known as the Gregorian Calendar.

The Time of Day

Keeping track of the seasons is only one aspect of time-measurement. It is difhoult for us today, governed as we are by public and personal time schedules, to realize that the ancient world had no convenient method of measuring the time of day. But at the easier pace of everyday life that existed then this was probably no great hardship. Anyone who accustoms himself to not wearing a watch soon develops a subjective judgment ol time that is usually goorl to within about a quarter of an hour. And in antiquity time-judgment of this kind would have been sufficient for most practical purpuses.

Sundials and water-clocks were the practical means for measuring time, as we have already secn. Quite apart from their lack of accuracy by modern standards. these devices did not divide time inte equal units. This does not seem to have leen deliberate, but to have arisen from an error. The length of shadow east by a stick changes during the day, but it does not change at a uniform rate. So if one uses the length of the shadow as a measure of time, one has a monuniform system. The length of the shadow changes more rapidly just after dawn and just before sumset than it does around midday, so if we assess the passing of time according to that rate of change, time passes more quickly in the morning and evening than it does at midday.

It is hard to believe that people were not subjectively aware of this difference. Probably, indeed, they were not only aware of it but even welcomed it, since there may well have been social advantages in having a unit of time that was longer near midday than in the morning and evening. In this connection it is noteworthy that when teasonably reliable water-clocks were invented, great care was taken to ensure that they did not measure time in an approximately uniform way, reflecting the pace at which the heavens appear to revolve; instead, they reflected the behavior of the length of a shadow:

Yet the lack of accurate clocks, not only in antiquity but up to and after the time of Newton, did have one grave disadvantage. It meant that longitudes could not be systematically determined, and

Because the Earth does not complete its orbit in an integral number of days, an extra day must be added to the year from time to time. By 1582 Julius Caesar's system of leap years had resulted in the calendar being badly out of step with the seasons. Above is the meeting called by Pope Gregory XIII, which inaugurated the Gregorian Calendar we use today.

It was not until 1752 that Britain came into line with most of Europe and adopted the reformed calendar By then the discrepancy between the old and new calendars amounted to eleven days. This painting by Hogarth shows a rowdy scene at a time when many riots broke out in England. Rioters used the slogan "Give us back our eleven days

hence that accurate maps could not be drawn. Not until near the cud of the eighteenth century, after the invention of reliable chronometers, did maps manifest a dramatic increase in accuracy.

Hipparchus made the ingenious suggestion that the longitudes of a considerable number of places might be established by using a solar eclipse to determine a moment of simultaneity at all of them. The method does not, of course, give strict simultaneity because the eelipse does not start simultaneously at every point along the track of the Monn's shadow. But the method would have given more accurate results than any previously available if only it had been carefully carried out. Unfortunately, the only deliberate attempt to make use of Hipparchus's suggestion seems to have been badly bungled. A sulstantial error was made and there was no means of discovering it. It was therefore reflected in maps for many years.

The Shape and Size of the Earth

By the time men became concerned with both latitude and longitude, they had already come to believe that the Earth has a spherical, or nearly spherical, shape. But this belief was not universally held throughout Greek times. To the early Greeks the Earth consisted of a circular disk supported bya great ocean, above which was the hemispherical bowl of the sky. Such a picture is clearly revealed by the works of Homer, and was apparently accepted until about the sixth century B.C. This picture clearly poses a problem as to what happens to the stars, the Sun, the Moon and the planets as they set below the western horizon. As we have already scen, the early belief seems to have been that all the heavenly bodies circulated in some fashion around the horizon to the north, later reappearing in the east ready to follow their circular diurnal paths across the sky once more.
The observation that destroyed the flat-Earth concept was simply that the stars visible from different latitudes are not the same. In Egypt, for instance, certain stars were clearly visible that could not be seen at all from Greece. In Greece the constellation of the Great Bear could be seen to complete a circuit around the pole without dipping below the horizon, whereas in Egypt it was found to dip into the sands of the desert. These observations indicated very clearly that the surface of the Earth is curved in some way. The first idea about how it might be curved appears to be due to Anaxi-
mander. He had the curious notion that the Earth is curved toward the north and the south but that it goes straight toward the east and the west, forming a surface rather like that of a cylinder. 'This hypothesis enabled him to account for the changing aspects of the stars between Grecee and Egypt, where the difference is essentially one of latitude, and at the same time to preserve theold mythological notion that the region of the dead lay very far away to the west.

According to Theophrastus, a pupil of Socrates, it was Parmenides, a follower of Pythagoras, who first taught that the form of the Earth's surface is spherical. (Later commentators of the carly Christian era give the credit for this great step to Pythagoras himself, because by their time the views of the Pythagoreans were very popular and Pythagoras had liecome an almost legendary hero.) Parmenides lived in the late sixth and early fifth centuries B.C., and his argument for the spherical form of the Earth was a good one. He argued that a body of any other shape than a sphere would fall inwards on itself-that a sphere was the one shape that would remain naturally in equilibrium. No doubt, too, the hemispherical dome of the sky was a great help in arriving at the idea of a spherical Earth. And the idea, once stated, doubtless gained support from the fact that it offered a simple explanation of what happens to stars, Sum, Moon and planets after they set in the west, namely that they continue their circular paths, and reappear again in the east.
Yet the idea of a spherical Earth did not gain general acceptance until the time of Plato, a century or more later. Plato's argument was philosophic and even flimsy: that a sphere was the most perfect shape for a body, that it had the most complete symmetry, and that hence the Earth, at the center of the universe, must be a sphere. While such an argument was not as good as the original argument that Parmenides had advanced, Plato's powerful advocacy served to establish the idea. From then onwards no Greek believed that the Earth was anything other than spherical, and when we come to Aristotle, an extremely telling and decisive argument appears. Often when the Sun, Earth and Moon come nearly into line, with the Earth between the Sun and the Moon, the Moon crosses the shadow cast by the Earth. At such times the sladow on the Moon is invariably seen to be circular, and this would not be the case on all occasions unless the Earth were spherical.

With the realization that the Earth is spherical, it became a problem of great practical interest to determine its size, and the most remarkable estimate of antiquity was that made by lratosthenes, probably about 23° B.C. The method he used is illustrated in Figure 3.14. Eratosthenes stated that at noon on the summer solstice a vertical stick at Syene (Aswan) cast no shadow, therely indicating that the Sun was vertically overhead. At Alexandria, at the same time, the Sun made an angle with the vertical estimated at $7^{\circ} 12^{\prime}$, or one fiftieth part of the circumlerence of a circle. Hence if Alexandria were due north of Syene, which Eratosthenes apparently assumed it to be, the difference in latitude between the two places amounted to $7^{\circ} 12^{\prime}$, or one fiftieth of the Earth's circumference. The next step was to determine the overland distance from Syene to Alexandria. Fifty times that distance divided by π would then give the Earth's diameter. By this method Eratosthenes arrived at the figure of 7850 miles, a value only about 70 miles less than the modern value of the Earth's diameter. (The precise value depends on one's definition, since the Earth is not exactly spherical, the polar diameter lecing about 7900 miles, the equatorial about 7927 .)

Eratosthenes' result was so good that in modern times many people have queried it. For myself 1 do not see any good reason to doubt its authenticity. In the first place we know tlat Eratosthenes wrote a book specially about his determination; and although that book has not survived, the very fact that it was written shows that Eratosthenes thought well of the work and had carried it out carcfully. In the second place we have independent evidence of the accuracy of Eratosthenes as an observer. He

Figure 3.14
When noon Sun was directly overhead
at Svene it made an angle of $7 \mathbf{1 2}^{\prime}$ with the vertical at Alexandria. If both were on the same meridian. the distance between them.was just one-fiftieth of Earth's circumference.

is known to have determined the angle made by the Earth's axis of rotation with the plane of the Earth's orbit around the Sun. The value he arrived at was $23^{\circ} 51^{\prime}$, whereas at the time of his determination the true value was $23^{\prime} 43^{\prime}$, which implies an error of only about 0.5^{6} per cent. (The value torlay is 23 " $3^{6^{\prime}}$, the change teing due to the fine details in our third stage of sophistication discussed above.)

The actual latitude of Syene is $2.4^{\circ} 5^{\prime}$. Hence in the time of Eratosthenes the Sull was not strictly overhead there at the summer solstice, but lay out of the vertical by some 22^{\prime}. On this basis we might expect an error of some five per cent in Exatosthenes' final answer, but by geod luck a compensating error was made in the latitude of Alexandria. Thus the actual difference between the latitudes of the two places is $7^{\circ} 5^{\prime}$, as compared with Eratosthenes' value of $7^{\circ} 12^{\prime}$. This reduces the error one might expect to about onc-and-a-half per cent. It has also been objected that Alexandria does not lie due north of Syenc, the difference in longitude being about threc degrees. But the error that would arise in this way is only the amount of the difference of the cosine of three degrees from unity, and this is only a little more than 0.1 per cent. Hence the total error arising from the angle determination was about one per cent; Eratosthenes' value should have been too small by this amount. And this, indeed, is just what it was 7850 miles as compared with 7920 .

All this, of course, would imply that the distance from Syene to Alexandria had been measured with complete accuracy, and it is here that the main questions have been asked. The unit of distance used was the stadc. Unfortunately three different units bearing that name were then in use: the itinerary stade, used in measuring the distance of a journey and equal in length to about 157 meters; the Olympic stade of 185 meters; and the royal Egyptian stade of 210 meters. Pliny states that Eratosthenes used the itinerary stade, and this checks with an independent commentary that Eratosthenes obtained the distance from professional rumers-a procedure which seems natural enough, since the transmission of important messages in Egypt must have been maintained through the use of professional runners for upward of two thousand years. It does mot seem in the least unlikely that over the centuries specialist runners in a flat country such as Egypt sloould have established distances to within a margin of one per cent. The alternative point of view (that Eratostlumes used
the Olympic stade) would imply that the runners made an error of some 17 per cent in theit estimate of the distance, and this seems wildy fantastic.

The Cosmology of the Gricks

The first step to understanding the heavens is probably ne more difficult than the first siep toward recognizing the Earth's sphericity. It is simply to perceive that the dimrnal motion of the stars across the sky arises from the rotation of the Darth. The Greek world as a whole never came to melerstand this ahthough, as we shall see, there were individual Greeks who did understand it; but these men were never fully able to persuade their contemporaries.

The lirst step in the right diecetion was taken by Philolans, a philosopher of the Pythagorean school. He argued that the main influence in the miverse must come from its center, and that since the main influence did not come from the Earth, the Earth could not be at the center. This would suggest that the Earth must be in motion around the center. At first sight one might suppose that this was a step toward a heliocentric theory, but Phitolaus did not place the Sumat the center of the system; he thought of it simply as a disk made hot by a rapid passage through the air. Instead, he concrived the center of the system to be a gigantic fire, hidden from us by the body of the Earth. Athough this was a fantastic idea according to our modern point of view, Philolaus deserves great credit for two reasons: first for the idea that the center of the system might exert a controlling influence over the whole, and second for realizing that the motion of the Larth around the center would be reflected in a corresponding opposite motion of the stars, which would explain the apparent dimenal rotation of the heavens.

Philolaus was a contemporary of Socrates, and lived shortly hefore Plato. Plato had no use for his views, being out of sympathy with the Pythagorean school; neither had Aristotle. It is only when we come to the second of the giants of Greek astronomy, Heraclides, that we find the idea being revived and developed. Heraclides dispensed with the fanciful notion of the central fire and simply made the Earth rotate on its axis, as we do today.

Heraclides belonged to the fourth century B.C., and Aristarchus, who did much of his work in the middle of the following century, may well have been influenced by him. Apollonius was the outstanding mathematical astronomer of the third century B.C.. Hipparchus of the second century
B. C., and Ptolemy, who lived in the second centary A.1)., was the last of the great line. Sadly, by the time we come to Hipparchus and Polemy, Heraclides' great idea had been dropped, and once again the heavens, rather than the Earth, were assumed to have a diurnal motion. Both Hipparchus and Ptolemy had a reason for rejecting the idea that the Earth rotates, ahthough whether they felt it to be a strong one it is impossible way. It could have been no more than an excuse for rejecting an idea they did mot like. Their ostensible objection was that if the Earth were spinning a body thrown up into the air would simply be left behind.

Perhaps a more valid reason for rejecting the idea that the Earth rotates is that such a theory does not explain the apparent motion of the planets. Reference back to Figure 3.13 shows that as seen from the Earth the planets sometimes reverse their apparent direction of motion. Usually the line from the Earth to a planet turns in an anticlockwise sense, but sometimes it reaches a stationary point and reverses into a clockwise sense; it then continues in that direction until it reaches another stationary point where the anticlockwise motion is once more resumed. The great problem in ascribing any simple geometrical form to the motions of the planets was to give a description of these retrograde motions in terms of the orbits of the planets.

Now it cannot be too strongiy stressed that since the Greeks had no physical theory of gravitation, they had no idea of zhy the planets move in orbits. To overcome their physical ignorance they made the bold assumption that all planetary motion is in circles. Combinations of circular motion were permitted in their scheme, as in the epicycles of Figures 3.7 and 3.10 , but no motion was admitted that could not be built up from circles. This hypothesis not only veiled the need for a physical theory; it also agreed with the philosophy of symmetry which Plato had expounded for the case of the sphere. Just as a sphere has the greatest degree of symmetry for a three-dimensional body, so a circle has the greatest degree of symmetry for a closed curve.

Without some simple, bold assumption such as Greek astronomers made, the universe would have seemed an entirely lawless place. Althongh we may now be out of sympathy with such a point of view, we must remember that it persisted until the age of Kepler, and even Kepter timally discarded the notion of circular motion with extreme agony ol mind. Perhaps, too, we can have more sympathy
with the Greeks if we remomber that today's scientists expect physical laws to have elegance and symmetry, even if they no longer expect the material world to manifest those qualities. We have simp)Iy replaced the concept of Ilato by a similar, but deeper, concept.

The first serious mathematical attempt to understand the complexities of the planctary motions was made by the great Greek mathematician, Eudoxus. It has often been said, somewhat vaguely, that "the Greeks" believed in a system of erystalline spheres: the Moon was believed to be attached to the nearest sphere, then there was a sphere for the Sun, a sphere for each of the planets (in the order Mercury, Venus, Mars, Jupiter and Saturn), and finally a sphere for alt the stars. And all these spheres, it is said, were supposed to have their centers at the Earth. This story seems to be a compound between carlier ideas and the theory of Eudoxus, and it is certainly a complete travesty of the theory which Eudoxus actually propounded.

In the theory of Eudoxus only the stars moved on a single sphere. The Moon and the Sun each possessed a nest of three spheres, while the planets each had a nest of four. The outermost sphere of each nest moved in the same way as the sphere of the stars. The second outermost sphere was attached at its poles to the outermost one, and was free to turn around an axis lying between its poles. The third sphere was attached to the second one in a
similar way, and so on. Finally, the planet, or the Sun, or the Moon, as the case may be, was attached to the innermost splacere. The polar axes of the various spheres were not parallel to each other, but were chosen in a complicated manner. In this way, highly conplex motions of the innermost sphere could be produced.

The sitnation had some analogy to a compass in gimbals. The mathematical problem was to choose the polar axes, their points of attachment, and the motions of the spheres in such a way as to reproduce the observed motions of the planets, the Sun and the Moon.

How far did Eudoxus succeed? He was, in fact, able to represent the changing dircetions of the planets, particularly their retrograde motions. Further, his theory automatically required that the directions of the planets did not usually lie in the plane of the Sun's motion around the Earth. In other words, he went some way toward explaining the effect of the tilt of a planet's orbit to the plane of the orbit of the Earth. Unlike the Mesopotamian astronomers before him, and unlike Hipparchus and Polemy who canse after him, Eudoxus does not seem to have concerned himself with trying to explain the particular motions of heavenly bodies at particular times. Instead, he confined himself to an attempt at explaining the general features of their motions in geometrical terms. And as more details of planetary motions came to light, it be-

Here is a simplified modern diagram of what is sometimes referred to as "the Greek" idea of a system of spheres. In numerical order, spheres shown are propelling sphere (invisible). then spheres of the stars, Saturn, Jupiter, Mass, Sun, Venus, Mercury, the Moon and the Earth. The theory of Eudoxus was at once more complex and more subtle than this might lead one to imagine. Eudoxus thought of the polar axes of his ideal spheres as not being parallel with each other, yet as being connected with each other in the manner of a compass in gimbals, as indicated above.
came necessary to add more spheres to those which Eudoxus had originally proposed. Thus the nests of spheres were gradually extended, notably by Endoxus's pupil, Kalippus.

It seems quite clear that Eudoxus never intended his spheres to be thonght of as having any actual physical existence. To him they were no more than mathematical devices for representing planetary motions. His theory was produced at about the time that marked the old age of Plato and the early years of Aristotle's maturity, and we find it fully accepted in the writings of Aristotle. But Aristotle made the serious mistake of attaching physical reality to the splueres of Eudoxus, and this mistake compelled hin to try to combine the separate nests of spheres for the various planets into one huge mechanical structure. Thus it came about that Aristotle ended his description of the theory with a fantastic total of fifty-five spheres.

After the time of Aristotle, the theory of Eudoxus was discarded. It represented fairly well the changing directions of the planets, but it did not begin to explain why the plats change in brightness, why, for example, Mars is sometimes comparatively bright and sometimes comparatively faint. According to the theory of Eudoxus, Mars is always at the same distance from the Earth and should not therefore change in brightness. Vet plainly Mars must be nearer to the Earth when it appears brightest than when it appears faintest. It was in an endeavor to explain this point that Greek cosmographers arrived at epicyclic pictures of the notions of planets, like those already shown in Figures 3.7 and 3.10 .

Working from our present knowledge of the heliocentric theory, we saw above that in Figure 3.10 the radius $(O C)$ of the small circle must equal the radius ol the Earth's orbit, and that the radius $(C E)$ of the large circle must equal the radius of the orbit of our outer planet. But this information is not necessary either for understanding the changing directions of, say, Mars, or for understanding the changes in the relative distance of Mars. For those purposes, all we need know is the ratio of $O C$ to $C E$. Then, provided we take the time required to go once round the large circle as being equal to the time that Mars in lact takes to travel once round the Sun, and provided we take the time required to go once round the small circle as being equal to the time that the Earth in fact takes to travel once round the Sun, the epicyclic picture will adequately represent the observed motion of Mars. In other
words, the accuracy of the representation offered by Figure 3.10 is not dependent on the establishment of the true scale of the two circles, but only on the establishment of the ratios of their radii.

Exactly similar considerations apply to Figure 3.7. There the radius of the circle with center at E maty be chosen to have any value; it is necessary only that the ratio of the radius of the large circle to the radius of the small circle should be correct.

Thus in drawing Figure 3.7 there was no immediate requirement that the Sun should be the center of the small circle. The essential thing was that the Earth, the Sun and the center of the small circle should be in line, as they are in Figure 3.15. Hence it was not inmediately obvious to the men who first used epicycle pictures of planetary motions that the Sun must lie at the center of the epicycle.

Nevertheless, it was clearly suspicious that the points E, S, and C should always have to lic on a straight line. This demanded two coincidences: first that C should move around the Earth in exactly the same period as S, and second that E, S, and C should be lined up intially in the same direction. It is probable that this coincidence suggested to Heraclides that the radius of the solar circle should be taken as equal to the radius of the circle on which the center of the epicycle of Venus moved-that is, that the point S should be taken at the point C, as it is shown in Figure 3.7.
(The difference between Figure 3.15 and Figure 3.7 is, of course, that in Figure 3.15 we are working only from the observations, whereas in Figure 3.7 we were working from an initial knowledge of the heliocentric theory.)

The epicycle picture for Mercury could be amended on the lines Herachides suggested in just the same way as could the epicycle picture for Venus. But the situation was more awkward for the outer planets. This is clear if we refer back to Figure 3.10. There, unless we set the radius of the solar circle (the distance $S E$) equal to the radius of the epicycle $(O C)$ then all we can say is that the line $S E$ must be parallel to $O C$. A crucial feature is lost, namely that the distance from the Sun to the planet (the distance $S O$) must always be equal to the distance $E C$, and therefore that the planet maintains a constant distance from the Sun. Hence the discovery ol the heliocentric point of view, working simply from the observations, was not so casy in the case of the outer planets as it was in the case of Venus and Mercury.

Yet we have it on the unimpeachable testimony of one of his contemporaries, Archimedes, that Aristarchus did arrive at a heliocentric point of view, probally around the year 260 B.C. We can only speculate as to how he managed to make this remarkable step. Probably he realized the equivalence of the epicycle picture and the eccentric circle picture, discussed early in this chapter. He would then also realize that a representation of the motion of an outer planet such as that in Figure 3.9 could be translated into the kind of representation shown in Figure 3.16. Yet because of lack of knowledge of the true scale of the circles in Figure 3.16, it could still be asserted only that the Sun must lie on the line $C E$, just as was the case in Figure 3.15 . But now it was possible to take the same step as Heraclides had taken in his picture of the motions of the inner planets. It was possible to take the radius of the solar circle as equal to the distance from C to E, so that the Sun fell at the point C, as in Figure 3.9 , and so that the planet maintained a constant distance from the Sum.

On this basis, we arrive at a situation in which every planet moves in an orbit around the Sun, and the Sun itself moves in an orbit around the Earth, the situation shown in Figure 3.17. This is the socalled Tychonic picture, the picture which Tycho Brahe accepted almost two thousand years later. But Aristarchus took a step beyond this. He realized that the picture presented in Figure 3.17 could be simplified still further, because the question of whether the Sun moves around the Earth or the Earth around the Sun is a relative one. And if we accept the view that the Earth moves around the Sun, then every planet can be shown as moving around the Sun, just as they are shown in Figure 3.18 , opposite.

The remarks of Archimedes also show that Aristarchus took a further remarkable step. He realized that if the Earth does indeed move around the Sun there can be only one explanation of why the background of the stars does not appear to change during the year: the stars must be very far indced away from us.

At the top of these pages is part of an astronomical papyrus, called "The Teaching of Leptinus" or "The Art of Eudoxus", which was written in Egypt at some time between 331 and 111 B.C. It is noteworthy for the number of simple diagrams which it employs.

Figure 3.15
In an epicycle picture of the motion of Venus, the ancients did not have to make the Sun the center of the small circle. But it had to lie somewhere on the line EC.

Figure 3.16
Similarly, in making an eccentric circle picture of the motion of an outer planet they need not make the Sun the center of the large circle. But again it had to lie on EC.

Assessing the Scale of the Solar System

Aristarchus also made a magnificent effort to determine the true scale of the Solar System. He argued that at the moment when the Moon is in quadrature (when, as seen from the Earth, half its surface is lit by the Sun and half is dark) the directions of the Sun and of the Earth, as scen from the Moon, must form a right angle. Thus, at that moment, Sun, Moon and Earth form a right-angled triangle, as shown in Figure 3.19. The angle SME is known to be a right angle, the angle $S E M$ can be measured, and the angle $M S E$ can thus be deduced. A simple calculation then determines the ratio of the distance of the Sun to the distance of the Moon. On measuring the angle $S E M$, Aristarchus found it to be about 87°, and his calculation, based on this measurement, showed the Sun to be about twenty times as far away as the Moon is. We shall later see that this estimate was grossly deficient, but Aristarchus was not aware of this. Thus it seemed to him that if he could establish the Moon's absolute distance he could easily establish that of the Sun.

Figure 3.17
Since epicycle picture and eccentric circle picture are equivalent, we can make an epicycle picture for all the planets. If we take ES as equal to EC we then have the so-called Tychonic picture of the planets.

Figure 3.18
The question of whether the Sun moves around the Earth or the Earth around the Sun is a relative one. If we accept the latter view we can simplify Figure 3.17 and get the heliocentric representation below.

Figure 3.19
When the Moon is in quadrature we know one angle of the triangle formed by Sun, Moon and Earth and we can measure another. Aristarchus used this information to determine the ratio of the Sun's distance to the Moon's distance.

figure 3.20
The belief Aristarchus held, that the Earth moves in a circle around the Sun, could not explain the known difference in the lengths of the seasons. Had he assumed the Sun to lie just of center, as above, this would have been explained.
within about one per cent of the correct value. Earlier determinations were less accurate, but they were sufficient for Aristarchus's purpose.

Knowing the distance of the Moom in terms of the radius of the Earth, he then also knew the distance of the Sun. Further, it was possible to calenlate the radii of the orbits of all the known planets in terms of the distance of the Sunfrom the Earth. Hence Aristarchus made possible the first determination of the scale of the Solar Systom.

Using Eratosthenes' estimate of the Earth's radius, or even earlier and less accurate estimates, Aristarchus calculated the Sun's distance to be some four or five million miles. Nthough this was far short of the true value, it was remarkably useful in establishing something of the general order of magnitude of the Solar System. The suag in the method Aristarchus emplened lies, of course, in the difficulty of judging the precise moment of quadrature of the Moon . This is rendered diflient because

Whe Moon is not strictly spherical in shape. If the moment of quadrature is not correctly judged, then the angle measured at E is wrong, and here even a slight error makes a very large difference to the result. For example, if the measured angle had been 89° instead of 87°, the calculated distance of the Sun would have been tripled; and if it had been about 8956 , Aristarchus's result would have been almost correct.

Aristarchus seems to have propounded his heliocentric theory only in a tentative fashion. He did not set out his arguments comprehensively in a book, and we may well ask why. Prolsably it was because he was well aware that his theory, as it stood, simply did not fit the ohserved facts. We have already noticed that the seasons of the year are of uneven length. Why should this be so if the Earth moved around the Sun in a circular path? This difference in the length of the seasons could toe explained by supposing that the Earth moves not around the Sun but around a point slightly displaced from the Sun, as in Figure 3.20. But such an assumption would already mar the beautiful simplicity of the heliocentric picture. Further, Aristarchus must have known that the directions of the planets do not in general lie in the plane of the Earth's orbit, and the simplicity of his theory would also be partially destroved by the requirement that the planes of the orbits of the various planets are not coincident.

At the outset of this chapter we siw that irregutarities arise as soon as we move from the first stage of sophistication to the second, and this is just what Aristarchus was up against. His picture was admirably suited to the first stage of sophistication, hut it was not suited to the second stage. For this, it would have been necessary to break with the idea of circular motion and to go over to elliptic motion. And this was a step the Greeks were not capable of making. It is true that so far as the planets are concerned, the effects arising in the second stage of sophistication are comparatively small ones, or could have been regarded as so in Greek times. But this is not true of the Moon. Even in ancient times it was compratively easy to see that the M (oon could not be represented as moving around the Earth uniformly along a circular path. But its motion could be reasonably well represented by an epieyclic picture, since the epieycle can be made to mock the effects of elliptic motion in a first order of approximation. Hence it looked to the Greeks as if
the Moon must be allowed to move in an epicycle, and if one were obliged to assume cpicyclic motion for the Moon, then why not also lor the planets? These, then, seem to have been the considerations that restrained Aristarchus from pressing his heliocentric views. Certainly they were among the main reasons that prevented such men as Hipparchus and Ptolemy from accepting that viewpoint.

It is remarkable that following Aristarchus we have two quite contrary trends. On the practical side, the appreciation of the observational situation became more and more refined, and Greek astronomy passed into the second stage of sophistication. But on the theoretical side, the ideas of the Greeks moved steadily further and further away from the correct picture.

We noticed earlier that Hipparchus and Ptolemy discarded Heraclides' great idea of a rotating Earth in favor of the old idea of a diurnal rotation of the heavens; and we have now seen why the heliocentric theory of Aristarchus found no favor with the astronomers who followed him.

Here we have a remarkable example to show that it does not always pay to know too much about the facts of a situation. No theory ever propesed has been found ultimately to fit all the facts, and even the most profitable theory will be rejected if the discordant facts arc known at too early a stage. This must wot be construed as a plea that facts should be ignored. All one can hope is that discordant facts will not appear until worthwhile theories have had a chance to establish themselves. If Grcek astronomy had remained in the first stage of sophistication for five hundred years or so after the time of Aristarchus, so that the heliocentric theory could have become firmly established, then the history of astronomy from the beginning of the Christian era to modern times might have been entircly different.

From the point of view of astronomy it has proved almost disastrous that our Earth possesses a satellite. If there had been no Moon astronomy would have developed far more easily. In the very early stages there would have been no problem of trving to reconcile a solar calendar with a lunar calendar; in Greek times divergences from simple circular motion would not have been so glaringly obvious: and the modern astronomer, in his turn, would not have been forced to carry through all his most delicate work during the half of the month when the Moon is not visible in the sky.

After the time of Aristarchus, Greek astronomy developed along lines that might be called the geometrical equivalent of the numerology of the Babylonians. The reason for this development is quite clear. The Greeks, like the Babylonians before them, were attempting to represent phenomena that were far too complicated for them. In the event, the world had to wait almost two thousand years lofore Kepler succceded in realizing that the complexities of the second stage of sophistication demanded no more than a representation of elliptic motion. And Kepler had the advantage of living at a time when the value of the heliocentric theory had recently been strongly re-emphasized by Nicolaus Copernicus.

Before ending the present chapter we should take at least a brief look at the work of Hipparchus and Ptolemy. This work proceeded on the basic assumption that all motions must be compounded out of circular motions-essentially the same assumption as Eudoxus had made three centuifs or so earlier. Subject to this condition being satisfied, mounting degrees of complexity were allowed. Planets were still required to move around circular epicycles, and the centers of the epicycles were still required to move around circles, but it was not demanded that the centers of the latter circles must coincide exactly with the Earth. Moreover, there was no requirement that the centers of the epicycles should move around their circles with uniform speed. With these additional degrees of freedom Ptolemy, in particular, was able to reproduce many of the features of elliptic motion.

Even though we now know that he had set his course along a wrong path, the ingenuity of his constructions cannot fail to excite our admiration provided we understand what they really mean. Unfortunately those constructions are usually described in a way that makes them look arbitrary and unattractive. This is simply because they are described against an inadequate mathematical backgromen. Here they are dealt with in an appendix at the end of the book, where the main construction, in terms of circular motion, is compared mathematically with the real situation, namely with the situation for elliptic motion. Since Ptolemy's conclusions will be stated simply in the next chapter, the nonmathematical reader can pass over this appendix without feeling that he has missed anything essential to an understanding of the remaining chapters of this book.

Chapter 4 Copernicus and Kepler

Luther: 'The fool would overturn all of astronomy. In the Holy Scriptures we read that Joshua ordainced the Sun to stand still, not the Earth.
Copernicus: To attack me by twisting a passage from Scripture is the resort of one who claims judgnent upon things he does not understand.

Probably nothing would have surprised the Greek, Ptolemy, more than to have been told that mo significant advance in astronomy bevond his own Almagest would be fortheoming lor some fourtecn hundred years.

The reasons for the long delay are not hard to find. The growing cleavage between eastern and western Europe which marked the decline and fall of the Roman Empire, coupled with the rise of Christianity, resulterd in an ahnost complete obliteration of Greck science in the west. The Hebrew people, whose writings made up the bulk of the Christian Scriptures, had never been much interested in astronomy, and as a consequence these writings, and jarticularly the Book of Genesis, consisted of astronomically naīe lorrowings from other peoples. The heavens were a firmament separating the waters above from those below.

Such statements did the Hebrews themselves no particular harm, but in the hands of the early Church, they came nigh to destoying science completely. For the Bible now had to be interpreted literally; there really had to be a firmament that separated the waters above from those below. In other words, above the sky there had to be another ocean which, at a moments notice, could pour through a hole in the sky and deluge the liarth as it had done in the time of Noah. Such notions were easier to accept on the basis that the Earth is Ilat. So we find commentators such as lactantius and Kosmas pouring scorn on the idea of a spherical Earth and thus denying the first great discovery of the Grecks. Indeed, we find a return to the crude notion that the stars and the Sun, after setting in the west, proceed to change their course. passing romed to the north juse below the horizon until they are in a position to emerge again in the cast.

It is true that the less prejurlieed members of the Church, such as St. Augustine of Hippo, living in the fourth and carly fifth centuries, did not treat Greck science with contempt; but nnfortumate phrases in the Bible, such as "the firmament and the waters above it," made it impossible for them

Astronomically naive Hebrew writings incorporated in the Christian Bible long imposed strange views of the universe on western Christendom Piero di Puccio's picture of the universe, made in the fourteenth century, is typical of its period.
Not until the time of Copernicus
did Europe make any advance on the
cosmologies of the Greeks.

10 accept any sensible system of cosmolagy. Over the conturies things slowly improwed. Somon after the close of the seventh century the Venerable Bede was willing to consider the idea that the barth might bx a spleace. He mentions the zones of the Earth, saying that only two of them are inhabitable but that no assent should be given of fables about the Antipodes, since nobody had ever heard or read of antone laving crossed the torrid zone and found muman beings dwelling beyond it. But for the fact that history, as well as science, hat been largely obliterated, this would have been an astonishing statement in view of the circumnavigation of Africa, by Phemicians in the service of King Necho of Eigypt, completed more than a thousand years earlier.

By about the ninth century the sphericity of the Earth and the Greck views of planctary motions had once again become largely accepted by the hiberal section of Church opinion. The later Greek writers, particularly Polemy, were once again being read, albeit only through the medium of Arabie translations. It must be emphasized, however, that because a lew men had familiarized themselves with the general outline of Grcek astronomy, this was not true of the population at large. In the popular imagination the notion that the Earth was flat continued to survive unti] the fificenth century and even beyond. Moreover, there was little or no appreciation of anvthing levond the crude facts of astronomy. The renued details that had so tormented the Grerks were unknown in medieval Enrope, nor was Europe in any mental condition to determine such detailed facts for itself. Such was the price of accepting the Scriptures literally and in toto.

Meanwhike the spirit of astronomy was being kept alive by other peoples. The torch had been passed first to the Hindus, and probably from them to the Arabs who became avid olservers of the sky. In this they were probably aided and encouraged by the clarity of a desert climate. By the legeinning of the present millemimm the Arabs had become deeply interested in the finer details of planetary motions. They had learnt the intricate theories of I'tolemy and they had liound that the theories did not fit the facts as they found them.

Here a word of explanation may be necessary. Ptolemy's theory was constructed to enable astronomers, starting from a known situation, to work out where the planets would be lound at some later
tine, and provided the predictions were not made (ow) far in advance, it worked pretty well. But as tine went on, predictions became increasingly inaccurate, and ower a century, il mot over a year or two, the inadequacy of the theory became clearly apparent. Over the time that separated Ptolemy from the Aralbic astronomen, it was quite incapable of yielding accurate predictions.

Now the Arabs pursued both the theoretical and the practical aspects of astronomy. On the thesretical side they attempted to improwe the theory of Ptolemy, but in this they were quite menuccessfal in spite of the great complexity of the systems of circles and spheres that they employed. Their olservational work was both a help aned a hindrance to the firther development of astroumos: It was a help becanse Araloic influence in Spain did much to kindle liuropean interest in olservational astronomy. It was a hindrance becamse, at a later date, Copernicus placed too great a reliance on its accuracy, as we shall see below.

It is lascinating to speculate on the canses of the great scientific outhurst in liurope som after 1500 , an outhorst in which Copernicus played so comspicuous a part. It is probable that the political diversity of Europe and, after the Reformation, its religious diversity, helped to bring it about. Although Copernicus was obliged to proceed with caution within his own Church, he was not afrald to deal sharply with Luber. Indeed, but for the existence of Protestantism in Germany, is is probable that the great work of Copernicus would never have been published at all. The advantage of religious diversity lay in the lace that the suppression of an idea by the religious anthorities in one place did not imply the smperession of that ictea by other athonerites in another place.

But, of course, the seientilic revolution in burope came largely as a result of a long period during which Greek ideas were gradually reintrobuced into western Europe, and astronomy was naturall? only one facet of Greek karning to excite schobastic attention. With the redisewery of the Greek authors, particularly in the original Greek, interest soon lecame focused on the works of Aristotle. Aready in the thirteenth century Aristetle was lilted te pre-eminence among phikespleres through the writings of St. Thomas Aquinas. It will be recalled that Aristotle, who lived before the discovery of the epicyclic theory of panctary motions. was a believer in the spheres of Fiadoxus. The

During the Middle Ages astronomy flourished mainly in Moslem lands. The figure on the right above is Ulagh Beg, an outstanding observer of fifteenth-century Samarkand.

Astronomers of Istanbul Observatory.
Men such as these had learnt the theories of Ptolemy. They had also realized that those theories did not fit the facts as they found them.

Reconstructions of the observatory at Samarkand. Left: General view. Center: View showing placing and size of the great mural quadrant. Right: Full view of quadrant.

reverence that developed for the works of Aristotle in the years preceding A.D. 1500 meant that, in addition to the heory of Ptolemy, a different theory, that of homocentric spheres, now became canvassed. This may have helped to weaken the long-established authority of Ptolemy and to set men scarching for yet another theory, different from both the known theorics of antiquity.

Within the Church itself there were signs of incipient revolution. Men such as the English Franciscan friar, Roger Bacon, were clearly seeking to break away from the old ideas, although Bacon himself was too isolatcd to make the great step that had lain open to everyone since the time of Aristarchus. Nevertheless, Bacon-one of the founders of experimental science-is perhaps the best example of the general mental unrest and ferment that were developing among thinking men in the thirteenth and fourteenth centurics.

By the middle of the fifteenth century, astronomers such as Johann Miillcr, better known as Regiomontanus, had familiarized themselves with the finer details of the Ptolemaic syste m, taken now from the Greek, not from corrupt translations. Books were written setting out the Circek ideas and making them more widely accessible. So it was that by the close of the fifteenth ecntury the original Greck ideas had been largely or completely recovered. They also became widely diffused through
a number of countries with differing political and religious affiliations. These factors, together with a greatly improved physical sense, seem to have provided the foundations on which the extraordinary scientific developments of the following centuries were based.

It is clearly evident when one turns to the works of Copernicus that he possessed a far better developed physical sense than had his Greek forerunners. Ptolemy had rejected the notion of a rotating Earth on the ground that if the Earth were rotating then bodies thrown upward from it would be found to lag behind. Copernicus dismissed this objection, arguing correctly that a body thrown up into the air possesses two essentially independent motions, a circular motion due to the rotation of the Earth, and a motion up and down. Because we ourselves also possess the circular motion, we do not recognize it in the body; we recognize only the up and down motion. To the argument that the Earth would fly asunder if it were spinning round, Copernicus answered by saying how much more certainly must the sphere of the stars burst asunder if it were spinning around; for the distant stars would have to move at far greater speeds than the Earth in order to make a complete revolution in swenty-four hours.

Athough, unfortunately, we have no precise records telling us about the coolution of his ideas,

it secms to le a lair presumption that Copernicus started from precisely this point, that it was physically more reasonable to suppose that the Earth is in rotation than to smppose that the rest of the universe is. And it was problably from this beginning that he was led bit by bit toward his great theory of planetary motions.

Where did this erucial physical intuition cone from? Certainly Copernicus was an mmsual man, but there had been remarkable men among the Grecks, too. Very likely the Europeans of the fifteenth and sixteenth centuries pexsessed a betterdeveloped phesical seuse than the ancient Greeks simply because of the very wide variety of small practical problems that had been solved in Earope during the intervening centuries. As an example, the building of the great medieval cathedrals must have presented a loost of practical problems that were almost certainly more severe than those which faced Greek builders. Further, during the Middle Ages mechanical devices such as windmills and watermills had become of great practical and economic inportance, while to the Greeks they had bean little more than toys. Such devices demanded the widespread use of simple mathematical calculations, and this need leed to the beginnings of mathomatical tables. For example, in the fifteenth ecotury fairly detailed tables of trigonometrical functions were constricted. Without such tables

the observational work of the sixteenth century would have been greatly impeded. Tyeho Brahe, the greatest observational astronomer of that century, did not have to depend on a crude system of measuring instruments as Pholemy had had to do!

Nicolaus Koppernigk, known to posterity as Copernicus, was born at Thorn on the V 'istula on February 19th, 1473. In 1491 he entered the University of Cracow where he was taught astronomy and mathematics by Albert Brudzewski. As befitted a young man of means, he proceeded some five sears later to one of Europe's chiel centers of learming, the University of Bologna, where he worked for some time under the direction of Maria da Novara, from whom he learnt the elements of practical astronomy: lit 1500 he traveled to Rome, then in 1501 lie made a brief return to northeastern Europe to Frauenberg, where he was installed as a canon due to the good offices of his uncle Lacas Waczenrode, Bishop of Ermland.

Plainly Copernicus must have found the intellectual atmosphere of ltaly extremely congenial, for within a lew months of being installed in his canomry lie was traveling hot-foot to Italy, this time to Padua, and he remained in ltaly for a further live years. During the total of some ten years which he spent there he studied law, theology, medicine, mathematics, astronomy, and the classics. Study of the classics was of vital importance
since it cnabled him to read the works of the great Gecek astronomers in their own language.

We know litte of the precise steps by which Copernicus arrived at the great ideas set lorth in his D_{e} Recolutionibus Orbium Coclestium. We. have already noticed that he was impressed with how much easier it is to suppose that the Earth is turning around than to suppose that the whole sphere of stas rotates elaily aromel the heavens. It seems as if he may have started from the feeling that it was entirely implansible tosmppose that the Earth is the only ber!y in the miverse that does not move. Once the idea of a motion of the Earth was admitted, the strange part played by the Sun in the theory of Ptolemy must surely have made a deep impression. According to Ptolamy the outer planets mowe in their epieveles in the same period as the Sun moves around the Earth. But why? Again, according to Ptolemy, the Sum is uearly the center of the epicycles of Mercury and Venus. But why?

Copernicus must have seen that these questions were immediately answered if he assumed that the Barth moves around the Sum, for then these strange features become simply a reflection of the Earth's motion. Morcover, by placing the Earth third in the sequence of planctary distances from the Sun it was possible to divide the planets into two groups: Mercury and Vious lying closer to the Sun than the Earth does, and Mars, Jupiter and Saturn lying farther away. It was then easy to see why the two gronjss had to le treated differently in the theory of Ptolemy. Most important, the retrograde motions of the planets were easily explained.

Figure 4.1
Modern picture of the orbit of a planet, with ellipticity greatly exaggerated. C marks the center, S the Sun's position. The fraction by which the length of Cl must be multiplied to give the length of CS is the eccentricity of the orbit.

Very likely these ideas, or the germ of them, had already occurred to Copermicus during his student days. Only so dors it seem pensible to underitand why he left his congenial emeromment in Italy in 150 i and went first to Heilsberg and later back to Franenberg, essentially to lead the life of an intellectual hermit for the rest of his days. Almost certainly he understood that a description of the planetary orbits in terms of simple circles with the Sun at their centers wonld have lecen even less satislactory to his contemporaries than it had been in the days of Aristarchus. In order to be acceptable, any new heliocentric theory would have to satisfỵ the demands of what, in the previous chapter, was called the second stage of sophistication: further, it would have to achieve at least as much as the theory of Polomy. And lor this huge task Copernicus neceled a life free from distraction, free from the incessant interruptions that must have accompanied life in the intellectual center of the workl.

From what has been said it will be realized that the commonly-held ideas concerning the work of Copernicus are a wild travesty of the facts. Copernicus did not protuce a simple circular picture of the planetary motions. He was not an innocent who was unaware of the difliculties which had faced Aristarchus and which had caused the heliocentric theory to be abandoned in favor of the epicyclic theors. The task he set himself was to produce a picture of planctary motions both simpler in liorm than that of Plokemy and in letter accord with the olserved facts. If he had done no more than to postulate a simple system ol circular motion, he would scarcely have deserved the emomous credit that must be accorded to him.

Copernicus was quite certainly aware of the opinions of such men as Heraclides and Aristarchus. and indecd he was greatly encouraged to finel that others before him had serionsly entertained the idea that the Earth itsedf might move. His greatuess lies in the fact that he faced up to the difliculties that had eaused Hipparchus and Ptolemy to turn away from the heliocentric theory. Not only did he succeed in this but, as we shall see, he came within a hairs breachth of proslucing a system that would have been in almost perfect accord withobservation at the statulards of accuracy available in his own day: But lor sheer bad luck be would hate come very close indeed to anticipating Kippler.

In order wappreciate how Copernicus improved on the simple-cirele picture of planetary motions,

Above: The Geometry Room at
Cracow, where Copernicus pursued his early study of astronomy and mathematics at about the time when Columbus first set foot in the New Worid. Many traditional Euclidean diagrams permanently covered the walls. Left: An anatomical lecture at Padua shortly before the time when Copernicus studied medicine there.
we may well legin by looking at the motern picture of the orbit of a planct. In ligure f. 1 we have a plant l^{\prime} pursuing its orbit around the Sun. Neglecting the influence of other plancts, the orbit is an ellipse with the Sm, S, at one ol the lieci. The point / represents the position of the planet when it is nearest to the Sm and the point // the position when it is farthest from the Sun. C ' is the center of the ellipse. If t is the length of the line liom C it I, and a / e is the distance from C (o) the Sun, thene is called the ercentricity of the orbit. Values of e for the orbits of all the planets known in the time of Copernicus are tabulated in the previous chapter. Reference to the table will show that all the values are much smaller than one. The eccentricity is largest lor Mcrcury (0.205^{6}) and next largest for Mars (0.0933); then come Saturn and Jupiter, with eccentricities close to 0.05 , then the Earth with 0.0167 , and fually Vemus with o.oors.

The fact that all the values of e are mucis smaller than one means that all the planetary orbits are rather similar 10 circles. Inderd, as a first crude approximation they can be considered as circles, just as we consider them when we erronconsly refer to the Copernican picture. But we need not go the whole way of regarding them as circles. In our calculations it is possible to include all terms that contain the quantity e but to neglect all that contain e^{2}, e^{3}, cte. In words we can then say that the calculation is made to the first order in the cccentricity, but that second anel higher order terms are neglected. This gives a much closer approximation
to the true orbit than the nse of a simple circular picture. To regarel the orbit of Mars as a cirele would be to achiese ouly alout to per cent acecuracy, whereas to inelude terms in the ececontricity but not in its spare mans that we work to letter thats one per cent aceuracy actually to about a quarter of one per cent. Looked at from the modern poin of view, the geometrical comstructions of both Ptolemy and Copernicus did just this. They inclueded the effects of the first order terms in the eccentricity but not those of the second oriler terms.

In l"igure 4.2 we have the construction of Peolcomy, which is montioned in the previous chapter and more fally explained in the mathematical appendix at the end of the look. 'I'he planet l ' is taken as moving around a circle ol ratios a and with center C. The distance from (: to due Sun, S, is again the product $a \times c$. The distance from $C: 10, S$ is egual to the distance from C to the point A. The significance of the point A is that a straight line drawn from 1 to P^{\prime} turns around at a uniform rate, while a line from (i, w Ifes mot. I is P'olemy's punctum aequans. Of conrse, Figure 4.2 is Ince drawn on the basis of a heliocentric picture. In Polemy's theory the point S was not taken as the Sum but as the Earth. Nevertheless, Figure 4.2 is still the essential construction of P'olemy.

In Figure 4.3 we have what appears to le a quite different construction. S is again the position of the Sun, but the distance of s from F (the center of the large circle) is now half as great again as was the distance from Cto. S in Figure f.2. That is to say, it

Figure 4.2
Ptolemy's consiruction of planerary orbit. Here the distance C to S (center to Sun) is the product of the radius (a) and the eccentricity.

Figure 4.3
Corresponding Copernican construction. Here L moves around K at same rate as AP turns in Figure
4.2. LP turns at twice the rate of LK.
is onc-and-a-half times the product a a. The distance from K (1) L is again a. L, mow moves at a uniform rate aromed the circle with center \hbar^{-}- indeed at exactly the same rate that the line A to l turns in Figure 4.2. But L is not now the position of the planct. P, the planet, moves on a small epicyele with center at L, the radius I. to P 'locing one half of the product a © and the line L. to P turns round at twiee the rate at which the line L to K turns round. Thus the planet l' completes two revolutions of the epicycle in the time required for L to complete one revolution around the main circle. (Rotations are referred to fixed directions, these being determined by the direction of some particular star.)

Figure 4.3 is the essential construction of Copernicus. From a mathematical point of view it is exactly equivalent to Figure 4.2 , the construction of Ptolemy. Both constructions are equivalent to the elliptic motion of Figure 4.1 provided second and higher order terms in the eccentricity are neglected.

Copernicus preferred Figure 4.3 to Figure 4.2 because he appears to have felt it mnatural that the radius C to P of Figure 4.2 should wot turn round at a uniform rate. (In Figure 4.3 loth of the radii, f to L and L to P^{\prime}, turn uniformly.) As things turned out, Copernicus paid dearly for his preference for the more complex construction. Had he preferred the construction of Figure 4.2, as Kepler later did, it is likely that the two errors in his theory might have been avoided.

Nevertheless, if Copernicus had used the construction of Figure 4.3 consistently for all planets,

Copernicus knew that to produce a heliocentric theory consistent with observation demanded freedom from distraction. Above is his quiet study. below, the sleepy town of Frauenberg.
he woukl have obtained a theory fitting perfectly with the observations available in his day. All he need have done was to use the observations to determine the slightly different planes of the orbits of the planets, to find the point h for each orbit and the length of the radius K to L for each orbit. This would have given him his complete thcory. His only error would have lain in the neglect of the second order terms in the eccentricity.

The essential feature of the theory is that the point S is the same for all the planets. The point K is different for each planet and must be determined from observation: and the same thing is true of the radius of the circle, h to L. The distance from L to P does not require separate determination since this distance is one third of the distance from K to S. One further detail needed fixing from observation, namely the particular position of each planet at one particular moment of time. Exactly where in the construction was the point P on some specified date? When this had been fixed for each planet the theory could be used to work out future positions.

As we have just noticed, the point S must be the same for all the planetary orbits, and it must be the Sun. Copernicus realized the importance of the first of these requirements, but he made an astonishing error over the second. Instead of taking S to be the Sum, he made the mistake in all cases except that of the Earth of assuming it to be the point K for the Earth's orbit. That is to say, he found the point K for the Earth's orbit and regarded the point S for all the other orbits as being coincident with that point. This error was an astonishing one because in all other respects Copernicus seems to have been quite clear in his mind that the Earth must be deposed from having any importance as a center; yet here he was attaching a special significance to a particular geometrical point associated with the Earth's orbit. Here, however, was almost the only mistake for which Copernicus might reasonably be blamed, while the mistakes of Kepler, nearly a century later, were many.

It is possible that the remarkable error just noted sprang in some way from a second error. In the special case of the Earth, Copernicus omitted the epicycle of Figure 4.3 and it is not very difficult to trace the probable reasons why he diil so. In breaking away from a two-thousand-year-old prejudice that the Varth possessed no motion at all he had already attributed several motions to it: lirst a diurnal rotation, second an ammal rotation about a
center h, and third a motion needed to account for the phenomenon of precession. Copernicus visualized the motion round the circie with center K as being rather like that of a bob held bey a string and suspended from a fixed point, as in Fïgure $+4 . \mathcal{N}$ the fixed point and $E_{1}, E_{2}, E_{3}, E_{4}$ and E_{5} are a set of points on the Earth's orbit. The effect of the motion was to canse the Earth's axis of diurnal rotation to point always toward the fixed point \mathcal{N}. Thus when the Earth was at E_{1} the axis of rotation would tend to point along the line $E_{1} N$, when at E_{2} the axis would point along the line $E_{2} N$, and so on; and because the point \mathcal{N} was not as far away as the stars, the Earth's polar axis would point in different directions relative to the stellar background at different moments of the year. Now this did not agree with obscrvation. Hence Copernicus held that the Earth's axis of rotation must possess a counter-motion that compensated for the effect shown in Figure 4.4. Then came the crux of the argument. Perhaps the counter-motion did not exactly compensate for the swinging shown in Figure 4.4. If this were so, then the heavens would appear to possess a very slow rotation, and this was precisely the phenomenon of precession.

Subsequent writers have criticized Copernicus for the artificiality of introducing this comntermotion. Why not simply postulate a slow motion of the Earth's axis of rotation by itself to account for precession? Why introduce two large, opposed anmal motions? The answer may lie in the incredible slowness of the precession. It takes the

Figure 4.4
Copernicus thought of the Earth (E) as moving around a center K in the manner of a pendulum bob suspended from the point N.

First right is an extract from the preliminary account of the Copernican theory which Rheticus wrote. Next is the title page of Book VI of the work of Copernicus himself.

Barth's axis some 26,00 years to complete one circuit. Copernicus probably felt this slow motion to lee so mach at variance with the rapidity of the Earth's diurnal rotation and of its ammal motion, that he thought it could be more plansibly represented as a slight difference between wo comparatively rapid motions. Given the change in direction of the Earth's axis shown in Figare \& 4 together with a compensating motion, one could properiy ask why the two motions should exactly compensate each other. Copernicus would probably have answered that they did not quile compensate each other, and that the lack of precise compensation accounted for the phenomenon of precession.

There were certain other long-term problems connected with the Earth's orbit that Copernicus felt obliged to lace. If we apply Figure $4 \cdot 3$ to the case of the Earth, we have to recognize that the line from S to K is not strictly of fixed direction. It turns steadily around. That is to say, the line / to H of Figure 4.1 turns steadily around. due to the influence of the other plancts. Such an effect had already been detected by comparing the observations of the Greeks with these of Arabic astronomers, and this cansed Copernicus to give a slow motion to the point F for the Earth's orbit.

Now comes the stroke of sheer bad luck. In addition to this perfectly correct inference from a comparison of Greek and Arabic observations, wher long-term effects were also deduced. These were illusory, and arose simply from olservational crrors, particularly errors in Arabic observations.

RIDIE Idus Maias ad te Pofnaniz dedi literas, quibus te de fufee pramea profectione in Prufsiam certiorem feci. 8 f fignificaturum me guàm primum poffem, famx ne \& mexexpectationi refponde reicuentus.promifi. Effi attem uixiam derem feptimanas in perdifendo opere Alforsmico iplins D. Doctoris, ad qu*m conceisi, tinbueripotui, cum pro. pret aduerfan aliquanulum valetudinem, rum ẹur honeflisime à recuerendifsman D. Dumino Ticemanno Gyfio : D. Praceptore nico Lobatian profe. Ctus aliquorefeptimanis à fudris quic:i. Tamen uppromilla deniq̧, prattarem, et trotis fatisfacerem tuis, de lis quxe didi= ci,qua potero breuitate \&e perfpiruitate qu D. Praceptor meus fentiat, oftē dam. I'rincipio a utem fratuas uelım dofifsi=

Thus the plane of the Parth's orbit was thonghe to madergo oscillations, and even the phenomenon of precession was thought not to be stcady. These errors forced Copernicus to intrextuce a varicty of slow trepidations into his picture of the Earth's orbit. Wis picture of the motion of the Earth therefore amonnted to this: a diurnal rotation; an ammal motion aronnd the circle with conter h (Figure 4.3); a third motion to accom for precession; a slow change in the direction of the line from K to S; and various trepidations in the orbit, such as changes in the orbital plane.

All these motions were foreed on him by olserevation. It is easy to see that he felt them to be so complex that he hesitated to add yet another motion for theoretical reasons, namely the motion in the litule epicycle with center at L. It seems a safeguess that it was for this reason that the correct epicyclic representation of the Earth's motion was not introduced; and given this omission it loccame necessary to add complications to the motions of Mercury and Venus. Thus we find the point k being given complicated and unnecessary motions in the cases of the two latter planets. These could have been avoided if Figure $4 \cdot 3$ had been adopted in total for the case of the Earth. If we wish to indulge in being wise after the event we can say that what Copernicus should have done was to forget about the trepidations, to forget about precession, and to use the construction of Figure $4 \cdot 3$ uniformly for all the planets, making the point S the same in cach case, namely the position of the Sun.

NICOLAI CO pernicitorinensis or neouriontien ont. um cackftium, Libri $\overline{\text { v. }}$.

Abstract

Habes in hoc opecriam recens nato, $\$ 2$ adito, fludiofe lêtor, Motus ftellarum, tam fixarum, quàm crraticarum, cum ex ucteribus, sum ciiam ex recentibus obferuationibus reflitutos:\$ nouis infuper ac admirablibus hypollecibus or, naros. Habes ctiam Tabulas expeduiisimas , ex quibus cofdem ad quoduis sempus quìm facilli me calculare porcris. 1 girur $\mathrm{cme}, \mathrm{lkg}$; frucre.

Evers so, Copernicus produceal a better theory than that of Polemy. Not only was it simpler in its geometrical construction, but also it agreed better with the lacts. Particularly died it agree better with the facts when the slight differenees loetween the orbital planes of the different planets were taken into account. In Ptolemy's theory the planes of the orbits all passed through the Earth. In the Copernican theory they all passed throngh the point $F \cdot$ of the Earth's orbit. In fact, they shomid all pass throngh the Sun. But although Copernicus was wrong, he was only slightly wrong. For in the case of the Earth the distance from K to S (Figure +-3) is only abont one forticth of the distance from $h t w h$. So the error in the Copernican system was only abont two per cent as great as that in the P'olemaic.

These, then, were the considerations that occupied Copernicus after his return to Franenberg. The practical prohlen he had to face was to determine the point E for the Earth's orbit and then to sulstitute the point so determined for the point S of Figure $4 \cdot 3$, trating that point as the fixed reference point for all the other planetary orbits. This Ieli him with the determination of K lor the other planets, and also with the determination of the lengeth of the line f to l. in each case. All estimates of distance, such as that from κ ul, or from S to K or from l, to P, were made in terms of the clistance frem K to K, in the case ol the larth-that is, in terms of the mean radius ol the Earh's orbit.

Absolute distances could not be found at this stage.
The olservations of Polemy and of the Arabs were not sulliciently complete for Copernicus's purpeses and he was therefore obliged to make some olservations of his own. Some commentators have criticized these observations as fragmentary and incomplete. Actually they were precisely what Copernicus needed. They were carricd out with great coonomy of cfort, and their accuracy can le julged by comparing the valus Copernicus arrived at for the distances K to L of each planctary orbit with the motern values. The two sets of values are given in the following table.

Planet	Mean Radius of Orbit (Compared with mean radius of Earth's orbit Copermican Value	1.0 oro

When we consider that this was the first time the relative scales of the planctary orbits had been given, Copernicus's achievement was a mest remarkable one. It is true that Polemy might have olstained similar results if he had made the hypothesis that all circles, whether epieyeies or deferent

Left: Planetary orbits as Copernicus depicted them in his great work, De Revolutionibus Orbium Coetestium. Below: Giese, the Protestant bishop to whom the work was first sent.

circles, that were traversed in the anmal period, possessed the same radii. But the fact that it did not occur to P'tolemy to make this step-a maturat one for Copernicus-is a measure of the improvement of the Copernican theory on that of the Grecks.

In time rumors of the new theory made their way to the south, and without Copernicus himseff being in any way imvolved, heated discussions based on inadequate information took place. At Wittenberg a young professor, Joachim Rheticus, became keenly interested in the theory. After giving a course of lectures in which he attempted to disprove it, Rheticus apparently fond himself in a position where he could see the advantages of the simple heliocentric picture but could not understand the details. So in 1539 we find him traveling to Frauenberg. There he was weleomed by Copernicus who at onee gave him leave to study the new work. By the lollowing year Rheticus had understood it and had written a preliminary account of it, the Prima Narratio de Libris Revolutiomum Copernici. This account produced a great sensation, and now Copernicus, at the age of 67 , was pressed on all sides to publish his theory.

To the modern mind it seens surprising that Copernicus was willing to work for upward of thirty years without attempting to recrive recognition for his great discoveries. Although we have no clear-cut evidence as to why he apparenty decided against publication, it is not difficult to see that the decision must have arisen from a clear and accurate appraisal of the religions temper of the age in which he lived.

The fragmentary evidence we do have shows Copernicus as a man of swift and determined decisions. Vet although a man of incisive character he was prepared to make a compromise with life. Just as he was prepared to sacrifice the conviviality of the Italian scene for the intellectual freedom and simplicity of life in Fraucnberg, so, it serms, he was willing to sacrifice the publication of his life work rather than face persecution by his own Church. It is likely that he saw clearly what course publication would have set him on much more clearly than Gatileo was to do- and that it was a course that led almost certainly to the Inquisition. Doubtless, too, he knew himself well rnough to realize that once he had embarked on a course of action he was not lightly to be tissuaded from it.

In the event, publication did occur in the very last year of Copernicus's life. Probably as a result of

AD LECTOREM DE HYPO. THESIBVS HVIVS OPERES。

38
x^{2}
8os dubito, quin eruditi quidam, uulgociam de nouitatc hyporhefeon hurus operis fama, qudd rer ram mobilem,Solem uero in medio uniuerfi itne mobilé conftituir, wehementer fint offenfi, putẽt́p difoiplinas liberales rectc iam olim conititutas, rurbarinō o. portere. Verum firem exacte perpendere volent, inueniët au thorem huius operis, nihil quod reprehendi mereatur cömififce. Eftenim Altronomi proprium, hiforiam moruum cale ftium diligenti $\&$ artificiofa obferuatione colligere. Deinde culas earundem, feu hypothefes, cum ueras aflequi nulla ra. tione poffit, qualefounqs excogitare \& confingere, quibus fup pofitis, ijdem morus, ex Gcometrix principijs, tam in futuru, quàm in praxeritü recte poffinr calculari. Horū àutè utrunq尹 egregie praftitit hic artifex. Neqs enim neceffe ef, eas hypothefes effe ueras, imd ne uerifimiles quidem, fed fufficit hoc ue num, fi calculum obferuationibus congruentem exhibeant.ni fi fortė quis Geometrize \& Opeices ufqadeo fit ignarus, ut ee picyclium Veneris pro uerifimili habeat, feu in caufa effe crep dar,quod ea quadraginta partibus, \& eo amplius, Solé intere dum precedat, interdū fequatur. Quis enım nō uidet, hoc po fito, neceffario fequi, diamerrum Pellx in mexie plufọ̈ qua. druplo,corpus aurem ipfum pluf $\overline{\$}$ fedecuplo,maiora, quàm in \&impiu apparere, cui camen omnis zui experientia refraga tur: Sunt $\&$ alia in hac difciplina non minus abfurda, ques in prxfentianum excurere, nihil eft neceffe. Satis enim pater, ap: parentiū inxqualium notuū caufas, hanc artē penitus \& fime plicitcr ignorare. Ex fi quas fingēdo excogitat, ut certe quāplu rimas excogitat, nequaquã tamen in hocexcogitar, ut ita efle cuiquam perfuadeat, fed tantum, ut calculum recte inftituant. Cum autem unus \& ciufdem motus, uaric interdum hypothe fes fefe offerant(ut in moruSolis, eccentricitas, \& epicyclium) Aftronomus eam pocifsimum arripiet, quae comprahenfu fit quàm facillima, Philofophus fortaffe, ueri fimilitudinem man
gis re

Opening page of the damaging preface which Osiander added to the work. (Translation of part is given below.) Since it was unsigned most people assumed Copernicus had written it until Kepler undeceived them in 1609.

Note To The Reader Concerning

the Hypotheses Put Forward in This Work.
No doubt there are learned men who have been shocked by the rumor that has already spread abroad touching the strange new hypotheses put forward in this work: for it states that the Earth is in motion and that it is the Sun that holds a fixed position at the center of the universe. These men imagine that the liberal sciences were correctly established a great while ago and ought not to be altered. But if they are willing to examine the question thoroughly, they will find that the author has done nothing which deserves reproach. For it is the astronomer's duty to collect the records of the movements of the heavenly bodies with diligent and skilful observation. Then, if he has no means of finding the true causes or hypotheses underlying this information, he must conceive and work out such hypotheses as, once assumed, will enable him to calculate those same movements correctly from the first principles of Geometry-for the future as well as for the past. Now the author of this work has fully discharged each of these duties. These hypotheses are not necessarily true or even probable, but if they provide us with a method of calculation which is consistent with observation, this alone is enough.

the visit of Rhetions, he entrusted the publication of his great besk to the Protestants, smeling it to Giese, the Bishop) of Kulm. (Biese immediately entrusted the jublication to Rlacticus, who arranged for the printing to take place in Numberg. Unfortunately, belfore the primting was completed Rheticus lefi Nürnberg to take up a new professorship at Leijzag, and handed ewer the supervision of the printing tor ome Andeces Osiander, a Luthean theologian of Nïmberg. Osiander took the (口)portumity to add a prelace of his own writing lout without signing it, thereby making it secm as if the opinions it expressed had conne from Copernicos himself. The prelace says that while the hypothesis of the motion of the barth may appear to fit the facts, this dees not necessarily mean that that hypethesis is true or even probable. In this way O-iander attempted todevalue to the maximum degree within his prower the greatest scientifie work that had comerged since (ireek times.

Those immerliately connected with the pulblication, (;iese and Rhetiens, knew full well that the preface did wot come fiom Capernicus, but the world at large believed it did for almest threequarters of a century. Then Kepler fomed out the real author's name from a learned colleagne in Xiimberg, and amounced it on the title parge of his wwn book on Mars issucd in thog.
(iopernicus died in the year 1543 at the atge of seventy: Be turning his back on the world, he had fared the world to come to him. The fellowing

The Copernican theory stimulated observation, and during the sixteenih century Europe produced its first really greal observer, Tycho Brahe. On the left is the man and above is his own picture of the universe. Opposite is the room at Uraniborg. Denmark, that held his great quadrant. On the walls are pictures of Tycho and some of his instruments.
century was filled with intense controversy over the Copernican theory. Excepting merely prejudieed disenssions, of which there were more than plente; the issue now was whether the new theory was capable of represensing the observations of planctary motions to a still greater degree of accuracy. Thens theory gave a men impetis to olservation and in the last quarter of the sixternth century the first really ontstanding Duropean observational astronomer had arisen in Demmank Tycho Brahe. Just as Copernicus was the first liuropean since Greek times to rise fo the stature of Aristarchos and P'olemy in theoretical matters, so Tiveho Brahe was the lirst to rise to the stature of Hipparchms as an observational astromomer.

Ticho was umalliectedly opposed to the Capernican thesry. His objections do not appear to have arisen thengh religious bigotry. Rather, it seems. they spange from a characteristic that marks ahomst all encat observers: that the world as they see it has at more immeciate cmotional realisy than it cloes for ath ordinar! pessom, abs wer! mocin more that it docs for the thantetician. This mstical relatiomshif, between obmerter aud object secms to arise omly as a result of light actually entering the telescope of the cere, and does mot exist, for instance, when one is looking at a photogroph of a celestial object. This peyclulogical trait leads the olserver to doulst the realite of situations in which ite cammen establish the same physical contact. For example, we have no immediately diret awareness ol the lanthes motion.

At the top left is the observatory at Uraniborg, built for Tycho Brahe by a German architect and said to be epoch-making in the history of Scandinavian architecture. At the bottom left is the Stjerneborg, a kind of annexe that Tycho built when his fame brought him many assistants. Most of it was underground so as to protect instruments from the wind. The cross section of the Uraniborg observatory (top right) shows where most of the important instruments were housed. Under the arch near the left is Tycho's largest celestial sphere. The cross section just above shows the placing of the main instruments in the Stjerneborg. On the right is a map of the island of Hveen.

Fudeed, our sromes sem to indicate dat dae Fard is still and the uniserse outsiele in motion.

This, then, was the probsable cature of Tiven Brabers whections whe (inpernican theory, and for satisty his prejudices it was necesar! to wathlist a bleery that the lianth did not move. He Finnol that such a theor! could If buile up In lewting all the platers excepe the Earth mexe aroumel she Sum exacty as in the fopernican theory, lum by making the Sun itself mone aromat the Eathts. To the end of his life lae was incapable of secine that thes socalled new theory was exactly the sathe as the Copernican theors. For the mathematician the Iratas有mation hom one st stem wanoter is milling.

Vet athough Pideo was modoulaedly quite Hatwe in this sense, his observational work forms a great mommenen of human endeator. It was on this ribervational work that the decisivesteps taten by Kepler were based. Quite apare from his observations of the plamets. Pyohe sertled a monlere of issues that wherwise might have catbsel great erouble in the sereutconth century. He showed, for instance, that the trepidations which hat so worricel Copernicus had mo ral evistence, but were dur (1) inatecuracies of observation: the plater of the Varth's orbit is not subjected to the variations that worried Copernicus, nor is the rate of precession irregular. From his obervations of the comet of 1577 Tyeho made the lirst sugecstion that an astronomical leoly might move along at cime that was not compoumded out of a number ol simple circular motions. His olseevations of the new star supernewa ol 5572 weresoaccurate that they hatw vielded valuable infomation cren in modern times.

Johtann Kepler, whome work owes so much to Ticho Brabe, was lem in Wiirtemberg on Wecom-
 nicus. At the age of eighteen he entered the University al lubingen where, zhroush the lectures of Mästlin, be became aequained with the Copernican theors. He was instanty delighed bey it and decided to devote his lile's work wastronoms. His first work, the Iflaterium Cinsmagraphicum, which appeared in 1506 , is interesting on two major cosuts. First, it gives a vers clear expexition of the (Ajpernicath theory, showing its adrantages ower the Poolemaic theory; second, it reseats something of the strange questiog nature of Kepler's mental make-np. As regatels the lirst of these, it was probably at about this time drat Kepler realized the equivalence of the constructions stown in Figures

Below this portrait of Kepler is his abortive attempt to associate the planetary orbits with a sysrem of regular solids inscribed in spheres.

1.2 and 4.3 . As regards the second, it will be as well to explain Kepler's ideas in detail, since, fantastic as they now secm, they held Kepler's attention throughout his life and undoubtedly provided the driving force toward his great discoverics.

We have already noticerl, in this and in the previous chapter, the values of the mean radii and the values of the cccentricities of the planetary orhits. To the modern mind these values have no special significance, except insofar as they reflet the manner in which the planets were originally formed and in which they have evolved by slow dymamical changes over thonsands of millioms of years. But Kepler felt he must give some cogent explanation of why the radii and eccentricities had those particular values and no others. There had to be a mique theory. His attempt to grapple with this quite unnecessary problem was most remarkable.

Imagine a culse inscribed inside a sphere. Now inscribe a sphere inside the culbe. Next inscribe a second cube inside the second splere. Then keep on repeating the process, inscribing a third sphere inside the second cube, and so on. In this way a series of spheress of different radii will be found. Suppose, now, that the radii of these spheres turn out to have the same relation to each other as do the radii of the planctary orbits. We shall then have a weird and mysterions explanation of why the radii of the planetary orbits have the particular values they do in fact have. Such was the basis of Kepler's idea. Let us see where it led.

The sequence of spheres calculated in this manner did not agree at all with the radii of the planetary orbits. This forced Kepler to change the idea in detail, though not in principle. Instead of inseribing a second cube inside the second splacre, inseribe a tetrahedron in its place. Then inside the tetrahedron inscribe a third sphere. Next inscribe a doelecahedron inside the third sphere. Now a fourth sphere goes inside the dodecahedrom, and inside this fourth sphere comes an icosahedron. A fifth sphere is added inside the icosabedrom, and then comes an octahedron inside this filith sphere. Finally comes a sphere inside the octahedron, although Kepler found it better to cheat at this last stage and to place a mere circle inside the octahedron. How do the radii of all these spheres compare with the relative radii of the planetary orbits on this hasis? Standardized to the case of the Earth, they take the values shown in the first cohmm of the table on page irs.

Cross section through Kepler's original system of cubes inscribed in spheres. It gave poor comparative values of the planetary orbits.

Kepler's own diagram of the spheres and inscribed regular solids. This gave results just good enough to encourage Kepler to try once more.

Planet
Mercury
Venus
Earth
Mars
Jupiter
Saturn

Kepler's V'alue
0.56
0.79
$1 .(6)$
1.26
3.77
6.54

Copernican V'alue
0.3^{8}
0.72
1.00
1.52
5.22
9.17

The agreement, whike not gexd, was sulficient to encourage the intelatigable Kepler. His next step was to replace each of the spheres by two spleces. That is, he took two spheres for each planet, the smaller one representing the least value of the distance of the planet from the eenter, and the larger one corresponding to the greatest distance of the planet from the center. In this picture we have two spheres for Saturn, then a culbe inside the innermost of the two spheres; next come two spheres for Jupiter, with a tetrahedron inside the innermost of Jupiter's spheres, and so on. By this device the eccentricities and the radii of the planetary orbits are connected together through the agencies of the various regular solids, the cube, the tetrahedron, etc. Alhough agrecment with olservation was still far from perfect, Kepler was not discouraged. He asked himself the question what was the center? Was it really the center of the Earth's orbit, as Copernicus had supposed it to be, or could the center really he the Sun?

Here we have a typical example of Kepler's methods. He had hit on a capital notion for entirely the wrong reasons. Throughout his life he was to make at least three mistakes for every correct step he took, but the correct steps were so tremendous that they vastly outweigh the mistakes. To these renarks concerning Kepler's way of thinking, we must now add a further vital characteristic. He was never satisfied by a moderate agreement between theory and observation. The theory had to fit exactly, or at any rate to within the range of accuracy of the olservation, otherwise some new possibility had to be tried. However much time and effort had gone into the previous calculations, they had to be serapped. Just as Keprler's successes ontweighed his mistakes, so this characteristic of always deferring to the observations outweighed the strange products of his peculiar imagination.

Still following his idea of soliels and spheres, he noticed that Copernicus had treaterl the case of the Earth differently from that of the other planets. It struck Kepler that if Copernicus had erred here,

Tycho Brahe's tomb in Prague, the top panel of which declares "Nor power nor wealth but the rule of art alone endures". Kepler, whose temperament clashed badly with that of Tycho, was nevertheless always ready to defer to observation, and he learned much by working as assistant to Tycho during the last two years of the masterobserver's life. In gratitude, Kepler dedicated his Rudolphine Tables to Tycho's memory. In the frontispiece, shown opposite, Kepler insisted that prominence was given to Copernicus, to Uraniborg and to his old master.

It is through his delermination of the true orbit of Mars that Kepler emerges as a greal discoverer in his own right. Above are two of several hundred pages of calculations that this important work entailed.
and if the Earth should in lact loe treated in the same way as all the other planets, his own weird theory could be bought into better consonance with observation. So we now lind Kepler resoled on a thermination of the correct orbit of the Earth. For this he needed the most accurate olservations, so he decided to make himself assistant ot Tycho Brahe. 'The great distancodrom Graz, where Kepler lived, to Denmark might have prevented him from joining Tycho, but fortumatey Tycho had quarreled with many people in Demmark, and fearing that his instruments might be taken from him, he telt Denmark in 1597 and setuled in Bohemia toward the close of the sixteenth century: Kepler, meanwhite, had been driven from Graz by religious persectuion and had arrived in Prague in January 16oo. So it breane casy for Kepler to join Tyehocasy, that is, from a geographical point of vicw. But the association could not have been easy to Kepler from a human point of view; for, as he himself remarks, Tycho was a man with whom one could not live without exposing oneself to the greatest insults. Perhaps there is no more fitting testimony to the character of Kepler than that some twenty-five years later he dedicated his great planctaty tables, the Tabuli Rudolphinae, w Tycho Brahe's memory.

Kepler did not have to swallow the insuhts for very long, for Tycho died in afion leaving the rich harvest of his observations in Kepler's hands. Without these observations Kepler could scarcely have determined the true nature of the planetary orbits. On his death-bed Tycho implored Kepler not to forget the system that he himself had advocated, that the Sun moves aromed the Earth, and that all the other planets move around the Sum. Kepler promised that he would not forget, and ahthough he was well aware that this system was only trivially different from the Copernican system, he faithfulty kept to his promise in his subsequent works.

So it came about that Kepier set himself the task of determining the true orbit of the Earth with respect to the Sun. To do this he made one crucial assumption which fortunately is very nearly satisfied: namely, that whenever a planct is in the same direction from the Sun (as judged with reference to the background of stars) then it is always at the same distance from the Sum. This assmmption is very nearly true over limited lengths of time, such as that spamed by Tycho Brahe's onservations.

In Figure ${ }_{4.5}, S$ represents the Sun and M the position of Mars. We choose a set of moments when
the direction from S to M is ahways the same, and we then say that the distance from S to M is always the same. Now becanse the time required for the Earth to move round in its orbit is different from the time required for Mars to move round its orbit. the Earth will not in general be in the same position on occasions when Mars is in the same position. Thus we get a set of positions E_{1}, E_{2}, E_{3}, etc., for the Earth. When the Earth is at the position E_{1}, olservations give both the angle between MS and $S E_{1}$, and also the angle between $M E_{1}$ and $E_{1} S$. Hence the angles of the triangle are known, so that the ratio of the distances from S to M and from S to E_{1} can be computed. By doing this for each of the Earth's positions E_{1}, E_{2}, E_{3}, etc., Kepler oltained the corresponding values of the Earth's distance from the Sun at various points along its orbit, that is, the distances from S to E_{1}, from S to E_{2}, and so on. In this way he was able to map the orbit of the Earth to within the accuracy of the obscrvations. He found that the Earth follows the construction of P'olemy given in Figure 4.2 .

It will be recalled that this construction is correct to terms of the first order in the eccentricity. Because the eccentricity of the Earth's orbit is very small, terms of the second order (terms insolving the square of e) were 100 minute to be revealed by Tycho's observations. Hence it appeared to Kepler that the Earth followed Polemy's construction exactly. Since Ptolemy's construction, as we have secn, is exactly equivalent to Copernicuss comstruction of Figure 4.3, it followed that Copernicus had been wrong in not giving to the Earth the small epieycle of Figure 43 . Hence Kipler's hunch that Copernicus had erred here was shown tobe correct.

Now if the Earth's orbit followed Ptolemy's construction, then perhaps those of all the planets did, 100. Kepler's next step, therelore, was to use the construction of Figure 4.2 for all the platests, but of course with different directions for the line from S to C, and with different values for the cocentricity of the orbits (that is to say, with different values for the ratio of the distance $C S$ to the distance $C P$). The situation now was that Kepter had rectified the two mistakes of Copernicus. He had added the epicyete to the Earth's motion and he had correctly established the Sun, rather than the eenter of the Earth's main circle, as the center of all the planetary orthits.

When one considers that Ptolemy's theory had stord for almost fourteen hundred years and that the Copernican theory had stood for close on a cen-
tury, this new picture might have leen expected on persist lor quite some time. What Kepler had dones. in A Hect, was tor recover the relliptie motions of the planets correct to the lirs owerer in the exementicit. and one might hatwe expeted this to be a mapor lambluark in astromomy. Sea loy the irony of late the now piecore did not last lor more than a single year. The vers olservations of Tyelow brahe that had "Habled kepler tw correat the (ioperatan theors, themseties revealed that Kepler's pieture did mon acemately represem the mestom ol Mars in its orbit. In the case of Mars the distance freme $($: w. S is almost 10 per cent of the distance from (6 to P. Now as we hawe seen, F゙igures 1.1 and 1.2 are mot identical when quantities involving the splate of the ecemoricity are considered; and the lerm involving the square of the eceentricity of Mars amounted to about one part in lomr homelred. This means that Kepler's lheory gave the position of Mars incorrecty benthing up to about at quarter wh one per cem. Thus the actual pesition of Mars condd difier from its calculated pexition loy about cight mintues of are, and this diberence was well within the range of Tleche Brahe's observations.

Of course Mars was not abways out of its raleulated pesition. At the perins I and $/ /$ ol F F̈gure 1.1, for example, the error was quite different from

Figure 4.5

Kepler chose a set of moments when the direction S to M (Sun to Mars) was the same. At each moment chosen the position of the Earth (E) was different. The positions E_{1}, E_{2}, etc., thus mark part of the Earth's orbit.

SME: Heasured? The angle SEM was given by dieet observation. The angle SME: could alse be determined by diect observation, provided that the star tow which the line s.// printed was known in advance: all that need be done wis to measure that angle loetween the stars in the diection from E: W M and those in the direction from I_{t} to M . The required information, namely the ditection toward which the line $\$. / /$ pointed, could be obtained provided onte of the peints E_{1}, E_{2}, E_{3}, etc., lay on the line S.M. that is to say, provided one of the points was taken at an opposition of Mars.

We come now to Kepler's eletermination of the true orbit of Mars. The method emplosed was rather complex in its details; but its principle was simpl! to carry out the work indicated in Figure 4.5 for a number of directions of the line S to. . 1 . The orbit of the liarth had to be the same for all cases, and this allowed the distances from Sto. M (the distances of Mars liom the Sun at different times to be directly compared in the various cases. The result showed that the orbit of Mars took the form of a symmetrical oval of the kind shown in Figure f.1, with the Sun lying on the long axis of the owal. A circle could be circumscribed about the oxal in the mamer sown in Figure f .6 , and for ams point I 'on the owal a corresponding point O could be found on
the circle. If we take the line through I^{\prime} perpendicular to the long axis of the oval, Q is simply the point at which this perpendicular line cuts the circumseribed circle.
After many trials and false starts, Kepler at length made the remarkable disenvery that the distance from the Sun, S, to the planet, P ' was always given, no matter where the planet was in its orbit, by the following simple relation. The distance $S P$ was always equal to the distance $C /$ minus the produet of $C I$ and a constant mumber which we may denote as e, and of the cosine of the angle QC.I. We may write this more briefle in the form ly CI ce.C.cos (OCII). Now this is the relation for a point on an ellipse with the Sun, S, as one of its foci. The great problem had at last been solved. The planets move in ellipses with the Sum as one of their foci. The principle of motion in circles had at last been abandened.

Perhaps in taking this crucial step, Kepler had been helped by Tyeln's observations of the comet of 1577 , for as we have already noted, Tyeho had himself suggested that the comet seemed to be mosing along a path that was not compoumded from simple circular motions.
To set the physical disencries of Galilen and his followers in a correct light, it will be as well to end

Left: The observatory at Prague where Kepler did much of his work. Above: Kepler's demonstration of the orbit of Mars. The broken line marks the orbit. The Sun lies at n, one of the foci of the ellipse.

Figure 4.6 (Below)
The ellipse represents a planetary orbil. Around it a circle is escribed. S marks the Sun's position, \mathbf{P} the planet's position. Kepler discovered that the distance SP is always equal to $\mathrm{Cl}-\mathrm{e} \cdot \mathrm{Cl} \cdot \cos (\mathrm{QCI})$.

Figure 4.7 (Above)
As a planet moves from P_{1} to P_{2} it sweeps out the area $P_{1} S P_{2}$. In spite of two errors in working out, Kepler arrived at the correct result-that the area is proportional to the time taken to move from P_{1} to P_{2}.
the presont chapter by mentioning some of the stranger notions that Kepler hell. To explain why the planets move aromul the Sun, lie lield that the Sun ratiated some sort of influcnere, the ratiation being after the manner of the spokes of a wheel. Becanse of the rotation of the Sum, the spokes intpinged on the planets, pushing then around in their nearly eireular orbits. Hence Kepler believed that the planetary motions were cansed loy forces essentially at right angles to the direction from the Sin to the plane in question. In the lollowing chap)ter we shall see that the true physical explanation of the motion of the planets depends on a force not (ransuerse to the direction from the Sun to the planet, but along that direction. Moreower, Kepler telieved the Sum to radiate its influence not equally in all directions, but only along the planes of the planetary orbits. This led him to believe that the influence of the Sun decreased with increasing distance simply as the inverse of the distance. The gravitational theory, of course, requires the force exereised tyy the Sun to fall off as the inverse square of the distance.

It is a curious anomaly that working from this incortect notion, Kepler nevertheless arrived at an entirely correct result, namely that the planets describe equal areas in equal times. In Figure 4.7 the pesints P_{1} and P_{2} represent two jesitions of a planet, and the sharled area has the lines $. S P_{1}, S P_{2}$, and the are I_{1} w I_{2} of the planetary orlsit as its bomedaries. Then the shaded area is simply proportional to the time taken for the planet to move from P_{1} to P_{2}. Double this area, and the time doubles.

- goANNISKEPPLERI

decemporecundi, quàm Luna aborientis partibus ceperit deficere: qua vbitota luxerit,nobis adhuc in itinere harentribus: irrita redditur noftra profectio. ${ }^{\text {o+ }}$ Tàm prxceps occafio efficit, vt paucos ex humana gente, nec alios, nifi noftri obfervantifsimos comites habeamus. *E Ergò hominem aliquem hujus modi agminatim invadimus, omncsq́ue fubtus nitentes, in altum cum tollimus. " Prima quxqimolitio duriffima ipfi accidit. ${ }^{6>}$ Necenimalitertorquetur ac fipulvere Bombardico excuffus,motes \& maria tranaret. ${ }^{\text {on }}$ Proptercà Narcoticis \& Opiatis,ftatim in principio fopiendusct , \& ${ }^{69}$ membratime explicandus , nc corpus a podice,caputà corpore gettetur, fed vt violentia in fingula membra dividatur." Tunc excipit novadifficultas, ingens frigus, \&-' prohibita refpiratio, ${ }^{22}$ quortillh, ingenita nobis vi, ${ }^{\prime ;}$ huic verò, (pongis humectis ad nares admotis, obviam imus. ${ }^{+t}$ Confectâ prima parte itineris,

The reason why Kepler arrived at this corredt conclusion was that lue combinet the physical erron of smpposing that planetary velocities der reased inversely witls their elistance from the Sun with a mathematical error in estimating the area shown in Figure 4.7. The twe crrors just compensated each oher. Kepler did, in fact, diseoser his mathematical error but strangely enough he did not realize that this implied some second error. To the end of his days he beliesed that the planetary velocities decreased inversely with their distance from the Sum. The strange thing about this conclusion was that it comblel not apply from planet to planet, but only for the same planet when taken at different distances frem the Sun. The fact that the prerioxls of revolution of the planets around the Sun diel not depend on the squares of their distances, should have shown Kepler that his idea could mos be correct. Indeed Kepler discovered a most important relation leween the perieds of revolution of the plancts and their mean distances from the Sun. It took the very simple form that the squares of the periogls were propertional to the cubes of the distances.

Another distinctly add motion of Kepler's was that the period of revolution of Mercury around the Sun must bear the same relation to the Simes fate of rotation as the period of revolution of the Mex, aroume the Earth bears to the Earthes rate of rotation. This would mean that the Sim must retate: in alont one twenty-seventh of the periogl of revoIntion of Mercury, which is about 88 davs; thus the Sun was suppesed to rotate around an axis of rotation in aloost three days. Galilers discovery of

Right: The range of sounds that Kepler ascribed to the planets, based on their speeds and the eccentricities of their orbits.
sunspots, which led to the first determination of the Sun's rate of rotation, immediately showed that this curious notion was very far from correct.

Kepler mever emtirely lost interest in his idea about a cube, a tetrahedron, etc., but he developed an odd new theor! that secmed to fit the facts far better. He suggested that the plands emit some sort of harmons analogous to musical notes, the pitch of the note lacing proportional to the speed of the planet. Bye using the known size of the orbits of the planets, their cecentricities and their periods, he obtained the system of notes illustrated below. The two planets Mars and Mercury have a large range of notes simply becanse their eceentricities are comparatively large. This means that they have comparatisely large variations in their distance from the Sun, and hence, according to Kepler, large variations in their velocity and in their cmitted notes. Venus, on the other hand, has only a very: tiny cccentricity, so it hardly changes its distance from the Sun at all. Hence Venns emits only the same note. Of course it was not the case that the calculated notes agreed precisely in frequence wih the musical notes here shown. Could this be due to errors of observation? Suppose we make the notes come out exactly as they should be on a properly tempered sate, and suppose we then infer from this the maximum and minimum distances of the planets from the Sun. How will the results compare with observation? The answer is shown in the following table, where values of the aphelion maximum distance) and perihelion (minimum distance) are compared, first as inferred from the harmonic

theory, and next as given by the actual observations that Tycho Brahe had made. -

	Harmam		Trche Brehe	
Planel	Aphelion	Prrihelion	1/thelion	Prithrluan
	Distance	Distance	Instance	Instanic

Mercury	0.476	0.308	0.470	0.307
Venas	0.726	0.716	0.729	10.716
Varth	1.017	0.983	1.018	0.982
Mars	1.661	$1.3^{8} 4$	1.665	1.382
Jupiter	5.464	1.94^{8}	5.451	4.914
Salurn	10.118	8.994	10.052	8.968

The agreement is frighteningly goorl frightening because the idea has no physical relevance whatever. One wonders how many modern seientists faced by a similar situation in their work would fail to be impressed by such remarkable numerical coincidences.

Quite apart from his scientific activities, Kepler's life is a matter of absorbing interest. We have already noticed the strange combination of nerticulous deference to observation with the wildest spectulative fancies. It is fair to say that Kepler had a far greater respect for the facts than the average scientist has, and that he was also a good deal morecrazy than the average scientist. To these remarkable characteristics can be added a highly eventful life-wife troubles, religious persecmion, the defending of a mother accused of witcheraft, and the writing of what may very well have been the first science-fiction story: These qualities have made Kepler an almost ideal study for the hiographer.

Sorofropium geffellet סurch Ioannem Kepplerums $16 \circ 8$.

Kepler marked the end of an era. A torerunner of modern astronomers, he was also in the long line of astrologers. He cast this horoscope for the great adventurer Wallenstein, but he did so with the warning that the predictions of astrology should not be accepted without taking into account tine character of the man.

Chapter 5 The Theory of Gravitation

Kepler's great work on the planetary oflsits was carricd out during the first fise years of the seventeenth cenury: Newton's great work on the theory of the planetary metions was carrial out some cighty years later. A vast range of human thombt separates Newton from Kepler, a range of thomght even greater thon that which soparated Kiepler from l'olemy.

Ep to the time of Kepler, men had set themselves the comparatively modest goal of describing accurately how the planets mexe. They had beon satisfied by a geometrical description of the orbits of the planets. But why do the planets move in such orbits? Particularly, why does a planet mose in an - lliptical orlnit and not along some other type of curve? This is the problem that Newton solved in his great loook, the Principia. The difference letween the kind of problem that Kepler tackled and the kind that Niewton tackled is the difference between kinematics and dynamics. In kinematios we simply deseribe the paths along which leoties mowe. In dynamies our aim is to explain why the boslies move along their paths.

The subject of dynamies bat been lar tor dillicult for even the Grecks to make any progress in it.

The basic dilliculty lay ingiving a precise statement of what one mems by a fores. A vague qualitative concept of ferre dexes, of comse, arise in ceveryday life. We use the word force frepuently in commen speech, but exactly when does a force operate and when does it not?

Aristotle gave an answer that, while plansible, was entirely wrong. He sait that a force operated whenever a boely mowed. As soon as the force ceased to operate the boxly cased its motion. The apparent truth of this statement can be seen by attempting to push an automobile alones a level road. As somet as the push stops, the automohile stops. But how about the llight of an atrow? Aristote suppesed that the continning motion of the arrow was caused by the air following along behind it and constantly pushing it. This curious notion did not find lavor in barope even as carly as the therteenth century. Suppese the arrow were fired against the wind, what then.' Latter, with the alvent of cannons, another question could be poocel: is a camoon ball also pushed along by the wind?

Questions such as these, whike highly pertinemt, diel not of themsefves solve the problem, lut they diel supply a climate ol thought that was to lead

[^4]
©romualls to its solution in the serentcemthermury Wic have already noticed the wide gull between the semi-msstical notions of Kippler and the physical assurance of scientists some sevents of eighty yars later. Inselar as this great change can be attributed to one man, it must be cerelited to Galileo Galikei.

When we compare the work of the wo men it is diflientt to believe that Galileo and Kepler were contemporaries. Indeed, Galileo was K̈pler's senior by seven years, iring lom in Pisa in $15^{\mathbf{6}} \mathbf{4}$. Galileo's work was essentially modern in its style, whereas in many respects Kepler's was essentially medicval. Kepler may be said to have closed an era while Galileos started a new one. The differences between the two men arose from a different cast of mind, well recognized in modern times but not se commonly distinguished at the beginning of the seventeenth century. Galileo was in his instincts an experimental plosicist whereas Keples was a mathematical theoretician. The difference shows itself very clearly in their respective attitudes to the invention of the telescope by a Buteh spectackmaker. Galikeos inmediate reaction was w construct a telescope for himself, without worring too much about the way it worked, and to point his instrument at the sky 10 find out what the Sim, Moon, planets anci stars looked like. Kepler, on the other hand, proceceled to work eat the optical theory of the teleseope ; but he did not build one,
being, as he said himself, minamely in such matters. The difference is all the more striking when we consider that before the invention of the teleserpe Kiepler hat attached himself as assistant to Tychen Brahe

All this is not to say that Kepler had less respeet for observation than Gitileo. In fact, he had more. Galilen could never bring himself to believe the finer olvervational peints on which Kepler's deduction of the elliptical orbits of the planets rested. The difference between a theoretician and an experimentalist is very far from being a difference in the degree of their respect for observations. In fact it is quite common to find theoreticians more respectful than the observers themselves, just as in Kepler's case. The difference is one of instinct. Kepler's instinct was to understand how a teleseope works; Galileri was to make one.

Both methods of approach are essential for the progress of science but at the beginning of the seventecuth centur! Galike's method was particularly necessary. Science had becone ripe for the emergence of the experimental physicist. This was the fiedd in which progress could be made most easily. Kepler's speculations on the orbits of the planets. on the causes of their motions around the Sun, and on their relative spacings. were unprofitable because at that stage physics had not developed sufficiently to enable the theoretician to grapple suceessfully with these problems. Indeed, half a

Above: Galileo's drawings of sunspots, from his work Delle Macchie Solari. Right: A series of photographs, taken at Mount Wilson Observatory in 1947. showing how the Sun's rotation
century of progress in physics was needed leferere this could lxe achieved.

A single example will suffice. Kepler had a theory that the ratio of the period of rotation of theFarth to the peried of revolution of the Mexn about the liarth was the same as the ratio of the periocl of rotation of the Sun to the periocl of revolution of Marcury about the Sum. Aceording to this theory the periond of rotation of the Sun worked out at alont three days. With his telescope Galilco fonnd that the Sum in fact rotates not in three days, but in about twenty-seven days. This he did by observing sunspots, which appear to move from the western limb of the Sun to its eastern limb as the Sun turns on its axis of rotation.
(The diseoverey of sumspots, by the way, was first announced not by Galien but bẹ Father Scheiner. The reason for this was that Galileo held back the announcement of his olservation of sunspots for alout two vears, probably because he wished to make absolutely sure that the spots really were associated with the Sum and were not simply small bodies that had interpesed themselves between the Sun and the Earth. From time inmenorial, very large spots must have been seen on the disk oif the Sun by naked eye, so the telescopic diseovery of sunspots was not really their first diseovery; but the naked-eve observations had always been attributed to the passage of loselies in from of the Sun. In one
recorded ease, it was thought that the planet Mercury had cone between the Earth and the Sun.)

The use that Galileo made of his olservations of sumspots casily surpasses that of all his contemporaries. Not only did he use them to determine the period of rotation of the Sun, but he also nosticed that they are not alsolutely dark. They only appear dark in comparison with the brightness of surrounding regions of the solar disk. He also noticed that the spots are confined to an equatorial zone of the Sun, being rarely found at latitudes greater than 30°. Galileo even noticed that the axis of rotation of the Sun is not exactly perpendieular to the plane of the Earth's orbit.

Galileo's life's work and his personal character can perhaps best be exemplified by describing one of his experiments. According to Aristotelian physics bordies that fall down possess weight, and those that do not fall down do not possess weight. Since the air does not fall down it therefore has no weight. Galileo dealt with this matter in an extremely simple way. He pumped air into a badder, sealed the bladder and weighed it. Then he punctured it, so that air escaped, and weighed it again. The weight at the seeond reading was less than at the first, thus proving that the air which had escaped porsessed weight.

Threnghout his life Galiteo was a puncturer of mental ballorns and bladders. It seems clear that

Scheiner announced the discovery of sunspots before the more cautious Galileo. Here we see how he used a telescope to give an inverted image of the Sun on an opaque screen.

```
SIDEREVS
    NvNCINS
    MAGNA, LONGEQVE ADMIRABIIIA
            Spoldsula ganacest fulpicicollayue pibponent
                vasurguc, prxict(1) ts:o
    PAZLLOSOFHIS,*%ASTSNYONHS,geci
GALIIEO GALILEO
    FATR1TIOFLOREN゙TINO
        Patapini Gyanafif rublico Stathanaviou
            PERSPICILLI
```



```
        OV A T V Arfame rovin
CVATVORPLANTTIS
```



```
MEDICEA SIDERA
        NINCIPANDOS DECREVII.
```



```
VINET11S, Apud Thoman Dagionum. M DC X.
```


he most have decieled as a matter of policy that almost afl that had been said in previous generations about the phosical world was wreng. His technigue was to take ans widel--lield belief, w doubt its validit!, and to plan an experiment to test it. The motive lor adtopting this technigue was probably that Galilew positively moned the show hated surprises that his discoseries catued. Clearly he was much happier when at experiment disprosed an old-chtablished notion than when it conlimed one. Heaty bodies were supponed to lall to the gromed fister than light omes. (ialilen simply dropped several wheets al dilferent weight from a height on to the gromed in fromt af the mess of his colleagues. Thes all hit the gromed at very nearly the same instant. The slight difiereners which did exist Galiteo correctly ascribed to the diflering eflects of the resistance of the air to the downward passage of the various whjects.

Here we have an experiment, jrobably started with the motive of "taking a rise" ont of the complacent schoolmen around him, which led (iatilen to a discovery of first-dass importance, the discosery that all bedies started in motion in the: same way in the same gravitational fiefl pursue identical orhits, irrespectice of their different masses. Thas disenvery was to have an important place in the

Revealing greal, unusual, and remarkable speclacles, opening these to the consideralion of every man, and espectally of philosophers and astronomers ;
as observed by Galileo Galilei
Gentleman of Florence Professor of Mathematics in the Universily of Padua,
Wilh the Aid of a Spyglass
lately invented by him, In the surface of the Moon, in innumerable Fixed Slars, in Nebulae, and above all in Four Planets swiflly revolving about Jupiler at differing distances and periods, and known to no one before the Author recently perceived them and decided that they should
be named
The Medicean stars
Venice
1610
Title page, logether with translation, of Galileo's Sidereus Nuncius. Published in 1610, it announced the first impact of the telescope on the exploration of the heavens.

Newtonian theory ol gravitation, and about four centuries later it was to form the cornerstone of Einstein's gencral theory of relativity.

Galikeos triple pelicy of dombt, experiment and derision naturalle made him extremely umpopular among his academic colleagues at the Unisersit? of Padua, but it made him extremely pepular with the students. While his colleagues could serape together litule more than a quormonol students, Galileos lectured in the largest available anditorimm. This would be suflicient in a miversity atmosphere on make mans comemes, coen if Galiko had been middmanmered and gentle, but he was neither. He was lorthright and outspoken, irritable and derisory, and above all he could not suller fools.

When Galileos received mows of the insention of the telescope he probably sensed the possibility of cseaping from the tension of the miversity atmosphere in Padua to a larger life outside. He turned his first simple instrmment not only on the Sim but also on the Monn, planets and stars. He lound that the Monn was not a smesth yphere, as the philosophers had clamed it to be . There were mommaths and salles sthere, just as there are on the barth, and Here were alse romel-walled craters. fle saw the shadows cast has the Sun, and form these be was able to caleulate the height of the mometans, and

These pages from Galileo's booklet show the many "new" stars which the early telescope revealed. Before 1610 the belt and sword of Orion (left) appeared as a group of only nine stars, the Pleiades (right) as a group of only seven stars. On the left is a replica of one of Galileo's telescopes.
to show that they compared with those on the Earth. He found that the planet Jupiter had four small satellites that move in orbits around the central massive planet just as the planets themselves move in orbits around the Sun. He fomed that Vemus showed phases like the Morn.

These discoveries were announced in the book Sidereus Nuncius, published in Venice in March 16 bo. The book created a major sensation. It lifted Gatileo out of the comparatively narrow atmosphere of university life to a position where he could talk on terms of equality, or near equality, to princes and cardinals, and from which he comid even ask for and be granted numerous audiences with the Pope. In the same year that his book was published he took up residence in Florence where he lectured to a brilliant audience from all parts of Europe.

An interesting idea which Galiteo developed at this time arose out of his observations of the satel-
lites of Jupiter. As these satellites move around their parent planet their positions change from day to day. Galileo suggested that their positions might be worked out in advance, just as the positions of the planets themselves as they move around the Sun can be worked out in advance. Since Jupiter is so far away from the Earth the aspects of the satellites would look the same from all parts of the Earth. Hence, wherever one was on the Earth, one could measure time loy comparing the observel disposition of the satcllites with a catalog of their predicted positions and thus establish one's longitude. The irlea was a gooel one. The whole issue boiled down to whether the future positions of the satellites could be worked out with sufficient precision. The problem was referred to Kepler who decided that they could not. Galileo disagreed, but here we have a theoretical problem, not an observational one, and Kepler's judgment turned out to be right.

Galieo was overwhelmingly impressed by the frequent points of contact between his telescopic observations and the Copernican theory of the motions of the planets. The satellite system of Jupiter and the phases of Venus were cases in point. Moreover Galileo's experimental work had shown him how completely unfounded were the previous
olyections to the motion of the Earth the objection that such a motion would show itself on falling lexties. for example. licho Brate had tefieved that if a heasy bely were released from a tower, the path along which it fell to the ground would be affecterl if the Earth were in motion. Gatileo dispencel of this oljection by pointing out that no such effect arises if a borly is dropped from the mast of a ship mex ing smoothly through the water. (In actual fact, the motion of the liarth does produce a very small effect on the path along which a falling bexly travels, but this eflect was tow small to be noticed at the legginning of the seventecuth century. It arises from the fact that the Earth is turning around, so that a place on the Farth's surface is not in strict rectilinear motion, but is moving along a curved path.) Here Galileo had the germ of another great physical discovery, that uniform rectilinear motion of a laboratory has no effeet on the events that take place inside the faboratory. This is the cornerstone of the special theory of relativity. The modern physicist still refers to Gatilean systems of reference, any: uniformly-moving laboratory constituting such a system of weference.

Fronn his now exalted position Galileo set himself the task of establishing the Copernican system in Italy, and in the Catholic world in general. His failure to do so is too well known to need any extensive description here. He began well, however, by sensing a hesitation in the attitude of the Church. On the one hand common sense and rationality suggested acceprance of the Copernican system, but on the other hand the Protestant Reformation had almost certainly made the Papal authorities feel that unless the Church asserted itself firmly, the whole Catholic world might fall rapidly to pieces. And in this instance the method of asserting itself was to insist on adherence to strict dogma which plainly demanded the rejection of the Copernican theory. One has the impression that the authorities arrived at this conclusion with regret, but Galileo, being a scientist, could not accept such a conclusion at all. He believed that one's position is never weakened by acceptance of the truth, and so his disastrous campaign began.

At first he was warned in a friendly manner that he must not teach or advocate the idea of the movement of the Larth; he was free to consider it as a hypothesis, but he must not say that the liarth actually moves. For ten years Galileo fretted under this restriction, for such a nicety of argument was
not to his taste. Then, when be was almost sixty years old, a new Pope was elected, Urban V'llI, whos, as Carchat Barlerini, had beon friendlity disponed toward him. Galileo immediatedy went to Ronte, and in a sories of andionces with the Pope he pleaded for aceeptance of the Copernican theory: The Pope pointed ont that the Copernican doctrine had not oflicialfy been declared heretical; it was rather that the Church considered it to be not proven. This encouraged Gatileo to go back 10 liforence and to set about proving it. This he atempted to do in his famoms lrok Dialogue on the Chief Systems of the 11 orld.

Actually Gatileo did not possess any proof at all. We have already noticed in the previous chapter that the theory of Tycho Bratie, in which all the plancts except the Barth move around the Sun and in which the Sun itsolf moves around the Earth, is really entirely equivalent, so far as the apparent motions of the planets are coneerned, to the Copernican system. Proof of the Copernican theory can be given, but not along the lines followed by Galiko. In a later chapter we shall come to consider Bradfey's discovery of the phenomenon of aberration. This demands that we adopt the Copernican picture and not the 'lychonic picture. (In accordance with the theory of relativity it is, of course, always possible to regard the liarth as being at rest provided we are prepared to depart from simple Euclidean geometry. But if we stick to Euclidean geometry, then it can be demonstrated from the phenomenon of aberration that the Jarth must move around the Sun, and not zice zersa.)

Gafileo was so impressed with the simplicity and elegance of the Copernican picture as compared with the complexity of the Ptolemaic picture that he felt emotionally that it must be true: and in the absence of a convincing physical argument, his method of discussion really amounted to little more than ridiculing the complexities of the Pblemaic system. It was natural enough that the Church should objeet to this ridicule. Indeed, Gatileo completely misjudged the considerations that were then influencing the innermost councils of the Church. When it was first published, the Dialogue receised quite general approval. It was supported by the Jesuits and by the Pope's own sectetary, as well as by the wider public who coukt all ajpreciate the conmon sense on which the whole discussion was based. But the sitnation was that common sonse was at that time opposed to the policy of the Church.

Moreover, Galileo had written his book in an endirely uncompromising site. The situation could therefore not be ignored.

It was fortunate for Galileo that his case was investigated by a special commission rather that by the Holy Office, but it was unfortunate that the warning delivered to hint seventeen pears earlier had bern officially minuted. Now, to his monsternation, it was produced in evidence against him. Clearly he hat no logical defense, except, of course, to deny the authority of the Church in such matters. Instead he prevaricated. He claimed that his book did not advocate the idea that the Earth moves. In this it is quite probable that when he reexamined his own arguments, he saw that they really did not

On the 7 th of January 1610 Jupiter was seel in my telescope with 3 fixed stars thus: east $* * 0$ * west. These were invisible without the telescope. On the 8th they appeared thus: $0^{* * *}$.
They were therefore direct and not retrograde, as previously calculated. On the 9 th it was cloudy. On the 10 th I saw them again, like this: **O. The most westerly seemed to be occulted. On the 1 th they were arranged thus: ** O, and the nearest star to Jupiter was halt the size of the other and close to it; whereas on other nights they appeared of equal size and equidistant.
From this it appears there are 3 wandering stars around Jupiter, previously invisible to everyone.

Below is a page from the notes that Galileo made on the satellites of Jupiter. Above is a translation of the first few lines.

 un nub a ito: cinder con
 a sine en Camera mince dellialon, et minimisima allialom one he íalure cere capo G best treble plan a nite tote the Q. Dual grandesta et condition guoblor brave: coal he fare into ono a live wen 3. allure stele estate incuisififi as griurosiro àqueto city.

 wat ${ }^{2}$.

4. Helle in quester iontiturine * ** ing io noil

Frontispiece to an early edition of the Dialogue, representing Aristotle, Ptolemy and Copernicus. It was in this work that Galieo backed the Copernican theory and so came into conflict with the Church.

In 1600 Giordano Bruno had died a martyr's death, refusing to repent of his own heretical views on the universe. Galileo thus knew he must either recant or suffer martyrdom.

prove the motion of the Earth, and this may lave suggested to him a possible line of defense. But his lamok had leconso plainly writton with an conotional bias tward the Copernican theory that such a defense stoned litue chance of succeeding, and Galike was privately warned that this was so. The only coure now open to him if he wished to avoid torture, condemmation, and death was to admit croor and to plaad for merey. and it is common knowtedge that this is the course he took.

Aheh has been writen both for and against Galiterower this decision. It secons to me that those of us whe have never been threatened by imenediate. torture are in mo position whass judement. It is, morcover, doubttul whether anything womld haw beet achieved by taking the marty's comese, the course which Giordano Brano bad taken some yars carlicr.

We can assess the quality of Brume by comparing some of his ideas with those of Kepler. Kepler believed that all the stars were confined to a distant shell only two miles thick; Bruno suggested that they were bodies like the Smand were hence at chormons distances away from us. He extended this consept to infmity, suggesting that space might be infunte, and that the universe might be eternal, without begiming and without cud. Such remarkably modern ideas led him to the stake. He was burn in Rome in February tomo. His final remark at his trial was "I await your sentence with less fear than you pass it. The time will come when all will see as I see." The time has come indeed, but Brumo's martyrdom probably did litte to bring about the result. It can also be said that a rational mode of thought ought to be able to trimph of itself without the need for martyrdom. Martyrdom implies the matching of emotion by emotion, and this is not the essence of rational thought.

The outcome of the trial was that Galien was fored to dene the Copernican doctrine and was placed under house arres, in his own commery house near Florence, for the rest of his life. He was allowed visitors and many people made pilgrimages from abroad to see him. During the last varar of his eight-year confmement his sight failed, but never his questing mind.

In the most impertant sense of all, the stors of Galited may be said to start rather than to linish with the peried ofllis house arrest. Thite Chureh bed accepted his Dialogue, Gatitoo would certainly have gone down in history as an outstanding sciemist lout
hardly as one of the very greatest. He had established the experimental method but he had not initiated it; others lefore him had used experiments to test ideas. He had made important astronomical discoveries, but they were of a qualitatise kind, and once their woneler was passed they had left ung great bealy of precise data on which theories could the

Galileo chose to recant. On the right is part of the document in which he abjured and cursed his false opinions, and below is a translation of it. Whatever view one takes of Galileo's decision, it is doubtful whether he could have achieved much through martyrdom. Recanting gave him eight years of lite, which he employed in laying the foundations of dynamics.

II, Galileo, son of the late Vincenzo Galilei, Florentine, aged seventy years, arraigned personally before this tribunal and kneeling before you, Most Eminent and Reverend Lord Cardinals Inquisitors-General against heretical pravity throughout the entire Christian commonwealth, having before my eyes and touching with my hands the Holy Gospels, swear that I have always believed, do believe, and by God's help will in the future believe all that is held, preached, and taught by the Holy Catholic and Apostolic Church. But, whereas-after an injunction had been judicially intimated to me by this Holy Office to the effect that I must altogether abandon the false opinion that the Sun is the center of the world and immovable and that the Earth is not the center of the world and moves and that I must not hold, defend, or teach in any way whatsoever, verbally or in writing, the said false doctrine, and after it had been notified to me that the said doctrine was contrary to Holy Scripture-1 wrote and printed a book in which I discuss this new doctrine already condemned and adduce arguments of great cogency in its favor withoul presenting any solution of these, I have been pronounced by the Holy Office to be vehemently suspected of heresy, that is to say, of having held and believed that the Sun is the center of the world and immovable and that the Earth is not the center and moves:
Therefore, desiring to remove from the minds of your Eminences, and of all faithful Christians, this vehement suspicion justly conceived against me, with sincere heart and unfeigned faith 1 abjure, curse, and detest the aforesaid errors and heresies and generally every other error, heresy, and sect whatsoever contrary to the Holy Church. and I swear that in future I will never again say or assert, verbally or in writing, anything that might lurnish occasion for a similar suspicion regarding me; but, should I know any heretic or person suspected of heresy, I will denounce him to this Holy Office or to the Inquisitor or Ordinary of the place where I may be. Further, I swear and promise to fulfil and observe in their integrity all penances that have been, or that shall be, imposed upon me by this Holy Office. And, in the event of my contravening (which God forbid!) any of these my promises and oaths, I submit myself to all the pains and penalties imposed and promulgated in the sacred canons and other constitutions, general and particular, against such delinquents. So help me God and these His Holy Gospels, which I touch with my hands.

fommeded, as had the olservations of Tiwhe Brahe. Galileo had missed the actual insention of the teleseope, wen thonght his use of it hat given decisive momentum to its developmont as a scontific instrument. He had also missed Kepler's great disecowery of the elliphic orbits of the platets. It is true that Ticho lirabe's sobervations were atailable. only to Kepler, but evon il Galiles had been the man to have acress to them he was almost certainly not the man to undertake the meticulous, backbreaking calculations which Kepler carriced out. Galileo had, inderd, made two great diseoveries in embryo the relativity of uniform motion, ated the fact that loolies started in motion in similar ways in the same gravitational lied have iflentical orbise; but the importance of these two diseoveries was not immediately apparent. They would very likely have been forgotion and rediseovered at some later date, but for the final tremendous disoovery which Gahileo made during his term of honse arrest.

Galileo had always bern interested in the pendulum. At Padna, as a young man, he had discovered that the time reguired for a pendulum to swing throngh one complete oscillation is independent of the angle of swing, provided only that the angle is small. This had suggested to him that a pendalum might provide an excellent method of measuring time. Unfortunately, however, the amphtudes of swing lecame gradually less and less owing to air resistance, and Galileo could find no satisfactory way of keeping the pendulum swinging against this resistance. He thought of swinging the pendulum in a vacume, but this was bevond the

[^5]range of his experimental techmigue, amd the prolslem of kecping the penduhum swinging was mot solved in ath elegats wat motil some seventy years later, Iy Rehert Hoske, in Englame.

Now, in his last vears, Galilers again turned his attention to the !exdahan. He noticed that provided the speed of the perduham leob at the boterm of its oscillation rematued unchanged, the lacight to which the lobl sose was always the salle, irrespective of the length of string that attached it to a fixed point. For instance, if at the moment when the string was vertical loe took hold of it at some peint between the original fixed point athd the leob, the bob, would still rise to the satme height. This suggested that the backward and forward movement of the pendulum lobl was really quite independent of the existence of the string. A ball rolling backward atnd forward without slipping inside a bowl shaped like part of a sphere would possess exactly the same property. That is 10 say, it would go on rolling lackward and lorward, rising always to the same height, until friction and air resistance gradually damped out the motion.

Suppese, now, that the loowl is not made as a portion of the inner surlace of a sphere; suppose it is stecper on one side than on the other. Does the ball rise to the same height on both sides? Galilen found that it did. 1.0 us think for a moment only of the lese steep side. If we make this side even less steep, the ball will still continue to rise to the same height as befere, but becanse of the decrease in steppurss it will travel a greater actual distance in doing so than it did belore. If we go on decreasing the steepuess, then the ball will roll larther and larther in the horizontal sense before it attains the repuired leeight. What happens if we decrease the steepness to zero.' The answer is that the ball will go on rolling indelinitely, always trying to rise to the reguired height, which, of course, it will not be able to do.

The last link in the chain of reasoning that Galileo forged is to forget alont the lews and to ask what happens if we simply start the ball rolling along a horizontal table. In face the conditions are the same as lefore, so the latl will roll on indefinitely. One last refinement is needed. In everyday life we can think of a horizontal plate in which the pull of the Earth's gravitational field is everywhere perpendicular to the plane. But this olsvousIy holds good only if the plane is of very limited extent. We cannot consider distances on the plane
at all comparable with the radius of the Earth, otherwise it would no longer be true that the gravitational fore was everywhere perpendicular to the planc. Thus Galiteris result only held in plames of limited size, in relation to which the carvature of the Earth contal be neglected. But the essential point had loeen made. So long as all lorees were nomal to the plane perpendicular to it the ball would go on rolling for ever.

We have already removed the pendulum string and the bewl from the problem. We san now remowe the Earth and consider in the abstract a plane along which a ball is set rolling. Then provided nef forces act on the lall in the direction of its motion, provided there are mo forces at all, or provided there are only forces acting perpendicular to the plame, the lall will go on rolling for wer; and it will do so at a constant speecl. The last stage of alstraction is to remowe the plane. Comsider a particle projected into a region of space where there are no forces at all. What will happen? The particle will go om mowing with a uniform specel in its original direction of motion.

Notice the developing stages of abstraction in arriving at this result. Start with the penduhum, then remowe the string and replace it by a bowt. Then change the shape of the lowl, and next replace the bowl by a horizontal plane. Then remove the Earth, and finally remene the plane. This at last gives the resulh that a body in montom under no) forces moves with a constant velocity in a comstant directiom.

From this we can give an answer to the question posed almost at the legimning of this chapter: exacily when docs a force operate on a beely? The answer is whenever the bedy does mot move with comstant speed along a straight line. This etcfines the presence of the force. The degree to which the motion of the boly departs from simple constancy along a straight line measures the force acting on the body: This great discovery, which Galico made during the term of his honse arrest, was one for which the world had waited two thonsand years. From now on the science of dynamics could make progress at break-ncek speed.

The reason why it had taken solong to arriw at this apparently simple result is that in nature we just do not see bodies in rectilincar motion. This is because all the bexlies we see are subject to foreses, boolies at rest as well as bedies in motion. If you stop) pushing your car and the car stops, there are
still forces acting on it. To ns nowadays this scems obvious, but it was mot at all obvions until Galilen made his diseovery: And until one could define the state in wheh there was zeroforee, it was impossible to define and measure forese in any quantitatise way. Hence it was impossible to arrive at any reasoned system of dynamics.

Galileo hat also been right in his estimate of the importance of the Copernican issue, not only to science but also to Italy and to the whole Catholic world. By its decision, the Churche effectively stemmed the advance of science wherever it was strong enough to confore its elecrees; and with the decline of science there was a failure to follow up the rapidtly developing technologies of the seventeenth and eighteenth centuries. Hence these countries such as Italy and S_{p} ain, which had hithertw played an important part in enlarging the field of human knowledge, became poor and backward. The development of science was in sery large measure handed over to the Protestant wortd. France was an important exeeption but only to the extent that Catholicism did not wield complete power there.) For this reason we find the next great scientific developments taking place not on Italy, hitherto the center of intellectial advance, but in a remote island off the European continent, in England.

Before we pass to the Newtomian revolution it will be as well tolook at an important step taken by Hurgens. We have just seen that the force acting on a bedy is to be measured loy the degree to which the body departs from rectilinear motion at fixed speed. Let us take a special and important case, that of a

[^6]braly moving in a circle. What lore most act on it? A very simple experiment bring us togrips with the problem. Tie a luaty bolb to one cud of a piece of string athe whirl the lob remend in a cirele, makine the other end of the string the center of the cirele. Here we latse a body moving in a circle mater the influcnce of a force transmitted along the string. Now a tatut string can transmit a foree only along its lemeth, wot transwerse to itself. Hence at any given moment the force acting on the bol, monst abway be directed along the string, that is, wward the center of the cirele.

Hoyegens found that the masnitude of the force ibs reases as the square of the velocity of the loble, and that it decreases inversely as the length of the piece of string. Furthermore, if the quantity of material in the |ool, is changed, we force is changed is a similar proportion. If, lor instance, we doulale He guantity of material in the bob, then the lomee reguired to keep it moving in a circle of the same radius at the same speed is just twice as great as irfore. Taking these three results togrether, the force can be written as $\frac{m I^{2}}{r}$ where f is the speed of the bob along the circle, r is the radius of the cirele, and m is the measure of the amount of material in the bob

What happens if we remove the string and place a very massive body at the center of the circle? Provided the massive eentral body pulls the bob

The force acting on a body is to be measured by the degree to which the body departs from rectilinear motion at fixed speed. It was Huygens (above) who discovered how to measure the force needed to keep a body moving in a circle. It is the same whether the force is transmitted along a string or. like gravity, through space.

The rule is that the force is equal to the mass of the body times the square of its velocity divided by the radius of the circle.

 boh will continue to mose aromed the central attracting berly exatole as it diel while it was attachal to the end af the string. The foree fe, which we mow destribe as the gratational ferce, takes the place of the remsion previonsly developed in the string.

To the crpation $F^{\frac{m I^{2}}{r}}$ we can add a second equation. The lengih of the ciremmference of the circte deseribed be the bobs is $2 \pi r$, and the time required lor the low to move ence around this cirele is $\frac{2 \pi}{1}$. If we call this length of time the perioxl, P. we call write $P \frac{2 \pi r}{r}$. From hese two equations we can derive a third one in which the velocity, F, is elimmated. This equation an be writen in the form $p^{22} \frac{1 \pi^{2} m r}{1}$.

It this stage we recall Kepler's third law, namely that the square of P is propertional to the cube of . Wie then sere that the quantit! F, the gravitational fince. must $1 x$ propertional to $\frac{1}{r^{2}}$. If we also take accomen of Galilecis result that the orbit of a borly moving in a eravitational held dees not depend on the mase of the losty latt only on the way it is started ofl, then we sere that the pretion I cannot

depend on the mass m w the bob. Hence the force l : must iscelf contain a lactor m. Combining these two requiremonts we can write $f^{\circ} \quad \frac{1 m}{\rho^{2}}$ wherethequantity I may contain some as yet umeletermined lictors.

Next comsider the gravitational lierce between wo particles of egual status not the case of one boxly lexing very large compared to the other, but the case of two particles of comparable mass. Call their respective masses m_{1} and m_{2}, and let them be spaced apart by a distance r. From what we have just satid the gratitational lore exerted by m_{1} on m_{2} can be written 1 - $m_{2}: r^{2}$ or $\frac{\mathrm{d} m_{2}}{r^{2}}$. If we now make the sensible reguirencent that both m_{1} and m_{2} most appear in the expression for F on equal terms, then clearly A must contain the factor m_{1}. That is to say I can be written as the prestuct $C \times m_{1}$, the expression for \mathcal{F} now taking the lorm $C \times m_{1} / m_{2}: r^{2}$, where the quantity G is retained so as to allow for any other still umdetermined factor.

Now let us wo back to our formula for P^{2}, returning to the case of a large cental massive beds. Write m for the mass of the bob and W for the mass of the contral boely. From what we have just said the forece F° is equal to $G \times m \times M: r^{2}$. Insetting this in the expression for P^{2} gives $P^{2}-\frac{4 \pi^{2} r^{3}}{G . M}$. This now is Kepler"s third law applicable to planets moving

$$
\begin{array}{rlr}
m 2 & V 4 \\
2 \times 4 \times 4 \div & F 64 \\
2 & 64
\end{array}
$$

$$
\begin{array}{rlr}
m_{2} & V 8 \\
2 \times 8 & 8 & F 256 \\
! & 256
\end{array}
$$

The picture at right shows Louis XIV visiting the French Academy of Sciences which he founded in the middle of the seventeenth century. Seen through the right-hand window is the Paris Observatory, then in course of erection. (A print of the completed observatory is shown on the left.) Members of the newly-founded Academy made the first sensibly correct determinations of the distances of Mars and the Sun.
in circular orbits. It is also approximately true for the actual planets moving in not-quite-circular orbits. It will abo serve for the satellites of the planets for example, for the case of the Moon.

Evidently if the quantities P and r are eletermmed bey observation in a particular case, then the proxhect $G \times M$ can be determined from our equation. And if in some way the quantity G could be fomm, then the mass M of the central attracting leoly could be immediately obtained. Suppose for the monemt that G is known, and consider the determinations of P and r for the planets.

The period P had, of course, been known with wolerable accuracy since the time of the Greeks. It was known with comparatively high accuracy to Tycho Brabe, but only the ratios of the radii of the planctary orbits were known, not their absolute values, represented in our equations by r . We saw in Chapter 3 that Aristarchus's determination of the distance of the Sun, while a remarkable step in its time, gave a result that was far too small. Kipler realized this fact, but esen so lee still set the elistance of the Sum much too small himself: His value was about 15 million miles as compared to the true value of about 93 million miles. It must be satid, however, that Kepler gave his value as a lower limit. He said thatt the Sun must be at least 15 million miles away.

The first sensibly correct estimate of the true scale of the Solar System was olvained by members of the French Academy of Sciences, lomeded by

Louis SIV in the middle of the seventeenth eentury. They determined the distance of Mars ley straightforward triangulation, one of the sides of the triangle being the line between Paris and Cayeme. The distance between the wo towns was measured as were the directions of Mars from each ent of the base line, the observations of Mars being made at essentially the same moment. It was then a simple. matter of trigonometry to determine the distance of Mars from the Earth. The methol could not give an extremely accurate answer because the distance from Paris to Cayenne was very small compared to the distance of Mars. This meant that the angles had to be measured with high precision, and slight errors here led to appreciable crrors in the distance of Mars. Nevertheless, the value obtained was correct to within abont ten per cent.

Let us now rewrite our equation connecting P, r and M in the form $G . M \frac{4^{2} r^{3}}{p^{2}}$. Finowing r and P, the right-hand side of this equation could be computed, and hence the product $G \not M$ could be determined. Thus if G were known, the mass W of the Sun was easily obtaincel. Actually the quantity G was not known in the seventecntly century, so all that this argument gave at that time was the profluct $G \times$ M. But what could be dotwe was to carry through an exactly similar argument for the case of the Earth and the Moon. Now M in our rquation represents the mass of the Earth; P represents the perioel of revolution of the Monn around the Liarth;

and r represents the radius of the orbit of the Meron. The perien l ' was kown, and the determination of r was much easier than it was for the case of the planets. Indeed r was known to within an accuracy of abent one per cent to Hipparchus. So the product $G=M$ could be determined for the case of the Farth. If, bow, the quantity G is the same in beth cases, then a simple division of the product $G \times M$ for the Sim ly the product $G \times \mathbf{M}$ for the Earth cancels out the unknown G and leaves the ratio of the mass of the Sun to the mass of the liarth as a known mumber. "The" calculation showed the mass of the Sun to be about 300, oro times as great as that of the liarth.

The determination of the value of G demanded a different type of experiment. Let us go back to our two particles of mass m_{1} and m_{2}. The force of attraction between the two particles is the product G $m_{1} \quad m_{2} . r^{2}$ where r is the distance apart. Suppose we set up an experiment in which the lorec of attraction is actually measured for two particles of known mass and known distance apart. Then by equating the measured value of the force to our formula, the hitherto unknown quantity, C $^{\prime}$, will be determined. In fact, steh an experiment could not be carried out in the sesebtecoth century. It had to wait matil almost the begimning of the ninetcenth century when it was carried through by Henry Cavendish.

So far we have thonght only about the simple case of a planet or a satcllite moving in a circular orlsit aromed its primary. But need the orbit necessarily be circular? Could it be that the case of a circular orbit arises only if the planet or the satellite is intially set in motion in an appropriate way, and that if it is set in motion in some other way the orbit will not be a circle? Let us lommate the

problem a litule more precisely. We have a body of large mass which we shall denote by M, and a body of small mass which we shall demote bey. Given that the force acting on the small body is diececed toward the large body and is of natgnitude G; M M $m \div r^{2}$, where r is the distance apart of the two bodies at the moment in question, and giveh, also, that G is a constant mumber, what will be the orbit of the mass m when it is set in motion initiall! in some particular specified way? Before we attempt to answer the question it is worth noting the steps in reasoning that led up to it. First we used the simple case of circular orbits in order to guess a formula for the gravitational force. Then, equiperd with this formula, we have turned the whole question around to ask what is the general nature of the orbit of a planet or satellite acted on by the gravitational force.

Equipped with the appropriate mathematical technique, namely the differential and integral calculus, probably one person in about a thousand or even one in a lundred, could answer for themselves the question we have just posed. But in the seventeenth century, before this techuique was available, not more than perhaps one person in a hundred million, or even one in a thousand million, was capable of supplying the answer. It is olten said that mathematics and science become harder and laarder as more is known. This is a misreading of the sitmation, for although the problems themselves may become more complex, the techniques whth which scientists are equipped to solve them become wore and more effective.

In the seventecnth century, then, there were perhaps two men who were capable of answering our question Newton and Leibniz. Leibniz wats a mathematician not primarily interested in astronomy, and so far as is known he made no attempt to solve the problem. Some time between 16830 and 1685 it was solved by Newtom. The answer he gave consisted of two parts. If the leody m were projected with a sutheienty high speed it would swing aroumd the massive leody and eventually recede to a wery large distance to infinity from it, along a path known as a liyperlola. Bus if the speed of projection of m were not as large as this, then the body would pursue a closed orbit that was an ellipse; moreover, the massive borly M would lie at one of the loci of the ellipse. Finally, the small bedy m would sweep out equal areas of its orbit in equal times. Newton thus dememstrated that the laws which Kepler had
discovered empirically could also be arrived at deductively ly precise mathematical argument from the law of gravitational loree obtained from the simple case of the circular orbit.

Since Newton's answer to our problem specilies only that the planetary orbits shomld be ellipescal. we may well ask why the planets do in fact mowe along paths which are very nearly circular cllipses. The answer must be because they were set in motion intially in a special way, in the special way required to make them move along ncarly circular orbits. The slight deviations from circular motion also depend on the manner in which the system was started, and not at all on such mystical considerations as those which Kippler envisaged.

It was natural, following Newton's diseovery, to pursue the question still further. Equipped with the means of calculating the motions of the plasets, could not one work hackward in time, instead of forward, and so deduce the manner in which the planets originated? Afer considering the problem, Newton decided that such an enormous calculation could not, in fact, be carried through, and subsequent experience: has confirmed his judgment. Nowadays we do have illeas on how the planets originated, but these arise from entirely different considerations, as we shall see in a later chapter.

Are there any celestial bedies whose orbits are not nearly circular? The answer is yes, the comets. Newton found that the comet observed in 1680 followed a highly flattened elliptical orbit. This demonstrated that a highly flattened elliptical orbit satisfies the law of gravitation just as well as an almost circular one. The degree of ellipticity of the orbit simply depends on how the loody was initially sel in motion.

In Chapter 3 we saw that a description of planctary orbits can be given in three stages of suphistication. In the first stage the orbits can be regarded

Before Newton's time the motions of comets were thought to be quite unpredictable. Part of the Bayeux
Tapestry, shown opposite, records how
King Harold regarded the appearance of a strange star only as an omen of misfortune. In 1682 Halley saw the same comet, calculated its orbit, and almost correctly predicted its return. The top picture shows its next appearance, as seen from London in 1759. The diagrant shows the exireme ellipticity of the orbit of Halley's Comet compared with the almost circular orbits of the planets.

orbit of Pluto
orbit of Neptune
orbit of Earth
as simple circles. In the secomel stage the deviations from the circles are of such a nature that the planctary orbise can l_{x} - comsidered as mearly circubar ellipses. In the dhird stage, in which the mutual enflucnees of the planets on each ohber ate taken into accome as well as the major influcnce of the Sun, the plenctary orbiss must be regarded as changing minetely all the time. We now see what light the Newtonian theory shed on the orbits pestulated at cach stage of sophestications. The first arose from the manner in which the planets were intially set in motion; the second was at natural consequence of the law of gravitation; the third Newton set himself the task of investigatting by calculation.

In particular he set himself to examine the case of the motion of the Moon, for in this case the third stage of sophistication, which takes account of more than one gravitational field, is extremely importathe as we already saw in Chapter 3 . Newton took into account not only the gravitational force acting on the Stenn from the Earth, but also that acting on it from the Sum. Ife found that almost all the irregularities in the motion of the Moon that hat wo mothled the astromomers of antiquity could be explaned in a natural waty ly the bew theory: There were still a few small discrepancies lectween observation and calculation.
and these we shatl refer toragain in the next chapter. Sullice it, for the moment, that the major part of the hiflecto intractable problem of the notion of the Moon had been solved.
several times in previous chapters we have had aceasion to refer to the phenomenom of precessions. The Larth's axis of rotation is not perpendictar to the plane of the Varth's orbit. 'laken ower a fex vears, the direction of the axis of rotation cath be regarded as sensifly constam, but wer it long priond of time we have to recognize that the axis mowes aromed a comical surlace. The axis of the cone is taken perpendicular to the platue of the Earth's orbit, and the half-angle of the cone is 23^{3} As time proceds the Larth's axis of rotation moves around the cone in such at wat that it ahays passes through the vertex. It completes obe circuit at the cene in about 26,0 oo years. It is this metion of the axis that constitutes the phemomemon of precesson. Newton discovered that the effere is catered be the fact that the Earth is not strictly a mitorm eplare. $1 t$ is atl oblate spherodel, the dituster theough the poles leeing some 27 miles less than the diameter through the equator. Because of the lantis strictly nem-spherical shape, the gravitatonal force which the Moom and the Sun exere on it probleces at very light mist. And it is this twist that canses the farthis axis of rotation to mowe aromat its conte.

Newton, indect, calculated the time required fir the motion aromed the cone and obtained almost exactly the corrot answer.

Let is mow back from this third stage of sophistication th the simple case of a planet meving aromed the Sum in an almest circular orbit. The surprising thing is that fon transwerse finece along the circmulerence of the eirele is needed to keep the planet moving. The gravitational theory showed that the only lirce entering into the problem is a radial ome, directed from the planes toward the Sun. The idea that some lieree was needed to keep pushing the planets along their orlits the idea that had been entertained by wontimental mathematicians of the caliber of Huygens could now he completely disperned with.

One detail remains to be disenssed, that of takine the guantity $(f$ to be the same in all cases, of resarding it as a constant. Newtom had already tested this link in the chain of argument when, at the age of 2.3 , he eeturned from Cambridge to his matise village of Wowsthorpe in Lincolnshire at the sutbreak of the Great Plague. The Lormula 6 ; $M \times m: r^{2}$ comld not omly be used for determining the period of revolution of the Monn aromel the Earth in the manner described abose; it coutc als, be used for finding the speed with which a verticallyfalling loody drops to the surface of the Earth. The quantity M would represen the mass of the Varth in both cases. The quantity r would, however, be different in the two cases. In the first case it would represent the radins of the orbit of the Mom, and in the second case it would represent the radius of the Earth itself. (Thee mass m woukd also be dieferent in the two cases, hut this did not mater since m canceled out of both calculations. We have already noticed Galiter's great discosery that the orloin followed by a bedy in a gravitational tiedd is independent of the mass of the booly.)

From this it followed that if the ratio of the values of r in the two cases were known, then the peried of revolution of the Mosm around the Earth and the speed with which a falling leoly dropped from a known height reaches the surface of the Earth would give the values of the prodect $C \times M$ for the two cases. Since the prosluct was found to be the same in looh cases, then the quantity fi must be the same, since the mass of the Earth, M. was certainly the same. Besides testing the constancy ol

[^7]the value of 6 this ingenious argument also showed very claarly that the Moon is lecld in its onloit by a radial force and not by a transserse one, since it was plainly a radial force that cansed boelies of fall wertically to the gromad.

This was in the year bliti5. Twemty-two years later, in 1687, Newtom's great work, the Philasophiae Naturalis Principia Mathematica, was seen through the press by Samuel Pepys. What Newton tad done for the first time was to show that the phenomena of the physical world were aceessible to precise calculation. If one knew how a system was started off then its subsequent behavior could be calculated. This was the science of dynamics. While it is true that Newton dicl not show that all natural phenomena were accessible wo mathematical inwestigation, the range of phenomena he did consider was sufficiently wide to convince mankind of the general proposition that if ome knows the present state of affairs completely, one can calculate the future.

With certain reservations relating to modern developments in quantum theory, all sulsequent scientific experience has confirmed this tremendous idea. The apparently impenetrable undergrowth in which scientists had hitherto been laboring was suddenly cleared away, and a new path was opened before them.

PHILOSOPHIÆ

naturalis

IMPRIMATUR.
S. PEPYS, Reg.Soc. PRXSES. Yanti s. 16S6:

LoNDINt,
Juffin Sorctatis Regie ac Typis Jofiphe Sireater. Proftant Vonalesapud Sum, Simibad inli; nia Principis Willis in Cacmiecrio D. Psult, aliofif; nonnullos Bibliopolas. AnmoMDCEXXXVII.

Chapter 6 The Post-Newtonian Era

So great were the advances in mathematios and the phesical sciences during the Newtonian Age that it took astronomers something like a century and a half to exploit them at all filly. Their achievements during this period, which lasted from the carly eightenth century to about the middle of the ninetenth century, catu consebiently be divided into three parts. First, they attained far greater accoracy than ever before in measuring the pesitions of stars and planets. Next they emplosed the Newtonian mathematical theory of gravitation to explatin not merely the broad leatures of planetary motion lont also many of the intricate details of motions within the Solar System. Finally, they began to reach ont beyond the Solar System inte the larger miverse outside. It is simplest to consider cach of these major developments in turn.

The P'ositions of Stars and I'lancts

The Pest-Newtonian era began with a strong cmplasis on the practical applications of astronomy. In 171.f, British sea captains presented a petition to the Ifonse of Commons asking lor a solution to the problem of determining longitude at sea. As we saw in Chapter 2 , determining latitude is com-
paratively casy; all one meed do is to observe the elevation of the sum at midday. But the determination of longitucle is more diflicult.

If you were dropped by parachute on to some remote, and to you unknown, point on the liarths: surface, you would find it quite impersible work out your longitude unless you had a record of the time being kept at some standard meridian on the Darth, saty the ancridian of (irconwich ()toservatory: But if you did hawe that information, it would be just as casy to determine your longitude as your lationde. Jou would merely have to find the moment of midday at your own pesition and compare it with the time then being registered at Gecemich. Bach diflerence of ome losur between the two times corresponds to a difference of 15 of longitude. For example, suppose that at your noon Grecowich time was 9 ficlock in the morning, yon would know you were placed three hours east of Greenwich. In other work, jour longituele would be 15 liast. The dilliculty lies ouly in how you are for kow the time at Greawich.

Tisday, provided you had a radion reveiver, son coulal casily piek up one of the freguent transmissions of Gircomwich Mcan Time, but in the

 which wad to fao to the lint.........

cighteenth equtur! wo such casy meats was atailable. 'Frace, there were pendalum dexhs, late the rolling and pitching ol a ship subjected them to such gross errers that they could sose be relied 1 pern (1) show the sombe time as the lome-port clocks bes Which they were set at the legembing of a voyage So it was maturat that people should turn their attention to using the mesements of the plamets and their satellites which can be viewed simaltaneonsly from moun parts of the Earth as a means of lixing the time at some standard meridian

Already, almost a humderel jears carlier, Galiken had been thinking along the same lines. (ialilens idea was to use the monens of Jupiter. He one cemblel work ont in advance precisely what positions these monos would be in, hour ly hour, for many months ahead, then it would be possible to proxide seanen with an almanac tabulated in terms of some standard time, say the time at Geremwich or the time at Genea. A scaman would then be able to ohserve the position of the moons, search the almanac watil he found the same pesition, and read off the standard time. One drawhack to the scheme was that the pesitions of heavenly berlies camot be ohserved whenskies arecloudy, but the project lailed For two cven more cogent reasems. First, it was next to impossible to make the necessary observations from the deck of a molling ship; next, it prowed incredibly difficult to do the calculations which such an almanac demanded.

When the problem was put to Newtom he thought of a similar lat simpler idea. Our own Mam moves constantly against the backeround of the stars. Whane conld work ont in advance just where the Morn was going to be hour by hour, then an almanac of the Maxis motions conlel le provided. In this case the seaman would have to choserve the stars that lay near the Mexn and then. Iny comsulting the almanare, le comld infer the standard time. The second of the difliculties which applied to Galileo's idea applied alser to Newtoms, and for this reasen stome forty yars were to elapse lefore anything came ol it. Newten himsell tried work che the fiture motions of the Msom, but fisund it so dillicult that he declared it to be the only problem that ever made his head ache. Indeed, it was sot until after Euler imented new mathematical techuiques that reasomably accurate calculationsol the Meon's lifure motions lecame practicable. Such calculations were actually carried through by 'lobias Mayer, who published his tables in a form suitalbe for the determination of longitude at sea in the year 17.5^{2}.

By an odel triek of fate, just as it becante possible (6) wse the Mown as ant astronomical clock, a mechanical invention made the whole method obsolete. An English inventor, John Harrison, probliced a chronometer, wot regulated by a penduhnm, which prowed itself capable of keeping accurate time at sea over a long period. Tobias

In theory longitude can be found by observing the positions of the moons of Jupiter and consulting a table listing the times of those positions at a known place. Up to the eighteenth century, however, it was hard both to work out the table and to make the observation from a rolling ship.
at 90° th Clock in the Evening.

1	4.		3.			\bigcirc	.	.	1.0
2	-		,		2				
3		\bullet		21		0	*		
41			4	,		\bigcirc	1.2		
31					-	-	2.15	,	
61				-		0	\cdot		

Maver"s Moon choch and Ilarrison © marinc chronometer were both tested witl lis the Jaremesmer Roval of the sime, Nevil Maskehne, who fonmed
 With the Jown elesk it was posible wodermime longitade corrects w whinh four minntes of are: with the chamometor the margin ol error was onl? alxat onte mintute of are

Maskelone was ficed with a solmolat delicate humats problem. "The Braish gevermment hat
 the longitule problem, and Maskelyme was lefi to decide bow the money should lo apportioned. His decision was that it should be shated equally letwern the two methots. This was lair. The onls questionable point was that al the half-prize paid lor the Maxen clack, lialer received very little. But sinee most of the hall-shate for the Monon dock was receivel be Mater's wilow, there is, perhaps, litile to complain aloott.

- It the time of the samen's petition, some forty years carlier, the problem of the Moxn clack had been relierred to the newleestablished firecowich Olservator!: The lisst Astromomer Rewal, John Fimmseed, haen filt that he cembld lxest assist the project by pletting accurately the background ol stars against which low Memen moses. To this end he determined the pesitions of nearly 3.0 on stars to whith an accuracy ol about ten seconds of are alout six times eloser that the ome minute of are
that Ticho, Brate had achieved. This work whieh Fiamsoed started as something merel! ancillars Io the Mown clack project turned ont is lxe of surpassing astrommical inportance: lior in pursming the prograta of accurate pesition measurement, the thiral Astomomer Rosal, Jame Bradley, mate a remarkable discowery whith greatly assisted the comergence of moxern astronomy:

Tor appreciate the importance of Bratley's discower! we most take a second look at the problem of clelining pexitions on the collestial sphere, whiek we met with in Chapter 1. Wer saw there that in one system we can regard the polar axis of the celestial sphere as an extension of the Varthe axis of ronation, and the equator of the celestial spluere as lying in a plane at right angles to that axis. Before we can state the longitude of a star, we monst then decide on some arhitrary point on the celestial equator from which to measure. In the equatorial system the arbitary pesint chesen is the First Point of Aries (γ), one of the two promes at which the plane of the liarth's orbit aromed the Sun the ecliptic) cuts the celestial equator.

In all our previous disenssion we regarded the dircction of the Earth's axis of rotation as leing fixed with respect to very distant ohgeets it she miverse. But is this actually the case? The answer is that it is mot.

The diection of the Earth's polar axis is constamty changing. This means that the celestial

equator is changing too. Fien the First Point of Aries is constanty changing, a fact which the great Gerek antromomer, Hipparchus, realieed. Hipparchus probably establistace this be comparing his own ofservations of the equinexes, made with the help of the Hipparchus ring described in Chapeer 2. with the records mate carlier b? Babylonian astronomers. Unless be made the rasla assumption that the older the observations the less they could be relied on, there was only one conclusion to be drawn. The comparison diselosed that the position of the Sun at the equinoxes, against the background of stars, had changed considerably ower a period of abome 2, owo years.

The length of this time scale is signiticant. If we are not conecruct with olservations made wer long periods of time, and if we are not concerned with extreme accuracy, then it is satisfactory to ignore the changing direction of the Earth's polar axis. But if we are to achieve memern standards of accuracy the slight change of direction from year to year must quite certainly be taken into accoum.

For many centuries after the time of Hipparchous no one conld explain u hy the direction of the Farth's polar axis changes. Niwtom's theory of gravitation gives a complete explanation of the phenomenon. Consider the situation shown in Figure 6.1. The line $O A$ is drawn perpendicular to the ecliptic, which is the plane of the Earth's motion around the Sun. The Earth's axis of rotation makes an angle of approximately $23 \frac{1}{3}$ wh this line, and this angle is maintained to a close approximation thronglow the motion of the axis of rotation. That is to say, the axis of rotation precesses about 0.1 in much the same way as the axis of spin of a top precesses around the vertical direction.

This precessionat motion arises becanse the Barth is not a perfect sphere. The Larth's polar diameter is some 27 miles less tham its ceptatorial dianeter. This camses the gravitatomal poll of both the Sun and the Moon to put a wist on the Earth, and it is this twist, or torque, that canses the precessional motion. Despite its far smaller mass, the Moon plays a greater part than the Sun in producing this twist, simply because it is much closerer to is.

The time tation for one complete precession of the Earth's axis is about 26,000 years, so from year to year the motion is ofvieusly very slight. In lact. the axis of rotation moves in a yoar thengh an
angle of only some twenty secomels of are. But once we beeome concerned with pessitional accuracies of the oreler of ten seconds or better, as Flamsteed and Bradley were, we must take account of the changing standard of reference. Because the main effect of precession is quite smoth from sear to year, thore is mo dilliculty in making a proper correction to allow for it.

However, in addition to this smowh precession there is a much smaller motion which varies from year to year. He the plane of the Moen's motion around the Earth were the same as the plane of the Earth's motion around the Sum, this latter complication would not exist. But the Moon's orbit is slighty inclined to the ecliptic and deres not stay fixed with respect to the Earth and the ecliptic. Indecel, the Mom mowes only approximately in a plane-a plane that slews round with respect to the axis O.I of Figure 6.1.

The situation is ilhstrated in Figure 6.2, where the line $O B$ is drawn perpendicular to the plane of the Mown's orbit, and $O .1$ is again drawn perpendicular to the eeliptic. Over a perioxt of a few months the Noon cam be considered to move in the orbit shown in our figure. But over a longer periocl we have to take into account the fact that the line $O B$ precesses about $O .1$, the periose of the precession being 18.6 years.

Evidently, then, the plane of the Moon's orbit presents a different aspect from year to year and Whis causes the effect of the Morn's pull on the Earth to change from year to year as well. Becanse of this variability there are corresponding fluctuations in the rate of precession of the Earth's axis, and each complete cicle of these fluethations takes 18.6 years. It was Bradley who first discovered this effect and who referred to it as a mutation.

We have seen that precession arises because the Earth is not a perfect sphere. The ralization of the impertance of the deviation of the Earth from perfect spherical form stimulated great interest in geodesy: In particular, the whole problem of the shape of the Earth was taken up by the remen Academy of Scionces, and in the years following 1735 measurements of mprecelcmed accuracy were made in places as widely separated as Pern and Lapland; and for the first time in human history it became possible to give a tolerably correct assessment of the shape of the Earth.

Before leaving the question of precession it is worth noting that over a long period of time it

Top: The Octagon Room at Greenwich, now a museum, as it is today. Below: The same room as it was in the time of Flamsteed. It was here that Flamsteed set out to assist the Moon clock project by plotting the background of stars against which the Moon moves. On the left is a star map from his Atlas Coelestis. Flamsteed plotted the positions of nearly three thousand stars to an accuracy within ten seconds.
gives rise to grows changes of the seasons. The Darthes axis of rotation completes half of a precessional eycle in 13.000 grats, and ist that time smmmer and winter are completely interchamged. That is to say, the part of the Earth's orhit where the northern hemisplicere now experienes stmmer and the southern hemisplare winter will, in $\mathbf{1 B}_{3}, 000$ vears time, be the part where the berthern hemisphere experiences winter and the sonthern hemisplicere smmoner.

In his pursuit of accuracy in measuring the pesitions of stars and plancts, Bradley made another disenvery which was to have lar-reaching consequences the discovery of the plomomenon of aberration.

In Figure 6. 3 light from a star is admitted through a slit, S_{1}. The question now arises: where must a second slit. S_{2}, be placed so that the light passes through S_{2} also, remembering that light travels in straight lines? The olbvious answer is on the line
joining S_{1} to the star, so that the star and loth slits lie on the same straight line. This answer is correct if the slits are at rest, but il diey are in motion in a dierection transwerse to the direction of the star, the situation is altered. It is aleered becanse the light takes a definite periend of time to travel from S_{1} to S_{2}, and during that time S_{2} has moved relative to S_{1}. In that case we have to place the slit S_{2} off the straight line joining S_{1} to the star, as shown in ligure fo.p.

The sitnation is made clearer by the two parts of Figure 6.5. In the first part we have a pulse of light just passing through the slit S_{1}. In the second part the pulse of light has now reached the slit S_{2}, and in the time interval between the two parts of the figure, the slits S_{1} and S_{2} have moved as shown.

Returning bow to Figure fi.f, we see that the line joining S_{1} and S_{2} makes a slight angle to the direction that joins $S_{\text {, }}$ to the star. This result is of importance when we consider the problem of

Figure 6.1
OA is perpendicular to the ecliptic. The Earth's axis of rotation precesses about OA just as the axis of spin of a top precesses about the vertical direction. Time for one complete motion is about 26,000 years.

Figure 6.2
OB is perpendicular to the plane of the Moon's orbit, OA perpendicular to the ecliptic. OB precesses about OA, the period being 18.6 years. Thus the plane of the Moon's orbit (and the effect of the Moon's pull on the Earth) varies. This causes fluctuations (nutation) in the rate of the precession of Figure 6.1.

[^8]
star
Figure 6.3
iwo slis, S, and S, so that light from slar passes through both. sids have no motion transverse on straight line joining S_{1} to star.

Figure 6.4
If slits do move in a direction transverse to that of star, \mathbf{S}_{2} must lie off that line by an amount to be measured by the above formula.

Figure 6.5
Light and both slits move at finite speeds. $\mathrm{S}_{\text {: }}$ must be so placed that it takes same time to move from first to second position above as light takes to travel the distance S_{1} to $\mathbf{S}_{\%}$.

Figure 6.6
Figures 6.4 and 6.5 explain why the axis of a telescope must commonly be offset when observing a star. But the degree of offset varies. When the Earth is in the position shown, it will be maximal for the second star and zero for the first. When the Earth is at P, the reverse is true.
pointing a telescope at a star. We can think of S_{1} as leing the objective of the teleseope and S_{2} as being the eyepicce. The lime from S_{1} to S_{2} then represents the axis of the telescope, and we see that this axis must be slightly affet in order to observe the star from the direction which would be appropriate if there were no motion of the telescope.

If the elegree of ollset were alwass the same for all stars, this aberration effect would be of mo practical importance, but this is not so, as we can see from Figure 6.6. Here we have the Varth at a particular point in its orhit aromed the Smm. If we peint the teleseope teward the first star, which lies in the direction of the Farth's motion, there is mo motion of the telescope transwerse to the direction of the star. There will therefore be no aberration effect. Now suppose we point the teleseope at the second star. In this case the motion of the liarth, and therefone the motion of the weseope, is wholly transweme to the direction of the star, and the effect of alserration is at a maximum. In fact, the degree of ofliset recpuired to obserse the secomel star would be about twents secemds of are. We see, theretore, that alorration does not distort the diections of the stars in any uniform way.

The simation is made even more complicated bỵ the changing diection of the larth's motion. For instance, after a quarter of a yar, when the bienth has mosed whe perint Pof Figure b.6. the situation is precisely reversed. The motion of the Earth.

and therefore the motion of the wesedpe, will then be transverse the the direction of the list stat and
 hand, the morton is mow along the direction of the second star and this will accordingly! be free from aberration. So for every star the distortion varies derangement the sear. For stan that lie in the plane of the Earth's oblsit aberration is sometimes absent; at of her times it is at a maximum. For stars that den not lie in the plane of the Earth's orbit aberration is never absent. Consider. Cor example, a star lying in a direction perpendicular to the plane of the barth's orbit. When a telescope is pointed at such a star, the direction of the Earth's motion mast necessarily be transverse to it all all times al the year.

To summarize, then, the motion of the Earth distorts the pattern of the stans on the sky. The distortion varies throughout the year, and also accoreling to the angle that the line of sight to a star makes with the plane of the Dearth's orbit : and the general order of the distortion is about twine! seconds of are. This was the remarkable discovery which Bradley made.

If we stick ow a simple form of geometry, avoiding the complications mentioned at the outset, in Chapter 1 , then the phenomenon of aberration offers convincing evidence that the barth moves

Left: Page from an early nineteenthcentury book showing the zenith instrument which James Bradley used for many of his observations. Right: Photograph of part of the instrument (preserved at Greenwich), and notes made during the course of one of Bradley's observations.

$$
\begin{aligned}
& \text { Aciopidy y unto to y "Plumerine } \\
& \text { !tin o }{ }^{\text {a made afford at } g} \\
& \text { i.4*-2" yithar érelrid } \\
& \text { 4) } \uparrow \frac{1}{2} \text { lar } x<y^{*} C r y / \\
& \text { 91.24 fear nuevt out } \\
& \text { af foot wi } 9 \text { fit ga il course } \\
& \text { - irthi } 9 \text { percievs y lar too } \\
& \text { "wm Rom y' rings Raki \& } \\
& \text { if (roplenead \& within a great: } \\
& \text { of a mivmhe after,ith weir cafid } \\
& \text { fin quid y'f me'foruil til g iasi } \\
& y^{i} \text { "quiz if this perficfly } \\
& \text { vhion } 9 \text { cons ono } \\
& \text { at } 11 \frac{3}{4} \text {. ob that by this } \\
& \begin{array}{l}
\text { oficrmalion } y^{\circ} \\
\text { month is afuls }
\end{array} \\
& \text { too mendel south. } \\
& \text { Fut axdiapting } \\
& 4^{\prime} \text { melt } \mathrm{C} \text { phametiver } \\
& 9 \text { earned } 3^{2} \text { sereceal } 8 \frac{1}{3}
\end{aligned}
$$

Safradery
aroumd the Sun-the kimd of revelene for which Galileos songht in vain. We hate seco in an earlier chapter that in the almence of such evidence, the system of Jicher Brabe, in which the Sun is assumed to bowe arouml the Earth and the other planets. around the Sill, gives just as goore a descriptions of the planetary motions as dex's the system of Copernicus. But 'lycho Brahe's system camnot explain the alorrations which Bratley olserved. For that, we must follow the system of Copermicus.

As an aside, however, it may $1 x$ memtioned that the modern theory of relativity still allows us to regard the Larth as the center of things, provided we are willing to dispense with simple Jinclidean geometry: But if we persist in regareling the Earth as fixed, we have to go far levond the complexities of the Ptolemaic picture or of the Tychonic picture in oreler wexplain the phenomenon of aberration.

It is clear that the phenomenon would not arise if light traveled at infinite speed, because the light would then ravel from slit S_{1} w slit S_{2} of Figure 6.3 before the slits themselves had time to move. Aberration is, therelore, a phemomenon that depends on the finite speed of light. Indeed, the angle of distortion shown in Figure G. f is simply the ratio of the speed of transterse motion of the slits to the speed of light itself. This raises the immediate question: what is the speed of light? The classic determination is dhe to the Danish astronomer Olaf, or Olans, Romer who, in the year 1675 , obtaned a value whose principal
uncertainty arose from an inaccurate knowledge of the true size of the Earth's orbit. Here is a description of Röner's metherd.

Figure 6.7 shows the orbit of lo, the inmermest of the four large satellites of Jupiter which Galileo firse discosered. Its distance from the planet is closely similar to the distance of the Moon from the Earth. We are able to see lobecause of the sumlight reflected from its surface, but at times it passes into the shadow cast by Jupiter itself, and we cannot observe it when it lies in this slatow. Suppose, now, that we wish to determine the length of time that lo takes to move once round its orbit. The olvious method would be to make a mote of the moment at which lomowes intocelipse. Then we might say that the time interval between successive moments of eclipse determines the time taken to complete one circuit. But is this exactly right? Jo examine whether it is or not, we must consider a little more closely just what happens when we make our observations.

At the moment the satellite passes into the shadow, light ceases to be reflected from its surface. The change from light being reflected to light not being reflected travels across space from Jupiter to the Earth, so that the cessation of light is recognizable on the learth only some time alier it has actually taken place. But how long after? The answer depends on how far away the Larth is from Jupiter. In fact, the delay is simply the elistance of the Earth divieled by the speed of light. Proviled the delay

Figure 6.7
The obvious way to find how long lo takes to move once round its orbit is to measure the interval between two successive occasions when it moves into eclipse.

Figure 6.8
When the Earth is at D the distance beiween Earth and Jupiter shortens between successive eclipses of lo. Light, moving at finite speed, takes less time to reach us, and we thus underestimate the time between two eclipses. When the Earth is at B, precisely the reverse applies.

In 1675 Olaus Romer made use of the lengthening and shortening of the apparent periods of the satellites of Jupiter to deduce the speed of light. The picture shows Romer at

Figure 6.9
Because the plane of the orbit of Venus is not identical with that of the Earth's orbit, it is only rarely that Earth, Sun and Venus lie almost on a straight line. Such occasions give the opportunity of measuring the distance of Venus from the Earth.

Figure 6.10
An easier way is to find the angles at which the planet is sighted from two stations at a measured distance apart at the same instant, and make a simple trigonometrical calculation. But in the eighteenth century it was hard to establish simultaneity.

Edmund Halley laid elaborate plans for observing the transit of Venus of 1761 and using the observations to establish the absolute dimensions of the Solar System.
is precisely the same at ewe successive moments of eelipere-that is, provided the distance of the Darth from. Jupiter is precisely the same- denote meflex of measuring the time which lo takes te complete obs circuit will be correct. But if the distance between the Earth and Jupiter changes between ole erlipere and the west, our metier will quite Nearly le incorrect, because the amount of elegant will be different in the two cases.

The question therefore arises as to whether the distance of the Earth from Jupiter dens or doses not change during the time interval between two successive eclipses a aud the answer is that it most change if the Earth is mon ing toward or away from Jupiter. Reference of Figure 6.8 shows that the situation in this respect changes throughout the year. Ae the prints I anted $($ of the Earths orbit. the Earth is moving transversely w the direction of Jupiter, and the distance of the Earth from Jupiter does not then change appreciably between two successive eclipses of Io. But when the Earth is at l) the distance shortens starlily, which means that we shall underestimate the time between successive eclipses. When the Barth is at B the reverse applies: the distance then lengthens steadily, which means that we shall overestimate the time between successive eclipses.

N/AKh om

 fores
 Trine chastidyer

 w^{m} Hershel Ene Yenmor YIM. Sin Il timondiut

What Romer found was that the apparem periods of motion of Jupiter's satellites dos in lact shorten when the Earth is mosing toward! Jupiter and lengthen when it is moving away: And, inderd, from the amount of the shortening and lengthening loe was able to deduce the speed with which light moves. In lact, the fractional changing of the orbital period ol the satellite is simply the ratio of the speed of the Earth's motion to the speed of light. Römer measured the fractional shortening of the period of the satellite and, since he knew approxinately the speed of the Earth's motion, was able to fleduce the speed of light. In this way he domonstrated its chormons value-about 186,000 miles per second. His contemporaries were seeptical about the result, and indeed it did not bocome widlly accepted motl alter Bradiey's discovery of the phenomenon ol aberration. But that phenomenon gave an independent measure of the speed of light which elosely corroborated Römer's findings. We can see how this independent measure came into operation by relerring again to Figure 6.4. The angle of aberation shown there is determined by exactly the same ratio as the fractional shortening of the perion of obbital motion of the satellites of Jupiter, namely the velocity of the liarth's motion to the velocity of light.

The Wathematics of the Solar Sysem

'Today we can reasomably expect any intelligent young student to know that the distance from the liarth to the Sun is about 93 million miles; but even the greatest astronomers of classical times had no knowledge of that important lact. Right up, (t) Newton's day the distance was kmown only to within about 3° per cent. So the whole long controversy between the Copernican and the Pbolemaie schools, like the work of Kepler, Gatileo and Newton, was concerned with the shapes and the relatiee sizes of the planetary orbits rather than whth their absolute sizes. Yet further progress toward understanding many of the line details of the Solar System depended essentially on determining abosolute sizes. And it was to this problem that the second Astronomer Royal, Elmund Halley, addressed himself during his term of office, from 1720 until his death in 1742 .

The method of determining the seale of the Solar System which Halley invented is illustrated

British men of science, 1807-08.
The signatures, grouped as the men, include those of Cavendish, Maskelyne, Joseph Banks and William Herschel, all of whom played a notable part in the development of astronomy.

The Transit of Venus, $1 / 69$

Plans for observations of transits of Venus were carried out in 1761 and in 1769. In the latter year Sir Joseph Banks and Captain Cook made observations from Tahiti. Above are Cook's ships in Matavie Bay The map of the bay, on the right, marks Fort Venus and Point Venus.

Top: Lalande's map, made before the earlier transit, showed the effect which would be produced by parallax on the times of the planet's ingress and egress at the transit of 1769. Right: Main observation points, 1769 Below: Sir Joseph Banks showing a telescope to natives of Tahiti, as an artist imagined the scene. Bottom right: The camp at Fort Venus.

in Figure 6.9. Here we hase the orbits of Vemes and the lath. Becanse Vimes moses mome rapills round its orlut than the liarth does, a stuation often arises when the Sum, Vemus and the Varth lie mote or less in a stratight line. The collinearity of the eenter of the Sum wht the centers of the two plamets is bever perlect, howeser, because the plate of Vemus's orbit is not ielentical with the plame of the Earthe orbit. In each circuit of is orlhit Vems crosses the plane wh the Varth's orbit twice. If on either of these eccasions the Varth happens to be at the appropriate point ol its orhit, there can be a gext approximation to collincarity. On such rare orcasions Venus is projerted as a dark bloh against the bright background of the Sun's disk. An observer on the Earth therefore sees a dark spen mowe acress the lace of the Sim, the monion arising. of course. from the progress of the Varth and Vemus along their orbits. Now it was knewn in Halley's time that such a rare combination of circumstances would esear in 17 lit

Halley's idea sprang from the circumstance that the path of Vems acress the Som is not the same for dillerent teresstrial obsersers. Thus wo observers at ditierent terestrial latitudes will sere Venus sweep acress the Sun along two dilterent chords, the amome of the difference depending om the size of the Earth itself, on the particular geographical pesitions of the olservers, and on the true scale of the Solar System. The first two of these factors can be comsidered known. Hence the third factor the trace scale of the Solat sistem cat be
 le meatsured with adequate accuracs

Halleys plans for observing the tramsit of Vimes from varions tertearial stations were carrical throngh in 17th, and also at a later finorable transit in 17 mg . As a result, the abotnte wale of the Solar System was estahlished on within an atcoracy of about 5 per cent a comsiderable impresement on the previous 26 to al $^{\prime \prime}$ per come.

Further attempts to compley this methot had to wait until the nincternth centors, when daborate preparations were made te observe the liverable transits of 18 -t and 1882 . The preparations were carried through by the Stronomer Royal of the day. George Airy, in comsultation with the Rexal Astronomical Society, but in spite of all the carclal precautions taken, the result ol these whervatiens were disappointing. Trouble atose from the atmosphere of Vemus, which prevented the position of the planct on the Sun from being defined with sullicient sharpness.

Belore leaving the Vemms transit methons, it is interesting to ask whe the geometricall! lar simpler system illustrated in Figure 6. 10 was met much to be preterred. With the angle at I amel the angle at B both kmown by olserving V Coms at she same moment, and with the distane fetwern the two terrestrial stations 1 and B accorately measured. the otber dimensions of the triangle contel eavily loe calculated. This very simple methot combl. moweover, ixe carried out at atly time There would be no reasom what lor a mame of Vioms.

The asteroids shown on this timeexposure appear as elongated blobs. Through a telescope they appear as mere points of light. Telescopes can thus be lined up on them without ambiguity. This enables observers to make very accurate estimates of the absolute scale of the Solar System.

If we know the sizes of the Earth's orbit around the Sun and the Moon's orbit around the Earth. Newton's law of universal gravitation enables us to work out how the mass of the Sun compares with the mass of the Earth. To work out these masses in absolute terms, we must first establish the gravitational pull of some standard chunk of material. The first man to do so was Henry Caveridish (opposite). With the apparatus on the right he measured the deflection of the small hanging pellets (x) toward the large known weights marked W.

and indeed the presence of the Sim would be a disadvantage rather than an advantage in this method.

The reason lor meglecting the simpler method was that in Halley's day there was no means of defining simultancity for the observers at A and B, and maless the could be done with geat accuracy, cerors due to the motions of the Varth and Vems vitiated the method. But with the invention of reliable mechanical clocks the situation was quite changed. The simple trigonometrical method of Figure f. 10 could then be used. Not only was the great inconvenience of waiting for a transit of Venus dispensed with. Dut Mars could be used perfectly well instead of Vemus; and this provided two further advantages. When at its nearest to us (at a distance of about 35 million miles) Mars lies in a night sky, whereas Vemos at its nearest lies close to the bright Sum itself, and is therefore much more dilficult to observe. Moreower, Mars is not a cloud-cowered planet, and it is therefore casier to specify a definite point on the surface of Mars towarel which the different olservers should direct their telescopes in making the measurements of the angles.

So far mothing has been said of the minor planets and asteroids. The largest minor planet is very much smaller than the Moon, while the smallest asteroids are no more than tiny chunks of rock. Most of them move in orbits lying between those of Mars and Jupiter, but some move ontside this range, and a few come quite close to the Earth.

It turns out that those which come close to the Earth provide the best opportomity for determining the scale of the Solar System. For this purgose the asteroids have one great advantage ower the planets. Because of their small size they appear as mere points ollight, so that there is no possible ambignity in the lining "p of the telescopes of the several observers. In moelern times, by olservation of the asteroids, the distance of the Sin has been determined to an arcuracy of somewhat better than 0.1 per cent.

By comparing the scale of the Earth's orbit around the Sun with the scale of the Moon's orbit around the laarth it is possible, by relying on Newton's law of miversal gravitation, to estimate withont difliculty the ratio of the mass of the Sun to the mass of the Earth. It turns ont that the mass of the Sun is about one-third of a million times greater than that of the Earth. Suppose we wish to go further, and compare the mass of the Sion with that of a chonk of material of a size that can be handled in a laboratory. Before we can make such a comparison, we must be able to measure the gravitational pull, or gravitating power, of our small piece of material. Such a measurement was first made by Heury Cavendish, at the close of the eighteenth century. This made it possible to compare the gravitating perwer of a standard chunk of material with the gravitating power of the Sun; and since gravitating power is directly proportional to mass, we can also compare the mass of the Sun with the mass of some standard

piece of material, sat a piece weighing ome kitegrame. In this way it was established that the Sun's mass is clase to two million millis, million million million kilograms.

We ean determine the mass of a plane by a similar methest to that just described, provided it has at least one satellite. That is, if we kbow the size and the shape of the satellite orbit and the time it takes to mowe aromod that orbit, we can calculate the mass of the planet from Newton's theory of gravitation. IWo of the three itcons of information we need, namely the shape of the orbit and the time the satellite takes to mese around it, can be determined In direct whervation. But in order to determine the aboblute size of the orbit we must also know the distance of the plane from the Earth. And this, again, demands a kowwledge of the absolute srale of the Solar System. It lollows therefore that not only the determination of the mass of the Stun, lumt alse the determinations of the masses of all the planets with satellites, depend on the fixing of the absolute scale of the Solar Sistem.

With this absolute scate firmly established, astronmbers were able th calculate the masses of the five planefs with satellies. Jupiter hats a mass nearly 3^{2+} times grvater than that of the Varth, Satura some 95 times grater. Vrams nearly 15 times greater, and Neptome a lille above 17 times greater; in contrast whoh these large planets Mars has a mass equal to about is per cent of that of the liarth. The following table gives the intormat tion that can be obtamed by combining direct

It is said that Frederick the Great thought everything of importance had already been discovered in science. In view of the great advances of the post-Newlonian era, few astronomers of the fime would have disagreed. It thus came as a bombshell when William Herschel (left) discovered a new planet. A detall from Herschel's portrait (right) is a reminder of his wish to name his discovery after his patron, George III. His notes for March 1781 show that he at first thought he had found a "curious Nebulous star or perhaps a Comet."
observation of the planets with the determanation of the absolute sfate of the Solar Sywem.

Name	Mass
	Larth $=1$
Mars	0.11
fupiter	318.35
Saturn	$95 \cdot 30$
Uramus	1.4.58
Noptome	17.26

Nore than once in the atmene diseussion we have relereed to the line details of the Solar Sistem. What are these fime details.' In earlier chapters we have thenght of the orbits of planets as lecing determised solely bes the gravitational fied of the Sum. We sath that these orlbits are ellipeses and that the Sum ties at one of the leeci. But the planes dos mot, in lact, mose in the ismated gravitationat liedel of the Stur. They are also subjected to the gravitational inllucuces of the other plances. It is true that the mass of the Sum is se great compared with thatt of all the plateres that the gravitational liedel of the Sun dees dominate the motions of the plamets, dmel it is tres that their orbits ate bers nearly true ellipses, let they are mot exactly wo. In lact, allere a circuit of the Sum the corbit denes bent catatl! chese ap on itself.

The problem ef determining platerars orbita with ereat precision is evidently one of surpassine diflicults, for all the planets are mowine all the times and they are moving in different ways, bo that their

combined gravitational field is constantly altering and never exactly reproduces itself. The perturbstons of the orbits produced by these small complicated effects belong to the fine details of the Solar System. Evidently, if these fine details can be worked out mathematically, and can be shown to agree with observation, we shall have a subtle and far-reaching confirmation of Newton's theory of gravitation. This was the great problem of celestial mechanics to which mathematicians of the latter half of the eighteenth century and the first half of the nineteenth century directed their attention. The name of Euler has already been mentioned. To it must be added the names of two great lirench mathematicians, Lagrange and Laplace. Very largely as an outcome of the work of these men, the problem was brilliantly solved. Observation showed that in fact the planets do not move strictly along elliptical paths. They follow more complicated paths which can be logically inferred from Newton's law of gravitation.

It is here that we should note a crucial difference between the outlook of modern science and the geometrical thinking of classical times. Plato though that all motion must be made up of circles and straight lines, because these geometrical forms have a natural simplicity and elegance. The Ptolemaic and even the Copernican descriptions of planetary motions were entirely in terms of circles. Even to Kepler it was a shock to find curves as complicated as ellipses turning up in the analyses of his observational material. And now, when we
consider the fine details of planetary motions, all semblance of simplicity and elegance is gone. Yet so far from being disturbed by the increased complication, scientists of the eigheemb and nineteenth centuries were delighted to find the complexities of their calculations reflected in nature.

In modern science we have no thought that the motion of matter should be simple and elegant, but what we do hope for and expect is that it should obey simple and elegant laws. It was therefore a tremendous satisfaction to find that the manycomplexities of planetary orbits could all be explained in terms of a very simple law of gravitadion, namely the inverse square law, discussed in Chapter 5.

In the above table of planetary masses no value was given for the mass of Mercury or of Venus. Neither of these planets has a satellite, so that the simple method of determining mass described above cannot be applied. It must be determined instead by analysing the gravitational effects which these planets exercise on each other, or on the Earth. For example, Venus produces slight perturbations in the orbit of Mercury, the amount of the perturbstons being, of course, dependent on the mass of Venus. If, now, we observe very accurately the orbit of Mercury or of the Earth, and if we make full allowance for the effects produced by all the planets of known mass, such as Jupiter and Saturn, then the perturbations that still remain can be attributed to Venus. Hence, the mass of Venus itself can be determined. Frons such calculations

Above: Herschel's house at Datchet near Windsor, and the telescope he used for many of his explorative sweeps of the heavens during the early 1780 s . This twenty-feet-long reflector had a twelve-inch aperture Right: Extracts from the journal of Caroline Herschel, outlining how she and her brother worked at this time.

28 my Gournal Ki! I I see that I byen Atug.22.1752 Lo write 2own and drscrife all.rem arkable uppearances I vaw in my Swesps (which were horizontal) But it was nst Fill the lad tur monthe of the sanie yras fefore Ifict the pest encourigement for speriming she sínlighid nught on a grafo plet coviri) by dew on hoor trot withont a hom in thing nour enonght to he within catt: for Atnese to little of the real hewens to be able to point out asry offect for finding it again withow losing ter much tione Ey consulting the fitles. Huet aft'there troublen wers wemorio) when I Anew my harther to \therefore at no great Distance mating obverintiond w-ith fis evariond Instruments on 'g. Stare. Mlanetes sic. an'' could haur his afisistance immediately when g foosita Neiolla or clusteri of Shers, of which I indended to jeve is batalogue (bat at the enf of 1789 I hal only 14. When my fweeping wad interrsifled by beeng ern rloged wits writiong Sown my torothers upervation with the Parge 20 fiact.)

Ihad biowiles the comport he sue that my Burthei woud cotiofued with my endereuses in spoisting him whin ho wanted andthes preason, either to ewn is the Clocks.
it has been established that the mass of Venus is about 82 per cent of that of the Earth, and the mass of Mercury about of per cent.
"Jive Nomen has a mass about ente-cightieth as great as the lathes. 'This is determined from the maturer and extent to which the Morn inlhences the Earth's motion. We have already considered one such important influence, namely the fluctuate tons produced in the rate of precession of the Rath's axis of rotation. Only in one other case can a similar method be weed fo determine the mass of a satellite- the case of Neptune. In all other instances the satellite masses are so small in comparison with the masses of the parent plate ts that any such influences are not readily observable. Here, perturbation methods must be used. This is passible in the case of Jupiter and Saturn, because both these planets possess many satellites. 'The method is (6) study the gravitational influence of sue satellite on the orbits of the others, and the calculations imolved are among the most dillicult in the theory of gravitation. But not even this method will determine all the satellite masses, for some of the satellites are too tiny to prochuce atty appreciable perturbation effects. In interesting feature of this work is that there are only six other satellites in the whole Solar System at all comparable with the Mom in mass. Jupiter has four of the six the four which Galileo discovered. Saturn has one and Neptune one.
'Two of the planets which ligure in our table of planetary masses, Uranus and Nepenthe, were mot known at all in Newton's time. The story of their discovery is one of the great highlights of the perseNewtonian era.

Frederick the Great is said to have remarked that everything of real importance had already been discovered in science, and toward the end of the eighteenth century this did indeed seem to be so. 'The law of gravitation had been discovered. Moll had learned how to calculate the intricate motions of planets and their satellites. Their calculations were found to agree with the ways of nature herself. So it is lite le wemeler that the disonery of a men plate in the year 178 burst like a bombshell on a complacent scientific world.

The discoverer was William Herselsel, music master at Bath. His life there was a busy one. playing the organ for the main church services. giving recitals, and conducting oratorios with what at that time was a huge orchestra and chores. At night he read books on mathematics and astr ronoms, and observed the leavens, at list using only a small telescope which be bought. Sown, bow ever, he was building the first of a series of telescopes that was to culminate in the great 48 -inch reflector, an enormous aperture ley the standards of the eightconto century: Herschel's penchant for doing things in a big way showed both in the size of his orchestras and in the size of his telescopes.
writing Down a mernorxendwo fetching and carving
 of which something of the kin') very moment would recur. Jeri, the eagervif with which, The monuments on the diemcler of the g. Nidus, and observations of the
Planets. D. Sher sin. St. were made was incredifle"g which mussy the seen thy the various gneperd that were given to the Rove. Soc. in 1783. Whirl papers were written in the Dag y lime or when Cloudy might interfered. br sided this the 12 inch opeunhem was furfected before the spring, and many hourtispent at the Turning berk. as hel n night Lear enough for obscuring vier lapsed Fol then some iomprovementy were planed for mingling the mounting and motions of the vicious instruments Then in uss, LTd some tins of new condruce ed eyesicieced to be mode which mostly all were to be made
 excunted by a walahmater. who hod retired home tom vel (and lived m Datrhed (ronmon)bub the wood wish de Fe emploqes. Sind in wad not till wartime fer that

The discovery of Uramos did not demand a particularly large telescope, however. Herschel's arhievement was due less to his instruments than th his method of working and his attitude of mind. Whereas other astronomers peointed their teleseopes at known and predetermined objects, usually with the siew to measuring their positions, Herselnel was an explorer. He searehed the heasens systematically for whatever be could find there. He survered all objects whithout preconceised preferences. The main theme of his astrommical life was to survey the skies with bigger and still bigger teleseropes: and it is a fitting coincelence that the most detailed modern surver of the sky was made with an instrument of an aperture identical to that of the largest of Herschel's telescopes, mamely the $4^{8 \text {-inch }}$ Schmidt telescope on Palomar Momatain.

On Marrh 13, 1781, while he was sweeping the heavens with a 7 -inch reflector. Hersehel came across an musnal object. It was certainly net a star. for it presented a definite disk-like appearance. Never dreaming it to be a new planet, Hersehel thought that he had found some new, strange form of comet. Its planetary nature was, in fact, demonstrated by Lexell, at St. Petersburg, about a year later, when be fenud by calculation that the new wjort lies beyond Saturn and that it moves in an almost circular orbit around the Sum. Herschel was immediately houred by the Royal Society of Lomden. The King became his patron, granting a pensions which emabled Hersehel to devote himself (1) astronomy: In return for thes munificence Herselael named the new planet Georgium Sidus, a name that naturally found no favor with astronomers the world over, who preferred the name Uranus, suggested by Bede.

That Herseloel's suceess arose out of his method of working is made clear by the fact that other astronomers had observed Uramus on a number of occasions without noticing its exceptional character. beveral such ohservations had been made by the Firench astronomer, Lemonnicr. These former observations were of great value in calculating the orbit of the new planct, from which it was possible (6) predict its future pesitions. Various tables giving these future positions were soon drawn up, notably by an Italian astromomer, Barnabas Oriani. So by the end of the eighteonth century the situation was that a new planet had been discowered, its orlsit was known, aud the path along which it was expected to move had been calculated.

But during the second quarter of the nineterenth eentury suspicion gradually hardened to certainty that Urams was not moving along its assigneal path. Admittedly the deviations were small, but they were well ouside the range that might $1 x$ accomed for bey errors in carclully-made calculations. The deviation of Uranus from its expected position amounted, in fact, to aloout twenty seconds of are.

What was the canse of these perturbations?' Perhaps Uranus was not the outermost planet of the Solar System. Perhaps there was some still more distant planet whose gravitational effect on the orbit of Uranus was producing the olserved discrepancies. The discovery of Uranns itself had opened men's minds to the possibility that the confines of the Solar System had not yet been reached, and such speculation was therefore natural. But only two mathematicians tackled the following problem which such speculation pused. Given the deflections in the orbit of Uranus, find purely by theoretical calculation the mass and the pesition of the hepothetical new planet; then, from the deduced theoretical position, actually diseower the planet with a telescope.

The two men concerned were John Couch Adams, a sonug graduate of St. John's College. Cambridge, and a French astronomer, Urbain Jean Leverrier. Adams was the first tostart his calculations and the first te, finish. He commmirated his results to the Britist astronomical authorities. notably to Sir George Airy, the Astronomer Royal. and to the Reverend J . Challis, the diecetor of the Cambridge Ohservatory. These men wereseceptical

of the value and accuracy of Adams's work, and were consequently show and dilatory in their seareh for the new planet.

Leverrier managed things with much greater efleciency: Whereas demms took some five years wer his calculations, Leverrior completed his in two. He then sent them to J. G. Galle of the Berlin Observatory: Galle pieked up the new planet almost immediately, on September 23,18 fit and instantly sent news of his diseovery to leverrier. Galle suggested the name Janns for the new planet, but Ieverrier preterred to call it Neptunce, and its diseowers, under that name, was amounced in Paris without delay.

Only after that amonucement was the work of Adams made known to the seientific wordd. Fo the French, the clatims made for Adams smacked strongly ol phagiarism. Why hat there been no mention of the work in aty reputable seientific journal? Even a letter in the press would have been sullicient to establish the genmineness of Aclams's claims, or rather of the clams made by his supporters, notably bụ Sir John Herschel, son of the cliscowere of Cranus. For Adams himself took no part in the discussions that followed.

Much hat been writuen about this mhappey affair. The blame, if blame there be, is not casy to place, for a strange compound of homan values and scientific values were insolved. There were elements of strong conservatism and even of conceit in the attitudes of Airy and of Challis: Adams himself was reticent to a fants; and the opinion of Airy and of many other astronomers that the problem itsell was mathematically insohble, was
very bearly tree. If the incident had occurred 75 years earlier, or 75 vears later, the problem would meleed have been insolbble. By a great stroke of luck Nepeune then happered to foe in the one part of its arbit that permitted of a solution of the problem: otherwise the celorts of both Adams and Leverrier would have been doomed to failure:

Both men in fact made a very doubtiul assumption throughont their calculations. They assumed that Neptume olseyed an empirical rule known as Borle's Law. The rule is expressed by the following simple lommala. For each planet first write a four, then add a momber that varies from planet to planet: Lor Mercury, the innermost planet, the number is zero; for Venus, next nearest to the Sm, it is three. After Venus the number is simply doubled each time. For the larth it is six. for Mars twelve, and so on. The numbers obtained in this way run in the series, 4, 7, 10, 16, 28, 52, too, 196 and 388 . If the actual mean radii of the planctary orbits are measured by a seale on which ten units represent the radius of the Earth's orbit, then the planctary orbits run in the sequence 3.9 . $7.2,10,15.2$ and so on. These figures lie strikingly. close to the series suggested by Bode's Law.

Nowadays, astronomers are divided in their opinions as tw whether this near-agreement is a mere concidence or whether it has some deeper phesical significance. The seepties point out that given any limited seguence of numbers it is always possible to find some rule that fits the sequence tolerabl! well. But in the time of Adams and Leverrier mobedy dombed the significance of Boxle's Law: Indeed, there were two apparently

	Mercury	Venus	Earth	Mars	Ceres	Jupiter	Saturn	Uranus	Neptune
	4	4	4	4	4	4	4	4	4
	0	3	6	12	24	48	96	192	384
Law	4	7	10	16	28	52	100	196	388
Observation	3.9	7.2	10.0	15.2	27.7	52.0	95.4	191.9	300.7

The memorandum opposite states that it was the unexpected perturbations in the orbit of Uranus that spurred Adams to seek another planet. The third horizontal row of figures in our table shows the comparative orbits of planets as expected from Bode's Law. The bottom row of
figures shows the comparative orbits as established by actual observation (and as depicted in the diagram). When it was first suspected that yet another planet might lie beyond Uranus, scientists expected its orbit to be nearly as Bode's Law suggests. In fact it proved much smaller.

George III granted a total of $£ 4,000$ toward the cost of building this 48 -inch reflector-the largest ol Herschel's telescopes. The king took pleasure in taking people through the instrument. To the Archbishop of Canterbury he said "Come, my Lord Bishop, and I will show you the way to Heaven." Herschel employed the instrument in surveying the sky in greater detail, and in reaching out to a study of the Milky Way.

On the right is a modern photograph of the North America Nebula in Cygnus, showing certain dark regions which appear to be almost starless. Herschel noticed that the Milky Way in the region between Scorpio and Cygnus appears to be split into two branches. This arises because many of the stars are hidden from us by a comparatively close cloud of dust. But to Herschel the gap seemed like a window opening on distant space.

srrege..l ravans for acecpume it validity. When the Germaan astronvomer Johann Flen Pade first propied this laws in $1-\frac{7}{2}$, the planet Urantes was tunknewn. Nion vean later, when it was diun wered. it turned eet ta fit arprisingly woll inte, ite place Ineond Saturn which Parde's figures would assign to it. The predieted size of the ieftrit was ind units. wheress nimen ations save a figure of 10: 6 unit. Perthage even norse telling was the entn in the tatter letween Mars and Jupiter In Bode: time there apprared to toe a genuine gap in the :abie. for no planet was then known to lic in this pesition. But in toot the olseriational disemen bs Piazzi int the minor planet Cetes filled the sap alm it to pertiction. Fie the webit of Cares turned out to be $27-7$ of our units. comparrd with Budres hyputhetical ≈ 8 units.

To bath Idams and Leterrier it thesefore seerned entirely natural to assurne that their new planet would also ober Bede's Law. In fact the arebit of Neptune has a value of 3 coe. 7 units, ver? markedly less than the 3^{83} which Bede" Law would lead one in expect.

By a lucty chance this ertor did not affect the poositions of Neprume calculated by Adams and Leversiet iof the paticular year 18 ph. But their calculations of its orbit and future positions turned
out to te entirely wrong. In a recent very interestine puper. R. A Isttleten has pointed our that if. instead of relving on Bade's Law. Adatns and Leverrier had assumed that the orbit of Neptune was circular, their calculations cowld have bern carrird through far more simply and with a far greater degrer of accurars.

Subiequent to the Neptune incident, Idams and Levertier werr again involond in contrenersy ever fine details in the orthit of the Mown. This time the main bods of French scientists supported Adams, whe indeed turned out to be rieht.

The controvens was in effect onls one stage of a much greatet delate which legean in the time of Nowton and continued into sur inon orntur First Newton's diacustion of the motion of the Man led Fidmund Hallev to suspect that the period of recolution of the M.oon around the Farth had changed since Babylonian times. The suspicion arone that Newton' law of gravitation might not be preciuls correct, since it offered no explanation of any such change. The seernd stage of the dehate is assuctiated with the name of Laplace, who reworked the problem in greater detail. In fact. Laplace's calculations elowed the gap between theory and ofservation, indicating that the law of gravitation was net at fault.

Nasielyne and Laiance measured the appareni mot on of the siars which arises zecause of the real -otion of the Solar Sistem through space. Using inose measurements. Herschel was able to iner the direction of this motion with s- Pnising accuracy. In the diagram the Sun's motion is toward the ADes. The stars thus appear to move io the Antapes.

By contrasi. Herscher's news about the Sun were very naive. In this diagram he showed the main buth of the Sun $(\mathcal{A} E)$ as solid rock, which was surrounded ty an outer envelope of fre (PF). He thought of a sunspot (ce) as a hole in the fiery envelope through which the possibly inhabited rocty intenor could be seen.

Adans came on the seene in 1853. When he published a paper claming that laplaters diseossion of the problem was incomplete, and that a carchal re-examination restscitated the disagrerment between observation and theory. The follening remarks by Delannay in 1864 comment on the resulting Leverrier-Adams conterowsy. "The publication of Adams's paper truly marks a memorable step forward, an emire rewolutios in this branch of theoretical astronomy. His result has therefore been strongly attacked . . . But of all the argumeats put loward against Adams's paper not a single one was right, and the insistence with which they were presented and maintained produced an entirely opposite effect to what was intended." Delaunay concludes by saying that Adams's analysis, which was dectared fallacions and incorrect, had been recognized as exact.

The last stage of the story rame in our own century, when it was first realized, notably as a result of the work of Sir Geoffrey Taylor, that the difficulty arose out of the neglect of the frictional efleets of the lmar tides. At first it was thought that the oectanic tides, as they impinge on the continents of the Earth, constitute the whole effect. Now, however, it is known that tidal effects produced not merely on the waters of the oceans but also on the interior material of the Earth play an important role in the resolution of this old discrepancy.

By the middle of the ninetecnth century the great surge of scientific development which Newton initiated had largely expended itself, but the ingredients of a new revolution in astronomy had already come into being. These ingredients were of three distinet kinds, and to a scientist of the nineteenth century it would have seemed highly unlikely that they coukd usefully be bronght together. First, there was a reaching out from the Solar System, to be described in the last section of the present chapter; second, th re were remarkable diseoveries in the field of electricity and magnetism, which will be disenssed in some detail in Chapter 7 ; third, there was further work on fine details of planetary motion, which we may well look at now.

We have already moticed that since Venus has no satellite, the only practicalle way to determine its mass is to olserve the effects which it produces in the orhits of the Earth, of Mars and of Mereury. Nineteenth-century astronomers were faced by the diseoncerting fact that the mass of Venus inferred
from the perturbations of the orbits of Mars and the Earth is net quite the same as the value enterred from the perturbation of the orbit of Mercurs. Because the values derived from Mars and the Earth are in sensible agremome it is reasomable to regard these cotimates as essemtially correret and to lace up to the strange circumstanee that the value inferred from the orbit of Merenry is wrong for some reasom. This means that after the gravitational efferts of all the planets on the orbit of Mercury hawe been alfowed for aceepting the mass of Vemes given by the effect of Venus on the Garth and Mars) there still remains an umexplained perturbation in the orbit of Mercury. Leverrier thought that this remaining perturbation arose from a still-madiscovered planet sitnated within the orbit of Mercury. Strenuous elforts to detect such a planet lailed. Toward the cond of the mineteenth century, a thorough discussion of the whole problem by the American astronomer, Simon Newcomb, demonstrated that the diserepaney is undoubtedly: real. It remained mexplained motil Finstein's general theory of relativity showed that indeed Newton's law of gravitation is not strictly correct. Thus, arising out of the fine details of the Solar Sistem, came a decisive confirmation of a new theory which drastically changed our outhook concerning space and time, and which today enables us to grapple with the complexities of the largest features of the universe.

Reaching Out from the Solar System

Herschel's main object in constructing larger and larger telescopes was to survey the sky in ever greater detail. He commed the stars in different areas of the sky, demonstrating quantitatively that they are concentrated toward a plane, namely the plane of the Milky Way.

Of particular interest were the elusters ofstars and the nelulae. The nelulac are amorphons masses of light. Hersehel lirst though them to le star elusters at such great distances that their individual stellar components conuld no be resolvel in his telescope. Later he abandoned this idea, when it became clear that nebulac and star clusters show a marked difference in distribution. Whereas star elusters are concentrated toward the Milky Way, Herschel's coments of nebulae in different parts of the sky indicated that nebular tend to awoid the Milky Way. Moreover. he fomen that certain of the nebulae are clearly assuciated with a definite

Galaxy in Andromeda

Panoramic photographic map of the Milky Way, built up from a large number of separate photographs. Dark gaps of the kind that Herschel regarded as windows on space are common, particularly in the region of the plane of the Milky Way. The co-ordinates used on the map are galactic latitude and longitude

cemeral star. This suggested that the nebulae were not stam at all, but consisted ol a bright flaid immersed in the spaces between stars. If this were st, there was no meed to think of them as lwing particularly liar away alter all.

We now know that broth these ideas aloout the nature of nelbulae were partially correat. Some ol them are inelecel brigh clousls of gas simated not very lar awav frem us. Others, on the other hand. sere large groups of very distant stars.

A mose remarkable proplece concerning the nature of these distant grouph was made by J II. lambert, a mathematician ropecially interesterl in light, teward the middle of the eightemth century: lambert presented a surprisingly penetrating qualitative picture of the structure el the universe. He suggested that the stars of the Milky Way comstitute one large chaster and that these stars are in motion aronnd a common eenter, so that the Sun and the planets together move aromed a conter just as the planets themselves move areund the Sun. bambert went on to suggest that the nebulae are similar huge aggregations of stars lying lar outside the combines of the Milky Way:

For very many of the nebulae this is a correct picture, but it is one that mast prolessional

astronomers relined to acept muth the second or ewen the thired decade of the twentieth conturs. The ground for seepticism arose from Hersehel's obocration that for the moat part the melmbae aseiel the plate of the Milk! Way. Why slooulel this be so if the lie far ontside the Milks Was?

The embser is that clouds of time dust particles are coneentrated near the plane of the Milky Way, anct these clouds act as a ligg, olosenring all distant objects lying directly beyond them. Hersehel had notieed that the Milky Wis in the region between the constellationts of Scorpios and Cigents appears to be split into two branclese. This split is not gemuine: it arises from a comparatively clase cloud of dast which ebscuses momy of the stars that lie bevond. But to Herschel the gap appeared as a genmine hole in the Milky Wis, and be beliewed that be was leoking out through a window itto distant space.

Looking back we can see that such mistakes and uncertainties arose from a lack of physical knowledge. In the year 1800 men load an accurate and precise knowledge of the phenomenon of gravitation, but their ideas conceming certain other branches of physies were entirely rudimentary. We can see a remarkable comtrast between sophistication and natvete in two other aspeets of Herschel's work. Tobtas Maver had alread pointed out that if the Sun is in motion there must be a systematie apparent mostion of the stars in the sk!: stars lying in the same direction as the Sun's motion must appear to be slowly mowing apart from cach other, whereas those lying in the opposite direction must appear to be slowly eomerging. The expected motion from sear toyear was, of course, very small. but Maser thought that it might just be measurable. Neasurements were in fact mate by Maskelyne and lalande, and using these measurements Herschel was able to infer the diection of the Sun's motion with surprising accuracy. It the opposite extreme, however. Hersehel held beliefis about the Sun that now seem to be wildy lantastic

[^9]nonsense. He thought that the inside of the Sun was cold, and that the sunspots were places where an outer fiery envelope was pulled away enabling us to see deep into a dark rocky interior. Most ludicrous of all, he believed the cooler regions to be inhabited by living creatures.

One thing at least was certain once astronomers began to study the stars in bulk. It was vitally necessary to construct a catalog accurately deseribing the positions of vast mumbers of stars, otherwise it was impossible for two astronomers to know when they were speaking about the same one. In his pionecring work, Flamsteed had measured the positions of almost 3,000. Friedrich Argelander now undertook a far more ambitions task. In his famous Bouner Durchmusterung, published between 1852 and 1862 , he catalogned ever 300,000 stars of the northern hemisphere, and this work forms the basis of the eatalogs still used by modern astronomers. The magnitude of Argelander's achievement is inereased by the fact that it was carried through without the aid of photography.

The idea of making a photographic map of the sky was lirst propersed by David Gill, in 1886. The project took about half a century of continuous work and was completed with the aid of a large number of observatories seatered over the whole liarth. The result was a celestial map containing about wo million stars, accompanied by an actual catalog of the six million brightest ones.

One of Herschel's greatest achievements was that in reaching farther out inte space he demonstrated that Newton's law of gravitation operates outside the Solar System. He found far mone cases where a pair of stars lie close together on the sky than could reasonably be explained on the ground of mere coincidence. This suggested that many such pairs must consist of stars genuinely associated with each other, in which case one would expect that the two components of a pair would move in orbits around each other, in much the way that the Earth moves around the Sun.

Herschel set himself the task of discovering whether or not such a motion actually takes place. To do this it is necessary to observe whether the positions of the two stars change from year to year in relation to the background lormed by more distant stars. Castor, the brightest star in the constellation of Gemini, resolves in even a small telescope into two moderately bright stars. By comparing his observations of these two stars with
the observations previonsly math by Bratley, Herschel was able to show that the two stars do indeed move around each other in orbits of the expected character. The time required for a comsplete circuit of the orbits could be calculated, and Herschel's value of 3.2^{2} years is not very much different from the modern value.

About a quarter of a century later, the systematic study of double stars, as they were called, was initated by Friedrich Wilhelm Struve, the fommer of the great Pulkovo Observatory near Leningrad. As an outcome of this work it was firmly established that the law of gravitation operating inside our own Solar System is indeed a universal law. It also became clear that so far from being rarities, double stars, and indeed systems containing more than two stars, are quite common.

The post-Newtonian reaching-out into space raised in an acute form a crucial problem that had plagued astronomers for over two thousand years: how far away are the stars? Among other reasons, the Greck astronomer Hipparchus rejected the heliocentric ideas of Aristarchus of Samos on the grounds that if the Earth moved around the Sun there should be an annual variation in the positions of the stars. He argued that since no such variation was detectable Aristarchus was wrong. With the revival of Aristarchus's ideas by Copernicus, the belief grew that such a variation must, indecd, exist but that it is not easy to olserve becanse the stars are very far away from us. With the development of more and more accurate instruments, astronomers were always hoping that the stage had been reached where the annual variation could be detected. If one could only measure this variation for a star, the distance of that star could readily be calculated.

Much of the work of the second half of the eighteenth century was motivated by the hope that this parallax effect, as it was called, might at last prove measurable. The work of James Bradlley was initially started in this hope. It was while he was trying to measure the parallax effect that he discovered the important effects of nutation and aberration, for until these effects had been discovered the harder parallax problem could scarcely have loeen tackled with much hope of success.

The problem can be formulated as follows. Sulficiently distant olbjects can be regareled as presenting a virtually unchanging background. Against this background a comparatively nearby star will appear to mose, and this for three reasons. First,
becanse the Sum itself is moving: next. In catuse the star in question is mosing: and last, bexatue of the Viarth's motion around the Som. If the thired of these eflects cam be disentangled from the ether mo. then the distance of the star can casily be determused by tigonometrical calcotation.

To make such a separation we betice that the fist two effects are systematie, that is to sat, the! canse the star to drilt along a lixed comese with respect to the distamt backgromad. The motion of the Earth, on the other hand, canses the pesition of the star to execute an anmal oseillation. So we have an oscillation superpesed on at stady drilt, and our problem is to separate out the oscillation. In mentern times we shomld simply take photographs of the star against its batheround at ditherent times during the sear. The photographes conlel twe be measured at leisure and the oscillatory motion separated ont.

But lefore the adsent of photography all measure ments hat of necessity to be made at the teleseope. Beranse the measmenents were delicate, they cobld not lx made quickly. "This meant that the telesedge
hatd to loe turned wo as to compensate vers precisely for the rotation of the lanth, otherwise the star athe its batkeremad wombl simple drift out of the field of the telescope: Hence the first requirement was for a stmoth, accurate drive of the wescope. Next it was neressaty to measure the angles beeween the star in question and a momber of fixed penints in the batkgromad. Thindemomdedsomating illumbated therads in the feral plane of the telescepre and these therads lad to le mesable with the aidel at micere meter therad. All this was very diflicult, athed was mot done sucesslinlly wit mearly the middle of the ninctecnth centur?.

Stellar distances were first measured with the aid of : n ingernoms instrument kown as the helionneter. so-called becante it was originally designed in relat (ion top problems concerning the Sun. A heliemeter is a relatating telesoope with a splat objective. $1 /$ is pessible to mone the two halues of the object kens as shown in $\begin{aligned} & \text { Figure } 6.11 \text {. This monion catuses a domble }\end{aligned}$ image to appear in the fosal plane, one beine produced by the "pper half of the objective and the oher be the fower half. That is, cach star predaces

a domble imase separated lọ a distance depending on the exten 6 which the two halves of the abjerdive have bern moved. Suppose, now, that we wish (6) measure the angle between a certain delinite star abel some lixed reterence point in the backgromel. B! rhanging fromposition (i) (opositions (ii) we split the inage of our star into two distinct separatere proints ol light; and bey settine the two hatues of the olojective appropriately, we call arrange that four two images ate separated by exactly the same distatere as are the star and the relerence point. It catr then easily be shown that our reguired amgle is simpl! the elistance of separation of the two hates of the objective divided by the lencal length of the telescoper we use.

With the aidolthis device the (Eermanastronomer Friedrich Wilhelon Besselobtained the first measured sellar distance in the year 18.88 . The star was bit Cigni, and its distance tumed ont to be about it lighterars, or the distance which light travels in about it vears, mamels some bif million, million miles. The following year Thomas Henelerson at the Cape Observatory obtained the distance of one

> The instrument first used to measure star distances was the heliometer. On the left is a general view of the heliometer installed at the Oxford Observatory in 1848. To the right are close-ups of the eyepiece and the split objective.

Figure 6.11
How the split objective is used to produce two images of the same star.
al the brightest stans of the sombern hemisplece. It was the brightest star in the constellation of Centamros. Its distance was less tham that of Bessel's star, namely about f light-ycars. Ntmost inmediatcly after that, Strwe, at the Polkown Olservators, meastred the elistane of the star Verga.

In the years that lollowel, astronomers measured the distances of a momber of other stan by the parallax method. But the method can be applied omly to companatively nearby stars. Quite new techmigucs had to be discovered belore vastly: greater distances conlel be eletermined.

Having sorved its parpose, the heliometer quickly bexame obselete. Somen telescopes eombl be accuratcly driven; somphetography was tolecome available: some, indeed, astromomỵ was to coler the modern era, when the scale of the Milky Way itself would be determined. But in oreler to melerstand the instruments used in modern astronomy it is neressary that we should first look at what scientists learned abent the nature ollight from the Newtonian age omward, and how heirever-growing kinowlealge of the subject has beeon applicel.

Chapter 7 Instruments and the Nature of Light

The somewhat surprising fact is that the design of several important optical instruments, including the camera, the telescope and the microscope, calls for very little knowledge of the nature of light. Provided one is conversant with the laws of reflection and refraction, it is sufficient to think of light as a collection of fast-moving bullets that travel in straight lines. This is, in fact, bow Newton pictured light, but both he and others who accepted this pieture recognized that it posed several awkward problems.

Take first the laws of reflection and refraction. In Figure 7.1 we see a ray of light incident on the surface of a block of glass. Two things happen: some of the light is reflected back into the air, but some also continnes into the block of glass, so we have a reflected ray and a tramsmited ray. How can we explain this simple experimental result on the basis of the Newtomian picture? W'e can say that the incident ray is a collection of bullets which move through the air and strike the glass interface, whereupon some bounce back into the air along the direction of the reflected ray while ofloers enter the glass and move along the direction of the transmitted ray, But now we are laced with
a far more perplexing question. What decides whether a particular bullet is going to be reflected or transmitted?

Newton answered this conundrum in a wholly remarkable way. He suggested that the bullets worked by fits, so that a bullet would sometimes bounce back into the air while on other occasions, under identical circumstances, it would continue on into the glass. This idea that in identical circumstances a particle could sometimes do one thing and at other times something quite different was curiously propletic of the point of view of modern quantum theory. Newton's immediate successors, however, were not to know this; and throughout the eighteenth century and into the ninetcenth century they became more and more impressed by the steadily-mounting difticulties that confronted the bullet picture.

One of these difficulties arises when we consider how light travels from a distant source. All the light rays from such a source move essentially parallel to each other, as in Figure 7.2. Some of the light is made to pass through a hole $A B$ in an otherwise opaque sheet and travel on toward a viewing sereen. The light that just misses the edge

OPTICKS:

○ R, A TREATISE

OFTHE
Reflections, Refractions, Inflections and Colours

OF
LI G H T.

The Second Edition, with Additions.
3y Sir Isaac Newton, Krit.
LONDON:
rinted for W. and J.InNYs, Printers to the Royal Society, at the Prince's-Arms in St. Paur's Church-Yard. 1718.
tion which overtakes it. But whether this Hy pothefis be true or talfe I do not here contider. I content my Iclf with the bare Difcovery, that the Rays of I ight are by fome eaufe or other alrernately difpoicd to be relleeted or refracted for many viciflitudes.

DEFINITION.

The returns of the difpofitioas of any Ray 10 be reflected I will call its Fits of caly Reflexion, and thofe of its difofition to be tranfmitted its Fits of cafy Tranfmiffion, and the Jpace it paffes between every return and the next return, the Interval of its Fits.

Prop. Xlll.

Tbe reafou why the Surfaces of all thick tianf. parent Bodies reflect part of alx Light incident on them, and refratf the reff, is, tbat fome Rays at their Incidence are in Fits of eay Reflexion, and orbers in Fits of caly Tranfoniffor.

THIS may be gatherd from the ? 4 th Ob fervation, where the Light retlected by thin Plates of Air and Glafs, which to the naked Eye appeard evenly white all over the Platc, did through a Prifm appear waved with many Succeflions of Light and Darknefs made by alternate Fits of eafy Reflexion and cafy Tranfmiffion, the Prifm fevering and diltinguighing the Waves of which the white reflected Light was compoled, as was explain'd above

And henc and caly Cr . trantparent I to luch lits Bodics, and progrets. I as will appea
In this Pr_{r} Bodies to be the Body be Fits of eafy Rays, the Bo if the Rays, Body are pu rive at the f_{1} they be out c ted. And t Water lole grow very th reduced into reat.

Thofe Surfac, the R fy be it moft fro flexiom do:

FOR we caufe ol Light on the but fome ot parts act onl alfo in Prop.

Newton was content to picture light as a collection of bullets that move in straight lines. But as we see in the definition above, he also assumed that the bullets worked by fits.

Figure 7.1
Without some such assumption it is hard to explain why some bullets of this incident ray travel on into the glass while others bounce off it.

of the loole at . I reaches the sereen at C, and the light which just misses the edge of the bole at B reaches the serern at D. So we sere all area extending from (: 10) illmminated on the screen. All this can be understood very simply in terms of the Nientomian picture. We can say that the bullets which just miss strikine the opaque part of the shert at . I centime to move in a straight line matil they bit the sereen at C, while these which just miss striking the sheet at B continne in a stratight line until they hit the serern at l).

But suppesing we decrease the size of the bole AB; what haperes? We have alrewh seen the answer in the diagrams on page 13 . So long as the hole romains lairly big the size of the spet of hesht (D) on the screen decreases exactly as we might expect on the basis of the Newtonian pieture. But if the diameter ol the hole is reduced to a small fraction of a millimeter something quite dilferent happens. The spot of light on the sereen then begins to increase again, se that we have the apparemty paradoxical result that as the bole in the opague sheet becomes ssill smaller, the area of light on the sereen becomes larger. Wie might attempt to explain this by saying that somelow the light has managed to turn a cormer, hot this is something that our bullets are not allowed to the, for the Newtonian picture postalates that they move consistently in straight lines.

Bullets or 11 aies?

While we cannot concete to lullets the possilsility of turning comers, we can do se 10 wases. Figure 7.3 shows a succession of waves atvabeing on a breakwater which hats a vertical slit at the point P. As the waves reach the breakwater a disturbance goes through the slit. New waves tratel outward from the peint P on the far side of the breakwater, and they travel outward radially. That is, they have just the same sert of appearane as the ripples that are produced by dropping a stone into still water. This means that if there is a scomb obstacle beyond the breakwater a wall, say the disturbance from P will reach that olstacle over a large area and will not be simply confined to a central spot at C direcaly opposite to P. In other words, the waves have succeeded in turning a comer.

Thus the way in which light travels through very small apertures, coupled with what they knew about ordinary water waves, suggested to many of Newton's successors that some form of wave motion
may $1 x$ asseciated with the nature of light, and that the batlet itlea might be completely wrong. The thing to do was to put the matter to fimblare experimental test

Before lewhing at the kind of est meeded, lea us Hsink a bit more aboul water waves. Suppose we make two vertical slits in the breahwater, at P'and Q as in Figure 7-1. Wach peint on the far siele of the breakwater will now receive disturbances from buth P aud 0. What happens at a partienlar peint deprots on the timing of the waves. If the crests of the two waves arrive at the same mememt there will be a particularly high wave; but if a crest of the waves from l arrises smmhaneonsly with a trough of the waves from Q. When the crest and the trough will tend to cancel cach other out and there will le litale or nos disturbance.

The situation is illustrated in Figure 7.5 . It is assmmed that P and Q are entirely smilar slits in the breakwater and the peoint O is exactly midway between them. From O a momber of radiating lines can be drawn, one of them, OC, Ixeing along the diection of the original wave motion. At any pesint along $O C$ the praks of the waves from P and Q arrive simulanemsly. The troughs of the waves abo arrive simutancously. So at all points along $O C$ there are partionlarly high crests and partionlarly fow tromghs. lixactly the same is true akong the other heavily marked lines radiating outward from O. But lying beeween these lines are other lines, marked lightly. Along these, the peaks wh the waves from obe slit in the breakwater arrive simultaneonsly whth the troughs of the waves from the wher slit, so that there is modistmbance at all. These are the lines of still water. To complete the picture, suppose now that we have a sea wall inside the beakwatter, as shown in Figure 7.6. 'Then, at the points A, C and E, where the heavy lines meet the sea wall, the waves will rise high and fall low; but between those points, at B and D, the watter will remain still.

Experiment shows that an entirely analogous phenomenom occurs in the case of light. In fact, we can replace the original water waves to the left of Figure 7.6 by light incident from a distant source. We can also replace the breakwater by an opatue sheet in which two parallel slits are cut at the peints P 'and Q and we can replace the sea wall by a viewing screen. On the viewing screen we then find that we obtain a series of bright bands or fringes, as shown in Figure 7.7 .

Figure 7.2 (Above)
Bullet picture explanation ol how light behaves on passing through a small hole. But the bullet picture cannot explain how light can turn conners, as in diagram on page 13 .

Figure 7.3 (Adjoining)
We can, however, explain how waves turn a corner on passing through a narrow slit in a breakwater.

Figure 7.4 (Extreme Right)
If there are two slits, crests will reinforce crests in some directions, troughs will cancel crests in others.

Figure 7.5
Along OC and the other heavy lines, reinforcement produces high crests and low troughs. Along lightly marked lines, cancellation produces the effect of almost still water.

Figure 7.6
This cross section through part of Figure 7.5 shows that at points A, C and E on a sea wall inside the breakwater, waves rise high and fall low. At B and D water is almost still.

But we must l_{e} cathons in at least one respect in applying our water wave analegy. The length of she lringes in Fighre 7.7 is mot produced th the rise and fall of the waves. 14 is simply dere tw the size of the slits at P and O. If these were madelonger, then the fringes would twe longer. It is the brighteres on the sereon which is the true analogne of the rige and fall of the water waves. Ponts on the viewing sereen at which the waves rise and fall by a large amemut appar bright peins where the waves cancel cach other out - where a trongh from one slit arrives simultanemoly with a crest from the other appar thark. So cach paint of a bright fringe is a place where the waves are rising high and falling low, while cach point of a dark region is a place where the wases are interlering with rad other and touling ter cancel cach other out.

Let us return lar a moment to the behavior of water waves as shown in Figure 7.1. If the distances between the wave crests of the original waves to the left of the breakwater are changed, then the peints A, B, C, D, and E on the sea wall will change alse. The wider the spacing of the original waves, the greater will toe the distance from 1 to B to C, ctc. In fact. By cawfully measuring the distance between the slits in the breakwater, the distance separating the sea wall from the breakwater, and the distances between the prints 1 and B, B and $C A$ ett., we can calculate the spacing of the origimal waves. In this way an ohserver on the sea wall can determine the distance betwern suceessive crests of the original waves without bethering to look outside the break water.

Figure 7.7
If we pass light through fine slits on to a screen we also get points of teinforcement (showing bright) and of cancellation (showing dark).

What is the analongoe of this in the case of light, and what, equecially, is the athalogere of the distance lnetween the crests of the original waves to the lelt el the bereakwater? The answer is color. liach pure color consists of a train of waves with the satme definter fixed distance from one wave crest to the mext. This elistance is different for dibieront cotors. For bhe light it is absue 1 zows part of a millimeter, for vellow light approximately I 2 oure part of a millimeter, and for red light almut - Itere part of a millimeter. Bu order to make light turn cermers it is necessary for the width of the slit in the opatpe sheet to be not much greater than the distance between the wave crests of the light. In laed, as we have abrealy seen in Chapter 1 , it must not be mach more than i woo part of a millimeter. By everyday standards this womhl abriously Ire a fuite extramedinarily thin slit, which explains Whe we are bot wided to sering light turn corners.

In the case of a pure color, the fixed distance between the wave crests is called by the obvions name of wackength. Ordinary white light, as we call it, is a mixture of pure colors. It consists of a whole set ol diferent waves with different wavelengtbs. These different waves can casily be separated, however, by making use of a point we noticed in Chapter 2. The angle threngh which a rav of light is lent as it enten a glass plate depends lath on the nature of the glass itself and on the color of the light. In particular, bhe light is bent mose than wed light, as we can see from Figure 7.8. If a ray ol lighe contaning mixerl colors is allowed to hit a glass prism, the various colons as they pass through the prism are refracted

Figure 7.8

The angle at which a ray of light is bent on entering a given plate of glass depends on the color of the light-that is, on its wavelength.

dillerently, and in such a wat that daey can lec separated out as rhey conerge from lae lar side of the prisur. This is shenn in ligure 7.4. where he using a viewing screen the separated colors may Ix° ohserved. Blac ligla appears at one verementy and red light at the oflser, fle remaining colors of the ypetrums lying betwern the two extrenes. Sowith this simple device we can separate ordinary white light into the colors of the ratsow. Indeed, in the phenomsenon of the rainlow water drops in the atesesphere perliom a limetion similar to that ol the prism in our diagram, separating heordinary white liglan fiom the Sum inter its constituent colors.

If we are interested only in separating one particular color from all the other constiment collars of white light, then a will simpler metherl is available. All we need do is to pass the light through a filter. For example, if we want to ohtain the fellow light omly, we simply pass the original white light throngh a pieceol yellow slass. The yellow glass allows only the yellow light topass theongh, and aboorbs all the remaining colors.
Just as the distance between the points f and B, B amel C. ete., in Figure 7.6 depends on the wavelength of the original water waves outsiele the breakwater, so the distance between the fringes in Figure 7.7 depends on the wavelength of the light. The longer that wavelength, the wider apart are the fringes. All this can be easily demonstrated by the simple experiment shown in F̈gure 7.10. The lamp L. has a colindrical somere marked S. Because the lamp dexes not emit light ol a pure color, a filter F must be used. (In practice, nof filter gives completely

Figure 7.9

For this reason we can use a glass prism to separate light of mixed colors, projecting the separate colors on to a viewing screen.

puse color. A small dispersion of wavelengels still remains after passatge throngh the filter, but the remating wavelengths are sulficiontly similar to each other for the parposes of our experiment.) The " breakwater," marked 1), consists of an ordinary photograplic plate on which slits, spaced about half a millinseter apart, have been ruled with a knifeedge. The interlerence franges can be viewed directly blacing the ere inmediately behind this photographic plate. Just as our observer on the sea wall coukd cell the wavelength of the original waves outside the breakwater from the positions of the peoints A, B, C, etc., in Figure 7.6 , so we can here calculate the wavelength of the light by measuring the distance Ixefwern arljacent fringes. Bye changing form al blue filer to a ref one, we distance between the fringes cat be changed. The fringes are more widely spaced for red light than for blue light.

What would happen if we repeated this experiment withous using a filter? We should then have fringes formed for the whole range ol colers emitted bey the lamp: and because fringes for different colors fall in dillerent places, the bright fringes from one color could lall in the dark gaps belonging to another color. So instead of obtaining a series of clearly defined bright bandsas in Figure 7.7 we should wend to get a contintous stripof light. But the strip would evidently not be miformly colored. The places where the blue fringes fell would tend to appear blue and the places where the red fringes fell would tend to appear red. This means that the two slits in our breakwater womld have served to separate the colors present in the original light enitted by the lamp.

Figure 7.10
In Figure 7.7 distance between bright and dark fringes depends on wavelength of light. Here filter allows only light of a certain wavelength to pass. Breakwater screen enables us to measure distance between fringes and so to calculate the wavelength.

Fringes lor light of various colors fall in different places. By ruling many fine slits close logether in the breakwater screen, we can produce narrow bright bands for each color, adjacent to each other, without entirely filling up the dark gaps.

Waves scattered from posts set close together behave like waves passing through closely spaced slits.

Figure 7.13
A diffraction grating is based on the principle exemplified in Figure 7.12, evenly spaced grouves on glass serving as "posts". Instead of shining light through the posts, we shine it Jrom the side on to the glass plate. thus efficiently separating colors.

This result offers ws a challenge. Is it passible, by a suitable arrangenemt of slits in the breatwater, to separate ate different colon emitted by the lamp in a systematic way, so that the fringes from the various colors fall into an orderly sequence instead of overlapping with each other in a confused jumble? If we cath do so, we shall have succeeded in separating the light into its constitucnt colons, just as in the case of the prism shown in Figure 7.9. In fact, we shall have succeeded in proxlecing the kind of instrument known as a diffraction grating.

Think for the moment of the fringes produced by one jarticular color. If we can make the gaps between successive fringes become large compared to the widths of the fringes themselves, then clearly it will be much easier to lay sets of fringes from different colors side ly side without ruming the risk of their overlapping. Bothexperiment and calculation show that there is a simple prescription for increasing the distances between successive fringes. To do so we need only rule the two slits in our breakwater closer together than they were before. Unfortunately, hewever, this alse has the effect of increasing the wielth of the fringes themselves, so that there is still a risk of owerlapping.
'The solution to the problem turns out to be that we must mot only cut the slits very close together, but we must also have a very large momber of slits in our hreakwater, as shown in Figure 7.11. Althongh more complicated, the sitnation is exactly the same in principle as it was belore. Now, hewever, we have waves spreading out frema whole moltitude of slins. In sonme directions the waves from all the slits angment each other, just as they did in the case of two slits, and where these directions impinge on our viewing sereen we again howe bright bands. In other diections the waves interlere with each other, becanse crests of some arrive simultanconsly with treughs of others, and where these directions impinge on our viewing screen we hawe dark bands. But it happens that the bright binds are much narrower than the dark spaces between them. This is just the condition we set ont to achieve. If we now take light made upof a range of colors, instead of light of one parlicular wavelength, the bright bands for the ditferent wavelengths can be made to lall adjacent the each other withest entirely filling up the dark gaps. This resule is more clearlyobservable be taking the bright bands which fall on the outskirts of the screen, say mear . 1 in ligure 7.11 , rather han these near the center, at 6 .

Color dipersion by the arrangement shown in ligure 7.11 is more complicated both to understand and wormelnee experimentally than the simple prism dispersion shown in Figure 7.9. It may be wondered, therefore, why the astrobomer prefers to nse a diffaction grating rather than a simple prism for obtatining a spectrom. The reasen is that the diffraction grating does the jols of separating colors far more efliciently than the prism.

Suppose we wish to separate light of two different colors. Provieled the are of widely different watelengthe the job of separation is easy. but as (he waselengths become more and mote similar the problem becomes increasingly diffoult. Indeed, ever! known method of separating light lails somer or later as the wavelengths beconne too close. The prism is a comparatively crude method of separation, and it hails long lefore the diffraction grating eloes. With a prism it is peosible to separate two wavelengths differing from each other by about one part in 10,00\%: with a diffaction grating wavelengths differing los as little as ome part in 100,0 on can be separated. To separate wavelengths with even smaller differences - as little as ome part in: a million -it is uecessary w use highly specialized equipment which need wot here concern us.

Before we leave the subject of diffaction gratings it is worth noticing that a similar phenomenon arises il instead of a breakwater with many slits in it we utilize a series of posts, as shown in Figure 7.12. Waves are seattered by the posts and interfere with or reinforce each other in exactiy the same way as we have already considered. This fact greatly assists the practical construction of a diffraction grating. The mether of making one is to rule on a plane glass surface a very large mumber of equally spaced lines, the rulings leeing eut in the glass with a diamond or some other hard point. Great care must bre taken to ensure that the rulings are spaced at precisely equal distances apart. They then act like the persts of Figure 7.12, Int now, instead of shining the light through the posts, it is possible to shine it from the side on to the glass plate, as shown in Figure 7.13. The growses in the glass plate now scatter the light waves just as they did in Figure 7.12, and the seattered wases reinloree cach other in certain directions just as in Figure 7.11. By viewing the light scattered in these particular directions at spectrum is obtained: we have at our disposal the essential feature of an instrument called the spectroscofee, which plays a vital part in modern astronomy.

Above: Early ruling engine, designed to ensure equal spacing of lines on grating. Below: 5000-lines-per-inch grating as seen under microscope. Bottom: Diffraction grating separates colors more efficiently than a prism.

The accurate ruling of diffraction gratings is a technical problem of very consilerable difficulty, and the owtstanding pioncer work in this field was done by 11. A. Rowland, who in 1832 successfully constructed a ruling engine capable of making almost 15, eno lines per inch on the surface of speculum metal, a hard alloy of copper and tin. As we have seen, the chicl requirement of a goxd grating is that the lines should, as nearly as possible, be eqnally spaced. To get such a result it is necessary that after each greove has been ruled the machine should lift the diamond point and move it forward by a fixed distance determined by a small rotation of a screw: The screw must clearly be of almost perfect construction, and it was Rowland who first achicved such near-perfection.

In modern times gratings are ruled on aluminized glass surfaces instead of on speculum metal. The presence of the alumimum causes the grooves to produce a much stronger scattering, so that far less light is lost in the process than wonld $1 x$ e lost by a grating ruled on an untreated glass surface. This is a point of great importance when wery faint astronomical objects are under olservation.
We may now profitably compare the wave picture of light with the Newtonian bullet picture. We have seen that the wave picture offers a reasonable explanation of how light turns corners and how a diffraction grating works-explanations which the bullet picture does not olfer. On the other hand, we have seen in Chapter 2 that the bullet picture offers a satisfactory explanation of the construction and operation of the telescope. Can we explain the focusing property of a telescope, or even of a single lens, within the framework of the wave picture? If so, then all the conclasions drawn in Chapter 2 still hold gored, and the wave theory clearly offers a wider range of necessary explanations than the Newtonian bullet theory does.

Let us look first at Figure 7.4, where a train of light rays traveling in the clirection of the arrows encounters a comex lens. We make the sery important assumption that the wave travels more slowly through glass that it does through air. Since seme parts of the wave must travel farther through glass than oher parts, and are therelore slowed down longer, the wave crests will be curved when they emerge from the lens, instead of being ranged in parallel planes as they were lefore entering it. Prosidecl we make the lens correctly, we can delay the central part of the wave just sulficienty to ensure

Figure 7.14
If we assume that waves travel more slowly through glass than through air, the wave theory can explain the focusing property of a convex lens.

Figure 7.15
It can also explain how such a lens

Figure 7.17
Concave lens accentuates spherical form of wave from S. Thus center of emergent wave is seen at O_{1}.
that on emerging to the right of the lens the wave takes on a convergent spherical form. This is very casily mulerstosel by recalling how water waves spread out in concentric circles from a stone dropped into water. Here we have exactly the opposite situation: in this case, instead of spreatling out, the waves converge. According to the wave picture, it is just this convergence which constitutes the focal property of the lens.

It is noteworthy that the wave picture brings out very clearly the necessity for a correct shaping of the lens. If the lens were made unevenly the waves would emerge in some non-spherical form, in which case they would not converge to a point. The wave picture also explains the necessity for making the lens of perfect optical glass, because it is necessary: that there shall be no uncontrolled variations in the speed at which the wave travels through the glass, such as would happen, for example, if the glass contained loubbles of air.

In an exactly similar way we can understand the fecusing of light from a source S, shown in Figure 7.15. The light wave from S moves radially outward until it encommers the lens. Because of the delay through the central portion of the lens, the shape of the wave is altered as it emerges to the right. Solong as the delay at the center of the lens is large enough compared with the delay at the periphery, the emergent wave will be changed into a comvergent form, as shown. If, however, the delay were insulticient lor this and a wave were to emerge in a morlified but still spherical form, the light would not be brought to a real focus. We should then have the situation shown in Figure 7.16. In this case, the center of the spherical emergent wave lies to the left of S, and is said to be a virtual fiews at the point O_{1}.

Similarly, too, the wave picture enables us to understand the operation of concave lenses. These result in more delay at the periphery of the lens than at the center, and this causes the original spherical form of the wave from S in Figure 7.17 to be accentuated. The center of the diverging spherical wave to the right of the lens must therefore lie nearer to the lens than the point S-at O_{1} in the figure. It is clear, therefore, that all the essential features of the operation of lenses can be just as well explained within the framework of the wave picture as within the framework of the bullet jicture, providerl that light travels more siowly in glass than in air.

An interesting point now arises. If we look again at Figure $7.4+$ we may reasomably ask whether the
wave produces any disturlance at proints near 0 . We can decide this question bey using a simplification first discovered by Huygens. The eflect of the wave at fiuture times can be decided lirst bey taking the pesition of the wave at the present moment, aud second by considering subsidiary wases to spreat ont from all peints of the present wave front. In Figure 7.18 we have a spherical wave emerging from a lens. This is whe the "present" state of attairs. To calculate the "future", we imagine new wavelets to spread ont as shown. If we now wish to find what disturbance occurs at some point P close to O we must work out how all these subsidiary wavelets alfect each other when they reach P. All the subsidiary wavelets add together, by the way, when they reach O, the fecal point, so clearly they will all augment each oher at O. Calculation shows that the subsidiary wavelets will all cancel each other out at the point P when the distance from O to P is given be the formula $O P=1.22 \therefore \frac{F}{D}$, where λ. is the wavelength of the light in question, F is the distance of O from the lens, and D is the diameter of the lens. In other words, there will be modisturbance at P if the distance $O P$ is greater than the wavelength of the light muttiplied by the ratio of the distance F to the diameter D, and multiplied again bey the number 1.22 , which is elose to unity. We can write this result in a slightly different but equivalent way. Join the point P to the center of the lens. The angle between this line and the axis of the lens is closely equal to the ratio of $O P$ to F, and by our formula this is just equal to the ratio of the wavelength of the light divided by the diameter of the lens and multiplied by the number 1.22 .

Iormula $O P=1.22 \lambda \frac{F}{D}$

Figure 7.18
At focal point O all wavelets augment each other. They cancel each other out at P if the distance $O P$ is as given by the formula.

This complication is worthegrappling withle catuse it has an interesting application to the resolving pewerof the telescope. Suppose a telescope is pesimed towarel a distam star. According to the Nowtonian picture, the image of the stare is formed precisely at a partucular point of the focal plate the point O in Figure 7.13. Aceording to the wave picture, if we place al screen at the fiecal plane of the teleseope, we will obtain not a more point of light ben a circular disk of light. Indeed, not until we reach a distance "qual to (of' from the center of this circle of light. will the screen appear to be clark. Next suppose that there is a weond star iving equite close to the first one. The image of the second star on the feral plane will alos be a circle of light. Unless this second circle is well distinguished from the first one the telescope will not tell us that there is a second star there at all. fier the two images will be fused together. In arelar Hat the two circles of light shall tee well separated from cach other, it is essemtial that the center of the seconel shall tre distant from the center of the first by a distance equal wor greater than the distance from P ' O. This, in turn, means that the angle felwert the directions of the two stars must be at leas equal to the angle marked in ligume 7.18 , namely 1.22 times the wavelength divided by the: aperture of the teleseope. If wo stars are separated by an angle smaller than this their images will be blurred together. and we shall bave mon certain indications of their separate existence.

Figure 7.19
The wave theory of ligitt is tenable only if light travels more slowly through a medium such as glass or water than it does through air. Here is the equipment Foucault used in proving that 11 actually does so.

Here are af few instances of what this fact mplies. The satme applies to the human eye as to the teldscope. In the case of the eye, the diameter D) is very small-unter normal conditions onls alsum 2 millimeters. Remembering flat the watelenghle of light is only about $120 x$ getrt of a millincter, it is easy to calculate that under normal comelitions the human cee is mable to distinguish between twoobjects that are sepatated by an angle of leos than about one minute of are. This is about the oreler of acemacy achieved by the best observers in the dass before the telescope. It will be recalled from (hapter 2 that Tyelso Brahe was able we cotimate the poxitioms of the stars to alusut the same oreler of acemacy -one minute of are. But using at telescope with an aperture of 20 inches, it is theoretically pessible to distinguish between two stars separated by an augle of as little as a guarter of a second of are. And with a teleseope as large as the obe at Palomar Nombtain, with an aperture of 200 inches, the theoretical resolution is abont one-forticth of a second est are. In point of fact. the twinkling of stars caused by the passage of light through the liarth's atmosphere, atnd which is always present to somie degrece crenon the clearest and steadiest nights, prevents the theorretical recolving powers of large telescopes fromerer being achieved in practice.

These considerations sharply remind us that a telescope is not merely a cellector of light. It also wercomes the inherent handicap of the laman eye - that it camon, maided, distinguish between two whjects lying nearly in the same direction.

The Canflist Betieen Taeo Theories

Sogreat was the prestige of Newton that many people still refused to accept the evidence for the wave nature ofliglt, even after it had been dememstrated be the experiments of such men as Fresnel and Thomas loung. experiments that folleweel along lines similar to these we have just considered. Becatuse of this, attenpts were made to find a crucial expriment that wonlel finally deride letween the selative merits of the Newtomian pieture athe the wave picture.

Such an experiment was indered fomel. We have seetl that the wase theory is tenable only if it is true that waves of light travel more slowls through a merlimen such as glass than they do theough air. The Newtomian picture the the obluer
 through glas thom thengh air. It will be reabled
that when light which has passed through air is incielent on to a glass surface, the transmitted ray in the glass is bent nearer to the nomal than was the original incident ray. Newton explaned this fact by supposing that his particles, or bullets, gaibed spered as they entered the glass. The argomont was that glass attracted the particles, so for light striking a plame glass surface there was an increase of speed and, moreower, the increase was entirely in the direction nomal to the surface. It is casy to see that this wenlel canse the direction of motion of the bullets to become nearer to the normal than it was during their passage through the air. The thing to do, elearly, was to measure the speed of light throngh a solid or liquid medium, and to compare it with the specd through air. Aceording to the Niwtomian pieture the speed should be greater in the denser medium: according to the wave pieture, it should be greater in air.

The experiment was actually carried sut by Foncault in 1850 . The equipment he used is shown schematically in Figure 7.19. Light from a source S passes through a small hole. Part of it then traverses a half-silvered mirror, G. Next it is focused through a lens L on to a plane mirror at R. When R is in the position t, the light is reflected on to the mirror M, which serves to return the light immediately back to R. The mirror R is rotating rapidly, however, so that although the light takes very little time to travel from R to M_{1} and back again, by the time the light has made this double journey R is not quite in the same position as it was before. That is Os say, $^{\text {it }}$ is not quite in the position 1 . Hence R returns the light throngh the lens L. along a slightly different path. Part of this light strikes the halfsilvered mirror C and is reflected now into the eye at the point E_{1}. The experiment is repeated, but now with the rotating mirror R started in the position 2. In this case the light is sent toward the mirror M_{2} instead ol toward M_{1}. The distance from R to M_{2} is exactly the same as the distance from R to M_{1} but between R and M_{2} is a tank (T) filled with water, se that the light has to traverse the water in order to pass from R to M_{2} and also is wrder to return from M_{2} to R. The mirror R is rotating at exactly the same specd as in the first experiment, and because of this the light is returned to the lens L, again along a track slightly different from the one it originally traversed om its journey from the souree to R. Again light is reflected from the mirror G into the eye, but this time at E_{2}.

Here we come to the ernx of the matter. If light travels more rapilly through water than it does through air, as the Newtonian picture requires, then the point E_{2} will lie to the left of E_{1}. But it light travels more slowly through water, as the wave picture requires, then the print E_{2} will lie to the right of E_{1}. Foncault established that E_{2} does, in fact, lie to the right of E_{1}, thos vindicating the wave theory. Thenceforward, for the rest of the nineteenth century, noberdy gave any very serious credence to the Newtonian picture. As we shall sec later, the developments of the twentieth century have forced us to think again, at illy rate in part, in terms of the Newtonian picture, but let us first follow the wase pieture still further, to the moment of its greatest triumph.

We may begin by trying to melerstand a little more clearly just what a wave is. A water wave has three basic prepperties. First, at each point there is an oxcillation the water moves up and down. This is easily shown by putting a float on top of the water. Sceond, there is a spatial correlation between the up-and-down motions at different points. This is illustrated in Figure 7.20. A peak at A is followed by a trough at B, and that trough is then followed by another peak at C, and so ons. Not only is there an oseillation at each point taken by itself, but also different points have an orderly relation with respeet to each other. If at one point the wave is up, then at an adjacent point it will be down, and so forth. This spatial ordering is measured low the wavelength (7. , the distance between two adjacent wave erests, or two adjacent wave troughs. As time proceeds, the whole spatial patern moves along as shown in Fignre 7.21. The effect of this motion is to produce the oscillation at each separate point. At one moment, at a given place, the wave is up, and at a later moment it is down. The time required to complete the oscillation at each point is simply the time required by the wave to travel through a distance equal to the wavelength. If the speed of travel of the wase is 1°, then the time required for the wave to move through the distance 7 is simply $7 \div V$. This is the time that a float placed on the water takes to move from its highest to its lowest position and back again.

The third feature of water wases is that the effeet of the motion of the waves can canse the whole train to move throngh the water, as it does when we drop a stene inte a still pend. Waves spread omtward they actually travel ontwarel through the water. At

Fiqure 7.20
At every point of v ave there is an oscillation; λ denotes wavelength.

Figure 7.21
Movement of float shows that the oscillation at any one point is completed in the same lime that the whole wave takes to move through a distance equal to the wavelength.

Figure 7.22
Wave trains are always of finite
length. Height of waves decreases
toward edges of wave train.
one nonnent waves have not yet reached a peot. At alater monment they hase traveled entward lreyond it. In pratilice, wave trains are alwaỵ ol fonite lemght. 'The height of the waves esradeally dies away at the edger of the train, as in loigure 7.22.

So the three basic properties of waver are these: at each proint there mast be sommelitug that escillates (in the case of water waves it is the "p-aticldown motion of the water) ; then there is a correlattion betwern the state of thiv oscillation at different points, a regular sequence of peaks and troughs: thirdly, as time proceeds the whole spatiat patters mones along, cansines a finfte train of waves to propatgate itself. Belore we decide to accept the wave picture of light it is reasomable 10 ask whenber light pessesses these same three properties.
I.et ws take them in the reverse order. Light certainly las the ability $t 0$ propagate itself. A light signal emitted from some somree certainly travels ontward from that source ins sheh a way that it can be received a montent later by distant observer. Oter small distances we ave mot very conscioms of the time required for a light signal to reach us, simply becanse light moves so list ; but light emitued by a rlistant star may take themsands of years to travel across space to us. Light also exhibits the second property of our waves, a spatial correlation expressed in a sequence of regularly arranged peaks and eroughs, as elepicted in figure 7.20. But doss light exbibit an oseillation at each separate proint, and if sot, what is it that oscillates?

Here there is a crucial dilference. In the case of water the thing which oscillates is the water itself; it actually mowes ny and down. But the motion of the water itself and the notion of the wave are thot all all alike. "The wave is a structure, ato organization, that mever forward. "Ihe water itself does nof move forward, it simply mowes up and fown. The matorial partices of the water have to mose in this wave in order to express the oscillation. Since light cantriacel throngh regions where there are virtually nomaterial partictes, anyoscillaterymonement itmayhavecammst be carried in this fischions. But the movement of material particles is mon an essentiad conelition tor the existence of a wate. It is quite pexsible to bive something that oscillates at eath peint withont ins displacement of particles being involvedat all. (Mace this is moderstoged, it leeonmes fomparatively easy to sere just bow a light wave clifliers fion at water wave. 'To make the puint clearer. let us lowh at at sturewhat fantastic parable.

In a certain commery the cities were built at equal intervals along a long straight read. A new cinema film was supplied each day on the first city on the road. On Momdays the film supplied was very gored, and the attemdaness at the cinemas were therefore greatest On Tueselays the film was not quite as goorl, ond attendances were a lithe lower. On Wednesdays it was defimitely poor and the attendances were lower still, while on Thursdays the film was so exe(aable that hardly any body went to the cinema that day. On Fridays, howeser, there was an improvemem, and his improvement continued on Saturday and Sunday mat by Monday night a really execelent film was again leing shown. So things contimued week by week. In this way an oscillation was produced in the manter of people attending the cincmas each day. On Mondlays the attendance was up, on Thursdays it was dewn. So, tere, was the amount of momey taken at the box olliese.
Now from day to day the films which had been shown at the first city were passed along the road by a messenger, se that the film shown in the first city on Monday became available in the secomel city on Tuesday. This meant that at the second city there was also an oseillation in cinema atendances. There the peak was on Tuestay and the trough on Friday, cwerything occurring one day later than at the first city. And after carre ing the films to the second city, the messenger comtinued the following day to carry them to the third city. So in the third city the best films were shown on Wednesdays and the wors on Saturdays. And so it continued from city to city, with a delay of one day between each city and the next one along the road.

Clearly, then, the lirst city, the cighth city, the filteenth city, and so on, all showed the best films on Mondays, while the second city, the ninth eity, the sistemth city, and so on, showed themon Tirestavs. Thus the first city, the eighth city, and so on, had peak atendaness on Mendays and trongh attendances on Thurstays. The secoul city, the ninth city, and seon, hatd prak attendances on Tuesdays, and trough attendances on Fridays.

The wate of this parable clearty shows the secome and thire hasic properties of the water wave. The distance from the first city the cighth city determines the wavelength of the system, while the wave itself travels a distane equal to that between any two meighbaring citics in a time of ome day: This wase of ome lamtasy also has the first property of a water wave. in the sense that there is something that

Below: James Clerk Maxwell, the man who showed that the quantity which oscillates in a light wave is the electric field. Above: Diagram of lines of force in a disturbed field taken from Maxwell's Treatise on Electricity and Magnetism.

Much pioneer work on magnetism and electricity had to be done before the nature of light waves could be understood. The eighteenth-century print above shows an experiment to demonstrate the attractive effect of electricity generated by friction. Below is the type of torsion balance Coulomb used in formulating the law of force between electric charges.

oscillates in cach of the cities. But here it is certandy mot material particles in the semse of a water wave that carr! the oscillation: what oscillates is the mumber of people attonding the cincoma day by day. In short, a wate is simply a moving structural organization, an organization fronn point to point of some ascillatory property, quite irrespective of what the weillatory property may $1 x$.

Teslay we have freced ourselves from the necessity of thinking of an owcillation as the displacement of a particle or particles, but scientists of the nineteonts century had wot done se. They were olsessed with the ielea that any oscillation mecessarily inwolves the dieplacement of particles, as in the case of the water wave. Vet they were well aware that light can travel through space, where there are insullicient partiches (0) carry such an oscillation. How could this lre reconciled with the wave picture of light?

Soconfised were even the greatese sciemtists about this point that they postulated the existence of an ideal solicl lilling the whole of space. It was olswiously tot a solid in the accepted solnse, and they held it to be a solid mot percrivable by aty of the senses. It existed in all ordinary matter as well as in vacumm. They even gave it a name-"xther". Light was thought to consist of an oscillation of this elastic solid, and the calculations of the oscillation of the solid were handled in much the same way as we hautle the calculations in the case of an ordinary solid. The greatest mathematicians of the nineteenth century all worked along these lines. Ganss, Couchy and Ricmann all attempted to solve the problem in this way. But whenever calculations revealed some new result which could le checked against experiment, it wearly always turned out to le wrong. Even so, scientists and mathematicians still clang to the notion of the ather, so hag-ridden were they by the notion that a wave oscillation necessarily entails the displacement of particles.

Ironically, James Clerk Maxwell, the man who solved the puzzle in the third quarter of the nineteenth century, could not really accept the implications of his own work. Athough he had obtaned the correet answer, an answer that required no ather at all, he tried right to the end olhis daystointerperet his theory in terms of the ader. Indecel, be felt it io be a defect of the therory that it could not be satisfactorily adapted to the ather concept. It was Einstein whe finally dispelled the notion of the ather, a notion which had merely served to confuse men lor upward of a century.

An intrigning historical question how arises. How was Maxwell ahle to arrive at the corret answer even though he was himself prejudiced in favor of an erroneons concept? The answer is that Maxwell worked on the results of experiments instead of developing a purcly mathematical concept as did Ganss, Ricmann and Conchy. Maxwell took the results of a whole host of experiments and eranslated them into mathematical form.

So far we have done mo more than show that an oscillation does not demand the mowement of particles; we have not shown what the oscillatory characfar of light consists of Before we go on to examine Maxwell's solution it will fe necessary to retrace our steps and look at developments which had been going on in other brathehes of science.

In the cightcenth century it was already known that there are two sorts of electricity. Nowadays we know that these wo forms of electricity arise from the two different types of charge carried he the basie kinds of particles of which matter is constructed. Electrons carry one form and protons the other. When two material surfaces are rubbed together, one is often fond to have açuired an excess of one type of charge, and, of course, the other surface will have an excess of the otber type. This is casily observed in quite a number ol commonplace expericnces. For example, if you comb your hair in a dry atmosphere, the comb will become charged with an excess of one type of particle and your hair will be left with an excess of the other type. The same kind of thing sometimes happens if you pull a nylon shirt off your back very quickly.

The two different types of charge attract each other. That is to say, having been separated ly some process or other they try to come together again and mix, se that one type alternates with the other, instead of both remaining in separate bunches. Perhaps the most dramatic form of mixing we can observe on the Earth is that which takes place in a lightoing stroke. What happens in a storm cloud is this. Drops of water carry an excess of one type of charge, while the air around them carries an excess of the other type, so that to logein with the two types of charge are tolerably well mixed. But then the water drops start to fall to the ground as rain, carrying their charges with them as they doso. This leaves the cloud as a whole with an enormous excess of one type of charge. This excess comtinues to build up until the electric forces between the clond and the ground become so great as to produce the lightning

The most dramatic form of the mixing of opposite charges observable on Earth, seen in action over Moscow.

stroke. This is simply an extremely rapid transfer of charge between the cloud and the ground which enables the two different types ol charge to become. well mixed once more.

The law of forec between electric charges was diseovered by Coulomb toward the end of the eighteenth century: It can best be menderstoxd in terms of a new concept - the electric field. As its name implies, an electric field can cxist in a region of space quite regardless of whether the region contains any matter or mot. Electric fields mat le dought of as something that pushelectic charges and try tostart them moving. The strength of the push depends on the strength of the field. athel the diecetion of the push depends on the direction of the lield. Both of these in general vary from obe point to another.

Charges promace electric fields, and it was Coulomb, whe discovered the way in which they de, so. We can think of the reaction between two different charges in the following way. The lirst charge produces an electric field in accordance with Coulombs law, and his liclel procheces a medianical reaction on the second charge. Equally, we conld say that the second charge proklues att electric liedd which reacts on the lirse charese. In this way we obtain a merhatical foree acting ont beoth the charges. If the two charges are of similar type the mechanical forees tend to push them apart, whercas if they are of opposite type the mechamical forces
tend to make them come together. Coulomb's law can be stated in precise mathematical form, and this was in fact dome by Ganss.

Because charges placed in an eleceric field are subject to a meehanical lorce they will start tomseve muless they are held fixed in some way, and a collection of moving charges is called an electric current. This is just what happens when a current llows in a wire. Inside the wire there is an electric field which produces a flow of clectrons alones the wire. This electric fiedd lies in a direction parallel to the wire, and if it is steady and comstant the electrons attanin a steady flow along the wire. Wie hate what we rall a elirect current D.(:.)

But what about the alternating currents A.C.) with which we are perlapse even more familiar in everyday life? An alternating courent is one in which the electrons flow altemately in one direction then in the oppenste direction along the wire. Topresluce such an oscillation in the direction of motion of the electrons, it is necessary for (be clectric fiede oroscillate at eads paint insiele the wire. At any given point we may think of the electric fied as painting strongly toward the right to begin with. As time gies on, the field wakems but still penints to the right, and the weakening cominues until eventall! there is mo electric field at all at the point. With a further passage of time, a weak electric field builds up. p oincing to the left, and the leftward field contimues to grow until it becumes just as strong as the fermer rightward liede. Thereafter, the leftward fiedd starts to weaken and goes on weakening until it, loo, falls to zero, after which another rightward-pointing field starts and continues to grow moil it attains to the same strength as the wiginal rightward-puinting field. At this stage one cyele one oscillation of the ellectric field has been completed.

In the case of alternating currents such as those that are derived in Britain from the national grid, there are lifty such cyeles cuery second; in the United States the standard frequency is sixty cyeles per sccomd.

Here we have a consept of an oscillation very different from that insolved in the propagation of water waves. We have an oscillation of a fiedel at a peint, not the displacement of material particles as in the case of water waws. This gises us the legenning of an insight into Maxwell's solution to the problen of the nature of light. Lir the quantity that oscillates in a light wave, or rather one of the quasttities, is the electric field.

The picture shows one of the rooms of Faraday's laboratory. It was Faraday who showed that an electric field can be produced from a magnetic field provided the magnetic field changes with time. The magnet must move.

But this was a concept that could not be casily grasped a hundred years ago when oscillating currents were not yet a feature of exersday life. luded, the electric currents which scientists investigated in the first part of the nineternth century were all of the steady D.C. type. Around 1820 Oersted diseovered that such steady direct currents produce magnetic ficlds. Magnetic fields were not new to science, but before Oersted's discovery they were thouglte to arise only from magnets. Oersted showed that white a charge produces an electric field quite regardless of whether or not the charge is moving, it will prodice a magnetic field moly if it is mowing. Ampère fotlowed up Ocrsteds discovery with an important set of experiments which enabled Maxwell to determine a mathematical equation whereby the magnetir field produced by a steady curremt cond be preciscly calculated. In fact, Maxwell succeeded in doing for steady currents and magnetic fields what Gauss had alrcady done for charges and electric fields.

It was now casy tosee that starting with an electric field it is possible to produce a magnetic field; for the electric field acting on charges could cause them to mowe, and the moving charges, or current, would produce a magnetic field. But could this work in reverse? Conld one stant with a magnetic field and produce an electric field? The solution of this problem was Faraday's crowning achievement. It
was a solution mot easily arrived at because Faraday, like everyone else at that time, started with an erroneons assumption. Because in the case of D.C. currents a steady electric field produces a steady magnetic fickl, everyone tried to reverse the situation. That is, they tried w produce a steady electric field from a steady magnetic field, and the problem simply would not yield to solution that way. An electric field cau be produced from a magnetic fiekl only if that magnetic ficted changes with time. If you have a magnet and a loop, of wire you will never make a current flow in the wire by maintaining wire and magnet in a constant relation to each other. Yet that is just what everybody was trying to do until Faraday had the idea of moving the magnet. In that way an electric field is, indeed, produced in the wire and a current is thereloy made to flow. This was Faraday's principle of induction.

When Maxwell looked at Faraday's work from a mathematical point of view, he discovered a relation between the electric field and the magnetic field quite independent of the immediate presence of either magnet or loop of wire. This was something that had to apply at every point, whether or not there happened w be a piece of wire or a magnet at that point. In this sense the new relation resembled Ganss's generalization of Coulomb's experiments; it also rescmbled Maxwell's own expression of the results of Ocrsted and Ampere. Where

the new relation differed from the old ones was that changes with time now became of paramount inportance. Maxwell had found a relation not directly between the electric field and the magnetic field at a point, but between the way in which the electric fied varies from point to peint ol'space and the rate at which the magnetic field varies from monent to moment of time.

The intrenluction of the time variatien was quite new. It showed that the electric field and the magnetic field are not separate, independent entities. It is only when everything is steady and mothing is changing with time that the swo hields appear to be independent of each other, but when things do change with time the two lields are seen to be inextricably linked together. It is impossible for a magnetic field to change with time without giving rise to a corresponding electric lickl.

So the situation was this. Maxwedl had at his command three different mathematical resules. That of Ganss cnabled him to determine the electric field protuced by a set of charges: his own equation enabled him to determine the magnetic field produced by a flow ol current: and the wew equation derived from l"araday's results expressed the relation between the eleetric field and the timedependence of the magnetic field. When Maxwell took these three results together, be found they were not in ewry case mathematically comsistent with each other. The electric lield determined by the

Once it was shown that the quantity that oscillates in a light wave is the electric field or the magnetic field, Heinrich Hertz artıficially produced waves of different wavelength from those of visible light. Above are his oscillator, or sender, and his resonator, or receiver.
first equation (Gauss's equation) and the magnetic field determined by the second equation, did not in all cases lit in with the third equation, the one derived from Faradays experiments. Now a mathematical inconsistency conld not, ol course, be tolerated, so Maxwell set out to modify the equations in such a way as to achicese consistency. This had to le done subject to the condition that anything new introduced into the equations mast not mar their agreement with the experiments of Coulomb, Oersted and Ampere, or of Faraday.

Maxwedl found that he could achieve consistency whin the framework of this vital condition by introlucing a wow term into the second of the equations, the obe whereby he had himsell eppesented the experiments ol Oersted and Ampere. Originally this equation had done no more than connect the magnetic field with the How of a steady 1).C. current. Naxwell now sam that he most introluce into it a term that depended on the rate of change of the electric lied with respect to time. The sitmation tow had a satisfying symmetry. The secomd equation now connected the magnetic lied with the time variation of the electrie field, whereas the third equation, derived liom F'araday’s results, connected the electric fiedd with the time variation of the magnetie field. Moreover, lse new termsimply vanished, giving mo comribution, meler steady comditions, and therefore did not mar the agrecoment with the experiments of Oersted and Ampere.

Now came a resule which onalded scientists limally (o) discard elue troulbesome arther which had lor so long begged down their thating. When the new equations were applied to at vatum, where there was mether charge nor current, it was lound that the electric lichd athd the magnedic lied were, in lact, carried in waves, athe that these wates had all the properties of light of liar discowered by experiment. Here, then, was the answertothe guest lir an understating of the nature of light. The quantity that oscillates in a fight wave is the electric lield, or, il you prefer it, the magnetic lickl. Vom can choose citlur, lecatuse il you know one you can determine the other from Maxwells equations.

The thing which oscillates in a light wave is, in fact, the ability to pushe electric charges, namely the electric field; and Maxwell's equation showed that the electric liedd has the lill structural orsanization of a wate. At a particular moment of time there are analognes of wave crests and wawe troughs, and these are interlinhed with each otheralong the direetion ol travel ol the light. Bysyesting that a particular monest the wave hats a peak at a particular point, we simply mean that the electre lied has its maximum strength in a particular direction, say to the right; by satyeg that it has a trough, we meatl that the electric field has its maximom strength the oppesite way, say to the lefi. 'lhere is mop-anddown motion as in the water wave, and there is certathly no oseilation ol an ielealized ather.

At lirst sight it might be thought that a theory of light ought to account lor the limited range ol waselengthe which we lind light tw have. Why is light conlined to a rangeof wavelengths between approximately 1300 and 11500 part ol a millimeter? Maxwells theory gives noanswer tosuch a question. There is nothing in the theory which prechades the possibility of the existence of waves of an! length whatsoever. Soil we accept the Maxwell theory we have also to accept that a virtually limitess range of wavelengths can exist in nature, and that the only reason why what we call light appears to be conlined to a certain very narrow range is that this happens to be the only range of wavelengtis ow which our eves are sensitive

At the time when Maxwell produced his theor! neither very long wavelengths nor very shom ones were known tes exist in nature. The question immediately arose whether new wavelengehs mot previonsly experienced could be produced artilicially in the latoratory. For techmical reasons it was at lirst

Maxwell and Hertz paved the way for radio. This photograph, taken near the turn of the century, shows an early Marconi wireless installation.
found casier to produce long wases rather than short ones, and indeed, a lew years after Maxwell's work long wavelengths were produced by Heinrich Hertz. The theoretical discoveries of Maxwell and the pioneer work of Hertz together formed the basis of modern radio techoologs:

In succeeding years shorter wavelengths were also found. Toward the and of the ninetcenth century X-rays were disewered, having wavelengths 100 to toos times shorter than that of blee light, and in recent tines we have becone only too fiamiliar with gamma rays profuced in the explesions of atomic weapons. These rays are simply radiation whin wavelengths about a million times smaller than those of ordinary light. So we see that Maxwell succeded not only in explaining the nature of light, but also in predicting the existence of a hest ol new radiations not then hnown to science.

Throughout the history of man it is probable that no more momentous prediction has ever been made.

The Quantum Theory of Light

It is irmical that flaws should have become apparent in the wave picture at the moment of its greatest trimmph; lier it quickly appeared that the wave theory alone offers no explanation of what happens when light is absorbed.

Comsider the situation shown in Figure 7.23, where white light is dispersed by a prism into its constituent colors. These are incident on a screen

At first long waves proved easier to produce than short waves. But before the nineteenth century ended X -rays were discovered-waves a hundred to a thousand times shorter than those of blue light. This X-ray plate was made in 1897. Today we are all too familiar with the far shorter gamma rays of atomic explosions.

Figure 7.23

White light is dispersed by prism, and only light of a particular color passes through slit S on to metal foil. Metal reflects part of light and absorbs part. Absorption causes electrons to be thrown out of metal. Speed at which electrons are emitted depends only on color of light, and not on its intensity.

Figure 7.24
White light is again dispersed but this time light of different colors falls on different parts of the foil. If electrons produced by absorption of each color can be kept separate, streams of electrons for each color can be made to impinge at different pounts on a detecting film or plate.

Figure 7.25
This arrangement, by which dispersed light falls directly on a detecting film, is simpler; but an arrangement like that of Figure 7.24 could be made many times more sensitive. A 30 -inch telescope utilising the arrangement of Figure 7.24 would be potentially equal to a 300 -inch instrument using the simpler device.

which has a slit at S so arranged that only light of a particular color passes through to the far side of the screen. This light lalls on metal foil where part of it is reflected by the metal and part absorbed. It can be proved by experiment that the effect of the absorption is th catise charged particles to be thrown out of the metal. These particles are electrons. (It will lo recalled that in all nomal atoms there is a comparatively extensive cloud of electons surromuding a small, weighty nudlows. It is these cloudparticles that are ejected from the metal when it absorls light.)

The surprising thing is that the speed with which the electrons are emitted depends only on the color of the light and not on its intensity. This is a strong indication that "white" light is made up of diserte units and that the units are different for light of diflerent colors. Wie now call these units quanta, and we describe the aboorption of light in discrete terms. We say that an atom of the metal absorls a guantum and that as a result of the alsorption it comits an electron outward from its surface. Faint light consists of only a lew quanta, strong light of many quanta; lout provided the color of the light is the same, the individual quanta are indistinguishable. Hence for light of a pure color, since the emission of each clectron is an individual process concerning only one quantum, the electrons are always emitted with the same speed and energ:.

The energy of emission of the electrons does change, hewever, when the color of the light is altered, being greater for blue light than for red light. We therefore say that the quanta which make up blue light all tave individually more energy than the quanta which make up red light. Similarly, the quanta that make up red light have individeally more energy than those that make up infrared light. These that make up ultraviolet light have more energy than those that make up blue light while these that make up X-rays have still more. The quanta that make up gamma rays have the greatest energies of all. At the other extreme, radio-wave quanta have the smallest encrgies.

In brief, quantum energy plays the same role in the guantum theory of light as wavelength plays in the wave pieture: the sherter the watelength the greater the quantumenergy. It is because the quanta that constituce N゙-ratys and gamma rays have sueh great energies that they are so damaging tw biological (issues ; radie-wave guanta are comparatiody harmbess because of the small conergies.

The guantum theory has a direct bearing on the design and construction of modern astronomical instruments. Many of the celestial objects that astronomers wish to study are so intrinsically laint that the eye camot be used to detect the light from them which telescopes collect. For the most part the photographic plate is used, but in recent years there has been an increasing tendency to work with the electrons produced by some process such as that shown in Figure 7.23. The amount of light being received from a faint cosmic object can then be accurately measured loy actually counting the number of electrons emitted from the metal surface. Alternatively, instead of counting the electrons individually, we may take them as a whole. As they come off the metal foil, or cathode, as it is usually called, they can be channeled in the same direction to form an electric current, and the strength of that current can be measured with great precision. It is in this way that astronomers nowadays measure the apparent brightuesses of the stars.

The arrangement shown in Figure 7.23 also opens up other possibilitics. By varying the pusition of the slit we can arrange that light of different colors falls on the cathode, so that the brightness of a star with respect to one particular color can be measured. In this way it is possible to say precisely how blue, or how red, stars are, and the astronomer can deduce a great dcal of information from such measurements, as we shall see in a later chapter.

Research is now procecding on a more ambitious device. If we dispense with the slit and allow the whole of the light to fall on the eathode, as in Figure 7.24, electrons will be knocked out of the cathode by light of all the various colors. If we can somelow prevent all these electrons from getting mixed together if we can keep the electrons from the blue light separate from those from the red light and so on - we can then arrange that the separate streams impinge at different points on a detecting film. In this way we could obtain a picture on the film through the agency of the elcetrons and not directly through the light.

The point of all this is that such a device would enable us to work with much weaker light. In fact, a deviere of the kind shown in Figure 7.24 could be made about a hundred times more sensitive than one using a straightorward detecting film, as in Figure 7.25 . This means that a celescope with an aperture of only 3° o inches would be potentially equal to a telescope of 3 gon inches.

Figure 7.26
Light from hot gas passes through slit, is dispersed by prism, and then falls on screen. Screen shows bright lines, parallel to slit, falling at places corresponding to characteristic colors that atoms of gas emit.

Figure 7.27
Spectrum lines, produced as above.

Part of spectrum produced by hot sodium vapor. The two strong lines (yellow) are the so-called D lines.

Figure 7.28
Here hot gas containing free-moving electrons as well as atoms emits light with a continuous color-range. On passing through cooler gas some ol this light is absorbed. Light so absorbed has same discrele colors às cooler gas would have emitted under conditions of Figure 7.26. On emerging, the light is therefore deficient at those particular colors.

Sular we have thought only about the absorption of lighe. What happens when matter romits light? Comsider the simple case of a hot gas in which the indivinhal atoms are widely separated lrom cach wher exept at brief moments of collision. Olien, when sueh collisions oceur, the atoms behave like billiard balls: they boumer oll rach other in new directions and ew energy is lost Irom their motions. In wher cases, bewewr, energy is lost from the motions of colliding atoms. The atoms are activated or exceted by the collisioms and the exeited atoms then emit one or more quantat of light.

A particutar type al atom is able to cmit only quanta ol ecrtain colors that are characteristic of it. With the right apparatus we can tse this lact to determine what kinds of atoms are emitting light.

In Figure 7.21 ighe from a hot gas is passed through a slit and then dispersed by a prism into its constituent colors. Thereatior the light is ablowed (t) lall on a serem. There we observe not a smenth, contimusus gradation of color, but a mamber of bright lines, parallel to the slit, lalling at places correspendine to the particular colors that the atoms of hot gas cmit. These lines are kmown as sectrum lines (Figure 7.27). The next photograph shows part of the spectrum proslaced by het sodiam vapor. It has two particularly strong lines. These we the so-called 1) lines, and their color is vellow. This explains why a hardful of common salt (senliom chloride) thrown into a hot fire emits yellow light. Sone of the sothom atoms in the sate are vaporized and alter colliding with each other and with other vaporized atoms they mot the strones yellow 1) lines.

Since cach type of atom has its own characteristic bright lines, the study ol these lines provides an excellent method of chemical amalysis. If we wish to kow what atoms are contained in a given chemical sample, all we need do is to heat the sample. vaporize it, and examine the tight cmsted oy the bot gas. By carelully stmelying the bright lises produced we can tell exactly what atoms were contatued in the original sample. This methot of analysis has two disaltamages, however. By vaporizing the sample we destroy its original strncture so though our analisis will tell is what Ippes of atoms it contained, we hall learn nothing at all about the way in which those atoms were combencel to form componuls. Seconells, in spectrum athalssis it is dillionlt, thomgh not impowible, to infer the relative propertions of the dillerent types of atome.

We have secn how different types of atom emit only their own characteristic colors. It remains to see how it is possible for matter to emit light with a continuous range of color. If a gas is made hot enough, electrons will be stripped off some, or perhaps all, of the atoms, so that there will be collisions not only between atoms and atoms, but also between electrons and atoms. It is in these latter collisions that light with a continuous range of color is emitted, and it is in this way that light with a continuous range of color is cmitted from the surfares of the stars.

At the left of Figure 7.28 we have a hot gas containing free-moving electrons as well as atoms. The light with a continnous range of color which it ennits is allowed to pass through a cooler gas consisting simply of atoms. Some of the light is absorbed by the atoms of the cooler gas. Now the light so absorbed has exactly the same discrete colors as this cooler gas would have emitted if it had been subjected to the experiment shown in Figure 7.26. This clearly means that after emergence from the cooler gas, the light will be deficient at exactly these particular colors. If this light is now dispersed through a prism and allowed to fall on a screen, we shall therefore have the situation depicted in Figure 7.29. Against a continuous bright background we shall have a number of dark lines, the dark lines occurring at places corresponding to the particular colors that were absorbed loy the atoms of the cooler gas. Thus Figures 7.27 and 7.29 correspond to opposite situations. In the first figure we have the emission of bright spectrum lines by a hot gas, whereas in the second we have dark speetrum lines caused by a process of absorption.

The dark-line spectrum of Figure 7.29 has a special interest. It is the spectrum of sunlight. This means that the situation shown in Figure 7.28 actually occurs in the Sum. The ordinary surface of the Sun, known as the photosphere, emits light of all colors, but lying above the photosphere are layers of cooler gas, and in order to escape out into space the light from the photosphere must pass through them. It is this passage through the ceoler gas that produces the dark spectrum lines.

What we have seen about the emission and ab)sorption of light by matter constitutes overwhelming evidence that this takes place through the agency of individual diserete units known as quanta. Here, then, we have some measure of return to the Newtonian bullet picture, but this does not mean that
we must abandon the wave picture entirely and return wholeheartedly to the Newtonian picture, for quanta are not localized bullets in the simple Newtonian sense. Rather we should think of each quantum as leing a separate littic wavelet. We can then conceive of light in bulk as being made up of a multitude of individual wavelets. When an atom emits a quantum it increases by one the number of wavelets that go to make up the light; conversely, when an atom absorbs a quantum of light it decreases the number of wavelets ioy one.

The essential point is this. When we consider ordinary light we have to deal with a large number of quanta. Each of these is a separate wavelet and all these individual wavelets add together in such a way as to reproduce the properties of the wave picture of light. So aldhough Newton was right in supposing that light has a discrete structure he was not right in his idea of how the individual units fit together. They are not separate and more or less disconnected bullets. They are wavelets, fitting together in a highly subtle manner. To understand exactly how this fitting together takes place one must penetrate deeply into modern physics-an exercise which lies beyond the purview of this book.

Figure 7.29 If emerging light of Figure 7.28 is dispersed and falls on a screen, it produces bright background and dark lines. The lines correspond to colors absorbed by atoms of cooler gas.

Light emitted from Sun's surface goes through same process as that shown in Figure 7.28. Figure 7.29 is in fact the spectrum of sunlight.

Here we need only note the fimal result that the grose projerties of the wase pieture, as determined by Maxwell, are repredacel whenever the monler of quanta with which we are dealing is ver! larese.

Radio Astronomy

Becanse the structure ent a ractio wase is exat the the same as that of a light wave, the logical protblem of designing a radien teleseope is similar to that of designing an ordinary optical telestope. There are. beswere practieal differences. Whet radio wases pass through materials the do not behave in the same way as light deres. It is extraordinarily dillicult (6) construct a refracting leon for radio wascs, fior instance because there is mosimple material which has exactly the same kind ofelied on radio waves as glass has on light. But though there are as yet wo refracting radio telescoper, any netal can give a surlace which will reflet ration wases. This means that mirrons and reflecting teleseopes can be buik for radio waves. lo such telescopes the mirrors serve to lemes the radio wawes in essemtially the same way asoptical mirrom foros light.

Ratiotelescopes have at leavt one great adtantate from the constractional viewpeme. The mirvorsmeed not le made meatly as actoratels as the mirmers lor optical whescopes. lob have goed lixal preperties an optical mirvor mos lxe mate w whin a tolerance
of aboum 1 to, tex of a millimeter. In comtrast, a radio mirror will give a comparable accuraty of feres with a toleratme as large as an inch or two. Thas ratio mirrons can be made comomously bigger than optical mirrors without ans great risk of exceeding the repuined wherance. The mirror of the radiotelescoper at Joetrell Bank has lifeen time the diameter of the larsed optical mirror. and plams abready exist low making coon larger ones. But there are us plans for makine nptial mirrers substambally larger than that at lamar Demmano.

The emomonsly lareer size and weight of radis mirros raises merhanical problems of a dilleremt orever and type fiom thene encomented in the desien of optical wheropes. The great weights insolsed mas catue the desigher of a madion telesope to preter a stye of mombting for his mirror which the designer of an optical whope would never eontemplate. For example. the equatorial momoting that is so
 Fems of weight distribution in the case at the ration instrumem. Thes problens were in lact solved in the ease of the en-len mermaned by the ratienastronomers at the Colifornis I Istitute of Techotegy.
 lis appreciably lareser mienors sueh as that at Jouterll Bank. Fors such laree mirrers as these it is preterahbe

Lett: View of the 250 -foot mirror of the Jodrell Bank radio telescope. Above: Diagrammatic representation of its altazimuth mounting. Right: View from control room.

It will be recalled from Chapter 2 that with an altazimuth monnting it is necessary for the telescope to be moved comtinuonsly about looth a vertical axis and a horizontal axis in order to compensate for the rotation of the Earth. With anequatorial mounting, on the ofleer hand, motion alent only one axis is requircel. Moreover, the motion necessary for an equatorial momsting is the same at allobservatories, irrespective of the latitule, whereas the motions required for an altazimuth momiting depend on the position of the ofserver and differ from one latitude to another. So the whole problem of moving an altazimuth wleseope is much more complicated than that of mowing an equatorial telescope. There is, moreover, the further difticulty that in the catalogs the pesitions of all astromemical objects are given in the equatorial system, and any ohserver who uses the altazimuth arrangement must make a rather cmmbersome arithmetical conversion in order to find the direction in which he must point his telescope to pick up a specitied olject at a specified time.
The situation is saved in the case of the large altaximuth radie telescopes by the nse of an antomatic computer which perlioms the necessary arithenetical computations very quickly. aud loy the provision of automatic servomechanisms which direct the telescope in its complicated domble motion, the one about a vertical axis, the oher about a horizontal.

It is only the existence of these mondern devices that makes the design of the large altazimuth teleseope feasible. Similar devices could, of comese, be provided for optical elescopes, but because there is no spectial difliculty alonu building equatorial momeings for them, molendy has thought it worth while.

We have seen that a radio telescope focuses radio, wases in much the same way as an optical teleserope fienses hight. But what happens to the radio, waves alter they have been bronght to a focus? Obviously they eanoe be ciewed diectly with the ere, nor can they be photegraphed with a camera. The answer is that they are pieked up on a small acrial placed at the focts and are led either be pipes or by cables to a ractio receiser. The recriver amplities the radio signal, delivering a voltage directly proportional to the signal, which is then used to activate some recording device in most cases a simple pen recorder. This technique, which the ration astromomer must perforec adopt, unfortumately gives much less inliormation than optical photography: In the radio teleseope the whole of the waves focused by the mirror are dieceted inte the receiver, where they proxhere one single ontput voltage. It is as though an optical telescope, instrad of giving a photograph of am area of the sky, were to take all the lieht and foens it inte one single bright spen. This would tell us mothing except the cotal brightuess of all the objecte lying
whin the field of view of the telescope. It would not conable us to judge whether the field of view contained just one bright object, wo less bright objects, or a great many dim ones. And this is just the state of uncerpainty in which the radioteleseope leases us. It simply gives us the total radio brightuess of all the objects in its ficlel of view.

By pointing it todifferent parts of the sky, different fields of view can be examined, and their radio brightmesses compared, and that is the most that a single radio teleseope can do. Once the sky has been completely surveyed with a given instrument, it is possible to construct a radio map showing the relative radio brightuess of different areas, but only to a degree of accuracy determined by the feld of view of the telescope. To obtain a more refined map it is necessary to build a new instrument giving a smaller field of view. This means constructing a teleseope with a still larger mirror. since the lield of view is determined by the size of the mirror-the larger the mirror, the smaller the field of view.

All this refers only to the operation of a radies telescope at one particular wavelength. Now a radio mirror will serse to bring to a focus all radio waves, irrespective of their wavelength, just as an optical mirror brings light to a focus irrespective of its color. So what determines the wavelength on which a radie telescope is operated? The answer is the par-

These photographs of the Mullard Observatory, Cambridge, show first a giant mobile aerial mounted on 1000 feet of railway track running north to south, and next a fixed aerial, 1450 feet long, running east to west. With equipment of this kind nebulae 5000 million light years away have been observed.

ticular acrial and receiver used to pick up the radio waves. If these are changed, the wavelength on which the telescope operates will be correspendingIy changed; and if the piek-tup aerial and receiver ate arranged to accept a shorter wavelength, the field of view of the teloseope is reduced. The teleseopee then gives more information about the distribution of radio intensity over the shy at the new wavelongth than it did at the old, longer wavelongth.

So there are two ways in which the radio astronomer can gain more information about the sky. He can build telescopes with larger and larger mirrors or he can use shorter and shorter wavelengths. Unfortunately, it isn't very easy to do both, because the shorter the wavelength used, the more accurately must the mirror fe made, and, of course, the larger the mirror the harder it is to make it within the required tolerance. Moreover, the intrinsic radio brightness of the sky decreases everywhere as the wavelength lecomes shorter, so at shorter and shorter wavelengths it becomes necessary to measure weaker and weaker signals. For these reasons a mere reduction of wavelength is no simple solution to the radio astronomer's problems.

At the time of writing, there are two schools of thought anong radio astronomers. There are those whobelieve that more detail about the sky will best be observed by louilding huge mirrors, and there are those who believe that the best policy is to use shorter wavelengths. Among those who prefer larger mirrors, there is again a disergence of views. Some prefer a reflecting telescope of orthodox design, such as the one at Jodrell Bank, the one now being constructed in Atstralia, or the one with a mirror of Goo-leet diameter to be constructed by the U.S. Naty. Others, particularly the radio astronomers at

Cambridge, beliew that it will never be peosible to buile an orthedox moving teleseope having a mirror whth a diameter of more than alrout son to meo lied. They preder telescopes of a less orthodex design, a design which sacrifices embirely Iree mowement but which in return is alele to obtain an effective diancter of almost lantastically large dimensions.

It might be thought that the solution to these problems lies in insenting somes sort ol raties photographe; but this is not so, for the dillienty the radion astronomer laces is one not ol technique but of principle. From our disenssion of the optical telescope it will be recalled that there is an inherem

The radio astronomer can measure and map the radio brightnesses of different parts of the sky at any given wavelength. In the map below, contours denote strength of radio emission at a frequency of 160 megacycies (wavelength 1.875 metres) in an area of sky visible from Cambridge.
limitation to the resolving perwer of the wherpe. It is imponsible to distinguish two wherets when the angle between their diections is less than a cotain calenable gumtity, given as 1.22 times the wavelength λ ! divided by the dianmer of the apertume of the telescope. Exactly the same limitation applies in the case of a radio telescope, and because the wavelength is so very much greater in that case than in the optical case, the limitation is vastly mere stringent. Consider, for instanere, the radioteleseope with an aperture of 200 leet operating at a waselength ol about 3 meters. Our limmula shows that with such a telescope two objects must be separated by an angle of more than 3° in order for them to be distinguishable. And it is this limitation which decides the effective lield of view of the radiotelescepe. Clearly, it is not merely technical ignorance that prevents us from determining the details of what lies within the field of view of the radio telescope. We are presented from doing so by the inherent structure of the radio waves themselves.

Chapter 8 The Birth of Modern Astronomy

Until about a century ago astronomers were concerned only with the positions, the motions and the masses of celestial beelies. Of the physical make-up) of stars they knew little or nothing and had no means of finding out. Vet today that is one of the prime concerns of astronomy. This revolationary change is clue in large measure to two results of man's ever-growing knowledge of the nature of light: the ability to make spectroscopes capable of braking down light from a distant somere into its componcont wavelengths, and the recognition that each different type of atom emits lines only at its own characteristic wavelengths

When the slit of a spectoseope is ilfuminated by sumbight the solar spectrun can readily be observed or photographed. It consists of a continnous bright background of cotors ranging from red lor the longest visible wavelengthe to vioke lar the shortest. This bright background is crossed by many tamswerse narrow dark lines, called Frambofer lines in honor of the great Goman sciontist liramboler, who lirst discovered then.

Wiselengths are commonly measmed in units called angstroms, named alter the Swedish physicise Anders Angströn. The angstrom is a mit of
length equal to 1 10,ooo,ooo of a millimeter. Blue light has wavelengths around 4,000 angstroms, yellow light around 5,000 , and red light around 6,000 . The hmman eye is sensitive only to wavelengths ranging from about 4,000 to 8,000 angstroms, and this is more likely due to biological adaptation than to accident, for most of the light emitted by the Sun falls within a similar range. In fact, the solar spectrum that can be photographed with normal astronomical equipment is limited to a range of lweween about 3,000 and 0,000 angstroms.

This limitation is due to a variety of causes. The Sum actually does emit most of its radiation within this range, with the maximum emission occurring in the fellow part of the spectrom, near wavelength 5 ,ooo angstroms: but it also emits some radiation at wavelengths shorter than 3,060 angstroms and some at wavelengths longer than 10,0 oo angstroms. The short-wave radiation entirely fails to reach our tetescopes becatuse it is absorbed be the gases of the Farth's atmosphere. Long-wave radiation in the region of 10,000 angstroms also finds it diflicult to penctrate the atmosphere: some of it does get through, however, but photographic plates fail in sensitivity in the region of 16,000 angstroms and

It was through the work of the early spectroscopists that man gained his first insight into the compositions of the stars. In the 1860s William Huggins of London used this 8 -inch refractor fitted with a spectroscope (in circle) to obtain star spectra. Comparison with spectra actually produced in the observatory showed that the stars possess many elements in common with our own Earth.
therelore donot enable ustodetectit. Spectal cquipment of a pliotoclectric rhatater ant le used w Fxtend the ramge of scasitivity le yond bo,ooc ang-
 wonet in practical use that the photegraphic plate.

A pertion of the spectran al the Sum is shown in F゙igure 7.24 page 190 . We satw that the bright contmons background is pronlued ly collisions of Wectrons with atoms in the photosplerie regions of the Sum, while the dark lines are preduced be istdividual atoms lying in the cooler gases dbowe the
 own characteristic wavelengths, athel the absorptive power varies from one kind of atom to another; it also varies with the wometature and tretwern one characteristic wavelength and athother for the sathe atome. It is becaluse of all these variations that the dark lines of the wolar speetrum vary so mush in width. When the absorptive pewer of a pateticular atom is weak the corresponding lime appears narrow: when it isstrong the concesponding line appats wide. Tiwo of the lines of the solar spertron are partioularly wide. 'loses are lines produced by calcium atoms that have lest one of their electrons. Such atoms hate atl coormons abserplive perwer at these particolar wavelengths.

What spectrum Lines Tell

Just is we can obtain the spectrum of the Sun, so we can obtain the spectat of stars. Their study
forms a major bramh of mondern astemmoms and prowides there broad streams of informations. Fïnt, it tells an ateat deal about the phesical comelitions at the surlises of stan about the temperatere athe density of the gaseons material that preduces the spectrom limes. Sicond, it tefls us about the Chemistry of the stats, lior sime diflement atoms have dillerent characteristie lines, we ean infer the existence of these atoms bs detecting those particular lims. Thied, a carefill sturls of the wavelengths at which the lines are lound gives important clues about the motions of the stars.

Let ws look at the last peint first. Comsider a source of light that mowes toward the olserver. remembering that the light is a suceessionolerests and troughs. As sucessive crests reach the observer they will be slighty claser together that il the source were stationary. That is, the wavelength of the light will be a little less that it would otherwise be. It will appear slighty bluer to the olserver

TO see this, we lirst notice that the time required for a particular wate-crest to travel from the source (1) the observer is simple the distance Inetween the source and the observer divided leythesperd of light. But when the somere is mosing toward the olsemer that distance decreases from one crest the the sext. Hence the time delay betwernemission at the souree dud reception at the observer abse decreases from one crest to the noxt. This means that the crests reath the observer with progressivel shorter time

delans. In other words, the thate intersal between the arrival of sucersive erests is less thath the time interal belweron the emission of successive waves from the sobrece since the wases alwase pass the observer at the stamdard lixed sped of light, it lol-
 be less than it woblel be if the semere wre stationary. The light therefore appears blace to the obsemer than it womld do to atyone who happened to mowe with the somere.

We can derive a simple mathematical fomma from these consideratoons. Suppene that $\mathbb{V}^{\prime \prime}$ is the sped at which heesomere mows towarl the observer and t is the time lwetween the emission of sucessive waverrests at the sobures. When in the time t the somere mowes a distance equal to I t toward the observer. Hence the second wawe-crest takes less time to reach the observer than the first one by an amomat equal to $V \times t \div c$ where i represents the specel of light.

If the source of light were stationary, sucerssive wave-crests would also take a time f (6 pass the observer, but when there is the motion I that time is reduced by $V^{\circ} \times \ell \div$. What is to say, it is proportionately reduced bly $V^{\circ} \div$, and this is just the amomut by which the wavelength is proportionately redued. Suppose that the mashifed wavelength is λ and that the shifted wavelength is $\bar{\lambda} \quad \Delta \lambda$; then the proportionate shift of the wavelength is just $\Delta \lambda \div 7$, and this must be equal to $V \div c$. We shas

[^10]
whtain the simple equation $\frac{\Delta \lambda}{\lambda} \quad \frac{V}{i}$.
From this simple equation we derise moth of our kowwledge of the motions of the stars athed af the stucture of our own galaxy, amb our ideas abost the universe in the large alse make use ol it. Yer the derivation of the equation depends only sh the conept of wawe motion. It could equally well be derived from a knowhedge of water wases or somul waves and would equally well apply to them. It is a matter of common experience that the piteh of a train whistle is raised when the train is mowing toward the wherser. The elegree which the pitch of the whistle is raised elepends precisely on our equation.

One detail remains to be mentoned. Dxactly similar considerations apply when the souree ollight (or sombl) is mowing awaly from the observer. The sithation is then reversed. Instead ol the wavelongth decreasing, it is increasing, and it is increasing by an atmont given by an exactly similar equation. So when a source of light is mesing away from the wherver we get a shilt toward the red end of the spectrum.

Leaving aside this question of wavelength shift, which is now important in the study ol the motions of gataxies, there were two sther kinds of inlormation which the pioneers of nowlem spectroneops hoped to gain by studying the speetra of the stars. First they hoped to be able todetermine the phesical conditions at the surlaces of the stars, particularly the lemperature and the density of the material in which the spectrmm lines are lormed. Next they hoped to determine the chemical composition of the matorial itsell. This was a differelt and ambitious program, and astronomers hawe only come near to carrying it wht in recent years.

St an carly stage it became clear that the spectra of stars can be chassified into several broad groups, aceording to whish limes dominate them. 'There is a group in which the lines of the simplest clement of all, hedrogen, form the domsinating fature. Such stats atre kowne ats A type stars. There are other stars in which the second simplest element, lielime, prosides the domintath lines of the seretrom. These stas can loe subelivided into two groups, according to whether the lines of the ordinary newtal lome ol the helimen atom dominate, or whether the dominath lines come from helimon atoms that have lowt one of their (wo dectrons. These two gromps

[^11]We have already remarhed on the ereal stremeth wh the lies protuced by calcime atems in the ateme sphere of the Sum. 'There is a gromp of stars, the F' I!pe stars, in which the hadrogen limes and the cale iom lines are ronghly comparable in strengeth. Metal lines, or lines producel by atoms of metal other than calcium, also berome woticeable in the F stars, whereas metal lines satrels show at all in the B and O ;romps and only oecasionally do they show at all strongly in the A gromp. Next come stam with spectra ratber like that of the Sum. Here the calcium lines have become stonger than the hydrogen lines and a trencedous profinsion of metal lines. particnlarly thone of iron, begin to show themselves. These are the Ciype stars.

The next gromp, the K eype stars, also resemble spectra that can be olserved in the Sun. for the \mathfrak{K} lype stars have spectra smilar to those of smuspots. Sumspots do mot appear dark because mo light at all conses from them; they appear dark only in comparison with the surrounding regions from which considerably more light is receised. If we take the precaution to exclude light from the surromding regions we can obtain the spectram of a sumpot, and the result differs lirom the normal solar spectrum in that the hydrogen lines have become greatly: weakened. This is the situation in the K type stars.

Finally there are stars in which the lines are produced by molecules as well as lyatoms, and where, indeed, the molecular lines become dominant. These are the M stars. Spectescopists have subdivided these molecular stars ineo four separate geomps, M, N, R and S. It secms likely, however, What these suldivisions arise from chemical differences, whereas the differences we have so far consielered arise mainly from the effects of temperature. Since it seems malesirable tomix tege ther the effects of temperature and of chemistry, we shall ignore here the detailed division of the M stars. Jence our groups rum as follows: A, B, O, F, C, K, M

We have already noticed in Chapter 7 that the space between the stars contains fine partides of dhst. The size of these particles is in the general range of three thousand angstroms and this liact causes them to alosorb and to scatter blue light mere readily than red light. Hene e the lighe froma distant star appears to w to be redder than it really is. The observed colers of the stars therebe tend to be falsified, and the larther away a star happens to be, the more its color is falsified in this way. Now stars of ${ }^{\circ}$ the class O are companatively uncommon, and none
of them lies sery neat to ws, so as a aroup the O type stars afe more reddenced bs the eflect ol interstellat dust than are the mearer Band. I type stars. For this mason it was not immediately cleat tw the carly spectoreophists that the spertral classification ente lined alswe rat alsogive a color classification ranging trom blue toward red. Tos do so, the gromps must be rearrangel in the following sequence: O, B,
 membered from the wd macmentic Oh Be I I Fäne Givl, hies Me.

Exervedy observation tells us that the hoter a fire bums the bher the light it emits. Hence our sequence of stars from blace to red, of fom type O to type M, is a temperature sequence, the O stars loeing the fottest and the $I I$ stars the corolest at their surfares. $I t$ is casy to show that this is true firm the G and k sequence. We saw that G corresponds to the nomal solar spectrum whereas K corresponds whe sme spot spectrom, and of course the smaspot is dark simply because it is corter than the solar regions surromuling it.

According to modern work, the tompratures actually insolved in the spectral classilication scheme are as follows: O type woward of 35 .000 C. ; 13 (ype from about 11,000 to about 35,000 ; A type from 7,500 tw 1,000 ; F type frombioos to 7,500 ;

 temperatures at the surfaces of the stars; the temperatures in their interiors are enormonsly higher, as we shall later ser.) The temperature range for some gromps the 13 stars, for example is ver! large. To cover the wide range from 11,000 to 35,000 ten sulbypes are introduced. These range from Bo at 35,600 , through the subtypes B1, B2, B3, etc., ир to type Bg_{g}, corresponding to a temperature of approximately 12,000 . The other main gromps are likewise divided intosubelasses, and by studying star spectra the astronomer can dassify the stars not only into the main, broad groups but also into the subelasses.

Consider the F stars. A: subelass Fo, the hodrogen lines are still stronger than the calcinm lines, whereas at subclass $1 \% 8$ the reverse is the case. Itdecd, the whole sequence of subelasses $\mathrm{F}_{\mathrm{O}}, \mathrm{F}_{1}, \mathrm{~F}_{2}$. ete., is based on the relatise strength of the hẹdrogen and the calcimm lines. As we pass along the sequence, the hideogen lines weaken in comparisom with the calcium lines. The ability of the astronemer to classily the stars in these subgromps allows his estimates of stellar temperatures to be greatly re
fined. Among stars of types G and K temperatures call be estimated to within 200°, among stars of type A to within 500°, among type 13 to within $2,060^{\circ}$, and among type O to within about $5,000^{\circ}$.

Next comes the question of the chemistry of the stars. If our only concern were to recognize which atums are present in various stars, the problem would le comparatively simple. We should merely have to compare the spectrum lines present in the light of the star with the lines which different types of atom produce in the laboratory. A suitable correspondence in wavelength would then reveal the presence in the star of types of atom already examined in the laboratory. Indeed, it is in just this way that the stars have been shown to contain essentially all the elements that are found here on Earth. But we want to know much more than this. We are not satisfied with a qualitative chemical analysis of the stars; we want to know the concentrations of the various elements, and here difficulties arise.

The first is that we must know the stellar temperature very accurately, and even granted this, there is the further difficulty that different atoms vary enormously in their ability to produce spectrum lines. Whereas helium atoms are very reluctant to produce spectrum lines, even at high temperatures, calcium atoms do so very readily, even at comparatively low temperatures. All these inherent differences between different sorts of atom must be taken into account, and such a feat was far beyond the capacity of early workers in this field.

The first big step was taken about thirty years ago, when the work of Professor Henry Norris Russell of Princeton clearly showed that the compositions of the stars differ in one crucial respect from that of the Earth. The stars contain a vastly higher proportion of hydrogen, helium and other light gases such as oxygen, nitrogen and neon, than the Earth does.

The whole problem of the chemical make-up of stars is still under active investigation, and much remains to be done before the picture is complete. By now, however, we do have a pretty good idea of what the chemical composition of the Sun is like. Hydrogen atoms are about ten times more numerous than helium atoms, while hydrogen and helium atoms together are about a thousand times more numerous than the atoms of all the other clements put together. Of the rest, oxygen and neon are the most abundant elements, followed closely by carbon and nitrogen. After these, and something like ten
times less abundant than oxygen, come magnesium and silicon, then iron, then a whole lot of elements such as aluminum, sulfiur, calcium and conmon metals like nickel and chrominm.
The situation, therefore, is that the light group of elements ranging from carbon to neon contribute a little more than one per cent to the mass of the Sun. The elements of which the Earth is mainly constructed, namely magnesium, silicon and the common metals, contribute alout a fifth of one per cent. The concentrations of the remaining elements, such as tin, barium, europium, mercury, lead and uranium, are almost negligilsy small.

Most of the stars we can see in the sky have compositions very similar to that of the Sun, but we now know that some are markedly different. In particular, there are stars with very low concentrations of the common metals-stars in which the proportion of iron, for example, is only about one hundredth of that in the Sun. At the other extreme

Comparative abundances of atoms of various elements on the Sun (first of each pair of bars) and on the Earth (second of each pair). The horizontal scale is logarithmic, 1 denoting 10^{1}, 2 denoting 10°, and so on. Relative abundances are adjusted to agree for the element silicon, which is usually taken as the reference standard in discussions of relative abundances.
there are stan whith almormally high concentrat bons of certain particular ekements of barimm. strontinm, or airconium. There are others with high concentrations of the rare carths.

One type of star contains an element which does not exist at all on the Earth. This is the clement technesimm. Techmetium is naturally ums.able; that is, it steadily breaks down into other elements. The hall-lite of its longest-lived isotope is about two hundred thousand years. This means that half of any given quantity of it breaks down into other elements in two hundred thousand years, halfof the remainder in the next two hondred thousand years, and soom. At that rate even a very considerable quantity would effectively disappear in, say, twenty million years. None is now lound on the Earth for the simple reason that even if there were any whegin with it must all have decayed long age. Vet technetiom is fommel in certain stars, and the implication is that it has been produced by some form of muclear transmutation. We shall delse more deeply into this question in the next chapter, and alse into the whole problem of why it is that stars differ in their chemical compensitions.

Exploring the Surface of the Sun

One of the first triumphe of spectroscopy came in 1868, when with the help of a spectroseope Sir Norman Laekyer detected the presence of a hithertor manown elemem in the Sun. The fact that the Sun has a temons outer atmosphere situated above the photosphere had abeady been verified by direct observation cluring total echipses. At such times
olservers had sometumes seen arched structures in this outer atmosphere, arclues with roots descending into the photosphere. These were the prominences. One of Lack!er's outstanding contributions to spectrescopy was to diseower that the spectra of prominences could be observed in full sunlight that is, in the absence of an eclipse. In the conne of his olservations he came across one spectrom line which did not correspond to ant of the characteristic lines that could be produced in the latsoratory by any type of atom then known. He suggested that the new line was produced bẹ an entirely "new" clement, which he appropriately named helimm.

In the last lew years of the nincteenth century Sir Willian Ransay diseovered the presence of heliun in certain radioactive materials here on the Earth. Helinm is, infact, constamly being produced be the radinactive materials in the larth's crust and is constantly leaking away into the terrestrial atmosplere. fucidentally, helium changes from a gaserous to a liquid state at a lower temperature than any ofluer substance. Its beiling-point is 2 tig ($:$, and it was not until 1908 that ansome succeeded in liequefying it. Since then helium in liguid lorm has given rise to a whole new brancholphysies, the branch koown as low-temperature physies.

We saw earlier that helium dees not readily produce spectrum lines except at high temperatures. How, then, are the spectrom lites of helium produced in the Sm? The answer is that the outer atmosphere of the Sun is inded very hot, for a remarkable sithation arises as we go ufward from the photosphere. It first the temperature falls. This is

Engraving from Lockyer's Chemistry of the Sun, showing apparatus he used in determining coincidences of solar and metallic lines. In the course of his work Lockyer discovered in the solar spectrum lines produced by an element not then known on Earth.

Before the close of the nineteenth century Sir William Ramsay found that this element-heliumdoes exist on Earth. On the right is a facsimile of some of the notes taken down from Ramsay's dictation on the day the discovery was made.
in the region that produces the dark leamatofer lines of the solar spectrum. But then the situation is reversed. Some four or live thousand miles above the photosphere the temperature rises almost discontinuously from about $5,0000^{\circ}$ (1) $100,000^{\circ}$ and more as we continue upward into the solar corona. (The corona is the great halo that surrounds the Sun and which shows itself so magnificently during a total eclipse of the Sun.) Now why does this hot gas not presluce a lot of blue light, like the gas at the surface of a B type star or an O type star? The answer is that here the density of the gas is too low to enable it to commit very much light. But the small amount of light it does emit has the genuine hightemperature property, and this is why the helium spectrum lines are produced.

We can get a clearer notion of one high-temperature property by considering the spectrum lines of the Sun's high corona. For a long time the origin of these lines was fraught with mystery, for in the laboratory scientists could find nothing to match them. Remembering lockyer's discovery of helium, some thought that these mysterious lines might be produced by other elements not present, or not yet discovered, on the Earth. The problem was finally resolved some thirty years ago by the Swedish plysicist B. Edlén. Ed len found in the laboratory that these lines were in fact produced by very well-known clements, such as iron and calcium, but by atoms of those elements from which a considerable number of electrons had been stripped away. For example, one of the brightest lines arises from iron atoms from which 13 electrons have been stripped. The reason
why atoms exist in this state in the solar corona is that, because of the very high temperature there, they are subject to violent collisions. Indeed, the very existence of these lines in the spectrum of the corona is a sure indication that temperatures there are extremely high.

We have seen that going upward from the surface of the Sun toward the high corona there is a reversal of temperature. There is a similar reversal as we go upward from the surface of the Earth. The tenperature at first decreases, but at a height of some 15 miles it begins to increase again, and at a height of about 35 miles it rises back to normal grout temperatures. Then for a while it drops again, but at about 60 miles above the Earth's surface the rise is resumed, and it continues until temperatures in excess of 1000° are reached in the high atmosphere.

This is the region of the Earth's ionosphere. The ionosphere has two main regions, one called the E region and the other the F region, the latter being subdivided into two parts, F_{1} and F_{2}. In the E region, which occurs at a height of about 60 miles, X-rays emitted by the corona of the Sun are absorbed by the gases of the atmosphere. The absorpion causes electrons to become detached from the atoms; that is to say, the atoms become ionized. The main F region occurs at a height of between 120 and 200 miles. A rather surprising fact, recently established with the aid of rockets, is that ionization in the \mathbf{F} region is produced by radiation in the helfum lines that occur at a wavelength near 500 angstroms. Thus the main ionosphere of the Earth owes its origins to the radiations emitted by the hot

Wien obewing, Cooper tictraphe)-
cupptar io Vehime, 58749 . Cone sseeit. Went σ san t.
Ieleraphes if Deistelot Instutut Pa is Gas obteme par moi cleveite milaup argo
helium. Cooke identifi spectre Jaiteo comumicater Ceabavie humor Ramsay:
Sure RS. At Revue- L11, 328
Tubular. $\lambda 4471$ alamo asescinat mit D_{3} i

As we move away from the surface of the Sun the temperature at first falls. Then, as we move farther, toward the solar corona, it rises sharply.

A similar reversal takes place as we move away from the Earth's surface. Temperatures fall up to a height of over ten miles, then begin to increase.

atmosphere of the Sun. Without these radiations there weuld tre no ionosphere, athd long-distance radio transmission, whicls depends on the rellection of electromagnetic waves from this region, wonld therefore be impossible.

Some ionization also occurs in our atmosphere at heights well below the E region. This also semems to be caused by X-rays from the Sun, but in this case by X-rays of comselerably shorter wavelength than those emitted by the corona. These harder X-rays appear to come from regions down near the photosphere where they are prexluced by the remarkable phenomenon known as the solar flare. Flaws are strongly correlated whth sumspots, and at this point it may therefore be as well to examine briclly what astronomers have so far learned about sumspots.

Schwabe, a German apothecary, is usually credited with the discovery that sumspots wax and wane periodically. Schwabe made his announcement in 1843 , but toward the end of the eighteenth century Horrelsow had already anoounced that sumspots were probably gowomed by a law of periodicity: and Sir Willian Herschel had already boldly specblated that certain cevents on the Earth, such as the growth of wheat, might le correlated with a periodicity of solar activity. Schwabe's value for the period of somspot activity was ten years. A few years later, R. Woll arrived at a value ol 11.1 sars, remarkably close to the modern estimate.

The frequency of inceurrence of sumspots at the maximm plase may be as much as a hondred times greater than at the minimm phase. Almost all the spots lie at latitudes of less than fo and they are more or less symmetrically distributed between the two solar hemispheres. At any given momemt the spots are usually distributed along two belts, one in the worlbern hemisphere and the otber in the southern. At the begimning of each new cyele, the belts lie at the ir greatest distance trem the equater, at about fo \mathcal{N} and fo S. As the cyele procecels these Ix lis gradually drilt toward the equator, and by the time of maximum activity their latitudes are nsuall! somewhere between 15 and 20 . By the end of the cyele they have almost reathed the equator, late usually they die amay about latitude 5 . The fint spots of the next eycle then appear around lathendes fo \times and fo S .

An individual sumspot starts its life, which may last frem a day or two 口p to several weeks, as a multitude of small dark specks. These specks then congulate to lorm a dark spet which may measure

This photograph of the solar corona was taken in the Sudan during the eclipse of February 25th, 1952. The form of the corona is closely related to the phase of the elevenyear sunspot cycle. First diagram shows typical form of corona when spot activity is at maximum, second one shows typical form when spot activity is at minimum.

ansthing from ton thonsand miles on a handred thonsand miles in diameter. Sputs matally ocene in pairs, one lying almest due west of the other.

Wir saw in Chaperer 5 how Galileo nsed smongots to measure the periex of rotation of the Sime and arrived at a value of almout 27 days. By repeating Galikeos olservations more carelulls, Carringeon and Sporer, in alum the year 1860 , were able to show that the emeriex of motation is mot exactly the same at dilferemt solar latitudes. They fomed that the Sum rotates most rappelly at its equator, and that at increasing latitudes the periex of rotation lecomes pregressively longer. Juberd, the variation in the time of rotation between equatorial and polar regions of the Sum amomuts to there or lour days.

A century later this remarkable result is still unexplained. The problem is a famous one, for all the eonsiderations that one might expect to bear on it suggest an exactly contrary sithation. All our expectations would le that the Sun sheuld retate nore slowly at its cequator.

In the carly years of the present cenary George Ellery Hale marle a momentons discovery. Using complex spectrographic metherels, lie detected the prescoee of strong magnetio fields inside smensots. This was the first direct evidenee of the existence of magnetic fields in an astronomical problem. Now, in recent times, magnetic fiedds have come to play a dominant role in almost all omr astronomical thinking. Quite apart from the sumsposs, photographs of the solar corma taken at wotal eclipses suggest strongly that a large-scale magnetic lield emerges from the solar surface into surromoding space. The movements of prominences and their strusture is also strongly suggestive of the presener of magnetic fields comerying at the rents of the prominences from the interior of the Sum.

Ihis brings us back to the question of solar llares, and a terrestrial analogy shoukd liclp us to understand what these may be. Suppose a high-voltage
pewer line were breken, say in a storn. At first sight one might thinh that the flow of current in the power linecircuit wouldsimply crase. But experience shows this is not st. The curremt tends tw comtinate, and muless adepnate precautions are takena sitnation might arise which would cause serions damage to the generators at the power station. It is for this reason that etcetricity supply companies use elaborateswitching arrangements for causing the flow of curremt to dieaway whenever a break in the power line occurs. All this can be explained in the following way. Wherever there is a llow of current there is also a magnetic field, and in the case of a large currem the magnetic field carries a large amome of energy. This energy does not simply ecase to exist as soon as the power line is broken. It must somehow be dissipated, and this is precisely what the electricity supply companies arrange to do with their claborate switching devices. Violent spark diseharges occur at the switches, and it is these discharges that dissipate the energy of the maguetic field.

It seems likely that on the Sme. tox, there are situations in which maguetic fields are amihilated. There, just as in the terrestrial case, the energy carried be the fields deres not suddenly cease to exist. It is dissipated in the form of hinge discharges, and these are the solar flares.

In the course of the diseharges electrons and atomic muclei are accelerated to high speeds. This has two important effects. First these high-speed particles, colliding with each other and also with more or less stationary particles, generate the highly emergetic \mathbb{N}-rays which produce the lowest iomization zome of the Earth's atmosphere. Second, wast numbers of the high-speed particles themselves are shot out of the Sun in a form somewhat like the beam of'a lighthonse. If the Earth happens te lic in the path of the leam, the particles impinge on the Earth's outer magnetic field. This produces the socalled magnetic storms. It also seems likely that in

> Diagram showing the distribution of sunspots at various solar latitudes (marked on vertical scale) throughout the period 1933-47. Spot distribution moves steadily toward solar equator as activity begins, increases and dies away. First spots of next cycle appear near latitudes 40 N and S .

In each pair of spots above, one is almost due west of the other. Specks may later coagulate into big spots. If spots were lined up on a single meridian (first diagram) those near equator would increase their longitude more rapidly than those distant from it (second diagram).
the conrse of the impinging proxess high-speced electrons are generated, some of which are captured lyy the larth, linding their way into the liarth's magurtic field.

It seems to be in this way that the outer Van Allen radiation bele is formed. The Van Allen radiation le-ls, recently discowered by the techmigue of space probes, comsist of just such high-speed clectrons trapped in the Farth's magnetic ficld. Resking lackward and forward between the mosth and south poles of the Earth, taking less than a second for each round trip, these electrons are responsible for the spectacular polar amorac.

Wie have already seen that there is comvincing wielenere that the Sun's outer atmosphere is extremely hot, but we have not set asked u hy it is. The loregoing dincussion abont how solar flares are produced should help us to muderstand the answer most fasored ly astronemers.

We knew that the matter below the photosphere of the Sun is in constant comserive motion the kind at motion water has when bring heated in a ketter. This motion mast tend to produce magnetic corrgy at the expense of its own mechanical energy: The magnetic fields so generated then emarge from the plosesphare into the solar atmosplewe where procrses of dissipation can take place. The solar llare is ath extreme example of such a process, but for the most part the discharges are far more gentle and less spertacular. Eien so, they generate a great deal of heat: not is much as is procluced in the llare. where high-speed particles are blasted ont ward from the Sum inte space, but quite roough to beat the Simis atmospliere to a very high temperature.

In short, most astronomers now think that the Sun's atmosphere derives its energy from the convective motions that take place lefow the photesplece. The importance of the magnetic field lies in its role of encerg-convevor. It takes up the energy of motion of the material below the photesphere and tramsports it into the solar atmospliere where, in a process of dissipation, it emerges as heat.

Much of what we know and much of what we believe about the surface and the atmosphere of the Sum depend on our knowledge of magnetic fields. Since magnetic lields first entered into astromomical problems alter their detection in sunspots, it is not moreasomable to ask what we have since learned abont sunspots. Wic suspect that magnetic fields play an important part in proxlucing the dark appearance of sunspots becanse they interfere with the elliciency with which convective motions carry encrgy from the immediate sulsphotospherie regions out to the photosphere itself. Beyond that, we have Ifarned surprisingly litte. Just why sumspots wax and wane in a time of about 11 years, just why they form belts around the Sun, and just why those belts drift toward the equator as the eycle proceeds, we still do not know. We can only suspect that we are up against extremely subtle and complex processes of which the explanations are far from simple.

The study of activity at the surface of the Sun and of its relation to the Earth has been vigorously pursued fir mpward of a hundred years, and a truly vast momber of observations have been made. What has all this great effort achicved in comparison with achievements in other branches of astronomy? It secms to me that the answer cannot be a particularly

Graph showing sunspot activity from
1750 to 1950. Numbers in the vertical scale are Wolf numbers, in which each spot visible through a particular telescope used as a standard reckons as one and each group of spots as ten.

Telescopic photograph of sunspots taken from a balloon over 80,000 feet above the Earth. The spots are cores of relatively cool gases associated with strong magnetic fields. Wisps of hotter gases envelop them.

cheerful one. The most interesting and useful developments have emerged only recently, in our increased muderstanding of the importance of magnetic processes. But progress as a whole has undoubtedly been slight compared with that in the rest of astronomy:

These considerations have a special importance for British astronomy: With the coming of spectroscopy and of interest in the solar cycle, British astronomers lost most of their interest in the larger prol)lems. The lines of research started by such men as Hersehel were abandoned, and because large telescopes are not necessary for observing the Sun, no telescope of appreciable aperture has been built in Britain during the past fifty years. As this book goes to press, Britain does not possess a telescope with an aperture equal to that of the largest of Herschel's instruments. This woeful lack can be traced to the oser-emplasis that has been placed on solar research. That is not to say that the investigation of the surface activity of the Sun is without importance. What is being said is that it is not of such great importance that it should be allowed to override the interests of the rest of astronomy.

All this has an important modern connotation, for space research is in large measure simply a continuation of the investigation of the surface activities of the Sun. And the emphasis now being placed on space research, particularly in the United States and Russia, is similar in many ways to the emphasis that has been placed on solar research in Britain during the last hundred years. Just as a false sense of proportion led British astronomers to forgo the larger problems of astronomy, so overemphasis on space research may again produce a situation in which the main problems are lost sight of.

To give substance to these remarks, we may well quit the surface phenomena of the Sun and consider some of the fascinating problems that arise when we examine its interior. Here we shall encounter phenomena that are of importance for the stars in gencral and which also have application to the universe in the large.

Inside the Sum

If you throw a ball into the air, it falls back to the ground. It does so because it is pulled downward by the force of gravity. Now gravity does not stop, acting when the ball touches the ground, so why roesn't the ball continue to fall until it reaches the center of the Earth? The answer is, of course, that
the ground presses upward on the ball with a force equal to that with which gravity pulls it downward. The same is true about all the material in the Earth, and our whole planet is in equilibrimu because gravity is everywhere balanced by the pressures that exist throughout the body of the barth.

This applies equally to the atmospheric gases. These, (∞), would fall downward muler the action of gravity if it were not for the pressure within them. The pressure that supplies the balancing upward force at sea level is the so-ealled normal atmospheric pressure, about 15 pounds per square inch. The pressure existing at the center of the Earth is some ten million times greater than this.

The same considerations apply to the Sun, but because the Sun is much heavier than the Earth the pressures inside it have to lie correspondingly greater. The pressure at the center of the Sun is about a hundred thousand million times greater than the pressure of the terrestrial atmospheric gases at sea level.

How do we know this? In Chapter 6 we saw that the mass of the Sun can be determined from the motions of the planets. We also know the distance of the Sun and hence its true size. Given the mass and size of the Sun, it is a simple matter to work out the pull of gravity at its surface. This turns out to be about thirty times greater than the pull ol gravity at the surface of the Earth. At first sight the difference is not very great, lout it rapidly becomes more marked as we penctrate inward from the surface of

[^12]

Time: 16h 03m (U.T.)

Series of photographs of an eruptive prominence, taken on June 4th, 1946
Small circle above first picture shows the Earth to same scale.
the Sun. Because the Sun contains so much more material than the Earth does, the weight of the owerlying layers becomes vastly greater as we near its center, and it is to withstand this great weight of the overlying layers that such tremendous pressures are necessary.

The next question is how are the requisite pressures maintained? Ninetcenth-century physicists already understood that ordinary solids and liquids canuot withstand more than a certain limited pressure, and that they lall far short of heing able either to supply or to withstand pressures of the order that must exist inside the Sun. So the deep interior of the Sun camot possibly be solid or liquid, as William Herschel imagined it to be. But nine-teenth-century discoveries concerning the nature of gases showed that the necessary pressures would be fortheoming from gases if they were sulficiently hot.

The pressure existing in a gas depends on three things: density, temperature, and the nature of the particles that make up the gas. I et us take these in turn. In the seventeenth century Robert Boyle had already established that the pressure of a gas increases with its density, and provided the density is not ton great the pressure is directly proportional to it; that is to say, if the density is doubled, the pressure is doubled. This is known as Boyle's Iaw. In the eighteenth century J. A. Charles showed that there is a similar direct proportionality between temperature and pressure: if the temperature of a gas, as measured from Alsolute zero, is doubled then the pressure is also doubled. We can write

Time: 16 h 36 m II' we use P for pressure, T for temperature, and the Greek letter ρ (rho) for density, we can set up the equation: $P=A \times \rho \times T$. In our equation I is a constant that depends on the nature of the particles that make up the gas.

To determine the constant A we need to know two things: first, the chemical composition of the gas-the concentrations of the various types of atoms in it; second, the condition in which those atoms exist. As we have already seen, we now know the chemical composition of the Sun, and of many other stars, but this information was not available to the early investigators. Nevertheless, at least one carly investigator, J. Homer Lane, made a surprisingly gored guess at the answer to the second part of the problem concerning the condition in which atoms exist in the Sun's interior close on a century ago. Lane argued that at the very high temperatures probably existing inside the Sun there would tre fieree collisions between atoms which might cause them to be torn asunder. This is just what modern physies teaches us to expect. The atoms are torn asmbler in the sense that the electrons which normally surround the heavy central nucleus are largeIy stripped away. Thus the nuclei of the atoms move around fredy by themselves without carrying their normal retinues of surrounding electrons with them, and the stripped electrons thenselves move aronnd freely too. So the gas inside the Sun consists of two kinels of particles moving freely and separately: the bare nuclei of atoms and clectrons. Knowing this,

Time: 16h 51m

Time: 17h 03m
of heat from the central regions to the photosphere, for heat in matter always flows from a region of higher temperature to a region of lower temperature. This explains whe the Sun is a bright liminous object whereas a boly like the Moon emits no light of its own, but shines only by reflerting light from the Sun. The basic difference between a planet or a satellite on the one hand and a star on the other is that inside a planet or a satellite the pressures needed to coumterbalance the pull of gravity are comparatively small, and can be provided by ordinary solids and liquids. Hence the temperatures inside planets and satellites need not be very high as they must be inside the stars; and just becanse the temperatures are not very high there is no largescale leakage of heat from their central regions to their surlaces.

How exactly is energy conveyed from the central regions of the Sun to the photosplsere? Heat travels along a metal bar from the hotter end to the cooler end by conduction; that is, the hot particles of metal do not move along the bar but simply pass on some of their heat to neighboring cooier partieles. But it is casy to check by calculation that the outhow ol heat in the Sun conld never be carried by conduction, for it is far too slow a process. The next possibility is that it is carried by convection, that is, by the actual movement of hot particles such as ecours when water in a kettle or air in a room is heated.

The first mathematical insestigation of the structure of the Sun, made by J. Homer Lane in 1869. was based on the assumption that the outward

How of energy from its center is carried in juse that way-by consections. If, knowing the chemical compensition of the Sun and hence the value of the comstamt A, our makes this assmmption, it is peosil) with the help of the formula $P=1 \quad \rho$. T th comsputc the structure of the Sum in precise mathematical terms. The temperature at the center then turns out to ix quite clase to ten million degrees. The density turns out to be about 50 grams per culbic centimeter, or alome fifty times as great as the dronsity of cold distilled water at sea lewe.

This raises a question that was a serions worry umtil ahout forty years ago. Can we rightly regard matter with such high demsities as gases, and if we call, is it reasomable to expect them to conform to the simple pressure formula given alewe? It will be recalled that Bewles Law, which tells us that the pressure of a gas is directly proportional to iss densits, is applicalde only if the density is not tow high. The validity of the law in a terestrial laboratory certainly ceases at densities as high as 50 grams per colbic cemtineter. Whe should the law not alse crase to be valid at similar densitios inside the Sun or inside the stars?

The answer is to le fomed in the extremely high temperatures that prevail there. Be atripping the electrons from the unctei of atems these high temperatures cmable matter, wew at wery high densities, (1) Dehaue just as gases do on Warth. Thus Powles

In recent years American astronomers have obtained clearer photographs of the Sun's surface than ever before from unmanned balloons at heights where "bad seeing", produced by the Earth's atmosphere, is eliminated. Photographs show preparations for launching and actual ascent during such a flight made in September, 1957. Diagram shows telescope mounting.

Law is mate applicable at far higher densities than we might at first sight expect. In lact, at very high temperatures, serions diserepencies do mot arise until the density climbs to about toon grams per cubic eentincter. Hence our simple pressume formula holds goene every where inside the Sum.

Returning now to the thow of energy from the internal regions of the Sun toward its surlace. Nine-teenth-century astromomers were aware of the possibility that some or all of this flow might be carricd mot by convection but by rathation, as cucrey is carricd across space from the Sun to the Earth. The problem was how to calculate the ellect of radiation, and the basic plan for doing this was diseovered ing Karl Schwaraschild only as recently as 1906 . Mestern work has now demonstrated that the emergy How deep inside the Sun does indeed take place in accordanee with the mathematical equations which Schwarsschild worked out. That is to say, the transport of energy there is by radiation and not by convection as carlier workers such as Homer lane had assumed.

But althengh this is true in the decp interior, convection does become impontant nearer the surface layers of the Sunt, as the series of photographes shown below womld lead us to expect. The sitnation, therefore, is that in any thoroughgonge discussion of the structure of the Sm. looth radiation and consection must be carefully considered.

We need not be satisticel with merely specilying in a gualitative way the mode of transport of energy inside the Sme. It is possible to make a quantitative calculation. The result of such calculation is a predietion of what the brighteress of the Sun should be, and this we can chech by obervation. In modern work the check between olservation and theory has become mest satisfactory, but before we come to that we most look at the piomerer work which Ededington did in this lield.
I.et us think now not just of the Sun but of any star. The temperature at its center will not neressarily be the same as in the Sun. It will depend npon the mass of the star and upom its size. These factors are important because they determine the stength of gravity, and henee the pressure reguired to withstand it. The larger the mass of a star, the greater the gravitational loree it exerts. This implies that the temperatures neressary to provide for support against gravity inside stars of large mass will be higher than the temperatures necessary inside stars of smaller mass; and because the internal temperatures are higher, the flow of radiation from the inner regions to the surface will also be greater. Hence we expect stars of large mass to be mere luminous than stars of small mass. This is indeed the case, as we shall shortly see.

The effect of the radius of a star on its lominesity can also be considered in a similar way. If two stars

Flying telescope view of Sun's surface (left) shows light spots (columns of hot, rising gas) and darker areas (sinking masses of cooler gas). First small photograph shows convection pattern produced by heating shallow layer of paraffin gently; second one shows convection pattern produced by heating deeper layer more rapidly. Second resembles granulation of Sun.

are of equal mass but of diflerent radii, gravit! will be less in the star of larger ratios. Hence the internal pressure and the internal temperature will atoo be less, and for this reason the lakage of energy from the enmer regions to the surlace will be smaller. lat other words the larger star will be Iess lumimous than the smaller one.

These are the ieleas that lixdelington subjected to calculation. He was able to obtain mathematical formulac from which the conld deduce the value ol the Inminosity fion the mass and the radins. By a lortmate circumstace it happens that the radius does tote enter the ealculations in a sensitise way: Without any substamtial loss of accuracy, it is possible to omit a precisely-eletermined radius and to substitute suitably aseraged observed walues. For example, if we wish to determine the lumimosity of a star of kowso matss but of maknown radius, we simply insert in our calculation the average radins, detomined by actabl observation, for stars of that particular mass. In ans given instance the actual radius will probably differ from the average value used, but this will not appreciably alfect the resnlt. Hence it is pessible to calculate a hommosity for each value of mass.

Viddington's results are shown in ligure 8. 1 , where the solid line gives the outcome of the calculations. The vertical scale on the lelt represents the luminosity L/, while the horizontal seale at the botom represents the mass (O). The mass (I is plocted logarithmically: ft is convenient to take the umit of

It as ehe solar mass, so that mats values in termen of the Sim are easily read off from the figure. But the sitnation is more complicate for the scale of luminowity. 'This is at magnitude scale, which calls lar some explanation.

From a mokern puint of view the magnitude sale could hardly be more arbitrary or more inconvenient. liet it is as scale with historical associations going back to Hipparchus and Ptolems, and for that reasen it is not lighty to le abandoned. A difference in luminosit! of one magnitude corresponels to a lactor of approximately 2.512 . What is to say, if two stars differ by ome unit of magnituele, ome is 2.512 times more lominous than the other; if they differ in magnitude by five units, one is 10 times (or 2.512^{5} timess more lominous than the other. Neste that the magnitueles go apparent! the wrong way, so that the brighter of two stars has the smaller masnitude. Thus if star $1 /$ is 2.512 times lorighter than star 18 , the magnituele of 1 is one mit less than the mannitude of B.

The magnituele difference between two stars is simply a measure of their difference in hmmosity. So provided we take any one star of known luminosity and give it some arbitrarily-fixed masnitude value, we can also give magnitude values to all otber stars of kowon lommosity. But whiels star shail we use as our yardstick, and what arbitrary maqnitude momber shall we assign to it.' One might have expected that the Sme would be chosen, and assigned a magnitude value ol o or perhaps 1 , lint not so. In

Figure 8.1
The mass-luminosity relation If we know the mass of a star, and also the average radius of stars of similar mass, we can calculare its absolute luminosity. Eddington (above) discovered this relationship and in 1924 wrote of it as shown opposite.
fact, for historical reasons which are here irrelesant, the Sm is assignel a magnitule of 4.7 : and given this arbitrary clowice, all the other magnitudes follow.

There is one ofler feature of magnitudes that must be mentioned. Magnitules expressing the true lmminosities of stars, that is, the amonut of radiation they actually cmit, are known as absolute magnitudes. This is 6 distinguisll them from apparent magnitudes, which express the apparemt luminosities of stars. The apparem lommosity of a star is its brightuess as it appears te us, not its true brightness. Two stars with the same true brightness can have quite different apparent luminosities simply lecause they are at different distances from os. Thus apparent luminosities and apparent magnitudes differ from absolute lummesities and absolute magnitudes in that they are affected by the different distances of the stars.

The true hminosity of a star includes the whole of the radiation it cmits, and the word bolometric is sometimes included to emphasize this point. Thus we may talk of lofometric luminosity or bolometric abolute magnitude to indicate that we are referving to the cotality of the radiation emitted by a star. This point derives its force from the fact that when we olserve a star neither our eyes nor our photographie plates are sensitive to the whote of the light from it. Ludeed, not all of it penetrates down to us through the gases of the Earth's atmosphere. Measured lmminsities, then, cannot in their nature be Irelometric laminosities. Astronomers allow for this
fact by referring to visual luminosities, blac laminositios, or ultra-violet hmmonities, cach of these being defined as the amome of light that a star emits within a preseribed range of wavelengths. In the case of visual lmminesity the preseribed range of wavelengths is approximately that to which the homan eye is sensitive; blue lamimosity relers to a range of wavelengths that is systematically less than that insolverl in a visual luminosity measurement; ultraviolet luminowity reforn io a range of still shorter wawelengths.

From all this it is clear that bolometric lominosities camot by their very nature be determined by actual observation. They are determined partly from olservation and partly by calculation. The calculation is necessary to allow for the part of the light that fails to get through our atmosphere and to which our detecting instruments are not sensitive.

Now that we understand the meaning of the scales emplowed, we may profitally look again at Eddington's lumnonsity diagram (Figure 8.1). The solid line refers to the calculated bolonetric luminosity values and the marked points to bolometric huminosities of particular stars. The agreement between theory and olservation is remarkable, elearly demonstrating the general accuracy of the physical ideas on which the calculations wre based.

Laminosities, Radri and Masses of Stars
How does the astronomer come to grips with the problem of determining the luminositics, radii and

masses of stan? Tio determine the trae luminesits of a star we must huow its distance. A methot fior devermining the distances of the nearest stars, the parallex methed based on the ammal motion of the Fiarth, was eleseribed in (:hapterf. For mere distant stars ether methots must le used, homever. and it will be consenient to deler a disenssion ol these memil a later chapter. For the moment we will suppene that we are equippel with the knowledere of the distance of ant particular star we wish to examine. The next step is to determine the apparent laminosity for a particular range of wavelengths, lir cxample, the visnal range. This can le done most accurately be the use of photexelectric welmigues. Then a simple calculation based on the lact that the degree ollorightness we see saries in interse propertion to the square of the distance ol the semere of light) determines the abselnte luminesit! lier the wavelength range in question. 'The final step is to make a correction to allow lior the persion of the star's radiation that was not incheleel in our chosen range of wavelengths. This sives the almolute Inolometric luminosity of the star.

Just hew accurate is the linal result likely to be? When a photerelectric technigue is used, the inaconracy of the actual olsersation is wery slight. Virtually the whole of any error therelore arises from the estimate of distance and from the linat correction to allow for radiation not inclucled in the range of wavelenglis used in the observation. For stars with

July 21 st, 1908

September 2nd, 1915

July 10th, 1920

Much of our knowledge of star masses is derived lrom orbits of binaries. At the left we see the two stars of the binary Kruger 60, logether with a neighboring star. Above we see how. Irom a series of such observations, the apparent orbit of Kruger 60 was eventually determined
surliace temperatures letween about 1,0 ent and 20,0ch , has correetion is expectel to be comparativels afcurate, so that the error in surl cases is likely to le almost wholly due to the distanee measurements. But lier stars of very hieh surlace tempe:ature and stars of wery low surlace temperature the forrection laceors are whertain. Indecel it is pessible that errors of as much as 1 (en) per° cemt comblarise in our estinates of the lominositios of these stars. simply Irom errors in the correction licter alone. Provided we are aot concerned with wery distant stars, croms arising liem distance measurements will not ushally le as laree ats this. ft may. of course, happen that these two kinds of error have a camolative - Hiet. latt it may rqually happent that each alferes the result in the epproise sense, and so temel ion cathed eardinther fout.

Our mext prolblem, determining the radius of a star, is readily solved prowided we know its alsolute lobometric luminosity and its spectrom type. Lamimosity, radius and worlace temperature are related be the equation $l=I \times R^{2} \times I^{2}$, in which l, stands for luminesity. R lior radius, and T for temperatsure; D is a comstant whose precise value we kuow from physics. Now D is known precisely, and 7 can le determined from the spectrime type of the star in guestion. in the manner deseribed earlier in the present chapter. Thus, onee the luminosity I. has been determined from the comsiderations of the grevious paragraphs, it is an easy matter to calculate the radius, R.

The masses of the stars are more dilfient to determine than either their luminosities or their radii. Mast of our very limited knowledge in this field is elerived from hinary systems, that is, from systems containing two stars. We saw in Chapter of how Hersehel diseovered the existence of such systems and how the persistence of such men as lriedrich Wilhelus Strme resulted in determining the orbits in which the wo stars mowe aromel their common center of gras ity in a momber of binary systems.

Since the time of Struve the work of observing binaries has bern carried on low mans cothosiastic olservers. Let $\begin{gathered}\text { examine how such ath olmerver }\end{gathered}$ sets to work in an icleal case. He sers the two stars of a double system separated from eath other on the sky. The inaginary lime joining them turns romme as they move about each other, and the time the line takes to mese once romud in a complete turn determines the peried ef orbital metion. The perionl may Ie one of man! years, but with sufficien patience
ont the part of the original observer and possibly as lang lime of smecosors it can le succossfally determincel in this way.

Althongh leoth stars of the domblesstemare moxing will respect to the pattero of distant stars, there is a prim lying somenhere betwern thent that stats almost lixed with reyper to the distant backgromed; and it is on this perint that the lins joising the two stan appears lo pixot. This is their soralled comsmon conter of gravity. In lavorable cases the medion of the center if gravit! agalise the bachgromod of distam star is wo slight that lior the purposes ol our idealized case we can negleet it. At athy given moment, then, we hate the two stars and their center of eratit! lying at a point somewhere on the line joining them. In lact the center of gratio divieles the lise into two parts and we can very easil! determise the ratio of these parts: and from that ratio we cat determine the ratio of the masses of the two stans. Il, lior example, the eenter ol gravity divides the line in the ratios $2: 1$, then the star nearer the ceater ol gravity has wice the mass of the star latther fiom it. This, of comese, determines only the mass ratio. Determining absolnte masses involses quite other considerations.

Ohse valions of the positions of the two stars. even extended oner a complete orhital period, denes not in itself determine We trac owhit of the binary ststem except in the special case where the line at sight to the Earth happous to |x perpendicular whe plane of the orbits of the stars aroumd cach other. In all ether cases what we see is the true orhit projected agatinst the sky: that is to sit? prepected on a platere perpendicular to the line of sight, as in F"̈gure \$.2. So the next problem is torecomatruct the true orbit. Thas is a tricky matter. lat il the origian shocrattions were matle accurately cosongh, it ean loc elone by dime of carelul calculation and sherer persisteres.

When it if dome, ont thing meresemains. Inomele (w) lix the trace scalle of the enthis, we mast know the distame of the binar! system. There ate orveral wats of clening this, and ome the parallax methent has
 shape of ilwe orbits and their true seate, it iv the: ath cat! matter to work out the average distance Ixetween the ewn stars wer the whole whe orbital periacl. To determine die aboolute masses al the stars we now we Keplers third law. This tells us that the ratio of the combined matos of the two stars tw the mass of the Sum is explat to the ration of

the stuate of the orlsital proxal. Thus if we call the two stars S_{1} and S_{2} oher equation is:

(Mass of S ${ }_{1}+$ Mass oll S.	(Avrage distance In.(wern S_{1}, and $\left.S_{2}\right)^{3}$
Mass of Sum	(Orbital preriosl) ${ }^{\text {a }}$

In this equation the average distance is measmed using the distance of the Eiath trom the Sunt as the mat of measurement ; the orbital period is measured intears. Since we already know the mass of the Sun, the arerage distance between S_{1} and S_{2}, athd the orbital pread, our equation mow gives us the connlimed masses of S_{1} and S_{2} in absolute terms. This restalt, tegether with our provious determination ol the ratio of the masses of the wo compentent stars. determines dwir separate masses in almolnte terms.

Jus sume cases the stan al a double system may lae se clese together that they eanmot le separately distingnished even with at large telesenge. Vet so long as one star is met comermonsly brighter than amother it is still pessible tor know that we are deating with a doulble systom. Buth stars produce specerom lines. atad leceatuse lath are in motion in tacir orbits arembel cach wher, these spectrum limes exhibit tac wavelengh shili disctssed mear the begiming of the present chapter. Since the ellicet of the orbital motion is to caber enfe star to mowe foward us while the obler menes alway form to, as in Figure 8.;9, oble sel alspectrum lizes will shilt towarel blare while the wher will shili loward real. Moreower, the eflects

The apparent orbit is the orbil as we see it projected against a plane perpendicular to the line of sight. From what we see we must work out the true orbit. Ratio of lengths of lines joining each star to point about which both rotate then gives relative masses of the two stars If the distance is known it is then simple to find their absolute masses.
bar! ah the iwo stars mose aromud each other. for the ofe that is mowing towat is tow will later be

 By detecting this variation, we can infer that we are drating with a doulble ststem.

It is oftensimpler to determine the relative masses of the connpenemts in binary ststems where the two stars atre compraraticely close begether that in stio Hems where they are widely separated. Fior the orbits of close ststems, the st-called spectrescopic binaries, are nearly always wery close we circles, whereas in cases of wide sparation they may be highly ctliptical. When the spectam lines of leoth starcomponents can be separately distinguished it is a relatively casy matter tedetermine the velocities of both stars in their orbits. This immediately gives us the ratio of the masses of the two stars, for the ratio of the velocities is equal to the ratios of the sizes of the twe ofbits. This must be so since the two stars have exactly the same periosls.

We can seldom go beyond this, lior in most cases we must perloree romain in ignorance of the angle between the line of sight and the plane of the orbit of the two stars. There is we special case, however, in which this angle ean x dedermined to a genod approximation, namely the case where the angle is mear arow. In this case the line of sight lies nearly in the plane of the orbit, and at certain moments onfe star will pass almost dircely in front of the wher and
 the tariation in the light that we receive from the
 and sat that when we olverve sath att eclipueng efled we cats satel! assert that the atele belween the line ol sight and the plane of the orlsit mast x e near zero.

In such a case, a kmoseledere of lle velexitios of the two stan in their orbit, together with the corbital period, determites the abohture size of the oblits. Then, ferm Keplers law, we can deduce the comsbined abselute masses of the two stars: athel bey ang the ratie of the masses, obtained from the ratio of the velocities. we can estimate their individnal masses in abohlute terms.

In Figure $8 . \mathrm{f}^{\prime}$ we have a mpical case of the light variations that cecur ins such ancelipsing system. It wild be sem that there are two dipe in the light, one deeper that the other. The deeper dip obsionsly occurs when the latuter stat passes in fremt of the brighter she: the shallower dip ecems when the brighter star passes in fromt of the lainter one.

The Hertこ̧pung-Russell Dingram

What conclusions can we draw trom ont kuowledere of dhe lmminonsties, radii and masses of stan? Before amwering this question it is necessar! to take stexk ol just what we do know.

Spectra are asailalike fio a great mant hars, amel for all wh these we know the afproximate sulace

temperatures. The mumber of stan for which we abse hawe reasonably accurate estinates ol distance. and lor which we therefore know the luminosities and radii as well as the surlace temperatures, is considerably more restricted. Far more restrieted still is the momber lior which, in addition to all these other things, we also have an accorate estimate of mass. Inderd, this last gromp is so small that it cannot provide a sullicient basis lor a consideration of the properties of stans as a whole. For this we most rely on the intermediate and reasmably momerons group lor which we know spectum types, luminosities and radii.

A methodolepersemting these stars was insented independent! by E. Hertroprong ol I A-yden and by IVenry Norris Russell. 'Iheir representation, bow kbown as the Ilertesprong-Kussell diagram, is shown in Figure 8.5. Along the vertical axis we have the aboolnte visual magnitude. (As we have already seen, absolute visual magnitudes correspond more directly wobservation than loolometric magnitudes, lout, ublike Ixelometric magnitudes, they do wot represent the total emission of radiation from a star, but ouly the radiation in a restricted range of wavelenglis.) Along the horizomal axis of the diagram
 and 13 on the left, and ranging throngh Λ, F , G and K (e) $!\mathrm{p}^{\text {e }} \mathrm{M}$ at the right.

The stars plotteel here are a sample of these in the region of the Milk Wat lying comparatively

Flose In the Sme Now it will tre recalled that a stars spectrom type is a measmere of its surlace temperature, and that when lonlo surface temperature and lominosits are known the radius can readil be determined. Hence, when a star's pesition on the Hertospmong-Russell diagram is known its radins Can be linumprosided we make an appropriate corraction from its visual magnitude to its belomeriamagnimede.

A promomaced leature of the star distribusion in the diagram is the concentration toward a lime stretching fiom lxottom right (o) top) left. This is known as the main sequence. There is alse a strong concentration of stas at alont spectrom type K and with absolute visual magnitudes around 0.0. These are stats ol large radii, known as giants. These are the two main leatures that stand out of the Hertzspromg-Russell diagram for stars of the solar neighborhoerl. If stas fiom more distant parts of the Nilky Way are plotted, stome of them are found to fall in quite dilferent places. For example, very highly luminous stas with visual magnitudes appotaching 8 and at spectrum 1 jpes F and (; can le limucl. These are known as supergiants.

What is the reason for the differing positions of the stars on the Hertesprung-Russell diagram? Beliore attempring to answer this passtion in detail it will be lest to leosk at the firse of the theories put fonward the giant and dwart theors proposed by Henry Norris Russell.

Figure 8.3
When one star of a binary system is moving loward us the other is moving away from us. Spectrum lines of firsi star are displaced toward blue and spectrum lines of second star are displaced toward red. Thus the lines of the whole system are doubled. Sonre quarter of a revolution later neither star is moving either toward or away from us. Lines produced by both of them are then superposed. At left are spectra of Mizar, a binary in the constellation Ursa Major.

Figure 8.4
If the line of sight lies nearly in the plane of the orbit of a binary system, then each star will periodically eclipse the other. We can then calculate their relative masses from their velocities and the orbital period. The diagram shows variations in luminosity from an eclipsing binary. Deep dip comes when fainter star eclipses brighter one, shallow dip when brighter eclipses tainter.

Figure 8.5
The Hertzsprung-Russell diagram, on which absolute visual magnitudes of stars (vertical axis) are plotted against ther spectrum types. Stars plotted here are a sample of those in the region of the Milky Way, comparatively close by the Sun

Situce the time ol K.ant, and possibly even before, most sciontist hate thought of the stars as originatine by a prosess of condensation from at diffose gaveons thedinu in interstellar space. Inetecd, we How know that such a gaseous medimen does exist and that wew stars are comtinnally forming ont of it. Ruswrll's ideat was that primitive stars, Irefore they hat finally condensed, would be latge and diffise and wotd have low surface temperatures. This would camse them to lie on the right side of the Hertasprong-Russell diagram. He suggested that perhaps such condensing stars were the giants. Hence, according to Russell's view, these giants, as they continurd conelensing, slomid gradually move tward the main sequence which he regarded as the mormal condensed position of the stars. If one asked what determined the particular prosition that a star occupied on the main sequence. Russell answered that it was its mass; the larger the mass the higher the star would lie on the main sequence. And Rusell went one step further. He thought that after raching the main sequence, stars might cwolse down it. His ielea was that in the first place they woulel reach the main seguence wward the upper feft-hand eomer of the diagram, and that they would then mowe down toward the right-hand bettom corncr, implying a steady loss of mass.

Some of these icleas correspend with modern theory: Newly forming stars will certainly appear far away to the right of the diagram, and as they contense they must mowe towarel the left mutil they
reach the main sequence. Sofar so goed, lat as we thall see in the following chapter, these mewly condensed stars are not the giants. The sithation lior the giants is precisely the reverse of what Russell suggested.

It turns out that the giants are stars which once lay on the main sequence but which, as a result of muclear processes that have taken place inside them, have mowed away fom the main sequence toward the right. That is, the giants are manly moving towarel the right, not toward the left in the diagram. Eventwally the rightwad motion is halted, lowcver, and stars fually move leftward again. That is to saty, alter expanding into giants they contract again, their surface temperatures rising as they do so. Such questions are under active insestigation by: astronomers at the present day. Problems of very great mathematical difficulty arise in their investigation.

Do newly condensed stars, oner having reached the main sequence, move denw it? Do they, in fact, lose mass? This old preposat of Russell takes us right to the center of a modern controvensy. Many Russian astronomers believe that such a loss of mass does in lact take place, but this point of view has not found any general lavor outside Russia.

Any examination of this contonersy or any further discussion of the Hertasprung-Russell diagram raises questions relating to nuclear physies. The topics that then arise are of such importance that they must be given a chapter to themselves.

Henry Norris Russell of Princeton, one of the two men who independently invented the important type of diagram shown opposite. In 1929 Russell also made one of the first comprehensive determinations of the comparative abundances of atoms of various elements in the Sun.

Chapter 9 Stars as Thermonuclear Reactors

The very tiny Praction of the Sun"s collergy that latls on the Earth extimated at alosent live parts in a hundred million million is aboum too,on, times greater than all the energy used in the worlefs industries. The total energy the Sun emits in a single second woukl be sullieient to keep a om-hilowatt electric fire burning for 10,0 on million million vars. Put in a different way, the energy the Sun emits in one second is greater that the whole amount of energy the laman species has consumed thremghout its emtire history.

We have considered how this sast amount of encrgy is conveyed whhin the Sun, but we have not yet asked how it is produced. It is certainly mot procluced hy any ordinary proeess of combenstion. It the Sun were simply a gigantic coal liee it would be reduced entirely to ashes in about a thousand vears. Even the most violent forms of chemical combustion, such as that which occurs when hedrugen and oxygen combine to form wattr, womld supply the Sun's energy for only some two thonsamd yean. So the idea that the Sum derives its energ! from :ant process ol chemical combustion can be dismissed.

In the niwe teenth eentury the scientiots Kelvin and Helmhole offered an explanation of how the

Sint might go on proxheing its colossal output of emergy lior a period much greater than a mere two themsimd soars. Their explanationdependedongra-
 moting what happerns when a stone drops from a hightower. Publed downsard by the E:arth"seravits, the stone gains specel amel energy during its fall, and when it strikes the gromat mush of this encerge is comerted into heat. In at similar waty, heat wombl Ise reldased if a stome wore to lall inte the Sum. Inderd, since the Sun's eravitational field is mueh stronger that that ol the Varth, the stome would attain a mucligreater specel and wondel consequenty release at monch greater quantity of heat on impate Suppose, bow. that instead ol one stome falling into the Sum the whole stwlace of the Sm were subjee (o) a constant rain ol lalling lox lies lionn motside, lior example, a steacly rain of meteorites: then elowes would lxe released all wer its sumface. (ionlal this explatin the origin of the energs that the Sum constantly rathates away into space?
 there were an! such rain of talling laxdies, we ought. with modern inssmments, lo be ahbe todeted it, but in lact we camer. Nixt, as we saw in the previons

[^13]

Chapert, the Sums radiation reperems the How of

 simply at its surlace. But the man isk at encres?
 Proth these engedions. Instead ol assuming at ration of material lion ombiele on whe the slate of the Sime we mats suppere that the whole lexty of the Sime is Shrimhine vory sighty all the thote. The Stur would
 womble freleased in the same way an before. It is trae that it we assmuke the rate of inliall to be very
 imoded would be lar less than the curesy yiclel
 ontside. But the whole of the material in the Sm would now be involsed, and becanse that amount is so huge, the emergy obtanable in this way would, inderd. lee enomuous. lat lact it would be about wotex dimes greater than could be prosieled by crew the wist pewerfal chemical reaction.

This, then, was the theory that Helmbelty and Kelvin put forward, and it would certainly sulfice 16 explain low the Sum could go on emitting vast quantities of energy lor mans thomsands of vears. Calculation slows that, on this theory, a rechetion in the eliameter of the Sum ol only some lify yands a year would be sulficient to accomet for its known output of encrgy. 'This would imply a slorimkige of only alsat filty miles in the Sums diameter since the Roman invasion of Britain. Exen il the measuring equipment of antiquity had been equal tothat
of texlay it would le quite impossible w detect su stall a shrinkage as this.

Xevertheless, if the theor! of Helmhole and Ketvin were costect, the di.meter of the Sun womld have diminideal markedls ower periok of sereal million lears. But we hows fromgeoleggical evidence that is has not done so. Virom lomsil evidence it is known that some genera of anmals brachioperds, the thatarat athe some lizards, lar exatmple hate persisted relatively mochanged lior upward of a humdred million years. This is comsincing co idence of at comstane of physical emberment on the Larth that womlet be impussible il the Sim had changed its diancur a ver! ereat deal during that periat. In late we know from lossil records that the Sum must have been shiming pretty much an it is now for at least a llosusand milion tears. Thus the idea that a slow shrinkare of the Sun accounts for the cuerg! it radiates into space is simply not tenable.

In brief, the ideas wf Kelvin and Helmholte comld
 than ans lorm of chemical combstion: latt in view of what the lessil recorel reveak, we mons seck for atn explanation that will accoment far a potency 10, eno times as great again. Such an explatation is indeed available if we think of the Sunt as a vast thermot muclear reactor; and the transerence of the prob)Iron from chemistr! to nuclear phessics man loe said (6) sumbelife the contr! al astoncom! into its moss medern phase.

Nuctear processes are alount a hmolreal million times more potent in their coners! yield thatn are

It the Sun's energy were derived from chemical combustion, it could not have been maintanned for more than about two thousand years. Kelvin (left) and Helmholtz (adjacent) suggested that the whole body of the Sun might be steadily shrinking. It might be slowly falling inward, releasing energy in the process. This accounted for a vast output of energy over several million years, but it also presupposed that the Sun's diameter must have shrunk markedly over such a period.
chamical processes. Fior example, the burnines of one pontad of an ordinary chanical litel yelds only
 burnine lor alasu an lane, but the consumption ol she pentad of the smon ellective melear finel wenld keep) it "prating for alsant tow thomand leass. Tos understand why thin great dillionere arises we mome comseler something of the phivis of nuclear and chemical prosessos.

I.et us return fer a moment we the lalling stome whichwe thenght abrut in the context of the KelsinHelmbolze theors: The semer eatins eneres as it lalls becatse it is aceelerated tomated the Farthes center by the ateractive loree of gras itation. I similar accelcathon with a consequem gatin ol energy can. in lact. Ie proxluced bex ats ether attractive forese

The lemer that control dhemical prewers are dectrial in mature, amd whereas the gravitatiomal fore betweon two batios is always attractise, the
 tive or repulsive. Wheller they are the one or the other depende one jus lesw lle lesties are made 吅 from their clementar! conshitmons, clectroms and protoms, which represent the two stable liorms of clectric charge. It turns ont that lor the most part the ferces between atoms are atractive, wheh is why the! tend to combine into gromp. Whese gromps are called mesternles and they maty range in comtplexity from simple struetures, swh as the molecole. of common salt which contains only one atom of
welime and one of chlorine. to the complicated molecoles comonatered in bielogical structures which mat comatn somethine of the oreler of a million inclividnal atoms.

- Co when the chetrical fore leetween atems is attractive. the atoms gate yeed as they appreath catelother. II, alter approathings the atoms were to draw apart again there would. of consere be a comprosatting los of energy; that is, the atoms womld gain speed, and bence energy, as they approached and would then lows sped and enorey as they separated. When chemical combination takes place, however, lhere is mos such compernsating loss of energy, for the atoms der not separate; they stay fowether in the combincel molecule. Hence there is a gain of romergy, and this cueres thmately appears as hean. This, then, is the somere ol chemical energy: It arises from attractive clectrical liores and is similat in principle to the surnee ol energy ol a lalling stene. The difference arises from the difference in the nature ol the lione that promotes the attraction.

Sud when we come to melear enerey the shat ation is still, in principle, the same. Agatn we have an attraction lxetwen particles, but now it is an attraction promoted meithre loy a gravitational field mor be an electrical tickl, but by the muctrar field. Two kinds of particles, protoss and meotrons, are directly alliced bey the muclear field, and we most later look at both of theol, butt let us lirst see bem nuclear athraction operates.

There is a vital ditlerener between the nuelear forec and clectrical or gravitatomal loress. Two

If the Sun's diameter had in fact changed a great deal, it would have been impossible for any form of life to persist relatively unchanged for many millions of years. Yet we know that some have done so. Al left is a fossil of the primitive lingula of Ordovician times, some $400,000,000$ years ago: above is the lingula which still lives in the Pacitic Ocean. Only if we think of the Sun as a vast thermonuclear reactor can we explain how it has steadily emitted energy over such an immense time.

Pentios attract earlother qravitationally even whon Hey are a very great distatice apart. The Sum, for example, is appreciably attrated by the gratitational field of stars seseral lightesoars away. The situation is the same for electric forses. 'lino ellectrified pattictes still rontime to attract or repel cach other when their distance apart increases. It is trie that the efleet of the foree weakers as the distatere |reween them increases. but it dexs bot cease alusgether. It declines as the inverse spomare of the distance apart of the ewo particles; that is to say, for cach doubling of the distance apart the eflectiveness of the leme decreases to one quarter of its valuc.

Electrical forees thes operate over great distances, in precisely the same way as gravitational liores. But their long-range eflectiveness tends to be disgnised in astronomy for a very simple reason. We have already noted that there are (wo kinds of electric charge, the negative charge (-) being carried by electrons athel the positive charge (+1 by protoms. The force between one clectron and one protom is attractive, but the force Ietween two electrons, or between two protons, is repmbive. Now large bedies sucla as stars are only weakly electrified because they contain essentially the same momber of protoms and electrons, and attractive and repulsive cffects therefore tend to cancel each other out. With gravitational forces, which are alicays attractive, wo such canceling can occur, and it is for this reason only that gravitational fields, rather than electrical fields. dominate large-scale phemomena.

Quite unlike electric foncesorgravitational forces. the molear lore is effective omblyer very small distances. The unclear fore Inetwern two particles. whether two me⿱troms, two protons, or once newtom athe one proton, epreates only if the two particles are wot mote than about one ten-million-millionth part of a centimeter apart. The moklear loree becomes quite wegligible if the distance is appreciably greater than this. latt it is pewerlalls attractive at distances of this order. Hence, if protoms and mentrobs the particles alfer ted bẹ the muelar force approach clese cmough to cach other they will gain epeed doce to the action of the muclear larese The sthation is now exactly ablogoms to the case of at chemical reaction. Atomsattractedtogether bevertrical forers, and which rombine inte molecules. yield dicmical enorgy. Prohoms amd nentroms athrac-
 into a permanent structure athalogeme to molecules. yield muclear encres.

Nuclei of the commonest isotopes of the eight lightest elements.

Figure 9.1 (Below)
Comparison beiween gains of energy produced by assembling one gram of nine different chemical elements.

Before we ge on to see just what these structures are, let us lowk at the two kinds ol partide imolved. Nentrons carry wo rlectric charge, so that only the attractive me lear lioce operates lectwe"t them. Protons, on the wher hatel, all carry a pexitive electric charge: hence buth the attractive molear fiere and a repulsive dectric lorer operate lweween them. But when we isolate the eflect ob the molear fonee from that of the electric foree, it appars that the matear liote between wos protons is the same as that between two newtrons, or letween out mewtent and one protom.

What are the combinelstrutures which mentrons and protons vielel. They are the muelei, or heaty cores, of atoms. Stated the other way rombl, the melei of atoms are simply combined structures of protons and montons, and every possible stable combination of this sot is represoltal stmewhere or wher among the chemical elements. The melei of atoms most be very small compared to the size of the whede atoms beeause of the shert ramee of the muelear foree: for only when the protoms and newtroms are sery close to each other will the mulear lores be-weron them operate to lobl them together into a coheremt structure. The elimensions of the clond of electrons surommeling the melens of an ordinary atom are more than ten thonsamt times greater than the dimensions of the muetens.

Why derelectrons surromed the nuele of om dinary atoms? Because of alectrical linces. The protons present in the nuelens exert an atractive electrieal force on the surmunding electrons. Untess the temperature happens whe very high, as it is in the eontral regions of the stars, the electrical force is adeguate to bold the electrons to the muclews, always prosidel that there are not more electrons in the surrobuting clonel than there are protons in the mullus. In lact the nomal neutral form of an atom has a mumber af electrons equal to the momber of protons in the matews.

Niudtar linergy

Wie have seen that there is a gam of emerg? when protons amd bewtens come teggether to form the mullei of atoms. But the amount of the gain varios with the differont number of particles that go to make 吅 the muclei of varioms elememts. How, for example, fless the amount ol nulear rnexy! produced in the assmbling of ond gram of oxyen compare with the amennt prexlucal in the assembling of one gram of iron? The answer to this and on
wher similar questions is contaised in Figure 8.1. The vertical axis represents, in mits of ten years, the length of time fior which the yidel of nuclear ene erg! conld keep a one-kilowatt electric lire burning. The horizental axis represents the momber of protons phas nentrons which must le assembled on form the nuckens al the element in question.

There is one firther peint to notice about the number of particles shown for the molleus al cath dement in our figure. The chemical properties of an atom are determined by the momber of electrons that surround its mucheus, amel this, in turn, is determined by the mumber of protons eomtained in the mucleus. Hence the chemical properties are ultimately determined solely be the number of protoms in the nuelens. This means that two atoms having the same number of protoms but a different number of nemtrons in their nuclei will still have essentially itembical chemical properties. They will be what are called different isotopes of the same chemical element. In fact many of the elements tho have two or move different isotopes, but the values given in our figure reler in each case to the commonest one, that is, to the one which wemers in the greatest abumbance on the Earth.

The figure shows that we obtain most energy by assembling nuclei of iron. The energy liold increases with the mumber of neutrons and protons contained in the nueleus, until that momber reactues sixty or thereabonts. Afer that the energy yelel slowly lalls away. Why is there this maximum to the encrgy yield? Why does it wot got on incrasing indefmitely as more and more newtrons and protons are adeled to the mucleus?

[^14]To answer these quetions we must lacar in mind that electrical forces may le at worh as well as modear fieres. When a mentem is added twa mullous ne electrical foree is insolsed. In arder that at nentron can be captured by a nuclens it muse dearly be fired very accmately toward in tarect, lor otherwise the wert-range motlar forces will newer come intooperation at all. If, howewer, the liting is acturate and the newtem is captured by the nuchens, chewgy is sielded. The condtions mequired for adding at proton to a mullow are cien more rigorms. Non
 a chatuce of coming withon ramge of the nutlear ferce; it mus alow have a very high initial spect in owder tomerome the rembise ele trical fere existine letweon it and other protoms already in the muklow. Ẅ̈hom that high initiad sperel it will simph be thrned back bedow it come withan ranke of the muclear larce. Eien if the incident protem should reach the mulden and lx captured $\begin{aligned} & x \\ & \text { it, the energs }\end{aligned}$ made arailable will be less tham in the ease of the nentron, simply treatuse de preten has lone speed during the carly part of it llight due to the expol-
 will beome stronger as the nuctons comtains more and mere peotons.

We cath new ser why figure 9.1 mocals a maximuns beyond which a law of diminithes metars begin tooperate. Astong as de monler of uentems and promons in the muclens is small, the ellier of the electrical ferces on the enersy yelded by adding mone particles is comparatiods mingertant. We"obually, lewever, the mumixer of protems in the mudem lecomes se large that dae electrical fiene increases, hus reducing the chergy yedt wor appeciably. Indecel, howe comes a point where the gain of enerey due wo the attractive nuthear forse is mene than ollso bey the loss of encrgs due to the repubive dectric lence. It is ler this reasem that the latidelingup of atoms comathing large mombers of protoms and meutrons gives a smallew yided of coneres dam the buildins-ip of irom atoms.

Our ligue als, chablen is waswer ather impertant questions. Syppese we add there helimm nudei teselleer tw form carben; Decanse carlem lies higher in our diagram than loclimm, energe will be viededed os this lision process. Similaty, it we add
 asain oh tain comery, vince magnsimm lice higher in such a diagram than carlem. This sthation hodeds gerel loor all the lighter elloments, hat is, for
the efoments that contain comparatiod lew nentroms and jutoms in their melli. If we fuse them temether we obtain energy. But the situation is reversed lor the heavios muclei. There we gain energ! mor ley fusion lue by dar opponite procen of fission. If, lior example, we bereak the nudens of uramime into two comparable picers, then encrgy will bereheased. This fislows because the wo picees lie higher iot the diogram tham the original uramime dees.

Siucleas Prucessor in Main Serquonce Stars

Wie have seen that in order te louild up at light mot ders intera heavier one by the addition of protems, We pretems mum have a high initial speed: mherwise the would be mable we reach the nuclens lxecance of the repolsive electrical lores acting on them durines their jemmey. Where deses this high in:itial speed come frome' In the stars it connes fiem the high temperature existing decp in their interiors. lueleal, it is lecause high temperatures are necossary to promete the bailding process that the word themmenurlarar is nesel wedescribe it.

Since the repolsive electrical ferea lecome larger as medei of greater and greater atomic momber are involved, it in wherons that higher initial spereds, and decrefine higher tomperatures, will be needed tw buikd hean? muchei than to buidd light once. To build

 tomperatures of alemu ten million desrees are needed. The Duilding of the other comment lighe mucke, suld ath carlon, oxyen and now, mod lemperatures of almom ane lumderd million degrece. To lmitd magnesimm, silicon, sulfir, or calcinm demands tompratures in the region of a domsand million degress, and to build irom the wemperatme monst be armmed there thensand million degress.
 alemut due Hotapormg-Kuse Il diagram which were Idf manawered an the end of the previons chapmos?

	Magnesium		
Carbon	Silicon		Iron
Oxygen	Sulfur		
Neon	Calcium		
1	1	2000	3000

temperature in milions of degrees.

The building-up of heavy nuclei demands higher temperatures than the building-up of light ones. Here we see the temperature-range at which nuclei of various etements form.

With reference to Russell's giant and dwarl theory, it will ter recalleal that newly forming stars appear toward the right of the diagram; that as they condense they meve towarel the left until they reach the main sequence; and that during the process of shrinkage their internal temperature rises. This part of Russell's theory clearly corresponds closely to the idea of Kelvin and Helmholtz. During its formation and condensation a star den's inded derive energy through its gravitational field. Part of this energy is ratiated away into space and part is taken up in preducing the staalily rising temperature of the interior. Evidently the lirst nuclear reactions to take place will te those that require the lowest temperature, and these, as we have just secn, are the reattions in which helinm is formed. Hence our expectation is that the first muclear reactions to occur iaside a newly-condensed star will be those in which helium nuclei are assembled from the ir constituent particles.

Why do stars stop moving toward the left in the Hertespring-Russell diagram once they reach the main sequence? The answer is that the main sequence marks the stars in which the production of helium has begun. In other words, it marks the pexsition of stars that have legem to behave as thermomuclear reactors.
We saw in the previons chapter that overwhelmingly the most abmendant atoms inside the Sun are those of hedrogen, and this is true of all stars at the time of their formation. Now a normal neutral hydrogen atom has a mulcus comsisting of only one proton, and an outer "shell" consisting of only one electron; but inside the stars hydrogen atoms do not exist in their neutral form. Because of the high temperature, the electrons are separated from the protons, forming a gas in which electrons aul protons move freety and independently of each other. And the protons lorm the raw material out of which the helium muclei are built. Yet since a belium nucleus contains two protons and two neutrons one may well ask where do the neutrons come from? In fact a free noutron changes spontancously into a proton and other particles; and for similar but rather more complex reasems it is pessible for a proton to elange into a nentron.

Let us take the simpler case first. There is a gencral rule in physics that provided the necessary processes are available, matter will abways tend to reach its lewest possible energy state. In fact, as can te inferred fromonr disenssion of Figure 0.1 , the
lowest form of energy arises when irom is formed. The reasen why all the matter in the universe deses not assemble itself into nuelei of iron atoms is that no relevant physical processes are available except inside certain stars where temperatures are in the region of there thonsand millien degrees: at temperatures lower than this the incident protoms canmot reach the iron muclens because of the strongly: repulsive dectric lioress operating.) Now when a free nentron changes spontanconsly into a proton, an electron aud at third particle known as an antinentrino, it does attain a lower energy state. The proton and the elcetron together have a slighty smaller mass than the original neutron, aud this implies that they also have a slighty smaller energy. (The anti-ncutrine has an atmest megligible interaction with matter and plays no part in the production of energy inside a star, so we shall here make no further mention of it.)

Yet although a protom ly itself has less mass (and hence less energy) than a neutern, a nueters composed entirely of a given number of protens would not have less energy than a nuckens composed of a suitable mixture of protons and neutrons. One reason lor this lies in the repulsive electric forces involved; another depends on the way the particles pack themselves together, the details of which need not concern us. The main point of present importance is that if we attempt to luild a muclens containing too many protons it will actually have a higher energy state than if it were composed of mixed protons and neutrons. In accordance with the general rule of physics we have already noticed, one or more of the protons will then change into a neutron. The nuclens thereby attains a lewer energy state than it had belore.

The very fact that protoms can change inte, neutrons is sullicient to explain how, starting with protons only, it is possible to build up mucle i containing both protons and ncutrons; but we may pause here to see just how the change comes aloou. Wir have seen that a neutron clanges into a proton by emitting an lec tron and an anti-ncotrino. Similarly, when a proton changes into a mentron two other particles are invobed, a pesitron and a neutrino. The neutrino, like the anti-ncutrine, has onls an extermely fechle interaction with matter and need not further concern us. The positron which the proton emits on changing into a wutron can best be doseribed as an electron carreine a positive instead of a negative charge.

Protons alreads bregin changing into newtrons if we try to build a muclans comsisting of only two pro－
 forming a muclow in whichone protem and one tuen－ tron are Is⿻日土灬解 wenther．This is called a denteron， and it is the nuckers of heary hydrogen，a constitu－ cont of heat！water．Denterous produced in this waty can thon piek up a further proton so that a mucleos contaning two protoms and one neutron is lormed． This is the mulens of an isotope of belimm．Athengh it coblains onl one nentron， $1 t$ also contains two protons；atoms with such nuclei wemld therefore have jus the same chemical properties as ordinary helium atoms，whose molei contain two mentrons anel iwo protoms．

But how is ordinary belimen formed in the thermonuclear reactor of a star？＇The answer is some－ What complicated，since the comversion can lxe brought about in a varict！of ways．Inside the Sult the main process is one in which two buclei of this lishe form of helinm conme into collision．Since each of them contatus wes protoss and one beutron，if they were to fuse the resulting arw melews would have four protom and two newtrons．This would be a light－weight lorm of the element beryllium：Isut this form is not stable and it can reach stability in either of two watys．One of the feur protens could change into a nentron，vielding a sucleus with three protems and three meutrens．This would be the mu－ cleus of an isotope of lithimm which forms a vital compenent of the lidengen bembls．The other pes－ shbility is that the light－weight beryllimen meleos might eject two protens，leaving a muclens consist－ ing of two protoms and two nentrons．This womld le the mucters of our ordinary form of helimm，and the werwhelming probability is that this secomed precess is what achalls oncurs inside the Sum．

We have dhes traced a cominume line of reac－ boms starting from protoms only and ending with ordinary helimm mutei；and energy is generated at several staces along the line．The iwo potoms eject－ ed at the last stage move at high specels．Iusiele the Sum most of their motion is quickly lost by collisions with colere partickes，and their energy of motion ap－ pars in a crencral increase of motion of all the par－ tieles，that is to sist in the form of heatt．Finerg！is alse emitted to a lesser extent in the other reactions． In the lirst sage，when two protons collide and one of them changes into a mentron，a pesitron is cmit－ teal．This pesitron quickly combines with one of the clectrons that it encomers in its motion．The elec－
tron and the positron then motnally amihilate cath other，yelding a quantum of radiation．The thirel source of energy comes trom the addition of a proton to the denterom．A puantom of radiation is also emitted in this process．In total，therefore， enersy is made avalable partly in the form of radia－ tion and partly in the form of heat．This is the resolution of the age－old question of where the Sims concry comach from．

The temperature inside the Sun is not high enough （o）allow more complicated nuclear processes to take place with appreciable frequency．As an example of a more complicated process we might consider the collision of a prowon with a nuclews of carlson．P＇ro－ vided the protem has a sutliciently high initial yoered to overcome the repulsite electical lorce between itsell and the carlom muclens，a reaction can occur in which the proton is added to the carbon muclens， thus producing the muctens of a light isotope of nitrogen．Emergy，in the form of radiation，is also produced be this process．

Such processes do not have any great importance inside the Sum simply Iserause the temperature there is tew how to give the pretoms the necessary initial speed．We saw，bowever，in the previous chapter that the temperatures iuside stars of the main se－ quence increase as we move up the seguence from the pesition of the Sun th the top left－hand cormer of the I lertzsprung－Russell diagram．In other work． the internal emperature is higber inside main se－ guenere stars with masses greater than that of the Sun．Which is precisely why such stans are more

Itminous than the Sun. At these higher temperat tures muclear reactions of the kind just deseribed take place on an impertant scale.

In lact it turns out that there is a sequence of proscesses which legeins with the limmation of nitrogen from carlon and ultimately results in the protuction of helimm nuclei. 'The light-weight isetope of nitrogen seven protens and six neutrons proxlaced from carlon changes into a beaty isotope of carbon (six protons and seven neutrons). The latter nucleus then acquires a lurther proton to sive the common lomolnitrogen seven protomsand seven nentrons). This common lom of nitrogen then acepuires still another proten: but one proton of the resulting muclenk very rpickly changes into a mentron. The result, a structure consisting now of erven protoms and cight nentrons, is the weleos of a heave isotope of nitrogen, an isotepe that is indered present in the gases of the liarths atmesphere but only in ater: low concentration. This structure next picks up!et another proton, thereby lorming a muclens with cight protoms and cight neutrons. This is just the common form of oxygen. But the oxygen muclens so formed is initially in a state of violent agitation; that is, the cight protons and cight newtoms are moving violently aromed inside the mucleus, far more violently than they do inside the meters of an ordinary oxygen atom.

Tiwo pessibilities now arise. The agitated buclens could get rid ol the motion of its particles hy emitting radiation, in which case an ordinary stable oxygen nuclens would be formed. The alternative is for it to eject a helium nucleus two protons and two neutrons). This second possibility is far the more probalble, so that in the great majority of cases a mucleus of oxygen is not permanently formed. Indeed, after ejecting the helium moleus the structure that remains is a mucleus containing six protems and six nentrons: and this is jut the common form of carbon from which the uhole process began. We may express this by saving that the carlon acts as a cataIyst. It serves to generate a series of ratetions as a resule of which it is itsell reprefluced in the overwhelming proportion of cases.

Hence there is a second way of proclucing heliums, and this secomel way is lior more important in stars of large mass than it is inside the Sun, simply becallse the temperatures in mere massise stars are appreciably higher than in the Sme. Indeerl, this carlom-mtergen cycle, as it is called, provirles the main process for the production of helium in stars

In main sequence stars with masses greater than that of the Sun, internal temperatures are higher. Our diagram shows one of the nuctear processes which then takes place.

Proton joins ordinary carbon nucleus, producing nucleus of light nitrogen.

One proton ol that structure becomes a neutron. The result is the nucleus of a heavy isotope of carbon.

This gains another proton, to become a nucleus of ordinary nitrogen.

Another proton joins this structure, but one proton turns into a neutron. Result is a heavy nurogen nucleus.

This gains yet another proton, and becomes a nucleus oi ordinary oxygen, but one in violent agitation.

It rids itself of this agitation by ejecting two protons and two neutrons (together a helium nucleus). There remains a nucleus of ordinary carbon.
with masses mure thatn alment twice that of the Sum. Wll stars lyine on the יyper part of the main sequence generate an oxerwlielaning propertion ol their coneres thomeh the operation of the carlsillnitrogen evele rather thatn through the simpler processes that take place ioside the Sum.

The different buxles of emeres-senctation inside massise stars carlma-nitrogen evele and imside stars of small mas. which we maw decribe as selar-
 internal strmetures. This is illatrated in Figure 9.2. In the shaded parts of cach star encrg is transparted mainly lọ comwetion, while in the moshaded parts transport of rucrey is coltirely In radiation. except lior a negligible contriburion from contuction. The two cases are the completely oppenite in character. In massive stars we have comsetion near the center and radiation outside, whereas in selartype stars we have radiation carrsing the encrgy thronghont twe imer pertions and comvection on the outside. It is transport of eneres by comsertion in the outer regions of the Sim that probably acconats lor mothol the highly complicated behavior ol ibe eaverol the solar atmoxplere, disensed in the precion chapter.

Eiolution Awar from the Main Sequence

In the comertive region al at star, ath laclimot produced by medear reactions will le mixed more or less anilermly. Thas in the masive star shown in

Figure 9.2 the hedinon prexlaced in the hot central regions is thoroughly mixal throughomt the inner part of the comsertive core. But m the solar-type star at left of Fegure g.2 there is mo mixing except in the outer parts, where the prextaction of luelimen is megligible lacanse temperatures are not high romosel to promote muclaar ractions. In the solar-t!pe star, thereliore, the helimen stays put where it is prochacel, and the lielimen concontationacoordingly riosshieher inthe comtral regions than amplace elve. As more and more liydrogen is comerted into helion the chemical composition of the star thus lecomes mote markedly momuniform.

This has, inderd, alrady happened in the case of the Sme. Ith the onter parts the composition is still monels the same as it was when the Sun first firmad from its parent clond of gas: the hedrosen concentration is alsent jo per eemt by mass. But now, after some 5 .once million years, the hydrongen concentration at the center ol the Sun has fallen to abent $3^{\text {o per rent. }}$

The effect of this steadily growing nonmilormity ol chemical composition is to camme a star to mowe tward the right of the Hertesprong-Russell diagratu. The gencral leatures of this motion are shown in Figure 9-3. Stars high on the main sequence that is, stars lying toward the יpper lefithand side of the Hertesprung-Russell dagran mowe more or less directly the right. They enter the region of the diagram which marks the so-called super-

Figure 9.2 (Above)
Lelt: Star with mass similar to that of Sun. Right: More massive star, on upper part of main sequence. In each case shading denotes region where energy is Iransported mainly by convection. In unshaded regior, transport is by radiation.

giams. Such stars are rare, partly lecause not many of them are born, and partly fecanse they are shortliverl. None is lomed clese to the Sm, and this explains why mone appans in the diagram given in the previous chapter.

Stars that legin to nowe to the right from points somewhat lower down the main sequence pass through a regiem marked as the Cepheid variables. These are stars that pulsate in quite regular periods, their radii alternately expanding and contrating. During the expansion phase the radins increases by something like topereent ol its mean value. The periox of escillation of a Copheid variable is directIf related to its alosolute hminosity, ist the mamer shown in Figure g. f. This means that suth stars can be used as indicaters of distance. The relation beween prerinel and lommosity in Copheid variables
 College Olservatory, in her now-classic observationswl the Magellanic Conds; and it wather American astromomer. Harlow Shapley, who lirse used the discovery lor determining distances.

The methot is ost dillicult to molerstand. Suppase there is a Cepheid whose distance we wish (1) determine. Becanse the distance is se lar maknown, we can measure only its apparent brighthess, not its alsolute brightuess. But we can also measure the perien of its oncillation, simply becanse its laminosity varies charing the oscillation. Hence fiom our curse shown on F゙igure 9.4 we catn simply read off
the absolnte liminosity. Then, kmowing luoth the absolute Imminosity and the apparent lmminosity, we can very casily calculate the distance of the star.

Nehough the Ceplecid variables have played an important part in astronomy over the last filty years, and althongh much theoretical work has isen done on their strmeture, no one has yet lecon able to oflicr an contirdy satisfactory explatation of the caluse of their oscillations. These stars uccur only in one part of the Hertespmag-Russell diagram, and they seem to modergo their ascillations as they pass through this region along tracks which start on the main seguence and ultimately meve far fowath the right.

When we consider stars that start lower and lower down the main sequence we limel evolutionary tracks which wot only mone toward the right, hut which also ascend in the diagram. Thus all the tracks lion the lower hall of the mainseguence tend to conwrege and concentrate in one particular region, namely that occupied bx the giants, the stars of large radius discosied at she end of the previons chapter. These stars are far more monerous than either the smpergiants or the Copheids, partly becanse the number of stars perpulating the lower hatf whe main sequence is much greater than the number on the upser hall, and partly because the time required for evolution is much greater for the lainter stars. In face the stars of the solar meighterluend indude quite a momber that lall in the giant region. This explains the distribution of the stars in the

Figure 9.4 (Above)

Cepheid variables pulsate in regular periods, their radii alternately expanding and contracting. The period of oscillation is directly related to the star's absolute luminosity in the manner here shown. This fact enables astronomers to use Cepheid variables as indicators of distance.

Hertesprong-Russell diagran as given in the previous chapecer, where compratively mearloy stam tend to concentrate on or hear the mats segmence or else in the giamt region. It was stated in the previons chapter that the giants are not newly forming stars mowing toward the left, as Rossell originally thought, but that they are stars moving from the main sedmence wward the right. Now we have justified this statement. The stars are mosing coward the right becanse ol the increasing concentration of ledium in their central regions.

Galculation shows that no significath motion to the right takes place umtil the eoncentration of hiderogen in the extreme econtral regions has fallen to zero. In fact, it is the exhanstion oll hydrogen in the central regions, cansing a cessation of energy production there, that produces the evolution into the giant region. 'The situation is depicted in Figure 9.5 The star has an inner core consivine mainly of helimm, throughout which the hydrogen has been exhausted by nudear reactions. But outside the core hydrogen is still present, and it is in the hydrogen immediately surrounding the core that the main encery-proxlection of the star now takes place. This canses more and more helimm to be added (o) the surface of the core, which therefore grows steadily in mass. By the time the star enters the giant phase of its evolution, the growing core of helimmaccomes for some 3° per cont of its total mass.

In Figures g.f and 9-7 we see the starsol wo wellkowwn clusters plotted in the Hertesprung-Russell diagram. The positioning of the stars indicates their evolutionary paths. ligure g. 6 shows the stars of the Hyades eluster, while Figure 9.7 shows those of the cluster Messier tiz. Here, then, we have direct observationai evidence for the forms of evolution shown in Figure g. 3 .

We saw in the previons chapter that a knowledge of the spectral type of a star implies a knowledge of its surface temperature. Hence when we know the

Lefl: Part of outer region of the Great Spiral in Andromeda, M 31. The marked star near the center is a Cepheid variable with a period of approximately 18! days. Here it is at its maximum luminosity.

Figure 9.7 (Right) H-R representation of the stars of the cluster Messier 67.
heloum core
energy-generating skin
flow of energy by radiation
by convection
by radialion

Figure 9.5
Where energy is produced and how it is conveyed in a star entering the giant phase of its evolution.

Figure 9.6
Stars of the Hyades cluster plotted
in the Herizsprung-Russell diagram. Their positioning indicates their evolutionary paths.

penition of a star in He Hortapmong-Ruwell diagram, we know lxoh is almoluc luminosits and its surlace tomperature. From these the ration of the star can reatil? x^{-}computal with the lectp of the equation I. $\quad D \times R^{2} \times{ }^{-1} 1$ memioned in Chapter 8. It will be recalled that in this equation 1 . stands for luminasits, D for a constant, R for radins, and T lor surtace imperature. Accordingls, when we kisen the pexition of a sar in the HertappronsRussell diagran we ako hum its rachins.

Figure of 8 shows there lines siparimpereal on the Hertapmun-Ruswell diagram. One joins points where the radius of cach star is equal to that of the Stur: the wrond juins peitus where the radius is ten times dat of the sums and the thirel poins poims where the radius is ome humdred times that of the Sum. It will be sem that the line drawn for a radius "fone humetred suns passes throngh the gian region of the diagram. Hence we ser that the giants are imelecal stars with sery larer radii. The radies of the Earthionbit is a litle more than 200 timesthe radins of the Sun. If the Sum wre a giam -and indere it will become one at some time in the liture-the Earth womkl lie comparatiock close to its surface. In laet, the larth might exen lie inside the Sum.

Berause a giam has such a hage rathos, gravity at its surface is wry much weaker than it is at the surface of the Sum anything lwetween oseose and 100,0世6 times waker. For this reason disturbances taking place at the surlaces of swe stars, disturthances similar to drese that take place at presem on the Sum. must canse material to be thrown ontward to vatly greater ditances tham in the case of solar surges. In lact, disturlances romparable with thene that normally oecir on the Sme would result in material lacing thrown so far outward into space that it would cosape emtirele from the gravitational field of a giam star. Olservational widence has. inelect, come th hand to slow that giant stars, and supergiants (tox, are stadily shewering ofl material from their surlaces. The outer layers of such stars are hener pereded steadily away. (iranted that roough of the suter laters are thus pected off. twe inner regions, where melear prowesses have been taking plate, will gradually be revealed. It is thes pessible for the perecluets of melear reactioms that
 the surfare of a star. And onee this happens these products are sulyect coobservation ley mats of the spectescopic terhiegues which were dicoused in the previous chapter

Let is land at some of the evidence of the prom docts of nuelear procenco aud ser what it implies. It will be recalled that stars of peeceral tepe 31 hase
 dominant comeribution to the spectra of such stars mematly romes from molerules of airconim oxide. but in the giant class there are some stars whese spectra are thminated be lines protuced be carlem medecules. These stars, then, widembly have a high a) oncentration of carlem at the ir surfacs. How dees this comer alsont?'

We have sem that as a star moses rightward toward the giant region of the Hotropromg-Rusell diagram it develops an imer core compesed wery largely of helimenad containing no hedrogen. A the star evoles and contimes to mene rightward the temperature inside the core rises steadily. Calrulations shows that it rearden alum 160 million degress as the giam repion is reached, and at such temperature interesting new muckar reactions lewein to operate. The lirst is one in which three leclimm modei rach with two prosons and two mentrons! lise together to lorm a nuclews of catom (six prowoms and six nentrons. 'The subsefuent addition of lurther hethim nuctei produch lirst oxygen and then neom. Here we have an cxample of what was cmphasizesl almose that ale higher the tomperature inside a star the more complex the nuclear reactions. that can take place. The sitwation, then, is that at temperatures of the order of tox million degrees ofcurring inside gian stars, the helimm that was

Figure 9.8
Curves showing positions on the Hertzsprung-Russell diagram of stars with radii equal to that of Sun (1). ten times that of Sun (10), and one hundred times that of Sun (100).

first produced from hydrogen can itself fise to produce important new clements, namely callum, oxygen and seom. Amb the protuction oll carlone explains how it comes alonet that we catl olsorree certain stans with quite exceptional concentrations of carbon at their surfaces. These are stars liom which the onter layens haw leen remowed by the shedeling process already described.

As a beproduct of the helinm fusion which grot duces carlon, wxyen and ueos, a maction oceurs in which nentrons are set liee. At the semperatures in question these neurons are wot alsorbed to any appreciable extent by carbon, oxygen or neon, nor are they absorbed by the helimm; and since the inisial hydrogen wats long ago exhausted, they cannot be aboorled loy hydrogen ciller. It turns out that they are added to the much heavier muctei present only in low concentrations at the time when the star was formed. Iron is an example of such a mucleus. We sitw in the provious chapter that the initial concentration of all the nuclei as heaty as iron is a small fraction of one per cent. This is so low that the absobing wuck tend to be owerwhelmed by neutrons. In other works they do mot pick up merely one neutom. but a whole sequence of neutrons. In this way, atomes of irom ate grathally built into atoms of heavier and heavier clements: lirst colsalt, then nickel, (onger, zine and so on to strontium, zirconinm, etc. In some cases, clements as heaty as tin, barium, the rare carths and even lead are formed.

[^15]There is striking olservational conlimadion of theseresults. In the giant region of the ItertzeprongRnssell diagran we can olsserse stars in which strontinm, zirconium, barinn and the rare carths are particularly abumbant. Most remarkable of all, some contain the element techations. Tiednatiom is not fomme on the liarth, lor the reason that it is so umstable. In a time sate ol the order of a humetred thousand years it changes, dur to the decat of a proton into a nentron, into molsbdemme. But technetium is observed in certain stars those called the S stars, and which also contain abmormal abundances of strontium, xirconimm, etc. The clear implication is that the fechnetimu has there leen produced very recently that is within the last humdred thonsand years or so by nuclear reactions.

Dones a star undergo any Farther cuolution alter it has reached the giant region of the HertepprongRussell diagram? Figure $9 . g$ shows an example of a cluster al stars in which such a limblere coolution almost certainly takes place. The fimal phase of the evolutionary track slown in this figure turns sharpIy to the left, and the stars in this final ploase are said to belong to the "horizontal branch." So lar no reliable calculations are available for such stars, but there is reason to beliewe that this swing-hack to the left, during which stars reach a higher level at luminosity than at the lecginning of their evolution, is cansed by a lack of hedrogen, not only in the innermost regions but throughout the whole budy ol the stars in question. Such a lack of hydrogen can arise

Figure 9.9
Stars of the globular cluster M 3 plotted in the Hertzsprung-Russell diagram. Stars of horizontal branch have evolved beyond the giant stage. Characteristic of them is a lack of hydrogen and increased luminosity.

rither as a resule of muclear reactions or lie the shedding oll of surlace material into space during the giant stage.

These considerations, again, are combirned b! oleservation. Astromoners have fimend one star. I ing lar to the left of the Hertesproms-Rassell diagram, wheme atmosphere contains mo detectable trace of hevelrugen whatever.

If we ask what happens when a star reaches the end of the track shown in Figure g.9. we motst seck the amswer lis lesking at a class of stars ver! different from amy selar mentioned the white dwarfs. A white dwarl" is characterized by a very small lmoinsity and a very small radios: the radins, in fact, is comparable with that of one of the larger planets, suth as Sathm. And becanse of this very small raders the density with which material is packed inside a white dwarf is evtremel! high, whigh that nothing at all comparable is known on liarth. One well-kuown white dwarl is the Pup, companion of the Deng-Star, Sirins. So densely packed is the matcrial at its center that a single matehosoxinl womld weigh several toms. Clearly the white elwarts are stars that have reached the cond of their exolution, stars in which melear precesses have ceased. Thethermomelear reactor is dead and the ashes are now cooling ott. The white duarl state is the gravefard that all stars will ultimately reach.

But what are the evohtionary changes thromgh which a star pases betwern the time when it legeins its swing-lack to the left anel the time when it reatere the white dwat state? 'The bumest amwer is that we de wot whew, citber lionm theory or liom observation. And the dillieult! that stands in our wat is this. Stars that lie lar to the left in the Hert/sprung-Rasell diagram have ver! high strlace tomperathes temperatures probably exeeding loobero degrees. Now the light emitued at such 10mperatures lies mandy in the far uleaviolet, and thereliar lails to pene trate thromeg the gases of the liarth's atmosplate: indered, mull ol it is probahly aboorled bey the gases that lie betworn the stars. and thus uever nathes the Sular Sistem at all. So our teleseopes can reveal lithe alxout what is happroning in stars of very high surface temperature.

Nova Aquilae increased enormously in brightness during 1918. These photographs, laken at Mount Wilson in 1922, 1926 and 1931 show the expansion of the gaseous shell surrounding the nova.

Gases expelled from Nova Persei
in 1901 have formed the nebulosity
shown above. The photograph was
made with the 200 -inch Hale telescope.

But we do have some interesting fragmentary cridener. It secoms almost certain that at spectacolar class of stars actually observed loy astromomers does lie lar tor the left in the Hertosprong-Russell diat gram. This is the class of explosling stars, of which the superama provides the most violent example. A supernowa is a stellar explosion in which vast fuantities of material are thrown violembly ontward at sperds of the orter of a thousand miles a second. The famous Cable Neluila, shown below, is compeosed of material flung out ly a supermosa which Chancse astronomers saw hazing out in a.0. 1054 . During the last nime centuries the material has continusd to mowe outwarll at romomous speed matil it now lorms a neloula measuring some fo million million miles across.

Furthermene, there are theoretical reasons lier lelieving that the temperature invide stars cominses to rise as they move toward the left in the HertzsprongRussell diagram. Wi have already ustied that temperatares of the order of a homeled million degrees are attaned in the giant phase; during the swing to the ledi internal temperatures may well soar almose , ex, million degrees. At this stage mew matear reactions lxegin. At about t, ккн million degress the carlon and oxtgen, produced during the giant phase, thenselves legin to lise, proturing such elements as magresimm, silicon, argon and calcimm. Bat still there is mo prothetion of irom. For this, temperatures in exces of 3 ,oow million degress are
meded. Only when such temperatures luidd up dows matter plange into its lowest energy state, which, ats we have seen, is reached with the production of iron, wgether with a few neighlering clements such as titanimm, vanadimm, chromium, mangamese, nickel, cobalt and copper.

We have already traced how, legimning with hỵdrogen, the simplest of all the elements, the thermomulear reactors of the stars build up various light clemems: first helime, then the carlon and nitrogen which largely make up our own looklies, then the axygen that we breatlar. In later stages, these materials are userl in the buidding-np of heavier elcments: the magnesimmand silicon that form so large a part of the liarth's crist, and the common metals such as iron and copper, of which we make such widespreard daily use.

How is it that such elements, produced only at fantastically high temperatures inside stans, form our liarth.? This is a subject we must perstpene to the next chapter, where we shall eomsider the structure and origin of the Milky Way, whth particular emphasis on the origen of the Solar System.

There is yet anoblaer question implicit in this chapter which has mot |xern answered. We have seen hewe it is possible to trace the origin of all the rements, legimang only with hydrugen. Dows it mean anthing to go limher and ask about the origin of hydrogen inself? 'This is a far decper question, and must ferescried matil the fimal chapter.

Eastern astronomers saw a supernova blaze out in A.D. 1054. Material flung from it moved outward at enormous speed to form the famous Crab Nebula (lett), now 400 million million miles across. The still-expanding Veil Nebula in Cygnus, shown opposite, may owe its origin to some similar but unrecorded happening.

Chapter 10 The Structure of Our Galaxy

Perlages we can Ixest approch the problemof platiet formation by first secing what is known of the strocture and content of our galany as a whole. And we may well start by asking how astronomers have set (o) work tor measure the dimensions and to assess the mentioms within the Milky Way, a galaxy comprising some too, (ron million stars. The task hat been and is a colossal ome. The motions involved include mot only line-ril-sight motions, diecely toward or directly away from the terrestrial observer; they also inclacke transwerse metions motions across the observer's line of sight. Mont distames involved ate so grat that they canoot be measmed by trigonometrical mathoks. How, then, do we hesin?

Wre saw in Chapter 8 that astronomens dor pressess a powerfid and accurate encthod for determining the spere of motion of atoy ohject directly toward or away from the Varth. Such a metion proklucos a shift in the spectrom lines. If the motion is away from us the limes are shifted towat the red encl of the spectrom; if it is toward us, they are shifed toward the blue cond of the spectrom.

Cufortuntely there is mo such pemerfinl metherl of determining motions acrose the line of sight. Figyure so.1 shews at star whose motion is made up of
two companents, one along the line of sight from the Farth, and the ohber across it. The motion along the lime of sight can readily low $^{\text {d }}$ determined from the shifi of the star's spectrom lines, but the transicese monion is much more dillicult to meat sure, since it produces modetectable effect ont the spectrom lines. Inderd, the transwerse modion shews itself omly in a sowlechanging direction of the star. This can le seon from ligure w.2. Assuming for simpliciey that the Eiarth is fixed, the star lies at one
 the joint $S_{\text {g. Hence the line joining the liarth to the }}$ star has chamed its direction. If we can measure this change, we can arrive at an estimate of the star's transierse motion, since in practice it is always pessible to make allowamere for the Fiarthis motion aromul the Sim.

However, such it procedure is dillicult and awkward. It is diflicult becaluse very small changes of anse are inwhed: and it is awhowed lweatse the two mothenk of time mose l_{x} as widely spaced as pessible, since the longer the time interval the greatcrwill be the change of angle and the easier it will Ix_{x} (o) measure that change. In practice, the clesitable interal is at least lifiy rears.

[^16]
ull relative velocity
transverse component
not measurable by Doppler shift
Earth
meallative velocity
Dopler shift

Figure 10.1
Only the radial component of a star's motion can be measured by the shift of its spectrum lines.

Figure 10.2
Transverse motion shows itself only in the slowly-changing direction of the line from the Earth to the star.

This raises practical prohlems. Telescopes are not completely rigid structures; they lemb veryshighly. Citn we lee sure that the degree of bending is the same leday as it was fility yrans ago? If we use the same telesespe we can be reasonably sure of this. But in is not alwas possible, for practical reasons, to use the same telerope, and indeed if we attempered (o) dos so we shonld prevent an! inprovements in telescopic techaique from ever being cmployed in the measurements. We shoulel perliorce be whliged to work with instroments that were fifty yars ent of date. For these reasoms, the avalalbe estimates of the motions, of stars across the line of sight are of comparatively peor quality, and its atly case they are avaibable only lor comparatively nearlsy stars. For the mose part, then, astrobemers are compelled to make do witla a knowledere of motions along the line of sight.

With modern technigues it might le pexsible greatly to extend the measurement of transverse motions. But atove who embarks ons such a program must mecessarily start from serateh; that is, he will have to wait about fifty yean before the resmes become available. Such a program demands a degrecof patience and resignation that not many seieniists possess. Viet any yong astronomer propared to devote his efforts to such a task wonld be stme to carn the gratitude of a future generation. Transverse motions can sometines be inferred from theoretical calculations bott most! they remain nuknown.

In order th determine the stricture of our galaxy we must have methots lor determining the distances of the stars as well as their motions. We saw in Chapter 6 that we can measore the distatnces of the wearest stars bey de parallax methed adirect trigomometrical mether depending on the motion of the Earth aromel the Sim. This motion catues a slight anmeal oncillation in the direction of evers star. If this tins chlect can be measured then the distance of the star in question can easily lre determined. But in practice this can le done with at reat somable measure of accuracy for only about lo,oке stars, these luong the w,okn that happen ow lie closest to us, all within a distatuce oll los than 100 light-years, or alonn for million million miles.

Althengh this is only a small sample compated with the rese, ere million stars of the whole Milks Way, it is sullicicon toallow astomontere tocalibrate
 er distancess. Wher we do knew (he distance of a star,
we can casil! comsert its meavored apparent magnitude into its absolnte magnitude, and, of conese, we can alwass determine its spectmon tye. Ilence ead of the stars lor which a gons erigomometrical distance is a vailahle can le plestedon the HertzopromgRussell diagran. Our sample of oo,oma stars of meatsured distance is then sutlicient to eletermine the lower part of the main sequence with considerable accuracy, althongh thore are nut sulficient measurements for stats high on the main sequence to enable us to delineate that part of the sequence with adequate accuracs:

[^17]

Knowins, then, the lower part of the main sequence, we eat use it to defenmese the distamees of a musis larger sample of stars. (emsider a ster that is lex far atw lor its distance to le measured ace curately by the trigonometrical methed. but which is nevertheless dose comogh to allow us toderermine its spectrum I!p:. Suppese its spectum type is similar to that of the Sum. This implies that the star lies (on) or very clowe to the main sequence and bernee that is alselute lominosity is also similar to that of the Sun. Kumwing the aloshlute magnituele of the star, we can compare this with its meatured apparent magnimede and so infer its distance. The distance of any star that falls on the lower part of the main seguence can be determined in this wat once its spectrom type is accurately hoown.

Athongh this method is a great gatin on the trigor notmerical metherl, it dees mon enable us to extend distance measurements enormonsly lar ont into space, since montomately is works only for comparatively laint stars those that lie ow the lower part of the matis sepucnce. F'o obsain a sill more powerfal system of measurcoment we mast lurn aggatı to the Cepleiel sariables, brielly mentioned in the preceding chapter. Wie there sat that the we of the Cepleid variables as elistance indicators depends on the remarkable relation Inetwern their alomelate magnitudes and their periosk ol oscillation. This relation was ploted in Figure 9.4 , and we maty Iere ask hew this figure was obtained.

The original observations of Miss Latill were made on the (eppleiel variables in the Masellanic Clonds. Beth (:londs, the large rate and the small one, contain many such variables, the periorls of oscollation differiog trom one star to another. Whe small one comatins far less obscoring dust that does the barge onf athel therefore gives the aberver a Better opportumity of determining tare appareot magnitudes of the Cepheids with accurac!. What Miss Leavilt did was to compare the measured apparent magnindes of the (ieplecids wish their periorls. Then by ploting apparem magnitueles on ome axis of a graph and perionts on the other. ve obetained al lime like that of Figure o.j. Wie mas now bear in mind that the Magellanic (Stends are wers small compared to their distance fom the larth. We can therefore regard all the Cippheids in cither the Small Clomb on the lame Cloud but uet in both logether as lying at esombally the same distance away from us. Thus the relation between apparem magnitude and absolute magnitute is the
same ler all of them. It is thas clear that there is as similar relation le-tweon apparem magnitude and perian as there is betwren aboshte magnitude and perioxl.

Xise if we are wase Coplacids for the purpene of distance detcrmination, we must know the relation letwern aboolute magnituele amel periont. and this is
 ler the simple reasent that we hate wo imital kome
 bexin wish is dat the are vers lar awat from us. It cremtualls turus out that their distatere exeed ter,ox, lisht-yan.) To convert the relation lxwern apparent masoltule and perionl intera frlation latwern aboblute magnitude and perioxl. Wr must determine the distance of at least one (ippleiel, for onl! then shall we ham the relation between apparemt and abobluce masuitude lar that (iopheid. Fhen, since law all (epheids there mast be the relation between .pparent magnitude and previocl that "as shown in ligure of fhe aboolute magnitude scale in this ligure will become fixed.

But how ean we detemmer the distance of at keast one (ivpheid, remembering that mone is clowe

 in a comparatively compact chaster of stans. The stars of a cluster all lie at exsomially the same distance awat fonm is. and in the cases in question the dintance is wot very grats. So il we ean determinte the distance of aty star in the claster. We hawe alow determined the distance of the Ceplaced member of the claster. And luckil! hai has leery dome in several cases ming the matil seguener method of measurement eleverilex almer. Itance we now know dae divanme of a small handlial of (i pheids and this intiomation enables on to calilatate
 for distance measurement in the manmer deseribed in Chapter 9.

The importance of the methex liss in this. The
 sowed at great distances. Moweover. Her ow illatton of their light is a readily distinguibable fathure.
 greater tham those for which the main sepmence methol can lxe emplened.

Wैe can wow see that hacre is a whole rhan ol methols of measuring distance. Solar welsan - moted four links. The lirst in the areasurement of dintances
inside the Solar System, experialty she distance of the liarth from the Sun. This is the fundamental measurement, since the size of the liantis orbit forms an essential slatum in the trigonometrical methot of measuring distames of mater stars.

This trigonometrical methert the parallax methed is the secomel link in the chatn. The man sequence method, calibrated from the trigonometrical methed, is the third link. And uow we have the fourth link the Cepheids method which inturn is calibrated tromsthemainsequencemethod. Vachsuccessive link allows distance measurements to be carried to greater and greater depths into space, and each link depends ber its calibration on the preceding link. In the last chapter we shatl adel two finther links beyond the Cepheids. These further links are necessary only when we come to look beyond onr galaxy and consider distames outside the Milk! Way. For the present the lour links of our chain will be sulficient.

Shape, Size, Motion and Maki-up

Almost two hundred years aco it was already clear (1) Thomas Wright, a Darham sailor, and to William Herschel that the Milky Way is a flat platelike structure, and that the Sinn and Solar Sistem are immened inside the plate. But without the means of measurement that medern astromomers command, the carly insestigators were quite moable to determine the size of the whole structure. the precise position of the Sun within it, and the general nature of the mexioms of the stars. All these things were still matters for speculation, but some of the guesses were surprisingly mear the mark. As long as two humdred years ago J. H. Lambert conjectured that all the stars of the galany might be moving around a common conter, much as the
planets all mowe aromed a commen center in the Solar System. This ielea has prowed to be correct. The stars do indecd move aroumel a common emter, namely (lae contral bulge of one galaxy.

The general leatures of the modern picture of ont galaxy are shown schematically in ligures 10.3 and 10.4. The firse gives an erlge-on vien and the second a lace-on view. Firon Figure 16.3 we see that the Sun lies well out towavel the edge of the galaxy, its distance from the center being about 25, (1世 lightyears. In the centaal regions of the galaxy, the platelike structure tends to disappear. It is replaced by a distinct bulge, the thickness of the bulge being, perhaps, about $t 6,06$ light-years. The region of the bulge is known as the mutens of the galaxy, and an important characteristic of this mucleus is that the density of stars within it is higher than the density in the outcr plate-like region. In particular, it is probable that the star density becomes very high near the extreme conter of the galaxy.

The Sum moves in antalmost circular orlbit around the center of the galaxy, the speed of the motion being about 150 miles per second. This mostom is not apparent to us here on the Varth simply becanse the sim and planets all have it in common. For the most part, other stars also move aremod the center in almost circular orbits. The relation ln_{n} tween the speed in these orbits and the distance from the center is shown in Figure $\mathbf{s o g} .5$. It will be seen that the speed rises to a maximum at a distance of about 55 oon light-ycas from the center. Thereafter it declines slowly. The Sun lies on this declining part of the curve.

Figure 10.5 gives no indication of speceds for the stars of the mucleus, that is for stars lying at distances of less than about $5,0 \%$ light-years from the center. The reason for this is that the motions of the

Figure 10.3
Schematic edge-on view of galaxy.

Figure 10.4
Schematic face-on view. The spiral structure represents the positions of highly luminous stars recently formed from the interstellar gas.
stars inside the nucleus are probably not simple. Such stars probably to nos move aroumd the eronter in circular orbits. Inderd, some stars just as distant from the center as the Som is do not move in orbits that are even approximately circular. These stars are known as high-velocity stars, a name derived from the lact that those close hy the Sun are mowing at high speeds with respect to the Sun. This property arises simply becatse of the differences between the orbit of the Sun and the orbits of the stars in question. It is wot an indication that those stars have particularly high speceds in their orbits; it is just that their orbits have a different shape from that of the Sun's orbit. The kind ol difference is shown in Figure 10.6, below.

So far, we have dealt only with the stars ol the galaxy, but as we noted in earlier chapters, gas oceupies the spaces between the stars and this is also an important component of the galaxy. Contained within the gas are fine particles of dust-we dust that produces the troublesome obseuration mentioned in Chapter 6. We have little or no certain knowledge of the chemical composition of this dust, but many astronomers believe it 10 consist largely of ice particles. It was only after astronomers had discovered the presence of interstellar dust and had learned to allow for its effects that they were able to measure the dimensions of our galaxy with any show of accuracy:

Athough the dust makes its presence only too readily felt, the gas is peculiarly dillicult to detect.

Figure 10.5
Relation between distance of stars from center of galaxy and speed in their orbits around that center.

Nevertheless this gas causes spectrun lines to appear in the light of distant stars. These lines are dark like the Fratulater lines of the Sun's spectrum (see page 199 and they are prodnced in an essentially similar way. It will be recalled that the Framberer lines are prodnced because light with a continuous range ol color, emitted from the photosphere, passes through cooler gas lying above the photosphere; the atoms whin this cool gas then absorb the light at their own characteristic wavelengths, so that these particular wavelengths tend to be missing when the light reaches the Eanth. A similar situation arises as the light from a distant star passes through the interstellar gas. Atoms within the gas absorb light at their own characteristic wavelengths.

The effect is particularly marked for atoms of sodium and calcium and it would not therefore be very noticeable in the case of a star whose spectrum already contained dark lines produced by sodium and calcium atoms in its own atmosphere. We have already seen, however, that the spectra of stars of high surface temperature, the B and O type stars, contain essentially only the lines of hydrogen and helium. The reason why no lines of sodium and calcium appear in the spectra of such stars is that at their high surface temperature the soditm and calciun atoms have so many electrons stripped away that their absorptive powers cease to be important. Consequently it was suspicious when dark lines of sodium and calcium were found in the light of distant stars with high surface temperatures. The

Figure 10.6
Orbits of Sun and high-velocity star.

Some features of the region of our galaxy in the vicinity of the Sun, as revealed by modern observation. Names refer to dark and bright hydrogen clouds. The arrows with figures in degrees show galactic longitudes. The circle, drawn with the Sun as its center, has a radius of about 10,000 light-years.
correct interpertation of their presence was given by Sir Arthor Eddington, namely that they are proxluced by soxtiom and calcium atoms lying in the interstellar gas.

Albough sodiumand calcinm lines were thos inportant in reseating the presence of the interstellar gas, they do west reveal the mest cemmen comstituconts of it, which are atems of bedrogen and helium. It was first realized that hedrogen must be a very much more common constituent of the interstellar gas than cither soclimm or calcium when faint ratlialions from the hydrogen were detected some wentyfive years ago. The observations of V. Dumbam at the Jount Wilson Observatory then revealed the presence of lot patebes of hadrogen with temperathers of the order of 10,00 . The cencentration of bydrogen atoms in these patches was aboot a million times greater than the cone entrations of sodimen and calciom atoms. At first it was thonght that the whole interstellar gas was as het as his, but we now know that such loot patches of lydrogen are comparatively rare. Indeed, most of the interstellar gas is sery cool, with temperatures around woo on the Absothe scale i.e., the seate on which the melting jeeint of ice is 273).

Now cool hydrogen gas camot be detected by direct opteral means. Provided the atoms exist by themselves that is, provided they are not combined together into molecules the hydrogen does emit a spectrum line, but the characteristic wavelength of the line is close w 21 centimeters, sothat it lalls into the radio wave band and can therefore bederectedenly by radiotechnigues. Thusathough optical astronomy lails to detect the presence of newtral hẹdrogen atoms in the interstellar gas, radioastronomy is able tosupply this missing information.

Figure 10.7 show a map of the distribution of hydrogen as determined bey the radio metbod. It was pronluced bev Dutch and Anstralian radio astronomers working in collatoration, measurements in the northern sky being made bs the Detch and these in the southern sky by the Australians.

The radio method has the disadsantage that it camon detect molecnles of hydrogen, but only mentral atoms by themselves. Hence our map is neecssarily incomplete in that it deres not include the contribution of molecular hydrogen. How important this may be is uncertain. Astronomers differ wislely in their views on this question, some believing that molecules are probably the main constituent of the gas, others believing that they are quite unimpertant. If the molecules are indeed unimportant, then the total mass of the imterstellar gas amounts to only two or theer per cent of the total mass of the stars. If, on the other hand, they prove to be impertant, then the total mass of the gas will lee correspendingly higher.

Magnetic Fields and Cosmic Rays

It is strongly suspected that a magnetic field pervades our galaxy. Although its exact structure is not yet determined there are seme things that cats x e said about it. A magneric field is most casily thought of in terms of magnetic lines of force. When iron filings are placel near an ordinary bar magnet they arrange themselses in a pattern that readily shows "ן, the lines of force, as shewn in Figure so.8. The direction of a line of force at any point is simply the dircetien of the magnetic field. It will lre recalled from Chapter 7 that the presence of a magnetic field is shown by the effeet it exerts on a mowing charged bexly.

Figure 10.7
Map showing distribution and density of neutral hydrogen in the galaxy. Measurements in the northern sky were made by Dutch astronomers, measurements in the southern sky by Australian astronomers. On this page is a Dutch radio telescope at Dwingeloo and on the opposite page is the Mills Cross telescope near Sydney, Australia.

The lines of loree whith the interstellar gas seem to be aligned maxinly parallel to the plame of the galaxy, but this may not be the whole story. limes of lorce probably emetge from the muclews of the galaxy into a buge halo that entirely surroumds the distribution of stars, as slown schematically in Figure to.9. Thus the whole galant is probable contained within a loge magnetic bubble; and this magnetic oubble serves to contain the cosmic rass.

These are particles mainly pootons with tremendously high energies. Indeal, some ol them have even higher energies than it has been found possible to impart teprotons in the laboratory, even with such huge machines as are now avalable, for example, at the CERN laboratory at Geneva. There is as yet no entirely satisfactory theory of the origin of cosmic rays. Such rays, of comparatively low energy, are certainly procluced be the Sum, probably during solar flares. But stars like the Sun camot be the principal source of probluction. Many astronomors and physicists believe that the main prothetion oceurs in the explosion of supernowac. Their view is that cosmic rays are constantly produced ly exploding stars, and that instead of traveling frecly away in space outwart from the galass, they remain trapped inside the great magnetic bubble. There is some suspicion. hewever, that the origin of cosmic rays may le a still larger-scale phenomenon. A decision betweet these points of view remains for the future.

Figure 10.8
Iron filings reveal lines of force in magnetic field of a bar magnet.

Figure 10.9
Schematic representation of magnetic field of galaxy. Lines of force seem to be aligned mainly paralle! to galactic plane. Others probably emerge from nucleus to form a halo surrounding the entire distribution of stars. This magnetic bubble serves to contain the cosmic rays.

Interior view of the ring building of CERN's 28,000 million electronvolt alternating gradient proton synchrotron. Here protons have been accelerated up to 99.9 per cent of the speed of light. Cosmic rays consist of particles-mainly protonssome with even higher energies.

It secms umlikely that the whole of the interstellar gas is conlmed to the disk of the galaxy, as in Figure 10.7. Rather does it secm that it must occupy the whole of the bubble shown in Figure 10.9. There is this difference, however. The gas of Figure 10.7 is comparatively dense and its temperature is low, whereas the gas within the buhble, or halo, must have a high temperature probably in exeess of a million degrees and its density muse be comparatively low. Buthough thedensityol the hatogasmust certainty Ix erery much lower than that of the disk gas, this does not necessarily imply that the total mass of halo eras is smaller than the total mass of the disk gas, for the voleme of the halo is vasty greater than the volume of the disk. There is no general agrecment among astromemers about the mass of the halo gas. Some believe it is more or less comparable with that of the disk gas; others suspeet it may be very much greater, simply because ol its linge volume.

High-encrgy cosmic rays, moving at sperels close (1) the speed of light, occasionally collide with the halo gas and in such collisions electrons and peritrons of high cotergy are produced. Being particles with electric charges, these electrons and positrons are delleeted by the magnetic fied: they are made (1) turn corners, as it were. The protons of the cosmic rays are alse clectric particles and they, too, are made (\%) twor comers be the magnetic field. But since the protoms have a lar greater mass than the
(Fectrons, their deflections are much weaker the corners they turn are less steep. Now whenever an electric particle is made to turn a corner it radiates enersy, and the stecper the turn the mere powerfal the radiation. So the magnetic lield causes both the protoms and the far lighter electrons and positens to radiate, but the clectrons and positeons ate much more effective because they are made to travel in tighter curves.

This radiation occurs at wavelengths which do not produce spectrum lines: in lact the whole range of wavelengths eoncerned falls in the radio wave band. Hence the radiation emitted belectrons in the hale of the galax! most necessarily be detected by the radio astronomer rather that by the optical astronomer.

Thus our galaxy is not only an emitter ollight, it is also an emiter of radio waves. An owerwhelming proportion of the light comes from the stars, and is derised from the enersy produced by nuclear processesinside them. The radiowaves come from highspeed positrons and electrons moving for the most part in the magnet ic bubble surtounding the galaxy. There are also electroms mosing in the interstellar gas in the disk of the eqalaxy, lmet the radies emissiom from this componemt is appreciably less than that contributed by the halo. The emitting electrons are probably derived lionm the cosmic rays. which in turn may be derived Irom the stars, by means of the explosion of supermenare. For example. In total.

Figure 10.10
Most astronomers believe that the galaxy formed from a vast, slowlyrotating cloud of gas. As this gas condensed, the speed of rotation increased to such an extent that further contraction could no longer take place toward the axis of rotation, but only parallel to the direction of rotation. This would explain the shape of Figure 10.3.
the radio emission of the galaxy is weaker than the optical emission by a factor of something like a humlred thousand.

The Formation of the Galay

The great majority of astronomers believe that the galaxy was formed from a cloud of gas of very large dimensions, certainly with a diameter of many hundreds of thousands of light-ycars. To begin with the cloud was rotating very slowly, but as it condensed the rotation gradually speeded up, causing the cloud to become more and more flattened. Eventually the rotation became so rapid that any further contraction toward the axis of rotation was prevented. Only contraction parallel to the direction of rotation could then take place, as shown in Figure to. 10 . The ultimate result was a coudensation to the disk-like structure we saw in Figure 10.3 .

During this period of condensation, only a sprinkling of stars was formed, and this sprinkling now surrounds the main structure of the galaxy. These are the stars found in the halo of the galaxy, and their total mass is about ten per cent of that of the disk stars. Sometimes the halo stars are found in clusters. These are the globular clusters, of which an example is shown in the photograph opposite.

But the great bulk of the gas reached the disklike shape of Figure 10.3 before it condensed into stars. Once this stage was reached, star formation may have taken place with great rapidity, the bulk of the gas soon disappearing. A little remained uncondensed into stars, however, and it is this small fraction that constitutes the interstellar gas of the disk. Similarly, another small fraction remained behind in the halo, and this is the gas that we believe to be present in the halo today.

This picture of the formation of the galaxy is very qualitative, and there is no certainty that it is correct. It does, however, stand up to one explicit test.

We saw in Chapterg that all the elements other than hydrogen are produced only by thermonuclear reactions which take place inside the stars. Thus the iron and calciom which slow so strongly in the spectra of many stars must themselves have been produced by such reactions. If our picture of the formation of the galaxy is reliable, we should expect the initial cloud of gas to contain scarcely any heavy nuclei, since such muclei are produced only inside stars; we should therefore expert that the spectra of the earliest stars to be formed would reveal only traces of iron and calcium. At a later stage, when many stars were already formed and had had time to produce such elements, we might expect the stillcondensing cloud of gas to contain more heavy nuclei. This, in turn, would lead us to expect that the spectra of stars formed at a later stage in the condensation process would reveal a higher concentration of iron and calcium. On this basis the stars of the halo should contain lower concentrations of such elements than do the stars of the disk.

This expectation is confirmed by observation. The concentrations measured in certain halo stars are as low as i per cent of the concentrations found in the Sun. Besides supporting the above general picture of the formation of the galaxy, this observation also gives strong support to what was said in the previous chapter, that hydrogen is the hasic building block from which all the other elements are made.

It must be added, however, that although this observation agrees with what we should expect on the basis of our picture of the formation of the galaxy, it does not prove that this picture is correct. For there are other ways in which the low concentrations of iron and calcium in the halo stars might be explained. Beyond this cautionary mention we shall not here consider such possibilities, for they would lead us on to extremely speculative ground.

This photograph of the Orion Nebula shows huge dark areas consisting of dense clouds of gas and dust. There the formation of stars in our galaxy. which began 15,000 million years

Returning to our general pieture, we may well ask how long ago did all this happen-how old is our galaxy? The techuiques of observation and calculation described in the previous chapter allow us to get to grips with this question. Look agan, for a moment, at Figures $9 \cdot 3,9.1$ and 9.7. We saw that the exhaustion of hydrogen in the centrat regions of a star eauses it to move away from the main sequence toward the right-hand side of the Hertz-sprung-Russell eliagram, and a number of evolutionary tracks are shown in ligure 9.3. It can be shown by calculation that the stars move along tracks of this kind, and calenlations can also determine how long the evolution takes. For stars high on the main sequenee the time is mein shorter than for stars lower down the main sequence. The evolution times are longest for stars comparatively low downon the main sequence that follow tracks which not only move simply to the right but also steeply upward in the Hertzsprung-Russell diagram.

In Figures 9.6 and 9.7 we saw examples of actual clusters of stars. If we carry out calculations of an evolutionary track that matches the distribution shown in Figure 9.7 the length of time calculated for the evolution will represent the age of the Mes$\operatorname{sier} 67$ Cluster. A similar procelare for Figure 9. 6 will determine the age of the Hyades group of stars. The results of the two calculations will not necessarily agree, and in fact they do not do so. The reason is, of eourse, that the wo clusters were formed at different epochs. The Messier 67 Cluster is older than the Hyades group. The situation, therefore, is that il we take a whole series of clusters we shall obtain a corresponding series of age determinations; and the age of the whole galaxy must be at least as great as the age of the oldest of our clusters. If we have been lueky enough to include a chuster that was formed during the eariest pinases of the history of the galaxy, then we shall have a close estimate of the age of the galaxy itself.

In Figure to.11 we have the positions in the Hertzsprung-Russell diagram of the chuster NGC 188, believed to be one of the oldest chasters in the galaxy. Calculation shows its age to be about 15,000 million years. This, then, is the answer to our question, for that figure must be close to the age of the galaxy.

The Sun and the Solar System are much younger. Evidence from the rocks of the Earth's crust and from the meteorites suggest that the age of the Solar System is about 5,000 million years, or only about

NGC 6611. Here a vast cloud of gas is expanding, probably as a result of radiation from newly-formed stars. Only when the cloud has become even more diffuse will it be possible to see into it and observe whether or not it contains newly-formed stars.

a third as old as the galaxy itself. Our Sun was not amoneg the first stars to form hy a very considerable margin. In lact it is a comparatively young star.

The Formation of Stars

Because gas is still present in the disk of the galaxy, it is still peossible for new stars to form; and a very simple argument shows it is extremely probable that stars are still forming.

In the previous chapter, our discussion of Figure 9.3 made it clear that stars high on the main sequence go through their evolution in a comparatively short time. Indeed, the most huminons known stars take only about a million yars to complete their evolution. Since we can actually observe such stars - not any great number of them, it is trme-it must follow that they were formed within the last million years. It would obviously be unrealistic to suppose that star formation, which began 15,000 million years ago and which guite clearly went on imtil at least a million years ago, suddenly ceased, say, a hundred thousand years ago. Hence, although we do not actually see new stars being formed at the present moment, it is nevertheless quite clear that such a process of formation is almost certainly still going on.

The reason why we do not literally see new stars being formed is easy to understand. New stars are born in dense clouds of gas and dust, such as the Orion Neluula shown on page 266. Because of the large amount of dust, we cannot see into the interior of these clonds to the places where the actual star formation takes place. We must wait until after the stars have actually formed. Once a very bright star begins to radiate, it quickly heats up the surrounding cloud of gas, and this causes the cloud to expand. As the cloud thas becomes more diffuse, it eventually becomes possible to see into it, and at this stage we do indeed observe recently-txorn stars. This is so in the case of the Orion Nelsula.

It appears to be a necessary condition for star formation that there should be dense clouds of gas and dust, so we are naturally led to consider the location and origin of such clouds. Now the gas in the halo of the galaxy is too diffuse and too hot to

The Lagoon Nebula in Sagittarius, photographed with the 200 -inch Hale telescope. This is an emission nebula. In such nebulae the density of hydrogen is many times greater than the average in interstellar gas.
permit the formation of clouds like the Orion Nel)wha. Henee there seems to be little or no new star formation taking place in the halo. Nor is there much star formation in the mucleus of the galasy, the reason being that the nuclows scoms to be largely devoid of gas. The densest gas occurs in the outer parts of the disk of the galany-in other words, in the sort of region where the Sun lies.

The clouds are probably formed by a cooling process. If there were no cooling the presence of existing stars would soom lift the gas wa temperature of about 10,000 . That is why astronomers used to brlieve that the interstellar gas had such a temperature. They had overlooked one thing: the cooling power of dust and molecules in the gas. The dust particles in interstellar space probably play an important part in causing atoms to combine into molecules. What happens is that individual atoms strike and stick to the surfaces of dust particles. This lrings them into contact with each other, enabling them to combine into molecules. The molecules then evaporate away from the surfaces of the dust partictes.

This dust, which probably plays such a vital part in the formation of molecules, and in the coosling of the gas, and so in the origin of stars, is not uniformly distributed in the interstellar gas. Almost any photograph of the Milky Way shows apparently dark regions. These are not places where stars are absent; they are simply places where patches of dust intervene between the Earth and the stars that lie beyond. The fact that such regions are irregularly seattered about the galaxy shows quite plainly that the dust is not uniformly distributed. And because of this the cooling effect of the dust is not uniform. Some local regions must cool far more effertively than others.

Where the dust is most dense the cooling of the gas is most rapid. Pressure within the cooled region declines, and becomes less than the pressure in surrounding regions. The surrounding regions press the gas of the cooled regions inward, therety producing a localized dense cloud. Here we have a possible mode of formation of localized regions of higher density within which stars can begin to form.
We would expect stars to derive two important characteristic properties from their parent clouds of gas: a magnetic field and a rapid speed of rotation. Consider the magnetic field first. We have seen that a magnetic field exists within the interstellar gas. If the gas increases its density, the lines of foree of this field become compressed together; and since the
rise of densit! is enormons when atar is lommeal. the rise of the magnetir imtensity is experted to be corroxpmadingly gerat Thas even if the magactic lield in the materatellar sas is intiadly rather weat, the lield produced iuside a star can still lee vers stromg. It is ledieved that the stars des, in late, derive lheir thagmelic fields in this way. They are simpl! fiek that have leon presluced be the compression of the intial lines of letere pertading the isterstellar gas from which the stars were formed. Very pretsably the magnetic liclal of the Sum was derived in this wat. We saw earlier that the Sums magnetic lield plays a crucial role in mant of the plemomena we observe at its surlace. Theses, then. may wow their origin to the eonditions within the original gat cloud lemm whid the Sum combensed.
let us turn mow to the second hereditary dhatacteristic we should expect the stars topensess. namely rapid rotation. The interstellar clends that we observe all have some elegree of tandom swirline motion, and this means that any protion of such a clout which condenses isson a star will also hate a rotation. At the beqimbing of the cemdensation process the rate of rotation is small athe comparatively mimpentant. Sut as conselensation proceeds the sped ol rotation increases, and calculation shows that sperels of many bumberes of miles a secomel must dinally be watelad low the time a star is lemmed.

Tiwo questions wow arise. Do all stats pessess masnetic lields atod dos they all have rapid speeds ol rotation?. The answer to the lirst question is that many stars have, indeed, leen slown to inave stomes magnetic ficks. This work, carried ont bẹ Balocerk at the Mount Wilson and Palomate Oloservatories. combld not lee expected to reveal the presence at a magnetic field except under special circumbtances. For example, if we were to observe the Sim from a great distance, using Balocotis method. we shombl not be able ter detect the magnetic lielels that do in lact exist. Hence we call answer out first quevtion in two parts: on the positive side we catl saty that many stars quite certathly do have strong magnetic lields; on the wegative side, we can sat that there is merevidenee tos stegest that swome sars lack a makuetic lield.

Measuring the rotalion of at star is comsiderably casier than meanbing the strength al its mognctic ficlal. $\|^{\circ}$ a star is rotiotiles, sombe parts of its atrlace
 us. These menions proslace slight displacements of the speetrom limes comine lienm dillerent parts of
the staris surface. The waselenghos of the lioes fiom Howe parts llat atre moving allaty frem ors are slighty increased. while the wavelengels of the lines lion those parts that are mon ing towasd us are slighth decreased. This callses ble spectron limes to
 Which mats alse prealuce a broadoninge of yererom lines, lant provieled these wher catses can be correctly allowed fer it is possible to estimate the degree al rotalion ol a star.

It turns mut wat stars lying high ont the main sequence do, indeed, rotate rapidls, in accorelance with our expectation; but stans low on the main sequence rotate omly very slowls, as the Sum dees. Here we have a very delinite departome fiom what we would at first sight expert. How do we explain this apparent contradiction?' The answer lead os directly to a censideration ol the whele problem of plane lommation.

The ()risin of the Plamets

The strprisine thing is that if all the planeds were seceyped up ame placed inside the Sim, then in ghere of the insignilicatnee of their total mass compared with that of the Sum, the solar speed of retation woukl be greatly increased. In licet, it would lxe increased almost a humdredfold. This arise becalmes of the great distances of the planets frem the Sum.

Fumber consideration suggests that if all the original planetary material were placed inside the Sum. its speed al retation wendel be incerased still finther. We atu best modernand thispenut bey taking a briel lowk at the chemical make-up of the plateres. The large onter platers. V ranms and Neplome. contain ser! little bedregen and helium, in comorast with the large imer plates. Jupiter amel Satmon. both al

It seems highly probable that the Sun, as it continued to condense from a rotating cloud of gas, spun round faster and faster and thus bulged more and more at its equator. When it had condensed to the size of the orbit of Mercury, its equatortal diameter must have been about twice as great as its polar diameter. Calculation shows that gas would then leave the equatorial regions to form a disk moving around the Sun.
which have high concentrations of hydrogen and helium. Indecd, the compositions of Jupiter and Saturn are so nearly the same as that of the Sum as to suggest that the original planctary material had exactly the same chemical composition as the Sun itself. In this case hydrogen and helimm must at some stage have escaped from the periphery of the Solar System, otherwise their absence from Uramus and Neptune could not be explained.

H is casy to see how such an escape might have come alout. Hydrogen and helium are the lightest gases, and at the outskirts of the Solar System the restraining influence of the Sun's gravitational field on them was weak. Hence these gases simply craporated away into space. If the mass of these "lost" gases, together with the mass of the planets, could be placed inside the Sun, its speed of rotation would be increased almost a thousandfold. And this is just what our calculations on star formation would lead us to expect.

It seems highly probable, therefore, that our expectation with regard to the rotations of the stars is in principle correct, but that somehow the rotation of the Sun, and of other stars low on the main sequence, became transferred to an outlying system of planets.

So let us follow our ideas on star formation a little further. As the still-forming Sun continued its condensation, it must have spun round faster and faster, and this caused it to bulge more and more at the equator. By about the time it had shrunk to the diameter of the orbit of the planet Mercury, the imnermost planet of the Solar System, its equatorial diameter must have become about twice as great as its polar diameter. Somewhat complicated calculations show that at this stage gas would leave

Figure 10.12
The mere throwing-off of a disk of gas would not explain why the Sun rotates more slowly than the theory of its formation leads us to expect. But this is explained if lines of magnetic force, behaving like elastic strings, provided a torque coupling between Sun and disk (later between Sun and planets formed from disk).
the rapidly-swirling equatorial regions and form a disk moving around the Sun and lying outside it. And the soundness of these calculations appears to be Dorne out by actual observation. Certain stars lying high on the main sequenee, which are indeed in rapid rotation, dos seem to porsess just such a disk of gas lying outside the main body of the star and moving around it in a circular path. One example is Pleione, an important member of the Pleiades.
More than a hundred years ago Laplace put forward a theory of planet formation that had similarities with all these considerations. He held that a nascent star could develop a surrounding disk of gas in just this way, and that planets could then form out of the material of the disk. But his theory did not sccure universal acceptance among astronomers, particularly in the early part of the present century, for one important reason. Merely saying that a star may throw off a disk of gas does not begin to explain why this should slow down its rotation. Indeed, Pleione has a very rapid rotation, so the mere growing of a disk is certainly not the whole story.

In order to accome for the slowing down of rotation we must be able to show that there is some coupling between the star and the disk-a coupling that conveys the torque of the star to the disk. This would not only explain the slowing down; it would also explain how the disk itself is pushed farther and farther outward, and hence how planets formed from it can lie at such great distances away from the parent star. The stumbling block to acceptance of Laplace's theory, then, was that until comparatively recently astronomers could not show the nature of any such torque coupling. How, for instance, could the Sun ever have been connected with an outlying disk of gas? What influence could possibly

have eromed the wide space between the Sun and the elish, as space that must hase increased as the "lisk of gas was pmalucl omtward.'

For the amswer we must cone bach to the strong magnetic field which we howe seot was persent in solar condensation. When the disk of gas became separated from the Sun it is probsable that magnetic lines ef force contimed to comencet the material of the disk with the material of the Sum, in spite of the growing distance between them. Now it has been known since the time of Faraday that magnetic lines of force leflave in many ways like stretehed clastic strings. Such strings comecting the Sum with atn outer dish conld ineleed play the role of a torque conveyor. The situation is shown in plan in Figure 10.12. Lines of magnet ic force cmerge lionn the solar equator, cross the space leetween the Sun athel the disk, and then enter the material of the disk. Solong as the Sun rotates faster than the disk, the lines of force become twisted, as shown in the figure. Remembering that they Irehave like stretched clastic strings, it is easy to see that they not only tend to slow down the rotation of the Sun but also to force sutward the material of the disk.

So far we have an explanation of how the Sun could develop an outer disk of gas, and of how that disk conld slow down the Sun's rotation; but we bave not yet examined how planets could form from the material of the disk. What was the first step.' Almost certainly it was not a simple aggregation of gaseous matcrial, for the st rong gravitational effect of the Sun itself would prevent any such process of aggregation from taking place within the disk. But what the gravitational field of the Sun cannot prevent is the formation of small solid, and perhaps liguid. particles within the gas. We saw in Chapter 3 that the Sun contains not only atoms of hedrogen and helimm, but also-thengh in very much smaller proportions atoms of oxygen, neom, carbon, nitrogen, magnesium, silicon ame the common metals as well as very small quantities of tim, barium, mercury, lead and wanium. So from the disk of solar material, particles of these elements, of of combinations of these elements, can form. Such particles fomm rather like the raindrops in the clouds of the Liarth's atmosphere. Vet although the Sun's gravitational influence does not prevent this type of condensaton, its radiation does have ant important cffect. For example, nether water drops sor dropes of ammonia will form if the gas is tox hot; hence, only as the gars in the disk moves steadily farther awaty from
the Suns and cools note athel more will a stage be readred where water atul ammonia legin to condeose. It tums out that the distance in question, at aty fate for ammonia, though perlapes not for water. is comparable with the ratlii of the ofloits of the platels Jupiter athel Soturn. Thus the planetar? gases had to moxe omtward until they reached the neighbothore of these orbits before ammonia was able to condense out of the gas.

But particles of rock and metal womld readily condense at higher temperatures, and hence closer to the Sum. In lact, they could condense alreade at the distances of the imer planets from the Sum the distances of Mercury, Vimus, the Earth and Mars. At one stroke this explains three outstanding characteristics of the imure platers: first, their umasmal compesition the fact that they contain very high concontrations of such clements as magnesimm, silicon and iron, clements that most have been comparatively rare in the original planctary material, amomoting in mass to no more than alrout onctenth of one per cent, exactly as we find in the Sin today: secomel, their small masses: and third, the fact that they lie comparatively close to the Sunt Wie now see that all these three characteristics are closely interlinked. The fist twe are diectly contiplementars we each other: the inner planets are of small mass simply because they are composed of - lements that were present only in low consecto trations in the original planetary material. These elements had the property that their solid forms were able to condense as particles from the gas at comparatively higlt temperatures; and this explains why the rock and iron planets lie comparatively close to the Sun.

We can now readily visualize the sequence of evonts. As the corque compling operated to slow down the Sum's rotation, the planctary gases moved rapidly ontward. As they moved throngh the regions now ocenpied by the inner planets, small particles of rock and metal condensed out of the gas and were left le bind while the main bulk ot the gas comtinued to be pushed farther and lather outward. Gradually the particles of rock athe metal th.t were left hehind began to aggregate: Dentually, quite a mumber of berlies of a comsiderable size soly eomparable with the size wh the Mem were formed. In the limal phase these buelies became lised together into the small hamdind of inner platersthat we now limel. At the outskirts of the region of rock and metal condensation-that is levond the orbit of

Mars there were imstheient partieles to lome a plane of wherable size, however, and this is fust wh! we still fied there a station of partial condensation. This is the region still pepplated by a leme of small bedies, natuels the asteroids, or minor platucts.

By the time the itume platets hat ageregated intoborlies with apprecialse grawitational lields, the main bulk of the planetar! цates hat swop out to the regions of the ereat plane s. Jupiter and Sttorns. The gravitational fieds of the inner plancts were thos mable tw gather "p very muth gas becatse only a litke was then avalable. The small amome that was still asalable we now find, for example, it the nitresen of the forrentrial atmospleere, it the water of the oceans and in carbon dioxide.

Let us turn bow to the great plathets. We have alreade seen that ammemia condensed in the region of the present orlsits of Jupiter aud Saturn. Ouce soliel particles of ammemia became ageregated intor boelies with appreciable gravitational tields, Hese primitive bexties were able to pull in large quantities of gas, lior here the stuation was very dillerent from the eave of the imer planets. The gas of the disk had tent elfectively lxen all pushed beyond the orbite of Jupiter and Saturn, st moch of it remataed to be picked up thangh the eravitational inthence of obe argeregating primitise planets. And it is becanse ol the addition of large quantities of gas. particularls of hydrogen athd helimm. that the masses of Jupiter and Saturn are so large in comparison with those of the inner planets.

The formation of Cramus and Neptune dillered from that of Jupiter and Saturn in one crncial respect. B? the time the tirst primitive comelemations gren latse enomgh for their gravitational tields whe rapable of pulling in gas, the bulk whe thas had disappeared: for when the disk gases had moved outwatd that far, the hẹdrogen and helimm had ©aporated awat! entirely from the Som's gravitational influence. Thus only gases such as methane fand carbon monoxide remaned behind in the region of L tamus and Neptume. These gases were. ineleal, picked up by the primitive condensations. Thein abmances were high enouglo to give I ramus and Neplume mush larger masses than those of the immer platets. but not mases comparablewith thome of Jupher and Saturn.

There is jus ome fiother perat to mote. Vet att-
 It has ombe a shall matss and is in me selme similar w L tams and Neptume. But as Lọuletom has peint-
ed ent, Pluto may well be an exaped satellite of Nepheme, in which case it catmot properls be considered as a planet at all. We shall comseder the clase ol satellies in at momem, lat it will be as well tirst to sat semethine of the phesical characteristies wirach of the platere, begimeng with the itheromest one, Mercur!.

Mercury

Becathse Mercury"s orbit lies inside How of the Varth and because Mercury shimes lex retlected sumbigh. the part of its illmonated hemisphere that we see undergoss phates similar to those of the Menol. Merour! lies almost in the plater of the ectiptice, so that it appears cither to follow or to precede the Sun, according to the pesition of the planet in its orbil. Indeed, whing to its motion in its orlsit, Morcury appears to meillate lachward and fomard. lying first behind the Sum, then in front of it, then behind it again, and so forth. When Mercurs lies behind the Sun we see it mear the western herizon in the evening sky: when it proedes the Sun we see it in the eastern sky near dawn. In antiguit! it was not realized that these dillerent obervations were is lact observations of she and the same planet. The ancients gave the name Hermes, or Merents. (6) the evening aspeet and the name Ipollo to the morning aspect.

Pluto may well be regarded not as a planet but as an escaped satellite of Neptune. The diagram shows how the present satellite, Triton, may at some stage have overtaken Pluto in its orbit around Neptune. Such an encounter would have speeded up Pluto enough to enable it to escape. It would also have reversed the direction of Triton's motion.

Cobler the mox fasorable circumstames, Nercurs is an easily vivible ohject, with a brighemess comparatber to that of the star Sirins. When such favorable oceasionts arise they must be seeized, for Meroury changes its pexition vory quirkls. Viewed Irom the Lath, it executes one complete oseillation - liom behend the Sun to in liont, whehind again -in only : 16 days. It actas period of motion aromend the Sum is i8 dits, and, if we exclume Pluto, its orlot is more highly elliptical thim that ol aty wher planet.

Its diameter is roughly 3.000 miles, or fo per cent greater than that of the Moon, and its mass is some lour or live times greater than the mas ol the Moon. Incielentally, the internal density of Mereury seems to be higher than the densities of the other theree inner planets. This high density would appear to imply that Mereury contains a higher proportion of metals than does Vemss, the Eanth or Dars. Vemus and the Earth seem to contain about the same proportion of rock to metal: Merenty contains more metal and less rock, while Mars contains more rock and less metal.

Since Mercury has litte in the was of atmospheric gases we can see though to its surface, which seoms to be very similar to the surface of the Moon; and because we can see its surface, wr can readily determine its rate of rotation. During last century Schiaparelli showed that Mercm?'s period of rotation is the same as the period of its motion around the Stu, namely 88 ditys. This means that Mercury always keeps the same face dinected toward the Sm, so that one hall of the plamet is in perpetmal sunshine and the other in perpetat darkness. Hence

Nereury has the diseinction of persessing not only the bottest place but also the coldest place in the whole planctary system.

Iemus

Vemes aloo lies nearer to the Sun than the liarth does, and like Mlercury it abos shows phases similar to thone of the Mexm. Becanse it lies marly it the ecliptic, and lecamse of its motions aromed the Sum. it appears sometimes lehind the Sumathd sometimes in fromt of it. This means that we see it sometimes in the erening sky after sunset and sometimes in the morning sky before dawn. The Greeks had wo names for it Hesperess when it appeared in the evening sk! and Phosplaorts when it appeared in the dawn sky.

Venus is almost a twin of the learth. $1 t$ is only slightly smaller in mass atud diameter, has abmost the same internal density, and probaloly much the same composition. This has raised the question of whether its surlace features are also similar to those of the Barth. Unfortunately this question cannot be settled by diece obervation. since Venus is perpetmally shrouded in a mantle of white eloud. And this cloud not only ohsoures our view; it also ohscures the problem of assessing the probability of whether the surlice of Vemus is partly covered with oceans.

The atmosphere of V"ems is known to contain a huge quantity of carlon dioxide, and very recentIy, as a result of observations made from balloon flights over the United States, a mithte quantity of water has also been detected in it. Now thes new disenvery can be interpreted in wo different ways, depending upon what temperature we assign to the

Mercury, the innermost and smallest of the planets, seen against the disk of the Sun. The photograph explains how easy it was for early observers to mistake sunspots for the passage of Mercury across the Sun's disk.

This reproduction of one of the best recent drawings of Mars, made by Dr. de Vaucouleurs of Harvard College Observatory, shows the visible markings of the planet and what seems to be a yellow dust storm sweeping across its surface.

Venus-almost a twin of the Earth

 in mass, diameter and compositionseen at crescent phase. Since it is perpetually shrouded in a mantle of cloud, astronomers cannot yet tell whether its surface features are also like those of the Earth.clombls of Vemes. If their trmperature is lairly high. then the lact that only a small quantity of water hats been detected lereas on to the comelasion that there Call be vers lithe water indeed on the surfiace of Vemos. If. bowerer, the clouds are vary cold we should but expect (1) lind more ham a very small quantit! of water lying above them, howerer much might lie bencah. Olsiously we can only obmere the content of the atmosphere that lies above the chouds, and not that which lics below them; and if the clonds and the regions abowe them are vers cold. then almost all the water will le frozen out.

This second imterpretation has to face up to a srions dillioulty. I ness the tomperature is as bow as 75 (. more water vapor would exist than is acmath femend. How can the clonds mantam a temperature as lew as this when they are comstant shojected to intense heat from the Sme. In fact the? comld do so only if they pessess the remarkable propert of beine able to reflect and tamsmit smolight withert aborbing it. In ouch a case, part of the incitent sumbight would be reflected back into space and the rest of it would penerate throngh the clouk to the regions below: virtmally mone of it would be aboorbed in heating the closuls. If this is what aftwally bappens, the problem of the wature wh the clouds can be solved very simply. They could be mes more than a haze produced by line particles of soliel carbondioxide, and ordinary choulsolwater vaper might well lis tar befow them. Hence it wonld be pexsible for Vioms of have oseans of water like thene of our own liarth. A decisom between these two peoints wi view will prebably be made whin the mear hoture.

The Earth

Only recently have photereraphes of the Earth been laken from rockets and antificial satellites. (One of them is shown on page 11 . They give the best inspression set available of the liathas a planet.

. Mar.

Mans, since its orbit lies outside that of the Varth. never exhibis acosemt plases as do Mesoms and Venos. When nearest 10 w is lies in the apposite direction to that ol the Stur, in distinction to Vioms Which, at its nearest, hers in approximately the same dimertions ots the Sme. Thus Stas lies in the night sky when it in fosest to ws. This is a highly lawrable efremmstance for the astromomer, and the stamion is made still better be the liect that Mars has onls a
tentous cloud coner. Viven so, it must be remembered dhet a vien of Mars throngh the lowt teleseope moder the most lavorable circomstames is still inberion to a view of the Momen whth the naked eve.

Olservation of distinct surlace markings shews that Mars makes one complete rotation on its axis in 2.4 hours if mimutes 23 seconels. Thus, while Nars take atmest two terrestrial vars to mowe once roume its orbit, the Mantian day is of abonst the same lengh as the lerrestrial day. Moreoner, the Martian axis ef rotation is inclinel at almost exactly the same angle to the ecliptic as is the Earth's axis. These simblarites have prempted the question as to whether where could lx life on Mars. What we kosw of the chemistry of the Martian atmosphere dors net mbe out such a possibility. The atmospbere of Mars probably comatins small quantities of water and carlon dievide, and probaps a somewhat greater quantity of nitesesen. Nor can we saty that Martian tomperatures preclude the posshility of life. White pole capse develope during winter in each hemisphere, but these melt so readily when summer comes that they camot be deep. Probably they are simpl! thin caps of hoar frost.

It is pensible, then, that life exists om Mars, lats if ses, it is likely whe commed to low forms of plams life. In gemeral, temperatures are tox low and the whole phesical and chemical enviromment (ox) sparse and primitive lor any luxuriant llora or fanna to be raconably expecterl. In this comaction, Sindon, working at the Lowell Obervatory at Flagstalf. Arizona, has lomad the spectrum of Mars to show leatures than cormespond closely to these foumd in the lieht reflected by errtain terrestrial flora.

Percival Lowell's "map" of Mars, made in 1901. Lowell held that Mars was criss-crossed by canals made by intelligent beings. (On the original map many ol these "canals", drawn as perfectly geometrical lines, were given names.) Few people then and still lewer now would draw such a conclusion from the scant visual evidence available.

Mam astronombs intepper this olservation as clearevielene of the existemee of plant life on Mars. Onc must note as a matter of ctution, however, that this evidence camod lee regareded as conchasive unless it can be slown that no inorganie material could have caused the spectrum effects in question. This megative alemonstration is, of course hated to make, amd in lact it hat not vel bern made. Strictly speaking, therefore, the proof is incomplete.

Some fifty years ago there was a leated controveny alkent whether or not any higher forms of life exist on Matrs. Percival Lamell. on the ome hatul, mamathed that the surlace of Mars was eriss-crossed by a metwork of lines, or camals, and that the geometrical regularity of ihe nefwork, together with its variations themgh the Martian year, indicated it tolse an artelact constructed by intelligent beings. At the other extreme were the views of 1:. V:. Barbard, views with whel the ereat majorit! of asfromomers now agree. Barnard said Mats gate him the impression of ${ }^{\circ}$ a glele whese entire surlace had been tinted with a slight pink color on which the dark detaik hat heen painterl with a grey ish colored paint supplied with a very peor bust, producing a sherelded or strakt and wispe theet in the darker regions." Suggesting, pertaje, that it was tuwise to
 evidence, he added that "no one erould aceuratels delineate the remarkable complexity of detail of the leature which were sisible it moments of the greatest stcadimess."

What Barnard meant low this last remark is that the shimmering effert of exir own athospluere prevents us from viewing the lime detail of the Martian
surface with athe great accuracy: This defect mat well be remedied by the prengam now being carried out by Martin Schatazschild in the United States. During the next year or two Schwarsohild intend bo carry a teleseope of considerable aperture on a balloon at such a great leeight that the disturbing effects of the liarth's atmosphere will be largely climinated.

Jupiter

When seen in eren a small treserope Jupiter is a re-markable-lowking loxly: Its surface shows a great variety of detail and it is sery rich in color, with dominant reds and bronns and oceasional greenish tints. The detaik change contintousty a the plame rotates on its axis. The marhings are arranged mainly in belts more or less parallel with the equator. The leeles themselves change slewly wer the vears. varving in their witthes and in their mumbers: ustoally there are about four sur belts.

Besides these ever-changing features, Jupiter also has markings which ajpear to preserve their identity wer long periods of time. The lest kuown one is the famous red spot. Such markings are probably connected with the internal structure of the ptanet itself-perhaps with the confusuration of a magne is ficlel, for it serms likels that Jupiter has a strengs magnetic field. Certainly powerfidelectrical disturb)ances occur within its atmosphere, and intense bursts of radio waves emitted trom these disturbances secm to be associated with particular points on the surlace.

The main constituents of the atmesphere of Jupiter seem to be hedregen and helitm, wethate and

ammonia. Calculation suggests that this atmosphere, surprisingly enough, is rather shallow, A penetradiem into Jnpiter would soon encounter solid ot liguid material. Certainly much of the interior must be solid or liquid hydrogen, and the remarkable feature of this hedrogen is that it exists in a metallic form. In the extreme central regions there may well lx a denser core representing the primitive condensation around which the hỵdrogen and helimm have collected.

Nothing is known about the temperature inside Jupster. Possibly it is quite high.

It is athative to suppose that some form of en-ergy-stmure exists inside this massive plater perhape a concentration of radioactive materiaks, such as uramiant. Such an energy-source could serve to prokluce comvertive motions in liguid metallic hedrogen. Ieading tw marked and powerfinl electrical eflects. Indeed, the interior of Jupiter combl behave as a vast d!namo. gencrating a great and powerfil magnctic licld. Such a possibility would account lor the distabances we observe at the surtace of the planel, particularly the electrical storms that seem to occur there.

Left: This painting of about 1700 by Donato Creti shows astronomers observing Jupiter, depicted as their telescopes would then have revealed it, with red spot and satellites clearly visible. Below is a modern color drawing of Jupiter, the most massive planet of the Solar System.

Satum

The main body of Saturn is probable simitar in all cssemtial features th that of Jupiter, but the bedes observed at the surface of Saturn are less marked and less variable than these of Jupiter. There is also much less in the way of real and brown colors: rather do the equatoriat regions of Saturn appear yellow, and the polar regions green. Probably the colors in leoth planets arise Irom the condensation of'small liequid particles, the conditions lreing dilliorcoll in the two cass's becatuse the atmopphere ol Saturn is colder than that of Jupiter.

To the eye the most striking feature of Saturn is its magniticent system of rings - there flat concentrie rings lying in the plate of the planets equater. Galiden glimperel the ring indistinctly in the year fow, and the main division betwern the wo outer rings was first observed by (assini towad the end of the seventecuth century: It was not motil the middle of the nineteronth contury that Bond tirst ohserved the faint innermest ring.

Although so striking visually, these rings are quite insulstantial. They comsist of a swarm of timy particles, prohably erystak of ice.

This drawing of Saturn shows the magnificent system of rings which are its most striking visual feature. Though impressive, they are quite insubstantial. If all the particles of which they are made could be swept into one body, it would be only a tiny satellite of Saturn.

1 ramu and Viphum

I ramms and \eptasm probalsl comsist mamly of "ater, ammonia, methate athe perlape catron mon-
 lellam whish chataticrize Jupiter athe Satum, for the reasoms aleads seen. Pot lact dase two outer plancts ate polsabl! simitar to the comes of Jupiter and S.dum. Vot mush cat be saik about their appearance for they are modisthenished objects even when wern with the aid of a larse telescope. They presont small gremish disks, their color resombling that of Saturn rather than that of Jupiter.

The Satellites of the Plamels

S fill dienssion whall the detaik of the Solar Sistem would ocomp mans wolumes. Here we shatl consieler only one the orivin of the satellite of the planets.

Iwo distinet proseswe can be distinguished. Ond is a simple preces of caplume the proces ley which the gravitational pull of a comparatisely massive planet cansen a les mawive loxly that comes near it to keeporbiting aromal it. Ihe small satellites ol the geat planets Jupiter, Sathon, I ramos and Noptume secm to have been açuied in this way. Possibly, (ox), the Earth acquined the Mown b, a process of capture. It is clear. hewover, that the main satellites of the great platets, weh as the four C ialilean satcllites of Jupiter, camost be accombed for in this way. It is lar more likels that they were formed from their parent planets in tmelt the same wat as the planets themselves were formed from the sim.

The great planets, as lhey were lomed. rotated
very rapidl!. This ramsed them wo shed a dish of gas
 The eravitational dields of the platerts. lanever.
 lighteat gases the alomelant helresern and lielimm -vaperaterl awas from the disks, leaving brhind solid amel tiguid particles, notald water, and perhaps some partieles of reck atme metal. These pardicles ageregated to form the langer class of satellite belonging to the gerat planes.

It wems likely that materetic helds diel mot plas the same part in the lormation of sattellites os the? disl in the formation of the plamers. Thi would expatis in a very stlisfactors way the notable difference between the sytem of planets : the the ststems af satellites. The formation of the plate ts shased fown the Sumis rotation because a strong magne ic field supplied a torque compling betwern the Sun and the disk of esas that it shed: but there was no magnetie torque compling to commer the platers with their surremnding disks of gas, and hence the plateds were not slowed down. If this theory is corFet, the alisks of gas would mot have been publed very lar away lome their parent platests. Amel we

Almost all the thousands of millions of stars of small mass in the Milky Way have a slow rotation. This is an indication that almost all have formed their own planetary systems. Since the conditions which make lite possible on Earth are not so special as was once believed, it seems highly probable that life itself is not the monopoly of our own small planet.

would therelore expect the satellies to bie comparatively close in to their parem planets. Anel imbered this is detmally the case.

Here, then, we have striking contimation of the importance of a torefore conpling in slowing down the epeed of rotation of a heavenly leaty which sheds a disk of gas.

The Thundance of Planelary Sysems

The key peint in the theory of the origin of the plancts outlimel alowe is, of couser, the slow rotationsperel of the Sun. Wre have sern that this slow speed of rotation is explated by the origin and - vistence of the planets. If we wish to know how man! stars other than the Sum also possess planetary systems, it is therefore natural to comsider how matny stars rotate slowly, ats the Sim does. It tums out that -Hertivel all stars of small mass do so. In accordance with our argument, we should thos expect all such stars to have planetar! systems. Their mumber in the Milky Way is known to be about too,oow million. Hence our argument indieates that there are probably about 100,000 million plathetary sysfoms whthin our galaxy.

We can follow up this somewhat startling conchasion be at equally startling question. Wire the comelitions that promoted life here ons the Earth in amy way seecial to the Solar System, or can they be regardel as quite wpieal, in the selose that they might well have occurred in a considerable proportion of the $\mathbf{x 0 0 , 0 0 0}$ million other cases? At first sight there seem of be many very special requirements for the existence oflile, but this comsideration tends to recede as we look more elosely at the problem. It sems, rather, that only our ignorance has mate them look special.

Take, for instance, the distance of the Varth from the Stur. At fies sight this looks to be very specially adjusted to give the correct temperature for bislogical phenomena here on the Earth. What chance is there that a planet will lie at just the right distance from its parent star? In fact the chance is quite high, simply because the central star dees wot hase a constant luminosity. We have seen that stars become brighter as they age, se that provided a planet is initially somewhat tox lar away from the central star to enable it to have a high enough tomperature to stpport life, the increase of hominosity will somener or later produce a shation in which the temperature is exactly right. This, indeed, is just what has happened on the Earth. Originally the Sun was
signilicantly lamer tham it is texlay. Over the hiswory of the E:arth the luminosity of the Sun has increased by some lite! per cemt over its initial value. Originally the Earth was probably not teo cold to lave predued the pessibility of life, but its temperature most certainly have been well below an optimum value.

Finther, the situation concerning the ehemistry of the plamets is 1 wh sern to be no accielent. Smatl rock and iron planets like the Varth and Vems will always lie on the inside of every planetary ststem, and for the satme reason. Carbon, nitrogen and oxygen will always le present atnong the original planetary gases, lecabse these are elements found in cors star. Nitrogen probably condensed into the material from which the latth was lormed as ant monium chloride: oxygen was contained in water; carbon probably derived fiom carbon monoxide.

Perhaps the most critical feature of conclitions here on the Earth is the amomot of water in the oceans. This is only a small fraction of the total mass of the Earth, and il the fraction were just a little larger the whole surlice of the Earth would be inundated. let this, presmably, would not have stopped the emergence of life: it would merely have stopped the migration of life from the occans on to, the land. How far the amount of water on the surface of the Earth is due to chance we do not know. The intricate details of the condensation of the planets is still too imperlectly understood. Moreower, for all we as yet know we the contrary, it could be that a great deal of water still exists insidethe Earth- that the amomet we find on the surlace is simply the amount exuded from the interior, along with the eneks of the continents. If this is so, if there is a rough proportionality between the amonout of water and the amome of continental rock, then it may well be mo atcident that a proportion of the rock is lifted abowe the level of the water. It could be a necessity for there 10 loe both oreans and lanel. In that case almost the last of the apparent coincidenees necessary lior the development of life here on the Earth would (lisappear.

We have already seen that astromomets are now actively invesigating the problem of whether or not Venms, so similar to the liarth in mass, size, and chemistry, possesses oceans. If the answer should prove to be yes, then alnost the last barrier will be remosed to our acceptance of the strong probability that a vast number of planets within our galasy are just as capable of supporting life as is our Earth.

Chapter 11 Galaxies and the Expanding Universe

We hate seern that the Sum is but one member of a rast ageregation of stans, the aggecgation that we call the galaxy. ()ther degregations, other galaxies. exist whin the miverse. ()f those that are comparable to our own in size and in mass. the nearest is shown in the accompansing picture A fen comparatively minor aggregations actually lic closer to us. 'This is the famons galasy in the constellation of Andromeda. Its pesition is shown on map 8, pare 28 M 31. With this map as a guide it is cass to piek up) the Andromeda Nebula, is a faine bhar of light, with the naked eve. 'lhe bher appears !ellowish in color becaluse what you see is only the bright central part of the galaxy, the part that appeans yellow in the pieture.

The Andromedat Nelmala has a special interest in that it is very dosely smilar to our own galany: Its egencral shape is that of a llat circular plate with a central loulge. The reason why we do mot see it as circular is that we are looking at the phate from an obligue direction

Mast of the gats and dust in our own galans, omd also in the Andronneda Vebula, lies well oum trons the contral regions. This means that men same do not lomm with any appreciable ferpueney in those
regions. The contral regions therelore consist almost wholly of ofl stars, stars of comparativel! small mass lying low down on the main sequence. like the Sult, or stars that hawe evolved away from the main secquence in the Hertzsprung-Russell diagran towatd the region of the wiants. In fact, mont of the light that comes from the central bulge is cmitted by giant stans, and it is just because such stats are hig ated have low surface temperatures that the lighe from the cental bulge has the fellowish color we hate already remarked on. Well ont from the contral bulge, or muclews, as astronomers call it. stome of the newly-formed stars are much more massive than the sme "They lie hish on the main sequener and are blue in color, which is whe the omer parts of the Sudrameda Nebula presemt at bhish aspect in the picture. Thus the coloring of the Amdronneda Nebula and of obl "wn walaxs, if we conded see it from a distance arises basically from the preseme of gas and dast in the outer parts. and from their absence in the inner parts.

What atn ordinary optical picture of the Andromedat Nibula denes mot prepare us lior, is the disconery of recent vears that that mebula, wer own galaxs, and vers likely nowt other larere galaxies.

[^18]

The classical method of classifying galaxies is due to the American astronomer, Edwin Hubble. Below his photograph the essentials of the system are shown diagrammatically. E denotes ellipticals, S spirals, and SB barred spirals. Figures after E and small letters after S or SB indicate various sub-groups.
are surrenmeled bs halon of way hen gats. These hatos embit X-rats rather than ordinars light. ather henee we der net sere them with our telescopes: fire quite atoat from the lite that the emission is rather ferble the Xeravs lat to penctate the Lamhis
 all. But the halow aloo contain extremely coleredic elecerons, electrons moxing with speeds rlose to that of light. These elecerons are deflected int their motion los the magnetic lields dh:t pervate the haten. athel this eleflection causce them tormis bedios waves These waves dos peotetrate ome terrestrial atmoxhere athe can therelore be detected by the radio astromomer. Indeed. it is lsecause of the findings of the radio astronomens that we know atrout the hatos. these bubbe of hen eas that surroumd the galaxies. Atheotegh, juded be wereswial standards, the emissien of radiowavalrom the Andromeda Nelmba is comemens, it is leedbe compared with other caves that we shall have oncasion (1) motice later.

The accompanying pichure show a momber al galaxios with different structural forms. The classisal mether of classifive gataxio is due to the Americat astomomer. Edwin Hubble 1889 -1053. Hubble classification, based on whether or mot a galaxt possesses sural structure, consists of three sequences. Fïst we have a sequence withoul spiral structure, the elliptical galaxies. . t one end of the

Here and on the opposite page are photographs of nine galaxies, taken with the 60 -inch reflector at Mount Wilson. Each is labelled according to Hubble's system of classification. Ellipticals, in increasing numerical order, become increasingly flattened. In both spirals and barred spirals the spiral structure is more highly marked when the nucleus is small than when it is large. It is believed that in barred spirals rotary and magnetic forces are comparable while in spirals rotary forces dominate.

clliptical secpuence we have alosest splerical forms galaxies that serm to consist of hage balls of stars: at the wher end are galaxies llattened into plate-like structures, but possessing contral muclear bulges. The galaxies at this enel of the efliptical seguener are somewhat similar in general shape to our own galaxy, althongh our gataxy is known to belong to the spiral elass and not to the cllipticals. Indeed the whole of the spinal class is similar to the extrome fom of Hattened elliptieal galaxy so lar as general owerall shatse is concorned, but the spirals difler from the ellipheals in that they contain appreciable quantities of gas and dust.

The spirals form twosequences, based on whether or not their structure possesses a central straight bar. The reason why some galaxies possess such a bar and others do not is imperfectly understood, but it is believed to be connected with an interplay between the effects of rotation and the cellects of a magnetic ficld. In spirals with a straight bar, the magnetic and the rotary forces are thought to be comparable with each other, whereas in spirals whomt a bar the rotary forces are thought to be dominant.

In Hubble's system of classification all spiral galaxies without at bar were denoted by S, and all barred spirals by SB. The contraction S or SB was followed by either a, b, or c, the purpose of these letters being to indicate the relative importance of
the central meleus. It was limud that galaxies with large muelei tended to hawe a rather weak spiral structure, whereas galaxies with shatl croltral muclei tended to have a hishly marked spiral structure, as appears in the photographes shown below. Hubble denoted the elliptical galaxies bey the letter li, followed by a momber ranging from of for these of almost splerical form up to 7 lor the most flattened elliptical qalaxies.

There was sombe umertainty as to whether the three seguences of galaxies, $S, S B$ and E, should to comocted lowether. Habble: himself appears to hawe favored such a comection, at a galache type which he referred to as So. This connecting type So was similar to the elliptical galaxies in that it had no disecmible spiral structure; but it was also similar to the spirals in that it was more llattened than any of the ellipticals more flattencel than even type E7. Indeed, an So galaxy was like an Sa galaxy from which the weak spiral structure had been remowed.

The remarkable thing about Hubble's classifieation was that something like 97 per cent of all the large galaxies that he observed could be fitted into it. Among the exceptions were a lew ellipticals which appeared to possess gas and denst, amel certain galaxies which showed no clear-cut structure at all. The latter Inbble termed the irregnlars, and be regarifel them as being of very uncommon

The photograph at the left, taken with the 48 -inch Schmidt telescope, shows an Sc galaxy in Triangulum. A negative of the same galaxy, above, emphasizes the characteristically well-marked spiral arms.

This galaxy in Sculptor, NGC 253, represents a special sub-group of Sc galaxies. In this case the arms are defined as much by dust clouds as by light from stars.

ecourenes. But if we take into accome the vast momber of minor galasies that are known to exist. then the propertion of iresulars is much higher. Indeed, the irregulars then probathy outnumber the massive galaxies with regularly delined strowtures by a comsideralde margin.

Nevertheless, Hubble's system of elassilication makes it very clear that the larger galaxies, at any rate, fit into a swooth range of types. Althought in recent years some astromoures hase prefered a different system of classilication, it is also a leature of the newer systems that they present a continusens gradation of tepes rather them a set of diserete examples. The interesting implication is that the structure of a galaxy does not arise from randem eflects, but rather from smoothly-varying physical factors. One example of a smoothly varying physical lactor is the degree of rotation that galaxies possess. It is sery clear that the seguence os clliptical galaxies from Eo to E_{7} is a sepucnce characterized by increasing rotation. More or less splerical galaxies at Eo can have little rotation, whereas galaxies at $1: 7$ are highty thattened by a marked degree of rotation. The latter situation also arises in all spiral galaxies.

Now the degree of rotation of a galaxy is a factor that could be present at the time when the galasy was formed. If all the relevant physical lactors were present at the birth of the galaxies, then the sequcuce of structural forms would simply rellet the differing conditions of origin. Our galaxy would be an clliptical and another a spiral simply because the initial conditions were different in the (wo) cases. On this basis there would be no reason to believe that a galaxy changes its structural form with time. It is, lowever, possible to take all opposite point of view. One canargue that the present olserved properties of any given galaxy were only partially determined by initial conditions; that during its lifetime a galaxy changes from one type (1) another; that there is a continuous evolution among the galaxies.

In fact, when we examine the available evidence the presenere of seme degree of evolution can hardly be doubted. Let us look first at the spirals. Spira! structure in galaxies is known to be closely associated with the presence of gas and dust. Because the onter parts of a galans rotate more slowly than the inner parts, there is a constant tendency for distributions of bright new stars formed within the gas to be drawn out into spiral structures.

Athonglt this is eertainly wot the whole stom of how spizal forms originate, it is undoubtedly an important compentrat of the story. Now the amount of gas and dust wiblin a galasy must chathge with time. This change must be reflected in the rate at which wew stars atre lormed, ated in the degree of promisence of the resulting spial structures. At the present time gas abd dust ate thought to eome prise some five per cent of the total mass of our own galaxy, and alonut the same propertion of the twal mass of the Andromeda Nehula. P'ossibly this estimate may lo too low, the trac amount lue ing nearer 10 per cent.

An interesting way in which whe structural type of galaxy could change into another was pointed obt some : cars ago by Lyman Spitare ol Princeton Cnisersity and the Late Walter Batade. From time to time galaxies must collide with each other. So lar as their widely-spaced stats ate eoncerned, the two galaxies involverl in such a collision could pass smostaly throtgh cach other. But the sutuation would be very diflerent for their gaweots componcuts. The gas in one galaxy would collide with that in the other, and at the expected speed of collision it would lecome so hot that it would simpl! caporate away inte space, leating its parent gataxies altogether. In this way it would to possible lior two spiral galasies to collide and to lase their gaseons componemts in the process. No liurther new star lommation could then take place in cither of them, so that their spiral structure wrold tend graduallỵ to disappear.

They would then lxe very much like galaxies of type So, and Batade and Spitzer suggested that So galaxies might indere originate in just this way. It was alse pernted ont that one no now loright hatr were formed in the outcr parts of such a gatany.
these outer parts would become much fainter than belore. This would meath that when viewed from a distance the otter parts would be diflicult to observe, aud could be missed altogether for galaxies at very great distances. For these, the observer would see only the much brighter inner parts, which would appar to binn to possess just the characteristies of an elliptical galaxy. Hence alier a collision between distant spiral galaxies the observer might well judge those galaxies to be of clliptical rype. In this way a change of type, as judged by the terrestrial observer, conld arise from the passage of time.

Probably this idea does correctly explain the origin of galaxies of type So, but the work of the last few years has shown clearts that it does not explain the mose wotable examples of galaxies of the elliptical type fir it would imply that the elliptical galaxies are necessarily fainter and less massise than the colliding spirals. In fact the reverse situation holds for the ontstanding giant elliptical galaxies. These are from about two to five times more luminots than the brightest spiral galaxies, and they bave masses as much as ten times greater. This allows us to say ome of two things. Either there are no major switches of type whh the passage of time or else the changes are more drastic than the kind envisaged ly Baade and Spitzer. Indeed, lor spiral galaxies to change into giant elliptical galaxies it is necessary for a large increase of mass (1) take place, perhaps at the expense of a universal gaseons medium filling the space between the galaxies.

While there is as set un certatinty as which of these very different perints of siew is correct, radio astronom? has shown that the massise elliptical galaxies are certainly wot dead structures. The

[^19]
accumblated evidence of the last liew seas shons that the strengest radion seneres are just these elliptical gralaxies of great mass. This is mot to say that all such galaxies are strong ratio somecs; what is becines satid is that the strongest someres are mainly to $\mathrm{l}_{\mathrm{c}} \mathrm{b}$ homb anong the class of mosise elliptical gataxics. From stel soures the cmissions of radio wates are of the orter of a million these mome intense than from our own galasy or the Ametromeda Nelmula. This is a certain indication of the presence of imensely adiox physical proceses in the E. tepe galaxies.

A very diflerent observation shens that the giant ellipticals alse phay a dominame mole :theng other gitaxies. So far motheng has loen said almm the distribution of galasies in space. Space is strewn with them. The distances betwern meighbrwing galaxies is, out the aspage. only abent a humedred times greater than the dimemome of an indis ichat salast. Thes it we think of a galasy as being alrout a yard in diameter we com think of the aterage distance betweon meighbering enes as alonut a humdred yards. This stmation is wery diflement from that of the spacing of individual stars within a galasy, ler if we think of a star as being a yard in diameter, then the comparable
distance Inetwem meighburing stars would lo : alxmu to, , mo milcs. So in relation to their individual sizes, the stars are very widedy spated, whereas the galexics are comparations close together. Amed there is a ciromustance that make the galavies seem still claser, fior they fend to wewe in groups. So while their average distances apart are as we hawe already seen, he distances withen a partionlar gromp can le comsiderably less. Indecal, in the conters of certain rich groups the galavies sem to be almost touching cach other. Small gromps contain alew ten members, whereas large cmes may comtain sereral thousand. The small grompe are very much more common than the large ones.

Now it is very eppical lior a small group of galaxies to be dominatted hey a gian elliptical. Most mombers of suth a group ate commonly spirals. some there or four times fainter than the dominating elliptical. This makes it clear that the massive elliptical galavies play a mole outside themselves, as it were. They appear to content the stuation within their particular gremp. This is atother fragment of evidence indicating that the large ellipetical galaxies are actioe structures.

Here it may be usefin to smmarize the main pmints so far matle. On the hasis of the ir visible

Left: Individual stars of a galaxy are very widely spaced, but galaxies themselves, in relation to their size, are comparatively close together. They also tend to occur in clusters. The photograph shows the cluster in Corona Borealis. The small round spots and objects with "spikes" are stars. Other structures are galaxies.

Below, projected on the plane of the Milky Way, we first see our local group of galaxies and comparable objects. Next, shown on a far smaller scale, our entire local group is reduced to a small dot at the center of the diagram. Like the other small dots it represents a cluster of fewer than fifty galaxies. Large dots indicate clusters of more than fifly galaxies.

structural forms, the galaxies cat be fitted into a smple compirical scherue of clasification in which one I?pe changes smowhly into amother. Phis indicates that the structural fatomen al gatass are comtodled bye dear-cut phoseal factors such as the degree of motation, rather that b! mere ramdonn -hance. The major issue of whether all the main plesical hactors were decided at the time of origin of a galaxy, or whether the galaxies are in lact in the preacess of comstant change with lime, is still modecided.

The Expmansion of the I niverse

The galaxies apparemty streteh atway into space whout emd. Withon the range al the larged toleseopes there are about a thensatul million of them. Vit ahhough local irregularites certainly wint in their distribution irmeghlarities of lenal chasters for example on a large seale there serms bo be wo importabt differofe between ome part of ybace amd amother. In other words, the general distrilmtion of galaxies seems to have large-scale bemesencits. Moreover, there seems to be no difleme le.tween the obsersations we make in ote direction and the
observations we make in another Space is isotropic - that is, it manifests the same plosical properties in all directions.

All this can readily be smmmed up, in everyday terms. Suppese you are ath observer placed at randenn in space, then by observing the large-scale distribution of galaxies :on cammot find out where yon are. And if you are in motion with reypect to the sstem of galaxies, then it dox-sn' matter where yon are going: a journcy in one dircetion will show yon the same things as would a journey in atty other direction.

Do the galaxies themselver pessess ally motion? The answer is that they don, amel that this motion combtites the expansion of the miverse.

We saw in Chapter 8 that the spectrom lines emited by the atoms in a distath object are shiffed in their wavelengths il a relative motion exists betwern ourselios and the distant oljece. If there is a motion away from os the wavelenghts are increased and the lines are shilied towated the reel enel of the spectrm. If there is a motion toward us the wavelengths are decreased and the lines are shiled toward the blue end of the spectom. We also saw

In this photograph, the clear round dots are stars in our own galaxy. The cluster of faint hazy spots near the center are the remotest galaxies whose distances had been determined by June, 1960 (3c-295 in Boötes). They are receding from us at a rate of about 70,000 miles per second.

In each of the oblongs at the right the fixed pattern shows positions of H and K specirum lines produced in a terrestrial laboratory. The central band shows positions of corresponding lines emitted from the galaxy concerned. In each case the lines of the band are shifted to the right-loward the red end of the spectrum-indicating that the galaxy is moving away from us. The more distant the galaxy. the greater the red shift, and the greater the speed at which it is receding.
that the rate at whe the distances are inereasing or decreasing tan be interred from the measured amownt of the displacement of the spectome lines relative to the same lines emitted by simidar atoms in the terrestrial latsomory. The factional chatge of wavelength, $f i: x$, is cqual on $V: c$, where V° represents the velocity betwern somere and observer and c the velocity of light.

Here iwo prowisos must be mentioned. First, the belocity betweot somere and observer is meatored as positive when the distance is increasing and ats negative when is is decreasing. Second, the simple lormma given alowe is applicable only when the velocit! I° is smatl cempared to the velocity of light. The contesponding formula when I' becomes comparable to the speed of light is:

$$
\frac{5 i}{i}=\sqrt{\frac{1+1 / c}{1-1 / c}}
$$

When the velocit! is small compared to the velocity of light, the sofuare root in this equation takes a value close to 1 - Ife, so that the equation then becomes exactly the one we had before. But when the velocit! V is compatable with e the contect lemen with the squate root must be used.

Corona Borealis

Boötes

Galaxies at lelt are shown in order of increasing distancenearest at top. most remote at bottom

Non let is consider the observed sithation contcombeg spertron lines emitted by the stars in distant salaxies, particularly the so-called 11 and K lines ol calcium atoms. The results obtatined for a momber of galaxies are shem in the accompansing picture. First it should le moted that the galaxies become latioter athd lathter as we pass from the (op) to the bettoth of the picture, implying that we are dealing with gataxies at increasingly great distathers awaly from us. Next, lle larther the II amel K limes are displaced toward the right in mbthen to the
 larger is the value of $\sqrt[3]{ }$.. (It should be noted that the lixed pattern above and bekow the cemeal band in each case simply represems the positions of the corresponding lines as given In atoms in the terrestial laborator!.)

Now there are two clear implications to be drawn lemm the pieture lifst, the lines are displaced in such a direction as w indicate that the galaxios are all moving away from us, not loward us. In other words d; is abuats a positive quantity. Scond, as the dintatere of the galaxies increase, the velencit! V° alse increases. In ligure 11.1 explicit

750 miles per second
III III 1111
1II $111 \quad 1111$
9,300 miles per second

13,400 imiles per second

IIII III | III
 1111111111

24,400 nules per second

111 111 1111
$\overrightarrow{\|\|\|}|1|$
39,000 miles per second

Red - shilts
values of " bor a momber of galaxies atre plotteal against their apparent magnitules.

If we now wake twe suppoxitions, fت̈gure 11.1 can be shown whate al simpler inthitive me:ming. Onar first stppesition is that all the galavies in question have the same intrinsid brightuess. the satme almolute lamisenits. This will certainls wet be

 shomld at laal fe approximately correct. Oar second suppenition is that ybate hat the getometry of Etaclid amd here we conme to the isuse ol geometry raised in the lirst chapteri). If this is se, then it is pessible le express the scale of apparent masubtudes in figure 11.1 as a distance vale. the mat of distance depending on "hott intrimic luminesit! we take the galaxies 10 pensess.

Figure 11.2 is dratw on the basis that we are dealing with gataxion hat ing an imbinse briehtuess

Figure 11.1
The relation between the apparent magnitudes ol a number of galaxies (horizontal scale) and the velocities at which they are moving away from us (vertical scale).
about the same as that of out own malaxy. We now see that ligute 11.2 reveals an impentant relationt between the distance of a ealant and its velecity. The welocit! I^{\prime} is clowel! propertional to the dise tance. Double the distane atul the velorite dombles. We rath expess this be writing I /V R. where R
 Hublale combtant, nameal atier Ilabble in memors of his diseovers of this remathable relations.

Budiere we ge on wexamise the implications of this velocity-distatse relation. We mats well ask wheler the shmotsations ratly math what we suppere them w meath. Du the whasured values of di wally imply that the gataxies are receding from us, we combl there just pemibl? Ix some allernative

 in the pewibilit! of an alternative interpretation, lor a rasm that rath seadil! be umbernomal.

Wie noted alowe hatt the distribution of eataxies
 That is, ath ohmoter att ats arhotar! point of ypace is mable to discoser any special liature vither almon his pexition or alonet the diflerent directions in space. Xow this statement wefred to a particular moment ol thate. If we allow that the gataxies mat mowe, changime the ir pexitions with time. lout akse assumb that such biotions must mot devers spatial homoretwits athd isettop!, what metions of
 fan be worked out mathenatically, and it turns wht that the onls permitted motion is percisely the

 mathematical demathe wh homesemeit! atel isotrops is wstrihere hat almost all wiomist leal that the observations reall! do sucath exatcl! what ortinury phesics toll us they weats: that the dis-
 The motion sometimes put lomatrl in popular combentario, that there might le some mituroms proces at prosont moknown te, vience that would alos prodace the olserved resuits, wolls quite improbabla.

 me:antemiont in a little moere detail. It was satil abose hat the distamer valle of ligure 11.2 has |xent determined on the :astmptions that we are
 about lhe same as that of our (own walasy.

What gronnels do we have for believing that this is true? Inded, how dess the astromomer go alsom the problem of detaminnes the entrinsic brightuess of the gataxies? The atmer is los ath extemsion of the system of distatere meathememe deseribed in the carl! part of Chapter to.

The staming point of distance me:osuremonts is the trigotomatrical methot, wing the motion of the Earth aroumd the Sum. This methed cotables the
 detemmined with great accuracy. Althengh the distances measured in this lirst step are smatl, even compared to the size of our own galaxy, ath accotrate determination of the latint che of the main sexpenee cath le masle liom this sample.

Then a more distant chaster ofstats is comsidered, Datt utat se distatht that its fatumer stars cammot be distinguished. A fit of the later end of the main seguence of the chuster to that of the local stars is

Figure 11.2
Assuming absolute magnitudes to be the same, and assuming space to have the geometry of Euclid, Figure 11.1 can be re-drawn to reveal a relation between distance and velocity.

Wen made. This determines bath the distance of the cluster athe the larm of the main segnence for the brighter stars of the chaster. Indered, il the chaster hats bern suitahly chosen, we now have the form of the mater sequence extencling upward to quite Iright stars. In this way the litl liom of the main seguenee can be foumel, begether with the distances of mathy chastars. In certain of the chaters special types of stan can sometimes le fomed, for example the Cepheid variables, diseusserl in Chapwers 9 and 10 .

With the distances of at few (iepheid variables detemmined from the star chasters, the whole gromp) of Copheid variabies lecomes calibrated in the manner described in Chapter to. The Cepheids are intrinsically bright stars, and thowetere they can sorve as distance indicators ower a very much greater vohme of space than the small region we started from in the wigotometrical method. It lact, Whe Cepheids serve to determine distances throughout our own gadaxy, and ean com be used (1) determine the distances of a smatl handlit of nearby galaxies, those of the local group. The latter determination then leads to the final steps in the process of distance measurement.

We now treat each nearloy galaxy as at single huge collection of vars. With the distance knewn, from the Cepheids, we know the distance of every individual star that catl separately be distinguished in the galaxy, since we can comsider all the stars of the gataxy to be at essentially the same distance away fromiz us.

The curious point now emerges that the most luminous stars seem to have just about the same intrinsie brightness in all these very nearloy galaxies. Wre now make the assumption that the same is tree for all wher galaxies of similar type that their very brightest stars all have the same intrinsic luminesities. This plansible hepothesis allows the range of distance measurement os be extended farther than is possible by means of the Cepheids, since, ahhough as stars go the Cippheids are undoulbedly very bright specimens, they are ectainly not the brightest of all stars. The Cepheids can be used to a distance of perhaps 5 million light-years, whereas the very brightest stars can be used to a distance of about 25 million light-years. The last important point now emerges. Fortunately, the distance of 25 million light-ycars is sufficiently great tw include a reasmable sample of gataxies a thousand or mote of them. With their distances
kbown, we bow hat information hos merely dost indisthal stars. but aloout the total intrinsic brightuesses of whole galaxies. This leats whack to the question asked alene: low do we know Hee Entrinsie brighthesses of the gadaxies. From those we me:asure in our sample, the sample lying within a range of about 25 million light-s cars. Finalls, given the intomsic brightuesses of whold galaxies, Whe vast distances of Figure 11.2 are detombined in the manner already discussed.

The remarkable leature to motice in this train of argument is how the sery greatest distances of thonsands of millions of light-y ears are determined by a method that proceeds step by step from the clementary trigonometrical system based ont the motion of the Earth.

If, now, we refer back to our equation $V^{\prime}=\| \times R$. it is char that if R is sufficiomly large, the velocits 1 will rise to the vedencty of light. This fores us cither to doly Hat twe equation will continue to hodel gosel as R incrases and assem that the velosity will not rise to lace velacity of light, or else to dispense with ow suppesition that the geometry of Findid comtimmes to bold goen whon R becomes sulliciently latye The reason why we are lorced into one of these alternatives is that we kow from the phesics of Einstoins special dacory of relativity that under the conditions of limlidian gemmetry wo material boely can move at a velocity relative : ourselves greater than the velocity of light.

Thos the point about Vaclidean geometry is crucial. Mans mon-phesicists and mon-mathematicians lail wotice this regnirement abent the mature of the geometry whe used. The peom is of great impertance becanse mest astronomers believe that the resolution of the issue lies in the secomel alternative. That is, they bedieve that at sulficienty large distances Euctidean wrometry ceases to hold geod, for in view of the facts, it wonld be a bohd man who would say werlay that the velocities of galaxies camon rise to the velocity ol ligh. 'The latest ohservations by Ruelolf Atankowski lor the galaxy shown in the photograph on page 292 give a value of 1 cepual to over a third of the velority of light, and this is about twice as great as the velorities that were measured before the year toto. Steadily wer the last lorty years the measured velocities have increased from about onte per cent of the specel of light to wearly fonty per econt, and it is a safe predicthon that they will contime to ine rease in the fistere as olservational techmiques contime to improve.

Besieles, the phesies of Einsteincs eqemeral theory ot relativit! not his special derory shews lhat in any case we must abanden Euclichath geometrs when very large distances come meler our review.

Let is return now to the phenometom of expansion. Il at a particular monemt of thme we chonse an arlotrary linite momber ol galaxies, spaced at comsiderable distances apart, we can regard the gataxies so chowen as lorming a lattice of points. At a later momebs of time we can again choose the same galaxies and they will again lorm a lattice of points. What expansion in arcoredance with Hubhle's law implies is that the serond lattiee will bave exactly the same form as the first one: only its scale will have changed. For cxample, if we chonse three galaxies to form the there points of a thangle, the triangle will have the same shape at a later moment as it did at an earlice monemt. The only change will be that the lengths of all thee sides of the triangle will have increasel.

One obler peoint mast be mentioned. The lomor gencity and isotrops of space imply that there cats te wo center of expansion, wherwise an olmorver at the conter wombl be able to juelge that he aca at the center, and womld heoue be able to distingnish his particular position in space. How, thems is it pensible ler all the gataxies to be moving awat from iss without our being at the conter ol the misere? A very simple experiment provides the alswer. Mark a mumber of dots at vatulom on the surlace of a batlons. Han blow it up a little. The distance letwern every pair of dots will increase, in alabogs tw the situation for the galaxios but obviomsly there is he central dot in this cabe. Whichever dot som chomes, all the others move away from it.

In measuring the distance of a gataxy we we the same umit as that used in measmring distances within a galaxy: For example, we could deride to use the distance from the Earth to the Sm as our unit. or we could decide to nse a mile as the mat. or indecd we could use any standard! yardetick. When we sat that doe distance betwern wath at gataxy is inereasing, we mean that as time passes the number of mits of distance that separate us from that galasy is hereasing. Hence we are reatly satyg that distanes outside our galaxy are bucreasing is relation to distances within the galaxy in relation to the distame liom the Earth whe Sum, or from the Sun to the center of our galaxy, or in relation (o) the size of the Earth itself. This sucams that within a galasy there is no participation in the
general expansion. In other work it is the ratio between distances external to the galaxies and distances internal to the galanies that changes with time. Hence when we speak of the expanding miverse, all we can properly assert is a change in this ratio. Indeed, it would be possible to maintain that the external distances remain fixed bot that the individual galaxies and everything inside them, including ourselves, are shrinking with time. But this point of view sems somehow de flating to our own cgo, so that we find it more pleasamt to think of ourselses as remaining a fixed size; and when we do this we must take the distances between the galaxies to be steadily increasing with time. It is this increase that constitutes the expansion of the miverse, the increase in the seate of our lattice described above.

Before we go on to consider the implications of this expansion, there is one las point of detail that is worth mentioning. We have aheady noted that galaxies tend to occur in gromps, the common groups having about ten members, and the large. much less commem, gromps several thensimel members. What of the clusters, to they alse expand? Certainly the distances betwern different chasters increase, but the situation within many of the clusters is similar to that within individual galaxies. The distances within many clusters do not increase with time; the clusters stay tugether withom expansion. It most be mentioned, however, that some recent whervations have suggested that there may

The expansion of the universe in accordance with Hubble's law implies that if, at a given moment, we regard a number of galaxies as forming a lattice of points, then at some later moment the same galaxies will form a second lattice which differs from the first only in scale and not in shape. Here only the scale of the triangle $A B C$ changes with expansion.

be clusters that are in a state of expansion, athough probably the general rate of expansion for the whole miverse is more rapiel ham it is within these special chisters.

Conmolugical Theorics

Olservation sulfiers from the inherent hamelicap, that it can never tell us mequisocally how things change with time, for over the periot of a human life, or even over the whole time scale of human history, fiew astronomical objects change in any detectable way. (There are exceptioms-in the Cral), Nebula, for instanct but these need not detain us.) The lest that observation can do is to present us with a continuens range of cases, such as a range of stars at different stages of evolution. By secing the different examples at different stages, it may then be persible to inter hew one particular example changes with time, and this, indeed, can be dome for stars. But this is only because we possess a reliable phesical theory of the structure and cvolution of stans. Where such a theory is not available, as in the case of the gradation of strutural forms of galaxies, olservation camot present us with an unambiguons simation. The straigheforward ohservation of the sequence of structural types cannot of itself tell us whether the galaxies were born in the sequence in question, or whether it is the cave that individual galaxies evolve along that sequence during their lifetincs.

 itsell mant atuth when we conte tw consterer the flat or the litume of the mainere ats a whole. ()ls-
 wherver living fise thomatod millies sears ago
 living fise thensathel million vean hence might soe. Io atmwer ste q quetions a comblogical theor! מums tre added to the deservations. In this reatee Hhe stlation is 1 w dillerem from what it is in the
 dillerence arises from the liat dat me prese medat! commotogical theory penseses amphing like the same degree of validity and precision as do, our thertios of the phesice of stars. Ol wecosity, ally जtatoment hlat we wahe alobet the pant histary or the future of the whele uniwerse lien at the sers fromtions al our hometedge, and most verdaty be emsidered uncertan athed tomathive.

With lhese reservalions in mind, the maving
 theorctical implications. Jus as we expert the gataxiesto be lamber aport in the listore that due? are now. w we exper that the! were closer tor gether in the pat. But hew dowe together?' (amsider this quevtion lime on the hasis that the gataxion hats
 Then with thene rates meatured lionl olmervalion we arrive at the comelneme that the galaxies were
 thonsathd millom years ags. This limeh of tithe is quite dowe to the age of eur ewn galany that we
divaned in the provions fhapter, Hathely alxat

 thonsand million wan fin the whole unin ore is che that might wedlife within the eqtorsof measuremsoll.

The dise repamey trecomes worse. however. if we allow for variations in fle rates of expameon. The expathion itsell is regardeal as combing fremt ant initial state of explosiost of the whele universe. Grasitatom, a it is ordinarily malerstanal in physies, unpplies an attractive fence that tends ow reduce the spered at the explexion, that is. tor reduce the -peral of wparation of dhe sataxios, athl we might theretiore expert that the! whe hiowing apart at at greater velocity in the past than they are now When this effect is allowed lor. He exthedted age ol the universe is cut hesene for forer cent, that is, (1) Inetwern wroll athe right domathal million Sears, which is obly aboul hall the ase of one galaxs.
 atwaly exerpt on the lasis that at mistake hats leern made semewhere rither in the stimation of the age of cur own galasy of in the rate of expansion of the meniverse. That vely a mivake has lexem made is
 scomine. Jomeror, and the batance of eviftence is pertape in lator of the siew that it is sembine. It se, we are lareed into a stathon where the most statightorward comsideration ol ha expatasion of the matore in torms of ordinary phesics is

Given that all clusters of galaxies are expanding apart, one can reason that they must once have been packed tightly together. Given that the pace of expansion is constant (or slowing down at a calculable rate) one can estimate how long it is since that tightly-packed matter started to spread out. These considerations give rise to cosmological theories in which the universe had a finite and "explosive" origin. In most theories the estimated age of the universe then turns out as less than that of our own galaxy. In Lemaître's finiteorigin theory, here summarized in diagrams, the discrepancy is avoided. (1) Shows the primeval galactic atom just alter its explosion. Very soon alterwards (2) its temperature has fallen from several billion to 1000 million degrees, and particles are combining to form nuclei ol atoms. In 30 million years (3) temperatures are down to a much lower level; gas and dust accumulations from which galaxies will form are already present. (4) Shows today's universe, 20,000 million years after explosion. Arrows indicate rates ol expansion.

rendered mutemble: In other words we are lacal with a sitnation that alemamels a chamge in omr present phesics.

Some commologists, notably the . Whe I demêtre have liomed a theoretical metben al avoding the diserepancy wr hase noted. In their commolegy the behavior of eravity difers fion that of orthary
 galasich hate become sullicienty sepatated, gratata-
 than to retard it. Hence in I.emâteris conmentory we rathot arget that the rates of watation wer always greater in the past that they are at presemt. Durine a certain period in the past. the rates of expansion could hawe been substamtially less than they are mow. Our initial calculation at twrore thonsand million years for the whal time ol expansion is then tos, low, not tose high. Hence in this commolesy there is ne emalliet latwern the age al the universe, as deducel fiom the rates of expamsion. athel the ase of our own galaxy.

Although it mexlifes the law of grasitation, lemattre's cosmology does not diller liom the straightionward commoloey, comsidered lirst abowe, in onte crucial respect: it still demands a definite arigin for the whole miverse. This origin is conweved of as an infintely dense state of mather att an inlinitely hish temperature I dillerener arises, howrer, at to the amombt of matter imoderel. In some theories the amonnt is intinite and in others it is lithite. Particularly in Lamaitrés commolagy, the amomot is linite. Since the density of matter is intially intinte in all the theories concerned, the total amontht ol matter cannot be linite umless space legins with a zero volume. In such a case we catl think of the miverse as having a point origin.

In all the theories os lar comselered, as time procerk the density of matter lalls rapsidly. In conmologes such as Lematares, as the density of mattor lalh space increases liont a peint to at linite volume, at whome that grow rapielly in oreler to matmain the comstant linte amment of matter. With the limether passage of time, the demity of mather lalls lower and lower, athe the womene of yate |xecomes larger atul larger. Wie cat ask at What stace, whin the Iramowork of these commologies, did the galaxies lom?' The answer is at a stage where the remsty hat lallen to a ver low value, not a great deal more than its presemtalay value. This lowls to the Firther question of whe the galaxies stould have formed at this particular
stace and mot belore. No reall comsincing athswer Wh this latter question has vet beron ableme The

It is the daty of seimbins to coser all pexible.
 which olibe pessibilities pue forwarl bs the theoretician are to be allowed wsume and which must be rejerted. It is therefore impertant to ask wheller a theory cat be built tp to explain twe elmerved expamson apart of the galanies without requiring the uniderse to have had a delinite origin. ()ne suth theory properes that the miverse has atm intinite past and an intinine linure, passing throngh ant inlinits of cyeles of expansion ame comtraction.

A serious dillicult! in this theory lies in the reversal of the combacting phases. (One can understand hew an expanding phase can le replaced lyy a contracting phase, but no comvineing cxplanation has gea been loume low how atomtracting phase can be replaced bey ate expanding phase. It secoms as if comtraction most proxed wntil space shrinks to a point, umtil the demsity of matter lequmes infinite, and inderd matil the miverse reases to exist. The dilliculty lies in explanine hom expansion legeins from this state.

The therery of ath weillating miverse ratise ath interestine peint. It is mecesatry that there be mo net change wh ehomistry from one evele w the nex. Now with hydrogen bejer wstematically comberterl into helinm whin the stan during ever! eycte, it is clear that if there were no rotomstom of latime

The Abbé Lemaittre. His theory makes the age of the universe greater than that oi our galaxy, as logic demands, by assuming that the rate at which the galaxies move apart, so far from decreasing, has actually increased. This modifies the law of gravitation as it applies to ordinary experience.
betck to hedrogen, lhon by now, afier at infinits of cyedes, there could be tow helrogen lelt in twe mbiveres. And this, of consere contraticts observat diom. Fopposide Fot a reconsersion of loelimen back

 matter to become ver bigh, of the areler of the demsities lomme in the muldej of : atoms. This meats that all eqalaxios atud all stas would hase to te destrosed during the contracting phase.

Wesee. therefore, that the anciflating theor! does ter asoid the requitement that the matter of the mowerse shatl have lee"t theotgh a phate of wers high densit! and ver! high tomperature. On the emtrary, it meguires that matter shall hase bern through steh a phase at indinite momiter of times. Indecol, all the theorion on lar comsidered pestulate at stage of hish detsit? and high temperathre, athe this raiscs a very impentant issme. Can we lind atl!
 lats exer actually leom in this state of cercomely bigh densit!? The atswer seems to le lhat we catl16.1. It is just possible that some of the helitum that we deberve in the stars of our own galast. and in neighbering galaxies, mighe hawe bern probluced during a ver! high demsit! phase, but it does tont semin that ans of we other elements were prentuced of a literally moisersal seale. Rather hase they originated inside individual stars, in the manome devcribed in Clappers

The absence of ant elear-cut evilence in laver of a high-demsit-high-iemperature platere in the hisfory of the momerse is a suppecous circumstance, at Whe very lease In oder to preserve athe of the theories so lar mentioned we are compelled to sal What athongh all the matter of the miverse has passed at least once though a most remarkable ligh-rlemsit condition, dating which a profusion
 of its eflects smvires excepe, pexsil!, in the case of helian: in other respects, while the womld atomat us bears ample cuidence of lecing prosesed imside stars, it bears mo significant critence of erer hat ing becon processed in a high-demsity-high-temprature phase of the amiverse.

It siow of all this, it seoms justiliable lo ask whelher atl! whon! call be limuld that doos bos reguite the matrer of the mavere bl bave passed ditomgh a high-density-high-tomperature phase. Imevtigation shm, thot if we restrict ontselves to momad phesical ifloas we cammen lind any such
 momal phsical ielea? Laף w approath the amswer this waty. M.me difleremt spes of lield are known to the phosicist: the gratitational fiekl. prexhocing the photometom of gratitatom: the cectomaswetic lield, prextucine the plemomena of edectricit!
 the partictes of the atomic mollai. Dod from time to dime new licids ate diseonered be experiments in the laboratory for instance, we meson tields of modern phasies, discosered during the last twem! vars. Hence it is los we meathe rertain that the phesicist pet possesses at complete inventory of all pessible liede. The pessibilies the relore arises that

 bugical scate. If one makes hos hepentersis, then a now epe of theory avoiling the requirement of at high-f lemsits-high-temperallere phase lin all mater can indeed lie foumd. Postulating what is almost the simplest lype of new lick. she amives mathematicalt! at what has lecome known as the stead! state miverse.

The theors of the steat! state mbiverse is based ont a physical liek that canses mew mattor w originate. There is nothine paticularly revolutomary in this idea. for the fiekls already known w plosies call cathe mather wo miginate. Orelinar! sammatrays, for example. cam probluce pairs of clectons. The problem differs in detail but mot in principle fiom the shation already known to cxist. What is mow in detail is that a compline ratn te fombl texwern the expation of the mitere and the rate of creation of matter. This compling is of such at hature that if onte kens the rate of creation of matter then ofe can dedtee from the theore the rate of expansion of the wivene Comersely, if ome know the rate of expamion of the mbivence as inderel we do from somenations, lien the rate of cration of matter is speribed bey the theors. It tetros oute that the reguired rate is very slow. . Ithoumting to atout one atomper contury for cach mit of volume correspemtine w that of the largest matn-matele Imilding. So it is mon at all didicult to moflerstand whe the process, if it matiy excems, has wot been deceeted in the termontial laberator!.

It ypite of bhis wey slow ratte the cllect al suth ETation of mattor on a large seate womld fe come mons. The compling le-wecon the expansion of the moverse atmi the creation of matter operates in such at way that the aterage densit! of mather in pace
remams comstant. Nthongh expansion tonds tor reduce the density, this tembence is precisely compensated by the ceration of new material. We. therefore expect that a diffuse gas will exist thronghont pace, and that new galaxis maty form comtimmosly out of it. 'Thus alohobgh expansion carries olready-existing esalaxies apart from cath whor. the average density of galaxies in space catl remath constatit becanse of the formation of mew omes. This is quite a dillerent picture of the way the miverse behaves with time than that given by the wher theromes. In the wher theories, the galaxies move apart lome carh other, so that ath observer in the linture wond lind yace to loe more parsely pepulated with galavies than it is now. In the seath state theory, on the other band, the station remains constant. At cuery epoch ath obserner would see exactly the same large-scale picture. Intividhal galaxies change with time or can -hange with time, just as individual humans change with time: and just as the young replate the old in the luman species, so newly-lormed eqataxies take the place of older galaxies as the latter mene larther apmert.

This represents an important change in outlook on space-time symmetry. It was pointed out above that ant observer camot discoser anythins special about his position in space. Wre are now ateling the lurther vital peint that he camot distinguish ansthing special about his particular epoch. 'Tlec
miverse in the large leoks the same from all peonts of looth space and time. And, of course, becanse things look the same at all times, there is me beginning to the miverse, and there will be no cond.

How do we go about deriding between these ditlirent theories? By taking the ditherent predictions they make and checking up on these predictoons by observation. Here we may take at brief look at how things stathe at the present moment.

We have already seen that some systems of cosmelogs encounter the considerable difficuly of arriving at an estimate of the are of the universe that is less than the cstimated atse of our own galaxy. We saw, tex, that the ase eriterion lavers Lemaiteres combology. It also favorssteady state cosmology, for in the latter the miverse posseswes an infmite age, athe there can therefore be no guestion of our own galaxy being older that the miverse. On the other hand, a recent observation gees ayanst both lemaitre's cosmology and against steady state cosmology, se that at the present time the sitnation would appear to be rather evenly balanced.

Suppose we comsider all galaxien to have exactly the same intrinsic brightmess. We ram then work out purety from theory how we would expect the peceds of recession of the different galaxies to vars with their elistances or, more usefhlly, with their apparent magnitudes. For galaxies that are not tow lar away from us the results are the same for all the

The steady state theory of cosmology offers an explanation of how the universe, though constantly expanding, may have had an infinite past and may have an infinite future. It postulates that new matter is created at a rate directly coupled with the rate of expansion. Thus although existing galaxies move away from each other, new ones can form to maintain a constan! density of galaxies in any sufficiently large volume of space, as indicated schematically in the diagram.

 Figure 11.2 In this ligerre the ease al skeaty state conturlogy is given treather with that al the simple.
 in wheh the mivere origmoted a limite time olso

Here whersation seems to lide the ermblowe comsidered at the entser. In particular, , rexent smalar aboctation by W. Batan ol a vor divant
 serions diserepant wilh the prediction of sact!

 hate ble same intrinsie brightmess is certainly mos correct in itself. (ablavien ary from one to atomber for at leas at hundred per eont in dexe imbinsis

Figure 11.3
Assuming all clusters of galaxies to have the same absolute brightness we can work out trom theory how we would expect speeds of recession of different clusters to vary with their apparent magnitudes. For the remote clusters different theories, assuming varying departures from Euclidean geometry, lead to different expectations. Here observed results tor eighteen very distant clusters are compared with the expectations of simple "exploding" cosmologies and of the steady state theory.

 imsolved. So, it combld le that B.anm thes simpls aborrad a particularly bright galan! It is teat

 that salasios thase limen all the tiolse The theon repuires that they lorm initiall! as quite insig-

 this basis the giant elliptioal ealavies comsideted at the begimine of the prower chapher thould be the

 prosidite somer mwatime of stpport for the -toarls

 Atromomer ixdieves hath salaxion are in at state of
 requires: whers believe that wate a gataxs is liormed it stats nearly eomsant thonglant is entire life.
 cosmolegy that most be mentioned bere is that devined bs Martin. Ryle and his colleagues at Combridere, who hate made catemave conmts of the momber of radion somere that they can deres in the aky. Soste of thes seurce hate a high intersit! and whers are much weaker. What Ryle does is tocomut the mombers in dillerent intensits ranse the mamine of strong somere the momber of slighty wraker semeres, the tumber of vill weaher ons atud
 experimental meanmements. Mone precinely. a fevel of apparent brightmess is specilied, and the umbler of stume brighter tham the yercitied fexel is combere. This is dome for at oft of values of the specilied tevel. The mouls ate shown diagramemalically in ligure 11.1 right. One rame on this tigure doted line reprenents the experted mumber of soutes, calculated on the basis that their ficquener in ypace is malomen athe that the geometr? of space is that of laclid. Som the vital puint of interes is that the secturd curse oblid lite. Which chosed comeders with the resuld of absersations rime mote steply than the lize owe.

It lima sight onfe miaht interpere the lact that the
 - apeced emere a limblere demembation that the

 wat. A Change fom the gent: ory of lindid what
of Eimstein turns out to decrease the slope of the expected curve, thereloy increasing the diserepaney.

The seme of die diserepanes, as one ligene shows, is that there are (ex) many fain soures in comparison with the munber of intense someres. Ryle has interpeted this in the following way. Radio waves travel at the same speed as light, and just as light takes time to reach us from a distant souree, so do radio waves. The time reguired for radiation to reach us from a star within our own galase may be measured in years, in centuries, or in themsands of years: Int the time required for light or radio waves to reach is from a galasy must be measured in millions, in hundreds of millions, or cyen in thonsauds of millions of years. Indecel, the radio waves from some of the most intense of the soures under consideration took more than 500 million years to reach us. In other words they were actually emitted from their sonrce at a time when the first primitive

Figure 11.4
Here observed numbers of radio sources above a specified apparent brightness (horizontal scale) are compared with what we should expect if their frequency in space is uniform and also if space has the geometry of Euclid. The difference between expectation and observation actually increases if we change to the geometry of Einstein.

forms of life had only recently appeared in the oceans of oum liarth. And the radio waves from the lamest of Ryle's someres may have taken some two, thece, on font thonsand million saars to reach us. They may have started on their journey across space at about the time that our planetary system was lirst limened.

The seconel of the two points on which Rylers exphanation of his results is based depends on the liet that the chance of a patioular galaxy lefing a serong ration source that is, of its leeing serong enongh w be induded in Ryle's surver is very small. Only about one galasy in a million is thought to be of the type that is under consideration, a proportion thatwe thay here call p. Nowourobservations of very distant galaxies tell us not about their situation torlay but about their situation many humdreds of millions of years ago. Thus Ryle argues that the fact that p is higher than expected for very distant galaxies indicates that the quantity p was significantly larger in the past than it is torlay, that there were then more sources of radio waves.

If this argument is correct, it disposes of the steady state cosnology, for according to the steady state theory things must be essentially the same at one moment of time as at another, so that the quantity p could not be greater in the past than it is now. According to the steady state theory, if the quantity p is measured as an average for a sufficiently large volume, then the resulting quantity will be the same at all places and at all times. So it follows that if the olscrvations have been correctly made the theory is forced into the supposition that the quantity p has not been measured for a sufliciently large volume.

At first sight this would secm an unlikely form of defense, fer certainly Rỵle's observations extend wer a huge volume of space, a wolune even larger than that which is surveyed by the largest optical telescopes. There is, bowerer, just one possible lexp)hole. If any property, such as that of being a radio source, increases in probability with sufficient rapidity as a galaxy ages, it cannot be delined by comparatively small volumes. Indeed, if a property increases in probabilit! more rapidly than does the wekening clliet of the expension of the miverse, a corious stuation arises in which it is not prossible to deline the average propert! of a small region of space. In such a case, the chances of fincling a galany with the required property increase with the age of the galany in such a was that most of our
observations will tre concerned with galaxies at vert sreat distances. In mathematioal ferms, there is at fendenes foward divergenere of dye property bor salaxies at inctaseng distances, ot divergence dobt is onls prevented by dee mon-Enclidean character of the serometry

The "psem is therefore as follens. Accomatine to Ryler point of view it was more probable for a qalay tole a strong radios soumee in the path than it is now ; in other wowds. a galaxy is more likely to Ire a strong ratlon somere during the cally part of its like history than it is l.tter om. It has pemen of vew is correct, then steady state commodes! would seme to be wrong, for steady state conmology requites either that the observations are wrong or else that a sataxy is more likely to become a strong radio soburce as it grows older.

The question therefore arios as to which wat romed thenes really are. but it is a question to which ne delinite answer catn be giver. We hatwe already seen that a large propertion of the strone radio galaxies are giatu efliptical stome, systems that we beliewe on contain whem stand wery litale gas and dust. The presence of the old stars weakd secon 16 support the steady state point of view, that these galaxies ate indery sery whe stoms. It all exenes. the steady state eosmology is combetent in that it places the gataxies in an age sequence in which the elliptical galaxies are the oddest, and this placing agrees with the quite indeperodent requirement that we bwe just considered lor the radio sources.

When we kown why a gatant is at stomerg ratlon sources it will undoubtedls be muth conier for arrive at at definite answer to ont drestion. St one time it wats thonght that stoong radid stouces arise from collisions between galaxies. If this were so, then Ryle's argumen must be jumged better than the steady state argment; lor in all cosmologies other than the stead! state costmoleng, the density of gataxies was higher in the past han it is now, and collivions comble therefore b: expected to escor more Frequently thenthan now. Thus all cosmoleggesother than thesteady state cosmolegy would be comsistent with Ryte's observations. But the tendency among radies astronomers in recent pars has been aw: from the jdea that strong radio someses avise from the collisions of galaxies, lor on such a basis it is dillicult to moderstand the predominame of gitmt ellipeical galaxies among the streng radio somers. And here, at this very uncertain point, the quastion must be leli.

The virionts conmologice call led divided inte twe kinds: thone that require the mowere to have had a wery delthite orisin athel those in which the miserae
 the present-dat shation is tot only a comequence
 in which the minere stated aff. In cermolesgies of the secomel kind. the proxmtday stuation is a
 forminolose wh the phevicist, we mats st that in the limerer case the prosentedat propertion of the universe depend beth on the law of phesiss athed on intial bemedary comblitoms: in the latter cate there are no initial lommdary comelitions.
 bev which weulge where the balance of probabilit! lies between the two clases al comboldeys. onte might begin bex saying that nature commomls atperars terasmal starting with a complex sithation.
 physical laws. For example, complex athmic nuclei are built trom the simplest dement. litedegen, lọ processes which late place within the stars: there was wo varting with the complex mutei Exacty the some shtationt applies in chemistry. Beginning with single atoms. molecules wore limer ed at liest relatisely simple molecules. but then more amel more complex ones motil the vastly intricate processe of life were reathed. Things did wot start with life already existing.

If ins accepts this idea we exolution from simple forms to much more complex forms, then commor logical themes of the lime kimb. thene that regute the miverse to fowe had atedinite origin, mot
 the man propertion of the miverse as we olserw it weday to hase been already lstilt inter whe satting conclitions. An cxample is the formation of galaxios. Acrording to commenges of the lime kind, the galaxies limmed berause thing were stated in at very particular way. In cosmolosies of the seromed kind, in particular in the stead! state commenes? there is me pessibilit! ol apprealing to yeccial conditions. Werything, indading the lommontor of gataxies, mast lallow fom the physical laws.

Some prefiminary work has been dene on this in steady state cosmolens, on the basis that the gemeral gas in space is very low, as indeed it muse be if newl-created matter is in the form of neutrons. The neutrons decay spontancously into livdrogen
atoms, and energ whated in the deran heate the hdrosen twon high tomperatures. Cowling within) the hoe sas then leath to a stantion it which gataxics and indered clusters of gataxios can be firmed. Earlier in his chapter it was mentioned that our own galas! and the Audromeda Neloula pemoss halos of vers hot gas. These halon would represent regions of tamsition between the much conker, demer gan limg within the tlat plate-like strocture of thone galasics and the contirel external word of high-temperature gas. The ellecth of cootme within the hou gas can prochere speed of motion of the order of two thousand miles per secomb. This is se large as to sugest that pewerlint clectromagnetic eflects should octur in intergalactic space. There should he processes of particle acceleration. perhaps Icading th the production of ensmic rass. High-speed electoms among the conmic ravs should then lead to the emision of radto waves. ludert. the whole subject of extragalactie racho, astronomy becomes intimately commected wibl this extermal high-rnergy world.

So the stady state theory presemts ws with a remarkable view of the conditume that may exis in imtergatactic space. According to this theory, intergatastic space is a place of great activits. It is a place in which galasies are constandy being formed, and in which alreade-existimg galaxies are steatily chamgins with cime. In other work, alreadyexiting gatavion are in interaction with he medium that surounds them. This pieture is entirely dilleremt from that presented by the other cosmologies, in which intrgatactio space is a daad region in which lithe or mothing is supposed to take place.

Probalds it will be upen has dillerence that the theories will finally be joulyed as more and more evidence is gathered. Sooner or later it must be possible to decide by oberational techniques whether or mot a high-energy workt really dow exist muside the galavies. Perhaps one might say that in the phenomena of cosmic rays and cosmic magnetic lields, and throngh extragalactic radio astronomy. we already do possess at least some exidenee to farm the existence of such a wontl.

Milton Humason who, logether with Hubble, established the relation between distance and velocity of recession of gataxies. The specira shown earlier (on page 293) were obtained by Dr. Humason.

Appendix on the Epicyclic Constructions of Hipparchus and Ptolemy

Figure A .1
weglecting a term involving e^{2}.
For the purpose of comparing the elliptic motion with comstructions composed from circles, it is convenient to express the position of P as a comples number rexp if. Thus

$$
\begin{equation*}
\mathrm{rexp}(t)=a(1-i \cos n t e x p i n t+2 \varepsilon \sin n t+\pi \cdot . \tag{8}
\end{equation*}
$$

B) expanding $e x p$ 2ie $\sin n t$ as $1+2 i e \sin n t$ and by neglecting the term in e^{2} arising from the multiplication with $t-e$ ens $n t$ we obtain
rexp $0=a \mid 1-c \cos n t+2 i e \sin n t$ cip $i \mid n t$ - (i) . The next step is to express cos $n t$ and $\sin n t$ as exponemitials,

$$
\begin{array}{ll}
\cos n t-\frac{1}{2}[\exp (i n t+\exp (-i n t], \\
\sin n t-\frac{1}{2 i}[\exp (i n t-\operatorname{ey})-i n t],
\end{array}
$$

giving

$$
\begin{align*}
& r e x p \text { it }=a \operatorname{csp} \text { in }[c x p(\text { int }-e+ \\
& \frac{e}{2}(e x p \text { 2int -1)]. } \tag{9}
\end{align*}
$$

Whe now compare this result, correct to order e for elliptic motion, with an assmmed motion in an epicsele. as shown in Figure X.2, where a is the radins of the main circle, hereafter called the deferent, and as is the radius of the epietcle. Taise " 0 a as the angular velocity of the center of the epicycle about the center of the deferent, and "oe as the angular velocity in the epieycle, both reckoned in an anti-clockwise sense, from the same fised diection. At $t=0$ the eenter of the epieyele is taken as having argument on, and the argument of P^{\prime} is taken relative to C as \bar{B}^{2}. Then the position of P^{\prime} is given by

$$
\begin{equation*}
a \operatorname{cxp} i\left(\omega_{\mathrm{e}} t+\bar{i}_{\mathrm{a}}\right)+a e \exp i\left(\omega_{e} t+\bar{\sigma}_{\mathrm{e}}\right) . \tag{10}
\end{equation*}
$$

Figure A. 2

Evidenty 9 and 10 represent the same posi-
 il $\left(\omega_{1}-n, v_{0}=0,(9)\right.$ and 10 are always the same apart liom the extra lactor exp (2int) - : appearing in (9). This extra factor vanishes when the body is at cither of its apses. With these choices for $\left(0_{d},(1)_{6}, \tilde{0}_{d}, \tilde{m}_{e},(10)\right.$ is in fact just

$$
a \operatorname{esp} \text { (in) }[\operatorname{cop}(\text { int })-e]
$$

This gives Hipparchus's theory of the Sun and of the mequal seasons. In Figutes $A .1$ and A.2, F is the Eanth. P is the Sun in Figure A.t, and in Figure A.2. $P^{\prime \prime}$ is Hipparchas's position tor the Sun. The two differ only by

$$
\frac{a e}{2} \operatorname{evp}(i i)[\exp (2 i n t)-1]
$$

Hipparthus's picture of the solar motion is illustrated in ligure D. $_{3} . S_{1}, S_{2}, S_{3}, S_{4}, S_{3}$ are positions at various points of the orbit, s, beine perileclion and s_{1} aplelion. The Sun is hetd, as it were, in a constant direction on the end of a stick of length $a e^{*}$.

The pexition beomes more interesting when we turn to the eane of the Mons. We have seen that in our thind phase of sophistication the major axis of the Monis ofbit must be considered as slowly tuming in its own plane. This we can represent in terms of the clliptic motson by writing

$$
\bar{\theta}=1 \cdot n t+\bar{m}_{0}
$$

where ${ }^{\prime}$. \bar{m}_{0} are constants. The magnitude of 1 o

[^20]

Figure A. 3
is small compared with n, so that the line of apses hardly changes from one revolution of the Noon to the next. The periond 2.7 m is about 9 years, as compared with 27 days lior 2.7 n.) Substituting in (9), the elliptic representation gives

$$
\begin{align*}
& \frac{e}{2} e x p(i \omega, t)(m p, 2 i n t-1] \text {. } \tag{11}
\end{align*}
$$

If again in the epiescle picture we dos not seek to represent the term in exp $2 \mathrm{int}-1$. Which still vanishes at the apses. the rematinite terms are
 ane $=\bar{m}_{0}+7$, in 10 . Thus the Mexoll is not attadicel to a stick that maintains a constant direction. But to one hat thats, relative to a lised directon, with angular velucity e., this being just the angular velocity of the apse line.

This was Hipparchas s theory of the Moron. It brings out the advantage al an epieyclic theory when only circular motions are allowed) and well illustrates the dilemma of Aristarchus.

In fact the Moun's motion is, of comrse, far mone complex than this. Whe Sum catuses the Moren to speed up in some parts of its orbit and to slow down in whers the so-called eiection. This Ptolemy was able tw represent by atl extension of Hipparchoss theory, an extension in which the center of the deferent cirele ceased to lall exactly at the Earth, and in which w_{1} wat nos longer a miform angular motom. But rather than pursue Peobemys theory of the Moone it will he more instructise to comsder similar ideas applied to the plametary motions.

In Figure A.i let freplesent the Sinn, and let P represent anỵ planct. (iive all quantities a
sulsempt I'. 'Thus the persetosn of $/$ ' is given bs (1) but with the sulmatpt I' added, wi/..

$$
\begin{align*}
& { }_{2}^{\prime} \quad \text { eve } 2 m_{r} l-1 \mid \text {. } \tag{12}
\end{align*}
$$

The pexition of the larth is sicen he writing ant

 veme, the pessition of the platel is seen from the Earth is therelame

$$
\begin{aligned}
& \text { arevp irim }\left[\text { evp } m_{1}=\frac{i_{2}}{2} \frac{1}{2} \text { ap } 2 m_{1} t \mid\right.
\end{aligned}
$$

$1 ;$
Sex we consider l'tolemi S lamous constraction, bown in ligure 1. \& Here the renter of the deliorant citcle is at (0 . not at the liarth $f \therefore$ Noremer. the remter f. of the epievele does met mese with mbilorm angular velocit abous O, bus abome at perint (0 on the line fio. U is the se-colled panctam nequans. Prosided the distance 0() is
 lectorl in

$$
0\left(=00^{2}+00^{2}+200 \cdot\left(\theta \cos \cdot n_{1} t+n_{1}\right.\right.
$$

when we work only to lirst order. Hence

$$
00: 00: 00 \cos \quad\left(m_{1} l+i_{1} 1\right.
$$

in fint werer. 'The paxition of P ' is thus

Expanding the cosime in expermential we olstath

The guestion bow arsen as 10 hom lat the direction atel relative distathe of P^{\prime}, as aiven b 1.1. (an be made to atree with the ditertion atul distance of I^{\prime}. In the dirst place mo complete "guisalenee is pessible, bout a protial acreememt can be acheved. "品pectall! if cither are is latese compsarel with are of if ate is small comprowed with asc. The wors case is where these flathtities are comparable with each other. Vommately
 arep is large (rompareal wish ame lor all plater evept Veans. where the eppoxite is the case as can be seon from lablex 1 atm 2 , given at the beginning of (hapter 3
(imsterer the case where arep is laree emopared wht the. F̈̈st we teste that the complex number
 fowerer. chense a real axis thompll $1:$ veh that the atemment of $l: 0$ is \bar{c}_{0}, saly. Then int plate of 1f Iloe pensticent of P^{\prime} is

15)

We make no attempt to represent the terms ins whing of it $1 ;$, but the term ar itp imis ap int! must, of course, be reperemted. I his
 The \boldsymbol{T} appears becanse of the misus sign. The
 - ppears in 15 when wr put Of: =ar. mat n_{0}.

 Fo-2fin - $\quad 7$ rime Gollectines all these requirements

$$
\begin{aligned}
& \left(: P^{\prime}-a_{1}, O\left(: a_{1}, E O=O() a_{1} r^{2} .\right.\right.
\end{aligned}
$$

With these choices the pestiton of P^{\prime} in the epievelie pecture is

Only tarm in ura appear in 13 lan mot in 17. Poblemis eomstonction therelere represented the dliptic motion, to lint ofler in the ecombricite: exept for these small mbitted terms.

Several finther peobists mos le moticed. In the lirst line of 16 the distanees could be writen
(.I' liak, O(: har, fiO OO harefo where h is ant comstant. withoun the direction of P^{\prime} being changed, and withent whtie distances leoing lakified in ant was. Since aboshte distances were not known to Pabem!, 18 somid really replace the lirst lime of 16 .

P'olemy's chonces lior the distances $E O$ O O O were made empirically, we is to et the lest lit to the observations. It is of great interest that his actual *hoices did eive $E()$ sulstammially equal to $0(\%$. Noreoner his valaces for EO) were chose to arip in the cases of Mars, Jupiter. Saturn. 'Fhe case of Vemos atsl Merom! require vpatate comomet.

plames. aree is substantially barger than ares: becanse of the een large cocemtrict of the whit of Mercury (1 2056, as compared with wertio for at

The situation emereses that because ar is smather
 (P^{\prime}. Hence our discoswon really requires the use of the excemtic cield picture rather than the epicale picture la peint of Fact. Ptokmy preferred to woth with the eppetele picture This nathralls foreed him the modifi his gemmemical comstmetion. He need met hate done so if he had
 remarks that the construction used lior the omerer planem "lailed" in the case of Meremry. It did not realls lait. W was replaced in an equivalent comeruction.)

Tumbing law to the cane of Venus, apers is in this ome case apprectably lareer that dert. We change the combtricion simply bs intorehanging the subserpts 1 'and E in (16) (or in (18) if we wish to $1 x$ strict, instead of the first line of (ifi)). Thus

$$
\begin{align*}
& C P^{\prime}=k q_{1} . \quad O C-k a_{1} . \quad E O \quad O Q=k a_{2} a_{\mathrm{E}} . \\
& \omega_{\mathrm{c}}-n_{\mathrm{r}}, \omega_{\mathrm{d}}-n_{\mathrm{r}} \tag{19}
\end{align*}
$$

Becamse of the interehange of sulseripts, $O C$ is asam larger ham CP' as it is for the onter planets. The picture is therefore the eprectic one, and mot the ectemric circke ons. Thus Podemy did mot need an modili his comoraction lior Vions. But

 eghal, but not exatly equal, ware. Once aqain. Drevers comment on this peint appeam to arise
 clame ware but liak to metice the reason. In a fowente he implies that the change was a weakness in Polemys comsmotion. This was obvious! ния so.
The atowe analesis is based on the plane of the orluts of the plances and of the Barth being coincident. To take sone accome of the elleet of the inclinations of the planetary urbis. Prolemy introduced the additionat complication of regniring the plane of the eppeycle to le not quite the same as that if the delerem. Although it is met prolitable to include a detailed disenssion of this feature (me new mathers of prituciple being imolved), it is worth moticing as a further indication of the subtety of Ptolems.

Figure A. 4

Index

SII mambers m nalan witio wo （4）

Voctation．198－j2．173
Vdams．John（：ath h．16）－1）
l．her．19w， 195

Vavandria． 8 a

Ampire．André Maric，190．3．1＂1
balogee computers． 3^{3-H}
Inaximatado．is3

Tudromeda Xibula or（ialati
 2！1．305
Anguerön．Anclers．20！

Tprollonios． 85
｜rah：introwomors．\＆2．91
Trehitsode， 88
Vredather．Priedrioh．173
trics．Fixet Pomet of γ ．20．2．2． 115

Wrotoch， 1838
orsgin．2－3
いrigmation，we lempon
Notralale．34－12．f；
1 bultare in the Strowtube． 7^{2}
\}

Brade．II．Alwr，sim
Baleonk，2－い
 ith．©1．1 ${ }^{\text {th }}$

Barnard，L．I．．． 277
Bamm．W．， 302 2
Roswl．Friedrith Wilholen，イン．175

Bonte．Johaton I：I－rI．I6，Whe
Bull $\because 1$ am．He，HRi
land．Coroge Phillip，：－，
Bumar，Darchmasterunŋ，17：

Rusle，Rulerri，2s＂

Bradlev．Jamw thord Jotomoner R（1，1．12h，115－52． $1 ; 0.173$

 115．1\％1 1 it
 （tomet of 1577.110
eqnatorial atmillars．sh．f ，is

Stgerbeberg（bertatoms．tost

theor！ol unictas，tot，t10

Vramiong Olmervators the， 113
Mruma，Gordatur，128，128
Calvimm．233．250，265， 29.3

（ambridere Obmerators．16）
Alulland Dheratory，202－3．2e日：
302－1

（ arbom dioxide，271．2－1，

（awegrain，\．．5j．if－8

 154
（．whevial pheme．${ }^{1}$

（aplinil variablas． $243 .-2 \% \cdot 2+1$

（Challis．Rea．J．．Wa
（harlos．J．I．．2en

（hemical cucts）：－3；
Chromatic alstration，w Iem心

IJarles．こわう
II 1 F

whect．2b；
（6）wher：（olobulat ，luster
（o－balitule．3）

Contets． 1 sis

（ © ompan pemas，detorminits， 3^{4}
Cathlas tion ol－cheres in vars．212

line． $2: 1$

 17． \tan ．．．123．1；2． 173
pentratl．ith． $11 ;$

1 i¢！
Corona liervalin flaster．：̈＇，

1．पा

（intomen，Cotcek，：

corvion balance，foes
（irab）Ni－bala，250，20，
（intalline－pheres，ibt，
Cignos．172
collivling ealavies． 288 ，
Liel Vibula in． 2.50
1）（alimation，22． 31
D）danay．Charlos Dugème for

Distance of stare determined bs
（i．phoid methorl．2－9， 2.5

parallas methorl trigememetrial． 15，50．2．1．257
Dolland．John，（ow
Pitar．tw
Double stars，17：
Jumham．J．． 2 （o）
Dwarl sars， 2 \＆${ }^{6}$
w who：White 小wark
（），11：
Larth．2－6
atuomplare， 21^{3}
componition，274
（ ロルい．2ご
cromtricits．ind lination oforbsit． 80
iomoxplate．211

whar disanere and priod．lable，wh
view lrom romkte．II
弓olm
lathoricit of pantan obbls． table．in
1．lipming binarios．2s：

1：1lón．R．．2：1

Legyplian and Mesopotamian astro－ нин！，if ：3：－！ 78
Linsteil，Vhbert， 110
Gencral thenty of Relativity， 12% ， 169．296
geothety of，303，303
Sperial Theors of Relativits． 206
Blertrical fiedes，23．5－1；
Eleatricty，lighning，191． 191
static．tome

Ehertors， 23^{-6} phen．
in halon， 243 ． 2 in $_{1}$
Elements，origin of 250
Energy，chomical．232． 233 gravitational．232．235 nuclear $234^{-8 .} 2$－ $0-2$
Epicycle picture， $72-5,87,88.30604$
Epicyelic motion，72，85，91，3ofi－9
Equatorial amillary． 39 －f1
Equatorial circke，explanation，2f， 20
Equatorial whtcm．リーロン
Equinoxes，explamation，20 10 determine．32
Eratosthenes， 84
Euclidean geometry，10．291， 296 ， 302， 303.303
Eudovus．86－911 pass，垛
Euler，Lewhate 144．145．16i
Evolution of stars，
 main sequence， $23^{3}-42$
Kxpanding Lincerse，282，292－4． －960－7，297，297－30．pross．

Faraday，Michacl，193－4
Flamsterd，Johm，liont Atromomer Royal，14，14ti，17\％． 173
delas Covestiv．${ }^{17}$
Fores，delintions，120．131 etectrical， 23^{6} gravitational，132－11．236 nuclear， 236
Foncauh．Jean Bername léon，－8．62， 186， 187
Fratuonbers，gia，tor
Framboter．Joseph，61， 204
Frambluter lines，201， 211,25
 135， 14^{6}
Fresucl，Dugestin Jran， 18 ，
Galatic circle．explanation，2\％，22
Galaxics，282－305．28
classification．20 4 －7． 28_{4}
Clusters．2！11．29，
collision， $263 .-28$ ． 301
in Corona Borcalis．291
in Cigmus．sog
distance between， 291
distance of $294-7,29 \neq 29$

Gallaxirs，comtd．
，listribution．291－2
cuolthion，287－9
expamion within chusters， 297
momotest．292
rotation， 287
Calaty，our
age． 267
cosmic rays，2tou－5
formation．26509
mag＂－
Wape size and motion，2．7－60．26．3 stheture，2．52－31
se alow：Milky way；Hale
Gatilee Gatider． $50,51.52,53,117$.
118．120－31，133，144，152
（：opernitan Systom， 126
delle Markite Molari ．．． $1 刃 2$
Dialugue ．．，126， 128
diseowery of sunspots． 118
Wnamies． 13^{0-1}
heresy and abjuration， $126-9, t=9$
pendulum， $120,13^{0}$
rings of Sitturn， 279
satellites of Jupiter． $12.5,127,144$ ． 1．52－5

Whorope ．52．120，122．12．5． 13^{0}
Galle，J．G．．．16ig
Gamma rays．195． 197
Gasss．Karl Friedrich，som－t pass．
Gcometty．
Einstcinian．303． 303
Eut lidean，10，294．296，302－．30；
Ricmammian，12
Georgium Sichs Lramus， 164
Giam stars．224－31，239，243，24t， $21^{6}, 282$
Gianc．Bishop of Kulm．10\％，106
Gilobular Chusters，off．2tij－7
II 13 in Herculcs． 20%
Gravitation，theory， $1 \geq 0$
Gravitational lidel，235－6，271，2ion
Gravitational forme $132-41.23^{6}$
Gravity，120－71， 161
Galiter，124
Newtomian theosy， 124
Gereat circle， 17
Greck astronomy，フラーか
Comolegy，8j－91
Europan re－disomery， 14
vicw of shape of Earth． 83
Grectuich Obweratom，16，18，142． 145.15

Gregry：James．54－3，5．5
forgory Xlll，Poper．81，82
Hake，（ieonge Ellery， 24
Hake telescope eno－inch rellector．
31．51，51－5t．57－8，6f．2．14． 264
Hall．Chester Mowr，or

Rowal，1．7．，155－9． 168

Halo of our galaxy，2taz－9 poss．
globular chasters，26f， 265
stars in，ati－

Harrivon，Jwhor，113，1／1
marime chromomel－ts， $1 f$ ；1 1 t

211，270ー3 Pはい．． 277
disconery，210，200
in interstellar gat， 26 m
Hetmhole，Hermann L．Vim． $2 ; 37$ ．
heory of suns chergy，232－5，239
Hendersem，Thomas， 17.5
Itwatide，85．87，68．91，98
Horentes． NI_{13} cluster in． 264
Herochel，Caroline jomrat， 162
Heredel，sir Joha．16．
Herschel．William，6， 15.5 ． 160 ． $163-1,160-73,202,226$
distovery of Lrames． $16 \mathrm{fi}, 163-1$
Milky Wiy， 2.97
stmspots， $1689,173,212$

Heriz，Hemrich，194，195
Ilot／appung．E．．．229）
H1．rtaprang－Russell diagram．22：－
 ＂horizomal branth＂，2．17
measming stellar distance，2．54－6
Hipparchus．37．39．71．7．83－9． peas．．ge，106．136．176．：73， $308-9$ phas．
Hipparthu，ring，39．71，176
Hewhe．Relsert．130
Hownoms．2t：
Howr，varying longth of：36，83
 galasios，clawilication，28．月－7． 208
Hubble comtant，29t
Huggins．Sir Willian，his spectror scoper．20．
 18.5

Hyates cluster．211．$\because 44 \cdot 26$
Itydrogen， $236,234.242,211.2 .17$,

heavy． $21^{\circ}, 28^{\prime \prime}$
 แap）of．in our gataxy，260．20， metallic tomm． 270

Interndlar gas and dust．2－90－bo．

lomophere， 211

 201.202

Jupiter，z7！！
Baloflonian olacratioms．B7
derription of．zTシーロ
Acterminine mass． 163
cerconricity and inclination of orbit．
table． 20,308
＂1．．い，16＂
い灾しい，27ロー73
sular distame ant perioxl，table，bs
Jupiter＇s satulltes．125．127．144－ 1月．15～ーラ・マン！

K゙・Hnゃr，いう
K．小in．Win．Thomom，Baron，：\％
Heory of Sims energy，232－5，239
Kepler，Joham．39．53．85，91，93， 105，1001，110，110－19．117．120－30 pas．．1； 3^{3}
harmomir theors of planets，d／f， 119
1／ssterium Cosmographicum， 110
Obbit of Mars，：16－7，11f．117
planelary radii ated regular soled． 111－13．170， 111
Sommium ．．， 118
Tabuli Rudolphinate，115，113
third latw，133，227，223
Lagrange．Joweph Iootis．Comte，thi
Lalande．Jowph Jérme Ledrançais de． $1.57,168,17^{2}$
Lambert．J．11．．172． 257
l．anc．J．Homur，220，221，22：3
1．aplace．Piurre Simom，Marquis de， 161． $860-9.271$
I．atitude
delining wormatrial．\％
A．tormaninge 33
1．cavill，Niw 11．S．．213，254． 2.56

（icorces．299）．29\％
 300－5．pas．
1．emombicr，Pieque Charles， 164
Lengls of year．detormining． 33
l．cuses，17－b；
athromatic．$(6$ ，
atigmationt．17， 7^{8}
－homastir abromatom，78．53，58
comat，47． ／88

felle curvature． $1^{8}, 7^{8}$
foxal length， 1^{8}
obje（tive．19－53 pan．
photography．forsis pass．
gherical aberration，17， 77
Levervier，Liban Joan，16．1－6
l．exell and 1 ramms．the
l．ife ame other planetary systerms，2ib l．ishl．
aberration．14：3－92
｜x－ndine．12－13
bullet analosy， 17 thais

diftaction eratine．182－1． 18%
bathere of．1－7b－204
（Dututum thoors． 19.7
ranbow．181
Fthecton amel refaction． $14^{-6} 5$
－petroncope．183．2eos
peced of 1．5－5． 186
through vace 195

＂awlength，tios， 880,24
lithinm．236，210
lizards． 231
Loblachewk！．Nikolai Manosich． 12 lexkier．Sit J．Nerman．210． 210
t．ongitule，81－3
defining werrstrial．17
linding by perition of Worm，th－
timetime by Catellites of Jupiter，125．
111． 1.4
problew of determining， 1^{12-5}

l．ammonity．
absolute and apparcm1．225．25\％
bolometric．225
determining．$=2-6$
magnitule seale，224－

1 ulır， 92,9
1．wtwon，R．S．．168， 273
Masellanic Clouch．243，254，2，36
गацп＂sinn． $23^{3}, 250.272$
Magnetic fields，
bar magы＂ 262
hahes． 23_{1}
Hew stars，260ヶーブ
our galaty， 26 or－ 9,262
Su11，21，－i，218，270，272，277，274
Magnetiom and liletricity，191－；
Daguitule，we 1 ，manomity
Main Sepu－nce，measuring stellar divance，25－6i
Main betuence stan，229－31
bon－main sépuctuce stars，212－50
nuthar processos in， $23^{2}-12$
Maps of the heatells， 2.8 －8
Matconi wireless． 19.5
Nare Imbrimm，19． 5°
Mars， $87,27.5$
：0mpesition． 271
destriphion of．2－76－7
determinine wale of solar swacm

distance from sum， 134

Mars，contd．
cremtricits and inflatation of orbot． table．20． 303
map of＂canas＂．シュか，
mass，ftom
origin．272
wolar distante and period．bable，bs
Mashelsme．Xevil．Durcoumuer Royal，

15． 5.5 ． $16 \% 172$

N：い，
apparatos for determining， $158,1.94$
binary stars，2ュフー8
larth． 15
planets，thor 3 table stix
proton，dectron and weutron． 234
thars，2：2tr－8
S． 11.150 － 64
Mastlim Michael， 110
Maxwell，Jamen（\％rik，18\％，140－5． 200
Mayer．Tolsias．111－5．172
Mercury，87， 271
deseription of，273－1，2－6）
cocmericity， 3 orim，
＂comericity and inclinaton of orbst． tahle，70
mass，16：－3
orisin．272－3
perturhations．161，169）
use of in determining mass of Verus． 169
Meridian．prime．10， 18
Merklete 36．36－7
Mersemer，Marin， 63
Xespotamian and E\＆yptian antron－ omy， 35^{-9}
se also Babylonian astronomy
Merals，common，272
Detonic acle．Bu
Midsummer and midwinter，deter－ minng． 3^{2}
Milky Way，21，z2，thti，1tyy－72， 170，1 175．250，252，2463．28
Mills Cons radio telesopm，sto ，efit
Minkowski，Rutulf，agt
Minor plancts．15\％ 168
Mirrors for rellecting twhesope， 4^{6-7} ， 53－65 pas．
Mizar，spectra of， 229
Molecules．235－96，pass．
Moom．49，51，51，7\％，80，83．91， 168
basis lor calendar，7a－i 2
determining distance of．By－go
importance in Mesopotamia． 7^{33}
mass， 163
motion round larth．70，1．10， $3^{07} 7$
tides．Itan
Noman Wilson and Palomar Ob－ ervatories，6i，122，186，200， 260 ， 270
we alan：Tellosouns

Mullard Olservatory．Cambridge， 202：202－3．302－4
Miller，Joham，se Regiomemtanus
Navmith，James．57－8， 57
N．loular． $11 \times 1-72,250$
Cral Nilmula， 2.5
Lagoon Nibhula，efin，
Orion Nelula，2tfo．zetm
Veil Xibula in（iggnus，2．jo
Neptune． 165
description of．28，
mass，180，1tiz
urigin，270ー3
vatellite of，163．273
solar distame and perient，table： 63
Neus－lature．Otw． 77

change inte protons． 239
Newcomb，Simen， 1 tha
Newtom，Waac，39．53．548， 5% ， 120． $13^{6 / 2}, 1+1$
motion of Moron，if＇，IH
on light，176－8，186．137， 199
Optick． 177
precessimn， forb $^{0-1} 14^{6}$
Pimapia，120，171．1才1
Irimity College，Cambridge． 137
umiversal gravitation，136．173
Wenkthorpe Manor．137．141
Nitrogen，23ti．240．272， 281
North ．Tmerica Nebula，be
Nowa Mquilar：${ }^{2} f^{8}$
P＇enei．－f！＇！ ser who：Supermova
Nuclare emergy．23i－8
Nuclear lields．force：235－7
Nuclear process
main sequence stars， $23^{30}-4^{2}$
nen－main sequence stars，242－50
Nucli，236，237－46 paw．，265，
Nuremburg thack， $3 f$
Nutation， $1 \mathbf{q}^{6} \cdot 173$

Observatorics

Berlin，165
Bischoffitcin．62
（ambridge，164． 3^{62-4}
Cape，${ }^{175}$
Grernwich，16．18．142，145． 147
Harvard Colloge，243， 275
Istanbul．95
Jodrell Bank，200，201，2092
Lick．62
Lowell，276
Mublard，20：2－3，202，302－4
Oxford，174
Paris．59， 135
Pulkove．173．175
St．Petersburg． 164
Samarkand， 95

Observatorics，contd．
Uraniborg，Stiornolorg，se9， 113
Yerkes，62，6 7
Oersted，Hams Christian，192，192－4
Orbits of planets，66－77．3oti－1）
Oriani，Barmabas， 164
Origin of all elememts， 250
Origin of L゙niverse，are Cosmological Theories
Oriou Nebula，zfif．2fin
Wiander，Andreas， 105,106
On！gen， $23^{6}, 233,246,247,250$ ， 272.281

Palomar Observatory，se Monint Wikon and Palomar
Parmenids， 83
Pendulum．120）130．130－2
Promi，Newa，zfy
Perturbations．161．103
Philolans， 85
Photuplatre． 199
Planctarium at Munch， 75
Planctary motion
Ptolemys and llipparchus＇theorv． 3otr－11
there stages of relinemen 66－77
Planets，27ロータ！
abmatance in（ialavy，281
Burde＇s law， 165,165
mass，160－3
minor， 273
origin，こクロ．270－3
perturlations． 161
see alan：Mertury，Vomus，ete
Plato．83，85，87
Plejome．271
Plutw．65，27：， 27.3
Polaris．15．33－34
Precescion，140． $145-8,1$ f 8
Prime meridian，16，is
Protons， $235-47$ mas．
Thange inte newtoms，239． $2^{\prime \prime}$
Ptolemy，37，34．67，7！，85，86，41． 9－10ts pas．． 115.128 .306 －9 planctary orbits，6\％－306－？
plimth．37，37－8
rules． 38
Pythagoras． 83
Pithagoras＇s Theorem，to，is
Quadramt． 3^{3}, fo 0
Quamtum Hheory of Light．1－fis， $195-2(6)$

Radiation of energy in stars． $242,24^{2}$
Radio，194．195．197， 277
sources，284，29t．289，302－4
Radio astronomy， $200-3,260,263$ ． $284,289.302-5$ pass．
coum of radio someses， $302-4 \cdot 303$

Radio atromsomy，contd．
map of Galaxy．2tw， 2 （a
map of Sky，202． 203
whesope，licld of view，201－2
Rarlio wlescopes：
．Tustralia，202．2fir
Dwingelen，Ilolland，2for，afit
Joulrell Bank，206），20t，202
Mills（iress，Autralia，2ter，2fis
Mallard Observatory Cambridge． 202,203
bor－ft．C．．S．Navy， 202
Raclius of a star，determining， 226
Ramsay，Sir William，211，210
Red shifi，see Wawelenght of light
Reflerting wheropes，46．53－8，58－ by puan．
mirrors，f^{6-7}
Reflection and refraction， $44-65$
Refiating telestopes， $46,47-53$ ． 53－1，jpass．
Regiomontamus， \boldsymbol{f}^{2} ， 96
Retrograde motion，it
Rheticus，Joarhim，wotb
Prama ．Varnatio．．．，102，105
Kicmann，12，190，191
Kight asecosions．2：3． 34
Rönct，Olans，152－5，152， 153
Rosise，Earl of， 62
Rotation of stars，260－70， 271
measuring， 270
Rowland，H．．I．， 184
Royal Luronomical Society，158
Royal society，bo， 164
minutes re Prini ipia，141
Rudwphine Tables，113， 115
Ruling angine， 183
Russcll，Henry Norris，209，229－31， 239,24
Ryle，Martin，302－4
Sagittarius．Lagoon Nicbula in， $26 y$
St．I homas－\quinas，？t
Satellites
escapred．273．273
10，152
of Jupiter．see Jupiter
arigin of．280－1
Triton， 273
Saturn．27！
description of． 279
determining mass， 163
cocontricity， 308
cccemricity and inclination of orbit， table，zu
mass．： 60
origin，2ј0－3
solar distance and period，table， 68
Scheiner．Christophere， 123
schiaparelli． 271
chomidt．Bernhard， 6_{5}

かhwalse，Samu－l Hecimich，2は2
s liwarachild，Karl，22：3
Chwarmhilal．Martin． 277
sooppio，172
Subpur N（ic：25\％）． 28_{7}
scasoms，inequality in lemeds，byt
Ghapley．Ilarlow， 213
sidereal periond，caplanation，tis
binclon．206
Sirus． $17 ッ 1.218$
suell．Willd－brord，11． 17
Golar sutems． 2 ，＂
aqe．2hī－1
い位in of，2フローラ
wale of，84－go，155
¢pectroscope，183，20
photoclectric equipment，20ts
Spectroncopy，20 $y^{-11,2 f^{6}}$
Spertrim
antalusis，16is．205．206\％
binary stars，227－is
lines， 108
shift towards red or blue，2oti－7， 25：2．270．29：2，292
tellat clasvilication，（）tw M stars，
207，207－9）， $21^{\text {i }}$
sumlight．15\％．20．4．20ti
see alw：Wawlengst of light
pherical aberration，see lemses
spieer，Ivmath．289
stars
।inary swicms，2of，226－8
Cipplecid variables，243，243．24． 2．5． 2.26
Chemisiry of，2001－10
distance｜x－twown，291
double stars，173
dwarl．209－31． 2391.24^{8}
＂मotsy transpurted in，212，2f2
formation of new tars．2ffor．2tim
gianst，224－31，234，213，211，246
Hertzopmong－Rasell diagram，228－

Juminowity，2：2－h
 mas，226－8
masuring dixtamee，173－3．251－7 notion． $2,2-8$
rotation，270
not－main sequence，242－54
parallax．173
radlii．2 24
rotation，2t，6－70
spectra，2eth－7
spectal ilanstication．207，207－

a）themmomelear wactors，232－50
star trails around peole，if．16
Stationary directoms，if
steadystate theory of uniserse．300－5． $301.302,30 \%$
 lat rlawilication
Struse，firielrith Wilhelm．173．17\％． 226
Sun，270ーil fan．
Chemintry of．20\％．20\％，2101－12
（aronat，211． 213
＂Clipese of，ブ
thergy and structure， $232-30$ pans．
llares，212． 211
interior，218－23．2．10，212
magneti，licld，24．1－8，218，270

perical of rotation，123．21．1
plotograph in hidrogen light， 232
promiscuca，210．214．218，

sumpots，118，122，123．168， 173. 212－16，216
surface photogeraphed from balloon， $222,2 \%$
Sunsenergs，thenrion of 232－5． $234-42$
Sundial．3：5，37，81
Sumpots． $118,122,123,212-16$ ． 243.26
distrilution of．21 2．22t
Herachel＇s concephien，t68．173．212
magnetic fields in． 214
supergiant stars，2201－31，2．12．2．13
Supernowa， $110,250,262,263$
Crab Miboula， 250,250 see alo Nova
Synchrotron，CIR．N．，262，262
syondic protoxl． 68
Tables of pexitions of Lrames．IGA
Taylor，Sir Cecolles，toy
Techatium．210， 217
Telescopes．
Bradkey＇s zenith instrament．1．50
Casegrain reflecter，if－8，5\％
Corucé syitcom，57，53，54
Derpat refractor．61，62，63
Galikan，120，122，125．130
（iregorian．318． 5.5
（ireombrideres mamit circle， 52
Hale 200－inch at Mt．Palomar， 31 ，

heliomucter，17\％，174

lluggins＇s 8－inch refractor， 205
mountings， 53
Nasmyth，57－81． 57

rellocting，f6，5：－65 pum．

Rëmer＇s mericlian instrument， 153
Rown wellector，62， 61
Shmidt primels at Mt．Patemar． $65,65.16 .1,252,287$

Smuth，II．I1．．trantit．je

 ser alwo Radue Telcarage
Theophatatos， d．$_{3}$
Theories of Commeness bel Connor logical Theorios
Thermonuckar reactom．shars as． 232－54
Thomson．William，Baron Kilvin． we Kelvin

Forguc coupling．27ィ，271－2． 280
Tirguetinn．12－1． 7.7

Triangulum，galax！， 287
Triquetrum．37．38
Triton，satellite，2973
Tycho Brahe，see Brabre．Iycho
Tichonic picture of Cinmon， 88,8 ，
Clagh Beg． 95
Univerer，expanding，292－7．296－7
Urants，derription．ziber
discowers， $16 \mathrm{~m}, 16 \mathrm{3}$－-7
mass．Itio
arigin．270－3
solar divtance aml perioxl，table． 68
Van Nlen radiation Ix le． 216
Vaucomburs．Dr．Cerars de．＝－ 5
Veil Nebula in Civgnts， 25 ）
Venus，wo，bil－77 pas．，6\％． 17.27 .5
atmonplere． $1-3^{3}$
description，27－1；
cremericity． $3^{\circ 83}-9$
creontrict？and ind lination of orbit． table：$z^{\prime \prime}$

origin，272－3
perturbations，let
solar distance and preriod．table，the．
tamsits．157．158－9

Water，272，2\％ 2 ． 231
heavy 2 fo $^{\circ}$
on V Vobus．27－
Wase．natume of．187－か6，145
Wavelength of light．186． $88 \mathrm{co}, 2 \mathrm{O} 1$
shift w red or blu．20，
2012，2cy2，243
White dwarls． 21^{8}
X－ray，195，19年，147，2\％
Virkes（Obsersatory，62，6if
loung．Thomas，tibl
Z．enith，explanation． 3^{0}
7arliac sisms．I2

Acknowledgments

cft		

Brit. Mus. . . Comrtesy of the Trusters of the British Mustum

Mt. W. \& P. Obs. . . (iourtess of Mount Wiken and Palomar Oberwatorics, Calitomia, LSS

Frontiopiece: Veil Nibula in Cygmus. part of ve:c: bege photographed in color with the fe-inch wescope. Plamo: M1. W. \& P. Obs.
11 (1) Couds incr mothern Circece.
Photo: swissair.
(a) Mevion from: lligh Nititude Rocket. Ollirial L. S. Naw Photograph.
12 Trabie edition of Vinclid translated by Ibấa ibu lloneime ws c. $1: 350$.
From The liorld of Mathematios Vol. 8. De D. F.. Smith. 1,
11; Star Traik, I? hr. 'xpmure.
Pheto: Olservatoire de Hate Prosence da (ientre Natomal de la Rérherehe soientitique.
 Courtosy: Frnsters of the Natonal Naritime Мынын, (irectwich.
(B) Prime Maridian at (irernwidh ()hervators. Photo: Gictatd Itowson.
 by llarman Moll. 17 vis.

21-5 Harmanin Watoncomion. Intreas Ciflerius bitio, Brit.

 Harper \& Bros., Niow Sork.

36 2 20 -ind hate telesorpe.
N. W. \& P. ()ws.

31 B From The Pagan Thibes of Romen. Hose and MeDougall, rotr. Mammillan \& Co. Itd.
34 It Nuremburg elock. Repro-(icbaiher enthaten. Belegexemplar Libleten.
35 Equatorial sumdial. wooders of about 15.50. (© mores: Biblietheque Nationale, Paris.
3f if Keplica of Merkbet of tith comtury B.e. in Berlin.
 Ploto: David bwann.
37 R Trignctrum. From Astronomiat Instateatue Mefhamisa, lycho Bralae tooz. Radion Times Hulton Picture Librars.
fo ri Tirlow Brahes Azimuls quadram from
 Photo: science Nuseum, 1 andem.
R1. From Intarctica. Emil sehulthess motio
Phote: Schulthess Black Siar. Lomdon.
BR, Sculpture in I loremes said to lx of P'olems. Mansell (6ollection. Photo: Dinari.
41 I Great Equatorial Amillary Irom A, thommine Instauratae V/e hamica, Ticho Braber those.

B Diagrams frem an article by John Christianson in the February mbit issme of Scientifir Imeticam.
 3.53 Courtos: (:ambridge Vniversit? Libary:
ifthercotury istrolater probably Fienich.
Conertsy: Mastum of the History of hacmere, (sxford. Phote: I av id Swam.
45 1. Ipian's Torgurtum of c. 153°. From Astrono-

Phote: Science Masemin, Iandon.
(a) Torquetum of Nicholas of Cusa. Rheiniches lamesmasomb. Jrier, Germans.
-0 T Nare Imbrium. Nt. W. \& I'. (Obs.
a Drawine of Mosm be Galileo. Courter: Bibliotera Nazonale Cembate, Flomence. Italy:
„ 1. Tramit (irele of shots. Comrosy: xeme

R Irom corch of C.rlevtal obiects. Vice- tremiral IV. II. Smih 186 (Conrtess: I.ondon Librars.
it 200-inch llale telescopr. Ni. Palomatr.
Mı. W. \& I'. Olm.
 in 1960. Manartll Cablle (10nt.
 Science Museum. Iomdon. Photo: David Swant.
3 Lassell's filineh lístoman teloseopse. Froms R.A.s. Memets Viol. 36, tithts. IN permission of the Royal Istronomical serets. I ondons.
57 I Nasmyth as inch telesoopr. (iontesy: Science Mssum. Iosodon. I'hoto: Daviel Swann.
18 Nasmith at his telowope. From History of the Felocope. 11. C: King 195: Charles firillin \& (io. lid.. Landon.
59 (T) Model of épuatorial Condételescope (ionertesy: science Musemm, I.omelon. I'hoto: David Swant.
(1) Engraving of equatorial Conets itt laris Obsersators Courtesy: Musé des Irts I Decomatifs, Palais du Lounie, I'aris.
 seicne Museum. Landon.
is From Pricfical Avromoms. IV. P'earson liza.
Mrit. Mus. nm-533.i.11.
tof 1 fe-ing telescope. lienkes Ohservateory.
Photo: Verkes ()hwowatory No. ni ji;
(11 fo-inch lens of liekes refractor.
Fhoto: Verkes Observatory. No. N. 197,
 Palomar. Mt. W. \& I'. ()心.
65 Simmide 4^{8}-inch telescope. Ne. Palomar. Nt W. \& F. (Hs.
 13rit. Mins. mabs C.b.c.3.
a Babylomian Iablet, whervations of Jupiter Irom

71 Cireck Bedl-krater Vase $E,-02$ slowsing Omphates. Mrit. Nus.

-1. Case of Saremblages cower of l'wobet Mut. P'ooto: Mrempolitan Museum of Irt. Vew York.
78 Photographeel in mid-air over Ganary Ivanels. end
 craft Corporation. I S
 Centres: Bibliosera Nazomale di S. Mareo. Venice. lialy.
So 1 Wabylomian Tablet. Idmar observations from
 (B) Bownelary stome of Cinla-liresls. Brit. Mus.

82 (1) "The Commasion for the Reformation of the

B In I:lection İntertaimmont, fiom "Whe 1:lection'* Series lwe Hogarth c. 1754 . Courtesy: 'The 'I rusters of hir John Soatu"s Muscum. Iemelon.
 from 1 ind es zard lisht by Rudalf Ilivel, wefi. Rowohle Verlag (imbll, (irmanol Vinglish exlitom
 London.

 Plotoseraphigure des Musées Nittonatix.
 Camper Santos. Pinal. Photo: Nardi. Jisa.

Conertesy: Ithmegriphical Musemmo. Makara.

\& lineal on diagrams in a work on Clagh liog.

 Conrosy: I enelon Librams.
47 1. Portatit ol Viehostas (itpernicus 1. stres.
 Magtatill.
(R From the poresait it the posessions of the
semisaty of Bramosberg, Poland. prior 10) 193^{4}

(13 Lexom in Dissection lionn Fasicalo do Vediema.

101 (\quad (opernicus Kesom at I raturaberg.
J'hoto: Vrich Lessing-Magnum.

103 (1.) De Libri Recolutionmm . . . Vatralto Primu.
 (k) Dr ficiolutionibu. ...Nichala, (aprotuicus i It: Courtesy: leomenn Librars.
101 11 Irom Vihetams fopermbus Commanaketh \ol. 1. a lacsimike of original ma of D_{e} friontumitur edited bs
 Mumich.
(R) From the portratit in the possexsion of thes Copernicus Gitammar Cobel, Iorm, Jobamel. prior (1) 193%.
105 Vrom De Rriohtionibus Vichwlas Copernicus 154?. Csurtesy: looulon librars.
reti (1. Vifles Brabe painterl about 597 . Rewal
 ner Renal for scatand. I'hour: J. H. Watson I.tel. liclinburgh.
(\mathbf{R} İromin Istronomite Instauratue . . . Ive ho Ibrahe stifi. Courtesy: 1 .ondon Librars.
so7 Tivhas lirabses Mumal (Duadrant. Fioms Athas Maime. . Viol. I. Jan Blacur rtates. Brit. Mas.

1a3 T L Vaniberg Observatory from Ithas Vajor . .

asterneborg Obsowatory from Ithas Vator
 Musewn, lemdon. I'loto: I Saviel Swann.
109 (T) Vapted Irom I vitho Brathe's Iramibons amd
 Ify permissient of telskabee til Cidgivelse al Shrifter oni danske Mindesmaterker.
(i) Map of Heen from . Ithas Magor: . Val. I.

1 to K Kepler. patinted in oils i gen). By courtess of Fonmelation Saint-Thomas. Stavbourg.

111 11 ... Vfstcrium Giesmogrophicam. Jobanne's Kopler 1621. Brit. Mus. (14 -5; 32.11 1-3).

11: Tabuli Rudolfhumac, Johanmes Kepler 1627. Init. Mus. (mu-181:7).
113 Vomb of Tirho lbalee in the Iín (imuch. I'rague.

$11 f$ From the K $\boldsymbol{1}$ peler ws on the calculations for the orbit of Mara. Preserved in the lrehives of the
 of the Ditecton of the l'ulkow Observators.
(16) K) Ohervatory at Prague Photo: Virich I.essingМацпит.

118 Somniam . . . Johames Keplee th:3g. Brit. Mas.

1101 I'rom . I History of Stomemy from Thala to hifler. J. I.. V. Dreyer (Camberege Universm) I'ress). k Horoseope by kepler from Ind Ther was light,

$121 \quad \mathrm{O}$ ()ne of a serios of astromomat pathtings b
 Monumati, Masei e Gallerir Pontificie Photo: Photographe Arehives of the Vatican Museums \& Gallerics. (Sor alser p. 278 .
11 P Porrait of Galike Galilei by Stavio Leoni
 Florence, Itals. Photo: Dr, G. B. Pincider. Florence. sk Recomotrution from (ialileo's drawing. by courtes of the Directors of the Sciance Mascoun. Lomelost. Photo: David swanm.
12.2 B1. Itura e dimo trazione intemu alle Wherlie Solari.... Galiteo (Balitei 1613 . Brit. Nas. (8 w-fine. 19). Br Day-by-day reord of stmper group of MarthApril 1917. Plooto: Mt. W. \& P. Obs.
 Frontippice to Bowk ill. Photo: Science Masemm, Loncton.
$12+$ 1.) Sidercu, Vuncius (ialilow Galilei ition. Brit. Лиs. ии-(.1112.6.3).
12. (k From Ducomeries and Opimons of Gialitoo, translated by stiltwan Drake. (iopright 1657 by sillman Drake: Reprinted by permission of ! mobleday \& (io.. Inc., New Vork.
125 1. Replica of wessope made be Gatileo in reto. (imutes of the Directen of the Science Maseum. Lomelon. Photo: David swant.
 ви-(.11:2.6.3.
127 Oproning pase of Galiters notes on Jupiter's
 Flomence.
128 T Dinlogo di fintileo finlitei . . . Nig2. Brit. Mas. им (.283 .1 .4 .
B Fromispiece from ofeere di (Biondano Brune . . .

(29) 1. Translation of (a alieos . Whatation from The s/erparalliers. S. Kocaller igtis.

132 Pormat of Hugems b Netacher. Collection Mmaicipal Mus-tm, The I lagne, Holland.
131 Paris Olswatory. Radio Timos Iluhon Pietome librars.

13ti-7 T From fiantabrigia Illmstrate. David I.oggan 1 fomo. Brit. Mus. им-12\%.h.3).
(i1. Redrawn from The Wathematual Primiples of Vathenl Philoweph, the English translation of Newton's
 ВМ-23. I. 22 !.
Bu Sir lsaac Newtom, painted by Sir Gotfrey
 (aillery, bondon.
ne Wookthorpe Manor. Comtesy: National Trust. Photo: David Swam.

139 Tr Halles's Comet panted by Sammel foot is. 1702-1772. Formerls in pesement of Messs. II. Bernard, London.
(B) Fixom the Bavers Tapestry in Baycus Calacalral.

If" Origimal minutes of the Royal Soe iety for 28 April bsitt. Courtesy the Ronal society. Plemos: David Swanm.
1\&1 Principia Vathematian. Viwton bith. Brit. Mas. вм-C.-9.h..|
113 I Johan Harrison's No. I Timekerper 1735. Courtes!: Irusters National Naritime Masemm, (ircenwiob. Fhom: David hwams.
mi. Kendal's cops of Johm Harrism's No. \& Cimekeper 1770 (Gonntesy: Trusters Vational Marithe Somem, (berowich. Photo: Dav id Swann.
 the South Pole, $1 / 22-7.5$. Showing last page, July 1775 . Courtesy: Trusters Nithonal Naritime Musemm, Greonwich.
 Gilful, Obsewatory, (ahlermia. Is.l.
(B) Nautical : Ihmuntic A Stomomical Ephomeris for 1767 , by Commisioners of Longitude. 17 (6ti. Brit. Alus. (вм M -РР.2373.m
144-5 English Ships in a Stomg Bowe panted by C. Bounmeenter. Courtes: Trutor National Maritame Muscum, (Arcenwich. Photo: David Swann.
$1+7$ Octagon Romm, Ciremwich Observators, showing Maskelymes Olmerving Sut. Courtesy: X. M. Smold-Fonter and Trusters National Naritime Mascum, Gremwich. Photo: Daviel Swam.
B1.) Ithas Cometetis. John Elamsted 1729. Brin. Mıs.

(bR The Octagon Rexm, from an old prime. Photo: Scitnce Shasemm, Lobdon.
14: br. Firom A fromoth, John (: Duscan (llarpet is Bros., Ni.ll Yiork.
15" Grahame's Zomith Seftor made for Bradley, from Wisedlaneous Whoms and Comrespandence of James Braller. 183:2. Brit. Mıs. bu-532.i24).
に1 I Gmabame's /emith bector. Courtexy: 'Trusters National Maritime Nurcum, (ireonwid. Photo: David Swann.
b) Bradley's ms mote of observation of (emmma Draconis, 21 December 1725 . Irom . Misellancom Hiorls and Camrevpondence of James Bralles. 1832. Brit. Mus. (вм-532.i.2ұ.
1is Romer at his transit instrumem of 1684, from Banis Avromomiale . . . Petre llorrabow 1735. Brit. Dus. (вМ-531.ち.17).
154 1.) Portrait of Eilmmet Blalley by Thomas Murray. Comstesy: Curators of the Bexlleian Library, Oxtord.
1ifor . Wen of Sciener, in the Librars of the Roval Imblute of ((reat Britain in $1807-\mathrm{o}$, cogrased by Walker \& holel. Conrwes: Natimal Pormain l;allery, Lomen.
1-15 17. The Rewhution aud Identure at Tahiti, 1772-75. Painted by William Hoklges. Iant by the Velmimaly to the National Narstime Vhseom. (ireonwicli. Photo: Film Strip Distributors.
As Chatt of Matavie Bav. Brit. Mus. (mu- Whoms. $7085.3)$.
157 (1) Mappemonele of Transit of Vimus of 1 -igy. Courtesy: Olservatoire de Paris.
81. "Mr. Banks shows the Jndians the Planet Venus on the sun" from lopuge to the suathern Hemivthere of Vature Pivplowat, Somion ©. 1775. By permision of Sir Maturice Holmes.

59 mk Capk Vimms. Talum, detail trom map of

 Brit. Mus. MM-I..R.242.
s, HK Penoll and wash pertrait of Cavemelsh in

 Truster National Maritime Mhamm. Greomsich. Plote: Dasid Swams.

 Vol. 1. plat. Contow of the Rewal Satommatal socies. Phom: Gerald Ifowson.
162 1 Illustations of en-fi. reflefor of Hersehat. Jhets: Dalais de la Decouserte, Paris.
162-3 a V Evact trom the fournal of Careline Itenchel. (ourtory: Humanitis: Researth Comer. I niversis of lexas.
16i) From John (routh Idams and the Diwaiers of Veptume. Sir Hatodd spencer Jonse By permiviom of the Cambrider I niverxit Pres
16, From the scientific Paters of sion Hillimm Ilervhel. 1917. (ientess: The Rowal Disomentical socieds. Plomo: Gerald llowson.
th) 7 North Ancrica Veloula photographed in coler with

 zcio Planetarinm. Dr. II. Warner.
bse Irem the sientitie Paters of sir Hilliam Hershel. 1017. Cemresy: The Roval Wronomical Gocies. Pheto: (ierald Howorm.
1-0-1 Map of Milky Way. S.med Obervatory, Sweden.
 Radio Times Huhom I'tume I sbrars.
171 Onturel Heliometer, made bs S. \& (r. Repsedd at Hamburgs 18 fis. On lean from the Traster of the Radelithe (Jmematem. ONard. Be commess of the Director of the Geituce Mturetm. Lombom. Dheto: David Swam.
175 Detaik of the (owtord Itdionmer. be centess of the
 1), wid bwam.

 in Jomutios. Nottineham.
 doll by F. S. Jonkins and 1I. I. Whit: Coproght 1457 Mceraw-Hill Pook Compan Ine.
181 lis Js above:
dibs a Blythoword Ruline Enginc. Inailt on Rowlanels,
 Musemm, Ioblem. Phote: Datid לwamb.
© From a paper he R. C. X. Hall ant I. S. Savee
 (imbtes of the Roval soriets s I bhlazed dithaction eratine made at the National Phoval Labobatories Veddengton, Mid-
 I.ondem. Photo: Davel swam.

 Nacorath-Hill book Compans Im. .
 Clerk Mawwedl Higz.

184 i) James Clerk Sasmell. Photo Ratio Imae Hulton fic ture Jibran.

 from Sowet l'nump published in Nascow.
19: Replicat of :ppatatus wed by Han (: Gented m 1820. Bs ratrow of the Diretors of the betene Dusemm. I obdens. Ihente: Datid Swams.
 pained bo his niece. Reproctuced by permionom of tae Roval Institution of (orrat l'stain.

 Londom librars
19.5 Varly Marconi wirchew in at lighonp at she berom of the cembars.
 Gollection. London.
wig (i) Spectrom lines of stontiom charide and of sulium vapor. Bonh from (hemater of the sum by
 I.ibrary:

199 Part of tectrum of sumbigh. Srome Chemaver of the
 lomdon librars.
zow Bewl of fordrell Bank Radin Videsonge under construction. Phobs: Park Pisture Manchester I.al.
 P'icturc: Nanchester I.d.
E42 1. Mobile aerial at the Mullard Ration Weromoms ()bocratory. Cambriter. Photo: (© oumes: : Mullard l.d.
\& lised acrial at the Mullard Radio Moromom
 Radio Weromom Olowevators, (ambridec.
ens (iontours of radio brightuos at tren Na, Irom (ialuetic Bachgommed sumeer and the fiafartic Ildo. 195is. a papes in the P'aris stmposiom on Ratio Some
 bridese

 Rulis. I nivente of Michigan Olmators.

 Pow.
210 I From The fitmman of the sime by sir Jowph

k hir William Ramas. (inntol: The I.hbratian.

212 D Diagram mprinted with permesion from
 Wilec: \& som low.

 Thomas Nifon \& soms I.d... I.dinburgh.
213 T onlar corona photogeraphal in Smban on $2 ;$

 nöwish he Sternwarte．／．urid．

 I＇ress．
217 Sunsots．Plato：Perkin－1：Imer Corp．，1SS．
291 I loop promineme of + Jume 19．f6．Dheto：High
 I S． 1.
（31．Sun photographed in white light．
nk Nagnetogran of Sum．July 1953.
Buth pheotos：Mt．W．\＆P．Om．
220－1 Copp pranimene on Sim．Photo：Sactamento l＇ak Obゃ小
222 if Batlenn in ascemt．
（18．Telexope and camera．
Othicial IS Nasy photographs．
BR Diagram of tamera atd tworope mounting． Courtesy：scientife Imerican．
223 1．Surlace of Sun photographed with the bafloon wlescopse．
m \＆K Two experiments with paralfin wax by Dr． Martin Schwarzshild．Project stratescope of Prinecon L＇inersity，sponsored by the I＇s Ofliee of Naval Research．the National stiente limmdation and the National Deronatutios and space Vd－ ministration of the LSS．
224 1．Maw－luminosity diagram from Intermal Con－ stitution of the Stars，D．S．Eddineton 1 get．Cam－ bridge Lniwersity l＇ress．
（ R Prol．Arthur Stanley Eddington in 1931 at Cambridge．Photo：Ramsay \＆Muspratt Lid．， Cambridge．
22；Eddingtenis ms from Sir Arthur Stanter Eddington， A．Dibert Douglas 1956 ．Thomas Nelsen \＆Sons I．td．．
22t L Krüger fo photographed in wи8，1915 ※ 1920. Photw：Serkes Observatory．
R Diagram of orbit of Krïger（x）from Atronomer， R．II．Baker ；th edh．（Appright 1959．D）．Van Nontand Company lac．．Princeton，New Jersey． 15
228 Mizar Heta l＇vae Majoris．．Ap，period 20.5 days． Photo：Vierkes Ohmotory．SSims
229）Light curves of TX（assiopecia，from Astronomy Vol．II．by Russell，Dugan and stewart 195．5． （ imin 太 Company，Boston，Mass．．US．
－30 Hertaprung－Russell diagran fiom Stellar Liolution． Otto Sirme 1950 Princeton I niversity Press． Prinecton，Nell Jersey，LSS．
231 Henry Norris Russell，from Biogruphical Memoirs of the Roval Societ，Vol．11，pase 173 ．With permis－ sion of The Royal Societs．
233 Smphotographed in hivelrogen H la light， 12 ．Dugust

23． t ．William Thomson，wt Baron Kelvin of I．args． \＆Hermanm L．von Hehmholtz．Both photos：Radio Times Ihulon Picture Library．
235 Linguln murpliana King，from Anstralian waters and lingulasp．of Ordovician times．（iourtesy：The Trustes of The British Musemm Natural History）．
243 Diagran reprinted with permission from Ahomam？， Theodere（；Mrhlin m5\％．John Wiley \＆Som lac．
2.1 Southern portion of Andromeda Nebula， 1131 NCGC：2g．photegraphed with the sos－iuch Hooker telescope on 2\％Sugust ig25．Photo：Mt．W．\＆P． Ohs，（No．101）．

2151 From Fiomtiens of Latomum，Fred Ifoyle 1959

is Diagran band on tig． 1 in an anticle by II．I．．

 of Chitago．
is Diagram based on لig． 3 in an articte by（）． Heckmana and 11．1．．Johnenn in feroptimsical Foumal．Viol．：21，pase 6et．Published by the Laversity of Chicago Press．Coppright 1955 by the l niverity of Chicasos．
$2 f^{6}$ From Frontion of Ahonomb，Ired Iloyle 1953． Hamemam Viduational Books．Ittl．，Iandon
2.17 I．Diagram from Astomom？John（：．Duncan 1955. Harper \＆Bros．Now Vork
k Irom frontien of Aatronoms．Ired Iloyle b959． Iteinemam Riducational Books I．tt．，I omoton

（T）20 Jul 1922.
（M） 3 S．pember met．
1314 ． 1 ngus 1931.
Photo：Mh．W．\＆P．Olss．Nig．（；－136．
219 Expanding mbulosity around Xova Porsci 1qut． Photograph taken will the 200－ind Hale whescope． Phow：N1．W．\＆P．Ols．Neq． 6
250 Crab Nibula photographed in red light．Photo： Mt．W．\＆P．（Obs．Neg．广）
251 Veil Nebula in Cygnos photographed in red light with the fir－ineh schmidt telescope．Photo：Nt．W． \＆P．Obs．Neg． 159
253 Photographed in red light in region of Sagittarius with the fir－inch schmide telescope．Plooto：Mt．WI． \＆P．Obs．
254 Miss 11．S．L．cavitt．Photo：Harvard College Observatorv：
255 If Large Magellanic Cloud photographed at the Cape of Good Hope on 15 Vewember 1903．Courtesy： Royal INtromomical society．
B Small Ahgellanie Cloud．Photo：Harvard College Obscrvatory．
259 Diagram based on Plate fis in ．Itlas of the Inicerse． Br．Emens \mathbb{E} Tj．E．de V＇ries，edited by H．E．Buter mbi．Thomas Netson \＆Boms Letl．，Edinhurgh
260 Radie telescope of the Radiophysics Laboratory of the Radio Doromom？Observatory near Sydnes． Australia．
261 （ Distibution of nemtral livelragen in the galactiv system from Pais Sympoxium on Radio Shoonom？． July－Dugut 19.8 ，ratiod by Romald N．Bramwell． Courtess：Stanlord Liniversity Press，LSS．
a The ratio whesense at Dwingeloo．Holland． Photo：Courtesy Royal Netherlands Vmbass， Londen．
262 I Reproduced from M Manets，Professor Prancis Bitter wog．Courtesy：Doubld dav \＆Co．．lnc．，New York．
B Proton symehrotron of the laboratories of the Europan Organizasion for Nulear Rescareli， Geneva．Photo：Cl：RN．
264 T Globularelusterinllewtules 113 photographed by J．S．Plaskett at the Dominion Notrophysial （Observatory，Vietoria，P．C．Neq．ke83，Courtesy： Royal Astrommical society．
（B）Diagram showing distribution of globular clusters in relation to the plane of the galaxy： Libraric Larousse，Paris．
 (к) NiG(: 1 :

Photor Harvarl Colloge (Hsematury.
26t) Cereat Vebulat in Orion, phonegraphec! in color whth
 N1. W. \& P. ©ln. 心-2?
 light. Phote: Nt. IV. \& P. (H)
2ti8 Lagoon Nibula in Saghtarins II 8, photographed in color with the 2 (mo-inch Hale wlescope at M1. Patomar. Photes: M1, II, \& P. Olw --2;
271 Based on diagram from Othaterly Jommal of the Reveal Astramameal suctets. Vige 2. 1. 3. Viol. 1. No. 1.
 soricty:
 196is. Michawl Jowpho Lemelom.
274 Mercury in cramil, photographed at foreonwide on 7 Nenember 1914. 14f Repraduced by perminsion of the Royal (eremwich Oborrators:
279 (T) Drawisg of Mars by Dr. de Vamombeurs of Harvarel Conlege Olmervatory. Prepared for Ma 1)omwill . Dircrati, St. Lomis, Missomri, By John Patrick shars Advertising Agerny, Now Vork. US.).
(in) Vems in blace light. zow-imh Hale wlearope. I'hero: M1. W. \& P. Ob,
277 Mapo of Man basedon l'ercival Lomedls mapof lewt.
 (Entursy Direfor General. Monumemti. Mavei © Galleric Pontilicic. Plobengraphir Arehises of the

2th Miks Way in (:gem, photographed wibl he lack
 Obwrwatory.
283 Grat Mudromeda Nebula, II 31 N(:C 224). photographed in color with the forbinch 8 shmids telescope. Ploto: Mt. W. \& P. Ots. (s-24
 Whorope at Mt. Patomar. Photo: Plamet News. (1) Based on diagram in The Realm of the Nehular. I.. P. Hubble 19, Sald L niversits Press, copsrisht $19-3$. Dower Publications Ine .. and Comsable. d (ar. I.d.
 (193). Photographed at Mt. Wihom (hnervators Photo: Verke Obervators
 graphed in color with the pib-inch whmide weropePhotw: N1. W. \& P. ()lw. s-2 2
 phosegraphed in wed light with the pland 3 - Chmidt
 B Gabaty in toupter N(;): 273, photengraphed in color with the fibincl schmedt telescope: Photo: N1. IV. \& P. ()Ir. s-27

- 3 Jrobable collision of a glohutar and spiral gatam N(.):5123. Photo: N1, W. \& P. Ols.
 Here 2ex-ind Hale telescope Photo: MI. W. \& P' (Hs. No. i 3
2q4 Cheser in Cinona Borcalis. Phote: Mt. W. \& P. Ohs.

292 Berites showing farthest galanios set photographed (s, (b). Photo: Mt. W. \& P. Obs.
 Phote IIt. II. \& 1'. Olm. Nu. 31%
 1. Hambon, N. V. Masall and N. R. Sandage in

 1idinburgh
244 Canon Cocorge Lamaitre, reprokluced Irom Stellat
 - dited br 1). J. K. W"Comell. S. I. Nosth Holland
 lishers. luc. New Sork
302 11 Diagram based om a ligure appearime in Scientifie Imencan, september 145 . 6.
3日: Dagram from Montly Notice of the Reval Dotrommical heriols. Vol. 122. No. ;. Contest: Professor M. Rulc. V.R.h.

30. Plotomath of Dr. Milun M. Homavom. Phote: NE. W. \& P. Obs
 ams Illowtation repodemed they witl gladl? pat all

Ahtits: I. Ball. K Bomdatl, (: Ctamp. I. Larh. N. Jomo
 Thategrefthes: K. 1)wtan, I. R. I reemall. (;. Howson, studio 5t. D). Swam.

Herschel, Eddington, Russell, Einstein, Ḱuiper, Lemaitre, Hubble, the Schwarzschilds, Urey, Shapley, and others. In the latter sections of the book Professor Hoyle's focus is on the most exciting realms of present day discovery - the thermonuclear origin of the elements, the strueture of our galactic system, and the stimulating cosmological theories of the beginnings and the evolution of the solar system and the universe.

Asrnonomy by Fred Hoyle is a masterpiece of description and synthesis of man's attempts to understand the universe around him.

FRED HOYLE, a distinguished scientist and author, has written several internationally successful books on astronomy and cosmology, including The Nature of the Universe and Frontiers of Astronomy. He has published many original investigations in astronomy and is one of the leading proponents of the steady state theory of cosmogenesis. Hoyle has also written several delightful science fiction novels and a musical comedy that was recently produced in London. A frequent visitor to the United States, Mr. Hoyle has worked for many years at the California Institute of Technology and the Mount Wilson and Palomar Observatories. He is Plumian Professor of Astronomy and Experimental Philosophy at Cambridge University, where he was University Lecturer in Mathematies from 1954 to 1958. He is a Fellow of the Royal Society.
"Astronomy is the oldest of the sciences, as has often been said. What has not been so often realized is that, in a certain sense, astronomy is also the newest of the sciences. The great advances in physics during the first third of this century are bearing fruit in astronomy at the present day. Scientists are coming more and more to realize that only a very limited range of experiments can be performed in the terrestrial laboratory. The universe itself supplies a far subtler laboratory, and a far wider ranging one, with possibilities that can never be realized here on Earth."

From the Foreword to Astronomy by Fred Hoyle

ASTRONOMY
 FRED HOYLE

[^0]: * The reader equipped with modern elementary mathematics will recognize the equivalence of Figures 3.9 and 3.to as simply the associative lanc for complex numbers. Let r_{E} be the radius of the Earthis orbit, and r_{n} the radius of the orbit of the outer planet; let 0_{L} and O_{O} be the corresponding arguments. Then the prosition of O in Figuure 3.9 is given by $\mathrm{r}_{\mathrm{E}} \mathrm{e}^{\mathrm{i} \theta_{1}}+\mathrm{r}_{\mathrm{e}} \mathrm{e}^{\mathrm{i} \theta_{0}}$, while in ligure 3.10 the position of O is $\mathrm{r}_{\mathrm{c}} \mathrm{e}^{\mathrm{j} \theta_{0}}+\mathrm{r}_{\mathrm{L}} \mathrm{e}^{\mathrm{i} \theta_{\mathrm{L}}}$.

[^1]: This Egyptian carving on stone, dating from the fifth century B.C., shows Nut, goddess of the sky, arched over the Earth. At right and left of the disk of the Earth are two boats. Egyptian astronomers long believed that the Sun made a hidden journey each night from the western to the eastern horizon in a boat along a river.

[^2]: Modern photograph of a solar eclipse, with the Moon's disk all but hiding the Sun. To the ancients the fact that Sun and Moon have the same apparent diameter and the fact that the motions of both can be roughly fitted in with the cycle of the seasons, made it seem possible that either could be used as the basis for a calendar.

[^3]: Little of the Greek geometrical approach to problems of astronomy survived in uncorrupted form in early and medieval Christendom. Over the years copyists introduced errors and distorted priorities. In the fifteenth-century Italian manuscript on the right the artist has confused Piolemy the astronomer with one of the Ptolemies of Egypt.

[^4]: Less than a century separated the work of Newton from that of Kepler. but in that time the intellectual climate had changed enormously. The man primarily responsible was Galileo Galilei. Beside his portratt is a model made from his drawing of a pendulum clock. Above is a picture of seventeenth-century observers using a Galilean telescope. Galileo's work on the pendulum led to the beginnings of dynamics. The way in which he developed and used the telescope opened up vast new possibilities of observation.

[^5]: Galileo found that if the speed ot a pendulum bob at the bottom of its swing remains unchanged, the height to which the bob rises is not affected by changing the length of the string. This suggested that the behavior of the bob does nol depend on the existence of the string.

[^6]: A ball rolling without slipping in a bowl behaves in the same way. However much the two sides of the bowl differ in steepness, it always tries to reach the same height on both sides. If one "side" becomes horizontal, the ball thereiore rolls on indefinitely in the same direction.

[^7]: Right: Title page of the Principia.
 Left: Extract from a minute recording the presentation of the manuscript to the Royal Society. In this work Newlon showed for the first time that the phenomena of the physical world are accessible to precise calculation. From that time onward astronomy moved into a new era.

[^8]: Precession causes a slow migration of the center about which the stars appear to rotate. Here two sets of star trails, one of 1907, the other of 1941, are superimposed. Note how the centers of the two sets differ.

[^9]: Because of the Earth's annual motion around the Sun, the nearby stars appear to execute a small annual oscillation against the fixed background of distant stars. II we can isolate and measure this oscillation we can calculate the distance of a nearby star. In 1838 Friedrich Wilhelm Bessel became the first man to make such a calculation.

[^10]: Left: Spectra of O, B, A, F, G, K and M stars. In each case the number beside the letter denotes subtype. Shorter wavelengths show at left and longer wavelengths at right of all spectra. In the sequence shown, this system of classification is also a guide to
 surface temperatures of stars, ranging from O (hottest) to M (coolest).

[^11]: Here a source of light (shown by dot at center of smallest circle) moves toward an observer. As successive crests reach him they are closer together than if the source had been stationary. Light thus appears bluer. To an observer from whom the source is receding, light will appear redder.

[^12]: The top photograph shows giant loop prominences on the edge of the Sun's disk. The movements and structure of prominences strongly suggest the presence of magnetic fields emerging at their roots from the interior of the Sun. In fact, magnetic fields cause the ordinary atomic lines of a spectrum to split into a number of components, and by using complex spectrographic methods it is thus possible to detect them.
 The small photograph of the Sun's disk was taken on July 181h, 1953. Beside it is a magnetic map of the Sun for the same date. It shows the location, intensity and polarity of weak magnetic fields in the photosphere, apart from sunspots.

[^13]: This photograph of the Sun, taken in hydrogen light, gives a tremendous impression of power. In lact the Sun emits more energy in one second than the human species has consumed in its entire history. During the nineteenth century scientists asked themselves how this vast output of energy could have been maintained over a period of millions of years.

[^14]: Left: Structures of two different isotopes of helium. Right: Structures of two different isotopes of lithium. Different isotopes of the same element contain the same number of protons and the same number ol electrons. They differ only in the number of neutrons contained in their nuclei.

[^15]: Sizes of orbits of the first four
 planets compared with sizes of two giant stars, Mira and Orionis.

[^16]: Top: A multitude of stars in part of the Milky Way, pholographed with the 48 -inch Schmidt telescope. The task of measuring dimensions and molions withen a galaxy made up of some 100,000 million stars has been and still is a colossal one.

[^17]: Shown opposite are the Large and Small Magellanic Clouds. By observing Cepheid variables in the Small Cloud. whose stars can all be regarded as lying at virtually the same distance from the Earth, Miss Leavitt was able to show that the relation between period and apparent magnitude is the same as that between period and absolute magnulude. Thus once we can measure the distance of one Cepheid we can fix the distances of others by direct observanon of their periods and apparent magnitudes By means of the main sequence method of measurement (which is calibrated from the trigonometrical parallax method) astronomers have determmed the distances of severa! Cepneids. Thus other Cepheids, which are bright stars observable from great distances, can now be used to measure the vast dimensions of our galaxy. The bottom picture opposite, showing the Small Magellanic

[^18]: The Andromeda Nebula-the nearest aggregation of stars comparable in size and mass with our own galaxy. The yeltowish light of the central part comes Irom old stars with low surface temperatures. The blue of the outer regions comes from hot stars newly formed from gas and dust.

[^19]: Left: NGC 5128, a strong emitter of radio waves. The picture may represent a collision between two galaxies, one globular and the other spiral. In such a collision both galaxies may lose their gaseous components so that no further star formation can take place. In the photograph on the right the fuzzy object near the center depicts the colliding galaxies-both probably large spirals-in Cygnus. This is among the most powerful of all known sources of radio waves.

[^20]: * Drever, in lais anderitative Mistory of the Phatary Sysems from Thater to heffer, wnask that Hippate has determited a value e woqtiti fron comparison with the obsersed lengiles of the matans. He addh hat his was "fairly conrect". This appers to ixe ath oweright, since the tre value of e is 00167. Hipparchos could unt pessibly hawe made so large: all error.

