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Preface for the Instructor

This book has evolved from our notes for a one-semester course, Introduction to
Abstract Mathematics, at Syracuse University. Ideally this course is taken right after

our required calculus sequence and after one semester of linear algebra. At Syracuse,
this course is required for all mathematics majors and all mathematics-education majors
and is a prerequisite for all upper division courses in algebra, analysis, combinatorics,
number theory, and topology.

Lower division undergraduate mathematics courses (such as single-variable and
multivariable calculus, basic linear algebra, and ordinary differential equations), are
usually taken within the first three or four semesters. To varying degrees, these courses
emphasize computation and procedures and de-emphasize theory. They tend to form the
mathematical common ground for majors in mathematics, the physical sciences, and
engineering, as well as for many mathematically interested liberal arts students. Upper
division mathematics courses emphasize theory, definitions, and theorems together with
their proofs. This course and this book, Passage to Abstract Mathematics, stand just
beyond the fork in the road, greeting the students who believe that they want to study
mathematics and enabling them to confirm whether they are choosing the direction that
is right for them. For these students we hope to illuminate and facilitate the mathematical
passage from the computational to the abstract.

Too often in an undergraduate mathematics curriculum, each course or sequence is
taught as a discrete entity, as though the intersection of its content with the content of
any other course or sequence were empty. This book belies that premise. Here students
learn a body of fundamental mathematical material shared by many upper level courses,
material which instructors of upper level courses often presume their students to have
already learned (somehow)—or wish they had learned—by the time their students arrive
in their classrooms.

We have very deliberately entitled our book Passage to Abstract Mathematics. Just
as a (non-metaphorical) passage joins two places separated by some physical obstruc-
tion, so this book is intended to prepare the mathematics student passing from a more
computational and procedural image of the subject to what mathematics really is. The
transition involves acquiring knowledge and understanding of a number of definitions,
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xii Preface for the Instructor

theorems, and methods of proof, but also that elusive property called “mathematical
sophistication,” which cannot be taught explicitly but which we hope can be learned.

Unlike various texts written for the same purpose, this is a thin book. We intend
it to be portable. We want our students to bring it to every class in order to have the
definitions, the examples, and the statements of the exercises right under their noses (if
not already in their heads) during the class. Therefore, we have refrained from including
many attractive optional topics, each of which will likely be covered more appropriately
and fully in some course for which this course is a prerequisite.

We want our students to learn to readmathematics the way that mathematicians do.
Mathematics is not a spectator sport; it must be read actively, a sentence or phrase at a
time, with pencil and scrap paper handy to verify everything. To facilitate understanding
proofs, we often insert explanatory comments and provocative questions within brackets
[like this]. The student must learn to proceed as though the authors’work is chock full of
errors and that he/she is the sleuth who will be the first to detect the authors’ carelessness
and ignorance!

Learning to write mathematics is as important as learning to read it. There is the
story about a mathematician who is reputed to be a terrible joke-teller. After finally
persuading his nonmathematical friends to listen to his latest joke, he begins by saying,
“Before we can start my joke, we will need a few definitions.” While perhaps not so with
jokes, it is unquestionably true in mathematics that one cannot proceed without a precise
vocabulary. We place much emphasis upon complete and correct definitions and even
more emphasis upon using definitions. As a language, mathematics also has a grammar
and a syntax. Therefore, much emphasis is also placed upon expressing mathematics
in a syntactically correct fashion. It is at the level of this course that these abilities are
acquired and practiced. A language is not merely a mode of expression but must have
some content to express, and there is much mathematical content in these pages.

Serving this end, the unique placement of the exercises sets this text apart from
others. It is conventional in mathematics texts to accumulate all the exercises pertinent
to a chapter or section at the end of that chapter or section in order of increasing difficulty.
That is only partially the style of this text. Basically, there are three kinds of exercises.

� There are many exercises embedded in the text material, immediately following a
definition or example or theorem. They are straightforward and are intended to rein-
force the understanding of that definition or to expose the properties of that example
or to provide some very routine steps in the proof of that theorem. These exercises
thus become part of the text material. They should be fully worked immediately
upon encounter and before one proceeds, thus reinforcing our earlier assertion that
mathematics is not a spectator sport.
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� Intermediate level exercises appear at the ends of the sections. They are dependent
upon the material of the section and may involve such activities as proving further
identities or executing procedures similar to those of the closely foregoing text
material.

� The final section of each chapter is entitled “Further Exercises.” It is a repository of
exercises of varying difficulty based onmaterial that may spanmore than one earlier
chapter. Some provide an opportunity for new terms or notions to be introduced that
may make a reappearance in the Further Exercises of subsequent chapters. These
Further Exercises are not arranged in order of increasing difficulty; their listing is in
the order in which the relevant explanatory text comes up in the chapter. A number
of these exercises, as well as some in the intermediate category, begin with the
words, “Prove or disprove . . .,” or, “Find the flaw in the following . . . .” Some of
these exercises have a recreational flair, a chance perhaps to have a little fun with
this stuff.

With regard to exercises,we issue the following caveat:we donot believe in “answers
at the back of the book.”Even the best student can yield to impatience, check “the” answer
in the back, and then figure out a way to arrive at it. We believe this to be contrary to
the spirit of the present material and not in the student’s interest. Nonetheless, in many
instances, hints are offered within the exercise itself. Such hints are enclosed by brackets,
also [like this]. More importantly, many of the exercises have more than just one correct
answer. Often there are several very different proofs or methods that work, and so to
provide “the” answer is stifling to creativity at exactly the point educationally when
creativity should blossom. We do, however, provide an Instructor’s Solution Manual
with solutions for most of the less routine exercises.

Since there are many allusions to single-variable calculus, much will be missed by
the student who has not yet completed a single-variable calculus sequence. There are
many occasions, especially in Chapters 5, 6, and 8, where students may need either to
refer back to their old Calculus I-II texts or be reminded by their instructor, as this book is
not self-contained. On the other hand, the occasional allusions to multivariable calculus
and to linear algebra are not at all essential to the understanding of Passage, but the
student who has already studied these subjects will have the opportunity to gain deeper
insights from our book than the student who has not.

There are four more caveats.

� There is no entire chapter explicitly entitled “Proofs,” although Section 1.5 lays out
the general strategies and underlying logic of direct proof, contrapositive proof, and
proof by contradiction. Proof by mathematical induction awaits Chapter 4, in order
that the student be acquainted with more mathematical material to which inductive
proofs can be applied. Proofs will be learned by proving. One cannot be taught how
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to invent a proof any more than one can be taught how to compose a symphony. One
can be taught the correct notation and the correct mathematical idiom for expressing
a mathematical idea (just as the student of musical composition can be taught the
rules of harmony and characteristics of various orchestral instruments), but first one
must actually have a mathematical idea. The ability to formulate that idea is one of
the powers that we aid the student to develop.

� It has not been our intention to present a self-contained, axiomatic introduction to
logic (which may be best left to a philosophy department or deferred to an advanced
course in Foundations of Mathematics). The purpose of Chapter 1 is rather to equip
prospective mathematics majors with the logical tools and language that they will
need in higher level mathematics courses.

� The symbolic logic notation presented in Chapter 1 is fully integrated into the rest of
this book.Many of the definitions, propositions, and theorems are stated (though not
always exclusively) in this language. Having emphasized the importance of precise
expression, we believe that there is no more precise way to express these notions
than in this way. The intellectual process of “unpacking” a sterile presentation and
grasping an intuitive “gut feeling” for its underlying idea is what learning to read
mathematics is all about. The purpose of the embedded exercises is to facilitate this
process.

� Functions are first defined in Chapter 5 as they were in calculus, in terms of a “rule”
and a domain. Students have an intuitive feel for this familiar definition and can
work with it. The rigorous definition, as a set of ordered pairs, is held off until
Section 6.6, after a general presentation of binary relations.

A course that meets three hours per week should be able to cover almost this entire
book in one 14-week semester. The chapters were written with the intention that they
be covered in the order in which they are placed here, especially the first four chapters.
Thus changing their order of presentation could present difficulties.

If time runs short, one could omit Section 2.6 (Euclid’s Algorithm), although this
section will be needed for Section 8.2. One may also omit the latter sections of Chapter 6
(on order relations) or Chapter 7 (Infinite Sets and Cardinality). One could also omit
some of the sections from Chapter 8 (Algebraic Systems). In that case, we recommend
nonetheless winding up the course with Section 8.1 (Binary Operations), because it pulls
together notions from most of the earlier chapters.

Rarely is a published work error-free. Please contact us with regard to any errors.
Suggestions are welcome and (except for location of commas) will be taken seriously.
MarkWatkins can be reached at 〈mewatkin@syr.edu〉, and Jeff Meyer can be reached at
〈jlmeye01@syr.edu〉.
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Preface for the Student

You like mathematics, and if you weren’t already good at it, then you probably
wouldn’t be taking this course.

Here you have the opportunity to see whether you really want to be a mathematics
major. You liked algebra and geometry in high school and you’ve been successful thus
far in your calculus courses. But it is in this course where you first learn what it really
means to study mathematics the way that mathematicians do. This turns out to be quite
different from being able to evaluate∫

x3√
9 + x2

dx,

or being able to compute the derivative of

f (x) = tan

(
e3x√
sin(x4)

)
,

or being able to factor 108x2 − 489x − 1022. Don’t get us wrong—we assume that you
can do these things. It’s just that there is so much more to mathematics than finding
more complicated functions to differentiate and integrate or more challenging equations
to solve. There is a joy and beauty to mathematics that lies beyond straightforward com-
putation. Here is an example from high-school geometry. Construct any quadrilateral,
then locate the midpoint of each side.
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xviii Preface for the Student

Then join the midpoints of adjacent sides.

The new quadrilateral is always a parallelogram, no matter what quadrilateral we start
with. We learned this fact in high school, but it still strikes us as a lovely property.

In this text, the primary goal is to present mathematics that will be needed in your
present and future mathematical studies. Along the way, we help you to learn how to
communicate mathematics through proofs—both reading proofs and writing proofs.
Mathematics requires a rock-solid foundation of ideas held together by logic and proof.
We believe that the way to learn how to write proofs is from experience and by example
as you learn the mathematics that forms this foundation. Because you have experience
with calculus, many of our examples and exercises are drawn from there.

The mathematics courses for which this course is a prerequisite are theoretical and
abstract. Courses in higher mathematics are structured so that you learn the concepts
through definitions and learn properties through theorems that are proved. The mathe-
matical content of Passage to Abstract Mathematics is structured this way.

Success in this and all subsequent mathematics courses depends on your diligence
in learning definitions and notation as soon as they are introduced. Look for defined
terms in bold-face. Definitions are not mere formalities or space-fillers but are the tools
in the mathematician’s tool box. Just as a carpenter can’t do carpentry with shoddy
or missing tools, so the mathematician cannot create or express mathematics without
exact tools—and the tools must be handy. Correct notation is the language with which
mathematicians communicate with users of mathematics and with each other. It must
be spoken and written correctly. Here’s where you will learn to use the language of
mathematics, and we are providing a way for you to accomplish this goal.

We have written this text to help you learn how to learnmathematics from a book. In
subsequent mathematics courses you may learn more mathematics by reading it than by
listening to an instructor. For that reason we have placed many exercises within the text
of each section. Exercises appropriate to a concept appear very soon after the definition
or theorem. We want (in fact, we expect) you to do these exercises as you study the
section. Have a pencil and paper handy while you study this book. This is precisely how
we mathematicians learn mathematics from a book. We read a little and write out notes
and examples and try to solve exercises that help us understand what was just presented.
We may suspect that the author has made an error and we will be the first to find it. There
are further exercises that appear at the end of each chapter. These are important, too.
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The exercises in the last section of each chapter are usually more challenging and some-
times pull together material from previous chapters.

Homework and test questions in higher mathematics courses are frequently prob-
lems in which the solution requires that you write a proof. While there are exercises to
practice each current topic, there are evenmore exercises that require you to write proofs.
Writing a proof is a skill, just as integrating by substitution, computing a derivative, and
factoring polynomials are skills.You learned those skills by doing practice problems and
by mimicking what your instructor would do.You will learn to write proofs by practice
and imitation, too. It is a very different skill, however, from the computational skills you
perfected in previous mathematics courses. To succeed in the mathematics courses that
you take after this course, youmust be able to understand amathematics text that includes
proofs. The exercises inserted into this text force you to lock in that understanding.You
also need to be good at writing proofs; not just proofs that are solutions to homework
problems, but also proofs of facts that you discover. The proof is the means to convince
others (and yourself) of the eternal truth of your discovery. For example, you will learn
that, for a mathematician, the goal is not only to discover that the sum of a certain series

is π2/12, but to prove that the sum is π2/12.

(
It happens that

∞∑
n=1

(−1)n−1

n2
=

π2

12
.

)

You are probably somewhat familiar with the introductory concepts of some of the
mathematics that we cover: set theory, numbers, and functions. There will also be some
topics that may be new to you: mathematical induction, relations, and infinite sets and
cardinality. Both old and new, the topics are presented from a classical, yet readable,
perspective.

Within many of the proofs in this text, we have inserted remarks about why we
are writing the way that we do. These remarks are not actually part of the proofs them-
selves, which is why we have placed them within brackets [like this]. While you could
learn to write proofs from this book, it will be much easier to learn from an instructor
in a course where this book is the text. The book will come in handy after this course
ends when you need to remind yourself about one topic or another. If you continue as a
mathematics major, you will look back at this book and find some of it shockingly easy.
But you will also remember when it was new to you. Many notions that you learn in this
course are frequently not taught elsewhere in a mathematics curriculum, but your future
instructors may nonetheless assume that you are familiar with them.

At first we considered entitling this book Bridge to Abstract Mathematics. The
metaphor is apt. This text is a means for the reader to move from an understanding
of computational areas (like calculus and high-school algebra) to an understanding of
abstract areas (like set theory, analysis, andmodern algebra) and howmathematics grows
from there. But the fact is that a bridge is usually the easier and safer way to get from one
place to another (across a river or gorge or railroad track). The move from computational



xx Preface for the Student

mathematics to abstract mathematics is a process that isn’t short or easy (we suppose that
it is relatively safe). The passage is harder for some people than for others. Mathematics
is not for everyone. If you are cut out for mathematics, you will discover that in this
course. If mathematics is not for you, you may find that out, too. (And that knowledge
is just as important.)

Higher mathematics is not just our occupation; it is both useful and beautiful to us.
This text is our way to pass along what works for us as we show you the way toward
your goal of a major in mathematics.

Syracuse, NY
Winter 2010



1 Logic and Proof

Think of an odd integer1. Square that integer. Subtract 1 from that result. Now divide
by 8. Is your result an integer?As long as you did the arithmetic correctly, we know

that the answer is “yes.” The answer always is yes. In mathematics, it is never sufficient
simply to compute this for a few (or for many) odd integers and observe the divisibility
by 8 and then conclude that this procedure always delivers an integer. We need to see
proof that this process works no matter with which odd integer one starts. Proofs in this
book (and in most mathematical writing) begin with Proof and conclude with a little
square like this: �. Here is how to state this number property formally, together with its
proof.

Proposition 1.0.1. For every odd integer n, the integer n2−1 is divisible by 8.

Proof. Every odd integer n can be expressed as 2k+1 for some integer k. Then

n2 − 1 = (2k + 1)2 − 1

= 4k2 + 4k

= 4k(k + 1).

Since k and k + 1 are consecutive integers, one of them must be even, and thus k times
k + 1 must be even. It is also the case that 4 times an even number is divisible by 8. Thus
n2−1 is divisible by 8. �

1.1 Proofs, what and why?

A proof in mathematics is a logically sound argument or explanation that takes into
account all generalities of the situation and reaches the desired conclusion. By no means
is this a formal definition of a proof; rather it is a description of how the word “proof”
is used in a mathematical context.

In the above proof of divisibility by 8, we left no doubt that the argument would
work for all odd integers and that each step followed from the definition of an odd integer,

1 An odd integer is an integer with remainder 1 when divided by 2.

1



2 Logic and Proof

from the assumption that n is an odd integer (the hypothesis), or from a previous step.
The algebraic derivation

n2 − 1 = (2k + 1)2 − 1

= 4k2 + 4k

= 4k(k + 1)

alone does not constitute a proof. While proofs frequently do contain such derivations,
they are only part of the proof. In this proof, it is absolutely essential to declare in
words what the symbol n stands for, to explain how k is related to n, and to interpret
in complete sentences the expression 4k(k+1). Unlike a definite integral problem in
calculus, for example, where a sequence of operations leads to an expression called
“the answer,” in the case of a proof, the entire proof is “the answer.” It is the answer
to whether the statement of the theorem is a true statement. Be on the lookout for this
kind of completeness in the proofs in this text as well as in the many proofs that you
will write.

In the Preface to the Student, there is an illustration of the following elegant theorem
from geometry.

Theorem 1.1.1. [Midpoint-quadrilateral Theorem] In any convex quadrilateral, the
quadrilateral formed by joining midpoints of adjacent sides is a parallelogram.

Proof. Consider the following figure in which M,N ,O, and P are the midpoints of
AB,BC,CD, and DA, respectively.

A

B

C

D

M N

OP

In�ABC, by a property of similar triangles, we haveMN ‖ AC (see Exercise 1.1.2).
We also have, in�ADC, that PO ‖ AC. ThusMN ‖ PO since both are parallel to AC.We
next deduce thatMP ‖ NO by drawing diagonal BD and examining�ABD and�BCD.
Since quadrilateralMNOP has two pairs of parallel opposite sides, it is a parallelogram. �
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(0, 0)

(a, b)

(c, d)

M1
M2

Figure 1.1.1 Exercise 1.1.2.

The proof requires a property of similar triangles. We are reluctant to rely upon it
unless we know that it is true. Therefore, we ask you to prove this property in the next
exercise.

Exercise 1.1.2. Use facts from coordinate geometry to prove the fact mentioned in the
proof of the Midpoint-quadrilateral Theorem. That is, the segment joining the midpoints
of two sides of a triangle is parallel to the third side of the triangle. [Suggestion: Start
your proof with Figure 1.1.1.]

While there aremany intriguing facts inmany areas ofmathematics, mathematicians
do not regard them as “facts” until they have been proved. Let us examine another proof
from plane geometry.

Theorem 1.1.3. The sum of the distances from any given interior point of an
equilateral triangle to each of the three sides of the triangle is the same for every
interior point of the triangle.

Proof. Consider an arbitrary equilateral triangle�ABC, the length of whose sides are
each equal to a number �. Also consider an arbitrary interior point P of the triangle. Let
d1, d2, and d3 denote the respective distances from P to the three sides of the triangle.We
will prove that the number d1+d2+d3 depends only upon � and is therefore independent
of our choice of the point P.

A

B

C

P
d2

d3

d1



4 Logic and Proof

We calculate the area of�ABC in two different ways. The height of�ABC is
√
3
2 �,

and so the area of�ABC is
√
3
4 �2.

A

B

C

Pd₁

d₃

d₂l

l

l

It is also the case that

area�ABC = area�APB + area�BPC + area�CPA.

The areas of�APB,�BPC, and�CPA, are
�d1
2

,
�d2
2

, and
�d3
2

, respectively. Thus we

have √
3
4

�2 =
�d1
2

+
�d2
2

+
�d3
2

.

After some simplification we see that

(1.1.1) d1 + d2 + d3 =
√
3
2

�.

[The proof is complete since the number on the right side of equation (1.1.1) depends
only on the size of the triangle, not on where the point P is located.] �

Notice a few things about how this proof started. (Getting started is often the hardest
part of writing a proof.) The first thing we did was to select some symbols: A,B, and C
for the vertices of an arbitrary equilateral triangle and � for the length of each side. (The
letter � is a good choice, because it reminds us that it represents the length of something.)
We then let P denote an arbitrary interior point of�ABC, and made no assumption about
P’s location other than that it lies in the interior of the triangle, which is all that is required
in the hypothesis. Finally, we needed to talk about the distance between P and each of the
three sides, and we selected d1,d2, and d3 for these distances. We needed three different
symbols, because quite possibly the distances in question are three different numbers.

Once chosen, all of these symbols retain their assigned meanings for the entirety of
the proof. After the proof is finished, they all lose their assigned meanings (unless we
state otherwise) and are free to mean something else the next time that we want an A
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or an � or a d for another proof. There are a few letters in mathematics that do have a
kind of universal meaning. For example, π is the Greek lower case pi; the letter e has
a fixed meaning in the context of natural logarithms; the symbol Σ is the Greek capital
sigma used in summations. These are the few main ones that we mathematicians use
frequently, but sometimes each of these may be used to mean something else.

The next theorem has a proof with a very different format, one that will be discussed
in Section 1.5.

Theorem 1.1.4. In any group of two or more people who meet and some of whom
shake hands with each other, at least two people shake hands with the same number of
other people.

Proof. Suppose that there are n people in the group, where n � 2. The possible values
for the number of hands that any one person could have shaken are the n integers in the
following list:

(1.1.2) 0, 1, . . . , n− 1.

If it were the case that no two people had shaken hands the same number of times, then
each of the integers in this list would have to be represented exactly once. However, this
leads to an impossibility, because then one member would have shaken nobody’s hand
and another personwould have shaken handswith all of the n− 1 other people, including
the one who had shaken no hands. Therefore some two people must have shaken hands
the same number of times. �

Very often a variety of proofs can be devised that prove the same result. For example,
in the handshake problem above (Theorem 1.1.4), one may argue that the list (1.1.2)
cannot include both the number 0 and the number n− 1, leaving only n− 1 numbers
to be matched with n people. Therefore, at least two people must be matched with the
same number of handshakes. This is an example of an argument that uses the pigeon
hole principle2: if there are more pigeons than pigeon holes, at least two pigeons much
share a roost.

A prime number is a positive integer with exactly two positive divisors3, and
a composite number is an integer � 2 that is not a prime number. There are many
interesting facts associated with prime numbers including the next result.

2 The Belgian mathematician Lejeune Dirichlet (1805–1859) is credited with the first statement
of what he named with the German word Schubfachprinzip, or “drawer principle.” Dirichlet made
significant contributions to number theory and in particular wrote the first papers on analytic
number theory.
3 Some mathematics relating to prime numbers will be covered in detail in Section 2.4.
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Theorem 1.1.5. There are arbitrarily large gaps between consecutive prime numbers.
In other words, given any positive integer k, there exists a sequence of k consecutive
composite numbers.

Proof. Let k be an arbitrary positive integer. [The style of this proof is called “con-
structive.” We will construct a list of k consecutive composite numbers.] To prove this
theorem, we need the factorial function, which will be defined more rigorously in
Section 4.2. For now we define n! (say, “n factorial”) as n! = n(n− 1)(n− 2) · · ·2 · 1
whenever n is a positive integer. Here is a sequence of k consecutive composite numbers:

(k + 1)! + 2, (k + 1)! + 3, . . . , (k + 1)! + k, (k + 1)! + (k + 1).

Note that, for each j = 2,3, . . . , k + 1, we have that j is a factor of (k + 1)! + j. �

When k = 7, the proof produces the numbers

40322,40323,40324,40325,40326,40327,40328.

This is indeed a sequence of 7 consecutive composite numbers, but it turns out that these
seven numbers are actually part of a sequence of 53 consecutive composite numbers!

Exercise 1.1.6. Find the first occurrence of seven consecutive composite numbers.
[Hint: Two-digit numbers will suffice.]

At this point, it may be helpful to give an example of what a proof is not.

False Theorem. For every positive integer n, the number An = n2 + n + 41 is a prime
number.

Flawed proof. We verify this assertion for some values of n, starting with n = 1. We
find that A1 = 43 and A2 = 47, both of which are prime numbers. We next find more
prime numbers A3 = 53, A4 = 61, and A5 = 71. As we compute a few more values of
An, we keep getting more and more prime numbers. �

May we conclude that the claim is true? Have we chanced upon a “prime num-
ber generating machine?” It so happens that, in 1752, Christian Goldbach proved that
no nonconstant polynomial function p(x) with integer coefficients has the property
that p(n) is prime for all positive integers n. Had we known of Goldbach’s result, we
may have been more skeptical of the claim and might have sought an example to dis-
prove it. Such an example obviously occurs when n = 41, since clearly A41 is divisible
by 41. We also have the composite number A40 = 402 + 40 + 41 = 402 + 2 · 40 + 1
= (40 + 1)2 = 412. Even though it happens that n2 + n + 41 is prime for all positive
integers n � 39, the given statement is still false. The “flawed proof” illustrates the
point that in mathematics, unlike in natural sciences, experimental results do not yield
certainty. Mathematical certainty is attained only by means of a proof.
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That said, we hasten to add that experimental results are not necessarily useless.
Quite the contrary is true. Many conjectures are made and theorems are discovered
by experimentation. Suppose that we don’t know whether some given mathematical
statement is true or false, and we want to establish it one way or the other. In that case,
some experiments may give us a clue as to which course of action is more likely to lead
to success. Some of the exercises in this book begin with the words “Prove or disprove.”
You will have to select which path to take.

One of the goals of this chapter is to develop some vocabulary and notation to
provide the means to communicate the logic about which you already have strong and
solid intuition. In mathematics, we need to be very precise about what we are saying.
For example, in a calculus course you may have learned the definition of “the limit of
f as x approaches c equals L.”4

lim
x→c

f (x) = L means that, for every number ε > 0, there exists a number δ > 0

such that, for any real number x in the domain of f , if 0 <
∣∣x − c

∣∣< δ, then∣∣f (x)− L
∣∣<ε.

The definition lays the precise foundation for the meaning of limit and later the
meaning of derivative. Of course, many calculus students also learn how to find limits
without ever having to write any ε’s or δ’s. No calculus course would ever progress past
computing the derivative of even the simplest functions if we had to resort to the defi-
nition each time instead of using the formulas developed to expedite the computations.
Nonetheless, mathematicians need to be able to understand the definition precisely, be-
cause there are times when one must communicate what it means for a function f to have
no limit as x approaches c, or to say what it means precisely that a number L is not the
limit of f as x approaches c. In the remaining sections of this chapter, you will acquire
the necessary logical tools to answer such a challenge.

1.2 Statements and Non-statements

The term statement refers to any sentence that has exactly one truth value. By a truth
value, we mean either true or false, denotedT and F, respectively.A statement can never
have both truth values. Here are some examples of statements.

1. 32 + 42 = 52.

2.
∣∣7− 13

∣∣ > 9.

3. The official Lake Minnetonka ice-out date in 1976 was April 3.

4. There are infinitely many prime numbers of the form n2 + 1.

4 We make the usual assumption that f is defined in some open interval containing c, except
possibly at c.
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The first and third statements have the truth value T. The second statement has truth
value F. The last sentence has a truth value. However, whether that value is T or F is
still an unsolved problem. The important point is that the last statement either really is
true or really is false – the truth value may be unknown, but it is not ambiguous.

Here are some examples of non-statements.

1. 0 <
∣∣x − 3

∣∣ < 1
1000

.

2. t2 + 4t − 12 = 0.

3. n is an odd number.

4. Why are you reading this book?

5. Go to the dentist every six months.

6.
−b±√b2 − 4ac

2a
.

7. The truth value of this sentence is F.

These fail to be statements for a variety of reasons.We aremostly concernedwith the first
three, but we address them all. The first three are not statements because the variables
x, t, and n are not specified in any way. For example, sentence (1) is true if x is replaced
by 2.999999999, but false if x = 3. This means that, as written, (1) is a sentence but
not a statement, because it has no single truth value. When you first looked at sentence
(2), you might have assumed that t = 2 or t = −6. But sentence (2) is not asking you to
solve anything. In general, an equation is not a command to solve. This equation is just a
sentence about the variable t. When t = −6, the sentence is certainly true. But if t = 7,
then (2) is false. Again, there is no truth value without first specifying t. The same goes
for sentence (3).

Sentences (4) and (5) are interrogative and imperative English sentences, respec-
tively. They have no interpretation that allows assignment of a truth value. Statements
must, in the proper grammar in whatever language they are written, have a subject and a
predicate. Item (6) has no predicate, even though it is loaded with mathematical symbols.

Sentence (7) is an example of a paradox–a sentence with the proper grammatical
structure, yet one that cannot have a truth value. Remember a statement can have only
one truth value. If (7) is false, then, since it is declaring itself false, it is thus true, and if
(7) is true, then it is false.

Statements are usually labeledwith uppercase letters such asP,Q,R, etc. Sometimes
a letter is chosen to make the label suggestive of the meaning of the statement. For
example we might let C stand for the statement “Carl has a creaky car.” Statements
are also called logical variables. In algebra or calculus, a variable such as x or y can
usually take on infinitely many values. By contrast, a logical variable assumes exactly
two values: T and F. Computer scientists often denote these values by binary digits 1
and 0, respectively.
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Recall that the sentence “t2 + 4t − 12 = 0” is not a statement because, until t is
specified, the sentence has no truth value. A sentence like this is an example of a propo-
sitional function. We designate this by5

P(t) : t2 + 4t − 12 = 0.

The sentence behaves like a function whose output is either T or F depending on the
input value of t. For example P(8) is false, P(−6) is true, and P(My friend Steve) is
false. If we collect all the possible t-values that make P(t) true we would have the set{− 6,2

}
.

Remark. The only notions of set theory necessary for the present discussion are that
a set is a collection of objects and that each of the objects in a set is an element of the
set. The notation x ∈ X means “x is an element of X .” These ideas are covered more
thoroughly in Section 2.1.

The set of objects for which a propositional function has value T is called the
truth set of the propositional function. For the propositional function P(t) it makes
mathematical sense to restrict the values t for which we are willing to consider P(t).We
could declare that we are going to entertain values of t only from the set of integers, or
perhaps values of t only from the set of real numbers. The set of all input values for a
propositional function is called the universal set.

Example 1.2.1. Here is an example of a propositional function with two variables. Let

P(�,m) : line � is parallel to line m,

where the universal set is the set of all lines in the xy−plane. Consider the following
lines:
k1 denotes the graph of y = 3x − 4;
k2 denotes the graph of x − y = 5;
k3 denotes the graph of y = x + 7.
Then P(k1,k2) is false and P(k2,k3) is true. Also P(k3,k2) is true.

Exercise 1.2.2. Let A(x,y,z) : x2 + y2 = z2. Determine the truth value of the
following.

(a) A(5,12,13).
(b) A(3,6,9).
(c) A(24,7,25).
(d) A(24,25,7).

5 Note the colon following P(t).Never replace the colon with an “equals” sign (=). Other notation
will be introduced in the next section to indicate equivalence of statements, but the equals sign is
not such notation.
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1.3 Logical Operations and Logical Equivalence

Suppose we offer you the following challenge.

We bet that our friend Doug can solve the equation x2 − 7x − 18 = 0 and that
he can run 50 meters in under 7.3 seconds.

If you were to take this bet with us, how might we resolve it? We would have Doug
sit down and work on the equation. Then we would have Doug run 50 meters and record
his time. Under what circumstances would we win the bet? Because the deal was based
on the word “and” in the bet, we would win the bet only in the case that he both solved
the equation and ran 50 meters in less than 7.3 seconds. We lose the bet in each of the
following cases.

1. Doug fails both tasks.

2. Doug solves the equation, but takes longer than 7.3 seconds to run 50 meters.

3. Doug fails to solve the equation, but runs fast enough.

Definition 1.3.1. Let P and Q be statements. Then the statement “P and Q” is the
conjunction of P with Q, written P ∧ Q. The truth value of the conjunction is given by
the following table, which is a truth table.

P Q P ∧ Q
T T T
T F F
F T F
F F F

The truth table gives the value of P ∧ Q for each of the four possible combinations
of the truth value of P and the truth value of Q.

Let us offer instead a different challenge.

We bet that Doug can solve the equation x2 − 7x − 18 = 0 or that he can run
50 meters in under 7.3 seconds.

This time, we win the bet as long as Doug accomplishes at least one of the required
tasks. We lose precisely when he both fails to solve the equation and fails to run fast
enough. We have formed a new statement by connecting two existing statements with
the word “or.”
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Definition 1.3.2. Let P and Q be statements. Then the statement “P or Q” is the
disjunction of P with Q, written P ∨ Q. The truth value of the disjunction is given by
the truth table below.

P Q P ∨ Q
T T T
T F T
F T T
F F F

Do you think that we should win the bet if Doug accomplishes both tasks? We do.
In mathematical usage, the disjunction of two true statements is true (as defined above).
However there are other circumstances in ordinary English usage of the word “or” that
would consider the truth value of such a statement to be false. For example, consider
the statement, “The complete dinner includes soup or salad.” If you say, “Yes, I’ll have
both,” you would surely be charged extra.Yet we all understand the use of the word “or”
in the original statement. The use of the word “or” in the restaurant context is called the
exclusive or. You will see this operation in Exercise 1.3.13.

Exercise 1.3.3. Consider the following pair of statements. (An equation with no vari-
ables in it is always a statement; it is true or it is false.)

32 + 42 = 52.

72 + 122 =152.

(a)Write the conjunction of the two statements and give the truth value of the conjunction.
(b)Write the disjunction of the two statements and give the truth value of the disjunction.

The statement “2223857457 − 1 is a prime number” is indeed a statement, because
it has a truth value, even though we don’t know presently whether that value is T or
F. (It is a question waiting to be resolved6.) For the same reason, we do not know the
truth value of the statement “2223857457 − 1 is not a prime number,” but we do know that
whatever the truth value of “2223857457 − 1 is a prime number” may be, the truth value
of “2223857457 − 1 is not a prime number” is the opposite value.

6 As of September 2, 2010, the largest known prime number is the 12,978,189-digit number
243112609 − 1. To view the current record and to learn more about the search for large prime
numbers, go to the website http://primes.utm.edu/largest.html.

http://primes.utm.edu/largest.html
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Definition 1.3.4. Let P be a statement. The statement “not P” is the negation of P,
written ¬P. Its truth value is F whenever P is true, and T whenever P is false, as seen
in the following truth table.

P ¬P
T F
F T

Consider the statement sin π
4 + sin π

4 � sin π
2 . (This statement happens to be false,

but that doesn’t matter for the point that we are about to make.) Some of the ways to
state the negation of this statement include:

1. It is not the case that sin π
4 + sin π

4 � sin π
2 ;

2. sin π
4 + sin π

4 is not � sin π
2 ;

3. sin π
4 + sin π

4 > sin π
2 .

It usually doesn’t matter which one of these you write. However, when there is notation
available to make the wording more efficient, we tend to opt for the most efficient
wording. In this case, statement 3 is our choice. Certainly statement 3 most directly
conveys what the negation of the original statement means.

Exercise 1.3.5. Express the negation of each of the following statements. Do not write,
“It is not the case that . . . .”
(a) 72 + 242 = 252.

(b)
1
2

+
2
3

+
3
4

� 1 + 2 + 3
2 + 3 + 4

.

(c) In 1983, the ice went out of Lake Minnetonka before April 18.

(d) Doug can solve the equation x2 − 7x − 18 = 0.

(e) Ambrose did not score at least 90 on the last exam.

Example 1.3.6. We construct a truth table for the logical expression

(P ∧ ¬Q) ∨ ¬P.

Notice the parentheses around the expression P ∧ ¬Q to indicate that we first must
find the truth value of this expression and use the result to proceed. As you will see in
Exercise 1.3.7, the placement of the parentheses can make a difference, in just the same
way that 3 · (5 + 4) 
= (3 · 5) + 4. To make a truth table, we need to plan ahead for the
appropriate number of columns and we need to label them. We begin by inserting truth
values for P and Q.
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P Q ¬P ¬Q P ∧ ¬Q (P ∧ ¬Q) ∨ ¬P
T T
T F
F T
F F

We always follow this order for the truth values of P and Q. Now we fill in the rest of
the truth table with truth values based on the definitions.

P Q ¬P ¬Q P ∧ ¬Q (P ∧ ¬Q) ∨ ¬P
T T F F F F
T F F T T T
F T T F F T
F F T T F T

Even though the table includes intermediate expressions that are helpful in determining
the truth value of the expression in the last column, when we speak of the truth table for
(P ∧ ¬Q) ∨ ¬P, we really mean only the columns for the simple, original statements P
and Q, and for the final expression.

P Q (P ∧ ¬Q) ∨ ¬P
T T F
T F T
F T T
F F T

Exercise 1.3.7. Make a truth table for each of the following statements.
(a) P ∧ (¬Q ∨ ¬P). (Compare with Example 1.3.6.)
(b) (P ∨ Q) ∨ (¬P ∧ ¬Q).
(c) (P ∨ ¬Q) ∧ (¬P ∨ Q).
(d)
(
P ∨ (¬Q ∧ ¬P)

) ∨ Q.

(e) P ∨ ((¬Q ∧ ¬P) ∨ Q
)
.

Consider the truth table for the expression ¬(P ∧ Q).

P Q P ∧ Q ¬(P ∧ Q)
T T T F
T F F T
F T F T
F F F T
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Compare this to the truth table in Example 1.3.6. Given the same truth values for P and
Q, the expressions ¬(P ∧ Q) and (P ∧ ¬Q) ∨ ¬P have the same truth values as each
other.

Definition 1.3.8. When two logical expressions E1 and E2 have the same truth value
as each other for every possible combination of truth values of the logical variables
P,Q, . . . that appear in them, then we say that E1 is logically equivalent (or, more
briefly, equivalent) to E2, and we write E1 �� E2. Of course, then E2 �� E1.

Proposition 1.3.9. Let P,Q, and R be statements. Then
(i) ¬(¬P) �� P;
(ii) ¬(P ∨ Q) �� ¬P ∧ ¬Q;
(iii) ¬(P ∧ Q) �� ¬P ∨ ¬Q;
(iv) P ∧ (Q ∨ R) �� (P ∧ Q) ∨ (P ∧ R);
(v) P ∨ (Q ∧ R) �� (P ∨ Q) ∧ (P ∨ R).

Proof. By definition, two statements are logically equivalent provided they have the
same truth tables.We show the tables for (ii) and (v).The others are left as Exercise 1.3.10.

P Q ¬P ¬Q P ∨ Q ¬(P ∨ Q) ¬P ∧ ¬Q
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

Since the truth values of the last two columns are identical, we conclude that ¬(P ∨ Q)
is logically equivalent to ¬P ∧ ¬Q.

For part (v) we have the following truth table. (Note carefully the order of the 8 = 23

cases when we have three logical variables. This standard order is always used because
it makes it easier to compare truth tables of different statements.)

P Q R Q ∧ R P ∨ (Q ∧ R) P ∨ Q P ∨ R (P ∨ Q) ∧ (P ∨ R)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

We compare the fifth column with the eighth column to reach the desired conclusion. �
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Parts (ii) and (iii) of Proposition 1.3.9, called De Morgan’s Laws7, provide the
rules for negating conjunctions and disjunctions. For example, according to part (ii), the
negation of the statement “2 is an even prime number and 5 + 9 � 11” is “2 is not an
even prime number or 5 + 9 > 11.”

Parts (iv) and (v) are the distributive laws. They are analogous to the distributive
property of multiplication over addition in the real numbers that you learned in middle
school algebra. Note that each of the logical operations ∧ and ∨ distributes over the
other, although addition of numbers does not generally distribute over multiplication.

Exercise 1.3.10. (a) Prove Proposition 1.3.9 part (i).
(b) Prove Proposition 1.3.9 part (iii).
(c) Prove Proposition 1.3.9 part (iv).

The two logical operations ∧ and ∨ satisfy the commutative law. That is, for all
statements P and Q,

P ∧ Q �� Q ∧ P and P ∨ Q �� Q ∨ P.

They also satisfy the associative law. That is, for all statements P, Q, and R,

(P ∧ Q) ∧ R �� P ∧ (Q ∧ R) and (P ∨ Q) ∨ R �� P ∨ (Q ∨ R).

We say more simply that ∨ and ∧ are commutative and associative.

One needs to be careful that the symbols that one writes create meaningful expres-
sions. Just because ¬,P,Q, and ∨ are each legitimate and meaningful symbols doesn’t
mean that the “expression” ¬PQ∨ means something. Each of the symbols in an expres-
sion is part of a structure that works in grammatically correct English. A random string
of symbols is very likely to be meaningless.

Exercise 1.3.11. Write as complete sentences the negations of each the following
sentences.
(a) The function f is decreasing on (−∞,0] and increasing on [0,∞).
(b) Either the number 0 is not in the domain of f or lim

x→0
f (x) 
= f (0).

Exercise 1.3.12. Let the propositional function C(f ,a) mean, “The function f is con-
tinuous at the point a,” and let the propositional function D(f ,a) mean, “The function
f is differentiable at the point a.” Using these symbols together with logical symbols,
express the following statements.

7 Augustus De Morgan (1806–1871) was an English mathematician who developed rules and
symbols of logic that made it possible to solve problems that had confounded ancient logicians.
He also is credited with developing mathematical induction, the main topic of Chapter 4.
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(a) Neither the tangent function nor the secant function is continuous at π/2.
(b) Either a > 0 or the natural logarithm function is not differentiable at a.
(c) The absolute value function is continuous at 0, but not differentiable at 0.

Exercise 1.3.13. Let P and Q be statements and define P ⊕ Q by the following truth
table.

P Q P ⊕ Q
T T F
T F T
F T T
F F F

Note that ⊕ is the exclusive or operation that we mentioned following Definition 1.3.2.
Prove that P ⊕ Q �� (P ∨ Q) ∧ ¬(P ∧ Q).

Exercise 1.3.14. The operation ⊕, as defined in Exercise 1.3.13, is clearly commuta-
tive, but is it also associative?

1.4 Conditionals,Tautologies, and Contradictions

Many mathematical statements are expressed in what is called conditional form, that is,
of the form “If P, then Q.” For example,

If�ABC is a right triangle with right angle C, then AC2 + BC2 = AB2.

Or

If a function f is differentiable at a point c, then f is continuous at c.

We examine the truth value of the sentence “IfP, thenQ” through the following example.

Suppose that a particular college advertises

If you earn a degree from here, then you will get a great job.

How do we evaluate the truth of this statement? Think of such a statement as a promise.
Its truth value is F if the promise is broken and T if the promise is not broken. Each of
the simple statements “you earn a degree from here” and “you will get a great job” is
either true or false. Here are the four possibilities.

1. You earn a degree from the college; you get a great job.

2. You earn a degree from the college; you do not get a great job.

3. You do not earn a degree from the college; you get a great job.

4. You do not earn a degree from the college; you do not get a great job.
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In the first case, the promise is clearly kept and so the truth value of the statement
is T. In the second, the promise is clearly broken and hence its truth value is F. The
analysis is less obvious in the other two cases. In the fourth case, the promise does not
come into play, and therefore the promise is not broken; thus its truth value is T. In the
third case, the college does not break its promise. In the original statement, there are no
stipulations on the side of the college about when people get great jobs, except that you
will get a great job if you earn a degree from the college. So in the third case, the truth
value of the statement is T. In summary, the only case where the statement “If P, then
Q” is false is when P is true and Q is false.

Definition 1.4.1. Let P and Q be statements. The conditional “If P, then Q,” written
P ⇒ Q, has truth value according to the truth table below.

P Q P ⇒ Q
T T T
T F F
F T T
F F T

The statement P ⇒ Q is also read “P implies Q.” In a statement of the form P ⇒ Q,
P is the hypothesis and Q is the conclusion.

When we say P impliesQ, we in no way suggest that P causes Q. Raininess implies
cloudiness, but rain does not cause clouds, rather clouds cause rain – usually. Implication
and causality really have little to do with each other in the context of logic.

There are several ways to express P ⇒ Q in spoken English. Besides “P implies
Q,” the conditional “If P, then Q” can be expressed in any of the following ways.

Q, if P.

P, only if Q.

P is sufficient for Q.

Q is necessary for P.

Q whenever P.

All of these forms can and do appear in mathematical writing.

Proposition 1.4.2. The statements ¬(P ⇒ Q) and P ∧ ¬Q are logically equivalent.

Exercise 1.4.3. Prove Proposition 1.4.2 by comparing truth tables.
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You saw in Section 1.3 that ∨ and ∧ are commutative, but is the same true for⇒?
Consider the following truth table.

P Q P ⇒ Q Q⇒ P
T T T T
T F F T
F T T F
F F T T

The two expressions P ⇒ Q and Q⇒ P are not logically equivalent; thus ⇒ is not
commutative. The statement “If one lives in Onondaga County, then one lives in New
York State” is true, but the statement “If one lives in NewYork State, then one lives in
Onondaga County” is not true.

Definition 1.4.4. For the conditional P ⇒ Q, the statement Q⇒ P is its converse,
and the statement ¬Q⇒ ¬P is its contrapositive.

Example 1.4.5. Let x be a real number. Consider the statement “If x > 1, then x2 > 1.”
Here P : x > 1, and Q : x2 > 1. We then have the following.
Converse: If x2 > 1, then x > 1.
Contrapositive: If x2 � 1, then x � 1.
Negation: x > 1 and x2 � 1.

In this example, the original conditional is clearly true. What about the other state-
ments? The converse is false; what if x = −2? The contrapositive is true. Since the
original statement is true, its negation must be false.

The next theorem establishes the logical equivalence of the conditional and its con-
trapositive.

Theorem 1.4.6. Let P and Q be any two statements. Then

P ⇒ Q �� ¬Q⇒ ¬P.

Proof. We simply construct the truth tables of each statement.

P Q ¬P ¬Q P ⇒ Q ¬Q⇒ ¬P
T T F F T T
T F F T F F
F T T F T T
F F T T T T

�

Note that, while a conditional is logically equivalent to its contrapositive, the con-
verse of a conditional is equivalent neither to the statement nor to its negation.
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Exercise 1.4.7. Form the converse and contrapositive for each of the following
conditionals.
(a) If you live in Minneapolis, then you live in Minnesota.
(b) If n is an even integer, then n2 is an even integer.
(c) If f is differentiable at x = a, then f is continuous at x = a.
(d) If p is not prime, then xp + 1 is not factorable.
(e) If you live in Minnesota, then you do not live in Syracuse.

We have seen that the converse is not logically equivalent to the conditional from
which it is formed. However, consider the statement in Exercise 1.4.7(b):

If n is an even integer, then n2 is an even integer.

Certainly this is true and will be proved in Section 2.3. And while the statement

If n2 is an even integer, then n is an even integer

is not logically equivalent to the previous statement, it is nonetheless true. Therefore we
know that the compound statement “If n is an even integer, then n2 is an even integer
and if n2 is an even integer, then n is an even integer” is true. Mathematicians combine
a conditional with its converse in the following way:

n is an even integer if and only if n2 is an even integer.

The statement “P if and only if Q” is a shorter way of saying, “If P then Q, and if Q
then P,” or notationally, (P ⇒ Q) ∧ (Q⇒ P). The words “if and only if” are sometimes
further abbreviated as “iff.”

Definition 1.4.8. Let P and Q be statements. The statement “P if and only if Q” is the
biconditional of P with Q, written P ⇔ Q. The truth value of the biconditional is given
by the following truth table.

P Q P ⇔ Q
T T T
T F F
F T F
F F T

We see in this truth table that the truth value ofP ⇔ Q isTwhenever the truth values
of P and Q agree and F when they disagree.

Exercise 1.4.9. Make a truth table for the statement (P ⇒ Q) ∧ (Q⇒ P), and observe
that it is equivalent to P ⇔ Q.
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Exercise 1.4.10. Determine whether the operation ⇒ is associative; that means, if
S : P ⇒ (Q⇒ R) and T : (P ⇒ Q) ⇒ R, then does S �� T hold? If not, is either
S ⇒ T or T ⇒ S true for all truth values of P, Q, and R? Which one?

Exercise 1.4.11. Prove that⇔ is both associative and commutative.

Exercise 1.4.12. Prove that following are true for any conditional.
(a) The contrapositive of the contrapositive is logically equivalent to the original state-
ment.
(b) The converse of the converse is logically equivalent to the original statement.
(c) The contrapositive of the converse is logically equivalent to the converse of the con-
trapositive.
(d) If a conditional is false, then its converse is true.

Certain types of logical expressions have special significance because of their truth
tables. Consider the expression

(P ⇒ Q) ⇔ (¬P ∨ Q)

and its truth table.

P Q ¬P P ⇒ Q ¬P ∨ Q (P ⇒ Q) ⇔ (¬P ∨ Q)
T T F T T T
T F F F F T
F T T T T T
F F T T T T

The expression is true independently of the individual truth values of P and Q. This
is an example of an expression that is called a tautology.

Definition 1.4.13. An expression whose truth value is T for all combinations of truth
values of the variables that appear in it is a tautology.
An expression whose truth value is F for all combinations of truth values of the variables
that appear in it is a contradiction.

The simplest possible tautology is a statement of the form P ∨ ¬P, and the simplest
possible contradiction has the form8 P ∧ ¬P. Here are their truth tables.

P ¬P P ∨ ¬P P ∧ ¬P
T F T F
F T T F

8 In Aristotelian logic, this contradiction is called “the principle of the excluded middle.”
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An expression X is a tautology if and only if ¬X is a contradiction. Note that, by the first
of De Morgan’s Laws (Proposition 1.3.9(ii)) and part (i) of the same proposition,

¬(P ∨ ¬P) �� P ∧ ¬P.

Suppose that two expressions, call them X and Y , are logically equivalent. (Recall
Definition 1.3.8.) To say X �� Y is exactly the same thing as saying that the expression
X ⇔ Y is a tautology.

Exercise 1.4.14. Show that the following statements are tautologies.
(a) (P ⇔ Q) ⇒ (

(R ∧ P) ⇔ (R ∧ Q)
)
.

(b) (P ⇔ Q) ⇒ (
(R ∨ P) ⇔ (R ∨ Q)

)
.

Exercise 1.4.15. Verify that the following are tautologies by citing the appropriate
previous result. Do not make truth tables.
(a) ¬(¬P) ⇔ P.
(b) ¬(P ∨ Q) ⇔ ¬P ∧ ¬Q.
(c) ¬(P ∧ Q) ⇔ ¬P ∨ ¬Q.
(d) P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R).
(e) P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R).
(f) ¬(P ⇒ Q) ⇔ P ∧ ¬Q.
(g) (P ⇒ Q) ⇔ (¬Q⇒ ¬P).

Of course, if one were to apply the negation operation ¬ to exactly one side of any
of the expressions in Exercise 1.4.15, the new expression would be a contradiction.

Exercise 1.4.16. Determine whether each of the following expressions is a tautology,
a contradiction, or neither.
(a)
(
(P ⇒ Q) ⇒ P

)⇒ Q.

(b) P ⇔ (
P ∧ (P ∨ Q)

)
.

(c) (P ⇒ Q) ⇔ (P ∧ ¬Q).
(d) P ⇒ (

Q⇒ (P ⇒ Q)
)
.

(e)
(
Q ∧ (P ∨ ¬P)

)⇔ Q.

(f)
(
P ⇒ (Q ∧ R)

)⇒ (
(P ⇒ Q) ∧ (P ⇒ R)

)
.

(g)
(
P ⇒ (Q ∨ R)

)⇒ (
(P ⇒ Q) ∨ (P ⇒ R)

)
.

(h)
(
(P ∨ Q) ⇒ Q

)⇒ P.

The following tautology will be used a few thousand times in your mathematical
career.

Exercise 1.4.17. Prove that the expression
(
(P ⇒ Q) ∧ P

)⇒ Q is a tautology.
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1.5 Methods of Proof

In this section we consider three basic formats for proving conditionals. While many
mathematical statements are not in the standard conditional form of P ⇒ Q, it is usually
possible to reword the statement so that it is in this form.

For example, consider the statement, “The diagonals of a parallelogram bisect each
other.”This statement clearly does not have the usual form of a conditional. However, we
can write an equivalent statement that does have this form: “If the quadrilateral ABCD
is a parallelogram, then the segments AC and BD bisect each other.” In this case, we
introduced some symbols, namely the labels of the vertices of an arbitrary parallelogram,
but at the same time, we now have some handy notation to use in the proof.

One isn’t always compelled to use symbols just to make a mathematical statement
have the familiar “If . . . , then . . .” appearance. The statement “It is impossible to trisect
an angle using only a compass and straightedge,” can be restated as, “If one has only a
straightedge and compass, then one cannot trisect an angle.”

Turn back to Definition 1.4.1, and note that P ⇒ Q is true in lines 1, 3, and 4 but
false in line 2 of the truth table. The goal of all three proof formats is to demonstrate that
the situation at hand places us on one of the three “true” lines, that is, not on line 2.

The first of the three proof formats considered here is called direct proof. It is
without question the format that mathematicians most frequently use and is the simplest
one conceptually. There are many, many examples of direct proofs in the subsequent
chapters of this book.

In the course of a direct proof of P ⇒ Q, we always assume P to be true. Often,
but not always, we assert this assumption at the outset. If P is false, then P ⇒ Q is true
anyway, so there is no point even considering the option of P being false. Assuming P
to be true limits us to the first two lines of the truth table of P ⇒ Q. If we now deduce
(using P) that Q must be true, then we know that we are in line 1 of the truth table and
not in line 2. In line 1, the truth value of P ⇒ Q is T, which is exactly what we were
aiming for. Mission accomplished! Here is an application of the format of a direct proof.

Example 1.5.1. Prove the following.

If x < −6, then x2 + 4x − 12 > 0.

Proof. We assume that x < −6. [This time the assumption of P is the first step in our
argument.] It follows that x + 6 < 0 and x − 2 < −8. We multiply the latter inequality
by the negative quantity x + 6 to obtain (x + 6)(x − 2) > (x + 6)(−8) > 0. By ele-
mentary algebra, we deduce x2 + 4x − 12 > 0. We have proved that if x < −6, then
x2+ 4x − 12>0. �
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As you study this simple proof, you may wonder where we got the idea to subtract
2 from our initial assumption to come up with x − 2 < −8. That’s where a little forward
thinking comes in. We looked ahead at the desired conclusion, saw a quadratic polyno-
mial, and tried factoring it. It worked! There are other arguments that also work. See if
you can devise one of your own.

The next definition is familiar. We review it here in order to state and prove the
important Triangle Inequality.

Definition 1.5.2. Let x be any real number. The absolute value of x, written
∣∣x∣∣, is

defined by

∣∣x∣∣ =
{

x if x � 0;

−x if x < 0.

The Triangle Inequality is a simple, yet fundamental and important statement about
real numbers. (A justification for its geometric name will come in Section 8.4, where we
extend it to include complex numbers as well.)

Theorem 1.5.3. [The Triangle Inequality] For any real numbers a and b, we have∣∣a + b
∣∣ � ∣∣a∣∣+ ∣∣b∣∣.

Proof. We prove the Triangle Inequality by examining four cases. [Here the hypothesis
is that a and b are real numbers. Sometimes it is more practical to consider separately
several cases of the hypothesis of a theorem. Each of these cases becomes its own little
direct proof.] There are four cases that cover all possibilities for a and b:

Case 1: a,b � 0; Case 2: a,b < 0;

Case 3: a � 0,b < 0; Case 4: a < 0,b � 0.

Case 1. Suppose a,b � 0. Then a + b � 0 and, by Definition 1.5.2,
∣∣a + b

∣∣ = a + b,∣∣a∣∣ = a, and
∣∣b∣∣ = b. So we have∣∣a + b

∣∣ = a + b =
∣∣a∣∣+ ∣∣b∣∣.

[To prove x � y, it is sufficient to prove x = y, since the expression x = y⇒ x � y is a
tautology.]

Case 2. Suppose that a,b < 0. Then a + b < 0 and we have
∣∣a + b

∣∣ = −(a + b),∣∣a∣∣ = −a, and ∣∣b∣∣ = −b. Then∣∣a + b
∣∣ = −(a + b) = −a + (−b) =

∣∣a∣∣+ ∣∣b∣∣.
Case 3. Suppose that a � 0 and b < 0. Then either a + b � 0 or a + b < 0. [There
are two subcases of this case.] If a + b � 0, then

∣∣a + b
∣∣ = a + b,

∣∣a∣∣ = a, and∣∣b∣∣ = −b > 0, so that
∣∣b∣∣ > b. Thus
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∣∣a + b
∣∣ = a + b =

∣∣a∣∣+ b <
∣∣a∣∣+ ∣∣b∣∣.

If a + b < 0, then
∣∣a + b

∣∣ = −(a + b),
∣∣a∣∣ = a, and

∣∣b∣∣ = −b. Since a � 0, −a �
∣∣a∣∣.

Thus ∣∣a + b
∣∣ = −(a + b) = −a + (−b) = −a +

∣∣b∣∣ � ∣∣a∣∣+ ∣∣b∣∣.
To prove Case 4, simply swap a and b in the proof of Case 3. �

Exercise 1.5.4. Let b � 0. Prove that |a| � b if and only if −b � a � b. [Hint: This
is a biconditional statement. Therefore, it is necessary to prove, under the assumption
b � 0, that each of the two statements |a| � b and −b � a � b implies the other.]

In each of the direct proofs that you’ve seen in this section, the full hypothesis has
been brought to bear almost at the outset. Sometimes it works better instead to invoke
the hypothesis piecemeal at convenient steps in the course of the proof. A direct proof
of a familiar theorem from first-semester calculus provides a suitable example.

Theorem 1.5.5. Suppose that a function f is defined in an open interval containing
the real number c. If f is differentiable at c, then f is continuous at c.

Proof. To satisfy the definition of continuity, we must show that lim
x→c

f (x) exists and

equals f (c). [Before invoking the hypothesis that f is differentiable at c, we require some
algebraic preparation.] Clearly

f (x) =
(
f (x)− f (c)

)
+ f (c).

When considering a limit as x approaches c, onemust assume that x 
= c, that is, x − c 
= 0.
Hence, for x 
= c,

(1.5.1) f (x) =
f (x)− f (c)

x − c
· (x − c) + f (c).

The goal of determining lim
x→c

f (x) will be achieved if we can compute lim
x→c

of the right

hand side of equation 1.5.1.

Weare now ready to apply the hypothesis that f is differentiable at c. By the definition

of derivative, lim
x→c

f (x)− f (c)
x − c

exists and equals f ′(c). Since the limit of each factor in

the product
f (x)− f (c)

x − c
· (x − c) exists, the limit of this product equals the product of

the limits of its factors. Thus
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lim
x→c

f (x) = lim
x→c

f (x)− f (c)
x − c

· lim
x→c

(x − c) + f (c)

= f ′(c) · 0 + f (c)
= f (c).

We have proved that lim
x→c

f (x) = f (c), which means that f is continuous at c. �

Because the contrapositive of a conditional is logically equivalent to the original
statement, we can approach the proof of a conditional by way of its contrapositive.
Sometimes this approach is easier. Thus the second proof format presented here is called
proof by the contrapositive, or more simply, contrapositive proof. It is merely a direct
proof of the statement ¬Q⇒ ¬P.

Example 1.5.6. Suppose we want to prove the following claim.

If at least 19 balls are distributed into six baskets,

then some basket contains at least four balls.

We think of the conditional that we are trying to prove as P ⇒ Q, where

P : at least 19 balls are put into 6 baskets, and

Q : some basket contains at least 4 balls.

Then the contrapositive, ¬Q⇒ ¬P would read

If every basket contains at most three balls,

then at most 18 balls are put into 6 baskets.

Let us now embark upon a direct proof of the contrapositive.

Proof. We assume ¬Q: Each basket contains at most 3 balls. Then the total number
of balls in all 6 baskets is at most 6 · 3 = 18. [This is the statement ¬P.] Thus we have
proved the contrapositive of the claim. Since the contrapositive is equivalent to the given
conditional, we have proved the claim. �

Exercise 1.5.7. Let x and y denote positive real numbers. Give a contrapositive proof

that if x 
= y, then x + y >
4xy
x + y

.

The foundation of a proof by contradiction is presented next. There will be many
examples of proof by contradiction throughout this book and throughout your mathe-
matical career.
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Proposition 1.5.8. For statements E and R, the expression(¬E ⇒ (R ∧ ¬R)
)⇒ E

is a tautology.

Exercise 1.5.9. Use a truth table to prove Proposition 1.5.8.

Themeaning of this tautology is that the following line of argument is valid. Suppose
that we assume thatE is not true; that is, we suppose¬E. If the assumption of¬E implies
a contradiction such as R ∧ ¬R, then ¬E must be false, in which case E is true.

Example 1.5.10. Prove that log2 19 is not a positive integer.

Proof. Suppose that log2 19 is a positive integer, say log2 19 = n, where n is some
positive integer. [Here we have E : log2 19 is not a positive integer, and so ¬E : log2 19
is a positive integer.] Then, by the definition of logarithm, we have that 2n = 19. [This
is R.] We also know that, for every positive integer n, 2n is even. So, since 19 is odd, we
have 2n 
= 19. [This is ¬R.]

So we have shown that

(log2 19 equals a positive integer n) ⇒
[
(2n = 19) ∧ (2n 
= 19)

]
.

Becausewe reached the contradictionR ∧ ¬R, we conclude that our original assumption,
that log2 19 is a positive integer, is false. Thus log2 19 is not a positive integer. �

Exercise 1.5.11. Let m be a positive integer that has an odd divisor greater than 1.
Prove that log2m is not an integer.

Very often the statement E that we wish to prove by contradiction is itself a condi-
tionalP ⇒ Q.Whenwe assume¬E, that is, whenwe assume¬(P ⇒ Q), we in fact must
assume P ∧ ¬Q, and we seek a contradiction R ∧ ¬R where R is something other than
P or Q. (If R turns out to be P, then what we really did was to prove the contrapositive
¬Q⇒ ¬P. Do you see why?) In order to illustrate this method with the example that
we want to use, we need the following lemma9, which we prove by a direct proof.

Lemma 1.5.12. If a perfect square is divided by 4, then the remainder is either 0 or 1.

Proof. Assume that n is a perfect square. That means that n = m2 for some integer m.
Now m is either even or odd.

9 A lemma is a theorem often of not much interest in its own right, but which is used in the proof
of a theorem of greater interest.
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Case 1: m is even. That means m = 2k for some integer k. So

n = m2 = (2k)2 = 4k2,

which means that when n is divided by 4, then the remainder is 0.

Case 2: m is odd. That means m = 2k + 1 for some integer k. So

n = m2 = (2k + 1)2 = 4(k2 + k) + 1,

which means that when n is divided by 4, then the remainder is 1. �

Example 1.5.13. Suppose that a,b and c are integers. We prove

If a2 + b2 = c2, then a or b is even.

Proof. For P : a2 + b2 = c2 and Q : a or b is even, we assume ¬(P ⇒ Q). Equiva-
lently, we assume P ∧ ¬Q, namely: a2 + b2 = c2 and a is odd and b is odd. Thus there
exists some integer k such that a = 2k + 1 and there exists some integer � such that
b = 2� + 1. Also,

c2 = a2 + b2

= (2k + 1)2 + (2� + 1)2

= 4(k2 + k + �2 + �) + 2.

This implies the statement

R : the remainder is 2 when c2 is divided by 4,

which is to be “half” of our contradiction. But by Lemma 1.5.12 we know that

¬R : the remainder cannot be 2 when c2 is divided by 4.

And therein lies a contradiction! �

The proof of Theorem 1.1.4 is an example of a proof by contradiction. Have another
look at it! Let us reformulate the statement as a conditional.

If two or more people meet and some shake hands with each other, then some
two of the people shake the same number of hands.

In the proof, we assumed the negation of this statement, namely that n � 2 and that no
two of the n people shake the same number of hands. We deduced the contradiction that
the person who shook no hands shook the hand of the one who shook everybody’s hand.
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We summarize these three proof formats of P ⇒ Q with the following table.

Proof format Assume Deduce
direct proof P Q

contrapositive proof ¬Q ¬P
proof by contradiction P ∧ ¬Q R ∧ ¬R

In this section we have discussed three basic proof formats. We have indicated how
to execute each format, but we’ve given no clue as to when to select one format over
another. The “when” question, however, has no definite answer. An analogy to calculus
is the situation where you are given a continuous function and are asked to find its
antiderivatives. At this point, you know many techniques for finding antiderivatives,
but how do you know which one – or which ones – to apply? Often several different
techniques will work, while for some continuous functions, none of the techniques that
you learned will work10.

And so it is with proofs. For some proofs, more than one of these three formats will
work. For some, you will need a method called “mathematical induction” that will be
covered in Chapter 4.

Often it is best to start out by trying a direct proof, if only because it is the simplest.
If the hypothesis seems very lean, with modest conditions, while the conclusion looks
easy to negate, then you might try one of the other formats. A more complicated proof
frequently uses more than one format in the same proof, just as an antiderivative prob-
lem may require both integration by parts and a trigonometric substitution in the same
problem. If you don’t know at the outset whether the statement P ⇒ Q is true, and if
you are not successful in coming up with a proof, it may be that the statement is false,
and so no proof exists. In that case you may try to prove the negation of the statement
by looking for a counterexample. We discuss counterexamples in the next section.

1.6 Quantifiers

Consider the propositional function

I(x) : x2 + 1 > 0,

where the universal set is the set of real numbers.What is the truth set of I(x)?Are there
any real numbers for which I(x) is false? The truth set of I(x) is the entire set of real
numbers. In other words, the truth set is the universal set.

10 For example,
∫
e−x2dx and

∫ sinx
x dx cannot be evaluated by any techniques that one learns in

first-year calculus.
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Consider the sentence

For all real numbers x, x2 + 1 > 0.

While this sentence includes the variable x, it is not a propositional function; its truth
value does not depend upon any actual value of x. This sentence is rather the statement
that the truth set of I(x) is the set of all real numbers. By the way, the truth value of this
statement is T.

Definition 1.6.1. Let P(x) be a propositional function with universal set X. The
sentence

For all x ∈ X, P(x)

is a universally quantified statement whose truth value is T if the truth set of P(x) is
the universal set X and F otherwise. We write

(∀x ∈ X)P(x),

or simply

(∀x)P(x)

when the universal set is clear from the context. The symbol ∀ is the universal quantifier.

Thus the statement, with the set Z of integers as the universal set,

For all integers t, t2 + 4t − 12 = 0

or

(∀t ∈ Z)
[
t2 + 4t − 12 = 0

]
is a false statement since its truth set

{−6,2} is not equal to the set of all integers.

The truth value of a universally quantified statement depends on the answer to the
question, “Is the truth set the entire universal set?”

A different question to ask about a propositional function P(x) is, “Are there any
values at all in the truth set of P(x)?” Consider the sentence

There exists an integer t such that t2 + 4t − 12 = 0.

Since there is at least one integer in the truth set of the propositional function, the
statement is true.
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Definition1.6.2. LetP(x)beapropositional functionwith universal setX.The sentence

There exists x ∈ X such that P(x)

is an existentially quantified statement whose truth value is F if the truth set of P(x)
has no elements and T otherwise. We write

(∃x ∈ X)P(x)

or simply

(∃x)P(x),

when the universal set is clear from the context. The symbol ∃ is the existential
quantifier.

Notice inDefinition 1.6.2 that (∃x)P(x) is true as long as there is at least one element
x in its truth set. Sometimes it is useful to distinguish propositional functions whose truth
sets have exactly one element.

Definition 1.6.3. Let P(x) be a propositional function with universal set X. The
sentence

There exists a unique x ∈ X such that P(x)

is a uniquely existentially quantified statement whose truth value is T if the truth set
of P(x) has exactly one element and F otherwise. We write

(∃!x ∈ X)P(x)

or

(∃!x)P(x),

when the universal set is clear from the context. The symbol ∃! is the unique existential
quantifier.

Example 1.6.4. Suppose the universal set is the set of real numbers. The statement
(∃!x)(2x − 3 = 7) is true since the only solution to the equation 2x − 3 = 7 is x = 5.
The statements (∃!t)(t2 + 4t − 12 = 0) and (∃!y)(y2 + 1 < 0) are both false. (Do you
understand why?)

We can express the unique existential quantifier in terms of logical symbols already
defined:

(∃!x)P(x) �� (∃x)[P(x) ∧ (∀y)(P(y) ⇒ x = y)
]
.
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If P(x) is a propositional function with universal set X, then each of the following
is a statement:

1. (∀x ∈ X)P(x);
2. (∃x ∈ X)P(x);
3. (∃!x ∈ X)P(x).

Since these are statements, so are their negations.

Consider the statement “There exists a car that is red,” where the universe is the set
of cars in a particular parking lot. We can express this statement symbolically as

(∃x ∈ L)R(x),

where L is the set of cars in the parking lot and R(x) : x is red. What does it mean for
this statement to be true? It means that there is at least one car in the lot that is red.What
does it mean if this statement is false? That is, when is the statement ¬ [(∃x ∈ L)R(x)]
true? The original statement (∃x ∈ L)R(x) is false only if there are no red cars at all in
the lot. In other words, all cars in the lot are not red. With the symbols we have already
adopted for this example, this statement is expressed as

(∀x ∈ L) [¬R(x)] .

We see here that ¬ [(∃x ∈ L)R(x)] and (∀x ∈ L)[¬R(x)] have the same truth value. The
rules for negating quantified expressions are stated in the following theorem.

Theorem 1.6.5. Let P(x) be a propositional function with universal set X. Then the
following hold.
(i) ¬ [(∃x)P(x)] �� (∀x)[¬P(x)].
(ii) ¬ [(∀x)P(x)] �� (∃x)[¬P(x)].

Proof. (i) Suppose that ¬[(∃x)P(x)] is true; thus (∃x)P(x) is false. This means that the
truth set of P(x) has no elements. In other words, every x ∈ X has the property that P(x)
is false; that is to say that ¬P(x) is true for every x ∈ X . Thus (∀x)[¬P(x)] is true.

If ¬[(∃x)P(x)] is false, then (∃x)P(x) is true. By the definition of ∃, there is at least
one element of X such that P(x) is true. So the statement (∀x)[¬P(x)] is false. Since the
statements ¬[(∃x)P(x)] and (∀x)[¬P(x)] have the same truth values, we conclude that
they are equivalent.

To prove part (ii), we have from part (i) that

(∀x)[¬P(x)] �� ¬[(∃x)P(x)].
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After we negate both sides we get

¬[(∀x)[¬P(x)]
]

�� ¬[¬[(∃x)P(x)]
]
.

Now substitute Q(x) for ¬P(x), and simplify according to Proposition 1.3.9(i) to obtain

¬ [(∀x)Q(x)] �� (∃x)[¬Q(x)].

Finally, substitute P(x) for Q(x) to obtain the desired conclusion. �

Example 1.6.6. The negation of the statement about the set R of real numbers

(∀x ∈ R)[2sin(x) = sin(2x)]

is the following.

¬((∀x ∈ R)[2sin(x) = sin(2x)]
)

�� (∃x ∈ R)¬ [2sin(x) = sin(2x)]
�� (∃x ∈ R)[2sin(x) 
= sin(2x)].

Exercise 1.6.7. Write the symbolic negation of each of the following expressions so
that ¬ never immediately precedes a parenthesis or bracket.
(a) (∀x)[P(x) ⇒ (

Q(x) ∧ R(x)
)]

.

(b) (∃y)[P(y) ∨ (∀x)[Q(x) ⇒ ¬R(x)
]]

.
(c) (∀x)(∃y)(∀z) [P(x,y) ⇔ Q(y,z)] .

Definition 1.6.8. Let X be the universal set for P(x). An element x0 of X is a coun-
terexample to the statement (∀x)P(x) provided that P(x0) is false.

Example 1.6.9. The value
π

2
is a counterexample to the statement

(∀x)[2sin(x) = sin(2x)
]
,

because it shows this statement to be false.

You are now in a position to address the example from the end of Section 1.1. Recall
from your calculus courses the following definition.

Definition 1.6.10. A function f has limit L as x approaches c provided that the fol-
lowing condition is satisfied: for every ε > 0, there exists δ > 0 such that, for any real
number x, if 0 <

∣∣x − c
∣∣ < δ, then

∣∣f (x)− L
∣∣ < ε.

We can express the given condition with symbols.

(1.6.1) (∀ε > 0)(∃δ > 0)(∀x ∈ R)
[
0 <

∣∣x − c
∣∣ < δ ⇒ ∣∣f (x)− L

∣∣ < ε
]
.
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Note that there are several symbols for variables in statement (1.6.1). The variables
f , L and c were introduced prior to the statement and so are not quantified. But state-
ment (1.6.1) introduces three quantified variables: ε,δ, and x. The universal set from
which ε and δ are drawn is the set of positive real numbers, and the universal set for x
is the set R of real numbers. The universal sets for each variable remain unaffected by
negation; they never change. So a statement that begins with¬(∀ε > 0) does not become
one that begins with (∀ε � 0); it becomes a statement that begins with (∃ε > 0).

Let us next consider the negation of statement (1.6.1). That is, precisely what does it
mean to say that L is not the limit of f as x approaches c ? In order to state clearly and cor-
rectly the negation of condition (1.6.1), we use the rules of negation from Theorem 1.6.5
and Proposition 1.4.2.

¬
[
(∀ε > 0)(∃δ > 0)(∀x ∈ R)

[
0 <

∣∣x − c
∣∣ < δ ⇒ ∣∣f (x)− L

∣∣ < ε
]]

��(∃ε > 0)¬
[
(∃δ > 0)(∀x ∈ R)

[
0 <

∣∣x − c
∣∣ < δ ⇒ ∣∣f (x)− L

∣∣ < ε
]]

��(∃ε > 0)(∀δ > 0)¬
[
(∀x ∈ R)

[
0 <

∣∣x − c
∣∣ < δ ⇒ ∣∣f (x)− L

∣∣ < ε
]]

��(∃ε > 0)(∀δ > 0)(∃x ∈ R)¬[0 <
∣∣x − c

∣∣ < δ ⇒ ∣∣f (x)− L
∣∣ < ε

]
��(∃ε > 0)(∀δ > 0)(∃x ∈ R)

[
0 <

∣∣x − c
∣∣ < δ ∧ ¬(

∣∣f (x)− L
∣∣ < ε)

]
��(∃ε > 0)(∀δ > 0)(∃x ∈ R)

[
0 <

∣∣x − c
∣∣ < δ ∧ ∣∣f (x)− L

∣∣ � ε
]

Translated back from logical symbols to English, this could read

There exists an ε > 0 such that for all δ > 0, there exists a real
number x such that we have 0 <

∣∣x − c
∣∣ < δ and

∣∣f (x)− L
∣∣ � ε.

In this logical derivation, take particular note of the locations of the negation
symbol ¬ ; it advances to the right in each successive line until it vanishes in the last line.

If both existential and universal quantifiers are used in an expression, it is entirely
possible that the statement formedwith the quantifiers in a different order is not equivalent
to the original expression. Consider the statement

(∀x)(∃y)(3x + y = 5).

This statement is true; no matter what x we choose, we can set y = 5− 3x, and this value
for y satisfies the existential quantifier. However, what happens when the order of the
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quantifiers is reversed? The statement

(∃y)(∀x)(3x + y = 5)

says that there exists a real number y such that for every value of x we have 3x + y = 5.
This is absurd.

Exercise 1.6.11. Let P(x,y) : x2 + y < 0, where the universal set for each variable is
the set of real numbers. Identify the truth value of each of these statements. Pay attention
to the scrambling of the quantifiers and the variables.
(a) (∀x)(∃y)P(x,y).
(b) (∀y)(∃x)P(x,y).
(c) (∃x)(∀y)P(x,y).
(d) (∃y)(∀x)P(x,y).

Most mathematical statements that mathematicians seek to prove or disprove are
quantified in some way. Often the quantifiers are hidden. For example the statement

If n is an even integer, then n2 is an even integer

looks like a propositional function. But it really is the statement

For every integer n, if n is an even integer, then n2 is an even integer.

Here is another example.

Terminating decimals represent rational numbers.

A correct, complete translation of the statement is

(∀x ∈ R) [x has a terminating decimal expansion⇒ x is a rational number] .

Much of the time, even if a conditional is expressed without written quantifiers, the
variables are quantified in some way before the conditional is written.

Frequentlymathematicians will state theorems or facts with the words “all,” “every,”
“each,” or “some.”These arewords that indicate the presence of a quantifier. For example,

All differentiable functions are continuous.

Or

Every prime number greater than 2 is odd.
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Or

Some quadratic polynomials have complex roots.

IfP(x)means that x has condition p andQ(x)means x has condition q, then the statement

(1.6.2) All x’s with p also have q

is expressed as

(∀x)[P(x) ⇒ Q(x)],

and the statement

Some x’s with p also have q

is expressed as

(1.6.3) (∃x)[P(x) ∧ Q(x)].

Note that statement (1.6.3) is equivalent to “some x’swith q also have p,” but the statement
(1.6.2) is not equivalent to “all x’s with q also have p.”

Exercise 1.6.12. Write a sentence in everyday English that properly communicates
the negation of each statement.
(a) Every even natural number � 4 can be written as the sum of two prime numbers11.
(b) Some differentiable functions are bounded.

Exercise 1.6.13. Let J(p,�) mean that line � passes through point p, and let P(�,�′)
mean that lines � and �′ are parallel. Use logical symbols and the above notation to
express the following.
(a) No line is parallel to itself.
(b) Two parallel lines never pass through a common point.
(c) Every line passes through (at least) two distinct points.

11 The truth of this statement, known as the Goldbach Conjecture, remains one of the oldest unre-
solved mathematical questions. In 1742 the Prussian mathematician Christian Goldbach (1690–
1764) communicated it by letter to L. Euler, who reformulated the problem in the form that we
see here. If you prove this conjecture, then you stand a good chance of passing this course.
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1.7 Further Exercises

Exercise 1.7.1. Consider the following statements.

P: The integer n is divisible by 2.

Q: The integer n is divisible by 3.

R: The integer n is divisible by 6.

(a) Translate the following logical expressions into good English sentences.

(i) ¬P ∨ ¬Q (ii)
[
(P ∨ Q) ∧ ¬(P ∧ Q)

]⇒ ¬R
(b) What logical expression conveys the meaning of the following English sentence?

An integer n is divisible by 6 if and only if it is divisible by both 2 and 3.

(c) Write the contrapositive (in symbols) of the expression in part (a)(ii) and simplify it
so that no ¬ immediately precedes a parenthesis or bracket.

Exercise 1.7.2. For each of the following statements, write an equivalent statement
that uses neither “or” nor “and.”
(a) Two sets are equal or they have nothing in common.
(b) A given number is a perfect square and the number is less than 1000.

Exercise 1.7.3. An important tool for finding limits in calculus is l’Hôpital’s Rule,
one form of which is the following.

If functions f and g have continuous derivatives in an open interval con-
taining a and g′(x) 
= 0 in this interval, and if lim

x→a
f (x) = lim

x→a
g(x) = 0, then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

(a) State this conditional in contrapositive form.
(b) State the converse of this statement.
(c) State the negation of this conditional, but do not begin with something of the form,
“It is not so that . . ..”

Exercise 1.7.4. Here is another handshake problem, but a little more complicated than
the one in Theorem 1.1.4. A couple invites n couples to a party. Upon arriving, some
people shake hands with each other and some do not, but nobody shakes hands with
one’s own spouse or with oneself. After all the guests have arrived, the hostess asks each
of her guests as well as her husband how many individuals the person shook hands with.
Amazingly she comes up with 2n + 1 different numbers. The problem now is this: with
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how many people did the hostess shake hands, and with how many people did the host
shake hands? [Suggestion: Work this out first for n = 3 and then n = 4, and then find a
general pattern that works for an arbitrary positive integer n.You will need to prove that
it does indeed work.]

Exercise 1.7.5. Prove the following.
(a) P ⇒ (Q ∨ R) �� (P ∧ ¬R) ⇒ Q.
(b) ¬(P ⇔ Q) �� P ⊕ Q. (See Exercise 1.3.13 for the definition of ⊕.)
(c) P ⇒ (Q ∨ R) �� (P ⇒ Q) ∨ (P ⇒ R).
(d) P ⇒ (Q ∧ R) �� (P ⇒ Q) ∧ (P ⇒ R).
(e) (P ∨ Q) ⇒ R �� (P ⇒ R) ∧ (Q⇒ R).
(f) (P ∧ Q) ⇒ R �� (P ⇒ R) ∨ (Q⇒ R).

Exercise 1.7.6. Let P andQ be statements and define P♦Q according to the following
truth table.

P Q P♦Q
T T T
T F T
F T F
F F T

(a) Prove that P♦Q �� ¬Q ∨ (P ∧ Q).
(b) Find a different logical expression that uses some or all of the symbols P,Q,¬,∨,∧
that is logically equivalent to P♦Q. Prove that your answer is correct.
(c) Is ♦ commutative? Prove that your answer is correct.
(d) Is ♦ associative? Prove that your answer is correct.

Exercise 1.7.7. Make a truth table for the logical expression(
(P ⇒ Q) ∧ ¬Q)⇒ ¬P

and say whether it is a tautology, a contradiction, or neither.

Exercise 1.7.8. Prove that each of the following expressions is a tautology.
(a) [(P ⇒ Q) ∧ (Q⇒ R)] ⇒ (P ⇒ R).
(b) [(P ⇔ Q) ∧ (Q⇔ R)] ⇒ (P ⇔ R).
These tautologies illustrate the transitivity of⇒ and⇔ .

Exercise 1.7.9. At an international mathematics conference, Professor X has just
demonstrated the proof of his latest theorem, when Professor Y, seated in the back of
the lecture hall, interrupts.
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“Your result,” shouts ProfessorY, “follows immediately from a result of mine, which
I published many years ago.”

“I have no doubt that my result follows from yours,” responds Professor X calmly.
“I am also confident that your result does not follow from mine.”

Explain in terms of logic why the reply of Professor X is damning, and why, if
Professor X is correct, then the claim by ProfessorY carries no information.

Exercise 1.7.10. Let a and b be real numbers. Then z = a + bi, where i2 = −1, is
called a complex number12. A complex number z = a + bi is also a real number if and
only if b = 0. The conjugate of a complex number z = a + bi, written z, is defined by

z = a− bi.

Prove that, for any complex number z, if z = z, then z is real.

Exercise 1.7.11. Prove that for all real numbers a and b,∣∣|a| − |b|∣∣ � |a− b|.

Exercise 1.7.12. Recall that we can express the definition of the unique existential
quantifier ∃! by

(∃!x)P(x) �� (∃x)
[
P(x) ∧ (∀y)[P(y) ⇒ x = y]

]
.

Write an expression that is logically equivalent to ¬ [(∃!x)P(x)] . Follow the rule that the
negation symbol ¬ never immediately precedes a parenthesis or bracket.

Exercise 1.7.13. As in Exercise 1.6.13, let J(p,�)mean that line � passes through point
p (or equivalently, that p lies on �), and let P(�,�′) mean that lines � and �′ are parallel.
Use logical symbols and the above notation to express the following.
(a) Every point lies on (at least) two lines.
(b) Every two distinct points lie on a unique line.
(c) For every line and every point not on the given line, there exits a line through that
point that is parallel to the given line.
(d) Distinct lines have at most one point in common.
(e) If a line is parallel to two distinct lines, then those lines are parallel to each other.
(Assume that statement (a) of Exercise 1.6.13 holds.)

Exercise 1.7.14. Let E(a) mean that a is an even integer, R(a,b) mean that a and b are
relatively prime integers, and D(a,b) mean that the integer a divides the integer b. Use

12 More about complex numbers will be presented in Section 8.4.
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this notation and logical symbols to express the following. (Note that not all of these
statements are true.)
(a) Any two distinct even integers are not relatively prime.
(b) Any two distinct integers that are not even are relatively prime.
(c) An integer is even if and only if it is not relatively prime with 2.
(d) For integers a,b,c, if a divides b and b divides c, then a divides c.
(e) Whenever an integer divides the product of two integers, then it divides one of the
factors.
(f) For integers a,b,c, if a and b are relatively prime and a divides bc, then a divides c.
(g) Every integer z with the property that z and 2 are relatively prime has the property
that 8 divides z2 − 1.

Exercise 1.7.15. For positive integers n and k, let L(n,k) mean that n can be written
as the sum of exactly k squares. For example, since 17 = 42 + 12 = 32 + 22 + 22, both
L(17,2) and L(17,3) are true. We also continue the notation from Exercise 1.7.14. Use
this notation and logical symbols to express the following. (Some of the statements are
not true.)
(a) There are natural numbers that can be written as the sum of three squares.
(b) Every natural number can be written as the sum of four squares.
(c) There is a natural number that can be written as the sum of any number of squares.
(d) For a prime number p, if 4 divides p− 1, then p can be written as the sum of two
squares.
(e) For every natural number k, there is a natural number that can be written as the sum
of k squares.
(f) If two integers are relatively prime and each can be written as the sum of two squares,
then their product can be written as the sum of four squares.

Exercise 1.7.16. For each of the parts of Exercises 1.7.14 and 1.7.15,write the negation
of your expression with symbols. Follow the rule that the negation symbol ¬ never
immediately precedes a parenthesis or bracket.

Exercise 1.7.17. Sometimes, but not always, quantifiers distribute over logical oper-
ations. Determine which of the following pairs of statements are equivalent. In the case
of nonequivalent pairs, give an example of propositional functions P(x) and Q(x) for
which the paired statements are not equivalent.
(a) (∀x)[P(x) ∧ Q(x)] and (∀x)P(x) ∧ (∀x)Q(x).
(b) (∃x)[P(x) ∧ Q(x)] and (∃x)P(x) ∧ (∃x)Q(x).
(c) (∀x)[P(x) ∨ Q(x)] and (∀x)P(x) ∨ (∀x)Q(x).
(d) (∃x)[P(x) ∨ Q(x)] and (∃x)P(x) ∨ (∃x)Q(x).
(e) (∀x)[P(x) ⇒ Q(x)] and (∀x)P(x) ⇒ (∀x)Q(x).
(f) (∀x)[P(x) ⇔ Q(x)] and (∀x)P(x) ⇔ (∀x)Q(x).
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Exercise 1.7.18. For each of the following statements, define appropriate proposi-
tional functions and variables, then write the expression with logical symbols and the
propositional functions you defined.Write the negation of each expression with symbols
and as an English sentence.
(a) Every cloud has a silver lining.
(b) Nobody doesn’t like Sara Lee.
(c) Everybody Loves Raymond.
(d) There’s no friend like an old friend.

Exercise 1.7.19. (a) The first line of a Dean Martin standard goes, “Everybody loves
somebody sometime.” Let L(x,y, t)mean “Person x loves person y at time t,” and express
this romantic line in formal logic with quantifiers. Discuss how the meaning of this line
is changed (sometimes humorously) if the order of the quantifiers is changed.
(b)A line from the songHeartache Tonight by the Eagles goes, “Somebody’s gonna hurt
someone before the night is through.” LetH(x,y, t)mean “Person x is gonna hurt person
y at time t.” Use appropriate quantifiers and this propositional function to express this
line in symbols.

Exercise 1.7.20. Consider the saying “All that glitters is not gold.” What about, “Not
all that glitters is gold?” Which is the true statement? Are the two statements negations
of each other? Write the negation of each statement.

Exercise 1.7.21. Consider the following sentence:

Every Monday, I drink coffee or tea.

For each of the following sentences, say whether it is
1. equivalent to the given sentence,
2. equivalent to the negation of the given sentence, or
3. neither of the above.

(a) Every Monday I drink neither coffee nor tea.
(b) Every Monday, if I don’t drink coffee, then I drink tea.
(c) Some Mondays I drink neither coffee nor tea.
(d) If I drink neither coffee nor tea, then it isn’t Monday.
(e) A sufficient condition for me to drink coffee or tea is that it be Monday.
(f) If it isn’t Monday, then I drink neither coffee nor tea.

Exercise 1.7.22. Prove that within a given ellipse, the largest area of an inscribed
rectangle is half the product of the lengths of the major and minor axes of the ellipse.
[Use Figure 1.7.1 and your experience with analytic geometry and differential calculus.]
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Figure 1.7.1 The ellipse
x2

a2
+

y2

b2
= 1.

Exercise 1.7.23. A parabola is defined to be the set of all points equidistant from a
fixed point (called the focus) and a fixed line (called the directrix) not containing the
focus.

(a) Use this definition to prove that y =
1
4c

x2 is a formula for the graph of the parabola

whose focus is the point (0,c) and whose directrix is the line with equation y = −c. (See
Figure 1.7.2.)

x

y

(0, c)

y = -c

(x, y)
d1

d2

Figure 1.7.2 Parabola with focus (0,c) and directrix y = −c.

(b) Let P be any point on this parabola and let F be the focus. Let D be the point on
the directrix such that the segment PD is perpendicular to the directrix. Prove that the
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line tangent to the parabola at P is the perpendicular bisector13 of the segment DF. (See
Figure 1.7.3.)

(0, c)

P

Dy = -c

F

y

x

Figure 1.7.3 Exercise 1.7.23(b).

13 The perpendicular bisector of a segment is the line perpendicular to the segment containing
the midpoint of the segment.
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Number theory studies the arithmetic of the integers.You’ve been familiar with many
of these properties since you were a young child. For example, Proposition 1.0.1

states a fact from number theory. While this book is not a text for a course in number
theory, this very fundamental and useful material provides a bounty of practice for proof
writing. We begin with some basic concepts and notation about sets in order better to
express notions about numbers.

2.1 Basic Ideas of Sets

A set is a collection of objects. For mathematicians, these collections are usually of num-
bers, other mathematical objects, or even collections of other sets. A common notation
is to denote a set by an upper-case letter from the Latin alphabet and to list the contents
of the set in some clear way within braces like this:

B =
{
2,4,6,8,10

}
,

or

X =
{
all functions whose derivative is e3x − x2

}
.

In a set, the order of the objects is not relevant, and it is not important whether an object
in a set is listed more than once. So the set B above could be written as

B =
{
8,6,6,2,4,6,10,8,4

}
.

The objects in a set are the elements of the set. For example, 2 is an element of B,

and 1
3e

3x − x3

3 + 13 is an element of X . The symbol ∈ is used in place of the words “is
an element of,” as in

2 ∈ B and
1
3
e3x − x3

3
+ 13 ∈ X.

The symbol /∈ is used to indicate that an object is not an element of a set. For example,

17 /∈ B and e3x − x2 + 13 /∈ X.

Thus 17 /∈ B is shorthand for the statement ¬[17 ∈ B].

43
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Logical problems can arise if absolutely anything is permitted to be collected into
a set. In particular, a set is not allowed to be an element of itself1.

Often it is not practical or even possible to list all of the elements of a set. Certainly
one cannot list all of the elements in the set X above, but it is clear what the elements
of X are. More precisely, it is clear what a function must look like in order to be an
element of X . We wrote out in English the membership requirements for X, but there is
a symbolic way to write what we mean that is not specific to any spoken language. Here
is the way any mathematician can write the set X:

X =
{
f : f ′(x) = e3x − x2

}
.

This time the set X has been given in set-builder notation. The way to read this notation
(since we know from the context that f denotes a function) is,

“X is the set of functions f such that f prime of x equals e3x − x2. ”

The colon used in set-builder notation is translated as “such that.” Equivalently, since
we know from calculus what these functions are, we also may write

X =
{
1
3
e3x − 1

3
x3 + C : C is a real number

}
.

We might write the set D =
{
1,2,3,4,6,8,12,24

}
as

D =
{
k : k is a positive divisor of 24

}
or as

D =
{
k : Both k and

24
k

are positive integers

}
.

Mathematicians often agree upon shorthand notation for frequently used expres-
sions. For example, instead of writing (a ∈ X) ∧ (b ∈ X), we may write a,b ∈ X. How-
ever, a ∧ b ∈ X is meaningless, because the logical connective ∧ may be placed only
between two statements and never between two elements or between an element and a
statement. There is no analogous shorthand convention for (a ∈ X) ∨ (b ∈ X).

2.2 Sets of Numbers

We all develop a sense of numbers at an early age. We collect the “counting numbers,”
or natural numbers, into a set denoted by N:

N =
{
1,2,3,4,5,6,7, . . .

}
.

1 Bertrand Russell (1872–1970) was a British philosopher and logician who stated what became
known as Russell’s Paradox: Let B be the set of all sets which are not elements of themselves. Is
B an element of itself?
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Thus the set D =
{
1,2,3,4,6,8,12,24

}
may also be written as

D =
{
k : k ∈ N ∧ 24

k
∈ N

}
.

There are other important sets of numbers. For example, the set of positive even
numbers is

E =
{
2,4,6,8,10,12,14, . . .

}
,

or, in set-builder notation,

E =
{
n ∈ N : (∃k ∈ N)[n = 2k]

}
.

Exercise 2.2.1. List some elements in each of the following sets.
(a)
{
x ∈ N : (∃k ∈ N)[x = 7k]

}
(b)
{
n ∈ N : n2 + n− 12 = 0

}
(c)
{
y ∈ N : (∃� ∈ N)[y = �2]

}
(d)
{
s ∈ N : 3

√
s ∈ N

}
(e)
{
t ∈ N : (∃q ∈ N)[t = 4q + 1]

}
Here is the standard notation for some other sets of numbers. The set of integers is

denoted by

Z =
{
. . . ,−3,−2,−1,0,1,2,3, . . .}.

The ellipsis (three dots) suggests what the other elements in the set are.
We could have equally well written Z =

{
. . . ,−4,−3,−2,−1,0,1,2,3,4, . . .} or

Z =
{
. . . ,−2,−1,0,1,2, . . .}. Generally, just enough elements are included so that an

intelligent reader (like you) canmake a very good guess as towhat the unwritten elements
ought to be.

The set Q of rational numbers2 is

Q =
{a
b
: a,b ∈ Z and b 
= 0

}
.

Note that every integer z is also a rational number, since z can be expressed as
z
1
.

The set R of real numbers corresponds to the collection of all points on the number
line. In terms of the real numbers, the set of complex numbers (see Exercise 1.7.10) is

C =
{
a + bi : a,b ∈ R

}
, where i2 = −1.

2 The letter Q stands for quotient. The letter Z comes from the German word Zahl, meaning
number.
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The symbols N,Z,Q,R, and C have the meanings just described in any mathematical
writing in every human language3. Mathematics is indeed an international language.

If S is any of the sets Z,Q, or R, then we define

S+ = {x ∈ S : x > 0} and S− = {x ∈ S : x < 0}.
For example,R+ is another notation for the positive ray (0,∞) on the number line. Since
Z+ is also denoted by N, we prefer to use the symbol N when needed.

Note the different uses of the set-builder notation. The set

E =
{
n ∈ N : (∃k ∈ N)[n = 2k]

}
is described by using the initial statement “n ∈ N” as first screening: “Those natural
numbers that meet the following membership criterion . . . .” We need consider only
natural numbers for candidates. Whereas the set

Q =
{a
b
: a,b ∈ Z and b 
= 0

}
is described first by giving the structure of the elements and then the restrictions within
the structure.

Exercise 2.2.2. List some elements in each of the following sets.

(a)

{[
a b
c d

]
: a,b,c,d ∈ Z ∧ ad − bc = 1

}
(b)
{
2r+1 − 1 : r ∈ E

}
(c)
{
3x + 2y : x,y ∈ Z

}
[Is 1 an element of this set?]

Exercise 2.2.3. Use symbols and set-builder notation (use no words in your answers)
to denote each of the following sets:
(a)
{
1,8,27,64,125, . . .

}
;

(b)
{
0,±1,±8,±27,±64,±125, . . .};

(c) The set of all functions whose graph passes through the point (3,0) [UseF to denote
the set of functions.];
(d) The set of all functions f whose graphs have a horizontal tangent line at the point
(3, f (3));
(e) The set of all natural numbers that are either a divisor of 100 or a multiple of 100;
(f)
{
. . . , 1

8 ,
1
4 ,

1
2 ,1,2,4,8,16, . . .

}
;

(g)
{±5,±15,±25,±35, . . .};

(h)
{
1,3,6,10,15,21,28, . . .

}
.

3 There is one exception to the universality of these symbols. Sometimes N is defined to include
0; that is not the convention of this book.
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2.3 Some properties of N and Z

We begin our introduction to number theory with some basic properties of the integers.

Definition 2.3.1. Let n ∈ Z. Then n is even whenever there exists some k ∈ Z such
that n = 2k, and n is odd whenever there exists some k ∈ Z such that n = 2k + 1.

Proposition 2.3.2. Let n ∈ Z. If n is even, then n2 is even.

Proof. Since n is even, by Definition 2.3.1, there exists k ∈ Z such that n = 2k. Then

n2 = (2k)2 = 4k2 = 2(2k2).

By Definition 2.3.1, since 2k2 ∈ Z, n2 is even. [Elementary proofs often are no more
complicated than this: translate the hypothesis with a definition, perform some math-
ematically correct manipulation, then translate again with a definition to obtain the
conclusion.] �

The set of even numbers also has what is called a closure property with respect to
addition, as we now show.

Proposition 2.3.3. Let m,n ∈ Z. If both m and n are even, then so is m + n.

Proof. Suppose thatm and n are even integers. By Definition 2.3.1, there exist integers
k and � such that m = 2k and n = 2�. [Do you see why it is essential to introduce not
one, but two, new variables k and �?] Then

m + n = 2k + 2� = 2(k + �),

and k + � ∈ Z. It follows that m + n is even. �

Exercise 2.3.4. Let n,m ∈ Z. Prove the following.
(a) If both m and n are even, then so is mn.
(b) If n is odd and m is even, then m + n is odd and mn is even.
(c) If both m and n are odd, then m + n is even and mn is odd.

The next definition is a fundamental idea in the multiplicative theory of Z.

Definition 2.3.5. Let a,b ∈ Z with a 
= 0. Then a divides b, written a | b, when there
exists an integer k such that b = ak. Equivalently, we may say that b is divisible by a,
or that b is amultiple of a, or that a is a divisor of b. If a | b and 1 < a < |b|, then a is
a proper divisor of b. We write a � b when a does not divide b.
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For example, since 72 = 9 · 8, we have that 8 | 72 and 9 | 72.The equation 9k = 37
does not have an integer solution, so 9 � 37.

Remark on notation. Never confuse “divides,” written |, with “divided by,” written /.
The statement a | b is either true or false; it is not a number. The number a/b , also

written as
a
b
, is the number that is the solution to the equation bx = a.

Given integers a and b, any number of the form ax + by, where x and y are also
integers, is a linear combination of a and b. For example, 7 is a linear combination of 5
and 6, becausewe canwrite 7 = 5 · 5 + 6 · (−3).We can alsowrite 7 = 5 · (−1) + 6 · 2.
However, 7 is not a linear combination of 4 and 6. [Why not?What do the above results
and exercises say about sums and products of even numbers?]

Theorem 2.3.6. The following statements hold for all a,b,c,d ∈ Z.
(i) a | 0, 1 | a, and a | a.
(ii) a | 1 if and only if a = ±1.
(iii) If a | b and c | d, then ac | bd.
(iv) If a | b and b | c, then a | c.
(v) If a | b and a,b > 0, then a � b.
(vi) If a | b and a | c, then a divides every linear combination of b and c.

Proof. We prove parts (i), (v), and (vi). The rest are left as Exercise 2.3.7.

Note that

a · 0 = 0, 1 · a = a, and a · 1 = a.

This proves part (i).

For part (v), we have the additional hypothesis a,b > 0, so we assume that there
exists some � ∈ N such that a� = b. Since � � 1, we conclude that a � a� = b.

To prove part (vi), assume that there exist integers k and � such that ak = b and
a� = c. Then for arbitrary x,y ∈ Z, we have

bx + cy =(ak)x + (a�)y
=a(kx + �y).

Since kx + �y ∈ Z, we see that a | bx + cy. �

Exercise 2.3.7. Write proofs for parts (ii), (iii), and (iv) of Theorem 2.3.6.
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Exercise 2.3.8. Prove the following corollary to Theorem 2.3.6. Let a,b ∈ N. If a | b
and b | a, then a = b.

There is an intuitively reasonable assumption called the Well Ordering Principle
needed for the next proof. It will be presented in more generality in Section 4.2. It is an
intrinsic property of the natural numbers, and we will accept it without proof.

The Well Ordering Principle. Any set of natural numbers with at least one element
has a smallest element.

The next theorem is the mathematical formulation of a familiar fact about division
with remainder. The variables q and r in the statement of the theorem suggest the words
quotient and remainder, respectively.

Theorem 2.3.9. (Division Algorithm) If a ∈ Z and b ∈ N, then there exist q,r ∈ Z
such that a = qb + r and 0 � r < b. Furthermore, for each b ∈ N, this representation
of a is unique.

Proof. Let a ∈ Z and b ∈ N be given, and let

S =
{
a + xb : x ∈ Z ∧ a + xb � 0

}
.

Note that there is an element in S. (If a � 0, pick x = 0, so that a ∈ S; if a < 0, pick
x = −a, so that a− ab = a(1− b) ∈ S.) Thus, by the Well Ordering Principle, S has
a least element, which we denote by r. Since r ∈ S, r = a− qb for some q ∈ Z. By
definition, r � 0.

Suppose that r � b. [In order to deduce that r < b, we assume that r � b and derive
a contradiction.] Then

a− (q + 1)b =a− qb− b

=r − b

�0,

and a− (q + 1)b = r − b < r, since b > 0. This gives an element r − b ∈ S which is
strictly less than r, contradicting the minimality of r. [This is the contradiction: r is the
least element of S, and there is an element of S less than r.] Thus r < b. This yields the
representation a = qb + r with 0 � r < b.

To show that the representation is unique, suppose that we have two such represen-
tations for a:

a = qb + r and a = q1b + r1.



50 Numbers

Then

b(q − q1) = r1 − r.

We take the absolute value of each side and note that b > 0 to see that

(2.3.1) b |q − q1| = |r1 − r|.
By hypothesis, 0 � r < b and 0 � r1 < b. We rewrite the first inequality as
−b < −r � 0 and then add the second to it to obtain

−b < r1 − r < b,

which is equivalent to

|r1 − r| < b.

This, together with equation (2.3.1), implies that b | q − q1 |< b. Since b > 0, we have
0 � | q − q1 |< 1. But q − q1 ∈ Z, and so q − q1 = 0. Therefore q = q1. It follows
immediately that r = r1. Thus the representation is unique. �

Example 2.3.10. Let a = 39 and b = 7. Then we can write 39 = 5 · 7 + 4. (A
fourth-grader would respond to “39÷ 7” by saying, “5 remainder 4.”) Similarly
−39 = (−6) · 7 + 3.

Exercise 2.3.11. Apply the Division Algorithm to a = 213 and b = 19. Do this also
for a = −213 and b = 19.

Proposition 2.3.12. Let n ∈ Z. Then n is either even or odd, but not both.

Proof. Apply the Division Algorithm to n and 2. Then either for some q ∈ Z it holds
that n = 2q + 0 = 2q or for some q′ ∈ Z it holds that n = 2q′ + 1. In the first case
n is even, and in the second case n is odd. If n is both even and odd, then by the
uniqueness of the representation, 2q = 2q′ + 1. But then 1 = 2(q − q′), implying that
2 | 1. By Theorem 2.3.6(v), 2 � 1, clearly a contradiction. Hence no integer is both
even and odd. �

Exercise 2.3.13. Prove that an integer is odd if and only if its square is odd.

Exercise 2.3.14. Prove that any odd number is either of the form 4k + 1 or of the form
4k + 3, and every even number is of the form 4k or 4k + 2, where k ∈ Z.

Exercise 2.3.15. (a) Use the DivisionAlgorithm to prove that the 1’s digit of a perfect
square is never 2, 3, 7, or 8. (Recall that an integer s is a perfect square if there exists
k ∈ N such that s = k2.)
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(b) Prove that when a perfect square is divided by 9, the remainder is never 2, 3, 5, 6, or 8.
(c) What are the possible remainders when a perfect square is divided by 11?

2.4 Prime Numbers

Natural numbers p whose only divisors are 1 and p have long been of particular interest.

Definition 2.4.1. The number p ∈ N is prime if p has no proper divisor. An equivalent,
symbolic formulation is that p is prime if the following statement is true:

p > 1 ∧ (∀n ∈ N)
[
n | p⇒ (n = 1) ∨ (n = p)

]
.

An integer greater than 1 that is not prime is composite. (The integer 1 is neither
prime nor composite.) A prime factorization of any integer n is a representation of
n as a product n = (±1)p1 p2 · · · pk whose factors are (not necessarily distinct) prime
numbers.

The significance of the prime numbers as the basic structural components of the
natural numbers is expressed in the following theorem. The proof of this result must wait
until Chapter 4, where it appears as Theorem 4.3.3.

The Fundamental Theorem of Arithmetic. Every integer greater than 1 has a prime
factorization that is unique up to the order in which the factors occur.

The surprising part of the Fundamental Theorem of Arithmetic is not that a prime
factorization of every natural number exists, but rather that the factorization is unique.
There are important algebraic structures that have prime elements, but do not have unique
factorization into prime elements. (See Exercises 2.4.4 and 2.8.17.)

More than 2000 years ago, Euclid4 proved that there are infinitely many prime
numbers. His proof still remains a model of mathematical elegance.We present Euclid’s
proof, which is an excellent example of a proof by contradiction.

Theorem 2.4.2. There are infinitely many prime numbers.

Proof. Suppose that there are only finitely many, say k, prime numbers, and here is
the complete list:

2,3,5,7, . . . ,pk−1,pk .

4 Little is known about Euclid’s life. Most scholars agree that Euclid was Greek and lived in
Alexandria, Egypt, around 300 B.C.E. He is credited with writing The Elements, a collection of
books on Geometry and Number Theory that includes the proof of the infinitude of the prime
numbers.
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Let q = (2 · 3 · 5 · . . . · pk) + 1. Since q is greater than each of the numbers on this list, q
cannot be prime. By the Fundamental Theorem of Arithmetic, q must then be a product
of prime numbers. Therefore, there is a prime number pi on the list such that pi | q. By
definition of divides, pi | 2 · 3 · 5 · . . . · pk , since pi is itself one of these prime numbers.
Then by Theorem 2.3.6(vi), pi | q − (2 · 3 · 5 · . . . · pk). But q − (2 · 3 · 5 · . . . · pk) = 1,
and the claim that pi | 1 contradicts Theorem 2.3.6(v), since pi > 1. Thus our assumption
that there are finitely many prime numbers is false. �

Although there are infinitely many prime numbers, there are arbitrarily large gaps
between consecutive prime numbers (recall Theorem 1.1.5).

Pairs of prime numbers that differ by 2 are called twin primes. Examples of such
pairs are (3,5), (5,7), (11,13), (101,103), and many, many more. Just how many more is
another matter. Although the set of all prime numbers was easily shown to be infinite,
it is still unknown as of this writing whether there exist infinitely many twin primes.
Another famous unresolved question5 in number theory is stated in the next exercise.

Exercise 2.4.3. It has been conjectured that there are infinitely many prime numbers
of the form n2 + 1 for n ∈ N.
(a) Find at least six such prime numbers.
(b) Prove that if n2 + 1 is a prime number greater than 5, then the digit in the 1’s place
of n is 0, 4, or 6.
(c) Why might you suspect that the converse of the statement in part (b) is false?

Exercise 2.4.4. A rational number of the form
a
2n

, where a ∈ Z and n ∈ N is called a

diadic rational. Let D be the set of all diadic rational numbers.
(a) Prove that if r,s ∈ D, then rs ∈ D.

(b) A diadic prime is an element of D of the form
p
2n

where p is prime. Show that there

are elements of D that do not have a unique prime factorization into diadic primes.

2.5 gcd’s and lcm’s

The twin notions of the greatest common divisor and the least common multiple of a
pair of integers are known to most people since elementary school. Indeed, we use them

5 If you resolve either of these two problems and are under the age of 40, you would receive serious
consideration for the Fields Medal. The Fields Medal is regarded as the highest professional honor
that a mathematician can receive. It is generally viewed as the equivalent to the Nobel Prize for
mathematicians (there is no Nobel Prize for mathematics). There is no age limit for the Cole Prize,
number theory’s most prestigious award.
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to reduce a fraction to lowest terms or to add two fractions with different denominators.
However, these notions have some interesting properties of their own.

Definition 2.5.1. Let a,b ∈ Z. Then c ∈ N is a common divisor of a and b whenever
c | a and c | b.

Example 2.5.2. The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24. The positive
divisors of 84 are 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, and 84. The common divisors of 24
and 84 are

1,2,3,4,6, and 12;

of these, 12 is clearly the greatest.

Definition 2.5.3. Let a,b ∈ Zwith a and b not both 0. Let D(a,b) be the set of common
divisors of a and b; that is,

D(a,b) =
{
c ∈ N : c | a ∧ c | b}.

The greatest common divisor of a and b, denoted gcd(a,b), is the largest element of
D(a,b). We denote this element by gcd(a,b). Thus,

(∀c ∈ D(a,b))[c � gcd(a,b)].

By Theorem 2.3.6(i), the number 1 is always a common divisor of a and b and thus
is always an element ofD(a,b). So, for all a,b ∈ Z, gcd(a,b) � 1.When gcd(a,b) = 1,
we say that a and b are relatively prime.

You are no doubt familiar with finding gcd(a,b) by comparing the prime factoriza-
tions of a and b.We present a different approach that develops the properties of gcd(a,b)
without requiring any factorization of any integers.

Proposition 2.5.4. Suppose a | b with a > 0. Then gcd(a,b) = a.

Proof. By the hypothesis and Theorem 2.3.6(i), a is a common divisor of a and b. Let
c ∈ N be a common divisor of a and b. Since c | a, by Theorem 2.3.6(v), c � a. Since c
is an arbitrary common divisor of a and b, gcd(a,b) = a. �

The next theorem is the foundation of our study of the greatest common divisor.

Theorem 2.5.5. Let a,b ∈ Z with a,b not both 0. Then gcd(a,b) is the least positive
linear combination of a and b.

Proof. Let S denote the set of all positive linear combinations of a and b. Because
not both a and b are 0, we have a2 + b2 > 0, and so a2 + b2 ∈ S. [Why?] That means
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that S has an element. By the Well Ordering Principle, S has a least element �, and so
� = ax0 + by0 for some x0,y0 ∈ Z.

For brevity, let d = gcd(a,b). We must show that d = �. [Our strategy is to prove
first that d � � and then that � � d.]

By definition of gcd, d | a and d | b. By Theorem 2.3.6(vi), d divides every linear
combination of a and b. In particular, d | �. By Theorem 2.3.6(v), d � �.

By the Division Algorithm (Theorem 2.3.9) applied to a and �, there exist q,r ∈ Z
with 0 � r < � such that a = q� + r. Thus

r = a− q�

= a− q(ax0 + by0)
= a(1− qx0) + b(−qy0),

which shows that r is a linear combination of a and b. However, r cannot belong to S,
because r < � and � is by definition the least element of S. It follows that r is not positive,
and so r = 0. Therefore a = q� and so � | a.

We can repeat this very same argument, applying the Division Algorithm instead
to b and �, to conclude that � | b. Thus � is a common divisor of a and b. Since d is
the greatest common divisor of a and b, it follows that � � d. Since d � � and � � d, it
follows that d = �. �

Example 2.5.6. Elementary arithmetic yields that gcd(32,20) = 4. We can write

4 = 32 · 2 + 20 · (−3).
This linear combination is not unique since

4 = 32 · 2 + 20 · (−3)
= 32 · 2− 32 · 20 + 32 · 20 + 20 · (−3)
= 32 · (−18) + 20 · 29.

The greatest common divisor d = gcd(a,b) of a and b is both a “least” and a “great-
est.” By definition, d is the greatest integer that divides both a and b.At the same time, by
Theorem 2.5.5, d is the least positive linear combination of a and b. Because 1 is the least
positive integer, when we find a linear combination ax + by = 1, we can immediately
conclude that a and b are relatively prime.
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Example 2.5.7. Let us prove that any two consecutive integers are relatively prime.
Let n ∈ Z. Then (−1)n + (1)(n + 1) is a linear combination of n and n + 1 that equals
1. By Theorem 2.5.5, gcd(n,n + 1) = 1.

An important corollary to Theorem 2.5.5 is the following.

Corollary 2.5.8. Let a,b ∈ Z with a and b not both 0. Then the numbers

a
gcd(a,b)

and
b

gcd(a,b)

are relatively prime.

Proof. Let d = gcd(a,b). By Theorem 2.5.5, for some x,y ∈ Z we have

d = ax + by,

and so

1 =
a
d
x +

b
d
y.

Because d is a common divisor of a and b, both
a
d

and
b
d

are integers. Thus, by

Theorem 2.5.5,

gcd
(
a
d
,
b
d

)
= 1. �

Notice how, in the proofs of these results, we proceed by expressing the greatest
common divisor as a linear combination and then manipulating that linear combination.

Exercise 2.5.9. Prove the following.
(a) For all n ∈ N, gcd(2n + 1,9n + 4) = 1.
(b) For all n ∈ N, gcd(5n + 8,3n + 5) = 1.

Exercise 2.5.10. Prove that gcd(a,m) = 1 and gcd(b,m) = 1 if and only if
gcd(ab,m) = 1.

Exercise 2.5.11. (a) Prove Euclid’s Lemma: If a | bc and gcd(a,b) = 1, then a | c.
(b) Give some examples of integers a,b,c such that a � b and a � c, but still a | bc. In
your examples, must gcd(a,b) > 1 hold?
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Definition 2.5.12. Let a,b be nonzero integers. Then m ∈ N is a common multiple of
a and b if a | m and b | m.

Example 2.5.13. The first few positive multiples of 12 are 12, 24, 36, 48, 60, 72, and
84. Some small positive multiples of 8 are 8, 16, 24, 32, 40, 48, and 56. The common
multiples of 8 and 12 include 24 and 48; of course there are infinitely many more, but
note that 24 is the least of them.

Definition 2.5.14. Let a,b be nonzero integers. Let M(a,b) be the set of common
multiples of a and b; that is

M(a,b) =
{
m ∈ N : a | m ∧ b | m}.

The least common multiple of a and b, denoted lcm(a,b), is the smallest element of
M(a,b). Thus

(∀m ∈ M(a,b))[lcm(a,b) � m].

Note that M(a,b) must have at least one element, since ab ∈ M(a,b) because a|ab
and b|ab. Thus by the Well Ordering Principle, there is a smallest element of M(a,b).
Of course, ab is not necessarily the smallest element of M(a,b).

Exercise 2.5.15. (a) Find lcm(35,49).
(b) Find lcm(35,90).
(c) Find lcm(35,91).

Exercise 2.5.16. Prove that lcm(n,kn) = kn, for n,k ∈ N.

Lemma 2.5.17. If a,b ∈ N and c is any common multiple of a and b, then lcm(a,b) | c.
Proof. Assume c is a common multiple of a and b but that lcm(a,b) � c. [We seek a
contradiction.] By the Division Algorithm (Theorem 2.3.9), we have

c = q · lcm(a,b) + r,

whereq,r ∈ Zwith 0 < r < lcm(a,b).Since each ofa andbdivides both c and lcm(a,b),
each of a and b must divide c− q · lcm(a,b) = r. Thus r is a common multiple of a
and b. But r < lcm(a,b), contrary to the definition of lcm. We conclude that the lemma
is true. �

There is a simple identity that relates the gcd(a,b) to lcm(a,b).

Proposition 2.5.18. For all a,b ∈ N,

ab = lcm(a,b) · gcd(a,b).
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Proof. Let lcm(a,b) = m and gcd(a,b) = d. By definition,
a
d
,
b
d
∈ N. Thus

ab
d

=

a · b
d

=
a
d
· b is a commonmultiple of a and b. Thismeans thatm � ab

d
, and somd � ab.

On the other hand, by Lemma 2.5.17, m | ab, so that
ab
m
∈ N. Then, since m = ak

and m = b� for some k,� ∈ N, we have
ab
m

=
ab
b�

=
a
�
∈ N. Similarly

b
k
∈ N. Since

a
�
· � = a, we have

a
�
| a; in other words

ab
m
| a.A similar argument shows that

ab
m
| b.

Thus
ab
m

is a common divisor of a and b. Hence
ab
m

� d, which implies ab � md. The

two inequalities md � ab and ab � md imply ab = md. �

Exercise 2.5.19. (a) Determine a formula for the least common multiple of two con-
secutive integers.
(b) Determine a formula for the least common multiple of two integers whose difference
is a prime number. [Hint: Consider two cases.]

Exercise 2.5.20. (a) Prove that if gcd(a,b) = k and gcd(b,c) = k, then gcd(a,c) � k.
(b) Give examples of integers a,b,c such that gcd(a,b) = gcd(b,c), and gcd(a,c) >
gcd(a,b).

2.6 Euclid’s Algorithm

In arithmetic class you found gcd(a,b) by factoring a and b. This is easy to do when
the numbers involved are fairly small. It turns out to be extremely difficult and time
consuming (practically impossible, really) to factor very large numbers, and yet modern
secure codes require that at least someone know the greatest common divisor of a pair
of very large numbers. In fact, modern cryptographic keys utilize prime numbers and
products of prime numbers that are hundreds of digits long. Euclid’sAlgorithmprovides a
way to find the greatest common divisor of two numbers that is muchmore efficient when
the numbers involved are very large. In this sense, Euclidwasmillennia ahead of his time.

Lemma 2.6.1. Let a,b,x ∈ Z with a and b not both 0. Then

gcd(a,b) = gcd(a,b + ax).

Proof. Let d = gcd(a,b). From Theorem 2.3.6(vi), we have that d | b + ax. So d is a
common divisor of a and b + ax. Thus d � gcd(a,b + ax).
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By Theorem 2.5.5, there exist u,v ∈ Z such that

d = au + bv

= au− axv + bv + axv

= a(u− xv) + (b + ax)v.

Thus d is a linear combination of a and b + ax. Since gcd(a,b + ax) is the least of
any such positive linear combinations, we conclude that d � gcd(a,b + ax). Therefore
d = gcd(a,b + ax). �

Euclid’s Algorithm (also called The Euclidean Algorithm) is really nothing more
than a systematic organization of successive applications of Lemma 2.6.1.

Theorem 2.6.2. (Euclid’s Algorithm) Let a,b ∈ N. By applying the Division
Algorithm repeatedly, let

a = bq1 + r1 with 0 < r1 < b;

b = r1q2 + r2 with 0 < r2 < r1;

r1 = r2q3 + r3 with 0 < r3 < r2;

...
...

rj−2 = rj−1qj + rj with 0 < rj < rj−1;

rj−1 = rjqj+1.

Then gcd(a,b) = rj, the last non-zero remainder.

Proof. First we observe that the process must terminate. This is because r1 > r2 >
· · · > rj−1 > rj > 0, and by the Well Ordering Principle, there is a smallest element of
the set of natural numbers less than or equal to r1. By Lemma 2.6.1 we have

gcd(a,b) = gcd(a− bq1,b) = gcd(r1,b) = gcd(r1,b− r1q2)
= gcd(r1,r2) = · · · = gcd(rj−1,rj) = rj,

since rj | rj−1 (recall Proposition 2.5.4). �

Example 2.6.3. Find the gcd(158,36). We calculate and record:

158 = 4 · 36 + 14

36 = 2 · 14 + 8

14 = 1 · 8 + 6

8 = 1 · 6 + 2

6 = 3 · 2.
Since 2 is the last non-zero remainder, gcd(158,36) = 2.
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Given a and b, Euclid’s Algorithm can produce a linear combination ax + by =
gcd(a,b). This is accomplished by executing in reverse order the steps in an application
of Euclid’s Algorithm to find an x and y that work.

Example 2.6.4. Find gcd(235,574), and find integers x and y such that

235x + 574y = gcd(235,574).

Apply Euclid’s Algorithm in the usual way, but then go back and solve each line for the
remainder:

574 = 2 · 235 + 104 �� 104 = 574− 2 · 235;
235 = 2 · 104 + 27 �� 27 = 235− 2 · 104;
104 = 3 · 27 + 23 �� 23 = 104− 3 · 27;
27 = 1 · 23 + 4 �� 4 = 27− 1 · 23;
23 = 5 · 4 + 3 �� 3 = 23− 5 · 4;
4 = 1 · 3 + 1 �� 1 = 4− 1 · 3;
3 = 3 · 1.

So gcd(235,574) = 1. Now substitute expressions from the right-hand column until you
reach a linear combination of 235 and 574.

1 = 4− 1 · 3 = 4− 1 · (23− 5 · 4)
= 6 · 4− 1 · 23 = 6 · (27− 1 · 23)− 1 · 23
= 6 · 27− 7 · 23 = 6 · 27− 7 · (104− 3 · 27)
= 27 · 27− 7 · 104 = 27 · (235− 2 · 104)− 7 · 104
= 27 · 235− 61 · 104 = 27 · 235− 61 · (574− 2 · 235)
= 149 · 235− 61 · 574.

Thus

235 · 149− 574 · 61 = 35,015− 35,014 = 1 = gcd(235,574),

with x = 149 and y = −61.

Exercise 2.6.5. (a) Find gcd(256,847) and integers x,y such that

256x + 847y = gcd(256,847).

(b) Find gcd(2860,7605) and integers x,y such that

2860x + 7605y = gcd(2860,7605).

(c) Use Proposition 2.5.18 and parts (a) and (b), respectively, to find lcm(256,847) and
lcm(2860,7605).
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2.7 Rational Numbers and Algebraic Numbers

In Section 2.2 we introduced the set Q of rational numbers. A rational number q is

written in lowest terms when q =
a
b
and a,b are integers such that gcd(|a|, |b|) = 1.

Since, by Corollary 2.5.8, the fraction
a/gcd(|a|, |b|)
b/gcd(|a|, |b|) is always in lowest terms, any

rational number
a
b
can be written in lowest terms.

We define the set I of irrational numbers by I =
{
x ∈ R : x /∈ Q

}
. Let us show

that irrational numbers exist6.

Theorem 2.7.1.
√
2 ∈ I.

Proof. Suppose
√
2 ∈ Q. [We seek a contradiction.] By definition of Q,

√
2 =

a
b
for

some a,b ∈ N with b 
= 0.We may assume that gcd(a,b) = 1, because if gcd(a,b) > 1,
then as mentioned above, we can divide both a and b by gcd(a,b) to obtain a represen-
tation of

√
2 in lowest terms. Then we have

√
2b = a, and so 2b2 = a2. Therefore a2 is

even, and so by Exercise 2.3.13 and Proposition 2.3.12, a is even. Then a = 2k for some
k ∈ Z.

Substitution gives 2b2 = (2k)2, and so b2 = 2k2. Then b2 is even and hence b is
even. Since a and b are both even, gcd(a,b) � 2. This contradicts our assumption that
gcd(a,b) = 1. Thus

√
2 ∈ I. �

Not only is
√
2 irrational, but the square root of any natural number that is not a

perfect square is irrational, too.

Theorem 2.7.2. Let k ∈ N. If
√
k /∈ N, then

√
k ∈ I.

Proof. Weprove the contrapositive.Assume that
√
k /∈ I.Then, as in the previous proof,

since
√
k > 0, there exist a,b ∈ N with b 
= 0 such that

√
k =

a
b
and gcd(a,b) = 1. By

Theorem 2.5.5, there exist x,y ∈ Z such that ax + by = 1, and so
√
k ax +

√
k by =

√
k.

By our assumption,
√
k b = a and

√
k a = kb (verify these facts). By substitution,

kbx + ay =
√
k.

Since k,b,x,a,y ∈ Z, it follows that
√
k ∈ Z. In fact,

√
k ∈ N since

√
k is positive. �

6 The idea that irrational numbers exist was appalling to the followers of Pythagoras (circa 580–500
B.C.E.), the Greek mathematician for whom the famous theorem is named. According to various
sources, a Pythagorean named Hippasus either was expelled or drowned after proving the next
theorem.
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Exercise 2.7.3. Assume that x ∈ Q and y ∈ R, with y 
= 0. Prove the following.
(a) x + y ∈ Q if and only if y ∈ Q.
(b) xy ∈ Q if and only if x = 0 or y ∈ Q.
(c) 1/y ∈ Q if and only if y ∈ Q.

Example 2.7.4. Is it possible to have ab ∈ Q even when both a and b are irrational?
We propose two candidates:

√
2

√
2
and

(√
2

√
2)√

2
.

If
√
2

√
2 ∈ Q, then the first candidate gives an affirmative answer by Theorem 2.7.1.

Otherwise,
√
2

√
2 ∈ I, in which case(√

2
√
2)√

2
=
√
2

√
2·√2

=
√
2
2

= 2 ∈ Q.

Note that the question of whether
√
2

√
2
is rational or irrational remains unresolved here.

(In fact,
√
2

√
2 ∈ I, but the mathematics behind the proof is very deep.)

Although the usual discussion in secondary school about rational and irrational
numbers concerns the decimal expansion of a number, it is more traditional in the math-
ematical community to view rational and irrational numbers as we have defined them
here. Nonetheless, we demonstrate the equivalence of these two approaches.

Theorem 2.7.5. A real number is rational if and only if its decimal expansion termi-
nates or has an infinitely repeating sequence of digits.

Proof. Let r ∈ R. If r ∈ Z, then r can be written as r.0, and so its decimal expan-

sion clearly terminates. So assume that r ∈ Q but r /∈ Z and write r =
a
b

for some

a,b ∈ Z, b 
= 0. It suffices to assume that r ∈ (0,1). [That means, if this proof works
when r ∈ (0,1), then the theorem is true for all r ∈ R.] This is so because, given any
x ∈ R, either x ∈ Z or there is an integer k such that x + k ∈ (0,1). Clearly x and x + k
have the same decimal expansion to the right of the decimal point. We convert r into its
decimal expansion by long division in the usual way:

b
)
a.000 · · · .

If the division process terminates, then we are done. Otherwise, since each digit of the
quotient determines in turn its successor, and since there are at most b− 1 possible
remainders when dividing by b (by the DivisionAlgorithm), some digit of the remainder
must show up again, forcing a sequence of digits to repeat forever. The length of the
repeating cycle is at most b− 1.
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For the converse, first suppose that the decimal expansion of r terminates; that is,
that r = 0.a1 a2 · · ·ak , where each ai ∈ {0,1,2,3,4,5,6,7,8,9} and ak 
= 0. Then

r =
a110k−1 + a210k−2 + · · ·+ ak

10k

satisfies the definition of a rational number.

Next we suppose that the decimal expansion of r has an infinitely repeating sequence
of digits that begins immediately after the decimal point:

r = 0.b1b2 · · ·bk .
Here the overline indicates that the sequence of digits beneath it is repeated forever.
Then7

10kr = b1b2 · · ·bk .b1b2 · · ·bkb1b2 · · ·bk .
So

10kr − r = b1b2 · · ·bk ,
giving

r =
b1b2 · · ·bk
10k − 1

∈ Q.

Suppose r has an initial sequence of digits before the repeating sequence: r =
0.a1 a2 · · ·a�b1b2 · · ·bk . Let r′ = 0.b1b2 · · ·bk . By the previous case, r′ ∈ Q. It is easy to
verify that

r =
r′ + a1 a2 · · ·a�

10�
.

By the previous case and Exercise 2.7.3, r ∈ Q. �

Example 2.7.6. What rational number is r = 0.7461538? This is the last case of the
proof. Here � = 1, k = 6, a1 = 7, and

r′ = .461538 =
461538
106 − 1

=
461538
999999

=
6
13

.

So

r =
6/13 + 7

10
=

97
130

when written in lowest terms.

7 When we write b1b2 · · ·bk we mean the integer b110
k−1 + b210

k−2 + · · ·bk−110
1 + bk .
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We restate the previous theorem in terms of irrational numbers.

Corollary 2.7.7. Let x ∈ R. Then x ∈ I if and only if the decimal expansion of x is
non-terminating and non-repeating.

We have seen that, for all k ∈ N,
√
k is irrational if it is not an integer. Other well-

known irrational numbers include π and e. Proofs of the irrationality of π and e are
beyond the scope of this book.

Notation. The set of all polynomials in x with coefficients from Z is denoted by Z[x].
Thus, each element p ∈ Z[x] has the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0,

where n is a non-negative integer, ai ∈ Z for each i ∈ {0,1,2, . . .n}, and an 
= 0 except
when n = 0.

Definition 2.7.8. A number s is an algebraic number when there exists some p ∈ Z[x]
such that p(s) = 0. Let us denote the set

A =
{
x ∈ C : x is algebraic

}
.

Proposition 2.7.9. All rational numbers are algebraic.

Proof. Let q ∈ Q. Then q =
a
b
, for some a,b ∈ Z, b 
= 0. The polynomial p(x) =

bx − a belongs to Z[x] and p(q) = p
(a
b

)
= 0. Hence q ∈ A. �

Some algebraic numbers are irrational. Recall that
√
2 ∈ I. If p(x) = x2 − 2, then

p(
√
2) = 0, and so

√
2 ∈ A.

Example 2.7.10. From Theorem 2.7.2 we know that if k ∈ N, then
√
k is either in

N or in I. In both cases,
√
k is algebraic. Just let p(x) = x2 − k. Then p ∈ Z[x] and

p(
√
k) = 0.

Proposition 2.7.11. If a ∈ A and q ∈ Q, then qa ∈ A.

Proof. Let a ∈ A and q ∈ Q. By the definitions, there exists a polynomial p ∈ Z[x] of
the form

p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x + c0

such that p(a) = 0 and there exist integers k and � such that � 
= 0 and q =
k
�
. Thus

cna
n + cn−1a

n−1 + · · ·+ c1a + c0 = 0,
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which we multiply by qn to obtain

kn

�n
cna

n +
kn

�n
cn−1a

n−1 + · · ·+ kn

�n
c1a +

kn

�n
c0 = 0.

Rearranging the coefficients yields

cn

(
ak
�

)n

+ cn−1
k
�

(
ak
�

)n−1

+ · · ·+ c1
kn−1

�n−1

(
ak
�

)
+

kn

�n
c0 = 0.

Now multiply this last equation by �n to obtain

(2.7.1) �ncn(aq)n + �n−1cn−1k(aq)n−1 + · · ·+ �c1k
n−1(aq) + knc0 = 0.

The polynomial

p1(x) = �ncnx
n + �n−1cn−1kx

n−1 + · · ·+ �c1k
n−1x + knc0

also belongs to Z[x]. By equation (2.7.1), p1(aq) = 0. Thus qa ∈ A. �

A number that is not algebraic is called transcendental. Thus the set T of transcen-
dental numbers satisfies

T = {x ∈ C : x /∈ A}.
By the way, e and π are not only irrational, but they are, in fact, transcendental. This is
even harder to prove.

Corollary 2.7.12. If t ∈ T and k ∈ Z but k 
= 0, then kt ∈ T.

Proof. We prove the contrapositive. Suppose that kt /∈ T, that is, kt ∈ A. Since k 
= 0,
we have 1/k ∈ Q. Hence

t =
1
k
(kt) ∈ A

by Proposition 2.7.11. Thus t /∈ T. �

Exercise 2.7.13. (a) Prove that if t ∈ T and q ∈ Q but q 
= 0, then qt ∈ T.
(b) Prove that if t ∈ T, then 1/t ∈ T.
(c) Give examples of transcendental numbers t1 and t2 such that t1t2 ∈ Q.

2.8 Further Exercises

Exercise 2.8.1. Let k ∈ N such that k � 2. Find q,r ∈ Z in terms of k such that
0 � r < k + 1 and 3k = q(k + 1) + r.

Exercise 2.8.2. Given that 61 | (16! + 1), prove that 61 | (18! + 1).
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Exercise 2.8.3. Prove that the following divisibility tests are valid.
(a) A number n is divisible by 3 if and only if the sum of the digits in the decimal
expansion of n is divisible by 3.
(b) A number n is divisible by 9 if and only if the sum of the digits in the decimal
expansion of n is divisible by 9.
[Hint for both parts: Write n = 10k−1dk + 10k−2dk−1 + · · ·+ 10d2 + d1, where di ∈
{0,1,2, . . . ,9} and dk 
= 0, and consider n− (dk + dk−1 + · · ·+ d2 + d1).]

Exercise 2.8.4. Prove that the following test for divisibility by 7 is valid. Let n ∈ N.
Write n = 10a + b where 0 � b � 9 and b ∈ N. Then n is divisible by 7 if and only if
a− 2b is divisible by 7.

For example, let n = 37394.
Write 37394 = 3739 · 10 + 4. Compute 3739− 2 · 4 = 3731.
Now write 3731 = 373 · 10 + 1, and compute 373− 2 · 1 = 371;
then write 371 = 37 · 10 + 1, and finally 37− 2 · 1 = 35.
Since 35 is divisible by 7, then 371 is divisible by 7, and thus so is 3731. Finally we
conclude that 37394 is divisible by 7.

Exercise 2.8.5. Prove or disprove the following statements.
(a) gcd(n,n + 2) = 1 or 2 for every n ∈ N.
(b) If n is odd, then n and n + 2 are relatively prime. (Compare Exercise 2.5.19(b).)
(c) For any three distinct odd integers, if a and b are relatively prime and if b and c are
relatively prime, then a and c are relatively prime.
(d) For any distinct nonzero integers a and b, it holds that gcd(a,b) � |a− b|.

Exercise 2.8.6. Assess the correctness (that is, find the error(s), if any) of each of the
proposed proofs and counterexamples for the claim

For all a,b,c ∈ N, if a2 | bc, then a | b or a | c.

(a) Counterexample. 22 | 20 = 5 · 4, but 2 � 5.

(b) Proof. If a | b and a | c, then there exist integers k and � such that b = ak and c = a�.
Thus bc = (ak)(a�) = a2(k�), and so a2 | bc.
(c) Proof. If a | b, then the “or” statement is true and we are done, and the same argument
holds if a | c. Since a | b or a | c is true, then we have proved the result.

(d) Counterexample.We have 32 | 12 · 3, but 9 � 12 and 9 � 3.

(e)Proof.By theDivisionAlgorithm, there exist q1,q2,r1,r2 ∈ N such that b = aq1 + r1,
c = aq2 + r2, 0 � r1 < a, and 0 � r2 < a. Thus

(2.8.1) bc = q1q2a
2 + (q1r2 + q2r1)a + r1r2.
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To prove the contrapositive, assume that a � b and a � c. That implies that r1r2 
= 0. But
a > r1 and a > r2, and so a cannot be a divisor of r1r2. By equation (2.8.1), a2 � bc.

(f) Counterexample. 36 | 360 but 6 � 45 and 6 � 8.

Exercise 2.8.7. Find all positive integers a, b such that both gcd(a,b) = 5 and
lcm(a,b) = 50 hold.

Exercise 2.8.8. Suppose that a and b are positive integers both divisible by 19. Is it
possible to find integers x and y such that 0 < ax + by < 19? Why or why not?

Exercise 2.8.9. Prove that if a | c and b | c and gcd(a,b) = 1, then ab | c. Find coun-
terexamples if gcd(a,b) > 1.

Exercise 2.8.10. Let a,b ∈ N and m = lcm(a,b). Prove that

gcd
(m
a
,
m
b

)
= 1.

Exercise 2.8.11. Let a,b ∈ N. Prove that gcd(a,b) = lcm(a,b) if and only if a = b.

Exercise 2.8.12. Let p be a prime number greater than 2. Prove or disprove each of
the following statements.
(a) Every prime divisor of p2 − 1 is less than p.
(b) There is a prime divisor of p4 − 1 that is greater than p.

Exercise 2.8.13. Prove that if p � 5 is prime, then p2 + 2 is composite. [Hint: First
show that any prime number p � 5 has the form 6� + 1 or 6� + 5 for some � ∈ N.]

Exercise 2.8.14. Prove that if p � q � 5 and p and q are prime, then 24 | p2 − q2.
[Hint: See the hint in Exercise 2.8.13 and also consider the form of any prime number
with respect to division by 4.]

Exercise 2.8.15. (a) Prove that if n is a composite number, then n must have a prime
factor p � √

n.
(b) Prove or disprove: If n is a composite number, then n must have a prime factor
p >

√
n.

Exercise 2.8.16. (a) Prove that for all a,b ∈ Z, the two inequalities

a < b + 1 and a � b

are equivalent. [Hint: Consider the cases a � b and a > b.]
(b) Show that part (a) is false if Z is replaced by Q.
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Exercise 2.8.17. Let S be a set of integers such that 1 ∈ S. A number r ∈ S is an
S-prime if r > 1 and the only way to express r as a product of elements from S is
as 1 ·r.
Let m ∈ N such that m � 2 and consider the set

Sm =
{
mn + 1 : n is a non-negative integer

}
.

(a) Prove that the product of any two elements of Sm is also an element of Sm.
(b) Show that 4, 7, 10, and 22 are S3-primes but that 16 is not an S3-prime.
(c) Find an example of an element of S3 having at least two different factorizations into
S3-primes.
(d) Why do all elements of S2 have a unique factorization as a product of S2-primes?
(e) Consider some values ofm � 4 and determine whether elements of Sm have a unique
factorization as a product of Sm-primes.

Exercise 2.8.18. Express the real numbers 0.401683 and 3.141592 as ratios of integers
in lowest terms.

Exercise 2.8.19. Let a,b ∈ R, where a < b. Prove that there exist a rational number c
and an irrational number d such that a < c < b and a < d < b. [Hint: Consider decimal
expansions of a and b.]

Exercise 2.8.20. Prove that if y,z ∈ Q, then yz ∈ A.

Exercise 2.8.21. Let q ∈ Q. Determinewhether the line in the plane whose equation is

y =
√
2x + q

passes through any points (x0,y0) such that both x0 and y0 are rational numbers. [Hint:
Use Exercise 2.7.3.]
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A movement began in themathematics community toward the end of the 19thCentury
whose goal was to build all of mathematics upon the foundation of set theory.

Whether this goal was achieved, or deserved to be achieved, remains debatable. In any
case, a solid knowledge of the principles of set theory is necessary for the study of
advanced mathematics. This chapter introduces the basics.

3.1 Subsets

In Section 2.2, we presented the sets N and E. You certainly noticed that every element
of E is also an element of N, or equivalently, that E is somehow contained inside of N.
We express this notion by saying that E is a subset of N.

Example 3.1.1. Consider the sets X = {2,3,4,5,6} ,Y = {1,2,3,4}, and Z = {4,5} .
Then Z is a subset of X since each element of Z is also an element of X. But Y is not a
subset of X since, for example, 1 ∈ Y , but 1 /∈ X. (See Figure 3.1.1.)

1

2

3
4 5 6

XY Z

Figure 3.1.1 Example 3.1.1.

Definition 3.1.2. Let A and B be sets. Then A is a subset of B, written A ⊆ B, when
the statement (∀x)[x ∈ A⇒ x ∈ B] is true.

Notation. The symbol ⊆ is read “is a subset of” or, more informally, “is contained in.”
To indicate that A is not a subset of B, we write A � B. Equivalent to writing A ⊆ B, we
write B ⊇ A and say that B is a superset of A.

68
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Frequently all the sets in a given context are subsets of one particular set. For
example, in a calculus course, most of the sets encountered (interval, domain, range,
etc.) are subsets of R. We call such a set the universal set of discourse or, for short, the
universal set, or, even shorter, the universe.

With regard to the universal quantifier ∀x in the definition of A ⊆ B, we need to
consider only those x’s that are elements of A, because, for any x that is not in A, the
hypothesis of the conditional x ∈ A⇒ x ∈ B is false, and so the conditional itself is
true. So in Example 3.1.1, for any element that we consider except 4 and 5, the statement
x ∈ Z is false. Thus the statement x ∈ Z ⇒ x ∈ X is true. Note that 4 ∈ Z and 4 ∈ X , so
the statement 4 ∈ Z ⇒ 4 ∈ X is true, and the same holds for 5. Therefore the statement
(∀x)[x ∈ Z ⇒ x ∈ X] is true, and we conclude that Z ⊆ X.

Note that for Y and X , we have 1 ∈ Y , but 1 /∈ X . Therefore the statement
(∃x)[x ∈ Y ∧ x /∈ X] is true. Equivalently, its negation (∀x) [x ∈ Y ⇒ x ∈ X] is false,
and so we conclude that Y � X.

To summarize, A � B is the negation of A ⊆ B. Thus A � B means
¬(∀x) [x ∈ A⇒ x ∈ B], which is equivalent to (∃x) [x ∈ A ∧ x /∈ B].

Exercise 3.1.3. Give examples of sets A and B to show that the statement A � B is
equivalent to neither B ⊆ A nor to the case where A and B have no elements in common.

Proposition 3.1.4. Let A, B, and C be sets. If A ⊆ B and B ⊆ C, then A ⊆ C.

Proof. Assume A ⊆ B and B ⊆ C. Let x ∈ A. [The most common strategy for proving
that one set is a subset of another is to consider an arbitrary element of the first set
and prove that that element must belong to the second set.] Since A ⊆ B, we know by
Definition 3.1.2 that (∀x) [x ∈ A⇒ x ∈ B] is true. Thus we conclude that x ∈ B. Since
B ⊆ C and we now know that x ∈ B, we conclude again by Definition 3.1.2 that x ∈ C.
Thus A ⊆ C. �

Expressions of the form (A ⊆ B) ∧ (B ⊆ C) occur so frequently that a shorter format
is used; we say A ⊆ B ⊆ C to mean exactly the same thing. (This is analogous to writing,
for example, 3 � π � 4 for real numbers.) Thus, from Section 2.2 we have

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

One can define a set A for which the statement x ∈ A is always false. For example,
let P(x) be a propositional function and let

A =
{
x : P(x) ∧ ¬P(x)

}
.

The statement x ∈ A is indeed always false, i.e., (∀x)[x /∈ A], and so A is a set with no
elements.



70 Sets

Definition 3.1.5. A set with no elements is an empty set.

Proposition 3.1.6. If E is an empty set and A is any set, then E ⊆ A.

Proof. Since E is an empty set, the statement x ∈ E is false for all x. Therefore, the
statement (∀x)[x ∈ E ⇒ x ∈ A] is true. [Remember the truth table for P ⇒ Q.] So, by
definition, E ⊆ A. �

Exercise 3.1.7. Prove the following statements.
(a) If A is any set, then A ⊆ A.
(b) If E is an empty set and A ⊆ E, then A is an empty set.

Definition 3.1.8. Let A and B be sets. Then A equals B, written A = B, when both
A ⊆ B and B ⊆ A. Thus the symbols A and B denote the same set.

Equality of sets isn’t always as simple as it may seem. For sets like A = {1,2,3}
and B = {2,3,1}, it is trivial. However, there will be many instances where the equality
of two sets is not so immediate. For example, if

A = {3,5,11,17,29,41,59,71}
and

B = {n is prime : n < 100 ∧ n + 2 is prime},
then the fact that A = B is less obvious. Similarly, in the universe F of all functions that
are differentiable on (−∞,∞), if

A = {f ∈ F : (∀x ∈ R)[f ′(x) = f (x)]}
and

B = {f ∈ F : (∃c ∈ R)[f (x) = cex]},
then the fact that A = B is a theorem of differential equations.

The negation of A = B is written simply as A 
= B.

Exercise 3.1.9. Prove that A 
= B is equivalent to the logical statement

(∃x)[x ∈ A ∧ x /∈ B] ∨ (∃x)[x ∈ B ∧ x /∈ A].

Exercise 3.1.10. (a) Let a and b be integers, not both 0. Prove that the set of integer
multiples of gcd(a,b) is precisely the set of all linear combinations of a and b. That is,{

n · gcd(a,b) : n ∈ Z
}

=
{
ak + b� : k,� ∈ Z

}
.

(b) Prove that if gcd(a,b) = 1, then
{
ak + b� : k,� ∈ Z

}
= Z.
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Definition 3.1.11. A set A is a proper subset of a set B, written A ⊂ B, when A is a
subset1 of B but A 
= B.

Proposition 3.1.12. If A and B are both empty sets, then A = B.

Proof. Assume that both A and B are empty sets. From Proposition 3.1.6, since A is
empty, we have A ⊆ B. By the same proposition the other way around, since B is empty
(regardless whether A is empty), we have B ⊆ A. Then, by Definition 3.1.8, we have
that A = B. [Observe how this proof became short and simple because we made use of
a previously proved proposition.] �

The message of this proposition is that there is only one empty set. What we proved
is that, if there were supposedly two empty sets, then they really are equal – in other
words, they are the same set. Since there is a unique empty set, we follow established
convention and denote the empty set by the symbol Ø. Do not confuse this symbol2

with the Greek letter phi, written variously as Φ, φ, or ϕ. Although computer scientists
sometimes write the similar symbol ∅ for the numeral 0 to distinguish it from the letter
“O”, mathematicians do not use this convention.

A statement of the form (∀x ∈ Ø)P(x) is a vacuous statement. Such statements are
always true, although often not very informative. For example, let P(x) mean, “x has
red hair,” and let S denote the set of all past and present emperors of the United States.
Then, of course, S = Ø, but the statement (∀x ∈ S)P(x) is true. How do we see this?
Were (∀x ∈ S)P(x) to be false, then its negation (∃x ∈ S)¬P(x) would have to be true;
that is, some emperor of the United States does (or did) not have red hair – and that is
clearly false.

We observe that while (∀x ∈ Ø)P(x) is always true, that is, for all propositional
functions P(x), the existential statement (∃x ∈ Ø)P(x) is always false.

Suppose that A =
{
a,b,c,d

}
. By Proposition 3.1.6 and Exercise 3.1.7(a), we know

that Ø and A itself must be on the list of all the subsets of A:

Ø,

{a},{b},{c},{d},
{a,b},{a,c},{a,d},{b,c},{b,d},{c,d},
{a,b,c},{a,b,d},{a,c,d},{b,c,d},
{a,b,c,d}.

1 Some authors use ⊂ to mean “is a subset of.” For example, they would write A ⊂ A, and never
use the symbol ⊆, but that convention is not the usage of this book.
2 The symbol Ø is a vowel in the Norwegian and Danish alphabets. It was selected circa 1939 by
the French mathematician André Weil (1908–1998).
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We collect all of these sets as elements of a new set{
Ø,{a},{b}, . . .{b,c,d},{a,b,c,d}},

which may also be denoted by {
S : S ⊆ A

}
.

Definition 3.1.13. Let A be a set. The set whose elements are all of the subsets of A is
the power set of A, denoted P(A), and defined by

P(A) =
{
S : S ⊆ A

}
.

Note the style of the letter P. One never indicates this power set by P(A).

SupposeA = {1,2,3}. It is extremely important to distinguish between the objects 2
and {2}. The integer 2 is an element of the setA. But {2}, the setwhose only element is the
integer 2, is an element ofP(A). Thus 2 
= {2}. It is correct towrite 2 ∈ {2}, but 2 � {2}
and 2 /∈ 2, since 2 is not a set and thus neither has nor fails to have elements. Therefore
2 and {2} must never be treated interchangeably; to do so leads to error. Similarly, the
symbols ∈ and ⊆ (and likewise /∈ and �) must never be treated interchangeably. They
are used only in the following contexts:

(element) ∈ (set); (set) ⊆ (set); (set) ∈ (power set).

Be careful, though, because sometimes the elements of a set are sets themselves. For
example, {2,3} ∈P ({1,2,3}) since {2,3} ⊆ {1,2,3}.

Exercise 3.1.14. (a) List the elements of P(A) if A = {1,2,3}.
(b) List the elements of P(B) if B = {b}.
(c) List the elements of P(Ø).
(d) For B = {b}, list the elements of P(P(B)).
(e) Let A =

{
1,{2},Ø}. Which of the following are true? When the statement is false,

state why it is false. Pay very close attention to the notation!

1 ∈ A 1 ⊆ A {1} ∈ A {1} ⊆ A

1 ∈P(A) {1} ∈P(A) {1} ⊆P(A) Ø ∈ A

Ø ⊆ A Ø ⊆ P(A) Ø ∈P(A) {Ø} ∈P(A)

2 ∈ A {2} ∈ A {2} ⊆ A
{{2}} ⊆ A

Ø ⊆P (P(A)) A ∈P(A) A ⊆ P(A) P(A) ⊆ P(A)
A ⊆P(P(A)) A ∈P(P(A)) {A} ∈P(P(A)) {A} ⊆ P(P(A))
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3.2 Operations with Sets

Consider the sets A = {1,2,3,4,5} and B = {3,4,5,6,7}. The set {3,4,5} is the set of
elements that A and B have in common. The set {1,2,3,4,5,6,7} consist of all of the
elements that are in A or in B. These sets are important enough to merit definitions.

Definition 3.2.1. Let A and B be sets.

The intersection of A and B, written A ∩ B, is the set

A ∩ B =
{
x : x ∈ A ∧ x ∈ B

}
.

The union of A and B, written A ∪ B, is the set

A ∪ B =
{
x : x ∈ A ∨ x ∈ B

}
.

Exercise 3.2.2. Let A = {a,b,c, f ,g, i}, B = {b, f ,h}, C = {a,k, l,m}. Find each set
explicitly.
(a) A ∩ B
(b) B ∪ C
(c) A ∪ C
(d) B ∩ C
(e) (A ∩ B) ∪ C
(f) A ∩ (B ∪ C)

Proposition 3.2.3. Let A,B,C be sets. Then all of the following hold.
(i) A ∩ A = A and A ∪ A = A.
(ii) Ø ∩ A = Ø and Ø ∪ A = A.
(iii) (A ∩ B) ⊆ A.
(iv) A ⊆ (A ∪ B).
(v) A ∩ (B ∩ C) = (A ∩ B) ∩ C.
(vi) A ∪ (B ∪ C) = (A ∪ B) ∪ C.
(vii) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). (Compare Proposition 1.3.9(iv).)
(viii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). (Compare Proposition 1.3.9(v).)

Proof. We prove only the first part of (ii) and part of (viii), leaving the other parts and
the reverse inclusion of (viii) as exercises.

For the first part of (ii), from Proposition 3.1.6, Ø ⊆ Ø ∩ A. Now let x ∈ Ø ∩ A.
This means that x ∈ Ø and x ∈ A, by the definition of ∩. Since x ∈ Ø is false, the
conjunction x ∈ Ø ∧ x ∈ A is false, and thus the statement (∀x)[x ∈ Ø ∩ A⇒ x ∈ Ø] is
true. Therefore Ø ∩ A ⊆ Ø. So, by Definition 3.1.8, we conclude that Ø ∩ A = Ø.
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For part (viii), we prove only that A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C). (We will
assume that part (iv) has already been proved.) Let x ∈ A ∪ (B ∩ C). By definition of ∪,
we have x ∈ A or x ∈ B ∩ C, and we consider each possibility in turn. If x ∈ A, then, by
part (iv) of this proposition, x is an element of both A ∪ B and A ∪ C. By definition of ∩,
x ∈ (A ∪ B) ∩ (A ∪ C). On the other hand, if x ∈ B ∩ C, then by definition of ∩, x ∈ B
and x ∈ C. Part (iv) of this proposition is now applied again (but to different sets); we
have x ∈ A ∪ B and x ∈ A ∪ C. Again x ∈ (A ∪ B) ∩ (A ∪ C). �

Rarely does a mathematical statement have only one correct proof. Let’s look at
another proof of Proposition 3.2.3(viii). This one relies upon a result from Chapter 1.
Let x be an arbitrary element of some universal set that contains sets A,B, and C. Here
are three statements:

P : x ∈ A; Q : x ∈ B; R : x ∈ C.

To say that x belongs to the left-hand side of the set-equation is the statementP ∨ (Q ∧ R).
To say that x belongs to the right-hand side of the set-equation is the statement
(P ∨ Q) ∧ (P ∨ R). This follows directly from the definitions of ∪ and ∩. To say that
x belongs to one side if and only if x belongs to the other side is to say that these two
logical statements are equivalent. But this equivalence is precisely Proposition 1.3.9(v).

Exercise 3.2.4. (a) Prove parts (i), (iii), (iv), (v), (vi), (vii), and the remainder of part
(ii) of Proposition 3.2.3.
(b) Finish the proof of Proposition 3.2.3(viii) by showing that

(A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

Exercise 3.2.5. Prove the following for any sets A,B, and C.
(a) A ⊆ B ∩ C if and only if A ⊆ B and A ⊆ C.
(b) A ∪ B ⊆ C if and only if A ⊆ C and B ⊆ C.

3.3 The Complement of a Set

Let A = {1,3,5,9} and B = {2,3,4,5,6,7,8}. Then {3,5} = A ∩ B, the elements that
are in A and in B, while {1,9} is the set of elements that are in A but not in B. There is a
term for this latter set.

Definition 3.3.1. Let A and B be sets. The complement3 of B relative to A, written
A \ B, is the set

A \ B =
{
x : x ∈ A ∧ x /∈ B

}
.

3 Note the spelling!You could send a compliment to the chef for the delicious complement to the
entree.
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For the sets A and B above,

A \ B =
{
1,9
}

and B \ A =
{
2,4,6,7,8

}
.

Informally we can read A \ B as “A minus B.” However, this so-called subtraction
is not completely analogous to the usual subtraction with real numbers, as will become
apparent.

Exercise 3.3.2. Let A = {a,b,c, f ,g, i}, B = {b, f ,h}, C = {a,k, l,m}.
(a) Determine explicitly each of the sets A \ B, B \ C, and (A ∪ C) \ (B ∪ C).
(b) Show that \ is not associative by comparing (A \ B) \ C with the set A \ (B \ C).

The complement of a set relative to the universal set is a case of special importance.

Definition 3.3.3. Let U be a universal set and let A ⊆ U. The complement of A,
written A′, is the set

A′ = U \ A =
{
x ∈ U : x /∈ A

}
.

Example 3.3.4. IfU denotes a universal set, thenU ′ = Ø and Ø′ = U. In the universe
N, the set of all odd natural numbers is

E′ =
{
1,3,5,7,9, . . .

}
.

Proposition 3.3.5. Let A and B be subsets of a universal set U. Then
(i) A \ B = A ∩ B′;
(ii) (B′)′ = B;
(iii) (A ∪ B)′ = A′ ∩ B′;
(iv) (A ∩ B)′ = A′ ∪ B′;
(v) A ⊆ B if and only if B′ ⊆ A′;
(vi) A ∪ A′ = U;
(vii) A ∩ A′ = Ø;
(viii) A ∩ B = Ø if and only if A ⊆ B′;
(ix) A ⊆ B if and only if A \ B = Ø.

Remark. Parts (iii) and (iv) are called De Morgan’s Laws, just like their logical
counterparts in Section 1.3.

Proof. First we prove part (i). [Remember that to show that these two sets are equal,
we have to prove the two statements: A \ B ⊆ A ∩ B′ and A ∩ B′ ⊆ A \ B.] Since each
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step is truly equivalent to the next, we can write the steps as follows.

x ∈ A \ B �� x ∈ A ∧ x /∈ B

[ definition of \ ]
�� x ∈ A ∧ x ∈ B′

[ definition of complement ]
�� x ∈ A ∩ B′

[ definition of ∩ ].

Since each pair of steps is connected by a definition, the sequence of steps is reversible.
Thismeanswe have accomplished the two-fold task of showing x ∈ A \ B⇒ x ∈ A ∩ B′

and x ∈ A ∩ B′ ⇒ x ∈ A \ B. Thus we have proved that A \ B = A ∩ B′.

To prove (v), first assume that A ⊆ B. Let x be an arbitrary element of B′. By
definition of complement, x /∈ B. Since our assumption means x ∈ A⇒ x ∈ B, its con-
trapositive gives us x /∈ A. In other words, x ∈ A′. Thus B′ ⊆ A′. Conversely, assume
B′ ⊆ A′. By the previous proof, (A′)′ ⊆ (B′)′. Now apply part (ii).

The remaining parts are left as an exercise. �

Exercise 3.3.6. Write a proof for each of the remaining parts of Proposition 3.3.5.

Exercise 3.3.7. Prove that, for any sets A,B, and C, if A ⊆ B, then

A \ C ⊆ B \ C.

Exercise 3.3.8. Let A,B,C, and D be sets such that A ⊆ C and B ⊆ D. Prove the
following.
(a) B \ C ⊆ D \ A.
(b) If C ∩ D = Ø, then A ∩ B = Ø.

Exercise 3.3.9. For any sets A,B, and C, prove or disprove the following.
(a) (A \ B) \ C = (A \ C) \ (B \ C).
(b) A \ (B \ C) = (A \ B) \ (A \ C).

Exercise 3.3.10. Let A and B be subsets of some universal set. Prove that

(A \ B)′ \ (B \ A)′ = B \ A.
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Exercise 3.3.11. Decide the truth value of each of the following statements. If the
statement is true, write a proof. If the statement is false, prove that it is false by providing
a specific counterexample.
(a) A ⊆ B if and only if P(A) ⊆P(B).
(b) P(A ∪ B) = P(A) ∪P(B).
(c) P(A ∩ B) = P(A) ∩P(B).
(d) P(A \ B) = P(A) \P(B).
For any statement that may be false, can it be corrected by replacing = by ⊆ or ⊇? If
so, write the new statement that is true and prove it.

3.4 The Cartesian Product

Let A =
{
1,2,3

}
and B =

{
a,b
}
. Now form a new set whose elements are all of the

possible ordered pairs with an element of A in the first position and an element of B in
the second position. The new set is{

(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)
}
.

Note that the ordered pairs (2,3),(b,b), and (a,2) are not elements of this set because
they do not fulfill the membership requirement that the first object be from A and the
second be from B.

Definition 3.4.1. Let A and B be sets. The Cartesian4 product of A by B, written
A× B, is the set

A× B =
{
(a,b) : a ∈ A ∧ b ∈ B

}
.

Note that we are talking about ordered pairs. Even when A and B are the same
set, the pairs (x,y) and (y,x) are the same ordered pair if and only if x = y. You have
encountered ordered pairs ever since you first plotted points on a set of coordinate axes.
Indeed, the Cartesian product R× R is the set of ordered pairs (x,y) where x and y are
real numbers. This is the set of all points in the xy-plane. It is sometimes handy to view
any Cartesian product geometrically in this manner, as in Figure 3.4.1.

Proposition 3.4.2. Let A,B,C and D be sets. Then
(i) A× (B ∪ C) = (A× B) ∪ (A× C);
(ii) A× (B ∩ C) = (A× B) ∩ (A× C);
(iii) (A× B) ∩ (C × D) = (A ∩ C)× (B ∩ D);
(iv) (A× B) ∩ (B× A) = (A ∩ B)× (A ∩ B).

4 After Renatus Cartesius, the Latin form of the name of the French philosopher and inventor of
analytic geometry, René Descartes (1596–1650).
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A

B A × B

Figure 3.4.1 The Cartesian product A × B.

Proof. We prove parts (i), (iii), and (iv) and leave (ii) as an exercise. [Bear in mind that
an arbitrary element of a Cartesian product is an ordered pair.] For part (i),

(x,y) ∈ A× (B ∪ C) �� x ∈ A ∧ y ∈ B ∪ C

[ definition of × ]

�� x ∈ A ∧ (y ∈ B ∨ y ∈ C)
[ definition of ∪ ]

�� (x ∈ A ∧ y ∈ B) ∨ (x ∈ A ∧ y ∈ C)
[∧ distributes over ∨ ]

�� (x,y) ∈ A× B ∨ (x,y) ∈ A× C

[ definition of × ]

�� (x,y) ∈ (A× B) ∪ (A× C)
[ definition of ∪ ].

For part (iii),

(x,y) ∈ (A× B) ∩ (C × D) �� (x,y) ∈ A× B ∧ (x,y) ∈ C × D

�� x ∈ A ∧ y ∈ B ∧ x ∈ C ∧ y ∈ D

�� x ∈ A ∧ x ∈ C ∧ y ∈ B ∧ y ∈ D

�� x ∈ A ∩ C ∧ y ∈ B ∩ D

�� (x,y) ∈ (A ∩ C)× (B ∩ D).

For part (iv), substitute C = B and D = A in part (iii). �
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Exercise 3.4.3. Write out the proof of Proposition 3.4.2(ii). Be sure to include the
reasons for each step.

Exercise 3.4.4. (a) Let A,B,C, and D be sets. (See Figure 3.4.2 to visualize the sets
involved.) Prove that

(A× B) ∪ (C × D) ⊆ (A ∪ C)× (B ∪ D).

(b) Find specific sets A,B,C, and D to show that the statement

(A ∪ C)× (B ∪ D) ⊆ (A× B) ∪ (C × D)

is false. (Such a counterexample demonstrates that the inclusion in part (a) cannot be
strengthened to equality.)

A

B

C

D

A × B

C × D

Figure 3.4.2 Exercise 3.4.4.

Exercise 3.4.5. Let A,B,C, and D be any sets. Prove the following statements.
(a) A× C ⊆ B× D if and only if A ⊆ B and C ⊆ D.
(b) A× Ø = Ø× B = Ø.
(c) Ø× Ø = Ø.
(d) A× B = Ø if and only if A = Ø or B = Ø.
(e) (A× B) ∪ C 
= (A ∪ C)× (B ∪ C). (If C is non-empty, equality or even subset in-
clusion would, in fact, be nonsense. Why?)
(f) (A \ B)× (C \ D) ⊆ (A× C) \ (B× D), but the reverse inclusion is false.
(g) A′ × B′ ⊆ (A× B)′, but the reverse inclusion is false.

Exercise 3.4.6. Let A and B be any sets. Explain why the statement

P(A)×P(B) ⊆P(A× B)

is always false.
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3.5 Families of Sets

Let U be any set and let A ⊆P(U). Thus the elements of A are subsets of U. For
example, if U = R, then A could be the set of all closed intervals of length 1, or
A could be the set of all open intervals whose left-hand endpoint is 3. As another
example, we could have U = Z and A = {S0,S1,S2, · · · ,S12}, where for each subscript
i, the set Si consists of all integers leaving a remainder of i when divided by 13. Thus
37 ∈ S11, S11 ⊆ Z, and S11 ∈ A .

In these examples, A is what is called a family of sets. A family is really nothing
other than a set, but we use this term frequently when we are talking about a set whose
elements are sets. Just like any other set, the family A may be finite, infinite, or even
empty. Note that to say that a family is finite or infinite says absolutely nothing about
whether the sets that belong to the family are finite or infinite; it merely means that there
are only finitely or infinitely many of them.

Choosing a convenient notation is an issue that arises with families of sets. Often
the sets in a family are “tagged” with an index, usually written as a subscript. The index
belongs to a set of indices called an index set. In the second example above, the index
set is {0,1,2,3,4,5,6,7,8,9,10,11,12}. To devise an index set for the first example, we
have to be a little more creative. A typical closed interval in R of length 1 has the form
[x,x + 1], where x ∈ R. So let us define Sx = [x,x + 1] for each x ∈ R. In this way, R
also becomes the index set, and A = {Sx : x ∈ R}.

Let us consider a more complicated example. Let U be the plane, and let A denote
the set of all circles in U. So each element of A is a subset of U. How might we select
an index set for this family of subsets? Any circle is determined by (1) its center and
(2) its radius. The center is a point (x,y) in U = R× R, and the radius is a positive real
number. So an appropriate index set would be (R× R)× R+. If the circle with center
(x,y) and radius r is denoted by C(x,y), r , then

A =
{
C(x,y),r : ((x,y),r) ∈ (R× R)× R+}.

This notation, although bulky, has certain advantages. For example, one may easily
denote the subfamily of circles of radius 1 by

A1 =
{
C(x,y),1 : (x,y) ∈ R× R

}
and the subfamily of circles centered at the origin by

A(0,0) =
{
C(0,0),r : r ∈ R+} .

Thus R× R is the index set for A1, while R+ is the index set for A(0,0).
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Exercise 3.5.1. Select an appropriate index set for the sets in A for each of the
following situations.
(a) The sets in A are of the form {pn : n ∈ Z} where p is a prime number.
(b) A is the family of all closed intervals (of any finite length) in R.
(c) The sets in A are subsets of R× R that make up the lines through the origin with
negative slope.
(d) The sets in A are subsets of R× R that make up the graphs of all functions f , where
f is of the form f (x) = ax + b with a,b ∈ Q.
(e) The same as part (d) except that f is of the form f (x) = ax2 + bx + c, where c ∈ R.
(f) The same as (d) except that f is of the form f (x) = asinx + bcosx.
(g) U = Z× (Z \ {0}), and the sets in A have the property that (a,b) and (c,d) belong
to the same set in the family A if and only if ad = bc.

Now that we’ve seen that an index set can be just about anything, we let Λ denote
the index set of the family A ⊆P(U). Thus we may write A = {Sλ : λ ∈ Λ}.

For subsets S and T of a universe U, their union was defined in Definition 3.2.1:
S ∪ T consists of all elements of U that belong to S or belong to T . We could as well
have said, “S ∪ T is the set of elements of U that belong to at least one of S and T .” This
is the phrasing that enables us to speak of the union of all the sets Sλ where λ is in the
index set Λ. Here is the formal definition, and while we’re at it, here’s the definition of
the intersection, too.

Definition 3.5.2. LetA ⊆ P(U), whereA = {Sλ : λ ∈ Λ}. The union of all the sets
in A is ⋃

λ∈Λ

Sλ =
{
x ∈ U : (∃λ ∈ Λ)[x ∈ Sλ]

}
,

and the intersection of all the sets in A is⋂
λ∈Λ

Sλ =
{
x ∈ U : (∀λ ∈ Λ)[x ∈ Sλ]

}
.

Example 3.5.3. For each x ∈ (0,1), let Sx be the half-open interval (0,x]. (We are
denoting the index by x and are making the open interval (0,1) serve as the index set.)
Then

⋃
x∈(0,1) Sx = (0,1) and

⋂
x∈(0,1) Sx = Ø. The union should be clear, but why is the

intersection empty? For any x ∈ (0,1) there exists some y such that 0 < y < x. Since
x /∈ Sy, x can’t be in the intersection of any family of sets that includes Sy. What if we
replace the index set (0,1) by any subset L of (0,1)? If there is some w ∈ (0,1) such
that L ⊆ [w,1), then

⋂
x∈L Sx ⊇ (0,w]. However, if L contains arbitrarily small positive

numbers, then
⋂

x∈L Sx = Ø. (Wewill consider the importance of smallest elements again
in Chapter 6.)
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Exercise 3.5.4. Determine
⋃

n∈N
Sn and

⋂
n∈N

Sn in each of the following situations.
(Assume Sn ⊆ R in parts (a) through (d).)
(a) Sn = [n,2n].
(b) Sn =

(
1
n ,1 + 1

n

)
.

(c) Sn =
[− 1

n ,n
]
.

(d) Sn =
{ m
10n

: m ∈ Z
}
.

(e) Sn =
{
(x,y) ∈ R× R : x2 + y2 � 1

n2
}
.

(f) Sn =
{
(x,y) ∈ R× R : 0 � x � n ∧ 0 � y � 1

n

}
.

In the special case where a family of sets is finite or when the index set Λ = N or
Z, a simpler notation for their union and intersection is generally used. If Λ is finite, that
is, if Λ has n elements for some n ∈ N, then we may just as well consider Λ to be the
set {1,2, · · · ,n}. In this case, instead of writing

⋃
λ∈Λ Sλ, we write

⋃n
k=1 Sk . If Λ = N,

we may write
⋃∞

n=1 Sn, and if Λ = Z, we may write
⋃∞

n=−∞ Sn. (Of course, n never
actually equals∞ or−∞, because∞ and−∞ are not elements of the index set Z.) For
example, suppose that Sn is the open interval (n,n + 1) for all n ∈ Z. Then

⋃∞
n=−∞ Sn =

R \ Z. Everything said in this paragraph clearly can be extended to intersections as well.
However, when the index set is the set R, for example, then the simpler notation in this
paragraph is not possible for reasons that will be explored in Chapter 7.

An even simpler notation is often used when an indexed family A is given and we
don’t care about what the index set may be. Then we write briefly⋃

S∈A

S = {x ∈ U : (∃S ∈ A )[x ∈ S]}

and ⋂
S∈A

S = {x ∈ U : (∀S ∈ A )[x ∈ S]}.

We’ll use these various notations interchangeably.

What are the union and intersection of an indexed family {Sλ : λ ∈ Λ} of subsets
of a nonempty set U when the index set Λ itself is empty? In this case, the statement

(∃λ ∈ Ø)[x ∈ Sλ]

is false for every x in the universal set U. Since no x satisfies the condition in Definition
3.5.2 for belonging to

⋃
λ∈Ø Sλ, clearly

⋃
λ∈Ø

Sλ = Ø.

On the other hand, consider the condition (∀λ ∈ Ø)[x ∈ Sλ] in the intersection part
ofDefinition 3.5.2.This is equivalent to saying, (∀λ)[λ ∈ Ø⇒ x ∈ Sλ]. This conditional
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is true for all x ∈ U, because the hypothesis, λ ∈ Ø, is always false. Therefore we have⋂
λ∈Ø

Sλ = U.

To conclude this section, we extend De Morgan’s Laws to families of sets.

Theorem 3.5.5. Let {Sλ : λ ∈ Λ} be a family of subsets of some universal set U. Then( ⋃
λ∈Λ

Sλ

)′
=
⋂
λ∈Λ

S′
λ and

( ⋂
λ∈Λ

Sλ

)′
=
⋃
λ∈Λ

S′
λ.

Proof. We present a proof only of the first statement, leaving a proof of the second
statemesnt as an exercise.

x ∈
( ⋃

λ∈Λ

Sλ

)′
�� ¬[x ∈

⋃
λ∈Λ

Sλ]

�� ¬(∃λ ∈ Λ)[x ∈ Sλ]
�� (∀λ ∈ Λ)¬[x ∈ Sλ]
�� (∀λ ∈ Λ)[x ∈ S′

λ]

�� x ∈
⋂
λ∈Λ

S′
λ

�

Exercise 3.5.6. Complete the proof of Theorem 3.5.5, namely prove that( ⋂
λ∈Λ

Sλ

)′
=
⋃
λ∈Λ

S′
λ.

3.6 Further Exercises

Exercise 3.6.1. Determine which of the following sets are equal and which are proper
subsets of which.

A =
{
x ∈ R :

√
x2 = x

}
B =

{
x ∈ R :

1 +
√
x

1−√x
∈ R

}
C = {x ∈ R : x > 0}

D =
{
x ∈ R :

x
(1− x)4

∈ R

}
E =

{
x2 : x ∈ R

}
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Exercise 3.6.2. Let A,B,C be sets. Identify a condition such that A ∩ C = B ∩ C to-
gether with your condition implies A = B. Prove this implication. Show that your con-
dition is necessary by finding an example where A ∩ C = B ∩ C, but A 
= B.

Exercise 3.6.3. Let A,B,C be sets. Identify a condition such that A ∪ C = B ∪ C to-
gether with your condition implies A = B. Prove this implication. Show that your con-
dition is necessary by finding an example where A ∪ C = B ∪ C, but A 
= B.

Exercise 3.6.4. Let A = {b,c}. Suppose that
A ∪ B = {a,b,c,e} and B ∪ C = {a,c,d,e, f }.

Can one uniquely determine the sets B and C from this information? If not, what is the
minimal additional information needed in terms of unions and intersections of the sets
involved for B and C to be uniquely determined?

Exercise 3.6.5. Let A,B,C be sets. Prove the following. IfC ⊆ A, then (A ∩ B) ∪ C =
A ∩ (B ∪ C). Prove or disprove the converse of this statement.

Exercise 3.6.6. Prove or disprove the following claim for sets A,B,C. If C ⊆ B, then
(A ∪ B) ∩ C = A ∪ (B ∩ C).

Exercise 3.6.7. For sets A,B,C, prove the following.
(a) A ∩ (B \ C) = (A ∩ B) \ (A ∩ C).
(b) (A ∪ B) \ C = (A \ C) ∪ (B \ C).
(c) (A \ B) ∩ (C \ A) = Ø.

Exercise 3.6.8. What can be concluded about sets A and B if it is known that A \ B =
B \ A? Prove your claim.

Exercise 3.6.9. For sets A and B, prove that if A ∪ B = A ∩ B, then A \ B = Ø.

Exercise 3.6.10. For sets A and B, prove or disprove the following.
(a) If (A ∪ B)′ = A′ ∪ B′, then A = B.
(b) If (A ∩ B)′ = A′ ∩ B′, then A = B.

Exercise 3.6.11. Let A = {w,{x,y}}, B = {w,y,{y}}, and C = {w,x,y}. Find each
of the following sets explicitly.
(a) A ∪ C
(b) C \ B
(c) B ∩P(B)
(d) (A ∩ B) ∪ (B ∩ C) ∪ (A ∩ C)
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Exercise 3.6.12. Let A and B be sets. Define the symmetric difference of A and B,
written A + B, by

A + B = (A ∪ B) \ (A ∩ B).

Let A, B, and C be subsets of universal set U. Prove the following statements.
(a) A + Ø = A, A + A = Ø, and A + A′ = U.
(b) A + B = A ∪ B if and only if A ∩ B = Ø.
(c) A + B = B + A.
(d) A + B = (A \ B) ∪ (B \ A).
(e) If B ⊆ A, then A + B = A \ B.
(f) A + (B + C) = (A + B) + C.
(g) A + (B + C) = B + (A + C) = C + (A + B).
(h) The statements A + B = C, A + C = B, and B + C = A are equivalent to each other.
[Suggestion:Assume that A + B = C. Then “add” (B + C) to both sides of the equation,
giving (A + B) + (B + C) = C + (B + C). Then use parts (g) and (a) of this exercise.]

Exercise 3.6.13. Let A, B, and C be sets. Prove or disprove the following.
(a) (A + B) ∩ C = (A ∩ C) + (B ∩ C).
(b) (A + B) ∪ C = (A ∪ C) + (B ∪ C).
(c) (A + B) \ C = (A \ C) + (B \ C).
(d) (A ∩ B) + C = (A + C) ∩ (B + C).
(e) (A ∪ B) + C = (A + C) ∪ (B + C).
(f) (A \ B) + C = (A + C) \ (B + C).
(g) P(A + B) = P(A) + P(B).
Can any of the statements above that are false be corrected by replacing = by ⊆ or ⊇?

Exercise 3.6.14. Let A and B be sets such that P(A) = P(B). Prove that A = B.

Exercise 3.6.15. Let A and B be sets. Prove that

P(A \ B) ⊆ (P(A) \P(B)) ∪ {Ø}.
(Compare with Exercise 3.3.11(d).)

Exercise 3.6.16. Express the following subsets of the plane R× R, shown as shaded
regions in Figure 3.6.1, as unions or intersections or relative complements of Cartesian
products of rays or intervals. (You may assume that the subsets include all the points on
their boundaries.)
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(a) (b)

1

2

30 1 2

3

y

x

1

1-1
x

y

0

y = 1

x = 1

x = -1

y = 0

Figure 3.6.1 Exercise 3.6.16.

Exercise 3.6.17. LetA,B,C, andD be any sets. Prove or disprove each of the following
statements.
(a) (A \ B)× (C \ D) ⊆ (A× C) \ (B× D).
(b) (A× C) \ (B× D) ⊆ (A \ B)× (C \ D).

Exercise 3.6.18. For each n ∈ N, let Sn denote the half-open interval[−1 + 1
2n ,1 + 1

2n

)
. Express each of the following sets in terms of rays or inter-

vals. (The universe is the set R = (−∞,∞).)
(a) S1, S2, and S3
(b)
⋃
n∈N

Sn

(c)
⋂
n∈N

Sn

(d)
⋂
n∈N

S′
n [Hint: Use De Morgan’s Rule and part (b).]

Exercise 3.6.19. LetA be any set. Suppose thatA ⊆ B ⊆ P(A). Prove the following.
(a)
⋃
S∈A

S ⊆
⋃
S∈B

S . (b)
⋂
S∈A

S ⊇
⋂
S∈B

S.

(c)
⋃
S∈A

S′ ⊆
⋃
S∈B

S′ . (d)
⋂
S∈A

S′ ⊇
⋂
S∈B

S′.
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Exercise 3.6.20. Let A be any set. Suppose that C ,D ⊆ P(A). Prove the following.

(a)
⋃

S∈C∪D

S =
( ⋃
S∈C

S
)
∪
( ⋃
S∈D

S
)
.

(b)
⋂

S∈C∩D

S ⊇
( ⋂
S∈C

S
)
∪
( ⋂
S∈D

S
)
.

(c)
⋃

S∈C∩D

S ⊆
( ⋃
S∈C

S
)
∩
( ⋃
S∈D

S
)
.

(d)
⋂

S∈C∪D

S ⊆
( ⋂
S∈C

S
)
∪
( ⋂
S∈D

S
)
.



4 Induction

4.1 An Inductive Example

The plane consists of one big region. Draw a line in the plane. Your line divides the
plane into two regions. Draw a second line, not parallel to the first. Together, the

two lines divide the plane into four regions. Now draw a third line so that it crosses each
of the two old lines at distinct points. Maybe you’re tempted to double again the previous
number and guess that there now are eight regions. But if you count them, you find only
seven regions. What if you were required to determine the number of regions when 100
lines are drawn in this fashion? Happily there is a more efficient way to get the answer
than to draw 100 lines and count the regions.

First, let’s define a set of lines in the plane to be in general position when

1. no two of the lines are parallel, and

2. no three lines meet at a common point.

In Figure 4.1.1, you see five lines drawn in general position.

Figure 4.1.1 Five lines in general position.

88
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In these terms, your quest is now to find the number of regions created by 100 lines
in the plane in general position.

You could begin your quest by seeking guidance from the Oracle at Delphi1. While
the Oracle dispensed a great deal of advice and wisdom, she was notorious for never
giving a direct answer, and this time is no exception. The voice of the Oracle is heard:

“Consider the formula

(4.1.1) δ(n) =
1
2
(n2 + n) + 1.”

This formula yields the answers you found above for n = 0,1,2, and 3. It even yields
δ(5) = 16, which concurs with Figure 4.1.1. However, we have no reason to believe that
this formula doesn’t break down somewhere between 5 and 100, just as the doubling
assumption broke down at n = 3.What we want do is to prove that the formula is correct
for all the infinitely many integers n � 0. If we succeed, then we’ll know in particular
that δ(100) = 5051 is the correct number of regions (without having drawn 100 lines in
general position). Here is how our proof proceeds.

First, note that we’ve verified the formula for some small values of n. We also make
the following very important observation: every time we draw a new line,

(i) it meets all of the old lines (by condition 1), and
(ii) it meets no two old lines at the same point (by condition 2).

So if there are n old lines, then the new (n + 1)st line contains exactly n points of
intersectionwith the old lines and therefore cuts across exactlyn + 1old regions, dividing
each one into two regions, thereby creating exactly n + 1 new regions.

What this tells us is that, if δ(n) gives the correct number of regions for some value
of n, then δ(n) + (n + 1) should be the the correct number of regions when n + 1 lines
are drawn. In other words, if equation (4.1.1) holds for this value of n, then δ(n + 1)
should be equal to δ(n) + (n + 1). Well, is it?

δ(n) + (n + 1) =
[
1
2
(n2 + n) + 1

]
+ (n + 1)

=
1
2
(n2 + 3n + 2) + 1

1 The Oracle at Delphi dates back to 1400 BCE. People came from all over Greece to have
their questions about the future answered by the priestess at the Oracle. Her answers, usually
cryptic, could determine the course of everything from when a farmer would plant crops to when
an empire would go to war. See http://www.pbs.org/empires/thegreeks/background/7 p1.html or
http://en.wikipedia.org/wiki/Delphi#Oracle.

http://www.pbs.org/empires/thegreeks/background/7_p1.html
http://en.wikipedia.org/wiki/Delphi#Oracle
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=
1
2

[
(n + 1)2 + (n + 1)

]
+ 1

= δ(n + 1).

It is indeed correct. So, in conclusion, if

(i) the Delphic Oracle starts out with the correct answer (that is, for n = 0), and

(ii) whenever the Oracle is correct for some value of n � 0, she is then also correct
for the next value n + 1,

then the Oracle must have it right for all values of n � 0, as far as we can go.

We have figured out the Oracle’s message and independently verified with a proof
that her formula is correct for all nonnegative integers. This proof is an example of “proof
by mathematical induction.”

4.2 The Principle of Mathematical Induction

For any integer n, the propositional function P(n) is a statement about the integer n.
For example, if P(n) means, “n is a multiple of 7,” then P(35) has truth value T and
P(36) has truth value F. We emphasize that P(n) must be a statement about n. Recall
that an algebraic expression containing n is not a statement about n. Thus, it makes
no sense to write P(n) = 1

2 (n
2 + n) + 1, because a statement cannot be equal to an

algebraic expression. But it is perfectly legitimate (for any given n) to let P(n) mean
δ(n) = 1

2 (n
2 + n) + 1, because an equation is a statement; it is either true or false. It is

also legitimate to let P(n) denote the statement, “n lines in general position in the plane
separate the plane into 2n regions,” even though this statement is false for all n � 3.
(Falseness and nonsense are not the same thing!)

In this language, let us review what we accomplished in the previous section. With
the value of δ(n) defined by equation (4.1.1), we let P(n) for each n ∈ N ∪ {0} mean:
δ(n) equals the number of regions created when n lines are drawn in the plane in general
position.We established that P(0) is true; when no lines were drawn, there was δ(0) = 1
single region. (We also established the truth of P(1) and P(2) and P(3), but we don’t
need that information.) We then established that the statement

(4.2.1)
(∀n ∈ N ∪ {0}) [P(n) ⇒ P(n + 1)]

is true. From these two pieces, we deduced

(4.2.2)
(∀n ∈ N ∪ {0})P(n).

Statements (4.2.1) and (4.2.2) are not logically equivalent. Under the assumption that
(4.2.1) is true, (4.2.2) may be true or may be false. Please do not forget this fact as we
now state formally one of the main theorems of this book.
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Theorem 4.2.1 (The Principle of Mathematical Induction). Let n0 ∈ Z. For each
integer n � n0, letP(n) be a statement about n. Suppose that the following two statements
are true:

(i) P(n0);
(ii) (∀n � n0) [P(n) ⇒ P(n + 1)].

Then, for all integers n � n0, the statement P(n) is true.

The proof of this significant theoremuses theWell Ordering Principle, first presented
in Section 2.3, which we now restate in greater generality.

The Well Ordering Principle. Let n0 ∈ Z. Every nonempty subset of the set {n ∈ Z :
n � n0} includes a least element.

This principle says that the integers are very special. For example, it is easy to find
subsets of {x ∈ Q : x � 0} that have no least element, even though this set is similar in
appearance to the set in the statement of theWell Ordering Principle. The more standard
formulation of theWell Ordering Principle, as stated in Section 2.3, is that any nonempty
subset of N has a least element.

Proof of the Principle of Mathematical Induction. This is a proof by contradiction; we
assume that conditions (i) and (ii) hold but that P(m) fails for some integer m � n0. In
other words, we assume that the set

F = {m ∈ Z : m � n0 ∧ ¬P(m)}
is not empty. By theWell Ordering Principle, F has a least element m0, and so m0 � n0.
In fact, m0 > n0, since P(m0) is false while P(n0) is true. Therefore m0 − 1 � n0 (see
Exercise 2.8.16).

Consider the truth value of P(m0 − 1). On the one hand, if P(m0 − 1) is true, then
by condition (ii), P((m0 − 1) + 1) = P(m0) would be true. But P(m0) is false. On the
other hand, if P(m0 − 1) is false, then m0 − 1 ∈ F, which contradicts that m0 is the
least element of F. These two contradictions imply that F must be empty. That is, P(n)
is true for all n � n0. �

Our first application of the Principle ofMathematical Induction is to verify a formula
for the sum of the first n positive integers2.

2 Legend has it that, as a child in elementary school, the Germanmathematician Karl Gauss (1777–
1855) computed the sum 1 + 2 + · · · + 99 + 100 in seconds. His teacher had given the class this
problem in an attempt to keep the children busy for a while. Gauss recognized that the sum of
each pair of numbers taken from opposite ends of the list is 101 and that there are 50 such pairs,
so that the sum must be 50 × 101 = 5050. Gauss was an extraordinarily brilliant and prolific
mathematician. His influence is evident in almost all branches of modern mathematics. It is often
said that Gauss was the last mathematician that knew all of the mathematics of his time. He is
revered in Germany; his likeness appeared on the 10 Deutsche Mark bank note from 1989 until
Germany’s currency was converted to the Euro in 2001.
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Proposition 4.2.2. For all n ∈ N,
n∑

k=1

k =
n(n + 1)

2
.

Proof. Here n0 = 1. For each n ∈ N (or equivalently, for each n � n0), we let P(n)
denote the equation

∑n
k=1 k = n(n + 1)/2.With n = 1, the equation becomes

∑1
k=1 k =

1(1 + 1)/2, which is equivalent to 1 = 1, a true statement. We have verified P(1).

Now we must prove that the universally quantified conditional

(∀n � 1)[P(n) ⇒ P(n + 1)]

is true. Let n be an arbitrary positive integer. For that n, assume P(n). This assumption is
called the induction hypothesis. [No, we are not assuming what we’re trying to prove.
What we’re trying to prove is quantified by ∀n ∈ N. Our assumption is only that P(n)
holds for this particular arbitrarily chosen n.] From the induction hypothesis, we will
deduce P(n + 1).

n+1∑
k=1

k =

(
n∑

k=1

k

)
+ (n + 1)

=
n(n + 1)

2
+ (n + 1) [Here’s where the

induction hypothesis is used.]

=(n + 1)
(n
2

+ 1
)

=
(n + 1)(n + 2)

2

Now
n+1∑
k=1

k = (n + 1)(n + 2)/2 is precisely the statementP(n + 1).Thus,wehave shown

for an arbitrary n ∈ N, if P(n), then P(n + 1). By the Principle of Mathematical Induc-
tion, we may now conclude that, for all n � 1 the statement P(n) is true. �

We use this proof to emphasize once more that the two statements (4.2.1) and (4.2.2)

are not logically equivalent. Let Q(n) denote the statement:
n∑

k=1

k =
n(n + 1)

2
+ 100,

which is clearly false for all n ∈ N. By inserting “+100” at the ends of the last three
displayed lines in the proof of Proposition 4.2.2, we obtain an entirely valid proof that
(∀n ∈ N)[Q(n) ⇒ Q(n + 1)] is true. However, since there is no n0 ∈ N for whichQ(n0)
is true, we cannot conclude that Q(n) holds for all n � n0.

Let us make one more remark about the proof of Proposition 4.2.2. We see that
1 + 2 + 3 + 4 + 5 + 6 = 21 = 6(6 + 1)/2, thereby proving P(6). Had we substituted
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this computation for the observation that P(1) is true, then all that we could have con-
cluded would be that

∑n
k=1 k=n(n+1)/2 is true for all integers n � 6.

Example 4.2.3. We can use Proposition 4.2.2 to find a general formula for the sum
n∑

k=1

(ak + b).

By properties of Σ-notation and finally the proposition, we have
n∑

k=1

(ak + b) =
n∑

k=1

ak +
n∑

k=1

b

= a
n∑

k=1

k + b
n∑

k=1

1

= a
n(n + 1)

2
+ bn.

We have proved

(4.2.3)
n∑

k=1

(ak+b)=
a
2
n2+

(a
2

+b
)
n.

Had we somehow discovered the formula in equation (4.2.3) without the use of Propo-
sition 4.2.2, we would instead need to prove the formula by induction. (You could try
this as an exercise.)

Exercise 4.2.4. Apply the formula in equation (4.2.3) to evaluate each of the following
sums3.

(a)
n∑

k=1

(2k−1)=1+3+5+ · · ·+(2n−1).

(b)
n∑

k=1

(3k−2)=1+4+7+ · · ·+(3n−2).

Exercise 4.2.5. Using the proof of Proposition 4.2.2 as a model, prove that the follow-
ing formulas hold for all n ∈ N.

(a)
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
.

(b)
n∑

k=1

k3 =
[
n(n + 1)

2

]2
.

3 The sums in (a) and (b) are the so-called square number and pentagonal number formulas,
respectively.
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Exercise 4.2.6. Apply equation (4.2.3) and Exercise 4.2.5 to evaluate each of the
following sums. [Hint: First expand the polynomials.]

(a)
n∑

k=1

(2k − 1)2 = 12 + 32 + 52 + · · ·+ (2n− 1)2.

(b)
n∑

k=1

(3k − 2)3 = 13 + 43 + 73 + · · ·+ (3n− 2)3.

Let us tackle an algebraically more complicated application.

Example 4.2.7. We prove that, for all integers n � 5, it holds that 4n > n4.

Let P(n) be the statement: 4n > n4. Since 1024 > 625, it is clear that P(5) is true. Now
let n be an arbitrary integer at least 5, and for that n, assume P(n). We want to deduce
P(n + 1), that is, 4n+1 > (n + 1)4. This time, we start from the right-hand end. We
compute, since n > 4,

(n + 1)4 = n4 + 4n3 + 6n2 + 4n + 1 < n4 + n4 + n4 + n4 + 1 = 4n4 + 1.

By the induction hypothesis and Exercise 2.8.15,

(n + 1)4 � 4n4 < 4 · 4n = 4n+1,

proving (∀n � 5)[P(n) ⇒ P(n + 1)]. By the Principle of Mathematical Induction, we
conclude that P(n), that is, 4n > n4, holds for all n � 5.

Exercise 4.2.8. Prove the following by induction.
(a) For all n � 4, 3n > n3.
(b) For all n � 5, 5n � n5.
(c) For all n � 4, n

√
3 < 3

√
n.

Suppose that a sum ofM dollars is invested in a government bond that pays interest
at a fixed annual rate of r% compounded at the end of each year. That means that, at the
end of each year, r% of the balance is added to the balance, and interest is computed
on the new balance at the end of the following year. Thus at the end of the first year,
the new balance is (1 + r/100)M, and at the end of the second year, the balance is
(1 + r/100)[(1 + r/100)M]. We claim that for all n ∈ N, the balance B(n) at the end of
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n years is (1 + r/100)nM. Let P(n) denote this claim, which has already been verified
when n = 1. If we assume P(n) for some n, we have

B(n + 1) =(1 + r/100)B(n)

=(1 + r/100)[(1 + r/100)nM] = (1 + r/100)n+1M.

Thus P(n) ⇒ P(n + 1) is true, and hence, by the Principle of Mathematical Induction,
B(n) = (1 + r/100)nM holds for all n ∈ N.

Exercise 4.2.9. Determine the value after n years on an initial investment ofM dollars
if r% interest is compounded every six months. Repeat for every 3 months, every month,
and semi-monthly.

The Principle of Mathematical Induction can be applied to define a very useful
notion, namely the factorial function. For all nonnegative integers n, “n factorial” is
written as n! and is defined formally as follows:

� 0! = 1;
�

(∀n ∈ N ∪ {0})[(n + 1)! = (n + 1)n!].

Thus 1! = 1 · 0! = 1 · 1 = 1, and 2! = 2 · 1! = 2 · 1, and 3! = 3 · 2! = 3 · 2 · 1. In
general, if we know the value of n!, thenwe can easily compute (n + 1)!. By the Principle
of Mathematical Induction, we can thus compute n! for all nonnegative integers n.

Note that 2n! 
= (2n)! when n � 2; parentheses remain important. (Which one is
larger?)

Exercise 4.2.10. Prove formally by induction that for every positive integer n,

n! = n · (n− 1) · (n− 2) · · ·3 · 2 · 1.

Exercise 4.2.11. Use induction to prove that, for all n ∈ N,

n∑
k=1

k(k!) = (n + 1)!− 1.

Exercise 4.2.12. (a) Use induction to prove that (∀n � 4)[n! > 2n].
(b) Use induction to prove that (∀n � 5)[(n + 1)! > 2n+3].
(c) Determine for what values of n the inequality n! > 22n holds, and prove the inequality
for all such n by induction.
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In Section 3.1 you saw that the set A = {a,b,c,d} with 4 elements has a power set
with 24 = 16 elements. This was not an isolated coincidence, and thanks to the Principle
of Mathematical Induction, we can now prove the general case.

Theorem 4.2.13. If A is a set with exactly n elements, then its power set P(A) has
exactly 2n elements.

Proof. For each integer n � 0, let P(n) denote the statement that the power set of a set
with n elements has 2n elements. Since P(Ø) = {Ø}, which has 1 = 20 elements, we
see that P(0) is true.

As the induction hypothesis, assume for some arbitrary n � 0 that the power set
of every set with n elements has 2n elements. [That is P(n), and we proceed to deduce
P(n + 1), namely that the power set of any set with n + 1 elements must have 2n+1

elements.]

Let A be a set with n + 1 elements. Since A 
= Ø, there exists an element x ∈ A.
There are two kinds of subsets of A: those that do not include x and those that do. Let

S1 = {S ∈P(A) : x /∈ S}
and S2 = {S ∈P(A) : x ∈ S}.

Clearly every subset of A belongs to exactly one of S1 and S2. So all that we need to
do is to count the number of sets in each of these two families and add these two num-
bers together. Since A \ {x} has only n elements and S1 = P(A \ {x}), the induction
hypothesis implies that S1 has 2n elements.

For each S ∈ S1, we have S ∪ {x} ∈ S2. In other words, each element ofS1 yields
a different element of S2. Thus the number of elements in S1 is at most the number of
elements in S2. Conversely, if T ∈ S2, then T \ {x} ∈ S1. So the number of elements
of S2 is at most the number of elements of S1. We conclude that S1 and S2 must each
have 2n elements. Thus P(A) has 2n + 2n = 2 · 2n = 2n+1 elements. We’ve shown the
truth of the conditional P(n) ⇒ P(n + 1). By the Principle of Mathematical Induction,
we have that P(n) is true for all n � 0. �

Exercise 4.2.14. Let A ⊂ B. Suppose that A has m elements and B has n elements,
where 0 < m < n.
(a) How many elements are there in P(B \ A)?
(b) How many subsets of B include at least one element in A and at least one element
in B \ A?

By the time that you’ve come this far in this chapter, you have seen enough applica-
tions of the Principle of Mathematical Induction that you pretty much know the routine.
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The following application will therefore be written in a more streamlined style, omitting
the notation P(n) as well as recitation of the two conditions that make the Principle of
Mathematical Induction work.

Example 4.2.15. We prove that, for every integer n ∈ N ∪ {0}, the integer 7n − 4n is
divisible by 3. Since 3 divides 0 = 1− 1 = 70 − 40, the statement is clearly true when
n = 0. Now suppose, as the induction hypothesis, that for some n � 0, 3 divides 7n − 4n.
The proof will be complete when we deduce that 7n+1 − 4n+1 is a multiple of 3. The
induction hypothesis implies that 7n − 4n = 3m for some m ∈ Z. Hence

7n+1 − 4n+1 = 7 · 7n − 4 · 4n
= 7(3m + 4n)− 4 · 4n [by the induction hypothesis]
= 3 · 7m + (7− 4)4n

= 3(7m + 4n)

as required.

Inductive proofs can be used in calculus to obtain formulas for higher derivatives of
any order. Consider the following.

Proposition 4.2.16. For all n � 0,
dn

dxn

(
1
x

)
=

(−1)n n!
xn+1 .

Proof. It is generally understood that the 0th derivative of a differentiable function is
the function itself. With that understanding, we see that the formula holds when n = 0.

As the induction hypothesis, we assume, for some n � 0, that the formula holds for
that n. We obtain

dn+1

dxn+1

(
1
x

)
=

d
dx

(
dn

dxn

(
1
x

))

=
d
dx

(
(−1)n n!
xn+1

)
[by the induction hypothesis]

= (−1)nn!−(n + 1)
xn+2 [by the power rule of differentiation]

=
(−1)n+1(n + 1)!

xn+2 ,

which is precisely the given formula with n + 1 in place of n. Thus, the assumption that
the formula holds for some n implies that it must also hold for n + 1. The Principle of
Mathematical Induction yields that the formula holds for all n � 0. �
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Exercise 4.2.17. Prove the following formulas.

(a)
dn

dxn
(
e2x
)

= 2ne2x, for n � 0.

(b) dn

dxn
(√

x
)

=
(−1)n−1 · 1 · 3 · 5 · · ·(2n− 3)

2n
x−(2n−1)/2

=
(−1)n−1(2n− 2)!
22n−1(n− 1)!

x−(2n−1)/2, for n � 1.

4.3 The Principle of Strong Induction

In this section, we do three things: state the Principle of Strong Induction, apply it to
prove an important theorem in number theory, and finally show that it is not “stronger”
at all but, in reality, equivalent to the Principle of Mathematical Induction.

Theorem 4.3.1 (The Principle of Strong Induction). Let n0 ∈ Z. For each integer
n � n0, let P(n) be a statement about n. Suppose that the following two statements are
true:

(i) P(n0);
(ii) (∀n � n0) [(

∧n
k=n0

P(k)) ⇒ P(n + 1)].

Then, for all integers n � n0, the statement P(n) is true.

Let’s compare the two principles of induction, Theorems 4.2.1 and 4.3.1. The only
apparent difference is in the induction hypothesis. In Theorem 4.2.1, all that is required to
deduce P(n + 1) is P(n). In Theorem 4.3.1, we assume, not only P(n), but also P(n− 1)
and P(n− 2) and P(n− 3) . . . all the way down to P(n0 + 1) and even P(n0). The part
that is stronger in the Principle of Strong Induction is only the induction hypothesis. As
you know from Chapter 1, making a hypothesis stronger makes a conditional weaker,
because more conditions have to be assumed in order to infer the same conclusion.
In this instance, that same conclusion is P(n + 1). Ironically, on the surface, it would
appear that so-called “Strong” Induction should be weaker than the familiar Principle
of Mathematical Induction. More about this after the following two applications of
Theorem 4.3.1.

Example 4.3.2. We have a rectangular piece of some material such as plywood whose
area is n square units for some positive integer n. Its length is � units and its width is
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w units, where � and w are positive integers, and so n = �w. Using a table saw4, we
want to saw this board into n squares, each one unit by one unit. The Principle of Strong
Induction is used to show that no matter how we make the saw cuts, exactly n− 1 cuts
are needed to do the job.

Obviously each cut must be parallel to one pair of opposite sides and hence perpen-
dicular to the other pair. If n = 1, then the dimensions of our board must be 1× 1; zero
cuts are needed, and since 0 = 1− 1, our claim holds for n = 1.

Suppose that n � 1.As the induction hypothesis, assume that, whenever 1 � k � n,
if the area of the board is k, then exactly k − 1 cuts are required. (Note that this is the
induction hypothesis for strong induction.) Now suppose that the area of the board is
n + 1 = �w. If the first cut is lengthwise, then the board is separated into two pieces
whose respective dimensions are �× w1 and �× w2, where w1 + w2 = w. (See Figure
4.3.1.) Each of these pieces has area � n, and so by the induction hypothesis, they can
be reduced to (1× 1)-squares using �w1 − 1 and �w2 − 1 cuts, respectively. Hence,
including the initial cut, the total number of cuts required to reduce our board to exactly
n + 1 (1× 1)-squares is

(�w1 − 1) + (�w2 − 1) + 1 = �w− 1 = (n + 1)− 1,

as claimed. (The argument is similar if the initial cut had been width-wise.) Note that
had we assumed merely that the claim held for boards of area n, we would not have had
a strong enough assumption to deduce that the claim holds for boards of area n + 1.
The mere Principle of Mathematical Induction would have been an ineffective tool.

l

lw2 � n

lw1 � nw1

w2
w = w1 + w2 

Figure 4.3.1 The consequence of the first cut.

Our second application, which we present more formally, is the proof that we
promised in Section 2.4.

4 A table saw consists of a platform, or table, and a circular saw blade that protrudes upward
through a slit in the middle of the table. The blade rotates rapidly about its center, which is just
below the table. The height of the blade is adjustable so that enough of the blade protrudes in order
to cut through a piece of wood. The important thing about a table saw is that it can only make a
straight cut from one side of the piece to the other side.
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Theorem 4.3.3 (The Fundamental Theorem of Arithmetic).
(i) Every integer greater than 1 is either a prime number or a product of prime numbers.
(ii) Prime factorizations are unique up to the order in which the prime factors are listed.

Proof. To prove part (i), letP(n) denote the statement: n is a prime number or a product
of prime numbers. [Here n0 = 2.] Since 2 is prime, P(2) is true.

Let n be any integer at least 2, and assume the induction hypothesis
∧n

k=2P(k).
If n + 1 is prime, then clearly P(n + 1) is true. If n + 1 is composite, then there exist
integers a and b such that n + 1 = ab and 2 � a � n and 2 � b � n.

By assuming the induction hypothesis, we have automatically assumed P(a) and
P(b), that is, each of a and b is either prime or a product of primes. Since n + 1 = ab,
it follows that n + 1 is a product of primes, and again we infer P(n + 1). Symbolically,
we’ve shown

n∧
k=2

P(k) ⇒ P(a) ∧ P(b) ⇒ P(n + 1).

By the Principle of Strong Induction, we have (∀n � 2)P(n). This proves part (i).

Remark. We really needed the Principle of Strong Induction in this last proof. The
Principle of Mathematical Induction would not have been up to this job. The weaker
assumption, merely that n is a prime number or a product of prime numbers, would
have been no help in concluding that the same holds for n + 1. Since gcd(n,n + 1) = 1,
the prime factors of n have nothing whatever to do with the prime factors of n + 1. We
absolutely needed the statements P(a) and P(b) for all integers a and b from 2 to n.

To prove part (ii) we again require the Principle of Strong Induction. Since 2 is
prime, there is only one prime factorization of 2. The statement of uniqueness holds for
n = 2.

Letn � 2.The induction hypothesis is that every natural number less thann + 1has a
unique prime factorization, and suppose that n + 1 has (at least) two prime factorizations:

(4.3.1) p1p2p3 · · ·pk = n + 1 = q1q2q3 · · ·q�,

where the factors pi and qj are prime. We can assume that none of the prime numbers
p1,p2, . . . ,pk occurs in the list q1,q2, . . . ,q�, for if one did, then the factors could be
reordered so that p1 = q1. Dividing equation (4.3.1) by p1 yields

(4.3.2)
n + 1
p1

= p2p3 · · ·pk = q2q3 · · ·q�.

Since (n + 1)/p1 < n + 1, the induction hypothesis implies that (n + 1)/p1 has a unique
prime factorization. That is, the two products of prime numbers in equation (4.3.2) are

really the same, except perhaps for the orders of the factors. Hence n + 1 = p1

(
n + 1
p1

)
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would also have a unique prime factorization. Therefore we may assume that none of the
prime numbers p1,p2,p3, . . . ,pk occurs in the list q1,q2,q3, . . . ,q�. In particular, p1 
= q1,
and without loss of generality, p1 < q1.

Let N = (q1 − p1)q2q3 · · ·q�. Then

N = (q1 − p1)q2q3 · · ·q�(4.3.3)

= q1(q2q3 · · ·q�) − p1(q2q3 · · ·q�)
= (n + 1)− p1q2q3 · · ·q�(4.3.4)

= p1p2p3 · · ·pk − p1q2q3 · · ·q�

= p1(p2p3 · · ·pk − q2q3 · · ·q�).(4.3.5)

From line (4.3.4), we have N < n + 1. By the induction hypothesis, the prime factoriza-
tion of N is unique. However, equating lines (4.3.3) and (4.3.5) implies

(4.3.6) N = (q1 − p1)q2q3 · · ·q� = p1(p2p3 · · ·pk − q2q3 · · ·q�).

The factors (q1 − p1) and (p2p3 · · ·pk − q2q3 · · ·q�) are not necessarily prime, but they
are each less than N < n + 1. By the induction hypothesis, each of their prime factor-
izations is unique. Since p1 � (q1 − p1) [why?], we now have two distinct factorizations
of N : the factorization expressed in the right member of equation (4.3.6) involves the
prime number p1 and the other factorization does not. This contradicts the induction
hypothesis. Thus the factorization of n + 1 is unique, and part (ii) of the theorem now
follows from the Principle of Strong Induction. �

The following corollary to Theorem 4.3.3 will be needed in Section 7.3. Its proof,
which does not require induction, is left as Exercise 4.5.14.

Corollary 4.3.4. Every integer n ∈ N can be written uniquely as n = 2k−1 · m, where
k ∈ N and m is an odd natural number.

To conclude this section, we prove that the Principle of Mathematical Induction
(PMI) and the Principle of Strong Induction (PSI) are equivalent, that is, if either one
of them is valid, then so is the other. In fact, we show that both of these principles are
equivalent to the Well Ordering Principle (WOP).

Lemma 4.3.5. If the PMI is valid, then the PSI is valid.

Proof. We continue the notation of the statements of these two principles. Since the
statement (

∧n
k=n0

P(k)) ⇒ P(n) is a tautology, only the cases where this conditional is
true need to be considered. These cases form Table 4.1.
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We see that wheneverT appears in the 4th column,T also appears in the 5th column.
Hence Condition (ii) of the PMI implies Condition (ii) of the PSI. Since Condition (i) is
the same in both principles, the proof is complete. �

P(n)
n∧

k=n0

P(k) P(n + 1) P(n) ⇒ P(n + 1)

⎛
⎝ n∧

k=n0

P(k)

⎞
⎠⇒ P(n + 1)

T T T T T
T F T T T
F F T T T
T T F F F
T F F F T
F F F T T

Table 4.1 Proof of Lemma 4.3.5.

Lemma 4.3.6. If the PSI is valid, then the WOP is valid.

Exercise 4.3.7. The steps of a proof of Lemma 4.3.6 are outlined below. Your job in
this exercise is to write a coherent proof by filling in all of the details and fully justifying
all of the steps.
1. Assume the PSI.
2. Let n0 ∈ Z and let S ⊆ {n ∈ Z : n � n0}. Assume S 
= Ø.
3. We may assume that n0 /∈ S. [For otherwise, . . . ]
4. If for all m ∈ {n ∈ Z : n � n0} \ S, it were to hold that

{n0,n0 + 1, . . . ,m,m + 1} ⊆ {n ∈ Z : n � n0} \ S,
then we could conclude that S = Ø. [This is the crucial step.]

5. Hence there exists some m ∈ {n ∈ Z : n � n0} \ S such that this is not the case.
6. m + 1 is the least element of S. �

Theorem 4.3.8. The Principle of Mathematical Induction, the Principle of Strong
Induction, and the Well Ordering Principle are logically equivalent. That is, if any one
of these is valid, then so are the other two.

Proof. From the proof of Theorem 4.2.1, we see that the Well Ordering Principle
implies the Principle of Mathematical Induction. Lemmas 4.3.5 and 4.3.6 complete the
cycle of equivalence. �
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4.4 The Binomial Theorem

In this section, n and k denote integers such that 0 � k � n.

Definition 4.4.1. Anumber of the form
n!

k!(n− k)!
is abinomial coefficient, denoted by

(
n
k

)
=

n!
k!(n− k)!

.

When reading aloud the symbol
(n
k

)
, say, “n choose k.” That is because, as one learns

in a course in combinatorics,
(n
k

)
is the number of ways that one can choose k objects

from a set of n objects. A set with n elements has exactly
(n
k

)
subsets having exactly k

elements. For example,
(5
2

)
= 5!/(2! · 3!) = 120/(2 · 6) = 10. If A = {a,b,c,d,e}, then

the 10 subsets of A having exactly 2 elements are

{a,b}, {a,c}, {a,d}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,e}, {d,e}.
Here are some notable properties of binomial coefficients that are easy to verify.

�

(
n
k

)
=
(

n
n− k

)
�

(
n
0

)
=
(
n
n

)
= 1

�

(
n
1

)
=
(

n
n− 1

)
= n

�
n + 1
k + 1

(
n
k

)
=
(
n + 1
k + 1

)

Lemma 4.4.2 (Pascal’s Identity).5 If 1 � k � n, then(
n + 1
k

)
=
(

n
k − 1

)
+
(
n
k

)
.

Exercise 4.4.3. Use Definition 4.4.1 to prove Pascal’s Identity.

In high school algebra, you learned the formula (a + b)2 = a2 + 2ab + b2 and per-
haps also the formula (a + b)3 = a3 + 3a2b + 3ab2 + b3. These are special cases of a
very important theorem in algebra, which we prove by induction.

5 After the Frenchmathematician Blaise Pascal (1623–1662). Pascal, in collaborationwith Fermat,
developed probability theory, especially as it applies to games of chance.
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Theorem 4.4.4 (The Binomial Theorem). For any a,b ∈ R and for any n ∈ N,

(4.4.1) (a + b)n =
n∑

k=0

(
n
k

)
an−k bk .

Proof. When n = 1, we have (a + b)1 = a + b =
(1
0

)
a1b0 +

(1
1

)
a0b1. This verifies

equation (4.4.1) when n = 1. As the induction hypothesis, suppose that equation (4.4.1)
holds for some n � 1. It suffices to show that equation (4.4.1) must then hold with n + 1
in place of n.

(a + b)n+1 =(a + b)(a + b)n

=(a + b)
n∑

k=0

(
n
k

)
an−k bk [by the induction hypothesis]

=
n∑

k=0

(
n
k

)
an−k+1 bk +

n∑
k=0

(
n
k

)
an−k bk+1

=an+1 +
n∑

k=1

(
n
k

)
an−k+1 bk +

n−1∑
k=0

(
n
k

)
an−k bk+1 + bn+1.

Note the new limits of the sums after we separated the k = 0 term from the first sum and
the k = n term from the second sum. Next we change the indices in each of the sums.
We substitute h for k in the first sum. In the second sum we substitute h− 1 for k and
adjust the limits of the summation accordingly. This yields

an+1 +
n∑

h=1

(
n
h

)
an−h+1 bh +

n∑
h=1

(
n

h− 1

)
an−h+1 bh + bn+1

=an+1 +
n∑

h=1

[(
n
h

)
+
(

n
h− 1

)]
an−h+1 bh + bn+1

=an+1 +
n∑

h=1

(
n + 1
h

)
an−h+1 bh + bn+1 [by Pascal’s Identity]

=
n+1∑
h=0

(
n + 1
h

)
a(n+1)−h bh,

as required. �

By substituting various values for a and b into equation (4.4.1), one can derive some
interesting identities. For example, setting a = b = 1 yields

(4.4.2) 2n =
n∑

k=0

(
n
k

)
.
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This equation affords an alternative proof of Theorem 4.2.13. Recall the comment earlier
in this section that, if S is a set with n elements, then the binomial coefficient

(n
k

)
is the

number of subsets of S having exactly k elements. The right-hand member of equation
(4.4.2) thus counts up all of the subsets of S. Hence the left-hand member 2n must be
the total number of such subsets, that is, the number of elements of P(S).

If n > 0, setting a = 1 and b = −1 in equation (4.4.1) yields
n∑

k=0

(−1)k
(
n
k

)
= 0,

or equivalently,

(4.4.3)

(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ · · · =

(
n
1

)
+
(
n
3

)
+
(
n
5

)
+ · · ·

where the final term on each side depends upon whether n is even or odd.A consequence
of equation (4.4.3) is that, for any given n > 0, the sum of the binomial coefficients

(n
k

)
with even k equals the sum with odd k. In terms of subsets, we have the following.

Corollary 4.4.5. For any nonempty finite set, exactly half of its subsets have an even
number of elements (and half have an odd number of elements).

Proofs of other identities are exercises in the next section.

4.5 Further Exercises

Exercise 4.5.1. Prove by induction (rather than by algebraic factoring) that the fol-
lowing hold for all n ∈ N.
(a) (−7)n − 9n is divisible by 16.
(b) 107n − 97n is divisible by 10.
(c) If h and k are any two distinct integers, then hn − kn is divisible by h− k.

Exercise 4.5.2. Prove by induction that Z = {3x + 2y : x,y ∈ Z}. [Don’t forget the
negative integers!]

Exercise 4.5.3. Prove that the inequality
(
1 + 1

n

)n
< n holds for all n � 3.

Exercise 4.5.4. Let a,b,c,d ∈ R. Using formulas derived in this chapter, obtain for-
mulas (as polynomials in n) for the following sums.

(a)
n∑

k=1

(
ak2 + bk + c

)
(b)

n∑
k=1

(
ak3 + bk2 + ck + d

)
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Exercise 4.5.5. Let A be a set consisting of two elements, say A = {x,y}. You know
that P(A) has 22 = 4 elements.
(a) List and count the elements of P(P(A)).
(b) For the purposes of this exercise, let P<1>(A) = P(A), and for n � 2, let
P<n>(A) = P

(
P<n−1>(A)

)
. State and prove a theorem about the number of ele-

ments in P<n>(A) for n ∈ N.

Exercise 4.5.6. Many married couples arrive one couple at a time at a restaurant. As
each new couple arrives, they each shake hands exactly once with everybodywho arrived
before them (but nobody shakes hands with one’s own spouse). Prove by induction that
for any n ∈ N, the total number of handshakes that have taken place when n couples
are present is 2n2 − 2n. [Hint: When the (n + 1)st couple arrives, how many additional
handshakes take place?]

Exercise 4.5.7. The Tower of Hanoi game6 consists of three identical upright pegs
and n rings all of different diameters that can be stacked over any of the pegs, as seen
in Figure 4.5.1. Initially, all of the rings are stacked around one of the pegs in order of
decreasing diameter with the largest ring on the bottom. The object of this game is to
transfer all of the rings, one at a time, until they are stacked in the same order around
another peg, but at no time may any ring be placed above a ring of smaller diameter.
(a) Prove that, for any number n of rings, the transfer can be made in exactly 2n − 1
moves.
(b) Can the transfer ever be made in fewer than 2n − 1 moves?

initial position after nine moves

Figure 4.5.1 The game of the Tower of Hanoi.

Exercise 4.5.8. Prove by induction the following formula for the sum of a partial
geometric series. For all r ∈ R \ {0} and for all n ∈ N,

n∑
k=0

rk =
1− rn+1

1− r
.

6 The Tower of Hanoi game is not Vietnamese at all but was invented in 1883 by the French
mathematician Edouard Lucas (1841–1891).
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Exercise 4.5.9. Find a formula for each of the following, much as you did in Exercise
4.2.17. Then prove by induction that your formula is correct for all n ∈ N.

(a)
dn

dxn
(
log10 x

)

(b)
dn

dxn
(
ln(2x + 1)

)

(c)
dn

dxn
(

3
√
x
)

(d)
d2n

dx2n
(
sin(πx/2)

)

(e)
d2n

dx2n
(
sin(2x)− cos(2x)

)

(f)
dn

dxn
(
22x
)

Exercise 4.5.10. We define inductively a sequence f0, f1, f2, . . . of functions with
domain R as follows. Let f0(x) = 1 for all x ∈ R. For each n � 0, define

fn+1(x) =
∫ x

0
fn(t)dt for all x ∈ R.

(a) Guess and then verify by induction a general formula for fn(x) for all n � 0.
(b) Repeat part (a), but this time let f0(x) = e2x for all x ∈ R.
(c) Repeat part (a), but this time let f0(x) =

√
x for all x ∈ [0,∞). [Look ahead to

Exercise 4.5.17 for a way to state your answer concisely.]

Exercise 4.5.11. Generalize Exercise 4.2.12 in the following way. Prove by induction
that for any integer k � 2, there exists an integer nk such that, for all positive integers
n � nk , we have n! > kn. (This proves that sooner or later, the factorial function eventu-
ally catches up to and overtakes all exponential functions.)

Exercise 4.5.12. (a) Prove by induction that, if n ∈ N ∪ {0}, then 102n − 1 is divisible
by 11.
(b) Prove by induction or by using part (a) that, if n ∈ N ∪ {0}, then 102n+1 + 1 is di-
visible by 11.
(c) Deduce from parts (a) and (b) that, if n ∈ N is written with decimal digits
akak−1 · · ·a2a1a0, then 11 | n if and only if 11 |∑k

i=0(−1)iai.
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Exercise 4.5.13 (Bernoulli’s Inequality7). Prove that for all a ∈ R and all n ∈ N, if
1 + a > 0, then (1 + a)n � 1 + na.

Exercise 4.5.14. Prove Corollary 4.3.4.

Exercise 4.5.15. Prove that any integer n � 18 can bewritten in the form n =
∑m

i=1 ki,
where ki ∈ {4,7} for i = 1,2, . . . ,m. (This means that if the only coins of the realm are
in denominations of 4 gwoks and 7 gwoks, then any transaction of at least 18 gwoks can
be paid in exact change.)

Exercise 4.5.16. For n � 2, prove that

(
1− 1

4

)(
1− 1

9

)(
1− 1

16

)
· · ·
(
1− 1

n2

)
=

n + 1
2n

.

Exercise 4.5.17. Prove by induction that, for each natural number n, the product of the
first n odd natural numbers is

(2n)!
2n n!

.

[Suggestion: Designate the nth odd natural number by 2n− 1.]

Exercise 4.5.18. For n ∈ N, the nth Fibonacci8 number fn is defined as follows.

f1 = 1, f2 = 1, and for all n � 2, fn = fn−1 + fn−2.

Prove the following for all n ∈ N.

(a)
n∑

j=1

fj = fn+2 − 1.

(b)
n∑

j=1

f2j−1 = f2n.

(c)
n∑

j=1

f2j = f2n+1 − 1.

7 After Johann Bernoulli (1667–1748), a Swiss mathematician who was one of Euler’s teachers.
There were several notable mathematicians in the Bernoulli family.
8 The Italian mathematician Fibonacci (c.1170–c.1250) was born Leonardo of Pisa. As a youth,
he traveled with his merchant father to the Algerian port city of Bejaia where Leonardo learned
the Hindu-Arabic numeral system and the associated algorithms of arithmetic. In 1202 he wrote
the book Liber Abaci that introduced this system to Europe. It included an exercise involving the
population increase of a colony of rabbits. The solution generates the first twelve numbers of the
sequence now known as the Fibonacci sequence.
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(d)
n∑

j=1

(fj)
2 = fnfn+1.

(e) f 2n = fn−1fn+1 + (−1)n+1.

(f) 2
∣∣ f3n.

(g) 5
∣∣ f5n.

(h) fn and fn+1 are relatively prime.

Exercise 4.5.19. Use the Binomial Theorem to expand fully the following powers of
binomials (i.e., write out all the terms).

(a) (x − y)5

(b) (2x + 3y)4

(c)
(
2x − 1

2y
)6

(d) (1− 10x)10

(e) (x + y + z)3 [Hint: Expand the trinomial x + y + z as though it were the binomial
x + (y + z). Then apply the Binomial Theorem again to each power of y + z in the
expansion.]

Exercise 4.5.20. Prove the following identities for all n ∈ N ∪ {0}.

(a)
n∑

k=0

(−1)k
(
n
k

)
2n−k = 1.

(b)
n∑

k=0

(−1)k
(
n
k

)
2k = (−1)n.

(c)
n∑

k=0

(−1)n−k
(
n
k

)
22k = 3n.

Exercise 4.5.21. Evaluate each of the following.

(a)
101∑
k=0

(−1)101−k
(

101
101− k

)
22k

(b)
50∑
k=0

(
101
k

)
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Exercise 4.5.22. Let {An : n ∈ N} be a family of subsets of some universe U. We
generalize the notion of symmetric difference (see Exercise 3.6.12) in the following

way. Define
1
+
k=1

Ak = A1 and
2
+
k=1

Ak = (A1 ∪ A2) \ (A1 ∩ A2). For each n � 2, define

n+1
+
k=1

Ak =
(

n
+
k=1

Ak

)
+ An+1.

(a) Prove that the definition of
n+1
+
k=1

Ak is independent of the order of the sets Ak .

(b) Prove by induction that for all n ∈ N,
n
+
k=1

Ak is the set of elements of U that belong

to exactly an odd number of the sets A1, . . . , An.

Exercise 4.5.23. Is there anything incorrect in the following proof by induction?

Claim. Given any finite subset S of N, if S includes a prime number, then all the
elements of S are prime.

Proof. We proceed by induction on the number of elements of S. Let S be a finite
subset of N that includes a prime number, say p. If S = {p}, then the claim obviously
holds for S, that is, the claim is true for sets of size 1.

As the induction hypothesis, suppose that, for some arbitrary n ∈ N, if a subset of
N contains n elements at least one of which is prime, then all of its elements are prime.
Now suppose that S is a subset of N of size n + 1 and that at least one of its elements,
say p, is prime. We need to show that all the elements of S are prime.

Since n + 1 > 1, there exists some element x of S distinct from p. Then S \ {x}
has only n elements, and so by the induction hypothesis, all the elements of S \ {x} are
prime, including in particular some element y 
= x. Now consider the set S \ {y}. It, too,
has only n elements, and so by another application of the induction hypothesis, all of
its elements are prime. In particular, x is prime, too. Therefore all the elements of S are
prime as required. �

Exercise 4.5.24. Consider a 3-dimensional analogue of Example 4.3.2. You have a
block of wood in the shape of a rectangular parallelepiped that is � units long, w units
wide, and t units tall, where �,w, t ∈ N, so that its volume is n = �wt cubic units. Find a
formula for the number of cuts required to reduce the block to n (1× 1× 1) cubes.
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A s a calculus student, you developed an intuitive understanding of what a function
is. There is the “sine function,” the “exponential function,” “linear functions,” etc.

In calculus, the emphasis is on processes (such as differentiation and integration) applied
to specific functions. In this chapter, we explore the mathematics of functions from a
more general standpoint, so that we can apply functions in a variety of settings beyond
calculus. When functions are revisited in Section 6.6, they will be treated as a special
case of relations. Although this latter approach is more rigorous, it lacks the intuition
that you acquired in your calculus courses and upon which we now build.

5.1 Functional Notation

We presume that you already know how to use the conventional function notation f (x),
where f denotes a function and x is an element of the domain of f . It is assumed,
for example, that you know that if f (x)=4x2−3x+2, then f (−2)=24 and f (a−3) =
4(a−3)2−3(a−3)+2=4a2−27a+47.

Definition 5.1.1. Let X and Y be sets. A function f from X to Y, written f : X → Y , is
a rule1 that pairs an element x ∈ X with an element y ∈ Y , written f (x)=y, such that
the following property holds.

(5.1.1) (∀x ∈ X)(∃!y ∈ Y)[f (x) = y].

The set X is the domain of f and the set Y is the codomain of f . If f (x)=y, then y is the
image of x and x is a preimage of y.

Note the use of articles in the previous sentence: the image and a preimage.As stated
in the definition, each element of the domain has a unique image, but no such condition
is imposed on preimages of elements of the codomain. The following example illustrates
this important point.

1 The term “rule” in this context is undefined. This should not get in the way of understanding the
material that follows.
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Example 5.1.2. Let X=
{
1,2,3,4

}
and let Y =

{
a,b,c

}
. Let f : X → Y be defined by

f (1) = b, f (2) = b, f (3) = c, f (4) = c,

as indicated by Figure 5.1.1.

X

Y

1
2

3 4

a b
c

f

Figure 5.1.1 Example 5.1.2.

Thus f is a function. Each element of X has exactly one image. However, the element b
of the codomain Y has two preimages, and the same holds for c.

What about g defined by

g(1) = b, g(2) = a, g(3) = c?

As defined, g is not a function from X to Y , because the element 4 ∈ X is not paired with
an element from Y . Defined by this rule, however, g is a function from {1,2,3} to Y .

On the other hand, consider h defined by

h(1) = a, h(1) = b, h(2) = b, h(3) = c, h(4) = a.

Do you see why h fails to satisfy the definition of a function?

Definition 5.1.3. Two functions are equal when
(i) they have the same domain and the same codomain, and
(ii) they agree at every element of their domain.

We interpret and apply the definition of equality of functions in the following way.
Suppose that f : X1 → Y1 and g : X2 → Y2. Then we write f =g precisely when X1=X2

and Y1=Y2 and (∀x ∈ X1)[f (x)=g(x)].
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Exercise 5.1.4. Let f : A→ R be defined by f (x)=x3−9x2+23x−12, where
A={1,3,6}. Let g : B→ R be defined by g(x)=x2−4x+6, where

B =
{
x ∈ N : x | 6} \ {x : x is an even prime number

}
.

Prove that f =g.

The definition of a function places no restriction on the codomain. For example,
the constant function f : R → R defined by f (x)=13 for all x ∈ R uses only the single
element 13 of the codomain R and yet it is still a reasonable and important (though
simple) function. There is an important subset of the codomain that consists precisely of
those elements that are actually paired with elements of the domain.

Definition 5.1.5. Let f : X → Y . The range of f is the set{
y ∈ Y : (∃x ∈ X)[f (x) = y]

}
.

Equivalently, the range of f is the set of all images of elements of the domain and
may be indicated more briefly as {

f (x) : x ∈ X
}
.

Example 5.1.6. Let f : N → N be the function defined by the rule f (n)=n2 for all
n ∈ N. The range of f is

{
1,4,9,16,25, . . .

}
. Even though the integer 20 is in the

codomain of f , 20 is not in the range of f , since there is no natural number whose
square is 20.

Example 5.1.7. In Section 1.2 you encountered the term propositional function. Such
an object really is a function. Its domain is some universal set and its codomain is the set
{T,F}. Any preimage of T is an element of the truth set of the propositional function.
For example, if P(n) means, “n is a prime number,” then we have

P : N → {T,F},
and the set of all the preimages of T is the set of all prime numbers. The range of a
tautology is the subset {T}; the range of a contradiction is the subset {F}.

In the calculus or pre-calculus setting, we encounter the notion of the “inverse” of
a function. This notion makes precise, for example, the relationship between squaring
and taking a square root or between the action of an exponential function and the action
of a logarithmic function.

Definition 5.1.8. Let f : X → Y . The inverse of f (or f inverse), denoted f−1, is the
pairing defined by the rule that, if f (x)=y, then f−1(y)=x.
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Note that f−1 is defined as a “pairing” rather than as a function, because f−1 is not
necessarily a function from Y to X .

Example 5.1.9. Let f : {1,2,3} → {a,b,c} be defined by

f (1)=a, f (2)=a, f (3)=b.

Then we would have

f−1(a) = 1, f−1(a) = 2, f−1(b) = 3.

The rule that pairs elements of {a,b} with elements of {1,2,3} is clear; but it is also
clear that f−1 is not a function, since the element of {1,2,3} with which a is paired is
not unique.

Exercise 5.1.10. Let X={a,b,c,d} and Y ={1,2,3}. Define f : X → Y by

f (a) = 1, f (b) = 3, f (c) = 2, f (d) = 3.

List the pairings for f−1. Is f−1 a function from Y to X? Explain why or why not.

5.2 Operations with Functions

In your first course in calculus, you encountered three operations on functions and called
them

� addition,
� multiplication,
� composition.

In fact, you probably encountered more than just these three (e.g., subtraction), but
for now we concentrate primarily just on these three. The motivation for introducing
these operations in a calculus course is in order to be able to state concisely some useful
rules for differentiation such as, “The derivative of the sum of two functions is the sum of
their derivatives, but the derivative of the product is not the product of their derivatives.”
Both the domain and the codomain of the functions studied in a first course in calculus
are subsets of R. Here, as in Section 5.1, we treat functions with a variety of domains
and codomains.

Suppose that sets X and Y are given. We impose no conditions on X, but let us for
now require that Y has an operation that we denote by the symbol +. Here are some
familiar examples of such a set Y .
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� Y is the set N and + denotes the addition that one learns in first-grade arithmetic.
� Y =R× R and, for (x1,y1),(x2,y2) ∈ R× R, we have (x1,y1)+(x2,y2)=

(x1+x2,y1+y2). [Those who have studied vectors will recognize this opera-
tion as vector addition in the plane.]

� Y is the set of 3× 4 matrices2 with entries in Z and + denotes the standard entry-to-
entry addition of same-size matrices.

Suppose that f : X → Y and g : X → Y . We define a new function f +g : X → Y
by the rule that, for all x ∈ X ,

(5.2.1) (f + g)(x) = f (x) + g(x).

Beware of double meaning of + in statement (5.2.1) ! The symbol + occurs twice but
with different meaning in its two occurrences. In the left-hand member, + is part of the
bigger symbol f +g identifying our new function. In the right-hand member, + denotes
whatever it is supposed to denote in the set Y ; both f (x) and g(x) are elements of Y ,
and + denotes the additive operation, i.e., the “arithmetic,” of Y .

Example 5.2.1.
1. Let X=N and Y =Z. For all n ∈ X , let f (n)=2n and g(n)=100−3n. Then f +g is
given by the rule that, for all n ∈ N,

(f + g)(n) = f (n) + g(n) = 2n + (100− 3n).

Thus, (f +g)(1)=99, (f +g)(2)=95, and (f +g)(5)= − 111.

2. Let X=R and Y =R× R. For all x ∈ R, let f (x)=
(
x/π,x2

)
and g(x)=

(sinx, π2). Then for all x ∈ R, (f +g)(x)=(x/π + sinx, x2+π2). For example,
(f +g)(π)=(1,2π2).

3. Let X denote the collection of finite nonempty subsets of N, and let Y =Q. For each
set S ∈ X , let f (S) denote the average of all the elements of S, and let g(S) denote the
number of elements in S. Then

(f + g)
({1,2,4,8,16,32,64,128})
= f
({1,2,4,8,16,32,64,128})+ g

({1,2,4,8,16,32,64,128})
= 31.875 + 8

= 39.875.

Notation. The expression f +g denotes a function, but the expression (f +g)(x) de-
notes an element of Y . Observe here the absence of parentheses in the first instance and
the presence of two pairs of parentheses in the second instance. There’s nothing random

2 If you haven’t studied any linear algebra, feel free to ignore this and similar examples.
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in this usage. If the first pair of parentheses in (f +g)(x) were to be omitted, we’d come
up with the meaningless expression f +g(x).Why does this expression have no meaning
in this context? It looks like we’re adding the function f to the element g(x) ∈ Y , while
no such addition has been defined.

With addition of functions explained, it is but a short step to products of functions.
Again we have sets X and Y and functions f ,g : X → Y , but now we impose still more
structure upon the set Y . We assume that Y also supports another operation called multi-
plication, where the product (the result of the multiplication) of y1,y2 ∈ Y , is denoted by
y1 · y2, or sometimes simply by y1y2. Many mathematical objects have two such opera-
tions. Examples include N,Z,Q,R, and C as well as the set of n× n (square) matrices
for each n ∈ N. Here the order in which the elements appear may be important (as in the
case of multiplication of matrices).

It is always assumed that addition distributes over multiplication in Y , that is, for
all y1,y2,y3 ∈ Y ,

y1 · (y2 + y3) = y1 · y2 + y1 · y3
and(5.2.2)

(y1 + y2) · y3 = y1 · y3 + y2 · y3.
When Y has the properties just described, and if f : X → Y and g : X → Y are

given, then we define the new function f · g (also denoted simply by fg) by the rule that,
for all x ∈ X ,

(f · g)(x) = f (x) · g(x).
Sometimes we write fg and sometimes f · g, choosing the latter only if more clarification
is needed.Of course, the notational convention concerning parentheses thatwas justmen-
tioned in the context of addition of functions also applies to multiplication of functions.

Example 5.2.2. Let X ,Y , f , and g be as in Example 5.2.1(1). Then for all n ∈ N, we
have (f · g)(n)=2n · 100−6n.

A special case of multiplication of functions arises when the first function in the
product is a constant function. You have certainly seen constant functions in previous
courses; their graphs are horizontal lines.

Definition 5.2.3. Let X and Y be any sets. A function f : X → Y is a constant function
when the following property holds.

(∃a ∈ Y)(∀x ∈ X)[f (x)=a].

Assume once again that Y is a set with addition and multiplication. Suppose that
f : X → Y is the constant function given by (∀x ∈ X)[f (x)=a], where a is some element



5.2 Operations with Functions 117

of Y and that g is any function from X into Y . Then fgmay be written as ag. In particular,
if Y is a set of numbers containing 1 and −1, then the function (−1)g is written as −g
and is called the negative of g.

Using the definitions and notational conventions of this section, let us prove that
functions satisfy a distributive law akin to the distributive laws of statement (5.2.2). This
means that, given Y ⊆ R and functions f ,g,h : X → Y , we have h(f +g) = hf +hg. We
must prove that the two functions h(f +g) and hf +hg are indeed the same function.We
proceed as follows. Let x be an arbitrary element of X. Then

[h(f + g)](x) = h(x)[(f + g)(x)] [definition of product of functions]

= h(x)(f (x) + g(x)) [definition of sum of functions]

= h(x)f (x) + h(x)g(x) [distributive law in R]

= (hf )(x) + (hg)(x) [definition of product of functions]

= (hf + hg)(x) [definition of sum of functions].

Since the equality [h(f +g)](x)=(hf +hg)(x) (of numbers) holds for all x ∈ X , the
equality h(f +g)=hf +hg (of functions) holds.

Notation. In mathematical notation, parentheses may serve in many roles, and the
preceding proof illustrates this point. We see the two expressions h(f +g) and h(x),
each with a pair of parentheses. By h(f +g), we mean the function h · (f +g), and the
parentheses tell us that it is obtained by first adding f and g and thenmultiplying their sum
by h. On the other hand, h(x) is not a function but is the image in Y (with respect to the
function h) of the element x of X . It is absolutely essential, when reading a mathematical
argument, to bear constantly in mind where the various mathematical objects “live;”
h(f +g) lives in the set of functions from X to Y , while h(x) lives in the set Y .

Exercise 5.2.4. Let X be a set, let f ,g : X → R, and let a,b ∈ R. Prove the following
equalities.
(a) 1f = f .
(b) f + f =2f .
(c) f +(−f )=0=0f . (Here 0 denotes a particular constant function, not the number 0.
What is that function?)
(d) (a+b)f =af +bf . (Does the plus sign + play the same role in its two occurrences
here? Explain.)
(e) a(f +g)=af +ag. (Once again, does the plus sign + play the same role in its two
occurrences here? Explain.)
(f) (af ) · g=a(f · g)= f · (ag).

More notation. Instead of writing the sum of the functions f and −g as f +(−g), we
write simply f −g. So subtraction of functions is merely a special case of addition.
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If f : X → R, then 1/f denotes the function whose domain is

{x ∈ X : f (x) 
= 0}
andwhose rule is that, for all x in its domain, (1/f )(x)=1/f (x).Oneneverdenotes 1/f (x)
by f−1(x) because f−1 has the special meaning assigned to it in Section 5.1. However,
it’s perfectly all right to write (1/f )(x)=[f (x)]−1, because f (x) is a real number, not a
function. The function 1/f is called the reciprocal of f , while f−1 was named the inverse
of f in Section 5.1.

Exercise 5.2.5. Prove that if f (x) 
= 0 for all x ∈ S, then 1/(1/f )= f .Why is this false
if f (x)=0 for some x ∈ S?

Definition 5.2.6. Let S ⊆ R and let f : S → R. Then f is increasing on S if

(∀x1,x2 ∈ S)
[
x1 < x2 ⇒ f (x1) < f (x2)

]
,

f is decreasing on S if

(∀x1,x2 ∈ S)
[
x1 < x2 ⇒ f (x1) > f (x2)

]
,

f is nondecreasing on S if

(∀x1,x2 ∈ S)
[
x1 < x2 ⇒ f (x1) � f (x2)

]
,

and f is nonincreasing on S if

(∀x1,x2 ∈ S)
[
x1 < x2 ⇒ f (x1) � f (x2)

]
.

Note the use of the universal quantifier in these definitions. For example, for a given
function f , being “increasing on S” is a property of the whole set S. If f is increasing on
some subset of S and decreasing on some other subset of S, then f is neither increasing
on S nor decreasing on S.

The same applies when we say that a function is positive on S; that means

(∀x ∈ S)[f (x) > 0],

with a similar definition of f is negative on S. For example, if f (x)=2x−4, then f is
positive on S if S ⊆ (2,∞) and f is negative on S if S ⊆ (−∞,2), but if S=(0,4), then
f is neither positive on S nor negative on S.

Exercise 5.2.7. Let S ⊆ R and let f ,g : S → R.
(a) Prove that if f is increasing on S and g is nondecreasing on S, then f +g is increasing
on S.
(b) If both f and f +g are increasing on S, then is g necessarily increasing on S? Prove
this or give a counterexample.
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(c) Prove or disprove that if both f and g are increasing on S and either both functions
are positive on S or both are negative on S, then fg is increasing on S. What if one of the
functions is positive on S and the other is negative on S? [Use the definitions. Do not
assume that these functions are differentiable.]

We now consider the third and perhaps most important operation on functions,
namely composition. This time the domains and codomains need not support any sort of
algebraic structure at all, nor do they need to be distinct.

Definition 5.2.8. Let X, Y, and Z be sets. Let functions f : X → Y and g : Y → Z be
given. Then the composition of gwith f (also called the composition of f by g), written
g ◦ f , is defined by

(∀x ∈ X)[(g ◦ f )(x) = g(f (x))].

In this situation, each element x ∈ X is assigned by f to an element f (x) ∈ Y , which
is assigned in turn by g to an element g(f (x)) ∈ Z . Thus we have

g ◦ f : X → Z.

This is indicated pictorially by Figure 5.2.1.

X

Y

Z

f g

a

b = f (a)

c = g(b)

g° f  

= g(f (a))

Figure 5.2.1
(
g ◦ f

)
(a) = g

(
f (a)

)
= g(b) = c.

If X=Z , then both g ◦ f : X → X and f ◦ g : Y → Y are functions, too. However,
in general these two functions are not the same. For example, in the calculus context,
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suppose f (x)=x−2 and g(x)=3x for all x ∈ R. Then (g ◦ f )(x)=3x−6 while
(f ◦ g)(x)=3x−2.

For another example, let f ,g : R → R be given by f (x)=x3 and g(x)=1−x. Then,
for all x ∈ R, (f ◦ g)(x)=(1−x)3 while (g ◦ f )(x)=1−x3.

So, unlike addition and multiplication of functions, composition of functions is not
commutative. However, like both addition and multiplication of functions, you prove in
Exercise 5.2.9 that composition of functions is associative. (Is subtraction associative?)

Exercise 5.2.9. Let f : X → Y , g : Y → Z , and h : Z → U. Prove that for all x ∈ X ,

[h ◦ (g ◦ f )](x)=[(h ◦ g) ◦ f ](x).

In light of this exercise, we may, without risk of ambiguity, do without parentheses
when writing a string of functions connected by composition. We may write simply
h ◦ g ◦ f .

One might expect from the definition of g ◦ f that the domain of g ◦ f should be
exactly the domain of f . However, in calculus you have certainly seen situations where
this is not so and yet g ◦ f is treated as a well-defined function. Suppose for example that
X=R and that f and g are given by f (x)=x−2, and g(x)=1/x.What then is (g ◦ f )(2)?
The problem in this case is that the range of f , namely R, is not contained in the domain
of g, the latter being R \ {0}. The conventional way to get out of messes like this is to
replace X in the displayed expression in Definition 5.2.8 by the set{

x ∈ X : f (x) is in the domain of g
}
.

For our example here, the domain of g ◦ f is R \ {2}.

5.3 Induced Set Functions

Recall the function f : N → N defined by f (n)=n2 in Example 5.1.6. What subset of N
ought to be matched with the set {3,5,9} with respect to f ? Since f (3)=9, f (5)=25,
and f (9)=81, the set {9,25,81}makes some sense as the set that should be paired with
the set {3,5,9}. This pairing motivates the next definition.

Definition 5.3.1. Let f : X → Y. The set function3 induced by f is the function
f : P(X) → P(Y) defined by the rule that, for all A ∈P(X),

f (A) =
{
y ∈ Y : (∃x ∈ A)[f (x) = y]

}
=
{
f (x) : x ∈ A

}
.

3 Mathematicians usually make no notational distinction between the functions f and f , even
though they have different domains, different codomains, and different rules. For pedagogical
purposes, we make this distinction, but only temporarily. As you gain experience working with
induced set functions, you will find that the context makes clear whether f or f is intended.
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Note that for any function f : X → Y , we can denote the range of f by f (X). Also
note that f (Ø)=Ø and that, if f (x)=y, we have that f

({x})={y}.
Example 5.3.2. Let g : R → R be defined by g(x)=3x−4 and let A=

{
x ∈ R :

1 < x � 3
}

=(1,3]. Then g(A)=(−1,5]. See Figure 5.3.1.

A

y = g (x) = 3x - 4

g (A)

x

y

Figure 5.3.1 g(A) = (−1,5].

Example 5.3.3. Let h : R → R be defined by h(x) = 4−x2.Then h
(
(−1,2]) = [0,4].

See Figure 5.3.2. Even though h(−1) = 3 and h(2) = 0, h
(
(−1,2]) is not the nonsense

(3,0], and not even the more sensible [0,3).

y = h(x) = 4 - x²

Figure 5.3.2 h
(
(−1,2]

)
= [0,4].
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Here are some basic properties of induced set functions.

Theorem 5.3.4. Let f : X → Y and let A,B ∈P(X). Then the following hold.

(i) A ⊆ B⇒ f (A) ⊆ f (B).

(ii) f (A ∩ B) ⊆ f (A) ∩ f (B).

(iii) f (A ∪ B)= f (A) ∪ f (B).

Proof. (i) Assume that A ⊆ B, and let y be an arbitrary element of f (A). This means
that there exists some x ∈ A such that y= f (x). SinceA ⊆ B, we have x ∈ B. Since x ∈ B,
we have y = f (x) ∈ f (B). Thus f (A) ⊆ f (B).

(ii) Let y ∈ f (A ∩ B). This means that there exists an element x ∈ A ∩ B such
that y= f (x). Since f (x) ∈ f (A) and f (x) ∈ f (B), we have y= f (x) ∈ f (A) ∩ f (B). (See
Figure 5.3.3.)

(iii) This proof is left as Exercise 5.3.5(b). �

X

Y

f

A
B A � B 

? ??
f (B)

f (A � B)

f (A)
f (B)f (A)�

Figure 5.3.3 Theorem 5.3.4(ii).

The converse of the conditional in part (i) of Theorem 5.3.4 is false, and here is a
counterexample. Let X={a,b,c,d} and Y ={1,2,3}. Define f : X → Y by

f (a) = 1, f (b) = 3, f (c) = 2, f (d) = 1.
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Now let A={c,d} and B={a,b,c}. Then
f (A) = {1,2} and f (B) = {1,2,3}.

Clearly f (A) ⊆ f (B), but A � B.

Exercise 5.3.5. (a) Show by example that the reverse of the inclusion in part (ii) of
Theorem 5.3.4 does not necessarily hold.
(b) Give a proof of part (iii) of Theorem 5.3.4 in such a way that each step of your proof
is reversible.

How does f (A \ B) compare with f (A) \ f (B)? Let f : X → Y be as in the exam-
ple just presented, but now let A={a,b,c} and B={c,d}. We have A \ B={a,b} and
f (A \ B)={1,3}.Also f (A)={1,2,3} and f (B)={1,2}. Thus f (A) \ f (B)={3}. (See
Figure 5.3.4.)

X

Y

f

a b c d

1 32

A B

A \ B

f (A)

f (A \ B)

f (B)

Figure 5.3.4 f (A \ B) �= f (A) \ f (B).

Although these two sets need not be equal, the following inclusion still holds.

Proposition 5.3.6. Let A,B ⊆ X and f : X → Y . Then

f (A) \ f (B) ⊆ f (A \ B).

Proof. Let y ∈ f (A) \ f (B). This means that y ∈ f (A) and y /∈ f (B). So there exists
x ∈ A such that f (x)=y. If it were so that x ∈ B, then y= f (x)would belong to f (B).But
y /∈ f (B), and so x /∈ B. Thus x ∈ A and x /∈ B, that is, x ∈ A \ B, making y ∈ f (A \ B).
Therefore f (A) \ f (B) ⊆ f (A \ B). �
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Exercise 5.3.7. Let f : X → Y and suppose that X and Y are universal sets. Let A ⊆ X.
(a) Prove that if f (X) = Y (that is, Y is the range of f ), then(

f (A)
)′ ⊆ f (A′).

(b) Show by a counterexample that the reverse of the above inclusion can fail.

Recall that for any given function f : X → Y , the pairing f−1 sometimes is and
sometimes is not a function. However, the set function f−1 : P(Y) → P(X) induced
by f−1 is always truly a function.

Definition 5.3.8. Let f : X → Y. For each set B ∈P(Y), define the function
f−1 : P(Y) → P(X) by

f−1(B) =
{
x ∈ X : f (x) ∈ B

}
.

Example 5.3.9. Let us revisit the function f from Example 5.1.9 and its inverse
f−1 (which is not a function). Recall that f : {1,2,3} → {a,b,c} was defined by
f (1)=a, f (2)=a, and f (3)=b, so that

f−1(a) = 1, f−1(a) = 2, f−1(b) = 3.

One should first verify that:

f
(
Ø
)

= Ø; f
({1}) = f

({2}) = f
({1,2}) = {a};

f
({3}) = {b}; f

({1,3}) = f
({2,3}) = f

({1,2,3}) = {a,b}.
According to the definition, f−1 is defined on P({a,b,c}) as follows.

f−1
(
Ø
)

= Ø f−1
({c}) = Ø

f−1
({a}) = {1,2} f−1

({a,c}) = {1,2}
f−1
({b}) = {3} f−1

({b,c}) = {3}
f−1
({a,b}) = {1,2,3} f−1

({a,b,c}) = {1,2,3}
It is easily seen that, even though f−1 is not a function, f−1 is a function from P(Y) to
P(X).

Exercise 5.3.10. Let X={a,b,c,d} and Y ={1,2,3}. Define f : X → Y by

f (a)=1, f (b)=3, f (c)=2, f (d)=3,

as in Exercise 5.1.10.Write the 8 pairings for the induced set pairing f−1 from P(Y) to
P(X), thereby confirming that f−1 is indeed a function from P(Y) to P(X).
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Exercise 5.3.11. Let f : X → Y and E ⊆ Y . Prove that

X \ f−1(E) ⊆ f−1(Y \ E).

Exercise 5.3.12. Suppose that f : X → Y and that x ∈ X. Justify the statement:
x ∈ f−1

({f (x)}). Is it true that {x}= f−1
({f (x)})? Justify your answer.

The functions f : X → Y and g : Y → Z induce, respectively,

f : P(X) → P(Y) and g : P(Y) → P(Z).

If A ∈P(X), then f (A) ∈P(Y) and g(f (A)) is a subset of Z . At the same time we have
the function g ◦ f : X → Z , which induces the function g ◦ f : P(X) → P(Z). From
these considerations, it is straightforward to verify the following result.

Lemma 5.3.13. Let X, Y, and Z be sets, and let the functions f : X → Y and g : Y → Z
be given. Then for all A ∈P(X),(

g ◦ f )(A) = g
(
f (A)

)
=
(
g ◦ f )(A).

With the above notation, let C ⊆ Z and recall that

g−1(C) =
{
y ∈ Y : g(y) ∈ C

}
,

and so g−1 is a function from P(Z) to P(Y). (Do not jump to the sometimes false
conclusion that there is necessarily a function g−1 from Z to Y .) Similarly, we have the
function f−1 : P(Y) → P(X), and so f−1(g−1(C)) belongs toP(X).At the same time
(g ◦ f )−1 also maps subsets of Z to subsets of X.

Lemma 5.3.14. Let X,Y, and Z be sets, and let the functions f : X → Y and g : Y → Z
be given. Then for all C ∈P(Z),

(g ◦ f )−1(C)=(f−1 ◦ g−1)(C)=(f−1 ◦ g−1)(C)= f−1 (g−1(C)).

Proof. Let x be an arbitrary element of X . The argument proceeds by chasing up and
down the following sequence of equivalent statements.

x ∈ (g ◦ f )−1(C) �� (g ◦ f )(x) ∈ C

�� g(f (x)) ∈ C

�� f (x) ∈ g−1(C)

�� x ∈ f−1(g−1(C)). �

Compare the order in which the various functions are written in the previous two
lemmas, especially the reverse order of the inverses of the set functions in Lemma 5.3.14.
Intuitively this makes sense. One may think of an inverse as undoing something. To undo
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a sequence of actions, the actions often must be undone in an order opposite from the
order in which they were done. For example, when undressing, do you ever take off your
socks before taking off your shoes?

Exercise 5.3.15. Prove Lemma 5.3.13.

Exercise 5.3.16. Let f : X → Y and A,B ⊆ Y . Prove the following.

(a) f−1(A ∩ B)= f−1(A) ∩ f−1(B).

(b) f−1(A ∪ B)= f−1(A) ∪ f−1(B).

(c) f−1(A \ B)= f−1(A) \ f−1(B).
Compare to Theorem 5.3.4 and Proposition 5.3.6.

Exercise 5.3.17. Let f : X → Y . Show that for all S ∈P(X) and T ∈P(Y),

f̄ ( f−1(T)) ⊆ T and f−1( f̄ (S)) ⊇ S.

5.4 Surjections, Injections, and Bijections

Recall the definition of a function from X into Y and (once again) note carefully the order
of the quantified variables x and y:

(5.4.1) (∀x ∈ X)(∃!y ∈ Y)[f (x) = y].

Statement (5.4.1) is true of every function; it is in fact the definition of function. Func-
tions for which this statement also holds with the variables (but not the quantifiers)
interchanged are of special interest. They will be defined at the end of this section as bi-
jections. But we first consider a weaker version, one with the usual existential quantifier
∃, rather than with the unique existential quantifier ∃!.

Definition 5.4.1. A function f : X → Y with the property

(∀y ∈ Y)(∃x ∈ X)[f (x) = y]

is a surjection4 of X onto Y.

Saying that a given function is a surjection is equivalent to saying that every element
of the codomain has at least one preimage.We can also say that a surjection is a function
whose range equals its codomain, i.e., f (X)=Y.

4 Surjections are sometimes called onto functions. The prefix sur is the French word for on, onto,
or upon.
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The codomain of a function determineswhether it is a surjection, because every func-
tion is a surjection onto its own range. For example, the exponential function f (x)=ex

for all x ∈ R is a surjection if we regard f as a function from R to (0,∞), but it is not a
surjection if we consider f as a function from R to R. Therefore, to prove that a given
function is a surjection, one picks an arbitrary element of the codomain and shows that
it must have at least one preimage.

Example 5.4.2. Let f (x)=x2−1 for x ∈ R. To prove that f is a surjection onto
[−1,∞), we note every real number y � −1 has a preimage; 0 is the (unique) preimage
of −1, while both √y + 1 and −√y + 1 are preimages of y when y > −1.

Exercise 5.4.3. A linear function is a function f : R → R of the form f (x)=ax + b
for all x ∈ R. Prove that if a 
= 0, then f is a surjection.

Proposition 5.4.4. The composition of two surjections is a surjection.

Proof. Suppose that f : X → Y and g : Y → Z are surjections.
[
We must show that

g ◦ f is a surjection. The codomain of g ◦ f is Z .
]
Let c be an arbitrary element of Z .

Since g is a surjection, there exists b ∈ Y such that g(b)=c. Since f is a surjection, there
exists a ∈ X such that f (a)=b. Thus

c=g(b)=g(f (a))=(g ◦ f )(a).
We have shown that the arbitrary element c ∈ Z has a preimage, namely a, with respect
to the function g ◦ f . Hence g ◦ f satisfies the definition of a surjection. �

Using Lemma 5.3.13, we could have given a shorter proof of Proposition 5.4.4 by
arguing that, since Z=g(Y) and Y = f (X), then Z=g(f (X))=(g ◦ f )(X).

Consider the graph in the plane of a function f : S → R, where S ⊆ R. We know
that equivalent to statement (5.4.1) is the condition that every vertical line meets this
graph at most once. If f is a surjection onto R, then every horizontal line meets this
graph at least once. (Why is this so?)

Definition 5.4.5. A function f : X → Y with the property

(5.4.2) (∀x1,x2 ∈ X)[x1 
= x2 ⇒ f (x1) 
= f (x2)]

is an injection of X into Y.

Injections are sometimes called one-to-one functions. This name is suggested by the
contrapositive of the statement (5.4.2): if an element of the range of f is the image both
of x1 and of x2, then x1 and x2 are one and the same element of X . Saying that a given
function is an injection is equivalent to saying that every element of the codomain has
at most one preimage.
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Example 5.4.6. Let f : R → R be given by

f (x)=
{
1/x if x 
= 0;
0 if x = 0.

To prove that f is an injection, let x1 and x2 be arbitrary distinct elements of R. We must
show that f (x1) 
= f (x2). There are several cases.

Case 1: x1=0. Then f (x1)=0 and f (x2) 
= 0.

At this point we lose no generality in assuming that x1 < x2.

Case 2: x1 < 0 < x2. Then f (x1) is negative while f (x2) is positive, and so they cannot
be equal.

Case 3: 0 < x1 < x2. Then f (x1) = 1/x1 > 1/x2= f (x2). Again f (x1) 
= f (x2).

Case 4: x1 < x2 < 0. The argument is similar to Case 3 and is left to the reader.

Exercise 5.4.7. Let f : S → R, where S ⊆ R.
(a) Prove that if f is increasing on S or if f is decreasing on S, then f is an injection.
(b) Show that if f is linear and not constant on S, then f is an injection. (Compare
Exercise 5.4.3.)

Exercise 5.4.8. Show that the injection of Example 5.4.6 is also a surjection.

Proposition 5.4.9. The composition of two injections is an injection.

Proof. Suppose that f : X → Y and g : Y → Z are injections.We must show that g ◦ f
is an injection.

Let x1 and x2 be distinct elements of X . Since f is an injection, f (x1) and f (x2) are
distinct elements of Y . Since g is an injection, g(f (x1)) and g(f (x2)) are distinct elements
of Z . Thus (g ◦ f )(x1) 
= (g ◦ f )(x2), as required. �

The contrapositive of the implication in the statement (5.4.2) offers a way to prove
that a given function f is an injection. Let x1 and x2 be arbitrary elements of the domain of
f and assume that f (x1)= f (x2). Then deduce that x1=x2. For example, to show that the
function f (x)=7 3

√
x+1+5 is an injection, let x1 and x2 be arbitrary real numbers and set

7 3
√
x1+1+5=7 3

√
x2+1+5.

A sequence of elementary algebraic operations on this equality yields x1=x2.

Information about a function f gives information about its induced set function f ,
as we see in the next theorem and also in Exercise 5.4.14 below.
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Theorem 5.4.10. If the function f : X → Y is an injection, then so is its induced set
function f : P(X) → P(Y).

Proof. Assume that f : X → Y is an injection. Let A and B be arbitrary, distinct subsets
of X.

[
We must prove that f (A) and f (B) are distinct subsets of Y .]

To say that A and B are distinct means that (at least) one of these sets includes an
element of X that does not belong to the other. Since these sets were chosen arbitrarily,
we may assume that there exists some element x ∈ A \ B. Considering X as a universal
set, we have x ∈ A ∩ B′. Let y= f (x). This implies

y ∈ f (A ∩ B′) ⊆ f (A) ∩ f (B′);

this last inclusion follows from Theorem 5.3.4(ii) (with B′ in place of B). Let us note
here that y ∈ f (A).

Suppose that y ∈ f (B).
[
This is not inconsistent (yet) with y belonging to f (B′). Do

you seewhy?
]
Then there exists some elementw ∈ B such that y= f (w). But y= f (x), and

since f is assumed to be an injection, itmust hold that x=w. This presents a contradiction:
w ∈ B while x /∈ B. Hence y /∈ f (B).

We have shown that y ∈ f (A) \ f (B). Thus f (A) and f (B) are distinct subsets of Y . �

You can prove an analogous result for surjections in Exercise 5.4.14.

Definition 5.4.11. A function that is both an injection and a surjection is a bijection.

Suppose that f : X → Y is a bijection. Let y ∈ Y . Since f is an injection, y is the
image of at most one element of X . Since f is a surjection, y is the image of at least one
element of X . Hence, each element of Y is the image of exactly one element of X. Thus
a bijection is a function which (in addition to the statement (5.4.1) which holds for all
functions anyway) satisfies

(5.4.3) (∀y ∈ Y)(∃!x ∈ X)[f (x) = y].

From Propositions 5.4.4 and 5.4.9 we immediately obtain the following result.

Corollary 5.4.12. The composition of two bijections is a bijection.

Exercise 5.4.13. Let X be a set and consider the function

α : P(X) → P(X)

such that for all S ∈P(X),α(S) = X \ S. Show thatα is a bijection.What is (α ◦ α)(S)
for any S ∈P(X)?
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ThebijectionαofExercise 5.4.13 showsby example that a bijection fromP(X)onto
P(Y) is not necessarily equal to an induced set function f for some bijection f : X → Y .

Exercise 5.4.14. Prove that if f : X → Y is a surjection (respectively, a bijection), then
f : P(X) → P(Y) is also a surjection (respectively, a bijection).

Exercise 5.4.15. Let f : X → Y . By Theorem 5.4.10 and Exercise 5.4.14, we know
that, if f is a surjection (respectively, an injection, a bijection), then so is its induced set
function f : P(X) → P(Y). Determine whether the converse is true.

Exercise 5.4.16. Let A,B, and C be nonempty sets. Construct a bijection
(a) from A× B to B× A;
(b) from A× (B× C) to (A× B)× C;
(c) from A× (B× C) to B× (C × A).

Exercise 5.4.17. Let f : X → Y and g : Y → Z . Prove the following.
(a) If g ◦ f is a surjection, then g is a surjection.
(b) If g ◦ f is an injection, then f is an injection.

5.5 Identity Functions, Cancellation, Inverse Functions,
and Restrictions

Definition 5.5.1. For any set X, the identity function on X is the function iX : X → X
given by

(∀x ∈ X)
[
iX(x) = x

]
.

Clearly iX is a bijection. It is also easy to see that, given any function f : X → Y ,
we have

f ◦ iX = f = iY ◦ f .
Observe that iX induces the identity function on P(X), that is, iX = iP(X).

Theorem 5.5.2. If the functions f : X → Y and g : Y → X satisfy g ◦ f = iX , then f is
an injection and g is a surjection.

Proof. Assume that g ◦ f = iX . Since iX is a surjection, so is g, by Exercise 5.4.17(a).
Since iX is an injection, so is f , by Exercise 5.4.17(b). �
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Example 5.5.3. Suppose that X={a,b} and Y ={p,q,r}. Define functions f : X → Y
and g : Y → X by

f (a) = p, f (b) = q; g(p) = a, g(q) = g(r) = b.

Then g ◦ f = iX . Note that f is not a surjection and g is not an injection. It follows from
Theorem 5.5.2 that f ◦ g 
= iY . In particular, (f ◦ g)(r)=q. If we define h : Y → X by

h(p)=h(r)=a, h(q)=b,

then h ◦ f = iX =g ◦ f , but h 
= g. This shows that the injection f has a “left inverse” but
it is not unique.

Similarly, define j : X → Y by

j(a)=p, j(b)=r.

Then g ◦ j= iX =g ◦ f , but j 
= f . This shows that the surjection g has a “right inverse”
but it is not unique. (These notions will be formalized in Section 8.1.)

Lemma 5.5.4. Let X and Y be nonempty sets and let f : X → Y be a function.
(i) If f is an injection, then there exists a surjection g : Y → X such that g ◦ f = iX .
(ii) If f is a surjection, then there exists an injection g : Y → X such that f ◦ g= iY .

Exercise 5.5.5. Prove part (i) of Lemma 5.5.4.

The proof of part (ii) of Lemma5.5.4 requires the following historically controversial
axiom.

TheAxiom of Choice5. Let U be any set and let A be any family of nonempty subsets
of U, that is, A ⊆P(U) \ {Ø}. Then there exists a function c : A → U such that
c(A) ∈ A for all A ∈ A .

5 The Axiom of Choice is one of the most controversial declarations in mathematics. It was
formulated by the German mathematician Ernst Zermelo in 1904 in order to prove some theorems
about subsets of the real numbers. It seems innocent enough, but among other consequences of the
Axiom of Choice is the Banach-Tarski paradox: there exists a decomposition of a solid sphere into
a finite number of pieces that can be reassembled to produce two identical copies of the original
sphere. The paradox is resolved because the notion of volume is not preserved in the reassembly
of the sphere, the pieces being what are known as “unmeasurable sets.” It is the Axiom of Choice
that allows for the construction of unmeasurable sets. The Axiom of Choice’s status as an axiom
is evident in the fact that in 1939, Kurt Gödel proved that assumption of the Axiom of Choice
leads to no contradiction to the axioms of set theory. In 1963, Paul Cohen proved that assumption
of the negation of the Axiom of Choice is also consistent with the axioms of set theory. Because
of its utility in many proofs, the mathematics community generally accepts the Axiom of Choice.
But, because of its nonintuitive consequences, mathematicians generally agree to full disclosure
when the Axiom of Choice is assumed in the course of a proof (as do we in our proof of part (ii)
of Lemma 5.5.4). However, there are mathematicians, who call themselves “constructivists,” who
consider the Axiom to be false and any proof invalid that uses the Axiom of Choice.
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In many cases, the existence of this function c, which is called a choice function,
is not at all controversial. For example, when the family A is finite, then one can
explicitly specify for each set A ∈ A the element of A chosen by the function c. Another
noncontroversial example would be whenU ⊆ N. Then, by theWell Ordering Principle,
each set A ∈ A has a least element, and one may specify that c(A) is always the least
element of A.

On the other hand, if, for example, U=R and A =P(R) \ {Ø}, then there is no
obvious way that one can describe an explicit choice function c. In such a situation, we
need an axiom to assure us that such a choice function does in fact exist.

Proof of Lemma 5.5.4(ii). Let a surjection f : X → Y be given, and let A =
{f−1({y}) : y ∈ Y}. Since f is a surjection, f−1({y}) 
= Ø for all y ∈ Y , and so
A ⊆ P(X) \ {Ø}. By the Axiom of Choice, there exists a choice function c : A → X
such that, for each set f−1({y}) ∈ A , we have c(f−1({y})) ∈ f−1({y}). This is equiv-
alent to saying that for each y ∈ Y , there exists an element x ∈ f−1({y}) such that
c(f−1({y}))=x, that is, a unique preimage x of y is chosen. Note that f (x)=y for any
such x ∈ f−1({y}).

We now define the function g : Y → X by the rule that, for each y ∈ Y ,
g(y)=c(f−1({y})). Thus for each y ∈ Y , g(y)=x for some x ∈ f−1({y}). It is now
easy to see that (f ◦ g)(y)=y for all y ∈ Y , and so f ◦ g= iY .

It remains only to show that g is an injection. Let y1,y2 ∈ Y and suppose that
g(y1)=g(y2). The choice function c must then have “chosen” the same element x ∈ X
from both f−1({y1}) and f−1({y2}). But then y1= f (x)=y2, implying that g is an
injection. �

The following corollary is an immediate consequence of Lemma 5.5.4.

Corollary 5.5.6. Let X and Y be nonempty sets. There exists an injection from X into
Y if and only if there exists a surjection from Y onto X.

Proof. Suppose that f : X → Y is an injection. A surjection g : Y → X exists by
Lemma 5.5.4(i).

Conversely, suppose that g : Y → X is a surjection. An injection f : X → Y exists
by Lemma 5.5.4(ii). [Note that the proof in this direction depends indirectly upon the
Axiom of Choice. Why is that so?] �

An operation • on a set S satisfies the left-cancellation law if for all a,b,c ∈ S
we have: a • b=a • c ⇒ b=c. The right-cancellation law is defined similarly:
a • c=b • c ⇒ a=b.We have seen in Example 5.5.3 that if S is a set of functions and •
represents the operation of composition of functions, then in general, both cancellation
laws may fail.
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Corollary 5.5.7. Let X and Y be sets and let f : X → Y be a function. The following
two statements are equivalent.
(i) f is an injection.
(ii) (∀ h1, h2 : Y → X)[f ◦ h1= f ◦ h2 ⇒ h1=h2].

Proof. (i)⇒(ii). Assume that f is an injection, and let g : Y → X be a function whose
existence is assured by Lemma 5.5.4(i). Thus g ◦ f = iX .

Let h1, h2 : Y → X , and assume that f ◦ h1 = f ◦ h2. By Exercise 5.2.9 (used twice),
h1 = iX ◦ h1 = (g ◦ f ) ◦ h1 = g ◦ (f ◦ h1)

= g ◦ (f ◦ h2) = (g ◦ f ) ◦ h2 = iX ◦ h2 = h2.

(ii)⇒(i). Assume that (ii) holds. Let x1,x2 ∈ X and assume that f (x1)= f (x2). Let
y0 ∈ Y . Define h1 : Y → X to be the constant function h1(y)=x1 for all y ∈ Y , and define
h2 : Y → X by

h2(y)=
{
x2 if y = y0;
x1 if y 
= y0.

(See Figure 5.5.1.) One straightforwardly verifies that f ◦ h1= f ◦ h2. This implies by
(ii) that h1=h2. Hence x1=h1(y0)=h2(y0)=x2, and so f is an injection. �

f

f

f
x1

x2

f (x1) = f (x2)

y

y0

h1

h1

h2

h2

h1

X

Y

Figure 5.5.1 Corollary 5.5.7.

What the preceding corollary tells us is that, if the function being cancelled is an
injection, then it can be left-cancelled. (Example 5.5.3 shows that an injection cannot
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necessarily be right-cancelled.) The next corollary tells us that, on the other hand, sur-
jections can be right-cancelled.

Corollary 5.5.8. Let X and Y be sets, where X has at least two elements, and let
f : X → Y be a function. The following two statements are equivalent.
(i) f is a surjection.
(ii) (∀g1, g2 : Y → X)[g1 ◦ f =g2 ◦ f =⇒ g1=g2].

Proof. (i)⇒(ii). Assume that f is a surjection, and let g be a function whose existence
is assured by Lemma 5.5.4(ii). Thus f ◦ g= iY . The argument is now similar to the proof
of the first implication in Corollary 5.5.7 and is left as Exercise 5.5.9.

(ii)⇒(i).We prove the contrapositive. Suppose that f is not a surjection. There exists
an element y0 ∈ Y \ f (X). Let x1 and x2 be distinct elements of X. Define g1 to be the
constant function g1(y)=x1 for all y ∈ Y , and define g2 : Y → X by

g2(y)=
{
x1 if y 
= y0;
x2 if y=y0.

Then, since f (x) 
= y0 for all x ∈ X , we have

(g1 ◦ f )(x)=g1(f (x))=x1=g2(f (x))=(g2 ◦ f )(x).
Hence g1 ◦ f =g2 ◦ f , but g1 
= g2. �

Exercise 5.5.9. Complete the first part of the proof of Corollary 5.5.8.

Putting these last two corollaries together, we obtain that a function is a bijection
if and only if it can be both left- and right-cancelled. Bijections alone enjoy other nice
properties, as we presently see.

Definition 5.5.10. Let X and Y be sets and let f : X → Y be a function. If g : Y → X
satisfies the two conditions g ◦ f = iX and f ◦ g= iY , then g is an inverse function of f
(or, more briefly, an inverse of f ).

Theorem 5.5.11. Let X and Y be sets, let f : X → Y be a function, and let g be an
inverse of f . Then the following hold.
(i) Both f and g are bijections.
(ii) f is an inverse of g.
(iii) g is the unique inverse of f .

Proof. (i) By definition of inverse, we have g ◦ f = iX and f ◦ g= iY . By Theorem
5.5.2, the first equality implies that g is a surjection and f is an injection, while the
second equality implies that f is a surjection and g is an injection. Hence both functions
are bijections.
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(ii) That f is an inverse of g is immediate from the definition.
(iii) Uniqueness of the inverse follows from Corollary 5.5.7 or Corollary 5.5.8.

[Write out the details in Exercise 5.5.12.] �

Exercise 5.5.12. Prove in detail part (iii) of Theorem 5.5.11.

In light of Theorem 5.5.11(iii), we may now speak of the inverse of a function
f : X → Y instead of an inverse, and we denote it by f−1. From part (ii) we have that
(f−1)−1= f .

When the inverse of f exists, i.e., when f−1 really is a function, then the function
f−1 : P(Y) → P(X), induced by the function f−1, is identical to the inverse of the
function f : P(X) → P(Y) induced by f . That is (and only under this assumption),

f
−1

= f−1.

Now we know under what conditions, given f , the inverse f−1 exists. But how does
one actually determine the function f−1 : Y → X? Here’s how. Because f must be a
bijection, the statement (5.4.3) applies: for each y ∈ Y , there is a unique x ∈ X such
that f (x) equals that value y. Assign f−1(y) to be that x. Because f is an injection, that
particular x is unique, and so f−1 really is a function. (Compare statement (5.4.1) with x
and y interchanged.) Because f is a surjection, every y ∈ Y is the image of some x ∈ X,
and so the domain of f−1 is all of Y . In this case,

(∀x ∈ X)(∀y ∈ Y)[f (x)=y ⇔ f−1(y)=x].

In single-variable calculus, you dealt with problems precisely of this type. In the
calculus context, both X and Y are subsets of R. The graph of f was defined to be the
subset of R× R described as

{(x,y) ∈ R× R : y= f (x)}.
It follows that the graph of f−1 must be the set

{(y,x) ∈ R× R : y= f (x)}.
These two sets aremirror images of each other across the line y=x. (See Exercise 5.6.27.)

We finally come to the last new notion of this chapter.

Definition 5.5.13. Given a function f : X → Y and a subset S ⊆ X, the restriction of
f to S is the function f |S : S → Y given by f |S(x)= f (x) for all x ∈ S.

A restriction of a function thus amounts to no more than lopping off part of its
domain. Often the reason for considering a restriction of a function f is that we would
like to have an inverse of f , but f is not a bijection. That f may not be a surjection is
not generally a problem, since we can (and often do) ignore elements of the codomain
that are not in the range. The problem arises when f is not an injection; some y ∈ f (X)
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has more than one preimage, and so it’s not evident which of these preimages f−1(y) is
supposed to be. Therefore we throw away just enough of the domainX of f so that the set
S that’s left is just big enough to contain exactly one preimage of each element y ∈ f (X).

As an example, consider how in calculus you defined the function that is denoted by
sin−1, or sometimes by arcsin. Now the sine function with domain R is a very far cry
from being an injection. Its range is [−1,1], but every element of that range has infinitely
many preimages. Hence there are infinitely many subsets S of R to which one might
restrict the sine function in order to produce a bijection onto [−1,1]. One wouldn’t even
have to choose an interval, but we do in this case. By convention (and also for the sake
of simplicity), the set S is chosen to be [−π/2,π/2]. Thus the function

sin−1 : [−π/2,π/2] → [−1,1]
is the so-called “inverse sine function,” even though the (unrestricted) sine function, of
course, cannot have an inverse.

Change of Notation. Up to this point, given a function f : X → Y , we have indicated
by f the function from P(X) to P(Y) induced by f . This is not a conventional notation
but rather one that we have selected in order to clarify and to emphasize that f and f are,
in fact, two distinct functions with two disjoint domains and disjoint codomains.Various
authors have used other notational conventions to make this important distinction. One
solution, for example6, is to write f (x) if x ∈ X but write f [S] if S ∈P(X). However, in
the majority of mathematical literature, no symbolic distinction is made between f and
f ; the same symbol f is used for both functions, and the reader is expected to discern
from the context which of the two functions the one symbol f is denoting.

The use of the same symbol doing double or even multiple duty is not new to you.
In Section 5.2, for example, you saw how the plus-sign may be used within the very
same mathematical expression to mean both addition of real numbers and addition of
functions. The prime symbol has multiple meanings: f ′ denotes the derivative a function
f ; A′ denotes the complement of a set A; x and x′ may denote two real numbers in the
course of a proof or definition. Here is still another example: if youwrite 3 as a superscript
to a real number x, then x3 means the cube of x, but R3 denotes the Cartesian product of
R with itself three times, that is, 3-dimensional space.

As stated in the footnote to Definition 5.3.1, separate symbols for a function and its
induced set function have been used for the purpose of clarity of presentation. However,
henceforth we will dispense with this notational distinction (except in some of the earlier
exercises in the next section) and rejoin the rest of the mathematical community by using
just one functional symbol.

6 See J. E. Graver and M. E. Watkins, “Combinatorics with Emphasis on the Theory of Graphs”,
GTM No. 54, Springer-Verlag, 1977.
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5.6 Further Exercises

Exercise 5.6.1. Let S ⊆ R and let f ,g : S → R.
(a) Prove or disprove that if both f and g are differentiable, positive, and increasing on
S, then fg is increasing on S. What if exactly one of the functions is positive on S?What
if both functions are negative on S? [Hint: Use the product rule for differentiation.]
(b)Assume that f is positive on S or that f is negative on S. Prove that f is nondecreasing
on S if and only if 1/f is nonincreasing on S. Give two proofs, one assuming that f is
differentiable on S and one without that assumption.
(c) Prove that if f is a twice differentiable function that is increasing on S, and if the
graph of f is concave upward, then f + f ′ is increasing on S.

Exercise 5.6.2. Prove that the composition of two increasing (respectively, nonde-
creasing, nonincreasing, decreasing) functions is increasing (respectively, nondecreas-
ing, nondecreasing, increasing).

Exercise 5.6.3. Let S ⊆ R and let f and g be functions from S into S. Suppose that
f is increasing on S and g is decreasing on S. Is g ◦ f necessarily increasing on S, or
decreasing on S, or neither? Prove your claim.

Exercise 5.6.4. Let f : R → R be given by f (x)= |x| for all x ∈ R. Determine each
of the following sets.

(a) f
(
(−2,1]) (b) f−1

(
(−2,1]) (c) f−1

({−5})
(d) f

(
Z
)

(e) f−1
(
Z
)

(f) f
(
R
)

Exercise 5.6.5. Let X and Y be sets and let f : X → Y . Let A and B be subsets of X.
(a) Prove that if f (A) ∩ f (B) = Ø, then A ∩ B=Ø.
(b) Construct a counterexample to the converse of the conditional in part (a).

Exercise 5.6.6. Let f (x)=x2−2 and g(x)=1/x for all real numbers x for which these
functions make sense. Determine (g ◦ f )(A), (f ◦ g)(A), (g ◦ f )−1(A), and (f ◦ g)−1(A)
for each of the following definitions of the set A.

(a) A=[−2,1) (b) A=N (c) A=(−∞,0]

Exercise 5.6.7. Let f : X → Y , g : Y → Z , and h : Z → U. Prove that for all
T ∈P(U),

(h ◦ g ◦ f )−1(T) = f−1(g−1(h−1(T))).

Exercise 5.6.8. Let X and Y be sets and let f : X → Y . Let A, B ∈P(X) and
C,D ∈P(Y). Recall that + for sets is the symmetric difference operation
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(see Exercise 3.6.12). Prove the following.
(a) f (A)+ f (B) ⊆ f (A+B).
(b) f−1(C)+ f−1(D)= f−1(C+D).

Exercise 5.6.9. Suppose that f : R \ {0} → R \ {0} is given by f (x)=1/x for all
x ∈ R \ {0}. Find some functions g such that f ◦ g=g ◦ f .

Exercise 5.6.10. Let f : Z → Z and g : Z → Z be defined as follows.

f (n)=
{
n+5 if n � 1;
n− 1 if n � 0.

And

g(n)=
{
n−5 if n � 1;
n+1 if n � 0.

(a) Determine the rule for the function g ◦ f .
(b) By a theorem from this chapter, what does your answer to part (a) tell you about
whether f or g is an injection or a surjection?
(c) Determine from the definition of f whether f is a surjection.
(d) Determine from the definition of g whether g is an injection.

Exercise 5.6.11. For each of the following descriptions, give an example of a function
f : Z → Z that matches the description.
(a) f is a bijection.
(b) f is an injection but not a surjection.
(c) f is a surjection but not an injection.
(d) f is neither an injection nor a surjection.

Exercise 5.6.12. Suppose that f : R → R has the following three properties: f is con-
tinuous; lim

x→∞ f (x)=∞; and lim
x→−∞ f (x)= −∞.

(a) Prove that f is a surjection. [Hint: Use the Intermediate Value Theorem from your
calculus course and the definitions of these infinite limits.]
(b) Prove that the function g(x)=1−x−x3 is a bijection.
(c) Use a variation of your proof from part (a) to prove that the restricted tangent function
tan:

(−π
2 ,

π
2

)→ R is a surjection and, in fact, a bijection.

Exercise 5.6.13. Let A be any set, and let B be a nonempty subset of A. Show that there
always exists a surjection from A onto B.
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Exercise 5.6.14. Define f : Z → N by

f (n)=
{
10n+5 if n � 0;
−10n if n < 0.

And let g : N → Z satisfy g(n)=n2 for all n ∈ N.
(a) Prove that f is an injection.
(b) Prove that g is an injection.
(c) What do parts (a) and (b) tell you about g ◦ f and f ◦ g?

Exercise 5.6.15. Let P0(N) denote the family of all finite subsets of N. For
each set S ∈P0(N), let α(S) denote the number of elements in S. Show that
α : P0(N) → N ∪ {0} is a surjection but not an injection.

Exercise 5.6.16. Prove that f : X → Y is an injection if and only if the equation

f−1
(
f (A)

)
=A holds for all A ∈P(X). Use this to prove that f : X → Y is an injec-

tion if and only if f−1 : P(Y) → P(X) is a surjection.

Exercise 5.6.17. Let g : A→ C and h : B→ D be bijections. Let x ∈ A ∪ B. Define

g ∪ h : A ∪ B→ C ∪ D

by

(g ∪ h)(x) =

{
g(x) if x ∈ A;

h(x) if x ∈ B.

(a) Prove that if A ∩ B = Ø and C ∩ D = Ø, then g ∪ h is a bijection.
(b) Show that if A ∩ B 
= Ø, then g ∪ h need not even be a function.

Exercise 5.6.18. Let C denote the set of all circles in the plane. Construct a bijection
from the set R× R× (0,∞) onto the set C and verify that it is indeed a bijection.

Exercise 5.6.19. Let A,B,C, and D be nonempty sets. Let f : A→ C and g : B→ D
be injections (respectively, surjections, bijections). Prove that there exists an injection
(respectively, a surjection, a bijection) from A× B to C × D.

Exercise 5.6.20. Let α : P(Z) → P(Z) be defined by

α(S)=
{
S ∪ {0} if 0 /∈ S;
S \ {0} if 0 ∈ S.

Prove that α is a bijection.
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Exercise 5.6.21. Define f : N → Z by

f (n)=
{

(1−n)/2 if n is odd;
n/2 if n is even.

Prove that f is a bijection and determine the inverse function f−1.

Exercise 5.6.22. Let X ,Y , f , and g be as in Example 5.5.3. Construct a function
s : Y → Y such that s ◦ f = f and g ◦ s=g, but s 
= iY .

Exercise 5.6.23. Here are three more situations where the Axiom of Choice is not
needed. In each case, describe explicitly a choice function c : A → R, that is, for each
set A ∈ A , state how you might define c(A).
(a) A is the family of all finite nonempty subsets of R.
(b) A is the family of all closed intervals [a,b] on the real line.
(c) A is the family of all bounded, open intervals (a,b) on the real line.

Exercise 5.6.24. Bertrand Russell once spoke of theAxiom of Choice in the following
context. Consider an infinite number of pairs of shoes and an infinite number of pairs of
socks. To choose one shoe from each pair of shoes does not require theAxiom of Choice,
but to choose one sock from each pair of socks does. Explain.

Exercise 5.6.25. What goes wrong in Corollary 5.5.8 if X has only one element?

Exercise 5.6.26. Let f : X → Y , and let g,h : Y → X . Prove that if g ◦ f = iX and
f ◦ h= iY , then g=h and f ,g, and h are bijections.

Exercise 5.6.27. Let f : X → Y be a bijection, where X,Y ⊆ R. Prove that the graphs
of f and f−1 are reflections of each other across the line y=x. [Hint: For each point (a,b)
on the graph of f , show that the line segment joining it to the point (b,a) is perpendicular
to the line y = x and is bisected by that line.]

Exercise 5.6.28. For each of the following descriptions of a function f , find a subset
S of the domain of f such that the restriction f |S is a bijection onto the range of f .
(a) f : N → N, where f (n)=n+1 if n is odd and f (n)=n/2 if n is even.
(b) f : R → Z, where f (x)=�x�. Here �x� denotes the floor7 of x.
(c) f : R → R, where f (x)=x3−3x2.
(d) f : R → R, where f (x)=x4−4x2.
(e) f : R → R, where f (x)=xe−x.

7 The floor function from R to Z assigns to each x ∈ R the greatest integer less than or equal to
x. It is denoted by �x�. For example, �π�=3 and �−π� = −4.
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(f) f : R → R× R, where f (x)=(cosx,sinx).
(g) f : R \ Z → R, where f (x)= csc(πx).
(h) f : P(X) → P(X), where A is a fixed nonempty subset of X and f (B)=A ∩ B for
all B ∈P(X).
(i) Same as (h) except that f (B)=A ∪ B for all B ∈P(X).
(j) Same as (h) except that f (B)=B \ A for all B ∈P(X).



6 Binary Relations

Abinary relation on a set S is no more than a subset of S × S. With such a loose
definition, binary relations become interesting only when further conditions are

imposed. The first such structure that we study in this chapter is the relation of “equiv-
alence,” for which the ground is prepared by a study of partitions. Then we consider
various types of order. Of particular usefulness is the natural order of the real numbers,
and from this standpoint, we reformulate some basic theorems of first-semester calculus.
Finally, we revisit functions, this time defining them rigorously as a special kind of binary
relation.

6.1 Partitions

If you encountered the word “partition” in your calculus course, it was likely in the
context of your introduction to the definite integral. You constructed a Riemann sum
for a function f that is continuous on an interval [a,b], and the first step was to “let
a = x0 < x1 < · · · < xn = b be a partition of [a,b].” Exactly what kind of object was
this so-called “partition?” The motivating idea was to consider a family of subintervals
[xi−1, xi] of the interval [a,b] whose union is all of [a,b]. Strictly speaking, this family of
subintervals is not a partition; it meets only the first and third of the three conditions for
a partition in the following definition. [Think about how the calculus application might
be slightly modified in order to satisfy the second condition as well.]

Definition 6.1.1. Let S be any nonempty set. A family A ⊆ P(S) is a partition of S
if the following three statements about hold.
(i) Ø /∈ A .
(ii) (∀A,B ∈ A )

[
(A = B) ∨ (A ∩ B = Ø)

]
.

(iii)
⋃
A∈A

A = S.

The elements of a partition are the cells of the partition.

Let us analyze this definition. A partition is a collection of subsets of a set S (called
cells); in particular, the first condition tells us that cells are not empty. The second
condition tells us that no element of S belongs to two distinct cells, that is, each element

142



6.1 Partitions 143

of S belongs to at most one cell. The third condition tells us that every element of S
belongs to at least one cell. Thus, a partition of S is a family of nonempty subsets of S
such that each element of S belongs to exactly one of these subsets.

Like any set, a partition is finite if and only if it has finitely many elements, that
is, finitely many cells. The cells themselves may be finite or infinite or some of each.
Clearly, if S is a finite set, then any partition of S consists of finitely many cells, each of
which is a finite set. However, if S is infinite, then there are infinitely many possibilities.
Let us consider some of them.

Example 6.1.2. We consider three different partitions of the set N.

1. For each n ∈ N, let An = {k ∈ N : 5n− 4 � k � 5n}. For example,
A3 = {11,12,13,14,15}. Then A = {An : n ∈ N} is a partition of N consisting
of infinitely many cells, each having a finite number (five) of elements.
2. For each n ∈ {1,2,3,4,5}, let An = {5k + n : k ∈ N ∪ {0}}. For example,
A2 = {2,7,12,17,22, . . .}. Then A = {An : n ∈ {1,2,3,4,5}} is a partition of N
consisting of finitely many (five) cells, each having infinitely many elements.
3. For each prime number p, let Ap = {pk : k ∈ N}. For example A3 =
{3, 9, 27, 81, 243, . . .}. Let B consist of all natural numbers that are divisible by
two or more distinct prime numbers. Thus

B =
{
6,10,12,14,15,18,20,21,22, . . .

}
,

and therefore

A =
{{1},B, A2, A3, A5, A7, A11, . . .

}
is a partition ofN consisting of infinitely many infinite cells together with one very small
finite cell.

Exercise 6.1.3. Construct a partition of N consisting of six finite cells and six
infinite cells.

Exercise 6.1.4. (a) Show that the family of lines in the plane all having the same slope
m forms a partition of the set R× R.
(b) Show that the set of circles in the plane all having the same center (x0,y0), together
with the singleton1 {(x0,y0)}, form a partition of the set R× R.

An important example of a partition arises in the following situation. Let X and Y
be nonempty sets, and let a function f : X → Y be given. By Definition 5.1.1, each
element x ∈ X has a unique image f (x) ∈ Y . That means that each element x ∈ X
belongs to exactly one subset of X of the form f−1(y), where y ∈ f (X). Thus the family
{f−1(y) : y ∈ f (X)} is a partition of X. This proves the following.

1 A singleton is a set having exactly one element.
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Proposition 6.1.5. If f : X → Y is a surjection and X 
= Ø, then the family{
f−1 (y) : y ∈ Y

}
is a partition of X.

Exercise 6.1.6. Which of the three conditions in Definition 6.1.1 fails when f is not
a surjection in Proposition 6.1.5?

Definition 6.1.7. Let S be a nonempty set, and suppose that A and B are partitions
of S. If for every cell B ∈ B there exists a cell A ∈ A such that B ⊆ A, then B is a
refinement of A , and B refines A .

Equivalently, one could say that B is a refinement of A if and only if every cell of
A is a union of cells of B.

To illustrate this notion, let A be as in Example 6.1.2(2). For each
n ∈ {1,2,3,4,5,6,7,8,9,10}, let Bn = {10k + n : k ∈ N ∪ {0}}, and let B ={
Bn : n ∈ {1,2, . . . ,10}

}
. Then B refines A . For instance, A2 = B2 ∪ B7.

Obviously, every partition is a refinement of itself.

Exercise 6.1.8. Let A ,B, and C be partitions of the same set. Prove the following.
(a) If A refines B and B refines A , then A = B.
(b) If A refines B and B refines C , then A refines C.

In the next section, we begin a study of various kinds of binary relations. The first to
be studied are called equivalence relations. Equivalence relations have a very close rela-
tionship to partitions, which is why we have laid the groundwork by studying partitions.

6.2 Equivalence Relations

In this section and the next section, we consider how various elements of the same set do
or do not relate to each other. Let S be a set, let x,y ∈ S, and let R denote some possible
way that x may be related to y. Let us write xRy when x is related in this way to y. (So
xRy is a statement; it assumes the truth value T or F.)

Example 6.2.1.

1. Let S = R and let xRy mean x < y. It is correct to write 3Rπ, but neither 3R3
nor πR3 is true.

2. Let S = P(X), whereX is a set. For setsP, Q ∈P(X), writePRQwhenP ⊆ Q.
Thus, for all A, B, C ∈P(X), we have ARA, (ARB ∧ BRA) ⇒ A = B, and
(ARB ∧ BRC) ⇒ ARC.
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3. Let S = R and let xRy mean |x − y| < 1. Obviously xRx for all x ∈ R, and xRy
holds if and only if yRx.

4. Let S be the set of all humans who have ever been alive, and let xRy mean, “x is
an ancestor of y.” The relation R behaves somewhat like < in the first example.
No one is one’s own ancestor, and no two people are mutual ancestors, but your
ancestor’s ancestor is also your ancestor.

5. Again, let S be a set of people, but now let xRy mean, “x is a sibling2 of y.” This
situation is like none of the previous ones. The relationship is mutual, and your
sibling’s sibling is also your sibling− unless that person happens to be yourself.

6. Once more, let S be a set of people, and let xRy mean, “x is a friend of y.” It is
fair to assume that friendship is mutual, but perhaps you don’t like your friends’
friends. Whether you are a friend of yourself is a psychological matter and not
in the scope of this book.

Definition 6.2.2. A binary relation, or briefly, a relation on a set S is a subset
of S × S.

We may therefore assume R ⊆ S × S, and we may write either xRy or (x,y) ∈ R,
whichever is more convenient. A binary relation on a set S may also be regarded as a
propositional function from S × S to the set {T,F}. However, in the definition that we are
using (Definition 6.2.2), a binary relation is identical to the truth set of the propositional
function. Compare this remark with Example 5.1.7.

In the present section, we study equivalence relations. In the next section, we study
various kinds of relations called order relations.

Definition 6.2.3. Let S be a set and let R be a relation on S.

R is reflexive if

(∀x ∈ S)
[
(x,x) ∈ R

]
.

R is symmetric if

(∀x,y ∈ S)
[
(x,y) ∈ R ⇒ (y, x) ∈ R

]
.

R is transitive if

(∀x,y,z ∈ S)
[(

(x,y) ∈ R ∧ (y,z) ∈ R
) ⇒ (x,z) ∈ R

]
.

R is an equivalence relation if R is reflexive, symmetric, and transitive.

2 In this context, for the sake of simplicity, we will understand one individual to be a sibling of
another when they have the same two biological parents.
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Note that x and y need not be distinct in the definition of symmetric. Similarly, x, y,
and z need not be distinct in the definition of transitive.

We apply these definitions to the six relations in Example 6.2.1.

1. The relation < on the set R is transitive but not reflexive and not symmetric.

2. The relation ⊆ on P(S) is reflexive and transitive but not symmetric.

3. The relation on R of being distance less than 1 unit apart is reflexive and sym-
metric. A counterexample shows that this relation is not transitive. Although
|0− 2/3| < 1 and |2/3− 4/3| < 1, we have |0− 4/3| > 1.

4. The ancestor relation is like < in the first example in that it is transitive but not
reflexive and not symmetric. However, there is an important difference. Given
two distinct real numbers, one of them is always less than the other, but there can
be two distinct people such that neither one is an ancestor of the other.

5. The sibling relation is symmetric but not reflexive. The problem with transitivity
is that, if you have a sibling, then your sibling’s siblings include yourself. More
about this to come shortly.

6. Friendship is presumed to be symmetric. It is not transitive. We’re still not dis-
cussing whether it is reflexive.

The properties of being reflexive, symmetric, and transitive are completely indepen-
dent of each other. If, in spite of these examples, you still don’t believe it, try to find the
flaw in the attempt to prove the following false theorem.

FalseTheorem If a relationR on a set S is symmetric and transitive, then it is reflexive.

Flawed proof. Let x ∈ S and suppose (x,y) ∈ R. Since R is symmetric, we have
(y,x) ∈ R. Since R is transitive and both (x,y) and (y,x) are in R, it follows that
(x,x) ∈ R. Since x was chosen arbitrarily in S, it follows that R is reflexive. �

To find the flaw, consider again the sibling relation in Example 6.2.1(5). In order to
make the relation transitive, let us redefine “siblinghood” to allow that people who have a
sibling are also siblings of themselves. But even then, people without siblings would not
be their own sibling. Since people without siblings exist, the “redefined sibling relation”
provides a counterexample. This relation is symmetric and transitive but not reflexive.
[Note the quantifier in the definition of reflexive in Definition 6.2.3.] The first sentence
of the flawed proof says, “and suppose (x,y) ∈ R.” That may be too much to suppose!
What if, for this “arbitrary” x, there exists no y ∈ S such that (x,y) ∈ R? For such an
element x we cannot deduce that (x,x) ∈ S.

Exercise 6.2.4. Define the relation R on the set of points in the plane, as follows.
For any points (x1,y1) and (x2,y2) in R× R, say that (x1,y1) R(x2,y2) if the distance
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between the two points is a rational number. Determine whether R is an equivalence
relation on R× R.

The diagonal of the set S is the subset

Δ(S) = {(x,x) : x ∈ S}
of S × S. If you plot Δ(R) in the xy-plane, you can immediately see the reason for the
term “diagonal.”

Exercise 6.2.5. Let S be a set and let R be a relation on S. Prove the following.
(a) R is reflexive if and only if Δ(S) ⊆ R.
(b) Δ(S) is an equivalence relation.

Putting together the two parts of the previous exercise, we see that Δ(S) is the
smallest possible equivalence relation on S. It is the relation of equality; every element
of S is equivalent (that is, equal) to itself and only to itself. The diagonal is truly an
uninteresting equivalence relation.

For an important example of an equivalence relation on Z, we recall the definition
of divides (Definition 2.3.5).

Definition 6.2.6. Let m ∈ N and a, b ∈ Z. Then a is congruent to bmodulom, written
a ≡ b (mod m), if m | a− b. The relation on Z of congruence modulo m is the set{

(a,b) ∈ Z× Z : a ≡ b (mod m)
}
.

Theorem 6.2.7. Let m ∈ N. The relation of congruence modulo m is an equivalence
relation on Z.

Proof. Let a ∈ Z. Since a− a = 0 = 0 · m, we have a ≡ a (mod m). Since a was
arbitrary, the relation of congruence modulo m is reflexive on Z.

Let a, b ∈ Z, and suppose a ≡ b (mod m). By Definition 6.2.6, for some k ∈ Z we
have a− b = km. Hence b− a = (−k)m. Since−k ∈ Z, we have b ≡ a (mod m), and
so congruence modulo m is symmetric.

Finally suppose that a ≡ b (mod m) and b ≡ c (mod m) for some arbitrary inte-
gers a, b and c. By definition, there exist integers k, � ∈ Z such that

a− b = km and b− c = �m.

Addition of these two equations gives a− c = (k + �)m. Since k + � ∈ Z, we have a ≡ c
(mod m), and congruence modulo m is transitive.

Since congruence modulo m is reflexive, symmetric, and transitive, it is an equiva-
lence relation on the set Z. �
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Example 6.2.8. Let An = {5k + n : k ∈ Z} for n ∈ {0,1,2,3,4}. It is easy to verify
that {A0,A1,A2,A3,A4} is a partition of Z. For any integers a,b ∈ Z, we have a ≡ b
(mod 5) if and only if a and b belong to the same cell An.

Definition 6.2.9. LetR be an equivalence relation on a set S. For each element x ∈ S,
the set

[x] =
{
y ∈ S : (x,y) ∈ R

}
is the equivalence class of x with respect to R.

The following theorem weaves tightly together the notions of equivalence relation
and partition.

Theorem 6.2.10. Let S be a nonempty set.
(i) If R is an equivalence relation on S, then the set of equivalence classes with respect
to R is a partition of S.
(ii) If A is any partition of S, then there exists an equivalence relation R on S such that
the cells of A are exactly the equivalence classes with respect to R.

Proof. LetR be an equivalence relation on S, and let E be the set of equivalence classes
with respect to R. Thus E = {[x] : x ∈ S}. To prove part (i) we must show that E is a
partition of S.

Because R is reflexive, for each x ∈ S, we have x ∈ [x]. Thus the sets in E are
nonempty, and the union of all the sets in E is the whole set S. We have shown that E
satisfies the first and third of the three conditions for a partition in Definition 6.1.1, and
it remains only to show that distinct sets in E are disjoint. We prove the contrapositive:
equivalence classes that are not disjoint are not distinct.

Let x and y be arbitrary elements of S, and suppose that [x] ∩ [y] 
= Ø. Hence there
exists some z ∈ [x] ∩ [y]. (Note that z need not be distinct from x or y.) By definition of
equivalence class, we have (x,z), (y,z) ∈ R. By the symmetry of R, (z,y) ∈ R. Then
by transitivity, (x,y) ∈ R. Let w be an arbitrary element of [y]; thus (y,w) ∈ R. By
transitivity, (x,w) ∈ R, and so w ∈ [x]. This proves that [y] ⊆ [x].

By repeating this argumentwith the roles of x and y interchanged,weobtain [x] ⊆ [y].
Thus [x] = [y]; these equivalence classes are not distinct. This completes the proof of
part (i).

To prove part (ii), let A be an arbitrary partition of the set S, and define the relation

R =
{
(x,y) ∈ S × S : x and y belong to the same cell of A

}
.

It is easy to verify that R is an equivalence relation. �
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To describe in words the relationship betweenR andA in the previous theorem, we
say, “A is the partition with respect to R,” and “R is the equivalence relation induced
by A .”

Exercise 6.2.11. Define the relation ∼ on Z× (Z \ {0}) by
(6.2.1) (a,b) ∼ (c,d) ⇐⇒ ad = bc.

Prove that ∼ is an equivalence relation. (Note that elements of this relation are ordered
pairs of ordered pairs.)

We are now able to give a rigorous definition of a rational number. A rational
number is an equivalence class with respect to the relation on Z× (Z \ {0}) defined by
(6.2.1). Notationally, instead of writing, for example, [(8,6)], we suppress the brackets
and write 8

6 . Of course
8
6 is equivalent to

−4
−3 and to

4000
3000 , and we express this equivalence

with the usual “equals” sign:

8
6

=
−4
−3 =

4000
3000

.

Thus any representative of the equivalence class of (8,6) will do, but it is customary to
pick one that is in lowest terms, and if possible, one where both elements of the ordered
pair are positive. In this case, 4

3 would be preferred.

Definition 6.2.12. Let R1 and R2 be relations on a set S. Then R1 refines R2 if
R1 ⊆ R2.

Exercise 6.2.13. Let R1 and R2 be equivalence relations on a set S. Prove that R1

refines R2 if and only if the partition with respect to R1 is a refinement of the partition
with respect to R2.

Exercise 6.2.14. Let R be an equivalence relation on A and let S be an equivalence
relation on B. Define a relation T on A× B by(

(a1,b1),(a2,b2)
) ∈ T ⇐⇒ (a1,a2) ∈ R and (b1,b2) ∈ S.

Prove that T is an equivalence relation.

6.3 Order Relations

Every fall various groups of sportswriters attempt to rank the best collegiate football
teams, and every winter they attempt the same feat for the best collegiate basketball
teams. This is not an easy task. How does Team A compare with Team B? While it is
generally accepted that, if A beats B, then A ought to be ranked higher than B, often A
and B never face each other on the field of play. But then, perhaps A narrowly beats B,
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while B beats C, who in turn clobbers A. Sometimes, as in basketball, A and B play
each other twice, and each team decisively wins the game on its home court. When
ranking soccer teams, the sportswriters have to interpret the possibility of a tie score.
Nonetheless, from a mass of inconsistent scores, the sportswriters supply eager readers
of the Monday sports section with a ranking from #1 to #25 of the best collegiate teams
in the United States.

What the sportswriters are attempting to do is to produce a linear order.This is indeed
the simplest type of order relation. It is the antithesis of an equivalence relation.An equiv-
alence relation bunches together (into equivalence classes) elements of a set that cannot
be ranked against each other, while a linear order seeks to spread the elements apart.

Definition 6.3.1. Let R be a relation on a set S.

R is irreflexive if

(∀x ∈ S)[(x,x) /∈ R].

Equivalently, R is irreflexive if R ∩Δ(S) = Ø.

R is antisymmetric if

(∀x, y ∈ S)
[(

(x,y) ∈ R ∧ (y,x) ∈ R
) ⇒ x = y

]
Elements x and y of S are comparable (with respect to R) if (x,y) ∈ R or (y,x) ∈ R.
Otherwise x and y are incomparable.

From these definitions, we see that, if every two elements of S are comparable
with respect to the antisymmetric relation R, then, whenever x 
= y, exactly one of
(x,y) and (y,x) belongs to R. Note also that “irreflexive” is not the same as “not
reflexive.” [Why is that? Quantifiers are important! Compare (∀x ∈ S)[(x,x) /∈ R] with
¬(∀x ∈ S)[(x,x) ∈ R].]

Definition 6.3.2. A relationR on a set S is an order relation and (S,R) is an ordered
set if R is antisymmetric and transitive. An order relation R is a:
(i) partial order if it is also reflexive;
(ii) strict partial order if it is also irreflexive;
(iii) linear order if it is a strict partial order and every two elements of S are comparable.

The pair (S,R) is a partially ordered set, or a poset for short, if S is a set and R is
a partial order on S. When it’s clear that R is the only relation on S under consideration,
then we say even more briefly that S is a poset. We also use the terms strictly partially
ordered set and linearly ordered set similarly (except that no one uses the term “loset”).

A familiar example of a poset is (S,�) where S is any set of real numbers. This
example also has the feature that any two real numbers are comparable.
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Strict partial orders are easily obtained from partial orders simply by removing the
diagonal Δ. Thus R is a strict partial order if and only if R ∪Δ is a partial order and
R ∩Δ = Ø. Examples of strict partial orders include the following.

� “is a proper divisor of” on the set N.
� ⊂ and ⊃ on any collection of subsets of some given set.
� < and > on any subset of R. Moreover, these two relations are linearly orders.

Exercise 6.3.3. Let R be irreflexive and transitive on S. Show the following.
(a) R is a strict partial order on S if and only if, for all x,y ∈ S, at most one of the
following holds: (x,y) ∈ R; (y,x) ∈ R; x = y.
(b) R is a linear order on S if and only if, for all x,y ∈ S, exactly one of the following
holds: (x,y) ∈ R; (y,x) ∈ R; x = y. (This is the so-called trichotomy property.)

Example 6.3.4. For any set X , (P(X),⊆) is a poset. By Exercise 3.1.7(a) and Propo-
sition 3.1.4, ⊆ is reflexive and transitive on P(X). The very definition of equality of
sets (Definition 3.1.8) tells us that ⊆ is antisymmetric on P(X). When X has at least
two elements, then P(X) contains pairs of incomparable elements, and so (P(X),⊆)
is not a linear ordered set. Neither is (P(X),⊂) linearly ordered, although ⊂ is a strict
partial order.

When the number of elements in a poset is not too large, diagrams such as the one
in Figure 6.3.1 help us to understand the partial order relation. This diagram illustrates
the poset (P(A),⊆), where A = {a,b,c}. Observe that two elements are comparable if
and only if there is an ascending path from some one of them to the other.

Example 6.3.5. Another example of a poset is
(
N,
∣∣). Proofs that (N,

∣∣) is reflexive,
antisymmetric, and transitive are immediate applications of results from Section 2.3.
Examples of pairs incomparable elements of

(
N,
∣∣) include (among infinitely many

others) all pairs of the form (n,n + 1) for n � 2.

Definition 6.3.6. Let R be any relation on a set S. The inverse relation of R, denoted
R−1 (say “R-inverse”), is defined by the condition

(x,y) ∈ R ⇔ (y,x) ∈ R−1.

It is immediate that
(
R−1

)−1 = R. It is also clear that a relation is reflexive if and
only if its inverse is reflexive. It is almost as immediate that a relation is transitive if
and only if its inverse is transitive. Also, R is symmetric if and only if R = R−1, and so
R−1 is also symmetric. Thus equivalence relations are equal to their inverses, in which
case the notion of an inverse relation adds nothing interesting to the study of equivalence
relations. However, for order relations, generally R 
= R−1.



152 Binary Relations

A = { a, b, c }

{ a, b } { b, c }{ a, c }

{ c }{ b }{ a }

Ø

Figure 6.3.1 The poset
(
P ({a,b,c}),⊆)

.

Exercise 6.3.7. Prove that if R is reflexive and transitive, then R ∩ R−1 is an equiva-
lence relation.

Exercise 6.3.8. Let R and S be relations on a set A. Prove that

(R ∪ S)−1 = R−1 ∪ S−1 and (R ∩ S)−1 = R−1 ∩ S−1.

If the relation R is antisymmetric, then clearly so is R−1. Thus R is a partial order
or a strict partial order or a linear order if and only if R−1 is the same kind of order. The
relationsR andR−1 may have different properties in the case of a well-order, as we will
see in the next section.

We close this section by introducing an operation on the set of relations on a set.

Definition 6.3.9. Let R1 and R2 be relations on a set S. The composition of R2 with
R1 is the relation

R2 ◦ R1 =
{
(x,y) ∈ S × S : (∃v ∈ S)

[
(x,v) ∈ R1 ∧ (v,y) ∈ R2

]}
.



6.4 Bounds and Extremal Elements 153

Exercise 6.3.10. Let S = {a,b,c}. Give examples of:
(a) relations R1 and R2 on S such that R2 ◦ R1 = R1 ◦ R2;
(b) relations R1 and R2 on S such that R2 ◦ R1 
= R1 ◦ R2.

Exercise 6.3.11. Let R be a relation on a set S. Prove the following.
(a) R is transitive if and only if R ◦ R ⊆ R.
(b) If R is reflexive and transitive, then R ◦ R = R.

6.4 Bounds and Extremal Elements

Definition 6.4.1. Let (S,R) be an ordered set. Let A ∈P(S) and let m ∈ S. Then m is
a lower bound of A, or A is bounded below by m, if

(∀a ∈ A)
[
(m,a) ∈ R

]
.

Similarly, m is an upper bound of A, or A is bounded above by m, if

(∀a ∈ A)
[
(a,m) ∈ R

]
.

The set S is bounded (with respect to R) if S has both a lower bound and an upper
bound.

Consider the poset (R,�). The subset (−∞,0] has no lower bound, but every non-
negative real number is an upper bound.Meanwhile the subset [0,∞) has no upper bound,
but every nonpositive real number is a lower bound. Thus neither subset is bounded.

Note that in Definition 6.4.1, the element m might or might not be an element of
A. For example, consider again the poset (R,�) and the half-open interval A = [0,1).
Here 0 is a lower bound that happens also to be an element of A, and every negative real
number is also a lower bound of A. Meanwhile, any real number at least 1 is an upper
bound of A, but no upper bound of A is an element of A. Certainly the number 0 plays
a special role among all the lower bounds of A, while the number 1 plays a unique role
among the upper bounds of A. These two roles motivate the following definition.

Definition 6.4.2. Let (S,R) be an ordered set and let A ∈P(S). An element m0 ∈ S
is the greatest lower bound of A, denoted g.l.b.(A), when both of the following hold.
(i) m0 is a lower bound of A, and
(ii) for any lower bound m of A, either m = m0 or (m,m0) ∈ R.
An element m1 ∈ S is the least upper bound of A, denoted l.u.b.(A), when both of the
following hold 3.

3 An alternative terminology and accompanying notation in common use are m0 = inf A and
m1 = supA, where inf and sup are short for infimum and supremum, respectively.
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(iii) m1 is an upper bound of A, and
(iv) for any upper bound m of A, either m = m1 or (m1,m) ∈ R.

What we’re saying is simply that g.l.b.(A) is the greatest of all the lower bounds
of a set A, while l.u.b.(A) is the least of all the upper bounds of A. Note the use of
articles here: a lower bound, but the greatest lower bound. Is the uniqueness of g.l.b.(A)
really so obvious?Well, suppose that distinct elements m and m′ of the ordered set S are
greatest lower bounds of the subset A. By condition (i) of Definition 6.4.2, they are both
lower bounds of A, and so by condition (ii), both (m,m′) ∈ R and (m′,m) ∈ R. But R is
antisymmetric, which implies that m = m′, a contradiction. We’ve just proved that the
greatest lower bound is unique — but only if it exists.

Exercise 6.4.3. Let (S,R) be an ordered set, and let A ∈P(S) \ {Ø}. Prove that A
has at most one least upper bound.

Consider, for example, the poset (R+,�), and let A =
{
x ∈ R+ : x2 < 2

}
. Then

A has
√
2 as its (unique) least upper bound. However, if we consider instead the poset

(Q+,�) and let B =
{
x ∈ Q+ : x2 < 2

}
, then B is also bounded above (for example,

1.42 is an upper bound), but B has no least upper bound in (Q+,�).

Example 6.4.4. Consider the poset (N, |) and the subset

A =
{
90,120,150,180,300,360,450,600,900

}
of N. The lower bounds of A are the elements of N that divide every element of A,
namely, 1, 2, 3, 5, 10, 15, 30. The greatest of all these lower bounds is 30, which is also
the greatest common divisor of the elements of A. [Is this just a coincidence, or does it
follow from Definition 2.5.3?] Clearly A is also bounded above, and l.u.b.(A) is the least
common multiple of its elements, namely 1800. In this example, neither of these bounds
is an element of A.

Proposition 6.4.5. Let (S,R) be a poset and let A ∈P(S). Let L be the set of all lower
bounds of the set A. If A has a greatest lower bound, then L has a least upper bound and
g.l.b.(A) = l.u.b.(L).

Proof. Let m0 = g.l.b.(A). By Definition 6.4.2(i), m0 ∈ L. By Definition 6.4.2(ii), we
have (�,m0) ∈ R for all � ∈ L. Hencem0 is an upper bound of L. Sincem0 ∈ L, we have
(m0,b) for every upper bound b of L. By Definition 6.4.2(iii, iv), m0 = l.u.b.(L). �

Exercise 6.4.6. Let (S,R) be a poset and let A ∈P(S). Let U be the set of all upper
bounds of the set A. State and prove a proposition analogous to Proposition 6.4.5.
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360 900 600

180 450 300

90 120 150

Figure 6.4.1 The poset (A, |) from Example 6.4.4.

In the context of Example 6.4.4, consider Figure 6.4.1, which shows only the ele-
ments in A from the poset (N, |). As in Figure 6.3.1, two elements are comparable if and
only if there is an ascending path from some one of them to the other. We see that some
of the elements of A, namely 90, 120, and 150 are minimal elements of A, in the sense
that no other element of A is “smaller” with respect to the order relation. In the sameway,
the elements 360, 600, and 900 aremaximal elements of A. Let us formalize these terms.

Definition 6.4.7. Let (S,R) be an ordered set and let A ∈P(S). An element m ∈ A
is a minimal element of A when(∀a ∈ A \ {m})[(a,m) /∈ R

]
.

An element M ∈ A is a maximal element of A when(∀a ∈ A \ {M})[(M,a) /∈ R
]
.

An element of A is an extremal element of A if it is a minimal element or maximal
element of A.

Wemake two observations about extremal elements. Firstly, unlike upper and lower
bounds of a set A, an extremal element of A must be an element of A. Secondly, an
extremal element, for example a maximal element, doesn’t have to be “greater than”
every other element of A. It merely must not be less than any element of A. This is
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like the sports team that hasn’t necessarily beaten every other team in its conference; it
simply has never lost to any team in its conference. (Theremay be teams in the conference
against whom it has never played.)

Proposition 6.4.8. Every finite, nonempty poset has at least one minimal element and
at least one maximal element.

Exercise 6.4.9. Prove Proposition 6.4.8. [Suggestion: Assume that (S,R) is a finite,
nonempty poset with no minimal element, and obtain a contradiction by building an
infinite sequence a1,a2, . . . by induction such that (an+1,an) ∈ R for all n ∈ N. Then
repeat this argument (or use R−1) for maximal elements.]

Here are three examples that show how this proposition can fail for an infinite poset.

� We return to (N, |) and consider the set N itself. The unique minimal element is 1, but
there is no maximal element.

� Consider the poset (R,�), and let A be the interval (0,1). Then A has no extremal
elements.

� Consider (Q,�) and let A = {1/n : n ∈ N}. Clearly 1 ∈ A, and 1 is its unique maxi-
mal element. However, A has no minimal element, because for any element 1/n of A
there exist elements of A such as 1/(n + 1) or 1/(2n) which are still smaller.

Unique extremal elements are special enough to merit their own definition.

Definition 6.4.10. Let (S,R) be an ordered set, and let A ∈P(S). An element m ∈ A
is the minimum of A when

(∀a ∈ A)[(m,a) ∈ R].

An element M ∈ A is the maximum of A when

(∀a ∈ A)[(a,M) ∈ R].

An element of A is an extremum of A when it is the minimum or the maximum of A.

As we’ve seen in the various examples, extrema (plural of extremum) don’t neces-
sarily exist, but when they do, they are unique. The extremum sports teams would be the
ones who have played all the other teams in their conference and either won every game
or lost every game.

Example 6.4.11. LetΠ be the set of all partitions of a nonempty set S. ForA ,B ∈ Π,
write A � B if A is a refinement of B. Then (Π,�) is a poset. Clearly � is reflexive.
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Exercise 6.1.8 gives us that � is antisymmetric and transitive. This poset possesses a
minimum, namely the collection

{{x} : x ∈ S
}
of singletons, which is the finest partition

possible. The maximum is the partition {S} consisting of just one big cell S, which is
the coarsest partition possible.

There remains one more kind of order relation that we postponed presenting earlier.

Definition6.4.12. ArelationR ona set S is awell-order if it is reflexive, antisymmetric,
and transitive (that is, a partial order) and if every nonempty subset of S has a minimum
(with respect to R). A set with a well-order is called a well-ordered set.

The posets (N,�) and (Z−,�) are well-ordered sets. In our present terminology,
we could restate the Well Ordering Principle as follows.

Every nonempty subset of Z having a lower bound is well-ordered.

On the other hand, the poset (Z,�) itself is not well-ordered, because no subset of
Z without a lower bound has a minimum. The poset (Q+,�) is also not well-ordered,
even though it has a lower bound; consider the subset {x ∈ Q+ : x > 2}, which has no
least element.

Exercise 6.4.13. Suppose that the setAhas at least two elements. Prove that
(
P(A),⊂)

is not well-ordered. [Suggestion: Show that a nonempty collection S ⊆ P(A) contains
a least element if and only if the subset

⋂{
B : B ∈ S

}
also belongs to S .]

A lot of terms have been defined in this section. The following lemma establishes
some relationships among them.

Lemma 6.4.14. Let (S,R) be a poset, and let A ∈P(S).
(i) If m ∈ A and m is a lower bound of A, then m is the minimum of A.
(ii) If m is the minimum of A, then m = g.l.b.(A).

Proof. (i) Assume that m ∈ A and that m is a lower bound of A. That means that
(m,a) ∈ R for all a ∈ A. Since m ∈ A, it must be the minimum of A.

(ii) Assume that m is the minimum of A. By Definition 6.4.10, since (m,a) ∈ R for
all a ∈ A, it holds that m is a lower bound of A. Since m ∈ A, we have (�,m) ∈ R for
every lower bound � of A. By Definition 6.4.2(i, ii), m = g.l.b.(A). �

Exercise 6.4.15. State and prove a lemma analogous to Lemma 6.4.14 about maxima
and least upper bounds.
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6.5 Applications to Calculus

The words minimum, maximum, and extremum defined in Section 6.4, are words that
you have encountered in the particular context of calculus courses, usually modified by
“relative” or “absolute.” In this section, we apply these general definitions formally to
first-year calculus. The ordered sets with which one is concerned in calculus are posets
of the form (S,�), where S is some subset of the set R of real numbers. One also has
in hand some function f : S → R, which is usually (but not always) continuous at every
point in S.

In most situations in calculus, the set S in question is an interval. At the risk of
belaboring the obvious, let us be clear about what an “interval” is. A subset I ⊆ R is an
interval if

I 
= Ø and (∀a,b ∈ I)(∀c ∈ R)[a < c < b ⇒ c ∈ I].

Intervals are nice, easy sets to work with. If an interval I contains its left-hand endpoint,
that is, if I is of the form {a} or [a,b) or [a,b] (for some b > a) or of the form [a,∞),
then a is the minimum of I , and a = g.l.b.(I) by Lemma 6.4.14. If I does not contain
any left-hand endpoint, then I has no minimum. Similarly, I contains a maximum if and
only if I contains a right-hand endpoint.

Calculus problems involving absolute and relative extrema are problems about the
properties of the image f (I)of a set I ⊆ R, especiallywhen I is an interval andparticularly
when the function f is continuous on I . In our current terminology, the following theorem
(whose name you should recognize) states that the image of an interval via a continuous
function is always an interval.

Theorem 6.5.1 (The Intermediate Value Theorem). Let S ⊆ R, and let f : S → R
be a continuous function. Then, for any interval I ⊆ S, the set f (I) is an interval.

Recall that an interval is closed if it contains a minimum when bounded below
and contains a maximum when bounded above. Thus, a closed interval is precisely an
interval of the form [a,b] or [a,∞) or (−∞,b] or (−∞,∞). An open interval is an
interval that contains neither a maximum nor a minimum and hence is of the form (a,b)
or (a,∞) or (−∞,b) or (−∞,∞). Intervals of the form [a,b) or (a,b] are neither open
nor closed and are sometimes called half-open4. The entire real line (−∞,∞) is the only
interval that is both open and closed. Note that the symbols −∞ and ∞ always stand
next to parentheses ( and ), respectively, and never next to brackets [ or ]. That is because
−∞ and∞ are not real numbers and so do not belong to any interval.

Your calculus text no doubt also included information equivalent to the following.

4 A pessimist would likely call such an interval half-closed.
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Proposition 6.5.2. Let S ⊆ R, and let f : S → R be a continuous function. Then, for
any closed and bounded interval I ⊆ S, the set f (I) is also a closed and bounded interval.

The following examples demonstratewhy eachword inProposition 6.5.2 is essential.

Example 6.5.3. In each of the following examples, consider whether I and f (I) are
closed intervals or bounded intervals (or intervals at all) and whether f is continuous
on I . What conjectures can one make about whether extrema are attained?

1. I = [−1,1] and

f (x) =

⎧⎨
⎩

x + 1 if −1 � x < 0;
0 if x = 0;
x − 1 if 0 < x � 1.

2. I = [−1,1] and

f (x) =
{
1/x if x 
= 0;
0 if x = 0.

3. I = (−π,π) and f (x) = sinx for all x ∈ I .

4. I = [0,π/2) and f (x) = tanx for all x ∈ I .

5. I = [0,∞) and f (x) = arctanx for all x ∈ I .

Examples 1 and 2 show that, even though I may be closed and bounded, when f is not
continuous, f (I) may fail to be closed (as in Example 1) or fail to be bounded (as in
Example 2). In fact, in Example 2, f (I) is not even an interval. In the other examples, f
is continuous. Example 3 shows that f (I) may still be closed and bounded even when I
is not closed. However, in Example 4, I is bounded but not closed, while f (I) is closed
but not bounded. In Example 5, I is closed but not bounded, while f (I) is bounded but
not closed.

Since a closed and bounded interval is precisely one that contains both its minimum
and maximum, Proposition 6.5.2 can be rephrased in a manner familiar to calculus
students as follows.

Theorem6.5.4 (TheExtremeValueTheorem). If a function is continuous on a closed
and bounded interval, then it attains its extrema on that interval.

Your calculus text either relegated the proof of this statement to an appendix or told
you that the proof is beyond the scope of the text. It is indeed, and it is also outside
the scope of the text you’re presently holding. The proof depends upon the fundamental
structure of the set of real numbers (as introduced briefly in Section 8.3). You will
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encounter this proof in a first course in analysis (for which this course may well be a
prerequisite).

With the present terminology, we can easily interpret so-called “absolute extrema.”
The absolute minimum (respectively, absolute maximum) of f : S → R is nothing
other than the minimum (respectively, maximum) of the range f (S). Thus, the absolute
minimum of f on S is g.l.b.(f (S)) = g.l.b.

({ f (x) : x ∈ S}) and the absolute maximum
of f is l.u.b.(f (S)). By the ExtremeValue Theorem, we know that, if f is continuous and
if S is a closed and bounded interval, then these absolute extrema do exist.

Definition 6.5.5. Let S ⊆ R, let f : S → R, and let x0 ∈ S. Then f has a relative min-
imum (respectively, relative maximum) at x0 if there exists an open interval I such that
x0 ∈ I and f (x0) is the minimum (respectively, maximum) of f (I ∩ S).

Exercise 6.5.6. In each of the following examples, a set S and a function f : S → R are
given. In each case, find the relative extrema of f on S and, for each relative extremum,
find an appropriate open interval I that fits Definition 6.5.5.
(a) S = R and f (x) = x3 − 12x.
(b) S = R and f (x) = sinx.
(c) S = (0,2π] and f (x) = sinx.
(d) S = (0,∞) and f (x) = sin(1/x).
(e) S = (0,∞) and for each n ∈ N, define f (x) = n− x when n− 1 < x � n.
[Hint: This function f has infinitely many discontinuities, but you can still do this one.
Start by drawing a graph, one unit interval at a time, to get an idea of what’s going on
here.]

6.6 Functions Revisited

Once again, your calculus experience provides the point of departure. Often you were
given some function f with domain X ⊆ R, and you were asked to “sketch the graph
of f .” You drew a pair of perpendicular lines, labeled them as the x-axis and the y-axis,
plotted a few points of the form

(
x, f (x)

)
for a handful of values x ∈ X, and finally tried

to join the points with some nice, smooth curve. That curve was what you called your
“graph.” A point (x,y) would be on that curve if and only if its coordinates satisfied the
equation y = f (x).

If the graph of the equation y = f (x) were drawn so accurately that we could know
exactly what points are on it, there would not be any information about f that couldn’t be
deduced from the graph.We could then, for all practical purposes, say that the function f
is its graph.Move just one infinitesimal point on the graph up or down and, behold, it is the
graph of a different function! Conversely, change the rule for f so that for just one single
element x in its domain we have a different value for f (x) and, behold, a new picture!



6.6 Functions Revisited 161

The point of this discussion is that we could have at the outset defined a function
using the definition that we used in calculus, not for a function, but for its graph. We
could have defined a function to be a subset f of R× R with the property that for
each x ∈ R, there is at most one value y ∈ R such that (x,y) ∈ f . Those values of x for
which a corresponding value y exists comprise the domain X of f . For each x ∈ X , that
unique y such that (x,y) ∈ f would be denoted by f (x), and we could then say, as in
Definition 5.1.1,

(∀x ∈ X)(∃!y ∈ R)[ f (x) = y].

A function thus is seen to be a set of ordered pairs; it is a particular kind of subset of a
Cartesian product of its domain by its codomain.

In Chapter 5, functions were introduced more generally than in calculus; their do-
mains and codomains could be any sets of any kinds of objects at all. Let us now bring
together all of these ideas, put aside the undefined notion of a “rule,” and give a truly
rigorous definition of a function.

Definition 6.6.1. A function f from a set X to a set Y is a subset of X × Y with the
following property:

(∀x ∈ X)(∃!y ∈ Y)[(x,y) ∈ f ].

The set X is the domain of f and the set Y is the codomain of f . For each x ∈ X, the
unique value y such that (x,y) ∈ f is denoted by f (x) and is called the image of x.

All of the other vocabulary in Chapter 5 linked to functions can be adapted to this
definition in a similar way. However, we give some special attention to the composition
of functions as a particular case of the composition of relations. A relation on a set was
defined in Definition 6.2.2 as a subset of X × X , but one could more generally define a
relation from a set X to a set Y as a subset of X × Y . Doing so allows to us generalize
Definition 6.3.9 as follows.

Definition 6.6.2. Let R1 be a relation from a set X to a set Y , and let R2 be a relation
from Y to a set Z. The composition of R2 with R1 is the relation

R2 ◦ R1 =
{
(x,z) ∈ X × Z : (∃y ∈ Y)[(x,y) ∈ R1 ∧ (y,z) ∈ R2]

}
.

Now if R1 and R2 just happen both to be functions, then we have an appropriate
definition for the composition of two functions in terms of subsets of Cartesian products.

Since a function has been redefined as a special case of a relation, it is reason-
able to correlate properties of functions presented in Chapter 5 with the properties of
relations presented earlier in this chapter. The following exercise includes several such
correlations.
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Exercise 6.6.3. Let f : X → X be a function. As you prove the following, regard f as
a relation on the set X .
(a) f is reflexive if and only if f = iX .
(b) f is symmetric if and only if f ◦ f = iX .
(c) If f is symmetric, then f is a bijection, but not conversely.
(d) If f is transitive and X 
= Ø, then there exists a nonempty subset A ⊆ X such that
f
∣∣
A = iA and f (X \ A) ⊆ A.

(e) If X = R and f is irreflexive and continuous, then either

(∀x ∈ X)[ f (x) < x] or (∀x ∈ X)[ f (x) > x].

[Hint: Apply the appropriate theorem to the function g = f − iX .]
(f) If X = R and f is symmetric and continuous, then f has a fixed point, i.e., there
exists some p ∈ X such that f (p) = p.

6.7 Further Exercises

Exercise 6.7.1. (a) Construct a partition of N× N each of whose cells has exactly six
elements.
(b) Construct a partition of N× N consisting of exactly six cells, all infinite.
(c) Construct a partition of N× N consisting of six finite cells and six infinite cells.

Exercise 6.7.2. Let a,b ∈ N. For each n ∈ N, let

An = {k ∈ N : a(n− 1) + 1 � k � an}
and

Bn = {k ∈ N : b(n− 1) + 1 � k � bn}.
Let A = {An : n ∈ N} and B = {Bn : n ∈ N}. Prove that B refines A if and only if b
is a divisor of a.

Exercise 6.7.3. Let a,b ∈ N. For each n ∈ {0,1,2, . . . ,a− 1}, define An = {ak + n :
k ∈ N}, and for each n ∈ {0,1,2, . . . ,b− 1}, define Bn = {bk + n : k ∈ N}. Let A =
{An : n ∈ N} andB = {Bn : n ∈ N}. Prove thatB refinesA if and only if a is a divisor
of b.

Exercise 6.7.4. Let X and Y be sets and let f : X → Y be a function. Let A =
{ f−1(y) : y ∈ Y} and let B be any partition of X . Prove the following.
(a) If f is a bijection, then A is a refinement of B.
(b) If Y has only one element, then B is a refinement of A .
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Exercise 6.7.5. Let X , Y and Z be sets. Suppose that f : X → Y and g : Y → Z are
surjections. Prove that the partition

{
f−1(y) : y ∈ Y

}
is a refinement of the partition{

(g ◦ f )−1(z) : z ∈ Z
}
.

Exercise 6.7.6. Let A and B be partitions of a set X. Let

C =
{
A ∩ B : A ∈ A ; B ∈ B; A ∩ B 
= ∅}.

(a) Prove that C is a partition of X . (C is called the common refinement of A and B.)
(b) Prove that if D is a partition of S that refines both A and B, then D refines C .
(c) Suppose that A and B are the sets of equivalence classes of equivalence relations R
and S, respectively. Describe in terms of R and S the equivalence relation T on X such
that C is the set of equivalence classes of T.
(d) Suppose that R is the relation of congruence modulo 5 on Z and that S is the relation
of congruence modulo 7 on Z. Determine C and T for these relations R and S.
(e) Repeat part (d), where R is the relation of congruence modulo 6 and S is the relation
of congruence modulo 10, both on the set Z.

Exercise 6.7.7. Let X be a set and let A =
{
C1, . . . ,Cn

}
where n � 2 be a partition

of X. Let f : X → A be the function such that, for each x ∈ X, f (x) is the cell in A to
which x belongs. Let g : A → X be any function such that, for each cell Ci ∈ A , we
have g(Ci) ∈ Ci.
(a) Prove that f ◦ g = iA .
(b) Prove that f is a surjection and g is an injection.
(c) Find a necessary and sufficient condition on A for g ◦ f to equal iX .
(d) Define h : X → A so that for each i = 1, . . . ,n− 1, if x ∈ Ci, then h(x) = Ci+1 and,
if x ∈ Cn, then h(x) = C1. Prove that h is a surjection but that h ◦ g 
= iA . Explain what
this example shows concerning the converse of Theorem 5.5.2.

Exercise 6.7.8. Letm, n ∈ N. LetR1 andR2 denote the relations of congruence mod-
ulo m and congruence modulo n, respectively, on the set Z. Prove that R1 refines R2 if
and only if n divides m.

Exercise 6.7.9. Let S be the set of all the people in a large city. For x, y ∈ S, let us say
that (x,y) ∈ R1 if the given names of x and y begin with the same letter of the alphabet
and that (x,y) ∈ R2 if x and y have the same astrological sign. Clearly R1 and R2 are
equivalence relations, but for each of the relationsR1 ∪ R2, R1 ∩ R2, R1 \ R2, R1 + R2,
(S × S) \ (R1 ∪ R2), and (S × S) \ (R1 ∩ R2), either show that it is an equivalence re-
lation or determine what part(s) of the definition of equivalence it fails to satisfy.
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Exercise 6.7.10. Let Σ be a set of (logical) statements. Let

R1 =
{
(P,Q) ∈ Σ× Σ : P ⇒ Q is true

}
and

R2 =
{
(P,Q) ∈ Σ× Σ : (P ⇒ Q) ∧ ¬(Q⇒ P) is true

}
.

Prove that (Σ,R1) is a poset and (Σ,R2) is a strictly partially ordered set.

Exercise 6.7.11. Let � denote the relation on the set of points in the plane whereby,
for any points (x1,y1) and (x2,y2) in R× R,

(x1,y1) � (x2,y2) ⇐⇒ x21 + y21 � x22 + y22.

(a) Prove that � is reflexive and transitive but (R× R,�) is not a poset.
(b) Let R be the relation on R× R whereby (x1,y1)R(x2,y2) if and only if both
(x1,y1) � (x2,y2) and (x2,y2) � (x1,y1). Show that R is an equivalence relation, and
give a geometric description of the equivalence classes with respect to R.

Exercise 6.7.12. An isomorphism from a poset (S1,R1) to a poset (S2,R2) is a bijec-
tion f : S1 → S2 such that, for all x, y ∈ S1,

(x,y) ∈ R1 ⇐⇒
(
f (x), f (y)

) ∈ R2.

When such an isomorphism exists, we say that (S1,R1) is isomorphic to (S2,R2).
(a) Show that every poset is isomorphic to itself.
(b) Prove that if f is an isomorphism, then so is f−1.
(c) Prove that the composition of two isomorphisms is an isomorphism.
(d) From parts (a), (b), and (c), deduce that “is isomorphic to” is an equivalence relation
on any collection of posets.
(e) Let A =

{
a,b,c,d

}
, and let S1 = P(A). Let

S2 =
{
1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210

}
.

Prove that (S1,⊆) is isomorphic to
(
S2,
∣∣) by constructing a suitable isomorphism. [Note

that A could be any set with four elements.]

Exercise 6.7.13. The dual of a poset (S,�) is the poset (S, ), where for all x,y ∈ S,
x � y if and only if y  x. A poset is self-dual if it is isomorphic to its dual.
(a) Verify that the dual of a poset is indeed a poset.
(b) Determine whether the posets in Exercise 6.7.12(e) are self-dual.
(c) Determine whether the poset in Example 6.4.4 is self-dual.
(d) Show that for any set X , the poset (P(X),⊆) is self-dual.
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Exercise 6.7.14. A poset (S,�) is a lattice if for all x,y ∈ S, the elements x ∧ y =
g.l.b.{x,y} and x ∨ y = l.u.b.{x,y} exist in S. These elements are called the meet of x
and y and the join of x and y, respectively.
(a) Prove that the dual of a lattice is also a lattice.
(b) Show that for any set X , the poset (P(X),⊆) is a lattice.
(c) Prove that every finite lattice has a minimum and a maximum.
(d) Prove that

(
N,
∣∣) and its dual are lattices, but one has no maximum while the other

has no minimum.
(e) Determine all four lattices (S,�) having at most four elements such that no two are
isomorphic, and show that they are all self-dual.
(e) Determine all five “non-isomorphic” lattices (S,�) with exactly five elements. How
many of them are self-dual?
(f) Determine all 15 “non-isomorphic” lattices (S,�) with exactly six elements.
[Hint: Seven of them are self-dual.]

Exercise 6.7.15. Let (S,R) be an ordered set. We define a relation L on S × S × S
(which we abbreviate as S3) in the following way. For any two elements v1 = (x1,y1,z1)
and v2 = (x2,y2,z2) of S3 we have (v1,v2) ∈ L if and only if one of the following holds:
(i) (x1,x2) ∈ R;
(ii) x1 = x2 and (y1,y2) ∈ R;
(iii) x1 = x2 and y1 = y2 and (z1,z2) ∈ R.
A relation of this kind is called a lexicographic5 ordering.
(a) Prove that

(
S3,L

)
is an ordered set.

(b) Prove that
(
S3,L

)
is a linearly ordered set if and only if (S,R) is a linearly ordered set.

(c) Describe the extremal elements of
(
S3,L

)
in terms of the extremal elements of (S,R).

(d) Prove that
(
S3,L

)
has extrema if and only if (S,R) has extrema.

Exercise 6.7.16. The entries in a dictionary appear in a fixed order. One could say
that they are linearly ordered. State explicitly the rules for determining, given any two
words, which one follows the other. [Note that, unlike in the previous exercise where all
“words” have three “letters,” the entries in a dictionary may have any positive number
of letters. Also, some entries are hyphenated words or may contain apostrophes.]

Exercise 6.7.17. This one is more a project than an exercise. In a Chinese dictionary,
if m < n, then a character with m strokes (of a pen) always precedes a character with n

5 A lexicon is a dictionary. Do you see the analogy to the alphabetical ordering of words in a
dictionary?
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strokes. However, for each m � 1 (up to about m = 30), there are many characters with
m strokes. Investigate the rules for ordering the set C of Chinese characters. Let

R =
{
(c1,c2) ∈ C × C : c1 precedes c2

}
.

Is R a strict partial order? Are every two Chinese characters comparable according to
these rules?

Exercise 6.7.18. Let (S,R) be a linearly ordered set. LetF be a nonempty, finite subset
of S. DefineR

∣∣
F = R ∩ (F × F). Does it always hold that

(
F,R

∣∣
F

)
is a well ordered set?
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Suppose that we want to count the following array of objects.

♣ ♥ c© � £

The mathematics behind what we are doing when we say “count to five” is made precise
and generalized in this chapter. The process includes what it means to say that a set is
infinite and gives meaning to the question, “How big is infinity?”

7.1 Counting

When an English-speaking person points successively to an array of objects and says
the words, “One, two, three, four, five,” associating each word with a distinct object, we
call that action counting to 5. If the words uttered are instead, “uno, due, tre, quattro,
cinque,” or “yksi, kaksi, kolme, neljä, viisi,” it doesn’t matter that the counter is speaking
Italian or Finnish, for the action is the same. Nor does it matter what the objects in the
set happen to be. The set in question is representable by the symbol 5, which may be
pronounced verbally as “five” or “cinque” or “viisi” or any of hundreds of other human
vocal sounds. There exists an obvious matching between any set of five objects and any
other set of five objects and, of course, between any such set and the set {one, two, three,
four, five} of words.

Let us recast this brief discussion in more formal mathematical language. Given
the set

A =
{♣,♥, c©,�,£

}
,

we chose a standard reference set, namely

N5 =
{
1,2,3,4,5

}
.

Finally, we constructed a bijection f : N5 → A given by

f (1) = ♣, f (2) = ♥, f (3) = c©, f (4) = �, f (5) = £.

That’s what we do when we count to five.

167
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On the other hand, suppose that we look at a dance floor where everybody in the
room is dancing, and in each dancing couple there is one man and one woman. There is
an obvious bijection from the set of men to the set of women on the dance floor.Without
having to use number words to count, we would conclude without hesitation that there
are exactly as many men as women on the dance floor. That is to say, the set of men and
the set of women have the “same size,” or in mathematical terminology, these two sets
“have equal cardinality.”

Definition 7.1.1. For each k ∈ N, define Nk = {1,2,3, . . . ,k}. A set S is called finite if
S = Ø or if for some k ∈ N there is a bijection f : Nk → S. Otherwise S is infinite.

A set S is called countable if there is a bijection f : N → S. An infinite set that is not
countable is said to be uncountable1.

If S is a finite set, then the cardinality of S, denoted |S|, is the natural number k if there
exists a bijection from Nk to S, and |Ø| = 0.

The notation |S| is read as “the cardinality of (the set) S.” Thus the cardinality of a
finite set is simply the number of elements in the set. For example,∣∣{a,b,c}∣∣ = 3,∣∣{p ∈ N : p,p + 2,p + 4 are all prime}∣∣ = 1,∣∣N5

∣∣ = 5,∣∣{p ∈ Z : 1 � p � 100 and p is prime}∣∣ = 25.

Suppose that for some k ∈ N, there exist bijections fromNk to each of the sets A and
B. Then clearly there exists a bijection from A to B. [Can you supply the details?] In this
case, A has the same cardinality as B, written

∣∣A∣∣ = ∣∣B∣∣. When no such bijection exists,
we write

∣∣A∣∣ 
= ∣∣B∣∣. More generally, for arbitrary sets A and B, the notation
∣∣A∣∣ = ∣∣B∣∣

means that there exists a bijection from each of these sets to the other.

We note three basic counting principles as applied to finite sets. These principles can
be regarded as definitions of three arithmetic operations on cardinalities of finite sets.
(These same principles will be extended to infinite sets at the end of this chapter.)

Proposition 7.1.2. Let A and B be arbitrary finite subsets of some universe U.
(i) |A|+ |B| = |A ∪ B|+ |A ∩ B|.
(ii) |A| · |B| = |A× B|.
(iii) |B||A| is the cardinality of the set of functions from A into B.

1 Some mathematicians include finite sets when speaking of countable sets and use the terms
countably infiniteordenumerable instead of the term countable.Theyuse the termnondenumerable
in place of uncountable.
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Proof. (i) Each element of U is counted the same number of times on each side of
this equation. Specifically, elements of (A ∪ B)′ are counted zero times on each side.
Elements of A \ B and B \ A are counted once on each side. Finally, elements of A ∩ B
are counted twice on each side.

(ii) For each a ∈ A, there are |B| elements b ∈ B such that (a,b) ∈ A× B. As there
are |A| elements of A, there are |A| · |B| elements of A× B.

(iii) For the definition of a function, we have recourse to Definition 6.6.1. Sup-
pose that A = {a1,a2, . . . ,am}. Each function f : A→ B is a subset of A× B of the
form {(a1,b1),(a2,b2), . . . ,(am,bm)}, where each element bi = f (ai). The function f is
uniquely determined by the list b1,b2, . . . ,bm.

Conversely, each such list determines a unique function from A to B. This bijection
(between lists and functions) implies that we can count the required set of functions by
counting the set of lists b1,b2, . . . ,bm. As there are exactly |B| options for each term bi,
the cardinality of the set of these lists is

|B| · |B| · · · · · |B|︸ ︷︷ ︸
m factors

,

giving |B|m = |B||A|. �

Let us extend this language about cardinality to countable sets. Suppose that there
exist bijections from the set N to each of the sets A and B. By the same argument as for
finite sets, there exists a bijection from A to B. Again A and B have the same cardinality,
and we write |A| = |B|. However, here we cannot use an element of N to represent this
cardinality as we did for finite sets. For this purpose, G. Cantor2 selected the symbol ℵ0
to denote the cardinality of any (and every) countable set. (Aleph, ℵ, is the first letter in
the Hebrew alphabet.) So it is entirely correct to write

|A| = ℵ0
for any countable set A. The cardinality of a countable set is thus defined to be ℵ0.

Example 7.1.3. The set E = {2,4,6,8, . . .} of positive even integers is a proper subset
of N. Although the injection g : E → N defined by g(j) = j is not a bijection, one cannot
infer that no bijection exists. The function f : N → E defined by f (n) = 2n is such a
bijection. Thus |E| = |N| = ℵ0. So the set of even numbers has the same size as the set
of natural numbers (even though E is a proper subset of N).

2 Georg Cantor (1845–1918), son of a Danish father and Russian mother, spent his student and
adult years in Germany. He pioneered the study of infinite sets and cardinality. A brilliant and
prominent mathematician, despite suffering terribly from mental illness for the last third of his
life, he wrote several papers that rocked the traditional thinking about logic and infinite sets.
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Now consider the set O of positive odd numbers. The function h : N → O defined
by h(n) = 2n− 1 for all n ∈ N is a bijection, and therefore |O| = ℵ0, as well.

Exercise 7.1.4. (a) Prove that the function h : N → O defined by h(n) = 2n− 1 is a
bijection.
(b) Let A = {5,10,15,20, . . .} be the set of all positive multiples of 5. Prove that∣∣A∣∣ = ℵ0. [Hint:Define an appropriate function f : N → A andprove that it is a bijection.]

Exercise 7.1.5. Prove that if the set S is finite, then so are S × S, P(S), every subset
of S, and the union and intersection of S with any other finite set.

Exercise 7.1.6. Let A and B be finite sets. Prove that following statements are
equivalent.
(i) |A| � |B|.
(ii) There exists a surjection from A onto B.
(iii) There exists an injection from B to A.

Exercise 7.1.7. (a) Show that the interval (2,4) on the real number line has the same
cardinality as the interval (5,10). [Hint: Consider a suitable linear function.]
(b) Prove the more general statement that any two open intervals of real numbers (a,b)
and (c,d) have the same cardinality. The same result holds for any two closed intervals
of real numbers.

Exercise 7.1.8. (a) Count the number of functions from A to B and also from B to A,
where A = {a1,a2,a3} and B = {b1,b2}.
(b) What fraction of the subsets of A× B are functions from A to B?
(c) What fraction of the subsets of A× B are functions from B to A?

Exercise 7.1.9. Recall that the symmetric difference (see Exercise 3.6.12) of sets A
and B is the set

A + B = (A ∪ B) \ (A ∩ B).

Prove that if A and B are finite, then |A + B| = |A|+ |B| − 2|A ∩ B|.

7.2 Properties of Countable Sets

One way to prove that a given set A is indeed a countable set is to demonstrate a bijec-
tion f : N → A by explicitly defining its rule. That was how we proved that

∣∣N∣∣ = ∣∣E∣∣.
Another way is to list the terms f (1), f (2), f (3), . . . as a sequence. Let us formalize this.

Definition 7.2.1. Let A be a countable set and let f : N → A be a bijection. Then the
sequence ( f (1), f (2), . . .) is the enumeration of A with respect to f.
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For example, the enumerations of E and O with respect to the bijections given in
Example 7.1.3 are (2,4,6,8, . . .) and (1,3,5,7, . . .), respectively. Often just studying the
first few terms of an enumeration tells us what the implied bijection is without our having
to name the bijection and state its rule. For this reason, enumerations are very convenient.

When a finite set is enlarged by the inclusion of elements not already in the set,
then the cardinality of the set is increased. This is a property that, in a way, distinguishes
finite sets from infinite sets. By contrast, adjoining any finite number of elements to a
countable set has absolutely no effect upon its cardinality; the countable set just seems
to “absorb” the new elements. Let us make this precise.

Proposition 7.2.2. The union of a countable set and a finite set is a countable set.

Proof. Suppose that A is a countable set and B is a finite set. The set B \ A is finite,
because it is a subset of the finite set B. Say

∣∣B \ A∣∣ = k, where k ∈ N ∪ {0}. If k = 0,
then B ⊂ A, and so A ∪ B = A, which is countable by assumption. If k � 1, then there is
a bijection f1 : Nk → B \ A. By assumption, there is also a bijection f2 : N → A. Define
g : N → A ∪ B by

g(n) =

{
f1(n) if n � k;

f2(n− k) if n � k + 1.

Clearly g is a bijection, as evidenced by the enumeration with respect to g:(
g(1),g(2), . . . ,g(k),g(k + 1),g(k + 2), . . .

)
=
(
f1(1), f1(2), . . . , f1(k), f2(1), f2(2), . . .

)
.

�

In Chapter 4, we used the Principle of Strong Induction only to prove statements
about all n ∈ N. Here we use it in a different way, namely to construct an enumeration
of any subset of N.

Lemma 7.2.3. Every subset of N is either finite or countable.

Proof. LetM be a subset ofN. IfM = Ø, thenM is finite, sowe suppose thatM 
= Ø.As
the initial step of our inductive argument, defineM1 = M. By theWellOrderingPrinciple,
M1 includes a least element, which we call n1. Let M2 = M1 \ {n1}. If M2 = Ø, then
M1 is finite. (It has one element.) Otherwise,M2 includes a least element, which we call
n2. Observe that n1 < n2.

Let m � 1 and suppose (as the induction hypothesis) that for all k ∈ {1,2, . . . ,m},
Mk+1 = Mk \ {nk}, where nk is the least element of Mk . If Mm+1 = Ø, then M=Mm

= {n1,n2, . . . ,nm}; it is finite and has m elements. Otherwise,Mm+1 has a least element
nm+1 and nm+1 > nm. Thus, if Mm is not empty for all m ∈ N, then by the Principle of
Strong Induction, some subset of M admits the enumeration (n1,n2,n3, . . .), that is to
say, M contains a countable subset.
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It remains only to prove that the enumeration (n1,n2,n3, . . .) includes all the elements
of M. Suppose by way of contradiction that some element h ∈ M was omitted from
(n1,n2,n3, . . .). Since this enumeration is an increasing sequence and h ∈ N, there exists
some k ∈ N such that nk < h < nk+1. This is because nk < h holds for only finitelymany
integers k. Thus h ∈ Mk \ Mk+1. Although nk+1 was supposed to be the least element
of Mk \ {nk}, the element h is still smaller, giving a contradiction. �

The lemma that we have just proved solidifies the notion that the infinite subsets of
N, such as E and O, have the same cardinality as N.

Corollary 7.2.4. Every subset of a countable set is either finite or countable.

Proof. Let A be a countable set and suppose B ⊆ A. Then there exists a bijection
f : N → A. Let M = f−1(B). Since f is a bijection, so is f−1 (see Theorem 5.5.11). In
particular, the restriction f−1

∣∣
B : B→ M is a bijection. Hence |B| = |M|. By Lemma

7.2.3, M is finite or countable, and hence, so is B. �

The next theorem enables us to shorten some later proofs.

Theorem 7.2.5. Let A be any set, and suppose that there exists a surjection f : N → A.
Then A is finite or countable.

Proof. By Proposition 6.1.5, since f : N → A is a surjection, the set

{ f−1(x) : x ∈ A}
is a partition of N. That means that each cell f−1(x) is a nonempty subset of N. By the
Well Ordering Principle, each cell f−1(x) includes a least element, which we denote by
nx. Let M = {nx ∈ N : x ∈ A}.

We show that the restriction f
∣∣
M : M → A is a bijection. For each x ∈ A, we have

f
∣∣
M(nx) = x, and so f

∣∣
M is a surjection. Now suppose that f

∣∣
M(nx) = f

∣∣
M(ny). Then

x = y. Since the set f−1(x) = f−1(y) has a unique least element in N, it follows that
nx = ny, and so f

∣∣
M is also an injection.

By virtue of the bijection f
∣∣
M , we have |M| = |A|. By Lemma 7.2.3, M is finite or

countable, and hence so is A. �

With this theorem, one easily obtains for countable sets the following analogue of
Exercise 7.1.6 for finite sets.

Corollary 7.2.6. Let A be a countable set and let B be any set. If there exists a surjection
from A onto B or an injection from B into A, then B is finite or countable.

Exercise 7.2.7. Prove Corollary 7.2.6.
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The following exercise shows that, not only does the adjoining of a finite subset to
a countable set have no effect upon its countability, but the removal of a finite subset
similarly has no effect upon its cardinality either.

Exercise 7.2.8. If A is a countable set and B is finite, prove that A \ B is countable.
[Hint: See Exercise 5.6.13.]

Exercise 7.2.9. Let k ∈ Z. Prove that the sets {n ∈ Z : n � k} and {n ∈ Z : n � k}
are countable.

7.3 Counting Countable Sets

An immediate consequence of considering infinite sets is that a familiar property of
addition no longer applies. Children learn to add 6 to 3 by taking a set of 3 things and a
disjoint set of 6 things, pushing the sets together (that is, forming their union) and then
counting the new set. If we take the set of even numbers (which is countable) and adjoin to
it the (disjoint) set of odd numbers (also countable) to form their union and determine its
cardinality, what happens?We have the countable set N. It would appear that 2ℵ0 = ℵ0.
Actually, this is exactly what happens!

The set of the integers

Z = {. . . ,−3,−2,−1,0,1,2,3, . . .}
as displayed here is not an enumeration of Z. [Why not?] But consider this enumeration
of Z:

(0,1,−1,2,−2,3,−3, . . .).
The explicit function f : N → Z which gives this enumeration is

f (n) =

⎧⎪⎪⎨
⎪⎪⎩

1− n
2

if n is odd;

n
2

if n is even.

In Exercise 5.6.21, you proved that this function is bijective. In effect, you proved that
the set of integers has the same cardinality as the set of natural numbers.

The following proposition holds for all sets, finite, countable, or uncountable.

Proposition7.3.1. LetA,B,C,andDbe sets and suppose that
∣∣A∣∣ = ∣∣C∣∣and ∣∣B∣∣ = ∣∣D∣∣.

Then the following hold.
(i)

∣∣A× B
∣∣ = ∣∣C × D

∣∣.
(ii) If A ∩ B = Ø and C ∩ D = Ø, then

∣∣A ∪ B
∣∣ = ∣∣C ∪ D

∣∣.
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Proof. (i) Since
∣∣A∣∣ = ∣∣C∣∣ and

∣∣B∣∣ = ∣∣D∣∣, there exist bijections g : A→ C and
h : B→ D. Define f : A× B→ C × D by f (a,b) = (g(a),h(b)) . We leave as an
exercise the proof that f is a bijection.

To prove part (ii), we note simply that the function

g ∪ h : A ∪ B→ C ∪ D

defined in Exercise 5.6.17(a) is a bijection. �

Exercise 7.3.2. Prove that the function f : A× B→ C × D defined by f (a,b) =
(g(a),h(b)) from the proof of part (i) of Proposition 7.3.1 is a bijection.

The set N× N =
{
(m,n) : m ∈ N ∧ n ∈ N

}
can be visualized as the set of points

with integer coordinates in the first quadrant of the plane. (See Figure 7.3.1.) Each row
and each column of dots may be regarded as a copy of N. The cardinality of this set of
dots is |N× N|, but is it countable?

1 2 3 4 5 6

1

2

3

4

5

Figure 7.3.1 A representation of N × N.

We display a bijection from N onto N× N. Recall Corollary 4.3.4: for each
n ∈ N, there exist unique k,m ∈ N with m odd such that n = 2k−1 · m. Because of the
uniqueness, there exists a function f : N → N× N defined by f (n) = (a,b), where n =
2a−1 · (2b− 1). For example, f (72) = (4,5), since 72 = 23 · (2 · 5− 1). Surjectivity of
f is fairly obvious; given any (a,b) ∈ N× N, if n = 2a−1 · (2b− 1), then f (n) = (a,b).
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To show that f is injective, suppose that f (n1) = f (n2). By Corollary 4.3.4
again, there exist unique a1,b1,a2,b2 ∈ N such that n1 = 2a1−1(2b1 − 1) and n2
= 2a2−1(2b2 − 1). This means f (n1) = (a1,b1) and f (n2) = (a2,b2), which translates
into the equality of these two ordered pairs. Thus

a1 = a2 and b1 = b2,

and so n1 = n2. Therefore f is injective and hence bijective. The enumeration of N× N
with respect to the bijection f is(

(1,1),(2,1),(1,2),(3,1),(1,3),(2,2),(1,4),

(4,1),(1,5),(2,3),(1,6),(3,2),(1,7),(2,4), . . .
)
.

We have proved the following theorem.

Theorem 7.3.3. The set N× N is a countable set.

Exercise 7.3.4. In a grid like Figure 7.3.1, write the integer n = 2a−1(2b− 1) next
to the point (a,b). Describe the sequences formed by the integers paired with the (hori-
zontal) rows and (vertical) columns.

Corollary 7.3.5. The Cartesian product of any two countable sets is a countable set.

Proof. Suppose that A and B are countable sets. From Theorem 7.3.3, |N| = |N× N|.
By Proposition 7.3.1(i), |N× N| = |A× B|. Since the composition of two bijections is
a bijection, there exists a bijection from N to A× B. �

Corollary 7.3.6. The Cartesian product of finitely many countable sets is a count-
able set.

Proof. The proof is by induction on the number n of sets in the product. The initial
step (k = 2) has already been done in Corollary 7.3.5. The details of the inductive step
are left as Exercise 7.3.7. �

Exercise 7.3.7. Write a formal proof of Corollary 7.3.6. [Hint: Note that the set
A1 × A2 × ·· · × Ak+1 may be regarded as (A1 × A2 × ·· · × Ak)× Ak+1.]

Once again the rules of arithmetic for finite cardinalities appear not to apply to
countable sets. Corollary 7.3.6 suggests (correctly) that ℵk0 = ℵ0 for all k ∈ N. The
following corollary is a special case. It suggests that ℵ0 + ℵ0 + · · · = ℵ0 · ℵ0 = ℵ0.

Corollary 7.3.8. The union of finitely many or countably many countable sets is a
countable set.
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Proof. Let {Ai : i ∈ N} be a family of countablymany sets, each of which is countable.
We can make the following well-ordered list of enumerations of the sets Ai for all i ∈ N.

A1 : (a1,1, a1,2, a1,3, a1,4, . . .)
A2 : (a2,1, a2,2, a2,3, a2,4, . . .)
A3 : (a3,1, a3,2, a3,3, a3,4, . . .)
...

Consider the function

g : N× N →
∞⋃
i=1

Ai

given by g(i, j) = ai,j for each ordered pair (i, j) ∈ N× N. Thus g assigns to the ordered
pair (i, j) the jth term in the ith rowof the above array.The function g is clearly a surjection.
Since N× N is countable, so is the set

⋃∞
i=1Ai by Corollary 7.2.6. [If the sets Ai are

not pairwise disjoint, then g would not be an injection. Thanks to Corollary 7.2.6, g
being a surjection is sufficient for this job, and we are spared the work of constructing a
bijection.]

If the family of sets is a finite family, then the conclusion holds by the first part of
this proof together with Corollary 7.2.4, since any union of finitely many sets is a subset
of some union of countably many sets. �

Corollary 7.3.9. The union of countably many sets, each of which is finite or countable,
is a finite or countable set.

Exercise 7.3.10. Adapt the proof of Corollary 7.3.8 to prove Corollary 7.3.9. Under
what circumstances is this union finite, and when is it countable? [The sets need not be
disjoint.]

By definition, every positive rational number can be written as a fraction p/q, where
p, q ∈ N. This immediately suggests a surjection f from N× N onto the set of pos-
itive rationals whereby f (p,q) = p/q. Notice that f is not an injection. For example,
1 = f (1,1) = f (2,2) = f (3,3) and 1

2 = f (1,2) = f (2,4) = f (3,6), etc. We don’t need
a bijection; by Corollary 7.2.6, just a surjection will do. Since N× N is countable, so is
the set of positive rationals.

The pairing p/q↔ −p/q shows that the set of negative rational numbers is count-
able, too. Moreover, the union of two countable sets is countable, by Corollary 7.3.8.
Hence the set of nonzero rational numbers is countable. By Proposition 7.2.2, we may
also adjoin the finite set {0} and still have a countable set. This proves the following
theorem, first proved by G. Cantor in 1873.
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Theorem 7.3.11. The set Q of rational numbers is countable.

Exercise 7.3.12. Using the enumeration of the set N× N from the proof of Theorem
7.3.3, write the first 20 terms of the enumeration of Q+ suggested by the above proof.
Then, using the enumeration suggested by the enumeration of Z, write the first 20 terms
of an enumeration of Q. [Don’t forget to include zero!]

Lemma 7.3.13. The set Z[x] of all polynomial functions with integer coefficients is
countable.

Proof. For each n ∈ N ∪ {0}, let Pn denote the set of all polynomial functions of
degree n with integer coefficients. There is an obvious bijection onto the set Pn from
the Cartesian product of n + 1 “copies” of Z. For example, P0 consists of the constant
functions with integer value, so |P0| = |Z|. The set P1 consists of functions of the form
a1x + a0; clearly |P1| = |Z× Z|. The set of quadratic functions, i.e., those of the form
a2x2 + a1x + a0, corresponds bijectively in an obvious way to the set Z× Z× Z, and
so on.

Since the set Z is countable, the Cartesian product of finitely many copies of Z is a
countable set by Corollary 7.3.6. It follows that each set Pn is also a countable set.

The set of all polynomial functions with integer coefficients can be expressed as
Z[x] =

⋃∞
n=0Pn. By Corollary 7.3.8, this set is countable. �

We can use this lemma to prove that the set A of algebraic numbers is countable.
In order to do so, we need a fact about the number of roots of a polynomial. If p is a
polynomial function, then a number x is a root of p if p(x) = 0. (For example, the roots
of the function x3 − 3x − 2 are −1 and 2.) All that we need for this purpose is that the
number of roots of any polynomial function is finite, but we will state the needed fact in
full for completeness. You will encounter its proof in a course in abstract algebra.

Proposition 7.3.14. The number of distinct roots of a polynomial function of degree n
is at most n.

Theorem 7.3.15. The set A of algebraic numbers is countable.

Proof. Recall that an algebraic number is a root of an element of Z[x] (see Definition
2.7.8). For each p ∈ Z[x], let R(p) denote the set of its roots. Thus

A =
⋃

p∈Z[x]

R(p).



178 Infinite Sets and Cardinality

By Proposition 7.3.14, the set R(p) is finite for every p ∈ Z[x]. By Lemma 7.3.13, the
index set Z[x] is countable. By Corollary 7.3.9, A is finite or countable. Since A ⊃ Q by
Proposition 2.7.9, A is obviously not finite. �

We have the sequence

E ⊂ N ⊂ Z ⊂ Q ⊂ A

of sets of numbers, each a proper subset of the next, and all are countable. Does this
sequence of countable sets eventually embrace all the numbers that we know? That
question will be answered in the course of the next two sections of this chapter.

Exercise 7.3.16. Prove that if A× B is a countable set and B is finite and not empty,
then A is countable.

7.4 Binary Relations on Cardinal Numbers

Have you noticed that the term cardinality all by itself has not yet been defined?We have
defined cardinality of a finite set, and we have defined has the same cardinality as. We
even have the symbol ℵ0 for the cardinality of a countable set. But just what exactly is
a cardinality? The answer involves an equivalence relation.

Proposition 7.4.1. The relation “has the same cardinality as” is an equivalence rela-
tion on any collection of sets.

Proof. For any set A, the identity function iA : A→ A is a bijection. Thus
∣∣A∣∣ = ∣∣A∣∣

and the relation is reflexive.

To show that the relation is symmetric, letA andB be sets and assume that
∣∣A∣∣ = ∣∣B∣∣.

Thus there exists a bijection f : A→ B.ByTheorem 5.5.11, f−1 : B→ A is a bijection,
and so |B| = |A|.

Now assume for setsA,B, andC that
∣∣A∣∣ = ∣∣B∣∣ and ∣∣B∣∣ = ∣∣C∣∣.This means that there

exist bijections f : A→ B and g : B→ C.By Corollary 5.4.12, g ◦ f is a bijection from
A to C. Thus |A| = |C| and the relation is transitive. �

This theorem justifies the following definition of a cardinal number.

Definition 7.4.2. A cardinal number, or more briefly, a cardinality, is an equivalence
class of sets with respect to the equivalence relation “has the same cardinality as.”

In light of this definition, every nonnegative integer may be regarded as a cardinal
number. For example, 5 is the equivalence class of all sets with exactly five elements.
Also, the equivalence class of all countable sets is a cardinal number; for convenience we
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denote that class by the symbol ℵ0. In terms of notation, if A is any set, then |A| denotes
the class of all sets B such that there exists a bijection from A to B, and writing |A| = |B|
is a way of saying that A and B belong to the same equivalence class.

Remark. We are very careful to avoid the phrase “the set of all cardinal numbers.”
Were we to speak of such a set, it would be natural to inquire what its cardinality might
be. That question, however, leads to an undecidable problem3 deep in the foundations
of all mathematics and well beyond the scope of this course. If we confine our discourse
to the cardinalities of sets that are already given, then we are safely away from such
dangerous territory.

We next present two order relations on cardinal numbers: a partial order � and a
strict partial order < (see Definition 6.3.2).

Definition 7.4.3. For any sets A and B,

1.
∣∣A∣∣ � ∣∣B∣∣ (or ∣∣B∣∣ � ∣∣A∣∣) if there exists an injection from A into B;

2.
∣∣A∣∣ < ∣∣B∣∣ if ∣∣A∣∣ � ∣∣B∣∣ but ∣∣A∣∣ 
= ∣∣B∣∣.

This definition certainly conforms to our intuition and experience.Wewould be very
uncomfortable were it not the case that 5 < 6. We also have that k < ℵ0 holds for all
k ∈ N ∪ {0}, as well it should, since there exist injections from Nk into N but no such
bijection exists.

Exercise 7.4.4. Let A be any set and let B ⊆ A. Prove that |B| � |A|.

A direct consequence of Definition 7.4.3 and Corollary 5.5.6 is the following.

Proposition 7.4.5. For any nonempty sets A and B, the following statements are
equivalent.
(i)

∣∣A∣∣ � ∣∣B∣∣.
(ii) There exists an injection from B into A.
(iii) There exists a surjection from A onto B.

It is immediate that the relation � is reflexive on any given set of cardinal numbers.
Because the composition of two injections is also an injection, the relation � is also

3 To get a sense of the logical conundrum that this poses, ponder the following paradox.The Barber
of Seville is a man who shaves a man if and only if that man does not shave himself. Who shaves
the Barber of Seville? (See http://en.wikipedia.org/wiki/Barber paradox.)

http://en.wikipedia.org/wiki/Barber_paradox
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transitive. The fact that � is antisymmetric is the gist of the following deep theorem,
which we present without proof 4.

Theorem 7.4.6 (The Cantor-Schröder-Bernstein5 Theorem). For any sets A and B,
if there exist injections from A into B and from B into A, then |A| = |B|.

We have in effect proved the following corollary.

Corollary 7.4.7. The relation� is a partial order on any given set of cardinal numbers,
and the relation < is a strict partial order on that set.

The next theorem presents another important fact about cardinality, one that we have
already seen in Theorem 4.2.13 to hold for finite sets.An immediate consequence is that,
yes, uncountable sets do exist! This theorem and its proof are both due to G. Cantor. The
proof, though not long, is subtle; to understand it fully may require reading it patiently
more than once.

Theorem 7.4.8. For any set S, ∣∣S∣∣ < ∣∣P(S)
∣∣.

Proof. If S = Ø, then ∣∣Ø∣∣ = 0 < 1 =
∣∣{Ø}∣∣ = ∣∣P(Ø)

∣∣.
If S 
= Ø, then the function j : S → P(S) defined for all x ∈ S by j(x) = {x} is an
injection. Thus

∣∣S∣∣ � ∣∣P(S)
∣∣.

Assume, by way of contradiction, that
∣∣S∣∣ = ∣∣P(S)

∣∣.We will obtain a contradiction
by showing that no function f : S → P(S) can be surjective. The argument depends
upon the following subset of S. Let

A = {s ∈ S : s /∈ f (s)}.
We restate the definition of A in words: the subset A of S is the set of all the elements of
S that do not belong to the subset of S to which they are matched by the function f .

4 The proof contains no mathematics beyond what is found in this book, but it is rather long and
rather subtle. For a lucid and careful presentation of the proof, see Steven G. Krantz, The Elements
of Advanced Mathematics, 2nd Ed., CRC Press, Boca Raton, 2002.
5 ForGeorgCantor, see the footnote inSection7.1.Cantor togetherwith theGermanmathematician
Ernst Schröder (1841–1902), best known for his work in mathematical logic, wrote the first proof
of this theorem, but their proof was flawed. Felix Bernstein (1878–1956), also German, studied
under Cantor and corrected the flaw as part of his doctoral dissertation in 1897.
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If therewere a surjection f : S → P(S), then the setA ∈P(S)would have a preim-
age s0 ∈ S. That is, f (s0) = A. Either s0 ∈ A or s0 /∈ A.

If s0 ∈ A, then s0 /∈ f (s0) by the definition of the set A. But f (s0) = A, and so s0 /∈ A,
a contradiction.

If s0 /∈ A, then, since f (s0) = A, clearly s0 /∈ f (s0). But by the definition of A, this
means s0 ∈ A, again a contradiction.

Since both cases are impossible, we are forced to conclude that the set A has no
preimage for any function from S to P(S). Thus there exists no surjection from S to
P(S). Hence

∣∣S∣∣ 
= ∣∣P(S)
∣∣, and so ∣∣S∣∣ < ∣∣P(S)

∣∣. �

If we apply this theorem to the set N, we have

ℵ0 =
∣∣N∣∣ < ∣∣P(N)

∣∣.
This proves the following corollary.

Corollary 7.4.9. There exists a set with cardinality larger than ℵ0.

Combining Theorem 7.4.8 with the Principle of Mathematical Induction yields a
countable sequence of distinct cardinal numbers:∣∣N∣∣, ∣∣P(N)

∣∣, ∣∣P(P(N))
∣∣, ∣∣P(P(P(N)))

∣∣, . . . .

7.5 Uncountable Sets

By Corollary 7.4.9, uncountable sets exist. The understanding of the existence of un-
countable sets is relatively new. Cantor first proved in 1874 that the setR of real numbers
is uncountable. His second proof (from 1891) is the proof we show here. We start with
the following lemma.

Lemma 7.5.1. The setR of real numbers has the same cardinality as the interval (0,1).

Proof. Let f : (0,1) → R be defined by f (x) = tan
(
π(x − 1

2 )
)
. The graph in Fig-

ure 7.5.1 suggests that this is a bijection. A formal proof uses tools from calculus. Here
is a sketch of the proof (compare Exercise 5.6.12(c)).

Since f is increasing on (0,1), f is an injection. (Recall Exercise 5.4.7.)

To prove that f is surjective,we note first that f is continuous on (0,1). This allows us
to apply the IntermediateValue Theorem (Theorem 6.5.1): for any two values y1 < y2 in
the range of f , the entire interval [y1,y2]must be contained in the range of f . Finally, since
limx→1− f (x) = ∞ and limx→0+ f (x) = −∞, no real number is too large or too small
(i.e., too negative) to be beyond the range of f . Thus the range of f is (−∞,∞) = R. �



182 Infinite Sets and Cardinality

x

y

0 1

Figure 7.5.1 The graph of y = tan
(
π

(
x − 1

2

))
for 0 < x < 1.

Theorem 7.5.2. The interval of real numbers {x ∈ R : 0 < x < 1} is uncountable.
Proof. The proof proceeds by contradiction. Suppose that the set of real numbers in
the interval (0,1) is countable and hence admits an enumeration

(
r1,r2,r3,r4,r5, . . .

)
.

Each of these numbers has a unique decimal representation6 with no infinite block of
consecutive 0’s in its list of digits:

r1 = 0.a11 a12 a13 a14 a15 a16 · · ·
r2 = 0.a21 a22 a23 a24 a25 a26 · · ·
r3 = 0.a31 a32 a33 a34 a35 a36 · · ·
r4 = 0.a41 a42 a43 a44 a45 a46 · · ·
r5 = 0.a51 a52 a53 a54 a55 a56 · · ·
...

. . .

For each j ∈ N, let

sj =

{
3 if ajj 
= 3;

7 if ajj = 3,

6 If the decimal representation of a number 0.a1a2 · · ·ak terminates with ak �= 0, then we note that

0.a1a2 · · ·ak = 0.a1a2 · · ·ak−1(ak − 1)999 · · · ,
that is, the 9s repeat indefinitely. This assures that each real number is written as exactly one
sequence of digits.



7.5 Uncountable Sets 183

and consider the number

s = 0.s1 s2 s3 s4 s5 s6 . . . .

For each i ∈ N, the number s differs from ri in at least one decimal place, namely the ith

place.Therefore s is not listed in this enumeration of {x ∈ R : 0 < x < 1}.Yet s ∈ R, and
because of its decimal expansion, 0 < s < 1. This contradiction leads to the conclusion
that {x ∈ R : 0 < x < 1} is uncountable. �

By putting together Lemma 7.5.1 and Theorem 7.5.2, we easily obtain a proof of
the following result.

Corollary 7.5.3. The set R of real numbers is uncountable.

Exercise 7.5.4. Prove that the set I of irrational numbers is uncountable. [Hint: Use
Corollary 7.3.8.]

Since R ⊂ C we have the following.

Corollary 7.5.5. The set C of complex numbers is uncountable.

The cardinality of the set R is conventionally denoted by the boldface, lower case
letter c, standing for (the cardinality of) the continuum. Thus

∣∣(0,1)∣∣ = c. By Exercise
7.1.7 and the method of proof of Lemma 7.5.1, for any open interval I ⊆ R, we have∣∣I∣∣ = c.

The following lemma holds for functions whose codomains have two elements. For
notational purposes, the set {0,1} provides a handy example.

Lemma 7.5.6. Let F = { f : f is a function from N to {0,1}}. Then∣∣F ∣∣ = ∣∣P(N)
∣∣.

Proof. Define the function F : P(N) → F for all A ⊆ N by F(A) = fA where

fA(n) =

{
1 if n ∈ A;

0 if n /∈ A.

(The function fA is the characteristic function of A.) To prove that F is injective,
assume that F(A1) = F(A2) for some A1, A2 ∈P(N). So fA1 = fA2 . For any a ∈ A1, we
have fA2(a) = fA1(a) = 1. Thus, by definition of fA2 , a ∈ A2.Hence A1 ⊆ A2. Similarly
A2 ⊆ A1. So A1 = A2, and F is injective.
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Toprove thatF is surjective, let g ∈ F be given. Let A = {n ∈ N : g(n) = 1}. Thus,
for anym ∈ N, g(m) = 1 if and only ifm ∈ A. (Otherwise g(m) = 0.) But the same holds
for fA. Hence g = fA = F(A), and so F is surjective.

Since F is bijective, we conclude that
∣∣F ∣∣ = ∣∣P(N)

∣∣. �

Theorem 7.5.7. |P(N)| = c.

Proof. Let F be defined as in Lemma 7.5.6. Define H : (0,1) → F as follows. For
each r ∈ (0,1), let r = 0.b1b2b3 . . . be the unique binary representation of r, with in-
finitely repeating 1’s should the representation terminate7. Define H(r) = f where the
function f ∈ F is given by the rule

f (n) = bn.

This bijectionH demonstrates that
∣∣(0,1)∣∣ = ∣∣F ∣∣. [You are asked to prove thatH is a bi-

jection as Exercise 7.5.8.] From Lemma 7.5.6 and the transitivity from Proposition 7.4.1,
we conclude that

∣∣P(N)
∣∣ = c. �

The assertion that there exists no set whose cardinality is strictly greater than ℵ0
but strictly less than c is called the Continuum Hypothesis. A proof of this assertion
was pursued by Cantor unsuccessfully. Eventually it was shown that the Continuum
Hypothesis cannot be proved either affirmatively or negatively by means of the standard
axioms of set theory8.

Exercise 7.5.8. Prove that the function H defined in in the proof of Theorem 7.5.7 is
a bijection.

Corollary 7.5.9. The set T of transcendental numbers is uncountable.

Proof. We haveA ∪ T = C. Suppose thatT is countable. SinceA is countable and the
union of countable sets is countable, it would follow that C is countable, a contradiction
to Corollary 7.5.5. Thus T is uncountable. �

7 The binary analogue to the footnote in the proof of Theorem 7.5.2 is that

0.b1 b2 · · ·bk−1 1 = 0.b1 b2 · · ·bk−10111 · · ·
with 1s repeating indefinitely,
8 Aswith theAxiomofChoice,KurtGödel proved (1940) that assuming theContinuumHypothesis
leads to no contradiction to the axioms of set theory. Paul Cohen proved (1963) that assuming
the negation of the Continuum Hypothesis is also consistent with these axioms. Therefore, the
Continuum Hypothesis is not decidable within the axioms of set theory.
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This chapter concludes with a brief presentation of what is referred to as “cardinal
arithmetic.” For arbitrary cardinal numbers a and b, we want to give some meaning to
expressions such as a + b, a · b, and ba. When a and b are finite cardinal numbers, we
know from Proposition 7.1.2 what these resulting cardinal numbers must be. But look
back at the proof of that proposition. It should be clear that the proof just makes no
sense when the set A or the set B is infinite. What mathematicians do in such a situation
is to define these operations for arbitrary cardinal numbers in such a way that the new
definition embraces all results already obtained, in particular, those in Proposition 7.1.2.

Definition 7.5.10. Let a and b be cardinal numbers.
(i) a + b is the cardinal number of the union of any two disjoint sets whose cardinalities
are a and b, respectively.
(ii) a · b is the cardinal number of the Cartesian product of a set of cardinality a by a
set of cardinality b.
(iii) ba is the cardinality of the set of functions from a set of cardinality a to a set of
cardinality b.

Here’s a subtle point. Just stating a definition is not necessarily a solution to a
problem. One must also justify that the object being defined is what is called well-
defined, that is, does the definition really make sense? In this case, are the three cardinal
numbers just defined really independent of the particular sets of cardinalities a and b,
respectively, used to define them? If not, then these so-called cardinal numbers are not
cardinal numbers at all; theywould represent nothing! Let us show thatba iswell-defined.
The other two are easier and are left as Exercise 7.5.12.

Proposition 7.5.11. The cardinal number ba is well-defined.

Proof. Suppose that A1 and A2 are arbitrary sets of cardinality a and that B1 and B2

are arbitrary sets of cardinality b. For i = 1,2, let Fi denote the set of all functions from
Ai to Bi. It suffices to show that |F1| = |F2|.

By our assumptions, there exist bijections g : A1 → A2 and h : B1 → B2. We define
functions

Φ : F1 → F2 and Ψ : F2 → F1

as follows. For each function s ∈ F1 and each function t ∈ F2, let

Φ(s) = h ◦ s ◦ g−1 and Ψ(t) = h−1 ◦ t ◦ g.
(See Figure 7.5.2.) For any s ∈ F1, we have

(Ψ ◦ Φ)(s) = Ψ(Φ(s)) = h−1 ◦ (h ◦ s ◦ g−1) ◦ g = s

by the properties of bijections and their inverses (see Section 5.5). Thus Ψ ◦ Φ = iF1 .
Similarly, Φ ◦Ψ = iF2 . By Theorem 5.5.2, Φ is both an injection and a surjection and
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s
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t

Φ(s) = h ° s ° g -¹

Ψ(t)h -¹ ° t ° g  =

Figure 7.5.2 Proof of Proposition 7.5.11.

hence a bijection from F1 to F2 (and Ψ is a bijection from F2 to F1). We conclude that
|F1| = |F2|. �

Exercise 7.5.12. Prove that the cardinal numbers a + b and a · b are well-defined.
[Hint: Use Proposition 7.3.1.]

In the language of Definition 7.5.10, some earlier results of this chapter about count-
able sets can be restated succinctly in terms of cardinal arithmetic as follows.

� Proposition 7.2.2: ℵ0 + n = ℵ0, for all n ∈ N ∪ {0}.
� Exercise 7.2.8: ℵ0 − n = ℵ0, for all n ∈ N ∪ {0}.
� Corollary 7.3.6: ℵn0 = ℵ0, for all n ∈ N.

� Corollary 7.3.8:
n∑

k=1

ℵ0 =
∞∑
k=1

ℵ0 = ℵ0 · ℵ0 = ℵ0, for all n ∈ N.

� Lemma 7.5.6 and Theorem 7.5.7: 2ℵ0 = c.

Summary Remark. The following string of equalities and inequalities summarizes
many of the results in this chapter and the Further Exercises. For all n ∈ N,

0 < n < |N| = |Z| = |Q| = |A| = ℵ0 = nℵ0 = ℵn0 < nℵ0 =
|P(N)| = |R| = |Rn| = |C| = c < |P(P(N))| < · · · .
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7.6 Further Exercises

Exercise 7.6.1. (a) Prove that if S is an infinite set, then there exists an injection from
N into S. [Hint: Use Definition 7.1.1 and mathematical induction.]
(b) A proposed alternative definition of an infinite set is the following. A set S is infinite
if and only if there exists a bijection from S onto some proper subset of S. Prove that this
definition is equivalent to the onegiven inDefinition 7.1.1. [Suggestion:Let the nonempty
set S satisfy Definition 7.1.1 for finiteness, and show that it then fails the “infinite”
definition given here. Conversely, show that if S is infinite according to Definition 7.1.1,
then is satisfies the definition given here. In this case, use part (a).]

Exercise 7.6.2. Prove that |R× R| = c, and so |C| = c.

Exercise 7.6.3. Let A be a countable set. Let n be any integer such that n � 2, and let
B be a set such that |B| = n.
(a) Prove that the set of surjections from A onto B is uncountable. [Suggestion: Use
induction on n, starting with n = 2 both here and in part (b).]
(b) Prove that the set of injections from B to A is countable.
(c) Prove that the set of partitions of A with exactly n cells is uncountable.
(d) Prove that the set of finite partitions of A is uncountable.

Exercise 7.6.4. The symbol Rn is generally used to denote n-dimensional space. For
example, R2 = R× R denotes the plane. Prove that |Rn| = |R| for all n ∈ N. [Sugges-
tion: Use induction and Exercise 7.6.2.]

Exercise 7.6.5. Find the flaw in the following “proof” that R is countable.

Flawed proof. For each real number x ∈ [0,1), let Sx = {n + x : n ∈ Z}. Then R =⋃{Sx : x ∈ [0,1)}. Since each set Sx is countable and the union of infinitely many count-
able sets is countable, it follows that R is countable. �

Exercise 7.6.6. Given a set A, let Sym(A) denote the set of permutations of A, that
is, the set of all bijections from A to itself. Determine whether the set of permutations of
a countable set is countable.

Exercise 7.6.7. (a) Prove that the union of countably many sets of cardinality c has
cardinality c.
(b) Let P0(R) denote the family of finite subsets of R. Prove that |P0(R)| = |R|, and
so |P0(R)| < |P(R)|.
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Exercise 7.6.8. Adapt the proof of Lemma 7.5.6 to obtain the following more general
result. For a set A of any cardinality a,

|P(A)| = 2a.

Exercise 7.6.9. A subset is cofinite if its complement is finite. Let A be a countable
set. Show that the collection of finite subsets of A and the collection of cofinite subsets
of A are each countable collections but the collection of infinite subsets of A that are not
cofinite is uncountable. [Hint: Consider, for each n ∈ N, the collection of subsets of N
whose largest element is n.]

Exercise 7.6.10. Applying the Cantor-Schröder-Bernstein Theorem (Theorem 7.4.6)
to finite or countable sets is like using a cannon to kill amosquito.Here is another situation
where this theorem is overkill. Let A,B, and C be infinite sets and prove directly, that is,
without resorting to such heavy artillery, that ifA ⊂ B ⊂ C and |A| = |C|, then |A| = |B|.

Exercise 7.6.11. Prove the following. [Heavy artillery is recommended.]
(a) Let a,b ∈ R with a < b. Then the intervals (a,b), (a,b], [a,b), and [a,b] all have
cardinality c.
(b) The set of points in any line segment in the plane has cardinality c.
(c) The set of points enclosed by any rectangle in the plane has cardinality c. [First prove
this for any rectangle whose sides are parallel to the major axes, and then consider a
rotation.]

Exercise 7.6.12. Prove that in an infinite binary tree, the cardinality of the set of paths
of infinite length starting from a fixed root is uncountable. See Figure 7.6.1.

x0

Figure 7.6.1 An infinite binary tree with root x0.

Exercise 7.6.13. Let C1 denote the closed interval [0,1]. Form the set C2 by deleting
the open middle third of C1; thus C2 =

[
0, 13
] ∪ [ 23 ,1]. Form C3 by deleting the open
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middle third of each of the two intervals that make up C2. Inductively, for each n ∈ N,
the setCn+1 is formed by deleting the openmiddle third of each of the 2n intervals whose
union is Cn. The set

C∞ =
⋂
n∈N

Cn

is called the Cantor ternary set. Prove that C∞ is uncountable. [Hint: Use ternary
representation of the real numbers in [0,1]. Thus 0.a1a2a3 . . . (where ai ∈ {0,1,2}) is the
real number

∞∑
n=1

an · 3−n. Note, for example, that 1
3 is the only element 0.a1a2a3 . . . ∈ C2

for which a1 = 1.]
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This final chapter begins by bringing together many ideas from earlier chapters of
this book. You have studied the properties of the ways in which such differently

appearing objects as statements, sets, numbers, and functions are combined. Some of
these properties are shared and some are not. These properties themselves are of special
interest to mathematicians and comprise the first section. In Section 8.2, we see how
certain sets of equivalence classes form finite systems that satisfy most of these proper-
ties. In Section 8.3, starting with the set N, we make an express tour of number systems
by adjoining to N more and more kinds of numbers as we demand that more and more
properties of binary operations be satisfied. This augmentation of the number system
culminates with the complex numbers in Section 8.4.

8.1 Binary Operations

Much of the content of the early chapters of this book involves binary operations. Here
is a tabulation of some of the more important operations that you have encountered.

Chapter Objects operated upon Operation symbols

1 Statements ∧ ∨ ⇒ ⇔
2 Numbers + − · / xy

3 Sets ∪ ∩ \ +
5 Functions + − · / ◦

Our main interest in this section does not lie in the particular operations themselves,
nor does it lie in the kinds of objects involved in the operations. Rather, we are concerned
withmore universal properties thatmay ormay not hold for operations in general. Instead
of indicating an operation by + or ∪ or ◦ or any other context-related symbol, we use
the bullet symbol • to indicate a generic operation.

Definition 8.1.1. Given a set S, a binary operation (or briefly, an operation) • on
S is a function from S × S into S. The image under • of an element (s1,s2) ∈ S × S is
denoted by s1 • s2; that is, s1 • s2 ∈ S.

190
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We often suppress the word binary in this presentation because binary operations
are the only kind of operation that we study here. But for your information, a unary
operation on S is just a function from S to S. For example, if S is a set of statements
and their negations, then ¬ is a unary operation on S. A ternary operation is a function
from S × S × S into S. For example, suppose that S = Q and that the image of (x,y,z) ∈
Q×Q×Q is the average (x + y + z)/3 of the three (not necessarily distinct) rational
numbers x, y and z.As for a quaternary operation, well, . . . you get the idea. [Howwould
one define an n-ary operation?]

Example 8.1.2.

1. The operation of addition on the set N is a binary operation. To say that 2 + 3 = 5
means that we have an operation + on the set N which determines a function such
that the image 2 + 3 ∈ N of the element (2,3) ∈ N× N is the element 5 ∈ N.

2. Let X be any set. For any subsets A,B ∈P(X), A ∪ B is a well-defined element of
P(X). That is, the set A ∪ B is the image (under the operation ∪) of the ordered pair
(A,B) ∈P(X)×P(X). Thus ∪ is an operation on the set P(X).

3. Let X be any set, and let S be the set of all functions from X to X . Composition of
functions, denoted by ◦, is an operation on the set S. Specifically, the image of the
ordered pair (f ,g) is the composition of f by g and is denoted by g ◦ f , which is also
a function from X to X .

The definition of an operation is so general and the above examples are so basic,
that you might wonder why operations are of any interest at all. It seems that just about
anything could be anoperation.The situationbecomesmore interestingwhenweconsider
an operation that is restricted to a particular subset of a given set.

Definition 8.1.3. Let • be an operation on the set S, and let A ⊆ S. Then A is closed
under • if

(∀s1,s2 ∈ A)[s1 • s2 ∈ A].

Note that Ø and the set S itself are closed under any binary operation on S.

Example 8.1.4.

1. The setE of positive even integers is a subset ofN. It is closed under both addition and
multiplication. The subset O of positive odd integers is closed under multiplication
but not under addition.

2. The subset R+ of R is closed under the operations of addition, multiplication, and
division, but R+ is not closed under subtraction. The subset R− is closed only under
addition.
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3. Let X be a subset of R, let S be the set of all functions from X to X, and let D be
the set of differentiable functions in S. Since the composition of two differentiable
functions is differentiable (by the chain rule), the set D is closed under composition.

4. Let X be an uncountable set. Consider the subset C of P(X) consisting of all the
countable subsets of X . Since the union of two countable sets is countable (by Corol-
lary 7.3.8), the set C is closed under the operation of union. However, C is not closed
under intersection. [Why not?]

Exercise 8.1.5. Let X be any set. A finite subset A of X is even (respectively, odd) if
|A| is an even integer (respectively, an odd integer). In particular, Ø is an even set. Recall
that the symmetric difference (see Exercise 3.6.12) of sets A,B ∈P(X) is the set

A + B = (A ∪ B) \ (A ∩ B).

Prove that the set of even subsets of X is closed under the operation of symmetric
difference, but the set of odd subsets is not closed under symmetric difference. [Hint:
Use Exercise 7.1.9.]

Exercise 8.1.6. AsubsetA of the plane is convex if, for any twopoints inA, the segment
joining them is wholly contained in A. (Thus Ø is convex as are all the singletons, but
if a convex set has at least two points, then it is uncountable.) Prove that the family of
convex subsets of the plane is closed under intersection but is not closed under union,
relative complement, or symmetric difference.

The term algebraic system has been given varying definitions by various mathe-
maticians; some want to impose further conditions on the term, but there is no general
agreement as to which further conditions might be imposed. Since the term is a useful
one, let us agree to use the following definition.

Definition 8.1.7. An algebraic system (with one operation) is a pair (S,•) where S
is a set and • is a binary operation on S.

With that definition established, we turn to some conditions that onemight like to im-
pose upon an algebraic system. The most commonly accepted condition is associativity.

Definition 8.1.8. An operation • on a set S is associative when

(∀a,b,c ∈ S)[a • (b • c) = (a • b) • c].
Whenyou look ata • (b • c)or (a • b) • c, don’t presume that• is a ternary operation

acting on S × S × S. It is not. The terms b • c and a • b are elements of S, and so • is
acting on S × S in both instances.What is nice about associativity is that one may safely
ignore the parentheses and write simply a • b • c, because the grouping that led us to this
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term doesn’t matter. An algebraic system in which the operation is associative is called
an associative system.

All of the operations listed in the table at the beginning of this section are associative
except for⇒, relative complement of sets, and subtraction, division, and exponentiation
of numbers. The binary operation of exponentiation on R takes the ordered pair (a,b)
to the number ab. For a,b,c ∈ R, it is generally the case that a(bc) 
= (ab)c.
Definition 8.1.9. Let (S,•) be an algebraic system.An element � ∈ S is a left identity if

(∀s ∈ S)[� • s = s].

Similarly, an element r ∈ S is a right identity if

(∀s ∈ S)[s • r = s].

An element that is a left identity but not a right identity, or vice versa, is a one-sided
identity. An element that is both a left identity and a right identity is a two-sided identity.

An algebraic system need not have any left identity at all, or it may have any number
of left identities. The same holds for right identities. For example, (N,+) has no identity,
left or right. However, if an algebraic system has both a left identity and a right identity,
then watch what happens!

Proposition 8.1.10. If an algebraic system has both a left identity � and a right identity
r, then � = r, and there exists but one unique, two-sided identity.

Proof. Suppose that the algebraic system (S,•) has a left identity � and a right identity r.
Then � • r = r (because � is a left identity), and � • r = � (because r is a right identity).
Thus � = r. �

When we speak of a systemwith identity, it is understood that the algebraic system
has a unique two-sided identity, which is called the identity element, or briefly, the
identity.

Example 8.1.11. Here is an example of an associative system that has a right identity
but no left identity. Let S be the set of all functions f : N → N with the property that
f (1) = f (2) = 1, and consider the system (S,◦). The operation ◦ here is composition of
functions, which you proved to be associative in Exercise 5.2.9. Observe that for arbitrary
elements f , g ∈ S,

(g ◦ f )(1) = g(f (1)) = g(1) = 1 and (g ◦ f )(2) = g(f (2)) = g(1) = 1.

Thus g ◦ f ∈ S holds and so (S,◦) is indeed an associative system.
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Consider the function r ∈ S given by

r(n) =
{
1 if n = 1 or n = 2;
n if n � 3.

We show that r is a right identity. For any arbitrary f ∈ S, since f ◦ r ∈ S (by closure),
if n = 1 or 2, we must have ( f ◦ r)(n) = 1 = f (n). If n � 3, then

( f ◦ r)(n) = f (r(n)) = f (n).

We’ve shown that f ◦ r = f for all f ∈ S, and so r is indeed a right identity.

It remains to show that r is not also a left identity. There exists some function h ∈ S
such that h(3) = 2. For any such function h,

(r ◦ h)(3) = r(h(3)) = r(2) = 1 
= h(3),

and so r ◦ h 
= h for some h ∈ S. This proves that r is not a left identity. By Proposition
8.1.10, no other function can be a left identity, and hence S contains no two-sided identity.
(Note that the identity function iN is not an element of S.)

One-sided identities sometimes are and sometimes are not unique. (See Exercise
8.5.5.)

The system inExample 8.1.11 is not typical of the algebraic systems that aremost fre-
quently studied. Themore frequently studied systems have a (unique) two-sided identity.

Example 8.1.12. The following are examples of associative systems with identity:

1. (Z,+) or (Q,+) or (R,+) or (C,+), all with identity 0;

2. (Z, ·) or (Q, ·) or (R, ·) or (C, ·), all with identity 1;

3. (P(X),∪) for any set X , with identity Ø;
4. (P(X),∩) for any set X , with identity the set X;
5. (Σ,∨), for a set Σ of statements that is closed under ∨, where the identity is a con-

tradiction1;

6. (Σ,∧), for a setΣof statements that is closed under∧, where the identity is a tautology;
7.
(
RR,+

)
, where RR denotes the set of all functions from R into R, and the identity is

the constant function with range {0};
8.
(
RR, ·), where RR denotes the set of all functions from R into R, and the identity is
the constant function with range {1};

1 Equivalent statements are regarded as identical. Hence all contradictions aremutually equivalent,
and the same holds for tautologies. So the identity is unique.
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9.
(
XX ,◦), where XX denotes the set of all functions from a set X into itself, and the
identity is the identity function iX ;

10. (Mn, ·), where Mn denotes the set of all n× n matrices with entries in Z (or in Q or
in R, your choice) with the operation of matrix multiplication and the identity being
the n× n identity matrix.

In high school algebra class, if you were to see an equation like 3x = 18, you
probably would have read it as a call to action: “Solve for x.” Youwould have interpreted
the equation as 3 · x = 3 · 6 and concluded that it is quite all right to cross out the 3s
and write x = 6. Of course, an equation is not a call to action at all; it is a statement of
equality. But the questions that we want to raise here are, “What does it mean to cancel?”
and, “Is cancellation like this always permissible?” Let us first be precise about what
cancellation means.

Definition 8.1.13. An algebraic system (S,•) satisfies the left-cancellation law when

(∀a,b,c ∈ S)[ a • b = a • c ⇒ b = c ].

An algebraic system (S,•) satisfies the right-cancellation law when

(∀a,b,c ∈ S)[ b • a = c • a ⇒ b = c ].

We pose the question again. Is left- or right-cancellation in this more general setting
always permissible?

Example 8.1.14. Consider the following functions from N to N.

f (n) =
{
1 if n = 1;
n− 1 if n � 2.

h1(n) =

⎧⎨
⎩

2 if n = 1;
1 if n = 2;
n + 1 if n � 3.

h2(n) =
{
1 if n = 1 or n = 2;
n + 1 if n � 3.

It’s easy to check that

(8.1.1) f ◦ h1 = f ◦ h2.
However, one cannot “cancel” the f , because clearly h1 
= h2. Compare this situation to
Corollaries 5.5.7 and 5.5.8 by letting X = Y = N. The function f is clearly a surjection,
and so (by Corollary 5.5.8) we could have canceled f had f appeared on the right in
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equation (8.1.1). But with f appearing on the left, we could have canceled f if and only
if f were an injection (by Corollary 5.5.7), which it is not. Corollaries 5.5.7 and 5.5.8
tell us that one-sided cancellation is permissible when certain conditions hold and not
permissible when they fail to hold.

In the context of Corollaries 5.5.7 and 5.5.8, we require that X = Y so that composi-
tion is defined between all functions involved. The first corollary says that injections can
be canceled when they appear on the left, and the second corollary says that surjections
can be canceled when they appear on the right. If we let S be the set of all functions from
the set X to itself, then these cancellation laws appear to hold for some functions but not
for others. But note the universal quantifiers in Definition 8.1.13; if the law doesn’t hold
all the time, then it doesn’t hold.

If we want a set S of functions for which one of the cancellation laws holds (and that
means, all the time), then we need to trim back the set S. Since the set of all injections
from a set to itself is closed under composition, and the same holds for the set of all
surjections, we immediately have the following result.

Proposition 8.1.15. (i) Let S be the set of all injections from a set to itself. Then (S,◦)
satisfies the left-cancellation law.
(ii) Let S be the set of all surjections from a set to itself. Then (S,◦) satisfies the right-
cancellation law.

Definition 8.1.16. Let (S,•) be an algebraic system with identity, and denote the
identity element by e. Let s ∈ S.

An element t ∈ S is a left inverse of s if t • s = e.

An element u ∈ S is a right inverse of s if s • u = e.

An element that is a left inverse of s but not a right inverse of s, or vice versa, is a
one-sided inverse of s.

In Example 5.5.3 you saw that an element may have more than one one-sided
inverse. In Lemma 5.5.4 you saw that injections have right inverses and surjections
have left inverses under composition. It follows that bijections must have both. In fact,
Theorem 5.5.11 tells us that bijections have unique, two-sided inverses.We consider this
important notion in the abstract context of associative systems, stripping away all the
particulars about functions.

Theorem 8.1.17. Let (S,•) be an associative system with identity e. Let s ∈ S. If s has
both a left inverse t and a right inverse u, then t = u.
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Proof. We have

u = e • u [ definition of e ]
= (t • s) • u [ t is a left inverse of s ]
= t • (s • u) [ associativity ]
= t • e [ u is a right inverse of s ]
= t. [ definition of e ] �

When an element s of an associative system (S,•) satisfies Theorem 8.1.17, then
the two-sided inverse of s is the inverse of s. The article the is appropriate, because the
theorem proves that an element has at most one inverse. The inverse of s is denoted by
s−1 but is not to be confused with the reciprocal of s. This is consistent with our notation
for inverse functions. In the general case, when S is not a set of numbers, the reciprocal
1/s need not even make sense. In the special case where S is a subset of C that is closed
under multiplication, s−1 is indeed the reciprocal 1/s of s, because in that special case,
unless s = 0, then s · (1/s) = 1, and 1 is the identity of (S, ·).

An element that has an inverse is invertible. Note that, if an element s is invertible,
then so is s−1, and

(
s−1
)−1 = s.

Example 8.1.18.

1. In (Z,+) or (Q,+) or (R,+) or (C,+), all elements are invertible; the inverse of any
number x is −x.

2. In (Z, ·), only 1 and−1 are invertible. In (Q, ·) or (R, ·) or (C, ·), all elements except
0 are invertible.

3. In (P(X),∪) where X is any set, only Ø is invertible.

4. In (P(X),∩) where X is any set, only the set X is invertible.

5. In
(
RR,+

)
, where RR denotes the set of all functions from R into R, the inverse of

every function f is −f .
6. In

(
RR, ·), where RR denotes the set of all functions from R into R, a function f has

an inverse if and only if f (x) 
= 0 for all x ∈ R. In that case the inverse of f is 1/f .

7. In
(
XX ,◦), whereXX denotes the set of all functions from a setX into itself, a function

is invertible if and only if it is a bijection (see Theorem 5.5.11).

8. In (Mn, ·), where Mn denotes the set of all n× n matrices with entries in Z with the
operation of matrix multiplication, a matrix is invertible if and only if its determinant
equals ±1.

9. In (Mn, ·), where Mn denotes the set of all n× n matrices with entries in Q (or in R
or in C) with the operation of matrix multiplication, a matrix is invertible if and only
if its determinant is not zero, or equivalently, its rank equals n.

The next theorem overlaps with Lemma 5.3.14.
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Theorem 8.1.19. The set of invertible elements of an associative system (S,•) is closed
under •. Moreover, if s and t are invertible elements, then(

s • t)−1 = t−1 • s−1.

Proof. Let s and t be invertible elements of S. [We show that s • t is invertible by
demonstrating that t−1 • s−1 is the inverse of s • t.] The existence of an invertible element
implies the existence of an identity, so let e denote the identity of (S,•). We have

(s • t) • (t−1 • s−1) =
(
s • (t • t−1)

) • s−1 [ associativity ]
= (s • e) • s−1 [ definition of inverse ]
= s • s−1 [ definition of e ]
= e. [ definition of inverse ]

Thus t−1 • s−1 is a right inverse of s • t. The proof that t−1 • s−1 is also a left inverse is
left as Exercise 8.1.20. By Theorem 8.1.17, t−1 • s−1 is the inverse of s • t. �

Exercise 8.1.20. Complete the proof of Theorem 8.1.19 by showing that in an asso-
ciative system, t−1 • s−1 is the left inverse of s • t.

Numbers that appear to be exponents are often used to avoid bulky notation. Suppose
that (S,•) is an associative system with identity e and that s ∈ S. Writing s • s or even
s • s • s isn’t so bulky, but what if we want to iterate this operation many times? The
solution is to define inductively for all n ∈ N ∪ {0},

s0 = e,

sn+1 = s • sn,(8.1.2)

s−n =
(
s−1)n, whenever s is invertible.

The following exercise contains some important algebraic properties of associative
systems with identity. While they look just like basic facts of high school algebra when
applied to multiplication of real numbers, they have broad meaning when applied to
arbitrary associative systems.

Exercise 8.1.21. Let (S,•) be an associative system with identity e, and let s be an
invertible element2. Prove the following.
(a) For all n ∈ N ∪ {0}, sn+1 = sn • s.
(b) If s is invertible, then for all n ∈ N, sn is invertible and (sn)−1 =

(
s−1
)n
.

(c) If s is invertible, then for all n ∈ Z−, sn−1 = sn • s−1.

2 An associative system with identity in which every element is invertible is called a group. Group
theory is one of the important topics in a modern (or abstract) algebra course.
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(d) For all m,n ∈ Z, sm • sn = sm+n = sn • sm. [Hint: To get started, suppose that
m,n ∈ N and let k = m + n. Then proceed by induction on k for k � 0.]
(e) For all m,n ∈ Z, (sm)n = smn = (sn)m.

In all but the last two examples in Example 8.1.12, the order in which two elements
are combined in the binary operation is immaterial. This is a property of much interest.

Definition 8.1.22. An operation • on a set S is commutative when

(∀a,b ∈ S)[ a • b = b • a ].

Associative systems whose operation is commutative have certain nice and conve-
nient properties that are easy to verify. Among such properties are the following.

1. The left-cancellation law holds if and only if the right-cancellation law holds.

2. An element is a left identity if and only if it is a right identity, in which case it is the
unique identity.

3. An element s has a left inverse if and only if it has a right inverse, in which case it
has a unique inverse s−1.

4. If s and t are invertible, then (s • t)−1 = s−1 • t−1 .

If elements a and b of a system satisfy the equation a • b = b • a, then a and b
commute. However, just because some pairs of elements commute does not mean that
the operation is commutative. Note the universal quantifier in the definition. In Exer-
cise 8.1.21(d) you showed that all powers of the same element commute with each other.

Exercise 8.1.23. Let S be the set of all functions from R to R. Define a relation R on
S whereby ( f ,g) ∈ R if and only if f ◦ g = g ◦ f . Prove that, althoughR is reflexive and
symmetric, it is not transitive. [Hint: Consider the functions defined by f (x) = x + 1,
g(x) = x, and h(x) = (x + 2)2.]

We conclude this sectionwith a brief look at systems that have two binary operations.

Definition 8.1.24. An algebraic system with two binary operations is a triple
(S,+++,•) where S is a set and +++ and • are binary operations with respect to which
the set S is closed.

Example 8.1.25. Here are some associative systems with two binary operations.

1. Z,Q,R, and C all have addition and multiplication.

2. P(X) for any set X admits the operations of union and intersection.

3. The set of functions from R into R admits addition and multiplication. (We’re delib-
erately ignoring composition here. You’ll see why in Exercise 8.1.27.)
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4. For each n ∈ N, the set of n× n matrices with entries in N,Z,Q,R, or C supports
matrix addition and matrix multiplication. The addition is commutative, but the mul-
tiplication is not.

In each of these cases, there is a rule that ties the two operations together.

Definition 8.1.26. An algebraic system (S,+++,•) satisfies the left distributive law
when

(∀a,b,c ∈ S)[ a • (b+++ c) = (a • b) +++ (a • c)].

An algebraic system (S,+++,•) satisfies the right distributive law when

(∀a,b,c ∈ S)[(b+++ c) • a = (b • a) +++ (c • a)].
If both laws are satisfied, then • distributes over+++.

Exercise 8.1.27. (a) Prove that if • is commutative, then an algebraic system (S,+++, •)
satisfies the left distributive law if and only if it satisfies the right distributive law.
(b) In each of the examples of Example 8.1.25, determine which operation distributes
over the other. (In some cases each distributes over the other.)
(c) Show that composition of functions distributes over neither addition of functions nor
multiplication of functions.
(d) Show that neither addition of functions nor multiplication of functions distributes
over composition of functions.

8.2 Modular Arithmetic

This section is a natural extension of some of the notions of Chapter 2. We define some
equivalence relations on the set of integers that yield useful finite algebraic systemswhose
elements are equivalence classes that figure prominently in modern cryptography.

We restate Definition 6.2.6.

Definition. Let m ∈ N and a, b ∈ Z. Then a is congruent to b modulo m, written
a ≡ b (mod m), if m | a− b.

Theorem 8.2.1. Let m ∈ N and a,b,c,d ∈ Z. Suppose a ≡ b (mod m) and c ≡ d
(mod m). Then the following statements hold.
(i) a + c ≡ b + d (mod m).
(ii) ac ≡ bd (mod m).
(iii) For all k ∈ N, ak ≡ bk (mod m).

Proof. We prove (ii) and (iii) and leave the proof of (i) as Exercise 8.2.2.
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Since a ≡ b (mod m) and c ≡ d (mod m), there exist x,y ∈ Z such that a− b =
xm and c− d = ym. Then, in the standard arithmetic of Z,

ac− bd = ac− bc + bc− bd

= (a− b)c + b(c− d)
= xmc + bym

= (xc + by)m.

Thus ac ≡ bd (mod m).

We prove (iii) by induction. If k = 1, there is nothing to prove. Suppose, as the
induction hypothesis, that ak ≡ bk (mod m) holds for some k � 1. By part (ii), since
a ≡ b (mod m), we have that

ak · a ≡ bk · b (mod m).

Thus ak+1 ≡ bk+1 (mod m) and the claim holds by the Principle of Mathematical
Induction. �

Exercise 8.2.2. Prove Theorem 8.2.1(i).

By Theorem 6.2.7, congruence modulo m is an equivalence relation. For example,
the equivalence classes for the relation of congruence modulo 6 are

[0] =
{
. . . ,−12,−6, 0, 6,12, . . .

}
,

[1] =
{
. . . ,−11,−5, 1, 7,13, . . .

}
,

[2] =
{
. . . ,−10,−4, 2, 8,14, . . .

}
,

[3] =
{
. . . , −9, −3, 3, 9,15, . . .

}
,

[4] =
{
. . . , −8, −2, 4,10,16, . . .},

[5] =
{
. . . , −7, −1, 5,11,17, . . .}.

Observe that [5] = [17], since 5 ≡ 17 (mod 6); however it is customary to label each
equivalence class of the relation congruencemodulomwith the least non-negative integer
in the equivalence class. Thus the set of equivalence classesmodulo 6,with the customary
labels, is

Z6 =
{
[0], [1], [2], [3], [4], [5]

}
.

The operation + : Z6 × Z6 → Z6 is defined by [a] + [b] = [a + b] where a,b ∈ Z
and the addition a + b inside the brackets is the usual addition for (Z,+). For example,

[4] + [5]= [4 + 5] = [9] = [3]

and [−7] + [3]= [−7 + 3]= [−4]= [2],
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since 9 ≡ 3 (mod 6) and −4 ≡ 2 (mod 6). The second calculation can also be
performed in the following way.

[−7] + [3] = [5] + [3] = [5 + 3] = [8] = [2],

where the representative of the equivalence class is changed prior to the addition.

In a similar fashion, the operation · : Z6 ×Z6 → Z6 is definedby [a] · [b] = [a · b],
where a,b ∈ Z and the multiplication inside the equivalence class brackets is the usual
multiplication for (Z, ·). For example,

[4] · [5] = [4 · 5] = [20] = [2],

since 20 ≡ 2 (mod 6).

Theorem8.2.1 shows that these operations arewell-defined; that is, it does notmatter
which representative of the equivalence class we use in the computation.

Exercise 8.2.3. Complete the following addition and multiplication tables modulo 6,
where the term in the row headed by [i] and the column headed by [j] is [i] + [j] in the
table on the left and [i] · [j] on the right. Such tables are sometimes calledCayley3 tables.
Use the customary labels for each equivalence class.

+ [0] [1] [2] [3] [4] [5]
[0]
[1]
[2]
[3]
[4] [3]
[5] [2]

· [0] [1] [2] [3] [4] [5]
[0]
[1]
[2]
[3]
[4] [2]
[5]

Exercise 8.2.4. Verify that (Z6,+) and (Z6, ·) are associative systems with identity. Be
sure to identify the identities. How can you tell from the tables that these operations are
commutative? Which elements have inverses?

For an arbitrary integer k we can apply the Division Algorithm (Theorem 2.3.9) to
get k = qm + r where q,r ∈ Z and 0 � r < m. Then [k] = [r] [Why?]. Any procedure

3 After the English mathematician Arthur Cayley (1821–1895). Cayley made many contributions
to the fields of group theory, geometry, and linear algebra. Some of his work subsequently played
an important role in the theory of relativity. He is one of the most prolific mathematician of all
time, having written over 900 mathematical papers.
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used to find the least non-negative r is often called reducing k modulo m. Equivalent to
this is the addition to k, or the subtraction from k, of multiples of m until an integer r
is obtained where 0 � r < m. The relationship established by the Division Algorithm
characterizes reduction of k modulo m as the determination of the remainder when k is
divided by m.

Example 8.2.5. Let us reduce 5427 · 3155 modulo 7. Since 5427 ≡ 2 (mod 7) and
3155 ≡ 5 (mod 7), we have, by Theorem 8.2.1(ii),

5427 · 3155 ≡ 2 · 5 ≡ 10 ≡ 3 (mod 7).

Now we reduce 54275 modulo 7. By Theorem 8.2.1(iii),

(5427)5 ≡ 25 ≡ 32 ≡ 4 (mod 7).

The first computation is certainly easier than determining that 5427 · 3155 =
17122185 and then reducing modulo 7. As for the second computation, 54275 =
4707595162486055907.

Exercise 8.2.6. Perform the following calculations modulo 15.
(a) 5674 · 2031
(b) 203110

In general, for any positive integer m we denote the set of equivalence classes with
respect to congruence modulo m by

Zm =
{
[0], [1], [2], . . . , [m − 1]

}
.

However, to simplify what could become cumbersome notation, we label the set

Zm =
{
0,1,2, . . . ,m − 1

}
,

where the equivalence class brackets are suppressed, and refine the definitions of+ and ·
as follows.

Definition 8.2.7. Let a,b ∈ Zm. Addition modulo m is the operation
+ : Zm × Zm → Zm defined by a + b = r where a + b ≡ r (mod m) and r ∈ Zm.
Multiplication modulo m is defined similarly: a · b = r where a · b ≡ r (mod m) and
r ∈ Zm. When the multiplication is understood, we write a · b as ab.

By theDivisionAlgorithm, there always exist some r1,r2 ∈ Zm such that a + b = r1
and ab = r2. Thus, for each m ∈ N, (Zm,+) and (Zm, ·) are associative systems with
identity. Note that the operations are also commutative. In the case where m = 1, the
systems (Zm,+) and (Zm, ·) are identical and have only the single element 0. Obviously,
the situation is more interesting when m � 2.
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Exercise 8.2.8. Let a ∈ Zm. Prove that if a 
= 0, then m − a ∈ Zm and m − a is the
inverse of a with respect to addition modulo m. Show also that 0 is its own inverse with
respect to addition modulo m.

This exercise shows that every element of Zm is invertible with respect to addi-
tion. You observed in Exercise 8.2.4 that this is not necessarily true for multiplication
modulom. Therefore, in the context of modular arithmetic, to say that an element a ∈ Zm

is “invertible” presumes that a has an inverse with respect to multiplication. Consider, for
example, a Cayley table for multiplication inZ9 (make your own, if necessary). Since the
multiplicative identity 1 does not appear in the row or column headed by 6, we see that
6 has no inverse in Z9 with respect to multiplication. The table reveals that 1,2,4,5,7,
and 8 are the invertible elements of Z9.

The next theorem characterizes the invertible elements, called units, of Zm.

Theorem 8.2.9. Given m � 2, the congruence ax ≡ 1 (mod m) has a solution4 x if
and only if a and m are relatively prime.

Proof. (⇒) Suppose that ax ≡ 1 (mod m) has a solution, say x = b. By definition
of congruence, there is an integer � such that ab− 1 = �m. Thus we have the linear
combination ab− �m = 1. By Theorem 2.5.5, a and m are relatively prime.

(⇐)Assume that gcd(a,m) = 1. Then, byTheorem 2.5.5, there are integers u,v such
that au + mv = 1. Thus au− 1 = (−v)m, and so au ≡ 1 (mod m). Therefore x = u is
a solution to ax ≡ 1 (mod m). �

Another way to interpret this theorem in the context of Zm is as follows.

An element a ∈ Zm is a unit if and only if a and m are relatively prime.

Theorem 8.2.9 implies the following.

Corollary 8.2.10. Let m ∈ N be given and let a,b ∈ Z. If a and m are relatively prime,
then the congruence ax ≡ b (mod m)has a solution. Furthermore, the solution is unique
modulo m.

Exercise 8.2.11. Identify the pairs {a,a−1} of units of each of the following systems.
(a) Z12

(b) Z8

(c) Z11

(d) Z22

4 When m and a are given, the phrase “ax ≡ 1 (mod m) has a solution” means
(∃x ∈ Zm) [ax ≡ 1 (mod m)].
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Exercise 8.2.12. Let p be a prime number. Describe the set of units of each of the
following systems.
(a) Zp

(b) Z2p

(c) Zp2

Example 8.2.13. Let m = 15. The set of units of Z15 is
{
1,2,4,7,8,11,13,14

}
. By

Theorem 8.1.19, this set of units is closed under multiplication.

Exercise 8.2.14. Make a Cayley table for the set of units of Z15, where the operation
is multiplication.

We highlight two ways to approach the business of solving congruences of the form
ax ≡ b (mod m). Ifm is relatively small, one can simply check all possible elements of
Zm to see if the congruence is satisfied by any of them.Whenm is relatively large or you
wish to employ a more elegant method, Euclid’sAlgorithm (Theorem 2.6.2) can be used
to solve the congruence ax ≡ 1 (mod m). Then the solution to the original congruence
is obtained upon multiplication by b.

Example 8.2.15. Solve 23x ≡ 17 (mod 31). We first solve 23x ≡ 1 (mod 31).
Since 31 is prime, gcd(23,31) = 1; so a solution exists. We apply Euclid’s Algorithm
(Theorem 2.6.2), not so much to verify that gcd(23,31) = 1 (which we already know),
but to find some x and y that satisfy the linear combination 23x + 31y = 1. After some
computation we derive the linear combination

23(−4) + 31(3) = 1.

Equivalently, 23(−4)− 1 = 31(−3), and so 23(−4) ≡ 1 (mod 31). In other words,
x = −4 is a solution of 23x ≡ 1 (mod 31). We reduce −4 modulo 31 to find that
x = 27 is the least non-negative solution of 23x ≡ 1 (mod 31). Now we multiply 27 by
17 and reduce modulo 31 to find that the solution to 23x ≡ 17 (mod 31) is x = 25.

Exercise 8.2.16. Solve, if possible, each congruence.
(a) 23x ≡ 1 (mod 39).
(b) 23x ≡ 8 (mod 39).
(c) 8x ≡ 1 (mod 26).
(d) 35x ≡ 61 (mod 88).

Consider the following problem.

Once upon a time, a band of seven pirates seized a treasure chest containing
some gold coins (all of equal value). They agreed to divide the coins equally
among the group, but there were two coins left over. One of the pirates took it
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upon himself to throw the extra coins overboard to solve the dilemma. Another
pirate immediately dived overboard after the sinking coins and was never heard
from again. After a few minutes, the six remaining pirates redivided the coins
and found that therewere three coins left. This time a fight ensued and one pirate
was killed. Finally thefive survivingpirateswere able to split the treasure evenly.
What was the least possible number of coins in the treasure chest to begin with?

If x represents the original number of coins, then the first division can be represented
by the congruence

x ≡ 2 (mod 7).

The second and third divisions give the congruences

x − 2 ≡ 3 (mod 6) and x − 2 ≡ 0 (mod 5),

respectively, giving the system of congruences

x ≡ 2 (mod 7)
x ≡ 5 (mod 6)(8.2.1)

x ≡ 2 (mod 5).

We solve the system by letting

x = 2f1 + 5f2 + 2f3,

where f1, f2, and f3 (to be determined soon) satisfy

f1 ≡ 1 (mod 7), f1 ≡ 0 (mod 6), and f1 ≡ 0 (mod 5),
f2 ≡ 0 (mod 7), f2 ≡ 1 (mod 6), and f2 ≡ 0 (mod 5),
f3 ≡ 0 (mod 7), f3 ≡ 0 (mod 6), and f3 ≡ 1 (mod 5).

Notice that, under these conditions, by the congruences (8.2.1),

x = 2f1 + 5f2 + 2f3 ≡ 2 (mod 7),
x = 2f1 + 5f2 + 2f3 ≡ 5 (mod 6),
x = 2f1 + 5f2 + 2f3 ≡ 2 (mod 5).

(Make sure that you understand why.)

To compute f1, we set f1 = 6 · 5 · b1, where b1 satisfies the single congruence
(8.2.2) 6 · 5 · b1 ≡ 1 (mod 7).

Note that f1 is necessarily divisible by 6 and by 5 and is, subject to solving (8.2.2),
congruent to 1 modulo 7. Thus f1 satisfies the requirement that

f1 ≡ 1 (mod 7), f1 ≡ 0 (mod 6), and f1 ≡ 0 (mod 5).
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To solve the congruence (8.2.2), reduce 6 · 5modulo 7 to get 2b1 ≡ 1 (mod 7). Note that
b1 = 4 is a solution. (Additional solutions include −3,11, and others. Any of these will
lead to a solution to the problem, although the numbers along the way will be different.)
Thus f1 = 6 · 5 · 4 = 120. Don’t reduce this modulo anything.

Similarly, set f2 = 7 · 5 · b2 where b2 satisfies
7 · 5 · b2 ≡ 1 (mod 6).

Reduce 7 · 5 and solve to find that b2 = 5. Thus f2 = 7 · 5 · 5 = 175.

Finally, set f3 = 7 · 6 · b3 and solve the congruence 7 · 6 · b3 ≡ 1 (mod 5).We find
that b3 = 3 is a solution. Thus f3 = 7 · 6 · 3 = 126. This means that

x = 2f1 + 5f2 + 2f3 = 2(120) + 4(175) + 2(126) = 1367.

As expected, x = 1367 satisfies the three congruences in (8.2.1). However 1367 is
not the least positive solution of the problem. Since 7 · 6 · 5 = 210, we reduce 1367mod-
ulo 210 to see that 1367 ≡ 107 (mod 210). The least number of coins possible is 107.
The reduction is modulo 210, because if x1 and x2 are solutions of the system (8.2.1),
then x1 ≡ x2 (mod 210). (Why?)

The following theorem guarantees a solution to the system of congruences in (8.2.1)
from the pirate adventure.

Theorem 8.2.17 (The Chinese Remainder Theorem5). If m1,m2, . . . ,mk ∈ N are
pairwise relatively prime and a1,a2, . . . ,ak ∈ Z, then the system of congruences

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

...

x ≡ ak (mod mk)

has a solution. Furthermore, the solution is unique modulo the product m1m2 · · ·mk.

Aproof of Theorem 8.2.17 is not difficult. It is a good exercise in notation. The proof
can be written using the same strategy we employed to solve the pirate problem. LetM =
m1m2 · · ·mk . Because all of the moduli are relatively prime in pairs, each congruence for
i ∈ {1,2, . . . ,k},

M
mi
· bi ≡ 1 (mod mi)

5 Sun Tzu, a Chinese mathematician during the third century C.E. wrote a text with the following
exercise. There are certain things whose number is unknown. Repeatedly divided by 3, the remain-
der is 2; by 5 the remainder is 3; and by 7 the remainder is 2.What will be the number?Because of
its origin with this problem, the theorem has long been called The Chinese Remainder Theorem.
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has a solution. Then a solution to the system is given by

x =
k∑

i=1

M
mi

biai.

The least positive solution is given by r ∈ ZM where

x ≡ r (mod M).

We ask you to write the details as Exercise 8.5.16.

Exercise 8.2.18. Use the techniques outlined in the solution of the pirate problem to
solve the following.
(a) Find the least positive integer with remainders 1, 2, and 3 when divided by 7, 8, and
9, respectively.
(b) A rectangular room is to be tiled with square tiles. Consider only the length of the
room. The tiles are available in 9-inch, 10-inch, or 11-inch squares. If only 9-inch tiles
are used, there is a 5 inch gap at one wall. If only 10-inch tiles are used, there is a 7 inch
gap. And if only 11-inch tiles are used, there is a 2 inch gap. Find the smallest possible
length of the room in inches.
(c) Solve Sun Tzu’s exercise in the footnote to Theorem 8.2.17.

8.3 Numbers Revisited

“God created the integers; all else is the work of man.” Thus wrote Leopold Kronecker6

in the 1870s. Putting theological considerations aside, let us go back beyondKronecker’s
“integers.” Starting with just the set N of positive integers, we will reproduce some of
“the work of man.”

From Section 8.1, we know that N is an associative system with respect to the two
commutative operations of addition and multiplication, that multiplication distributes
over addition, and that the integer 1 is the (unique) identity with respect to multiplication.
But that’s just about all that (N,+, ·) has to offer. We would like to have more!

Since N already has the identity 1 with respect to multiplication, it would be nice
to have inverses with respect to multiplication as well. So let us adjoin to N all the
reciprocals of positive integers; we bring in

1
2
,
1
3
,
1
4
, . . . ,

1
n
, . . .

6 The German mathematician Leopold Kronecker (1823–1891) is noted for his contributions to
algebraic number theory. In the latter part of his life he became embroiled in controversy due
to his rigid stance that transcendental numbers do not exist because a constructive proof of their
existence had not been given.
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for all n ∈ N. The set of reciprocals is closed under multiplication, which is nice, but the
enlarged set, that is, the union of N with this set of reciprocals is not closed under multi-
plication. (Consider 2 · 13 .) Nor is this union closed under addition. (Consider 2 + 1

3 , or
1
2 + 1

3 .) If we want to retain closure under addition, we can do so no more economically
than to import all the rest of the set Q+ of positive rational numbers, which at the same
time brings closure under multiplication.

Exercise 8.3.1. Prove that any set of numbers that is closed under addition and contains
the reciprocals of all the positive integers must contain Q+.

Nowwe areworkingwith the system (Q+,+, ·), which has everything that onemight
want concerning multiplication, but with respect to addition, it doesn’t even have an
identity. That’s easily remedied; we’re now dealing with Q+ ∪ {0}. Addition certainly
deserves the same consideration as multiplication; our system ought to have inverses
with respect to addition as well. That means that we must adjoin all of the set Q−. Our
system under consideration has grown to (Q,+, ·).

One could quit at this point were it not that we would like to have all real solutions
to equations of the form f (x) = 0, where f ∈ Z[x], the set of polynomials with integer
coefficients. That requires adjoining the rest of the set A ∩ R of real algebraic numbers.
The good news is that (A ∩ R,+, ·) has all the properties7 discussed in Section 8.1.

Exercise 8.3.2. Prove that every element of A has an additive inverse in A and every
element of A \ {0} has a multiplicative inverse in A \ {0}.

Perhaps even Herr Professor Kronecker would have been content to end this section
right now, but we won’t. So what more could one want? What may still be lacking was
hinted at in Section 6.4.

Let r be any real number and consider the set S = {x ∈ A ∩ R : x � r}. Clearly the
set S is bounded above, and r is its least upper bound. However, S contains its least upper
bound if and only if r ∈ A ∩ R. Let us approach this problem in a more sophisticated
manner, using some terminology from calculus but also anticipating some terminology
that you will encounter in a first course in real analysis.

In calculus you learned that a sequence of real numbers is simply a function
a : N ∪ {0} → R, but you wrote an for the image of n instead of writing a(n) and
abbreviated the rule for a as {an}∞

n=0. You also learned that lim
n→∞an = L means

(8.3.1) (∀ε > 0)(∃M ∈ N)[ n > M ⇒ |an − L| < ε ],

and we say that the sequence converges to L.

7 The set A ∩ R is closed with respect to addition and multiplication. However, the proof of this
fact requires mathematics outside the scope of this book.
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Definition 8.3.3. A sequence {an}∞
n=0 of real numbers is a Cauchy8 sequence if it

satisfies

(8.3.2) (∀ε > 0)(∃M ∈ N)[ (m > M ∧ n > M) ⇒ |am − an| < ε ].

Let us compare in words these two possible attributes of sequences. To say that
{an}∞

n=0 converges to L is to say that, if we pick terms far enough along in the sequence,
then they are very close to the limit L. To say that the sequence {an}∞

n=0 is a Cauchy
sequence is to say that, if we pick any two terms far enough along in the sequence, then
they are very close to each other.

Proposition 8.3.4. If a sequence of real numbers converges to some limit, then it is a
Cauchy sequence.

Proof. Suppose that lim
n→∞an = L. We must prove that {an}∞

n=0 satisfies condi-

tion (8.3.2). Let some arbitrary ε > 0 be given. Then ε/2 > 0. By condition (8.3.1),
with ε/2 in place of ε, there exists some M ∈ N such that, whenever n > M, then
|an − L| < ε/2.

Now letm and n be any integers greater thanM. Then, using the Triangle Inequality
(Theorem 1.5.3), we have

|am − an| =
∣∣(am − L) + (L − an)

∣∣
�
∣∣am − L

∣∣+ ∣∣an − L
∣∣

< ε/2 + ε/2

= ε,

as required of Definition 8.3.3. �

Example 8.3.5. Define the sequence {pn}∞
n=0 so that pn is the decimal expansion of

the transcendental number π truncated to include only the first n digits to the right of the
decimal point. Thus p0 = 3, p1 = 3.1, p2 = 3.14, p8 = 3.14159265, etc. We show that
{pn}∞

n=0 is a Cauchy sequence.

Let ε be an arbitrary positive number. [We should want ε to be very small; otherwise
it’s useless!] We may pick M ∈ N so that 10−M < ε. [The smaller ε is, the larger is the
M that we must pick.] Whenever m and n are integers larger than M, then |pm − pn| <
10−M < ε, as required by Definition 8.3.3.

Exercise 8.3.6. Use condition (8.3.1) to prove that lim
n→∞pn = π, where {pn}∞

n=0 is

defined in Example 8.3.5.

8 The Frenchman Augustin Louis Cauchy (1789–1857) was one of the first mathematicians to
attempt to put calculus on the same kind of axiomatic footing as Euclid’s geometry.
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Note that the numbers pn are all rational, because they have terminating decimal
expansions. Hence they are algebraic. But by Exercise 8.3.6, {pn}∞

n=0 converges to π,
which is transcendental. So, if we were to restrict our number system only to the real
algebraic numbers, there would exist Cauchy sequences that do not converge to a limit.
Thatmeans, that in the universe of the real algebraic numbers, the converse of Proposition
8.3.4 is false. The set R of real numbers, however, is what is called complete. That is to
say, R has the property of the following theorem. (You will encounter its proof in a first
course in real analysis.)

Theorem 8.3.7. Any sequence of real numbers converges to a limit in R if and only if
it is a Cauchy sequence.

Now that we have the set R of real numbers, where do we go from here? We still
cannot obtain solutions to some equations of the form f (x) = 0, where f ∈ Z[x], not even
so simple an equation as x2 + 1 = 0. The set C of complex numbers, presented in the
next section, provides that capability.

8.4 Complex Numbers

In Exercise 1.7.10 and again in Section 2.2, the setC of complex numbers was defined as
the set of all objects of the form a + bi, where a,b ∈ R and i2 = −1. The natural question
to pose is then, why should there exist some object whose square is the number −1? In
other words, why must −1 even have a square root9? We won’t impose the existence of
some

√−1 on your credulity right away; we adopt a different approach, one that follows
more directly from Section 8.1.

We begin with the set R× R and define two operations + and · on this set. We call
them addition and multiplication, respectively, and define them as follows. Let (a1,b1)
and (a2,b2) belong to R× R. Then

(8.4.1) (a1,b1) + (a2,b2) = (a1 + a2, b1 + b2)

and

(8.4.2) (a1,b1) · (a2,b2) = (a1a2 − b1b2, a1b2 + a2b1).

Note that the plus and minus signs in the right-hand members of these two equations
indicate the usual arithmetic of R. For example,

(2,−3) + (3,1) = (2 + 3,−3 + 1) = (5,−2),

9 The very notion of the existence of this square root was once considered quite radical.
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and

(2,−3) · (3,1) =
(
2 · 3− (−3) · 1, 2 · 1 + 3 · (−3)) = (9,−7).

You might recognize the addition in equation (8.4.1) as nothing other than the stan-
dard component-wise addition of vectors in 2-dimensional space. This addition is clearly
associative and commutative, because addition in R is associative and commutative.
Moreover, this addition has an identity, namely the ordered pair (0,0).

There also exists an operation called scalar multiplication, just as for vectors,
defined as follows. For all (a,b) ∈ R× R and all s ∈ R,

(8.4.3) s(a,b) = (sa,sb).

When the number s plays the role that it does in equation (8.4.3), then it is a scalar.
By convention, a scalar is always written to the left of the ordered pair. In particular,
(−1)(a,b) = (−a,−b) is the inverse with respect to addition of (a,b); it is denoted more
briefly as −(a,b).

Exercise 8.4.1. (a) Prove that scalar multiplication distributes over addition and that
scalar multiplication distributes over addition of scalars. Namely, for all r,s ∈ R and for
all (a1,b1), (a2,b2) ∈ R× R,

r
(
(a1,b1) + (a2,b2)

)
= r(a1,b1) + r(a2,b2)

and

(r + s)(a1,b1) = r(a1,b1) + s(a1,b1).

(b) With the same notation, prove that

(rs)(a1,b1) = r(s(a1,b1)).

Now we turn to the multiplication defined in equation (8.4.2). Here are the basic
properties of multiplication.

Proposition 8.4.2. Let r ∈ R and (a,b), (c,d) ∈ R× R. Then the multiplication de-
fined in equation (8.4.2) has the following properties.
(i) It is commutative.
(ii) It is associative.
(iii) The element (1,0) is the identity.
(iv) It distributes over addition.

(v) If (a,b) 
= (0,0), then the inverse of (a,b) is
(

a
a2 + b2

,
−b

a2 + b2

)
.

(vi) r
(
(a,b) · (c,d)

)
= (r(a,b)) · (c,d) = (a,b) · (r(c, d)).



8.4 Complex Numbers 213

Exercise 8.4.3. Prove Proposition 8.4.2.

The subset R× {0} of the algebraic system (R× R,+, ·) is closed under both +
and · and contains the identities with respect to each operation. Moreover, the inverse
of every non-zero element of R× {0} belongs to R× {0}. (Verify these claims.) This
special subset may be regarded as a copy of R that has been embedded in the system
(R× R,+, ·). Indeed, the scalar multiplication that was defined in equation (8.4.3) may
be regarded as ordinary multiplication; since we identify any s ∈ R with (s,0), we have
for all (a,b) ∈ R× R,

s(a,b) = (s,0) · (a,b) = (sa,sb).

On the other hand, what about the subset {0} × R? It does behave just like R as
far as addition is concerned, but it is not even closed under multiplication. The product
(0,b) · (0,d) = (−bd,0) /∈ {0} × R if both b,d 
= 0. An element of {0} × R of great
interest is the ordered pair (0,1), because

(0,1) · (0,1) = (−1,0) = −(1,0),

that is to say, the square of (0,1) is the negative of the multiplicative identity.

Definition 8.4.4. The element (0,1) of the system (R× R,+, ·) is denoted by i.
(Thus i2 = −1.)
Elements (a,0) ∈ R× {0} are denoted simply by a and are real numbers.

Elements (0,b) ∈ {0} × R are denoted by either bi or ib and are (pure) imaginary
numbers.

The elements of (R× R,+, ·), where the operations + and · on R× R are given by
equations (8.4.1) and (8.4.2), are complex numbers. In this context, the set R× R is
denoted by C, and the operations on C are understood to be these operations.

Using the terms of this definition, we see that every complex number is a sum of a
real number and an imaginary number. Thus

(a,b) = (a,0) + (0,b) = (a,0) + b(0,1) = a + bi.

Let us look at multiplication with this notation:

(8.4.4) (a + bi)(c + di) = ac + adi + bci + bdi2 = (ac− bd) + (ad + bc)i.

Exercise 8.4.5. Let m,n ∈ Z. Prove that im = in if and only if m ≡ n (mod 4). (See
Definition 6.2.6.)
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Definition 8.4.6. The complex plane10 is the Cartesian plane, where for all (x,y) ∈
R× R, the point with coordinates (x,y) is understood to represent the complex number
x + yi. The horizontal axis is the real axis, and the vertical axis is the imaginary axis.

Definition 8.4.7. Let z = a + bi be a complex number. The real part of z is a,
written11 Re(z) = a. The imaginary part of z is b, written Im(z) = b.

The modulus of the complex number z ∈ C, denoted |z|, is its distance in the complex
plane from the origin. Thus, if z = a + bi, then

(8.4.5) |z| = (a2 + b2
)1/2

.

The conjugate of the complex number z = a + bi, denoted z, is the complex number
a− bi.

Observe that the notion of modulus generalizes the notion of absolute value from
real to complex numbers.

Exercise 8.4.8. Let z = 4 + 3i and w = 2− 5i. Evaluate and simplify all of the fol-
lowing expressions.

|z| |w| zw

|zw| |z + w| 2z − 3w

z w z + w

z + w zw z/|z|
zw z/(2i) 1 + iz + (iz)2 + (iz)3

Remark. There is no natural partial order on the set C as there is on R, nor is there any
way to extend to C the standard partial order � that exists on R. Thus expressions of the
form z � w, where z or w is in C \ R, are meaningless. However, since the modulus of a

10 The first mention of a “complex plane” appeared in a paper presented to the DanishAcademy of
Sciences in 1797 by the Norwegian surveyor Caspar Wessel (1745–1818). Wessel was renowned
in his day for having used triangulations to make the first accurate map of the Danish province of
Zealand. His presentation was the first to the Danish Academy not by a member of the Academy.
Because he was not a member, Wessel was not allowed to make his presentation in person. The
paper remained unnoticed until a translation into French was published in 1897. This is the only
mathematical paper that Wessel ever wrote.

11 The font used here for Re and Im is called Fraktur. It was widely used in German text until the
1940s but is still used internationally in this narrow application.
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complex number is a real number, inequalities relating the moduli of complex numbers
are both meaningful and useful.

Exercise 8.4.9. Prove that the following facts hold for all z,w ∈ C.
(a) |z| � 0. Furthermore, |z| = 0 if and only if z = 0.
(b) |z| = |z|.
(c) |z||w| = |zw|.
(d) z w = zw.
(e) zz = |z|2.
(f)

∣∣∣∣ z|z|
∣∣∣∣ = 1.

It is useful to see how some of this theory plays out in the geometry of the complex
plane. Here you may apply what you have previously learned about vectors regarded as
directed line segments and about polar coordinates in the plane.

Let z be any point in the complex plane. Looking at Figure 8.4.1(a), we see that z is
the reflection of z across the real axis, while−z is the reflection of z across the imaginary
axis. It follows that −z = −z is the reflection of −z across the real axis, and so −z is
also the reflection of z across the origin. All four of these points have the same absolute
value by Exercise 8.4.9(b, c). That is to say, they all lie at the same distance from the
origin.

Figure 8.4.1

Now let z and w be any two points in the complex plane and refer to Figure 8.4.1(b).
(In the figure, z and w are shown not to be scalar multiples of each other, since they are
not collinear with the origin. What we are about to say would hold as well in the special
case where one is a scalar multiple of the other.) In vector analysis, the vector z + w is
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called the resultant of z and w. The four points 0, z, z + w, and w form a parallelogram
which is a union of two triangles whose three sides have lengths |z|, |w|, and |z + w|.
Since the length of any side of a triangle is at most the sum of the lengths of its other
two sides, we have the version of the Triangle Inequality (Theorem 1.5.3) that gives it
its name:

(8.4.6) (∀z,w ∈ C)
[ |z + w| � |z|+ |w|].

Equality holds in statement (8.4.6) if and only if z and w are scalar multiples of each
other. (Draw a figure and check this out.Also verify that the length of the other diagonal,
the distance between z and w, is |z − w|.)

Example 8.4.10. Let us plot in the complex plane the graph of the equation

(8.4.7) |z + i| = |z − i|.
Oneway to do this is by “brute force.” Suppose that z = x + iy. Then equation (8.4.7)

becomes

|x + (y + 1)i| = |x + (y − 1)i|.
Applying equation (8.4.5) and squaring both sides gives

x2 + (y + 1)2 = x2 + (y − 1)2.

After canceling, we’re left with just y = 0. So the solution of equation (8.4.7) is the real
axis Im(z) = 0.

Another way to do this is geometrically.A number z is a solution of equation (8.4.7)
if and only if z is equidistant from the two points i and −i. So the solution is the
perpendicular bisector of the segment joining them. Clearly, that’s the real axis.

Exercise 8.4.11. Plot in the complex plane the graphs of the following equations.
(a) |z − 1− i| = |z + 1 + i|.
(b) |z − i| = 1.

Exercise 8.4.12. What is the complex equation whose graph is the line through the
points i and −1?

Let z = a + bi 
= 0, and let θ be the angle from the positive real axis in the counter-
clockwise direction to the segment joining the origin to z, as shown in Figure 8.4.2.
If this were the usual Cartesian plane, then the polar coordinates of the point z
would be (|z|,θ), where

(8.4.8) |z| =
√

a2 + b2 and, if a 
= 0, then tanθ =
b
a
.
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The angle θ, measured in radians, is the argument of z, and we write

θ = arg(z).

If a = 0, then arg(z) =
π

2
if b > 0 and arg(z) = −π

2
if b < 0. (One should verify that

tanθ = b/a no matter which quadrant of the plane z happens to lie in.)

a

bi z = a+bi
|a|

|b||z|

q

Figure 8.4.2 The polar form of a complex number.

From Figure 8.4.2, we also have

a = |z|cosθ and b = |z|sinθ,

which yields an important formula for any complex number z = a + bi in terms of its
polar coordinates. It is called the polar form of z:

(8.4.9) z = |z|(cosθ + i sinθ).

Equation (8.4.4) provides a rule for multiplying two complex numbers that are given
in the form z = a + bi. It can be used as well to multiply two complex numbers given in
polar form. For this computation, it is convenient to have on hand two basic trigonometric
identities:

sin(x + y) = sinx cosy + cosx siny ;
(8.4.10)

cos(x + y) = cosx cosy − sinx siny.
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Suppose z = |z|(cosα + i sinα) and w = |w|(cosβ + i sinβ). Then, by equation (8.4.4)
and Exercise 8.4.9(c),

zw = |z||w|(cosα + i sinα)(cosβ + i sinβ)
= |zw| [cosα cosβ − sinα sinβ + i(sinα cosβ + cosα sinβ)]
= |zw| [cos(α + β) + i sin(α + β)] .

This computation shows, in particular, that for all z,w ∈ C and some k ∈ {0,1},
arg(zw) = arg(z) + arg(w) + 2πk,

as seen in Figure 8.4.3.

1

i
zw

zw

��

� + �

Figure 8.4.3 Multiplication in polar form.

Exercise 8.4.13. Prove that arg(z) = −arg(z) for all z ∈ C.

Exercise 8.4.14. Plot the unit circleU = {z ∈ C : |z| = 1} in the complex plane, and
prove that it has the following algebraic properties:U is closed under multiplication and
contains the identity and the inverse of every element ofU (with respect tomultiplication).
In fact, z−1 = z for all z ∈ U.

From equation (8.4.9) we can derive a nice formula for the integer powers of any
complex number on the unit circle.

Theorem 8.4.15 (de Moivre’s12 Theorem). Let n ∈ N. Then

(cosθ + i sinθ)n = cos(nθ) + i sin(nθ).

12 Abraham de Moivre (1667–1754) was a French Huguenot. He moved to England ca. 1685 after
the Edict of Nantes, which since 1598 had accorded some religious liberty to Protestants, was
revoked under Louis XIV. De Moivre made contributions to the theory of probability applied to
games of chance.
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Proof. We proceed by induction on n. If n = 1, there is really nothing to prove. Now
let n � 1 and suppose that the formula holds for this value of n. We now have

(cosθ + i sinθ)n+1 = (cosθ + i sinθ)(cosθ + i sinθ)n

= (cosθ + i sinθ) (cos(nθ) + i sin(nθ))
= cosθ cos(nθ)− sinθ sin(nθ)

+i (sinθ cos(nθ) + cosθ sin(nθ))
= cos((n + 1)θ) + i sin((n + 1)θ),

by equations (8.4.10). By the Principle of Mathematical Induction, the equation holds
for all n ∈ N. �

It follows from de Moivre’s Theorem that, if z = |z|(cosθ + i sinθ), as in equa-
tion (8.4.9), then

(8.4.11) zn = |z|n(cos(nθ) + i sin(nθ)).

Consider the complex number u = − 1
2 +

√
3
2 i. Then |u| = 1 and arg(u) =

arctan(−√3) by equation (8.4.8). At this point an electronic calculator would give
arg(u) = −π/3, but since u lies in the second quadrant, we have arg(u) = 2π/3. This
gives the polar form

u = cos
(
2π
3

)
+ i sin

(
2π
3

)
.

It follows from de Moivre’s Theorem that u3 = 1, that is, u is a cube root of 1. In fact,
the number 1 has two other cube roots: 1 itself and u2. Notice in Figure 8.4.4 that these
three cube roots are evenly spaced around the unit circle.

1-1

i

-i

u

u2 = -u

Figure 8.4.4 The three cube roots of 1.
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More generally, let n be any integer at least 2. For each integer k =
0,1,2, . . . ,n− 1, let

uk = cos
(
2πk
n

)
+ i sin

(
2πk
n

)
.

Then u0 = 1, and u1 = cos(2π/n) + i sin(2π/n) is a point on the unit circle one-nth

of the way around the circle from 1 in the counterclockwise direction. By de Moivre’s
Theorem, we have un1 = 1, and also, for each succeeding point u2,u3, . . . ,un−1, we have
uk = uk1, and so uk lies on the unit circle exactly k/n of the way around the circle from
1 in the counterclockwise direction. Moreover, for each k = 0,1,2, . . . ,n− 1, we have

unk = (uk1)
n = (un1)

k = 1k = 1.

Definition 8.4.16. Let n ∈ N. Then the n complex numbers

uk = cos
(
2πk
n

)
+ i sin

(
2πk
n

)
for k = 0,1,2, . . . ,n− 1

are the nth roots of unity.

Exercise 8.4.17. Without writing trigonometric functions in your answers, list all of
the nth roots of unity for n = 4 and n = 6.

Exercise 8.4.18. For all n ∈ N, let In =
{
uk : k = 0,1, . . . ,n− 1

}
be the set of nth roots

of unity. Prove the following.
(a) In is closed under multiplication in C.
(b) Im ⊆ In if and only if m

∣∣n.
8.5 Further Exercises

Exercise 8.5.1. Prove that the set Z[x] is closed under addition, multiplication, and
composition of functions.

Exercise 8.5.2. Let X be an infinite set. Recall that a set A ∈P(X) is cofinite if its
complement is finite (see Exercise 7.6.9).
(a) Prove that the family of cofinite subsets of X is closed under union and intersection
but closed under neither symmetric difference nor relative complement.
(b) Let A denote the family of infinite subsets of X that are not cofinite. Under which
of the four set operations listed in part (a) is A closed?
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Exercise 8.5.3. Let (S,•) be an algebraic system in which • is associative and com-
mutative. Using only mathematical induction and Definitions 8.1.8 and 8.1.22, prove
that for all n ∈ N, if s1,s2, . . . ,sn ∈ S, then

s1 • (s2 • (s3 • (· · · • (sn−1 • sn) · · ·))) = sn • (sn−1 • (sn−2 • (· · · • (s2 • s1) · · ·))).

Exercise 8.5.4. Define f : N → N by the rule

f (n) =
{
1 if n = 1;
n− 1 if n � 2.

Let f 〈1〉 = f and f 〈n+1〉 = f ◦ f 〈n〉 for all n ∈ N. Finally let

S =
{
f 〈n〉 : n ∈ N

} ∪ {iN}.
Prove that (S,◦) is an associative and commutative system with identity that has no
inverses.

Exercise 8.5.5. Let S be the set of all functions f : N → N such that f (1) = f (2). For
i ∈ {1,2}, define the function ri ∈ S by

ri(n) =
{
i if n = 1 or n = 2;
n if n � 3.

Show that (S,◦) is an associative system in which r1 and r2 are distinct right identities
but not left identities.

Exercise 8.5.6. Let p1,p2, . . . ,pk be distinct prime numbers. Let

S =
{
pm1
1 pm2

2 · · ·pmk
k : m1,m2, . . . ,mk ∈ N ∪ {0}}.

Prove that S together with the operation of multiplication is an associative, commutative
system with identity.

Exercise 8.5.7. In high school algebra you learned that for a,b,c ∈ R+, it is true
that (ab)c = acbc, but that abc 
= abac = ab+c. Describe these rules in terms of the one-
sided distribution laws that do and do not hold. [As mentioned in Section 8.1, the binary
operation of exponentiation takes the ordered pair (a,b) to the number ab.]

Exercise 8.5.8. Let X be any set. Show that (P(X),+), where + denotes symmetric
difference, is an associative and commutative systemwith identity inwhich every element
is invertible.

Exercise 8.5.9. Letm,n ∈ Z \ {0}. Prove that the set of linear combinations ofm and
n is closed under addition and multiplication (the usual operations in Z).
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Exercise 8.5.10. Let (S,•) be an associative system with identity e.
(a) Prove that if (∀a ∈ S)

[
a2 = e

]
, then • is commutative.

(b) Suppose that all elements of S are invertible. Prove that the operation • is commutative
if and only if (a • b)2 = a2 • b2 for all a,b ∈ S.

Exercise 8.5.11. Let (S,�) be a lattice with binary operations ∧ and ∨ (see Exer-
cise 6.7.14). Show that ∧ and ∨ are associative and that each operation distributes over
the other. Show that in a finite lattice there exists an identity for each of these operations.

Exercise 8.5.12. Make a Cayley table (see Exercise 8.2.3) for the system (G,∗)where
G = {a,b,c,d} and the operation ∗ is such that all the following properties hold.
(i) ∗ is associative.
(ii) The element a is the (unique, two-sided) identity of G.
(iii) (∀x ∈ G)[x2 = a].

Exercise 8.5.13. Let G = {0,1,2,3,4,5,6,7}. Consider an associative system (G,•)
with identity that satisfies both right- and left-cancellation laws, and, for all a,b ∈ G, the
operation • satisfies

a • b � a + b and a • a = 0,

where + and � have their usual meaning as in Z. Make a Cayley table for (G,•). [Hint:
The solution is unique. Determinewhether • is commutative.Whenever there are choices
about which element to enter in a cell of the table, use associativity to decide.]

Exercise 8.5.14. Consider the congruence x2 ≡ −1 (mod p), where p is an odd prime
number. Notice that when p = 5, then x = 2 and x = 3 are solutions. But when p = 7,
there are no solutions (verify this). Investigate other primenumbers andmake a conjecture
about prime numbers p for which x2 ≡ −1 (mod p) has solutions.

Exercise 8.5.15. Let p be an odd prime number. Investigate prime numbers for which
the congruence x2 ≡ 2 (mod p) has solutions. Make a conjecture about prime numbers
for which the congruence has solutions. [Hint: Look at p (mod 8).]

Exercise 8.5.16. Write a complete proof of Theorem 8.2.17, the Chinese Remainder
Theorem.

Exercise 8.5.17. The system of congruences

x ≡ 3 (mod 4)
x ≡ 2 (mod 6)
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has no solutions since x is necessarily odd by the first congruence and x is necessarily
even by the second. Note that the Chinese Remainder Theorem doesn’t apply to this
system since 4 and 6 are not relatively prime. However the system

x ≡ 3 (mod 4)
x ≡ 1 (mod 6)

has the solution x = 7. A generalization of the Chinese Remainder Theorem in which
the moduli are not necessarily relatively prime asserts that if there is a solution (and there
may not be one) to the system, the solution is unique modulo lcm(m1,m2, . . . ,mk). Find
the least positive solution, if one exists, of the system

x ≡ 7 (mod 12)
x ≡ 1 (mod 10)
x ≡ 3 (mod 8).

[Hint: By the Chinese Remainder Theorem, the congruence x ≡ 7 (mod 12) is equiva-
lent to the system x ≡ 3 (mod 4) and x ≡ 1 (mod 3). Similarly, find a system of two
congruences equivalent to x ≡ 1 (mod 10) and then reconcile all of the congruences.]

Exercise 8.5.18. This exercise examines one of many sequences of rational numbers

that converge to a transcendental number. In particular, the alternating series
∞∑
k=1

(−1)k−1

k2

converges to the transcendental number π2/12. Let an denote the n-th partial sum of this

series, that is, an =
n∑

k=1

(−1)k−1

k2
, and show that{an}∞

n=1 is aCauchy sequence of rational

numbers. [Hint: Show that |am − an| is dominated by a lower Riemann sum for a definite
integral that you can evaluate.]

Exercise 8.5.19. In the complex plane, graph the parabola with equation

[Re(z)]2 + Re(z)− |z|2 = 0.

Exercise 8.5.20. Prove that if z ∈ C and |z| < 1, then lim
n→∞zn = 0, but otherwise,

unless z = 1, then lim
n→∞zn does not exist, i.e., there exists noL ∈ C such that lim

n→∞zn = L.

Exercise 8.5.21. Let n ∈ N be given and let z be a complex number that does not
satisfy Definition 8.4.16 as an nth root of unity. Prove that zn 
= 1, thus showing that the
nth roots of unity are the only complex numbers whose nth power equals 1.
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Specific Sets

A Algebraic numbers, 63

C Complex numbers, 45

E Positive even numbers, 45

I Irrational numbers, 60

N Natural numbers, 44

O Positive odd numbers, 170

Q Rational numbers, 45

R Real numbers, 45

S+ Set of positive numbers in S, 46

S− Set of negative numbers in S, 46

T Transcendental numbers, 64

Z Integers, 45

Zm Integers modulo m, 203

Z[x] Polynomials with integer coefficients, 63

Ø Empty set, 71
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Logical Symbols

∧ Conjunction, 10

∨ Disjunction, 11

¬ Negation, 12

Logical equivalence, 14

⊕ Exclusive or, 16

⇒ Conditional, implies, 17

⇔ Biconditional, if and only if, 19

∀ Universal quantifier, for all, 29

∃ Existential quantifier, there exists, 30

∃! Unique existential quantifier, 30

Set Theoretic Symbols

∈ Element of, 9, 43

/∈ Not an element of, 43

⊆ Subset of, contained in, 68

⊇ Superset of, contains, 68

⊆/ Not a subset of, 68

⊂ Proper subset of, 71

P(A) Power set of A, 72

∩ Intersection, 73

∪ Union, 73

\ Relative complement, 74

A′ Complement of A, 75

× Cartesian Product, 77

+ Symmetric difference, 85
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Miscellaneous Symbols

n! Factorial function, 6, 95

a | b a divides b, 47

gcd(a,b) Greatest common divisor of a and b, 53

lcm(a,b) Least common multiple of a and b, 56( n
k

)
Binomial coefficient, n choose k, 103

f : X → Y Function f from X into Y , 111

f−1 Inverse of the function f , 113

◦ Composition of functions, 119

f Set function induced by f , 120

iX Identity function on X , 130

f |S f restricted to S, 135

�(S) Diagonal of S, 147

a ≡ b (mod m) Congruence modulo m, 147

[x] Equivalence class of x, 148

g.l.b.(A) Greatest lower bound, 153

l.u.b.(A) Least upper bound, 153

|A| Cardinality of A, 168

ℵ0 Cardinality of a countable set, 169

c Cardinality of R, 183

i
√−1 in C, 38, 45, 213

Re(z) Real part of z, 214

Im(z) Imaginary part of z, 214

|z| Modulus of z, 214

z Complex conjugate, 38, 214

arg(z) Argument of z, 217



This page intentionally left blank 



Index

absolute maximum, 160
absolute minimum, 160
absolute value, 23
addition (modulo m), 203
addition (of functions), 115
algebraic number, 63
algebraic system, 192, 199
antisymmetric, 150
argument, 217
associative law, 15
associative operation/system, 192, 193
Axiom of Choice, 131

Bernoulli’s Inequality, 108
biconditional, 19
bijection, 129
binary operation, 190
binary relation, 145
binomial coefficient, 103
Binomial Theorem, 104
bounded, 153

cancellation law, 132, 195
Cantor ternary set, 189
Cantor-Schröder-Bernstein Theorem, 180
cardinal number, 178
cardinality, 168, 169, 178
Cartesian product, 77
Cauchy sequence, 210
Cayley table, 202
cell, 142
characteristic function, 183
Chinese Remainder Theorem, 207
choice function, 132

closed (interval), 158
closed (under an operation), 191
codomain, 111, 161
cofinite, 188
common divisor, 53
common multiple, 56
common refinement, 163
commutative law, 15
commutative operation, 199
commute, 199
comparable, 150
complement, 74, 75
complete (for R), 211
complex number, 38, 45, 213
complex plane, 214
composite number, 5, 51
composition (of functions), 119
composition (of relations), 152, 161
conclusion, 17
conditional, 17
congruent modulo m, 147, 200
conjugate, 38, 214
conjunction, 10
constant function, 116
Continuum Hypothesis, 184
contradiction, 20
contrapositive, 18
contrapositive proof, 25
converse, 18
convex (set), 192
countable (set), 168
counterexample, 32

decreasing, 118
de Moivre’s Theorem, 218
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De Morgan’s Laws, 15, 75
diadic prime, 52
diadic rational, 52
diagonal, 147
direct proof, 22
disjunction, 11
distributes, 200
distributive law, 15
divides, 47
divisible by, 47
Division Algorithm, 47
divisor, 47
domain, 111, 161
dual, 164

element, 43
empty set, 70
enumeration, 170
equal (for functions), 112
equal (for sets), 70
equivalence class, 148
equivalence relation, 145
equivalent (logically), 14
Euclid’s Algorithm, 58
Euclid’s Lemma, 55
even number, 47
even set, 192
exclusive or, 16
existential quantifier, 30
existentially quantified statement, 30
exponentiation, 193
extremal element, 155
Extreme Value Theorem, 159
extremum, 156

factorial function, 6, 95
family of sets, 80
Fibonacci number, 108
finite set, 168
fixed point, 162
floor function, 140
function, 111, 161
Fundamental Theorem of Arithmetic, 51, 100

general position, 88
graph (of a function), 135

greatest common divisor, 53
greatest lower bound, 153
group, 198

hypothesis, 17

identity (element), 193
identity function, 130
if and only if, 19
image, 111, 161
imaginary axis, 214
imaginary number, 213
imaginary part, 214
incomparable, 150
increasing, 118
index set, 80
induced set function, 120
induction hypothesis, 92
infinite (set), 168
injection, 127
integer, 45
Intermediate Value Theorem, 158
intersection, 73, 81
interval, 158
inverse, 113, 134, 197
inverse function, 134
inverse relation, 151
invertible, 197
irrational number, 60
irreflexive, 150
isomorphic, 164
isomorphism (of posets), 164

join, 165

lattice, 165
least common multiple, 56
least upper bound, 153
left-cancellation law, 132, 195
left distributive law, 200
left identity, 193
left inverse, 196
lemma, 26
l’Hôpital’s Rule, 36
limit (of a function), 32
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linear combination, 48
linear function, 127
linear order, 150–151
linearly ordered set, 150
logically equivalent, 14
lower bound, 153
(in) lowest terms, 60

maximal element, 155
maximum, 156
meet, 165
Midpoint-quadrilateral Theorem, 2
minimal element, 155
minimum, 156
modulo, 147, 200
modulus, 214
multiple, 47
multiplication (modulo m), 203
multiplication (of functions), 116

natural number, 44
necessary, 17
negation, 12
negative (of a function), 117
negative (on a set), 118
nondecreasing, 118
nonincreasing, 118

odd number, 47
odd set, 192
one-sided identity, 193
one-sided inverse, 196
open (interval), 158
operation, 190
order relation, 149
ordered set, 150

parabola, 41
paradox, 8
partial order, 150
partially ordered set, 150
partition, 142
Pascal’s Identity, 103
perfect square, 50
perpendicular bisector, 42

pigeon hole principle, 5
polar form, 217
poset, 150
positive (on a set), 118
power set, 72
preimage, 111
prime factorization, 51
prime number, 5, 51
Principle of Mathematical Induction, 91
Principle of Strong Induction, 98
proof by contradiction, 25
proof by contrapositive, 25
proper divisor, 47
proper subset, 71
propositional function, 9

range, 113
rational number, 45, 149
real axis, 214
real number, 45, 213
real part, 214
reciprocal (function), 113
refinement, 144
refines (for partitions), 144
refines (for relations), 149
reflexive, 145
relation, 145
relative maximum, 160
relative minimum, 160
relatively prime, 53
restriction, 135–136
right distributive law, 200
right identity, 193
right inverse, 196
right-cancellation law, 132, 195
root (of a polynomial), 177
root of unity, 220

same cardinality, 168
scalar, 212
scalar multiplication, 212
self-dual, 164
sequence, 209
set, 43
set of permutations, 187
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set-builder notation, 44
singleton, 143
S-prime, 67
statement, 7
strict partial order, 150
strictly partially ordered set, 150
subfamily, 80
subset, 68
sufficient, 17
superset, 68
surjection, 126
symmetric (relation), 145
symmetric difference, 85
system with identity, 193

tautology, 20
Tower of Hanoi, 106
transcendental number, 64
transitive (relation), 145
Triangle Inequality, 23
trichotomy property, 151

truth set, 9
truth table, 10
truth value, 7
twin prime, 52
two-sided identity, 193

uncountable set, 168
union, 73, 81
unique existential quantifier, 30
uniquely existentially quantified statement, 30
unit, 204
unit circle, 218
universal quantifier, 29
universal set, 9, 69
universally quantified statement, 29
upper bound, 153

vacuous statement, 71

well-order, 157
well-ordered set, 157
Well Ordering Principle, 49, 91
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