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PREFACE

This work is intended to provide a presentation (with some carefully chosen alternatives)
of essential ingredients of mathematical discourse. It deals with concepts: set mapping, fam-

ily, order, natural number, real number, finite and infinite sets, countability; with procedures:

proof by induction, recursive definition, fixed-point theorem, and with some immediate ap-
plications. It concludes with a sketch of maximality axioms for infinite sets, with the Axiom
of Choice and other useful equivalents.

The resulting account was designed to support a component of a comprehensive three-
semester honors program, “Mathematical Studies”, conducted for years at Carnegie Mellon
University, by the author with the inspiring partnership of Walter Noll.

The author owes special thanks to Ms Nancy J. Watson for her superb and tireless work
on the preparation of the manuscript.

The author also records his appreciation of Ms Kwong Lai Fun of World Scientific for
her unerring eye and tireless and insightful attention to every detail that have given this
work its final polish.

v



vi PREFACE

Some Symbols

The symbols for logical connectives and quantifiers used in this work are:

⇒ read “only if” or “implies”

⇔ read “if and only if” or “is equivalent to”

∀ read “for all” or “for every”

∃ read “for some” or “there exists such that”.

The following symbols denote certain sets of numbers, regarded as endowed with the
usual arithmetical operations and order relations:N the set of all natural numbers (including zero)Z the set of all (positive and negative) integersQ the set of all rational numbersR the set of all real numbersP the set of all positive real numbers (including zero).

These sets, with their structures, will be formally introduced in due course, but they are
familiar enough to be used, before that introduction, in examples and remarks.

Finally, some symbols are used to facilitate the reading:

indicates the end of a proof or of some formally labelled example, remark, etc. It
is omitted after the statement of a proposition for which no proof is provided.

∗ placed after the heading of an example or remark signals the use of material not yet
formally introduced or even lying outside the purview of this work. (For another
use of the asterisk see p. 6.)

H
N

placed in the margin encompass a paragraph, a passage, or even almost a whole
chapter that the reader is encouraged to skip, at least initially, unless particularly
motivated.

• records that the proposition or passage or phrase to which it is prefixed uses the
Axiom of Choice in one of its variant forms. Little is lost, at least initially, if
the presence of this symbol is ignored. (For the Axiom of Choice, see p. 59 and
Chapter 17.)
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Chapter 1

SETS

11. Introduction

In this chapter we present the essential terminology, notation, and facts pertaining
to sets and members of sets, the most elementary ingredients of current mathematical
discourse. Successive chapters will introduce other fundamental ingredients, such as
mappings, relations, numbers . . .

We do not aim either at a philosophical elucidation of these concepts, or at a
rigorous account of the foundations of mathematics as they are currently understood.
These are specialized subjects, attractive in their own right, but of little immediate
concern to most practicing mathematicians or users of mathematics; to engage seri-
ously in their study requires considerable mathematical experience and maturity. We
merely intend to clarify the usage of the fundamental concepts, derive their simplest
properties and relationships, and make the language they constitute available for use.

Underlying all mathematical discourse are concepts and rules of logic. For an
exposition of the relevant logical tools that is particularly well suited to our approach,
we refer to Chapter 2 of A. M. Gleason, Fundamentals of Abstract Analysis. The
book as a whole is recommended for its choice of contents and its professional style.
Although the usage adopted in it differs in many particulars from ours, the book is
an excellent aid to understanding. Chapter 1 and part of Chapter 3 of that book
should also be studied in conjunction with the present chapter.

Our use of equality is exclusively as follows: the assertion a = b means that the
object (designated by the symbol) a and the object (designated by the symbol) b are
one and the same. In practice, what stands on either side of = may be a complicated
array of typographical symbols. The negation of the assertion a = b is denoted by
a 6= b, and if it holds we say that a and b are distinct objects, or that a is distinct
from b.

The symbols := and =: are used in definitions: a := b or, equivalently, b =: a
means that a is defined to be (equal to) b. The colon stands on the side of the
definiendum a, the term to be defined, in order to contrast it with the definiens b,
the defining term. When the definition of an object is given in words, we distinguish

1



2 CHAPTER 1. SETS

the words constituting the definiendum by means of boldface type. For example, “A
square is defined to be a rectangle with equal sides,” or “A rectangle with equal sides
is called a square.”

Similar usages occur in the definition of a property of an object by means of an
appropriate predicate. Thus, “A number n is said to be even if 2 divides n” (in
this style of definition it would be redundant to add “and only if”). In slightly more
symbolic form we might write

For every number n, (n is even) :⇔ (2 divides n);

the symbol :⇔ may be read “means by definition that” or “is equivalent by definition
to”.
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12. Sets and their members

In our presentation we give no formal definition of the concept of set. Speaking
vaguely, whenever objects are thought of as collected into a definite whole, a set
describes this state of affairs. A set is determined whenever there is an unambiguous
answer to the question whether any given object belongs to it, even if this answer
may be very difficult to ascertain in practice, or is currently unknown.

Each of the objects constituting a set S is called a member of S; sometimes the
term element of S is encountered. The assertion that an object s is a member of the
set S is denoted by s ∈ S, and this assertion may be equivalently expressed by “s
is contained in S”, or “S contains s”, or, more informally, by “s is in S”, or “s
belongs to S”. Objects are often introduced as members of given sets: phrases such
as “let s ∈ S be given”, “choose s ∈ S such that”, “for all s ∈ S” are common; in
them, the symbol ∈ has to be construed to give a grammatically correct reading, as,
e.g., “choose a member s of S such that”. The negation of the assertion s ∈ S is
denoted by s /∈ S.

We regard it as an essential feature of the notion of set that the identity of a set
is determined by its membership: sets that have precisely the same members are one
and the same. More formally, for given sets S and T we have

(12.1) S = T ⇔ (∀x, x ∈ S ⇔ x ∈ T ) .

It is useful to have a synonym for the term set. Thus a collection is a set, and this
term is used, in particular, when the members of the set in question are themselves
sets (or at least when it is material to state this fact): “collection of sets” is more
usual than “set of sets”. On occasion, the term class is also used as a synonym of
the term set. The term family, however, has acquired a quite different meaning (see
Section 41), and should never be used as a synonym for set.
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13. Inclusion

Let the sets A and B be given. If every member of A is also a member of B, we
say that A is included in B, or that B includes A, or that A is a subset of B,
and we write A ⊂ B or B ⊃ A. In symbols,

A ⊂ B :⇔ B ⊃ A :⇔ (∀x ∈ A, x ∈ B) ⇔ (∀x, x ∈ A ⇒ x ∈ B) .

We note that A ⊂ A for every set A. If A is included in B, but is not equal to B, we
say that A is properly included in B or that B properly includes A, or that A
is a proper subset of B, and we write A $ B or B % A.

Many mathematicians use a different notation: they write ⊆, ⊇, ⊂, ⊃ where
we, with many other mathematicians, write ⊂, ⊃, $,%, respectively. Unless the
context is quite unambiguous, it is still advisable to declare one’s choice between
these incompatible conventions in any piece of mathematical writing.

We note the careful distinction between the terms contain and include: “S contains
s” means s ∈ S, i.e., “s is a member of S”; “S includes T” means T ⊂ S, i.e., “every
member of T is a member of S”. (In very unusual circumstances, a set S may
both contain another set T — as a member — and include T — as a subset —
simultaneously!) This useful distinction was recommended by Paul Richard Halmos.
We shall adhere to it strictly; most mathematical writing does not.

13A. PROPOSITION. Let the sets A, B, C be given. Then

(13.1) (A ⊂ B and B ⊂ A) ⇔ A = B

(13.2) (A ⊂ B and B ⊂ C) ⇒ A ⊂ C

(13.3) (A $ B and B ⊂ C) ⇒ A $ C

(13.4) (A ⊂ B and B $ C) ⇒ A $ C.

Proof. (13.1) is a restatement of (12.1) with S := A and T := B. (13.2) follows
trivially from the definition of inclusion. If A ⊂ B and B ⊂ C and A = C, then
A ⊂ B and B ⊂ A; by (13.1) it follows that A = B = C; this observation, together
with (13.2), establishes (13.3) and (13.4).

We shall abbreviate “A ⊂ B and B ⊂ C” to “A ⊂ B ⊂ C”, and similarly for
more sets, as well as for formulas such as “A $ B ⊂ C” and “A ⊃ B % C.”

We remark that (13.1) describes the most frequently used strategic scheme for
proving equality of given sets.
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14. Set formation

Most sets are defined by specifying the properties that their members must have.
Such properties are embodied in predicates, or sentence fragments: in “n is even”, “2
divides n”, the sentence fragments “is even”, “2 divides ” are predicates, and they
become complete assertions when “the blanks are filled in”. It is a matter for logical
analysis to determine whether a string of words, symbols, and blanks corresponds to
a well-formed predicate.

If P ( ) is a predicate, the set consisting precisely of all objects x that satisfy the
assertion P (x) (i.e., all x for which P (x) holds, or is true) is denoted by

(14.1) {x | P (x)} .

This is read “the set of all x such that P (x) (holds).” This set is defined more
precisely by requiring that

(14.2) ∀y, y ∈ {x | P (x)} :⇔ P (y).

Most frequently, the members of the set to be defined are assumed a priori to
be members of a given set. If the set S and the predicate P ( ) are given, the set
consisting of all members x of S that satisfy the assertion P (x) is denoted by

(14.3) {x ∈ S | P (x)} .

This is read “the set of all x (contained) in S such that P (x) (holds).” This set
is obviously included in S. The following assertion holds:

(14.4) ∀y ∈ S, y ∈ {x ∈ S | P (x)} ⇔ P (y).

For instance, the set consisting of all even natural numbers is {n ∈ N | 2 divides n},
and a number n ∈ N is a member of this set (i.e., is even) if and only if 2 divides n.

In the notations (14.1) and (14.3), the symbol x is a “dummy”, and may therefore
be replaced, without changing the set, by any single symbol that does not appear in
the explicit formula for P ( ) (or in that for S).

Let the set S and the predicates P ( ) and Q( ) be given. Then the definitions and
(14.4) yield

(14.5) ({x ∈ S | P (x)} ⊂ {x ∈ S | Q(x)}) ⇔ (∀x ∈ S, P (x) ⇒ Q(x)) .

We observe that, for every set S and predicate P ( ),

(14.6) {x ∈ S | P (x)} ∗= {x | x ∈ S and P (x)} ,

thus potentially reducing the notation (14.3) to an instance of (14.1). The notation
(14.3) is not, however, merely a convenient abbreviation. The set-forming notation
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(14.1) relies on the premise that, for the given predicate P ( ), there is a set consisting
precisely of all objects x that satisfy P (x). Indiscriminate reliance on this premise for
all conceivable predicates may unfortunately lead to complications, known as “para-
doxes”. We may regard it as a guideline of well-formulated mathematical discourse
that the set-forming notation (14.3) is to be preferred whenever it is available. We
shall therefore restrict our use of (14.1) to a few indispensable occasions (and indi-
cate its use by means of an asterisk, as in (14.6)); it is taken for granted that this
exceptional use is permissible.
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15. Special sets

The set

Ø :
∗
= {x | x 6= x}

has no members: indeed, for every object y, the assertion y 6= y is false, and (14.2)
disqualifies y for membership in Ø. By (12.1), Ø is the only set with no members; it
is called the empty set. Ø is a subset of every set: for every given set S we have
Ø = {x ∈ S | x 6= x} ⊂ S.

A set S is said to be empty if S = Ø and non-empty if S 6= Ø; the terms void
and non-void are sometimes encountered.

An essential peculiarity of the empty set must be noted. For every predicate P ( ),
the assertion (∀x ∈ Ø, P (x)) is true and the assertion (∃x ∈ Ø, P (x)) is false.
Indeed, this is the only case where a universally quantified assertion does not imply
the corresponding existentially quantified one: for every set S and predicate P ( ),

(15.1) S 6= Ø ⇔ ((∀x ∈ S, P (x)) ⇒ (∃x ∈ S, P (x))) .

An assertion of the form (∀x ∈ S, P (x)) is said to hold vacuously if S = Ø and it is
desired to stress that it holds for that reason. If a set S is known to be non-empty,
the assertion (∃x ∈ S, ) holds, and we may choose s ∈ S.

For every object s we define the set

{s} :
∗
= {x | x = s}

whose only member is s. This set must be carefully distinguished from the object
s itself. For instance, Ø is empty, but the collection {Ø} is not. A set S is called
a singleton if S = {s} for some object s. The set {s} is sometimes called the
singleton of s. We note that (12.1) implies

(15.2) ∀s, t, s = t ⇔ s ∈ {t} ⇔ {s} = {t} ,

and, for every set S,

(15.3) ∀s, s ∈ S ⇔ {s} ⊂ S.
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15A. PROPOSITION. Let the set S be given. Then S is empty or a singleton if
and only if

(15.4) ∀s, s′ ∈ S, s = s′.

Proof. If S is empty, (15.4) holds, since it is an abbreviation of

∀s ∈ S, (∀s′ ∈ S, s = s′) ,

which holds vacuously. If S is a singleton, we may choose t such that S = {t}. By
the definition of {t} and by (14.2), all s, s′ ∈ S = {t} satisfy s = t = s′, and thus
(15.4) holds.

Assume now that S satisfies (15.4) and is not empty. We may then choose t ∈ S.
By (15.3), {t} ⊂ S. On the other hand, let s ∈ S be given. By (15.4) with s′ := t
we have s = t, whence s ∈ {t} by (15.2); since s ∈ S was arbitrary, we conclude that
S ⊂ {t}. By (13.1) it follows that S = {t}, so that S is a singleton.

Many mathematical objects are defined according to the following scheme: “The
only such that is called ”; e.g., “For every positive real number s, the
only positive real number r such that r2 = s is called the (positive) square root
of s.” To formulate such a definition, two steps are necessary. First, to ascertain
that a given set S is a singleton — usually by proving that it satisfies (15.4) and is
not empty. In the example, this set would be {r ∈ P | r2 = s}. Second, to “extract”
the only, or unique, member from the singleton S. When the set S is known to be a
singleton, we shall write

s :∈ S

to mean that the object s is defined to be the only member of S. In the example we
should therefore write

√
s :∈ {r ∈ P | r2 = s}.

For given objects s, t, we define the set

{s, t} :
∗
= {x | x = s or x = t} .

We note that

(15.5) ∀s, t, {s, t} = {t, s} .

(15.6) ∀s, {s, s} = {s} .

A set S is called a doubleton if S = {s, t} for some distinct objects s, t.

We observe that we could have used (15.6) to define {s}, thus avoiding one minor
instance of the undesirable use of the set-forming notation (14.1).
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Quantification over singletons and doubletons takes specially simple forms. For
every predicate P ( ) we have

∀s, (∀x ∈ {s} , P (x)) ⇔ P (s) ⇔ (∃x ∈ {s} , P (x))

∀s, t, (∀x ∈ {s, t} , P (x)) ⇔ (P (s) and P (t))

∀s, t, (∃x ∈ {s, t} , P (x)) ⇔ (P (s) or P (t)) .

For every given set S we consider the collection consisting precisely of all subsets
of S. This collection is

P(S) :
∗
= {T | T is a set, and T ⊂ S} ;

it is called the power-set of S. By (14.2) we have

(15.7) for all sets S, T, T ⊂ S ⇔ T ∈ P(S).

We also define P×(S) := {T ∈ P(S) | T 6= Ø}, the collection of all non-empty
subsets of S.
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16. Basic operations

Let a collection of sets C be given. We consider the set whose members are
precisely the members of any set in C; more precisely, the set

⋃

C :
∗
= {x | x ∈ A for some A ∈ C};

this set is called the union of the collection C. We should also like to consider
the set whose members are precisely those objects that are members of all sets in C
simultaneously, i.e.,

(16.1) {x | x ∈ A for all A ∈ C}.

This formula becomes questionable when C is the empty collection: every conceivable
object would then qualify for membership, by (14.2), a situation to be avoided for
many reasons. We shall therefore frame our definition so as to exclude this eventuality.
Moreover, if C is not empty, then x ∈ A for all A ∈ C implies that x ∈ A for some
A ∈ C (by (15.1)); thus every object qualifying for membership in the set proposed in

(16.1) is already a member of
⋃

C. In accordance with our guidelines for set-forming

(Section 14), we shall therefore define, for every non-empty collection of sets C, the
set

⋂

C := {x ∈
⋃

C | x ∈ A for all A ∈ C} ∗= {x | x ∈ A for all A ∈ C};

this set is called the intersection of the collection C.

We observe that

(16.2)
⋃

Ø = Ø

(16.3) for every set A,
⋃

{A} =
⋂

{A} =
⋃

P(A) = A and
⋂

P(A) = Ø.

For given sets A,B, we introduce the notation

A ∪ B :=
⋃

{A,B} ∗
= {x | x ∈ A or x ∈ B},

A ∩ B :=
⋂

{A,B} = {x ∈ A | x ∈ B} ∗
= {x | x ∈ A and x ∈ B};

these sets are called the union of A and B, and the intersection of A and B,
respectively. The sets A and B are said to be disjoint if A ∩ B = Ø; A and B are
said to meet, and A is said to meet B, if A ∩ B 6= Ø.
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Let the set X and the collection C of subsets of X be given, so that C ⊂ P(X).
We can then define the union of C with respect to X, and the intersection of C
with respect to X, as

⋃

XC := {x ∈ X | x ∈ A for some A ∈ C},
⋂

XC := {x ∈ X | x ∈ A for all A ∈ C},

respectively. It is easy to verify that

(16.4)
⋃

XC =
⋃

C,

so that the notion of “union with respect to X” is in fact redundant. On the other
hand, it is also easy to verify that

(16.5)
⋂

XC =
⋂

(C ∪ {X}) =











⋂

C if C 6= Ø

X if C = Ø.

The operations of forming the union and intersection of collections obey certain
fundamental rules that reflect the rules for logical connectives and quantifiers. We
now record some of these rules.

16A. PROPOSITION. Let the collections of sets C, D, and the set X be given.
Then

(16.6)
⋃

(C ∪ D) = (
⋃

C) ∪ (
⋃

D)

(16.7)
⋂

(C ∪ D) = (
⋂

C) ∩ (
⋂

D) if C 6= Ø, D 6= Ø

(16.8)
⋂

X(C ∪ D) = (
⋂

XC) ∩ (
⋂

XD) if C,D ⊂ P(X)

(16.9)
⋃

C ⊂
⋃

D if C ⊂ D

(16.10)
⋂

C ⊃
⋂

D if C 6= Ø and C ⊂ D

(16.11)
⋂

XC ⊃
⋂

XD if C ⊂ D ⊂ P(X).
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16B. PROPOSITION. Let the sets A, B, C be given. Then

(16.12) A ∪A = A ∩A = A ∪ Ø = A and A ∩ Ø = Ø

(16.13) A ∪ B = B ∪ A and A ∩ B = B ∩A

(16.14) (A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C = A ∩ (B ∩ C)

(16.15) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C) and (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)

(16.16) A ⊂ B ⇔ A ∪B = B ⇔ A ∩B = A

(16.17) A ⊂ B ⇔ (A ∪ C ⊂ B ∪ C and A ∩ C ⊂ B ∩ C).

16C. REMARKS. (a): Because of rule (16.14), we may unambiguously write
A∪B ∪C and A∩B ∩C without parentheses; and the same license is in effect when
writing unions and intersections of more sets, such as A ∪ B ∪ C ∪D.

(b): For all s, t, it follows from the definitions that

(16.18) {s, t} = {s} ∪ {t}.

For all s, t, u, v, we may define {s, t, u} := {s} ∪ {t} ∪ {u} and {s, t, u, v} :=
{s} ∪ {t} ∪ {u} ∪ {v}. We observe that {s, t, t} = {s, t}, {s, s, s} = {s}, etc.

(c): For any given sets A, B, C, we have
⋃

{A,B,C} = A ∪ B ∪ C and
⋂

{A,B,C} = A ∩ B ∩ C, and similar formulas hold for sets A, B, C, D.

Let the sets A and B be given. We consider the set consisting of all members of
A that are not in B, i.e., the set

A\B := {x ∈ A | x /∈ B}

to be read “A without B”; this set called the set-difference of A and B. When
considering subsets of some set X that is fixed throughout some discussion, it is
sometimes useful to call the set X\A the complement of A in X (or with respect
to X), for every A ∈ P(X). We record some fundamental rules connecting set-
difference, union, and intersection; they reflect rules for negation and other logical
connectives.

16D. PROPOSITION. Let the sets A, B, C be given. Then

(16.19) A\A = Ø\A = Ø and A\Ø = A
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(16.20) (A∪B)\C = (A\C)∪(B\C) and (A∩B)\C = (A\C)∩B = (A\C)∩(B\C)

(16.21) A\(B∪C) = (A\B)∩(A\C) = (A\B)\C and A\(B∩C) = (A\B)∪(A\C)

(16.22) A\(B\C) = (A\B) ∪ (A ∩ C).

There are more general rules concerning these operations, when collections of
sets and even collections of collections of sets are involved; these rules are more
conveniently formulated in the language of families, and will be recorded later, in
Sections 44 and 45.

We mention one more operation. For given sets A, B, we consider the set

A△B := (A\B) ∪ (B\A);

this set is called the symmetric difference of A and B.

16E. PROPOSITION. Let the sets A, B, C be given. Then

(16.23) A△B = (A ∪ B)\(A ∩ B)

(16.24) A△A = Ø and A△Ø = A

(16.25) A△B = B△A

(16.26) (A△B)△C = A△(B△C)

(16.27) (A△B) ∩ C = (A ∩ C)△(B ∩ C).
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17. Pairs; product sets

For given objects a, b, we often need a mathematical object that expresses the
idea “a, and then b”, and thus depends on a, on b, and on the priority of a with
respect to b. We take it for granted that such an object is available; it is denoted
by (a, b); and these objects, provided for all a, b, are called pairs. (We note that a
may well be equal to b.) The essential fact about pairs is that from the pair (a, b)
it is possible to retrieve a and then b. (One should not be misled by the notation
“(a, b)”, which incorporates the symbols “a” and “b”; like any mathematical object,
(a, b) may be denoted by some other symbol or name, e.g., π := (a, b).) Specifically,
we take it for granted that

(17.1) ∀a, b, c, d, (a, b) = (c, d) ⇔ (a = c and b = d).

This property of pairs allows us to refer to a as the former component of the pair
(a, b), and to b as the latter component of the pair (a, b).

To be a bit more formal: an object π is a pair if π = (a, b) for some a, b. If π isH

a pair, (17.1) implies that the sets {x | ∃y, (x, y) = π} and {y | ∃x, (x, y) = π} are
singletons, and we may define

former component of π :
∗
ǫ {x | ∃y, (x, y) = π}

latter component of π :
∗
ǫ {y | ∃x, (x, y) = π}.

N

Let the sets A, B be given. It is necessary to consider the set consisting of those
pairs whose former components are members of A and whose latter components are
members of B. This set is

A×B :
∗
= {π | ∃a ∈ A, ∃b ∈ B, (a, b) = π};

it is called the product set of A and B.

When defining subsets of the product set A× B, it is customary to write

{(x, y) ∈ A× B | P (x, y)}

as an abbreviation of {π ∈ A × B | ∃x ∈ A, ∃y ∈ B, π = (x, y) and P (x, y)}, where
P ( , ) is a suitable two-place predicate. In particular, for every set A we define the
set

∆A := {(x, y) ∈ A×A | x = y};

this set is called the diagonal of A × A. This terminology is unambiguous, as will
follow from Proposition 17B,(c).

17A. REMARK. For given sets A, B, C, it is in general not the case that
(A× B) × C = A× (B × C).
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17B. PROPOSITION. (a): Let the sets A, B be given. Then A × B 6= Ø if and
only if A 6= Ø and B 6= Ø.

(b): Let the non-empty sets A, B, C, D be given. Then A×B = C ×D (if and)
only if A = C and B = D. In particular, A× B = B ×A (if and) only if A = B.

(c): Let the sets A, B be given. Then A×A = B × B (if and) only if A = B.

Proof. (a) is trivial. To prove (b), choose a ∈ A, b ∈ B, c ∈ C, d ∈ D. Let x ∈ A
be given; we have (x, b) ∈ A×B = C×D; hence (x, b) = (z, u) for suitable z ∈ C and
u ∈ D. By (17.1) we must have x = z ∈ C. Since x ∈ A was arbitrary, we conclude
that A ⊂ C. Repeating this proof, with A, B, C, D, b replaced by C, D, A, B, d,
respectively, we also conclude that C ⊂ A, and hence A = C. The proof that B = D
is similar, and uses a, c. (c) now follows from (a) and (b).

17C. PROPOSITION. Let the sets A, B, C, D be given. Then

(17.2) (A ∪ B) × C = (A× C) ∪ (B × C) A× (B ∪ C) = (A× B) ∪ (A× C)

(17.3) (A ∩B) × C = (A× C) ∩ (B × C) A× (B ∩ C) = (A×B) ∩ (A× C)

(17.4) (A\B) × C = (A× C)\(B × C) A× (B\C) = (A× B)\(A× C)

(17.5) (A× B) ∩ (C ×D) = (A ∩ C) × (B ∩D)

(17.6) If A× B 6= Ø, then (A ⊂ C and B ⊂ D) ⇔ A× B ⊂ C ×D.

There are rules more general than those recorded in Proposition 17C. They involve
unions and intersections of collections of sets, and are best formulated in the language
of families. They are special cases of the rules recorded in Section 44.

17D. REMARK. Many mathematicians have been uneasy about the idea of intro-H

ducing the concept of pair as an undefined notion, subject to (17.1), and have looked
for construction of sets that would serve the required purpose; they aimed at reducing
the foundational complexity, at the cost of an artificial, counter-intuitive construc-
tion, containing structure that is irrelevant for the purpose at hand. It should be
noted in passing that the most ingenuous idea of taking the set {a, b} to be the pair
(a, b) for all a, b fails to satisfy (17.1) whenever a 6= b and we set c := b, d := a.

The most frequently encountered successful construction of this kind defines pairs

by setting (a, b) := {{a}, {a, b}} for all a, b. Under this definition,
⋂

(a, b) = {a}
and

⋃

(a, b) = {a, b}. Thus every pair P is a non-empty collection of sets such that
⋂

P is a singleton and (
⋃

P)\(
⋂

P) is either a singleton or the empty set; and we
may set
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(17.7) p :∈
⋂

P

(17.8) q











:∈ (
⋃

P)\(
⋂

P) if
⋃

P 6=
⋂

P

:= p if
⋃

P =
⋂

P.

We then find that

∀a, b, P = (a, b) ⇔ (a = p and b = q).

This shows that (17.1) holds; and (17.7) and (17.8) provide the definitions of the
former and latter components of the pair P.

Let the sets A, B be given. With this definition of pairs, the product set of A
and B becomes a subset of P(P(A ∪ B)), namely

A×B := {P ∈ P(P(A ∪ B)) | ∃a ∈ A, ∃b ∈ B, P = {{a}, {a, b}}}.
N
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18. Partitions

A collection of sets C is said to be disjoint if distinct members of C are disjoint;
more precisely, if

∀A,B ∈ C, A ∩ B 6= Ø ⇒ A = B.

Every subcollection of a disjoint collection of sets is obviously also disjoint.

Let the set S be given. A collection C of subsets of S is said to cover S, and is

called a covering of S, if
⋃

C = S. A disjoint collection of non-empty subsets of S

that covers S is called a partition of S. In other words, a collection P ∈ P(P(S))
is a partition of S if and only if it satisfies the following conditions:

(Part 1): Ø /∈ P
(Part 2):

⋃

P = S

(Part 3): ∀E, F ∈ P, E ∩ F 6= Ø ⇒ E = F.

(Note that (Part 1) can be omitted if the implication in (Part 3) is replaced by
equivalence.)

18A. EXAMPLES. (a): Every set S has the discrete partition {E ∈ P(S) | E
is a singleton}. If S 6= Ø, S also has the trivial partition {S} (discrete and trivial
partitions coincide if and only if S is a singleton). The only partition of the empty
set is the empty collection. If A is a subset of S, then {A, S\A} is a partition of S if
and only if Ø $ A $ S.

(b)*: The collections {−P×,P}, {−P×, {0},P×}, {[n, n+ 1[ | n ∈ Z} are partitions
of R.

18B. PROPOSITION. Let the set S and the partitions P and Q of S be given. If
Q ⊂ P, then Q = P.

Proof. We assume that Q ⊂ P. Let E ∈ P be given. Then E 6= Ø, and we
may choose a ∈ E. Since Q covers S, we may choose F ∈ Q such that a ∈ F .
Since a ∈ E ∩ F , and P is a disjoint collection containing E and F , we must have
E = F ∈ Q. Since E ∈ P was arbitrary, we conclude that P ⊂ Q.

Let the set S and the partitions P and Q of S be given. Q is said to be coarser
than P, and P is said to be finer than Q, and one writes Q ⊏ P or P ⊐ Q, if every
member of P is included in some member of Q, i.e., if

∀E ∈ P, ∃F ∈ Q, E ⊂ F.

18C. PROPOSITION. Let the set S and the partitions P and Q of S be given. Then
Q is coarser than P if and only if P ∩P(F ) is a partition of F for every F ∈ Q.

Proof. Assume first that Q is coarser than P. Let F ∈ Q be given. Since
P is a partition, it is evident that the subcollection P ∩ P(F ) is disjoint and that
Ø /∈ P ∩ P(F ). It remains to show that P ∩ P(F ) covers F . Let x ∈ F be given.
Since P covers S, we may choose E ∈ P such that x ∈ E. Since Q ⊏ P, we may
further choose G ∈ Q such that E ⊂ G. Then x ∈ F ∩ G; since Q is disjoint, we
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must have G = F , so that E ⊂ F , and hence E ∈ P ∩P(F ) and x ∈
⋃

(P ∩P(F )).

Since x ∈ F was arbitrary, we conclude that F ⊂
⋃

(P ∩P(F )). On the other hand,
⋃

(P ∩P(F )) ⊂
⋃

P(F ) = F .

To prove the converse implication, assume that P ∩P(F ) is a partition of F for
every F ∈ Q. Let E ∈ P be given. Since E 6= Ø, we may choose a ∈ E. Since Q
covers S, we may choose F ∈ Q such that a ∈ F . Since P ∩P(F ) covers F , we may
choose G ∈ P ∩P(F ) such that a ∈ G. Thus a ∈ E ∩ G, and since P is disjoint we
must have E = G ⊂ F . Since E ∈ P was arbitrary, we conclude that Q is coarser
than P.

18D. PROPOSITION. Let the set S and the partitions P,Q,R of S be given. Then

(18.1) P ⊏ P

(18.2) (Q ⊏ P and P ⊏ Q) ⇒ P = Q

(18.3) (P ⊏ Q and Q ⊏ R) ⇒ P ⊏ R.

Proof. (18.1) and (18.3) are trivial. To prove (18.2), we assume that Q ⊏ P
and P ⊏ Q. Let E ∈ P be given. Since Q ⊏ P, we may choose F ∈ Q such that
E ⊂ F . Since P ⊏ Q, we may further choose G ∈ P such that F ⊂ G. Then E ⊂ G,
and hence E ∩ G = E 6= Ø. Since P is disjoint, we must have E = G, and hence
E = F ∈ Q. Since E ∈ P was arbitrary, this implies P ⊂ Q. The reverse inclusion
follows by the same argument with P and Q interchanged, or by using Proposition
18B.
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MAPPINGS

21. The concept of a mapping

The idea of a mapping, along with that of a set, is one of the most basic of all
mathematics. Any kind of unambiguous method by which one associates with every
object in some set a member of another set (possibly the same set) determines a
mapping. Thus, in order to specify a mapping f , one first has to prescribe sets D
and C, say, and then some kind of definite procedure by which one can assign to
every element x ∈ D an element f(x) ∈ C. We call f(x) the value of f at x. It is
important to distinguish very carefully between the mapping f itself and its values
f(x). Thus f is a mapping, while f(x) is a member of C. In older mathematics texts
the two are often not sharply distinguished, but such confusion is not permissible in
contemporary mathematics. When specifying a mapping, it is also very important
to make sure that the procedure under consideration can in fact be applied to every
member of D.

The set D of objects to which the procedure determining the mapping f can be
applied is called the domain of the mapping f and is denoted by Domf := D. The
set C to which the values of f must belong is called the codomain of f and is
denoted by Codf := C. In order to put D and C into full view, one often writes

f: D → C or D
f→ C

and says that f maps D to C, or that f is a mapping from D to C. The phrase
“f is defined on D” expresses the assertion that D is the domain of f .

Suppose that sets D and C are given. Let two procedures be given such that each
assigns to every member of D a value in C. We say that both procedures determine
the same mapping from D to C if to each member of D they both assign the same
value. Thus, if f and g are mappings, we have f = g if and only if

D := Domf = Domg and Codf = Codg and f(x) = g(x) for all x ∈ D.

19
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Terms such as function, map, functional, transformation, and operator are often
used to mean the same thing as mapping. The term function is preferred when the
codomain is a subset of the set of real numbers or of the set of complex numbers. A
still greater variety of names is used for mappings having special properties. Moreover,
in some contexts, the value of f at x is not written f(x) but, among others, fx, xf, xf ,
or fx. In particular, when the domain of f is a set of pairs, one pair of parentheses is
customarily omitted, so that the value of f at the pair (x, y) is then written f(x, y).

In order to specify a mapping f explicitly without introducing unnecessary sym-
bols, it is often useful to employ the notation x 7→ f(x) instead of just f . (Note
that we use 7→ instead of → for this purpose.) For example, the “squaring func-
tion” sq : R → R, defined by sq(x) := x2 for all x ∈ R, may be denoted by
(x 7→ x2) : R → R, and one need not waste a symbol such as “sq” to give it a
name. In most contexts it is very important to make a sharp distinction between the
number x2 and the squaring function x 7→ x2.

Mathematicians have the habit of considering, so soon as a certain kind of object
is defined, the set of all objects of that kind. Thus, given sets D and C, we can
consider the set of all mappings from D to C. This set is denoted by Map(D,C), so
that

Map(D,C) :
∗
= {f, a mapping | Domf = D, Codf = C}.
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22. The graph of a mapping

Consider a mapping f: D → C. We can associate with f a subset Grf , called the
graph of f , of the product set D × C as follows:

(22.1) Grf := {(x, y) ∈ D × C | y = f(x)} ⊂ D × C.

Thus, Grf consists of all pairs of the form (z, f(z)), z ∈ D.

Not every subset of D × C is, in general, the graph of a mapping; those subsets
that are graphs can be characterized rather neatly. If D and C are intervals and if
we represent D × C as a rectangle in a plane, this characterization will say that the
graphs of mappings from D to C are precisely those subsets of D × C that are cut
by every vertical in exactly one point.
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22A. PROPOSITION. Let the sets D and C and the subset G of D × C be given.
If G is the graph of a mapping from D to C, then

(22.2) {y ∈ C | (x, y) ∈ G} is a singleton for every x ∈ D.

Conversely, if G satisfies (22.2), then G is the graph of exactly one mapping from
D to C, namely f: D → C defined by

(22.3) f(x) :∈ {y ∈ C | (x, y) ∈ G} for every x ∈ D.

Proof . Assume that G = Grf for some mapping f : D → C, and that x ∈ D is
given. If y ∈ C is such that (x, y) ∈ G = Grf , (22.1) implies that (x, y) = (z, f(z))
for a suitable z ∈ D. Therefore z = x and y = f(z) = f(x). Thus {y ∈ C | (x, y) ∈
G} = {f(x)} is a singleton. Since x ∈ D was arbitrary, G satisfies (22.2).
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Assume, conversely, that G satisfies (22.2); as we have just seen, if G is to be the
graph of f : D → C we must have f(x) ∈ {y ∈ C | (x, y) ∈ G}; this shows that G is
the graph of at most one f: D → C, namely the one defined by (22.3). But with this
choice of f we find that, for all (x, y) ∈ D × C,

(x, y) ∈ G ⇔ y ∈ {z ∈ C | (x, z) ∈ G} ⇔ y ∈ {f(x)} ⇔ y = f(x);

and (22.1) then shows that indeed G = Grf .

There is thus a one-to-one correspondence between mappings from D to C on the
one hand, and certain subsets of D×C on the other. One can use this correspondence
to identify each mapping with its graph. Some mathematicians therefore say that a
mapping is a set of pairs of objects taken from specified sets, i.e., a subset of a
specified product set, and they do not distinguish between a mapping and its graph.
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23. The range of a mapping; images and
pre-images; the partition of a mapping

It is important to realize that not all members of the codomain C of a mapping
f : D → C need be values of f . Those members of C that are values of f form a
subset of C called the range of f and denoted by Rngf . More precisely,

Rngf := {y ∈ C | y = f(x) for some x ∈ D} ⊂ C.

In order to test whether a given element y in C belongs to the range of f , one has to
search for a x ∈ D such that y = f(x).

The domain and the codomain are part of the specification of a mapping and must
therefore be given when a mapping is given. The range, however, is often unknown
beforehand, and it may be quite difficult (and often uninteresting) to determine it.
Consider, for example, the function (x 7→ x4 + 6x3 − 2x) : R → R. It is easily seen
that −1000000 is not a member of the range of this function, and that therefore the
range is not equal to the codomain R; it would, however, be a major undertaking to
find out what the range of this function is exactly.

Many problems in mathematics consist in asking whether a given equation has
solutions. Such problems are called existence problems. An equation can be written
in the form

(23.1) ?x ∈ D, f(x) = c

where f: D → C is a suitably defined mapping and c a suitably prescribed member of
the codomain C. We read (23.1) as “For which x ∈ D, if any, does f(x) = c hold?”.
An element d ∈ D such that f(d) = c is called a solution of the equation (23.1).
The existence problem for (23.1) is then equivalent to the following question: Is c a
member of the range of f? If it is, then (23.1) has solutions; if it is not, then (23.1)
has no solutions at all. If the range of f is known, then the existence problem can be
solved for every choice of c ∈ C. Thus, to determine the range of f is equivalent to
solving the existence problems for the equation (23.1) for all choices of c ∈ C.

A mapping is said to be surjective, and is called a surjection, if its range
happens to coincide with its codomain. If f: D → C is a surjection, i.e., if Rngf = C,
we also say that f maps D onto C (rather than merely to C). To say that f is
surjective is equivalent to saying that the equation (23.1) always has solutions, no
matter how c ∈ C is chosen.

Whether a mapping is surjective or not depends crucially on the specification of
the codomain. For example, the “squaring function” sq: R → R defined in Section 21
is not surjective, because −1 is not a member of the range of sq. However, if we let
the codomain be the set P of positive numbers (i.e., numbers not less than 0), then
sq : R → P, defined by sq(x) := x2 for all x ∈ R, is surjective. The functions sq and
sq differ only in the specification of the codomain; the domain and the rule that is
used to compute their values is the same. We shall discuss surjective mappings and
their properties in more detail in Section 32.
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Consider again a given mapping f: D → C. If U is any subset ofD, i.e., U ∈ P(D),
we define the image of U under f to be the set of all values of f at members of
the domain that belong to U . We denote this image by f>(U), so that

(23.2) f>(U) := {y ∈ C | y = f(x) for some x ∈ U} ⊂ C.

It is sometimes convenient to use the notation

{f(x) | x ∈ U} := f>(U),

especially when no explicit name for f is available; this avoids the cumbersome no-
tation (x 7→ f(x))>(U). More generally, if P ( ) is a given predicate, we use the
notation

{f(x) | P (x)} := f>({x ∈ Domf | P (x)}).

Observe that this introduces usages of “set-forming braces” that are different from
the one introduced in Section 14, and used, e.g., in (23.2); there will be no confusion,
however, although the formula is read in a similar way: “The set of all ... such that
...”.

The rule (23.2) defines a new mapping

f> : P(D) → P(C),

which is called the image mapping induced by the mapping f . The value of f>

at D ∈ P(D) is the range of f , i.e., f>(D) = Rngf . Therefore f is surjective if and
only if f> (Domf) = Codf . Note that the image under f of the empty set is always
the empty set again, no matter what f is: f>(Ø) = Ø. The image of a singleton is a
singleton: f>({x}) = {f(x)} for all x ∈ D.

In most contexts, D and P(D) have nothing in common. When this is the case,
no confusion can arise when one writes f(U) instead of f>(U) for each U ∈ P(D),
and many mathematicians do so. We usually do not.

Let V be any subset of the codomain C of the given mapping f : D → C. The
pre-image of V under f is defined to be the set of all members of D at which the
values of f belong to V . We denote this pre-image by f<(V ), so that

(23.3) f<(V ) := {x ∈ D | f(x) ∈ V } ⊂ D.

The rule (23.3) defines a new mapping,

f< : P(C) → P(D),

which is called the pre-image mapping induced by the mapping f . Note that the
pre-image under f of the empty set is always the empty set, while the domain of f is
the pre-image both of the codomain and of the range of f: thus f<(Ø) = Ø, f<(C) =
f<(Rngf) = D.

Many mathematicians use the symbol f−1 instead of f< for the induced pre-image
mapping. We shall never do so, because of the danger of confusion with various other
objects.
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Applying the preceding definitions to the mappings f> and f< instead of f itself,
we can construct the mappings (f> )> and (f< )< from P(P(D)) to P(P(C)) and the
mappings (f>)< and (f <)> from P(P(C)) to P(P(D)). In the following proposition
we collect some elementary rules satisfied by the image and pre-image mappings
induced by a given mapping. The proofs are left to the reader.

23A. PROPOSITION. The mappings f> and f< induced by a given mapping f :
D → C satisfy the following rules for all subsets U, U ′, U ′′ of D, all subsets V, V ′, V ′′

of C, all subcollections U of P(D), and all subcollections V of P(C):

(23.4) U ′ ⊂ U ′′ ⇒ f> (U ′) ⊂ f>(U ′′)

(23.5) V ′ ⊂ V ′′ ⇒ f <(V ′) ⊂ f <(V ′′)

(23.6) f>(U) ⊂ V ⇔ U ⊂ f<(V )

(23.7) f<(f> (U)) ⊃ U

(23.8) f> (f<(V )) = V ∩ Rngf ⊂ V

(23.9)
f > (

⋃

U) =
⋃

(f> )>(U) =
⋃

{f>(S) | S ∈ U}
and in particular f>(U ′ ∪ U ′′) = f>(U ′) ∪ f>(U ′′)

(23.10)
f>(

⋂

DU) ⊂
⋂

C(f>)>(U) =
⋂

C{f>(S) | S ∈ U}
and in particular f>(U ′ ∩ U ′′) ⊂ f>(U ′) ∩ f>(U ′′)

(23.11) f>(U ∩ f<(V )) = f>(U) ∩ f>(f<(V )) = f>(U) ∩ V

(23.12)
f<(

⋃

V) =
⋃

(f<)>(V) =
⋃

{f<(T ) | T ∈ V}
and in particular f<(V ′ ∪ V ′′) = f<(V ′) ∪ f<(V ′′)

(23.13)
f<(

⋂

CV) =
⋂

D(f<)>(V) =
⋂

D{f<(T ) | T ∈ V}
and in particular f<(V ′ ∩ V ′′) = f<(V ′) ∩ f<(V ′′)

(23.14) f<(C\V ) = D\f<(V ).

Let a mapping f : D → C again be given. The pre-images under f of singletons
are particularly interesting subsets of the domain D. We note that for every y ∈ C we
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have f<({y}) 6= Ø if and only if y ∈ Rngf . These non-empty pre-images of singletons
actually constitute a partition of D, called the partition of f ; it is denoted by Partf ,
and is given by

Partf := {f<({y}) | y ∈ Rngf} ⊂ P(D).

We verify that this is indeed a partition of D; its members are non-empty; for ev-
ery x ∈ D we have f(x) ∈ Rngf and hence x ∈ f<({f(x)}) ∈ Partf , so that D =
⋃

Partf ; and for all y, z ∈ Rngf , (23.13) shows that f<({y}) ∩ f<({z}) =

f<({y} ∩ {z}), so that the former intersection is not empty if and only if y = z
and hence f <({y}) = f<({z}).
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24. Inclusion, identity, and partition
mappings

We introduce some simple mappings that are helpful in keeping accounts of sets
and mappings straight.

Let S be a set, and U a subset of S. We define the mapping 1U⊂S : U → S by the
rule

1U⊂S(x) := x for all x ∈ U ;

this mapping is called the inclusion mapping of U into S. It is obvious that
Rng1U⊂S = U . We note the formulas

(1U⊂S) > = 1P(U)⊂P(S), (1U⊂S)<(T ) = T ∩ U for all T ∈ P(S).

It may be useful to point out that the definition of 1U⊂S remains meaningful
(although vacuously so) if U = Ø. Indeed, 1Ø⊂S is the only mapping from Ø to S (cf.
Section 21 or Proposition 22A). On the other hand, there is obviously no mapping
from a non-empty set to the empty set.

For each set S we have the mapping 1S := 1S⊂S; it is called the identity mapping
of S. The mapping 1S is obviously surjective.

Let P be a partition of a set S. For every x ∈ S, the collection {E ∈ P | x ∈ E} is

a singleton: it is not empty, since x ∈ S =
⋃

P and if x ∈ E ∈ P and x ∈ F ∈ P, then

E ∩ F 6= Ø and therefore E = F . We may therefore define a mapping ΩP : S → P
by the rule

ΩP(x) :∈ {E ∈ P | x ∈ E} for all x ∈ S.

This mapping is called the partition mapping of P. We find that x ∈ ΩP(x) for
all x ∈ S, and Ω <

P ({E}) = E for every E ∈ P, so that RngΩP = PartΩP = P. We

further note that Ω <

P (A) =
⋃

A for every subcollection A of P.

For every mapping f : D → C, we have x ∈ f< ({f(x)}), and therefore

ΩPartf (x) = f<({f(x)}) for all x ∈ D.
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25. Composition of mappings; diagrams;
restrictions and adjustments

Assume that a mapping f : D → C and a mapping g: C → B are given, so that
the codomain of the former is the domain of the latter. A new mapping g ◦f: D → B
is then defined by the rule

(g ◦ f)(x) := g(f(x)) for all x ∈ D.

This mapping is called the composite of f and g, and is said to be obtained by
composition of f with g. We read g ◦ f as “f composed with g” (note the
reversal of priority). Thus the values of g ◦ f are obtained by first operating with f
and then on the resulting values with g. The equality Codf = Domg is essential to
the definition of g ◦ f ; if this condition is satisfied, then Dom(g ◦ f) = Domf and
Cod(g ◦ f) = Codg.

Composition of mappings obeys the associative law in the following sense: If
f, g, h are mappings with Domg = Codf and Domh = Codg, then

(h ◦ g) ◦ f = h ◦ (g ◦ f).

This rule is an almost immediate consequence of the definition of composition. Be-
cause of this rule, we may unambiguously write h ◦ g ◦ f without parentheses; and a
similar license is in effect for denoting composites of more mappings, provided that
the domains and codomains are appropriately matched.

We note that f ◦ 1Domf = 1Codf ◦ f = f for every mapping f .

Suppose that f, g are mappings such that Domg = Codf . Then Dom(g>) =
P(Domg) = P(Codf) = Cod(f>) and similarly Dom(f<) = Cod(g<), and the fol-
lowing rules hold:

(25.1) (g ◦ f)> = g> ◦ f>

(25.2) (g ◦ f) < = f < ◦ g <

(25.3) Rng(g ◦ f) = g >(Rngf) ⊂ Rngg

(25.4) Part(g ◦ f) ⊏ Partf.

All these rules, except perhaps (25.4), follow trivially from the definitions. To prove
(25.4), we let y ∈ Rngf be given. Then g(y) ∈ Rng(g ◦ f), and {y} ⊂ g <({g(y)}),
so that, using (23.5) and (25.2),

f <({y}) ⊂ f <(g <({g(y)}) = (g ◦ f) <({g(y)}) ∈ Part(g ◦ f).

Since y ∈ Rngf was arbitrary, the definition of Partf in Section 23 shows that (25.4)
holds.
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A complicated situation involving several mappings can often be made clearer by
means of an informal graphic device called a diagram. Simple examples of diagrams
are
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A diagram consists of places, each labelled with (the name of) a set, and arrows,
each labelled with (the name of) a mapping. The sets in the places at the head and
the tail of an arrow labelled f are the domain and the codomain of f , respectively.
In our first example the mappings are f : A → B, g : B → C, h : A → C. Our
second example illustrates the fact that the same set may appear in more than one
place, and the same mapping on more than one arrow. Mappings that are labels of
consecutive (i.e., head-to-tail) arrows can always be composed.

If, in our first example, h = g ◦ f , this diagram is said to be commutative; the
second diagram is said to be commutative if g ◦ f= h ◦ f ; the third, if f = p ◦ h and
k= g ◦ p (it then follows that g ◦ f = k ◦ h, etc.). More generally, a diagram is said
to be commutative if, for any two chains of consecutive arrows that go from the same
initial place to the same final place, the corresponding composites of mappings are
equal. Commutativity of a diagram is often indicated by the symbol ××.

Let the mapping f and the sets A and B be given. If A ⊂ Domf , we define a
new mapping f |A : A → Codf by f |A(x) := f(x) for all x ∈ A. We call f |A the
restriction of f to A. More generally, if A ⊂ Domf and B ⊃ f>(A), we define
f |BA : A → B by f |BA(x) := f(x) for all x ∈ A. We say that f |BA is obtained from
f by adjustment; and we say that f induces a given mapping g if g is obtained
from f by adjustment. Of course f |Codf

A = fA. For arbitrary B we note that, by
(23.8), f>(f<(B ∩ Codf)) = f>(f<(B ∩ Rngf)) = B ∩ Rngf ⊃ B, and we define
f |B := f |Bf<(B∩Codf) = f |Bf<(B∩Rngf). We have Dom(f |B) = Domf if and only if B ⊃
Rngf . We say that f |B is obtained from f by adjusting the codomain to B.
The surjective reduction f |Rng : Domf → Rngf of f is defined by adjusting the
codomain to the range, i.e., by f |Rng := f |Rngf . We note that, if A ⊂ Domf and
B ⊃ Rngf , then

f |A = f ◦ 1A⊂Domf f |B = 1Rngf⊂B ◦ f |Rng.

Let the mappings f : D → C and f ′ : D′ → C ′ be given. For every subset S of
D ∩D′, f and f ′ are said to agree on S, and f is said to agree with f ′ on S, if
f(s) = f ′(s) for all s ∈ S, i.e., if f |C∪C′S = f ′|C∪C′S .

Let the sets A and B be given. For every a ∈ A and b ∈ B we define the mappings
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(·, b) : A→ A×B and (a, ·) : B → A×B by the rules

(·, b)(x) := (x, b) for all x ∈ A (a, ·)(y) := (a, y) for all y ∈ B.

These notations are used in contexts in which the sets A and B are understood, and
most frequently in conjunction with a mapping f with Domf ⊂ A × B. It is then
customary to write f(·, b) := f ◦ (·, b)|Domf and f(a, ·) := f ◦ (a, ·)|Domf , so that

(25.5) (f(·, b))(a) = f(a, b) = (f(a, ·))(b) for all(a, b) ∈ Domf.

For every D ∈ P(A×B) we define

D⊤ := {(y, x)|(x, y) ∈ D} ∈ P(B × A)

and the mapping ⊤D : D → D⊤ by

⊤D(x, y) := (y, x) for all (x, y) ∈ D.

We note that (A×B)⊤ = B×A, D⊤ = (⊤A×B)>(D), ⊤D = (⊤A×B)|D⊤D , D⊤⊤ =
D, and ⊤D⊤ ◦ ⊤D = 1D.

For every mapping f with Dom f = D ∈ P(A × B) we define the mapping f⊤

with domain D⊤ and Codf⊤ := Codf by f⊤ := f ◦ ⊤D⊤ , so that

f⊤(y, x) = f(x, y) for all (y, x) ∈ D⊤.
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26. Mappings from a set to itself

There are some useful notions that pertain only to mappings from a set to itself.

Let the set D be given. The mapping

((f, g) 7→ g ◦ f) : Map(D,D) × Map(D,D) → Map(D,D),

called composition in D, of course satisfies the associative law

(h ◦ g) ◦ f = h ◦ (g ◦ f) for all f, g, h ∈ Map(D,D)

as well as

f ◦ 1D = f = 1D ◦ f for all f ∈ Map(D,D),

but in general not the commutative law: g◦f 6= f ◦g for some f, g ∈ Map(D,D). (The
only exceptions occur when D is empty or a singleton.) For given f, g ∈ Map(D,D),
we say that f and g commute, or that f commutes with g, if g◦f = f ◦g. A subset
F of Map(D,D) is said to be commutative if f and g commute for all f, g ∈ F .

A mapping f : D → D is said to be idempotent if f ◦ f = f ; it is said to be
involutory, and is called an involution, if f ◦ f = 1D.

Many questions in mathematics can be reduced to solving a problem of the form

?x ∈ D, f(x) = x

where f : D → D is a suitable mapping. A solution to this problem, i.e., a member
d of D such that f(d) = d, is called a fixed point of f . We shall encounter later
several important cases in which the existence of a fixed point can be established. We
define

Fixf := {x ∈ D | f(x) = x},
the set of all fixed points of f .

Let the set D and the mapping f: D → D be given. A subset S of D is said to be
stable under f , or f -stable for short, if f>(S) ⊂ S. We note that d ∈ D is a fixed
point of f if and only if {d} is stable under f ; this observation is used to derive Part
(b) from Part (a) in the following proposition.

26A. PROPOSITION. Let the set D and the mappings f, g ∈ Map(D,D) be given,
and assume that f and g commute.

(a): If the subset S of D is stable under f , then g>(S) is also stable under f .

(b): If x ∈ D is a fixed point of f , then g(x) is also a fixed point of f . Consequently,
if x ∈ D is the only fixed point of f , then x is also a fixed point of g.

26B. EXAMPLE. Let the set D and the mapping f: D → D be given. Every fixed
point of f is plainly also a fixed point of f ◦ f ◦ f ◦ f . Assume, on the other hand,
that x ∈ D is the only fixed point of f ◦ f ◦ f ◦ f . Since f ◦ f ◦ f ◦ f and f commute,
Proposition 26A shows that x is also a fixed point of f ; and it is then the only one.
(The same argument is valid with f ◦ f or f ◦ f ◦ f instead of f ◦ f ◦ f ◦ f .)
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26C. PROPOSITION. Let the set D and the mapping f: D → D be given. Then f
is idempotent if and only if the range of f is the set of fixed points of f , i.e.,

Rngf = Fixf.

Proof. Obviously, Fixf ⊂ Rngf .

Assume first that Rngf ⊂ Fixf , and let z ∈ D be given. Then f(z) ∈ Rngf , and
hence f(f(z)) = f(z). Since z ∈ D was arbitrary, we conclude that f is indempotent.

Assume, conversely, that f is idempotent, and let y ∈ Rngf be given. We may
choose z ∈ D such that f(z) = y, and find f(y) = f(f(z)) = f(z) = y. Since
y ∈ Rngf was arbitrary, we have Rngf ⊂ Fixf.



Chapter 3

PROPERTIES OF MAPPINGS

31. Constants

Mappings of a very simple kind are the constants, that is, mappings that have the
same value at all members of the domain. More formally, a mapping f : D → C is
said to be constant, and is called a constant (mapping), if

(Const): ∀x, x′ ∈ D, f(x) = f(x′).

Obvious equivalent variants of this definiens are:

(Const1): Part f is {D} (when D 6= Ø) or Ø (when D = Ø).

(Const2): Rngf is a singleton (when D 6= Ø) or Ø (when D = Ø).

Given the sets D and C and c ∈ C, the mapping f : D → C defined by the rule
f(x) := c for all x ∈ D is a constant, since f<({c}) = D; it is denoted by cD→C . Every
constant other than 1Ø is of this form. In many contexts it would be pedantic to use
different symbols for a constant and its only value; but the conceptual distinction
must always be kept in mind; thus cD→C is often abbreviated to c if confusion is
unlikely. We make a trivial remark: If D 6= Ø and f : D → C is constant, then
f = f(d)D→C for each d ∈ D; and if C 6= Ø, then 1Ø⊂C = cØ→C for every c ∈ C. A
consequence of this remark is that, for all sets D and C, Map(D,C) = Ø if and only
if D 6= Ø but C = Ø.

31A. PROPOSITION. Let mappings f and g be given with Domg = Codf. Then
g ◦ f is constant if f is constant or if g is constant.

31B. PROPOSITION. Let the mapping f : D → C be given. The following state-
ments are equivalent:

(Const): f is constant.

(Const3): There are mappings g: D → S and h: S → C such that f = h ◦ g and S
is empty or a singleton.

33
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32. Injective, surjective, and bijective
mappings

Consider a given mapping f : D → C. In Section 23, we discussed the notion of
solution of equation (23.1), i.e.,

(32.1) ?x ∈ D, f(x) = c

where c ∈ C is given. We observe that the set of all solutions of (32.1) is precisely
f<({c}). If equation (32.1) has solutions, i.e., if f<({c}) 6= Ø, or, equivalently c ∈
Rngf , it is usual to say that (32.1) has at least one solution; the problem of
ascertaining whether this is the case was called an existence problem in Section 23.
If, on the other hand, the set f<({c}) of solutions of (32.1) is either empty or a
singleton, it is usual to say that (32.1) has at most one solution; and the problem
of ascertaining whether this is the case is called a uniqueness problem. If the set
f<({c}) of solutions of (32.1) is actually a singleton, one says that (32.1) has exactly
one solution, or, less aptly, that (32.1) has a unique solution.

In this section we discuss properties of a mapping f that ensure an affirmative
answer to the existence problem, to the uniqueness problem, or to both, for equation
(32.1) no matter how c ∈ C is chosen. One of these properties, namely surjectivity,
was already introduced in Section 23.

In this and subsequent sections, many propositions come in pairs, or even triples,
of analogues; the propositions in the same pair or triple are given the same designation
with a distinguishing addition, namely L (“left”), R (“right”), and, if necessary, B
(“bilateral”).

A mapping f : D → C is said to be injective, and is called an injection, if it
satisfies the following condition:

(Inj): ∀x, x′ ∈ D, f(x) = f(x′) ⇒ x = x′.

Obvious equivalent variants of this definiens are:

(Inj1): ∀y ∈ C, f<({y}) is empty or a singleton.

(Inj2): For every c ∈ C, the equation ?x ∈ D, f(x) = c has at most one solution.

(Inj3): Partf = {{x} | x ∈ D}, the discrete partition of D.

A mapping f : D → C is said to be surjective, and is called a surjection (cf.
Section 23), if it satisfies the following condition:

(Surj): ∀y ∈ C, ∃x ∈ D, f(x) = y.

Obvious equivalent variants of this definiens are:

(Surj1): ∀y ∈ C, f<({y}) 6= Ø.

(Surj2): For every c ∈ C, the equation ?x ∈ D, f(x) = c has at least one solution.

(Surj3): Rngf = C.

A mapping f : D → C is said to be bijective, and is called a bijection, if it
satisfies the following condition:

(Bij): f is both injective and surjective.
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Obvious equivalent variants of this definiens are:

(Bij1): ∀y ∈ C, f<({y}) is a singleton.

(Bij2): For every c ∈ C, the equation ?x ∈ D, f(x) = c has exactly one solution.

(Bij3): Partf = {{x} | x ∈ D} and Rngf = C.

We note that every inclusion mapping is injective, every partition mapping is
surjective (and bijective if and only if the partition is the discrete partition of the
domain), and every identity mapping is bijective.

32A. PROPOSITION. For every pair (S,T) of sets, the mapping ((x, y) 7→ y) :
S × T → T is surjective unless S = Ø and T 6= Ø.

32B.L. PROPOSITION. Let the mappings f: D → C and g: C → B be given.

(a): If f and g are injective, then g ◦ f is injective.

(b): If g ◦ f is injective, then f is injective; if, moreover, f is surjective, then g is
also injective.

(c): If g ◦ f is constant and g is injective, then f is constant.

32B.R. PROPOSITION. Let the mappings f: D → C and g: C → B be given.

(a): If f and g are surjective, then g ◦ f is surjective.

(b): If g ◦ f is surjective, then g is surjective; if, moreover, g is injective, then f is
also surjective.

(c): If g ◦ f is constant and f is surjective, then g is constant.

32C.L. PROPOSITION. Let the mappings f: D → C and g: C → B be given. If g
is injective, then Part(g ◦ f) = Partf .

Proof. For every z ∈ Rng(g ◦ f) ⊂ Rngg, the set g<({z}) is a singleton, hence
(g ◦ f)<({z}) = f<(g<({z})) ∈ Partf . We have shown that Part(g ◦ f) ⊂ Partf .
Since both collections are partitions of D, they are equal (Proposition 18B).

32C.R. PROPOSITION. Let the mappings f: D → C and g: C → B be given. If f
is surjective, then Rng(g ◦ f) = Rngg.

Proof. For every y ∈ C, we have y ∈ f>(f<({y})); hence g(y) ∈ g>(f>(f<({y}))) =
(g ◦ f)>(f<({y})) ⊂ Rng(g ◦ f). Since y ∈ C was arbitrary, we conclude that Rngg ⊂
Rng(g ◦ f). The reverse inclusion is valid by (25.3).

32D. PROPOSITION. Given a mapping f: D → C, there are mappings g: D → S
and h: S → C such that f = h ◦ g and g is surjective and h is injective.

Proof. Set S := Rngf, g := f |Rng, h := 1Rngf⊂C .

32E. PROPOSITION. A mapping from a set to its power-set cannot be surjective.

Proof. Let the set D and the mapping F : D → P(D) be given. Consider the
set K := {x ∈ D | x /∈ F (x)}. Let z ∈ D be given. If z ∈ K, then z /∈ F (z), and
therefore F (z) 6= K; if z /∈ K, then z ∈ F (z), and therefore F (z) 6= K. We conclude
that K /∈ RngF , so that F is not surjective.
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In drawing a diagram (see Section 25) it is often convenient to record that a
specific mapping is injective, surjective, or bijective. This may be done by marking
the arrows labelled with that mapping as follows:

....................................................................................................................................... ................................................

(injective)

....................................................................................................................................... .............................................................................................................................................. ................................................

(bijective)

....................................................................................................................................... .............................................................................................................................................. ......................

(surjective)

When the mapping is an inclusion mapping, it is customary to omit the label and
use a “hooked arrow”: →֒.
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33. Inverses and invertibility

Let the mapping f : D → C be given. A mapping g : C → D is called a left-
inverse of f if g ◦ f = 1D, a right-inverse of f if f ◦ g = 1C , and an inverse of f
if g is both a left-inverse and a right-inverse of f . We observe that g is a left-inverse
of f if and only if f is a right-inverse of g. We note that g is an inverse of f if and
only if

(33.1) ∀(x, y) ∈ D × C, y = f(x) ⇔ x = g(y).

33A. PROPOSITION. (a): If f: D → C and g: C → B are given mappings, and h
and k are left-inverses of f and g, respectively, then h ◦ k is a left-inverse of g ◦ f .
The assertion remains valid if “left-inverse” is replaced everywhere by “right-inverse”
or by “inverse”.

(b): If f is a given mapping, and g is a left-inverse of f and h is a right-inverse
of f , then g = h, and g is an inverse of f .

Proof of (b). g = g ◦ 1C = g ◦ (f ◦ h) = (g ◦ f) ◦ h = 1D ◦ h = h.

A mapping f is said to be left-invertible if there is a left-inverse of f , and right-
invertible if there is a right-inverse of f ; f is said to be invertible (and is called a
set-isomorphism) if there is an inverse of f .

33B. PROPOSITION. Let the mapping f : D → C be given. The following state-
ments are equivalent:

(LRInv): f is both left-invertible and right-invertible.

(Inv): f is invertible.

(UInv): There is a mapping g: C → D that is the unique left-inverse of f and the
unique right-inverse of f , as well as the unique inverse of f .

Proof. Proposition 33A,(b).

It follows from Proposition 33B that if f is invertible there is exactly one inverse
of f ; this unique inverse will be denoted by f←. (Although a more usual notation
is f−1 we shall avoid it, except in some special cases in which it will be particularly
appropriate.) It is important to distinguish carefully the inverse f← : C → D from
the pre-image mapping f< : P(C) → P(D); the latter is defined for every mapping
f , but the former only when f is invertible.

33C. PROPOSITION. (a): If f is an invertible mapping, then f← is invertible, and
f←← = f .

(b): If f is an invertible mapping, then (f←)> = f< and (f←)< = f>.

(c): If f and g are invertible mappings and Domg = Codf, then g ◦f is invertible,
and (g ◦ f)← = f← ◦ g←.

(d): If f and g satisfy Domg = Codf, and g ◦ f is invertible, then f is invertible
if and only if g is invertible.

Proof of (d). Suppose that f is invertible, and set h := f ◦ (g ◦ f)←. Then
g ◦h = (g ◦f)◦ (g ◦f)← = 1Codg and h◦g = h◦g ◦f ◦f← = f ◦ (g ◦f)←◦ (g ◦f)◦f← =
f ◦ 1Domf ◦ f← = 1Codf = 1Domg. Thus g is invertible, and g← = h. The converse
implication is proved in an analogous manner.
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33D. PROPOSITION. Let the mapping f : D → C be given. The following state-H

ments are equivalent:

(Inv): f is invertible.

(ULInv1): There is exactly one left-inverse of f , and if D is a singleton then C is
a singleton.

(URInv): There is exactly one right-inverse of f .

Proof. (Inv) ⇒ (ULInv1). By Proposition 33B, (Inv) ⇒ (UInv). If f is invertible,
it therefore has exactly one left-inverse, namely f←. If D = {d}, then f(d) ∈ C, and
for each y ∈ C, y = f(f←(y)) = f(d), so that C = {f(d)}.

(Inv) ⇒ (URInv). By Proposition 33B, (Inv) ⇒ (UInv). If f is invertible, it
therefore has exactly one right-inverse, namely f←.

(ULInv1) ⇒ (Inv). Suppose that f satisfies (ULInv1), and let g be the unique
left-inverse of f . For each d ∈ D we define gd : C → D by the rule

gd(y) :=







g(y) if f(g(y)) = y
y ∈ C.

d if f(g(y)) 6= y

For each x ∈ D we have f(g(f(x))) = f(x), and therefore gd(f(x)) = x; hence
gd ◦ f = 1D; but g is the unique left-inverse of f , so that gd = g.

Now let y ∈ C be given, and suppose that f(g(y)) 6= y; in particular, C is then
not a singleton. For each d ∈ D we have d = gd(y) = g(y), so that D = {g(y)} is a
singleton, contradicting the assumption. Consequently, f(g(y)) = y for all y ∈ C, so
that f ◦ g = 1C . Hence g is also a right-inverse of f , and hence an inverse of f .

(URInv) ⇒ (Inv). Suppose that f satisfies (URInv), and let g be the unique
right-inverse of f . For each x ∈ D, we define gx : C → D by the rule

gx(y) :=







g(y) if y 6= f(x)
for all y ∈ C.

x if y = f(x)

For each y ∈ C we then have f(gx(y)) = f(g(y)) = y if y 6= f(x), and f(gx(y)) =
f(x) = y if y = f(x), so that f ◦ gx = 1C . But g is the unique right-inverse of f , so
that gx = g; and therefore g(f(x)) = gx(f(x)) = x. Since this holds for all x ∈ D, we
have g ◦ f = 1D. Thus g is also a left-inverse of f , and hence an inverse of f .

Remark. If D := {d} is a singleton and C is neither empty nor a singleton, each
mapping f: D → C satisfies f = f(d)D→C and has the unique left-inverse g := dC→D;
but none is invertible, since f ◦ g = f(d)C→C 6= 1C .N

There is a close connection, which we now explore, between the various invertibility
properties of a mapping on the one hand, and the properties of injectivity, surjectivity,
and bijectivity of the mapping on the other.

33E.L. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(LInv): f is left-invertible.
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(Inj0): f is injective, and if D = Ø then C = Ø.

Proof. (LInv) ⇒ (Inj0). Choose a left-inverse g of f ; then g ◦ f = 1D, which is
bijective. Hence f is injective (Proposition 32.B.L, (b)). The set Map(C,D) is not
empty, since it contains g; therefore D 6= Ø or C = Ø.

(Inj0) ⇒ (LInv). Assume that f satisfies (Inj0). If D = C = Ø, then f = 1Ø,
and 1Ø is a left-inverse of f . Assume now that D 6= Ø, and choose d ∈ D. For each
y ∈ C, the set f<({y}) is a singleton or empty, according as y ∈ Rngf or y ∈ C\Rngf .
Define g: C → D by the following rule: g(y) :∈ f<({y}) if y ∈ Rngf , and g(y) := d
if y ∈ C\Rngf . For every x ∈ D we then find x ∈ f<({f(x)}) = {g(f(x))}, so that
x = g(f(x)). Hence g ◦ f = 1D, and g is a left-inverse of f .

If D = Ø 6= C, then f := 1Ø⊂C is injective, but not left-invertible, since Map(C,D)
= Ø.

•33E.R. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(RInv): f is right-invertible.

(Surj): f is surjective.

Proof. (RInv) ⇒ (Surj). Choose a right-inverse g of f ; then f ◦ g = 1C , which is
bijective. Hence f is surjective (Proposition 32B.R, (b)).

•(Surj) ⇒ (RInv). Assume that f is surjective. For each y ∈ C we have f<({y}) 6=
Ø. We may •therefore choose a mapping g: C → D such that g(y) ∈ f<({y}) for
each y ∈ C. We then have f(g(y)) = y for all y ∈ C, so that f ◦ g = 1C . Thus g is a
right-inverse of f .

33E.B. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Inv): f is invertible.

(Bij): f is bijective.

Proof. (Inv) ⇒ (Bij). If f is invertible, it is both left-invertible and right-invertible,
and hence both injective and surjective (Propositions 33E.L and 33E.R).

(Bij) ⇒ (Inv). Assume that f is bijective. For each y ∈ C, f<({y}) is a singleton.
Define g: C → D by the rule g(y) :∈ f<({y}) for each y ∈ C. For every x ∈ D we
then have x ∈ f<({f(x)}) = {g(f(x))}, so that x = g(f(x)); thus g ◦ f = 1D. For
every y ∈ C, f(g(y)) ∈ f>({g(y)}) = f>(f<({y})) ⊂ {y}, so that f(g(y)) = y; thus
f ◦ g = 1C . We conclude that g is an inverse of f .

For given sets D,C we shall sometimes consider the set of all invertible mappings
from D to C, i.e., Inv(D,C) := {f ∈ Map(D,C) | f invertible}. D and C are said
to be equinumerous, and D is said to be equinumerous to C, if there exists
an invertible mapping from D to C, i.e., if Inv(D,C) 6= Ø. We note that in every
collection of sets the relation “is equinumerous to” is an equivalence relation.

Let the set D be given. A mapping from D to D is called a permutation of
D if it is invertible. The set of all permutations of D is denoted by Perm(D). Thus
Perm(D) := Inv(D,D).
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33F. PROPOSITION. Let the set D and the mappings f, g ∈ Map(D,D) be given.
If g is invertible (i.e., a permutation of D) and f and g commute, then f and g←

commute.



34. Injectivity, surjectivity, and bijectivity: The induced mappings 41

34. Injectivity, surjectivity, and bijectivity:
The induced mappings

34A.L. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Inj): f is injective.

(Inj4): f
< ◦ f> = 1P(D).

(Inj5): f> is injective.

(Inj6): f
< is surjective.

(Inj7): ∀U ∈ P(D), f>(D\U) ⊂ C\f>(U).

Proof. (Inj) ⇒ (Inj4). Assume that f is injective. Let U ∈ P(D) and x ∈
f<(f>(U)) be given. Then f(x) ∈ f>(U); hence we may choose z ∈ U such that
f(x) = f(z). Since f is injective, we conclude that x = z ∈ U . Since x ∈ f<(f>(U))
was arbitrary, we find that f<(f>(U)) ⊂ U . Since the reverse inclusion holds by
Proposition 23A, we have f<(f>(U)) = U . Since U ∈ P(D) was arbitrary, (Inj4) is
verified.

(Inj4) ⇒ (Inj5) and (Inj4) ⇒ (Inj6). These implications follow at once from
Propositions 32B.L,(b) and 32B.R,(b).

(Inj5) ⇒ (Inj). Assume that (Inj5) holds. Given x, x′ ∈ D such that f(x) = f(x′),
we have f>({x}) = {f(x)} = {f(x′)} = f>({x′}). Since f> is injective, we conclude
that {x} = {x′}, and hence x = x′.

(Inj6) → (Inj). Assume that (Inj6) holds. Given x, x′ ∈ D such that f(x) = f(x′),
we may choose V ∈ P(C) such that {x} = f<(V ). Then f(x′) = f(x) ∈ V . Therefore
x′ ∈ f<({f(x′)}) ⊂ f<(V ) = {x}, so that x′ = x.

(Inj4) ⇒ (Inj7). Assume that (Inj4) holds. For every U ∈ P(D) we have
f<(C\f>(U)) = D\f<(f>(U)) = D\U , and hence f>(D\U) = f>(f<(C\f>(U))) ⊂
C\f>(U).

(Inj7) ⇒ (Inj4). Assume that (Inj7) holds. For every U ∈ P(D) we have f>(U) =
f>(D\(D\U)) ⊂ C\f>(D\U), and hence

U ⊂ f<(f>(U)) ⊂ f<(C\f>(D\U)) = D\f<(f>(D\U)) ⊂ D\(D\U) = U ;

we conclude that equality must hold, and therefore f< ◦ f> = 1P(D).

34A.R. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Surj): f is surjective.

(Surj4): f> ◦ f< = 1P(C).

(Surj5): f> is surjective.

(Surj6): f
< is injective.

(Surj7): ∀U ∈ P(D), f>(D\U) ⊃ C\f>(U).

Proof. (Surj) ⇒ (Surj4). Assume that f is surjective. For every V ∈ P(C),
f>(f<(V )) = V ∩ Rngf = V ∩ C = V . Thus f> ◦ f< = 1P(C).
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(Surj4) ⇒ (Surj5) and (Surj4) ⇒ (Surj6). These implications follow at once form
Proposition 32B.L,(b) and 32B.R,(b).

(Surj5) ⇒ (Surj). If f> is surjective, we may choose U ∈ P(D) such that f>(U) =
C. Then C = f>(U) ⊂ f>(D) ⊂ C, and hence Rngf = f>(D) = C.

(Surj6) ⇒ (Surj). f<(Rngf) = D = f<(C). If f< is injective, Rngf = C.

(Surj4) ⇒ (Surj7). Assume that (Surj4) holds. For every U ∈ P(D) we have
f<(C\f>(U)) = D\f<(f>(U)) ⊂ D\U and hence f>(D\U) ⊃ f>(f<(C\f>(U))) =
C\f>(U).

(Surj7) ⇒ (Surj). Assume that (Surj7) holds. Then C ⊃ f>(D) = f>(D\Ø) ⊃
C\f>(Ø) = C\Ø = C. Hence Rngf = f>(D) = C.

34A.B. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Bij): f is bijective.

(Bij4): f> and f
< are invertible, and each is the inverse of the other.

(Bij5): f> is bijective.

(Bij6): f
< is bijective.

(Bij7): ∀U ⊂ P(D), f>(D\U) = C\f>(U).

34B.L. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Inj): f is injective.

(Inj8): for every non-empty subcollection U of P(D), f>(
⋂

U) =
⋂

(f>)>(U).

(Inj9): ∀U ′, U ′′ ∈ P(D), U ′ ∩ U ′′ = Ø ⇒ f>(U ′) ∩ f>(U ′′) = Ø.

Proof. (Inj) ⇒ (Inj8). Although a direct proof is not complicated, we use Propo-
sition 34A.L and assume that f< ◦ f> = 1P(D). It follows that (f<)> ◦ (f>)> =
(1P(D))> = 1P(P(D)). Let a non-empty subcollection U of P(D) be given. Choose

U ∈ U ; then f>(U) ∈ (f>)>(U), whence
⋂

(f>)>(U) ⊂ f>(U) ⊂ Rngf . On the other

hand, Proposition 23A implies

f<(
⋂

(f>)>(U)) =
⋂

(f<)>((f>)>(U)) =
⋂

U ;

using Proposition 23A again, and applying f> to the ends of this chain of equalities,
we find

⋂

(f>)>(U) = (
⋂

(f>)>(U)) ∩ Rngf = f>(f<(
⋂

(f>)>(U))) = f>(
⋂

U).

(Inj8) ⇒ (Inj9). This is trivial: set U := {U ′, U ′′}.

(Inj9) ⇒ (Inj). Assume that (Inj9) holds. Let x, x′ ∈ D be given. If x 6= x′, then
{x} ∩ {x′} = Ø, and therefore {f(x)} ∩ {f(x′)} = f>({x}) ∩ f>({x′}) = Ø, so that
f(x) 6= (x′).
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34B.B. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Bij): f is bijective.

(Bij8): for every subcollection U of P(D), f>(
⋂

DU) =
⋂

C(f>)>(U).

Proof. (Bij) ⇒ (Bij8). Assume that f is bijective. Let the subcollection U of

P(D) be given. If U 6= Ø, Proposition 34B.L shows that f>(
⋂

DU) =
⋂

C(f>)>(U).

On the other hand, f is surjective, and hence f>(
⋂

DØ) = f>(D) = Rngf = C =
⋂

CØ =
⋂

C(f>)>(Ø).

(Bij8) ⇒ (Bij). By Proposition 34B.L, f is injective; and Rngf = f>(D) =

f>(
⋂

DØ) =
⋂

C(f>)>(Ø) =
⋂

CØ = C. so that f is surjective.

34C. REMARK. The proof of Proposition 34B.B includes the proof of a vestigial

Proposition 34B.R: The mapping f: D → C is surjective if and only if f>(
⋂

DØ) =
⋂

C(f>)>(Ø).



44 CHAPTER 3. PROPERTIES OF MAPPINGS

35. Cancellability

Let f: D → C be a mapping and S a set. Then f is said to be left-cancellable
with respect to S if

∀g, h ∈ Map(S,D), f ◦ g = f ◦ h ⇒ g = h;

and f is said to be right-cancellable with respect to S if

∀g, h ∈ Map(C, S), g ◦ f = h ◦ f ⇒ g = h.

A mapping f is said to be left-cancellable (and is called a set-monomorphism)
if f is left-cancellable with respect to S for every set S; and f is said to be right-
cancellable (and is called a set-epimorphism) if f is right-cancellable with respect
to S for every set S.

35A.L. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Inj): f is injective.

(Mono): f is left-cancellable.

(Mono1): f is left-cancellable with respect to some singleton.

(Mono2): f is left-cancellable with respect to some non-empty set.

Proof. (Inj) ⇒ (Mono). Assume that f is injective. Let the set S and the
mappings g, h ∈ Map(S,D) be such that f ◦ g = f ◦ h. For each s ∈ S we have
f(g(s)) = f(h(s)), and hence g(s) = h(s). Therefore g = h.

(Mono) ⇒ (Mono1) and (Mono1) ⇒ (Mono2). These implications are trivial.

(Mono2) ⇒ (Inj). Assume that (Mono2) holds, and choose a non-empty set S such
that f is left-cancellable with respect to S. If x, x′ ∈ D are such that f(x) = f(x′),
we have f ◦xS→D = f ◦x′S→D, and hence xS→D = x′S→D. Since S 6= Ø, it follows that
x = x′.

Remark. Every mapping f : D → C is left-cancellable with respect to Ø, since
Map(Ø, D) is the singleton {1Ø⊂D}.

35A.R. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Surj): f is surjective.

(Epi): f is right-cancellable.

(Epi1): f is right-cancellable with respect to some doubleton.

(Epi2): f is right-cancellable with respect to some set that is neither empty nor a
singleton.

Proof. (Surj) ⇒ (Epi). Assume that f is surjective. Let the set S and the
mappings g, h ∈ Map(C, S) be such that g ◦ f = h ◦ f . Given y ∈ C, choose
x ∈ f<({y}); then g(y) = g(f(x)) = h(f(x)) = h(y). Thus g(y) = h(y) for all y ∈ C,
and hence g = h.

(Epi) ⇒ (Epi1) and (Epi1) ⇒ (Epi2). These implications are trivial.
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(Epi2) ⇒ (Surj). Assume that (Epi2) holds, and choose a set S, neither empty
nor a singleton, such that f is right-cancellable with respect to S. Choose s, s′ ∈ S
such that s 6= s′. Define g, h ∈ Map(C, S) by g := sC→S and

h(y) :=







s if y ∈ Rngf

s′ if y ∈ C\Rngf.

For every x ∈ D, f(x) ∈ Rngf and hence g(f(x)) = s = h(f(x)), so that g ◦
f = sD→S = h ◦ f . By the assumption, g = h. For every y ∈ C\Rngf this
implies s = g(y) = h(y) = s′, contradicting the assumption that s 6= s′. Therefore
C\Rngf = Ø, so that f is surjective.

Remark. Every mapping f: D → C is right-cancellable with respect to Ø as well
as with respect to every singleton {s}, since Map(C,Ø) is empty if C 6= Ø and is the
singleton {1Ø} when C = Ø, while Map(C, {s}) is the singleton {sC→{s}}.
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36. Factorization

We next discuss questions of the following kind: Given mappings f: D → C and
h : S → C, is there a mapping g : S → D such that h = f ◦ g? Given mappings
f : D → C and h: D → S, is there a mapping g : C → S such that h = g ◦ f? If
there is such a mapping, is there exactly one? (The question of the left- or right-
invertibility of f is a special case of this, in which h is an identity mapping.) Some
necessary conditions for the existence of g are known from (25.3) and (25.4): for
every mapping f: D → C and set S,

(36.1) Rng(f ◦ g) ⊂ Rngf for all g ∈ Map(S,D)

(36.2) Part(g ◦ f) ⊏ Partf for all g ∈ Map(C, S).

A mapping f: D → C is called a (set-)embedding if for every mapping h: S → C
with Rngh ⊂ Rngf there is exactly one mapping g : S → D such that h = f ◦ g.
A mapping f : D → C is called a (set-)quotient-mapping if for every mapping
h: D → S with Parth ⊏ Partf there is exactly one mapping g : C → S such that
h = g ◦ f .
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36A.L. PROPOSITION. If f : D → C and f ′ : D′ → C are embeddings with
Rngf = Rngf ′, then the unique mappings g: D′ → D and g′ : D → D′ that satisfy
f ◦ g = f ′, f ′ ◦ g′ = f are invertible, and each is the inverse of the other.

Proof. We have f ◦ g ◦ g′ = f ′ ◦ g′ = f = f ◦ 1D; by the uniqueness condition
in the definition of embedding, g ◦ g′ = 1D. Similarly, f ′ ◦ g′ ◦ g = f ′ ◦ 1D′, whence
g′ ◦ g = 1D′.

36A.R. PROPOSITION. If f: D → C and f ′ : D → C ′ are quotient-mappings with
Partf = Partf ′, then the unique mappings g: C → C ′ and g′ : C ′ → C that satisfy
g ◦ f = f ′, g′ ◦ f ′ = f are invertible, and each is the inverse of the other.

Proof. The same as the proof of Proposition 36A.L, with the obvious modifica-
tions.

We now show that set-embeddings are precisely the injections, and set-quotient-
mappings are precisely the surjections.

36B.L. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Emb): f is an embedding.

(Mono): f is left-cancellable.
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(Inj): f is injective.

Proof. (Emb) ⇒ (Mono). Assume that f is an embedding. Let the set S be given,
and let the mappings g, h ∈ Map(S,D) satisfy f ◦ g = f ◦ h. Then Rng(f ◦ g) =
Rng(f ◦ h) ⊂ Rngf . Since f is an embedding, we must have g = h.

(Mono) ⇒ (Inj). Proposition 35A.L.

(Inj) ⇒ (Emb). Assume that f is injective and let the mapping h: S → C with
Rngh ⊂ Rngf be given. A mapping g : S → D satisfies h = f ◦ g if and only if
f(g(s)) = h(s) or, equivalently, g(s) ∈ f<({h(s)}), for each s ∈ S; but f<({h(s)}) is
a singleton for each s ∈ S, since f is injective and h(s) ∈ Rngh ⊂ Rngf . Therefore
there is indeed exactly one g: S → D such that h = f ◦ g: it is defined by the rule
g(s) :∈ f<({h(s)}) for all s ∈ S.

36B.R. PROPOSITION. Let the mapping f : D → C be given. The following
statements are equivalent:

(Quot): f is a quotient-mapping.

(Epi): f is right-cancellable.

(Surj): f is surjective.

Proof. (Quot) ⇒ (Epi). Assume that f is a quotient-mapping. Let the set
S be given, and let the mappings g, h ∈ Map(C, S) satisfy g ◦ f = h ◦ f . Then
Part(g ◦ f) = Part(h ◦ f) ⊏ Partf . Since f is a quotient-mapping, we must have
g = h.

(Epi) ⇒ (Surj). Proposition 35A.R.

(Surj) ⇒ (Quot). Assume that f is surjective and let the mapping h: D → S with
Parth ⊏ Partf be given. Since f is surjective, f<({y}) ∈ Partf for each y ∈ C, and
since Parth ⊏ Partf it follows that h>(f<({y})) is a singleton for every y ∈ C. If a
mapping g: C → S satisfies h = g ◦ f , then

h>(f<({y})) = g>(f>(f<({y}))) ⊂ g>({y}) = {g(y)}

for all y ∈ C, so that

(36.3) g(y) ∈ h>(f<({y}) for all y ∈ C.

Conversely, if g satisfies (36.3), then h(x) ∈ h>(f<({f(x)})) = {g(f(x))} for all
x ∈ D, so that h = g ◦ f . We conclude that there is exactly one mapping g: C → S
such that h = g ◦ f , namely the one defined by the rule g(y) :∈ h>(f<({y})) for all
y ∈ C.

36C. THEOREM. Let the mappings g : D → D′ and h : C ′ → C be given, and
assume that g is surjective and h is injective. Then:

(a): for a given mapping f ∈ Map(D,C) there is at most one f ′ ∈ Map(D′, C ′)
such that f = h ◦ f ′ ◦ g; such a mapping f ′ exists if and only if Partf ⊏ Partg and
Rngf ⊂ Rngh.

(b): this mapping f ′ is injective if and only if Partf = Partg, and is surjective if
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and only if Rngf = Rngh.
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Proof. The parts of the proof that pertain to Part (b) of the statement will be
given in square brackets.

Suppose that f ′, f ′′ ∈ Map(D′, C ′) satisfy h ◦ f ′ ◦ g = f = h ◦ f ′′ ◦ g. Since h is
left-cancellable and g is right-cancellable (Propositions 35A.L and 35 A.R), we must
have f ′ = f ′′. Hence there is at most one f ′ ∈ Map(D′, C ′) such that h ◦ f ′ ◦ g = f .

If f ′ ∈ Map(D′, C ′) satisfies h ◦ f ′ ◦ g = f , then (36.2) and (36.1) imply Partf =
Part((h ◦ f ′) ◦ g) ⊏ Partg and Rngf = Rng(h ◦ (f ′ ◦ g)) ⊂ Rngh. [If f ′ is injective, so
is h ◦ f ′, and Partf = Partg (Propositions 32B.L,(a) and 32C.L). If f ′ is surjective,
so is f ′ ◦ g, and Rngf = Rngh (Propositions 32B.R,(a) and 32C.R).]

Conversely, assume that f satisfies Partf ⊏ Partg and Rngf ⊂ Rngh.
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C

By Proposition 32D we may choose a surjective mapping g1 : D → S and an
injective mapping h1 : S → C such that f = h1 ◦ g1. By Propositions 32C.L and
32C.R, Partg1 = Partf and Rngh1 = Rngf .

Since Partg1 = Partf ⊏ Partg, and g is a quotient-mapping (Proposition 36B.R),
there is exactly one mapping g′ : D′ → S such that g1 = g′ ◦ g; this mapping is
surjective (Proposition 32B.R,(b)).

Similarly, since Rngh1 = Rngf ⊂ Rngh, and h is an embedding (Proposition
36B.L), there is exactly one mapping h′ : S → C ′ such that h1 = h ◦h′; this mapping
is injective (Proposition 32B.L,(b)).

We conclude that f = h1 ◦ g1 = h ◦ h′ ◦ g′ ◦ g = h ◦ f ′ ◦ g, where f ′ := h′ ◦ g′.
[If Partf = Partg, then Partg1 = Partg, and g′ is invertible, by Proposition 36A.R;

hence both g′ and h′ are injective, and so is their composite f ′. If, on the other hand,
Rngf = Rngh, then Rngh1 = Rngh, and h′ is invertible, by Proposition 36A.L; hence
both g′ and h′ are surjective, and so is their composite f ′.]

36D. COROLLARY. Let the mapping f: D → C be given. Then there is a unique
mapping f ′ : Partf → Rngf such that f = 1Rngf⊂C ◦ f ′ ◦ ΩPartf ; this mapping f ′ is
bijective.
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For the sake of completeness, we record a factorization theorem that is moreH

general than Theorem 36C in that it makes no assumptions on g and h.

•36E. THEOREM. Let the mappings g : D → D′ and h: C ′ → C be given. For
every f ∈ Map(D,C) there is f ′ ∈ Map(D′, C ′) with f = h ◦ f ′ ◦ g if and only if
Partf ⊏ Partg and Rngf ⊂ Rngh, and D 6= Ø or C ′ 6= Ø or D′ = Ø. There is at
most one such f ′ for every f ∈ Map(D,C) if and only if either g is surjective and h
is injective, or D′ = Ø, or C ′ is empty or a singleton.

Proof. If f ′ ∈ Map(D′, C ′) satisfies f = h◦f ′ ◦g, then Partf = Part((h◦f ′)◦g) ⊏
Partg and Rngf = Rng(h ◦ (f ′ ◦ g)) ⊂ Rngh. If D = Ø and C ′ = Ø we have
Map(D,C) = {1Ø⊂C} 6= Ø; if there then exists f ′ ∈ Map(D′, C ′) we must have
Map(D′,Ø) 6= Ø, whence D′ = Ø.

Assume, conversely, that D 6= Ø or C ′ 6= Ø or D′ = Ø, and that f ∈ Map(D,C)
is given and satisfies Partf ⊏ Partg and Rngf ⊂ Rngh. If D = Ø and D′ 6= Ø, this
implies f = 1Ø⊂C and g = 1Ø⊂D′ and C ′ 6= Ø, which in turn implies Map(D′, C ′) 6= Ø;
choose any f ′ ∈ Map(D′, C ′); then h ◦ f ′ ◦ g = h ◦ f ′ ◦ 1Ø⊂D′ = 1Ø⊂C = f .
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We shall therefore assume from now on that D 6= Ø or D′ = Ø. By Proposition
32D we may choose mappings g1 : D → D1, g2 : D1 → D′ and h1 : C1 → C, h2 :
C ′ → C1 such that g2 and h1 are injective, g1 and h2 are surjective, and g = g2 ◦ g1
and h = h1 ◦ h2. By Theorem 36C there is exactly one f1 : D1 → C1 such that f =
h1 ◦f1 ◦g1. By Proposition 33E.L, we may choose a left-inverse of g2, say u: D′ → D1;
by •Proposition 33E.R, we may choose a right-inverse of h2, say v: C1 → C ′. Then
f = h1 ◦ 1C1 ◦ f1 ◦ 1D1 ◦ g1 = h1 ◦h2 ◦ v ◦ f1 ◦u ◦ g2 ◦ g1 = h ◦ f ′ ◦ g with f ′ := v ◦ f1 ◦u.

We now examine the uniqueness question. Suppose that f ′, f ′′ ∈ Map(D′, C ′)
satisfy h ◦ f ′ ◦ g = h ◦ f ′′ ◦ g. If g is surjective and h is injective, then g is right-
cancellable and h is left-cancellable, and it follows that f ′ = f ′′; if, on the other hand,
D′ = Ø or C ′ is empty or a singleton, then Map(D′, C ′) is empty or a singleton, and
hence again f ′ = f ′′. Conversely, if

∀f ′, f ′′ ∈ Map(D′, C ′), h ◦ f ′ ◦ g = h ◦ f ′′ ◦ g ⇒ f ′ = f ′′,

it follows that g is right-cancellable with respect to C ′ and h is left-cancellable with
respect to D′; by Propositions 35A.L and 35A.R, this implies that g is surjective or
C ′ is empty or a singleton, and that h is injective or D′ = Ø.N
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Chapter 4

FAMILIES

41. The concept of a family

We are well acquainted with the notion of a sequence: a sequence of numbers,
say, is given by some rule that determines what number comes in the nth place, for
each n ∈ N (or n ∈ N×, for those who prefer to count from 1). The natural number
n is thought of as a label, an index, and the number in the nth place as the nth
term of the sequence. We must resist the urge to consider a sequence as some kind
of infinite set, or as an “ordered set”: apart from the basic conceptual differences
involved here, the mere fact that one and the same number may appear as the nth
term of the sequence for more than one n ∈ N (indeed, perhaps for all n ∈ N)
should prevent such a confusion. There is much more to be said for the view that a
sequence of numbers is a special kind of mapping: one whose domain is N. One must
merely make the right translation: the index set N becomes the domain, the nth term
becomes the value at n.

More generally, any unambiguous method that allows us to associate with each
member i of a given set I an object ai determines a family a (defined) on the set
I, called the index set; for each i ∈ I, the object ai is called the term of index i,
or the ith term, of the family a. In a manner similar to that used for mappings, the
families a and b, with respective index sets I and J , are the same family if and only
if I = J and ai = bi for all i ∈ I. In some contexts, notations such as a(i), ai, etc.,
are used instead of ai. A family is said to be empty or non-empty according as its
index set is empty or non-empty.

One often uses the notation (ai | i ∈ I) for a family, especially when no explicit
name for the family itself is available; thus, for instance, (n3 | n ∈ N) denotes a family.
(Note the use of parentheses, not braces.)

The set of all the terms of a family a is called the range of a, and is denoted by
Rnga or by {ai | i ∈ I}, where I is the index set:

Rnga := {ai | i ∈ I} :
∗
= {x | x = ai for some i ∈ I}.

51
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If a is a family and A is a set such that Rnga ⊂ A, one says that a is a family in A,
or a family of members of A.

We observe that the concept of a family is almost identical to that of a mapping,
with the following short glossary:

index set domain

ith term, term of index i value at i

(ai | i ∈ I) (i 7→ ai) : I →

Except for the matter of the presence or absence of a codomain, to be discussed a
little later, there is no formal need to maintain a separate concept of family and
the associated terminology. It must be said, however, that the two “languages”, of
mappings and families, “sound” different to the mathematician, suggesting different
associations of ideas, and that both are used profusely; it is therefore necessary to
become fluent in both.

We note that in our description of the concept of family there was nothing corre-
sponding to the codomain of a mapping. It is most nearly consistent with the common
usage concerning families to regard them as unprovided with a codomain (or, in some
intuitive sense, as having “everything” as the codomain); not all mathematicians
would agree. We should like, however, to make use of the terminology and notations
introduced for mappings when dealing with families; as well as to pay some respect to
Occam’s Razor (entia non sunt multiplicanda praeter necessitatem; roughly, Concepts
should not be multiplied beyond need). For formal purposes, we may therefore make
a family into a mapping by providing it with a “formal” codomain: for this role we
select, for lack of a better choice, the range of the family. We thus have the following
definition, which supersedes, in a purely formal sense, the preceding discussion: A
family is defined to be a surjective mapping. The terminology and notation not
covered by the preceding glossary will be accounted for by this definition, with the
following amendments: If a := (ai | i ∈ I) is a family and A is a set, we define the
pre-image of A under a even when A is not included in Rnga:

a<(A) := {i ∈ I | ai ∈ A} = a<(A ∩ Rnga);

and in any composition involving a family — at most one will appear, the other
ingredients being mappings — its codomain is adjusted as needed to any set that
includes its range, while the composite is again regarded as a family. As a case in
point, if J ⊂ I, the restriction to J of the family (ai | i ∈ I) is the family (ai | i ∈ J).
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42. Special families

For some kinds of index set, special terminology is used. If n ∈ N, a family defined
on n⊏ := {0, . . . , n−1} or on n⊐ := {1, . . . , n} (formal definitions of these sets will be
given later) is called a list of length n. (A common barbarism for this is “n-tuple”;
a term often used is (finite) sequence of length n.) If the length is small, a list a may
be denoted by ( ), (a1), (a1, a2), (a1, a2, a3), and so on, according to the length. A
family defined on N or on N× := N\{0} is called a sequence.

If I, J are sets, a family defined on I × J is called an I × J-matrix. The term of
index (i, j) of an I×J-matrix M is called its (i, j)-entry, and is usually written Mi,j

or even Mij , instead of M(i,j). For each i ∈ I, the family (Mi,j | j ∈ J) is called the
ith row of the matrix M , and for each j ∈ J the family (Mi,j | i ∈ I) is called the
jth column of M . The J× I-matrix M⊤ := M ◦⊤J×I , satisfying (M⊤)j,i = Mi,j for
all (j, i) ∈ J × I, is called the transpose of M , and is said to be obtained from M
by transposition. If m,n ∈ N, an m⊏ × n⊏-matrix or an m⊐ × n⊐-matrix is called
an m-by-n-matrix. If m and n are small, the familiar bookkeeping scheme may be
used: e.g.,

M =:

(

M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

)

.

The I × J-matrix M is said to be a square matrix if I = J . In this case, M is
said to be symmetric if M⊤ = M , i.e., if Mj,i = Mi,j for all (i, j) ∈ I × I. If M is a
(square) I × I-matrix, the family (Mi,i | ı ∈ I) is called the diagonal of M .

Although families and sets must not be confused, we often wish to consider the
family (x | x ∈ S), where S is a given set; formally, this is just the identity mapping
1S. It is a commonly accepted license to call this the family S or, more fully, the set
S self-indexed (as a family), and to use for it the same symbol S as for the set.

Let S be a set and U a subset of S. The family χU⊂S defined on S by

χU⊂S(x) :=

{

1 if x ∈ U
0 if x ∈ S\U

is called the characteristic family of U (in S), or the characteristic function of
U (in S) when a codomain — usually R, sometimes the doubleton {0, 1} or N or the
interval [0, 1] — is specified. When the domain (index set) S is fixed throughout a
discussion, the notation is frequently abbreviated to χU .

42A. PROPOSITION. Let the set S be given. The mapping

U 7→ χU⊂S : P(S) → Map(S, {0, 1})

is invertible: its inverse is

f 7→ f<({1}) : Map(S, {0, 1}) → P(S).
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For every x ∈ S, the family δSx := χ{x}⊂S is called the xth Kronecker family
(or function). We note that δSx is the xth row of the symmetric S × S-matrix
δS := χ△S⊂S×S, called the Kronecker matrix of S, and we have

(δSx )y = δSx,y =







1 if x = y
for all x, y ∈ S.

0 if x 6= y

Let the sets D and C be given, and let F be a given subset of Map(D,C). We
define the evaluation family evF on D, with terms in Map(F,C), by requiring evF

x,
the evaluation at x, to be the mapping (f 7→ f(x)) : F → C for each x ∈ D. Note
that evF

x = evMap(D,C)
x|F ; when confusion is unlikely, the notation evF is abbreviated

to ev. The mapping obtained from an evaluation family evF by specifying a suitable
subset of Map(F,C) as codomain is called an evaluation mapping.
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43. Families of sets

Let (Ai | i ∈ I) be a family of sets, i.e., a family whose terms are sets. We use the
notations

⋃

i∈I

Ai :=
⋃

{Ai | i ∈ I} ∗= {x | ∃i ∈ I, x ∈ Ai}

⋂

i∈I

Ai :=
⋂

{Ai | i ∈ I} = {x ∈
⋃

i∈I

Ai | ∀i ∈ I, x ∈ Ai} when I 6= Ø

⋂

i∈I

XAi :=
⋂

X{Ai | i ∈ I} = {x ∈ X | ∀i ∈ I, x ∈ Ai}

when (Ai | i ∈ I) is in P(X) for a given set X.

(Of course
⋂

i∈I

XAi =
⋂

i∈I

Ai if I 6= Ø.)

We note that if (Ai | i ∈ I) and (Bi | i ∈ I) are families of sets such that Ai ⊂ Bi

for all i ∈ I, then:
⋃

i∈I

Ai ⊂
⋃

i∈I

Bi;
⋂

i∈I

Ai ⊂
⋂

i∈I

Bi if I 6= Ø; and
⋂

i∈I

XAi ⊂
⋂

i∈I

XBi if

(Bi | i ∈ I) is in P(X) for a given set X.

43A. PROPOSITION. Let the family of sets (Ai | i ∈ I) and the sets B and X be
given. The following rules hold:

B ∩
⋃

i∈I

Ai =
⋃

i∈I

(B ∩ Ai) and B\
⋃

i∈I

Ai =
⋂

i∈I

B(B\Ai)

B ∪
⋂

i∈I

Ai =
⋂

i∈I

(B ∪ Ai) and B\
⋂

i∈I

Ai =
⋃

i∈I

(B\Ai) if I 6= Ø

B ∪
⋂

i∈I

XAi =
⋂

i∈I

X(B ∪ Ai) and B\
⋂

i∈I

XAi =
⋃

i∈I

(B\Ai)

if (Ai | i ∈ I) is in P(X) and B ⊂ X.

43B. PROPOSITION. Let the mapping f: D → C and the families of sets (Ui | i ∈
I) in P(D) and (Vj | j ∈ J) in P(C) be given. The following rules hold:

f>(
⋃

i∈I

Ui) =
⋃

i∈I

f>(Ui) f>(
⋂

i∈I

DUi) ⊂
⋂

i∈I

Cf>(Ui)

f<(
⋃

j∈J

Vi) =
⋃

j∈J

f<(Vj) f<(
⋂

j∈J

CVj) =
⋂

j∈J

Df<(Vj).

Proof. Proposition 23A.

For every family of sets (Ai | i ∈ I) we define its support by Supp(Ai | i ∈ I) :=
{i ∈ I | Ai 6= Ø}, a subset of I. The family (Ai | i ∈ I) is said to be disjoint if
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Aj ∩ Ak 6= Ø implies j = k for all j, k ∈ I. A family (Ai | i ∈ I) of non-empty sets
clearly is disjoint if and only if it is injective and its range {Ai | i ∈ I} is a disjoint
collection of sets.

Let the set S be given. A family (Ai | i ∈ I) of subsets of S is called a classifica-

tion of S if it is disjoint and
⋃

i∈I

Ai = S. Classifications of S are related to partitions

of S as follows.

43C. PROPOSITION. Let the set S be given.

(a): A family (Ai | i ∈ I) of subsets of S is a classification of S if and only if its
restriction (Ai | i ∈ J) to J := Supp(Ai | i ∈ I) is injective and {Ai | i ∈ J} is a
partition of S.

(b): A collection C of subsets of S is a partition of S if and only if Ø /∈ C and C,
self-indexed, is a classification of S.

It is frequently necessary to determine whether a given family of mappings can
be “patched together” to provide a single mapping from which each of the given
mappings is obtained by adjustment. The following theorem gives a full answer to
this question.

43D. THEOREM. Let the family (fi | i ∈ I) of mappings be given. Set D :=
⋃

i∈I

Domfi and C :=
⋃

i∈I

Codfi. The following statements are equivalent:

(i): There is exactly one g ∈ Map(D,C) such that

(43.1) ∀i ∈ I, g|Domfi = fi|C .

Moreover, g satisfies

(43.2) Grg =
⋃

i∈I

Grfi.

(ii): There is a g ∈ Map(D,C) such that (43.1) holds.

(iii): ∀j, k ∈ I, fj|CDomfj∩Domfk
= fk|CDomfj∩Domfk

(i.e., fj and fk agree on

Domfj ∩ Domfk).

(iv):
⋃

i∈I

Grfi is the graph of some mapping from D to C.

We shall require the following auxiliary result.

43E. LEMMA. With the assumptions as in the statement of Theorem 43D, let
g ∈ Map(D,C) be given. Then (43.1) holds if and only if (43.2) holds.

Proof. (43.1) implies (43.2). Assume that (43.1) holds. Let (x, y) ∈ Grg be
given. Since x ∈ D, we may choose j ∈ I such that x ∈ Domfj . By (43.1) we have

y = g(x) = fj(x), and therefore (x, y) = (x, fj(x)) ∈ Grfj ⊂
⋃

i∈I

Grfi. We have shown

that
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(43.3) Grg ⊂
⋃

i∈I

Grfi.

Let (x, y) ∈
⋃

i∈I

Grfi be given. We may choose j ∈ I such that (x, y) ∈ Grfj . Then

x ∈ Domfj, and by (43.1) we have y = fj(x) = g(x). Therefore (x, y) = (x, g(x)) ∈
Grg. We have shown that

(43.4)
⋃

i∈I

Grfi ⊂ Grg.

From (43.3) and (43.4) it follows that (43.2) holds.

(43.2) implies (43.1). Assume that (43.2) holds. Let j ∈ I be given. For every
x ∈ Domfj we have, by (43.2), (x, fj(x)) ∈ Grfj ⊂ Grg, and hence fj(x) = g(x).
Thus fj |C = g|Domfj . Since j ∈ I was arbitrary, we conclude that (43.1) holds.

Proof of Theorem 43D. (i) implies (ii). This is trivial.

(ii) implies (iii). By (ii) we may choose g ∈ Map(D,C) such that (43.1) holds.
Let j, k ∈ I be given. For every x ∈ Domfj ∩ Domfk we have, by (43.1), fj(x) =
g(x) = fk(x). Therefore fj and fk agree on Domfk ∩ Domfk.

(iii) implies (iv). We define the mapping F : D → P(C) by

F (x) := {y ∈ C | (x, y) ∈
⋃

i∈I

Grfi} for all x ∈ D.

We assume that (iii) holds and claim that F (x) is a singleton for every x ∈ D; this
will establish (iv) (Proposition 22A).

Let x ∈ D be given. Let y, z ∈ F (x) be given. We may choose j, k ∈ I such that
(x, y) ∈ Grfj and (x, z) ∈ Grfk. We find that x ∈ Domfj ∩ Domfk and, by (iii),
y = fj(x) = fk(x) = z. Since y, z ∈ F (x) were arbitrary, it follows (Proposition 15A)
that F (x) is either empty or a singleton.

Since x ∈ D, we may choose j ∈ I such that x ∈ Domfj . Then (x, fj(x)) ∈
Grfj ⊂

⋃

i∈I

Grfi, and therefore fj(x) ∈ F (x). We conclude that F (x) is not empty,

and hence is a singleton, as claimed.

(iv) implies (i). Assume (iv). Then there is exactly one h ∈ Map(D,C) such that

(43.5) Grh =
⋃

i∈I

Grfi

(Proposition 22A).

Let g ∈ Map(D,C) be given, and assume that (43.1) holds. By Lemma 43E, g
also satisfies (43.2), and therefore, by (43.5), we must have g = h. On the other hand,
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if we set g := h, then (43.2) holds, by (43.5); by virtue of Lemma 43E, g also satisfies
(43.1). We conclude that g := h is the only mapping from D to C that satisfies (43.1),
and note that it also satisfies (43.2).
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44. Products and direct unions

The (Cartesian) product of a family of sets (Ai | i ∈ I) — called the family of
factors — is defined to be the set of families

×
i∈I

Ai :
∗
= {(xi | i ∈ I) | ∀i ∈ I, xi ∈ Ai}.

For each j ∈ I we have the jth projection, the mapping πj : ×
i∈I

Ai → Aj

defined by the rule

πj((xi | i ∈ I)) := xj for each (xi | i ∈ I) ∈×Ai.
i∈I

Given sets I and A, the product of the family (A | i ∈ I), with all terms equal to A,

is denoted by AI :=×
i∈I

A. Thus AI is the set of all families in A with index set I.

By providing each such family with the codomain A, we may identify the product AI

with the set Map(I, A); we shall use this last remark only sparingly.

We note that if (Ai | i ∈ I) and (Bi | i ∈ I) are families of sets such that Ai ⊂ Bi

for all i ∈ I, then ×
i∈I

Ai ⊂×
i∈I

Bi.

Let us look at some special cases of the product of a family of sets (Ai | i ∈ I).

If I = Ø, careful consideration of the definitions shows that×
i∈Ø

Ai = {Ø}, where Ø

stands for the empty set self-indexed; the product of the empty family of sets is thus
a singleton. Lists of length 2 (with index set 2⊐ = {1, 2}, say) may be identified with
pairs, the 1st term becoming the former component of the pair, and the 2nd term
becoming the latter component of the pair. Under this identification, the Cartesian

product ×
i∈2⊐

Ai of the list (Ai | i ∈ 2⊐) is identified with the product set A1 × A2 as

defined in Section 17.

When Ai = Ø for some i ∈ I, then obviously×
i∈I

Ai = Ø. The converse assertion,

namely that×
i∈I

Ai 6= Ø if Ai 6= Ø for all i ∈ I, is easily verified when I is empty or a

singleton or a doubleton, and can be proved in many other cases; its general validity,
however, may be regarded as a matter for stipulation, embodied in the “•Axiom of
Choice”. We shall regard this converse assertion as valid (subject to later discussion
in Chapter 17).

Let the family of sets (Ai | i ∈ I) be given. In analogy with the mappings (·, b)
and (a, ·) defined in Section 25, we define for each j ∈ I and y ∈×

i∈I\{j}
Ai the mapping

(y, ·j) : Aj →×
i∈I

Ai defined by the rule

(44.1) ((y, ·j)(z))i :=







yi if i ∈ I\{j}
for all z ∈ Aj .

z if i = j
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If f is a mapping with Domf ⊂×
i∈I

Ai, we write f(y, ·j) := f ◦ (y, ·j)|Domf , so that

(44.2) (f(x|I\{j}, ·j))(xj) = f(x) for all x ∈ Domf.

44A. PROPOSITION. Let the family of sets (Ai | i ∈ I) and the index j ∈ I be
given. The mapping

(x 7→ (x|I\{j}, xj)) :×
i∈I

Ai → ( ×
i∈I\{j}

Ai) × Aj

is bijective.

Proof. The inverse is given by

((y, z) 7→ (y, ·j)(z)) : (×
i∈I\{j}

Ai) × Aj →×
i∈I

Ai.

44B. PROPOSITION. If the family of sets (Ai | i ∈ I) satisfies×
i∈I

Ai 6= Ø, then

the projection πj :×
i∈I

Ai → Aj is surjective for each j ∈ I.

Proof. It follows from Proposition 44A and the assumption that ×
i∈I\{j}

Ai 6= Ø.

The mapping ((y, z) 7→ z) : (×
i∈I\{j}

Ai)×Aj → Aj is surjective (Proposition 32A). The

projection πj is the composite of the bijection of Proposition 44A and this surjection.

We now record an obvious but important fact about products.

44C. PROPOSITION. Let the family of sets (Ai | i ∈ I) and the set B be given.

For every family of mappings (fi | i ∈ I) ∈ ×
i∈I

Map(B,Ai). There is exactly one

mapping f: B →×
i∈I

Ai such that πj ◦ f = fj for all j ∈ I.

B

Aj

×
i∈I

Ai..................................................................................................................................................................................................................................................... ............
.......

fj

......................................................................................................................................................
........
...........
........

πj

.................................... ...................

......................................................

...................................................... ..................
..................

..................

...................
..................

.................

............. ............. ............. ............. ............. ............. ................. .............
f

This mapping is given by the rule

f(y) := (fi(y) | i ∈ I) for all y ∈ B.

This formula describes a bijection from ×
i∈I

Map(B,Ai) to Map(B,×
i∈I

Ai).

This bijection may serve to identify the two sets; then (fi | i ∈ I) is identified
with f , and is evaluated termwise:
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(fi | i ∈ I)(y) := (fi(y) | i ∈ I) for all y ∈ B.

Let us consider a special case of Proposition 44C. Let the families of sets (Ai | i ∈ I)
and (Bi | i ∈ I) with the same index set be given. Let a family (φi | i ∈ I) ∈
×
i∈I

Map(Bi, Ai) be given. We distinguish the projections associated with the families

of sets by writing πA
i , π

B
i . After setting fj := φj ◦ πB

j : ×
i∈I

Bi → Aj for each

j ∈ I, we may apply Proposition 44C and find that there is exactly one mapping

f : ×
i∈I

Bi → ×
i∈I

Ai such that πA
j ◦ f = φj ◦ πB

j for all j ∈ I. This mapping f is

denoted by ×
i∈I

φi, and is called the product of the family (φi | i ∈ I). Explicitly,

we have

(×
i∈I
φi)(yi | i ∈ I) := (φi(yi) | i ∈ I) for all y ∈×

i∈I
Bi,

Bj

×
i∈I

Bi ×
i∈I

Ai

Aj

................................................................................................................................................
........
...........
........

πB
j

................................................................................................................................................
........
...........
........

πA
j

......................................................................................................................................................................................... ...................

φj

......................................................

........................................................................
..................
..................

..................
..................
..................

.................................... ................................ ............. ............. ............. ............. .............
×
i∈I

φi

In particular, if sets I, A, B, and a mapping φ : B → A are given, we define

φI :=×
i∈I

φ : BI → AI .

44D. PROPOSITION. (a): Let the families of sets (Ai | i ∈ I), (Bi | i ∈ I),

(Ci | i ∈ I) with the same index set, and the families (φi | i ∈ I) ∈×
i∈I

Map(Bi, Ai)

and (ψi | i ∈ I) ∈×
i∈I

Map(Ci, Bi) be given. Then

×
i∈I

(φi ◦ ψi) = (×
i∈I

φi) ◦ (×
i∈I

ψi).

(b): Let the family of sets (Ai | i ∈ I) be given. Then×
i∈I

1Ai
= 1

×
i∈I

Ai

.

We consider the preceding definitions in the special case in which the families are
lists of length 2, identified with pairs (see p. 59). If (A1, A2) is a pair of sets and B
is a set, the formula

f(y) := (f1(y), f2(y)) for all y ∈ B

describes a bijection ((f1, f2) 7→ f) : Map(B,A1)×Map(B,A2) → Map(B,A1×A2).
This bijection may serve to identify the two sets; then (f1, f2) is identified with f ,
and is evaluated componentwise:
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(f1, f2)(y) := (f1(y), f2(y)) for all y ∈ B.

If (A1, A2) and (B1, B2) are pairs of sets, and (φ1, φ2) ∈ Map(B1, A1)×Map(B2, A2),
then the product φ1 × φ2 ∈ Map(B1 ×B2, A1 × A2) is defined by the rule

(φ1 × φ2)((y1, y2)) := (φ1(y1), φ2(y2)) for all (y1, y2) ∈ B1 ×B2.

Let us look again at the family of sets (Ai | i ∈ I). We should like to construct
a set U consisting of all members of each Ai, but in such a way that each member
of U “comes from” Ai for exactly one i ∈ I. If the family (Ai | i ∈ I) is disjoint,

then U :=
⋃

i∈I
Ai will fill the bill; if the family is not disjoint, the desired U cannot

be constructed at all. As the next best thing, we construct U as the set consisting of
“members of Ai with the label i attached, for all i ∈ I”. More formally, the direct
union of the family sets (Ai | i ∈ I) is defined to be the set

˙⋃

i∈I

Ai := {(j, x) ∈ I ×
⋃

i∈I
Ai | x ∈ Aj}.

This set is sometimes called the direct sum or the coproduct of the family. For each

j ∈ I we have the jth insertion, the mapping σj : Aj → ˙⋃

i∈I

Ai defined by the rule

σj(x) := (j, x) for each x ∈ Aj .

This mapping is obviously injective. The mapping ((j, x) 7→ x) :
˙⋃

i∈I
Ai →

⋃

i∈I
Ai,

on the other hand, is always surjective, and is bijective if and only if the family
(Ai | i ∈ I) is disjoint. (Prove!)

For given sets I and A, the direct union of the family of sets (A | i ∈ I), with all

terms equal to A, is
˙⋃

i∈I
A = I × A.

Corresponding to Proposition 44C, we have an obvious but important fact about
direct unions.

44E. PROPOSITION. Let the family of sets (Ai | i ∈ I) and the set B be given. For

every family of mappings (fi | i ∈ I) ∈×
i∈I

Map(Ai, B), there is exactly one mapping

f :
˙⋃

i∈I

Ai → B such that f ◦ σj = fj for all j ∈ I.

Aj

B
˙⋃

i∈I

Ai

..................................................................................................................................................................................................................................................... ............
.......

fj

.........................................................................................................................................................
........
...........
........

σj

.......................................... ...................

......................................................

...................................................... ..................
..................

..................

..................
..................

..................

............. ............. ............. ............. ............. .......................... .............
f

This mapping is given by the rule
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f((j, x)) := fj(x) for all (j, x) ∈ ˙⋃

i∈I

Ai.

This formula describes a bijection from×
i∈I

Map(Ai, B) to Map(
˙⋃

i∈I

Ai, B).
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45. General associative and distributive
laws

The most important general associative and distributive laws involving unions,
intersections, and products of families of sets are given in the following theorem.
•45A. THEOREM. Let sets I and X, a family of sets (Ji | i ∈ I), and a family of

families of sets ((Ai,j | j ∈ Ji) | i ∈ I) be given. Set U :=
˙⋃

i∈I

Ji and P := ×
i∈I

Ji.

Assume that
⋃

(i,j)∈U

Ai,j ⊂ X. The following rules hold:

(45.1)
⋃

i∈I

(
⋃

j∈Ji

Ai,j) =
⋃

(i,j)∈U

Ai,j

(45.2)
⋂

i∈I

X(
⋂

j∈Ji

XAi,j) =
⋂

(i,j)∈U

XAi,j

•(45.3)
⋂

i∈I

X(
⋃

j∈Ji

Ai,j) =
⋃

k∈P

(
⋂

i∈I

XAi,ki)

•(45.4)
⋃

i∈I

(
⋂

j∈Ji

XAi,j) =
⋂

k∈P

X(
⋃

i∈I

Ai,ki)

•(45.5) ×
i∈I

(
⋃

j∈Ji

Ai,j) =
⋃

k∈P

(×
i∈I

Ai,ki)

(45.6) ×
i∈I

(
⋂

j∈Ji

Ai,j) =
⋂

k∈P

(×
i∈I

Ai,ki) if P 6= Ø.

Proof. Proof of (45.1). For every (i′, j′) ∈ U we have Ai′,j′ ⊂
⋃

j∈Ji′

Ai′,j ⊂⊂
⋃

i∈I

(
⋃

j∈Ji

Ai,j).

Therefore
⋃

(i,j)∈U

Ai,j ⊂
⋃

i∈I

(
⋃

j∈Ji

Ai,j). Conversely, for every i′ ∈ I and every j′ ∈ Ji′ we

have (i′, j′) ∈ U and hence Ai′,j′ ∈
⋃

(i,j)∈U

Ai,j ; since j′ ∈ Ji′ , was arbitrary, we have

⋃

j∈Ji′

Ai′,j ⊂
⋃

(i,j)∈U

Ai,j; and since i′ ∈ I was arbitrary, we have
⋃

i∈I

(
⋃

j∈Ji

Ai,j) ⊂
⋃

(i,j)∈U

Ai,j.
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Proof of (45.2). This proof is similar to the preceding one and is left to the reader.

•Proof of (45.3). Let k ∈ P be given. Since Ai,ki ⊂
⋃

j∈Ji

Ai,j for each i ∈ I,

we have
⋂

i∈I

XAi,ki ⊂
⋂

i∈I

X(
⋃

j∈Ji

Ai,j); since k ∈ P was arbitrary, we conclude that

⋃

k∈P

(
⋂

i∈I

XAi,ki) ⊂
⋂

i∈I

X(
⋃

j∈Ji

Ai,j).

Conversely, let x ∈
⋂

i∈I

X(
⋃

j∈Ji

Ai,j) be given. For each i ∈ I, we have x ∈
⋃

j∈Ji

Ai,j,

and hence Li := {j ∈ Ji | x ∈ Ai,j} 6= Ø. •Therefore ×
i∈I

Li 6= Ø. Choose

l ∈×
i∈I

Li ⊂ P . Then x ∈ Ai,li for each i ∈ I; hence x ∈
⋂

i∈I

XAi,li ⊂
⋃

k∈P

(
⋂

i∈I

XAi,ki).

We have thus shown that
⋂

i∈I

X(
⋃

j∈Ji

Ai,j) ⊂
⋃

k∈P

(
⋂

i∈I

XAi,ki).

•Proof of (45.4). Set Bi,j := X\Ai,j for all (i, j) ∈ U , so that Ai,j = X\Bi,j. Then
Proposition 43A and •(45.3) yield

⋃

i∈I

(
⋂

j∈Ji

XAi,j)) =
⋃

i∈I

(
⋂

j∈Ji

X(X\Bi,j)) = X\(
⋂

i∈I

X(
⋃

j∈Ji

Bi,j)) =

= X\(
⋃

k∈P

(
⋂

i∈I

XBi,ki)) =
⋂

k∈P

X(
⋃

i∈I

(X\Bi,ki) =
⋂

k∈P

X(
⋃

i∈I

Ai,ki).

•Proof of (45.5). This proof is similar to the proof of •(45.3), and is left to the
reader.

Proof of (45.6). Let k ∈ P be given. Since
⋂

j∈Ji

Ai,j ⊂ Ai,ki for each i ∈ I,

we have ×
i∈I

(
⋂

j∈Ji

Ai,j) ⊂ ×
i∈I

Ai,ki. Since k ∈ P was arbitrary, we conclude that

×
i∈I

(
⋂

j∈Ji

Ai,j) ⊂
⋂

k∈P

(×
i∈I

Ai,ki) .

Conversely, let (xi | i ∈ I) ∈ (
⋂

k∈P

×
i∈I

Ai,ki) be given and let i′ ∈ I and j′ ∈ J ′i

be given. Since P 6= Ø, the projection πi′ : P → Ji′ is surjective (Proposition 44B).

We may therefore choose l ∈ P such that li′ = j′. Then (xi | i ∈ I) ∈ ×
i∈I

Ai,li,

whence xi′ ∈ Ai′,li′
= Ai′,j′. Since j′ ∈ Ji′ was arbitrary, we have xi′ ∈

⋂

j∈Ji′

Ai′,j.

Since i′ ∈ I was arbitrary, (xi | i ∈ I) ∈ ×
i∈I

(
⋂

j∈Ji

Ai,j). We have shown that

⋂

k∈P

(×
i∈I

Ai,ki) ⊂×
i∈I

(
⋂

j∈Ji

Ai,j), and thus completed the proof.
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45B. PROPOSITION. Let a set I, a family of sets (Ji | i ∈ I), and a family of

families of sets ((Ai,j | j ∈ Ji) | i ∈ I) be given. Set U :=
˙⋃

i∈I

Ji.

(a): The mapping

(((ai,j | j ∈ Ji) | i ∈ I) 7→ (ai,j | (i, j) ∈ U)) :×
i∈I

(×
j∈Ji

Ai,j) →×
(i,j)∈U

Ai,j

is bijective.

(b): The mapping

(i, (j, x)) 7→ ((i, j), x) :
˙⋃

i∈I

˙⋃

j∈Ji

Ai,j →
˙⋃

(i,j)∈U

Ai,j

is bijective.
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46. Set-products and set-coproducts

For later use, we discuss in this section abstract generalizations of the concepts of
Cartesian product and direct union of a family of sets. The properties that are the
clue to the generalizations were described in Propositions 44C and 44E.

A (set-)product of a family of sets (Ai | i ∈ I) is defined to be a set P together

with a family of mappings (pi | i ∈ I) ∈×
i∈I

Map(P,Ai) such that for every set B and

every family of mappings (fi | i ∈ I) ∈×
i∈I

Map(B,Ai) there is exactly one mapping

f : B → P such that fi = pi ◦ f for all i ∈ I. The set P is called the product-set
(sometimes the product, when confusion is unlikely), and for each j ∈ I the mapping
pj : P → Aj is called the jth projection.

B
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fi

.....................................................................................................................................................................
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......................................................
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..................

..................

..................
..................
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............. ............. ............. ............. ............. ............. ....................... .............
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The first part of the next proposition asserts that a given family of sets has
“essentially” at most one product: any two products “can be identified”.

46A. PROPOSITION. (a). Let products of the family of sets (Ai | i ∈ I) be given,
with respective product-sets P and P ′ and respective families of projections (pi | i ∈ I)
and (p′i | i ∈ I). Then the unique mappings g : P → P ′ and g′ : P ′ → P that satisfy
pi = p′i ◦ g and p′i = pi ◦ g′ for all i ∈ I are invertible, and each is the inverse of the
other.

(b): Let a product of the family of sets (Ai | i ∈ I) be given, with product-set
P and family of projections (pi | i ∈ I). A given set Q and family of mappings

(qi | i ∈ I) ∈ ×
i∈I

Map(Q,Ai) are the product-set and family of projections of a

product of (Ai | i ∈ I) if and only if the unique mapping g : Q → P that satisfies
qi = pi ◦ g for all i ∈ I is invertible.

Proof. Proof of (a). We have pi ◦ 1P = pi = p′i ◦ g = pi ◦ g′ ◦ g for all i ∈ I. By
the uniqueness condition in the definition of product (with B := P and fi := pi for
all i ∈ I), we conclude that g′ ◦ g = 1P . Interchanging the roles of the products, we
conclude that g ◦ g′ = 1P ′.

Proof of (b). The “only if” part is an immediate consequence of Part (a). To
prove the “if” part, we assume that g is invertible. Let a set B and a family (fi | i ∈
I) ∈×

i∈I
Map(B,Ai) be given, and let f: B → P be the unique mapping that satisfies

fi = pi ◦ f for all i ∈ I. A mapping h : B → Q satisfies fi = qi ◦ h for all i ∈ I if and
only if fi = pi ◦ g ◦ h for all i ∈ I, and this is in turn the case if and only if g ◦ h = f
or, equivalently, h = g← ◦ f ; there is thus exactly one mapping h with the required
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property.

Has every family of sets a product? The affirmative answer is given by the follow-
ing proposition.

46B. PROPOSITION. Let the family of sets (Ai | i ∈ I) be given. Then the set

×
i∈I

Ai together with the family of projections (πj | j ∈ I) ∈×
j∈I

Map(×
i∈I

Ai, Aj) is a

product of the family (Ai | i ∈ I).

Proof. Proposition 44C.

46C. REMARKS. (a): Propositions 46A and 46B together show that the Cartesian

product ×
i∈I

Ai and the family of projections (πi | i ∈ I) constitute “the essentially

unique” product of the family of sets (Ai | i ∈ I). The abstract concept of set-product
is nevertheless useful. At the same time, the use of the term “product”, chosen for
the allusion to the Cartesian product, should not lead to confusion. The special
product described in Proposition 44B may be called the Cartesian product, or the
standard product, or simply the product, of (Ai | i ∈ I).

(b): If I and A are given sets, the set Map(I, A), together with the family of

evaluations (a 7→ a(i) | i ∈ I) ∈×
i∈I

Map(Map(I, A), A), is a product of the family

(A | i ∈ I). If A and B are given sets, the set A × B together with the pair of
mappings (((x, y) 7→ x) : A × B → A), ((x, y) 7→ y) : A × B → B)) is a product of
the pair (A,B) (where pairs are identified with lists of length 2).

The following proposition could be proved by using Propositions 46A and 46B,
together with our knowledge of the Cartesian product. We prefer to show how it can
be obtained directly from the definition of product.

46D. PROPOSITION. Let a product of a family of sets (Ai | i ∈ I) be given, with
product-set P and family of projections (pi | i ∈ I).

(a): ∀x, y ∈ P, x = y ⇔ (∀i ∈ I, pi(x) = pi(y)).

(b): If P 6= Ø, then pj is surjective for every j ∈ I.

Proof. Proof of (a). Let x, y ∈ P be given, and assume that pi(x) = pi(y) for all
i ∈ I. Choose a non-empty set B (e.g., a singleton). Then pi ◦ xB→P = pi(x)B→Ai

=
pi(y)B→Ai

= pi ◦ yB→P for all i ∈ I. By the uniqueness condition in the definition of
product, we must have xB→P = yB→P . Since B 6= Ø, this implies x = y. The reverse
implication is trivial.

Proof of (b). Let j ∈ I be given. Choose x ∈ P . Define the family of mappings

(fi | i ∈ I) ∈×
i∈I

Map(Aj, Ai) by the rule

fi :=







1Aj
if i = j

(xi)Aj→Ai
if i ∈ I\{j}.

By the definition of product, there is a mapping f: Aj → P such that pj◦f = fj = 1Aj
.

The pj is right-invertible, and hence surjective.

We now introduce a concept similar to that of set-product, but “with the arrows
going in the opposite direction”. A (set-)coproduct of a family (Ai | i ∈ I) is defined
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to be a set U together with a family of mappings (si | i ∈ I) ∈×
i∈I

Map(Ai, U) such

that for every set B and every family of mappings (fi | i ∈ I) ∈×
i∈I

Map(Ai, B) there

is exactly one mapping f : U → B such that fi = f ◦ si for all i ∈ I. The set U is
called the coproduct-set (sometimes the coproduct, if confusion is unlikely), and
for each j ∈ I the mapping sj : Aj → U is called the jth insertion.
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fi
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...................
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46E. PROPOSITION. (a): Let coproducts of the family of sets (Ai | i ∈ I) be
given, with respective coproduct-sets U and U ′ and respective families of insertions
(si | i ∈ I) and (s′i | i ∈ I). Then the unique mappings g : U ′ → U and g′ : U → U ′

that satisfy si = g ◦ s′i and s′i = g′ ◦ si for all i ∈ I are invertible, and each is the
inverse of the other.

(b): Let a coproduct of the family of sets (Ai | i ∈ I) be given, with coproduct-
set U and family of insertions (si | i ∈ I). A given set V and family of mappings

(ti | i ∈ I) ∈ ×
i∈I

Map(Ai, V ) are the coproduct-set and family of insertions of a

coproduct of (Ai | i ∈ I) if and only if the unique mapping g : U → V that satisfies
ti = g ◦ si for all i ∈ I is invertible.

46F. PROPOSITION. (a): Let the family of sets (Ai | i ∈ I) be given. Then the

set
˙⋃

i∈I

Ai together with the family of insertions (σj | j ∈ I) ∈×
j∈I

Map(Aj ,
˙⋃

i∈I

Ai) is

a coproduct of the family (Ai | i ∈ I).

(b): Let the disjoint family of sets (Ai | i ∈ I) be given. Then the set
⋃

i∈I

Ai

together with the family of inclusion mappings

(1
Aj⊂∪

i∈I
Ai

| j ∈ I) ∈×
j∈I

Map(Aj ,
⋃

i∈I

Ai)

is a coproduct of the family (Ai | i ∈ I).

Proof. Proof of (a). Proposition 44E.

Proof of (b). The mapping ((k, x) 7→ x) :
˙⋃

i∈I

Ai →
⋃

i∈I

Ai is bijective when the

family (Ai | i ∈ I) is disjoint. Now the composite of σj with this mapping is precisely

the inclusion mapping of Aj into
⋃

i∈I

Ai for every j ∈ I. The conclusion follows from

Part (a) and Proposition 46E,(b).

The coproduct described in Proposition 46F, (a) may be called the standard
coproduct of the family of sets (Ai | i ∈ I).
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46G. PROPOSITION. Let a coproduct of a family (Ai | i ∈ I) be given, with
coproduct-set U and family of insertions (si | i ∈ I). Then:

(a): U =
⋃

i∈I

Rngsi.

(b): sj is injective for every j ∈ I.

Proof. Proof of (a). Choose a set B that is neither empty nor a singleton (e.g., a
doubleton), and choose b, b′ ∈ B such that b 6= b′. Define f, f ′ : U → B by f := bU→B

and by the rule

f ′(x) :=























b if x ∈
⋃

i∈I

Rngsi

b′ if x ∈ U\
⋃

i∈I

Rngsi.

Then f ◦ si = bAi→B = f ′ ◦ si for all i ∈ I. By the uniqueness condition in the

definition of coproduct, we must have f = f ′, and therefore U =
⋃

i∈I

Rngsi.

Proof of (b). Let j ∈ I be given. If Aj = Ø, then sj = 1Ø⊂U is injective.
Assume now that Aj 6= Ø, and choose y ∈ Aj. Define the family of mappings

(fi | i ∈ I) ∈×
i∈I

Map(Ai, Aj) by the rule

fi :=







1Aj
if i = j

yAi→Aj
if i ∈ I\{j}.

By the definition of coproduct, there is a mapping f : U → Aj such that f ◦ sj =
fj = 1Aj

. Thus sj is left-invertible, and hence injective.
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RELATIONS

51. Relations in a set

Consider the statement “6 is a multiple of 3”. It is clear that if we replace “6”
and “3” by any (names for) natural numbers we again obtain a meaningful statement.
Thus “m is a multiple of n” is meaningful whenever m and n are members of the set
N of natural numbers. Of course, whether “m is a multiple of n” is a true statement
depends on what numbers m and n actually are. The sentence fragment “is a multiple
of” determines a relation in the set N of all natural numbers. Similarly, the sentence
fragments “does not exceed” and “is less than or equal to”, both usually abbreviated
“≤”, determine one and the same relation in the set R of all real numbers. The
fragment becomes a complete assertion, or statement, when preceded and followed
by names of real numbers. For instance, “Two does not exceed one”, or “2 ≤ 1”, is
a complete, meaningful statement; it happens to be false.

In general, a relation ρ in a set D is determined by a two-place predicate in
which both places can be filled only with members of D. If x, y ∈ D fill these places,
respectively, the resulting assertion is usually written x ρ y, with the symbol for the
relation between the symbols for x and y. The set D is called the domain of ρ, and
is denoted by Domρ := D.

Predicates that yield equivalent assertions when filled with the same pair of mem-
bers of the same set are regarded as determining the same relation. Thus, if ρ and σ
are relations, we have ρ = σ if and only if

D := Domρ = Domσ and ∀x, y ∈ D, x ρ y ⇔ x σ y.

With each relation ρ in the set D we associate a subset Grρ, called the graph of
ρ, of the product set D ×D, as follows:

Grρ := {(x, y) ∈ D ×D | x ρ y}.
Conversely, it is clear that every subset G of D×D is the graph of exactly one relation
in D: namely, the relation ρ defined by the rule

71
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∀x, y ∈ D, x ρ y :⇔ (x, y) ∈ G.

This remark establishes a one-to-one correspondence between all relations in the set
D and all subsets of D × D. In view of this correspondence, many mathematicians
say that a relation in D is a subset of D × D, and make no distinction between a
relation and its graph.

A trivial but important relation in D is equality in D, which may be written
=D; this is the relation defined by the rule

∀x, y ∈ D, x =D y :⇔ x = y,

so that x =D y for given x, y ∈ D if and only if x and y are actually the same member
of D. The graph of =D is the diagonal of D ×D:

Gr(=D) = △D = {(x, x) | x ∈ D}.

If D is an interval and we represent D × D as a square in a plane, this graph is
then precisely a diagonal of this square.
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52. Images and pre-images

Let the relation ρ in the set D be given. For every subset U of D, we define the
image of U under ρ to be the set

(52.1) ρ>(U) := {y ∈ D | x ρ y for some x ∈ U}.

The rule (52.1) defines a mapping ρ> : P(D) → P(D), called the image mapping
induced by ρ.

The mapping (x 7→ ρ>({x})) : D → P(D) is of some independent interest: it
assigns to each member of D the set of all members of D to which it is related by
ρ. This mapping may serve to specify the relation, in the following sense. To every
mapping φ : D → P(D) there is exactly one relation ρ in D such that ρ>({x}) = φ(x)
for all x ∈ D: namely, the relation ρ given by the rule

∀x, y ∈ D, x ρ y :⇔ y ∈ φ(x).

This remark establishes a one-to-one correspondence between all relations in the set
D and all mappings from D to P(D). In view of this correspondence, one might say
that a relation in D is a mapping from D to P(D).

Let us return to the given relation ρ in D. For every subset V of D, we define the
pre-image of V under ρ to be the set

(52.2) ρ<(V ) := {x ∈ D | x ρ y for some y ∈ V }.

The rule (52.2) defines a mapping ρ< : P(D) → P(D), called the pre-image map-
ping induced by ρ.
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53. Reversal, composition, and restriction
of relations

Let the relation ρ in the set D be given. We define a new relation ρ← in D, called
the reverse of ρ, by the rule

∀x, y ∈ D, x ρ← y :⇔ y ρ x.

For example, the relation ≥ in R is the reverse of ≤; the relation “divides” in N is
the reverse of “is a multiple of”. This operation of reversal obviously satisfies the
following rules:

(53.1) ρ←← = ρ,

(53.2) Grρ← = (Grρ)⊤

(53.3) (ρ←)> = ρ<, (ρ←)< = ρ>.

If D is an interval and D ×D is represented as a square in a plane, the mapping
((x, y) 7→ (y, x)) : D × D → D × D corresponds to reflection with respect to the
diagonal △D. This remark allows us to visualize the relationship (53.2) between the
graph of a relation and the graph of its inverse.
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Let the relations σ and ρ in D be given. We define a new relation σ ◦ ρ in D,
called the composite of ρ and σ (notice the reversal of priority) by the rule

∀x, y ∈ D, x(σ ◦ ρ)y :⇔ (∃z ∈ D, x ρ z and z σ y).

This operation of composition obviously satisfies the following rules

(53.4) (σ ◦ ρ)> = σ> ◦ ρ> (σ ◦ ρ)< = ρ< ◦ σ<,
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(53.5) (σ ◦ ρ)← = ρ← ◦ σ←,

and the composite relation σ ◦ ρ can be characterized by the rule

(53.6) ∀x ∈ D, (σ ◦ ρ)>({x}) = σ>(ρ>({x})).

(In (53.4), the right-hand sides are composites of mappings. The use of the same
symbol for composition of relations and composition of mappings should be a help
rather than a source of confusion.)

Composition of relations obeys the associative law in the following sense: if ρ, σ, τ
are relations in D, then

(τ ◦ σ) ◦ ρ = τ ◦ (σ ◦ ρ).

This result follows at once from the definition of composition, or from (53.6). It
permits us to write τ ◦σ◦ρ without parentheses, and similarly for composites of more
relations.

If ρ is a relation in the set D, and U is a subset of D, we define the relation ρ|U
in U , called the restriction of ρ to U , by the rule

∀x, y ∈ U, x(ρ|U )y :⇔ x ρ y.

This restriction is characterized by either of the rules

Gr(ρ|U) = Grρ ∩ (U × U)

∀x ∈ U, (ρ|U)>({x}) = ρ>({x}) ∩ U.
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54. Relations from set to set; functional
relations

This section constitutes a digression from the topic of this chapter, and may be
skipped for the time being without loss of continuity.

We sometimes encounter a concept somewhat more general than that of a relation
in a set, described in Section 51, in that the objects that fill the places in the two-
place predicate are to be taken from possibly different sets. For instance, in the space
of ordinary Euclidean geometry, we may consider assertions such as “the plane P is
perpendicular to the line l”. Here the places in the predicate “is perpendicular to”
are to be filled with (the name of) a plane and (the name of) a line, respectively.

We therefore consider the concept of a relation ρ from the set D to the set C,
in which the places in the predicate determining the relation are to be filled with a
member of D and a member of C, respectively. D is called the domain of ρ, and C
the codomain of ρ. A relation from D to D is then a relation in D as described in
Section 51.

All the concepts introduced in Sections 51, 52, and 53 have their obvious general-
izations to relations form set to set, and obey the same rules. Thus, if ρ is a relation
from D to C, the graph Grρ is a subset of D × C, the induced mappings are
ρ> : P(D) → P(C) and ρ< : P(C) → P(D), and reversal of ρ produces the reverse
ρ←, a relation from C to D.

One can compose relations ρ and σ to form the composite σ ◦ ρ only when the
domain of σ is the codomain of ρ.

Let the mapping f : D → C be given. To this mapping we associate the relation
f7→ from D to C defined by the rule

∀(x, y) ∈ D × C, x
f7→y :⇔ y = f(x).

We note the following obvious rules satisfied by the relation
f7→:

(54.1) Gr
f7→ = Grf,

(54.2) (
f7→)> = f> (

f7→)< = f<.

If the mappings f: D → C and g : C → B are given, then

(54.3)
g7→ ◦ f7→ =

g◦f7−→.

We observe that, for every set D, the equality relation =D in D defined in Section

51 is precisely
1D7−→.
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A relation ρ from D to C is said to be functional if ρ =
f7→ for some mapping

f: D → C. It is easy to see that ρ is functional if and only if ρ>({x}) is a singleton for
every x ∈ D (see also (54.1) in conjunction with Proposition 22A for a characterization

in terms of the graph of ρ). If f: D → C is a mapping, the relation (
f7→)← from C to

D is functional if and only if f is invertible; in that case, (
f7→)← =

f←7−→.
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55. Properties of relations

We now return to the study of relations in a set. We introduce several important
properties that a relation may have, and then list for each of them some obvious
equivalent variants of the corresponding defining condition. Since the formulation of
these conditions is rather stereotyped, we present them in a tabular form.

The relation ρ in the set

D is said to be if

reflexive ∀x ∈ D, x ρ x

irreflexive ∀x ∈ D, not x ρ x

symmetric ∀x, y ∈ D, x ρ y ⇒ y ρ x

antisymmetric ∀x, y ∈ D, (x ρ y and y ρ x) ⇒ x = y

strictly antisymmetric ∀x, y ∈ D, x ρ y ⇒ (not y ρ x)

total ∀x, y ∈ D, x ρ y or y ρ x or x = y

transitive ∀x, y, z ∈ D, (x ρ y and y ρ z) ⇒ x ρ z.

55A. PROPOSITION. Let the relation ρ in the set D be given. Then

ρ is if and only if and if and only if ,
for all x ∈ D,

reflexive △D ⊂ Grρ x ∈ ρ>({x})

irreflexive Grρ ∩△D = Ø x ∈ D\ρ>({x})

symmetric ρ← = ρ ρ>({x}) = ρ<({x})

antisymmetric Grρ ∩ Grρ← ⊂ △D ρ>({x}) ∩ ρ<({x}) ⊂ {x}

strictly antisymmetric Grρ ∩ Grρ← = Ø ρ>({x}) ∩ ρ<({x}) = Ø

total Grρ ∪ Grρ← ∪△D = D ×D ρ>({x}) ∪ ρ<({x}) ∪ {x} = D

transitive Gr(ρ ◦ ρ) ⊂ Grρ ρ>(ρ>({x})) ⊂ ρ>({x}).
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55B. REMARKS. Let the relation ρ in the set D be given. Then:

(a): ρ is strictly antisymmetric if and only if ρ is antisymmetric and irreflexive.

(b): ρ is not both reflexive and irreflexive unless D = Ø.

(c): ρ is both symmetric and antisymmetric if and only if Grρ ⊂ △D.

(d): ρ is not reflexive, symmetric, and antisymmetric unless ρ is the equality re-
lation =D.

(e): ρ is not both symmetric and strictly antisymmetric unless Grρ = Ø.

(f): ρ is not reflexive, symmetric, and total unless Grρ = D ×D.

(g): if ρ is transitive, then ρ is strictly antisymmetric if and only if ρ is irreflexive.

55C. PROPOSITION. Let the relation ρ in the set D and the subset U of D be
given. If ρ is reflexive, then ρ← and ρ|U are reflexive. The same implication holds
with “reflexive” replaced by “irreflexive”, “symmetric”, “antisymmetric”, “strictly
antisymmetric”, “total”, or “transitive”.

55D. EXAMPLES. (a): The equality relation =D in a set D is reflexive, symmetric,
antisymmetric, and transitive; it is neither irreflexive nor strictly antisymmetric unless
D = Ø, nor is it total unless D is empty or a singleton.

(b)∗: The relations ≤ and < in R are antisymmetric, total, and transitive. The
former is reflexive, hence neither irreflexive nor strictly antisymmetric; the latter is
irreflexive and strictly antisymmetric, hence not reflexive. Neither relation is sym-
metric.

(c)∗: The relation “divides” in N is reflexive, antisymmetric, and transitive; it is
neither symmetric nor irreflexive nor strictly antisymmetric; moreover, it is not total
(since “2 divides 5, or 5 divides 2, or 2 = 5” is a false statement). The analogous
relation “divides” in the set Z of all integers has the same properties, except that it
is not antisymmetric (since −2 divides 2, and 2 divides −2, but 2 6= −2).

(d)∗: In a model of a human population, the relation “is a child of” is irreflexive,
indeed strictly antisymmetric; it is neither reflexive, symmetric, total, nor transitive
(except for trivially restricted populations). The same assertions are valid for the
relation “is a descendant of”, except that this relation is transitive; it is a kind of
“transitive closure” of the former relation. (The concept of the transitive closure of
a relation will be examined in Section 73.)
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56. Order

Among the properties of relations introduced in the preceding section there are
some particularly important combinations. We discuss these in this section and the
next.

A relation in a set is called an order if it is transitive, antisymmetric, and re-
flexive; it is called a strict-order if it is transitive and irreflexive, and hence also
strictly antisymmetric (Remarks 55B,(g)). If the distinction from strict-orders is to
be stressed, an order may be called a lax order. It follows from Proposition 55C
that the reverse and each restriction of an order is again an order; an analogous as-
sertion follows for strict-orders. It is customary to denote an order or a strict-order
by ≺, <, ⊳, ⊏, or another symbol of a similar shape. If such a symbol is used, its
left-to-right mirror image is used to denote the reverse relation.

There is an obvious correspondence between orders and strict-orders in a given
set, exemplified by the relationship between the order ≤ and the strict-order < in R
(Examples 55D,(b)). These relations differ only by the inclusion or exclusion, respec-
tively, of equality; to put it another way, by the inclusion or exclusion, respectively,
of the diagonal in or from the graph. More formally, the correspondence is described
by the following result.

56A. PROPOSITION. Let D be a given set. Then:

(a): For each order ≺ in D, define the relation � in D by the rule

∀x, y ∈ D, x � y :⇔ (x ≺ y and x 6= y)

(i.e., Gr(�) := Gr(≺)\△D)). Then � is a strict order.

(b): for each strict-order ≺ in D, define the relation � in D by the rule

∀x, y ∈ D, x � y :⇔ (x ≺ y or x = y)

i.e., Gr(�) := Gr(≺) ∪△D). Then � is an order.

(c): The mapping ≺7→� from the set of all orders in D to the set of all strict-
orders in D, and the mapping ≺7→� from the set of all strict-orders in D to the set
of all orders in D, are inverses of each other.

(d): If ≺ is an order in D, then ≺ is total if and only if � is total, and this is the
case if and only if

∀x, y ∈ D, x � y ⇔ (not x ≻ y).

Proposition 56A allows us to use the expressions “an order and the corresponding
strict-order”, “a strict-order and the corresponding (lax) order” unambiguously. Note
that this correspondence is preserved under reversal and restriction. When dealing
with this kind of relation, it is often useful to have both the order and the correspond-
ing strict-order available, and it is a matter of expediency whether one considers the
one or the other as primary. It is usually more convenient to work with the (lax)
order.
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56B. EXAMPLES. (a)∗: The relations ≤ and < in R (as well as their respective
restrictions to, say N) are an order and the corresponding strict-order, respectively.
They are total.

(b)∗: The relation “divides” in N (usually abbreviated to “|”) is an order; it is not
total (Example 55D,(c)).

(c)∗: In the example of a model of a human population (Example 55D,(d)), the
relation “is a descendant of” is a strict-order; it is usually not total.

(d): The most important example of an order is the inclusion relation ⊂S in
the power-set P(S) of a given set S, defined by the rule

∀U, V ∈ P(S), U ⊂S V :⇔ U ⊂ V.

The corresponding strict-order is the proper-inclusion relation$S. These relations
are not total, unless S is empty or a singleton.

(e): Let the set D be given. If ρ and σ are relations in D, then ρ is said to be
narrower than σ, and σ is said to be broader than ρ, if

∀x, y ∈ D, x ρ y ⇒ x σ y.

This condition is obviously equivalent to Grρ ⊂ Grσ. Since the inclusion relation
⊂D×D is an order in P(D × D) (see (d)), it follows that the relation “is narrower
than” is an order in the set of all relations in D, and “is broader than” is its reverse.

As noted in Proposition 56A,(d), an order is total if and only if the corresponding
strict-order is total. If ≺ is an order or a strict-order in a set D, then the members
x, y ∈ D are said to be ≺-comparable if either x ≺ y or y ≺ x or x = y. Thus
the order or strict-order ≺ is total if and only if x and y are ≺-comparable for all
x, y ∈ D. Some mathematicians prefer to use the term partial order instead of order,
to indicate that there may be non-comparable pairs of members of the domain. In
the older literature, the term order is often used to mean what we have called total
order. Our usage reflects the increasingly prevalent view that (partial) order is a more
fundamental concept than total order.

A set with a specified order in it is an important mathematical object in its own
right; we shall devote three entire chapters to ordered sets.
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57. Equivalence relations

Let the set D and a mapping f with Domf = D be given. Define the relation ρ
in D by the rule

∀x, y ∈ D, x ρ y :⇔ f(x) = f(y).

It is an immediate consequence of the logical properties of equality that ρ is reflexive,
symmetric, and transitive. We shall see later that these properties are characteristic,
i.e., that every reflexive, symmetric, and transitive relation ρ in D is obtained in
this manner from a suitable mapping f with Domf = D (Corollary 57G). For this
reason, we call such relations equivalence relations (“equivalent” means “having the
same value”).

Thus, a relation in a set is called an equivalence relation if it is reflexive,
symmetric, and transitive. In addition to the examples that may be obtained by the
process described above, we mention a few others.

57A. EXAMPLES. (a): In every set D, the equality relation =D and the trivial
relation whose graph is D ×D are equivalence relations.

(b)∗: If D,C are given sets, the relation ∼ in Map(D,C) defined by the rule

∀f, g ∈ Map(D,C), f ∼ g :⇔ {x ∈ D | f(x) 6= g(x)} is a finite set
is an equivalence relation. (To prove this, we use the facts that Ø is a finite set and
that every subset of the union of two finite sets is a finite set.)

(c)∗: Define the relation ∼ in N× N by the rule

∀(m,n), (m′, n′) ∈ N× N, (m,n) ∼ (m′, n′) :⇔ m + n′ = m′ + n.

Then ∼ is an equivalence relation.

(d)∗: Let m ∈ Z be given, and define the relation ≡m in Z by the rule

∀n, n′ ∈ Z, n ≡m n′ :⇔ m divides n′ − n

(the definiendum is usually written “n ≡ n′(mod m)”). Then ≡m, which is called
congruence modulo m, is an equivalence relation.

In characterizing equivalence relations, it is sometimes convenient to combine the
definitions of symmetry and transitivity into a single formula resembling the definition
of transitivity alone.

57B. PROPOSITION. Let the reflexive relation ρ in the set D be given. The fol-
lowing statements are equivalent:

(i): ρ is an equivalence relation.

(ii): ∀x, y, z ∈ D, (x ρ y and y ρ z) ⇒ z ρ x.

(iii): ∀x, y, z ∈ D, (x ρ y and x ρ z) ⇒ y ρ z.

(iv): ∀x, y, z ∈ D, (x ρ z and y ρ z) ⇒ x ρ y.

The central facts about equivalence relations have to do with their relationship to
partitions and mappings, as described by the following results.
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57C. THEOREM. Let the equivalence relation ρ in the set D be given. Then the
collection {ρ>({x}) | x ∈ D} is a partition of D.

Proof. Set R := {ρ>({x}) | x ∈ D}. For each x ∈ D we have x ∈ ρ>({x}), since ρ
is reflexive. Therefore

⋃R = D and Ø /∈ R. It remains to show that the collection
R is disjoint.

Let x, y ∈ D be such that ρ>({x}) ∩ ρ>({y}) 6= Ø; choose z ∈ ρ>({x}) ∩ ρ>({y}).
Let u ∈ ρ>({x}) be given. We then have x ρ u, x ρ z, y ρ z. By Proposition 57B
we have y ρ u, i.e., u ∈ ρ>({y}). Since u ∈ ρ>({x}) was arbitrary, it follows that
ρ>({x}) ⊂ ρ>({y}). Interchanging x, y in the preceding argument, we conclude that
the reverse inclusion holds, so that ρ>({x}) = ρ>({y}).

In the following theorem, P is a partition of D, and ΩP : D → P is the corre-
sponding partition mapping (Section 24).

57D. THEOREM. Let the set D, the relation ρ in D, and the partition P of D be
given. The following statements are equivalent:

(i): ρ is an equivalence relation, and P = {ρ>({x}) | x ∈ D}.

(ii) ρ is reflexive, and P = {ρ>({x}) | x ∈ D}.
(iii): ΩP(x) = ρ>({x}) for all x ∈ D.

(iv): ∀x, y ∈ D, x ρ y ⇔ ΩP(x) = ΩP(y).

(v): ∀x, y ∈ D, x ρ y ⇔ (∃E ∈ P, x, y ∈ E).

(vi): Grρ =
⋃

E∈P

(E ×E).

Proof. (i) ⇒ (ii). This implication is trivial.

(ii) ⇒ (iii). Assume that (ii) holds. For given x ∈ D we have x ∈ ΩP(x) ∈ P
and x ∈ ρ>({x}) ∈ P, the former by the definition of ΩP , the latter by (ii). Thus
ΩP(x), ρ>({x}) ∈ P and ΩP(x) ∩ ρ>({x}) 6= Ø, whence ΩP(x) = ρ>({x}).

(iii) ⇒ (iv). For all x, y ∈ D, we have x ρ y if and only if y ∈ ρ>({x}), and hence,
when (iii) holds, if and only if y ∈ ΩP(x), which is equivalent to ΩP(x) = ΩP(y).

(iv) ⇒ (v). This implication is trivial, upon setting E := ΩP(x).

(v) ⇒ (vi). Assume that (v) holds. For given x, y ∈ D we have the chain of
equivalences

(x, y) ∈ Grρ ⇔ x ρ y ⇔ (∃E ∈ P, x, y ∈ E) ⇔

⇔ (∃E ∈ P, (x, y) ∈ E ×E) ⇔ (x, y) ∈
⋃

E∈P

(E ×E).

(vi) ⇒ (iii). Assume that (vi) holds. For every x, y ∈ D we have the chain of
equivalences

y ∈ ρ>({x}) ⇔ x ρ y ⇔ (x, y) ∈ Grρ ⇔ (x, y) ∈
⋃

E∈P

(E × E) ⇔

⇔ (∃E ∈ P, x, y ∈ E) ⇔ y ∈ ΩP(x).
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Since y ∈ D was arbitrary, we conclude that ρ>({x}) = ΩP(x) for all x ∈ D.

(iii) ⇒ (i). Assume that (iii) holds. Then {ρ>({x}) | x ∈ D} = {ΩP(x) | x ∈
D} = P. For all x, y ∈ D, we have the chain of equivalences

x ρ y ⇔ y ∈ ρ>({x}) ⇔ y ∈ ΩP(x) ⇔ ΩP(x) = ΩP(y).

As we pointed out at the beginning of this section, ρ is then reflexive, symmetric, and
transitive.

57E. COROLLARY. Let the relation ρ in the set D be given. Then ρ is an equiv-
alence relation if and only if it is reflexive and {ρ>({x}) | x ∈ D} is a partition of
D.

Proof. The “only if” part follows form theorem 57C. The “if” part follows from
Theorem 57D, ((ii) ⇒ (i)).

57F. THEOREM. Let the set D, the relation ρ in D, and the mapping f with
Domf = D be given. The following statements are equivalent:

(i): ρ is an equivalence relation, and Partf = {ρ>({x}) | x ∈ D}.
(ii): ρ> = f< ◦ f>.

(iii): ∀x, y ∈ D, x ρ y ⇔ f(x) = f(y).

Proof. (i) ⇒ (ii). Assume that (i) holds. For given x ∈ D we have x ∈
f<({f(x)}) ∈ Partf and x ∈ ρ>({x}) ∈ Partf . Thus ρ>({x}), f<({f(x)}) ∈ Partf
and ρ>({x}) ∩ f<({f(x)}) 6= Ø, and therefore ρ>({x}) = f<({f(x)}) = f<(f>({x})).
For every U ∈ P(D) we have

ρ>(U) = ρ>(
⋃

x∈U

{x}) =
⋃

x∈U

ρ>({x}) =
⋃

x∈U

f<(f>({x})) = f<(f>(
⋃

x∈U

{x})) = f<(f>(U)).

Therefore ρ> = f< ◦ f>.

(ii) ⇒ (iii). Assume that (ii) holds. For all x, y ∈ D we have the chain of
equivalences

x ρ y ⇔ y ∈ ρ>({x}) ⇔ y ∈ f<(f>({x})) ⇔ f(y) ∈ f>({x}) ⇔
⇔ f(y) = f(x).

(iii) ⇒ (i). Assume that (iii) holds. As was pointed out at the beginning of this
section, ρ is then an equivalence relation. For every x, y ∈ D we have the chain of
equivalences

y ∈ ρ>({x}) ⇔ x ρ y ⇔ f(x) = f(y) ⇔ y ∈ f<({f(x)}).

Since y ∈ D was arbitrary, we have ρ>({x}) = f<({f(x)}) for all x ∈ D, and therefore
{ρ>({x}) | x ∈ D} = {f<({f(x)}) | x ∈ D} = Part f .
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57G. COROLLARY. Let the relation ρ in the set D be given. Then ρ is an equiv-
alence relation if and only if there exists a mapping f with Domf = D and such
that

∀x, y ∈ D, x ρ y ⇔ f(x) = f(y).

Proof. The “if” part is the trivial remark at the beginning of this section (cf.
Theorem 57F, ((iii) ⇒ (i)). The “only if” part follows from Theorem 57C and The-
orem 57D, ((i) ⇒ (iv)), with f defined as the partition mapping of the partition
{ρ>({x}) | x ∈ D}.

Our last result in this section concerns a reflexive, transitive relation and shows
how the possible lack of antisymmetry, but for which it would be an order, can be
remedied by moving from the domain to a suitable partition.

57H. PROPOSITION. Let the set D and the reflexive, transitive [and total] relation
σ in D be given. Define the relation ρ in D by the rule

∀x, y ∈ D, x ρ y :⇔ (x σ y and y σ x).

Then:

(a): ρ is an equivalence relation.

(b): Let P := {ρ>({x}) | x ∈ D} be the partition associated with the equivalence
relation ρ, and define the relation ≺ in P by the rule

(57.1) ∀A,B ∈ P, A ≺ B :⇔ (∃(x, y) ∈ A× B, x σ y).

Then ≺ is a [total] order in P and satisfies

(57.2) ∀A,B ∈ P, A ≺ B ⇔ (∀(x, y) ∈ A×B, x σ y),

(57.3) ∀x, y ∈ D, x σ y ⇔ ΩP(x) ≺ ΩP(y).

Proof of (b). We first show that ≺ satisfies (57.2). Let A,B ∈ P be given, and
assume that A ≺ B. Let x ∈ A and y ∈ B be given. By (57.1) we may choose
x′ ∈ A and y′ ∈ B such that x′ σ y′. Now x, x′ ∈ A ∈ P, and hence x ρ x′, which
implies x σ x′; similarly, we have y ρ y′, which implies y′ σ y. Since σ is transitive,
we conclude that x σ y. The reverse implication in (57.2) follows from (57.1), since
neither A nor B is empty. (57.3) is a reformulation of (57.2).

Since no member of P is empty, and since σ is reflexive, ≺ is also reflexive. If
A,B ∈ P satisfy A ≺ B and B ≺ A, we choose x ∈ A and y ∈ B; by (57.2) we have
x σ y and y σ x, hence x ρ y, hence A = B. This shows that ≺ is antisymmetric.
The transitivity of ≺ follows at once from (57.2) and the transitivity of σ. [If σ is
total, (57.1) at once implies that ≺ is total.]
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Chapter 6

ORDERED SETS

61. Basic Concepts

A set D endowed with structure by the prescription of an order ≺ in D is called
an ordered set; more specifically, the set D ordered by ≺. It is denoted simply
by D, or, if for some reason the order must be made explicit, by (D;≺). Together
with the order ≺ we also have the corresponding strict-order � in D. An ordered
set (D;≺) is unambiguously specified by prescribing a strict-order in the set D and
requiring that this strict-order be � (cf. Proposition 56A). An ordered set is said to
be totally ordered if its order is total, and we speak of the set D totally ordered
by ≺.

Let the set D ordered by ≺ be given. Every subset S of D is naturally endowed
with the structure of an ordered set by the restriction ≺|S of ≺ to S. The set S
ordered by ≺|S is called an ordered subset of D (the term should be “sub-ordered-
set”, but this is stylistically inadmissible). When confusion is unlikely, we refer to
this ordered subset simply as S, or as S ordered by ≺. If D is totally ordered, every
ordered subset is totally ordered. If the ordered subset S is totally ordered (even
though D might not be), S is called a chain of D.

We introduce a collection of concepts concerning the structure of an ordered set.
These concepts will be illustrated in Examples 61D. Throughout this section we con-
sider a given set D ordered by ≺.

Let x, y ∈ D be given. If x ≺ y, we say that x precedes y, and that y follows
x. If x � y, we say that x strictly precedes y, and that y strictly follows x. We
shall use freely such contractions as x ≺ y � z to mean that x ≺ y and y � z, and
similarly with other — and perhaps longer — combinations of ≺ and �. If x ≺ y we
define the order-intervals

87
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[[x, y]] := {z ∈ D | x ≺ z ≺ y} = ≺>({x})∩ ≺<({y})

]]x, y]] := [[x, y]]\{x} = {z ∈ D | x � z ≺ y}

[[x, y[[ := [[x, y]]\{y} = {z ∈ D | x ≺ z � y}

]]x, y[[ := [[x, y]]\{x, y} = {z ∈ D | x � z � y} .

Order-intervals of the form [[x, y]] are said to be closed. We say that x immediately
precedes y, and that y immediately follows x, if [[x, y[[ = {x} or, equivalently, if
x � y and ]]x, y[[ = Ø. D is said to be densely ordered, and its order ≺ is said to
be dense, if, for all x, y ∈ D, x � y implies ]]x, y[[ 6= Ø. A subset A of D is said to be
order-convex if

∀x, y ∈ A, x ≺ y ⇒ [[x, y]] ⊂ A.

It is obvious that every order-interval is order-convex.

If A is a subset of D and y a member of D, y is called an upper bound of A
if y follows every member of A, i.e., if A ⊂≺<({y}); and y is called a lower bound
of A if y precedes every member of A, i.e., if A ⊂≺>({y}). We introduce, for each
subset A of D, the set Ub(A) of all its upper bounds and the set Lb(A) of all its lower
bounds:

Ub(A) := {y ∈ D | ∀x ∈ A, x ≺ y} =
⋂

x∈A

D ≺> ({x})

for all A ∈ P(D).

Lb(A) := {y ∈ D | ∀x ∈ A, y ≺ x} =
⋂

x∈A

D ≺< ({x})

The members of Ub(A)\A are called strict upper bounds of A, and those of
Lb(A)\A are called strict lower bounds of A.

A subset of A of D is said to be bounded from above [bounded from below]
(sometimes, in full, order-bounded from above [order-bounded from below])
if Ub(A) 6= Ø [Lb(A) 6= Ø]. A is said to be order-bounded if Ub(A) 6= Ø and
Lb(A) 6= Ø. A subset A of D is said to be cofinal [coinitial] in D if A∩Ub({x}) 6= Ø
[A ∩ Lb({x}) 6= Ø] for every x ∈ D. (The word should properly be “confinal”, but it
is too late to change.)

Let a subset S of D and a subset A of S be given. It is clear that a member of
S is an upper bound of A in the ordered subset S if and only if it is an upper bound
of A in D itself; and similarly for lower bounds. We denote the sets of all upper
bounds and of all lower bounds of A in the ordered subset S by UbS(A) and LbS(A),
respectively, and find that

(61.1) UbS(A) = S∩Ub(A), LbS(A) = S∩Lb(A) for all S ∈ P(D) and A ∈ P(S).

In particular, of course, UbD(A) = Ub(A) and LbD(A) = Lb(A).
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Let the subset A of D be given. Since the order is antisymmetric, each of the
sets UbA(A) = A ∩ Ub(A) and LbA(A) = A ∩ Lb(A) is either empty or a singleton.
If UbA(A) 6= Ø [LbA(A) 6= Ø], we define the maximum [minimum] of A to be
maxA :∈ UbA(A) [minA :∈ LbA(A)], i.e., the unique member of A that follows
[precedes] every member of A.

Let the subset A of D be given. If Ub(A) has a minimum [Lb(A) has a maximum],
we define the supremum [infimum] of A to be supA := min Ub(A) [infA :=
max Lb(A)]. We note that, in this case, Ub(A) =≺>({supA}) = Ub({supA}) [Lb(A)
=≺<({infA}) = Lb({infA})].

Instead of maximum, minimum, supremum, infimum, one sometimes prefers to
use greatest (or last) member, least (or first) member, least upper bound, greatest
lower bound, respectively; or similarly suggestive terms. (Instead of the symbols sup
and inf one sometimes encounters lub and glb.)

It is important to distinguish carefully between maximum and supremum, and be-
tween minimum and infimum. For instance, a subset of D may have a supremum but
fail to have a maximum (Examples 61D,(b),(c),(e)). The reverse situation, however,
is impossible.

61A. PROPOSITION. Let the ordered set D and the subset A of D be given.

Then:

(a): If A has a maximum [minimum], then A has a supremum [infimum] and
supA = maxA [infA = minA].

(b): If A has a supremum [infimum], then A has a maximum [minimum] if and
only if supA ∈ A [infA ∈ A].

Let the subset S of D and the subset A of S be given. If A has a supremum [infi-
mum] when regarded as a subset of the ordered set S, i.e., if UbS(A) has a minimum
[LbS(A) has a maximum], we call that member of S the supremum [infimum] of
A with respect to S, and denote it by supSA [infSA]. In view of (61.1) we have

(61.2)
supSA := min UbS(A) = min(S ∩ Ub(A))

for all S ∈ P(D) and A ∈ P(S).
infSA := max LbS(A) = max(S ∩ Lb(A))

Of course supDA = supA and infDA = infA, while supAA = maxA and infAA =
minA. The existence of a supremum of A with respect to S neither implies, nor is
implied by, the existence of a supremum of A (with respect to D); and similarly for
infima. There are, however, some useful consequences of (61.2).

61B. PROPOSITION. Let the set D ordered by ≺, the subsets S and T of D with
T ⊂ S, and the subset A of T be given. Then:

(a): If A has a supremum [infimum] with respect to S, and also with respect to T ,
then

supSA ≺ supTA [infTA ≺ infSA].
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(b): If A has a supremum [infimum] with respect to S, and supSA ∈ T [infSA ∈
T ], then A also has a supremum [infimum] with respect to T , and supTA = supSA
[infTA = infSA].

We require yet another pair of concepts concerning a given subset A of D. A
member m of A is of course followed and preceded by m itself; if m is not followed
[preceded] by any other member of A, then m is called a maximal [minimal] mem-
ber of A; this condition can be restated as UbA({m}) = {m} [LbA({m}) = {m}]. It
is again important to distinguish carefully between maximum and maximal member,
and between minimum and minimal member. For instance, a subset of D may have
maximal members, but fail to have a maximum (Examples 61D,(a),(c),(d),(e)): it is
quite easy to exhibit one such example with a single maximal member. All of this
cannot occur, however, if the order is total, and the reverse situation is altogether
impossible.

61C. PROPOSITION. Let the ordered set D and the subset A of D be given. Then:

(a): If A has a maximum [minimum] then maxA [minA] is the unique maximal
[minimal] member of A.

(b): If the order is total, then a member of A is a maximal [minimal] member of
A (if and) only if it is the maximum [minimum] of A.

(c): If A is cofinal [coinitial] in D, then a member of A is a maximal [minimal]
member of A if and only if it is a maximal [minimal] member of D.

(d): If Ub(A) has an infimum [Lb(A) has a supremum], then that infimum [supre-
mum] is the supremum [infimum] of A.

(e): A member of Ub(A) [of Lb(A)] is a maximal member of Ub(A) [a minimal
member of Lb(A)] if and only if it is a maximal [minimal] member of D.

61D. EXAMPLES. (a)∗: An ordered finite set with reasonably few members can
be represented graphically by dots and connecting line segments in the following way:
x strictly precedes y if and only if the dot representing x can be connected to the
dot representing y by an “ascending chain” of segments. Examples of such graphic
representations are shown below.
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(E)

(A) represents a totally ordered set. (B) represents an ordered set that has a max-
imum and a minimum. (C) represents an ordered set that has a minimum but no
maximum; it has three maximal members. (D) represents an ordered set that has
neither maximum nor minimum; it has three maximal and two minimal members.
(E) represents the set P(S) ordered by ⊂S , for a set S that has three members.

(b)∗: Consider the set P of all positive real numbers (including 0), ordered by
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the usual order ≤. This is a totally ordered set. The order-intervals [[s, t]], etc., are
the usual intervals [s, t], etc., in P. If s, t ∈ P satisfy s < t, the sets [s, t] and ]s, t]
have a maximum, namely t, but [s, t[ and ]s, t[ have none. P itself has no maximum,
while minP = 0; but P× := P\{0} has no minimum. It is a consequence of the
fundamental properties of the Real-Number System that every non-empty subset of
P has an infimum (e.g., inf]s, t] = s if s < t, inf{ 1

n
| n ∈ N×} = 0), and every

subset of P that has some upper bound actually has a supremum (e.g., sup{r ∈ P | r
rational, r2 < 2} =

√
2, supPØ = 0).

(c)∗: Consider the set N ordered by the relation “divides”. Let the subset A of
N be given. The upper bounds of A are the common multiples of A, and the lower
bounds of A are the common divisors of A. The subset A always has a supremum,
called the least common multiple of A and denoted by lcmA: namely, lcmA = 0 if
0 ∈ A or A is infinite; lcmA = 1 if A = Ø; and lcmA is the usual least common
multiple otherwise. A also always has an infimum, called the greatest common divisor
of A, and denoted by gcdA: namely, gcdA = 0 if A = Ø or A = {0}, and gcdA is the
usual greatest common divisor otherwise. However, if A ⊂ N×, A has a supremum
with respect to N× if and only if A is finite, and an infimum with respect to N× if
and only if A is not empty. Every non-empty subset of N has minimal members;
in particular, the minimal members of N×\{1} are the prime numbers. The special
terminology mentioned in this example serves to prevent confusion with the concepts
associated with the set N (totally) ordered by the usual order ≤.

(d): Every set D can trivially be endowed with the structure of an ordered set by
prescribing the equality relation =D as the order. In this ordered set, every member
of a subset is both a maximal and a minimal member. A subset has a maximum, a
minimum, a supremum, or an infimum only when it is a singleton; the sole exception
is that, when D itself is a singleton, the empty set also has a supremum and an
infimum.

(e): Let the set S be given, and consider the collection P(S) ordered by ⊂S . This
ordered set is not totally ordered unless S is empty or a singleton. Every subcollection

U of P(S) has a supremum and an infimum, namely
⋃

U and
⋂

SU , respectively, as

is easily verified. For U, V ∈ P(S), the subcollection {U, V } has neither maximum
nor minimum unless U ⊂ V or V ⊂ U . The minimal members of P×(S) are the
singletons of S.

(f): More generally, let a collection of sets D be given. In D, the relation “is
included in”, defined by set-inclusion, is an order. The ordered set so obtained is
called the collection D ordered by inclusion; it may be regarded as an ordered

subset of P(
⋃

D) ordered by ⊂⋃
D. In D ordered by inclusion, we may use the

terms largest member and smallest member instead of maximum and minimum,
respectively. If D is totally ordered by inclusion, D is called a nest.

(g): Let the set D be given. In Example 56B,(e) we defined the order “narrower
than” in the set of all relations in D, by specifying that, for given relations ρ and
σ in D, ρ is said to be narrower than σ if Grρ ⊂ Grσ; this is thus essentially a
special case of (e), with S := D ×D. An interesting ordered subset of the set of all
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relations in D ordered by “narrower than” is Ord(D), the set of all orders in D. The
next result characterizes the maximal members of Ord(D).

61E. PROPOSITION. Let the set D be given. An order ρ in D is a maximal member
of Ord(D), ordered by the order “narrower than”, if and only if ρ is a total order.

Proof. The “if” part follows immediately from the fact that every member of
Ord(D) is an antisymmetric relation.

To prove the “only if” part by contraposition, let the order ρ ∈ Ord(D) be given,
and assume that ρ is not total. Choose a, b ∈ D such that a and b are not
ρ-comparable, and define the relation σ in D by

∀x, y ∈ D, x σ y :⇔ (x ρ y or (x ρ a and b ρ y)).

This relation is obviously reflexive, and it is easily verified that σ is also antisymmetric
and transitive, hence σ ∈ Ord(D). Moreover, ρ is clearly narrower than σ; since a
and b are not ρ-comparable, we have (a, b) ∈ Grσ\Grρ, and we conclude that ρ is
strictly narrower than σ. Hence ρ is not a maximal member of Ord(D).

61F. REMARK. Together with the set D ordered by ≺ we may also consider the
same setD ordered by the reverse order ≻. If A is a subset ofD, the upper bounds ofA
in D ordered by ≺ are the lower bounds of A in D ordered by ≻, and vice versa. In the
same manner, when the order is reversed, bounded from above becomes bounded from
below, cofinal becomes coinitial, maximum becomes minimum, supremum becomes
infimum, and maximal members become minimal members, of A; and vice versa. This
observation allows us to cut in half many proofs and indeed statements, such as those
of Propositions 61A, 61B, and 61C. This will be carried out as follows. A proposition
may have an arrow ↑ added to its designation. This indicates that another proposition
may be obtained from it, on account of this remark, by replacing “upper bound” by
“lower bound” and vice versa, and making the other interchanges mentioned before.
This other proposition is not stated, but may be quoted by the same designation with
an arrow ↓ added instead.

Since the reverse of a total order is a total order, this remark extends to proposi-
tions concerning totally ordered sets.

An example of the convention in Remark 61F is the following technical result.

61G↑. PROPOSITION. In every totally ordered set every non-empty order-interval
has a supremum.

Proof. Let the non-empty order interval J in the totally ordered set D be given.
If J has a maximum, then J has a supremum (Proposition 61A,(a)). Assume that
J has no maximum; then J = [[a, b[[ or J = ]]a, b[[ for suitable a, b ∈ D with a � b.
Choose c ∈ J . Now b ∈ Ub(J). Let x ∈ Ub(J) be given; then c ≺ x. If x � b we
should have x ∈ J , which is excluded, since J has no maximum. Since D is totally
ordered, we must have b ≺ x. Thus b is the minimum of Ub(J), hence the supremum
of J .
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62. Isotone mappings

Let the sets D and D′ ordered by ≺ and ≺′, respectively, be given. A mapping
f : D → D′ is said to be isotone (in full, ≺-≺′-isotone), and is called an order-
morphism from the ordered set D to the ordered set D′, if it satisfies the condition

∀x, y ∈ D, x ≺ y ⇒ f(x) ≺′ f(y).

A mapping f: D → D′ is said to be strictly isotone (in full, strictly ≺-≺′-isotone),
and is called a strict-order-morphism from D to D′, if it satisfies the condition

∀x, y ∈ D, x � y ⇒ f(x) �′ f(y).

The set of all isotone mappings from D to D′ is denoted by Isot(D,D′) or, when
it is indispensable to record the orders, by Isot((D;≺), (D′;≺′)); thus

Isot(D,D′) := Isot((D;≺), (D′;≺′)) := {f ∈ Map(D,D′) | f is ≺-≺′-isotone}.

62A. REMARKS. (a): Every strictly isotone mapping is isotone. Every injective
isotone mapping is strictly isotone. A strictly isotone mapping, however, need not be
injective: for instance, if the sets D and D′ are given, and ordered by the respective
equality relations =D and =D′ , then every mapping from D to D′ is strictly isotone.
On the other hand, an isotone mapping with a totally ordered domain is strictly
isotone (if and) only if it is injective, and in that case, moreover, it satisfies

∀x, y ∈ D, x � y ⇔ f(x) �′ f(y).

(b): If S is an ordered subset of an ordered set D, the inclusion mapping 1S⊂D

is strictly isotone; in particular, for every ordered set D the identity mapping 1D is
strictly isotone from D to itself.

(c): Let f be a [strictly] isotone mapping from D to D′, and let S be a subset of
D and S ′ a subset of D′ such that f>(S) ⊂ S ′. Then f |S′S is [strictly] isotone from the
ordered subset S to the ordered subset S ′.

62B. PROPOSITION. Let the [strictly] isotone mappings f from D to D′ and g
from D′ to D′′ be given. Then g ◦ f is a [strictly] isotone mapping from D to D′′.

In the following proposition, the terms maximum, supremum, etc., and the sym-
bols Ub, max, etc., refer to the set D ordered by ≺ or to the set D′ ordered by ≺′,
as the case may require; when the restrictions of ≺ and ≺′ to D ∩ D′ do not agree,
special precautions must of course be taken to prevent confusion.

62C↑. PROPOSITION. Let the isotone mapping f from D to D′ be given. Let the
subsets S of D and S ′ of D′ satisfy f>(S) ⊂ S ′. For every subset A of S we have:

(a): f>(UbS(A)) ⊂ UbS′(f>(A)).

(b): If A has a maximum then f>(A) has a maximum, and maxf>(A) =f(maxA).
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(c): If A has a supremum with respect to S and f>(A) has a supremum with respect
to S ′, then supS′f>(A) ≺′ f(supSA).

(d): If f is strictly isotone and m ∈ A is such that f(m) is a maximal member of
f>(A), then m is a maximal member of A.

Let the sets D and D′ ordered by ≺ and ≺′, respectively, be given. For each
f ∈ Isot(D,D′) we have the question: Is there g ∈ Isot(D′, D) such that g ◦ f = 1D

and f ◦ g = 1D′? The existence of such a g plainly requires f to be an invertible, or
equivalently, a bijective, mapping; and if this is the case, any such g must be precisely
f←. The answer to the question is therefore affirmative if and only if f is an invertible
mapping and f← ∈ Isot(D′, D); equivalently, if and only if f is bijective and

(62.1) ∀x, y ∈ D, x ≺ y ⇔ f(x) ≺′ f(y).

If these conditions are satisfied, f is called an order-isomorphism from D to D′.
Obviously, if f is an order-isomorphism, so is f←. We say that the ordered set D is
order-isomorphic to the ordered set D′, or that D and D′ are order-isomorphic,
if there exists an order-isomorphism from D to D′.

It should be noted that an isotone mapping may be bijective and yet fail to be an
order-isomorphism. For instance, choose an set D ordered by some order ≺ distinct
from the equality relation =D (such an order can be found unless D is empty or a sin-
gleton). Then 1D ∈ Isot((D; =D), (D;≺)), but (1D)← = 1D /∈ Isot((D;≺), (D; =D)).
This situation is ruled out, however, if the domain of the bijection is totally ordered.

62D. PROPOSITION. An isotone mapping from a totally ordered set to an ordered
set is an order-isomorphism if (and only if) it is bijective.

62E. PROPOSITION. Let the ordered set D be given. The mapping x 7→ Lb({x})
is an order-isomorphism from D to a subcollection of P(D), ordered by inclusion.

62F. REMARKS. (a): Every order-isomorphism is injective; hence both it and its
inverse are strictly isotone (Remark 62A,(a)). It follows that there is no separate
notion of “strict-order-isomorphism”.

(b): Every composite of order-isomorphisms is an order-isomorphism.

(c): Every order-isomorphism “preserves the structure of the ordered sets”. More
precisely, if f is an order-isomorphism from D to D′, then x precedes y in D if and
only if f(x) precedes f(y) in D′ (cf. (62.1)); D is totally ordered if and only if D′

is totally ordered; and with the notations used in Proposition 62C↑, f>(UbS(A)) =
Ubf>(S)(f>(A)); A has a maximum if and only if f>(A) has a maximum; A has a
supremum with respect to S if and only if f>(A) has a supremum with respect to
f>(S), and supf>(S)f>(A) = f(supSA); for every m ∈ A, m is a maximal member of
A if and only if f(m) is a maximal member of f>(A); etc.

When dealing with sets D and D′ ordered by ≺ and ≺′, respectively, it is some-
times convenient to consider also the same sets ordered by the reverse orders ≻ and
′≻. It is clear that a mapping f : D → D′ is [strictly] ≺-≺′-isotone if and only if it
is [strictly] ≻-′≻-isotone. A mapping f : D → D′ is said to be [strictly] antitone
(in full, [strictly] ≺-≺′-antitone) if it is [strictly] ≺-′≻-isotone, i.e., if it satisfies the
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condition

∀x, y ∈ D, x ≺ y ⇒ f(y) ≺′ f(x)

[∀x, y ∈ D, x � y ⇒ f(y) �′ f(x)].

An order-isomorphism from D ordered by ≺ to D′ ordered by ′≻ is called an order-
antimorphism fromD ordered by ≺ toD′ ordered by ≺′. The properties of antitone
mappings and of their interactions with isotone mappings are simple translations of
properties of isotone mappings, and need not be recorded here.

62G. EXAMPLES. (a)∗: The mapping (t 7→ t3) : R → R is an order-isomorphism;
(t 7→ t2) : P → P is an order-isomorphism; (t 7→ t2) : P → R is strictly isotone, but
(t 7→ t2) : R → P is not isotone. Here R and P are ordered by the usual order ≤.

(b)∗: Consider the ordered sets (N×;≤) and (N×;“divides”). The mapping 1N× is
strictly isotone from (N×;“divides”) to (N×;≤). (Here we use the fact that m ≤ mn
for all m,n ∈ N×.) However, (1N×)← = 1N× is not isotone from (N×;≤) to (N×;
“divides”): for instance, 2 ≤ 5, but 2 does not divide 5.

(c): Let the set S be given. The complementation mapping CS : P(S) → P(S)
defined by CS(U) := S\U for all U ∈ P(S) is an order-antimorphism from P(S)
ordered by inclusion to itself. Not every ordered set has an order-antimorphism from
it to itself; for instance, if the ordered set has a maximum but no minimum there
cannot be such an order-antimorphism.

Let the ordered sets D and D′ be given. A mapping f : D → D′ is said to
be monotone if either f is isotone or f is antitone. (We mention that the now
current terms “isotone”, “antitone”, “strictly isotone”, “strictly antitone” provide
crisp, unambiguous replacements for the more old-fashioned “monotone increasing”,
“monotone decreasing”, “monotone strictly increasing”, “monotone strictly decreas-
ing”, respectively; or, but only when D and D′ are totally ordered, for the even less
transparent terms “monotone non-decreasing”, “monotone non-increasing”, “mono-
tone increasing”, “monotone decreasing”, respectively.)

We present a useful characterization of monotone mappings for certain ordered
sets.

62H. PROPOSITION. Let the ordered sets D and D′ (order in both denoted by ≺)
and the mapping f : D → D′ be given. Assume that in D every doubleton is order-
bounded. (This assumption is satisfied in particular if D is totally ordered.) The
following statements are equivalent:

(i): f is monotone.

(ii): ∀u, v, w ∈ D, u ≺ v ≺ w ⇒ (f(u) ≺ f(v) ≺ f(w) or f(u) ≻ f(v) ≻ f(w)).

Proof. (i) obviously implies (ii). To prove that (ii) implies (i), assume that f is
not monotone. We may then choose v, w, v′, w′ ∈ D such that v ≺ w and v′ ≺ w′,
but such that

(62.2) neither f(v) ≺ f(w) nor f(v′) ≻ f(w′).
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Choose a lower bound u of {v, v′} and an upper bound z of {w,w′}. Then u ≺
v ≺ w ≺ z and u ≺ v′ ≺ w′ ≺ z. If (ii) held, it would follow from (62.2) that

f(u) ≻ f(v) � f(w) and f(v) � f(w) ≻ f(z) and

f(u) ≺ f(v′) � f(w′) and f(v′) � f(w′) ≺ f(z),

whence f(u) � f(z) and f(u) � f(z), a contradiction. We conclude that (ii) cannot
hold. By contraposition, (ii) implies (i).

62I. REMARK. The assumption on the ordered set D may not be omitted in the
statement of Proposition 62H. Indeed, consider the ordered sets D and D′ and the
mapping f indicated in the following graphic representation.

•b

•a •c..............
..............
..............
..............
................................................................................

D

•f(c)

•f(b)

•f(a)

.....................................................................................................

D′

Here D and D′ are finite, D′ is totally ordered, and in D every doubleton has an upper
bound — indeed, a supremum. the mapping f satisfies (ii), but is not monotone.
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63. Products

Let a family of ordered sets ((Ai;≺i) | i ∈ I) be given. We define the product

of ((Ai;≺i) | i ∈ I) — the family of factors — to be the set ×
i∈I
Ai ordered by the

product order ≺, defined by the rule

(63.1) ∀x, y ∈ ×
i∈I

Ai, x ≺ y :⇔ (∀i ∈ I, xi ≺i yi).

It is plain that ≺ is indeed an order; it is said to be defined termwise.

We note that ≻ is the product order of the family ((Ai;i ≻) | i ∈ I).

The product order can be characterized in various ways involving the projections

πj : ×
i∈I

Ai → Aj for j ∈ I.

63A. PROPOSITION. Let the family of ordered sets ((Ai;≺i) | i ∈ I) be given, and
let ≺ be its product order. Then:

(a): πj is ≺-≺j-isotone for all j ∈ I.

(b): The product order ≺ is broader than every order ≺′ in ×
i∈I
Ai such that πj

is ≺′-≺j-isotone for all j ∈ I.

Proof. (a) is an immediate consequence of the definition. To prove (b), let ≺′ be

an order as specified. For all x, y ∈ ×
i∈I

Ai we have the chain of implications and

equivalences

x ≺′ y ⇒ (∀i ∈ I, πi(x) ≺i πi(y)) ⇔ (∀i ∈ I, xi ≺i yi) ⇔ x ≺ y.

63B. PROPOSITION. Let the family of ordered sets ((Ai;≺i) | i ∈ I) be given.H

There is exactly one order ≺ in the product set×
i∈I
Ai with the following properties:

(a): πj ∈ Isot((×
i∈I

Ai;≺), (Aj;≺j)) for all j ∈ I;

(b): for every ordered set (B;≺′) and every family of isotone mappings (fi | i ∈ I)

∈ ×
i∈I

Isot((B;≺′), (Ai;≺i)) there is exactly one f ∈ Isot((B;≺′), (×
i∈I

Ai;≺)) such

that fj = πj ◦ f for all j ∈ I.

This unique order is the product order, and the unique f in (b) is defined by the rule

(63.2) f(y) := (fi(y) | i ∈ I) for all y ∈ B.

Proof. 1. Let ≺ be an order in ×
i∈I

Ai that satisfies (a) and (b). From (a) and

Proposition 63A,(b) we infer that ≺ is narrower than the product order.

We now apply (b) to the special case in which B := ×
i∈I

Ai,≺′ is the product

order, and fi := πi for each i ∈ I. By Proposition 63A,(a), each fi is indeed isotone,

so that (b) is applicable. Now we know a mapping f : ×
i∈I

Ai → ×
i∈I

Ai such that
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πj = fj = πj ◦ f for all j ∈ I, namely the identity mapping of ×
i∈I

Ai; by Proposi-

tion 44C, it is the only one. This identity mapping must therefore be precisely the

≺-≺-isotone mapping from×
i∈I

Ai to×
i∈I

Ai guaranteed by (b). It follows that ≺ is

broader than the product order ≺′.
Since ≺ is both broader and narrower than the product order, it must itself be

the product order.

2. Conversely, let ≺ be the product order. It follows from Proposition 63A,(a)
that ≺ satisfies (a); it remains to show that it satisfies (b). Let the set B ordered by

≺′ and the family of isotone mappings (fi | i ∈ I) ∈×
i∈I

Isot((B;≺′), (Ai;≺i)) b be

given. By Proposition 44C, there is exactly one f ∈ Map(B,×
i∈I

Ai), and hence at

most one f ∈ Isot((B;≺′), (×
i∈I

Ai; ≺)), such that fj = πj ◦ f for all j ∈ I; moreover,

that unique f is defined by the rule (63.2). To complete the proof, we must show
that this f is in fact ≺′-≺-isotone. This follows from the chain of implications and
equivalences obtained from (63.2) and (63.1), and valid for all y, z ∈ B:

y ≺′ z ⇒ (∀i ∈ I, fi(y) ≺i fi(z)) ⇔ (∀i ∈ I, (f(y))i ≺i (f(z))i) ⇔
⇔ f(y) ≺ f(z).N

63C. REMARK. The product of a family of totally ordered sets is in general not
totally ordered: indeed, if it is not empty, it is totally ordered only when all factors are
singletons with at most one exception, and the exceptional factor is totally ordered.

In the next proposition, Ub, maximum, supremum, etc., refer to each set Ai

ordered by ≺i or to the product×
i∈I

Ai ordered by the product order ≺, as the case

may require.

63D↑. PROPOSITION. Let the family of ordered sets ((Ai;≺i) | i ∈ I) be given,

and let ≺ be its product order. Let the subset B of×
i∈I
Ai be given. Then:

(a): Ub(B) = ×
i∈I

Ub((πi)>(B)).

(b): If B has a maximum, then (πi)>(B) has a maximum for every i ∈ I, and
maxB = (max(πi)>(B) | i ∈ I).

(c): B has a supremum if and only if (πi)>(B) has a supremum for every i ∈ I;
and in that case supB = (sup(πi)>(B) | i ∈ I).

We conclude this section with some variants of the product order. Let a pair of
ordered sets ((A′;≺′), (A′′;≺′′)) be given. We then define the product of the pair to
be the set A′ ×A′′ ordered by the product order ≺, defined by the rule

∀(x′, x′′), (y′, y′′) ∈ A′ × A′′, (x′, x′′) ≺ (y′, y′′) :⇔

⇔ (x′ ≺′ y′ and x′′ ≺′′ y′′).
This product corresponds to the product defined earlier in this section under the
identification of the product set A′×A′′ with the Cartesian product of a list of length
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2 (Section 44, p. 59), and therefore all the preceding results of this section can be
applied to it with the appropriate translation.

Let the set S and the set D ordered by ≺ be given. We then define in Map(S,D)
the valuewise order ≺ by the rule

∀f, g ∈ Map(S,D), f ≺ g :⇔ (∀s ∈ S, f(s) ≺ g(s)).

Thus the valuewise order ≺ is merely the product order on the Cartesian product
DS under the identification of Map(S,D) with that product (Section 44, p. 59). The
use of the same symbol for the order on D and for the valuewise order on Map(S,D)
should not cause any confusion.
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64. Properties of ordered sets

The order of an ordered set may have some useful special properties. One instance
is totality; totally ordered sets have already been considered in the preceding sections.
We mention a few other properties in this section.

Let the set D ordered by ≺ be given. If for all x, y ∈ D there is a member of D
that follows both x and y, i.e., if Ub({x, y}) 6= Ø for all x, y ∈ D, then the ordered
set D is called a directed set; specifically, the set D directed by ≺. If {x, y} has
both a supremum and infimum for all x, y ∈ D, the ordered set D is called a lattice,
and the order ≺ is called a lattice-order. Every totally ordered set is a lattice, and
every lattice is a directed set. If ≺ is a lattice-order, so is the reverse order ≻. These
concepts will not be discussed any further at this time. We shall, however, devote
the entire next chapter to ordered sets with a property stronger than that of being
a lattice: a set D ordered by ≺ is said to be completely ordered (by ≺) if every
subset of D has both a supremum and an infimum. A completely ordered set is also
called a complete lattice.

A set D ordered by ≺ is said to be well-founded (by ≺) if every non-empty
subset of D has at least one minimal member. This kind of ordered set is related to
the notions of “proof by induction” and “recursive definition” that will be discussed
at length in Chapter 8. Finally, a set D ordered by ≺ is said to be well-ordered
(by ≺) if every non-empty subset of D has a minimum. We note that every ordered
subset of a well-founded [well-ordered] set is also well-founded [well-ordered].

64A. PROPOSITION. An ordered set is well-ordered if and only if it is both totally
ordered and well-founded.

Proof. An ordered set is totally ordered if and only if every doubleton included in
it has a minimum. The assertion then follows from Proposition 61C.

64B. PROPOSITION. Let the ordered set D and D′ be given. If D′ is well-founded
and there exists at least one strictly isotone mapping from D to D′, then D is also
well-founded.

Proof. This follows at once from Proposition 62C↓,(d).

64C. PROPOSITION. The product of a pair of well-founded sets is well-founded.

Proof. Let ((A′;≺′), (A′′;≺′′)) be a pair of well-founded sets, and let ≺ be the
product order in A′ ×A′′, defined by (63.3). Let the non-empty subset B of A′ ×A′′

be given. Choose a minimal member m′ of the non-empty subset
{x′ ∈ A′ | ∃x′′ ∈ A′′, (x′, x′′) ∈ B} of A′, and choose a minimal member m′′ of
the non-empty subset {x′′ ∈ A′′ | (m′, x′′) ∈ B} of A′′. Then (m′, m′′) is a minimal
member of B in the product A′ ×A′′ ordered by ≺.

64D. PROPOSITION. Let the ordered set D and the collection C of ordered subsets
of D be given. Assume that

(64.1)
⋃

C = D

(64.2) every member of C is well-founded



64. Properties of ordered sets 101

(64.3) ∀A ∈ C, ∀x ∈ A, Lb({x}) ⊂ A.

Then D is well-founded.

Proof. Let the non-empty subset S of D be given. By (64.1) we may choose A ∈ C
such that A ∩ S 6= Ø. By (64.2) we may choose a minimal member m of A ∩ S. By
(64.3) we have S ∩ Lb({m}) = S ∩ A ∩ Lb({m}) = {m}, so that m is a minimal
member of S.

64E. EXAMPLES. (a): For every set S, the collection P(S) is completely ordered
by inclusion (Example 61D,(e)). ∗We mention that P(S) is well-founded by inclusion
if and only if S is a finite set (Section 102).

(b)∗: The set R ordered by ≤ is totally ordered. It is neither completely ordered
nor well-ordered, since it has no minimum. Its ordered subset P, though it has
a minimum, is neither completely ordered (it has no maximum) nor well-ordered
(P× has no minimum). If s, t ∈ R satisfy s < t, then the ordered subset [s, t] is
completely ordered, but not well-ordered. The ordered subset N is well-ordered, but
not completely ordered (it has no maximum).

(c)∗: The set N ordered by the relation “divides” is completely ordered (Example
61D,(c)), but not totally ordered. The ordered subset N× is a lattice, but it is
not completely ordered (since it has no maximum). It is, however, well-founded,
by Proposition 64B, since, as pointed out in Example 62G,(b), the mapping 1N× is
strictly isotone from N× ordered by “divides” to N× well-ordered by ≤.
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65. Lexicographic products and ordered
direct unions

H

In this section we sketch some additional ways of constructing new ordered sets
from old ones. Proofs (some tedious, but all straightforward) are left to the reader.

Let a family of ordered sets ((Ai;≺i) | i ∈ I) be given, where I is a well-ordered

set (we avoid naming its order here). For all x, y ∈ ×
i∈I

Ai with x 6= y we may define

k(x, y) := min{i ∈ I | xi 6= yi} in the well-ordered set I. We then define the relation

lex (in full lexA) in ×
i∈i

Ai by

∀x, y ∈ ×
i∈I

Ai; x lex y :⇔ (x 6= y ⇒ xk(x,y) �k(x,y) yk(x,y)).

65A. PROPOSITION. Let the family of ordered sets ((Ai;≺i) | i ∈ I) be given,
where I is a well-ordered set.

(a): The relation lex in ×
i∈I
Ai is an order, and it is broader than the product

order.

(b): Assume that ×
i∈I
Ai 6= Ø. Then lex is total if and only if ≺i is total for every

i ∈ I.

The order lex in ×
i∈I

Ai is called lexicographic order, and the ordered set

(×
i∈I

Ai; lex) is called the lexicographic product of the family ((Ai;≺i) | i ∈ I).

For a given pair of ordered spaces ((A′;≺′), (A′′;≺′′)), the appropriate variant
definition of the order lex in the product A′×A′′ (yielding the lexicographic product
(A′ × A′′; lex) of the pair) is

∀(x′, x′′), (y′, y′′) ∈ A′ ×A′′, (x′, x′′) lex (y′, y′′) :⇔
⇔ (x′ �′ y′ or (x′ = y′ and x′′ ≺′′ y′′)).

The following result is proved exactly like Proposition 64C.

65B. PROPOSITION The lexicographic product of a pair of well-founded sets is
well-founded.

Let now a family of ordered sets ((Ai;≺i) | i ∈ I) be given, where I is an ordered

set (we use the word precedes to denote the order). We define the relation ≺ in
˙⋃

i∈I

Ai

as follows.

∀(j, a), (k, b) ∈ ˙⋃

i∈I

Ai, (j, a) ≺ (k, b) :⇔ (j strictly precedes k or (j = k and a ≺j b)).
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65C. PROPOSITION. Let the family of ordered sets ((Ai;≺i) | i ∈ I) be given,
where I is an ordered set.

(a): The relation ≺ in
˙⋃

i∈I

Ai is an order.

(b): The ordered set (
˙⋃

i∈I
Ai;≺) has any one of the following properties: totally or-

dered, completely ordered, well-founded, well-ordered, if and only if the ordered subset
Supp(Ai | i ∈ I) of I as well as (Ai;≺i) for every i ∈ I have the same property.

The ordered set (
˙⋃

i∈I
Ai;≺) thus defined is called the ordered direct union of

the family ((Ai;≺i) | i ∈ I).N
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Chapter 7

COMPLETELY ORDERED SETS

71. Completely ordered sets

We recall a definition from Section 64. A set D ordered by ≺ is said to be
completely ordered (by ≺) if every subset of D has both a supremum and an
infimum.

71A. REMARKS. (a): If D is a completely ordered set, then D has both a max-
imum and a minimum, since supDD = maxD and infDD = minD. In particular, D
is not empty.

(b): If D is completely ordered by ≺, then D is also completely ordered by the
reverse order ≻. The convention introduced in Remark 61F is therefore in force for
propositions concerning completely ordered sets.

(c): For every set S, the collection P(S) is completely ordered by inclusion; the

supremum and infimum of a subcollection U of P(S) are, respectively,
⋃

U and
⋂

SU
(Examples 61D,(e) and 64E,(a)).

(d): Let the set D be given. By (c), the collection P(D×D) is completely ordered
by inclusion. Consequently, the set of all relations in D is completely ordered by the
relation “narrower than” (Example 56B,(e)).

In defining a completely ordered set we required that every subset have both a
supremum and an infimum; it turns out that requiring the existence of either would
have been enough.

71B↑. PROPOSITION. An ordered set D is completely ordered if (and only if)
every subset of D has a supremum.

Proof. Assume that every subset of D has a supremum. Let the subset A of D be
given, and set s := sup Lb(A). By Proposition 61C,(d), s is the infimum of A.

71C. EXAMPLE. Let the set S be given, and consider the collection Part(S) of all
partitions of S (a subcollection of P(P(S))). The relation ⊏S in Part(S), defined by
the rule

∀P,Q ∈ Part(S), P ⊏S Q :⇔ P ⊏ Q
is an order (see Proposition 18D). We shall now show that, in the collection Part(S)
ordered by ⊏S , every subcollection of Part(S) has a supremum. It will then follow

105
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by Proposition 71B↑ that Part(S) is completely ordered by ⊏S .

Let the subcollection Γ of Part(S) be given. We claim that the collection

C := {
⋂

P∈Γ

SΩP(x) | x ∈ S} ⊂ P(S)

is a partition of S and that, in fact, C is the supremum of Γ. For every x ∈ S, we

have x ∈ ΩP(x) for all P ∈ Γ, and hence x ∈
⋂

P∈Γ

SΩP(x). Therefore
⋃

C = S and

Ø /∈ C. Let x, y ∈ S be given, and suppose that (
⋂

P∈Γ

SΩP(x)) ∩ (
⋂

P∈Γ

SΩP(y)) 6= Ø.

Then ΩP(x) ∩ ΩP(y) 6= Ø, whence ΩP(x) = ΩP(y), for each P ∈ Γ. Therefore
⋂

P∈Γ

SΩP(x) =
⋂

P∈Γ

SΩP(y). Since x, y ∈ S were arbitrary, we conclude that C is a

partition of S.

For every Q ∈ Γ we have
⋂

P∈Γ

SΩP(x) ⊂ ΩQ(x) for each x ∈ S; hence Q ⊏ C.

Since Q ∈ Γ was arbitrary, we conclude that C is an upper bound of Γ. On the other
hand, suppose that the partition R of S is an upper bound of Γ. For each P ∈ Γ
we then have P ⊏ R, and therefore ΩR(x) ⊂ ΩP(x) for every x ∈ S. It follows that

ΩR(x) ⊂
⋂

P∈Γ

SΩP(x) for every x ∈ S, and therefore C ⊏ R. We conclude that C is

the minimum of the upper bounds of Γ, i.e., the supremum of Γ.

71D↑. PROPOSITION. (a): Let the family of completely ordered sets ((Ai;≺i) | i ∈
I) be given. Then its product is completely ordered. If B is a subset of ×

i∈I
Ai, then

supB = (sup(πi)>(B) | i ∈ I).

(b): Let the set S and the completely ordered set D be given. Then the set
Map(S,D) is completely ordered by the valuewise order. If F is a subset of Map(S,D),
then

(supF )(s) = sup{f(s) | f ∈ F} for all s ∈ S.

Proof. This follows at once from Propositions 63D↑,(c) and 71B↑.

Let D be a completely ordered set, and E a subset of D. There are some useful
criteria that ensure that the ordered subset E is itself completely ordered. We give
one here (Proposition 71F); another will be found in Proposition 72E,(b).

A subset E of D is said to be infimum-stable if infDA ∈ E for every subset
A of E. (This implies, in particular, that maxD = infDØ ∈ E, and infDE ∈ E.)
When the ordered set D happens to be P(S) ordered by inclusion, for some set S
(Remark 71A,(c)), the term infimum-stable may be replaced by the more specific term
intersection-stable. Since infimum-stable subsets of completely ordered sets occur
with great frequency in mathematics, it is convenient to learn how to make new ones
out of given ones; one way is to construct intersections, as the next proposition shows.

71E. PROPOSITION. Let the completely ordered set D be given. Then the collection
of all infimum-stable subsets of D is an intersection-stable subcollection of P(D).
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71F. PROPOSITION. Let the completely ordered set D and the infimum-stable
subset E of D be given. Then the ordered subset E is completely ordered, and
infEA = infDA for all subsets A of E.

Proof. For every subset A of E, we have infDA ∈ E. By Proposition 61B,(b), A
has an infimum with respect to E, and infEA = infDA. By Proposition 71B↓, the
ordered subset E is completely ordered.

71G. REMARKS. (a): Under the assumptions of Proposition 71F, it is by no
means the case in general that supEA = supDA.

(b): In every ordered set, the collection of order-convex sets is intersection-stable.

(c): Let the set D be given, and consider the set of all relations in D, completely
ordered by the relation “narrower than”, and the corresponding collection P(D ×
D), ordered by inclusion, of their graphs (cf. Remark 71A,(d)). For each of the
following properties of relations in D, the collection of graphs of all relations having
this property is intersection-stable: reflexive, symmetric, transitive. (But neither
antisymmetric nor total, unless D is empty or a singleton, since D × D is not the
graph of an antisymmetric relation, and the intersection of the graphs of all total ones
is empty.) Consequently, the set of all reflexive relations in D is infimum-stable, as
are the sets of all symmetric and of all transitive relations in D. By Proposition 71E,
the set of all relations in D having any given combination of these properties is also
infimum-stable. In particular, the set of all equivalence relations in D is infimum-
stable.

We recall that every order-interval in an ordered set D is an order-convex subset
of D. We now examine the converse implication when D is totally ordered.

71H. PROPOSITION. Let the totally ordered set D be given. Then D is completely
ordered if and only if

(71.1) every order-convex subset of D is an order-interval.

Proof. Proof of the “only if” part. Assume that D is completely ordered. Let the
order-convex subset S of D be given. If S = Ø, then S = [[minD,minD[[, an order-
interval. Assume now that S 6= Ø, and set a := infS, b := supS. Then a ≺ b
and

(71.2) S ⊂ [[a, b]].

Let z ∈ ]]a, b[[ be given. Then z is neither a lower nor an upper bound of S; since
D is totally ordered, we may choose x, y ∈ S such that x ≺ z ≺ y. Since S is
order-convex, it follows that z ∈ S. We have shown that

(71.3) S ⊃ ]]a, b[[.

It follows from (71.2) and (71.3) that S is one of the order-intervals [[a, b]], [[a, b[[,
]]a, b]], ]]a, b[[.

Proof of the “if” part. Assume that D satisfies (71.1). There are no order-intervals
in an empty ordered set, but D itself is an order-convex subset of D. By (71.1), D is
not empty and is an order-interval. Therefore D has a minimum and a maximum.
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Let the subset A of D be given. Then Ub(A) is order-convex and contains maxD.
By (71.1), Ub(A) is a non-empty order-interval. By Proposition 61G↓, Ub(A) has an
infimum, and by Proposition 61C,(d) this infimum is the supremum of A.

We have shown that every subset of D has a supremum. By Proposition 71B↑ it
follows that D is completely ordered.

71I. REMARK. The ordered sets described by the graphic representations shown
below (cf. Examples 61D,(a)) illustrate the relationships among the conditions “D is
totally ordered”, “D is completely ordered”, “D satisfies (71.1)”. None of the three
ordered sets is totally ordered.

•
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........................................................................................................................................................................

(C)

(A) represents an ordered set D that is completely ordered, but fails to satisfy (71.1):
the subset {u, v} is order-convex, but is not an order-interval. (B) represents an
ordered set D that satisfies (71.1), as may be verified by a tedious but straightforward
accounting; but D is not completely ordered: the subset {u, v} has no supremum.
(C) represents an ordered set D that is completely ordered and satisfies (71.1); these
two conditions together do not imply that D is totally ordered; see, however, the next
result.

71J. PROPOSITION. Let the densely ordered set D be given, and assume that D
satisfies (71.1). Then D is totally and completely ordered.

Proof. Suppose that D is not totally ordered. We may then choose x, y ∈ D such
that x and y are not ≺-comparable. Then {x, y} is an order-convex subset of D;
by (71.1) we have {x, y} =]]a, b[[ for suitable a, b ∈ D with a � x � b. Since D is
densely ordered, we may choose z ∈ ]]a, x[[. But then z ∈ ]]a, b[[\{x, y} = Ø, which is
impossible. We conclude that D is totally ordered. It follows from Proposition 71H
that D is completely ordered.
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72. Pre-completely ordered sets

Some very important ordered sets are not completely ordered, but have nearly
the same properties. An example is R ordered by ≤, which has neither a maximum
nor a minimum; all its closed order-intervals, however, considered as ordered subsets,
are completely ordered. We therefore introduce a new concept. A set D ordered by
≺ is said to be pre-completely ordered (by ≺) if every non-empty subset of D
that has an upper bound has a supremum and every non-empty subset of D that
has a lower bound has an infimum. (Instead of the term pre-completely ordered one
encounters conditionally completely ordered or relatively completely ordered. Some
mathematicians prefer to use the term completely ordered for this concept, and make
appropriate modifications when referring to completely ordered sets as defined in
these notes.)

72A. REMARKS. (a): The empty set is pre-completely ordered by its only relation.

(b): Every completely ordered set is pre-completely ordered (see also Proposition
72E,(a)).

(c): If the set D is pre-completely ordered by ≺, then it is also pre-completely
ordered by the reverse order ≻. The convention introduced in Remark 61F is therefore
in force for propositions concerning pre-completely ordered sets.

In the definition of a pre-completely ordered set, either half of the defining condi-
tion is redundant, as we now show.

72B↑. PROPOSITION. An ordered set D is pre-completely ordered if (and only if)
every non-empty subset of D that has an upper bound has a supremum.

Proof. Assume that every non-empty subset of D that has an upper bound has a
supremum. Let the non-empty subset A of D be given and assume that A has a lower
bound. Then Lb(A) is a non-empty subset ofD that has an upper bound (any member
chosen in the non-empty subset A), and therefore a supremum, say s := sup Lb(A).
It now follows by Proposition 61C,(d) that A has an infimum (namely s).

If D is a pre-completely ordered set, then every non-empty order-bounded subset
of D has both a supremum and an infimum. One might be tempted to conjecture
that the converse is true; but we now produce a counterexample. We shall show later
that the conjecture is right when D is totally ordered (Proposition 72J).
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72C. EXAMPLE. Choose distinct objects α and β, and define the relation ≺ in
{α, β} × {α, β} by the rule

∀(u, v), (u′, v′) ∈ {α, β} × {α, β}, (u, v) ≺ (u′, v′) :⇔ (u = α and u′ = β).

(β, α) (β, β)

(α, β)(α, α)

....................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................................................................

It is trivial that ≺ is a strict-order. Consider set {α, β}×{α, β} ordered by � (repre-
sented in the figure in the manner described in Example 61D,(a)). It is easily verified
that each non-empty order-bounded subset of {α, β} × {α, β} has both a supremum
and an infimum (indeed, a maximum and a minimum). The set {(α, α), (α, β)},
however, has two upper bounds but no supremum. Hence {α, β} × {α, β} is not
pre-completely ordered by �.

72D↑. PROPOSITION. The assertion of Proposition 71D↑ remains valid if “com-
pletely ordered” is replaced everywhere in it by “pre-completely ordered”.

Proof. This follows at once from Propositions 63D↑,(c) and 72B↑.

We next examine several ways in which pre-completely ordered sets are related to
completely ordered sets.

72E. PROPOSITION. Let the set D pre-completely ordered by ≺ be given. Then:

(a): D is completely ordered by ≺ if (and only if) D has a maximum and a
minimum.

(b): If a, b ∈ D and a ≺ b, then the ordered subset [[a, b]] is completely ordered,
and the ordered subsets [[a, b[[, ]]a, b]], ]]a, b[[ are pre-completely ordered.

Proof. Proof of (a). Assume that D has a maximum and a minimum. Let the
subset A of D be given. If A 6= Ø, then maxD ∈ Ub(A), and therefore A has a
supremum. If, on the other hand, A = Ø, then supDA = minD. In either case, A has
a supremum. The assertion follows from Proposition 71B↑.

Proof of (b): Let E be any one of the order-intervals specified. Let A be a non-
empty subset of E, and choose y ∈ A. If UbE(A) = E ∩ UbD(A) is not empty,
choose z ∈ UbE(A). By the assumption, A has a supremum (with respect to D) and
y ≺ supDA ≺ z; since y, z ∈ E, we have supDA ∈ E. by Proposition 61B,(b) it
follows that A has a supremum in E (and in fact supEA = supDA).

Since A was an arbitrary non-empty subset of E, it follows from Proposition 72B↑
that the ordered subset E is pre-completely ordered. If E = [[a, b]], it follows from (a)
that the ordered subset E is completely ordered.
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72F. REMARKS. (a): It follows from the proof of Proposition 72E,(b) and from
Remark 72A,(c) that if E is an order-interval in the pre-completely ordered set D,
then every non-empty subset A of E that has a supremum [infimum] with respect to
E satisfies supEA = supDA [infEA = infDA].

(b): Example 72C is an instance of an ordered set in which every closed interval
is completely ordered; yet the ordered set itself is not pre-completely ordered. There
is therefore no converse to Proposition 72E,(b); but see Proposition 72J.

72G. THEOREM. Let the ordered set (D;≺) be given. Then (D;≺) is pre-completely
ordered if and only if there exists a completely ordered set (D′;≺′) such that (D;≺)
is order-isomorphic to the ordered subset ]]minD′,maxD′[[ of (D′;≺′).

Proof. Proof of the “if” part. A completely ordered set (D′;≺′) is pre-completely
ordered (Remark 72A,(b)), and the ordered subset ]]minD′,maxD′[[ is also pre-
completely ordered (Proposition 72E,(b)). If (D;≺) is order-isomorphic to this or-
dered subset, it is itself pre-completely ordered.

Proof of the “only if” part. Assume that (D;≺) is pre-completely ordered. Choose
distinct objects α and ω, neither of which is a member of D, and set D′ := D∪{α, ω}.
Define the relation ≺′ in D′ by the rule

∀x, y ∈ D′, x ≺′ y :⇔ (x = α or y = ω or (x, y ∈ D and x ≺ y)).

It is easy to verify that ≺′ is an order in D′. In the ordered set (D′;≺′) we have
α = minD′, ω = maxD′, and D = ]]a, ω[[ = ]]minD′,maxD′[[. It is also clear that
1D is an order-isomorphism from (D;≺) to the ordered subset ]]minD′,maxD′[[ of
(D′;≺′). It remains to prove that (D′;≺′) is completely ordered.

Let the subset A of D′ be given. If ω ∈ A, then supD′A = maxA = ω. If
A ⊂ {α}, then supD′A = α. Suppose now that A does not contain ω and is not a
subset of {α}. Then A ∩ D 6= Ø. If A ∩ D has no upper bound in (D;≺), then
ω ∈ UbD′(A) ⊂ UbD′(A ∩ D) = {ω}; hence UbD′(A) = {ω}, and supD′A = ω.
If, on the other hand, A ∩ D does have an upper bound in (D;≺), which is the
ordered subset ]]α, ω[[ of (D′;≺′), it has a supremum there. Since ω /∈ A, we have
UbD′(A) = UbD′(A ∩ D) = [[supD(A ∩ D), ω]]. Hence supD(A ∩ D) is the minimum
of UbD′(A), so that supD(A ∩D) = supD′A. We have shown that every subset A of
D′ has a supremum in (D′;≺′). By Proposition 71B↑, we conclude that (D′;≺′) is
completely ordered.

72H↑. REMARK. Let the ordered set (D;≺) be given. If D has a maximum,
the assertion of Theorem 72G remains valid if ]]minD′,maxD′[[ is replaced by ]]minD′,
maxD′]] (just set D′ := D∪{α} in the proof). If D has both a maximum and a mini-
mum, the assertion remains valid with ]]minD′,maxD′[[ replaced by [[minD′,maxD′]],
i.e., D′ itself; but this is the same as Proposition 72E,(a).

72I. EXAMPLES. (a)∗: The set N is pre-completely ordered by ≤. N has a min-
imum namely 0, but no maximum. By choosing an object ω that is not a member
of N and requiring n ≤ ω for all n ∈ N, as well as ω ≤ ω, we obtain a set N ∪ {ω}
completely ordered by ≤ (Remark 72H↓).

(b)∗: The set R is pre-completely ordered by ≤; R has neither maximum nor



112 CHAPTER 7. COMPLETELY ORDERED SETS

minimum. By choosing distinct objects −∞, ∞, neither of which is a member of R,
and requiring −∞ ≤ r ≤ ∞ for all r ∈ R, as well as −∞ ≤ −∞ ≤ ∞ ≤ ∞, we
obtain a set R̄ := R ∪ {−∞,∞} completely ordered by ≤.

For totally ordered sets, the condition for pre-completeness is easier to express.

72J. PROPOSITION. Let the totally ordered set D be given. The following state-
ments are equivalent:

(i): D is pre-completely ordered.

(ii): Every non-empty order-bounded subset of D has both a supremum and an
infimum.

(iii): Every closed order-interval of D is completely ordered.

(iv): Every order-convex subset of D is either an order-interval; or D itself; or
Ub({c}) or Ub({c})\{c} or Lb({c}) or Lb({c})\{c} for some c ∈ D.

Proof. (i) ⇒ (ii). This implication is trivial.

(ii) ⇒ (iii). Assume that (ii) holds. Let a, b ∈ D with a ≺ b be given, and let
the subset A of [[a, b]] be given. If A = Ø, then sup[[a,b]]A = a. We now assume that
A 6= Ø. Since A has the upper bound b and the lower bound a, A has a supremum
supDA, and supDA ≺ b. Since Ø 6= A ⊂ [[a, b]], we also have a ≺ supDA. Thus
supDA ∈ [[a, b]]. By Proposition 61B,(b), we find that A has a supremum with respect
to [[a, b]]. By Proposition 71B↑, the ordered subset [[a, b]] is completely ordered.

(iii) ⇒ (i). Assume that (iii) holds. Let the non-empty subset A of D be given,
and assume that A has an upper bound, say b. Choose a ∈ A. Then the ordered
subset [[a, b]] is completely ordered. Therefore A∩ [[a, b]] has a supremum with respect
to [[a, b]], say s := sup[[a,b]](A ∩ [[a, b]]). We claim that s is the supremum of A with
respect to D. Since A was an arbitrary non-empty subset of D having an upper
bound, it will then follow from Proposition 72B↑ that D is pre-completely ordered,
as asserted.

To establish our claim concerning s, we use the assumption that D is totally
ordered. Let x ∈ A be given; then x ≺ b, and a ≺ x or x ≺ a. If a ≺ x ≺ b, then
x ∈ A ∩ [[a, b]], so that x ≺ s; if, on the other hand x ≺ a, then x ≺ a ≺ s. In either
case we have found x ≺ s. Since x ∈ A was arbitrary, we conclude that s ∈ UbD(A).

Let now y ∈ UbD(A) be given. Then a ≺ y, and b ≺ y or y ≺ b. If b ≺ y, then
s ≺ b ≺ y; if, on the other hand, a ≺ y ≺ b, then y ∈ [[a, b]] ∩ UbD(A) = Ub[[a,b]](A),
so that s ≺ y. In either case we have found s ≺ y. Since y ∈ UbD(A) was arbitrary,
we conclude that s = min UbD(A) = supDA, and our claim is established.

(i) ⇒ (iv). Assume that D is pre-completely ordered. By Theorem 72G we may
assume that D is the ordered subset ]]minD′,maxD′[[ of a completely ordered set
D′; since D is totally ordered, so is D′. By Proposition 71H, every order-convex
subset of D is an order-interval of D′ that is included in D. It is an easy, though
somewhat tedious, task to verify that the order-intervals of D′ that are included in
D are precisely the subsets of D listed in (iv).

(iv) ⇒ (iii). Let a, b ∈ D be given, and assume that a ≺ b. We claim that every
order-convex subset of the totally ordered closed order-interval [[a, b]] is an order-
interval of [[a, b]]; it will follow by Proposition 71H that [[a, b]] is completely ordered.
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This will establish (iii).

Let the order-convex subset S of [[a, b]] be given. Then S is an order-convex subset
of D and hence, by (iv), one of the sets listed in that statement. Careful analysis, with
attention to the fact that D is totally ordered, shows that every one of these sets, when
included in [[a, b]], is actually an order-interval. For instance, if S = Ub({c})\{c} for
a suitable c ∈ D, then either S = Ø = [[a, a[[, or else S 6= Ø and c ≺ b and b = maxD
and S = [[a, b]] or S =]]c, b]], this last according as c � a or a ≺ c.
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73. Closure mappings

Throughout this section we consider a set D completely ordered by ≺.

An isotone mapping ω ∈ Isot(D,D) is called a closure mapping (in D) if it
satisfies the following conditions:

(Aug) : x ≺ ω(x) for all x ∈ D,

(Idp) : ω ◦ ω = ω.

A mapping ω : D → D that satisfies (Aug) may be said to be augmenting. (The
term most frequently used for this is increasing, but that use may produce a clash in
certain contexts in which the same term has traditionally been used to mean “[strictly]
isotone”.) This condition may be rephrased as 1D ≺ ω in the valuewise order of
Map(D,D). We recall that a mapping satisfying (Idp) is said to be idempotent.

73A. PROPOSITION. Let the set D completely ordered by ≺ be given. A mapping
ω : D → D is a closure mapping if and only if it satisfies (Aug) and

(73.1) x ≺ ω(y) ⇒ ω(x) ≺ ω(y) for all x, y ∈ D.

73B. COROLLARY. The set of all closure mappings in a completely ordered set D
is an infimum-stable subset of the set Map(D,D) completely ordered by the valuewise
order.

73C. EXAMPLES. (a): Let a ∈ D be given, and define ω : D → D by the rule
ω(x) := sup{a, x}. Then ω is a closure mapping.

(b): Let the set S and the relation ρ in S be given. Then the mapping ρ> is
always isotone from P(S) completely ordered by inclusion to itself, but it is a closure
mapping in P(S) if and only if ρ is reflexive and transitive. The same assertion holds
for the mapping ρ<.

The fundamental result about closure mappings is a characterization of their
ranges and the sets of their fixed points.

73D. THEOREM. Let a completely ordered set D be given.

(a): If ω : D → D is a closure mapping, then Rngω is infimum-stable and

(73.2) Rngω = Fixω.

(b): If E is an infimum-stable subset of D, then the mapping closE : D → D
defined by the rule

closE(x) := inf(E ∩ Ub({x})) for all x ∈ D

is a closure mapping.

(c): If ω : D → D is a closure mapping and E is an infimum-stable subset of D,
then Rngω = E if and only if closE = ω.

Proof. Proof of (a). Since ω is idempotent, (73.2) holds, by Proposition 26C.

Let a subset A of Rngω be given. By (73.2), ω>(A) = A. Since infA ∈ Lb(A) and
ω is isotone, we have ω(infA) ∈ Lb(ω>(A)) = Lb(A), whence ω(infA) ≺ infA. Since
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ω is augmenting, we have infA ≺ ω(infA); consequently, infA = ω(infA) ∈ Rngω.
Since A was an arbitrary subset of Rngω, we conclude that Rngω is infimum-stable.

Proof of (b). For each x ∈ D, we have x = inf Ub({x}) ≺ inf(E ∩ Ub({x})) =
closE(x), so that ω := closE satisfies (Aug).

Let x, y ∈ D be given. If x ≺ closE(y) = inf(E ∩ Ub({y})), it follows that
E ∩ Ub({y}) ⊂ Ub({x}), and hence that E ∩ Ub({y}) ⊂ E ∩ Ub({x}); from this
we obtain closE(x) ≺ closE(y). Since x, y ∈ D were arbitrary, we conclude that
ω := closE satisfies (73.1). By Proposition 73A, closE is a closure mapping.

Proof of (c). Assume first that Rngω = E, and let x ∈ D be given. We have
ω(x) ∈ E ∩ Ub({x}), since ω is augmenting, so that closE(x) ≺ ω(x). On the other
hand, for every y ∈ E ∩ Ub({x}) we have ω(y) = y (from (a)) and x ≺ y, and
therefore ω(x) ≺ ω(y) = y. If follows that ω(x) ∈ Lb(E ∩ Ub({x})), and therefore
ω(x) ≺ closE(x). We have shown that closE(x) = ω(x) for all x ∈ D, i.e., that
closE = ω.

Assume, conversely, that closE = ω, and let x ∈ D be given. If x ∈ E, then
ω(x) = inf(E ∩ Ub({x})) = x. On the other hand, if ω(x) = x, then x = closE(x) =
inf(E ∩ Ub({x})) ∈ E, since E is infimum-stable. Since x ∈ D was arbitrary, we
conclude that E = Fixω. It now follows from (a) that Rngω = E.

73E. REMARK. Theorem 73D,(c) asserts that each of the mappings ω 7→ Rngω
and E 7→ closE between the set of all closure mappings in D and the collection of all
infimum-stable subsets of D is the inverse of the other.

73F. EXAMPLES. (a)∗: Consider the set R̄, completely ordered by ≤, defined
in Example 72I,(b) (where R̄ := R ∪ {−∞, +∞}), and the infimum-stable subset
Z̄ := Z ∪ {−∞,+∞}. The mapping closZ̄|RR is the ceiling-function ⌈: R → R, defined
by the rule ⌈t := min{n ∈ Z | t ≤ n} for all t ∈ R. The more familiar floor-function
⌊: R → R defined by the rule ⌊t := max{n ∈ Z | n ≤ t} for all t ∈ R is obtained
by a similar adjustment from the closure mapping associated with Z̄ in the set R̄
completely ordered by the reverse order ≥.

(b)∗: Consider the collection P(R) completely ordered by inclusion. The collection
I of all intervals in R, i.e., order-convex subsets of R, is intersection-stable (Remark
71G,(b)). The mapping closI assigns to each subset of R the smallest interval includ-
ing it. For instance, if A is a subset of R that has a maximum but no minimum, then
closI(A) is ]infA,maxA] or ]−∞,maxA], according as A has or fails to have a lower
bound.

73G. COROLLARY. Let the completely ordered set D and the closure mappings ω
and ω′ in D be given. Then ω′ ◦ ω is a closure mapping if and only if ω′

>
(Rngω) ⊂

Rngω. This is the case, in particular, if ω and ω′ commute.

Proof. Assume first that ω′ ◦ ω is a closure mapping. For every x ∈ ω′
>
(Rngω) =

Rng(ω′ ◦ ω) we have, by Theorem 73D,(a), x ≺ ω(x) ≺ ω′(ω(x)) = x, so that
x = ω(x) ∈ Rngω. This proves that ω′

>
(Rngω) ⊂ Rngω.

Assume, conversely, that ω′
>
(Rngω) ⊂ Rngω. Now ω′ ◦ω is obviously isotone and

augmenting. For every x ∈ D we have ω′(ω(x)) ∈ Rngω, and Theorem 73D,(a) implies
ω(ω′(ω(x))) = ω′(ω(x)). Therefore ω′(ω(ω′(ω(x)))) = ω′(ω′(ω(x))) = ω′(ω(x)). We
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have shown that ω′ ◦ ω is also idempotent; hence it is a closure mapping.

Let a set S be given. It was pointed out in Remark 71G,(c) that the set of all
transitive relations in S is an infimum-stable subset of the set of all relations in S,
completely ordered by the order “narrower than”. By Theorem 73D,(b), there is a
closure mapping associated with this infimum-stable subset. If ρ is a relation in S,
the value of this closure mapping at ρ is called the transitive closure of ρ; it is the
narrowest of all transitive relations that are broader than ρ.

73H. PROPOSITION. Let ρ be a relation in the set S, and let τ be the transitive
closure of ρ. Then

(73.3) ∀x, y ∈ S, x τ y ⇔ (x ρ y or (∃z ∈ S, x τ z and z ρ y))

(73.4) ∀x, y ∈ S, x τ y ⇔ (x ρ y or (∃z ∈ S, x ρ z and z τ y)).

Proof. Define the relation σ in S by the rule

∀x, y ∈ S, x σ y :⇔ (x ρ y or (∃z ∈ S, x τ z and z ρ y)).

Since ρ is narrower than τ , and τ is transitive, we have for all x, y ∈ S the chain of
implications

x σ y ⇒ (x τ y or (∃z ∈ S, x τ z and z τ y)) ⇒ x τ y,

so that σ is narrower than τ .

For all x, y, z ∈ S we have the chain of implications

(x σ y and y σ z) ⇒







x τ y and y ρ z, or

x τ y and (∃w ∈ S, y τ w and w ρ z)







⇒

⇒







x τ y and y ρ z, or

∃w ∈ S, x τ w and w ρ z







⇒ x σ z.

Therefore σ is transitive. Since σ is obviously broader than ρ, it follows that σ is also
broader than the transitive closure τ of ρ. Hence σ = τ , and (73.3) is proved.

The proof of (73.4) is completely similar. It may also be obtained by applying
(73.3) to the reverse relation ρ← instead of to ρ; indeed, relation-reversal is an involu-
tory order-isomorphism of the set of all relations on D, ordered by “narrower than”,
to itself, and it preserves transitivity (cf. Proposition 55C).

We conclude this section with a technical result describing the relationship be-
tween suprema and infima with respect to D and with respect to some infimum-
stable subset E. We recall that, according to Proposition 71F, the ordered subset E
is completely ordered.
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73I. PROPOSITION. Let the completely ordered setD and the infimum-stable subset
E of D be given. Then:

(a): For every subset A of D we have closE(supDA) = supE(closE)>(A) and
closE(infDA) ≺ infE(closE)>(A).

(b): For every subset A of E, supEA = closE(supDA) and infEA = infDA.

Proof. Proof of (a). Since closE is augmenting, Proposition 61B,(a) yields supDA ≺
supD(closE)>(A) ≺ supE(closE)>(A). By Theorem 73D,E = {x ∈ D | closE(x) = x};
since closE is isotone, we find

closE(supDA) ≺ closE(supE(closE)>(A)) = supE(closE)>(A).

On the other hand, for each x ∈ A we have x ≺ supDA, whence closE(x) ≺
closE(supDA) ∈ E; therefore closE(supDA) ∈ UbE((closE)>(A)), whence
supE(closE)>(A) ≺ closE(supDA). We conclude that equality must hold.

For each x ∈ A we have infDA ≺ x, whence closE(infDA) ≺ closE(x); since
Rng closE = E, we then have closE(infDA) ∈ LbE((closE)>(A)), whence
closE(infDA) ≺ infE(closE)>(A).

Proof of (b). Since A ⊂ E we have (closE)>(A) = A. Part (a) then yields
closE(supDA) = supEA. The equality infEA = infDA follows from Proposition 71F.
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74. Galois correspondences

Let the sets D and D′, completely ordered by ≺ and ≺′, respectively, be given. A
pair of mappings (φ, φ′) ∈ Map(D,D′) × Map(D′, D) is called a Galois correspon-
dence (from D to D′) if both φ and φ′ are antitone and both φ′ ◦ φ : D → D and
φ ◦ φ′ : D′ → D′ are augmenting.

74A. REMARKS. (a): (φ, φ′) is a Galois correspondence from D to D′ if and only
if (φ′, φ) is a Galois correspondence from D′ to D.

(b): A pair of mappings (φ, φ′) ∈ Map(D,D′)×Map(D′, D) is a Galois correspon-
dence if and only if both φ and φ′ are antitone and

(74.1) x ≺ φ′(x′) ⇔ x′ ≺′ φ(x) for all (x, x′) ∈ D ×D′.

74B. EXAMPLE. For every mapping f : S → T , the pair (f>, f
<) is a Galois

correspondence from P(S) ordered by inclusion to P(T ) ordered by the reverse of
inclusion, on account of Proposition 23A.

The next proposition gives a complete account of all Galois correspondences from
P(S) to P(T ), both ordered by inclusion, for given sets S and T . Here we require
the concept of a relation from S to T (Section 54).

74C. PROPOSITION. Let the sets S and T and the relation ρ from S to T be given.
Then there exists exactly one Galois correspondence (Φ,Ψ) from P(S) to P(T ), both
ordered by inclusion, such that

(74.2) Φ({x}) = ρ>({x}) for all x ∈ S;

it is defined by the rules

(74.3) Φ(U) :=
⋂

x∈U

Tρ>({x}) for all U ∈ P(S)

(74.4) Ψ(V ) :=
⋂

y∈V

Sρ<({y}) for all V ∈ P(T ).

Proof. Let (Φ,Ψ) be a Galois correspondence satisfying (74.2). For every x ∈ S
and V ∈ P(T ) we have, by Remark 74A,(b), the chain of equivalences

x ∈ Ψ(V ) ⇔ V ⊂ Φ({x}) ⇔ V ⊂ ρ>({x}) ⇔ (∀y ∈ V, x ρ y) ⇔
⇔ x ∈

⋂

y∈V

Sρ<({y}).

Therefore (74.4) holds. In particular, Ψ({y}) = ρ<({y}) for every y ∈ T . Using this
instead of (74.2), we verify (74.3) in the same manner.

Conversely, the pair of mappings (Φ,Ψ) defined by (74.3) and (74.4) obviously
satisfies (74.2), and it is a matter of direct verification that it is a Galois correspon-
dence.
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Remark. If the mapping Φ : P(S) → P(T ) is given, there is exactly one relation
ρ from S to T satisfying (74.2). Proposition 74C therefore establishes a one-to-one
correspondence between the set of all relations from S to T and the set of all Galois
correspondences from P(S) to P(T ), both ordered by inclusion.

74D. EXAMPLES. (a): Let the ordered set D be given. Then (UbD,LbD) is a
Galois correspondence from P(D) ordered by inclusion, to itself.

(b): Let the set D be given. For each subset F of Map(D,D) we define the
commutator of F to be

CommD(F ) := {g ∈ Map(D,D) | ∀f ∈ F, g ◦ f = f ◦ g}.

Then (CommD,CommD) is the Galois correspondence associated with relation
“commutes with” in Map(D,D) according to Proposition 74C.

(c): Let the set D and a subset Γ of Map(D,D) be given. Define the mappings
Φ : P(Γ) → P(D) and Ψ : P(D) → P(Γ) by the rules

Φ(∆) :=
⋂

f∈∆

DFixf for all ∆ ∈ P(Γ)

Ψ(A) := {f ∈ Γ | A ⊂ Fixf} for all A ∈ P(D).

Then (Φ,Ψ) is the Galois correspondence from P(Γ) to P(D) associated with the
relation ρ from Γ to D give by

∀(f, x) ∈ Γ ×D, f ρ x ⇔ f(x) = x.

An instance of this construction plays a central part in the work of Évariste Galois
(1811-1832) on polynomial equations; it is this instance that originated the term
“Galois correspondence”.

The fundamental result about Galois correspondences relates them to closure map-
pings.

74E. THEOREM. Let the completely ordered sets D and D′ and the Galois corre-
spondence (φ, φ′) from D to D′ be given. Then:

(a): φ ◦ φ′ ◦ φ = φ and φ′ ◦ φ ◦ φ′ = φ′.

(b): φ′ ◦ φ is a closure mapping in D and φ ◦ φ′ is a closure mapping in D′.
Moreover, Rng(φ′ ◦ φ) = Rngφ′ and Rng(φ ◦ φ′) = Rngφ.

(c): Each of the antitone mappings φ|Rngφ
Rngφ′ and φ

′|Rngφ′

Rngφ is the inverse of the other;
they are order-antimorphisms.

Proof. Proof of (a). Let the respective orders of D and D′ be ≺ and ≺′. For every
x ∈ D we have x ≺ (φ′ ◦ φ)(x), and therefore (φ ◦ φ′ ◦ φ)(x) = φ((φ′ ◦ φ)(x)) ≺′ φ(x);
on the other hand, φ(x) ≺′ (φ ◦ φ′)(φ(x)) = (φ ◦ φ′ ◦ φ)(x); hence equality must hold.
Since x ∈ D was arbitrary, we conclude that φ◦φ′◦φ = φ. The proof of φ′◦φ◦φ′ = φ′

is similar.

Proof of (b). φ′ ◦ φ is isotone, since it is the composite of the antitone mappings
φ and φ′; it is augmenting by assumption. It is also idempotent, since (a) implies
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(φ′ ◦ φ) ◦ (φ′ ◦ φ) = φ′ ◦ (φ ◦ φ′ ◦ φ) = φ′ ◦ φ. Thus φ′ ◦ φ is a closure mapping in D.
Moreover, Rngφ′ = Rng(φ′ ◦ φ ◦ φ′) ⊂ Rng(φ′ ◦ φ) ⊂ Rngφ′, so that equality holds.
The proof for φ ◦ φ′ is similar.

Proof of (c). By (b) and Theorem 73D,(a) we have

(φ′|Rngφ′

Rngφ ) ◦ (φ|Rngφ
Rngφ′) = (φ′ ◦ φ)|Rngφ′

Rngφ′ = (φ′ ◦ φ)|Rng(φ′◦φ)
Rng(φ′◦φ) = 1Rng(φ′◦φ) = 1Rngφ′ ,

and similarly for the composition in the reverse order.

The following is a kind of converse of Theorem 74E.H

74F. PROPOSITION. Let the completely ordered sets D and D′ and the mapping ψ
from the subset H of D to the subset H ′ of D′ be given. Then there exists at most one
Galois correspondence (φ, φ′) from D to D′ such that Rngφ = H ′, Rngφ′ = H, and
φ|H′H = ψ. This Galois correspondence exists if and only if H and H ′ are infimum-
stable and ψ is an order-antimorphism; it is then given by φ := (ψ|D′)◦ (closH |H) and
φ′ := (ψ←|D) ◦ (closH′ |H′).

Theorem 74E,(b) shows that if (φ, φ′) is a Galois correspondence, then φ′ ◦ φ is a
closure mapping. We now show that every closure mapping can be obtained in this
way.

74G. PROPOSITION. Let the closure mapping ω in the completely ordered set D be
given. Then there is a completely ordered set D′ and a Galois correspondence (φ, φ′)
from D to D′ such that ω = φ′ ◦ φ.

Proof. We choose D′ to be the collection P(Rngω) completely ordered by inclusion
and define φ : D → P(Rngω) and φ′ : P(Rngω) → D by the rules

φ(x) := Rngω ∩ Ub({x}) for all x ∈ D

φ′(A) := infA for all A ∈ P(Rngω).

Then φ and φ′ are obviously antitone. By Theorem 73D,

(φ′ ◦ φ)(x) = inf(Rngω ∩ Ub({x})) = closRngω(x) = ω(x) for all x ∈ D.

Thus φ′ ◦ φ = ω and, in particular, φ′ ◦ φ is augmenting. On the other hand,
A ⊂ Ub({infA}) for all A ∈ P(D). Therefore

A ⊂ Rngω ∩ Ub({infA}) = (φ ◦ φ′)(A) for all A ∈ P(Rngω),

so that φ◦φ′ is also augmenting. We conclude that (φ, φ′) is a Galois correspondence.N
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75. The fixed-point theorem for isotone
mappings

Completely ordered sets play a large part in many branches of mathematics. Per-
haps the best-known results for which the completeness of an ordered set is decisive
are those that depend on the fact that closed order-intervals in R are completely or-
dered. Here we consider another important consequence of completeness of an ordered
set: the existence of fixed points of isotone mappings.

75A. THEOREM. (KNASTER FIXED-POINT THEOREM). Let the set D completely or-
dered by ≺ and the isotone mapping φ : D → D be given. Then u := inf{x ∈
D | φ(x) ≺ x} is a fixed point of φ, i.e., φ(u) = u.

Proof. Set E := {x ∈ D | φ(x) ≺ x}. For all x ∈ E we have u = infE ≺ x,
whence φ(u) ≺ φ(x) ≺ x; thus φ(u) ∈ Lb(E), and therefore φ(u) ≺ u. This implies
φ(φ(u)) ≺ φ(u). Therefore φ(u) ∈ E, and consequently u = infE ≺ φ(u). The
asserted equality φ(u) = u follows.

75B. EXAMPLE
∗. Let the isotone mapping φ : [0, 1] → [0, 1] be given. Then there

is t ∈ [0, 1] such that φ(t) = t.
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We shall be using the Knaster Fixed-Point Theorem in the next chapter (Section
82). To give an immediate illustration of its power, however, we apply it to the proof
of a fundamental theorem of set theory. (This proof was proposed independently by
Irving Kaplansky (b. 1917) and by our late colleague Ignace Izaak Kolodner (1920-
1996).)

75C. THEOREM. (SCHRÖDER-BERNSTEIN THEOREM). Let the sets X and Y be given.
If there exists an injection from X to Y and also an injection from Y to X, then there
exists a bijection from X to Y .

Proof. Let the injections g : X → Y and h : Y → X be chosen. We plan to find a
subset S of X and a subset T of Y such that

(75.1) g>(S) = Y \T h>(T ) = X\S.
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Suppose we have subsets S and T satisfying (75.1). Then g′ := g|Y \TS and h′ :=

h|X\ST are bijections. We may therefore define the mappings f: X → Y and f ′: Y → X
by the rules

f(x) :=







g′(x) if x ∈ S

h′←(x) if x ∈ X\S
f ′(y) :=







h′(y) if y ∈ T

g′←(y) if y ∈ Y \T

and verify that f ′ ◦ f = 1X and f ◦ f ′ = 1Y . Therefore f is invertible, hence a
bijection.

It remains to produce S and T satisfying (75.1). We use the complementation
mappings

CX := (U 7→ X\U) : P(X) → P(X) CY := (V 7→ Y \V ) : P(Y ) → P(Y )

(Example 62G,(c)). With respect to the collections P(X) and P(Y ), both completely
ordered by inclusion, the mappings g> : P(X) → P(Y ) and h> : P(Y ) → P(X) are
isotone, while CX and CY are antitone. Therefore Φ := CX ◦ h> ◦ CY ◦ g> : P(X) →
P(X) is isotone. By Theorem 75A, we may choose S ∈ P(X) such that Φ(S) = S.
If we set T := Y \g>(S) = CY (g>(S)) ∈ P(Y ), we find

S = CX(h>(CY (g>(S))) = CX(h>(T )) = X\h>(T ),

so that S and T satisfy (75.1).



Chapter 8

INDUCTION AND RECURSION

81. Proof by induction

In this chapter we shall explain precisely what is meant by the terms proof by in-
duction and recursive definition, two procedures that are fundamental in all branches
of mathematics. The structure underlying each instance of these procedures is a
well-founded set.

We recall from Section 64 that an ordered set is said to be well-founded if every
non-empty subset has at least one minimal member. As a special case of this, an
ordered set is said to be well-ordered if every non-empty subset has a minimum.
An ordered set is well-ordered if and only if it is both totally ordered and well-founded
(Proposition 64A).

Let the set I ordered by ≺ be given. In this section and the next, an important
part will be played by the set of all members of I that strictly precede a given member
i of I; this is also the set of strict lower bounds of {i}. We denote this set by Spr(i),
so that

Spr(i) := {j ∈ I | j � i} = �<({i}) = Lb({i})\{i} for all i ∈ I.

The availability of proofs by induction rests on the following result.

81A. PROPOSITION. Let the ordered set I be given. The following statements are
equivalent:

(i): I is well-founded;

(ii): the only subset J of I that satisfies

(81.1) Spr(i) ⊂ J ⇒ i ∈ J for all i ∈ I

is J = I.

Proof. Let the subset J of I be given. Then (81.1) fails to hold if and only if there
exists m ∈ I\J such that Spr(m) ⊂ J , i.e., such that Spr(m) ∩ (I\J) = Ø; but this
precisely describes a minimal member of I\J . Thus (81.1) holds if and only if I\J
has no minimal members. The equivalence of (i) and (ii) follows at once.

123
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81B. INDUCTIVE-PROOF SCHEME. Let I be a well-founded set, and P ( ) a pred-
icate describing a property that the members of I may have. We define another such
predicate, IndP ( ), by requiring that the assertion IndP (i) hold whenever the validity
of P (j) for every j ∈ I that strictly precedes i entails the validity of P (i); the rule
defining IndP ( ) is, then,

IndP (i) :⇔ ((∀j ∈ Spr(i), P (j)) ⇒ P (i)) for all i ∈ I.

Suppose that IndP (i) holds for all i ∈ I. Then the set J := {i ∈ I | P (i)} satisfies
(81.1) and, by Proposition 81A, we must have J = I. We have proved the implication

(81.2) (∀i ∈ I, IndP (i)) ⇒ (∀i ∈ I, P (i)).

This provides a scheme for a proof of the assertion that P (i) holds for all i ∈ I:
one proves that IndP (i) holds for all i ∈ I — this part is called the induction
step — and then applies (81.2) to obtain the desired conclusion. The statement
“∀j ∈ Spr(i), P (j)” that occurs in the induction step is called the induction hypoth-
esis. A proof according to this scheme is called a proof by induction or an inductive
proof.

81C. EXAMPLE
∗. The set N is well-ordered by ≤, and Spr(n) = n⊏ = [[0, n[[ for

all n ∈ N. For each n ∈ N we have n ∈ (n + 1)⊏. Let the predicate P ( ), describing
a property that natural numbers may have, be given. Then obviously

P (0) ⇒ ((∀m ∈ 0⊏, P (m)) ⇒ P (0)) ⇔ IndP (0)

(P (n) ⇒ P (n+ 1)) ⇒ ((∀m ∈ (n + 1)⊏, P (m)) ⇒ P (n+ 1)) ⇔ IndP (n+ 1)

for all n ∈ N.

Since every natural number is either 0 or of the form n + 1 for some n ∈ N, the
preceding implications together with (81.2) yield the implication

(P (0) and (∀n ∈ N, P (n) ⇒ P (n+ 1))) ⇒ (∀n ∈ N, P (n)),

which provides the most usual inductive-proof scheme for N.
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82. Recursive definitions

Let the ordered set I be given. Suppose that one wishes to define a family a with
index set I in the following manner: for each i ∈ I, the term ai is prescribed as a
member of a specified set Ai by a rule that involves the terms aj for the j that strictly
precede i. Is a family a well defined by such a prescription? More precisely, is there
exactly one family satisfying it? In general, the answer is “no”. We proceed to give
some counterexamples; a more generic counterexample is discussed in Example 82D.

82A. EXAMPLES. (a)∗: Consider the set Z ordered by ≤, and attempt to define a
family (an | n ∈ Z) in N by the rule an := an−1 + 1 for all n ∈ Z. There is no family
satisfying this rule, for it would also satisfy a−n + n = a0 for all n ∈ N, and therefore
a−a0−1 + 1 = 0 in N, which is impossible.

(b)∗: Now attempt to define the family (an | n ∈ Z) in N by the rule an := an−1
for all n ∈ Z. Every constant family satisfies this prescription.

(c)∗: Consider the set [0, 1] completely ordered by ≤, and attempt to define a
mapping f : [0, 1] → [0, 1] by the rule f(t) := supf>([0, t[) for all t ∈ [0, 1]. Every
isotone mapping f: [0, 1] → [0, 1] that satisfies f(0) = 0 and is left-continuous satisfies
this prescription; e.g., f := 0[0,1]→[0,1], f := (t 7→ 1

2
t), f := (t 7→ t27), f := χ]0,1].

If, however, I is well-founded, then the answer to our questions is “yes”, as we
now show.

82B. THEOREM. Let the well-founded set I and the family of sets (Ai | i ∈ I) be

given. Let a family of mappings (φi | i ∈ I) also be given, with φi ∈ Map( ×
j∈Spr(i)

Aj , Ai)

for each i ∈ I. Then there is exactly one family a ∈×
i∈I
Ai such that

(82.1) ai = φi(a|Spr(i)) for all i ∈ I.

More generally, if J is a subset of I such that Spr(i) ⊂ J for every i ∈ J , then

b ∈×
i∈I
Ai satisfies

(82.2) bi = φi(b|Spr(i)) for all i ∈ J

(if and) only if b = a|J .

Proof. 1. Define the mapping Γ : P(
˙⋃

i∈I

Ai) → P(
˙⋃

i∈I

Ai) by the rule

Γ(T ) := {(i, φi(u)) | i ∈ I, u ∈ ×
j∈Spr(i)

Aj, Gr(u) ⊂ T} for all T ∈ P(
˙⋃

i∈I

Ai).

This mapping is clearly isotone from P(
˙⋃

i∈I

Ai), ordered by inclusion, to itself. We

set C :=
⋂

{T ∈ P(
˙⋃

i∈I

Ai) | Γ(T ) ⊂ T}. By the Knaster Fixed-Point Theorem

(Theorem 75A), we have
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(82.3) C = Γ(C) = {(i, φi(u)) | i ∈ I, u ∈ ×
j∈Spr(i)

Aj , Gr(u) ⊂ C}.

For each i ∈ I we set Ci := {x ∈ Ai | (i, x) ∈ C} ⊂ Ai. By (82.3) we have

(82.4)

Ci = {φi(u) | u ∈ ×
j∈Spr(i)

Aj ,Gr(u) ⊂ C} = {φi(u) | u ∈ ×
j∈Spr(i)

Cj} =

= (φi)>( ×
j∈Spr(i)

Cj).

2. Let i ∈ I be given and assume that Cj is a singleton for every j ∈ Spr(i).

Then ×
j∈Spr(i)

Cj is a singleton and, by (82.4), Ci is also a singleton. Since i ∈ I was

arbitrary, we have proved by induction (Inductive-Proof Scheme 81B) that Ci is a
singleton for every i ∈ I.

Since ×
i∈I

Ci is now a singleton, we may define c ∈ ×
i∈I

Ai by c :∈ ×
i∈I

Ci. For

every i ∈ I we have ×
j∈Spr(i)

Cj = {c|Spr(i)}; by (82.4) we therefore have ci ∈ Ci =

{φi(c|Spr(i))}, i.e.,

(82.5) ci = φi(c|Spr(i)) for all i ∈ I.

3. Let the subset J of I be given and assume that Spr(i) ⊂ J for every i ∈ J .

Assume that b ∈×
i∈J

Ai satisfies (82.2). We prove by induction that for every i ∈ I, if

i ∈ J , then bi = ci. Let i ∈ I be given, and suppose that for every j ∈ Spr(i), if j ∈ J ,
then bj = cj (induction hypothesis). Now if i ∈ J , then Spr(i) ⊂ J , and therefore
b|Spr(i) = c|Spr(i). By (82.2) and (82.5) we have bi = φi(b|Spr(i)) = φi(c|Spr(i)) = ci.
This completes the induction step, and we have shown that b = c|J . Conversely, it is
obvious that b := c|J satisfies (82.2).

Applying the preceding argument to J := I, we conclude that there is exactly one

a ∈ ×
i∈I

Ai satisfying (82.1), namely a := c.

The following usual terminology is justified by Theorem 82B. Given the well-
founded set I and the families (Ai | i ∈ I) and (φi | i ∈ I), the unique family

a ∈ ×
i∈I
Ai that satisfies (82.1) is said to be defined recursively by the rule

(82.6) ai := φi(a|Spr(i)) for all i ∈ I.

82C. EXAMPLE
∗. Let a sequence of sets (An |n ∈ N), a member z ∈ A0, and a

sequence of mappings (hn | n ∈ N) ∈ ×
n∈N

Map(An, An+1) be given. Then there exists

exactly one sequence a ∈ ×
n∈N

An such that a0 = z and an+1 = hn(an) for all n ∈ N.
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This is an application of Theorem 82B with φ0 := z{Ø}→A0
and φn(u) := hn−1(un−1)

for all n ∈ N and u ∈×
j∈n⊏

Aj (cf. Example 81C).

In particular, if we choose An := N for all n ∈ N, z := 1, and hn := (m 7→
(n + 1)m) : N → N for all n ∈ N, we obtain the sequence (n! | n ∈ N) defined
recursively by the rules

0! := 1

(n+ 1)! := (n+ 1) · n! for all n ∈ N.

82D. EXAMPLE. The assumption that the ordered set I is well-founded is notH

only sufficient in Theorem 82B, but essentially necessary as well. More precisely,
suppose that the ordered set I and the family of sets (Ai | i ∈ I) are given. Suppose

that there are a non-empty subset J of I and families s, t ∈×
i∈I

Ai such that J has

no minimal members and si 6= ti for all i ∈ J . Then there exists one family of

mappings (φi | i ∈ I) with φi ∈ Map( ×
j∈Spr(i)

Aj, Ai) for all i ∈ I, such that there is

no a ∈×
i∈I

Ai satisfying (82.1), and another such that there is more than one family

satisfying (82.1). (The assumption about s and t cannot be omitted.)

For our first example, we define (φi | i ∈ I) by the rule

(82.7) φi(u) :=











ti if i ∈ J and u = s|Spr(i)
for all i ∈ I and u ∈ ×

j∈Spr(i)
Aj.

si otherwise

Suppose that a ∈×
i∈I

Ai satisfied (82.1). Choose i ∈ J (as we may, since J 6= Ø), and

note that φi(s|Spr(i)) = ti 6= si, so that a 6= s. We might therefore choose a new i ∈ I
such that ai 6= si. By (82.7), this would imply i ∈ J and a|Spr(i) = s|Spr(i). Since i
would not be a minimal member of J , we might choose j ∈ J ∩ Spr(i), and find that
aj = sj. Now Spr(j) ⊂ Spr(i), and therefore a|Spr(j) = s|Spr(j). But then (82.1) and
(82.7) would yield the contradiction

sj = aj = φj(a|Spr(j)) = φj(s|Spr(j)) = tj 6= sj.

Therefore there is no a ∈×
i∈I

Ai satisfying (82.1).

For our second example, we define (φi | i ∈ I) by the rule

(82.8) φi(u) :=











si if u = s|Spr(i)
for all i ∈ I and u ∈ ×

j∈Spr(i)
Aj .

ti otherwise
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It is obvious that a := s now satisfies (82.1). However, we claim that a := b also

satisfies (82.1), where b ∈×
i∈I

Ai is defined by the rule

bi :=







si if i ∈ Lb(J)

ti if i ∈ I\Lb(J)

and is distinct from s. Since J has no minimal member, let alone a minimum, we
have J ⊂ I\Lb(J). Choose i ∈ J . We then have bi = ti 6= si, so that indeed b 6= s.

Let i ∈ I be given. If i ∈ Lb(J) we have Spr(i) ⊂ Lb(J), and therefore, by (82.8),
bi = si = φi(s|Spr(i)) = φi(b|Spr(i)). If, on the other hand, i ∈ I\Lb(J), we may choose
j ∈ J such that j precedes i; since j is not a minimal member of J , we may choose
k ∈ J ∩ Spr(j) ⊂ J ∩ Spr(i) ⊂ I\Lb(J). By (82.8) we have bk = tk 6= sk, hence
b|Spr(i) 6= s|Spr(i), hence bi = ti = φi(b|Spr(i)). In either case, therefore, bi = φi(b|Spr(i)),
and we conclude that a := b satisfies (82.1).N

In practice, there are situations where recursive definitions are required but The-
orem 82B is not immediately applicable. We shall discuss two such situations in
Theorems 82E and 82H.

In the first of these situations, the recursive rule (82.6) that determines ai when
the terms aj for j ∈ Spr(i) are known may “break down” because φi is defined, not on

the whole set ×
j∈Spr(i)

Aj , but only on a prescribed subset Ui. In extreme cases, when

the recursion is meant to stop short of i, we may even have Ui = Ø. In all these cases,
the aim is to obtain a family a whose index set is as large as possible while the family
satisfies the recursion rule wherever it is defined. Sometimes it then turns out that
the index set of a is I after all (e.g., in Theorem 82H).

82E. THEOREM. (a): Let the well-founded set I and the family of sets (Ai | i ∈ I)
be given. Let a family of sets of families (Ui | i ∈ I) and a family of mappings

(φi | i ∈ I) also be given, with Ui ⊂ ×
j∈Spr(i)

Aj and φi ∈ Map(Ui, Ai) for all i ∈ I. Then

there is exactly one combination of subset K of I and family a ∈ ×
i∈K

Ai satisfying

the conditions

(82.9) i ∈ K ⇔ (Spr(i) ⊂ K and a|Spr(i) ∈ Ui) for all i ∈ I,

(82.10) ai = φi(a|Spr(i)) for all i ∈ K.

Moreover, if J is a subset of I such that Spr(i) ⊂ J for all i ∈ J , then b ∈×
i∈J
Ai

satisfies

(82.11) b|Spr(i) ∈ Ui and bi = φi(b|Spr(i)) for all i ∈ J

if and only if J ⊂ K and b = a|J .
(b): Under the additional assumption that I is well-ordered, either K = I or there

exists exactly one k ∈ I such that K = Spr(k) = [[minI, k[[.
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Proof. Proof of (a). 1. We choose an object, say ω, such that ω /∈
⋃

i∈I
Ai (think of

ω as “trash”). We define the family of sets (A′i | i ∈ I) by A′i := Ai ∪ {ω} for every

i ∈ I, and the family of mappings (φ′i | i ∈ I), with φ′i ∈ Map( ×
j∈Spr(i)

A′j , A
′
i) for each

i ∈ I, by the rule

(82.12) φ′i(u) :=











φi(u) if u ∈ Ui

for all i ∈ I and u ∈ ×
j∈Spr(i)

A′j .

ω otherwise

By Theorem 82B there is exactly one family a′ ∈×
i∈I

A′i such that

a′i = φ′i(a
′|Spr(i)) for all i ∈ I.

From (82.12), we find that

(82.13) a′i =







φi(a
′|Spr(i)) if a′|Spr(i) ∈ Ui

for all i ∈ I.
ω otherwise

We set L := {i ∈ I | a′i 6= ω}.
2. Let the subset K of I and the family a ∈ ×

i∈K
Ai be given and assume that

(82.9) and (82.10) hold. Then Spr(i) ⊂ K for all i ∈ K, and using (82.12),

a|Spr(i) ∈ Ui and ai = φ′i(a|Spr(i)) for all i ∈ K.

By Theorem 82B (last part of statement) we must have a = a′|K . Since no term of a
is ω, we must have K ⊂ L. Suppose that K 6= L, and choose a minimal member m

of L\K. Since m ∈ L, we get from (82.13) that a′|Spr(m) ∈ Um ⊂ ×
j∈Spr(m)

Aj, so that

Spr(m) ⊂ L; since m is a minimal member of L\K, we must have Spr(m) ⊂ K, and
therefore a|Spr(m) = a′|Spr(m) ∈ Um. By (82.9) we deduce that m ∈ K, a contradiction.
Therefore we must have K = L and a = a′|L.

Conversely, it follows at once from (82.13) that K := L and a := a′|L satisfy (82.9)
and (82.10). This completes the proof of the existence and uniqueness of K and a
satisfying (82.9) and (82.10).

3. Let J be a subset of I such that Spr(i) ⊂ J for all i ∈ J , and let b ∈×
i∈J

Ai

be given. In view of (82.12), b satisfies (82.11) if and only if

bi = φ′i(b|Spr(i)) for all i ∈ J.

It now follows, exactly as in the beginning of Part 2 of this proof, that this requires
J ⊂ L = K and b = a′|J = a|J . Conversely, if J ⊂ K it follows at once from (82.10)
that b := a|J satisfies (82.11).
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Proof of (b). This is an immediate consequence of (82.9) and the following lemma.

82F. LEMMA. Let the well-ordered set I and the subset K of I be given. The
following statements are equivalent:

(i): Spr(i) ⊂ K for every i ∈ K.

(ii): K = I, or else K = Spr(min(I\K)).

(iii): K = I or K = Spr(k) for some k ∈ I.

(iv): if K 6= I, there is exactly one k ∈ I such that K = Spr(k).

Proof. The implications (ii) ⇒ (iii) and (iv) ⇒ (i) are trivial, and so is (iii) ⇒ (iv)
since I is totally ordered (Proposition 64A). It remains to prove the implication (i)
⇒ (ii). Suppose that (i) holds and that K 6= I, and set k := min(I\K). Obviously,
Spr(k) ⊂ K. We have to prove the reverse inclusion. Let i ∈ K be given. From (i)
we have Spr(i) ⊂ K. Since k /∈ K we infer that k 6= i and k /∈ Spr(i), i.e., k does
not precede i. Since I is totally ordered, we conclude that i strictly precedes k, i.e.,
i ∈ Spr(k). Since i ∈ K was arbitrary, we have proved the desired reverse inclusion
K ⊂ Spr(k), and therefore K = Spr(k), as asserted by (ii).

82G. EXAMPLE
∗. Without going into details, we mention that Theorem 82E

applies to all recursive algorithms with “stopping rules”, such as the Euclidean algo-
rithm for finding the greatest common divisor of two natural numbers, or a computer
program for approximating a solution of a polynomial equation by Newton’s method.

Another situation in which Theorem 82B is not sufficient as it stands is this: the
recursive rule, instead of specifying ai itself when the aj for j ∈ Spr(i) are known,
merely specifies a set from which ai is to be chosen. The problem is further compli-
cated by the possibility that this set is not guaranteed to be non-empty, unless the
aj for j ∈ Spr(i) already satisfy the recursion rule themselves.

•82H. THEOREM. Let the well-founded set I and the family of sets (Ai | i ∈ I)
be given. Let a family of set-valued mappings (Φi | i ∈ I) also be given with Φi ∈
Map( ×

j∈Spr(i)
Aj,P(Ai)) for all i ∈ I. Assume that

(82.14)
(∀j ∈ Spr(i), uj ∈ Φj(u|Spr(j))) ⇒ Φi(u) 6= Ø

for all i ∈ I and u ∈ ×
j∈Spr(i)

Aj .

Then there exists a family a ∈×
i∈I
Ai such that

(82.15) ai ∈ Φi(a|Spr(i)) for all i ∈ I.

Proof. 1. •For each i ∈ I and each non-empty subset B of Ai we choose γi(B) ∈ B.

(This is equivalent to •choosing a member of ×
(i,B)∈Ξ

B, where Ξ :=
˙⋃

i∈I

P×(Ai).)

We define the family (Ui | i ∈ I) by

(82.16) Ui := {u ∈ ×
j∈Spr(i)

Aj | ∀j ∈ Spr(i), uj ∈ Φj(u|Spr(j))} for all i ∈ I.
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We can rephrase (82.14) as

Φi(u) 6= Ø for all i ∈ I and u ∈ Ui.

We may therefore define the family of mappings (φi | i ∈ I) with φi ∈ Map(Ui, Ai)
for all i ∈ I by the rule

(82.17) φi(u) := γi(Φi(u)) ∈ Φi(u) for all i ∈ I and u ∈ Ui.

We now have the assumptions of Theorem 82E. We therefore obtain a subset K

of I and a family a ∈×
i∈K

Ai satisfying (82.9) and (82.10).

2. We now show by induction that K = I. Let i ∈ I be given and suppose
that Spr(i) ⊂ K (induction hypothesis). For every j ∈ Spr(i) we have j ∈ K and,
by (82.10) and (82.17), aj = φj(a|Spr(j)) ∈ Φj(a|Spr(j)). Therefore a|Spr(i) ∈ Ui, by
(82.16). It then follows by (82.9) that i ∈ K. This completes the induction step. We
have shown that K = I and, by (82.10) and (82.17), that a satisfies (82.15).

The following terminology is used in connection with Theorem 82H. Given the
well-founded set I and the families (Ai | i ∈ I) and (Φi | i ∈ I) and assuming that

(82.14) is satisfied, a family a ∈ ×
i∈I

Ai that satisfies (82.15) is said to be chosen

recursively by the rule (82.15).
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Chapter 9

THE NATURAL NUMBERS

91. Principles of counting

The natural or counting numbers, 1, 2, 3, etc., are so deeply embedded in our social
and intellectual culture that it may seem strange to assert that they require more than
cursory analysis. A closer examination of their history and function reveals, however,
that the art of counting is the product of a complicated cultural development.

Some of the ideas about numbers that seem to us obvious are shown by the
historic, anthropological, and linguistic evidence not to have been obvious at all.
Among these often imperfectly realized ideas are: the use of a common system of
numbers for counting, regardless of the nature of the objects counted; the perception
that quantitative judgments about collections of objects are reducible to counting; the
notion that numbers can be recorded by symbols that reflect the process of counting.
(For some of the evidence on these matters, as well as much more about numbers, an
interesting source is K. Menninger, Zahlwort und Ziffer, translated as Number Words
and Number Symbols (M.I.T. Press).)

The most difficult idea to grasp in all its implications appears to have been the
innocent-looking insight that counting goes on and on: there always is a next number.
Philosophical discussions about the “potential” or “actual” infiniteness of the set
of all numbers have lasted well into the twentieth century of our era. Archimedes
(Aρχιµήδης, d. 212 B.C.E.), in his Ψαµµίτης (The Sand-Reckoner) struggled to make
plain a related matter. To simplify his point somewhat: he showed that some huge
collection — all the grains of sand in the entire world — was neither “infinite”, as some
claimed, nor, as others averred, “not infinite, yet greater than any nameable number”,
but was, on the contrary, comfortably within the scope of a well-designed system of
counting. The point for us is that valid conclusions can be drawn concerning natural
numbers no matter how great; even so great that they are wholly beyond effective
recording, not to mention attainment through actual counting. This suggests the
need for a firmer framework than can be constructed by inspecting the few small
numbers that are within our immediate experience.

We shall base our understanding of the natural numbers on some elementary
insights concerning the process of counting, and on nothing else. This will therefore
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be a thoroughly “ordinal” view of the natural numbers, as opposed to a “cardinal”
view. The contrast is perhaps best illustrated by a sketch of the definition of the
operation of addition of natural numbers. The “ordinal” approach says that m + n
is obtained by “counting m” from 0 to m, and then “counting n more” from m to
m + n. The “cardinal” approach would consist in realizing m + n by taking a set
“with m members” and another, disjoint from it, “with n members”, to obtain their
union, a set “with m + n members”. There appears to be a consensus to the effect
that the “ordinal” approach, one version of which we adopt, is more easily formulated
and leads to usable results faster. Some of the flavor of the “cardinal” approach will
be found in Chapter 10.

The insights concerning counting that we consider basic are: that counting has
a beginning (which, for various good reasons, we take to be 0 rather than 1); that
counting proceeds by going from each number to the next number; that a number,
once counted, is never counted again; and that every number is counted “eventually”.

To formalize these insights, we define a counting system to be a set N endowed
with structure by the prescription of a member 0 of N , called zero, and of a mapping
seq: N → N , called the successor-mapping, subject to the following conditions:

(Count I): 0 /∈ Rng seq.

(Count II): seq is injective.

(Count III): ∀S ∈ P(N), (0 ∈ S and seq
>
(S) ⊂ S) ⇒ S = N .

We shall show in Section 95 that counting systems are all alike in everything
that matters. The question regarding the existence of counting systems belongs to
the foundational aspects of mathematics, and we shall not discuss it: we take it for
granted, or agreed, that counting systems exist. Actually, we shall adopt, or pretend
to adopt, the naive view that one specific counting system is revealed to us, or singled
out by us, as the Natural-Number System, to be denoted by N, and its members
to be known as the natural numbers.

91A. REMARK. Since everything we do with this Natural-Number System is based
on (Count I), (Count II), (Count III), and on nothing else, every conclusion we reach
about it will be valid for every other counting system as well.

We thus have a set N, whose members are called (natural) numbers; a member
0 of N, called the number zero; and a mapping seq : N → N, called the successor-
mapping, satisfying the conditions

(NI): 0 /∈ Rng seq.

(NII): seq is injective.

(NIII): ∀S ∈ P(N), (0 ∈ S and seq
>
(S) ⊂ S) ⇒ S = N.

The conditions (NI), (NII), (NIII) are known as the Peano Axioms. They are so
called in honor of Giuseppe Peano (1858-1932), who in 1889 proposed essentially the
same conditions as a foundation for a systematic account of the natural numbers. (As
Peano explained elsewhere, however, these conditions were originally due to Julius
Wilhelm Richard Dedekind (1831-1916).) Condition (NIII) is known as the Induction
Axiom, since it underlies a scheme for “proofs by induction” (see Inductive-Proof
Scheme 91C).
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The value seqn of the successor-mapping at n ∈ N is called the successor of n.
It is useful to have names for some natural numbers. We define the numbers one,
two, and four to be 1 := seq0, 2 := seq1, and 4 := seq seq2, respectively.

We set N× := N\{0}, and obtain our first consequence of the Peano Axioms.

91B. PROPOSITION. N× = Rng seq.

Proof. Set S := {0} ∪ Rng seq ⊂ N. Then 0 ∈ S and seq
>
(S) ⊂ Rng seq ⊂ S.

By (NIII) we must have {0} ∪ Rng seq = S = N, whence N× ⊂ Rng seq. But by
(NI) we have Rng seq ⊂ N×, and therefore equality must hold.

91C. INDUCTIVE-PROOF SCHEME. The Induction Axiom (NIII) is most fre-
quently used as follows. Let P ( ) denote a predicate describing a property that a
natural number may have. We then have the implication

(91.1) (P (0) and (∀n ∈ N, P (n) ⇒ P (seqn))) ⇒ (∀n ∈ N, P (n)),

which follows upon applying (NIII) to the subset S := {n ∈ N | P (n)} of N.

This provides a scheme for a proof of the assertion that P (n) holds for all n ∈ N:
one proves that P (0) holds and that

(91.2) P (n) ⇒ P (seqn) for all n ∈ N,

and then applies (91.1) to reach the desired conclusion. The proof of (91.2) is called
the induction step, and the statement “P (n)” that occurs in it is called the induction
hypothesis. A proof according to this scheme is called a proof by induction.

(This terminology does not clash with that introduced in Section 81: it will be
seen in Section 93 that the present scheme is actually a special case of the other, as
already suggested in Example 81C.)
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92. Order

We recall that with the mapping seq : N → N we can associate the functional
relation

seq7−→ in N, defined by

∀m,n ∈ N, m
seq7−→ n :⇔ n = seqm.

It follows from (NII) that this relation satisfies

(92.1) ∀m,n ∈ N, m
seq7−→ seqn ⇔ m = n.

We define the relation < in N to be the transitive closure of the relation
seq7−→

(Section 73), i.e., the narrowest among the transitive relations in N that are broader

than
seq7−→. For our present purposes it will be enough to recall that this relation < is

transitive and satisfies

(92.2) ∀m,n ∈ N, m < n ⇔ (m
seq7−→ n or (∃p ∈ N, m < p and p

seq7−→ n))

(Proposition 73H).

From (92.2) it follows that m < n can only hold if n ∈ Rng seq. By (NI) we
therefore have

(92.3) ∀m,n ∈ N, m < n ⇒ n 6= 0.

From (92.1) and (92.2) we obtain

(92.4) ∀m,n ∈ N, m < seqn ⇔ (m = n or m < n).

All the information we need about < beyond its transitivity is contained in (92.3)
and (92.4). This will be less surprising after consideration of the following proposition.

92A. PROPOSITION. There is exactly one relation ρ in N such that

(92.5) ∀m,n ∈ N, m ρ n ⇒ n 6= 0

(92.6) ∀m,n ∈ N, m ρ seqn ⇔ (m = n or m ρ n);

namely, the relation <.

Proof. Suppose that ρ′ and ρ′′ are relations in N such that (92.5) and (92.6) hold
with ρ := ρ′ and also with ρ := ρ′′. We prove by induction that P (n) :⇔ (∀m ∈
N, m ρ′ n ⇔ m ρ′′ n) holds for all n ∈ N.

Now P (0) holds, since both m ρ′ 0 and m ρ′′ 0 are ruled out by (92.5) for every
m ∈ N. Let n ∈ N be given and suppose that P (n) holds. Then (92.6) yields the
following chain of equivalences for every m ∈ N:

m ρ′ seqn ⇔ (m = n or m ρ′ n) ⇔ (m = n or m ρ′′ n) ⇔ m ρ′′ seqn,
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and hence P (seqn) holds. This completes the induction step. Thus P (n) holds for all
n ∈ N, and this means ρ′ = ρ′′. There is thus at most one relation ρ in N satisfying
(92.5) and (92.6); but from (92.3) and (92.4) it follows that ρ := < does satisfy (92.5)
and (92.6).

The next few results establish the essential properties of the relation <.

92B. THEOREM. The relation < is a strict-order in N.
Proof. Since we know that < is transitive, it remains to prove that it is irreflexive.

We prove by induction that (not(n < n)) holds for all n ∈ N. From (92.3) we
obtain (not(0 < 0)). Let n ∈ N be given. By (92.4) we have n < seqn; also, if
seqn < seqn, then seqn = n or seqn < n; since < is transitive, this implies n < n.
By contraposition, (not(n < n)) implies (not(seqn < seqn)). This completes the
induction step, and with it the proof.

To the strict-order < there corresponds, as usual, the (lax) order ≤, in accordance
with Proposition 56A,(b). (Some prefer the symbol ≦ instead of ≤; both forms are
common.) From now on, the set N shall be regarded as ordered by ≤, unless a different
order in N is explicitly specified. We note that (92.4) implies that seqn immediately
follows n for each n ∈ N.

We next show that the mapping seq : N → N is strictly isotone, and a bit more.

92C. PROPOSITION.

∀m,n ∈ N, m < n ⇔ seqm < seqn.

Proof. Define the relation ρ in N by

∀m,n ∈ N, m ρ n : ⇔ seqm < seqn.

By (92.4) we obtain

(92.7) ∀m,n ∈ N, m ρ n ⇔ seqm ≤ n.

Since m < seqm and since < is transitive, we find that m ρ n implies m < n. In view
of (92.3), this shows that ρ satisfies (92.5). From (92.7), (92.4), and (NII) we obtain

∀m,n ∈ N, m ρ seqn ⇔ seqm ≤ seqn ⇔ (m = n or m ρ n),

so that ρ satisfies (92.6). Proposition 92A then shows that ρ is <, as asserted.

92D. THEOREM. The set N is well-ordered by ≤, with 0 = minN and 1 = minN×.
Proof. 1. We first prove by induction that 0 ≤ n for all n ∈ N. Obviously 0 ≤ 0.

Let n ∈ N be given. If 0 ≤ n, then (92.4) implies 0 ≤ n < seqn. This completes the
inductive proof. Therefore 0 = minN. An immediate consequence is

(92.8) 0 ∈ A ⇒ 0 = minA for all A ∈ P(N).

Using Propositions 92C and 91B it further follows that

1 = seq0 = seq minN = min seq
>
(N) = minN×.

2. We now prove by induction that

P (n) :⇔ (∀A ∈ P(N), n ∈ A ⇒ (A has a minimum))
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holds for all n ∈ N. Now P (0) holds on account of (92.8). Let n ∈ N be given,
and assume that P (n) holds. Let A be a subset of N that contains seqn. Then
n ∈ A∪ {n}; by the induction hypothesis we may set m := min (A∪ {n}). If m ∈ A,
then m = min A. If m /∈ A, then n /∈ A and m = n. Let p ∈ A be given. Then
n = min (A ∪ {n}) < p. By Proposition 92C, seqn < seqp, and by (92.4), seqn = p
or seqn < p. Since p ∈ A was arbitrary, it follows that seqn = min A. Thus A has
a minimum in either case. Therefore P (seqn) holds. This completes the induction
step. We have shown that P (n) holds for all n ∈ N, which means that

n ∈ A ⇒ (A has a minimum) for all A ∈ P(N) and n ∈ N.

This is a complicated way of saying that every non-empty subset A of N has a mini-
mum; in other words, that N is well-ordered.

It follows from Theorem 92D and from Proposition 64A that the ordered set N is
totally ordered and well-founded.

We introduce some notation. For each n ∈ N, we set n⊏ := Spr(n) = {m ∈
N | m < n}. Since 0 = minN, the set n⊏ is precisely the order-interval [[0, n[[ of
N. We also define n⊐ := seq

>
(n⊏). In particular, 0⊏ = 0⊐ = Ø, 1⊏ = {0}, 2⊏ =

{0, 1}, 1⊐ = {1}, 2⊐ = {1, 2}.
92E. PROPOSITION. Let n ∈ N be given. Then:

(a): (seqn)⊏ = [[0, n]], so that n = max(seqn)⊏ and n⊏ = (seqn)⊏\{n}.

(b): n⊐ = (seqn)⊏\{0} =]]0, n]]. If n 6= 0, then n⊐ = [[1, n]].

Proof. (a) is an immediate consequence of (92.4). From Propositions 92C and
91B we have

n⊐ = seq
>
(n⊏) = (seqn)⊏ ∩ Rng seq = (seqn)⊏\{0}.

From (a) we have (seqn)⊏\{0} = [[0, n]]\{0} =]]0, n]]. If n 6= 0, then 1 = minN× ∈
]]0, n]] ⊂ N×, and therefore 1 = min]]0, n]], whence ]]0, n]] = [[1, n]]. This completes the
proof of (b).

The following notation is convenient and suggestive. For given m,n ∈ N we set

(92.9) m..n := {k ∈ N | m ≤ k ≤ n} =







[[m,n]] if m ≤ n

Ø if m > n.

This notation is designed to allow the formula “k ∈ m..n” to replace, with the least
alteration, the often-encountered, but inappropriate, formula “k = m, . . . , n” (the
latter formula misuses the symbol = and includes the uninterpreted ellipsis). We
note that m..n = n⊐\m⊏ for all m,n ∈ N, except that 0..0 = {0}; in particular,
1..n = n⊐ for all n ∈ N.

The set N itself has no maximum, since n < seqn for all n ∈ N. Many subsets of
N, however, do have maxima.

92F. PROPOSITION. A subset of N has a maximum if (and only if) it is not empty
and has an upper bound.



92. Order 139

Proof. We prove by induction that

P (n) :⇔ (∀A ∈ P(n⊏), A 6= Ø ⇒ (A has a maximum))

holds for all n ∈ N. This will be sufficient: indeed, if m is an upper bound of A,
then A ⊂ (seqm)⊏. Now P (0) holds vacuously, since 0⊏ = Ø. Let n ∈ N be given
and assume that P (n) holds. If A is a non-empty subset of (seqn)⊏, then Proposition
92E,(a) leads to an alternative: either max(seqn)⊏ = n ∈ A, and then n = maxA, or
else A ⊂ (seqn)⊏\{n} = n⊏, and then A has a maximum by the induction hypothesis;
in either case A has a maximum. Therefore P (seqn) holds, and the induction step is
complete.

We conclude this section with three results on sequences in ordered sets. We recall
that a sequence is a family whose index set is N or N×.

92G. PROPOSITION. Let a set D ordered by ≺ and a sequence a ∈ DN be given.
Then a is [strictly] isotone if (and only if) an ≺ aseqn [an � aseqn] for all n ∈ N.

Proof. The relation ρ in N defined by the rule

∀m,n ∈ N, m ρ n :⇔ am ≺ an [am � an],

is transitive, and is broader than
seq7−→. It is therefore broader than <, the transitive

closure of
seq7−→. Thus,

∀m,n ∈ N, m < n ⇒ m ρ n ⇔ am ≺ an [am � an].

92H. PROPOSITION. (PRINCIPLE OF DESCENT). Let a well-founded ordered set
(D;≺) be given.

(a): For every antitone sequence s in D there exists m ∈ N such that sn = sm for
all n ∈ N\m⊏.

(b): There is no strictly antitone sequence in D.

Proof. Let the antitone sequence s in D be given. We may choose a minimal
member d of Rngs, and may further choose m ∈ N such that sm = d. For every
n ∈ N\m⊏ we have m ≤ n, and hence sn ≺ sm = d; since d is a minimal member of
Rngs, this implies sn = d = sm. In particular, sseqm = sm, so that s is not strictly
antitone (Proposition 92G).

92I. PROPOSITION. If a ∈ NN is a strictly isotone sequence, then n ≤ an for all
n ∈ N.

Proof. We have 0 ≤ a0. Let n ∈ N be given. If n ≤ an, then n ≤ an < aseqn,
and Proposition 92C and (92.4) yield seqn < seqaseqn, and hence seqn ≤ aseqn. This
completes the proof by induction.
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93. General induction and recursive
definitions

93A. GENERAL INDUCTIVE-PROOF SCHEME. Since N is well-ordered (Theorem
92D), we have available to us the Inductive-Proof Scheme 81B. We note that the
induction step now reads

(93.1) ∀n ∈ N, (∀m ∈ n⊏, P (m)) ⇒ P (n)

If it is necessary to distinguish a proof using the induction step (93.1) from one
that uses P (0) and (91.2) according to Inductive-Proof Scheme 91C, we shall refer
to the former as a proof by general induction, and to the latter as a proof by special
induction. We note that the latter is actually a particular case of the former, in
the following way. We examine the number 0 and the numbers in N× = Rng seq
separately. On the one hand, the assertion P (0) trivially implies the assertion (∀m ∈
0⊏, P (m)) ⇒ P (0) (they are in fact equivalent). On the other hand, for each n ∈ N
we have n ∈ (seqn)⊏ and the assertion P (n) ⇒ P (seqn) therefore implies the
assertion (∀m ∈ (seqn)⊏, P (m)) ⇒ P (seqn).

As regards recursive definitions on the well-ordered index set N, we sometimes
have to rely on the full force Theorems 82B, 82E, and 82H, with I := N. There is,
however, a more usual and more special pattern of recursive definition, derived from
the general one and related to it just as proofs by special induction are related to
proofs by general induction. (This pattern was anticipated in Example 82C.)

93B. THEOREM. Let the sequence of sets (An | n ∈ N), the member z of A0, and

the sequence of mappings (hn | n ∈ N) ∈×
n∈N

Map(An, Aseqn) be given. Then there is

exactly one sequence a ∈×
n∈N

An such that

(93.2) a0 = z

(93.3) aseqn = hn(an) for all n ∈ N.

Moreover, if m ∈ N, then b ∈ ×
n∈(seqm)⊏

An satisfies

b0 = z

bseqn = hn(bn) for all n ∈ m⊏

if and only if b = a|(seqm)⊏.

Proof. For each n ∈ N× we have n = seq max n⊏, by Propositions 91B and
92E,(a). The assertion therefore follows from Theorem 82B, with I := N and with
the sequence of mappings (φn | n ∈ N) defined by the rule

(93.4) φn(u) :=











z if n = 0

for all u ∈×
m∈n⊏

Am.

hmaxn⊏(umaxn⊏) if n ∈ N×
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The unique sequence a that satisfies (93.2) and (93.3) is said to be defined recur-
sively by the rules

a0 := z

aseqn := hn(an) for all n ∈ N.

93C. THEOREM. Let the sequences of sets (An | n ∈ N) and (Bn | n ∈ N) be
given, with Bn ⊂ An for all n ∈ N. Let the member z of A0 and the sequence of

mappings (hn | n ∈ N) ∈ ×
n∈N

Map(Bn, Aseqn) be given. Then either there is exactly

one sequence a ∈ ×
n∈N

Bn such that (93.2) and (93.3) hold, or else there is exactly one

combination of a number k ∈ N and a list a ∈ ×
n∈(seqk)⊏

An such that

a0 = z

an ∈ Bn and aseqn = hn(an) for all n ∈ k⊏

ak ∈ Ak\Bk.

Proof. This follows from Theorem 82E just as Theorem 93B above followed from
Theorem 82B, with I := N and (φn | n ∈ N) defined by (93.4), and (Un | n ∈ N)
defined by

U0 := {Ø} = ×
m∈0⊏

Am

Useqn := {u ∈ ×
m∈(seqn)⊏

Am | un ∈ Bn} for all n ∈ N.

•93D. THEOREM. Let the sequence of sets (An | n ∈ N), the subset Z of A0, and

the sequence of set-valued mappings (Hn | n ∈ N) ∈ ×
n∈N

Map(An,P(Aseqn)) be given.

Assume that Z 6= Ø and that

(93.5)
(u0 ∈ Z and (∀m ∈ n⊏, useqm ∈ Hm(um))) ⇒ Hn(un) 6= Ø

for all n ∈ N and u ∈ ×
m∈(seqn)⊏

Am.

Then there exists a sequence a ∈ ×
n∈N

An such that

(93.6) a0 ∈ Z

(93.7) aseqn ∈ Hn(an) for all n ∈ N.

Proof. This follows from •Theorem 82H, exactly as Theorem 93B above followed
from Theorem 82B.

A sequence a that satisfies (93.6) and (93.7) is said to be chosen recursively by
the rules (93.6) and (93.7).



142 CHAPTER 9. THE NATURAL NUMBERS

As an application of Theorem 93D, we complement the Principle of Descent
(Proposition 92H) with a converse.

•93E. COROLLARY. An ordered set is well-founded if and only if there is no strictly
antitone sequence in it.

Proof. The “only if” part is Proposition 92H,(b). To prove the “if” part, we show
that in a given ordered set D that is not well-founded a strictly antitone sequence
can be chosen recursively.

We may choose a non-empty subset A of D such that A has no minimal members.
We apply •Theorem 93D with An := A for all n ∈ N, Z := A, and Hn(x) := A∩Spr(x)
for all n ∈ N and x ∈ A. Since A is not empty and has no minimal members, we
have Z 6= Ø and Hn(x) 6= Ø for all n ∈ N and x ∈ A. By •Theorem 93D, there is a
sequence a ∈ AN ⊂ DN such that a0 ∈ A and aseqn ∈ A∩ Spr(an) for all n ∈ N. Since
aseqn strictly precedes an for every n ∈ N, it follows from Proposition 92G that a is
strictly antitone.
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94. Iteration

For our immediate ends (up to and including Section 97) we shall require only
one special case of recursive definition. Since the reader might still feel uncomfortable
with such definitions and their justification, and this special case is so plausible that it
may temporarily be granted without checking the proof, we state this case explicitly.

94A. THEOREM. Let the set D and the mapping f: D → D be given. Then there
is exactly one sequence of mappings (gn | n ∈ N) in Map(D,D) such that

g0 = 1D

gseqn = f ◦ gn for all n ∈ N.

Proof. This is a special case of Theorem 93B, with An := Map(D,D) for all
n ∈ N, z := 1D, and hn(u) := f ◦ u for all n ∈ N and u ∈ Map(D,D).

The unique sequence provided by Theorem 94A is denoted by (f ◦n | n ∈ N) and
called the sequence of iterates of f ; it is defined recursively by the rules

(94.1) f ◦0 := 1D

(94.2) f ◦seqn := f ◦ f ◦n for all n ∈ N.

For each n ∈ N, the term f ◦n is called the nth iterate of f . We note that f ◦1 = f
and f ◦2 = f ◦ f .

94B. COROLLARY. Let the set D, the member z of D, and the mapping f: D → D
be given. Then there is exactly one sequence a ∈ DN such that

(94.3) a0 = z and a ◦ seq = f ◦ a,

namely a := (f ◦n(z) | n ∈ N).

Proof. Although this is a direct consequence of Theorem 93B and (94.1) and (94.2),
we can also obtain it from Theorem 94A. Let a be a sequence satisfying (94.3). Then
a0 = z = f ◦0(z). If an = f ◦n(z), then aseqn = f(an) = f(f ◦n(z)) = f ◦seqn(z). We
have proved by induction that an = f ◦n(z) for all n ∈ N. Hence there is at most one
sequence a satisfying (94.3). But a := (f ◦n(z) | n ∈ N) obviously does satisfy (94.3).

94C. COROLLARY. seq◦n(0) = n for all n ∈ N.

Proof. Apply Corollary 94B to D := N, z := 0, and f := seq.

In the following propositions, we collect some useful facts about iterates.

94D. PROPOSITION. Let the set D and the mappings f, g ∈ Map(D,D) be given,
and assume that f and g commute. Then the following rules hold:

(94.4) 1D
◦n = 1D for all n ∈ N

(94.5) f ◦m and g commute for all m ∈ N
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(94.6) f ◦m and g◦n commute for all m,n ∈ N

(94.7) (f ◦ g)◦n = f ◦n ◦ g◦n for all n ∈ N

(94.8) (f ◦m)◦n = (f ◦n)◦m for all m,n ∈ N

(94.9) if f is invertible, then f ◦n is invertible and (f ◦n)← = (f←)◦n for all n ∈ N.

Proof. (94.4) and (94.5) are proved by induction. (94.6) follows from two suc-
cessive applications of (94.5). (94.7) is proved by induction, using (94.5). (94.8) is
proved by induction, using (94.4) and (94.7). (94.9) follows directly from (94.4) and
(94.7).

94E. PROPOSITION. Let the set D and the mapping f : D → D be given. If f
is injective, every iterate of f is injective. If f is surjective, every iterate of f is
surjective.

Proof. Assume that f is injective [surjective]. Now f ◦0 = 1D is injective [sur-
jective]; and if f ◦n is injective [surjective], then so is f ◦seqn = f ◦ f ◦n (Proposition
32B.L,(a) [Proposition 32B.R,(a)]). This completes the inductive proof.

In the light of Remark 91A, it is interesting to note that the conclusion of CorollaryH

94B (omitting the explicit form of a) provides a characterization of counting systems,
as we proceed to show. This fact was observed by Francis William Lawvere (b. 1937),
who used this property to define what is here called a counting system.

94F. THEOREM. Let the set N , the member 0 of N , and the mapping seq : N → N
be given. The following statements are equivalent:

(i): N is a counting system with 0 as zero and seq as successor-mapping.

(ii): for every set D, every member z of D, and every mapping f : D → D there
exists exactly one mapping φ : N → D such that φ(0) = z and φ ◦ seq = f ◦ φ.

Proof. (i) ⇒ (ii). This follows from Corollary 94B (using the language of mappings
rather than that of families/sequences) and Remark 91A.

(ii) ⇒ (i). 1. We first apply the assumption to D := N, z := 0, f := seq, and
conclude that if a mapping ψ : N → N satisfies ψ(0) = 0 and ψ ◦ seq = seq ◦ ψ, then
ψ = 1N .

2. Choose distinct objects a and b (e.g., a := Ø and b := {Ø}), and set D :=
{a, b}, z := a, f := bD→D. Consider the only φ : N → D such that φ(0) = z = a
and φ ◦ seq = f ◦ φ = bN→D. Then φ(0) = a 6= b, but φ>(Rng seq) ⊂ {b}. Therefore
0 /∈ Rng seq, and (Count I) holds.

3. Define the mappings

π := (m,n) 7→ m : N ×N → N and π′ := (m,n) 7→ n : N ×N → N,

so that ξ = (π(ξ), π′(ξ)) for all ξ ∈ N ×N .
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Set D := N × N, z := (0, 0) ∈ D, and f := (m,n) 7→ (seqm,m) : D → D, and
consider the only mapping φ : N → D such that φ(0) = z = (0, 0) and φ◦ seq = f ◦φ.
We observe that

(94.10)
(φ ◦ seq)(n)=(f ◦ φ)(n)=f((π(φ(n)), π′(φ(n))))=(seqπ(φ(n)), π(φ(n)))

for all n ∈ N.

We have (π ◦ φ)(0) = π(φ(0)) = π((0, 0)) = 0 and, by (94.10),

((π ◦ φ) ◦ seq)(n) = π((seqπ(φ(n)), π(φ(n)))) = seqπ(φ(n)) = (seq ◦ (π ◦ φ))(n)

for all n ∈ N.

It follows from Part 1 applied to ψ := π ◦ φ that

(94.11) π ◦ φ = 1N .

From (94.10) and (94.11) we obtain (φ ◦ seq)(n) = (seqn, n) and hence

(π′ ◦ φ ◦ seq)(n) = π′((seqn, n)) = n for all n ∈ N.

Therefore (π′ ◦ φ) ◦ seq = 1N , and hence seq is injective; i.e., (Count II) holds.

4. Let S ∈ P(N) be given, and assume that 0 ∈ S and seq
>
(S) ⊂ S. Applying the

assumption to D := S, z := 0, and f := seq|SS, we conclude that there is exactly one
φ: N → S such that φ(0) = 0 and φ◦seq = (seq|SS)◦φ. Then (1S⊂N ◦φ)(0) = φ(0) = 0
and

(1S⊂N ◦ φ) ◦ seq = 1S⊂N ◦ (seq|SS) ◦ φ = seq ◦ (1S⊂N ◦ φ).

By Part 1 applied to ψ := 1S⊂N ◦ φ we have 1S⊂N ◦ φ = 1N . Therefore 1S⊂N is
surjective, and hence S = N . We conclude that (Count III) holds.N
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95. Essential uniqueness of counting
systems

In this section we digress briefly from our study of the Natural-Number System to
dispose of an issue suggested in Section 91, and perhaps allay some of the uneasiness
that may be felt about singling out one specific counting system as the Natural-
Number System. We shall show that any two counting systems are in fact naturally
isomorphic, in that there is exactly one invertible mapping from one to the other such
that both this mapping and its inverse preserve the structure consisting of the zero
and the successor-mapping.

In the following theorem, N ′ and N ′′ are counting systems. We distinguish their
zeros by denoting them by 0′ and 0′′, and their successor-mappings by denoting them
by seq′ and seq′′, respectively.

95A. THEOREM. Let the counting systems N ′ and N ′′ be given. There exists
exactly one mapping φ′ : N ′ → N ′′ such that φ′(0′) = 0′′ and φ′ ◦ seq′ = seq′′ ◦ φ′.
There exists exactly one mapping φ′′ : N ′′ → N ′ such that φ′′(0′′) = 0′and φ′′ ◦ seq′′ =
seq′ ◦ φ′′. Each of the mappings φ′ and φ′′ is the inverse of the other.

Proof. In view of Remark 91A, Corollary 94B is valid with N ′, 0′, seq′ instead
of N, 0, seq, respectively. We apply it with D := N ′′, z := 0′′, f := seq′′, and
deduce that there is exactly one mapping φ′ : N ′ → N ′′ such that φ′(0′) = 0′′ and
φ′ ◦ seq′ = seq′′ ◦ φ′.

N ′′

N ′ N ′

N ′′

......................................................................................................................................................................................... ...................seq′
........................................................................................................................................................................
........
...........
........

φ′

........................................................................................................................................................................
........
...........
........

φ′

......................................................................................................................................................................................... ...................

seq′′

......................................................

........................................................................
..................
..................

..................
..................
..................

Interchanging the counting systems N ′ and N ′′ in the preceding argument, we
deduce that there also is exactly one mapping φ′′ : N ′′ → N ′ such that φ′′(0′′) = 0′

and φ′′ ◦ seq′′ = seq′ ◦ φ′′.
Repeating the argument with appropriate choices, we further deduce that there

is exactly one mapping ψ′ : N ′ → N ′ such that ψ′(0′) = 0′ and ψ′ ◦ seq′ = seq′ ◦ ψ′.
However, on the one hand 1N ′(0

′) = 0′ and 1N ′ ◦ seq′ = seq′ ◦ 1N ′, and on the other
hand (φ′′ ◦ φ′)(0′) = φ′′(0′′) = 0′ and φ′′ ◦ φ′ ◦ seq′ = φ′′ ◦ seq′′ ◦ φ′ = seq′ ◦ φ′′ ◦ φ′.
Therefore φ′′ ◦ φ′ = ψ′ = 1N ′.

Interchanging N ′ and N ′′, φ′ and φ′′ in the preceding argument, we conclude that
φ′ ◦ φ′′ = 1N ′′.

95B. EXAMPLE. For the purpose of this example only, a collection of sets is said
to be saturated if it contains Ø and also contains, for each of its member sets S, the
set S∪{S}. It is clear that the intersection of every nonempty collection of saturated
collections is a saturated collection. Now suppose that there exists some saturated
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collection. It follows easily that there is exactly one saturated collection N that is
the smallest, in that it is included in every saturated collection. We claim that N ,
with Ø as zero, and (S 7→ S ∪{S}) : N → N as the successor-mapping, is a counting
system. (Count I) is trivially satisfied, since S ∈ S ∪{S} for every set S. (Count III)
is satisfied precisely because N is the smallest saturated collection. To prove that
(Count II) holds, we observe first that {S ∈ N | S ⊂ P(S)} is a saturated collection
included in N , and therefore

(95.1) S ⊂ P(S) for all S ∈ N .

Now suppose that S, T ∈ N satisfy S ∪ {S} = T ∪ {T}. It follows that T ∈ S ∪ {S},
i.e., T = S or T ∈ S. From (95.1) it then follows that T ⊂ S. Interchanging S and
T in this argument, we infer that S ⊂ T , and therefore conclude that S = T . This
shows that (Count II) holds.

Theorem 95A now informs us that there is exactly one mapping φ : N → N such
that φ(0) = Ø and φ(seqn) = φ(n) ∪ {φ(n)} for all n ∈ N, and that this mapping is
invertible.

The counting system N has some exotic properties, derived from its construction,
and not from (Count I), (Count II), (Count III). One of these is (95.1); another is
the fact that the strict-order < (the transitive closure of the successor-relation in N )
satisfies the equivalence

∀S, T ∈ N , S < T ⇔ S ∈ T,

and therefore S⊏ := [[Ø, S[[ = S for every S ∈ N .

Despite these and other peculiarities, the absolute uniqueness of a smallest satu-
rated collection of sets has proved for many mathematicians an irresistible temptation
to declare the counting system N to be the Natural-Number System itself. This turns
out to be technically attractive in the specialized branch of mathematics called ax-
iomatic set theory. (The assumption that there exists some saturated collection of
sets is, in this theory, a foundational agreement called the Axiom of Infinity.) For our
purposes, however, this identification is an unnecessary and perhaps objectionable
departure from intuition.

For another approach to constructing a counting system under an apparentlyH

weaker foundational agreement, see Section 106, and in particular Theorem 106L.N
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96. Addition and subtraction

Our next aim is to define the familiar arithmetical operations in N and to verify
their elementary properties.

In Section 91 we proposed to define addition by “counting on”. Accordingly, we
define the mapping ((m,n) 7→ m + n) : N × N → N, called (the operation of)
addition (of natural numbers), by the rule

(96.1) m+ n := seq◦n(m) for all m,n ∈ N.

The symbol + is read “plus”, and m + n is called the sum of m and n (m and n
are the summands), and is said to be obtained by adding m and n or adding n
to m.

From Corollary 94C we have m = seq◦m(0) for all m ∈ N, and therefore

(96.2) m + n = (seq◦n ◦ seq◦m)(0) for all m,n ∈ N.

Combining (96.1) and (96.2) we find

(96.3) (m+ n) + p = seq◦p(m+ n) = (seq◦p ◦ seq◦n ◦ seq◦m)(0) for all m,n, p ∈ N.

96A. PROPOSITION. Addition satisfies the following rules, valid for all
m,n, p ∈ N:

(96.4) m + seqn = seq(m+ n)

(96.5) m+ n = 0 ⇔ m = n = 0

(96.6) n+ 0 = n

(96.7) n+ 1 = seqn

(96.8) m+ n = n+m (commutative law)

(96.9) (m+ n) + p = m+ (n + p) (associative law)

(96.10) m+ p = n+ p ⇒ m = n (cancellation law).

Proof. (96.4), (96.6), (96.7) are immediate consequences of (96.1). (96.5) follows
from (96.4) and Proposition 91B.

From (94.6) applied to D := N and f := g := seq, we learn that all iterates of seq
commute. From (96.2) we therefore get the commutative law (96.8); and from (96.3)
we get

(m+ n) + p = (n+ p) +m for all m,n, p ∈ N.
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Applying the commutative law to the right-hand side, we obtain the associative law
(96.9).

By (NII), seq is injective. By Proposition 94E, every iterate of seq is injective.
Applying this and (96.1), we obtain the cancellation law (96.10).

Because of the associative law (96.9), we may unambiguously write m + n + p;
and a similar license is in effect for sums of more summands.

96B. PROPOSITION. Let the set D and the mapping f: D → D be given. Then:

(96.11) f ◦(m+n) = f ◦n ◦ f ◦m for all m,n ∈ N.

Proof. By (96.6), f ◦(m+0) = f ◦m = f ◦0 ◦ f ◦m. If f ◦(m+n) = f ◦n ◦ f ◦m, then (96.4)
implies f ◦(m+seqn) = f ◦seq(m+n) = f ◦ f ◦(m+n) = f ◦ f ◦n ◦ f ◦m = f ◦seqn ◦ f ◦m. This
completes the inductive proof of (96.11).

The relationship between addition and order is based on the following result.

96C. PROPOSITION.

∀m,n ∈ N, m < n ⇔ (∃p ∈ N×, n = m + p).

Proof. We define the relation ρ in N by the rule

(96.12) ∀m,n ∈ N, m ρ n :⇔ (∃p ∈ N×, n = m+ p).

From (96.12), Proposition 91B, and (96.4) we have

(96.13)
∀m,n ∈ N, m ρ n ⇔ (∃p ∈ N, n = m + seqp) ⇔

⇔ (∃p ∈ N, n = seq(m+ p)).

From (96.13) and (NI) it follows that m ρ n requires n 6= 0, so that ρ satisfies (92.5).
From (96.13), (NII), and (96.12) we have the following chain of equivalences for all
m,n ∈ N:

m ρ seqn ⇔ (∃p ∈ N, seqn = seq(m+ p)) ⇔ (∃p ∈ N, n = m+ p) ⇔

⇔ (m = n or (∃p ∈ N×, n = m+ p)) ⇔ (m = n or m ρ n).

Therefore ρ satisfies (92.6). Proposition 92A then shows that ρ is <, as asserted.

We now consider the following equation, for given m,n ∈ N:

(96.14) ?p ∈ N, m+ p = n.

Proposition 96C and the cancellation law allow us to solve the existence and unique-
ness problems for (96.14).

96D. THEOREM. For given m,n ∈ N, the equation (96.14) has at most one solu-
tion. It has exactly one solution if and only if m ≤ n.
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Proof. The cancellation law (96.10) shows that (96.14) has at most one solution.
The number 0 is a solution if and only if m = n. Proposition 96C shows that there
is a solution in N× if and only if m < n.

When m ≤ n, the unique solution of (96.14) is denoted by n −m, read “n mi-
nus m”, and called the difference of n and m. We have thus defined a mapping
((n,m) 7→ n−m) : Gr(≥) → N, called (the operation of) subtraction (of natural
numbers), by the rule

n−m :∈ {p ∈ N | m + p = n} for all (n,m) ∈ Gr(≥).

n − m is said to be obtained by subtracting m (the subtrahend) from n (the
minuend).

96E. PROPOSITION. Addition and subtraction satisfy the following rules, valid for
all m,n, p ∈ N:

n− 0 = n seqn− 1 = n

seq(n− 1) = n if n ∈ N×

(m + n) − p = m+ (n− p) if p ≤ n

(m+ n) − p = m− (p− n) if n ≤ p ≤ m + n

m− (n+ p) = (m− n) − p if n + p ≤ m.

The usual rules about omitting parentheses when additions and subtractions occur
together will be observed: operations not otherwise given priority by parentheses are
performed from left to right. Thus m + n− p− q = ((m + n) − p) − q.

96F. PROPOSITION. Addition, subtraction, and order satisfy the following rules
(monotonicity laws), valid for all m,n, p ∈ N:

m < n ⇔ m+ p < n+ p

m < n ⇔ m− p < n− p if p ≤ m

m < n ⇔ p− n < p−m if n ≤ p.

Proof. For every q ∈ N× we have

m + q = n ⇔ m+ p+ q = n+ p

m + q = n ⇔ m + q − p = n− p ⇔ m− p + q = n− p if p ≤ m

m+ q = n ⇔ m = n− q ⇔ p− (n− q) = p−m ⇔ p− n+ q = p−m if n ≤ p.

The assertions then respectively follow by Proposition 96C.

We mention some useful notational conventions. If A and B are subsets of N, we
denote the image of A×B under the operation of addition by A+B. Thus,

A +B := {m+ n | m ∈ A, n ∈ B}.
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In the same way, if A×B ⊂ Gr(≥), we denote the image of A×B under the operation
of subtraction by A− B, so that

A− B := {m− n | m ∈ A, n ∈ B}.

If either one of A or B is a singleton of the form {p}, it is customary to omit the
braces if confusion is unlikely; for instance, one writes p + B instead of {p} + B.
Examples of these notations are N + N = N; N× = 1 + N; n⊐ − 1 = n⊏ for each
n ∈ N; N× + N× = 2 + N.

To conclude this section, we record an application of Proposition 96B to a char-
acterization of the transitive closure of a relation.

96G. PROPOSITION. Let the set D and the relation ρ in D be given, and let τ be
the transitive closure of ρ. Then

∀x, y ∈ D, x τ y ⇔ (∃n ∈ N×, y ∈ (ρ>)◦n({x})).

Proof. We define the relation σ in D by the rule

∀x, y ∈ D, x σ y :⇔ (∃n ∈ N×, y ∈ (ρ>)◦n({x})).

For all x, y ∈ D, we have x ρ y if and only if y ∈ ρ>({x}) = (ρ>)◦1({x}), and hence
σ is broader than ρ. If x, y, z ∈ D satisfy x σ y and y σ z, we may choose m,n ∈ N×

such that y ∈ (ρ>)◦m({x}) and z ∈ (ρ>)◦n({y}). By (96.5) we have m + n ∈ N×. By
Proposition 96B we have

z ∈ (ρ>)◦n({y}) ⊂ (ρ>)◦n((ρ>)◦m({x})) = (ρ>)◦(m+n)({x}),

so that x σ z. Thus σ is transitive. Since τ is the transitive closure of ρ, we conclude
that σ is broader than τ .

Let x ∈ D be given. Since ρ is narrower than τ , we have (ρ>)◦seq0({x}) =
ρ>({x}) ⊂ τ>({x}). If n ∈ N is such that (ρ>)◦seqn({x}) ⊂ τ>({x}), then
(ρ>)◦seq seqn({x}) = ρ>((ρ>)◦seqn({x})) ⊂ ρ>(τ>({x})) ⊂ τ>(τ>({x})) ⊂ τ>({x}), since
τ is transitive. We have proved by induction that (ρ>)◦seqn({x}) ⊂ τ>({x}) for all
n ∈ N, so that σ>({x}) ⊂ τ>({x}). Since x ∈ D was arbitrary, this implies that σ is
narrower than τ . Since σ was also broader than τ , we conclude that σ = τ .
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97. Multiplication and division

We shall define multiplication by iterated addition. We accordingly define the
mapping ((m,n) 7→ m · n)) : N×N → N, called (the operation of) multiplication
(of natural numbers), by the rule

(97.1) m · n := (seq◦m)◦n(0) for all m,n ∈ N.

The symbol · is read “times” or “by”, and m · n is called the product of m and
n (the factors), and is said to be obtained by multiplying m and (or by) n. The
multiplication sign × is sometimes used instead of · for special emphasis, but is best
avoided. Most frequently, the symbol · is omitted altogether, the names of the factors
being merely juxtaposed; but it is retained when juxtaposition would be confusing
(thus 56 6= 5 · 6 = 30). The usual rules about omitting parentheses will be observed;
multiplication has priority over addition and subtraction.

Applying (94.6) twice and using (96.1) and (97.1), we find

(97.2)
(seq◦p)◦n(m) = ((seq◦p)◦n ◦ seq◦m)(0) = (seq◦m ◦ (seq◦p)◦n)(0) =

= seq◦m(pn) = pn +m for all m,n, p ∈ N.

97A. PROPOSITION. Multiplication and addition satisfy the following rules, valid
for all m,n, p ∈ N:

(97.3) m · seqn = mn+m

(97.4) n · 0 = 0

(97.5) n · 1 = n

(97.6) mn = nm (commutative law)

(97.7) p(m + n) = pm+ pn (distributive law)

(97.8) m,n ∈ N× ⇔ mn ∈ N×

(97.9) mn = 1 ⇔ m = n = 1.

Proof. (97.3), (97.4), (97.5) are trivial consequences of the definitions. The com-
mutative law follows from (97.1) and (94.8). To prove the distributive law we apply
Proposition 96B together with (97.1), (96.1), and (97.2):

p(m+ n) = (seq◦p)◦(m+n)(0) = ((seq◦p)◦n ◦ (seq◦p)◦m)(0) = (seq◦p)◦n(pm) = pm+ pn.
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To prove (97.8), assume that m,n ∈ N×. Using Propositions 96E and 96C, we
find

mn = m · seq(n− 1) = m(n− 1) +m = m+m(n− 1) ≥ m > 0,

so that mn ∈ N×. The reverse implication follows from (97.4) and the commutative
law. To prove (97.9), assume that mn = 1. By (97.8) we must have m,n ∈ N×.
Therefore

1 = mn = m(n− 1) +m = m +m(n− 1) ≥ m ≥ 1

1 = mn = nm = n(m− 1) + n = n + n(m− 1) ≥ n ≥ 1,

which implies m = n = 1. The reverse implication follows from (97.5) and the
commutative law.

97B. PROPOSITION. Multiplication, subtraction, and order satisfy the following
rules, valid for all m,n ∈ N and p ∈ N×:

(97.10) m < n ⇔ pm < pn (isotonicity law)

(97.11) m = n ⇔ pm = pn (cancellation law)

(97.12) p(n−m) = pn− pm if m ≤ n (distributive law).

Proof. If m < n, then n − m ∈ N×. By the distributive law (97.7), we have
pm + p(n − m) = p(m + (n − m)) = pn, which proves (97.12) (the case m = n is
trivial). By (97.8) we have p(n−m) ∈ N×, and Proposition 96C shows that pm < pn.
We have just shown that the mapping (k 7→ pk) : N → N is strictly isotone. Since N
is totally ordered, it follows that the mapping is injective — which proves (97.11) —
and that the equivalence (97.10) holds (Remark 62A,(a)).

97C. PROPOSITION. Let the set D and the mapping f: D → D be given. Then

f ◦mn = (f ◦m)◦n for all m,n ∈ N.

Proof. f ◦(m·0) = f ◦0 = 1D = (f ◦m)◦0. If f ◦mn = (f ◦m)◦n, then (97.3) and Proposi-
tion 96B yield f ◦(m·seqn) = f ◦(mn+m) = f ◦m ◦ f ◦mn = f ◦m ◦ (f ◦m)◦n = (f ◦m)◦seqn. This
completes the inductive proof.

97D. COROLLARY. Multiplication satisfies the following rule (associative law)
valid for all m,n, p ∈ N:

(mn)p = m(np).

Proof. Using (97.1) and Proposition 97C, we find

(mn)p = (seq◦mn)◦p(0) = ((seq◦m)◦n)◦p(0) = (seq◦m)◦np)(0) = m(np).

Because of the associative law, we may unambiguously write mnp, without paren-
theses; and a similar license is in effect for products of more factors.
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For images under the operation of multiplication we use a notation similar to that
previously introduced for addition and subtraction. Thus, if A and B are subsets of
N, we define

AB := {mn | m ∈ A, n ∈ B}.
It is also customary to write pB and Ap instead of {p}B and A{p}, and we shall
usually do so. For instance, the range of the familiar arithmetic progression with
initial term m and difference p is m + pN.

For each p ∈ N we define the mapping p· : N → N, called multiplication by p,
by the rule

p·(n) := pn for all n ∈ N.

On account of (97.4), (97.5), and the commutative and associative laws, these map-
pings satisfy the rules

(97.13) 0· = 0N→N 1· = 1N

(97.14) (p·) ◦ (q·) = pq · for all p, q ∈ N,

and by (97.10) p· is strictly isotone for every p ∈ N×. We also have Rng(p·) = pN for
all p ∈ N.

We can use these mappings to define exponentiation by iterated multiplication.
Accordingly, we define the mapping ((m,n) 7→ mn) : N×N → N, called (the opera-
tion of) exponentiation (of natural numbers), by the rule

mn := (m·)◦n(1) for all m,n ∈ N.

The symbol mn is read “m to the (power) n” or “m to the nth (power)”, and mn

is said to be obtained by raising m (the base) to the power n (the exponent).

97E. PROPOSITION. Exponentiation, multiplication, and addition satisfy the fol-
lowing rules, valid for all m,n, p ∈ N:

m0 = 1 m1 = m m2 = mm 1n = 1

0n = 0 if n ∈ N×

(mn)p = mpnp

pm+n = pmpn pmn = (pm)n

n < mn if m > 1.

It is useful to note that

(97.15) 4 = 2 + 2 = 2 · 2 = 22.

We now turn to the concept of division. For a given pair (m,n) ∈ N × N, we
consider the problem

(97.16) ?q ∈ N, qn ≤ m and m− qn < n.
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97F. THEOREM. (97.16) has no solution for any pair (m,n) with n = 0. For
each pair (m,n) ∈ N× N×, there is exactly one solution of (97.16), namely max{p ∈
N | pn ≤ m}.

Proof. The statement concerning the case n = 0 holds trivially. Assume now
that n ∈ N×. The set {p ∈ N | pn ≤ m} contains 0, and m is an upper bound:
indeed, 1 ≤ n and therefore pn ≤ m implies pn ≤ m · 1 ≤ mn, whence p ≤ m
(Proposition 97B). By Proposition 92F this set has a maximum. Define q0 := max{p ∈
N | pn ≤ m}.

We now use the rules in Propositions 96F and 97B. If q is a solution of (97.16), we
must have qn ≤ m, and therefore q ≤ q0. On the other hand, we have m − qn < n,
and therefore q0n ≤ m < qn + n = (seqq)n. This implies q0 < seqq, and this in turn
is equivalent to q0 ≤ q. We conclude that q must be q0, so that there is at most one
solution of (97.16).

However, q0n ≤ m < (q0+1)n, and therefore m−q0n < (q0+1)n−q0n = 1 ·n = n,
so that q0 is indeed a solution of (97.16).

For every pair (m,n) ∈ N × N×, the unique solution q := max{p ∈ N | pn ≤ m}
of (97.16) and the corresponding number m − qn are called the quotient and the
remainder (or residue), respectively, of the division of m (the dividend) by n
(the divisor). When the remainder is 0, it is customary to denote the quotient by
m/n or m

n
. (Theorem 97F rules out “division by 0”.)

Let the number m ∈ N be given. Since 2⊏ = {0, 1}, the remainder of the division
of m by 2 is either 0 or 1. If the remainder is 0, m is said to be even; if the remainder
is 1, m is said to be odd. Thus m is even if and only if m ∈ 2N, and m is odd if and
only if m ∈ N\(2N) = 2N + 1.
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98. Divisors and multiples

We record some additional terminology relating to multiplication. Let the natural
numbers m,n be given. If n = mp for some p ∈ N, we say that m divides n, and
that n is divisible by m; and m is called a divisor of n, and n a multiple of m.
(The clash between this use of the term divisor and the use associated with division
(Theorem 97F) is unlikely to lead to confusion.) Thus m divides n if and only if
n ∈ mN . The relation “divides” and its reverse, “is a multiple of”, were already
mentioned in several examples in Sections 55, 56, 61, 62, and 64, anticipating some
of the results to be proved here and adding some comments.

98A. PROPOSITION. The relation “divides” is an order in N. 1 divides every
natural number, and every natural number divides 0.

Proof. The reflexivity and the properties of 0 and 1 follow from (97.4), (97.5),
and the commutative law (97.6). The transitivity follows from the associative law. It
remains to prove the antisymmetry. If m divides n and n divides m, we may choose
p, q ∈ N such that mp = n and nq = m. Then nqp = mp = n = n · 1. If n = 0, then
m = 0 · q = 0, so that m = n. If n ∈ N×, the cancellation law yields qp = 1, and
(97.9) requires q = p = 1. Therefore m = n · 1 = n in this case also.

To distinguish the set N ordered by “divides” from the set N ordered by ≤, special
terminology is used whenever possible. Instead of upper bound, lower bound, supre-
mum, infimum, the specific terms common multiple, common divisor, least
common multiple, greatest common divisor are used, and the symbols sup and
inf are replaced by lcm and gcd, respectively. According to Proposition 98A, the
numbers 1 and 0 are, respectively, the minimum and the maximum of N ordered by
“divides”.

98B. LEMMA. The mapping 1N× is a strictly isotone mapping from N× ordered
by “divides” to N× ordered by ≤.

Proof. If m,n ∈ N× and p ∈ N satisfies n = mp, we must have p ∈ N×, by (97.8),
and therefore 1 ≤ p. By the isotonicity law, m = m · 1 ≤ mp = n. Therefore 1N× is
isotone; since it is injective, it is strictly isotone.

98C. LEMMA. The collection {pN | p ∈ N} ⊂ P(N) is intersection-stable.

Proof. Let the subset A of N be given, and set S :=

⋂

p∈A

N
pN. By Proposition 98A,

we have 0 ∈ S. If S = {0}, then S = 0 ·N. We may therefore assume that S∩N× 6= Ø
(which implies 0 /∈ A), and set d := min(S ∩ N×). We claim that S = dN.

For every p ∈ A, we have d ∈ pN and therefore, by the associative law, also
dN ⊂ pN. Therefore dN ⊂ S.

To prove the reverse inclusion, let n ∈ S be given, and let q be the quotient of the
division of n by d. Let p ∈ A be given. Since n, d ∈ pN, it follows from Proposition
97B that n − qd ∈ pN. Since p ∈ A was arbitrary, we have shown that n − qd ∈ S.
But the definition of q implies that n− qd < d. This is compatible with the definition
of d only if n− qd = 0. But then n ∈ dN. Since n ∈ S was arbitrary, we have proved
that S ⊂ dN, and our claim that S = dN is established.
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98D. THEOREM. The set N ordered by the relation “divides” is completely ordered
and well-founded.

Proof. 1. The set N× is well-ordered, hence well-founded by ≤. It follows from
Lemma 98B and from Proposition 64B that N× ordered by “divides” is well-founded.
It follows immediately that N = N× ∪ {0} ordered by “divides” is also well-founded.
(Actually, 0 is a minimal member of {0}, and of no other subset of N.)

2. For every subset A of N, the set of common multiples of A is
⋂

n∈A

N
nN. By

Lemma 98C, this set is dN for a suitable d ∈ N. But d is a member of, and divides
every member of, dN; therefore d is the least common multiple of A. By Proposition
71B↑, it follows that N is completely ordered by the order “divides”.

98E. THE EUCLIDEAN ALGORITHM. The purpose of the procedure described
here is to find, for given m, p ∈ N×, the greatest common divisor of {m, p}. The
success of the procedure rests on the following observation: If (m, p) ∈ N× N×, and
if r is the remainder of the division of m by p, then gcd{m, p} = gcd{p, r}. If q is
the quotient of the same division, we have r = m − qp and m = r + qp. It follows
from these, together with the associative and distributive laws, that every common
divisor of m and p also divides r, and every common divisor of p and r also divides
m. This establishes the claimed observation.

Let us use the notation rem(u, v) for the remainder of the division of u by v (so
that we have a mapping rem : N× N× → N). Informally, the algorithm proceeds by
attempting to construct recursively a sequence (pn | n ∈ N) in which p0 := p, p1 :=
rem(m, p), and pn+1 := rem(pn−1, pn) for n > 1. This construction breaks off when,
for some k ∈ N×, we have pk+1 = 0. When it does, we have pk = gcd{m, p}.

More formally, this is an instance of a recursive definition with a rule that “breaks
down”. We formulate it as an application of Theorem 93C, and there is no formal
reason to exclude the possibility that m or p might be 0.

We specify the data in the assumption of Theorem 93C as follows: An := N× N
and Bn := N×N× for all n ∈ N; z := (m, p) ∈ N×N, and hn((u, v)) := (v, rem(u, v))
for all n ∈ N and (u, v) ∈ N × N×. According to Theorem 93C there are now two
alternatives. In the first, there is a sequence ((mn, pn) | n ∈ N) in N× N× such that
(m0, p0) = (m, p) and

(mseqn, pseqn) = (pn, rem(mn, pn)) for all n ∈ N.

Now pseqn = rem(mn, pn) < pn for all n ∈ N. By Proposition 92G, the sequence
(pn | n ∈ N) in N× is strictly antitone; but this is ruled out by the Principle of
Descent (Proposition 92H). Therefore this alternative is excluded, and we are left
with the other: there is a unique number k ∈ N and list ((mn, pn) | n ∈ (seqk)⊏) such
that

(m0, p0) = (m, p)

pn ∈ N× and (mseqn, pseqn) = (pn, rem(mn, pn)) for all n ∈ k⊏

pk ∈ N\N× = {0}.
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Now gcd{mseqn, pseqn} = gcd{pn, rem(mn, pn)} = gcd{mn, pn} for all n ∈ k⊏, accord-
ing to our earlier observation. It then follows at once by induction (adapted triv-
ially to the index set (seqk)⊏) that gcd{mn, pn} = gcd{m0, p0} = gcd{m, p} for all
n ∈ (seqk)⊏. In particular, mk = gcd{mk, 0} = gcd{mk, pk} = gcd{m, p}. If k = 0,
we are in the trivial case p = 0, and verify that gcd{m, p} = gcd{m, 0} = m = m0; if
k 6= 0, we have gcd{m, p} = mk = pk−1.

We shall not pursue the discussion of divisibility and the structure of N ordered
by “divides” at this time. This is a major topic, including such matters as prime
numbers (i.e., the minimal members of N×\{1} = 2 + N for that order) and prime
factorization. It will be studied in a broader algebraic context.



Chapter 10

FINITE SETS

101. Finite sets and their cardinals

We recall (Section 33) that the sets S and T are said to be equinumerous, and
that S is said to be equinumerous to T , if there is an invertible mapping from S
to T or, equivalently, from T to S.

A set S is said to be finite if there exists an injection from S to N whose range
has an upper bound or, equivalently, if there exists an injection from S to n⊏ for some
n ∈ N. A set is said to be infinite if it is not finite. A family is said to be finite or
infinite according as its index set is finite or infinite.

If S is a finite set, the set {n ∈ N | there is an injection from S to n⊏} is not
empty; we define the cardinal (number) of S to be the minimum of this set, and
denote it by #S; thus

#S := min{n ∈ N | there is an injection from S to n⊏}.

(Other notations in use for the cardinal of S are |S| and the unwieldy, obsolescent ¯̄S.)

For every set S, we denote by F(S) the collection of all finite subsets of S, i.e.,

F(S) := {A ∈ P(S) | A is finite};

we set F×(S) := F(S)\{Ø}, and for every n ∈ N we denote by Fn(S) the collection
of all finite subsets of S whose cardinal is n, i.e.,

Fn(S) := {A ∈ F(S) | #A = n} for all n ∈ N.

101A. REMARK. A set S is finite and its cardinal is 0, 1, or 2 if and only if S is,
respectively, the empty set, a singleton, or a doubleton.

101B. THEOREM. Let the finite set S be given. Every injection from S to (#S)⊏

is invertible. The sets S and (#S)⊏ are equinumerous.

Proof. Let n ∈ N be given, and assume that there is an injection φ : S → n⊏ that
is not surjective. Then n⊏ 6= Ø, so that n ∈ N×. Moreover, n⊏\Rngφ 6= Ø, so we
may set p := min(n⊏\Rngφ), and define the mapping ω : n⊏ → n⊏ by the rule

159
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ω(k) :=























n− 1 if k = p

p if k = n− 1

k if k ∈ n⊏\{p, n− 1}.

Thus ω ◦ω = 1n⊏ , so that ω is invertible, and ω ◦φ is injective. But Rng(ω ◦φ) ⊂
n⊏\{ω(p)} = n⊏\{n − 1} = (n − 1)⊏. Therefore (ω ◦ φ)|(n−1)⊏ : S → (n − 1)⊏ is
injective, and #S ≤ n− 1 < n.

By contraposition, every injection from S to (#S)⊏ must be surjective, and hence
invertible. By the definition of #S, such an injection exists; it follows that S and
(#S)⊏ are equinumerous.

101C. REMARK. Theorem 101B shows that a set is finite if and only if it is
equinumerous to n⊏ for some n ∈ N. This property is often used to define the
concept of finite set. See also Corollary 101J.

The following corollary justifies the term equinumerous (“having equal number”),
at least for finite sets.

101D. COROLLARY. Let the sets S and T be given. If S is finite, then S and T
are equinumerous if and only if T is also finite and #S = #T .

101E. PROPOSITION. Let the sets S and T be given, and assume that T is finite.
Then there exists an injection from S to T if and only if S is finite and #S ≤ #T .
If f: S → T is an injection, then #S = #T if and only if f is invertible.

Proof. We choose an invertible mapping φ : T → (#T )⊏, as we may by Theorem
101B. Let the injection f: S → T be given. Then φ ◦ f: S → (#T )⊏ is an injection.
If such an injection f exists, it follows that S is finite and #S ≤ #T . Moreover, if
#S = #T , Theorem 101B shows that φ◦f is invertible, and hence that f is invertible
too. On the other hand, if f is invertible, then #S = #T by Corollary 101D.

Assume, conversely, that S is finite and #S ≤ #T , and choose an invertible
mapping ψ : S → (#S)⊏, as we may by Theorem 101B. Then the mapping φ← ◦
1(#S)⊏⊂(#T )⊏ ◦ ψ : S → T is injective.

101F. COROLLARY. Let the finite set T be given. Every subset S of T is finite
and satisfies #S ≤ #T ; moreover, #S = #T if and only if S = T .

101G. PROPOSITION. Let the sets S and T and the surjection f: S → T be given.
If S is finite, then T is finite and #S ≥ #T . Moreover, #S = #T if and only if f
is invertible.

Proof. Since f is surjective, we may choose a right-inverse g : T → S of f .
(Here is a construction of g that avoids an appeal to the Axiom of Choice: choose
a bijection ψ : (#S)⊏ → S, as one may by Theorem 101B; and define g by the rule
g(y) := ψ(min(f ◦ψ)<({y})) for all y ∈ T .) Then g is injective. Applying Proposition
101E to T, S, g instead of S, T, f , we find that T is finite and that #S ≥ #T ; and
also that #S = #T holds if and only if g is invertible. But g is invertible if and only
if its left-inverse f is invertible.

101H. COROLLARY (PIGEONHOLE PRINCIPLE). Let the equinumerous finite sets S
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and T and the mapping f: S → T be given. The following statements are equivalent:

(i): f is injective.

(ii): f is surjective.

(iii): f is invertible.

101I. PROPOSITION. Let the set S and the number n ∈ N be given. Then S and
n⊏ are equinumerous if and only if S is finite and n = #S.

Proof. The “if” part follows from Theorem 101B. To prove the “only if” part,
suppose that S and n⊏ are equinumerous. Then S is finite and #S ≤ n, so that
(#S)⊏ ⊂ n⊏. Since S and (#S)⊏ are equinumerous by Theorem 101B, we have
#((#S)⊏) = #S = #(n⊏). By Corollary 101F we must have (#S)⊏ = n⊏, and
therefore #S = n.

101J. COROLLARY. Let the set S be given. The set {n ∈ N | S and n⊏ are
equinumerous} is empty if S is infinite and is the singleton {#S} if S is finite.

101K. COROLLARY. For every n ∈ N, the sets n⊏ and n⊐ are finite, and #(n⊏) =
#(n⊐) = n. The set N is infinite.

Proof. The assertion concerning n⊏ follows from Proposition 101I with S := n⊏.
Now the mapping seq : N → N is injective and n⊐ := seq

>
(n⊏). Therefore seq|n⊐

n⊏ is
bijective, and n⊏ and n⊐ are equinumerous. The assertion concerning n⊐ now follows
from Corollary 101D. For every n ∈ N, the set N includes the set n⊏, whose cardinal
is n. By Proposition 101E, N is infinite.

101L. REMARK. One often encounters a finite set being regarded routinely as
the range of a list. This practice is usually unnecessary and indeed distracting;
exceptionally, however, it becomes desirable. Now a finite set S is equinumerous
to (#S)⊏ and to (#S)⊐ (Theorem 101B and Corollary 101K). For every bijection φ :
(#S)⊏ → S or φ : (#S)⊐ → S, the list (φ(m) | m ∈ (#S)⊏) or (φ(m) | m ∈ (#S)⊐),
of length #S, is called a listing of S.

101M. PROPOSITION. Let the set S and s ∈ S be given. If S\{s} is finite, then
S is finite and #S = seq#(S\{s}).

Proof. By Theorem 101B we may choose a bijection φ : S\{s} → n⊏, where
n := #(S\{s}). We then define ψ : S → (seqn)⊏ by the rule

ψ(x) :=







φ(x) if x ∈ S\{s}

n if x = s.

Then ψ is bijective. By Proposition 101I, S is finite and #S = seqn =
seq#(S\{s}).

101N. PROPOSITION. Let the set S be given. The set {#T | T ∈ F(S)} is
(seq#S)⊏ if S is finite and N if S is infinite.

Proof. Suppose that S is finite. By Theorem 101B we may choose a bijection
φ : S → (#S)⊏. For every n ∈ (seq#S)⊏, the mapping φ|n⊏

φ<(n⊏) is a bijection from

T := φ<(n⊏) ⊂ S to n⊏. By Proposition 101I we conclude that T is finite and that
#T = n. Since n ∈ (seq#S)⊏ was arbitrary, we have proved that {#T | T ∈ F(S)} ⊃
S ⊃ (seq#S)⊏. The reverse inclusion follows from Corollary 101F.
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Suppose now that S is infinite. Then 0 ∈ {#T | T ∈ F(S)}, since #Ø = 0. If
n ∈ {#T | T ∈ F(S)} is given, we may choose A ∈ F(S) such that #A = n. Since S
is infinite, we have S\A 6= Ø, and we may choose s ∈ S\A. Then A = (A∪{s})\{s}.
By Proposition 101M, A ∪ {s} ∈ F(S) and

seqn = seq#A = #(A ∪ {s}) ∈ {#T | T ∈ F(S)}.

By (NIII) we conclude that {#T | T ∈ F(S)} = N.
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102. Induction

102A. THEOREM. Every collection of finite sets, ordered by inclusion, is well-
founded.

Proof. Let F be a collection of finite sets, and let the non-empty subcollection A
of F be given. Define p := min{#S | S ∈ A}, and choose A ∈ A such that #A = p.
We claim that A is a minimal member of A. If S ∈ A satisfies S ⊂ A, then Corollary
101F implies #S ≤ #A; but the definition of p implies #A = p ≤ #S. Therefore
#S = #A, and by Corollary 101F we must have S = A. This establishes our claim.

102B. THEOREM. A set S is finite if and only if P(S), ordered by inclusion, is
well-founded.

Proof. If S is finite, then Corollary 101F implies that P(S) = F(S). By Theorem
102A, P(S), ordered by inclusion, is then well-founded.

Assume, conversely, that P(S), ordered by inclusion is well-founded. If T is an
infinite subset of S, we have T 6= Ø (by Remark 101A), and we may choose t ∈ T .
By Proposition 101M, T\{t} is also infinite. The collection of all infinite subsets of
S has therefore no minimal member, and must be empty. In particular, S itself is
finite.

102C. REMARK. The characterization of finite sets by Theorem 102B does not
involve the natural numbers at all. It could be used to define the concept of finite
sets; this has been done occasionally (notably by Wac law Sierpiński (1882-1969)), and
has some foundational advantages. We shall take this matter up in Section 106.

Theorem 102A of course implies the availability of inductive-proof schemes and
recursive definitions (Chapter 8) for collections of finite sets. It is convenient to
describe more in detail the inductive-proof schemes for the collections of the form
F(S).

102D. INDUCTIVE-PROOF SCHEMES. Let the set S be given. By Theorem 102A,
the collection F(S), ordered by inclusion, is well-founded. Since every subset of a finite
set is finite (Corollary 101F), the collection of members of F(S) that strictly precede
a given A ∈ F(S) is the collection of its proper subsets, i.e., Spr(A) = P(A)\{A}.
If P ( ) is a predicate describing a property that members of F(S) may have, the
standard scheme (Inductive-Proof Scheme 81B) for proving that P (A) holds for all
A ∈ F(S) has the following induction step:

(102.1) (∀B ∈ P(A)\{A}, P (B)) ⇒ P (A) for all A ∈ F(S).

In many cases, a stronger induction step (which yields a weaker proof scheme) is
more convenient: To prove that P (A) holds for all A ∈ F(S) it is enough to prove
that the following assertions hold:

(102.2) P (Ø)

(102.3) P (A\{a}) ⇒ P (A) for all A ∈ F×(S) and all a ∈ A.
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Indeed, (102.2) and (102.3) together imply (102.1). When a distinction is necessary, a
proof using the induction step (102.1) will be called a proof by general induction, and
a proof using (102.2) and the induction step (102.3) will be called a proof by special
induction.

102E. INDUCTIVE PROOF SCHEMES. It is often desirable to establish a certain
property for all finite sets by an inductive proof. It is not appropriate to attempt
to do this by applying the Inductive-Proof Schemes 102D to the “set of all objects”;
a different strategy for applying them is required. Suppose, then, that P ( ) is a
predicate describing a property that finite sets may have. We assert that to prove
that P (S) holds for every finite set S it is enough to prove

(102.4) For every finite set A, (∀B ∈ P(A)\{A}, P (B)) ⇒ P (A).

Indeed, suppose that (102.4) holds, and let the finite set S be given. Then (102.1)
holds, and therefore P (A) holds for all A ∈ F(S); in particular, P (S) holds. Proofs
by this scheme are again called proofs by general induction. If one uses (102.2) and
(102.3) instead of (102.1), one obtains the corresponding scheme for proofs by special
induction: To prove that P (S) holds for every finite set S, it is enough to prove that
the following assertions hold:

(102.5) P (Ø)

(102.6) P (A\{a}) ⇒ P (A) for every non-empty finite set A and all a ∈ A.

We record a simple and useful instance of proof by special induction.

102F. PROPOSITION. Let the finite set S and the non-empty nest N be given.

Then S ⊂
⋃

N if and only if S ⊂ A for some A ∈ N .

Proof. The “if” part of the statement is trivial. We prove the “only if” part by

special induction in F(
⋃

N ). If S = Ø, we may choose a member A of the non-empty

collection N and find S = Ø ⊂ A.

Let S ∈ F×(
⋃

N ) and s ∈ S be given, and assume that S\{s} ⊂ A for a suitable

A ∈ N . Since s ∈ S ⊂
⋃

N , we may choose B ∈ N such that s ∈ B. Then

S = (S\{s}) ∪ {s} ⊂ A ∪ B and A ∪ B ∈ N , since N is a nest. This completes the
induction step.
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103. Operations with finite sets

In this section we show that certain sets constructed from finite sets are again
finite, and that their cardinals can be determined or estimated from the cardinals of
the given sets.

103A. THEOREM. Let the finite sets S and T be given. If S and T are disjoint,
then S ∪ T is a finite set, and #(S ∪ T ) = #S + #T .

Proof. Let the finite set T be given. We prove by special induction that P (S)
holds for all finite sets S, where

P (S) :⇔ (S ∩ T = Ø ⇒ (S ∪ T is finite and #(S ∪ T ) = #S + #T )).

Since Ø ∪ T = T and #Ø = 0, we see that P (Ø) holds.

Let the non-empty finite set S be given, and let s ∈ S be such that P (S\{s}) holds.
If S ∩ T = Ø, then (S\{s})∩ T = Ø and (S ∪ T )\{s} = (S\{s})∪ T . Since S\{s} is
finite by Corollary 101F, the induction hypothesis implies that (S ∪ T )\{s} is finite
and that #((S∪T )\{s}) = #(S\{s})+#T . By Proposition 101M it follows that S∪T
is finite and that #(S ∪T ) = #((S ∪T )\{s}) + 1 = #(S\{s}) + 1 + #T = #S+ #T .
Therefore P (S) holds. This completes the induction step, and P (S) holds for all finite
sets S.

Since T was an arbitrary finite set, the assertion is proved.

103B. COROLLARY. Let the finite sets S and T be given. Then S ∪ T and S ∩ T
are finite sets, and

(103.1) #(S ∪ T ) + #(S ∩ T ) = #S + #T.

Proof. By Corollary 101F, S ∩ T and S\T are finite sets. By Theorem 103A,
S ∪ T = (S\T ) ∪ T is a finite set, and

#S = #(S\T ) + #(S ∩ T ) and #(S\T ) + #T = #(S ∪ T ).

Combining these equalities, we obtain (103.1).

The results that follow have a quantitative aspect that depends on the concepts
of the sum and the product of a finite family of natural numbers. These concepts will
only be formally introduced in Section 112. Since they are, however, easily accessible
to our intuition, we have preferred to anticipate their introduction and use them here,
instead of deferring the quantitative parts of our results (as we might) and having to
go over essentially the same proof again. We suppose it to be known that for each
finite family of natural numbers (ni | i ∈ I) we are provided with natural numbers
∑

i∈I

ni and
∏

i∈I

ni, and that these satisfy the following conditions (for definitions and

proofs, see Section 112, especially Remark 112C,(b)):

(103.2)
∑

ı∈I

ni = 0 and
∏

i∈I

ni = 1 if I = Ø.
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(103.3)
∑

i∈I

ni =
∑

i∈I\{j}

ni+nj and
∏

i∈I

ni = (
∏

i∈I\{j}

ni) ·nj if I 6= Ø and j ∈ I.

103C. LEMMA. Let the finite set I and the natural number n be given. Then
∑

i∈I

n = n(#I) and
∏

i∈I

n = n#I.

Proof. We prove by special induction that
∑

i∈J

n = n(#J) and
∏

i∈J

n = n#J for all

J ∈ F(I), and hence in particular for J := I. By (103.2) we have
∑

i∈Ø

n = 0 = n · 0 =

n(#Ø) and
∏

i∈Ø

n = 1 = n0 = n#Ø. Let J ∈ F×(I) and j ∈ J be given, and assume

that
∑

i∈J\{j}

n = n(#(J\{j})) and
∏

i∈J\{j}

n = n#(J\{j}). Then (103.3) and Proposition

101M yield

∑

i∈J

n =
∑

i∈J\{j}

n + n = n(#(J\{j})) + n = n(#J\{j}) + 1) = n(#J)

∏

i∈J

n = (
∏

i∈J\{j}

n) · n = n#(J\{j}) · n = n#(J\{j})+1 = n#J .

This completes the induction step.

103D. THEOREM. Let the finite family of finite sets (Ti | i ∈ I) be given. Then
˙⋃

i∈I

Ti is a finite set and #(
˙⋃

i∈I

Ti) =
∑

i∈I

#Ti.

Proof. We prove by special induction that

P (J) :⇔ (
˙⋃

i∈J

Ti is finite and #(
˙⋃

i∈J

Ti) =
∑

i∈J

#Ti)

holds for all J ∈ P(I) = F(I). We have
˙⋃

i∈Ø

Ti = Ø and
∑

i∈Ø

#Ti = 0 = #Ø, so that

P (Ø) holds.

Let the non-empty subset J of I be given and let j ∈ J be such that P (J\{j})

holds. We observe that
˙⋃

i∈J\{j}

Ti and
˙⋃

i∈{j}

Ti are disjoint and that their union is

˙⋃

i∈J

Ti. We further observe that the mapping (t 7→ (j, t)) : Tj → ˙⋃

i∈{j}

Ti is bijective,

so that, by Corollary 101D,
˙⋃

i∈{j}

Ti is finite and its cardinal is #Tj . Applying the

induction hypothesis and Theorem 103A with S :=
˙⋃

i∈J\{j}

Ti and T :=
˙⋃

i∈{j}

Ti, we
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conclude that
˙⋃

i∈J

Ti is finite and that

#(
˙⋃

i∈J

Ti) = #(
˙⋃

i∈J\{j}

Ti) + #(
˙⋃

i∈{j}

Ti) =
∑

i∈J\{j}

#Ti + #Tj =
∑

i∈J

#Ti.

We have shown that P (J) holds. This completes the induction step.

Therefore P (J) holds for all J ∈ P(I). In particular, P (I), which is the assertion
of this theorem, also holds.

103E. COROLLARY. Let the finite family of finite sets (Ti | i ∈ I) be given. Then
⋃

i∈I
Ti is a finite set, and #(

⋃

i∈I
Ti) ≤

∑

i∈I

#Ti; equality holds if and only if the family is

disjoint. In particular, #S =
∑

s∈S

1 for every finite set S.

Proof. The mapping ((i, t) 7→ t) :
˙⋃

i∈I

Ti →
⋃

i∈I
Ti is surjective, and it is bijective

if and only if the family is disjoint. The assertion now follows from Theorem 103D
and Proposition 101G. The particular case follows by setting I := S and Ts := {s}
for every s ∈ S.

Remark. A more precise determination of #(
⋃

i∈I
Ti) is given by a generalization of

Corollary 103B, known as the Inclusion-Exclusion Principle; it will be the subject of
Section 116.

103F. COROLLARY. The union of every finite collection of finite sets is a finite
set.

103G. COROLLARY. Let the finite sets S and T be given. Then S × T is a finite
set, and #(S × T ) = (#S)(#T ).

Proof. Apply Theorem 103D to I := S and Ts := T for all s ∈ S, and observe

that S × T =
˙⋃

s∈S

T . Then S × T is a finite set and, using Lemma 103C,

#(S × T ) = #(
˙⋃

s∈S

T ) =
∑

s∈S

#T = (#S)(#T ).

103H. THEOREM. Let the finite family of finite sets (Ti | i ∈ I) be given. Then×
i∈I

Ti is a finite set and #(×
i∈I

Ti) =
∏

i∈I

#Ti.

Proof. We prove by special induction that

P (J) :⇔ (×
i∈J

Ti is finite and #(×
i∈J

Ti) =
∏

i∈J

#Ti)

holds for all J ∈ P(I) = F(I). We have ×
i∈Ø

Ti = {Ø} and
∏

i∈Ø

#Ti = 1 = #{Ø}, so

that P (Ø) holds.
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Let the non-empty subset J of I be given and let j ∈ J be such that P (J\{j})

holds. By Proposition 44A, the sets×
i∈J

Ti and ( ×
i∈J\{j}

Ti) × Tj are equinumerous. By

Corollaries 101D and 103G and the induction hypothesis, we conclude that ×
i∈J

Ti is

finite and that

#(×
i∈J

Ti) = (#( ×
i∈J\{j}

Ti))(#Tj) = (
∏

i∈J\{j}

#Ti)(#Tj) =
∏

i∈J

#Ti.

We have shown that P (J) holds. This completes the induction step.

Therefore P (J) holds for all J ∈ P(I). In particular, P (I), which is the assertion
of this theorem, also holds.

103I. COROLLARY. Let the finite sets S and T be given. Then the equinumerous
sets T S and Map(S, T ) are finite, and #(T S) = #(Map(S, T )) = (#T )#S.

Proof. Apply Theorem 103H with I := S and Ts := T for all s ∈ S, and use
Lemma 103C.

103J. COROLLARY. A set S is finite if and only if P(S) is finite. In that case,
#P(S) = 2#S.

Proof. The mapping (s 7→ {s}) : S → P(S) is injective. Therefore S is finite if
P(S) is finite (Proposition 101E).

The mapping (A 7→ χA⊂S) : P(S) → (2⊏)S is bijective: its inverse is (φ 7→
φ<({1})) : (2⊏)S → P(S). If S is finite, Corollary 103I and the fact that #(2⊏) = 2
(Remark 101A or Corollary 101K) imply that P(S) is finite and #P(S) = #((2⊏)S) =
2#S.

103K. REMARKS. (a): Let the family of sets (Ti | i ∈ I) be given. From the
preceding results and some trivial observations we obtain the following conclusions.
˙⋃

i∈I

Ti is finite if and only if the set {i ∈ I | Ti 6= Ø} is finite and Ti is finite for every

i ∈ I. ×
i∈I

Ti is finite if and •only if either Ti = Ø for some i ∈ I, or else the set

{i ∈ I | Ti is not a singleton} is finite and Ti is finite for every i ∈ I.

(b): Let the sets S and T be given. Then S ∪ T is finite if and only if S and T
are both finite. S × T is finite if and only if S = Ø or T = Ø or S and T are both
finite. The equinumerous sets T S and Map(S, T ) are finite if and only if T = Ø or T
is a singleton or S = Ø or S and T are both finite.

The following important result is included in this section although it deals with
sets that are not necessarily finite.

103L. THEOREM (PRINCIPLE OF FINITE CHOICE). The Cartesian product of a finite
family of non-empty sets is non-empty.

Proof. The proof by special induction is entirely analogous to the proof of Theorem
103H. It uses the fact that if S 6= Ø and T 6= Ø, then S × T 6= Ø.
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104. Factorials and binomial coefficients

In this section we continue the study of finite sets constructed from other finite
sets, and the determination of their cardinals.

If S and T are finite sets, then Inv(S, T ) := {f ∈ Map(S, T ) | f is invertible} ⊂
Map(S, T ) is finite, by Corollary 103I. In particular, Perm(S) := Inv(S, S), the set
of all permutations of S, is finite for every finite set S; and Perm(S) 6= Ø, since
1S ∈ Perm(S). On the other hand, the subset Fm(S) of F(S) is finite for every finite
set S and every m ∈ N, by Corollary 103J.

104A. PROPOSITION. Let the finite sets S and T be given.

(a): If #S 6= #T , then Inv(S, T ) = Ø. If #S = #T , then #Perm(S) =
#Inv(S, T ) = #Perm(T ) 6= 0.

(b): If #S = #T , then #Fm(S) = #Fm(T ) for all m ∈ N.

Proof. The first assertion in (a) is the trivial part of Corollary 101D. We now
assume that #S = #T , and may therefore choose an invertible mapping h : S →
T . Each of the mappings (f 7→ h← ◦ f) : Inv(S, T ) → Perm(S) and (g 7→ h ◦
g) : Perm(S) → Inv(S, T ) is the inverse of the other; the same is true of (f 7→
f ◦ h←) : Inv(S, T ) → Perm(T ) and (g 7→ g ◦ h) : Perm(T ) → Inv(S, T ). Thus
Perm(S), Inv(S, T ), and Perm(T ) are equinumerous, and therefore have the same
cardinal.

For every subset A of S and every subset B of T , the mappings h|h>(A)
A and

h|Bh<(B) are bijective. Therefore (h>)>(Fm(S)) = Fm(T ), and h>|Fm(S)
Fm(T ) is bijective for

each m ∈ N. We conclude that Fm(S) and Fm(T ) are equinumerous for each m ∈ N.

104B. PROPOSITION. Let the finite set S be given. Then:

(104.1) #F0(S) = 1 #F1(S) = #S

(104.2) Fm(S) = Ø ⇔ m > #S for all m ∈ N

(104.3) m + n = #S ⇒ #Fm(S) = #Fn(S) for all m,n ∈ N

(104.4)
∑

m∈(seq#S)⊏

#Fm(S) = 2#S.

Proof. F0(S) = {Ø}, and the mapping (x 7→ {x}) : S → F1(S) is bijective. These
facts imply that (104.1) holds. (104.2) is a rephrasing of part of Proposition 101N.

Let m,n ∈ N be given, and assume that m + n = #S. Consider the complemen-
tation mapping CS : P(S) → P(S). By Theorem 103A we have #A + #CS(A) =
#A + #(S\A) = #S = m + n for all A ∈ P(S); by the cancellation law it follows
that A ∈ Fm(S) if and only if CS(A) ∈ Fn(S). Since CS is invertible, we conclude

that CS|Fn(S)
Fm(S) is invertible, and therefore Fm(S) and Fn(S) are equinumerous. This

proves (104.3).
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The list of collections (Fm(S) |m ∈ (seq#S)⊏) is obviously disjoint, and by (104.2)

we have
⋃

m∈(seq#S)⊏

Fm(S) = F(S) = P(S). By Corollaries 103E and 103J we conclude

that
∑

m∈(seq#S)⊏

#Fm(S) = #(
⋃

m∈(seq#S)⊏

Fm(S)) = #P(S) = 2#S.

104C. THEOREM. Let the finite set S and the subset A of S be given. Then

(104.5) #Perm(S) = (#F#A(S))(#Perm(A))(#Perm(S\A)).

Proof. For each B ∈ F#A(S) we define the set of permutations QB := {π ∈
Perm(S) | π>(A) = B}. We observe that the family (QB | B ∈ F#A(S)) is disjoint.

For every π ∈ Perm(S), the mapping π|π>(A)
A is bijective, so that π>(A) ∈ F#A(S),

and π ∈ Qπ>(A). Therefore
⋃

B∈F#A(S)

QB = Perm(S). It follows from Corollary 103E

that

(104.6) #Perm(S) =
∑

B∈F#A(S)

#QB.

Let B ∈ F#A(S) be given. Then the mapping (π 7→ (π|BA, π|S\BS\A)) : QB →
Inv(A,B) × Inv(S\A, S\B) is obviously bijective. Since #A = #B, Theorem 103A
shows that #(S\A) = #(S\B). Therefore we find, using Corollary 103G and Propo-
sition 104A, that

#QB = (#Inv(A,B))(#Inv(S\A, S\B)) = (#Perm(A))(#Perm(S\A)).

Here B ∈ F#A(S) was arbitrary. Substituting this into (104.6) and applying Lemma
103C we obtain (104.5).

We now define the sequence (n! | n ∈ N) in N× by the rule

n! := #Perm(n⊏) for all n ∈ N,

and the matrix (

(

n
m

)

| (n,m) ∈ N× N) in N by the rule

(

n
m

)

:= #Fm(n⊏) for all (n,m) ∈ N× N.

The number n! is called the factorial of n, and the numbers

(

n
m

)

are called binomial

coefficients (for reasons to be explained at a later time). By Propositions 104A and
101I we have

(104.7) #Perm(S) = (#S)! for every finite set S



104. Factorials and binomial coefficients 171

(104.8) #Fm(S) =

(

#S
m

)

for every finite set S and all m ∈ N.

104D. PROPOSITION. The sequence (n! | n ∈ N) satisfies the following rules:

(104.9) 0! = 1, and (seqn)! = n! · seqn for all n ∈ N

(104.10) n! =
∏

m∈n⊐

m for all n ∈ N.

Proof. We have 0! = #Perm(Ø) = #{1Ø} = 1. For given n ∈ N, we apply
Theorem 104C with S := (seqn)⊏ and A := {n}. We have (seqn)⊏\{n} = n⊏,
F#{n}((seqn)⊏) = #F1((seqn)⊏) = #(seqn)⊏ = seqn (by (104.1) and Corollary 101K),
and #Perm({n}) = #{1{n}} = 1. Consequently (104.5) yields

(seqn)! = #Perm((seqn)⊏) = (seqn) · 1 · #Perm(n⊏) = (seqn) · n!.

This completes the proof of (104.9).

For each n ∈ N we have (seqn)⊐\{seqn} = n⊐. From (103.2) and (103.3) we have

∏

m∈0⊐

m =
∏

m∈Ø

m = 1, and
∏

m∈(seqn)⊐

m = (
∏

m∈n⊐

m) · seqn for all n ∈ N.

Comparing this with (104.9) yields an inductive proof of (104.10).

104E. PROPOSITION. The binomial coefficients satisfy the following rules:

(104.11)

(

n
m

)

= 0 ⇔ m > n for all n,m ∈ N

(104.12)

(

m + n
m

)

=

(

m+ n
n

)

for all m, n ∈ N

(104.13)
∑

m∈(seqn)⊏

(

n
m

)

= 2n for all n ∈ N

(104.14)

(

m + n
n

)

m!n! = (m+ n)! for all m, n ∈ N.

Proof. (104.11), (104.12), (104.13) follow from (104.2), (104.3), (104.4), respec-
tively, with a suitable choice of S in each case. To prove (104.14), we apply The-
orem 104C with the choices S := (m + n)⊏, A := m⊏, using the observation that
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#((m + n)⊏\m⊏) = n by Theorem 103A to show that #Perm((m + n)⊏\m⊏) = n!
with the help of (104.7).

Formula (104.14) shows that m!n! divides (m + n)! for all m,n ∈ N and we may
write the familiar formula

(104.15)

(

m + n
m

)

=
(m+ n)!

m!n!
for all m,n ∈ N

(from which we can again deduce (104.12)).

It is useful to have relations among binomial coefficients that permit their recursive
calculation — just as (104.9) may be used to calculate factorials recursively. These
relationships are given by the following proposition. In so far as they refer to the
non-zero binomial coefficients, they were recorded in Europe as early as 1527 by
Petrus Apianus (Peter Bienewitz, 1495-1552); the resulting triangular array is printed
on the title-page of his Arithmetica. The introduction of this triangular array is
occasionally attributed to Michael Stifel (1487-1567), to Niccolò Tartaglia (Niccolò
Fontana, c. 1499-1557), or — quite erroneously — to Blaise Pascal (1623-1662) under
the name “Pascal’s Triangle”. It should be noted, however, that the same triangular
array appears in the block-printed treatise S̀ıyuán yùjiàn (Precious Mirror of the
Four Elements), dated 1303, by Zhū Sh̀ıjié (fl. 1300), and can be traced back, by
attribution, to Jiǎ Xiàn and Liú Rǔxié (fl. c. 1100), as published in the latter’s (now
lost) Rúj̄ı sh̀ısuǒ (Piling-up Powers and Unlocking Coefficients).

104F. THEOREM. The binomial coefficients satisfy the following rules for all
m,n ∈ N:

(104.16)

(

n
0

)

= 1

(

0
seqm

)

= 0

(104.17)

(

seqn
seqm

)

=

(

n
m

)

+

(

n
seqm

)

.

Proof. A proof can be obtained from (104.11), (104.15), and (104.9). We prefer to
give a proof that illuminates the meaning of (104.17) directly in terms of the cardinal
numbers that define the binomial coefficients. (104.16) is an immediate consequence
of (104.1) and (104.2), since 0 < seqm for all m ∈ N.

Let m,n ∈ N be given. Define the collection H := {A ∈ Fseqm((seqn)⊏) | n ∈ A}.
Then each of the mappings (A 7→ A\{n}) : H → Fm(n⊏) and (B 7→ B ∪ {n}) :
Fm(n⊏) → H is the inverse of the other (here we have used Proposition 101M). Hence
#H = Fm(n⊏). On the other hand,

Fseqm((seqn)⊏)\H = {A ∈ Fseqm((seqn)⊏) | n /∈ A} =

= Fseqm((seqn)⊏\{n}) = Fseqm(n⊏).

By Theorem 103A, we have
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(

seqn
seqm

)

= #Fseqm((seqn)⊏) = #H + #(Fseqm((seqn)⊏)\H) =

= #Fm(n⊏) + #Fseqm(n⊏) =

(

n
m

)

+

(

n
seqm

)

.

As an application of the results of this section, we determine, for given finiteH

sets S and T , the cardinal of the finite set Inj(S, T ) := {f ∈ Map(S, T ) | f is
injective} ⊂ Map(S, T ).

104G. PROPOSITION. Let the finite sets S and T be given. If #S > #T , then
Inj(S, T ) = Ø. If #S ≤ #T , then #Inj(S, T ) = (#T )!/(#T − #S)!.

Proof. The first part of the conclusion follows from Proposition 101E. Assume that
#S ≤ #T . For each B ∈ F#S(T ) we define the set QB := {f ∈ Inj(S, T ) | Rngf =
B}. Obviously, the family (QB | B ∈ F#S(T )) is disjoint. For every f ∈ Inj(S, T ), the
mapping f |Rng is bijective, and therefore #Rngf = #S and f ∈ QRngf . Therefore

⋃

B∈F#S(T )

QB = Inj(S, T ). By Corollary 103E, we have

(104.18) #Inj(S, T ) =
∑

B∈F#S(T )

#QB .

For each B ∈ F#S(T ), the mapping (f 7→ f |B) : QB → Inv(S,B) is bijective, so
that, by Proposition 104A,(a),

#QB = #Inv(S,B) = #Perm(S).

Substituting this into (104.18) and using Lemma 103C, (104.7), (104,8), and (104.15),
we find

Inj(S, T ) = (#F#S(T ))(#Perm(S)) =

(

#T
#S

)

(#S)! = (#T )!/(#T − #S)!.N
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105. Orders in finite sets

105A. PROPOSITION. Every finite ordered set is well-founded.

Proof. By Proposition 62E, every finite ordered set is order-isomorphic to a (finite)
collection of finite sets ordered by inclusion. By Theorem 102A, the latter is well-
founded; hence so is the former.

105B. COROLLARY. In every finite totally ordered set, every non-empty subset
has both a maximum and a minimum.

Proof. By Proposition 105A, every finite totally ordered set is well-ordered (Propo-
sition 64A); since the reverse order is also total, the set is also well-ordered by it. The
assertion follows at once.

105C. COROLLARY. Let the non-empty finite nest N be given. Then
⋃

N ∈ N
and

⋂

N ∈ N .

105D. COROLLARY. Let the subset S of N be given. The following statements are
equivalent:

(i): S has an upper bound.

(ii): S is finite.

(iii): S is empty or S has a maximum.

105E. THEOREM. Let the finite totally ordered set S be given. Then there is
exactly one order-isomorphism from S to (#S)⊏.

Proof. We prove by general induction that

P (S) :⇔ (For every total order ≺ in S there is exactly one order-isomorphism
from S ordered by ≺ to (#S)⊏ ordered by ≤)

holds for all finite sets S.

Let the finite set S be given, and assume that P (T ) holds for all proper subsets
T of S. Let S be totally ordered by ≺. If S = Ø, we have (#S)⊏ = Ø, and there is
exactly one mapping from S to (#S)⊏, namely 1Ø; and this mapping is trivially an
order-isomorphism.

Assume, then, that S 6= Ø. By Corollary 105B, we may set s := maxS. By the
induction hypothesis applied to the proper subset S\{s} of S, there is exactly one
order-isomorphism ψ from S\{s} ordered by ≺ to (#(S\{s}))⊏ ordered by ≤. We
recall that, by Proposition 101M, #S = seq#(S\{s}).

Suppose that φ : S → (#S)⊏ is an order-isomorphism. Then φ(s) = φ(maxS) =
maxφ>(S) = max(#S)⊏ = max(seq#(S\{s}))⊏ = #(S\{s}); therefore φ>(S\{s}) =

(seq#(S\{s}))⊏\{#(S\{s})} = (#(S\{s}))⊏. We conclude that φ|(#(S\{s}))⊏

S\{s} is an
order-isomorphism, and must therefore be ψ. Hence φ must satisfy

(105.1) φ(x) =







ψ(x) if x ∈ S\{s}

#(S\{s}) if x = s.

Conversely, if φ : S → (#S)⊏ is defined by (105.1), it follows easily from the
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definitions of ψ and s that φ is an order-isomorphism. We have shown that P (S)
holds, both when S is empty and when S is not empty. This completes the induction
step.

105F. COROLLARY. Let the finite set S totally ordered by ≺ be given. A relation
ρ in S is a total order if and only if there is a permutation π of S such that

(105.2) ∀x, y ∈ S, x ≺ y ⇔ π(x) ρ π(y).

Proof. The proof of the “if” part is a straightforward verification, and would
remain valid even if the assumption that S is finite were removed. To prove the
“only if” part, assume that ρ is a total order. By Theorem 105E we may choose
order-isomorphisms φ from S ordered by ≺ to (#S)⊏ ordered by ≤, and ψ from S
ordered by ρ to (#S)⊏ ordered by ≤. Then π := ψ← ◦ φ is an order-isomorphism
from S ordered by ≺ to S ordered by ρ, so that π is a permutation of S and satisfies
(105.2).

105G. THEOREM. A set S is finite if and only if it can be totally ordered so that
every non-empty subset of S has both a maximum and a minimum.

Proof. Proof of the “only if” part. Let the finite set S be given. By Theorem
101B we may choose a bijection φ : S → (#S)⊏. We then define the relation ρ in S
by the rule

∀x, y ∈ S, x ρ y :⇔ φ(x) ≤ φ(y).

It is clear that ρ is a total order in S. The “only if” part of the assertion then follows
from Corollary 105B.

Proof of the “if” part. Assume that the set S is totally ordered by ≺ and that
every non-empty subset of S has both a maximum and a minimum. Consider the
subset U := {x ∈ S | Ub({x}) is infinite} of S. Let x ∈ U be given. Now Ub({x})
is infinite, hence Ub({x})\{x} is also infinite (Proposition 101M), and therefore not
empty. This set then has a minimum, say y, and Ub({x})\{x} = Ub({y}). Thus
x � y and Ub({y}) is infinite. Therefore y ∈ U and x is not the maximum of U .
Since x ∈ U was arbitrary, we conclude that U has no maximum and is therefore
empty. This means that Ub({x}) is finite for all x ∈ S.

If S = Ø, then S is finite. If S 6= Ø, then S = Ub({minS}) is finite.

105H. REMARK. Theorem 105G provides another characterization of finite sets
that does not involve the natural numbers. It also has been used to define the concept
of finite set.

We end this section by examining the notion of a family chosen recursivelyH

(•Theorem 82H) when the well-founded index set is finite. It is found, unsurpris-
ingly, that in this case no appeal to the •Axiom of Choice is needed, but since some
of the sets involved may be infinite the proof is not an immediate consequence of the
Principle of Finite Choice (Theorem 103L).

105I. THEOREM. Let the finite ordered set (I;≺) and the family of sets (Ai | i ∈
I) be given. Let a family of set-valued mappings (Φi | i ∈ I) also be given, with

Φi ∈ Map( ×
j∈Spr(i)

Aj ,P(Ai)) for all i ∈ I. Assume that
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(105.3)

∀j ∈ Spr(i), uj ∈ Φj(u|Spr(j))) ⇒ Φi(u) 6= Ø

for all i ∈ I and all u ∈ ×
j∈Spr(i)

Aj .

Then there exists a ∈ ×
i∈I

Ai such that

(105.4) ai ∈ Φi(a|Spr(i)) for all i ∈ I.

Proof. We shall prove by general induction (Inductive Proof Schemes 102E) that
P (I) holds for every finite set I, where

P (I) :⇔ For every ≺ ∈ Ord(I), the assertion of the present theorem
is valid for the ordered set (I;≺ ).

Let the finite set I be given. Let ≺ ∈ Ord(I) and the families (Ai | i ∈ I) and
(Φi | i ∈ I) be given as in the statement, and assume that (105.3) holds.

If I = Ø, there trivially exists a family a ∈ ×
i∈I

Ai = {Ø} (self-indexed), and

(105.4) holds vacuously.

Assume then that I 6= Ø. By Proposition 105A applied to (I;≻) we may choose
a maximal member m of (I;≺). We set I ′ := I\{m} and ≺′ :=≺ |I′. For every i ∈ I ′

the set of strict lower bounds of {i} in (I ′;≺′) is obviously the same as in (I;≺),
namely Spr(i). The families (Ai | i ∈ I ′) and (Φi | i ∈ I ′) therefore satisfy (105.3)
with (I;≺) replaced by (I ′;≺′).

By the induction hypothesis, P (I ′) holds, and we may therefore choose b ∈×
i∈I′

Ai

such that

(105.5) bi ∈ Φi(b|Spr(i)) for all i ∈ I ′.

Since Spr(m) ⊂ I ′, this implies

bi ∈ Φi(b|Spr(i)) for all i ∈ Spr(m);

together with (105.3) this yields Φm(b|Spr(m)) 6= Ø. We may therefore choose

(105.6) z ∈ Φm(b|Spr(m)).

We now define a ∈×
i∈I

Ai by

ai :=







bi if i ∈ I ′ = I\{m}

z if i = m.

By (105.5) and (105.6) it follows that a satisfies (105.4). This completes the induction
step.

105J. REMARK. Theorem 103L describes the special case of Theorem 105I in
which for every i ∈ I the mapping Φi is the constant mapping whose single value is
the non-empty set Ai itself.N
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106. Finiteness without countingH

In Theorem 102B it was shown that a set S is finite if and only if P(S), ordered by
inclusion, is well-founded; and in Remark 102C it was noted that this characterization,
which contains no reference to natural numbers or to any counting system, could be
used — and had indeed be used — to define the concept of a finite set. Inasmuch as
the existence of a counting system (and hence of the Natural-Number System) rests
on foundational agreements such as an Axiom of Infinity (see Section 95), such an
alternative definition of finiteness would seem to have merit. It is contended that
every result about finite sets that does not explicitly involve a counting system (such
as one involving the cardinals of finite sets) can be derived from this alternative
definition.

In this section we intend to illustrate this contention by deriving a result describing
the “size-comparability” of finite sets, as well as the Pigeonhole Principle (Corollary
101H).

A second purpose of this section is to show that the existence of a counting system
— which would then lead to identifying the alternative definition, via Theorem 102B,
with that given in Section 101 — is actually required if the following very modest
version of the Axiom of Infinity is accepted: There exists a set that is not finite
according to the alternative definition.

In this section alone, therefore, a set S is said to be finite if P(S), ordered by
inclusion, is well-founded. A set that is not finite is said to be infinite. For every set
S we define F(S) := {A ∈ P(S) | A is finite}.

106A. PROPOSITION (cf. Theorem 102A). Every collection of finite sets, ordered
by inclusion, is well-founded.

Proof. Let F be a collection of finite sets, and let the non-empty subcollection A
of F be given. Choose S ∈ A. Since S is finite, we may choose a minimal member
A of the non-empty subcollection A ∩P(S) of P(S), ordered by inclusion. Then A
is a minimal member of A.

106B. REMARK. It follows from Proposition 106A that inductive-proof schemes
and recursive definitions (Chapter 8) are available for collections of finite sets. In
particular, the Inductive-Proof Schemes 102D for collections of the form F(S) may
and shall be appropriated for the context of this section.

106C. PROPOSITION (cf. Proposition 101E). Let the sets A and B be given. If
B is finite and there exists an injection from A to B, then A is finite. In particular,
every subset of a finite set is finite.

Proof. Choose an injection f : A → B. Then f> : P(A) → P(B) is injective
and isotone with respect to inclusion (Propositions 34A.L and 23A). The conclusion
follows from the definition of finite in this section.

106D. THEOREM. Let the finite set S and the set T be given. Then either there
exists an injection from S to T , or T is finite and there exists an injection from T to
S.

Proof. Set C := {A ∈ P(S) | there exists an injection from S\A to T}. Now S ∈ C,
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since 1Ø⊂T : S\S → T is injective; hence C 6= Ø. Since S is finite, we may choose a
minimal member M of C, and we may further choose an injective f: S\M → T . We
distinguish two cases.

Case 1. M = Ø. Then f is an injection from S to T .

Case 2. M 6= Ø. We claim that Rngf = T . Suppose not; we may then choose
u ∈M and v ∈ T\Rngf , and define g : (S\M) ∪ {u} → T by

g(x) :=







f(x) if x ∈ S\M

v if x = u.

Then g is obviously an injection from S\(M\{u}) to T ; hence M\{u} ∈ C, contra-
dicting the minimality of M . This establishes our claim; it follows that f is bijective.
By Proposition 106C applied to the injection (f←)|S : T → S it follows that T is
finite in this case.

106E. COROLLARY. Let the finite sets S and T be given. Then exactly one of the
following statements is valid:

(a): There exists an injection from S to T , but none from T to S.

(b): There exists an injection from T to S, but none from S to T .

(c): S and T are equinumerous.

Proof. This is an immediate consequence of Theorem 106D and the Schröder-
Bernstein Theorem (Theorem 75C).

Remark. For an analogous assertion for infinite sets see Section 175.

106F. THEOREM. Let the mapping f be given, and assume that Domf is finite
and that Domf ⊂ Rngf . Then f is injective and Domf = Rngf .

Proof. We shall prove by special induction that P (A) holds for all A ∈ F(Domf),
where

P (A) :⇔ Every g ∈ Map(A,Codf) such that A ⊂ Rngg is injective and satisfies
Rngg = A.

Once this is proved, P (Domf) applied to f will yield the conclusion. P (Ø) is valid,
since 1Ø⊂Codf is the only member of Map(Ø,Codf), and this mapping is injective and
its range is Ø.

Let A ∈ F×(Domf) and a ∈ A be given, and assume that P (A\{a}) holds.

Let g ∈ Map(A,Codf) be given, and assume that A ⊂ Rngg. Define σ ∈
Perm(Codf) by the rule

σ(x) :=























g(a) if x = a

a if x = g(a)

x if x ∈ Codf\{a, g(a)},
and set h := σ ◦ g ∈ Map(A,Codf). Then Rngh = Rngg and h(a) = a. Therefore

Rng(h|A\{a}) = h>(A\{a}) ⊃ Rngh\{h(a)} = Rngg\{a} ⊃ A\{a} = Dom(h|A\{a}).
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By the induction hypothesis P (A\{a}) we conclude that h|A\{a} is injective and that
h>(A\{a}) = Rng(h|A\{a}) = A\{a}. Using the fact that h(a) = a, we conclude
that h is injective and that Rngh = A. Then g = σ ◦ h is also injective, and
Rngg = Rngh = A. This completes the induction step.

106G. COROLLARY. Let the finite set S and the mapping f: S → S be given. The
following statements are equivalent:

(i): f is injective.

(ii): f is surjective.

(iii): f is bijective.

Proof. Obviously, (iii) implies (ii). It is an immediate consequence of Theorem
106F that (ii) implies (i).

To prove that (i) implies (iii), assume that f is injective. By Proposition 33E.L,
we may choose a left-inverse g : S → S of f ; then g is surjective. By Theorem 106F,
g is also injective, hence invertible. But f is a right-inverse of g; by Proposition 33B
we have f = g←, and hence f is also invertible, and therefore bijective.

106H. COROLLARY. (PIGEONHOLE PRINCIPLE) (cf. Corollary 101H). Let the equinu-
merous finite sets S and T and the mapping f : S → T be given. The following
statements are equivalent:

(i): f is injective.

(ii): f is surjective.

(iii): f is invertible.

Proof. Choose a bijection h : T → S and apply Corollary 106G to h ◦ f : S → S
instead of f .

The remainder of this section is devoted to the second purpose mentioned before,
viz., to show how to construct a counting system from a given infinite set S. To
help the reader understand the idea behind this construction — at the cost of some
bending of the logic — we suggest that, if the Natural-Number System were available,
we would identify each n ∈ N with the subcollection Fn(S) (as defined in Section 101)
of P(S).

We begin with a simple observation about sets that are not necessarily finite.

106I. LEMMA. Let the non-empty sets A and B, and a ∈ A and b ∈ B, be given.
Then A and B are equinumerous if and only if A\{a} and B\{b} are equinumerous.

106J. PROPOSITION (cf. Proposition 101M). Let the non-empty set A and a ∈ A
be given. If A\{a} is finite, then A is finite.

Proof. Assume that A\{a} is finite. Let the non-empty collection C of subsets of
A be given. We must show that C has a minimal member with respect to inclusion.

Now C′ := {B\{a} | B ∈ C} is a non-empty collection of subsets of the finite set
A\{a}. We may therefore choose K ∈ C such that K\{a} is a minimal member of C′.

Let B ∈ C be given, and assume that B ⊂ K. Then B\{a} ∈ C′ and B\{a} ⊂
K\{a}. Therefore B\{a} = K\{a}, and consequently K\{a} ⊂ B ⊂ K, so that
B = K\{a} or B = K. We conclude that either K\{a} or K is a minimal member
of C, according as K\{a} is a member of C or not.
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From now on, we shall assume that an infinite set S has been given.

In F(S) the relation

∀A,B ∈ F(S), A ∼ B :⇔ A and B are equinumerous

is an equivalence relation. We denote the corresponding partition of F(S) by N.

We next define the mapping σ : P(P(S)) → P(P(S)) by

σ(C) := {A ∈ P(S) | ∃a ∈ A,A\{a} ∈ C} for all C ∈ P(P(S)).

106K. LEMMA. (a): σ is isotone with respect to inclusion in P(P(S)).

(b): σ>(P(F(S))) ⊂ P(F(S)).

(c): For all C ∈ P(F(S)), σ(C) 6= Ø if (and only if) C 6= Ø.

(d): σ>(N) ⊂ N.

Proof of (a). This is trivial.

Proof of (b). Let C ∈ P(F(S)) be given. Let A ∈ σ(C) be given. We may choose
a ∈ A such that A\{a} ∈ C. Then A\{a} is finite. By Lemma 106J, A is also finite.
Since A ∈ σ(C) was arbitrary, we have σ(C) ∈ P(F(S)).

Proof of (c). Let C ∈ P(F(S)) be given, and assume that C 6= Ø. Choose F ∈ C.
Since F is finite and S is infinite, we may choose a ∈ S\F . Then A := F ∪ {a}
satisfies A\{a} = F ∈ C, and thus A ∈ σ(C). We conclude that σ(C) 6= Ø.

Proof of (d). Let N ∈ N be given. We must show that σ(N ) ∈ N. By Parts (a),
(b), (c) we have σ(N ) ∈ P(F(S)) and σ(N ) 6= Ø. We may choose A ∈ σ(N ) and
a ∈ A such that A\{a} ∈ N . It remains to show that

∀B ∈ F(S), B ∼ A ⇔ B ∈ σ(N ).

Let B ∈ F(S) be given. Assume first that B ∼ A; then B 6= Ø, and we may choose
b ∈ B. By Lemma 106I we have B\{b} ∼ A\{a}, and therefore B\{b} ∈ N . It
follows that B ∈ σ(N ).

Assume conversely, that B ∈ σ(N ). We may choose b ∈ B such that B\{b} ∈ N .
Then B\{b} ∼ A\{a}, and by Lemma 106I we conclude that B ∼ A.

By virtue of Lemma 106K,(d), we may define the mapping

Seq := σ|NN : N → N.

We also note that Ø is finite and that {Ø} ∈ N.

106L. THEOREM. The set N, endowed with structure by the prescription of {Ø}
as zero and Seq as successor-mapping, is a counting system.

Proof. 1. Let N ∈ N be given. By the definitions of σ and Seq, we have
Ø /∈ σ(N ) = SeqN . Therefore {Ø} /∈ Rng Seq. Thus (Count I) is satisfied.

2. Let N ,N ′ ∈ N be given and assume that SeqN = SeqN ′. By Lemma 106K,(c)
and the definition of Seq, we may choose A ∈ SeqN = SeqN ′ and a, a′ ∈ A such
that A\{a} ∈ N and A\{a′} ∈ N ′. By Lemma 106I, we have A\{a} ∼ A\{a′}, and
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consequently N ∩ N ′ 6= Ø, whence N = N ′. We have proved that Seq is injective;
thus (Count II) is satisfied.

3. Let the subset Σ of N be given, and assume that {Ø} ∈ Σ and Seq
>
(Σ) ⊂ Σ.

We claim that Σ = N, thus establishing (Count III), and completing the proof.

We shall prove by special induction that P (A) holds for all A ∈ F(S), where

P (A) :⇔ ∃C ∈ Σ, A ∈ C.

Now P (Ø) holds, since {Ø} ∈ Σ and Ø ∈ {Ø}. Let A ∈ F×(S) and a ∈ A be given,
and assume that P (A\{a}) holds. We may therefore determine C ∈ Σ such that
A\{a} ∈ C. By the definitions of σ and Seq, we have A ∈ σ(C) = SeqC. By the
assumption on Σ we have SeqC ∈ Σ. Thus P (A) holds, and the induction step is
complete.

Now let N ∈ N be given, and choose A ∈ N . By P (A) we may determine C ∈ Σ
such that A ∈ C. But C ∈ N and A ∈ C ∩ N . Therefore N = C ∈ Σ. Since N ∈ N
was arbitrary and Σ ⊂ N, we conclude that Σ = N.N
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Chapter 11

FINITE SUMS

111. Commutative monoids

In much of mathematics one encounters structures that involve a binary opera-
tion that is associative and commutative, and an element that acts “neutrally” in this
operation; for instance, addition and 0 in N, or multiplication and 1 in N. Such struc-
tures are a special case of so-called algebraic structures, but here we shall consider
them by themselves and only to the extent that is practical for our immediate appli-
cations. Some more complicated algebraic structures will be introduced in Chapter
13.

We define a commutative monoid (written additively) to be a set M endowed
with structure by the prescription of a member 0 ofM and a mapping ((x, y) 7→ x+y) :
M ×M →M , subject to the following conditions:

(CM1): ∀x, y, z ∈M, (x+ y) + z = x+ (y + z) (associative law)

(CM2): ∀x, y ∈M, x+ y = y + x (commutative law)

(CM3): ∀x ∈M, x+ 0 = x (neutrality law).

Of course (CM2) and (CM3) imply that 0 + x = x for all x ∈ M . The commutative
monoid M is said to have its zero isolated if

∀x, y ∈ M, x+ y = 0 ⇒ x = y = 0.

We adopt the “additive” notation in the definition, because it is the one most
frequently occurring in practice. In this notation, 0 is called zero, the mapping
(x, y) 7→ x+y is called addition, and x+y is called the sum of x and y (and is read
“x plus y”). Other notations are used when convenient: when + is replaced by · or
mere juxtaposition, and 0 by some other symbol (sometimes by 1), one often speaks of
a commutative monoid written multiplicatively; in this case, the mapping (x, y) 7→
x · y is called multiplication, and x · y, usually denoted xy, is called the product
of x and y, and the member of M that plays the part of 0 is called the unity.

111A. EXAMPLES. (a): Let the set S be given. Then P(S) becomes a commuta-
tive monoid with each of the following choices for “zero” and “plus”: Ø and ∪; S and
∩; Ø and △ (symmetric difference). The first and second of these have their “zeros”
isolated, but not the third (unless S = Ø).

183
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(b)∗: Let G be a commutative group, written additively. Then G is a commutative
monoid with the group zero and the group addition.

(c): Let D be an ordered set that has a minimum and is such that every doubleton
has a supremum. Then D is a commutative monoid with minD as “zero” and (x, y) 7→
sup{x, y} as “addition”. This monoid always has its “zero” isolated.

(d): The set N with the number 0 and the addition of natural numbers is a
commutative monoid and has its zero isolated.

(e): The set N and the set N×, each with the number 1 and the multiplication of
natural numbers (adjusted to domain N× × N× and codomain N× in the latter case)
are commutative monoids, written multiplicatively, and either has its unity isolated.

(f)∗: The set R×, the set P×, and the set 1 + P, each with the number 1 and the
multiplication of real numbers, suitably adjusted, are commutative monoids written
multiplicatively; only the third has its unity isolated.
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112. Finite sums

Let M be a commutative monoid, written additively. On account of the associa-
tivity and the commutativity of addition we have

(x+ y) + z = (y + x) + z = (z + x) + y = (x+ z) + y = (y + z) + x = (z + y) + x =
= x+ (y + z) = x+ (z + y) = y + (z + x) = y + (x+ z) = z + (x+ y) =
= z + (y + x);

informally, we may say “the sum of x and y and z does not depend on the listing of
the summands or on the priority in performing the operations”. It is to be expected
that a similar comment is meaningful and valid for “more than three terms”; that is,
for arbitrary finite families.

A precise formulation calls for a definition of the sum of a finite family in a
commutative monoid or, in a slightly more general and more useful manner, the sum
of an arbitrary family over a finite subset of its index set. The main purpose of this
section and the following ones is to develop this definition and to establish useful
properties of this concept.

The strategy for the definition is outlined as follows: we first define sets such as
{(x+y)+z, . . . , z+(y+x)} of “all possible sums of the family” and then show, using
the associative and commutative laws for addition, that each one of these sets is in
fact a singleton.

112A. THEOREM. Let M be a commutative monoid, written additively, and let
the family a ∈M I be given. Then there is exactly one family σ ∈MF(I) such that

(112.1) σØ = 0

(112.2) σJ = σJ\{j} + aj for all J ∈ F×(I) and all j ∈ J.

Proof. 1. The collection F(I), ordered by inclusion, is well-founded (Theorem
102A). We may therefore, by Theorem 82B, define the family S ∈ P(M)F(I) recur-
sively by the rules

(112.3) SØ := {0}

(112.4) SJ :=
⋃

j∈J

{z + aj | z ∈ SJ\{j}} for all J ∈ F×(I).

We prove by general induction (i.e., using the induction step (102.1)) that SJ is
a singleton for every J ∈ F(I). Let J ∈ F(I) be given and assume that SK is a
singleton for all proper subsets K of J . If J = Ø, then (112.3) asserts that SJ is
a singleton. Assume, therefore, that J 6= Ø. By the induction hypothesis, SJ\{j} is
a singleton, say {vj}, for each j ∈ J . Since J 6= Ø, we may choose j′ ∈ J ; then
u′ := vj′ + aj′ ∈ SJ . Let u ∈ SJ be given; by (112.4), u = vj + aj for a suitable j ∈ J .



186 CHAPTER 11. FINITE SUMS

If j = j′, then vj = vj′ and u = u′. If j 6= j′ we have j ∈ J\{j′}, j′ ∈ J\{j}, and
(J\{j′})\{j} = J\{j, j′} = (J\{j})\{j′}. By the induction hypothesis, SJ\{j,j′} is
a singleton, say {w}. By (112.4) applied to J\{j} and J\{j′} instead of J , we find
vj = w + aj′, vj′ = w + aj. Since addition is associative and commutative, we have in
this case

u = vj+aj = (w+aj′)+aj = w+(aj′+aj) = w+(aj+aj′) = (w+aj)+aj′ = vj′+aj′ = u′.

In either case, therefore, we find u = u′. Since u ∈ SJ was arbitrary, we conclude that
SJ = {u′} is a singleton. This completes the induction step. Hence SJ is a singleton
for every J ∈ F(I).

2. On account of what we have just proved, we may define the family s ∈ MF(I)

by sJ :∈ SJ for all J ∈ F(I). From (112.3) and (112.4) we then obtain

(112.5) sØ ∈ SØ = {0}

(112.6) sJ\{j} + aj ∈ SJ = {sJ} for all J ∈ F×(I) and all j ∈ J.

Therefore σ := s satisfies (112.1) and (112.2).

On the other hand, suppose that σ ∈MF(I) satisfies (112.1) and (112.2). We then
prove by special induction that σJ = sJ for all J ∈ F(I); this will end the proof. By
(112.1) and (112.5) we have σØ = 0 = sØ. Let J ∈ F×(I) be given and let j ∈ J be
such that σJ\{j} = sJ\{j}. By (112.2) and (112.6), σJ = σJ\{j}+ aj = sJ\{j}+ aj = sj .
This completes the induction step.

For every family a ∈ M I we now define

∑

J

a := σJ for all J ∈ F(I),

where σ ∈ MF(I) is the unique family satisfying (112.1) and (112.2). We call
∑

J

a the

sum of the family a over J .

If additive notation is not used, a symbol other than
∑

is customary. In partic-

ular, when the commutative monoid is written multiplicatively, the symbol
∏

and

the term product instead of sum are usual.

We now rewrite (112.1) and (112.2) in the newly introduced notation:

(112.7)
∑

Ø

a = 0

(112.8)
∑

J

a =
∑

J\{j}

a + aj for all J ∈ F×(I) and all j ∈ J.
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We also note the following consequences of (112.7) and (112.8):

(112.9)
∑

{i}

a =
∑

Ø

a+ ai = 0 + ai = ai for all i ∈ I.

(112.10)
∑

{i,i′}

a =
∑

{i}

a+ ai′ = ai + ai′ for all i, i′ ∈ I such that i 6= i′.

112B. PROPOSITION. Let M be a commutative monoid, written additively, and
let the family a ∈M I be given. Then

∑

J

a =
∑

J

(a|K) for all K ∈ P(I) and all J ∈ F(K).

Proof. Let K ∈ P(I) be given and define σK ∈ MF(K) by σK
J :=

∑

J

a for all

J ∈ F(K). We have σK
Ø = 0. For every J ∈ F×(K) and every j ∈ J we have, by

(112.8),

σK
J\{j} + (a|K)j =

∑

J\{j}

a + aj =
∑

J

a = σK
J .

By Theorem 112A and the definition of sum applied to a|K instead of a, we find

σK
J =

∑

J

(a|K) for all J ∈ F(K).

112C. REMARKS. (a): Proposition 112B allows us to use without ambiguity the
notation

∑

j∈J

aj =
∑

J

a

for each family a ∈M I and every J ∈ F(I). This notation is convenient if no explicit
name for the family a is available.

(b): If we apply this notation and formulas (112.7) and (112.8) to the commutative
monoid N with the number 0 and addition of natural numbers on the one hand,
and to the commutative monoid N, written multiplicatively, with the number 1 and
multiplication of natural numbers on the other, we obtain (103.2) and (103.3).

112D. PROPOSITION. Let M be a commutative monoid, written additively, that
has its zero isolated. Let the family a ∈ M I and the finite subset J of I be given. If
∑

J

a = 0, then aj = 0 for all j ∈ J .

Proof. The assertion certainly holds if J = Ø. Assume that J 6= Ø, and let j ∈ J

be given. Then (112.8) shows that
∑

J\{j}

a+ aj = 0. Since M has its zero isolated, we

conclude that aj = 0.
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113. Sums of families with finite support

Let M be a commutative monoid, written additively. Let the family a ∈ M I be
given. The set Suppa := a<(M\{0}) = I\a<({0}) is called the support of a.

113A. PROPOSITION. Let M be a commutative monoid, written additively. Let
the family a ∈M I be given. Then

∑

J

a =
∑

J∩Suppa

a for all J ∈ F(I).

Proof. Define the family σ ∈ MF(I) by the rule σJ :=
∑

J∩Suppa

a for all J ∈ F(I).

Then σØ =
∑

Ø

a = 0. Let J ∈ F×(I) and j ∈ J be given. If j /∈ Suppa, then aj = 0

and
σj =

∑

J∩Suppa

a =
∑

(J\{j})∩Suppa

a = σJ\{j} = σJ\{j} + aj;

if, on the other hand, j ∈ Suppa, then (J ∩Suppa)\{j} = (J\{j})∩Suppa and, using
(112.8), we obtain

σJ =
∑

J∩Suppa

a =
∑

(J\{j})∩Suppa

a + aj = σJ\{j} + aj .

Thus σ satisfies (112.1) and (112.2). By Theorem 112A and the definition of sum, we

have σJ =
∑

J

a for all J ∈ F(I), as asserted.

It is desirable to extend the definition of
∑

J

a to infinite sets J in certain cases,

namely when Suppa is finite. Proposition 113A suggests the form this definition
should take. First, however, we shall show that what we are defining is a natural
concept.

113B. THEOREM. Let M be a commutative monoid, written additively. Let the
family a ∈M I be given and assume that Suppa is finite. Let the family τ ∈MP(I) be
given. The following statements are equivalent:

(i): τJ =
∑

J∩Suppa

a for all J ∈ P(I);

(ii): τ satisfies

(113.1) τJ = 0 for all J ∈ P(I\Suppa)

(113.2) τJ = τJ\{j} + aj for all J ∈ P×(I) and all j ∈ J ;

(iii): τ satisfies (113.2) and there exists a set K ∈ F(I) such that

(113.3) τJ = 0 for all J ∈ P(I\K).
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Proof. (i) ⇒ (ii). The proof that τ , as defined by (i), satisfies (113.2) is the same,
with minor adjustments, as the proof of Proposition 113A. If J ∈ P(I\Suppa), we

have τJ =
∑

Ø

a = 0, so that τ also satisfies (113.1).

(ii) ⇒ (iii). This follows trivially by setting K := Suppa.

(iii) ⇒ (i). Let the finite subset K of I be chosen so that τ satisfies (113.3). If
j ∈ Suppa, we have τØ = 0, by (113.3) and therefore, by (113.2), τ{j}=τØ+aj = aj 6=0.
Therefore (113.3) implies that {j} /∈ P(I\K), i.e., that j ∈ K. Since j ∈ Suppa was
arbitrary, we have proved that Suppa ⊂ K. Therefore Proposition 113A, applied to
J ∩K instead of J , shows that

∑

J∩Suppa

a =
∑

J∩K

a for all J ∈ P(I).

To prove that (i) holds it will therefore be enough to prove that τJ =
∑

J∩K

a for all

J ∈ P(I). We prove this by proving by special induction that

P (A) :⇔ (∀J ∈ P(I), J ∩K = A ⇒ τJ =
∑

A

a)

holds for all A ∈ P(K) = F(K).

If J ∈ P(I) and J∩K = Ø, then J ∈ P(I\K), and (113.3) implies τJ = 0 =
∑

Ø

a,

so that P (Ø) holds. Let A ∈ F×(K) be given and let i ∈ A be such that P (A\{i})
holds. Let J ∈ P(I) be given. If J∩K = A, then (J\{i})∩K = (J∩K)\{i} = A\{i};
by (113.2) and the induction hypothesis,

τJ = τJ\{i} + ai =
∑

A\{i}

a+ ai =
∑

A

a;

we have shown that P (A) holds. This completes the induction step. We have proved

that P (A) holds for all A ∈ F(K) = P(K), so that τJ =
∑

J∩K

a for all J ∈ P(I), as we

wished to show.

For every family a ∈M I such that Suppa is finite, we set
∑

J

′
a :=

∑

J∩Suppa

a for all

J ∈ P(I). Proposition 113A shows that
∑

J

′
a =

∑

J

a for all families a ∈ M Iand all

J ∈ P(I) for which both sides are defined (i.e., J and Suppa both finite); we may and
shall therefore drop the “prime” in this definition, without risk of confusion. Thus
∑

J

a is defined for all a ∈ M I and J ∈ P(I) such that either J or Suppa is finite,

and always satisfies

(113.4)
∑

J

a =
∑

J∩Suppa

a.
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113C. PROPOSITION. Let M be a commutative monoid, written additively. Let
the family a ∈M I be given and assume that Suppa is finite. Then

∑

J

a =
∑

J

(a|K) for all K ∈ P(I) and J ∈ F(K).

Proof. Obviously, Supp(a|K) = K∩Suppa is finite, so the statement is meaningful.
Moreover, J ∩ Suppa = J ∩K ∩ Suppa = J ∩ Supp(a|K). By Proposition 112B and
(113.4) we have

∑

J

a =
∑

J∩Suppa

a =
∑

J∩Supp(a|K )

a =
∑

J∩Supp(a|K)

(a|K) =
∑

J

(a|K).

113D. REMARK. Proposition 113C allows us to use without ambiguity the nota-
tion

∑

j∈J

aj :=
∑

J

a

for each family a ∈ M I with Suppa finite and for all J ∈ P(I). (Cf. Remark
112C,(a).)

113E. PROPOSITION. Let M be a commutative monoid, written additively, that
has its zero isolated. Let the family a ∈M I and the subset J of I be given. If Suppa

is finite and
∑

J

a = 0, then aj = 0 for all j ∈ J .

Proof. This follows immediately from (113.4) and Proposition 112D.
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114. Repeated and double sums

This section is devoted to some tedious but necessary “bookkeeping” aspects of
dealing with sums. They are all versions of the following general associative law.

114A. THEOREM. Let M be a commutative monoid, written additively, and let
the family a ∈ M I and the mapping ω : I → K be given. For every finite subset
J of I, and for every subset J of I if Suppa is finite, the support of the family

(
∑

J∩ω<({k})

a | k ∈ K) ∈MK is finite, and

∑

J

a =
∑

k∈K

∑

J∩ω<({k})

a =
∑

k∈ω>(J)

∑

J∩ω<({k})

a.

Proof. 1. We assume for the time being that Suppa is finite. For each subset J of

I we set bJ := (
∑

J∩ω<({k})

a | k ∈ K) ∈ MK . If k ∈ SuppbJ we have
∑

J∩ω<({k})

a 6= 0. By

Theorem 113B this implies J ∩ ω<({k}) ∩ Suppa 6= Ø, i.e., k ∈ ω>(J ∩ Suppa). We
conclude that

(114.1) SuppbJ ⊂ ω>(J ∩ Suppa) for all J ∈ (I).

Since Suppa is finite, so is SuppbJ , as asserted (Corollary 101F and Proposition 101G).
We are to prove that

(114.2)
∑

J

a =
∑

K

bJ =
∑

ω>(J)

bJ for all J ∈ P(I).

By (114.1) we have SuppbJ ⊂ ω>(J), so that the second equality in (114.2) follows
from (113.4).

2. We define the family τ := (
∑

K

bJ | J ∈ P(I)) ∈ MP(I). If J ∩ Suppa = Ø,

then SuppbJ = Ø, by (114.1), whence τJ =
∑

K

bJ =
∑

K∩SuppbJ

bJ =
∑

Ø

bJ = 0, so that

τ satisfies (113.1).

Let J ∈ P×(I) and j ∈ J be given, and set k := ω(j). We find (J\{j})∩ω<({k}) =
(J ∩ ω<({k}))\{j}, whence

bJk =
∑

J∩ω<({k})

a = (
∑

(J∩ω<({k}))\{j}

a) + aj = (
∑

(J\{j})∩ω<({k})

a) + aj =

= bJ\{j}k + aj .

On the other hand, for every k′ ∈ K\{k} we have (J\{j})∩ω<({k′}) = J ∩ω<({k′}),
since j /∈ ω<({k′}), and therefore

bJ |K\{k} = bJ\{j}|K\{k}.
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Combining these equalities and applying Proposition 113C we find

τJ =
∑

K

bJ =
∑

K\{k}

bJ + bJk =
∑

K\{k}

bJ\{j} + bJ\{j}k + aj =
∑

K

bJ\{j} + aj = τJ\{j} + aj .

Since J ∈ P×(I) and j ∈ J were arbitrary, τ also satisfies (113.2). By Theorem 113B

we have
∑

K

bJ = τJ =
∑

J

a for all J ∈ P(I), so that the first equality in (114.2) also

holds.

3. We now drop the assumption that Suppa is finite and assume that the finite
subset J of I is given. Then Supp(a|J) is finite, and we can apply the preceding
part of the proof to a|J instead of a. Combining the results of this application with
Proposition 113C, we find that the assertion holds for the given J .

114B. REMARK. The assertions of Propositions 112B and 113C are special cases
of the assertion of Theorem 114A, with I, K, a, ω replaced, respectively, byK, I, a|K ,
1K⊂I .

114C. COROLLARY. Let M be a commutative monoid, written additively, and let
the family a ∈M I and the subset J of I be given. Assume that either J or Suppa is
finite. For every partition P of J we have

∑

J

a =
∑

A∈P

∑

A

a.

In particular, for every subset K of J we have

∑

J

a =
∑

K

a+
∑

J\K

a.

Proof. By Propositions 112B and 113C we may, replacing a by a|J if necessary,
assume that J = I. We recall that ΩP

<({A}) = A for every A ∈ P, where ΩP : I → P
is the partition mapping. The assertion then follows from Theorem 114A with K := P
and ω := ΩP .

114D. COROLLARY. Let M be a commutative monoid, written additively. Let the

finite family of finite sets (Ji | i ∈ I) be given. Set U :=
˙⋃

i∈I

Ji. Let the family of

families a ∈×
i∈I

MJi be given. Then

∑

(i,j)∈U

(ai)j =
∑

i∈I

∑

j∈Ji

(ai)j .

114E. COROLLARY. Let M be a commutative monoid, written additively, and let
the family a ∈ M I and the invertible mapping ω : I → K be given. For every finite
subset J of I, and for every subset J of I if Suppa is finite, we have

∑

J

a =
∑

ω>(J)

a ◦ ω←.
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Proof. For each k ∈ ω>(J) we have J ∩ ω<({k}) = J ∩ {ω←(k)} = {ω←(k)}. By

(112.9) we have
∑

J∩ω<({k})

a =
∑

{ω←(k)}

a = aω←(k) = (a ◦ ω←)k. The assertion follows

from Theorem 114A.

114F. THEOREM. Let M be a commutative monoid, written additively. Let the
matrix a ∈ M I′×I′′ and the subsets J ′ of I ′ and J ′′ of I ′′ be given, and assume that
either J ′ and J ′′ are both finite or Suppa is finite. Then

∑

j′∈J ′

∑

j′′∈J ′′

aj′,j′′ =
∑

J ′×J ′′

a =
∑

j′′∈J ′′

∑

j′∈J ′

aj′,j′′.

Proof. Denote the mapping ((i′, i′′) 7→ i′) : I ′ × I ′′ → I ′ by π′. For each j′ ∈ J ′

we have π′<({j′}) = {j′} × I ′′, so that (J ′ × J ′′) ∩ π′<({j′}) = {j′} × J ′′. Applying
Theorem 114A (as we may, since J ′×J ′′ is finite if J ′, J ′′ are both finite, by Corollary
103G) we find

(114.3)
∑

J ′×J ′′

a =
∑

j′∈J ′

∑

{j′}×J ′′

a.

For each fixed j′ ∈ J ′, Supp(a|{j′}×J ′′) ⊂ (J ′ × J ′′) ∩ Suppa is finite, and each of the
mappings ((j′, j′′) → j′′) : {j′} × J ′′ → J ′′ and (j′′ 7→ (j′, j′′)) : J ′′ → {j′} × J ′′ is
the inverse of the other. By Proposition 112B or 113C, as the case may require, and
Corollary 114E, we find

(114.4)

∑

{j′}×J ′′

a =
∑

{j′}×J ′′

(a|{j′}×J ′′) =
∑

j′′∈J ′′

(a|{j′}×J ′′)j′,j′′ =
∑

j′′∈J ′′

aj′,j′′

for all j′ ∈ J ′.

Combining (114.3) and (114.4) we obtain the first equality in the assertion. The
second equality follows in the same way, with the roles of I ′ and I ′′, etc., interchanged.

114G. COROLLARY. Let M be a commutative monoid, written additively. Let the
sets I ′ and I ′′ and the subsets K and L of I ′ × I ′′ be given, and assume that K ⊂ L.
Let the family a ∈ML be given. Assume that either K or Suppa is finite. Then

∑

i′∈I′

∑

i′′∈Ki′

ai′,i′′ =
∑

K

a =
∑

i′′∈I′′

∑

i′∈Ki′′

ai′,i′′ ,

where Ki′ := {i′′ ∈ I ′′ | (i′, i′′) ∈ K} for all i′ ∈ I ′, and Ki′′ := {i′ ∈ I ′ | (i′, i′′) ∈
K} for all i′′ ∈ I ′′.

Proof. Define the matrix b ∈M I′×I′′ by

bi′,i′′ :=







ai′,i′′ if (i′, i′′) ∈ K

0 if (i′, i′′) ∈ (I ′ × I ′′)\K,
and apply Theorem 114F to J ′ := I ′, J ′′ := I ′′, and b instead of a.
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115. Natural multiples

If p, n ∈ N, Lemma 103C and Corollary 101K show that
∑

k∈n⊏

p = np and
∏

k∈n⊏

p =

pn. We introduce a generalization. Let M be a commutative monoid, written addi-
tively. For every x ∈M and n ∈ N we define the nth multiple of x to be

(115.1) nx :=
∑

k∈n⊏

x.

In particular, (115.1) and (112.7), (112.9), (113.4) yield

(115.2) 0x = 0 1x = x n0 = 0.

If M is written multiplicatively instead, we correspondingly define the nth power of

x to be xn :=
∏

k∈n⊏

x.

115A. LEMMA. Let M be a commutative monoid, written additively. For every

finite set I and every x ∈M we have
∑

i∈I

x = (#I)x.

Proof. By Theorem 101B, I and (#I)⊏ are equinumerous. By Corollary 114E and

(115.1) we have
∑

i∈I

x =
∑

k∈(#I)⊏

x = (#I)x.

115B. PROPOSITION. Let M be a commutative monoid, written additively.

(a): Let the finite family p ∈ NL and x ∈M be given. Then

(
∑

L

p)x =
∑

l∈L

plx.

(b): Let m,n ∈ N and x ∈M be given. Then (mn)x = m(nx).

(c): Let n ∈ N and the family b ∈ M I be given. For every finite subset J of I,
and for every subset J of I if Suppb is finite, we have

n
∑

J

b =
∑

j∈J

nbj .

(d): Let the finite family p ∈ NL and the family b ∈ M I be given. For every finite
subset J of I, and for every subset J of I if Suppb is finite, we have

(
∑

L

p)(
∑

J

b) =
∑

(l,j)∈L×J

plbj .

Proof. Proof of (a). Set U :=
˙⋃

l∈l

p ⊏
l . By Theorem 103D and Corollary 101K, U

is finite and

(115.3) #U =
∑

l∈L

#(pl
⊏) =

∑

l∈L

pl.
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We define the mapping ω : U → L by the rule

ω((l, k)) := l for all (l, k) ∈ U,

and find ω<({l}) = {l} × p ⊏
l for each l ∈ L, and therefore, by Corollaries 103G and

101K,

(115.4) #ω<({l}) = (#{l})(#(p ⊏
l )) = 1 · pl = pl for all l ∈ L.

We also define the family a ∈MU by the rule

(115.5) al,k := x for all (l, k) ∈ U.

We apply consecutively (115.3), Lemma 115A, (115.5), Theorem 114A, (115.5),
Lemma 115A, and (115.4) to find

(
∑

L

p)x = (#U)x =
∑

(l,k)∈U

x =
∑

U

a =
∑

l∈L

∑

ω<({l})

a =
∑

l∈L

∑

k∈ω<({l})

x =

=
∑

l∈L

(#ω<({l}))x =
∑

l∈L

plx.

Proof of (b). From (a) we have

(mn)x = (
∑

k∈m⊏

n)x =
∑

k∈m⊏

nx = m(nx).

Proof of (c). We define the matrix a ∈Mn⊏×I by the rule

ak,i := bi for all (k, i) ∈ n⊏ × I.

We then apply (115.1) and Theorem 114F,

n
∑

J

b =
∑

k∈n⊏

∑

j∈J

bj =
∑

k∈n⊏

∑

j∈J

ak,j =
∑

j∈J

∑

k∈n⊏

ak,j =
∑

j∈J

∑

k∈n⊏

bj =
∑

j∈J

nbj .

Proof of (d). We combine (a) and (c) with Theorem 114F to find

(
∑

L

p)(
∑

J

b) =
∑

l∈L

(pl
∑

J

b) =
∑

l∈L

∑

j∈J

plbj =
∑

(l,j)∈L×J

plbj .
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116. The Inclusion-Exclusion Principle

In Corollary 103E we proved that the union of a finite family of finite sets is finite.
In Sections 112 and 114 we have developed the machinery that allows us to provide a
precise determination of the cardinal of such a union, as a generalization of Corollary
103B. We therefore interrupt the general account of finite sums (the remainder of the
chapter being largely concerned with additional “bookkeeping” issues) to provide this
precise determination, a result known as the Inclusion-Exclusion Principle.

It happens that both the formulation of the Inclusion-Exclusion Principle and its
proof are facilitated by the use of (positive and negative) integers instead of restricting
all terms to be members of N. The reader’s indulgence is requested with regard to
this foray into formally as-yet-undefined terrain. The concerned reader may, in fact,
readily convert all statements and arguments in the following account into statements
and arguments about natural numbers; the exercise is straightforward, but rather
annoying. To satisfy that reader’s curiosity, a “natural-number” formulation of the
Inclusion-Exclusion Principle is recorded in Remark 116C.

We propose to give three separate proofs of this important result, as an illustration
of the diversity of approaches in this combinatorial context.

116A. THEOREM (INCLUSION-EXCLUSION PRINCIPLE). For every finite family
(Ti | i ∈ I) of finite sets,

(116.1) #(
⋃

i∈I

Ti) =
∑

J∈P×(I)

(−1)#J−1#(
⋂

i∈J

Ti).

Proof I. We prove by special induction (Inductive Proof Schemes 102E) that P (I)
holds for all finite sets I, where

P (I) :⇔ For every family (Ti | i ∈ I) of finite sets, (116.1) holds.

If I = Ø, we have
⋃

i∈I

Ti = Ø and P×(I) = Ø, so that both sides of (116.1) are 0,

and P (Ø) holds.

Let the non-empty finite set I and k ∈ I be given, set K := I\{k}, and assume
that P (K) holds. To prove P (I), thus completing the induction step, we let the
family (Ti | i ∈ I) of finite sets be given and claim that it satisfies (116.1).

By Corollary 103B we have

#(
⋃

i∈I

Ti) = #(Tk ∪
⋃

i∈K

Ti) = #(
⋃

i∈K

Ti) + #Tk − #(Tk ∩
⋃

i∈K

Ti) =

= #(
⋃

i∈K

Ti) + #Tk − #(
⋃

i∈K

(Tk ∩ Ti)).

Applying the induction hypothesis P (K) to the families (Ti | i ∈ K) and (Tk∩Ti | i ∈
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K), we then find

(116.2)

#(
⋃

i∈I

Ti) =
∑

J∈P×(K)

(−1)#J−1#(
⋂

i∈J

Ti) + #Tk −

−
∑

J∈P×(K)

(−1)#J−1 #(
⋂

i∈J

(Tk ∩ Ti)).

The mappings J 7→ J ∪{k} : P(I)\P(K) → P(K) and J 7→ J\{k} : P(I)\P(K)
→ P(K) are inverse to each other: they are both adjustments of the involutory
mapping J 7→ J△{k} : P(I) → P(I); and they match Ø in P(K) with {k} in
P(I)\P(K). Therefore, using Corollary 114E,

(116.3)

#Tk−
∑

J∈P×(K)

(−1)#J−1#(
⋂

i∈J

(Tk ∩ Ti)) =

= #Tk +
∑

J∈P×(K)

(−1)#J#(
⋂

i∈J∪{k}

Ti) =

= (−1)#{k}−1#(
⋂

i∈{k}

Ti) +
∑

J∈(P(I)\P(K))\{k}

(−1)#J−1#(
⋂

i∈J

Ti) =

=
∑

J∈P(I)\P(K)

(−1)#J−1#(
⋂

i∈J

Tk).

Combining (116.2) and (116.3), we find

#(
⋃

i∈I

Ti) =
∑

J∈P×(K)

(−1)#J−1#(
⋂

i∈J

Ti) +
∑

J∈P(I)\P(K)

(−1)#J−1#(
⋂

i∈J

Ti) =

=
∑

J∈P×(I)

(−1)#J−1#(
⋂

i∈J

Ti),

so that (116.1) holds, as claimed. This completes Proof I.

For Proofs II and III of Theorem 116A we shall need the following auxiliary result.

116B. LEMMA. For every non-empty finite set L we have
∑

J∈P(L)

(−1)#J = 0.

Proof. Choose p ∈ L. The involutory mapping J 7→ J△{p} : P(L) → P(L) in-
duces a bijection from the collection of subsets of L with even cardinal to the collection
of subsets of L with odd cardinal. These collections are therefore equinumerous, and
the conclusion follows at once.

Proof II of Theorem 116A. We proceed by special induction (Induction Proof
Schemes 102E), proving that Q(S) holds for all finite sets S, where

Q(S) :⇔ For every finite family (Ti | i ∈ I) of finite sets such that
⋃

i∈I

Ti = S, (116.1) holds.
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If S = Ø and (Ti | i ∈ I) satisfies
⋃

i∈I

Ti = S, then Ti = Ø for all i ∈ I, and each

summand in the right-hand side of (116.1) is 0, as is #S, the left-hand side. Thus
Q(Ø) holds.

Let the non-empty finite set S and s ∈ S be given, set R := S\{s} and assume
that Q(R) holds. To prove Q(S), thus completing the induction step, we let the finite
family (Ti | i ∈ I) of finite sets be given, assume that

(116.4)
⋃

i∈I

Ti = S,

and claim that (116.1) holds.

We define the family (Ui | i ∈ I) by Ui := Ti\{s} = Ti ∩ R for all i ∈ I. Then
⋃

i∈I

Ui =
⋃

i∈I

(Ti ∩ R) = R ∩
⋃

i∈I

Ti = R ∩ S = R. By the induction hypothesis Q(R)

applied to (Ui | i ∈ I), we have

(116.5) #R = #(
⋃

i∈I

Ui) =
∑

J∈P×(I)

(−1)#J−1#(
⋂

i∈J

Ui).

Set L := {i ∈ I | s ∈ Ti}. By (116.4), L 6= Ø. For each J ∈ P×(I),

⋂

i∈J

Ti =























{s} ∪
⋂

i∈J

Ui if J ⊂ L

⋂

i∈J

Ui otherwise.

Therefore, using Lemma 116B,

(116.6)

∑

J∈P×(I)

(−1)#J−1#(
⋂

i∈J

Ti) −
∑

J∈P×(I)

(−1)#J−1#(
⋂

i∈J

Ui) =

=
∑

J∈P×(I)

(−1)#J−1(#(
⋂

i∈J

Ti) − #(
⋂

i∈J

Ui)) =
∑

J∈P×(L)

(−1)#J−1 =

= 1 −
∑

J∈P(L)

(−1)#J = 1 − 0 = 1.

Combining (116.4), (116.5), and (116.6), we find

#(
⋃

i∈I

Ti) = #S = #R+1 =
∑

J∈P×(I)

(−1)#J−1#(
⋂

i∈J

Ui)+1 =
∑

J∈P×(I)

(−1)#J−1#(
⋂

i∈J

Ti),

so that (116.1) holds, as claimed.
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Proof III of Theorem 116A. Set S :=
⋃

i∈I

Ti. Then all the intersections in the right-

hand side of (116.1) are subsets of S. Define Lx := {i ∈ I | x ∈ Ti} for each x ∈ S,

and note that Lx 6= Ø for all x ∈ S. Further define VJ :=
⋂

i∈J

Ti for all J ∈ P×(I),

and
P := {(x, J) ∈ S ×P×(I) | x ∈ VJ}.

Note that

(116.7) ∀x ∈ S, ∀J ∈ P×(I), x ∈ Vj ⇔ (x, J) ∈ P ⇔ J ⊂ Lx.

Now, using (116.7) and Lemma 116B (applied to the non-empty set Lx for each
x ∈ S), as well as Corollary 103E and Corollary 114G,

∑

J∈P×(I)

(−1)#J−1#(
⋂

i∈J

Ti) =
∑

J∈P×(I)

(−1)#J−1
∑

x∈VJ

1 =
∑

J∈P×(I)

∑

x∈VJ

(−1)#J−1 =

=
∑

(x,J)∈P

(−1)#J−1 =
∑

x∈S

∑

J∈P×(Lx)

(−1)#J−1 =
∑

x∈S

(1 −
∑

J∈P(Lx)

(−1)#J) =

=
∑

x∈S

(1 − 0) = #S = #(
⋃

i∈I

Ti).

116C. REMARK. The Inclusion-Exclusion Principle may be reformulated thus:
For every finite family (Ti | i ∈ I) of finite sets,

#(
⋃

i∈I

Ti) =
∑

J∈Po(I)

#(
⋂

i∈J

Ti) −
∑

J∈P×e (I)

#(
⋂

i∈J

Ti),

wherePo(I) andP×e (I) are, respectively, the collection of subsets of I with odd cardinal
and the collection of non-empty subsets of I with even cardinal.
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117. Sums in monoids of families

Let M be a commutative monoid, written additively. Let the set I be given. We
set 0I := (0 | i ∈ I) ∈M I and define the mapping ((a, b) 7→ a+I b) : M I ×M I →M I

by termwise addition, i.e., by the rule

(a +I b)i := ai + bi for all i ∈ I and a, b ∈M I .

117A. PROPOSITION. Let M be a commutative monoid, written additively, and
let the set I be given. Then the specification of 0I as zero and the mapping ((a, b) 7→
a+I b) : M I ×M I →M I as addition endows M I with the structure of a commutative
monoid, written additively. For all a, b ∈ M I we have Supp(a+I b) ⊂ Suppa ∪ Suppb.

117B. REMARK. All references to M I as a commutative monoid will be to the
structure described in Proposition 117A. We shall write 0 and + instead of 0I and
+I without risk of confusion.

117C. LEMMA. Let M be a commutative monoid, written additively, and let the
sets I ′ and I ′′ be given. Denote the mappings ((i′, i′′) 7→ i′) : I ′ × I ′′ → I ′ and
((i′, i′′) 7→ i′′) : I ′ × I ′′ → I ′′ by π′ and π′′, respectively. Let the matrix a ∈ M I′×I′′

and the families a′ ∈ (M I′′)I
′

and a′′ ∈ (M I′)I
′′

be related by

(117.1) (a′i′)i′′ = ai′,i′′ = (a′′i′′)i′ for all (i′, i′′) ∈ I ′ × I ′′

(i.e., a′i′ is the i
′th row of a and a′′i′′ is the i′′th column of a). Then

Suppa =
⋃

i′∈Suppa′

{i′} × Suppa′i′ =
⋃

i′′∈Suppa′′

Suppa′′i′′ × {i′′}

Suppa′ = π′
>
(Suppa) =

⋃

i′′∈Suppa′′

Suppa′′i′′

Suppa′′ = π′′
>
(Suppa) =

⋃

i′∈Suppa′

Suppa′i′ .

Moreover, the following statements are equivalent:

(i): Suppa is finite.

(ii): Suppa′ is finite and Suppa′i′ is finite for every i′ ∈ Suppa′.

(iii): Suppa′′ is finite and Suppa′′i′′ is finite for every i′′ ∈ Suppa′′.

Proof. This follows by direct verification and use of Sections 101 and 103. Note
that Suppa′i′ 6= Ø if and only if i′ ∈ Suppa′.

117D. PROPOSITION. Let M be a commutative monoid, written additively, and
let the sets I ′ and I ′′ be given. Let the family a′ ∈ (M I′′)I

′

and the subset J ′ of I ′ be
given, and assume that either J ′ or Suppa′ is finite. In the later case, the support of
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the family ((a′i′)i′′ | i′ ∈ I ′) is finite for each i′′ ∈ I ′′. In either case,

(117.2) (
∑

J ′

a′)i′′ =
∑

j′∈J ′

(a′j′)i′′ for every i′′ ∈ I ′′.

(The first sum in M I′′ , the second in M .)

Proof. Define the matrix a ∈ M I′×I′′ and the family a′′ ∈ (M I′)I
′′

by (117.1).
Then the family ((a′i′)i′′ |i′ ∈ I ′) is precisely a′′i′′ for every i′′ ∈ I ′′. By Lemma 117C,
Suppa′′i′′ ⊂ Suppa′, so the former set is finite, as asserted, if the latter one is.

To prove (117.2) we suppose first that Suppa′ is finite and that i′′ ∈ I ′′ is given,

but allow the subset J ′ of I ′ to vary. Define the family τ := ((
∑

J ′

a′)i′′ | J ′ ∈ P(I ′)) ∈

MP(I′). If J ′ ∈ P×(I ′) and j′ ∈ J ′ are given, we have (using Remark 117B and
(117.1))

τJ ′ = (
∑

J ′

a′)i′′ = (
∑

J ′\{j′}

a′ + a′j′)i′′ = (
∑

J ′\{j′}

a′)i′′ + (a′j′)i′′ = τJ ′\{j′} + (a′′i′′)j′.

Moreover, if J ′ ∈ P(I ′\Suppa′) we have τJ ′ = (
∑

J ′

a′)i′′ = 0i′′ = 0, by (113.4). Since

Suppa′ is a finite set, τ satisfies the condition (iii) of Theorem 113B with I ′, a′′i′′ ,
Suppa′ instead of I, a, K. By that theorem and (113.4) we conclude that τ =

(
∑

J ′

a′′i′′ | J ′ ∈ P(I ′)), and therefore, using (117.1) again,

(
∑

J ′

a′)i′′ = τJ ′ =
∑

J ′

a′′i′′ =
∑

j′∈J ′

(a′′i′′)j′ =
∑

j′∈J ′

(a′j′)i′′ .

Since i′′ ∈ I ′′ was arbitrary, we have proved (117.2) in this case.

Suppose now that J ′ is a finite subset of I ′, but that Suppa′ is not necessarily
finite. By Proposition 112B and the preceding conclusion applied to a′|J ′ (whose
support is of course finite) instead of a′ we obtain the desired conclusion in this case
as well.

117E. THEOREM. Let M be a commutative monoid, written additively, and let
the sets I ′ and I ′′ be given. Let the family a′ ∈ (M I′′)I

′

and the subsets J ′ of I ′ and
J ′′ of I ′′ be given, and assume that either J ′ and J ′′ are both finite, or that Suppa′ is

finite and Suppa′i′ is finite for each i′ ∈ I ′. In the latter case, Supp(
∑

J ′

a′) is finite.

In either case,
∑

J ′′

∑

J ′

a′ =
∑

j′∈J ′

∑

J ′′

a′j′.

Proof. Define a ∈ M I′×I′′ and a′′ ∈ (M I′)I
′′

by (117.1). By Proposition 117D, we

have (117.2). Hence i′′ ∈ Supp(
∑

J ′

a′) implies Suppa′′i′′ 6= Ø, which in turn implies
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i′′ ∈ Suppa′′. By Lemma 117C we then have

Supp(
∑

J ′

a′) ⊂ Suppa′′ =
⋃

i′∈Suppa′

Suppa′i′ .

If Suppa′ is finite and Suppa′i′ is finite for each i′ ∈ I ′, it follows from Corollary

103E that Supp(
∑

J ′

a′) is finite, as asserted; Lemma 117C then further shows that

Suppa is also finite. By Proposition 117D and Theorem 114F we have in either case.

∑

J ′′

∑

J ′

a′ =
∑

j′′∈J ′′

(
∑

J ′

a′)j′′ =
∑

j′′∈J ′′

∑

j′∈J ′

(a′j′)j′′ =
∑

j′′∈J ′′

∑

j′∈J ′

aj′,j′′ =

=
∑

j′∈J ′

∑

j′′∈J ′′

aj′,j′′ =
∑

j′∈J ′

∑

j′′∈J ′′

(a′j′)j′′ =
∑

j′∈J ′

∑

J ′′

a′j′.

Let the set I be given. We define the subset M (I) := {a ∈ M I | Suppa is finite}
of M I and note that by Proposition 117A we have

a + b ∈M (I) for all a, b ∈M (I).

Of course M (I) = M I if and only if either I is finite or M = {0}.

The next theorem provides a different, more “algebraic” characterization of the
sum of a family with finite support in M .

117F. THEOREM. Let M be a commutative monoid, written additively, and let
the set I, the subset J of I, and the mapping S : M (I) → M be given. The following
statements are equivalent:

(i): S(a) =
∑

J

a for all a ∈M (I).

(ii): S satisfies the following three conditions:

(117.3) S(0) = 0

(117.4) S(u+ v) = S(u) + S(v) for all u, v ∈M (I)

(117.5) S(u) =







ui if i ∈ J
for all u ∈M (I) with Suppu = {i}.

0 if i ∈ I\J

Proof. (i) ⇒ (ii). Assume that S satisfies (i). If u, v ∈ M (I), define a′ ∈ (M I)2
⊏

by a′0 := u and a′1 := v. By (112.10) and Theorem 117E we have

S(u+ v) =
∑

J

(u+ v) =
∑

J

∑

2⊏

a′ =
∑

n∈2⊏

∑

J

a′n =
∑

J

u+
∑

J

v = S(u) + S(v),
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so that (117.4) holds. Since Supp0 = Ø, (113.4) implies (117.3). If i ∈ I and u ∈M (I)

with Suppu = {i}, then (113.4), (112.7), and (112.9) yield S(u) =
∑

J

u =
∑

J∩{i}

u,

which is
∑

{i}

u = ui if i ∈ J , and
∑

Ø

u = 0 if i ∈ I\J . Thus (117.5) also holds, and

(ii) is proved.

(ii) ⇒ (i). We assume that S satisfies (117.3), (117.4), (117.5), and prove by
special induction that

P (K) :⇔ (∀u ∈M (I), Suppu = K ⇒ S(u) =
∑

J

u)

holds for all K ∈ F(I); this is sufficient to establish (i). If u ∈ M (I) and Suppu = Ø,

then u = 0, and (117.3) and (113.4) yield S(u) = S(0) = 0 =
∑

Ø

u =
∑

J∩Suppu

u =
∑

J

u.

We have shown that P (Ø) holds.

Let K ∈ F×(I) be given, and let k ∈ K be such that P (K\{k}) holds. Let
u ∈M (I) with Suppu = K be given. Define v, w ∈M (I) by the rules

(117.6) vi :=







ui if i ∈ I\{k}

0 if i = k
wi :=







0 if i ∈ I\{k}

uk if i = k.

Obviously, Suppv = K\{k}, Suppw = {k}, and u = v + w. By the induction

hypothesis and the fact that k /∈ Suppv we obtain, using (113.4), that S(v) =
∑

J

v =

∑

J\{k}

v. Since (117.6) implies v|I\{k} = u|I\{k}, Proposition 113C shows that

(117.7) S(v) =
∑

J\{k}

v =
∑

J\{k}

(v|I\{k}) =
∑

J\{k}

(u|I\{k}) =
∑

J\{k}

u.

Now (117.4), (117.7), (117.5), (117.6) yield

S(u) = S(v + w) = S(v) + S(w) =























∑

J\{k}

u+ wk =
∑

J\{k}

u+ uk =
∑

J

u if k ∈ J

∑

J

u+ 0 =
∑

J

u if k /∈ J.

Thus P (K) holds. This completes the induction step.

117G. REMARK. In Theorem 117F, Condition (117.3) may be omitted withoutH

affecting the equivalence of (i) and (ii), provided J 6= I. Indeed, in this case we may
choose u ∈ M (I) such that S(u) = 0, by (117.5) if M 6= {0}, and trivially otherwise.
Then S(0) = S(0) + 0 = S(0) + S(u) = S(0 + u) = S(u) = 0.



204 CHAPTER 11. FINITE SUMS

The proviso J 6= I cannot be omitted in general. There is a commutative monoid
M := {0, m}, with m 6= 0 and m +m = m. Define S := mM (I)→M ; then (117.4) and

(117.5) are satisfied for J = I, but (117.3) is not, and S(0) = m 6= 0 =
∑

I

0.N
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118. Sums without zero

We shall occasionally encounter structures that involve a binary operation, “ad-
dition”, that is associative and commutative, such as addition in N×, but that have
no “zero”, or at least none that is prescribed. In such structures it is still possible —
indeed interesting — to define sums of finite families, provided they are not empty.
Instead of developing the theory of these sums independently, as we might, we reduce
it to the theory of finite sums in a commutative monoid, as described in the preceding
sections. We preserve the additive notation, but the same remarks made before about
other terminology and notation remain valid.

We define a commutative semigroup (written additively) to be a set M
endowed with structure by the prescription of a mapping ((x, y) 7→ x+y) : M×M →
M , subject to the conditions (CM1) (associative law) and (CM2) (commutative law)
in Section 111.

The device that will enable us to reduce the work with sums in a commutative
semigroup to the previous work in commutative monoids is the following construction.
Throughout this section we shall assume that it has been carried out.

118A. CONSTRUCTION. Let M be a commutative semigroup, written additively.
Choose an object o not contained in M , and set M̄ := M ∪ {o}. We define the
mapping ((x, y) 7→ x+̄y) : M̄ × M̄ → M̄ by the rule

(118.1) x+̄y :=







































x+ y if x, y ∈M

x if x ∈M, y = o

y if x = o, y ∈M

o if x = y = o.

It is easily verified that this mapping satisfies the associative and commutative laws.
Thus M̄ is a commutative monoid (written additively) when endowed with structure
by the prescription of o as zero and (x, y) 7→ x+̄y as addition. Moreover, the commu-

tative monoid M̄ has its zero isolated. We employ the symbol
¯∑

rather than
∑

for sums in the commutative monoid M̄ .

(This construction is applicable even when there is a member z of M such that
x+ z = x for all x ∈M .)

118B. THEOREM. Let M be a commutative semigroup, written additively, and let
the family a ∈M I be given. Then there is exactly one family σ ∈MF×(I) such that

(118.2) σ{i} = ai for all i ∈ I

(118.3) σJ = σJ\{j} + aj for all J ∈ F×(I)\F1(I) and j ∈ J.

Proof. 1. Suppose that σ ∈MF×(I) satisfies (118.2) and (118.3). Define σ̄ ∈ M̄F(I)
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by the rule

(118.4) σ̄J :=







σJ if J ∈ P×(I)

o if J = Ø.

It follows immediately from (118.4), (118.2), (118.3), and (118.1) that

σ̄J = σ̄J\{j}+̄aj for all J ∈ F×(I).

By Theorem 112A and the definition of sum in M̄ we conclude that σ̄J =
¯∑

J

a for

all J ∈ F(I). In particular it follows from (118.4) that

(118.5) σJ =
¯∑

J

a for all J ∈ F×(I).

There is thus at most one family σ ∈MF×(I) that satisfies (118.2) and (118.3).

2. Conversely, since the commutative monoid M̄ has its zero isolated, Proposition

112D shows that
¯∑

J

a ∈ M̄\{o} = M for all J ∈ F×(I). We may therefore define

σ ∈MF×(I) by the formula (118.5). It then follows from (112.8) and (112.9), applied
to sums in M̄ , that σ thus defined satisfies (118.2) and (118.3).

Theorem 118B justifies the following definition. For every family a ∈M I we set
∑

J

a := σJ for all J ∈ F×(I),

where σ ∈MF×(I) is the unique family that satisfies (118.2) and (118.3), so that

∑

{i}

a = ai for all i ∈ I

∑

J

a =
∑

J\{j}

a+ aj for all J ∈ F×(I)\F1(I) and j ∈ J.

From (118.5) in the proof of Theorem 118B we obtain

(118.6)
∑

J

a =
¯∑

J

a for all J ∈ F×(I).

Theorem 118B and (118.6) now make all the results of Sections 112 and 114
available to us, in so far as they deal with sums over non-empty finite sets. For the
sake of reference,we formulate, in a remark, the conclusions obtained in this manner.

118C. REMARK. The following propositions remain valid when the word “monoid”
is replaced by “semigroup” and the requirement that J, J ′, J ′′ (as the case may require)
be non-empty and finite is added: Proposition 112B; Remark 112C,(a); Theorems
114A and 114F; Corollaries 114C, 114D, 114E, and 114G.
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We also wish to obtain the corresponding analogue of Theorem 117E. This requires
a bit of preparation.

Let M be a commutative semigroup, written additively, and let the set I be given.
We define the mapping ((a, b) 7→ a +I b) : M I ×M I → M I by termwise addition,
i.e., by the rule

(a +I b)i := ai + bi for all i ∈ I and a, b ∈M I .

118D. PROPOSITION. Let M be a commutative semigroup, written additively, and
let the set I be given. Then the specification of the mapping ((a, b) 7→ a+I b) : M I ×
M I → M I as addition endows M I with the structure of a commutative semigroup,
written additively.

118E. REMARK. All references to M I as a commutative semigroup will be to the
structure described in Proposition 118D. We shall write + instead of +I .

Now M I is a subset of the commutative monoid M̄ I , and a+̄b = a + b for all

a, b ∈ M I . The symbols +̄ and
¯∑

refer either to M̄ or to M̄ I , as the context may

require, but not to M I ∪ {o}, in this formula and in what follows.

118F. LEMMA. Let M be a commutative semigroup, written additively, and let the

sets I ′ and I ′′ be given. Let the family a′ ∈ (M I′′)I
′

be given. Then
∑

J ′
a′ =

¯∑

J ′
a′

for all J ′ ∈ F×(I ′).

Proof. By Proposition 117D (applied to the commutative monoids M̄ and M̄ I)
and by (118.6) we have

(
¯∑

J ′
a′)i′′ =

¯∑

j′∈J ′
(a′j′)i′′ =

∑

j′∈J ′
(a′j′)i′′ ∈M for all J ′ ∈ F×(I ′) and i′′ ∈ I ′′.

We conclude that
¯∑

J ′
a′ ∈M I′′ for all J ′ ∈ F×(I ′).

The family σ′ ∈ (M I′′)F
×(I′) defined by σ′J ′ :=

¯∑

J ′
a′ for all J ′ ∈ F×(I ′) satisfies

σ′{i′} =
¯∑

{i′}

a′ = a′i′ for all i′ ∈ I ′

σ′J ′ =
¯∑

J ′
a′ =

¯∑

J ′\{j′}

a′ +̄ a′j′ = σ′J ′\{j′} +̄ a′j′ = σ′J ′\{j′} + a′j′

for all J ′ ∈ F×(I ′)\F1(I
′) and j′ ∈ J ′.

By Theorem 118B and the definition of sums in M I′′ , we conclude that

∑

J ′
a′ = σ′J ′ =

¯∑

J ′
a′ for all J ′ ∈ F×(I ′).
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118G. THEOREM. Let M be a commutative semigroup, written additively, and
let the sets I ′ and I ′′ be given. Let the family a′ ∈ (M I′′)I

′

and the finite non-empty
subsets J ′ of I ′ and J ′′ and I ′′ be given. Then

∑

J ′′

∑

J ′

a′ =
∑

j′∈J ′

∑

J ′′

a′j′.

Proof. We use consecutively: (118.6) for the family
∑

J ′

a′ ∈ M I′′ and the set J ′′;

Lemma 118F; Theorem 117E for the commutative monoid M̄ ; (118.6) for each of the

families a′i′ with i′ ∈ I ′, and the set J ′′; and (118.6) for the family (
∑

J ′′

a′i′ | i′ ∈ I ′) ∈

M I′ and the set J ′. We find

∑

J ′′

∑

J ′
a′ =

¯∑

J ′′

∑

J ′
a′ =

¯∑

J ′′

¯∑

J ′
a′ =

¯∑

j′∈J ′

¯∑

J ′′
a′j′ =

¯∑

j′∈J ′

∑

J ′′
a′j′ =

∑

j∈J ′

∑

J ′′
a′j′.



Chapter 12

COUNTABLE SETS

121. Countable sets

A set is said to be countable if there is an injection from it to N. All finite
sets are countable; a countable infinite set is said to be countably infinite. A set
that is not countable is said to be uncountable. A family is said to be countable,
countably infinite, uncountable, according as its index set is countable, countably
infinite, uncountable, respectively.

121A. PROPOSITION. A non-empty set S is countable if and only if there is a
surjection from N to S.

Proof. If S is countable, we may choose an injection from S to N. Since S 6= Ø, this
injection has a left-inverse, and this is a surjection from N to S. Assume, conversely,
that there is a surjection from N to S, and choose one, say g : N → S. We can
construct a right-inverse h : S → N of g by the rule

h(s) := min g<({s}) for all s ∈ S.

Then h is injective, and therefore S is countable.

121B. PROPOSITION. Let the sets S and T and the mapping f: S → T be given.
If T is countable and f is injective, then S is countable. If S is countable and f is
surjective, then T is countable.

121C. PROPOSITION. Every nest of finite sets is countable.

Proof. Let the nest of finite sets N be given. By Corollary 101F the mapping
A 7→ #A : N → N is injective.

121D. THEOREM. Let S be a given subset of N. There is exactly one strictly
isotone mapping f: N → N with Rngf = S if S is infinite, and none if S is finite. In
the former case, f |S is an order-isomorphism from N to the ordered subset S of N.

Proof. Suppose f : N → N is a strictly isotone mapping with Rngf = S. Then
f |S is an order-isomorphism from N to the ordered subset S of N, since N is totally
ordered (Remark 62A,(a) and Proposition 62D). A first consequence is that N and
S are equinumerous; since N is infinite (Corollary 101K), S must also be infinite. A

209
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second consequence is that

f(0) = f |S(min N) = minS

f(seqn) = f |S(min{m ∈ N | m > n}) = min{s ∈ S | s > f(n)} =
= min(S\(seqf(n))⊏) for all n ∈ N.

Since S is infinite, it has no upper bound in N. It follows that f must be the unique
mapping from N to N defined recursively by the rules

f(0) := minS

f(seqn) := min(S\(seqf(n))⊏) for all n ∈ N.

We now consider an infinite subset S of N and the mapping f : N → N defined
recursively by the preceding rules. It is clear that f(n) < f(seqn) for all n ∈ N;
therefore f is strictly isotone, and also satisfies n ≤ f(n) for all n ∈ N (Propositions
92G and 92I).

We obviously have Rngf ⊂ S. To prove the reverse inclusion, let s ∈ S be
given. The set {n ∈ N | f(n) ≤ s} is not empty, since it contains 0; and it has
an upper bound, since f(n) ≤ s implies n ≤ f(n) ≤ s. We may therefore set
p := max{n ∈ N | f(n) ≤ s} (Proposition 92F). Then f(p) ≤ s; if we had f(p) < s,
it would follow that s ∈ S\(seqf(p))⊏, and hence f(seqp) ≤ s, contradicting the
maximality of p. Therefore s = f(p) ∈ Rngf . Since s ∈ S was arbitrary, we conclude
that Rngf ⊃ S.

121E. REMARK. If S is an infinite (ordered) subset of N, the unique order-
isomorphism g : S → N is given by the rule

g(s) := #(S ∩ s⊏) for all s ∈ S.

121F. COROLLARY. A set is countably infinite if and only if it is equinumerous
to N.

Proof. N is infinite (Corollary 101K) and countable by definition; the “if” part
follows immediately. To prove the “only if” part, let S be a countably infinite set
and choose an injection φ : S → N. Then S is equinumerous to φ>(S), an infinite
subset of N. By Theorem 121D, φ>(S) is equinumerous to N, and consequently S is
equinumerous to N as well.

121G. COROLLARY. The rule f 7→ Rngf defines a bijection from the set of all
strictly isotone mappings from N to N, to the collection of all infinite subsets of N.

121H. REMARK. We recall that a sequence is defined as a family with index set
N or N×; for our present purpose we shall restrict attention to the index set N. If s, t
are sequences, t is called a subsequence of s if t = s ◦ σ for some strictly isotone
mapping σ : N → N. Theorem 121D and Corollary 121G are useful in mediating
between subsequences of a given sequence s and restrictions of s to infinite subsets of
N, thus relating a subsequence s ◦ σ to the restriction s|Rngσ for every strictly isotone
σ : N → N. Warning: Unless s is injective, the same subsequence may correspond
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to restrictions of s to distinct infinite subsets of N. This concern need not, however,
constitute an impediment, e.g., when the issue is the existence of a subsequence with
some desired property, as illustrated by the following useful result.

121I. PROPOSITION. Let the ordered set D and the isotone sequence s ∈ DN be
given. The following statements are equivalent:

(i): Rngs is finite.

(ii): Rngs has a maximum.

(iii): s is eventually constant; i.e., s|m+N is constant for some m ∈ N.
(iv): s has a constant subsequence.

(v): s has no strictly isotone subsequence.

Proof. Since s is isotone, Rngs is a totally ordered subset (a chain) of D (and is
of course not empty).

(i) ⇒ (ii). This follows from Corollary 105B.

(ii) ⇒ (iii). Set a := max Rngs. Choose m ∈ N such that sm = a. Since s is
isotone, we have a = sm ≺ sn ≺ a for all n ∈ m+ N; thus s>(m + N) = {a}.

(iii) ⇒ (i). Choose m ∈ N such that s|m+N is constant, and set a :∈ s>(m + N).
Then

Rngs = s>(m⊏ ∪ (m + N)) = s>(m⊏) ∪ s>(m+ N) = s>(m⊏) ∪ {a};

thus Rngs is finite.

(iii) ⇒ (iv). Choose m ∈ N such that s|m+N is constant, and define σ : N → N by
σ(k) := m + k for all k ∈ N. Then σ is strictly isotone and the subsequence s ◦ σ of
s is constant.

(iv) ⇒ (v). Suppose, by contradiction, that s has a strictly isotone subsequence
in addition to a constant subsequence. By Theorem 121D and Corollary 121G we
may choose infinite (ordered) subsets A and B of N such that s|A is constant and
s|B is strictly isotone. Choose a ∈ A. Since neither A nor B has an upper bound
(Corollary 105D), we may choose b, c ∈ B and d ∈ A such that a < b < c < d. Since
s is isotone, this implies sa ≺ sb � sc ≺ sd, and this contradicts sa = sd.

(v) ⇒ (ii). Assume, by contraposition, that Rngs has not a maximum; hence
Rngs, which is totally ordered, has no maximal members. It follows that UbRngs({sn})
\{sn} 6= Ø for all n ∈ N. We may therefore define the mapping φ : N → N by

φ(n) := mins<(UbRngs({sn})\{sn}) for all n ∈ N.

Then sn � sφ(n) for all n ∈ N; since s is isotone, this implies n < φ(n) for all n ∈ N.
We define the mapping σ : N → N by σ(k) := φ◦k(0) for all k ∈ N. By Proposition
92G, σ is strictly isotone, and sσ(k) � sφ(σ(k)) = sσ(seqk) for all k ∈ N. Again by
Proposition 92G, the subsequence s ◦ σ of s is strictly isotone.

There are several results that assert that some sets constructed from countable
sets are themselves countable. We derive them all from the following theorem, which
has intrinsic interest in that it justifies the binary digital system of numeration:
it states that every natural number has a unique binary representation, which is
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determined by the set of places (counting from the right) that carry the digit 1.
A rather tedious technical modification of the proof would be required to give the
theoretical justification for the digital system of numeration to any given base, such
as the familiar seq seq seq seq seq seq seq seq seq seq 0.

121J. THEOREM. (BINARY NUMERATION THEOREM). The mapping (A 7→
∑

m∈A

2m) :

F(N) → N is bijective. Consequently, F(N) is countably infinite.

Proof. 1. We first record the following result, which is easily proved by induction

(121.1)
∑

m∈n⊏

2m = 2n − 1 for all n ∈ N.

The induction step uses the formula (seqn)⊏\{n} = n⊏ and runs as follows:
∑

m∈(seqn)⊏

2m =
∑

m∈n⊏

2m + 2n = 2n − 1 + 2n = 2n + 2n − 1 = 2n · 2 − 1 = 2seqn − 1.

We next consider two given finite subsets S and T of N such that S ∩ T = Ø and
S ∪ T 6= Ø. Set p := max(S ∪ T ). Then either p ∈ S and T ⊂ p⊏, or else p ∈ T and
S ⊂ p⊏. In the former case we have, using Corollary 114C and (121.1),
∑

m∈T

2m ≤
∑

m∈T

2m +
∑

m∈p⊏\T

2m =
∑

m∈p⊏

2m = 2p − 1 < 2p ≤
∑

m∈S\{p}

2m + 2p =
∑

m∈S

2m;

in the latter case we find, interchanging S and T in this argument, that
∑

m∈S

2m <

∑

m∈T

2m. We have thus proved the following assertion:

(121.2) ∀S, T ∈ F(N), (S ∩ T = Ø and S ∪ T 6= Ø) ⇒
∑

m∈S

2m 6=
∑

m∈T

2m.

2. Let A,B ∈ F(N) be given, and suppose that
∑

m∈A

2m =
∑

∈B

2m. Set S := A\B

and T := B\A. Then S ∩ T = Ø and, by Corollary 114C,
∑

m∈S

2m +
∑

m∈A∩B

2m =
∑

m∈A

2m =
∑

m∈B

2m =
∑

m∈T

2m +
∑

m∈A∩B

2m.

By the cancellation law, we have
∑

m∈S

2m =
∑

m∈T

2m. By (121.2), this implies S∪T = Ø,

hence S = T = Ø , and thus A = B. Since A,B ∈ F(N) were arbitrary, we have

proved that the mapping (A 7→
∑

m∈A

2m) : F(N) → N is injective.

3. To prove that this mapping is surjective, we prove by induction that P (n) holds
for all n ∈ N, where

P (n) :⇔ (∃A ∈ F(N),
∑

m∈A

2m = n).
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Since
∑

m∈Ø

2m = 0, we see that P (0) holds. Let n ∈ N be given, and assume

that P (n) holds. We may therefore choose A ∈ F(N) such that
∑

m∈A

2m = n. Set

p := min(N\A). Then p⊏ ⊂ A and p /∈ A\p⊏. We find, using Corollary 114C and
(121.1),

seqn = n+ 1 =
∑

m∈A

2m + 1 =
∑

m∈A\p⊏

2m +
∑

m∈p⊏

2m + 1 =
∑

m∈A\p⊏

2m + 2p − 1 + 1 =

=
∑

m∈A\p⊏

2m + 2p =
∑

m∈(A\p⊏)∪{p}

2m.

Hence P (seqn) also holds. This completes the induction step.

121K. REMARK. The proof of Theorem 121J shows that the unique finite subset

An of N that satisfies
∑

m∈An

2m = n for each n ∈ N can be obtained recursively by the

following digit-carrying rules:
A0 := Ø

Aseqn := (An\p⊏) ∪ {p}, where p := min(N\An), for all n ∈ N.

121L. COROLLARY. N×N is countably infinite.

Proof. The mapping (n 7→ (n, n)) : N → N×N is injective; hence N×N is infinite
(Proposition 101E). Each of the mappings

((m,n) 7→ {m,m+ n+ 1}) : N× N → F2(N)

(D 7→ (minD,maxD − minD − 1)) : F2(N) → N× N

is the inverse of the other. Since F2(N) ⊂ F(N), Theorem 121J and Proposition 121B
show that N× N is countable.

121M. COROLLARY. If S is a countable set, then F(S) is again countable. If S
and T are countable sets, then S × T is again countable.

•121N. COROLLARY. Let the countable family of countable sets (Ti | i ∈ I) be

given. The sets
˙⋃

i∈I

Ti and
⋃

i∈I
Ti are countable.

Proof. Choose an injection φ : I → N, and •choose an injection ψi : Ti → N for

every i ∈ I. Then the mapping ((i, x) 7→ (φ(i), ψi(x))) :
˙⋃

i∈I

Ti → N× N is injective.

By Corollary 121L and Proposition 121B it follows that
˙⋃

i∈I

Ti is countable. The

mapping ((i, x) 7→ x) :
˙⋃

i∈I

Ti →
⋃

i∈I
Ti is surjective. The countability of

⋃

i∈I
Ti now

follows from Proposition 121B.

•121O. COROLLARY. The union of every countable collection of countable sets is
countable.
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•121P. COROLLARY. A set is countable •if and only if it is the union of a nest
of finite sets.

Proof. A nest of finite sets is countable, by Proposition 121C; its union is therefore
countable by •Corollary 121O. Conversely, let a countable set S be given. If S is finite,
then S is the union of the nest of finite sets {S}. If S is countably infinite, we may
choose, by Corollary 121F, a bijection φ : N → S; then S is the union of the nest of
finite sets {φ>(n⊏) | n ∈ N}.

121Q. REMARKS. (a): The proof of •Corollary 121N (and consequently ofH

•Corollaries 121O and 121P requires the choice of the family of mappings (ψi | i ∈ I)

from the product×
i∈I

Inj(Ti,N), where Inj(Ti,N) := {f ∈ Map(Ti,N) | f is injective}
6= Ø by assumption for each i ∈ I. The possibility of this simultaneous choice de-
pends on the •Axiom of Choice, or rather since I is countable, on a weaker version,
the •“Axiom of Countable Choice”: If (An | n ∈ N) is a sequence of non-empty sets,

then×
n∈N

An 6= Ø.

(b): If I is finite in Corollary 121N, then the Principle of Finite Choice (Theorem
103L) makes recourse to any such axiom unnecessary. The same is consequently true
for Corollary 121O, if the collection of countable sets is finite.N

121R. EXAMPLE
∗. There are obvious surjections from the set N××N× to the sets

of strictly positive and of strictly negative rational numbers (the former surjection
is (m,n) 7→ m/n). By Corollaries 121M and 121O (using Remark 121Q,(b)) and
Proposition 121B it follows that the set of all rational numbers is countable.

121S. THEOREM. Let the finite family of countable sets (Ti | i ∈ I) be given.

Then×
i∈I

Ti is a countable set.

Proof. The proof is precisely like that of Theorem 103H, using Corollary 121L
instead of Corollary 103G.

121T. COROLLARY. If S is a finite set and T a countable set, then the equinu-
merous sets T S and Map(S, T ) are countable.

We finally show that the countable sets are “smaller” than all infinite sets. We
begin with a reformulation of part of Proposition 101N.

121U. LEMMA. Let the set S be given. The following statements are equivalent:

(i): S is infinite.

(ii): Fn(S) 6= Ø for all n ∈ N.
(iii): the sequence (Fn(S) | n ∈ N) in P(P(S)) is injective.

Proof. The sequence (Fn(S) | n ∈ N) is obviously disjoint. The asserted equiva-
lence then follows from Proposition 101N.

•121V. THEOREM. Let the infinite set S be given. There exists an injective
sequence a ∈ SN.

Proof. It is instructive to give two proofs of this theorem. The first of these is
more intuitive, but uses recursive choice on the index set N (in its general form),
and depends on the full force of the •Axiom of Choice. The second proof uses no
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recursion, and depends only on the •Axiom of Countable Choice.

Proof I. We •choose recursively a sequence a ∈ SN satisfying

(121.3) an ∈ S\Rng(a|n⊏) for all n ∈ N.

For all m,n ∈ N with m < n we have m ∈ n⊏ and therefore am ∈ Rng(a|n⊏).
Comparison with (121.3) shows that am 6= an. Thus the sequence a is injective.

To justify the recursive choice of a we apply •Theorem 82H with I := N, An := S
for all n ∈ N, and Φn : Sn⊏ → P(S) defined by the rule

Φn(u) := S\Rngu for all n ∈ N and u ∈ Sn⊏

.

Since u ∈ Sn⊏

is a finite family, its range is finite, and therefore Φn(u) 6= Ø for all
n ∈ N and u ∈ Sn⊏

. This makes the mentioned theorem applicable.

Proof II. By Lemma 121U,((i)⇒(ii)), we may •choose a sequence (An | n ∈ N) in
P(S) such that #An = 2n for all n ∈ N. We now consider the sequence (Bn | n ∈ N)
in P(S) defined by the rule

Bn := An\
⋃

m∈n⊏

Am for all n ∈ N.

If n, n′ ∈ N satisfy n < n′, then Bn ⊂ An ⊂
⋃

m∈n′⊏
Am and Bn′ ⊂ An′\Bn. Therefore

the sequence (Bn | n ∈ N) is disjoint. Moreover, using Corollary 103E and (121.1),
we find

#
⋃

m∈n⊏

Am ≤
∑

m∈n⊏

#Am =
∑

m∈n⊏

2m = 2n − 1 < 2n = #An for all n ∈ N.

Therefore Bn 6= Ø for every n ∈ N, by Corollary 101F. We may therefore •choose

the sequence a ∈×
n∈N

Bn ⊂ SN, and this sequence is injective because the sequence

(Bn | n ∈ N) was disjoint.

•121W. COROLLARY. If T is a countable set and S is an infinite set, then there
exists an injection from T to S.
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122. Some uncountable sets

In contrast to Theorem 121J and its corollaries, in which certain sets were shown to
be countable, we establish in this section that certain infinite sets cannot be countable.

122A. THEOREM. The power-set of every infinite set is uncountable.

Proof. Suppose that S were an infinite set with countable power-set P(S). Since
the mapping s 7→ {s} : S → P(S) is injective, S would be countable and P(S) infinite
(Propositions 121B and 101E). The sets S and P(S), both being countably infinite
and hence equinumerous to N (Corollary 121F), would have to be equinumerous to
each other. But Proposition 32E shows that there is no surjective mapping from S
to P(S), let alone an invertible one.

•122B. COROLLARY. Let the family of countable non-empty sets (Ti | i ∈ I) be

given. Then×
i∈I

Ti is countable if and only if {i ∈ I | Ti is not a singleton} is finite.

Proof. Set J := {i ∈ I | Ti is not a singleton}. It is clear that ×
i∈I

Ti and

×
i∈J

Ti are equinumerous. If J is finite, then Theorem 121S shows that ×
i∈J

Ti is

countable. Suppose, conversely, that ×
i∈J

Ti is countable. We •choose an injection

λi : 2⊏ → Ti for each i ∈ J , as we may, since Ti is not a singleton. Then the mapping

(α 7→ (λi(αi) | i ∈ J)) : (2⊏)J → ×
i∈J

Ti is injective. But (2⊏)J is equinumerous

to P(J) (see proof of Corollary 103J). By Proposition 121B, P(J) is countable; by
Theorem 122A we conclude that J is finite.

122C. PROPOSITION. Let the countably infinite set S be given. Then P(S) and
P(S)\F(S) are equinumerous.

Proof. Choose a bijection φ : S → N. Then φ> : P(S) → P(N) is bijective and
induces a bijection from P(S)\F(S) to P(N)\F(N). It is therefore sufficient to prove
that P(N) and P(N)\F(N) are equinumerous.

We define the mapping f: P(N) → P(N)\F(N) by the rule

f(A) :=







2A if A ∈ P(N)\F(N)
A ∈ P(N).

2(N\A) + 1 if A ∈ F(N)

It is not difficult to see that f is injective. It then follows from the Schröder-Bernstein
Theorem (Theorem 75C) that P(N) and P(N)\F(N) are equinumerous.

The following result is a generalization of Theorem 122A (which is the special case
M := P(S)).

122D. THEOREM. Let the set S and the collection M of subsets of S be given.
Assume that M is intersection-stable and satisfies

(122.1) ∀A ∈ M, S\A ∈ M.

Then M is either finite or uncountable.
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Proof. 1. Assume that M is countable. Define the subcollections Mx := {A ∈
M | x ∈ A} for every x ∈ S (note that S ∈ Mx for every x ∈ S), and the members

Kx :=
⋂

Mx of M for every x ∈ S. Thus D := {Kx | x ∈ S} is a subcollection of

M.

2. We claim that D is disjoint. Let x, y ∈ S be given, and assume that Kx 6= Ky.
Then Mx 6= My, and hence we may choose A ∈ Mx\My or A ∈ My\Mx. Consider
the former case. We have y /∈ A, so that y ∈ S\A. On the other hand, S\A ∈ M,
and we conclude that S\A ∈ My. Thus Kx ⊂ A and Ky ⊂ S\A, and therefore
Kx ∩Ky = Ø. The latter case (A ∈ My\Mx) yields the same conclusion (the proof
shows that the two cases are indeed one). We have proved that

∀x, y ∈ S, Kx 6= Ky ⇒ Kx ∩Ky = Ø,

i.e., that D is disjoint. Since x ∈ Kx for every x ∈ S, we have Ø /∈ D.

3. Since M is intersection-stable and satisfies (122.1), it follows that the union
of every subcollection of D is a member of M. Since D is disjoint and Ø /∈ D, the
mapping

(122.2) C 7→
⋃

C : P(D) → M

is injective. It follows that P(D) is countable; by Theorem 122A, D is finite.

4. Let A ∈ M be given. For every x ∈ A we have A ∈ Mx, and hence x ∈ Kx ⊂ A.

We conclude that A =
⋃

{Kx | x ∈ A}. It follows that the mapping (122.2) is

surjective. Since D is finite, so is P(D) (Corollary 103J), and hence M is also finite.

122E. REMARK. Let the set S be given. A collection M of subsets of S is called a
σ-algebra on S if M satisfies (122.1) and the union (and hence also the intersection
with respect to S) of every countable subcollection of M is a member of M. Theorem
122D shows that a σ-algebra on S cannot be countably infinite for any set S.

The following results show that certain ordered sets cannot be countably infinite.

122F. PROPOSITION. A densely and completely ordered set is countable (if and)
only if it is a singleton.

Proof. Let the countable set D, densely and completely ordered by ≺, be given.
Then D 6= Ø, and we may choose a surjection φ : N → D (Proposition 121A). We
define the mapping f: Gr(�) → D by the rule

f((x, y)) := φ(min φ<(]]x, y[[)) for all (x, y) ∈ Gr(�),

as we may, since the order is dense. We note that

(122.3)
x � f((x, y)) � y and x � f((x, y)) � f((f((x, y)), y)) � y

for all (x, y) ∈ Gr(�).

We suppose that D is not a singleton, so that minD � maxD. By (122.3) we may
define the sequence ((un, vn) |n ∈ N) in Gr(�) recursively by the rule



218 CHAPTER 12. COUNTABLE SETS

(u0, v0) := (minD,maxD)

(un+1, vn+1) := (f((un, vn)), f((f((un, vn)), vn))) for all n ∈ N.

By (122.3) we have

(122.4) un � un+1 � vn+1 � vn for all n ∈ N.

It follows by Proposition 92G that the sequence (un | n ∈ N) is strictly isotone and
the sequence (vn | n ∈ N) is strictly antitone. Consequently,

(122.5) um ≺ umax {m,n} � vmax {m,n} ≺ vn for all m,n ∈ N.

We observe that for all n ∈ N we have φ<(]]un, vn[[) ⊃ φ<(]]un+1, vn+1[[), but
φ(min φ<(]]un, vn[[)) = f((un, vn)) = un+1 /∈ ]]un+1, vn+1[[. Therefore min φ<(]]un, vn[[)
< minφ<(]]un+1, vn+1[[) for all n ∈ N, and hence, by Propositions 92G and 92I,

(122.6) n ≤ min φ<(]]un, vn[[) for all n ∈ N.

Since D is completely ordered, we may set s := sup{un | n ∈ N}. By (122.5), s is
a lower bound of {vn | n ∈ N}. By (122.4) it follows that

un � un+1 ≺ s ≺ vn+1 � vn for all n ∈ N,

so that s ∈ ]]un, vn[[, and consequently Ø 6= φ<({s}) ⊂ φ<(]]un, vn[[), for all n ∈ N.
Therefore

min φ<({s}) ≥ min φ<(]]un, vn[[) for all n ∈ N,

which contradicts (122.6). The supposition that D was not a singleton is therefore
untenable.

122G. COROLLARY. A densely and pre-completely ordered set is countable (if
and) only if the order is the relation of equality in the set. A totally, densely, and
pre-completely ordered set is countable (if and) only if it is either empty or a singleton.

Proof. Let the countable set D, densely and pre-completely ordered by ≺, be
given. Let x, y ∈ D be given, and assume that x ≺ y. Then the ordered subset [[x, y]]
of D is countable and is densely and completely ordered (Proposition 72E,(b)). By
Proposition 122F, [[x, y]] is a singleton, so that x = y. The relation ≺ is therefore
narrower than =D; being reflexive, it is also broader that =D. The two relations are
therefore equal.

122H. EXAMPLE
∗. The set R is totally and pre-completely ordered by ≤, and

this order is dense (see Propositions 143B and 151B). By Corollary 122G, the set
R is uncountable. The argument used to prove Proposition 122F and hence the
uncountability of R was first used in 1874 by Georg Ferdinand Ludwig Philipp Cantor
(1845-1913).
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123. Another characterization of finiteness

The Pigeonhole Principle (Corollary 101H) shows that every injection from a finiteH

set to itself is invertible. In contrast to this, the injection seq : N → N is not invertible.
Using the •Axiom of Countable Choice, it is possible to generalize this contrast and
obtain a characterization of finiteness (•Theorem 123B). This characteristic condition
has sometimes been used (notably by Julius Wilhelm Richard Dedekind (1831-1916))
to define the concept of finite set. To obtain this characterization we use the following
lemma, which does not require the cited •Axiom.

123A. LEMMA. Let the set S be given. The following statements are equivalent:

(i): There exists an injective sequence in S.

(ii): There exists an injection from S to S that is not invertible.

Proof. (i) implies (ii). Choose an injective sequence a ∈ SN. Then a, considered
as a surjection a : N → Rnga, is invertible. We define the mapping f: S → S by the
rule

f(s) :=







aseqn if s = an for all n ∈ N

s if s ∈ S\Rnga.

We observe that f>(Rnga) ⊂ Rnga and f>(S\Rnga) = S\Rnga. Since a, seq, and
a← are all injective, it follows that f is injective. But

Rngf ⊂ a>(Rng seq) ∪ (S\Rnga) = (Rnga\{a0}) ∪ (S\Rnga) = S\{a0},

since a is injective and Rng seq = N\{0}. Therefore f is not surjective, hence not
invertible.

(ii) implies (i). Choose an injection f : S → S that is not invertible, hence not
surjective. Choose u ∈ S\Rngf , and set a := (f ◦n(u) | n ∈ N) ∈ SN. We claim that
the sequence a is injective. Let m,n ∈ N be given, and assume that m < n. Then
f ◦(n−m)(u) ∈ Rngf , and hence u 6= f ◦(n−m)(u). But f ◦m is injective (Proposition
94E); therefore f ◦m(u) 6= f ◦m(f ◦(n−m)(u)) = f ◦n(u) (Proposition 96B).

•123B. THEOREM. A set S is finite if and only if every injection from S to S is
invertible.

Proof. The “only if” part follows from Corollary 101H; the “if” part follows, by
contraposition, from •Theorem 121V and Lemma 123A,((i) ⇒ (ii)).

•123C. COROLLARY. A set S is finite if and only if every surjection from S to S
is invertible.

Proof. The “only if” part follows from Corollary 101H. To prove the “if” part,
let the set S be given and assume that every surjection from S to S is invertible.
Now every injection from S to S has a left-inverse, and this is surjective; hence this
left-inverse is invertible, and therefore so is the injection itself. From •Theorem 123B
it follows that S is finite.

123D. REMARK. Replacing, in the proof of •Theorem 123B, the use of •Theorem
121V by that of Lemma 121U,((ii) ⇒ (iii)), and combining this with Corollaries
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101H and 103J, one obtains the following conclusion, which no longer depends on
the •Axiom of Countable Choice: A set S is finite if and only if every injection from
P(P(S)) to P(P(S)) is invertible.N



Chapter 13

SOME ALGEBRAIC
STRUCTURES

131. Commutative monoids and groups

In this chapter we shall discuss certain structures consisting of “algebraic opera-
tions” defined on sets. We have already introduced some structures of this kind in
Chapter 11: commutative monoids (Section 111) and commutative semigroups (Sec-
tion 118). We shall not engage at this point in a thorough study of such algebraic
structures, but shall develop only so much of the terminology, notation, and “book-
keeping” properties as is needed as background for the account of the Real-Number
System in the next three chapters; a second purpose, achieved at no additional ex-
pense, is to provide information required for use in linear algebra. We shall require,
from Section 111, the definition of commutative monoid, as well as the terminology,
notation, and results in Sections 111-115 and 117.

We record some notational conventions used in connection with commutative
monoids. Let the commutative monoid M , written additively, be given. By virtue of
the associative law we may write expressions such as x + y + z for all x, y, z ∈ M ,
omitting parentheses without danger of ambiguity. Similarly, we may write mnx for
all x ∈M and m,n ∈ N, by virtue of Proposition 115B,(b).

For all subsets A, B of M and all subsets S of N we write

A +B := {x+ y | (x, y) ∈ A× B}

SA := {nx | (n, x) ∈ S ×A}

A× := A\{0}.

In the first and second formulas, braces are often omitted when exactly one of the
sets is recorded as being a singleton: thus, with a, b ∈ M and n ∈ N we write
a+B := {a} +B, A+ b := A+ {b}, nA := {n}A, Sa := S{a}.

In multiplicative notation, we use xyz unambiguously without parentheses, and

221
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set
AB := {xy | (x, y) ∈ A× B}

and aB := {a}B and Ab := A{b}; but no multiplicative analogues of SA and A× are
in use. (In particular, the notation AS is reserved for other uses: see Section 44.)

Returning to additive notation, we generalize the notation A+ B as follows. Let
the family (Ai | i ∈ I) of subsets of M be given. We define

∑

i∈I

Ai := {
∑

i∈I

ai | a ∈M (I) ∩×
i∈I

Ai} ⊂M

(we recall that M (I) := {a ∈ M I | Suppa is finite}). If, in particular, I is finite, we
have

∑

i∈I

Ai = {
∑

i∈I

ai | a ∈×
i∈I

Ai}.

Warning: If A is a subset of M , we most often have 2A 6= A+A; more generally, we

usually have nA 6=
∑

k∈n⊏

A for a given n ∈ N.

We define a commutative group (written additively) to be a commutative
monoid G, written additively, endowed with additional structure by the prescription
of a mapping (x 7→ −x) : G→ G, subject to the following condition:

(CG) : ∀x ∈ G, x+ (−x) = 0 (law of opposites).

Of course (CM2) and (CG) imply that (−x) + x = 0 for all x ∈ G.

We again adopt the “additive” notation in this definition, because it is the one
that occurs most frequently in practice. In this notation, the mapping x 7→ −x is
called opposition, and −x is called the opposite of x, and is read “minus x”.
(The barbarism “negative of x” or, worse, “negative x”, for −x is to be avoided:
there usually is nothing negative about −x.) When multiplicative notation is used,
one uses the term reciprocal instead of opposite; the reciprocal of a member x of the
group is never denoted by −x, but the notation varies.

131A. EXAMPLES. (a): Let the S be given. Then P(S) becomes a commutative
group with Ø as zero, symmetric difference as addition, and the identity mapping
1P(S) as opposition (Proposition 16E).

(b)∗: The sets R, Q, Z, each with the number 0 as zero, and with the usual
addition and opposition of real numbers, suitably adjusted, are commutative groups
written additively. The sets R×, P×, Q×, {1,−1}, each with the number 1 as unity
and multiplication of real numbers and reciprocation of non-zero real numbers, suit-
ably adjusted, are commutative groups written multiplicatively.

(c): A doubleton {even, odd}, with even as zero, addition defined by the rules
even + even := odd + odd := even, even + odd := odd + even := odd, and opposition
defined to be the identity mapping, is a commutative group written additively. (Valid
but disingenuous disclaimer: “Any resemblance is purely coincidental”.)

Let the commutative groupG, written additively, be given. We define the mapping
((x, y) 7→ x− y) : G×G→ G, called subtraction, by the rule

x− y := x+ (−y) for all x, y ∈ G.



131. Commutative monoids and groups 223

We call x − y the difference of x and y (read “x minus y”). In particular (CG)
implies

x− x = 0 for all x ∈ G.

If multiplicative notation is used, subtraction is replaced by division, difference by
quotient, “minus” by “over” or “upon” or “divided by”; the notation for the quotient
of x and y is usually x/y or x

y
.

We return to additive notation. On the understanding that addition and sub-
traction are performed sequentially “from left to right”, we omit parentheses in such
expressions as x+ y − z := (x+ y) − z, −x− y − z := ((−x) − y) − z, etc.

For subsets A, B of a commutative group written additively, we set

−A := {−x | x ∈ A}

A− B := A + (−B) = {x− y | (x, y) ∈ A×B};

and if a, b are members of the group, we again abbreviate thus: a − B := {a}− B,
A− b := A− {b}. No multiplicative analogues of these notations are in use.

Our next result expresses one of the most fundamental properties of commutative
groups.

131B. PROPOSITION. Let the commutative group G, written additively, be given.
For all a, b ∈ G, the equation

?x ∈ G, a+ x = b

has exactly one solution, namely b− a.

Proof. For every x ∈ G, if a+x = b, then x = x+0 = x+a+(−a) = (a+x)−a =
b− a. On the other hand, a+ (b− a) = b+ (−a) + a = b+ 0 = b. Therefore a+x = b
if and only if x = b− a.

131C. COROLLARY. Let the commutative group G, written additively, be given.
Then

∀x, y, z ∈ G, x+ y = x+ z ⇒ y = z (cancellation law).

131D. COROLLARY. Let the commutative group G, written additively, be given.
For all x, y ∈ G and all m,n ∈ N we have

(131.1) −0 = 0

(131.2) −(x+ y) = (−x) + (−y)

(131.3) −(x− y) = y − x

(131.4) −(−x) = x
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(131.5) n(−x) = −nx

(131.6) n(x− y) = nx− ny

(131.7) if m ≥ n, then (m− n)x = mx− nx.

Proof. We shall only prove (131.5), (131.6), (131.7). By Proposition 115B(c),(a),
we have

n(x− y) + ny = n(x− y + y) = n(x+ 0) = nx = nx+ 0 = nx− ny + ny

(m− n)x+ nx = (m− n + n)x = mx = mx− nx+ nx,

and the cancellation law (Corollary 131C) yields (131.6) and (131.7). From (115.2)
we have n0 = 0. From (131.6) with y := 0 we obtain n(−x) = n(0 − x) = n0 − nx =
0 − nx = −nx, so that (131.5) holds.

131E. COROLLARY. Let the commutative group G, written additively, be given.
Let the family a ∈ GI be given, and set

−a := (−ai | i ∈ I) ∈ GI .

Then Supp(−a) = Suppa. For every finite subset J of I, and for every subset J
of I if Suppa is finite, we have

(131.8)
∑

J

(−a) = −
∑

J

a.

Proof. From (131.1) and (131.4) we obtain Supp(−a) = Suppa. From (131.1) and
(131.2) we have

−
∑

Ø

a = −0 = 0

−
∑

J

a = −(
∑

J\{j}

a+ aj) = −
∑

J\{j}

a+ (−aj) = −
∑

J\{j}

a+ (−a)j

for all J ∈ F×(I) and j ∈ J.

It follows from Theorem 112A (cf. (112.7), (112.8)) that (131.8) holds for all J ∈ F(I).
If Suppa = Supp(−a) is finite, we apply (131.8) to the finite set J ∩ Suppa instead
of J and find, using (113.4), that

∑

J

(−a) =
∑

J∩Supp(−a)

(−a) =
∑

J∩Suppa

(−a) = −
∑

J∩Suppa

a = −
∑

J

a

holds for all J ∈ P(I).
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132. Commutative rings

We define a commutative ring to be a commutative group A, written additively,
endowed, in addition (no pun intended!), with the structure of a commutative monoid,
written multiplicatively, subject to the following condition:

(CR) : ∀x, y, z ∈ A, (x+ y)z = (xz) + (yz) (distributive law).

Of course the distributive law and the commutative law for multiplication imply that
z(x+ y) = (zx) + (zy) for all x, y, z ∈ A.

We adopt the usual convention concerning parentheses: in the absence of paren-
theses indicating the contrary, multiplication is to be executed with priority over
addition, subtraction and opposition. Thus, the right-hand side of (CR) may be
written xz + yz.

A commutative ring with 0 as its only member is said to be trivial.

132A. EXAMPLES. (a): Let the set S be given. The P(S) becomes a commu-
tative ring with Ø as zero, symmetric difference as addition, the identity mapping
as opposition, S as unity, and intersection as multiplication (Proposition 16E). This
commutative ring is trivial if and only if S = Ø.

(b)∗: The set Z, with the usual zero, addition, opposition, and multiplication, and
with 1 as unity, is a commutative ring.

We record some simple consequences of the definition.

132B. PROPOSITION. Let the commutative ring A be given. For all x, y, z ∈ A
we have

(132.1) 0x = 0 where 0 is the zero of A

(132.2) (−x)y = x(−y) = −xy and (−x)(−y) = xy

(132.3) (x− y)z = xz − yz.

Proof. For every x ∈ A the distributive law yields

0x+ 0x = (0 + 0)x = 0x = 0x+ 0,

and the cancellation law for addition shows that 0x = 0. This establishes (132.1).

Let x, y, z ∈ A be given. The distributive law and (132.1) yield

xy + (−x)y = (x+ (−x))y = 0y = 0 = xy + (−xy),

(x− y)z + yz = (x− y + y)z = (x+ 0)z = xz = xz + 0 = xz − yz + yz,

and the cancellation law shows that (−x)y = −xy and (x−y)z = xz−yz. This estab-
lishes part of (132.2) and also (132.3). The rest of (132.2) follows by the commutative
law of multiplication.
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In (132.1), 0x was the product of the members 0 and x of A; (132.1) shows that
there is no notational clash with 0x, the 0th natural multiple of x, which is also 0 ∈ A,
by (115.2).

132C. COROLLARY. Let the commutative ring A, with unity e, be given. Then A
is trivial if (and only if) e = 0.

Proof. If e = 0, then (132.1) shows that x = ex = 0x = 0 for all x ∈ A.

We require some generalized versions of the distributive law.

132D. PROPOSITION. Let the commutative ring A, with unity e, be given.

(a): Let the family a ∈ AI and y ∈ A be given. Then Supp(aiy | i ∈ I) ⊂ Suppa.
For every finite subset J of I, and for every subset J of I if Suppa is finite, we have

(132.4) (
∑

J

a)y =
∑

j∈J

ajy.

(b): Let the families a ∈ AI and b ∈ AK be given. Then Supp(aibk | (i, k) ∈
I×K) ⊂ Suppa×Suppb. For all finite subsets J of I and L of K, and for all subsets
J of I and L of K if Suppa and Suppb are finite, we have

(
∑

J

a) (
∑

L

b) =
∑

(j,l)∈J×L

ajbl.

(c): (mx)(ny) = (mn)(xy) for all x, y ∈ A and m,n ∈ N; in particular, (me)y =
my for all y ∈ A and m ∈ N.

Proof. Proof of (a). The inclusion Supp(aiy | i ∈ I) ⊂ Suppa follows from (132.1).
From (132.1) and the distributive law we have

(
∑

Ø

a)y = 0y = 0 =
∑

j∈Ø

ajy

(
∑

J

a)y = (
∑

J\{j}

a + aj)y = (
∑

J\{j}

a)y + ajy for all J ∈ F×(I) and j ∈ J.

It follows from Theorem 112A (cf. (112.7), (112.8)), that (132.4) holds for all J ∈
F(I). If Suppa is finite, the proof is completed for all J ∈ P(I) as in Corollary 131E.

Proof of (b). By (a), the commutative law for multiplication, and Theorem 114F,
we have

(
∑

J

a) (
∑

L

b) =
∑

j∈J

(aj
∑

L

b) =
∑

j∈J

∑

l∈L

ajbl =
∑

(j,l)∈J×L

ajbl.

Proof of (c). Let x, y ∈ A and m,n ∈ N be given. By (b) and Lemma 115A and
Corollaries 101K and 103G,

(mx)(ny) = (
∑

i∈m⊏

x) (
∑

k∈n⊏

y) =
∑

(i,k)∈m⊏×n⊏

xy = (#(m⊏ × n⊏))(xy) = (mn)(xy).
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On account of Proposition 132D,(c), we may drop parentheses in expressions such
as nxy for n ∈ N and x, y ∈ A.

132E. THEOREM. Let the commutative ring A, the family of sets (Ki | i ∈ I),

and the family u ∈×
i∈I

A(Ki) be given. For all finite subsets J of I we have

(132.5)
∏

i∈J

∑

Ki

ui =
∑

h∈P

∏

i∈J

(ui)hi
, where P := ×

i∈J
Ki.

Proof. We denote the assertion (132.5) by Q(J), and show by special induction
that Q(J) holds for all J ∈ F(I). Suppose that J := Ø. Then P = {Ø}, and

∑

hep

∏

i∈J

(ui)hi
=

∑

h∈{Ø}

∏

i∈Ø

(ui)hi
=

∑

h∈{Ø}

e = e =
∏

i∈{Ø}

∑

Ki

ui =
∏

i∈J

∑

Ki

ui,

where e is the unity of A. Therefore Q(Ø) holds.

Let now J ∈ F×(I) and j ∈ J be given, and assume that Q(J\{j}) holds. Set

J ′ := J\{j}, P ′ :=×
i∈J ′

Ki. By Proposition 44A, the mapping

(132.6) h 7→ (h|J ′ , hj) : P → P ′ ×Kj

is bijective. In the following computation we use consecutively: the characteriz-
ing property of the product; the induction hypothesis; the generalized distributive
law of Proposition 132D,(b); the bijectivity of (132.6), together with Corollary 114E
(applied to multiplication) for re-indexing; and again the characterizing property of
the product. We find

∏

i∈J

∑

Ki

ui = (
∏

i∈J ′

∑

Ki

ui) (
∑

Kj

uj) = (
∑

l∈P ′

∏

i∈J

(ui)li) (
∑

k∈Kj

(uj)k) =

=
∑

(l,k)∈P ′×Kj

(
∏

i∈J ′

(ui)li)(uj)k =
∑

h∈P

(
∏

i∈J ′

(ui)hi
)(uj)hj

=

=
∑

h∈P

∏

i∈J

(ui)hi
.

This shows that Q(J) holds, and completes the induction step.

To illustrate the application of Theorem 132E, we present a derivation of the
Binomial Theorem. In the next corollary, addition of families of members of A is
defined termwise, as in Section 117.

132F. COROLLARY. Let the commutative ring A and the finite families a, b ∈ AI

be given. Then
∏

I

(a+ b) =
∑

K∈P(I)

(
∏

K

a)(
∏

I\K

b).
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Proof. Define u ∈ (A2⊏)I by (ui)0 := bi and (ui)1 := ai for all i ∈ I. From
Theorem 132E, we then obtain

(132.7)
∏

I

(a + b) =
∏

i∈I

((ui)0 + (ui)1) =
∏

i∈I

∑

2⊏

ui =
∑

h∈(2⊏)I

∏

i∈I

(ui)hi
.

The mapping
K 7→ χK⊂I : P(I) → (2⊏)I

is bijective (cf. proof of Corollary 103J). By Corollary 114E (for re-indexing) and
Corollary 114C we have

(132.8)

∑

h∈(2⊏)I

∏

i∈I

(ui)hi
=

∑

K∈P(I)

∏

i∈I

(ui)χK⊂I (i) =

=
∑

K∈P(I)

(
∏

i∈K

(ui)1)(
∏

i∈I\K

(ui)0) =

=
∑

K∈P(I)

(
∏

K

a)(
∏

I\K

b).

Combination of (132.7) and (132.8) yields the assertion to be proved.

132G. THEOREM (BINOMIAL THEOREM). Let the commutative ring A be given.
Let x, y ∈ A and n ∈ N be given. Then

(132.9) (x+ y)n =
∑

k∈(n+1)⊏

(

n
k

)

xkyn−k.

Proof. By Corollary 132F we have, using Lemma 115A (multiplicative version),
Corollary 101K, and Theorem 103A,

(132.10)

(x+ y)n =
∏

k∈n⊏

(x+ y) =
∑

K∈P(n⊏)

(
∏

i∈K

x)(
∏

j∈n⊏\K

y) =

=
∑

K∈P(n⊏)

x#Ky#(n⊏\K) =
∑

K∈P(n⊏)

x#Kyn−#K.

By Proposition 101N and Corollary 101K, the disjoint family (Fk(n⊏)|k∈(n+1)⊏)
has no empty term, and its union is P(n⊏). By Corollary 114C and Lemma 115A we
have

(132.11)

∑

K∈P(n⊏)

x#Kyn−#K =
∑

k∈(n+1)⊏

∑

K∈Fk(n⊏)

xkyn−k =

=
∑

k∈(n+1)⊏

(#Fk(n⊏))xkyn−k =
∑

k∈(n+1)⊏

(

n
k

)

xkyn−k.

Combination of (132.10) and (132.11) yields (132.9).
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133. Fields

A non-trivial commutative ring F (with unity e) is called a field if it satisfies the
following condition:
(F) : ∀x ∈ F×, ∃y ∈ F, xy = e.

We note that in a field e ∈ F×, by Corollary 132C.

133A. EXAMPLES. (a): let the set S be given. Then the commutative ring P(S)
described in Example 132A,(a) is a field if and only if S is a singleton; in that case
P(S) is a doubleton.

(b)∗: The sets R and Q, with the usual zero, addition, opposition, and multipli-
cation, and with 1 as unity, are fields; Z is not.

(c): The commutative group {even, odd} described in Example 131A,(c), becomes
a field with odd as unity, and multiplication defined by even·even := even·odd :=
odd·even := even, and odd·odd := odd.

132B. PROPOSITION. Let the field F be given. For each a ∈ F×, b ∈ F , the
equation

(133.1) ?x ∈ F, ax = b

has exactly one solution. That solution is 0 if and only if b = 0.

Proof. By (F) we may choose c ∈ F such that ac = e, wher e is the unity of F .
For every x ∈ F , if ax = b, then xex = (ac)x = cax = c(ax) = cb. On the other
hand, a(cb) = (ac)beb = b. Therefore ax = b if and only if x = cb. This prove that
(133.1) has exactly one solution. The final assertion follow from (132.1).

Given a ∈ F× and b ∈ F , the only solution of (133.1) is denoted by b/a or b
a

(read “b over a” or “b upon a” or “b divided by a”). The mapping ((x, y) 7→ x/y) :
F × F× → F is called division. For given x ∈ F×, e/x is called the reciprocal of
x (or multiplicative inverse of x).

133C. COROLLARY. Let the field F be given. Then

∀x ∈ F×, ∀y, z ∈ F, xy = xz ⇒ y = z (cancellation law for multiplication).

We observe that 0 · 0 = 0 = 0e; hence the condition x 6= 0 cannot be omitted in
Corollary 133C.

133D. COROLLARY. Let the field F , with unity e, be given. Then F×F× ⊂ F×;
and the set F×, with e as unity, ((x, y) 7→ xy) : F× × F× → F× as multiplica-
tion, and e/x as the reciprocal of x for all x ∈ F×, is a commutative group, written
multiplicatively.

The set F×, thus endowed with the structure of a commutative group, written
multiplicatively, is called the multiplicative group of the field F ; in contrast, the
commutative group F , written additively, is called the additive group of the field
F .

133E. COROLLARY. Let the field F , with unity e, be given. For all x, y ∈ F and
u, v, w ∈ F× and n ∈ N we have
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x/e = x

−(x/u) = (−x)/u = x/(−u)

(x/u) + (y/v) = (vx+ uy)/(uv)

(x/u) − (y/v) = (vx− uy)/(uv)

(x/u)(y/v) = (xy)/(uv)

e/(v/u) = u/v

(x/u)/(v/w) = (xw)/(uv)

n(x/u) = (nx)/u.

Proof. As a sample, we shall only prove the third assertion. We have uv ∈ F×,
and

uv((x/u) + (y/v)) = uv(x/u) + uv(y/v) = v(u(x/u)) + u(v(y/v)) =

= vx+ uy = uv((vx+ uy)/(uv)).

The cancellation law for multiplication then yields (x/u) + (y/v) = (vx+uy)/(uv).

133F. REMARKS. (a): The rules of operation in commutative monoids and groups,
commutative rings, and fields that we have obtained in Sections 131, 132, 133 (and
in the relevant sections of Chapter 11) have all a familiar form. In the sequel we shall
use them freely, and shall hardly ever cite chapter and verse for them. The reader
should have no difficulty in locating the appropriate reference when in doubt.

(b): One “familiar” rule that is conspicuously missing, even in the current section
on fields, is N×F× ⊂ F× for a field F , i.e.,

∀x ∈ F, ∀n ∈ N, nx = 0 ⇒ (n = 0 or x = 0).

The reason for the absence of this rule is that it is not valid in general: in Examples
133A,(c) we have 2odd = odd + odd = even, which is the zero of this field.



Chapter 14

THE REAL NUMBERS:
COMPLETE ORDERED FIELDS

141. Introduction

The purpose of this chapter and the next is to introduce the systems R, Q, and Z
of real numbers, of rational numbers, and of integers, respectively, without engaging
in a thorough or prolonged discussion of their properties.

Of the various methods in current use for the introduction of the Real-Number
System, we adopt one that stresses the operational structure of the system, rather
than one that purports to address the question of what real numbers “really are”. We
therefore introduce the Real-Number System R as an instance of a complete ordered
field, as defined in Section 143. We encounter here the same questions that we ad-
dressed when we introduced the Natural-Number System as an instance of a counting
system in Chapter 9. One is the question regarding the “essential uniqueness” of a
complete ordered field: we shall show that any two complete ordered fields are nat-
urally isomorphic as regards their complete-ordered-field structure (Section 144) —
although they may in other respects be quite different. Once this is shown, it matters
little which particular complete ordered field we accept, by choice, by construction,
or by authority, as being the Real-Number System.

The question regarding the existence of a complete ordered field then remains.
We judged the corresponding question regarding the existence of a counting system
to be a foundational issue, beyond the scope of this work. We take very much the
same view of our current existence question, but we shall establish that the two
problems are equivalent, by (a) showing that every complete ordered field “includes”
a counting system, and (b) showing how to construct a complete ordered field from a
counting system. We regard this analysis of the existence question as tangential to our
chief concerns, and therefore relegate the execution of the building process (b) to an
appendix (Chapter 16). Both here and in the proof of the natural-isomorphism result
mentioned before we use a quite faithful adaptation of the theory of ratios attributed
to Eudoxos (Eύδoξoς, 4th century B.C.E.), which gave the first effective account of
what we call positive irrational numbers (irrational, when applied to numbers, means
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“without ratio”, not “without reason”).

Common mathematical discourse regards N as a subset of R, and indeed accepts
the inclusions N ⊂ Z ⊂ Q ⊂ R. We subscribe to this view, which we shall discuss
further in Section 151. This view rules out, however, a traditional version of the
building process (b), one that starts from the Natural-Number System N itself and
proceeds by successive construction of Z, Q, and R (Z is sometimes skipped) in such
a way that none of these sets is a subset of any other. This version, even when
adjusted by suitable modifications to circumvent this obstacle, is not, in our view, so
straightforward as the one we have adopted.
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142. Ordered fields

We define an ordered field to be a field F endowed with additional structure by
the prescription of a subset P of F , called the positive half of F , subject to the
following conditions:

(OF1) : P + P ⊂ P
(OF2) : PP ⊂ P
(OF3) : P ∩ (−P ) = {0}
(OF4) : P ∪ (−P ) = F.

Conditions (OF1) and (OF2) are often expressed by saying that P is stable with
respect to addition and multiplication.

In this section and in the next, whenever F denotes an ordered field, the unity of
F and the positive half of F will always be denoted by e and P , respectively.

142A. LEMMA. Let the ordered field F be given. Then

(141.1) F\P = −P× F\P× = −P

(142.2) P× ∪ {0} ∪ (−P×) = F

(142.3) P + P× ⊂ P×

(142.4) P×P× ⊂ P×

(142.5) ∀x, y ∈ P×, x/y ∈ P×.

Proof. (142.1) and (142.2) follow immediately from (OF3) and (OF4). Let x, y∈P
be given, so that x + y ∈ P by (OF1). If x + y = 0, then y = −x ∈ −P , and by
(OF3) we find y = 0. Thus y ∈ P× implies x + y ∈ P×. Since x, y ∈ P were
arbitrary, this establishes (142.3). By (OF2), P×P× ⊂ PP ⊂ P ; but by Corollary
133D, P×P× ⊂ F×F× ⊂ F×. Hence P×P× ⊂ P ∩ F× = P×. This establishes
(142.4). Let x ∈ F and y ∈ P× be given. If x/y ∈ F\P× = −P , then x = y(x/y) ∈
P×(−P ) = −P×P ⊂ −P = F\P×; hence x ∈ P× implies x/y ∈ P×. This establishes
(142.5).

Let the ordered field F be given. We define the relation < in F by the rule

∀x, y ∈ F, x < y :⇔ y − x ∈ P×.

The term ordered field is justified by the following result.

142B. PROPOSITION. Let the ordered field F be given. Then < is a total strict
order in F .

Proof. For all x ∈ F we have x−x = 0 /∈ P×, so that < is irreflexive. Let x, y ∈ F
be given. By (142.2), either y − x ∈ P× or y − x = 0 or x − y = −(y − x) ∈ P×.
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Hence < is total. Let x, y, z ∈ F be given, and assume that x < y and y < z. Then
z − x = (z − y) + (y − x) ∈ P× + P× ⊂ P×, by (142.3). Therefore < is transitive.

We denote the (lax) order corresponding to the strict-order < in F by ≤ (the
notation ≦ is also in common use). We shall always regard the set F as ordered by
≤. We find

∀x, y ∈ F, x ≤ y ⇔ y − x ∈ P,

P = Ub({0}).

A member of F is said to be positive, negative, strictly positive, strictly neg-
ative if it is in P, −P, P×, −P×, respectively. (A conflicting convention that is
not uncommon, but that we do not use, employs the respective terms non-negative,
non-positive, positive, negative instead; it is mannerly to declare one’s choice between
these conventions when confusion might otherwise arise.)

142C. PROPOSITION. Let the ordered field F be given. Then the following mono-
tonicity laws hold:

(142.6) ∀x, y, z ∈ F, x < y ⇔ x+ z < y + z ⇔ x− z < y − z

(142.7) ∀x, y ∈ F, x < y ⇔ −y < −x

(142.8) ∀x, y ∈ F, ∀z ∈ P×, x < y ⇔ xz < yz ⇔ x/z < y/z

(142.9) ∀x, y ∈ F, ∀u, v ∈ P×, vx < uy ⇔ x/u < y/v.

Proof. For all x, y, z ∈ F we have (y+ z)− (x+ z) = (y− z)− (x− z) = y−x and
(−x)− (−y) = −x+ y = y−x; this establishes (142.6) and (142.7). Let x, y ∈ F and
z ∈ P× be given. If x < y, then yz − xz = (y − x)z ∈ P×P× ⊂ P×, by (142.4), and
hence xz < yz; if, on the other hand, x ≥ y, then xz− yz = (x− y)z ∈ PP ⊂ P , and
hence xz ≥ yz. This shows that x < y ⇔ xz < yz. Applying this equivalence to
x/z and y/z instead of x and y, we find that x/z < y/z ⇔ x < y. This establishes
(142.8). Let x, y ∈ F and u, v ∈ P× be given. Then uv ∈ P× by (142.4), and by
(142.8) vx < uy if and only if x/u = (vx)/(vu) < (uy)/(uv) = y/v. This establishes
(142.9).

142D. PROPOSITION. Let the ordered field F be given.

(a): for every x ∈ F we have xx ∈ P .

(b): e ∈ P×; for all x ∈ P× we have e/x ∈ P×.

(c): The mapping (x 7→ xx) : P → P is strictly isotone, hence injective.

Proof. Proof of (a). Let x ∈ F be given. By (OF4) and (OF2) we have xx ∈
(PP ) ∪ ((−P )(−P )) = (PP ) ∪ (PP ) = PP ⊂ P .

Proof of (b). By (a), e = ee ∈ P , but e 6= 0, hence e ∈ P×. The remaining
assertion follows from (142.5).

Proof of (c). Let x, y ∈ P be given, and assume that x < y. Then y − x ∈ P×,
and y + x = (y − x) + x + x ∈ P× + P + P ⊂ P×, by (142.3). Therefore yy − xx =
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(y − x)(y + x) ∈ P×P× ⊂ P×, by (142.4), so that xx < yy. Thus (x 7→ xx) : P → P
is strictly isotone. Since P is totally ordered, this mapping is injective (Remark
62A,(a)).

142E. THEOREM. Let the ordered field F be given. Set

(142.10) N :=
⋂

{A ∈ P(F ) | 0 ∈ A, A + e ⊂ A},

the smallest member of the intersection-stable collection A := {A ∈ P(F ) | 0 ∈ A,
A + e ⊂ A}. Then 0 ∈ N, N + e ⊂ N ⊂ P ; and the set N , with 0 as zero and the
mapping (x 7→ x+ e) : N → N as successor-mapping, is a counting system.

Proof. The collection A is obviously intersection-stable, and hence N ∈ A, so
that 0 ∈ N and N + e ⊂ N . By Proposition 142D,(b) we have e ∈ P× and hence,
by (OF1), P + e ⊂ P + P ⊂ P ; by (OF3) we have 0 ∈ P . Thus P ∈ A, and hence
N ⊂ P .

Define σ : N → N by the rule σ(x) := x + e for all x ∈ N . Then Rngσ =
N + e ⊂ P + P× ⊂ P×, by (142.3). Hence 0 /∈ Rngσ, and (Count I) holds for the
proposed counting system; σ is injective, by the cancellation law for addition in F ,
so that (Count II) holds. If S is a subset of N such that 0 ∈ S and σ>(S) ⊂ S, then
S + e ⊂ S, so that S ∈ A. Hence N ⊂ S ⊂ N , and equality holds, thus (Count III)
also holds for N , with 0 and σ.

The next result shows that the mapping (n 7→ ne) : N → F permits an identifica-
tion of N with the counting system described in Theorem 142E. (We do not actually
make this identification, in which n would serve as a symbol for ne for each n ∈ N,
at this time; but see Section 151.)

142F. PROPOSITION. Let the ordered field F be given, and let the subset N of F
be defined by (142.10). Then Ne = N (so that Ne ⊂ P ), and the mapping (n 7→ ne) :
N → Ne is an order-isomorphism. Moreover,

(142.11) 0e = 0 1e = e

(142.12) ∀m,n ∈ N, (m+ n)e = me+ ne (mn)e = (me)(ne) mne = (me)n

(142.13) ∀m,n ∈ N, m ≥ n ⇒ (m− n)e = me− ne.

Proof. We note that (142.11) follows from (115.2); the first part of (142.12)
from Proposition 115B,(a); the second part of (142.12) from Proposition 132D,(c);
and (142.13) from (131.7). The third part of (142.12) follows from the second by
induction: the core of the induction step reads

mseqne = (mnm)e = (mne)(me) = (me)n(me) = (me)seqn.

We now prove the first part of the statement. Theorem 142E describes the count-
ing system N , and asserts that N ⊂ P . By Theorem 95A, there exists exactly one
mapping φ : N → N such that φ(0) = 0 and φ(seqn) = φ(n)+e for all n ∈ N, and this
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mapping is bijective. We now prove that φ(n) = ne for all n ∈ N; this will show that
Ne = N . By (142.11), φ(0) = 0 = 0e. Let n ∈ N be such that φ(n) = ne. By (142.11)
and (142.12) we then have φ(seqn) = φ(n) + e = ne+ 1e = (n+ 1)e = (seqn)e. This
completes the induction step.

It remains to prove that φ is an order-isomorphism. Let m,n ∈ N be given. If
m ≥ n, then (142.13) yields me − ne = (m − n)e ∈ Ne ⊂ P , and hence me ≥ ne.
Thus φ is isotone. Since N is totally ordered and φ is bijective, φ is indeed an order-
isomorphism (Proposition 62D).

142G. COROLLARY. Let the ordered field F be given.

(a): The following cancellation laws hold:

(142.14) ∀n ∈ N×, ∀x, y ∈ F, nx = ny ⇒ x = y

(142.15) ∀x ∈ F×, ∀m,n ∈ N, mx = nx ⇒ m = n.

(b): N×P× ⊂ P×, and the following monotonicity laws hold:

(142.16) ∀n ∈ N×, ∀x, y ∈ F, x < y ⇔ nx < ny

(142.17) ∀x ∈ P×, ∀m,n ∈ N, m < n ⇔ mx < nx.

Proof. By Proposition 142F, the mapping (n 7→ ne) : N → P is injective. Hence
N×e = (Ne)\{0e} ⊂ P×. Then N×P× = (N×e)P× ⊂ P×P× ⊂ P× by (142.4).
Moreover, (142.14), (142.15) then follow from the cancellation law for multiplication,
and (142.16), (142.17) from (142.8) and the fact that (n 7→ ne) : N → Ne is an
order-isomorphism. For instance, if x ∈ P× and m,n ∈ N are given, we have

m < n ⇔ me < ne ⇔ mx = (me)x < (ne)x = nx.

142H. PROPOSITION. Let the ordered field F be given. The order ≤ in F is dense.

Proof. By Proposition 142D,(b) and Corollary 142G,(b) we have 2e ∈ P×. Let
x, y ∈ F be given, and assume that x < y, so that y − x ∈ P×. Set z := (x+ y)/(2e).
Then z − x = y − z = (y − x)/(2e) ∈ P×; hence x < z < y.

Let the ordered field F be given. We define the mapping (x 7→ |x|) : F → P ,
called the absolute-value mapping, by the rule

|x| := max{x,−x} =







x if x ∈ P
for all x ∈ F.

−x if x ∈ −P

For every x ∈ F, |x| is called the absolute value of x. We also define the mapping
sgnF : F → {e, 0,−e} by the rule

sgnx := sgnFx :=























e if x ∈ P×

0 if x = 0

−e if x ∈ −P×.
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For every x ∈ F, sgnx is called the sign of x (sometimes also the signum of x, in order
to prevent prosodic confusion with the sine). We record the fundamental properties
of these mappings.

142I. PROPOSITION. Let the ordered field F be given. For all x, y ∈ F and z ∈ F×

we have
|x| = 0 ⇔ x = 0

−|x| ≤ x ≤ |x|
| − x| = |x|

||x| − |y|| ≤ |x+ y| ≤ |x| + |y|
|xy| = |x||y|
|x/z| = |x|/|z|

sgn(xy) = (sgnx)(sgny)

|x|sgnx = x.

Proof. We shall only prove that |x + y| ≤ |x| + |y| for all x, y ∈ F . We have
x ≤ |x|, −x ≤ |x|, y ≤ |y|, −y ≤ |y|, and therefore, by (142.6), x+ y ≤ |x|+ |y| and
−(x+ y) = −x− y ≤ |x| + |y|; hence |x+ y| = max{x+ y,−(x+ y)} ≤ |x| + |y|.

An ordered field F is said to be archimedean if Ub(Ne) = Ø. (By the testimony
of Archimedes himself, this property of the field of real numbers, in the variant form
used by him, was used earlier by Eudoxos.) The essential property of archimedean
ordered fields is given in the following result.

142J. PROPOSITION. Let the archimedean ordered field F be given. If x, y ∈ P
and x < y, then there exist p, q ∈ N× such that qx < pe < qy.

This proposition can be roughly restated thus: Between any two distinct members
of P there is another of the form (pe)/(qe), with p, q ∈ N×.

Proof. We have y− x ∈ P×. Since F is archimedean, we may choose q ∈ N× such
that qe > e/(y−x). By (142.8) and (131.6) we have qy−qx = q(y−x) = (qe)(y−x) >
e, and hence qx + e < qy by (142.6). Again since F is archimedean, we may define
p := min{n ∈ N | ne > qx}. Since 0e = 0 ≤ qx by Corollary 142G, we have p ∈ N×,
and pe− e = (p− 1)e ≤ qx. Therefore (142.6) yields qx < pe ≤ qx+ e < qy.
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143. Complete ordered fields

An ordered field F is said to be complete if the ordered set F is pre-completely
ordered.

If F is an ordered field, then x < x+e for every x ∈ F , so that F has no maximum
and cannot, therefore, be a completely ordered set. The term “complete”, as defined
here, may thus be somewhat ill-fitting, but it is not actually misleading; we therefore
adhere to this traditional terminology.

143A. LEMMA. Let the ordered field F be given. The following statements are
equivalent:

(i): F is a complete ordered field.

(ii): The ordered subset P of F is pre-completely ordered.

(iii): Every closed order-interval of F is completely ordered.

(iv): The closed order-interval [[0, e]] of F is completely ordered.

Proof. F is totally ordered, and every closed order-interval of P is a closed order-
interval of F . From Proposition 72J we infer the implications (i) ⇔ (iii) ⇒ (ii) ⇒ (iv).
It remains to prove that (iv) implies (iii). Let the closed order-interval [[a, b]] of F be
given. Since singleton subsets of F are completely ordered, we may assume that a < b.
The mappings (x 7→ a + (b − a)x) : F → F and (x 7→ (x− a)/(b − a)) : F → F are
isotone, by Proposition 142C, and each is the inverse of the other. They are therefore
order-isomorphisms, and the former induces an order-isomorphism from [[0, e]] onto
[[a, b]]. If [[0, e]] is completely ordered, it follows that [[a, b]] is completely ordered.

143B. PROPOSITION. Let the complete ordered field F be given. Every order-
convex subset of F is either empty or a singleton or an uncountable set. In particular,
F is uncountable.

Proof. Let the order-convex subset A of F be given. By Proposition 72J, A is
totally and pre-completely ordered by ≤; by Proposition 142H, this order is dense.
The conclusion follows by Corollary 122G.

143C. PROPOSITION. Let the complete ordered field F be given. The mapping
(x 7→ x2) : P → P is an order-isomorphism.

Proof. By Proposition 142D,(c), the mapping is (strictly) isotone and injective.
Since P is totally ordered, it will be enough to show that the mapping is surjective.
(Proposition 62D).

Let y ∈ P be given. Set a := max{e, y} ∈ P×. Then y = ey ≤ ay ≤ a2, by
(142.8). For all t ∈ P we have at+ y ∈ P, t+ a ∈ P×, by (OF1), (OF2), and (142.3).
By (142.5) we may define the mapping f: [[0, a]] → P by the rule

f(t) := (at + y)/(t+ a) = a− (a2 − y)/(t+ a) for all t ∈ [[0, a]].

We see that Rngf ⊂ [[0, a]]. By Proposition 142C, applied repeatedly, we infer that f
is (strictly) isotone.

By Lemma 143A, [[0, a]] is completely ordered. By the Knaster Fixed-Point The-
orem (Theorem 75A), we may choose a fixed point x of the isotone mapping f |[[0,a]].
Then (ax+ y)/(x+ a) = x, and hence x2 = y.
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Since y ∈ P was arbitrary, the mapping (x 7→ x2) : P → P is surjective.

For every y ∈ P the unique solution of the equation

?x ∈ P, x2 = y

is called the square root of y, and denoted by
√
y. The mapping (y 7→ √

y) : P→P
is the inverse of (x 7→ x2) : P → P , and is therefore an order-isomorphism.

143D. PROPOSITION. Every complete ordered field is archimedean.

Proof. Let the complete ordered field F , with unity e, be given. Since Ne+e ⊂ Ne,
we have Ub(Ne + e) ⊃ Ub(Ne). But the mapping (x 7→ x − e) : F → F is an order-
isomorphism, by Proposition 142C (its inverse is (x 7→ x+e) : F → F ), and therefore

(143.1) Ub(Ne) = Ub(Ne+ e− e) = Ub(Ne+ e) − e ⊃ Ub(Ne) − e.

Since e ∈ P× (Proposition 142D,(b)), it follows from (143.1) that Ub(Ne) has no
minimum; hence Ne has no supremum. Since F is pre-completely ordered and Ne 6=Ø,
it follows that Ub(Ne) = Ø.

143E. PROPOSITION. Let the complete ordered field and the mapping ρ : F → F
be given. Then ρ satisfies

(143.2) ρ(x+ y) = ρ(x) + ρ(y) for all x, y ∈ F

(143.3) ρ>(P ) ⊂ P

(if and) only if ρ(e) ∈ P and

(143.4) ρ(x) = xρ(e) for all x ∈ F.

Proof. 1. By (143.2) we have ρ(y)+ρ(x−y) = ρ(y+(x−y)) = ρ(x) for all x, y ∈ F .
It follows that

(143.5) ρ(x− y) = ρ(x) − ρ(y) for all x, y ∈ F.

In particular,

(143.6) ρ(0) = ρ(0 − 0) = ρ(0) − ρ(0) = 0

(143.7) ρ(−x) = ρ(0 − x) = ρ(0) − ρ(x) = 0 − ρ(x) = −ρ(x) for all x ∈ F.

Let x ∈ F be given. We have ρ(0x) = ρ(0) = 0 = 0x, by (143.6). Let n ∈ N be
such that ρ(nx) = nρ(x). Then (143.2), (142.11), (142.12) imply

ρ((n + 1)x) = ρ(nx+ 1x) = ρ(nx) + ρ(x) = nρ(x) + 1ρ(x) = (n+ 1)ρ(x).

We have proved by induction that

(143.8) ρ(nx) = nρ(x) for all n ∈ N and x ∈ F.
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From (143.3) and (143.5) it follows that ρ is isotone. Since e ∈ P (Proposition
142D,(b)), (143.3) yields ρ(e) ∈ P .

2. Let x ∈ P be given. Suppose first that ρ(e) = 0. Since F is archimedean
(Proposition 143D), we may choose n ∈ N such that 0 ≤ x ≤ ne. By (143.6), (143.8),
and the isotonicity of ρ we find

0 = ρ(0) ≤ ρ(x) ≤ ρ(ne) = nρ(e) = n0 = 0.

We have proved that ρ(x) = 0 = xρ(e).

Suppose next that ρ(e) 6= 0. Let p, q ∈ N× be given. Since ρ is isotone, it
follows from (143.8) that pe ≤ qx implies (pe)ρ(e) = pρ(e) = ρ(pe) ≤ ρ(qx) = qρ(x),
and hence pe ≤ (qρ(x))/ρ(e) = q(ρ(x)/ρ(e)); and, similarly, pe ≥ qx implies pe ≥
q(ρ(x)/ρ(e)). We have therefore neither qx < pe < q(ρ(x)/ρ(e)) nor qx > pe >
q(ρ(x)/ρ(e)). Since p, q ∈ N× were arbitrary and F is archimedean, it follows from
Proposition 142J that x = ρ(x)/ρ(e); thus ρ(x) = xρ(e) in this case too.

We have shown that ρ(x) = xρ(e) for all x ∈ P . It follows from (143.7) and (OF4)
that ρ(x) = xρ(e) for all x ∈ F . Thus (143.4) holds.

143F. COROLLARY. Let the complete ordered field F and the mapping ρ : F → F
be given. Then ρ satisfies (143.2) and

(143.9) ρ(x2) = ρ(x)2 for all x ∈ P

(if and) only if ρ = 0F→F or ρ = 1F .

Proof. By Propositions 143C and 142D,(a), (143.9) implies (143.3). In view of
Proposition 143E, it is now sufficient to show that ρ(e) = 0 or ρ(e) = e, where e is
the unity of F . Since e ∈ P , (143.9) yields

(ρ(e) − e)ρ(e) = ρ(e)2 − eρ(e) = ρ(e2) − ρ(e) = ρ(e) − ρ(e) = 0,

and therefore ρ(e) = 0 or ρ(e) = e.
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144. Essential uniqueness of complete
ordered fields

The aim of this section is to prove that any two complete ordered fields are nat-
urally isomorphic, and thus have essentially the same structure, in the very strong
sense described in the following main result.

144A. THEOREM. Let the complete ordered fields F ′, F ′′ be given, with respective
zeros 0′, 0′′, unities e′, e′′, and positive halves P ′, P ′′. There exists exactly one
mapping φ′ : F ′ → F ′′ satisfying

(144.1) φ′(x′ + y′) = φ′(x′) + φ′(y′) for all x′, y′ ∈ F ′

(144.2) φ′(x′2) = φ′(x′)2 for all x′ ∈ P ′

(144.3) φ′ 6= 0′′F ′→F ′′.

There exists exactly one mapping φ′′ : F ′′ → F ′ satisfying

(144.4) φ′′(x′′ + y′′) = φ′′(x′′) + φ′′(y′′) for all x′′, y′′ ∈ F ′′

(144.5) φ′′(x′′2) = φ′′(x′′)2 for all x′′ ∈ P ′′

(144.6) φ′′ 6= 0′F ′′→F ′

Each of the mappings φ′, φ′′ is the inverse of the other. Each is an order-isomorphism,
and they satisfy

(144.7)
φ′(−x′) = −φ′(x′) for all x′ ∈ F ′

φ′′(−x′′) = −φ′′(x′′) for all x′′ ∈ F ′′

(144.8) φ′(0′) = 0′′ φ′′(0′′) = 0′

(144.9) φ′(e′) = e′′ φ′′(e′′) = e′

(144.10)
φ′(x′y′) = φ′(x′)φ′(y′) for all x′, y′ ∈ F ′

φ′′(x′′y′′) = φ′′(x′′)φ′′(y′′) for all x′′, y′′ = F ′′

(144.11) φ′
>
(P ′) = P ′′ φ′′

>
(P ′′) = P ′.
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For the proof of this theorem we shall rely on three lemmas. In each of them, F
and F1 are given complete ordered fields, with respective zeros 0 and 01, unities e and
e1, and positive halves P and P1.

144B. LEMMA. There exists a mapping ω : P → P1 such that

(144.12) ∀x ∈ P, ∀m,n ∈ N×,







me ≤ nx ⇒ me1 ≤ nω(x)

me ≥ nx ⇒ me1 ≥ nω(x).

Proof. Let x ∈ P be given. Since F is archimedean (Proposition 143D), there exist
m′, n′ ∈ N× such that m′e ≥ n′x (even with n′ := 1). For all such m′, n′, and for all
m,n ∈ N× with me ≤ nx, we have, by (142.16), n′me ≤ n′nx = nn′x ≤ nm′e; it fol-
lows by (142.17) that n′m ≤ nm′, and consequently (n′e1)(me1) = n′me1 ≤ nm′e1 =
(ne1)(m

′e1); and hence, by (142.9), (me1)/(ne1) ≤ (m′e1)/(n
′e1). We conclude that

the subset {(me1)/(ne1) | m,n ∈ N×, me ≤ nx} of P1 has an upper bound. Since P1

is pre-completely ordered (Lemma 143A) and has the minimum 01, this subset has a
supremum.

We may therefore define ω : P → P1 by the rule

ω(x) := sup{(me1)/(ne1) | m,n ∈ N×, me ≤ nx} for all x ∈ P.

Let x ∈ P and m′, n′ ∈ N× be given. If m′e ≤ n′x, then (m′e1)/(n
′e1) ≤ ω(x), and

hence, by (142.8), m′e1 ≤ (n′e1)ω(x) = n′ω(x). If, on the other hand, m′e ≥ n′x, we
showed in the preceding paragraph that (me1)/(ne1) ≤ (m′e1)/(n

′e1) for all m,n ∈
N× with me ≤ nx; and therefore ω(x) ≤ (m′e1)/(n

′e1), and consequently m′e1 ≥
(n′e1)ω(x) = n′ω(x). Thus (144.12) is established.

144C. LEMMA. Let ω : P → P1 be a mapping that satisfies (144.12). Then
ω(e) = e1 and

(144.13) ω(x+ y) = ω(x) + ω(y) for all x, y ∈ P

(144.14) ω(xy) = ω(x)ω(y) for all x, y ∈ P.

Proof. 1. We have 1e = 1e. It follows from (144.12) that e1 = 1e1 = 1ω(e) = ω(e).

Let x, y ∈ P and m,n ∈ N× be given. Assume first that me1 < nω(x + y). It
follows from (144.12) that me < n(x+ y). If me < nx, we set a := m, b := 0, c := 1.
If nx ≤ me < ny, we set a := 0, b := m, c := 1. If me ≥ nx and me ≥ ny, we have,
by (142.6), me − ny < nx ≤ me. Since F is archimedean, Proposition 142J permits
us to choose p, q ∈ N× such that q(me− ny) < pe < qnx ≤ qme (the last inequality
by (142.16)); therefore p ≤ qm, by (142.17), and we set a := p, b := qm− p, c := q.
In all three cases, c ∈ N×, and ae ≤ cnx, be ≤ cny, and a + b = cm. Then (144.12)
yields ae1 ≤ cnω(x), be1 ≤ cnω(y) (even when a = 0 or b = 0), and therefore, by
(142.6),

cme1 = ae1 + be1 ≤ cnω(x) + cnω(y) = cn(ω(x) + ω(y));
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consequently, by (142.16), me1 ≤ n(ω(x) + ω(y)).

Assume next that me1 > nω(x+ y). It follows from (144.12) that me>n(x + y).
Then 0 ≤ ny < me and nx < me − ny ≤ me. By Proposition 142J we may choose
p, q ∈ N× such that qnx < pe < q(me− ny) ≤ qme. Then p ≤ qm and qnx < pe and
qny < (qm−p)e. We infer from (144.12) that pe1 ≥ qnω(x) and (qm−p)e1 ≥ qnω(y),
and therefore

qme1 = pe1 + (qm− p)e1 ≥ qnω(x) + qnω(y) = qn(ω(x+ ω(y));

consequently, by (142.16), me1 ≥ n(ω(x) + ω(y)).

We infer from the preceding two paragraphs that we have neither n(ω(x)+ω(y)) <
me1 < nω(x + y) nor n(ω(x) + ω(y)) > me1 > nω(x + y). Since m,n ∈ N× were
arbitrary and F1 is archimedean, it follows from Proposition 142J that ω(x) +ω(y) =
ω(x+ y). Since x, y ∈ P were arbitrary, (144.13) is established.

2. From (144.13) we have ω(0) = ω(0 + 0) = ω(0) + ω(0), and hence ω(0) =
ω(0) − ω(0) = 0. Therefore ω(0y) = ω(0) = 0 = 0ω(y) = ω(0)ω(y) for all y ∈ P .

Let x ∈ P×, y ∈ P , and m,n ∈ N× be given. Assume first that me1 < nω(xy).
It follows from (144.12) that me < nxy, and hence (me)/x < ny. By Proposition
142J we may choose p, q ∈ N× such that (qme)/x = q((me)/x) < pe < qny. Then
qme < px and pe < qny; from (144.12) we infer that qme1 ≤ pω(x) and pe1 ≤
qnω(y); by (142.8) it follows that pqme1 ≤ pqnω(x)ω(y) and hence, by (142.16),
me1 ≤ nω(x)ω(y). By exactly the same argument with the inequalities reversed
it follows that me1 > nω(xy) implies me1 ≥ nω(x)ω(y). We thus have neither
nω(x)ω(y) < me1 < nω(xy) nor nω(x)ω(y) > me1 > nω(xy). Since m,n ∈ N× were
arbitrary and F1 is archimedean, Proposition 142J yields that ω(xy) = ω(x)ω(y).
Since x ∈ P× and y ∈ P were arbitrary, and since we have shown before that
ω(0y) = ω(0)ω(y) for all y ∈ P , (144.14) is established.

144D. LEMMA. Let ω : P → P1 be a mapping that satisfies (144.13) and (144.14).
Define ψ : F → F1 by the rule

(144.15) ψ(x) :=







ω(x) if x ∈ P

−ω(−x) if x ∈ F\P = −P×.

Then

(144.16) ψ(−x) = −ψ(x) for all x ∈ F

(144.17) ψ(x+ y) = ψ(x) + ψ(y) for all x, y ∈ F

(144.18) ψ(xy) = ψ(x)ψ(y) for all x, y ∈ F.

Proof. (144.16) is an immediate consequence of (144.15) and the fact that ω(0) =
0 (which follows from (144.13) as in the preceding proof). (144.18) follows from



244 CHAPTER 14. THE REAL NUMBERS: COMPLETE ORDERED FIELDS

(144.14), (144.15), (144.16): for example, if x ∈ P, y ∈ F\P = −P×, we have
−(xy) = x(−y) ∈ PP ⊂ P , and ψ(xy) = −ω(−(xy)) = −ω(x(−y)) = −ω(x)ω(−y) =
ω(x)(−ω(−y)) = ψ(x)ψ(y).

We claim that

(144.19) ∀x, y, z ∈ F, x+ y + z = 0 ⇒ ψ(x) + ψ(y) + ψ(z) = 01.

In view of the symmetry of (144.19) and on account of (OF4), it is enough to prove
(144.19) under the additional restriction that x, y ∈ P or x, y ∈ −P . The latter
case is reduced to the former by replacing x, y, z by −x, −y, −z, respectively, and
applying (144.16). Now if x, y ∈ P and x+ y+ z = 0, then −z = x+ y ∈ P +P ⊂ P ,
and (144.15), (144.13), (144.16) yield

ψ(x) + ψ(y) + ψ(z) = ω(x) + ω(y) − ψ(−z) = ω(x+ y) − ω(x+ y) = 01,

as claimed, thus establishing (144.19).

For all x, y ∈ F we have x + y + (−(x + y)) = 0. It follows, using (144.16) and
(144.19), that

ψ(x) + ψ(y) − ψ(x+ y) = ψ(x) + ψ(y) + ψ(−(x+ y)) = 01 for all x, y ∈ F,

and thus (144.17) is also established.

Proof of Theorem 144A. 1. Relying on Lemmas 144B, 144C, 144D with F := F ′

and F1 := F ′′, and again with F := F ′′ and F1 := F ′, we may choose mappings
ψ′′ : F ′ → F ′′ and ψ′′ : F ′′ → F ′ that satisfy

(144.20) ψ′(e′) = e′′ ψ′′(e′′) = e′

(144.21) ψ′
>
(P ′) ⊂ P ′′ ψ′′

>
(P ′′) ⊂ P ′

(144.22)
ψ′(−x′) = −ψ′(x′) for all x′ ∈ F ′

ψ′′(−x′′) = −ψ′′(x′′) for all x′′ ∈ F ′′

(144.23)
ψ′(x′ + y′) = ψ′(x′) + ψ′(y′) for all x′, y′ ∈ F ′

ψ′′(x′′ + y′′) = ψ′′(x′′) + ψ′′(y′′) for all x′′, y′′ ∈ F ′′

(144.24)
ψ′(x′y′) = ψ′(x′)ψ′(y′) for all x′, y′ ∈ F ′

ψ′′(x′′y′′) = ψ′′(x′′)ψ′′(y′′) for all x′′, y′′ ∈ F ′′.
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We observe that φ′ := ψ′ and φ′′ := ψ′′ satisfy (144.1), (144.2), (144.3), (144.4),
(144.5) (144.6), (144.7), (144.8) (from (144.7)), (144.9), and (144.10).

From (144.23) we have

(ψ′′ ◦ ψ′)(x′ + y′) = ψ′′(ψ′(x′ + y′)) = ψ′′(ψ′(x′) + ψ′(y′)) = ψ′′(ψ′(x′)) + ψ′′(ψ′(y′)) =

= (ψ′′ ◦ ψ′)(x′) + (ψ′′ ◦ ψ′)(y′) for all x′, y′ ∈ F ′;

and from (144.24) a similar computation yields

(ψ′′ ◦ ψ′)(x′2) = ((ψ′′ ◦ ψ′)(x′))2 for all x′ ∈ P ′.

From (144.20) we have (ψ′′ ◦ ψ′)(e′) = ψ′′(e′′) = e′ 6= 0′. Applying Corollary 143F to
F := F ′ and ρ := ψ′′ ◦ ψ′, we conclude that ψ′′ ◦ ψ′ = 1F ′.

Repeating the argument with F ′ and F ′′, ψ′ and ψ′′ interchanged, we conclude
that ψ′◦ψ′′ = 1F ′′. Thus ψ′ and ψ′′ are invertible, and each is the inverse of the other.
Therefore equality must hold in (144.21).

By (144.21), (144.22), (144.23), ψ′ and ψ′′ are isotone, and therefore they are
order-isomorphisms. Thus φ′ := ψ′ and φ′′ := ψ′′ are order-isomorphisms, each is the
inverse of the other, and they satisfy (144.11).

2. It remains to show that φ′ := ψ′ and φ′′ := ψ′′ are the only mappings satisfying
(144.1), (144.2), (144.3) and (144.4), (144.5), (144.6).

Let φ′′ : F ′′ → F ′ be a mapping that satisfies (144.4), (144.5), (144.6). From
(144.4) and (144.23), and from (144.5) and (144.24), we obtain, by computations
similar to the preceding ones,

(φ′′ ◦ ψ′)(x′ + y′) = (φ′′ ◦ ψ′)(x′) + (φ′′ ◦ ψ′)(y′) for all x′, y′ ∈ F ′

(φ′′ ◦ ψ′)(x′2) = ((φ′′ ◦ ψ′)(x′))2 for all x′ ∈ P ′.

By (144.6) we have (φ′′ ◦ ψ′) ◦ ψ′′ = φ′′ ◦ (ψ′ ◦ ψ′′) = φ′′ ◦ 1F ′′ = φ′′ 6= 0′F ′′→F ′, and
therefore φ′′ ◦ψ′ 6= 0′F ′→F ′. We may therefore apply Corollary 143F with F := F ′ and
ρ := φ′′ ◦ ψ′ and find that φ′′ ◦ ψ′ = 1F ′. Thus φ′′ is a left-inverse of the invertible
mapping ψ′, and therefore φ′′ must be ψ′′, the inverse of ψ′.

If φ′ : F ′ → F ′′ satisfies (144.1), (144.2), (144.3), the same argument, with F ′ and
F ′′, ψ′ and ψ′′ interchanged, shows that φ′ = ψ′.
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Chapter 15

THE REAL-NUMBER SYSTEM

151. The Real-Number System

The real numbers, the operations with them, and the relations among them consti-
tute a fundamental cluster of notions in Mathematics. It is plain that some essential
properties of the system of real numbers are summarized by stating that it constitutes
an ordered field. Long before the concept was formalized, it was realized that more
was required: a careful analysis of the use made of real numbers, such as originates
with the theory of ratios of Eudoxos, demands that this ordered field be complete.

It might seem that with this specification we have not exhausted the demands
implicit in the structure of the system: we have not yet accounted, say, for notions of
distance, of nearness, of continuity, etc. Our “essential-uniqueness result”, Theorem
144A shows us, however, that such additional demands cannot require a choice among
complete ordered fields, since these are all naturally isomorphic; the additional no-
tions will have to be accommodated by deriving them from the complete-ordered-field
structure itself.

Concerning the question of existence of complete ordered fields, we refer to the
introductory comments in Section 141 and the discussion in Chapter 16. We shall
lose no further sleep over this question here.

With the same turn of phrase used concerning the natural numbers we say: We
shall adopt, or pretend to adopt, the naive view that one specific complete ordered
field is revealed to us, or singled out by us, as the Real-Number System, to be
denoted by R, and its members to be known as real numbers.

We should like to work in a mathematical world in which, justifying common
usage, the natural numbers are themselves real numbers. We achieve this as follows.
In an ordered field F with unity e there is the counting system N described by
Theorem 142E. We observe that neither the definition of complete ordered field, nor
the construction of N with its zero and successor-mapping, nor the proof of Theorem
142E makes any appeal to the Natural-Number System. We also recall that any
counting system could serve as the Natural-Number System. We therefore take it for
granted that the counting system described by Theorem 142E for the special (complete)
ordered field R is in fact the Natural-Number System N itself. This state of affairs

247



248 CHAPTER 15. THE REAL-NUMBER SYSTEM

may be interpreted as part of the revelation, or the choice, that gives us both systems;
or it may, less satisfyingly, be regarded as a deliberate change in recognizing which
counting system is the Natural-Number System.

With this state of affairs granted, the unity of R is the natural number 1, and the
nth multiple of this unity is the natural number n for each n ∈ N.

Of course this state of affairs would be anything but desirable if there were a clash
between the operations and relations defined for the natural numbers on the one hand,
and the similarly designated operations and relations defined for the real numbers, as
adjusted to the subset of natural numbers, on the other. Proposition 142F shows that
there is no such clash as regards order, zero, unity, addition, multiplication, power
formation (exponentiation), and subtraction (so far as meaningful in N). Proposition
132D,(c) shows that, for n ∈ N and r ∈ R, there is no clash between nr, the nth
multiple of the real number r, and nr, the product of the real numbers n and r.

Most notation and terminology for R is the same as that introduced for all (com-
plete) ordered fields. We mention two items of specialized notation. The positive half
of R will be denoted by P. Order-intervals in R are written with ordinary (square)
brackets: for given a, b ∈ R with a ≤ b we set

[a, b] := [[a, b]] = {t ∈ R | a ≤ t ≤ b}

[a, b[ := [[a, b[[ = {t ∈ R | a ≤ t < b}

]a, b] := ]]a, b]] = {t ∈ R | a < t ≤ b}

]a, b[ := ]]a, b[[ = {t ∈ R | a < t < b}.

In much mathematical writing one finds one of a pair of parentheses used instead of
the everted bracket: [a, b), (a, b], (a, b) instead of [a, b[, ]a, b], ]a, b[. This notation is
less suggestive than the one we adhere to, and is actually confusing: (a, b) already
denotes a pair.

Every order-convex subset of R is called an interval. This terminology involves
a mild clash with the term order-interval as introduced in Section 61, but is too
entrenched (and useful) to be discarded. The clash will, moreover, be almost entirely
eliminated when all intervals will be shown, in the next section, to actually be order-
intervals in the Extended-Real-Number System.

151A. PROPOSITION. A subset of R is an interval if and only if it is an order-
interval of R, or R itself, or one of the sets a + P, a + P×, a− P, a− P× for some
a ∈ R.

Proof. This is an immediate consequence of Proposition 72J((i) ⇒ (iv)) and the
definition of the order ≤ in R.

An interval is said to be bounded if it is order-bounded; it follows from Propo-
sition 151A that this is the case precisely when it is an order-interval. An interval is
said to be genuine if it is neither empty nor a singleton.
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151B. PROPOSITION. Every genuine interval is an uncountable set. In particular,
R is uncountable.

Proof. This is a reformulation of Proposition 143B. (See also Example 122H.)

We set Z := N∪(−N). The members of Z are called integers (sometimes they are
called whole numbers). A real number is said to be integral if it is in Z. The natural
numbers are thus the positive integers. We show that Z is stable under addition,
opposition, and multiplication; this will enable us to adjust these operations to Z.

151C. PROPOSITION. Z + Z = Z, −Z = Z, ZZ = Z.

Proof. We have N + N ⊂ N,NN ⊂ N, and 0, 1 ∈ N ⊂ Z. The assertion will
therefore be established once we prove that N − N ⊂ Z. Let m,n ∈ N be given. If
m ≥ n, we have m− n ∈ N ⊂ Z; if m < n, we have m− n = −(n−m) ∈ −N ⊂ Z.

151D. COROLLARY. Z is a commutative ring with 0 as zero, 1 as unity, and
addition, opposition, and multiplication adjusted from the corresponding operations
in R. This commutative ring is not a field.

Proof. All but the last statement is obvious in view of Proposition 151C. For every
n ∈ Z× we have |2n| = 2|n| ≥ 2 · 1 = 2 > 1, and therefore there is no n ∈ Z such that
2n = 1.

It is convenient to extend to Z the notation introduced by (92.9) for N:

m..n := {k ∈ Z | m ≤ k ≤ n} for all m,n ∈ Z

(see comments following (92.9) to explain this choice of notation).

We are now able to extend the notion of natural multiples (Section 115) in a
commutative group to that of integral multiples. Let the commutative group G,
written additively, be given. We define

(−n)x := −nx = n(−x) for every x ∈ G and n ∈ N×,

thus completing the definition of nx for all n ∈ Z and x ∈ G. The following result is
obtained by straightforward verification.

151E. PROPOSITION. The statements of Corollary 131D and Proposition 132,(c)
remain valid when N is replaced by Z.

In a commutative group G written multiplicatively we have, correspondingly, the
notion of powers xn for all n ∈ Z and x ∈ G, obtained by defining

x−n := e/xn = (e/x)n for every x ∈ G and n ∈ N×

(where e is the unity of G). This notation is applicable, in particular, to the multi-
plicative group of a field, and more in particular to the multiplicative group R× of R.
We note that, by (142.4) and Proposition 142D,(b), we have

(151.1) rn ∈ R× for all n ∈ Z and r ∈ R×.

We introduce two integer-valued mappings from R to R.
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151F. PROPOSITION. Let r ∈ R be given. The set Z∩ (r+P) = Z∩Ub({r}) has
a minimum and the set Z ∩ (r − P) = Z ∩ Lb({r}) has a maximum.

Proof. Assume that r ∈ P. The set Z∩ (r+P) = Z∩P∩ (r+P) = N∩Ub({r}) is
a non-empty subset of N, since R is archimedean; it therefore has a minimum. The
set N∩ (r− P) = N∩ [0, r] is finite (the preceding minimum is an upper bound in N)
and it contains 0. Therefore N∩ (r−P) has a maximum, and this is also a maximum
of Z ∩ (r − P).

Opposition in R is an order-antimorphism that maps Z onto Z (Proposition 151C).
If r ∈ −P, therefore, −max(Z ∩ (−r − P)) = −max(−(Z ∩ (r + P))) is a minimum
of Z ∩ (r + P), and −min(Z ∩ (−r + P)) = −min(−(Z ∩ (r − P))) is a maximum of
Z ∩ (r − P).

By virtue of Proposition 151F we may define the functions ⌈, ⌊ ∈ Map(R,R) by
the rules

(151.2) ⌈r := min(Z ∩ (r + P)), ⌊r := max(Z ∩ (r − P)) for all r ∈ R.

151G. PROPOSITION. The functions ⌈, ⌊ have the following properties:

(151.3) ⌈ and ⌊ are isotone and idempotent, and Rng⌈= Rng⌊= Z.

(151.4) ⌈(−r) = −⌊r for all r ∈ R.

(151.5)
(⌈r = n ⇔ r ∈ ]n− 1, n]) and (⌊r = n ⇔ r ∈ [n, n+ 1[)

for all r ∈ R and n ∈ Z.

(151.6) r − 1 < ⌊r ≤ r ≤ ⌈r < r + 1 for all r ∈ R.

(151.7) ⌈(2r) ∈ {2⌈r, 2⌈r − 1} and ⌊(2r) ∈ {2⌊r, 2⌊r + 1} for all r ∈ R.

Proof. We shall prove only one-half of (151.7). Let r ∈ R be given. Then (151.5)
yields ⌈r − 1 < r ≤ ⌈r. By Proposition 142C, 2⌈r − 2 < 2r ≤ 2⌈r. Therefore
⌈(2r) = 2⌈r or ⌈(2r) = 2⌈r − 1 according as 2r > 2⌈r − 1 or 2r ≤ 2⌈r − 1.

On account of (151.2) or (151.5), ⌈r and ⌊r are called the ceiling of r and the
floor of r, respectively, for every r ∈ R. The functions ⌈ and ⌊ themselves are called
the ceiling-function and the floor-function, respectively. (They are also known as
the least-integer function and the greatest-integer function. The notation [r] instead
of ⌊r is often encountered; we do not use it.)

We set Q := {m/n | (m,n) ∈ Z × N×} = {m/n | (m,n) ∈ Z × Z×}. A real
number is said to be rational or irrational, and is called a rational number or
an irrational number, according as it is in Q or not. We record the fact that Q is
stable under addition, opposition, and multiplication, as well as division by non-zero
numbers; this will enable us to adjust these operations to Q.
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151H. PROPOSITION. Q + Q = Q,−Q, QQ = Q. Moreover,

p/q ∈ Q for all (p, q) ∈ Q×Q×.

Proof. This follows from Corollary 133E.

151I. COROLLARY. Q is an archimedean ordered field with 0 as zero, 1 as unity,
Q∩ P as positive half, and addition, opposition, and multiplication adjusted from the
corresponding operations in R.

We next show that between any two distinct real numbers there is always a rational
number.

151J. PROPOSITION. Let s, t ∈ R be given. If s < t, then there exists q ∈ Q such
that s < q < t.

Proof. Since −Q = Q and 0 ∈ Q, it is sufficient to prove the assertion when
s, t ∈ P. But then the conclusion follows immediately from Proposition 142J and
(142.8), since R is archimedean.

151K. REMARKS. (a): The set Q is infinite, since it includes the infinite set N.
It is shown in Example 121R that Q is countable.

(b): Since R is uncountable (Proposition 151B) and Q is countable, it follows
that there exists an irrational number. It then follows at once from Proposition
142J that between any two distinct real numbers there is an irrational number. It is
actually not difficult to produce a specific irrational number: e.g.,

√
2 is irrational.

For completeness (no pun intended) we include a proof of this fact.

151L. PROPOSITION. For all p, q ∈ N×, 2q2 6= p2. Consequently,
√

2 is irrational.

Proof. Set A := {q ∈ N× | ∃p ∈ N×, 2q2 = p2}. We are to show that A = Ø.

Let q ∈ A be given. We may choose p ∈ N× such that

(151.8) 2q2 = p2.

Since 1 < 2 < 2 · 2 = 4, we find

q2 < 2q2 = p2 < 4q2 < 4p2.

Since the mapping x 7→ x2 : P → P is strictly isotone (Proposition 142D,(c)), we
conclude that

q < p < 2q < 2p.

From this we obtain q′ := 2q − p ∈ N× and p′ := 2(p− q) ∈ N×, and q′ < 2q − q = q.
From (151.8) we also have

2q′2 = 2 · 4q2 − 2 · 4qp+ 2p2 = 4p2 − 2 · 4pq + 4q2 = p′2.

We conclude that q′ ∈ A, but q′ < q. Thus A has not a minimum, and hence is
empty.
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152. The Extended-Real-Number System

We observed at the beginning of Section 143 that the complete ordered field R
has no maximum; since opposition is an order-antimorphism from R to R, R has no
minimum either. It is sometimes convenient to regard the pre-completely ordered set
R as an order-interval of a completely ordered set, as described in Example 72I,(b),
by relying on Theorem 72G. To that end we choose, or assume to be specified, a
doubleton {∞,∞′} that is disjoint from R, and set R̄ := R∪{∞,∞′}; we then define
in R̄ a relation, again denoted by ≤, by requiring that its restriction to R be the order
of R and that ∞′ ≤ t and t ≤ ∞ for all t ∈ R̄ . Then R̄ is totally and completely
ordered by ≤, and ∞′ = minR̄ = infR and ∞ = maxR̄ = supR. The corresponding
strict-order is again denoted by <.

It is desirable to extend to R̄, or as far as possible into R̄, the algebraic op-
erations in R, while preserving the validity of as many as possible of their basic
properties. Thus, we define the opposition (t 7→ −t) : R̄ → R̄ by requiring that
it agree with opposition on R and satisfy −∞ := ∞′,−∞′ := ∞. From now on
we shall always write −∞ for ∞′. We define the addition ((s, t) 7→ s + t) :
(R̄ × R̄)\{(∞,−∞), (−∞,∞)} → R̄ by requiring that it agree with addition on
R× R and satisfy

∞ + t := t + ∞ := ∞ for all t ∈ R ∪ {∞}

−∞ + t := t + (−∞) := −∞ for all t ∈ R ∪ {−∞};

the subtraction ((s, t) 7→ s − t) : (R̄ × R̄)\{(∞,∞), (−∞,−∞)} → R̄ by the rule
s− t := s + (−t) for all (s, t) in the domain; and the multiplication ((s, t) 7→ st) :
R̄× R̄ → R̄ by requiring that it agree with multiplication on R×R and satisfy

∞ · t := t · ∞ :=























∞ if t > 0

0 if t = 0 for all t ∈ R̄

−∞ if t < 0

(−∞) · t := t · (−∞) :=























−∞ if t > 0

0 if t = 0 for all t ∈ R̄.

∞ if t < 0

It must be noted that many results (e.g., concerning limits) that involve multipli-
cation in R̄ are valid only if the domain of multiplication is restricted to exclude
multiplication of 0 by either ∞ or −∞.

It may be seen that the associative, commutative, and neutrality laws for both ad-
dition and multiplication, as well as the distributive law, are preserved; but note that
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the domain of addition is not R̄×R̄, so that we have not a commutative ring. The for-
mulas (131.1), (131.2), (131.3), (131.4), (131.5), (132.1), (132.2), (132.3) also remain
valid in R̄. The cancellation laws fail. The strict monotonicity laws in Proposition
142C and Corollary 142G,(b) fail, but their lax analogues remain valid. Notations
such as A×, A+B, A−B, AB for subsets A, B of R̄ are defined as in Sections 131
and 132, so long as the definition remains meaningful.

The completely ordered set R̄, thus endowed with structure, is called the
Extended-Real-Number System; its members are called extended-real num-
bers; ∞ is called (plus) infinity, and is regarded as strictly positive; −∞ is called
minus infinity, and is regarded as strictly negative. An extended-real number is
said to be finite or infinite according as it is in R or not.

We set P̄ := P ∪ {∞} = {t ∈ R̄ | t ≥ 0}, and extend the use of plain square
brackets for order-intervals in R to those in R̄. In particular,

(152.1)
[a,∞[ = a + P ]a,∞[ = a+ P× ]−∞, a] = a− P

]−∞, a[ = a− P× ]−∞,∞[ = R,

which are intervals in R (Proposition 151A). The notations recorded in (152.1) are
often used in R even when “∞” and “−∞” are not regarded as names for actual
objects, but merely convenient notational devices.

152A. PROPOSITION. P̄ + P̄ ⊂ P̄, P̄ + P̄× ⊂ P̄×, P̄P̄ ⊂ P̄, P̄×P̄× ⊂ P̄×. The
set P̄, with 0 as zero, 1 as unity, and addition and multiplication adjusted from the
corresponding operations in R̄, is both a commutative monoid written additively and
a commutative monoid written multiplicatively, and the distributive law holds:

∀r, s, t ∈ P̄, (r + s)t = rt+ st.

As an ordered subset of R̄, P̄ is completely and totally ordered, and the following
monotonicity laws hold:

(152.2) ∀r, s, t ∈ P̄, r ≤ s ⇒ r + t ≤ s+ t

(152.3) ∀r, s, t ∈ P̄, r ≤ s ⇒ rt ≤ st.

In the commutative monoid P̄ written additively it is possible to extend the notion
of sum from families with finite support to all families.

Suppose first that the family a ∈ P̄I has finite support, and let J ∈ P(I) be given.
By (152.2) we have

∑

J∩Suppa

a =
∑

J

a =
∑

K

a +
∑

J\K

a ≥
∑

K

a for every K ∈ F(J),

and therefore
∑

J

a = max{
∑

K

a | K ∈ F(J)}.
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Now let a family a ∈ P̄I be given; we make no assumption about its support. The
preceding discussion shows that there will be no notational clash if we define

(152.4)
∑

J

a := sup{
∑

K

a | K ∈ F(J)} for all J ∈ P(I),

as we may, since P̄ is completely ordered; and we may call
∑

J

a the sum of the family

a over J .

This extended notion of sum shares many of the properties of the sums of families
with finite support, as described in Sections 113, 114, 115, 117; we shall not develop
these here, except for the few results that follow.

152B. REMARK. Let the family a ∈ P̄I and J ∈ P(I) be given, and assume

that
∑

J

a is finite. It is obvious that aj is finite for every j ∈ J , and that the set

Kn := {j ∈ J | aj > (1/n)
∑

J

a} is finite, with #Kn < n, for all n ∈ N×. Therefore

J ∩ Suppa =
⋃

n∈R×

Kn (cf. Proposition 142J) is countable, by •Corollary 121N.

152C. LEMMA. Let the sequence a ∈ P̄N× and m ∈ N be given. Then
∑

J

a = sup{
∑

J∩n⊐

a | n ∈ m + N} for all J ∈ P(N×).

Proof. For every K ∈ F(J) we may choose an upper bound n of K ∪m⊐ and find
that n ∈ m + N and, by (152.2),

∑

J

a ≥
∑

J∩n⊐

a =
∑

K

a+
∑

(J\K)∩n⊐

a ≥
∑

K

a.

The assertion then follows from (152.4).

152D. LEMMA. Let the family a ∈ P̄I be given. The mapping J 7→
∑

J

a : P(I)→ P̄
is (⊂I ,≤)-isotone.

152E. PROPOSITION. Let the family a ∈ P̄I and the disjoint collection C of
subsets of I be given. Then

∑

⋃
C

a =
∑

A∈C

∑

A

a.

Proof. 1. Let K ∈ F(
⋃

C) be given. Set D := {A ∈ C | A ∩ K 6= Ø}. Then

{A ∩K | A ∈ D} is a (finite) partition of K. By Corollary 144C,
∑

K

a =
∑

A∈D

∑

A∩K

a ≤
∑

A∈D

∑

A

a ≤
∑

A∈C

∑

A

a

(the first inequality is valid because D is finite). Since K ∈ F(
⋃

C) was arbitrary, we

have

(152.5)
∑

∪C
a ≤

∑

A∈C

∑

A

a.
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2. Let D ∈ F(C) be given. If
∑

∪D
a = ∞, it follows that

(152.6)
∑

∪D
a ≥

∑

A∈D

∑

A

a.

In order to prove (152.6) in every case, we may therefore assume that
∑

∪D
a ∈ P; it

follows by Lemma 152D that
∑

A

a ∈ P for all A ∈ D.

Let ǫ ∈ P× be given. We may choose a family (BA | A ∈ D) ∈×
A∈D

F(A) such that

∀A ∈ D,
∑

A

a < ǫ+
∑

BA

a.

Then K :=
⋃

A∈D

BA ∈ F(
⋃

D), and by Corollary 114C and Lemma 152D (the latter

also to deal with possibly empty terms),

∑

A∈D

∑

A

a ≤
∑

A∈D

(ǫ +
∑

BA

a) = ǫ(#D) +
∑

K

a ≤ ǫ(#D) +
∑

∪D
a.

Since ǫ ∈ P× was arbitrary, we have shown that (152.6) also holds when
∑

∪D
a ∈ P.

3. Since D ∈ F(C) was arbitrary in Part 2, we have, using Lemma 152D,

∀D ∈ F(C),
∑

A∈D

∑

A

a ≤
∑

∪D
a ≤

∑

∪C
a.

By the definition of the sum of the family (
∑

A

a | A ∈ C), we conclude that

∑

A∈C

∑

A

a ≤
∑

∪C
a.

Together with (152.5) this yields the desired conclusion.
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153. Binary digital expansion

In this section we shall establish the familiar fact that for every real number

r ∈ ]0, 1] there is a sequence s ∈ {0, 1}N× such that r =
∑

n∈N×

sn2−n.

Such a sequence may be called a binary digital expansion of r; for each n ∈ N×, sn
is the nth binary digit (or bit) in the expansion. It is clear that the binary digital
expansion s is known once its support A := Supps is known: indeed, s = χA⊂N× , and

we also have r =
∑

n∈A

2−n.

It is well known that for some r there are two binary expansions; this however,
happens if and only if there is one with finite support. If we insist on a non-terminating
expansion, i.e., one with infinite support, then there is exactly one for each r ∈ ]0, 1];

indeed, we shall see that the rule A 7→
∑

n∈A

2−n defines a bijection from the collection

of all infinite subsets of N× to the interval ]0, 1].

153A. LEMMA. Let the non-empty subset A of N× be given. Then

(153.1) ∀m,n ∈ N, m ≤ n ⇒
∑

k∈(n⊐\m⊐)∩A

2−k ≤ 2−m − 2−n

(153.2)
∑

k∈A

2−k ∈ ]0, 1].

Proof. By (121.1) we have

(153.3)
∑

j∈l⊏

2j = 2l − 1 for all l ∈ N.

Let m,n ∈ N be given, with m ≤ n. Then Proposition 142C and (153.3) yield
∑

k∈(n⊐\m⊐)∩A

2−k ≤
∑

k∈(n⊐\m⊐)∩A

2−k +
∑

k∈(n⊐\m⊐)\A

2−k =
∑

k∈n⊐\m⊐

2−k =

=
∑

j∈(n−m)⊏

2−(n−j) = 2−n
∑

j∈(n−m)⊏

2j = 2−n(2n−m − 1) = 2−m − 2−n.

This establishes (153.1).

From (153.1) with m := 0 we have
∑

k∈A∩n⊐

2−k ≤ 1 − 2−n < 1 for all n ∈ N. On

the other hand, since A 6= Ø, we have
∑

k∈A∩(minA)⊐

2−k = 2−minA > 0. It follows from

Lemma 152C that (153.2) holds.

153B. LEMMA. Let r ∈ ]0, 1] and the subset A of N× be given. Then

(153.4) A = {n ∈ N× | ⌈(2nr) ∈ 2N}



153. Binary digital expansion 257

if and only if

(153.5)
∑

k∈A∩n⊐

2n−k = ⌈(2nr) − 1 for all n ∈ N.

If A satisfies these conditions, then A is infinite.

Proof. 1. We assume that (153.4) holds, and prove (153.5) by induction. We have

⌈(20r) = ⌈r = 1, so that 0 /∈ A, and
∑

k∈A∩0⊐

20−k = 0 = 1 − 1 = ⌈(20r) − 1. Suppose

now that n ∈ N is such that
∑

k∈A∩n⊐

2n−k = ⌈(2nr) − 1. We distinguish two cases.

If n + 1 ∈ A, then ⌈(2n+1r) ∈ 2N, and by (151.7) we have ⌈(2n+1r) = 2⌈(2nr).
Therefore

∑

k∈A∩(n+1)⊐

2n+1−k =
∑

k∈A∩n⊐

2n+1−k + 1 = 2
∑

k∈A∩n⊐

2n−k + 1 = 2(⌈(2nr) − 1) + 1 =

= ⌈(2n+1r) − 1.

If, on the other hand, n + 1 /∈ A, then ⌈(2n+1r) /∈ 2N, and by (151.7) we have
⌈(2n+1r) = 2⌈(2nr) − 1. Therefore

∑

k∈A∩(n+1)⊐

2n+1−k =
∑

k∈A∩n⊐

2n+1−k = 2
∑

k∈A∩n⊐

2n−k = 2(⌈(2nr) − 1) = ⌈(2n+1r) − 1.

This completes the induction step.

2. We now assume that (153.5) holds. Let n ∈ N be given. If n + 1 ∈ A, then

⌈(2n+1r) =
∑

k∈A∩(n+1)⊐

2n+1−k + 1 =
∑

k∈A∩n⊐

2n+1−k + 2 = 2(
∑

k∈A∩n⊐

2n−k + 1) ∈ 2N;

if n + 1 /∈ A, then

⌈(2n+1r) =
∑

k∈A∩(n+1)⊐

2n+1−k + 1 =
∑

k∈A∩n⊐

2n+1−k + 1 = 2
∑

k∈A∩n⊐

2n−k + 1 /∈ 2N.

Since n ∈ N was arbitrary, this establishes (153.4).

3. We assume that A satisfies (153.5). Suppose that m ∈ N were an upper bound
of A. Then we should have

(153.6)
∑

k∈A

2n−k = ⌈(2nr) − 1 < 2nr ≤ ⌈(2nr) =
∑

k∈A

2n−k + 1 for all n ∈ m + N.

In particular, we should have
∑

k∈A

2−k = 2−m
∑

k∈A

2m−k < 2−m2mr = r (Proposition

142C and (151.1)). The sequence (2n | n ∈ m+N) is strictly isotone; hence its range



258 CHAPTER 15. THE REAL-NUMBER SYSTEM

is infinite and has no upper bound in N. Since R is archimedean, we might therefore

choose n ∈ m + N such that 2n > 1/(r −
∑

k∈A

2−k). Then

∑

k∈A

2n−k + 1 = 2n
∑

k∈A

2−k + 1 < 2nr,

contradicting (153.6). Therefore our supposition that A had an upper bound in N is
untenable, and A is infinite.

Lemmas 153A and 153B justify the definition of the mappings Bin : ]0, 1] →
P(N×)\F(N×) and bin : P(N×)\F(N×) → ]0, 1] by the rules

(153.7) Bin(r) := {n ∈ N× | ⌈(2nr) ∈ 2N} for all r ∈ ]0, 1]

(153.8) bin(A) :=
∑

k∈A

2−k for all A ∈ P(N×)\F(N×).

153C. THEOREM. For every r ∈ ]0, 1] there is exactly one infinite subset A of N×

such that r =
∑

k∈A

2−k, namely A := Bin(r). More precisely, each of the mappings Bin

and bin is the inverse of the other.

Proof. 1. Let r ∈ ]0, 1] be given. By (151.6) and Lemma 153B with A := Bin(r)
we have

2nr − 1 ≤
∑

k∈Bin(r)∩n⊐

2n−k < 2nr for all n ∈ N.

By Proposition 142C and (151.1) this implies

r − 2−n ≤
∑

k∈Bin(r)∩n⊐

2−k < r for all n ∈ N.

For given s ∈ ]0, r[ we may choose n ∈ N such that 2n ≥ 1/(r − s) (cf. proof of
Lemma 153B), and hence r − 2−n ≥ s. It follows from Lemma 152C that

bin(Bin(r)) =
∑

k∈Bin(r)

2−k = sup{
∑

k∈Bin(r)∩n⊐

2−k | n ∈ N} = r.

Since r ∈ ]0, 1] was arbitrary, we have bin ◦ Bin = 1]0,1].

2. Let A ∈ P(N×)\F(N×) and m ∈ N be given. Since A is infinite, we may set
m′ := min(A\m⊐). Using Lemma 153A (Formula (153.1)), we find

∑

k∈A∩m⊐

2−k <
∑

k∈A∩m⊐

2−k + 2−m
′

=
∑

k∈A∩m′⊐

2−k ≤
∑

k∈A∩m′⊐

2−k +
∑

k∈A∩(n⊐\m′⊐)

2−k =

=
∑

k∈A∩n⊐

2−k =
∑

k∈A∩m⊐

2−k +
∑

k∈A∩(n⊐\m⊐)

2−k <
∑

k∈A∩m⊐

2−k + 2−m

for all n ∈ m′ + N.
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By Proposition 142C and (151.1) we may “multiply through” the preceding chain
of equalities and inequalities by 2m. It then follows from Lemma 152C that

∑

k∈A∩m⊐

2m−k = 2m
∑

k∈A∩m⊐

2−k < 2m
∑

k∈A

2−k ≤ 2m
∑

k∈A∩m⊐

2−k + 1 =
∑

k∈A∩m⊐

2m−k + 1.

Using (153.8) and (151.5), we may rewrite this as

(153.9) ⌈(2mbin(A)) =
∑

k∈A∩m⊐

2m−k + 1.

Now (153.9) holds for all m ∈ N. Applying Lemma 153B with r := bin(A) and
comparing (153.9) with (153.5) and (153.7) with (153.4), we conclude that A =
Bin(bin(A)). Since A ∈ P(N×)\F(N×) was arbitrary, we have Bin◦bin = 1P(N×)\F(N×).

153D. REMARKS. (a): Let r ∈ ]0, 1] be given. By Theorem 153C we have

r =
∑

k∈Bin(r)

2−k =
∑

k∈N×

χBin(r)(k)2−k.

As mentioned at the beginning of this section (and noting that Bin(r) is an infinite
set), the sequence χBin(r) ∈ {0, 1}N× is called the non-terminating binary digital
expansion of r.

(b): In order to extend the construction of non-terminating binary digital ex-
pansions to all strictly positive real numbers, we may proceed by multiplying a given
r ∈ P× by 2−m for a suitable m ∈ N so that 2−mr ∈ ]0, 1], and then applying Theorem
153C to 2−mr instead of r. To express the result (we omit the details of the proof),
we define Ξ to be the collection of all infinite subsets of Z that have lower bounds
(and hence a minimum). Then the formula

Bin∞(r) := {n ∈ Z | ⌈(2nr) ∈ 2N} for all r ∈ P×

defines a bijection Bin∞ : P× → Ξ such that

r =
∑

k∈Bin∞(r)

2−k =
∑

k∈Z

χBin∞(r)(k)2−k for all r ∈ P×.

(c): We shall not be concerned here with terminating binary digital expansions,

except to note that if A is a non-empty finite subset of N× then
∑

k∈A

2−k ∈ ]0, 1[ and

Bin(
∑

k∈A

2−k) = A△ (maxA+ N), where △ denotes symmetric difference of sets.

It is possible to describe the order ≤ in ]0, 1] by means of the non-terminating
binary digital expansions, as we now show, by examining the least index at which
they differ.
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153E. PROPOSITION.

∀r, s ∈ ]0, 1], r < s ⇔ (Bin(r) 6= Bin(s) and min(Bin(r) △ Bin(s)) ∈ Bin(s)).

Proof. Since Bin is bijective, we may stipulate that r 6= s and Bin(r) 6= Bin(s).
Then Bin(r) △ Bin(s) 6= Ø.

Assume first that m := min(Bin(r)△Bin(s)) ∈ Bin(s). Then Bin(r)∩ (m−1)⊐ =
Bin(s) ∩ (m− 1)⊐ and m /∈ Bin(r). We therefore have, using Lemma 153A,

∑

k∈Bin(r)∩n⊐

2−k =
∑

k∈Bin(r)∩(m−1)⊐

2−k +
∑

k∈Bin(r)∩(n⊐\m⊐)

2−k <

<
∑

k∈Bin(s)∩(m−1)⊐

2−k + 2−m =
∑

k∈Bin(s)∩m⊐

2−k ≤
∑

k∈Bin(s)

2−k

for all n ∈ m+ N.

By Lemma 152C and Theorem 153C, r =
∑

k∈Bin(r)

2−k ≤
∑

k∈Bin(s)

2−k = s. Since r 6= s,

we have r < s.

If, on the other hand, min(Bin(r) △ Bin(s)) ∈ Bin(r), the preceding argument
with r and s interchanged, shows that r > s.

153F. REMARK. By Theorem 153C and Proposition 122C, ]0, 1] is equinumer-
ous to P(N×)\F(N×), hence to P(N×), hence also to P(N). By Theorem 122A
]0, 1] is uncountable (the idea for this proof of the uncountability of ]0, 1] goes back to
Georg Ferdinand Ludwig Philipp Cantor (1845-1918)). It is easy to deduce that every
genuine interval is uncountable. Although this was already established in Proposi-
tion 151B (also due to Cantor, as noted in Example 122H), the present observation
provides a more precise determination of the “degree of uncountability” of genuine
intervals: every one is equinumerous with the uncountable set P(N).



Chapter 16

THE REAL NUMBERS:
EXISTENCE

161. Construction of a complete ordered
field

As was explained in Sections 141 and 151, we are concerned with the question
regarding the existence of a complete ordered field only to the extent of ascertaining
that this question is equivalent to the one regarding the existence of a counting
system. Cultural Anthropology and the history of Mathematics will surely bear
out the contention that it is more natural to accept consciously the existence of
the Natural-Number System — no matter how much sophistication this may have
required — than to extend the same degree of acceptance to the existence of the entire
Real-Number System. It has therefore long been regarded as a matter of interest to
show, by means of a construction, that the acceptance of the former compels the
acceptance of the latter.

Instead of carrying out this program by first constructing, from a given counting
system, structures imitating (technically: isomorphic to) Z and Q, we prefer to use
as our intermediate step a structure imitating P̄ (cf. Section 152), and to obtain this
structure from a counting system by a version of the Eudoxian theory of ratios.

We define a positivity system to be a completely and totally ordered set P
(with strict-order and lax order here denoted by < and ≤, respectively, and with
∞ := maxP ), endowed, in addition, with the structures of a commutative monoid,
written additively, and of a commutative monoid, written multiplicatively (with unity
e), subject to the following conditions:

(PS1): ∀x, y, z ∈ P , (x+ y)z = (xz) + (yz)
(PS2): ∀x, y ∈ P , x+ y = x ⇒ (x = ∞ or y = 0)
(PS3): ∀x, y ∈ P , x+ y = ∞ ⇒ (x = ∞ or y = ∞)
(PS4): ∀x, y ∈ P , x ≤ y ⇔ (∃z ∈ P, x+ z = y)
(PS5): e /∈ {0,∞}
(PS6): ∀x ∈ P , x /∈ {0,∞} ⇒ (∃y ∈ P, xy = e}.

261
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In dealing with a positivity system, we shall use the distributive law (PS1) without
explicit mention. We shall also accept the notational conventions, especially those
concerning parentheses, that are in common use for addition and multiplication. We
set P0 := P\{∞} and P×0 := P0

× = P\{0,∞}.

161A. REMARKS. (a): In verifying that a given structure is a positivity systemH

P , it is not necessary to verify that x + 0 = x for all x ∈ P . Indeed, let x ∈ P0 be
given. Since x ≤ x, we may, by (PS4), choose y ∈ P such that x+y = x. From (PS2)
it follows that y = 0. On the other hand, by (PS4), ∞ ≤ ∞ + 0 ≤ maxP = ∞, so
that equality holds.

(b): From (PS4) we find minP ≤ 0 ≤ 0+minP = minP ; it follows that minP = 0,
and from this and (PS5) we have 0 < e <∞.

161B. LEMMA. Let the positivity system P be given. Then

(161.1) P0 + P0 ⊂ P0

(161.2) P0P0 ⊂ P0

(161.3) 0P0 = {0}

(161.4) P×0 P
×
0 ⊂ P×0

(161.5) ∀x ∈ P×0 , ∃y ∈ P×0 , xy = e.

Proof. (161.1) is an immediate consequence of (PS3).

For every x ∈ P we have, by (PS4), ∞ ≤ ∞ + x = x+ ∞ ≤ ∞; hence

(161.6) ∀x ∈ P, x+ ∞ = ∞.

From (PS4) and (161.6) we have

(161.7) ∞ = e∞ ≤ e∞ + ∞∞ = (e+ ∞)∞ = ∞∞ ≤ ∞.

Let x ∈ P×0 be given. By (PS6) we may choose y ∈ P such that xy = e. Then (PS4)
and (161.6) yield

∞ = e∞ = xy∞ ≤ xy∞ + x∞ = x(y∞ + ∞) = x∞ ≤ ∞.

Combining this with (161.7), we find

(161.8) ∀x ∈ P×, x∞ = ∞.

Let x ∈ P0 be given. Then x+ x0 = xe+ x0 = x(e + 0) = xe = x, and therefore,
by (PS2), x0 = 0. This establishes (161.3). We have 0∞ = (0 + 0)∞ = 0∞+ 0∞. It
follows from (PS2) that

(161.9) 0∞ ∈ {0,∞}.
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Let x, y ∈ P×0 be given. By (PS6), we may choose u, v ∈ P such that xu = e = yv.
Then (PS5) yields

(xy)(uv) = (xu)(yv) = ee = e ∈ P×0 .

From this and (161.3), (161.8), (161.9) it follows that xy ∈ P×0 . This establishes
(161.4), and (161.2) follows from this and (161.3).

If x ∈ P×0 , y ∈ P , and xy = e, then (161.3) and (161.8) show that y ∈ P×0 . This,
together with (PS6), establishes (161.5).

Let the positivity system P be given. For given x, y ∈ P we consider the problem

(161.10) ?z ∈ P, x+ z = y.

By (PS4), this problem has a solution if and only if x ≤ y. Now suppose that
x ≤ y <∞. If z′, z′′ are solutions of (161.10) with z′ ≤ z′′, we may, by (PS4), choose
u ∈ P such that z′+u = z′′. Then y = x+ z′′ = x+ z′+u = y+u. By (PS2) we find
that u = 0, and hence z′′ = z′ + 0 = z′. Since P is totally ordered, this discussion
shows that, if x ≤ y < ∞, then (161.10) has exactly one solution; by (PS4), this
solution is in P0. In that case we define

y − x :∈ {z ∈ P | x+ z = y} ⊂ P0.

We note that

∀x, y ∈ P0, x ≤ y ⇒ (y − x = 0 ⇔ x = y).

We set

(161.11) F := {(x, y) ∈ P0 × P0 | xy = 0},

and define the mapping p : P0 × P0 → P0 × P0 by the rule

(161.12) p((x, y)) := (x− min{x, y}, y − min{x, y}) for all (x, y) ∈ P0 × P0.

In the following two lemmas P is a given positivity system, and F and p are defined
by (161.11) and (161.12).

161C. LEMMA. (a): p is idempotent and Rngp = F .

(b): p((x+ z, y + z)) = p((x, y)) for all x, y, z ∈ P0.

Proof. Proof of (a). Let x, y ∈ P0 be given. Then x − min{x, y} = 0 or y −
min{x, y} = 0 according as x ≤ y or x ≥ y; it follows from (161.3) that p((x, y)) ∈ F .
We conclude that Rngp ⊂ F .

On the other hand, let (x, y) ∈ F be given. By (161.4) either x = 0 or y = 0, and
hence min{x, y} = 0, since 0 = minP (Remark 161A,(b)). It follows that p((x, y)) =
(x, y). Thus F ⊂ Rngp, and every member of F is a fixed point of p. It follows that
Rngp = F and, by Proposition 26C, that p is idempotent.

Proof of (b). We first assume that x ≤ y. Then x+z+(y−x) = x+(y−x)+z =
y + z. By (PS4) we have x + z ≤ y + z and (y + z) − (x + z) = y − x. Hence
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p((x+ z, y + z)) = (0, y − x) = p((x, y)). Similarly, if x ≥ y, then p((x+ z, y + z)) =
(x− y, 0) = p((x, y)).

161D. LEMMA. For all (x, y), (u, v) ∈ F we have (y, x) ∈ F and (xu + yv, xv +
yu) ∈ F .

Proof. The first assertion is obvious. The second follows from (161.3) by observing
that

(xu+yv)(xv+yu) = (xx+yy)(uv)+(uu+vv)(xy) = (xx+yy)0+(uu+vv)0 = 0+0 = 0.

161E. THEOREM. Let the positivity system P be given, and let the set F and the
mapping p be defined by (161.11) and (161.12). Then F , with (0, 0) as zero; (e, 0) as
unity; addition, opposition, and multiplication defined respectively by the rules

(x, y) + (u, v) := p((x+ u, y + v)) for all (x, y), (u, v) ∈ F

−(x, y) := (y, x) for all (x, y) ∈ F

(x, y)(u, v) := (xu+ yv, xv + yu) for all (x, y), (u, v) ∈ F

(as is permitted by Lemmas 161B, 161C, and 161D); and the subset P0 × {0} of F
as positive half, is a complete ordered field.

Proof. The commutative laws for addition and multiplication hold as trivial con-
sequences of the corresponding laws in P . The associative law for multiplication holds
as a trivial consequence of the associative laws and the distributive law in P .

Let (x, y), (u, v), (w, z) ∈ F be given. Set m := min{x+ u, y + v}, n := min{u+
w, v + z}. By Lemma 161C and (161.3),

((x, y) + (u, v)) + (w, z) = p((x+ u−m+ w, y + v −m + z)) =
= p((x+ u+ w, y + v + z)) = p((x+ u+ w − n, y + v + z − n)) =
= (x, y) + ((u, v) + (w, z)),

((x, y) + (u, v))(w, z) = (x+ u−m, y + v −m)(w, z) =
= ((x+ u−m)w + (y + v −m)z, (x+ u−m)z + (y + v −m)w) =
= p(((x+ u−m)w + (y + v −m)z, (x+ u−m)z + (y + v −m)w)) =
= p((x+ u)w + (y + v)z, (x+ u)z + (y + v)w)) =
= p((xw + yz + uw + vz, xz + yw + uz + vw)) =
= (xw + yz, xz + yw) + (uw + vz, uz + vw) =
= ((x, y)(w, z)) + ((u, v)(w, z)),

(x, y) + (0, 0) = p((x+ 0, y + 0)) = p((x, y)) = (x, y),

((x, y) + (−(x, y)) = (x, y) + (y, x) = p((x+ y, y + x)) = p((0, 0)) = (0, 0),

(e, 0)(x, y) = (ex+ 0y, ey + 0x) = (x, y).

This establishes the associative law for addition, the neutrality laws for addition and
multiplication, the law of opposites, and the distributive law. We also have 0 6= e,
and therefore (0, 0) 6= (e, 0).
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Let (x, y) ∈ F\{(0, 0)} be given. By (161.3), (161.4), either x 6= 0 = y or
y 6= 0 = x. By (161.5) we may choose z ∈ P×0 such that xz = e or yz = e,
respectively, and we respectively find

(x, y)(z, 0) = (x, 0)(z, 0) = (xz + 00, x0 + 0z) = (e, 0)

(x, y)(0, z) = (0, y)(0, z) = (00 + yz, 0z + y0) = (e, 0).

Let (x, y), (u, v) ∈ P0 × {0} be given. Then y = 0 = v. Since 0 = minP (by
Remark 9A,(b)),

(x, y) + (u, v) = (x, 0) + (u, 0) = p((x+ u, 0 + 0)) = (x+ u, 0) ∈ P0 × {0},

(x, y)(u, v) = (x, 0)(u, 0) = (xu+ 00, x0 + 0u) = (xu, 0) ∈ P0 × {0}.
Moreover,

−(P0×{0}) = {−(x, y) | (x, y) ∈ P0×{0}} = {(y, x) | (x, y) ∈ P0×{0}} = {0}×P0.

Therefore

(P0 × {0}) ∩ (−(P0 × {0})) = (P0 × {0}) ∩ ({0} × P0) = {0} × {0} = {(0, 0)}.

By (161.3) and (161.4)

F = {(x, y) ∈ P0 × P0 | x = 0 or y = 0} = (P0 × {0}) ∪ ({0} × P0) =

= (P0 × {0}) ∪ (−(P0 × {0})).

We have proved that F with the indicated structure is an ordered field; it remains
to show that this ordered field is complete. By Lemma 143A it is sufficient to show
that the ordered subset P0 × {0} of F is pre-completely ordered.

Let (x, y), (u, v) ∈ P0 × {0} be given. Then y = 0 = v, and

(u, v) − (x, y) = (u, 0) − (x, 0) = (u, 0) + (0, x) =

= p((u, x)) =







(u− x, 0) ∈ P0 × {0} if x ≤ u

(0, x− u) ∈ {0} × P0 = −(P0 × {0}) if x ≥ u.

This shows that the mapping (x 7→ (x, 0)) : P0 → P0 × {0} is an order-isomorphism.
But P0 = [[minP,maxP [[ is pre-completely ordered, by Proposition 72E,(b). It follows
that P0 × {0} is pre-completely ordered.N
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162. Construction of a positivity system

We now propose to show how to construct a positivity system from a given count-H

ing system.

Let the counting system N be given. Except for using the symbol N , rather than
N, we shall feel free to use in N the terminology, notation, and results pertaining to
the Natural-Number System, as described in Chapter 9. We may do this on account
of Theorem 95A.

We set Λ := N ×N×, and define in Λ the relations w, ≺, ≈ by the rules

∀(m,m′), (n, n′) ∈ Λ, (m,m′) w (n, n′) :⇔ mn′ ≤ m′n

∀(m,m′), (n, n′) ∈ Λ, (m,m′) ≺ (n, n′) :⇔ mn′ < m′n

∀(m,m′), (n, n′) ∈ Λ, (m,m′) ≈ (n, n′) :⇔ mn′ = m′n.

These notations are compatible, since

∀µ, ν ∈ Λ, µ w ν ⇔ (µ ≺ ν or µ ≈ ν)

∀µ, ν ∈ Λ, µ ≺ ν ⇔ not(ν w µ) ⇔ (µ w ν and not µ ≈ ν)

∀µ, ν ∈ Λ, µ ≈ ν ⇔ (µ w ν and ν w µ).

The relation w is reflexive, transitive, and total, but not antisymmetric. It also
satisfies

∀n ∈ N, ∀m′, n′ ∈ N×, (0, m′) w (n, n′)

∀n ∈ N, ∀m′, n′ ∈ N×, (n, n′) w (0, m′) ⇔ n = 0.

We define the mappings ((µ, ν) 7→ µ + ν) : Λ × Λ → Λ, ((µ, ν) 7→ ν − µ) :
Gr(w) → Λ, and ((µ, ν) 7→ µν) : Λ × Λ → Λ by the rules

(m,m′) + (n, n′) := (mn′ +m′n,m′n′) for all (m,m′), (n, n′) ∈ Λ

(n, n′) − (m,m′) := (nm′ − n′m,m′n′) for all ((m,m′), (n, n′)) ∈ Gr(w)

(m,m′)(n, n′) := (mn,m′n′) for all (m,m′), (n, n′) ∈ Λ.

We shall not record explicitly all the properties of these mappings and their relation-
ships with the previously defined relations: all those we shall need can be immediately
verified. We note, in particular, that “addition” and “multiplication” satisfy associa-
tive and commutative laws, and that

(162.1)
∀µ, ν, ξ ∈ Λ, µ w ν ⇒ (µ+ ξ w ν + ξ and (ν + ξ) − (µ+ ξ) ≈ ν − µ)

∀µ, ν, ξ ∈ Λ, (µ+ ν)ξ ≈ (µξ) + (νξ).
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We shall use and omit parentheses as is usual when “addition” and “multiplication”
satisfy associative laws, and “multiplication” is agreed to have priority over “addition”
and “subtraction”. For all subsets A, B of Λ we shall use the abbreviations A+B :=
{α + β | (α, β) ∈ A × B}, B − A := {β − α | (α, β) ∈ (A × B) ∩ Gr(w)}, AB :=
{αβ | (α, β) ∈ A × B}. We define the mappings U, L ∈ Map(P(Λ),P(Λ)) by the
rules

U(A) := {µ ∈ Λ | ∀α ∈ A, α w µ}
for all A ∈ P(Λ)

L(A) := {µ ∈ Λ | ∀α ∈ A, µ w α}
(the sets of all “upper bounds” and of all “lower bounds” of A with respect to the
reflexive, transitive, and total, but not antisymmetric, relation w in Λ). Then the
pair (U, L) is the Galois correspondence from P(Λ) to P(Λ) (both times ordered
by inclusion) determined by the relation w in Λ according to Proposition 74C. We
use this fact and its consequences in what follows. In particular, both U and L are
antitone, and L◦U ◦L = L, U ◦L◦U = U ; the composite L◦U is a closure mapping
in P(Λ) ordered by inclusion, and RngL = Rng(L ◦ U) is the set of fixed points of
L ◦ U and is intersection-stable (Theorem 74E,(a),(b), and Theorem 73,(a)).

162A. THEOREM. Let the counting system N be given. The collection RngL,
ordered by inclusion, with L(Λ) as zero, L({1, 1)}) as unity, and addition and multi-
plication defined by the rules

X ⊕ Y := L(U(X + Y )) for all X, Y ∈ RngL

X ⊙ Y := L(U(XY )) for all X, Y ∈ RngL,

is a positivity system.

Proof. 1. RngL = Rng(L ◦ U) is intersection-stable, hence completely ordered
by inclusion (Proposition 71F). We next claim that RngL is a nest, i.e., that it is
totally ordered by inclusion. Let X, Y ∈ RngL be given, and suppose that Y \X 6= Ø.
Choose η ∈ Y \X. Since η /∈ X = L(U(X)) and w is total, we may choose µ ∈ U(X)
such that µ ≺ η. For every ν ∈ U(Y ) we then have µ w η w ν. Since w is
transitive, we have ν ∈ U(X). We conclude that U(Y ) ⊂ U(X), and therefore
X = L(U(X)) ⊂ L(U(Y )) = Y . This establishes our claim.

We note that max RngL = Λ, min RngL =
⋂

RngL = L(Λ) = {0} × N×,

L({(1, 1)}) = {(m,m′) ∈ Λ | m ≤ m′}.

To continue the proof we require two lemmas.

162B. LEMMA. Let A,B ∈ P(Λ)\{Ø} be given. Then

L(U(A +B)) = L(U(A)) ⊕ L(U(B))

L(U(AB)) = L(U(A)) ⊙ L(U(B)).

Proof. A+B ⊂ L(U(A)) + L(U(B)); hence

(162.2) L(U(A +B)) ⊂ L(U(L(U(A)) + L(U(B)))) = L(U(A)) ⊕ L(U(B)).
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In exactly the same way we see that

(162.3) L(U(AB)) ⊂ L(U(A)) ⊙ L(U(B)).

Let µ ∈ Λ\U(L(U(A)) + L(U(B))) be given. We may then choose ξ ∈ L(U(A)),
η ∈ L(U(B)) such that µ ≺ ξ + η. We now distinguish three cases. In the first
case, µ ∈ Λ\U(A) ⊂ Λ\U(A + B); in the second, µ ∈ Λ\U(B) ⊂ Λ\U(A + B)
(here we need the assumption that neither A nor B is empty). We are left with
the third case, in which µ ∈ U(A) ∩ U(B). Then ξ w µ, and µ − ξ ≺ η; this
implies µ − ξ ∈ Λ\U(L(U(B))) = Λ\U(B), and we may choose β ∈ B such that
µ − ξ ≺ β. We then have µ ≺ ξ + β; but β w µ, and therefore µ − β ≺ ξ.
Then µ − β ∈ Λ\U(L(U(A))) = Λ\U(A), and we may choose α ∈ A such that
µ − β ≺ α. Then µ ≺ α + β ∈ A + B, and so µ ∈ Λ\U(A + B) in the third case
too. We have shown that Λ\U(L(U(A)) + L(U(B))) ⊂ Λ\U(A +B). It follows that
U(A +B) ⊂ U(L(U(A)) + L(U(B))), and therefore

(162.4) L(U(A +B)) ⊃ L(U(L(U(A)) + L(U(B)))) = L(U(A)) ⊕ L(U(B)).

Let µ ∈ Λ\U(L(U(A))L(U(B))) be given. We may then choose (x, x′) ∈ L(U(A)),
η ∈ L(U(B)) such that µ ≺ (x, x′)η. We cannot have x = 0, and we deduce that
µ(x′, x) ≺ η. Therefore µ(x′, x) ∈ Λ\U(L(U(B))) = Λ\U(B), and we may therefore
choose (b, b′) ∈ B such that µ(x′, x) ≺ (b, b′). We cannot have b = 0, and we infer
that µ(b′, b) ≺ (x, x′), so that µ(b′, b) ∈ Λ\U(L(U(A))) = Λ\U(A). We may therefore
choose α ∈ A such that µ(b′, b) ≺ α. Then µ ≺ α(b, b′) ∈ AB, and therefore
µ ∈ Λ\U(AB). We have shown that Λ\U(L(U(A))L(U(B))) ⊂ Λ\U(AB). It follows
that U(AB) ⊂ U(L(U(A))L(U(B))), and therefore

(162.5) L(U(AB)) ⊃ L(U(L(U(A))L(U(B)))) = L(U(A)) ⊙ L(U(B)).

The assertion follows by combining (162.2) with (162.4) and (162.3) with (162.5).

162C. LEMMA. Let X ∈ RngL\{Λ} and δ ∈ Λ\L(Λ) be given. Then there exists
k ∈ N× such that (k − 1, 1)δ ∈ X, (k, 1)δ /∈ X.

Proof. Choose (m,m′) ∈ Λ\X = U(X)\X, and set (d, d′) := δ. Then d 6= 0, and

(m,m′) w (md′d, d′) = (md′, 1)δ,

so that (md′, 1)δ ∈ U(X)\X = Λ\X. We may therefore define k := min{n ∈
N | (n, 1)δ ∈ Λ\X}. Since (0, 1)δ = (0, d′) ∈

⋂

RngL ⊂ X, we find k ∈ N×. This k

verifies the assertion.

Proof of Theorem 162A, continued. 2. Both addition and multiplication as defined
in RngL obviously satisfy the commutative law. The fact that both operations satisfy
the associative law follows from Lemma 162B: for all X, Y, Z ∈ RngL,

(X ⊕ Y ) ⊕ Z = L(U(X + Y )) ⊕ L(U(Z)) = L(U(X + Y + Z)) =

= L(U(X)) ⊕ L(U(Y + Z)) = X ⊕ (Y ⊕ Z)
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(X ⊙ Y ) ⊙ Z = L(U(XY )) ⊙ L(U(Z)) = L(U(XY Z)) =
= L(U(X)) ⊙ L(U(Y Z)) = X ⊙ (Y ⊙ Z).

From Lemma 162B and (162.1) (for the middle equality in the following chain) we
obtain the distributive law (PS1):

(X ⊕ Y ) ⊙ Z = L(U(X + Y )) ⊙ L(U(Z)) = L(U(X + Y )Z)) =

= L(U((XZ) + (Y Z))) =

= L(U(XZ) ⊕ L(U(Y Z)) = (X ⊙ Z) ⊕ (Y ⊙ Z).

Let X ∈ RngL be given. Then X = {(1, 1)}X ⊂ (L({1, 1)}))X. On the other
hand, if (m,m′) ∈ L({1, 1)}), (x, x′) ∈ X, then m ≤ m′, and hence mxx′ ≤ m′xx′,
so that (m,m′)(x, x′) = (mx,m′x′) w (x, x′). Therefore (m,m′)(x, x′) ∈ L(U(X)) =
X. We have shown that L({(1, 1)})X ⊂ X. We conclude that L({(1, 1)})X = X.
This establishes the neutrality law for multiplication. By Remark 161A,(a), it is not
necessary to prove the neutrality law for addition explicitly.

3. Let X, Y ∈ RngL be given, and assume that X 6= Λ and Y 6= L(Λ). Then we
may choose η ∈ Y \L(Λ) and, by Lemma 161C, k ∈ N× such that (k−1, 1)η ∈ X and
(k, 1)η /∈ X. Since (k − 1, 1)η + η ≈ (k, 1)η, we find(k − 1, 1)η + η ∈ (X + Y )\X ⊂
(X ⊕ Y )\X, so that X ⊕ Y 6= X. This shows that (PS2) holds.

Let X, Y ∈ RngL\{Λ} be given. We may choose µ ∈ Λ\X = U(X)\X and
ν ∈ Λ\Y = U(Y )\Y . Then µ+ ν ∈ U(X + Y ) = U(X ⊕ Y ). Therefore U(X ⊕ Y ) 6=
Ø = U(Λ), and hence X ⊕ Y 6= Λ. This shows that (PS3) holds.

Let X, Y ∈ RngL be given. If Y = X⊕Z for some Z ∈ RngL, then X ⊂ X+Z ⊂
X ⊕ Z = Y (since Z 6= Ø). Conversely, assume that X ⊂ Y , note that ξ w µ for all
ξ ∈ X and µ ∈ U(Y ), and define

Z := L(U(Y ) −X) ∈ RngL.

For all ξ ∈ X, ζ ∈ Z, and µ ∈ U(Y ) we have ζ w µ − ξ, and hence ξ + ζ w µ.
Therefore U(Y ) ⊂ U(X + Z), and hence

(162.6) X ⊕ Z = L(U(X + Z)) ⊂ L(U(Y )) = Y.

On the other hand, let µ ∈ Λ\U(Y ) be given. We may then choose η ∈ Y such
that µ ≺ η. Set δ := (1, 2)(η − µ), and note that (0, 1) ≺ δ, so that δ ∈ Λ\L(Λ). We
now distinguish two cases. If µ+ δ ∈ X, then µ+ δ ∈ X + Z; but µ ≺ µ+ δ, and so
µ ∈ Λ\U(X+Z). We are left with the case in which µ+δ ∈ Λ\X = U(X)\X, and in
this case X 6= Λ. By Lemma 162C we may choose k ∈ N× such that (k − 1, 1)δ ∈ X
and (k, 1)δ /∈ X. Since µ+ δ ∈ U(X), we may set ζ := (µ+ δ)− (k− 1, 1)δ and find,
using the definition of δ, that ζ ≈ η − (k, 1)δ.

For all ξ ∈ X and λ ∈ U(Y ) we have ξ ≺ (k, 1)δ and η w λ, so that ξ + η ≺
λ+ (k, 1)δ, and therefore ζ ≈ η− (k, 1)δ ≺ λ− ξ. It follows that ζ ∈ Z, and therefore
µ ≺ µ+ δ ≈ ζ + (k− 1, 1)δ ∈ X +Z. We conclude that µ ∈ Λ\U(X +Z) in this case
too.
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We have shown that Λ\U(Y ) ⊂ Λ\U(X + Z). Therefore U(X + Z) ⊂ U(Y ), and
hence

X ⊕ Z = L(U(X + Z)) ⊃ L(U(Y )) = Y.

Combining this with (162.6) we find X ⊕ Z = Y . This completes the proof of the
validity of (PS4).

4. It is obvious that L(Λ) = {0} ×N× $ L({(1, 1)}) $ Λ, so that (PS5) holds.

Let X ∈ RngL\{Λ, L(Λ)} be given, and set

Y := L({(c, c′) ∈ Λ | c 6= 0, (c′, c) ∈ X}) ∈ RngL.

Let (x, x′) ∈ X and (y, y′) ∈ Y be given. Then either x = 0, and in that case
(x, x′)(y, y′) = (0, x′y′) ∈ L({(1, 1)}); or else x 6= 0, and then (y, y′) w (x′, x), so
that (x, x′)(y, y′) w (1, 1) and therefore (x, x′)(y, y′) ∈ L({(1, 1)}). We conclude that
XY ⊂ L({(1, 1)}), and therefore

(162.7) X ⊙ Y = L(U(XY )) ⊂ L(U(L({(1, 1)}))) = L({1, 1)}).

On the other hand, let (a, a′) ∈ Λ\U(L({(1, 1)})) be given, so that a < a′. Since
X 6= L(Λ), we may choose (m,m′) ∈ X\L(Λ), so that m 6= 0. Since X 6= Λ, we may
choose, by Lemma 162C, k ∈ N× such that

((k − 1)m, a′m′) = (k − 1, 1)(m, a′m′) ∈ X,
(km, a′m′) = (k, 1)(m, a′m′) ∈ Λ\X = U(X)\X.

We have (m,m′) ≺ (km, a′m′), so that k > a′, and therefore k(a′ − a) ≥ k > a′, and
hence

(162.8) ka < (k − 1)a′.

For all (x, x′) ∈ X with x 6= 0 we have (x, x′) ≺ (km, a′m′), and hence (a′m′, km) ≺
(x′, x). It follows that (a′m′, km) ∈ Y . From this and (162.8) we find

(a, a′) ≺ (k − 1, k) ≈ ((k − 1)m, a′m′)(a′m′, km) ∈ XY.

Therefore (a, a′) ∈ Λ\U(XY ). We conclude that Λ\U(L({(1, 1)})) ⊂ Λ\U(XY ).
Then U(XY ) ⊂ U(L({(1, 1)})), and therefore

X ⊙ Y = L(U(XY )) ⊃ L(U(L({(1, 1)}))) = L({(1, 1)}).

From this and (162.7) we conclude that X ⊙ Y = L({(1, 1)}). Since X ∈
RngL\{Λ, L(Λ)} was arbitrary, we have shown that (PS6) holds. This concludes
the proof.N
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163. Existence

We can now state a precise form of the equivalence of several existence problems.

163A. THEOREM. The following assertions are equivalent:

(i): There exists a counting system.

(ii): There exists a positivity system.

(iii): There exists a complete ordered field.

(iv): There exists an ordered field.

Proof. By Theorem 162A, (i) implies (ii). By Theorem 161E, (ii) implies (iii).
It is trivial that (iii) implies (iv). By Theorem 142E, (iv) implies (i). We remark
again that no use was made of natural numbers in defining (complete) ordered fields
or positivity systems, or in the proofs of Theorems 161E and 142E.
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Chapter 17

INFINITE SETS

171. Introduction

In all mathematical work, with insignificant exceptions, we must deal with a
profusion of infinite sets. Our intuition is, however, not too well equipped for all
aspects of this task, and on occasion fails us altogether. The most basic agreements
about sets, mappings, and relations that we have accepted and used are not quite
powerful enough to settle some rather natural questions concerning infinite sets. To
overcome some of these difficulties, several assertions have been proposed and used
as additional agreements or “axioms”: an example is the Axiom of Choice, which we
have already encountered. Their acceptability has had its ups and downs since they
were first made explicit, beginning at the turn of the 20th century. Later, they were
shown to be compatible with the more basic agreements about sets and mappings
(i.e., their acceptance would not ruin the consistency of these agreements, if they are
consistent). Finally, it was shown that they are independent of these agreements (i.e.,
their rejection would not ruin such consistency either; in particular, they could not
be proved from more basic principles by accepted rules of inference).

In this chapter we shall introduce the most useful of these assertions. Some have
strong intuitive appeal, as, e.g., some forms of the Axiom of Choice. Others seem far
less credible: a good example is the assertion that every set can be well-ordered (we
cannot effectively well-order even the set R). Nevertheless, all the assertions that we
present are in fact equivalent: this means that any one of them can be proved, by
accepted rules of inference, on the assumption of any other, together with the more
basic agreements about sets and mappings.

What attitude is one to adopt with regard to the validity of such “marginal”
assertions? This depends, of course, on the purpose at hand. For general mathematics
as practiced by the ordinary mathematician, as well as for the educated user of
mathematics, the prevailing, and probably most advisable, course is this: to accept
the validity of these assertions freely, but to make unobtrusive mention of their use
when engaged in careful exposition; and to avoid their use, as a matter of good style,
when it is not excessively costly to do so.

273
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Since the purpose of this chapter is, to a large extent, to acquaint the readers with
these assertions and, secondarily, to convince them of their equivalence, we do not,
in this chapter, commit ourselves to the acceptance of any one of these assertions.
Instead, we show the derivation of all from a single one, Hausdorff’s Maximality
Principle, chosen for its simplicity and plausibility.

In broad outline this account follows J. L. Kelley, General Topology (Van Nos-
trand). The quite complicated argument required to complete the proof of the equiv-
alence (Lemmas 177A, 177B) is included only for the record; it is essentially due to
Ernst Zermelo (1871-1953), and our account follows P.R. Halmos, Naive Set Theory
(Van Nostrand).

A word about terminology. The labels “Principle”, “Lemma”, and “Axiom” signal
no difference in status; they should be regarded as quaint and colorful relics of a
debate to decide which of these assertions was more “fundamental” than the rest.
The attributions by name to individual mathematicians are loosely traditional, and
are in some cases more grounded in habit than in history. The assertions to be
introduced will be identified by Roman numerals.

It is not our aim, in this chapter, to develop the theory of infinite sets much
beyond the purpose already stated. However, in Section 175 we discuss the most
elementary facts concerning the comparison of sets by “size”, and in Section 176 we
do something similar for well-ordered sets. These facts serve as points of departure
for so-called transfinite cardinal and ordinal arithmetic, respectively; but we do not
pursue these topics in the present account.
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172. Maximality principles

Each of the assertions discussed in this section states that some ordered set has a
maximal member.

We recall from Section 61 that a collection of sets is called a nest if it is totally
ordered by inclusion; and that an ordered subset S of an ordered set D is called
a chain of D if S is totally ordered. In particular, if D is a collection of sets, a
subcollection S of D is a chain of D ordered by inclusion if and only if S is a nest.

(I) (HAUSDORFF’S MAXIMALITY PRINCIPLE). In every collection of sets there is a
maximal nest; more precisely, if D is a collection of sets, then the collection {N ∈
P(D) | N is a nest}, ordered by inclusion, has a maximal member.

(II)[(III)] (SET MAXIMALITY PRINCIPLE). If D is a [non-empty] collection of sets

such that every [non-empty] nest N ∈ P(D) satisfies
⋃

N ∈ D, then D ordered by

inclusion has a maximal member.

(IV) (KURATOWSKI’S LEMMA). If D is an ordered set, every chain of D is included
in a maximal chain of D, i.e., in a maximal member of the collection of all chains of
D, ordered by inclusion.

(V) (ZORN’S LEMMA). If D is an ordered set such that every chain of D has an
upper bound, then D has a maximal member.

172A. LEMMA. Let D be an ordered set and M a maximal chain of D. Then
every upper bound of M is a maximal member of D.

Proof. Let m ∈ Ub(M) be given, and let x ∈ D be given such that m ≺ x. Then
x ∈ Ub(M), so that M ∪ {x} is a chain of D. In view of the maximality of M , we
must have M ∪ {x} = M , which implies x ∈ M , and therefore x ≺ m. We conclude
that x = m.

172B. LEMMA. Let D be an ordered set, and let the chain C of D and the nest

N of subsets of D be given. If C ∪S is a chain of D for every S ∈ N , then C ∪
⋃

N
is a chain of D.

Proof. If N = Ø, then C ∪
⋃

N = C, and the assertion follows trivially. Assume

now that N 6= Ø. Let x, y ∈ C ∪
⋃

N be given. We may choose S, T ∈ N such that

x ∈ C ∪ S and y ∈ C ∪ T . Since N is a nest, we have S ∪ T ∈ N , and C ∪ (S ∪ T )
is a chain of D. Since this chain contains x and y, we conclude that x ≺ y or y ≺ x.

Since x, y ∈ C ∪
⋃

N were arbitrary, we conclude that C ∪
⋃

N is a chain of D.

172C. PROPOSITION. The assertions (I), (II), (III), (IV), (V) are equivalent.

Proof. We shall prove the following implications:

(I) ⇒ (III) ⇒ (II) ⇒ (IV) ⇒ (I) and (IV) ⇒ (V) ⇒ (II).

(I) implies (III). Let D be a non-empty collection of sets such that every non-

empty nest N ∈ P(D) satisfies
⋃

N ∈ D. If (I) holds, we may choose a maximal

nest M ∈ P(D), which is clearly not empty. Then
⋃

M is an upper bound of M in
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D ordered by inclusion. By Lemma 172A,
⋃

M is a maximal member of D ordered

by inclusion.

(III) implies (II). Let D be a collection of sets such that every nest N ∈ P(D)

satisfies
⋃

N ∈ D. In particular, this holds for every non-empty nest, and in addition

Ø =
⋃

Ø ∈ D, so that D is not empty. If (III) holds, then D ordered by inclusion

has a maximal member.

(II) implies (IV). Let D be an ordered set, and let the chain C of D be given. Set
D := {S ∈ P(D) | C ∪ S is a chain of D}. By Lemma 172B, every nest N ∈ P(D)

satisfies
⋃

N ∈ D.

Assume now that (II) holds. We may then choose a maximal member M of D
ordered by inclusion. Since obviously C∪M ∈ D, we have C ⊂ M . We claim that M
is a maximal member of the collection of all chains of D, ordered by inclusion. Indeed,
if N is a chain of D, such that M ⊂ N , we have C ⊂ M ⊂ N ; hence C ∪N = N is a
chain of D, so that N ∈ D. But M is a maximal member of D, and hence M = N .
Thus M is a maximal chain of D, as claimed.

(IV) implies (V). Let D be an ordered set such that every chain of D has an upper
bound. If (IV) holds, we may choose a maximal chain of D (by taking the given chain
to be Ø); this maximal chain of D has an upper bound; and by Lemma 172A such
an upper bound is a maximal member of D.

(IV) implies (I). Apply (IV) to the case in which D is the collection of sets D,
ordered by inclusion, and the given chain of D is the nest Ø.

(V) implies (II). Apply (V) to the case in which D is the collection of sets D,
ordered by inclusion, and every nest N ∈ P(D) has its union as an upper bound in
D.

172D. REMARK. Every non-empty finite ordered set has a maximal member, and
every collection of subsets of a finite set is finite (Proposition 105A — applied to the
reverse order — and Corollaries 103J and 101F). Therefore the special cases of (I),
(II), and (III) in which D is finite and those of (IV) and (V) in which D is finite, are
valid regardless of the status of the assertions (I), (II), (III), (IV), (V) themselves.
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173. Collections of finitary character

A collection of sets D is said to be of finitary character if

for every set S, S ∈ D ⇔ F(S) ⊂ D;

D is said to be of binary character if

for every set S, S ∈ D ⇔ (∀x, y ∈ S, {x, y} ∈ D).

173A. REMARKS. (a): If D is a collection of finitary character or of binary
character, then

(173.1) ∀S ∈ D, P(S) ⊂ D.

(b): {x, y} is a finite set for every x, y. This observation, together with (a), shows
that every collection of binary character is also of finitary character.

(c): If a collection of finitary character is not empty, it contains Ø. Every collection
of binary character contains Ø, and hence is not empty.

(d): In verifying that a given collection D is of finitary character or of binary
character, it is possible to avoid the quantification “for every set S”, as follows. If

D is a set that includes all members of D (e.g., D :=
⋃

D), then D is of finitary

character if and only if

(173.2) ∀S ∈ P(D), S ∈ D ⇔ F(S) ⊂ D,

and D is of binary character if and only if

(173.3) ∀S ∈ P(D), S ∈ D ⇔ (∀x, y ∈ S, {x, y} ∈ D).

The “only if” parts of these equivalences are trivial; to prove the “if” parts, it is
enough to observe that if S is a set such that {x} ∈ D ⊂ P(D) for all x ∈ S, then
S ⊂ D.

We now formulate maximality principles for collections of finitary character or of
binary character.

(VI) (TUKEY’S LEMMA). Every non-empty collection of sets that is of finitary char-
acter has a maximal member when ordered by inclusion.

(VII) (TUKEY’S LEMMA, BINARY VERSION). Every collection of sets that is of binary
character has a maximal member ordered by inclusion.

173B. PROPOSITION. (III) implies (VI), and (VI) implies (VII).

Proof. (III) implies (VI). Let D be a non-empty collection of sets that is of finitary

character. Let N be a non-empty nest included in D; we claim that
⋃

N ∈ D. Let

T ∈ F(
⋃

N ) be given. By Proposition 102F we may choose S ∈ N such that T ⊂ S.

Since S ∈ D and T ∈ F(S) and D is of finitary character, we conclude that T ∈ D.
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Since T ∈ F(
⋃

N ) was arbitrary, we have F(
⋃

N ) ⊂ D. Since D is of finitary

character, we conclude that
⋃

N ∈ D.

If (III) holds, it follows that D has a maximal member.

(VI) implies (VII). This is trivial, since a collection of binary character is non-
empty and of finitary character (Remarks 173A,(b),(c)).

173C. REMARK. Let n ∈ N× be given. A collection of sets D is said to be ofH

nary character if

for every set S, S ∈ D ⇔
⋃

m∈n⊐

Fm(S) ⊂ D.

The following facts are easily established:

(a): For every n ∈ N×, every collection of nary character satisfies (173.1) and
contains Ø.

(b): For all m,n ∈ N×, if m ≤ n then every collection of mary character is of nary
character and of finitary character as well.

(c): A collection of sets D is of 1-ary character if and only if D = P(S) for some
set S; D is of 2-ary character if and only if D is of binary character.

On account of these remarks, a version of (VII) in which “binary” is replaced by
“nary” is implied by (VI) and implies (VII), for each n ∈ N×\{1}.N

Tukey’s Lemma (VI) may be used to yield a similar conclusion for certain col-
lections of sets that are not of finitary character themselves, but are included in
collections of finitary character, as we now show.

173D. LEMMA. Let a collection of sets C and a set A be given. If C is of finitary
character, then so is the subcollection

(173.4) E := {S ∈ C | A ∪ S ∈ C}.

Proof. Let S ∈ E be given. For every T ∈ F(S) we have T ∈ C (since S ∈ C) and
A ∪ T ∈ P(A ∪ S) ⊂ C ( by Remark 173A,(a)); hence T ∈ E . Thus F(S) ⊂ E .

Conversely, let S be a set such that F(S) ⊂ E . Then F(S) ⊂ C, and therefore
S ∈ C. Let T ∈ F(A ∪ S) be given. Then T\A ∈ F(S) ⊂ E , and therefore A ∪ T =
A∪ (T\A) ∈ C. It follows that T ∈ F(A∪ T ) ⊂ C. Since T ∈ F(A∪ S) was arbitrary,
we conclude that A ∪ S ∈ C, and therefore S ∈ E .

173E. PROPOSITION. Let a collection of sets D and sets A, B be given. If D is
of finitary character and (VI) holds, then the subcollection

(173.5) F := {S ∈ D | A ⊂ S ⊂ B},

ordered by inclusion, has a maximal member if and only if A ⊂ B and A ∈ D.

Proof. The collection defined in (173.5) is not empty if and only if A ⊂ B and
A ∈ D (by Remark 173A,(a)). Assume that these conditions hold, and note that the
collection C := D∩P(B) is of finitary character. With E and F as defined in (173.4)
and (173.5), respectively, we obviously have F ⊂ E ; moreover, S ⊂ A ∪ S ∈ F for
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every S ∈ E . It follows from these remarks that a set is a maximal member of F if
and only if it is a maximal member of E . By Lemma 173D, E is of finitary character;
and E is not empty, since it contains A. It follows from (VI) that E , and therefore
also F , has a maximal member.
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174. The Axiom of Choice

The idea embodied in the assertions that we shall presently consider is that it
is possible to choose simultaneously one member from each term of a family of sets
— provided the sets are not empty, of course — no matter how large the index set
is. (For finite index sets such a choice is always possible, by the Principle of Finite
Choice; see Remark 174D,(b).)

We formulate four versions of this kind of assertion. In the first two versions, the
family of sets is disjoint; the third version is the “general” one; in the fourth, the
choice is made from all non-empty subsets of a given set.

If S is a set, a mapping γ : P×(S) → S is called a choice-mapping for S if
γ(A) ∈ A for all A ∈ P×(S).

(VIII) (SURJECTION AXIOM). Every surjection is right-invertible.

(IX) (ZERMELO’S AXIOM OF CHOICE). If P is a partition of a set S, there exists a
subset K of S such that K ∩ E is a singleton for each E ∈ P.

(X) (AXIOM OF CHOICE, GENERAL VERSION). The Cartesian product of a family of
non-empty sets is a non-empty set.

(XI) (AXIOM OF CHOICE, SPECIAL VERSION). For every set there is a choice-mapping.

174A. LEMMA. Let the surjection f: D → C and the choice-mapping γ for D be
given. Then (y 7→ γ(f<({y}))) : C → D is a right-inverse of f .

174B. PROPOSITION. The assertions (VIII), (IX), (X), (XI) are equivalent, and
all follow from (VII).

Proof. We shall prove the following implications:

(VII) ⇒ (VIII) ⇒ (X) ⇒ (XI) ⇒ (VIII) and (VIII) ⇔ (IX).

We could have saved one implication in this scheme, but Lemma 174A is useful
elsewhere.

(VII) implies (VIII). Let the surjection f : D → C be given, and set D := {A ∈
P(D) | f |A is injective}. For a given subset S of D, we have S ∈ D if and only if
f |{x,y} is injective for all x, y ∈ S, i.e., if and only if {x, y} ∈ D for all x, y ∈ S. We
have shown that D satisfies (173.3) and hence is a collection of binary character.

Assume now that (VII) holds. We may then choose a maximal member M of D
ordered by inclusion. If the injective mapping f |M : M → C were not surjective, we
could choose y ∈ C\f>(M) and x ∈ f<({y}), since f was surjective, and we should
find that x /∈ M but M ∪ {x} ∈ D, which would contradict the maximality of M .
Therefore f |M is surjective, and hence invertible. Then (f |M)←|D = 1M⊂D ◦ (f |M)←

is a right-inverse of f: indeed, f ◦ 1M⊂D ◦ (f |M)← = (f |M) ◦ (f |M)← = 1C .

(VIII) implies (IX). If P is a partition of the set S, and the surjection ΩP : S → P
has a right-inverse, the range of each such right-inverse meets every member of P in
a singleton.

(IX) implies (VIII). Assume that (IX) holds, and let the surjection f : D → C
be given. We apply (IX) to the partition Partf of D, and choose a subset K of D
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such that K ∩ f<({y}) is a singleton for every y ∈ C. Then the mapping g : C → D
defined by g(y) :∈ K ∩ f<({y}) for all y ∈ C is a right-inverse of f .

(VIII) implies (X). Let (Ai | i ∈ I) be a family of non-empty sets. Consider the

mappings λ :
˙⋃

i∈I

Ai → I and µ :
˙⋃

i∈I

Ai →
⋃

i∈I
Ai defined by

λ((j, x)) := j and µ((j, x)) := x for all (j, x) ∈ ˙⋃

i∈I

Ai.

Note that

(174.1) µ(s) ∈ Aλ(s) for all s ∈ ˙⋃

i∈I

Ai

and that λ is surjective, since Ai 6= Ø for all i ∈ I.

Assume now that (VIII) holds and choose a right-inverse of λ, say ν : I → ˙⋃

i∈I

Ai.

Then (174.1) implies

µ(ν(j)) ∈ Aλ(ν(j)) = Aj for all j ∈ I.

Therefore the family (µ(ν(i)) | i ∈ I) is a member of×
i∈I

Ai, and this product is not

empty.

(X) implies (XI). Let the set S be given, and assume that (X) holds. Then

×
A∈P×(S)

A 6= Ø, and we may choose c ∈ ×
A∈P×(S)

A. Then γ : P×(S) → S, defined by

γ(A) := cA for all A ∈ P×(S), is a choice-mapping for S.

(XI) implies (VIII). This is an immediate consequence of Lemma 174A.

Closely connected to the Axiom of Choice are some of the general distributive
laws for families of sets (see Section 45).

(XII)[(XIII)] (GENERAL DISTRIBUTIVE LAW FOR PRODUCTS [INTERSECTIONS]). Let a
set I [and a set X], a family of sets (Ji | i ∈ I), and a family of families of sets

((Ai,j | j ∈ Ji) | i ∈ I) be given [such that
⋃

i∈I

⋃

j∈Ji

Ai,j ⊂ X]. Set P :=×
i∈I

Ji. Then

×
i∈I

(
⋃

j∈Ji

Ai,j) =
⋃

k∈P
(×
i∈I

Ai,ki) [
⋂

i∈I

X(
⋃

j∈Ji

Ai,j) =
⋃

k∈P
(
⋂

i∈I

XAi,ki)].

174C. PROPOSITION. The assertions (X), (XII), (XIII) are equivalent.

Proof. The implications (X) ⇒ (XII) and (X) ⇒ (XIII) were proved in Theorem
45A (proofs of (45.5) and (45.3)). To prove the converse implications, we assume that
(XII)[(XIII)] holds and that the family of non-empty sets (Ji | i ∈ I) is given. We

set P := ×
i∈I

Ji and define the family of families of sets ((Ai,j | j ∈ Ji) | i ∈ I) by

Ai,j := {Ø} for all i ∈ I and j ∈ Ji [and the set X by X := {Ø}]. Then
⋃

j∈Ji

Ai,j = {Ø}

for all i ∈ I, and ×
i∈I

Ai,ki = {Ø}I [
⋂

i∈I

XAi,ki = {Ø}] for all k ∈ P .
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Therefore
⋃

k∈P
{Ø}I =×

i∈I
{Ø} = {Ø}I 6= Ø [

⋃

k∈P
{Ø} =

⋂

i∈I

{Ø}{Ø} = {Ø} 6= Ø]

and consequently P 6= Ø.

174D. REMARKS. (a): If in (XIII) we replace
⋃

by
⋂

X and vice versa, we obtain

still another equivalent assertion; the equivalence follows by “taking complements
with respect to X” (cf. Theorem 45A, proof of (45.4)).

(b): The special cases of (VIII) with finite codomain, of (IX) with finite partition,
of (XI) with finite set, and of (X), (XII), (XIII) with finite index set are valid —
regardless of the status of the general assertions (VIII)-(XIII) — by virtue of the
Principle of Finite Choice (Theorem 103L) .
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175. Comparison of sets

We recall that sets S and T are said to be equinumerous if there exists a bijection
from S to T or, equivalently, a bijection from T to S. For finite sets, this word is well
chosen, since finite sets are equinumerous if and only if they have the same cardinal
number (Corollary 101D). If S and T are finite sets, then #S ≤ #T if and only if
there exists an injection from S to T (Proposition 101E). We use this observation
to motivate the following terminology. Let the sets S and T be given. Then S is
said to be outnumbered by T , and T is said to outnumber S, if there exists an
injection from S to T . It is clear that if S, T, U are sets and U outnumbers T and T
outnumbers S, then U outnumbers S. If T outnumbers S but S does not outnumber
T , then S is said to be strictly outnumbered by T , and T is said to strictly
outnumber S.

If the sets S and T are equinumerous, it is obvious that T outnumbers S and
S outnumbers T . It is reasonable to ask whether the reverse implication holds. It
is also reasonable to ask whether, for a given pair of sets, one set in the pair must
outnumber the other. The answer to the former question is affirmative, as we shall
presently recall. An affirmative answer to the latter question, however, is an assertion
that will eventually be seen to be equivalent to the Axiom of Choice.

175A. THEOREM. (SCHRÖDER-BERNSTEIN THEOREM). Let the sets S and T be given.
Then S and T are equinumerous if (and only if) T outnumbers S and S outnumbers
T .

Proof. This is a restatement of Theorem 75C.

175B. PROPOSITION. Every set is strictly outnumbered by its power set.

Proof. Let the set S be given. The mapping (s 7→ {s}) : S → P(S) is obviously
injective. If there existed an injection from P(S) to S, we could choose one, say f .
Since P(S) 6= Ø, we could choose a left-inverse of f , and this left-inverse would be a
surjection from S to P(S). But there is no surjection from S to P(S), as was shown
in Proposition 32E.

We formulate the following assertions.

(XIV) (PRINCIPLE OF COMPARABILITY). If S and T are sets, then either T outnum-
bers S or S outnumbers T .

(XV) (PRINCIPLE OF COMPARABILITY FOR SURJECTIONS). If S and T are non-empty
sets, then there exists either a surjection from S to T or a surjection from T to S.

175C. PROPOSITION. (VII) implies (XIV) and (XIV) implies (XV).

Proof. (VII) implies (XIV). Assume that (VII) holds. Let the sets S and T be
given, and consider the collection

G := {G ∈ P(S × T ) | ∀(x, y), (x′, y′) ∈ G, x = x′ ⇔ y = y′}.

It is plain that G is a collection of binary character. By (VII) we may therefore choose
a maximal member M of G.
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We claim that

(175.1)
for every (x, y) ∈ S × T there exists (x′, y′) ∈ S × T such that

(x, y′) ∈ M or (x′, y) ∈M.

Indeed, suppose that (u, v) ∈ S × T were such that (u, y′) /∈ M and (x′, v) /∈ M for
all (x′, y′) ∈ S × T . Then we should find that (u, v) /∈M and that M ∪ {(u, v)} ∈ G,
contradicting the maximality of M . This establishes the claimed validity of (175.1).

It follows from (175.1) that either

(175.2) for every x ∈ S there is at least one y∈T such that (x, y) ∈M

or

(175.3) for every y ∈ T there is at least one x ∈ S such that (x, y) ∈M.

Moreover, since M ∈ G, we also have, in every case,

(175.4)
for every x ∈ S there is at most one y ∈ T such that (x, y) ∈ M, and

for every y ∈ T there is at most one x ∈ S such that (x, y) ∈M.

If (175.2) holds, then (175.2) and (175.4) show that M is the graph of an injection
from S to T . If, on the other hand, (175.3) holds, then (175.3) and (175.4) show that
{(y, x) ∈ T × S | (x, y) ∈M} is the graph of an injection from T to S. Hence either
T outnumbers S or S outnumbers T .

(XIV) implies (XV). Every injection with non-empty domain is left-invertible, and
each left-inverse is surjective. The desired implication is an immediate consequence
of this observation.

175D. REMARKS. (a): Theorem 175A makes it appear desirable to assign to
every set S, whether finite or infinite, an object #S, the cardinal of S, in such a way
that the following condition is satisfied: If S and T are sets, then #S = #T if and
only if S and T are equinumerous. The objects that occur as cardinals of sets would
be the cardinal numbers; and we could define a “relation” ≤ among cardinal numbers
by requiring #S ≤ #T if and only if T outnumbers S. This “relation” is obviously
reflexive and transitive, and Theorem 175A shows that it is also antisymmetric. It
is therefore an “order”. Assertion (XIV) is then equivalent to the assertion that this
“order” is total; (XIV) is therefore also known as the Law of Trichotomy (because it
asserts that either #S < #T or #S = #T or #T < #S, but no two at the same
time, for any sets S, T ; here < is the “strict-order” corresponding to ≤).

The question that must be answered to make this idea effective is, What objects
are the cardinal numbers to be? We shall not explore this matter any further, but
we mention that a satisfactory answer can indeed be given, and that one can arrange
to have the natural numbers as the “finite” cardinal numbers, i.e., the cardinals of
finite sets. The cardinal numbers, both finite and infinite (or “transfinite”, as they
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are sometimes called), constitute the subject matter of a branch of set theory called
cardinal arithmetic. They can be added and multiplied and raised to powers in such
a way that all the results proved in Section 103 remain valid with the assumption of
finiteness deleted. A glimpse of some perhaps unexpected facts of cardinal arithmetic
can be obtained from results such as Corollary 175F.

Proposition 175B shows that there is no “greatest” cardinal number, since #S <
#P(S) for every set S. This suggests that there are “many” cardinal numbers.
There are indeed so “many” that it is not proper to speak of “the set of all cardinal
numbers”, just as it is not proper to speak of “the set of all sets”. That is why the
words “relation”, “order”, “strict-order”, and “greatest” above were put in quotation
marks; for every set of cardinal numbers, however, the “restriction” of ≤ to that set
is an order, and this order is total if (XIV) holds.

(b): If the Axiom of Countable Choice holds (it is a consequence of (X), and hence
of (VII) by Proposition 174B), then every infinite set outnumbers every countable set
(Corollary 121W). Consequently, #N is the least infinite cardinal number; it is often
denoted by ℵ0.

The rest of this section contains some useful additional results concerning the size
of infinite sets. They all depend on assertion (VII) or (III), as indicated in each case.

175E. THEOREM. If (VII) holds, then every infinite set has a partition whose
members are countably infinite sets.

Proof. Let the infinite set S be given, and consider the collection ∆ of all disjoint
collections of countably infinite subsets of S. It is obvious that ∆ is a collection of
binary character. By (VII) we may therefore choose a maximal member M of ∆;
thus M is a maximal disjoint collection of countably infinite subsets of S.

By (VII) and Proposition 174B, the Axiom of Choice (X) holds, and consequently

we may apply Theorem 121V. If S\(
⋃

M) were infinite, that theorem shows that we

might choose a countably infinite subset N of S\(
⋃

M); but then M∪{N} ∈ ∆, and

this would contradict the maximality of M. We conclude that S\(
⋃

M) is finite.

If M were empty, we should find that S = S\(
⋃

M) is finite, contrary to the

assumption. Therefore M is not empty, and we may choose M ∈ M. Now K :=

S\(
⋃

(M\{M})) = (S\(
⋃

M)) ∪M , and this union of a finite set and a countably

infinite set is countably infinite (this follows from Corollary 121O, but can easily
be shown directly from the definitions). We conclude that (M\{M}) ∪ {K} is the
desired partition of S into countably infinite subsets.

175F. COROLLARY. If (VII) holds, and if S is an infinite set and T a countable
non-empty set, then the sets S, S × T , and T × S are equinumerous.

Proof. By Theorem 175E we may choose a partition P of S whose members are
countably infinite sets. By Corollary 121F, each member of P is equinumerous with
N. By (X), which follows from (VII) by Proposition 174B, we may choose a family
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of invertible mappings (φE | E ∈ P) ∈×
E∈P

Inv(E,N). Each of the mappings

(x 7→ (ΩP(x), φΩP (x)(x))) : S → P × N

and
((E, n) 7→ (φE)←(n)) : P × N → S

is the inverse of the other. We conclude that

(175.5) S and P × N are equinumerous;

it follows that

(175.6) S × T and (P × N) × T are equinumerous.

Now N × T is infinite (since T 6= Ø) and is outnumbered by N × N (since T is
countable); but N × N is countable, and hence so is N × T (Corollary 121L and
Proposition 121B). Thus N × T is countably infinite, and hence equinumerous to N
(Corollary 121F). Hence

(175.7) P × N and P × (N× T ) are equinumerous.

Since (P × N) × T and P × (N × T ) are obviously equinumerous, it follows from
(175.5), (175.7), and (175.6) that S and S×T are equinumerous. On the other hand,
S × T and T × S are of course equinumerous.

175G. LEMMA. Assume that (VII) holds and let the sets K and L be given. Let
the family of sets (Ak | k ∈ K) be given and assume that L outnumbers Ak for every

k ∈ K. Then K × L outnumbers both
˙⋃

k∈K

Ak and
⋃

k∈K
Ak.

Proof. By Proposition 174B, (VII) implies (VIII) and (X). By (X) we may choose

a family of injections (fk | k ∈ K) ∈×
k∈K

Map(Ak, L). The mapping

((k, x) 7→ (k, fk(x))) :
˙⋃

k∈K

Ak → K × L

is injective. Therefore K × L outnumbers
˙⋃

k∈K

Ak.

The mapping ((k, x) 7→ x) :
˙⋃

k∈K

Ak →
⋃

k∈K
Ak is surjective. By (VIII) we may

choose a right-inverse of this mapping, and this right-inverse is injective. Hence
˙⋃

k∈K

Ak outnumbers
⋃

k∈K
Ak.

175H. COROLLARY. Assume that (VII) holds, and let the infinite set I be given.
Then:

(a): If (Aj | j ∈ J) is a countable family of sets such that I outnumbers Aj for

every j ∈ J , then I outnumbers
˙⋃

j∈J

Aj and
⋃

j∈J
Aj.
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(b): If (Ai | i ∈ I) is a family of countable sets, then I outnumbers
˙⋃

i∈I

Ai and
⋃

i∈I
Ai.

Proof. We apply Lemma 175G with K := J and L := I for Part (a) (the case
J = Ø is trivial), and with K := I and L := N for Part (b). The proof is completed
by using Corollary 175F to show that I outnumbers J × I and I ×N, respectively.

175I. COROLLARY. Assume that (VII) holds. If (Aj | j ∈ J) is a countable family
of sets and k ∈ J is such that Ak is infinite and outnumbers Aj for every j ∈ J , then

the sets Ak,
˙⋃

j∈J

Aj, and
⋃

j∈J
Aj are equinumerous.

Proof. By Corollary 175H,(a) with I := Ak, we conclude that Ak outnumbers
˙⋃

j∈J

Aj and
⋃

j∈J
Aj . On the other hand, the mapping σk : Ak → ˙⋃

j∈J

Aj and the inclusion

mapping of Ak into
⋃

j∈J
Aj are injective, so that

˙⋃

j∈J

Aj and
⋃

j∈J
Aj each outnumbers Ak.

The conclusion follows by Theorem 175A.

175J. THEOREM. Assume that (III) holds. Let the infinite set S be given. Then
S and F(S) are equinumerous.

Proof. 1. Since (III) holds, we also have (VII) (Proposition 173B), (X) (Proposi-
tion 174B), and (XIV) (Proposition 175C).

2. Consider the subcollection

G := {Grφ | φ ∈ Inv(A,F(A)) for some infinite A ∈ P(S)}

of P(S × F(S)). We shall use the mappings π1 : S × F(S) → S and π2 : S × F(S) →
F(S) defined by

π1(x, F ) := x and π2(x, F ) := F for all (x, F ) ∈ S × F(S).

We note that

(175.8) (π2)>(G) = F((π1)>(G)) for all G ∈ G.

Our aim in this part in this part of the proof is to show that G ordered by inclusion
has a maximal member. To this end it will be sufficient to prove, since (III) holds,
that

(175.9) G 6= Ø

(175.10)
⋃

N ∈ G for every non-empty nest N ∈ P(G).

Since S is infinite, we may choose a countably infinite subset N of S (Theorem
121V, which depends on the Axiom of Countable Choice, which follows from (X)).
Since N and F(N) are equinumerous (Corollary 121F and Theorem 121J), we may
choose a bijection ν : N → F(N). Then Grν ∈ G, and (175.9) is proved.
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To prove (175.10), let the non-empty nest N ∈ P(G) be given. It is clear that
⋃

N is the graph of a bijection from M := (π1)>(
⋃

N ) to M := (π2)>(
⋃

N ) (cf.

Theorem 43D). The proof of (175.10) will be complete when we show that

(175.11) M = F(M).

Using (175.8), we find

(175.12) M = (π1)>(
⋃

N ) =
⋃

((π1)>)>(N )

(175.13)

M = (π2)>(
⋃

N ) =
⋃

((π2)>)>(N ) =
⋃

{F((π1)>)(G)) | G ∈ N} ⊂

⊂ F(
⋃

((π1)>)>(N )) = F(M).

Conversely, let F ∈ F(M) be given. By (175.12) and the Principle of Finite Choice
(Theorem 103L), we may choose a non-empty finite subcollection F of N such that

F ∈
⋃

((π1)>)>(F). Since F is a non-empty finite nest, we have
⋃

F ∈ F ⊂ G
(Corollary 105C), and F ⊂ (π1)>(

⋃

F). Therefore, by (175.8),

F ∈ F((π1)>(
⋃

F)) = (π2)>(
⋃

F) ⊂ (π2)>(
⋃

N ) = M.

Since F ∈ F(M) was arbitrary, we conclude that F(M) ⊂ M. Together with (175.13)
this establishes (175.11).

This completes the proof of the assertion that G ordered by inclusion has a max-
imal member.

3. Choose a maximal member H of G, and set M : (π1)>(H), so that, by (175.8),
F(M) = (π2)>(H). By the definition of G, we note that M is infinite. Our aim in
this part of the proof is to show that M outnumbers S\M .

Suppose not; then S\M outnumbers M , by (XIV), and we may choose a subset
P of S\M such that M and P are equinumerous. It follows from Corollary 175I
that M and M ∪ P are equinumerous, and therefore F(M),F(P ), and F(M ∪ P ) are
equinumerous. Now P is infinite and F(P ) = {Ø} ∪ F×(P ). By Corollary 175I, F(P )
and F×(P ) are equinumerous. But

F×(P ) ⊂ F(M ∪ P )\F(M) ⊂ F(M ∪ P );

therefore F(M∪P )\F(M) and F×(P ) are equinumerous (Theorem 175A). But M and
F(M) are equinumerous (H is the graph of a bijection from M to F(M)). We conclude
that P and F(M∪P )\F(M) are equinumerous, and we may choose a bijection ψ : P →
F(M∪P )\F(M). But then H∪Grψ is the graph of a bijection fromM∪P to F(M∪P ),
hence a member of G that properly includes H , contradicting the maximality of H .
Our supposition that M does not outnumber S\M is thus untenable.
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4. Thus M outnumbers S\M . By Corollary 175I it follows that M and S =
M ∪ (S\M) are equinumerous. Hence F(M) and F(S) are equinumerous. But M
and F(M) are equinumerous, as noted before. We conclude that S and F(S) are
equinumerous, as was to be proved.

175K. COROLLARY. Assume that (III) holds. Let the infinite set S be given. Then
S and S × S are equinumerous.

Proof. S × S obviously outnumbers S. On the other hand, the mapping

(x, y) 7→ {{x}, {x, y}} : S × S → F(F(S))

is injective (cf. Remark 17D), so that F(F(S)) outnumbers S × S; but by Theorem
175J (applied twice), S and F(F(S)) are equinumerous, so that S outnumbers S×S.
The conclusion then follows by Theorem 175A.

175L. COROLLARY. Assume that (III) holds. Let the finite family of non-empty
sets (Ai | i ∈ I) and k ∈ I be given, and assume that Ak is infinite and outnumbers

Ai for every i ∈ I. Then Ak and×
i∈I

Ai are equinumerous.

Proof. By the Principle of Finite Choice (Theorem 103L) we may choose a family

of injections (φi | i ∈ I) ∈ ×
i∈I

Map(Ai, Ak). Then ×
i∈I

φi : ×
i∈I

Ai → (Ak)
I is

injective; hence (Ak)
I outnumbers×

i∈I
Ai. Now Ak is infinite; by Corollary 175K and

an obvious proof by special induction, it follows that Ak and (Ak)I are equinumerous;

hence Ak outnumbers ×
i∈I

Ai.

Since Ai 6= Ø for all i ∈ I, it follows form Theorem 103L that ×
i∈I

Ai 6= Ø. Now

πk :×
i∈I

Ai → Ak is surjective (Proposition 44B); hence×
i∈I

Ai outnumbers Ak. The

conclusion follows by Theorem 175A.
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176. Well-ordered sets

In earlier days it appeared desirable to apply inductive-proof schemes to the proof
of properties of all members of an infinite set of arbitrary “size”. In order to do so,
the set had to be provided with an order such that the set would be well-ordered. The
assertion that this can always be done is the Well-Ordering Principle, and this was
shown to be equivalent to the Axiom of Choice. In current mathematical practice, the
use of the Well-Ordering Principle has largely been superseded by the more practical
use of maximality principles; it retains its usefulness, however, in special fields of
mathematics (e.g., general topology), and also in its own set-theoretical context.

We begin by obtaining a result (Theorem 176C), of interest in its own right, which
says that well-ordered sets can be compared very precisely as to their “length”.

We recall from Section 81 that, if D is an ordered set and x ∈ D is given, we
denote by Spr(x) the set of all members of D that strictly precede x; this is also the
set of strict lower bounds of {x}.

Let the well-ordered sets D and D′ be given. A mapping f : D → D′ is called a
matching from D to D′ if it satisfies

(176.1) f>(Spr(x)) = Spr′(f(x)) for all x ∈ D.

(We use “primed” symbols for the ordered set D′.)

176A. REMARKS. (a): The definition of matching would be meaningful for any
ordered sets D and D′, but we shall use it only for well-ordered sets.

(b): Every matching is strictly isotone, and hence injective. A mapping f : D →
D′ is an order-isomorphism if (and only if) it is both a matching and a surjection
(Proposition 62D).

(c): For every well-ordered set D and every x ∈ D, the inclusion mapping 1Spr(x)⊂D

is a matching from the (well-)ordered subset Spr(x) of D to D.

(d): A composite of matchings is a matching.

176B. LEMMA. Let the well-ordered sets D and D′ be given. If f : D → D′ is a
matching but not an order-isomorphism, then there is exactly one x′ ∈ D′ such that
f |Rng is an order-isomorphism from D to Spr′(x′).

Proof. By Remark 176A,(b), f is not surjective. For every y′ ∈ Rngf we have
Spr′(y′) ⊂ Rngf , on account of (176.1). By Lemma 82F, there is exactly one x′ ∈ D′

such that Rngf = Spr′(x′). Since f is strictly isotone and D is totally ordered,
f |Rng : D → Spr′(x′) is an order-isomorphism.

176C. THEOREM. Let the well-ordered sets D and D′ be given. Then there exists
a matching from D to D′ or a matching from D′ to D, and there is at most one
matching of each kind. If there is a matching from D to D′ and also a matching from
D′ to D, then each is the inverse of the other, and they are order-isomorphisms.

Proof. 1. We first prove the uniqueness assertion. Let the matchings f and g
from D to D′ be given. Let x ∈ D be given and assume that f |Spr(x) = g|Spr(x). Then
Spr′(f(x)) = f>(Spr(x)) = g>(Spr(x)) = Spr′(g(x)). Since D′ is totally ordered, this
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implies f(x) = g(x). Since x ∈ D was arbitrary, we have proved by induction that
f(x) = g(x) for all x ∈ D, so that f = g. This shows that there is at most one
matching from D to D′. Repeating the argument with D and D′ interchanged, we
conclude that there is at most one matching from D′ to D.

Assume that f : D → D′ and f ′ : D′ → D are matchings. By Remark 176A,(d),
f ′ ◦ f is a matching from D to D, but so is 1D. Since there is at most one matching
from D to D (by the argument of the preceding paragraph), we must have f ′◦f = 1D.
In a similar manner we conclude that f ◦f ′ = 1D′. We have shown that each of f and
f ′ is the inverse of the other. Since they are isotone, they are order-isomorphisms.

2. It remains to prove the existence assertion. We use a method of recursive
definition with possible “break-down” of the recursion rule. We apply Theorem 82E
with I := D, Ax := D′ for all x ∈ D, and

Ux := {u ∈ D′Spr(x) | Rngu 6= D′} for all x ∈ D,

φx(u) := min(D′\Rngu) for all x ∈ D and u ∈ Ux.

By the theorem just quoted we conclude that there exists a (unique) subset K of D
and family a ∈ D′K such that

(176.2) x ∈ K ⇔ (Spr(x) ⊂ K and a>(Spr(x)) 6= D′) for all x ∈ D,

(176.3) ax = min(D′\a>(Spr(x))) for all x ∈ K.

Let x ∈ K be given. For every y ∈ Spr(x) we have Spr(y) ⊂ Spr(x), and (176.2)
and (176.3) yield y ∈ K and Spr′(ay) ⊂ a>(Spr(y)) ⊂ a>(Spr(x)). We apply Lemma
82F,((i)⇒(ii)), to the well-ordered set D′ and the subset a>(Spr(x)); this subset is
not D′ in view of (176.2), and therefore a>(Spr(x)) = Spr′(min(D′\a>(Spr(x)))).
Combining this with (176.3) and noting that x ∈ K was arbitrary, we find

(176.4) Spr′(ax) = a>(Spr(x)) for all x ∈ K.

Two cases must now be distinguished. In the first case, K = D, and (176.4) shows
that the mapping (x 7→ ax) : D → D′ is a matching from D to D′. In the second
case, K 6= D; we now examine this case. From (176.2) and Lemma 82F we have
K = Spr(k) for some (unique) k ∈ D. Since k /∈ K but Spr(k) = K, it follows from
(176.2) that Rnga = a>(Spr(k)) = D′. Since (176.4) shows that a is strictly isotone,
hence injective, the mapping (x 7→ ax) : K → D′ is bijective. If f ′ : D′ → K is its
inverse, we have by (176.4),

f ′
>
(Spr′(x′)) = Spr(f ′(x′)) for all x′ ∈ D′.

Therefore the mapping f ′|D is a matching from D′ to D.

176D. COROLLARY. Let the well-ordered sets D and D′ be given. Then exactly
one of the following three statements holds:
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(i): D and D′ are order-isomorphic.

(ii): D is order-isomorphic to the ordered subset Spr′(x′) of D′ for exactly one
x′ ∈ D′.

(iii): D′ is order-isomorphic to the ordered subset Spr(x) of D for exactly one
x ∈ D.

Moreover, there is exactly one order-isomorphism in each case.

Proof. The assertion follows from Theorem 176C with the help of Lemma 176B
and Remark 176A,(b).

The next theorem shows that there are many “different” well-ordered sets. If we
knew that every set can be well-ordered, this result would be an almost immediate
consequence of Proposition 175B. Our purpose, however, is to use the next theorem
to derive the Well-Ordering Principle from assertion (XV).

176E. THEOREM (HARTOGS’S THEOREM). For every collection of well-ordered sets
there exists a well-ordered set that is not order-isomorphic to any member of the
collection.

Proof. 1. Since we shall have to deal with many well-ordered sets at once, we
shall temporarily have to be especially precise. Thus let (A;α) be a well-ordered
set. For every x ∈ A we indicate by Sprα(x) the set consisting of all members of
A that strictly precede x in the ordered set (A;α); and for each x ∈ A we use the
abbreviation αx := α|Sprα(x) for the appropriate restriction of the order α.

2. Let the Λ0 be the given collection of well-ordered sets, and consider the collec-
tion

Λ := Λ0 ∪ {(Sprα(x);αx) | (A;α) ∈ Λ0, x ∈ A}
of well-ordered sets. It is clear that Λ satisfies the following condition:

(176.5) (Sprα(x);αx) ∈ Λ for all (A;α) ∈ Λ and all x ∈ A.

We define the relation σ in Λ by the rule

(176.6)
∀(A;α), (B; β) ∈ Λ, (A;α) σ (B; β) :⇔ (there is a matching from

(A;α) to (B; β)).

It follows form (176.6) and Remark 176A,(d) that σ is reflexive and transitive. From
Theorem 176C it follows that σ is total and that

(176.7)
∀(A;α), (B; β) ∈ Λ, ((A;α) σ (B; β) and (B; β) σ (A;α)) ⇔

⇔ ((A;α) and (B; β) are order-isomorphic).

Let P be the partition of Λ associated with the equivalence relation “is order-isomorphic
to” (Theorem 57C), and define the relation ≺ in P by the rule

∀Γ,∆ ∈ P, Γ ≺ ∆ :⇔ (∃(A;α) ∈ Γ, ∃(B; β) ∈ ∆, (A;α) σ (B; β)).

It follows from (176.7) and Proposition 57H that ≺ is a total order in P and that

(176.8) ∀(A;α), (B; β) ∈ Λ, (A;α) σ (B; β) ⇔ ΩP((A;α)) ≺ ΩP((B; β)).
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3. Let (A;α) ∈ Λ be given. It is clear from Remark 176A,(c), Theorem 176C, and
(176.5) that

(176.9) ∀x ∈ A, (Sprα(x);αx) σ (A;α)

(176.10) ∀x, y ∈ A, x α y ⇔ (Sprα(x);αx) σ (Sprα(y);αy).

(Note that if x
α
6= y then x ∈ Sprα(y) and Sprα(x) = Sprαy

(x).)

On account of (176.8) and (176.9) we may define the mapping Ψα : A →
Spr≺(ΩP((A;α))) by the rule

Ψα(x) := ΩP((Sprα(x);αx)) for all x ∈ A.

By (176.8) and (176.10) it follows that Ψα is strictly α-≺-isotone. We shall now show
that Ψα is surjective.

Let Γ ∈ Spr≺(ΩP((A;α))) be given, and choose (B; β) ∈ Γ. Then ΩP((B; β)) =
Γ � ΩP((A;α)). By (176.8) we find that (B; β) σ (A;α), so that there is a matching
from (B; β) to (A;α) but (B; β) and (A;α) are not order-isomorphic. By Lemma 176B
there is exactly one b ∈ A such that (B; β) is order-isomorphic to (Sprα(b);αb). Then
Γ = ΩP((B; β)) = ΩP((Sprα(b);αb)) = Ψα(b) ∈ RngΨα. Since Γ ∈ Spr≺(ΩP((A;α)))
was arbitrary, we conclude that Ψα is surjective. Since it is strictly isotone from the
well-ordered set (A;α) to Spr≺(ΩP((A;α))) ordered by ≺, it is an order-isomorphism;
and consequently Spr≺(ΩP((A;α))) is well-ordered by ≺.

Since (A;α) ∈ Λ was arbitrary and ΩP : Λ → P is surjective, we conclude that
Spr≺(Γ) is well-ordered by ≺ for every Γ ∈ P. A simple argument, which we omit,
then shows that P itself is well-ordered by ≺.

4. For every (A;α) ∈ Λ we have just shown that there is an order-isomorphism
(namely Ψα) from (A;α) to Spr≺(ΩP((A;α))) ordered by ≺. By Corollary 176D we
infer that (A;α) is not order-isomorphic to (P;≺). Thus (P;≺) is a well-ordered set
that is not order-isomorphic to any member of Λ, let alone to any member of the
given collection Λ0.

176F. COROLLARY. For every set S there exists a well-ordered set (W ;ω) such
that no mapping from S to W is surjective.

Proof. Let the S be given. Consider the collection Λ of all well-ordered sets whose
underlying sets are partitions of S (If Ord(A) denotes the set of all orders in the
set A, and Part(S) denotes the set of all partitions of S, then Λ may be regarded

as a subset of
˙⋃

P∈Part(S)

Ord(P).) By theorem 176E we may choose a well-ordered set

(W ;ω) that is not order-isomorphic to any member of Λ.

Now let f : S → W be given, and suppose that f were surjective. By Corollary
36D, there would be a bijection from the partition Partf of S to the set W . Conse-
quently there would be an order π in Partf such that the ordered set (Partf ; π) is
order-isomorphic to (W ;ω), and hence is well-ordered. But then (Partf ; π) ∈ Λ, and
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this would contradict the choice of (W ;ω). Hence the supposition that f is surjective
is untenable.

We are now ready to formulate the Well-Ordering Principle and to derive it from
assertion (XV).

(XVI) (WELL-ORDERING PRINCIPLE). Every set can be well-ordered; more precisely,
for every set S there exists an order ≺ in S such that (S;≺) is well-ordered.

176G. LEMMA. If D is a well-ordered set, then (A 7→ minA) : P×(D) → D is a
choice-mapping for the set D.

176H. PROPOSITION. (XV) implies (XVI), and (XVI) implies (XI).

Proof. (XV) implies (XVI). Let the set S be given. By Corollary 176F we may
choose a well-ordered set (W ;ω) such that there is no surjection from S to W . If (XV)
holds, we may then choose a surjection from W to S. Since there is a choice mapping
for W by Lemma 176G, we may apply Lemma 174A and infer that we may choose a
right-inverse f: S →W of this surjection; and f is injective. We may therefore define
an order ≺ in S in such a way that the bijection f |Rng is an order-isomorphism from
S ordered by ≺ to Rngf ordered by ω. Since the latter ordered set is well-ordered,
so is the former.

(XVI) implies (XI). this is an immediate consequence of Lemma 176G.

176I. REMARK. The set N is well-ordered by ≤. It follows that every countable
set can be well-ordered, and this assertion is valid regardless of the status of the
Well-Ordering Principle (XVI).
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177. Completing the proof of equivalenceH

This is a purely technical section, in which we shall complete the proof of the fact
that the assertions numbered with Roman numerals in this chapter are all equivalent.

177A. LEMMA. Let D be a collection of sets such that every nest N included in

D satisfies
⋃

N ∈ D. Let Φ : D → D be a mapping such that, for every S ∈ D, we

have S ⊂ Φ(S) and Φ(S)\S is empty or a singleton. Then there exists S ∈ D such
that Φ(S) = S.

Proof. 1. We require a definition. A subcollection T of D is called a tower if it
satisfies the following conditions:

(177.1) every nest N included in T satisfies
⋃

N ∈ T ,
(177.2) Φ>(T ) ⊂ T .
We observe that D is itself a tower. It follows form this and the definition that the
collection of all towers is intersection-stable. Let S be the intersection of the whole
collection, i.e., the smallest of all towers. We intend to show that S is in fact a nest.

2. Set C := {S ∈ S | T ⊂ S or S ⊂ T for all T ∈ S}; and for every S ∈ C set
B(S) := {T ∈ S | T ⊂ S or Φ(S) ⊂ T}.

Let S ∈ C be given. We claim that B(S) is a tower. If N is a nest and N ⊂ B(S),

then either T ⊂ S for all T ∈ N , and then
⋃

N ⊂ S, or there is T ∈ N such that

Φ(S) ⊂ T , and hence Φ(S) ⊂
⋃

N . Thus in either case
⋃

N ∈ B(S), and we have

shown that (177.1) holds for T := B(S). Let T ∈ B(S) be given; since S ∈ C, we
have either Φ(T ) ⊂ S or S $ Φ(T ). In the former case, Φ(T ) ∈ B(S). In the latter
case, the fact that T ∈ B(S) implies that either T ⊂ S $ Φ(T ), which requires T = S
(since Φ(T )\T is a singleton) and hence Φ(T ) = Φ(S); or else Φ(S) ⊂ T ⊂ Φ(T ); so
that Φ(T ) ∈ B(S) in this case as well. Since T ∈ B(S) was arbitrary, (177.2) also
holds for T := B(S). We have shown that B(S) is a tower, as claimed; but B(S) ⊂ S,
and hence B(S) = S. This conclusion is valid for all S ∈ C.

We next claim that C is a tower. (177.1) holds for T := C, by an argument quite
similar to that of the preceding paragraph. If S ∈ C and T ∈ S = B(S), we have
either T ⊂ S ⊂ Φ(S) or Φ(S) ⊂ T , so that Φ(S) ∈ C. Thus (177.2) also holds for
T := C, and C is a tower, as claimed. But C ⊂ S, and hence C = S. It follows from
the definition of C that C = S is a nest.

3. Since S is both a nest and a tower, we have
⋃

S ∈ S by (177.1). From (177.2)

we obtain Φ(
⋃

S) ∈ S and therefore
⋃

S ⊂ Φ(
⋃

S) ⊂
⋃

S, so that equality must

hold. Thus S :=
⋃

S ∈ D satisfies Φ(S) = S.

177B. LEMMA. Let the ordered set D be given, and assume that there is a choice
mapping for D. Then every chain of D is included in a maximal chain of D.

Proof. Choose a choice-mapping γ for the set D. Let C be a given chain of D,
and set D := {S ∈ P(D) | C ∪ S is a chain of D}. By Lemma 172B, every nest N
included in D satisfies

⋃

N ∈ D.
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We define the mapping Φ : D → D by the rule

Φ(S) :=







S ∪ {γ({x ∈ D\S | C ∪ S ∪ {x} is a chain of D})} if C ∪ S is not a
maximal chain of D

S if C ∪ S is a maximal chain of D,

for all S ∈ D. Then Lemma 177A is applicable to D and Φ, and we conclude that
there exists S ∈ D such that Φ(S) = S, hence such that C ∪ S is a maximal chain
that includes C.

177C. THEOREM. All the assertions (I)-(XVI) are equivalent.

Proof. By Propositions 172C, 173B, 174B, 174C, 175C, and 176H we have estab-
lished the implications

(IV) ⇒ (III) ⇒ (VI) ⇒ (VII) ⇒ (XIV) ⇒ (XV) ⇒ (XVI) ⇒ (XI)

and the equivalences

(I) ⇔ (II) ⇔ (IV) ⇔ (V) and (VIII) ⇔ (IX) ⇔ (X) ⇔ (XI) ⇔ (XII) ⇔ (XIII).

To complete the proof, we note that the implication (XI) ⇒(IV) is an immediate
consequence of Lemma 177B.N
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Index of terms

absolute value 236
absolute-value mapping 236
adding 148
addition 148, 183, 252
addition, termwise 200, 207
additive group 229
additively, commutative group, written 222
additively, commutative monoid, written 183
additively, commutative semigroup, written 205
adjusting the codomain 29
adjustment 29
agree 29
algebra, σ- 217
antimorphism, order- 95
antisymmetric 78
antisymmetric, strictly 78
antitone 94
[≺-≺′]-antitone 94
antitone, strictly 94
[≺-≺′]-antitone, strictly 94
archimedean 37
arrow 29
[n]ary character 278
associative law 148, 153, 183
augmenting 114
Axiom of Choice, General Version 59, 280
Axiom of Choice, Special Version 280
Axiom of Choice, Zermelo’s 280
Axiom of Countable Choice 214
Axiom of Infinity 147, 177

base 154
bijection 34
bijective 34
binary digit 256
binary digital expansion 256
binary digital expansion, non-terminating 259
binary character 277
Binary Numeration Theorem 212
binomial coefficient 170
Binomial Theorem 228
bit 256
bound, greatest lower 89
bound, least upper 89

bound, lower 88
bound, strict lower 88
bound, strict upper 88
bound, upper 88
bounded [interval] 248
bounded, order- 88
bounded from above 88
bounded from below 88
broader than 81
by 152

cancellable, left- 44
cancellable, right- 44
cancellation law 148, 153, 223, 236
cancellation law for multiplication 229
cardinal 159, 284
cardinal number 159, 284
Cartesian product 59, 68
ceiling 250
ceiling-function 115, 250
chain 87, 275
character, [n]ary 278
character, binary 277
character, finitary 277
characteristic family 53
characteristic function 53
Choice, Axiom of, General Version 59, 280
Choice, Axiom of, Special Version 280
Choice, Axiom of Countable 214
Choice, Principle of Finite 168
Choice, Zermelo’s Axiom of 280
choice-mapping 280
chosen recursively by a rule 131, 141
class 3
classification 56
closed 88
closure, transitive 116
closure mapping 114
coarser than 17
codomain 19, 76
coefficient, binomial 170
cofinal 88
coinitial 88
collection 3

297
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column 53
common divisor 91, 156
common divisor, greatest 91, 156
common multiple 91, 156
common multiple, least 91, 156
commutative 29, 31
commutative law 148, 152, 183
commutative group 222
commutative monoid 183
commutative ring 225
commutative semigroup 205
commutator 119
commute 31
Comparability, Principle of 283
Comparability for Surjections, Principle of 283
[≺-] comparable 81
complement 12
complementation mapping 95
complete [ordered field] 238
complete lattice 100
completely ordered 100, 105, 109
completely ordered, conditionally 109
completely ordered, relatively 109
component, former 14, 16
component, latter 14, 16
composed with 28
composite 28, 74, 76
composition 28, 31, 74
conditionally completely ordered 109
congruence modulo [m] 82
constant 33
contain 3
contained in 3
convex, order- 88
coproduct 62, 69
coproduct, set- 69
coproduct, standard 70
coproduct-set 69
correspondence, Galois 118
corresponding 80
countable 209
Countable Choice, Axiom of 214
countably infinite 209
counting system 134
cover 17
covering 17

defined recursively by a rule 126, 141
defined termwise 97
definiendum 1
definiens 1
dense 88
densely ordered 88

Descent, Principle of 139
diagonal 14, 53
diagram 29
difference 150, 223
difference, set- 12
difference, symmetric 13
digit, binary 256
digital expansion, binary 256
digital expansion, nonterminating binary 259
digit-carrying rules 213
directed 100
directed set 100
direct sum 62
direct union 62
direct union, ordered 103
discrete partition 17
disjoint 10, 17, 55
distinct 1
distinct from 1
distributive law 152, 153, 225
Distributive Law for Intersections, General 281
Distributive Law for Products, General 281
divide 156
divided by 223, 229
dividend 155
divisible 156
division 155, 223, 229
divisor 155, 156
divisor, common 91, 156
divisor, greatest common 91, 156
domain 19, 71, 76
doubleton 8

element 3
embedding 46
empty 7, 51
empty set 7
entry 53
epimorphism, set- 44
equality 1, 72
equinumerous 39, 159, 283
equinumerous to 39, 159
equivalence relation 82
Euclidean Algorithm 157
evaluation 54
evaluation family 54
evaluation mapping 54
even 155
exactly one solution 34
existence problem 23, 34
expansion, binary digital 256
expansion, nonterminating binary digital 259
exponent 154
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exponentiation 154
extended-real number 253
Extended-Real-Number System 253

factor 59, 97, 152
factorial 170
family 51, 52, 53
family, characteristic 53
family, evaluation 54
family, Kronecker 54
field 229
field, ordered 233
finer than 17
finitary character 277
finite 159, 177, 253
Finite Choice, Principle of 168
finite sequence of length [n] 53
first member 89
fixed point 31
Fixed-Point Theorem, Knaster 121
floor 250
floor-function 115, 250
follows 87
follows, immediately 88
follows, strictly 87
former component 14, 16
four 135
function 20
function, ceiling- 115, 250
function, characteristic 53
function, floor- 115, 250
function, greatest-integer 250
function, Kronecker 54
function, least-integer 250
functional 20
functional [relation] 77

Galois correspondence 118
General Distributive Law for Intersections 281
General Distributive Law for Products 281
general induction, proof by 140, 164
genuine [interval] 248
graph 21, 71, 76
greatest common divisor 91, 156
greatest-integer function 250
greatest lower bound 89
greatest member 89
group, additive 229
group, commutative 222
group, multiplicative 229

half, positive 233

Hartogs’s Theorem 292
Hausdorff’s Maximality Principle 275
hold vacuously 7

idempotent 31, 114
identity mapping 27
image 24, 73
image mapping 24, 73
immediately follows 88
immediately precedes 88
include 4
include, properly 4
included in 4
included in, properly 4
inclusion, ordered by 91
Inclusion-Exclusion Principle 196
inclusion mapping 27
inclusion relation 81
inclusion relation, proper- 81
increasing 114
index [i], term of 51
index set 51
induce [a mapping] 29
induced mapping 76
induction, proof by 124, 135
induction, proof by general 140, 164
induction, proof by special 140, 164
Induction Axiom 134
induction hypothesis 124, 135
induction step 124, 135, 163
inductive proof 124
infimum 89
infimum-stable 106
infinite 159, 177, 253
infinite, countably 209
infinity 253
Infinity, Axiom of 147, 177
infinity, minus 253
infinity, plus 253
injection 34
injective 34
insertion 62, 69
integer 249
integral 249
integral multiple 249
intersection 10, 11
Intersections, General Distributive Law for 281
intersection-stable 106
interval 115, 248
interval, order- 87-88
inverse 37
inverse, left- 37
inverse, multiplicative 229
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inverse, right- 37
invertible 37
invertible, left- 37
invertible, right- 37
involution 31
involutory 31
irrational 250
irrational number 250
irreflexive 78
isolated, zero 183
isomorphic, order- 94
isomorphism, order- 94
isomorphism, set- 37
isotone 93
[≺-≺′]-isotone 93
isotone, strictly 93
[≺-≺′]-isotone, strictly 93
isotonicity law 153
iterate 143
iterates, sequence of 143

Knaster Fixed-Point Theorem 121
Kronecker family 54
Kronecker function 54
Kronecker matrix 54
Kuratowski’s Lemma 275

largest member 92
last member 89
latter component 14, 16
lattice 100
lattice, complete 100
lattice-order 100
law of opposites 222
Law of Trichotomy 284
lax order 80
least common multiple 91, 156
least-integer function 250
least member 89
least upper bound 89
at least one solution 34
left-cancellable 44
left-inverse 37
left-invertible 37
length [n], list of 53
length [n], (finite) sequence of 53
lexicographic order 102
lexicographic product 102
listing 161
listing of length [n] 53
lower bound 88
lower bound, greatest 89

lower bound, strict 88

map 20
mapping 19
mapping, choice- 280
mapping, closure 114
mapping, complementation 95
mapping, evaluation 54
mapping, identity 27
mapping, image 24, 73
mapping, inclusion 27
mapping, induced 76
mapping, partition 27
mapping, pre-image 24, 73
mapping, quotient- 46
mapping, set-quotient- 46
mapping, successor 134, 147
map onto 23
map to 19
matching 290
matrix, [I × J ]- 53
matrix, [m]-by-[n] 53
matrix, Kronecker 54
Maximality Principle, Hausdorff’s 275
Maximality Principle, Set 275
maximal member 90
maximum 89
meet 10
member 3
member, first 89
member, greatest 89
member, largest 91
member, last 89
member, least 89
member, maximal 90
member, minimal 90
member, smallest 91
minimal member 90
minimum 89
minuend 150
minus 150, 222, 223
minus infinity 253
monoid, commutative 183
monomorphism, set- 44
monotone 95
monotonicity laws 150, 234, 236
morphism, order- 93
morphism, strict-order- 43
at most one solution 34
multiple 156, 194
multiple, common 91, 156
multiple, integral 249
multiple, least common 91, 156
multiplication 152, 154, 183, 252
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multiplicative group 229
multiplicative inverse 229
multiplicatively, commutative monoid,

written 183
multiplying 152

narrower than 81, 91
natural number 134
Natural-Number System 134
negative 234
negative, strictly 234
nest 91, 275
neutrality law 183
non-empty 7, 51
non-negative 234
non-positive 234
non-terminating binary digital expansion 259
non-void 7
number, cardinal 159, 284
number, extended-real 253
number, irrational 250
number, natural 134
number, prime 158
number, rational 250
number, real 247
number, whole 249

odd 155
one 135
onto 23
operator 20
opposite 222
opposites, law of 222
opposition 222, 252
order 80, 81
order, lattice- 100
order, lax 80
order, lexicographic 102
order, partial 81
order, product 97, 98
order, strict- 80
order, valuewise 99
order-antimorphism 95
order-bounded 88
order-bounded from above 88
order-bounded from below 88
order-convex 88
ordered 87
ordered, completely 100, 105, 109
ordered, conditionally completely 109
ordered, densely 88
ordered, pre-completely 109

ordered, relatively completely 109
ordered, totally 87
ordered, well- 100, 123
ordered by inclusion 91
ordered direct union 103
ordered field 233
ordered set 87
ordered subset 87
order-interval 87-88
order-isomorphic 94
order-isomorphism 94
order-morphism 93
order-morphism, strict- 93
outnumber 283
outnumber, strictly 283
outnumbered 283
outnumbered, strictly 283
over 223, 229

pair 14, 15
partial order 81
partition 17, 26
partition, discrete 17
partition, trivial 17
partition mapping 27
Pascal’s Triangle 172
Peano Axioms 134
permutation 39, 169
Pigeonhole Principle 160-161, 179
place 29
plus 148, 183
plus infinity 253
point, fixed 31
positive 234
positive, strictly 234
positive half 233
positivity system 261
power 154, 194, 249
power-set 9
precedes 87
precedes, immediately 88
precedes, strictly 87
pre-completely ordered 109
predicate 5
pre-image 24, 52, 73
pre-image mapping 24, 73
prime number 158
Principle, Well-Ordering 294
Principle of Comparability 283
Principle of Comparability for Surjections 283
Principle of Descent 139
Principle of Finite Choice 168
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product 14, 16, 59, 61, 62, 67, 97,
98, 152, 165, 183, 186

product, Cartesian 59, 68
product, lexicographic 102
product, set- 67
product, standard 68
product order 97, 98
Products, General Distributive Law for 281
product-set 67
product set 14, 16
projection 59, 67
proof, inductive 124
proof by general induction 140, 164
proof by induction 124, 135
proof by special induction 140, 164
proper-inclusion relation 81
properly include 4
properly included in 4
proper subset 4

quotient 223
quotient-mapping 46
quotient (of a division) 155

raise to the power [n] 154
range 23, 51
rational 250
rational number 250
real number 247
Real-Number System 247
reciprocal 222, 229
recursively, chosen 131, 141
recursively, defined 124, 141
reduction, surjective 29
reflexive 78
relation 71, 76
relation, equivalence 82
relation, inclusion 81
relation, proper-inclusion 81
relatively completely ordered 109
remainder (of a division) 155
residue (of a division) 155
restriction 29, 75
reverse 74, 76
right-cancellable 44
right-inverse 37
right-invertible 37
ring, commutative 225
root, square 239
row 53

saturated 146
Schröder-Bernstein Theorem 121, 283
self-indexed, set, (as a family) 53
semigroup, commutative 205
sequence 53, 139, 210
sequence of iterates 143
sequence of length [n], (finite) 53
set 3
set, directed 100
set, empty 7
set, index 51
set, ordered 87
set, power 9
set-coproduct 69
set-difference 12
set-embedding 46
set-epimorphism 44
set-isomorphism 37
Set Maximality Principle 275
set-monomorphism 44
set-product 67
set-quotient-mapping 46
set self-indexed (as a family) 53
σ-algebra 217
sign 236
signum 236
singleton 7
smallest member 91
solution (of equation) 23
solution, at least one 34
solution, at most one 34
solution, exactly one 34
special induction, proof by 140, 164
square 53
square root 239
stable 31
[f ]-stable 31
standard coproduct 70
standard product 68
strict lower bound 88
strictly antisymmetric 78
strictly antitone 94
strictly [≺-≺′]-antitone 94
strictly follows 87
strictly isotone 93
strictly [≺-≺′]-isotone 93
strictly negative 234
strictly outnumber 283
strictly outnumbered 283
strictly positive 234
strictly precedes 87
strict-order 80
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strict-order-morphism 93
strict upper bound 88
subsequence 210
subset 4
subset, ordered 87
subset, proper 4
subtracting 150
subtraction 150, 222, 252
subtrahend 150
successor 135
successor-mapping 134, 147
sum 148, 165, 183, 186, 254
sum, direct 62
summand 148
support 55, 188
supremum 89
surjection 23, 34
Surjection Axiom 280
Surjections, Principle of Comparability for 283
surjective 23, 34
surjective reduction 29
symmetric 53, 78
symmetric difference 13

term 51
term of index [i] 51
termwise, defined 97
termwise addition 200, 207
times 152
total 78
totally ordered 87
tower 295
transformation 20
transitive 78
transitive closure 116
transpose 53
transposition 53
Trichotomy, Law of 284
trivial [commutative ring] 225
trivial partition 17
Tukey’s Lemma 277
Tukey’s Lemma, Binary Version 277
two 135

uncountable 209
union 10, 11
union, direct 62
union, ordered direct 103
uniqueness problem 34
unique solution 34
unity 183
upon 223, 229

upper bound 88
upper bound, least 89
upper bound, strict 88

vacuously, hold 7
value 19
valuewise order 99
void 7

well-founded 100, 123
well-ordered 100, 123
Well-Ordering Principle 294
whole number 249
without 12
written additively, commutative group 222
written additively, commutative monoid 183
written additively, commutative semigroup 205
written multiplicatively, commutative monoid

183

Zermelo’s Axiom of Choice 280

zero 134, 147, 183

zero isolated, have its 183

Zorn’s Lemma 275
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Index of names

Apianus, Petrus (Bienewitz, Peter) 172

Archimedes (Aρχιµήδης) 133, 237

Bienewitz, Peter, v. Apianus, Petrus

Cantor, Georg Ferdinand Ludwig Philipp 218,

260

Dedekind, Julius Wilhelm Richard 134, 219

Eudoxos (Eύδoξoς) 231, 237, 247

Fontana, Niccolò, v. Tartaglia, Niccolò

Galois, Évariste 119

Gleason, Andrew Mattei 1

Halmos, Paul Richard 4, 274

Jiǎ Xiàn 172

Kaplansky, Irving 121

Kelley, John LeRoy 274

Kolodner, Ignace Izaak 121

Lawvere, Francis William 144

Liú Rǔxié 172

Menninger, Karl W. 133

Noll, Walter v

Pascal, Blaise 172

Peano, Giuseppe 134

Sierpiński, Wac law 163

Stifel, Michael 172

Tartaglia, Niccolò (Fontana, Niccolò) 172

Zermelo, Ernst 274

Zhū Sh̀ıjié 172
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Index of conditions

(Aug) 114

(Bij) 34

(Bij1), (Bij2), (Bij3) 35

(Bij4), (Bij5), (Bij6), (Bij7) 42

(Bij8) 43

(CG) 222

(Const), (Const1), (Const2), (Const3) 33

(CM1), (CM2), (CM3) 183

(Count I), (Count II), (Count III) 134

(CR) 225

(Emb) 46

(Epi), (Epi1), (Epi2) 44

(F) 229

(Idp) 114

(Inj), (Inj1), (Inj2), (Inj3) 34

(Inj4), (Inj5), (Inj6), (Inj7) 41

(Inj8), (Inj9) 42

(Inj0) 39

(Inv) 37

(LInv) 38

(LRInv) 37

(Mono), (Mono1), (Mono2) 44

(NI), (NII), (NIII) 134

(OF1), (OF2), (OF3), (OF4) 233

(Part 1), (Part 2), (Part 3) 17

(PS1), (PS2), (PS3), (PS4), (PS5), (PS6) 261

(Quot) 47

(RInv) 39

(Surj), (Surj1), (Surj2), (Surj3) 34

(Surj4), (Surj5), (Surj6), (Surj7) 41

(UInv) 37

(ULInv1), (URInv) 38

(I), (II), (III), (IV), (V) 275

(VI), (VII) 277

(VIII), (IX), (X), (XI) 280

(XII), (XIII) 281

(XIV), (XV) 283

(XVI) 294
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Index of symbols

Symbols standing for generic sets, mappings, relations, numbers, etc., are omitted when
consistent with intelligibility, and do not affect alphabetic order when present.

bin 258

Bin 258

Bin∞ 259

CS 95

closE 114

Cod 19

CommD 119

Dom 19, 71

evF 54

F( ) 159, 177

F×( ) 159

Fn( ) 159

Fix 31

gcd 91, 156

glb 89

Gr 21, 71, 76

IndP ( ) 124

inf 89

infS 89

Inj( , ) 173

Inv( , ) 39, 169

Isot( , ) 93

Lb( ) 88

LbS( ) 88

1cm 91, 156

1ex 102

lub 89

Map( , ) 20

max 89

min 89

N vi, 134

N× 135

Ord( ) 92, 293

P vi, 248

P̄ 253

P( ) 9

P×( ) 9

P×e ( ) 199

Po( ) 199

Part 26

Part( ) 105, 293

Perm( ) 39, 169

Q vi, 250

R vi, 247
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R̄ 112, 252

rem 157

Rng 23, 51

sgn 236

seq 134

Seq 180

Spr( ) 123, 290

sup 89

supS 89

Supp 55, 188

Ub( ) 88

UbS( ) 88

Z vi, 249

Z̄ 115

δSx 54

δS 54

∆A 14

Ξ 259

πj 59

σj 62

χU⊂S 53

χU 53

ΩP 27

ℵ0 285

0 134, 183, 200

0I 200

Ø 7

1 135, 183, 248

1U⊂S 27

1S 27

2 135

4 135

= 1

6= 1

:= 1

=: 1

=D 72

≡ 82

≡m 82

≈ 266

| 81

∈ 3

/∈ 3

:∈ 8

⊂ 4

⊃ 4

$ 4

% 4

⊆ 4

⊇ 4

⊂S 81

$S 81

⊏ 17

⊐ 17
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⊏S 105

≺ 80, 266

� 80

� 80

w 266

< 136, 233, 252, 284

≤ 137, 234, 252, 284

≦ 137, 234

( ) 53

( , ) 14, 15, 53, 61, 248

( , , ) 53

( ; ) 87

(·, b) 30

(a, ·) 30

(y, ·j) 59

( | ) 51

[ , ] 248, 253

[ , [ 248, 253

] , ] 248, 253

] , [ 248, 253

[ , ) 248

( , ] 248

f(x) 19

f(U) 24

f( , ) 20

f(·, b) 30

f(a, ·) 30

f(y, ·j) 60

{ } 7

{ , } 8

{ , , } 12

{ , , , } 12

{ | } 5, 14, 24, 51

[[ , ]] 88

[[ , [[ 88

]] , ]] 88

]] , [[ 88

/ 155, 223, 229

m
n

155

x
y

223, 229

\ 12

∪ 10, 12

∩ 10, 12
⋃

10
⋃

X 11
⋃

∈

55

˙⋃

∈

62

⋂

10
⋂

X 11
⋂

∈

55

⋂

∈

X 55
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+ 148, 150, 151, 183, 200, 205, 207, 221,

252, 253, 266, 267

+ + 149, 221

+I 200, 207

−
+ 205

− 150, 151, 222, 223, 252, 253, 266, 267

· 152, 182

p· 154

× 14, 16, 62, 152

A× 221, 253

△ 13

× 59, 61, 221, 253
∑

165, 186, 189, 206, 254
∑

∈

187, 190, 222

¯∑
205

∏

165, 186

| | 159, 236

√
239

f : D → C 19

D
f→ C 19

cD→C 33

7→ 20

f7→ 76

seq7−→ 136

.................................................................................................. ...................... 29

.................................................................................................. ........................................ 36

.................................................................................................. ....................................................................................................................................... ......................

.................................................................................................. ......................

36

.................................................................................................. ....................................................................................................................................... ....................................... 36

→֒ 36

↑ 92

↓ 92

⊤D 30

D⊤ 30

f> 24

f< 24, 52

f← 37

f−1 24, 37

ρ> 73, 76

ρ< 73, 76

ρ← 74, 76

◦ 28, 74, 76

f◦n 143

f |A 29

f |B 29

f |BA 29

f |Rng 29

f⊤ 30

ρ|U 75
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n⊏ 53, 138

n⊐ 53, 138

M⊤ 53

∞ 112, 252

−∞ 112, 252

⌈ 115, 250

⌊ 115, 250

# 159, 284

=
S 159

! 170
(

n

m

)

170

fx 20

xf 20

xy 183, 252

xyz 221

mn 152

µν 266

mnp 153

nx 194, 249

mnx 221

nxy 227

AB 154, 222, 253, 267

SA 221

pB 154

Ap 154

aB 222

Ab 222

nA 221

Sa 221

xf 20

mn 154

xn 194, 249

AI 59

φI 61

M (I) 202

fx 20

ai 51

m..n 138, 151

M̄ 205

? 23

×× 29

⇒ vi

⇔ vi

:⇔ 2

∀ vi

∃ vi

• vi

H N vi

vi

∗ 6

∗ vi
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