List of mathematical symbols

From Wikipedia, the free encyclopedia

This list is incomplete; you can help by expanding it.

This article **needs additional citations for verification**. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (November 2011)

This is a list of symbols found within all branches of mathematics to express a formula or to represent a constant.

When reading the list, it is important to recognize that a mathematical concept is independent of the symbol chosen to represent it. For many of the symbols below, the symbol is usually synonymous with the corresponding concept (ultimately an arbitrary choice made as a result of the cumulative history of mathematics), but in some situations a different convention may be used. For example, depending on context, "=" may represent congruence or a definition. Further, in mathematical logic, numerical equality is sometimes represented by "=" instead of "=", with the latter representing equality of well-formed formulas. In short, convention dictates the meaning.

Each symbol is shown both in HTML, whose display depends on the browser's access to an appropriate font installed on the particular device, and in T_EX , as an image.

Contents [hide]

- 1 Symbols
- 2 Variations
- 3 See also
- 4 References
- 5 External links

Symbols [edit]

		Name		
Symbol	Symbol	Read as	Explanation	E
in HTML	in T _E X	Category	Explanation	_
		equality		
=	=	is equal to; equals	x=y means x and y represent the same thing or value.	$ 2 = 2 \\ 1 + 1 = 2 $
		everywhere		
		inequality	x eq y means that x and y do not represent the same thing or value.	
≠	≠	is not equal to; does not equal	(The forms !=, /= or <> are generally used in programming languages where ease of typing and use of ASCII text is preferred.)	$2+2 \neq 5$
		-	where ease or typing and use of ASCII text is preferred.)	
<	<	strict inequality is less than, is greater than	x < y means x is less than y . $x > y$ means x is greater than y .	$3 < 4 \\ 5 > 4$
	>	order theory		
>		is a proper subgroup of	H < G means H is a proper subgroup of G .	$\begin{array}{c} 5Z < Z \\ A_3 < S_3 \end{array}$
		group theory	$\Pi \subset G$ means Π is a proper subgroup of G .	$A_3 < S_3$
		significant (strict) inequality		
		olgrinioant (ourot) inequality		
«		is much less than,	$x \ll y$ means x is much less than y.	0.003 ≪ 1000000
	«	is much greater than order theory	$x \gg y$ means x is much greater than y.	
	>>	order theory		
≫		asymptotic comparison	$f \ll g$ means the growth of f is asymptotically bounded by g .	
		is of smaller order than,	(This is I.M. Vineavaday's notation. Another notation is the Riv O notation.	$x \ll e^x$
		is of greater order than analytic number theory	(This is I. M. Vinogradov's notation. Another notation is the Big O notation, which looks like $f = O(g)$.)	
		analytic number theory	$x \le y$ means x is less than or equal to y.	
		inequality		
		is less than or equal to, is greater than or equal to	$x \ge y$ means x is greater than or equal to y.	$3 \le 4$ and $5 \le 5$ $5 \ge 4$ and $5 \ge 5$
		order theory	(The forms <= and >= are generally used in programming languages,	3 E 4 and 3 E 3
≤			where ease of typing and use of ASCII text is preferred.)	
_	≤	subgroup		Z ≤ Z
	≥	is a subgroup of	$H \le G$ means H is a subgroup of G .	$A_3 \leq S_3$
≥	_	group theory		lf
		reduction		$\exists f \in F : \forall x \in \mathbb{N} : x \in A \Leftarrow$
		is reducible to	$A \le B$ means the problem A can be reduced to the problem B. Subscripts	
		computational complexity	can be added to the ≤ to indicate what kind of reduction.	then
		theory		$A \leq_F B$
		congruence relation		
		is less than is greater than	$7k \equiv 28 \pmod{2}$ is only true if k is an even integer. Assume that the problem requires k to be non-negative; the domain is defined as $0 \le k \le \infty$.	$10a \equiv 5 \pmod{5}$ for $1 \le a \le 10$
≤		modular arithmetic		
_	≦		$x \le y$ means that each component of vector x is less than or equal to each corresponding component of vector y .	
	≧	vector inequality		
≧	=	is less than or equal is greater than or equal	$x \ge y$ means that each component of vector x is greater than or equal to each corresponding component of vector y .	

		order theory	It is important to note that $x \le y$ remains true if every element is equal. However, if the operator is changed, $x \le y$ is true if and only if $x \ne y$ is also true.	
<		Karp reduction is Karp reducible to;		
	∀	is polynomial-time many- one reducible to	$L_1 < L_2$ means that the problem L_1 is Karp reducible to L_2 . ^[1]	If $L_1 < L_2$ and $L_2 \in \mathbf{P}$, then $L_1 \in \mathbf{P}$.
>		computational complexity theory		
		varies as	$y \propto x$ means that $y = kx$ for some constant k .	if $y = 2x$, then $y \propto x$.
∝	\propto	everywhere Karp reduction ^[2]		
		one reducible to	$A \propto B$ means the problem A can be polynomially reduced to the problem B .	If $L_1 \propto L_2$ and $L_2 \in \mathbf{P}$, then $L_1 \in \mathbf{P}$.
		computational complexity theory		
		addition plus;	4 + 6 means the sum of 4 and 6.	2 + 7 = 9
+	+	add arithmetic		
•	'	disjoint union the disjoint union of and	$A_1 + A_2$ means the disjoint union of sets A_1 and A_2 .	$A_1 = \{3, 4, 5, 6\} \land A_2 = \{7, 8, 9, 10\} \Rightarrow$ $A_1 + A_2 = \{(3, 1), (4, 1), (5, 1), (6, 1), (7, 2)\}$
		set theory subtraction		
		minus; take; subtract	9 – 4 means the subtraction of 4 from 9.	8 - 3 = 5
		arithmetic negative sign		
-	_	negative; minus; the opposite of	−3 means the negative of the number 3.	-(-5) = 5
		arithmetic set-theoretic complement minus; without	A – B means the set that contains all the elements of A that are not in B.	{1,2,4} - {1,3,4} = {2}
		set theory	(\ can also be used for set-theoretic complement as described below.)	
	,	plus-minus plus or minus arithmetic	6 ± 3 means both 6 + 3 and 6 - 3.	The equation $x = 5 \pm \sqrt{4}$, has two solutions
Ι	土	plus-minus plus or minus measurement	10 \pm 2 or equivalently 10 \pm 20% means the range from 10 $-$ 2 to 10 \pm 2.	If a = 100 ± 1 mm, then a ≥ 99 mm an
∓	Ŧ	minus-plus minus or plus arithmetic	6 ± (3 ∓ 5) means 6 + (3 − 5) and 6 − (3 + 5).	$cos(x \pm y) = cos(x) cos(y) \mp sin(x) sin(x)$
		multiplication	3 × 4 means the multiplication of 3 by 4.	
		times; multiplied by arithmetic	(The symbol * is generally used in programming languages, where ease of typing and use of ASCII text is preferred.)	7 × 8 = 56
		the Cartesian product of and;	X×Y means the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y.	$\{1,2\} \times \{3,4\} = \{(1,3),(1,4),(2,3),(2,4)\}$
×	×	set theory		
		cross product cross linear algebra	$\mathbf{u} \times \mathbf{v}$ means the cross product of vectors \mathbf{u} and \mathbf{v}	(1,2,5) × (3,4,-1) = (-22, 16, -2)
		group of units the group of units of	R^{\times} consists of the set of units of the ring R , along with the operation of multiplication.	$(\mathbb{Z}/5\mathbb{Z})^{\times} = \{[1], [2], [3], [4]\}$ $\cong C_4$
		multiplication	This may also be written R^* as described below, or $U(R)$. $a * b$ means the product of a and b .	-4
		times;	(Multiplication can also be denoted with × or ·, or even simple juxtaposition. * is generally used where ease of typing and use of ASCII text is preferred, such as programming languages.)	4 * 3 means the product of 4 and 3, or
		convolution convolution; convolved with		$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)$
		functional analysis complex conjugate		- 2
*		conjugate	$(ar{z}$ can also be used for the conjugate of z, as described below.)	$(3+4i)^* = 3-4i$

				1
		group of units	R^* consists of the set of units of the ring R , along with the operation of multiplication.	$(\mathbb{Z}/5\mathbb{Z})^* = \{[1], [2], [3], [4]\}$
		the group of units of ring theory	This may also be written R^* as described above, or $U(R)$.	$\cong C_4$
		hyperreal numbers the (set of) hyperreals	*R means the set of hyperreal numbers. Other sets can be used in place	*N is the hypernatural numbers.
		non-standard analysis Hodge dual	of R .	
		Hodge dual; Hodge star	* v means the Hodge dual of a vector v . If v is a k -vector within an n -dimensionaloriented inner product space, then * v is an $(n-k)$ -vector.	If $\{e_i\}$ are the standard basis vectors of
		linear algebra multiplication		
		times; multiplied by arithmetic	3 · 4 means the multiplication of 3 by 4.	7 · 8 = 56
٠		dot product dot linear algebra	$\textbf{u}\cdot \textbf{v}$ means the dot product of vectors \textbf{u} and \textbf{v}	(1,2,5) · (3,4,-1) = 6
		placeholder (silent) functional analysis	A · means a placeholder for an argument of a function. Indicates the functional nature of an expression without assigning a specific symbol for	•
		tensor product, tensor		
8	8	tensor product of linear algebra	$V\otimes U$ means the tensor product of V and $\mathit{U}^{\text{[3]}}V\otimes_R U$ means the tensor product of modules V and U over the ring R.	$\{1, 2, 3, 4\} \otimes \{1, 1, 2\} = \{\{1, 2, 3, 4\}, \{1, 2, 3, 4\}, \{2, 4, 6, 8\}\}$
		Kulkarni–Nomizu product	Derived from the tensor product of two symmetric type (0,2) tensors; it has the algebraic symmetries of the Riemann tensor. $f=q \hbar h$ has	
	\Diamond	Kulkarni–Nomizu product tensor algebra	components $f_{\alpha\beta\gamma\delta}=g_{\alpha\gamma}h_{\beta\delta}+g_{\beta\delta}h_{\alpha\gamma}-g_{\alpha\delta}h_{\beta\gamma}-g_{\beta\gamma}h_{\alpha\delta}.$	
		division (Obelus) divided by;		2 ÷ 4 = 0.5
<u>.</u>		over	6 ÷ 3 or 6/3 means the division of 6 by 3.	12/4 = 3
Ŧ	÷	arithmetic quotient group		
/	/	mod group theory	G / H means the quotient of group G modulo its subgroup H.	$\{0, a, 2a, b, b+a, b+2a\} / \{0, b\} = \{\{0, b\}, b\}$
		quotient set mod set theory	A/\sim means the set of all \sim equivalence classes in A .	If we define \sim by $x \sim y \Leftrightarrow x - y \in \mathbb{Z}$, then $\mathbb{R}/\sim = \{ \{x + n : n \in \mathbb{Z} \} : x \in [0,1) \}$
		square root the (principal) square root of	\sqrt{x} means the nonnegative number whose square is x .	$\sqrt{4} = 2$
$\sqrt{}$	\ \	real numbers		
	√	the (complex) square root of	if $z=r\exp(i\phi)$ is represented in polar coordinates with $-\pi<\phi\leq\pi$, then $\sqrt{z}=\sqrt{r}\exp(i\phi/2)$	$\sqrt{-1} = i$
		complex numbers		
		overbar; bar	\overline{x} (often read as "x bar") is the mean (average value of x_i).	$x = \{1, 2, 3, 4, 5\}; \bar{x} = 3$
		complex conjugate conjugate	\overline{z} means the complex conjugate of z.	3+4i=3-4i
_		complex numbers finite sequence, tuple	(z* can also be used for the conjugate of z, as described above.)	
X	\bar{x}	finite sequence, tuple model theory	\overline{a} means the finite sequence/tuple $(a_1,a_2,,a_n)$.	$\overline{a} := (a_1, a_2,, a_n)$
		algebraic closure algebraic closure of field theory	\overline{F} is the algebraic closure of the field F .	The field of algebraic numbers is sometimely closure of the rational numbers \mathbb{Q} .
		topological closure	\overline{S} is the topological closure of the set <i>S</i> .	In the space of the real numbers, $\overline{\mathbb{Q}}$ =
		(topological) closure of topology	This may also be denoted as cl(S) or Cl(S).	numbers).
		unit vector	${f \hat{a}}$ (pronounced "a hat") is the normalized version of vector ${f a}$, having length	
â	\hat{a}	geometry	1.	
u		estimator estimator for statistics	$\hat{ heta}$ is the estimator or the estimate for the parameter $ heta$.	The estimator $\hat{\mu} = \dfrac{\sum_i x_i}{n}$ produces a
		absolute value;		3 = 3
		modulus	x means the distance along the real line (or across the complex plane)	-5 = 5 = 5
		absolute value of; modulus of	betweenx and zero.	i = 1
		numbers		3 + 4 <i>i</i> = 5
		Euclidean norm or Euclidean length or		For $\mathbf{x} = (3 - 4)$

	l	magnitude	x means the (Euclidean) length of vector x.	$ \mathbf{x} = \sqrt{3^2 + (-4)^2} = 5$
		Euclidean norm of		
		determinant geometry		la al
		determinant of	A means the determinant of the matrix A	$\begin{vmatrix} 1 & 2 \\ 2 & 0 \end{vmatrix} = 5$
		matrix theory		$\begin{vmatrix} 2 & 9 \end{vmatrix} = 5$
		cardinality		
		cardinality of; size of;	X means the cardinality of the set X.	{3, 5, 7, 9} = 4.
		,		
		order of	(# may be used instead as described below.)	
		set theory		
		norm of;		
		length of	x means the norm of the element x of a normed vector space. $ x $	$ x + y \le x + y $
		linear algebra		
" "		nearest integer function	$\ x\ $ means the nearest integer to x .	
		nearest integer to	(This may also be written $[x]$, $[x]$, nint(x) or Round(x).)	$\ 1\ = 1$, $\ 1.6\ = 2$, $\ -2.4\ = -2$, $\ 3.49\ = -2$
		numbers conditional event	(The half also so miles [A], [A], miles (A) Touris (A),	
		given	P(A B) means the probability of the event a occurring given that b occurs.	if X is a uniformly random day of the yea
		probability		
		restriction		
	1	restriction of to;	$f _A$ means the function f restricted to the set A , that is, it is the function withdomain $A \cap \text{dom}(f)$ that agrees with f .	The function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = 0$
	'	set theory		
		such that		
		such that; so that	means "such that", see ":" (described below).	$S = \{(x,y) \mid 0 < y < f(x)\}$ The set of (x,y) such that y is greater tha
		everywhere		The set of (x,y) such that y is greater tha
I		, , , , ,	a b means a divides b.	
l		divisor, divides	$a \nmid b$ means a does not divide b.	
	د	divides	 (The symbol can be difficult to type, and its negation is rare, so a regular	Since $15 = 3 \times 5$, it is true that $3 \mid 15$ and
ł	1	number theory	but slightly shorter vertical bar character is often used instead.)	
_ '		exact divisibility		
		exactly divides	$p^a \mid\mid n$ means p^a exactly divides n (i.e. p^a divides n but p^{a+1} does not).	2 ³ 360.
		number theory		
		parallel	$x \parallel y$ means x is parallel to y . $x \nparallel y$ means x is not parallel to y .	
"		is parallel to	x # y means x is equal and parallel to y.	If $l \parallel m$ and $m \perp n$ then $l \perp n$.
Ц		· · · · · · · · · · · · · · · · · · ·	The symbol ∥ can be difficult to type, and its negation is rare, so two	
l 1	II		regular but slightly longer vertical bar characters are often used instead.)	
		incomparability		(4.0) (0.0) (4.0)
#		is incomparable to order theory	$x \parallel y$ means x is incomparable to y .	{1,2} {2,3} under set containment.
		cardinality		
		cardinality of;	#X means the cardinality of the set X.	
		size of; order of	(may be used instead as described above.)	#{4, 6, 8} = 3
		set theory	(I may be used instead as described above.)	
		connected sum		
#	#	connected sum of; knot sum of;	A#B is the connected sum of the manifolds A and B. If A and B are knots,	$A#S^m$ is homeomorphic to A , for any mar
		knot composition of	then this denotes the knot sum, which has a slightly stronger condition.	A#3 is noneomorphic to A, for any mar
		topology, knot theory		
		primorial		
		primorial	n# is product of all prime numbers less than or equal to n.	12# = 2 × 3 × 5 × 7 × 11 = 2310
		number theory aleph number		
*	8	aleph	\aleph_{α} represents an infinite cardinality (specifically, the α -th one, where α is an ordinal).	$ \mathbb{N} = \aleph_0$, which is called aleph-null.
		set theory		
	_	beth number	\beth_a represents an infinite cardinality (similar to \aleph , but \beth does not necessarily	- LD(N) CNa
4	」コ	beth set theory	index all of the numbers indexed by $\%$.	$\beth_1 = P(\mathbb{N}) = 2^{\aleph_0}.$
		set theory cardinality of the continuum		
		cardinality of the		
ا ہر ا	c	continuum;	The cardinality of ${\mathbb R}$ is denoted by $ {\mathbb R} $ or by the symbol ${\mathfrak c}$ (a	$\mathfrak{c}=\beth_1$
c		c; cardinality of the real	lowercase Frakturletter C).	<u>1</u>
		numbers		
		set theory		
		such that;	: means "such that", and is used in proofs and the set-builder	$\exists n \in \mathbb{N}$: n is even.
		so that	notation (described below).	11 C 14. II 15 EVEII.
		everywhere		

:		Tiela extension		I
:		extends;	K: F means the field K extends the field F.	
:		over	This may also be written as K≥ F.	R: Q
	:	field theory	This may also be written as N = 1.	
		inner product of matrices	A: B means the Frobenius inner product of the matrices A and B.	
		inner product of	The general inner product is denoted by $\langle u, v \rangle$, $\langle u v \rangle$ or $\langle u v \rangle$, as	$A: B = \sum_{i,j} A_{ij} B_{ij}$
		linear algebra	described below. For spatial vectors, the dot product notation, x·y is	i,j
			common. See alsobra-ket notation.	
		index of a subgroup	The index of a subgroup H in a group G is the "relative size" of H in G:	G
		index of subgroup	equivalently, the number of "copies" (cosets) of H that fill up G	$ G:H = \frac{ G }{ H }$
		group theory		111
			The statement !A is true if and only if A is false.	
		logical negation	A slash placed through another operator is the same as "!" placed in front.	!(!A) ⇔ A
		not		$x \neq y \Leftrightarrow !(x = y)$
!	!	propositional logic	(The symbol! is primarily from computer science. It is avoided in mathematical texts, where the notation ¬A is preferred.)	
		factorial	mathematical texts, where the hotation 'A is preferred.)	
		factorial	$n!$ means the product $1 \times 2 \times \times n$.	$4! = 1 \times 2 \times 3 \times 4 = 24$
		combinatorics	·	
		Combinatorios	$\binom{n}{k} = \frac{n!/(n-k)!}{k!} = \frac{(n-k+1)\cdots(n-2)\cdot(n-1)\cdot n}{k!}$ means (in the case of n = positive integer) the number of combinations	
			$\binom{n}{n} = \frac{n!/(n-n)!}{n!} = \frac{(n-n+1)!!}{n!}$	(73) $73!/(73-5)!$ $69.$
	/ \	combination;	$\binom{\kappa}{}$ $\binom{\kappa}{}$ $\binom{\kappa}{}$	$\binom{5}{5} = \frac{7}{5!} = \frac{7}{1}$
		binomial coefficient	of <i>k</i> elements drawn from a set of <i>n</i> elements.	
	()	n choose k		$\binom{.5}{7} = -5.5 \cdot -4.5 \cdot -3.5 \cdot -1.5 \cdot -1.5 \cdot -3.5 \cdot -1.5 \cdot -$
		combinatorics	(This may also be written as $C(n, k)$, $C(n, k)$, ${}_{n}C_{k}$, ${}^{n}C_{k}$, or $\binom{n}{k}$.)	(7) $1 \cdot 2 \cdot 3 \cdot 4$
			$\langle v_{ij} \rangle = \langle v$	
		multipot coofficient		
		multiset coefficient		
	// \\\	u multichoose k	((u)) $(u+k-1)!/(u-1)!$	(/-55)\ -55453
	(())	combinatorics	$\binom{\binom{u}{k}}{k} = \binom{u+k-1}{k} = \frac{(u+k-1)!/(u-1)!}{k!}$	$\begin{pmatrix} -5.5 \\ 7 \end{pmatrix} = \frac{-5.5 \cdot -4.5 \cdot -3.}{1 \cdot 2 \cdot 3}$
	\\ //		()/ ((('))
			(when <i>u</i> is positive integer) means reverse or rising binomial coefficient.	
		probability distribution		
		has distribution	$X \sim D$, means the random variable X has the probability distribution D.	$X \sim N(0,1)$, the standard normal distribu
		statistics		
		row equivalence		[1 9] [1 9]
		is row equivalent to	A~B means that B can be generated by using a series of elementary row operations on A	$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$
		matrix theory	operations on A	
		same order of magnitude	$m \sim n$ means the quantities m and n have the same order of magnitude, or	2 ~ 5
		roughly similar;	general size.	8 × 9 ~100
		poorly approximates	(Note that \sim is used for an approximation that is poor, otherwise use \approx .)	
~	~		(Coto that he does not an approximation that to poor, other mee does not	but π ² ≈ 10
		similarity	△ABC ~ △DEF means triangle ABC is similar to (has the same shape)	
		is similar to ^[5]	triangle DEF.	
		geometry		
		asymptotically equivalent	f(n)	
		to	$f \sim g$ means $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$.	x ~ x+1
		asymptotic analysis	·· · $g(n)$	
		equivalence relation		
		are in the same	$a \sim b$ means $b \in [a]$ (and equivalently $a \in [b]$).	1 ~ 5 mod 4
		equivalence class	a ~ b means $b \in [a]$ (and equivalently $a \in [b]$).	1 ~ 5 mod 4
		equivalence class everywhere		1 ~ 5 mod 4
		equivalence class everywhere approximately equal	a ~ b means $b \in [a]$ (and equivalently $a \in [b]$). $x \approx y \text{ means } x \text{ is approximately equal to } y.$	
		equivalence class everywhere approximately equal is approximately equal to	$x \approx y$ means x is approximately equal to y.	1 ~ 5 mod 4 π ≈ 3.14159
*	≈	equivalence class everywhere approximately equal is approximately equal to everywhere	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \cong , \sim , \triangle (Libra Symbol), or \rightleftharpoons .	π ≈ 3.14159
*	≈	equivalence class everywhere approximately equal is approximately equal to	$x \approx y$ means x is approximately equal to y.	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$
≈	≈	equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \cong , \sim , \cong (Libra Symbol), or \cong . $G \approx H$ means that group G is isomorphic (structurally identical) to group H .	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$
~	*	equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \cong , \sim , \cong (Libra Symbol), or \cong . $G \approx H$ means that group G is isomorphic (structurally identical) to group H .	$π \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V
≈	≈ ~	equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \approx , \sim , \cong (Libra Symbol), or \approx . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) $A \wr H$ means the wreath product of the group A by the group H .	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V $S_n \ \ Z_2 \ \text{is isomorphic to the automorp}$
-		equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \cong , \sim , \oplus (Libra Symbol), or \cong . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.)	$π \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V
_		equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory normal subgroup	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \approx , \sim , \oplus (Libra Symbol), or \equiv . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) A $\wr H$ means the wreath product of the group A by the group H . This may also be written A_{Wr} H .	$\pi \approx 3.14159$ $Q/\{1,-1\} \approx V,$ where Q is the quaternion group and V $S_n \ \ Z_2 \ \text{is isomorphic to the automorp}$ vertices.
-		equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory normal subgroup is a normal subgroup of	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \approx , \sim , \cong (Libra Symbol), or \approx . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) $A \wr H$ means the wreath product of the group A by the group H .	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V $S_n \ \ Z_2 \ \text{is isomorphic to the automorp}$
-		equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory normal subgroup is a normal subgroup of group theory	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \approx , \sim , \oplus (Libra Symbol), or \equiv . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) A $\wr H$ means the wreath product of the group A by the group H . This may also be written A_{Wr} H .	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V $S_n \ Z_2$ is isomorphic to the automorp vertices.
1		equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory is a normal subgroup of group theory ideal	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \approx , \sim , \oplus (Libra Symbol), or \rightleftharpoons . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) $A \wr H$ means the wreath product of the group A by the group H . This may also be written $A_{Wr}H$. $N \lhd G$ means that N is a normal subgroup of group G .	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V $S_n \setminus Z_2$ is isomorphic to the automorphy vertices. $Z(G) \lhd G$
}	}	equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory normal subgroup is a normal subgroup of group theory ideal is an ideal of	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \approx , \sim , \oplus (Libra Symbol), or \equiv . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) A $\wr H$ means the wreath product of the group A by the group H . This may also be written A_{Wr} H .	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V $S_n \ Z_2$ is isomorphic to the automorphy vertices.
< □	}	equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory normal subgroup is a normal subgroup of group theory ideal is an ideal of ring theory	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \approx , \sim , \oplus (Libra Symbol), or \rightleftharpoons . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) $A \wr H$ means the wreath product of the group A by the group H . This may also be written $A_{Wr}H$. $N \lhd G$ means that N is a normal subgroup of group G .	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V $S_n \setminus Z_2$ is isomorphic to the automorphy vertices. $Z(G) \lhd G$
1	}	equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory normal subgroup is a normal subgroup of group theory ideal is an ideal of ring theory antijoin	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \approx , \sim , \oplus (Libra Symbol), or \rightleftharpoons . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) $A \wr H$ means the wreath product of the group A by the group H . This may also be written $A_{Wr}H$. $N \lhd G$ means that N is a normal subgroup of group G .	$π ≈ 3.14159$ $Q / \{1, -1\} ≈ V,$ where Q is the quaternion group and V $S_n ≀ Z_2 \text{ is isomorphic to the automorp}$ vertices. $Z(G) ⊲ G$ $(2) ⊲ Z$
< □	}	equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory normal subgroup is a normal subgroup of group theory ideal is an ideal of ring theory antijoin the antijoin of	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \cong , \sim , \cong (Libra Symbol), or \cong . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) $A \wr H$ means the wreath product of the group A by the group H . This may also be written $A_{WT}H$. $N \lhd G$ means that N is a normal subgroup of group G . $I \lhd R$ means that I is an ideal of ring I R.	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V $S_n \setminus Z_2$ is isomorphic to the automorphy vertices. $Z(G) \lhd G$
~ □	}	equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory normal subgroup is a normal subgroup of group theory ideal is an ideal of ring theory antijoin	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \cong , \sim , \cong (Libra Symbol), or \cong . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) A \wr H means the wreath product of the group A by the group H . This may also be written $A_{Wr}H$. $N \lhd G$ means that N is a normal subgroup of group G . $I \lhd R$ means that I is an ideal of ring I . $R \rhd S$ means the antijoin of the relations I and I 0, the tuples in I 1 for which there is not a tuple in I 2 that is equal on their common attribute names.	$π ≈ 3.14159$ $Q / \{1, -1\} ≈ V,$ where Q is the quaternion group and V $S_n ≀ Z_2 \text{ is isomorphic to the automorp}$ vertices. $Z(G) ⊲ G$ $(2) ⊲ Z$
< □	}	equivalence class everywhere approximately equal is approximately equal to everywhere isomorphism is isomorphic to group theory wreath product wreath product of by group theory normal subgroup is a normal subgroup of group theory ideal is an ideal of ring theory antijoin the antijoin of	$x \approx y$ means x is approximately equal to y . This may also be written \approx , \cong , \sim , \cong (Libra Symbol), or \cong . $G \approx H$ means that group G is isomorphic (structurally identical) to group H . (\cong can also be used for isomorphic, as described below.) $A \wr H$ means the wreath product of the group A by the group H . This may also be written $A_{WF}H$. $N \lhd G$ means that N is a normal subgroup of group G . $I \lhd R$ means that I is an ideal of ring I . $R \rhd S$ means the antijoin of the relations I and I 0, the tuples in I 1 for which	$\pi \approx 3.14159$ $Q / \{1, -1\} \approx V,$ where Q is the quaternion group and V $S_n \ \ Z_2 \text{ is isomorphic to the automorp vertices.}$ $Z(G) \lhd G$ $(2) \lhd \mathbf{Z}$

	×	group theory		
	×	,	(⋈ may also be written the other way round, as ⋉, or as ×.)	
\bowtie		semijoin	$R \ltimes S$ is the semijoin of the relations R and S , the set of all tuples in R for	$ R \bowtie S = \prod_{a_1,\dots,a_n} (R \bowtie S)$
		the semijoin of relational algebra	which there is a tuple in S that is equal on their common attribute names.	$\prod_{a_1,\dots,a_n}(\bigcap_{i=1}^n S_i)$
N 4		natural join		
\bowtie		the natural join of	$R \bowtie S$ is the natural join of the relations R and S , the set of all combinations of tuples in R and S that are equal on their common attribute names.	
		relational algebra	· ·	
		therefore		
		therefore;		
• •		so; hence	Sometimes used in proofs before logical consequences.	All humans are mortal. Socrates is a hur
		everywhere		
		because		
12	·.·	because;	Sometimes used in proofs before reasoning.	11 is prime ∵ it has no positive integer fa
		since		
		everywnere		
		end of proof		
		QED; tombstone;	Used to mark the end of a proof.	
		Halmos symbol	(May also be written Q.E.D.)	
		everywhere		
_				
_				
		D'Alembertian	It is the generalisation of the Laplace operator in the sense that it is the differential operator which is invariant under the isometry group of the	$\begin{bmatrix} 1 & \partial^2 & \partial^2 & \partial^2 & \partial^2 \end{bmatrix}$
		non-Euclidean Laplacian	underlying space and it reduces to the Laplace operator if restricted to time	$\Box = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2}$
		vector calculus	independent functions.	
		downwards zigzag arrow		Statement: Every finite, non-empty, order assume that X is a finite, non-empty, or
4		contradiction; this contradicts that	Denotes that contradictory statements have been inferred. For clarity, the exact point of contradiction can be appended.	some $x_1 \in X$, there exists an $x_2 \in X$
-		everywhere		an $x_3 \in X$ with $x_2 < x_3$, and so on.
		overy miles		∜ X is finite.
\Rightarrow			$A \Rightarrow B$ means if A is true then B is also true; if A is false then nothing is said	
	\Rightarrow	material implication	about B.	
	~,	implies;	$(\rightarrow$ may mean the same as \Rightarrow , or it may have the meaning	2 4 2 4 2 4
\rightarrow	_	if then propositional logic, Heyting	for functions given below.)	$x = 2 \implies x^2 = 4$ is true, but $x^2 = 4 \implies x$
			(⊃ may mean the same as \Rightarrow , [6] or it may have the meaning	
\supset			for superset given below.)	
\Leftrightarrow		material equivalence		
	\rightarrow	if and only if;	$A \Leftrightarrow B$ means A is true if B is true and A is false if B is false.	$x+5=y+2 \Leftrightarrow x+3=y$
	\leftrightarrow	iff		
		propositional logic		
\leftrightarrow				
_			The statement ¬A is true if and only if A is false.	
7	_	logical negation	A slash placed through another operator is the same as "¬" placed in front.	
		not	(The symbol ∼ has many other uses, so ¬ or the slash notation is preferred.	$ \begin{vmatrix} \neg(\neg A) \leftrightarrow A \\ x \neq v \leftrightarrow \neg(x = v) \end{vmatrix} $
~		propositional logic	Computer scientists will often use! but this is avoided in mathematical	(,)
			texts.)	
		logical		
		conjunction or meetin a lattice		
		and;	The statement A Λ B is true if A and B are both true; else it is false.	
		min;	For functions $A(x)$ and $B(x)$, $A(x)$ \land $B(x)$ is used to mean min($A(x)$, $B(x)$).	$n < 4$ \land $n > 2 \Leftrightarrow n = 3$ when n is a natu
		meet propositional logic, lattice		
		theory		
٨	^	wedge product	u Λ v means the wedge product of any multivectors u and v. In three-	
		wedge product;	dimensional Euclidean space the wedge product and the cross product of	$u \wedge v = *(u \times v) \text{ if } u, v \in \mathbb{R}^3$
		exterior product exterior algebra	twovectors are each other's Hodge dual.	
		exponentiation	a ^ b means a raised to the power of b	
		(raised) to the power of	·	$2^3 = 2^3 = 8$
			(a ^ b is more commonly written a ^b . The symbol ^ is generally used in programming languages where ease of typing and use of plain ASCII text is	2···3 = 2·· = δ
		everywhere	preferred.)	
		logical disjunction or join in a lattice		
		or;	The statement A v B is true if A or B (or both) are true; if both are false, the	
		, Ji,	statement is false.	$n \ge 4$ V $n \le 2 \Leftrightarrow n \ne 3$ when n is a natu

-		join propositional logic, lattice	For functions $A(x)$ and $B(x)$, $A(x)$ v $B(x)$ is used to mean max($A(x)$, $B(x)$).	
•	Φ	exclusive or xor propositional logic, Boolean	The statement $A \oplus B$ is true when either A or B, but not both, are true. $A \veebar B$ means the same.	$(\neg A) \oplus A$ is always true, $A \oplus A$ is always
<u>v</u>	⊻	direct sum direct sum of	The direct sum is a special way of combining several objects into one general object.	Most commonly, for vector spaces U , V , $U = V \oplus W \Leftrightarrow (U = V + W) \land (V \cap W = \{0\})$
		abstract algebra universal quantification for all;	(The bun symbol $⊕$, or the coproduct symbol \coprod , is used; \veebar is only for logic.)	0 - v + w) x (v - v + w) x (v + w - to,
A	A	for any; for each predicate logic	$\forall x: P(x)$ means $P(x)$ is true for all x .	$\forall \ n \in \mathbb{N}: n^2 \ge n.$
3	3	existential quantification there exists; there is; there are	$\exists x: P(x)$ means there is at least one x such that $P(x)$ is true.	$\exists n \in \mathbb{N}$: <i>n</i> is even.
3!	∃!	predicate logic uniqueness quantification there exists exactly one predicate logic	$\exists ! \ x: P(x)$ means there is exactly one x such that $P(x)$ is true.	$\exists!\ n\in\mathbb{N}: n+5=2n.$
=:				
:=				
≡	=: := -		$x := y, y =: x \text{ or } x \equiv y \text{ means } x \text{ is defined to be another name for } y, \text{ under}$	
:⇔	= :⇔ ≜	definition is defined as; is equal by definition to	certain assumptions taken in context. (Some writers use ≡ to mean congruence).	$ \cosh x := \frac{e^x + e^{-x}}{2} $
	<u>def</u> <u>≟</u>	everywhere	$P:\Leftrightarrow Q$ means P is defined to be logically equivalent to Q .	
<u>def</u>	_			
=				
~	2	is congruent to geometry	△ABC ≅ △DEF means triangle ABC is congruent to (has the same measurements as) triangle DEF.	
_	_	is isomorphic to abstract algebra	$G \cong H$ means that group G is isomorphic (structurally identical) to group H . (\approx can also be used for isomorphic, as described above.)	$\mathbb{R}^2\cong\mathbb{C}$
≡	=	congruence relation is congruent to modulo modular arithmetic	$a \equiv b \pmod{n}$ means $a - b$ is divisible by n	5 ≡ 2 (mod 3)
{,}	{ , }	set brackets the set of set theory		№ = { 1, 2, 3,}
{:}	{:}	set builder notation		
{ }	{ } { ; }	the set of such that set theory	$\{x: P(x)\}$ means the set of all x for which $P(x)$ is true. $[7]$ $\{x \mid P(x)\}$ is the same as $\{x: P(x)\}$.	${n \in \mathbb{N} : n^2 < 20} = {1, 2, 3, 4}$
{;}				
Ø {}	Ø Ø {}	empty set the empty set set theory		$\{n \in \mathbb{N} : 1 < n^2 < 4\} = \emptyset$
€	€	set membership is an element of:	$a \in S$ means a is an element of the set $S^{[7]}$ $a \notin S$ means a is not an	$(1/2)^{-1} \in \mathbb{N}$

∉	∉	is not an element of everywhere, set theory	element ofS. ^[7]	2-1 ∉ №
∋	€	such that symbol such that mathematical logic	often abbreviated as "s.t."; : and are also used to abbreviate "such that". The use of ∋ goes back to early mathematical logic and its usage in this sense is declining.	Choose $x\ni 2 x$ and $3 x$. (Here is use
	<i></i>	set membership contains as an element set theory	S $\ni_{\mathcal{C}}$ means the same thing as $_{\mathcal{C}}$ \in S, where S is a set and $_{\mathcal{C}}$ is an element of S.	
∌	∌	set membership does not contain as an element set theory	S $∌_{\mathcal{C}}$ means the same thing as e ∉S, where S is a set and e is not an element of S.	
		,	(subset) $A \subseteq B$ means every element of A is also an element of B . ^[8]	$(A \cap B) \subseteq A$
_	\subseteq	is a subset of	(proper subset) $A \subset B$ means $A \subseteq B$ but $A \neq B$.	$\mathbb{N} \subset \mathbb{Q}$
	C	set theory	(Some writers use the symbol ⊂ as if it were the same as ⊆.)	$\mathbb{Q} \subset \mathbb{R}$
⊇		superset	$A \supseteq B$ means every element of B is also an element of A.	(40) = 0
	_	is a superset of	$A \supset B$ means $A \supseteq B$ but $A \neq B$.	$(A \cup B) \supseteq B$
\supset	D	set theory	(Some writers use the symbol \supset as if it were the same as \supseteq .)	$\mathbb{R} \supset \mathbb{Q}$
		set-theoretic union		
U	U	the union of; union set theory	$A \cup B$ means the set of those elements which are either in A , or in B , or in both. ^[8]	$A\subseteq B \Leftrightarrow (A\cup B)=B$
		set-theoretic intersection	A C B manner the cost that contains all those claments that A and B have in	
N	Ω	intersected with; intersect set theory	$A\cap B$ means the set that contains all those elements that A and B have in common. ^[8]	$\{x \in \mathbb{R} : x^2 = 1\} \cap \mathbb{N} = \{1\}$
Δ	Δ	symmetric difference	A \triangle B (or A \ominus B) means the set of elements in exactly one of A or B.	$\{1,5,6,8\} \Delta \{2,5,8\} = \{1,2,6\}$
	Θ	symmetric difference	(Not to be confused with delta, Δ , described below.)	${3,4,5,6} \ominus {1,2,5,6} = {1,2,3,4}$
Θ		·	(Not to 30 demanded man dotte, 1, does not 2010 m.)	[0,1,0,0] = [1,2,0,0] = [1,2,0,1]
		set-theoretic complement minus;	A \ B means the set that contains all those elements of A that are not in B. ^[8]	
\	\	without	(- can also be used for set-theoretic complement as described above.)	{1,2,3,4} \ {3,4,5,6} = {1,2}
\rightarrow	\rightarrow	function arrow from to set theory, type theory	$f: X \to Y$ means the function f maps the set X into the set Y .	Let $f: \mathbb{Z} \to \mathbb{N} \cup \{0\}$ be defined by $f(x) := x^2$
↦	\mapsto	function arrow maps to set theory	$f: a \mapsto b$ means the function f maps the element a to the element b .	Let $f: x \mapsto x+1$ (the successor function).
0	0	function composition composed with set theory	$f \circ g$ is the function, such that $(f \circ g)(x) = f(g(x))$. ^[9]	if $f(x) := 2x$, and $g(x) := x + 3$, then $(f \circ g)$
		,	For two matrices (or vectors) of the same dimensions $A,B\in\mathbb{R}^{m imes n}$ the	
0	0	Hadamard product entrywise product linear algebra	Hadamard product is a matrix of the same dimensions $A\circ B\in\mathbb{R}^{m\times n}$ with elements given by $(A\circ B)_{i,j}=(A)_{i,j}\cdot(B)_{i,j}$. This is often used in matrix based programming such as MATLAB where the operation is done by A.*B	$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \circ \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix}$
			N means either { 0, 1, 2, 3,} or { 1, 2, 3,}.	
N	N	natural numbers N;	The choice depends on the area of mathematics being studied; e.g. number theorists prefer the latter; analysts, set theorists and computer	
	N	the (set of) natural numbers	scientists prefer the former. To avoid confusion, always check an author's definition of ${\bf N}$.	$\mathbb{N} = \{ a : a \in \mathbb{Z}\} \text{ or } \mathbb{N} = \{ a > 0 : a \in \mathbb{Z}\}$
N		numbers	Set theorists often use the notation ω (for least infinite ordinal) to denote the set of natural numbers (including zero), along with the standard ordering relation \leq .	
Z		integers	ℤ means {, -3, -2, -1, 0, 1, 2, 3,}.	
z	${f Z}$	Z; the (set of) integers	Z ⁺ or Z ^{>} means {1, 2, 3,} . Z [*] or Z [≥] means {0, 1, 2, 3,} .	$\mathbb{Z} = \{p, -p : p \in \mathbb{N} \cup \{0\}\}$
		numbers		
\mathbb{Z}_n		integers mod n	7 magne ([0] [1] [2] [n=1] with addition and multiplication module	
	\mathbb{Z}_n	Z _n ; the (set of) integers	\mathbb{Z}_n means {[0], [1], [2],[n -1]} with addition and multiplication modulo n .	$\mathbb{Z}_3 = \{[0], [1], [2]\}$
\mathbb{Z}_p	\mathbb{Z}_p	modulon	Note that any letter may be used instead of n, such as p. To avoid confusion with p-adic numbers, use $\mathbb{Z}/p\mathbb{Z}$ or $\mathbb{Z}/(p)$ instead.	0 (C-1) [1) [=1)
	-	numbers	· · ·	
_	\mathbf{Z}_n	I		I

\mathbf{Z}_n	7			
	\mathbf{Z}_p	p-adic integers		
_		the (set of) p-adic integers	Note that any letter may be used instead of p, such as n or l.	
\mathbf{Z}_{p}		numbers		
P	₽	projective space P; the projective space; the projective line; the projective plane topology	ℙ means a space with a point at infinity.	\mathbb{P}^{1} , \mathbb{P}^{2}
	P	probability	m/\/	
_		the probability of	P(X) means the probability of the event X occurring.	If a fair coin is flipped, ℙ(Heads) = ℙ(Tai
Р		probability theory	This may also be written as $P(X)$, $P(X)$, $P[X]$ or $P(X)$.	
		Power set of the Power set of Powerset	Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by P(S).	The power set $P(\{0, 1, 2\})$ is the set of a $P(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1$
		rational numbers		
Q	Q	Q;		3.14000 ∈ ℚ
		the (set of) rational numbers:	\mathbb{Q} means $\{p/q: p \in \mathbb{Z}, q \in \mathbb{N}\}.$	
Q	Q	the rationals		$\pi \notin \mathbb{Q}$
•		numbers		
\mathbb{R}		real numbers		
	\mathbb{R}	R;		$\pi \in \mathbb{R}$
_	R	the (set of) real numbers; the reals	R means the set of real numbers.	 √(-1) ∉ ℝ
R	II.	numbers		\(\(-1\) \(\nabla_{\text{line}}\)
\mathbb{C}		complex numbers		
	C	C;	C mana (a l h i a h C m)	$i = \sqrt{(-1)} \in \mathbb{C}$
	C	the (set of) complex numbers	\mathbb{C} means $\{a + b \mid i : a, b \in \mathbb{R}\}.$	
С		numbers		
Н	H	quaternions or Hamiltonian quaternions		
	н	H; the (set of) quaternions	\mathbb{H} means $\{a + b \mid i + c \mid j + d \mid k : a,b,c,d \in \mathbb{R}\}.$	
Н		numbers		
		Big O notation		
0	0	big-oh of Computational complexity theory	The Big O notation describes the limiting behavior of a function, when the argument tends towards a particular value or infinity.	If $f(x) = 6x^4 - 2x^3 + 5$ and $g(x) = x^4$, then
		infinity	∞ is an element of the extended number line that is greater than all real	1
∞	∞	infinity	numbers; it often occurs in limits.	$\lim_{x \to 0} \frac{1}{ x } = \infty$
		numbers		w
[]	[]	floor; floor; greatest integer; entier	[x] means the floor of x , i.e. the largest integer less than or equal to x . (This may also be written $[x]$, floor (x) or int (x) .)	[4] = 4, [2.1] = 2, [2.9] = 2, [-2.6] = -3
		numbers		
		ceiling	[x] means the ceiling of x, i.e. the smallest integer greater than or equal	
[]	[]	ceiling	to x.	[4] = 4, $[2.1] = 3$, $[2.9] = 3$, $[-2.6] = -2$
			(This may also be written ceil(x) or ceiling(x).)	
		nearest integer function	[x] means the nearest integer to x.	
1 1	[]	nearest integer to		[2] = 2, [2.6] = 3, [-3.4] = -3, [4.49] = 4
[]		numbers	(This may also be written [x], $ x $, $nint(x)$ or $Round(x)$.)	
		dograp of a field automatic		$[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$
[:]	[:]	the degree of	[K: F] means the degree of the extension K: F.	[ℂ:ℝ] = 2
г.]	[[,]	field theory	1 - 1	
			[a] means the equivalence class of a, i.e. $\{x : x \sim a\}$, where \sim is	[ℝ:ℚ] = ∞
		equivalence class of the equivalence class of	an equivalence relation.	Let $a \sim b$ be true iff $a \equiv b \pmod{5}$.
			$[a]_R$ means the same, but with R as the equivalence relation.	Then [2] = $\{, -8, -3, 2, 7,\}$.
		floor	LEIN Santa, santa, santan de une equitalence relation.	
		floor;	[x] means the floor of x , i.e. the largest integer less than or equal to x .	
		greatest integer; entier numbers	(This may also be written $\lfloor x \rfloor$, floor(x) or int(x). Not to be confused with the nearest integer function, as described below.)	[3] = 3, [3.5] = 3, [3.99] = 3, [-3.7] = -4
		nearest integer function	[x] means the nearest integer to x.	
		nearest integer to		[2] = 2, [2.6] = 3, [-3.4] = -3, [4.49] = 4
[1]		numbers	with the floor function, as described above.)	
[]			(This may also be written $\lfloor x \rfloor$, $ x $, nint(x) or Round(x). Not to be confused with the floor function, as described above.)	[2] - 2, [2.0] - 0, [-0.4] = -0, [4.49]

1				
	[]	1 if true, 0 otherwise	[S] maps a true statement S to 1 and a false statement S to 0.	$[0=5]=0, [7>0]=1, [2 \in \{2,3,4\}]=1, [5 \in \{2,3,4\}]=1$
[,]	[,]	propositional logic		
	[,,]	image	$f[X]$ means { $f(x) : x \in X$ }, the image of the function f under the set $X \subseteq dom(f)$.	
[,,]		image of under everywhere	(This may also be written as f(X) if there is no risk of confusing the image of funder X with the function application f of X. Another notation is lm f, the image of funder its domain.)	$\sin[\mathbb{R}] = [-1, 1]$
		closed interval closed interval order theory	$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}.$	0 and 1/2 are in the interval [0,1].
		commutator	$[g, h] = g^{-1}h^{-1}gh$ (or $ghg^{-1}h^{-1}$), if $g, h \in G$ (a group).	$x^y = x[x, y]$ (group theory).
		the commutator of	$[a, b] = ab - ba$, if $a, b \in R$ (a ring or commutative algebra).	[AB, C] = A[B, C] + [A, C]B (ring theory).
		triple scalar product	[a, 5] as sa, ii a, 5 c ii (a iiiig oi commatative algebra).	[Pib, 6] Fig. 6] Fig. 6]5 (mig discry).
		· · · · · · · · · · · · · · · · · · ·	$[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \mathbf{a} \times \mathbf{b} \cdot \mathbf{c}$, the scalar product of $\mathbf{a} \times \mathbf{b}$ with \mathbf{c} .	[a, b, c] = [b, c, a] = [c, a, b].
		function application		
		of set theory	f(x) means the value of the function f at the element x .	If $f(x) := x^2$, then $f(3) = 3^2 = 9$.
		image	$f(X)$ means { $f(x) : x \in X$ }, the image of the function f under the set $X \subseteq \text{dom}(f)$.	
()		image of under everywhere	(This may also be written as f[X] if there is a risk of confusing the image of funder X with the function application f of X. Another notation is Im f, the image of funder its domain.)	$\sin(\mathbb{R}) = [-1, 1]$
()	()	precedence grouping parentheses	Perform the operations inside the parentheses first.	(8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4.
(,)	(,)	tuple	An ordered list (or sequence, or horizontal vector, or row vector) of values.	
(,)		tuple; n-tuple; ordered pair/triple/etc; row vector; sequence	(Note that the notation (a,b) is ambiguous: it could be an ordered pair or an open interval. Set theorists and computer scientists often use angle brackets ()instead of parentheses.)	(a, b) is an ordered pair (or 2-tuple).(a, b, c) is an ordered triple (or 3-tuple).() is the empty tuple (or 0-tuple).
		everywhere highest common factor		
		highest common factor;	(a, b) means the highest common factor of a and b.	
		greatest common divisor; hcf; gcd number theory	(This may also be written hcf(a, b) or gcd(a, b).)	(3, 7) = 1 (they are coprime); (15, 25) = {
(,)			$(a,b) = \{a \in \mathbb{D} : a \in a \leq b\}$	
(, ,	(,)	open interval	$(a,b) = \{x \in \mathbb{R} : a < x < b\}$ (Note that the notation (a,b) is ambiguous: it could be an ordered pair or an	4 is not in the interval (4, 18).
],[],[open interval. The notation]a,b[can be used instead.)	(0, +∞) equals the set of positive real nu
(,]	(1	left-open interval		
(,1	(,]	half-open interval;	(1) (- 1)	
1 1],]	left-open interval order theory	$[(a,b] = \{x \in \mathbb{R} : a < x \le b\}.$	(-1, 7] and (-∞, -1]
],]		order theory		
[,)	[,)	right-open interval half-open interval;		
гг	[,[right-open interval	$[a,b) = \{x \in \mathbb{R} : a \le x < b\}.$	[4, 18) and [1, +∞)
[,[order theory		
			$\langle u,v \rangle$ means the inner product of u and v , where u and v are members of an inner product space.	
		inner product	Note that the notation (u, v) may be ambiguous: it could mean the inner product or the linear span.	
		inner product of	There are many variants of the notation, such as $\langle u v \rangle$ and $\langle u v \rangle$, which	The standard inner product between two $\langle x, y \rangle = 2 \times -1 + 3 \times 5 = 13$
		linear algebra		(x, y) = 2 ··· 1 · 0 ·· 0 = 10
		average		for a time series : $g(t)$ ($t = 1, 2,$)
/\		average of statistics	let S be a subset of N for example, $\langle S \rangle$ represents the average of all the element in S.	we can define the structure functions S_q ! $S_q = \langle g(t+\tau) - g(t) ^q \rangle_t$
()	()		$\langle S \rangle$ means the span of $S \subseteq V$. That is, it is the intersection of all subspaces of Which contain S .	
(,)	(,)	(linear) span of; linear hull of	$\{u_1, u_2,\}$ is shorthand for $\{\{u_1, u_2,\}\}$. Note that the notation $\{u, v\}$ may be ambiguous: it could mean the inner	$\left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle = \mathbb{R}^3$.
		linear algebra	productor the linear span.	(() () (1)/
		aubaraun zazzete d.t.	The span of S may also be written as Sp(S).	
	I	subgroup generated by a	I	I

			l	I
		the subgroup generated by	$\langle S \rangle$ means the smallest subgroup of G (where $S \subseteq G$, a group) containing every element of S .	$\ln \mathbb{S}_3, \langle (1\ 2) \rangle = \{id,\ (1\ 2)\} \operatorname{and} \langle (1\ 2) \rangle = \{id,\ (1\ 2)\} \operatorname{and} \langle (1\ 2)\} \operatorname$
			$\langle g_1,g_2,\ldots, angle$ is shorthand for $\langle g_1,g_2,\ldots angle$	
		tuple tuple; n-tuple; ordered pair/triple/etc; row vector; sequence everywhere	An ordered list (or sequence, or horizontal vector, or row vector) of values. (The notation (a,b) is often used as well.)	$\langle a,b \rangle$ is an ordered pair (or 2-tuple). $\langle a,b,c \rangle$ is an ordered triple (or 3-tuple) $\langle \rangle$ is the empty tuple (or 0-tuple).
()	(1)	inner product	$(u \mid v)$ means the inner product of u and v , where u and v are members of aninner product space. $(u \mid v)$ means the same.	
()	()	inner product of linear algebra	Another variant of the notation is (u, v) which is described above. For spatial vectors, the dot product notation, $x \cdot y$ is common. For matrices, the colon notation $A : B$ may be used. As $($ and $)$ can be hard to type, the more "keyboard friendly" forms $<$ and $>$ are sometimes seen. These are avoided in mathematical texts.	
})	ket vector the ket; the vector	arphi means the vector with label $arphi$, which is in a Hilbert space.	A qubit's state can be represented as $\alpha \alpha ^2 + \beta ^2 = 1$.
(()	Dirac notation bra vector the bra;	$ \phi $ means the dual of the vector $ \phi\rangle$, a linear functional which maps a ket $ \phi\rangle$	
	\ 1	the dual of Dirac notation summation	$ \psi\rangle$ onto the inner product $\langle \phi \psi \rangle$.	4
Σ	Σ	sum over from to of arithmetic	$\sum_{k=1}^{\infty} a_k$ means $a_1+a_2+\cdots+a_n$.	$\sum_{k=1}^{\infty} k^2 = 1^2 + 2^2 + 3^2 + 4^2 ::=$
_		product product over from to of arithmetic	$\prod_{k=1}^n a_k$ means $a_1 a_2 \dots a_n$.	$\prod_{k=1}^{4} (k+2) = (1+2)(2+2)(3+2)(3+2)(3+2)(3+2)(3+2)(3+2)(3$
П	П	Cartesian product the Cartesian product of; the direct product of set theory	$\prod_{i=0}^n Y_i$ means the set of all (n+1)-tuples $(y_0,,y_n).$	$\prod_{n=1}^{3} \mathbb{R} = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^{3}$
Ц	П	coproduct coproduct over from to of category theory	A general construction which subsumes the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism.	
		delta	Δx means a (non-infinitesimal) change in x .	
Δ	Δ	delta; change in calculus	(If the change becomes infinitesimal, δ and even d are used instead. Not to be confused with the symmetric difference, written Δ , above.)	$\frac{\Delta y}{\Delta x}$ is the gradient of a straight line
		Laplacian Laplace operator vector calculus	The Laplace operator is a second order differential operator in n-dimensionalEuclidean space	If f is a twice-differentiable real-valued f by $\Delta f = \nabla^2 f = \nabla \cdot \nabla f$
		Dirac delta function Dirac delta of		 δ(x)
		hyperfunction	$\delta(x) = \begin{cases} \infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$	()
δ	δ	Kronecker delta of hyperfunction	$\delta(x) = \begin{cases} \infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$ $\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$	δ_{ij}
		Functional derivative Functional derivative of Differential operators	$\left\langle \frac{\delta F[\varphi(x)]}{\delta \varphi(x)}, f(x) \right\rangle = \int \frac{\delta F[\varphi(x)]}{\delta \varphi(x')} f(x') dx'$ $= \lim_{x \to 0} \frac{F[\varphi(x) + \varepsilon f(x)] - F[\varphi(x)]}{\delta \varphi(x')}$	$\frac{\delta V(r)}{\delta \rho(r')} = \frac{1}{4\pi\epsilon_0 r - r' }.$
		partial derivative partial;	$a\epsilon \qquad _{\epsilon=0}$ $\partial f/\partial x_i \text{ means the partial derivative of } f \text{ with respect to } x_i, \text{ where } f \text{ is a function}$	If $f(x,y) := x^2y$, then $\partial f \partial x = 2xy$
		d calculus boundary	on (x ₁ ,, x _n).	11 ((a,y) x y, then onex = 2xy
д	∂	boundary of topology	∂M means the boundary of M	$\partial \{x : x \le 2\} = \{x : x = 2\}$
		degree of a polynomial degree of algebra	∂f means the degree of the polynomial f. (This may also be written deg f.)	$\partial(x^2-1)=2$
		gradient		
		del; nabla; gradient of	$\nabla f(\mathbf{x}_1,, \mathbf{x}_n)$ is the vector of partial derivatives $(\partial f / \partial \mathbf{x}_1,, \partial f / \partial \mathbf{x}_n)$.	If $f(x,y,z) := 3xy + z^2$, then $\nabla f = (3y, 3x, 2x)$

		vector calculus		
		divergence		
		del dot;	$\partial v_{rr} = \partial v_{rr} = \partial v_{rr}$	
∇	∇	divergence of	$\nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$	If $ec{v}:=3xy\mathbf{i}+y^2z\mathbf{j}+5\mathbf{k}$, then $ abla$
-		vector calculus	$\partial x \partial y \partial z$	
		vector careards	/ a., a., \	
		curl	$\nabla \times \vec{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \mathbf{i} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \mathbf{j} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \mathbf{k}$	
		cuii	$\partial y = \partial z \int dz$	lf → 0 · · 2 · · r1 thon =
		curl of	$(\partial v_r \partial v_r)$. $(\partial v_u \partial v_r)$.	If $\vec{v}:=3xy\mathbf{i}+y^2z\mathbf{j}+5\mathbf{k}$, then ∇
		vector calculus	$+\left(\frac{3x}{2x}-\frac{3x}{2x}\right)\mathbf{j}+\left(\frac{3y}{2x}-\frac{3x}{2x}\right)\mathbf{k}$	
			, , , , , , , , , , , , , , , , , , , ,	
		derivative	f'(x) means the derivative of the function f at the point x , i.e., the slope of	
,	,	prime;	thetangent to f at x.	If $f(x) := x^2$, then $f'(x) = 2x$
	,	derivative of	(The single-quote character' is sometimes used instead, especially in	
		calculus	ASCII text.)	
		derivative		
.		dot;	\dot{x} means the derivative of x with respect to time. That is $\dot{x}(t)=rac{\partial}{\partial t}x(t)$	If $y(t) := t^2$ then $\frac{1}{2}(t) = 0$
	•	time derivative of	x means the derivative of x with respect to time. That is $x(t) = \frac{1}{2t}x(t)$.	$\lim_{t \to t} x(t) = t$, then $x(t) = 2t$.
		calculus	O t	
		indefinite		
		integral orantiderivative		
			$\int f(x) dx$ means a function whose derivative is f .	$\int x^2 \mathrm{d}x = x^3/3 + C$
		indefinite integral of the antiderivative of		
		calculus		
		definite integral		
ſ	ſ		b f(x) dy means the signed area between the x axis and the graph of	$b^{b} = b^{3} - a^{3}$
J	1	integral from to of with respect to	$\int_a^b f(x) dx$ means the signed area between the x-axis and the graph of the function f between $x = a$ and $x = b$.	$\int_{a}^{b} x^{2} dx = \frac{b^{3} - a^{3}}{3}$
		calculus	uncidingtion / Detween X - a and X - D.	J_a 3
		Calculus	, ah	
		line integral	$\int_{\mathcal{C}} f ds$ means the integral of f along the curve C , $\int_{a}^{b} f(\mathbf{r}(t)) \mathbf{r}'(t) dt$.	
		line/ path/ curve/ integral	where r is a parametrization of C.	
		of along	(16 the assessing already the assessing Connection to the described	
		calculus	(If the curve is closed, the symbol ∮ may be used instead, as described below.)	
			,	
			Similar to the integral, but used to denote a single integration over a closed curve or loop. It is sometimes used in physics texts involving equations	
			regardingGauss's Law, and while these formulas involve a closed surface	
			integral, the representations describe only the first integration of the volume	
			over the enclosing surface. Instances where the latter requires	
		Contour integral;	simultaneous double integration, the symbol ∯ would be more appropriate.	
∮	ſ	closed line integral	A third related symbol is the closed volume integral, denoted by the symbol #.	If C is a Jordan curve about 0, then
ሃ	J	contour integral of	-	To be a sordan surve about o, anon fe
		calculus	The contour integral can also frequently be found with a subscript capital letter C , \oint_C , denoting that a closed loop integral is, in fact, around a	
			contour C , or sometimes dually appropriately, a circle C . In representations	
			of Gauss's Law, a subscript capital S , \oint_S , is used to denote that the	
			integration is over a closed surface.	
		projection		
		Projection of	$\pi_{a_1,\ldots,a_n}(R)$ restricts R to the $\{a_1,\ldots,a_n\}$ attribute set.	$\pi_{Age,Weight}(Person)$
		relational algebra	$n_{a_1,\ldots,a_n}(1t)$ results of $\{a_1,\ldots,a_n\}$ units set	Age, Weight (1 CISOII)
TT			Harrist and a second a second and a second a	
H	π	Pi .	Used in various formulas involving circles: π is equivalent to the amount of	
Π	π	pi;	Used in various formulas involving circles; π is equivalent to the amount of area a circle would take up in a square of equal width with an area of 4	Λ-πD2-314 16 . D-10
11	π	pi; 3.1415926;	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the	A=πR ² =314.16→R=10
"	π	pi; 3.1415926; ≈22÷7	area a circle would take up in a square of equal width with an area of 4	A=πR ² =314.16→R=10
11	π	pi; 3.1415926; ≈22÷7 mathematical constant	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle.	
		pi; 3.1415926; ≈22÷7 mathematical constant selection	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\thetab}(R)$ selects all those tuples in R for which θ holds	$\sigma_{Aae>34}(Person)$
σ	σ	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\thetab}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\thetav}(R)$ selects all those	$\sigma_{Aae>34}(Person)$
		pi; 3.1415926; ≈22+7 mathematical constant selection Selection of relational algebra	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\thetab}(R)$ selects all those tuples in R for which θ holds	
σ		pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$
σ	σ	pi; 3.1415926; ≈22+7 mathematical constant selection Selection of relational algebra	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\thetab}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\thetav}(R)$ selects all those	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$
σ		pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age=Weight}(Person)$
σ	σ <:	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$
σ <:	σ	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} $ ext{< } ext{1, 3, 8} ext{ among the subsets of } ext{ }$
σ<:	σ <:	pi; 3.1415926; ≈22+7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x \leadsto y \text{ means that } x \text{ is covered by } y.$	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} $ ext{<-}$ {1, 3, 8} among the subsets of
	σ <:	pi; 3.1415926; ≈22+7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x \leadsto y \text{ means that } x \text{ is covered by } y.$	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} $ ext{<-}$ {1, 3, 8} among the subsets of
σ<:	σ <:	pi; 3.1415926; ≈22+7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value a 0. It is a subtype of a 1 when a 2 means that a 3 is a subtype of a 4. The selection a 5 means that a 6 is a subtype of a 6.	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} $ ext{< } ext{1, 3, 8} ext{ among the subsets of } ext{ }$
σ <: <·	σ <: <·	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose;	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x \leadsto y \text{ means that } x \text{ is covered by } y.$	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ<:	σ <:	pi; 3.1415926; ≈22+7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x \leadsto y$ means that x is covered by y . $T_1 \leadsto T_2 \text{ means that } T_1 \text{ is a subtype of } T_2.$ $A^{\dagger} \text{ means the transpose of the complex conjugate of } A.^{[11]}$	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} $ ext{< } ext{1, 3, 8} ext{ among the subsets of } ext{ }$
σ <: <·	σ <: <·	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint;	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value a 0. It is a subtype of a 1 when a 2 means that a 3 is a subtype of a 4. The selection a 5 means that a 6 is a subtype of a 6.	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ <: <·	σ <: <·	pi; 3.1415926; ≈22+7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x \leadsto y$ means that x is covered by y . $T_1 \leadsto T_2 \text{ means that } T_1 \text{ is a subtype of } T_2.$ $A^{\dagger} \text{ means the transpose of the complex conjugate of } A.^{[11]}$	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ <: <·	σ <: <·	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x ext{<} v$ means that x is covered by y . $T_1 ext{<} T_2 \text{ means that } T_1 \text{ is a subtype of } T_2.$ $A^{\dagger} \text{ means the transpose of the complex conjugate of } A^{[11]}$ This may also be written $A^{\dagger T}$, A^{T} , A^{T} , A^{T} , \overline{A}^{T} or \overline{A}^{T} .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ <: <·	σ <: <:	pi; 3.1415926; ≈22+7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x \leadsto y$ means that x is covered by y . $T_1 \leadsto T_2 \text{ means that } T_1 \text{ is a subtype of } T_2.$ $A^{\dagger} \text{ means the transpose of the complex conjugate of } A.^{[11]}$	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the set
σ <: <·	σ <: <·	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $v = v$ means that $v = v$ is a subtype of $v = v$. This means that $v = v$ is a subtype of $v = v$. At means the transpose of the complex conjugate of $v = v$. This may also be written $v = v$. At means $v = v$, with its rows swapped for columns.	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ <: <·	σ <: <:	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose matrix operations transpose	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x ext{<} v$ means that x is covered by y . $T_1 ext{<} T_2 \text{ means that } T_1 \text{ is a subtype of } T_2.$ $A^{\dagger} \text{ means the transpose of the complex conjugate of } A^{[11]}$ This may also be written $A^{\dagger T}$, A^{T} , A^{T} , A^{T} , \overline{A}^{T} or \overline{A}^{T} .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ <: <·	σ <: <:	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose matrix operations transpose transpose	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $v = v$ means that $v = v$ is a subtype of $v = v$. This means that $v = v$ is a subtype of $v = v$. At means the transpose of the complex conjugate of $v = v$. This may also be written $v = v$. At means $v = v$, with its rows swapped for columns.	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ <: <·	σ <: <:	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose matrix operations transpose transpose matrix operations	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $v = v$ means that $v = v$ is a subtype of $v = v$. This means that $v = v$ is a subtype of $v = v$. At means the transpose of the complex conjugate of $v = v$. This may also be written $v = v$. At means $v = v$, with its rows swapped for columns.	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ <: <·	σ <: <:	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose matrix operations transpose matrix operations	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x < y$ means that x is covered by y . $T_1 <: T_2 \text{ means that } T_1 \text{ is a subtype of } T_2.$ A† means the transpose of the complex conjugate of A . [11] This may also be written A^*T , A^{T} , A^{T} , A^{T} , A^{T} , A^{T} or $\overline{A^{T}}$. A^{T} means A , but with its rows swapped for columns. This may also be written $A^{"}$, A^{t} or A^{tr} .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ <: <·	σ <: <:	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose matrix operations transpose transpose transpose transpose transpose transpose transpose transpose transpose matrix operations top element lattice theory	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x \leadsto y$ means that x is covered by y . $T_1 \leadsto T_2 \text{ means that } T_1 \text{ is a subtype of } T_2.$ $A^{\dagger} \text{ means the transpose of the complex conjugate of } A.^{[11]}$ This may also be written A^{*T} , A^{T} , A^{T} , A^{T} , A^{T} or $\overline{A^{T}}$. $A^{T} \text{ means } A, \text{ but with its rows swapped for columns.}$ This may also be written A^{T} , A^{t} or A^{tr} .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the
σ <: <·	σ <: <:	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose matrix operations transpose transpose transpose transpose transpose transpose transpose transpose literations transpose transpose transpose transpose matrix operations top element lattice theory top type	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x \leadsto y$ means that x is covered by y . $T_1 \leadsto T_2 \text{ means that } T_1 \text{ is a subtype of } T_2.$ $A^{\dagger} \text{ means the transpose of the complex conjugate of } A.^{[11]}$ This may also be written A^{*T} , A^{T} , A^{T} , A^{T} , A^{T} or $\overline{A^{T}}$. $A^{T} \text{ means } A, \text{ but with its rows swapped for columns.}$ This may also be written A^{T} , A^{t} or A^{tr} .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the set
σ <: <·	σ <: <:	pi; 3.1415926; ≈22÷7 mathematical constant selection Selection of relational algebra cover is covered by order theory subtype is a subtype of type theory conjugate transpose conjugate transpose; adjoint; Hermitian adjoint/conjugate/transpose matrix operations transpose transpose transpose transpose transpose transpose transpose transpose transpose matrix operations top element lattice theory	area a circle would take up in a square of equal width with an area of 4 square units, roughly 3.14/4. It is also the ratio of the circumference to the diameter of a circle. The selection $\sigma_{a\theta b}(R)$ selects all those tuples in R for which θ holds between the a and the b attribute. The selection $\sigma_{a\theta v}(R)$ selects all those tuples in R for which θ holds between the a attribute and the value v . $x < y$ means that x is covered by y . $T_1 <: T_2 \text{ means that } T_1 \text{ is a subtype of } T_2.$ A† means the transpose of the complex conjugate of A . [11] This may also be written A^*T , A^{T} , A^{T} , A^{T} , A^{T} , A^{T} or $\overline{A^{T}}$. A^{T} means A , but with its rows swapped for columns. This may also be written $A^{"}$, A^{t} or A^{tr} .	$\sigma_{Age \geq 34}(Person)$ $\sigma_{Age = Weight}(Person)$ {1, 8} <- {1, 3, 8} among the subsets of the

				1
	1	perpendicular	$x \perp y$ means x is perpendicular to y ; or more generally x is orthogonal to y .	If $l \perp m$ and $m \perp n$ in the plane, then $l \parallel$
		is perpendicular to		
		geometry		
		orthogonal complement	W^{\perp} means the orthogonal complement of W (where W is a subspace of theinner product space V), the set of all vectors in V orthogonal to every vector in W .	Within \mathbb{R}^3 , $(\mathbb{R}^2)^\perp\cong\mathbb{R}$.
		orthogonal/ perpendicular complement of; perp		
		linear algebra		
		coprime	$x \perp y$ means x has no factor greater than 1 in common with y .	34 ⊥ 55.
		is coprime to		
		number theory		
		independent	$A\perp B$ means A is an event whose probability is independent of event B .	If $A \perp B$, then $P(A B) = P(A)$.
		is independent of		
		probability		
		bottom element	$oldsymbol{\perp}$ means the smallest element of a lattice.	∀x : x v ⊤ = ⊤
		the bottom element		
		lattice theory		
		hottom type		
		the bottom type;	\perp means the bottom type (a.k.a. the zero type or empty type); bottom is the subtype of every type in the type system.	∀ types <i>T</i> , ⊥ <: <i>T</i>
		bot		
		type theory		
		comparability	$x \perp y$ means that x is comparable to y .	$\{e, \pi\} \perp \{1, 2, e, 3, \pi\}$ under set contain
		is comparable to		
		order theory		
þ	þ	entailment	$A \models B$ means the sentence A entails the sentence B , that is in every model in which A is true, B is also true.	A F A V ¬A
		entails		
		model theory		
⊢	F	inference		$A \to B \vdash \neg B \to \neg A$.
		infers; is derived from		
		propositional logic,predicate logic		
		partition		$(4,3,1,1) \vdash 9, \sum_{\lambda \vdash n} (f_{\lambda})^2 = n!$
		is a partition of	$p \vdash n$ means that p is a partition of n .	
		number theory		
i	:	vertical ellipsis	Denotes that certain constants and terms are missing out (e.g. for clarity) and that only the important terms are being listed.	$P(r,t) = \chi : E(r,t_1)E(r,t_2)E(r$
		vertical ellipsis		
		everywhere		
E	E		the value of a random variable one would "expect" to find if one could repeat the random variable process an infinite number of times and take the average of the values obtained	$\mathbb{E}[X] = \frac{x_1 p_1 + x_2 p_2 + \dots + x_k}{p_1 + p_2 + \dots + p_k}$
		expected value		
E		expected value		
	E	probability theory		