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Chapter 1

Introduction

Classical linear systems theory studies, e.g., the continuous and discrete models

(C) ẋ(t) = Ax(t) +Bu(t)
(D) x(t+ 1) = Ax(t) +Bu(t)

where A ∈ Rn×n and B ∈ Rn×m. One calls

x : T → R
n and u : T → R

m

the state function and the input function, respectively. The set T represents
a mathematical model of time, e.g., T = R or T = [0,∞) in the continuous
case (C), and T = Z or T = N in the discrete case (D).

For (C), we additionally require that u ∈ U, where U is a function space that
guarantees the solvability of (C), that is,

∀u ∈ U ∃x : ẋ = Ax+Bu.

For example, this is true whenever U ⊆ C0(R,Rm), the set of continuous functions
from T = R to Rm. We will make this assumption for the rest of this chapter.
Note that no such condition is needed for (D), which is always recursively solvable,
at least for all t ≥ t0 if x(t0) is given. To unify the notation, we put U = (Rm)T

for (D), which is the space of all functions from T to Rm.

Solving (C) and (D) is not a problem (up to numerical issues), because, imposing
the initial condition x(t0) = x0, we have the solution formulas

(C) x(t) = eA(t−t0)x0 +
∫ t
t0
eA(t−τ)Bu(τ)dτ

(D) x(t) = At−t0x0 +
∑t−1

τ=t0
At−1−τBu(τ) for t ≥ t0.

The goal of control theory is not to solve (C) and (D) for a given input function,
but rather, to design an input function such that the solution has certain desired
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6 CHAPTER 1. INTRODUCTION

properties. For this, one needs to study the structural properties of the underlying
system.

One of the most important issues in control theory is the question of controlla-
bility: Given x0, x1 ∈ Rn and t0, t1 ∈ T with t0 < t1, does there exist u ∈ U such
that the solution to (C) or (D) with x(t0) = x0 satisfies x(t1) = x1? If yes, we
say that x0 can be controlled to x1 in time t1 − t0 > 0.

Interpretation: One should think of t0 and x0 as a given initial time and state,
whereas t1 and x1 represents a desired terminal time and state. The problem is
to find an input function u such that the system goes to state x1 in finite time
t1 − t0 > 0, when started in state x0 at time t0. Without loss of generality, we
put t0 = 0 from now on. Then t1 > 0 is the length of the transition period from
the initial state x(0) = x0 to the terminal state x(t1) = x1.

Theorem 1.1 The following are equivalent:

1. There exists 0 < t1 ∈ T such that any x0 ∈ Rn can be controlled to any
x1 ∈ Rn in time t1.

2. rank[B,AB, . . . , An−1B] = n.

Proof: We do this only for the discrete case (D), where it is elementary. From
x(t+ 1) = Ax(t) +Bu(t) and x(0) = x0, we get recursively

x(t1) = At1x0 +

t1−1∑
τ=0

At1−τ−1Bu(τ).

Thus the requirement that x(t1) = x1 is equivalent to

x1 = At1x0 +Kt1v

where

Kt1 = [B,AB, . . . , At1−1B] and v =

 u(t1 − 1)
...

u(0)

 .
The equation Kt1v = x1 − At1x0 has a solution v for any choice of x0, x1 if and
only if Kt1 has full row rank, that is, rank(Kt1) = n. However, the existence of t1
with rank(Kt1) = n is equivalent to rank(Kn) = n. This is quite clear for t1 < n,
and for all t1 ≥ n, we have

rank[B,AB, . . . , At1−1B] = rank[B,AB, . . . , An−1B].
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This follows from considering the sequence

{0} ⊆ im(B) ⊆ im[B,AB] ⊆ . . . ⊆ im[B,AB, . . . , An−1B]
?

⊆ . . . ⊆ Rn

of subspaces of Rn, which must become stationary. Considering the dimensions
of these spaces, one can see that this cannot happen later than at the inclusion
marked by a star. �

If assertion 1 from the theorem is true, we say that the system is controllable.
The matrix K = Kn = [B,AB, . . . , An−1B] is called Kalman controllabil-
ity matrix and Theorem 1.1 is sometimes referred to as Kalman controllability
criterion.

What can we say about (C)? Let us first give a careful restatement of the theorem.

Theorem 1.2 (Theorem 1.1 restated for (C)) The following are equivalent:

1. ∃t1 > 0 ∀x0, x1 ∈ Rn ∃u ∈ U such that the solution to

ẋ = Ax+Bu, x(0) = x0

satisfies x(t1) = x1.

2. rank[B,AB, . . . , An−1B] = n.

Note that assertion 1 describes an analytic property of the system, whereas as-
sertion 2 is a purely algebraic condition. An immediate question concerns the
role of the set U which does not appear in assertion 2. For which sets U is the
theorem valid? It turns out that the theorem holds for a wide range of input
function spaces, more precisely, for any U with

U ⊇ O(R,Rm),

where O denotes the analytic functions. Since this condition is met by a lot of
relevant function spaces U, we can say that the theorem is relatively independent
of the specific signal space. This contributes to its importance and applicability.
It is a prominent example of an algebraic characterization of a systems theoretic
property, which is at the heart of algebraic systems theory.

Roughly speaking, the goals of algebraic systems theory are:

• translating analytic properties of systems to algebraic properties and vice
versa;

• characterizing the signal spaces for which this is possible.
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Chapter 2

Abstract linear systems theory

Let D be a ring (with unity), let A be a left D-module, and let q be a positive
integer. An abstract linear system has the form

B := {w ∈ Aq | Rw = 0},
where R ∈ Dg×q for some positive integer g.

Interpretation: One should think of A as the signal set. Our system involves q
signals, that is, we have signal vectors in Aq. The set B tells us which w ∈ Aq
can occur in the system: namely, those which satisfy the system law Rw = 0.
This is a linear system of equations, where the entries of R are elements of D.
The ring D should be thought of as a ring of operators acting on A. Since A is a
left D-module, the expression Rw is a well-defined element of Ag. One calls R a
representation of B, because in general, there are many different R’s that lead to
the same B, whereas B is uniquely determined by R (once A is fixed). If R has g
rows, then g is the number of defining equations in the given representation R
of B. Note that in contrast to q, the number g is not an intrinsic system property
(for instance, there may be superfluous equations in the chosen representation R).
The letter B comes from the word “behavior” which was introduced by J. C.
Willems [20, 24].

Examples: Let K denote either R or C.

• Let D = K[ d
dt

]. This leads to the class of systems given by linear ordinary
differential equations with constant coefficients. Signal sets A with a D-
module structure are, e.g., A = C∞(R,K), the space of smooth functions,
or D′(R,K), the space of distributions etc. For example, the system ẋ =
Ax+Bu could be written as an abstract linear system by putting

w =

[
x
u

]
and R =

[
d
dt
I − A, −B

]
.
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10 CHAPTER 2. ABSTRACT LINEAR SYSTEMS THEORY

• Let D = F[σ], where F is a field, and σ is the shift operator defined by
(σa)(t) = a(t + 1) for all a ∈ A. This leads to the class of systems given
by linear ordinary difference equations with constant coefficients. Suitable
signal sets areA = FT , where T = N or T = Z. For x(t+1) = Ax(t)+Bu(t),
one sets

w =

[
x
u

]
and R =

[
σI − A, −B

]
.

• Let D = K[ d
dt
, σ]. This leads to the class of linear delay-differential systems

with constant coefficients. A signal set is given by A = C∞(R,K).

• Let D = K〈t, d
dt
〉. This leads to the class of systems given by linear or-

dinary differential equations with polynomial coefficients. The signal sets
considered in the first example are still suited. The ring D is known as
Weyl algebra. In contrast to the other examples, it is non-commutative,
because

d
dt
ta = a+ t d

dt
a for all a ∈ A

and thus d
dt
t−t d

dt
= 1. Another non-commutative case is given byD = K[ d

dt
]

where K is a field of functions, e.g., K = K(t), the field of rational functions,
orK =M, the field of meromorphic functions. This leads to linear ordinary
differential equations with coefficients in K. We have d

dt
k − k d

dt
= k′. A

signal set is given by A = K.

• Let D = F〈t, σ〉. This leads to the class of linear ordinary difference equa-
tions with polynomial coefficients. The signals sets A = FT still work.

• Let D = K[∂1, . . . , ∂n]. This leads to the class of systems given by linear
partial differential equations with constant coefficients. As signal sets, one
could take A = C∞(Rn,K) or A = D′(Rn,K).

• Finally, D = F[σ1, . . . , σn] leads to the class of linear partial difference
equations with constant coefficients. A signal set is A = FT

n
, the set of all

n-fold indexed sequences with values in F. ♦

2.1 Galois correspondences

Let B ⊆ Aq. Define

M(B) := {m ∈ D1×q | mw = 0 for all w ∈ B}.

Lemma 2.1 M(B) is a left D-submodule of D1×q.
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Proof: Let m1,m2 ∈ M(B), d1, d2 ∈ D. Since m1w = m2w = 0 for all w ∈ B,
we have (d1m1 + d2m2)w = 0 for all w ∈ B. Thus d1m1 + d2m2 ∈M(B). �

We call M(B) the module of all equations satisfied by B. Conversely, let
M ⊆ D1×q. Define

B(M) := {w ∈ Aq | mw = 0 for all m ∈M}.

Lemma 2.2 B(M) is an (additive) Abelian subgroup of Aq.

Proof: We have 0 ∈ B(M) and if w,w1, w2 ∈ B(M), then −w ∈ B(M) and
w1 + w2 ∈ B(M). �

Note: B(M) is not a left D-submodule of Aq, in general.

Example: Let D = K〈t, d
dt
〉, A = K[t], and q = 1. Take M = { d

dt
}, then

B(M) = {w ∈ A | dw
dt

= 0},
which clearly consists of all constants. Hence for any 0 6= c ∈ K, we have
c ∈ B(M), but tc /∈ B(M), showing that B(M) is not a left D-module. ♦

Remark: If D is commutative, then B(M) is a (left) D-module. To see this, let
w1, w2 ∈ B(M) and d1, d2 ∈ D. Since mw1 = mw2 = 0 for all m ∈ M , we have
m(d1w1 + d2w2) = md1w1 + md2w2 = d1mw1 + d2mw2 = 0 for all m ∈ M and
hence d1w1 + d2w2 ∈ B(M).

Let A denote the set of all Abelian subgroups of Aq and let M denote the set of
all left D-submodules of D1×q. We have a Galois correspondence

A ↔ M

B → M(B)

B(M) ← M.

The term “Galois correspondence” means that

• M and B are inclusion-reversing, that is,

B1 ⊆ B2 ⇒M(B1) ⊇M(B2) and M1 ⊆M2 ⇒ B(M1) ⊇ B(M2);

• B ⊆ BM(B) for all B and M ⊆MB(M) for all M .

Lemma 2.3 Let B1, B2 ∈ A and M1,M2 ∈M. Then we have

B(M1 +M2) = B(M1) ∩B(M2) (2.1)

M(B1 ∩B2) ⊇ M(B1) + M(B2) (2.2)

B(M1 ∩M2) ⊇ B(M1) + B(M2) (2.3)

M(B1 +B2) = M(B1) ∩M(B2). (2.4)
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Moreover, B(0) = Aq, B(D1×q) = 0, M(0) = D1×q.

Proof: Let w ∈ B(M1 +M2). This means that (m1 +m2)w = 0 for all m1 ∈M1,
m2 ∈ M2. Since 0 ∈ Mi, this is equivalent to m1w = 0 and m2w = 0 for all
m1 ∈M1 and all m2 ∈M2. Thus, still equivalently, w ∈ B(M1) ∩B(M2).

Let m ∈M(B1) + M(B2), that is, m = m1 +m2 with m1w1 = 0 for all w1 ∈ B1

and m2w2 = 0 for all w2 ∈ B2. Let w ∈ B1 ∩ B2, then mw = m1w + m2w = 0.
Thus m ∈M(B1 ∩B2).

Let w ∈ B(M1) + B(M2), that is, w = w1 + w2 with m1w1 = 0 for all m1 ∈ M1

and m2w2 = 0 for all m2 ∈M2. Let m ∈M1 ∩M2. Then mw = mw1 +mw2 = 0.
Thus w ∈ B(M1 ∩M2).

Let m ∈M(B1 +B2). This means that m(w1 +w2) = 0 for all w1 ∈ B1 , w2 ∈ B2.
Since 0 ∈ Bi, this is equivalent to mw1 = 0 for all w1 ∈ B1 and mw2 = 0 for all
w2 ∈ B2. Still equivalently, m ∈M(B1) ∩M(B2). �

Remark: Note that the three equalities B(0) = Aq, B(D1×q) = 0, M(0) = D1×q

are more or less trivial, whereas M(Aq) = 0 is not true in general.

Assumption: Let us assume from now on that D is left Noetherian. This means
that the following equivalent conditions are satisfied:

• Every ascending chain I0 ⊆ I1 ⊆ I2 ⊆ . . . of left ideals in D must become
stationary.

• Every left ideal I in D is finitely generated.

• Every non-empty set of left ideals in D possesses a maximal element (with
respect to inclusion).

Note that in all of the examples from above, D is left Noetherian (if D is com-
mutative, there is no need to distinguish between left and right Noetherian, and
then one simply says “Noetherian”). If D is left Noetherian, then the finitely
generated D-module D1×q is a left Noetherian module, which means that the
following equivalent conditions are satisfied:

• Every ascending chain M0 ⊆ M1 ⊆ M2 ⊆ . . . of left submodules of D1×q

must become stationary.

• Every left submodule of D1×q is finitely generated.

• Every non-empty family of left submodules of D1×q possesses a maximal
element.
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Thus every M ∈M is finitely generated, that is, M = D1×gR for some suitable
integer g and R ∈ Dg×q. Then

B(M) = {w ∈ Aq | Rw = 0}.

Hence we can characterize B := B(M) as follows: It consists of all B of the form
B = {w ∈ Aq | Rw = 0}, where R is an arbitrary D-matrix with q columns, that
is, B consists of all abstract linear systems.

Thus we have an induced Galois correspondence

B ↔ M (2.5)

B → M(B)

B(M) ← M

with
BM(B) = B

for all abstract linear systems B ∈ B. On the other hand, we only have

MB(M) ⊇M

for M ∈ M. The module MB(M) is sometimes called the (Willems) closure
of M with respect to A, denoted by M := MB(M). This is due to the following
properties, which hold for all M,M1,M2 ∈M:

• M ⊆M ;

• M = M ;

• M1 ⊆M2 ⇒M1 ⊆M2.

The module M is called (Willems) closed with respect to A if M = M , or
equivalently, if M ∈ im(M).

Using these notions, we can be more specific about the inclusion (2.2).

Lemma 2.4 Let B1,B2 ∈ B. Then

M(B1 ∩ B2) = M(B1) + M(B2).

Proof: We have Bi = BM(Bi) and thus

M(B1 ∩ B2) = M(BM(B1) ∩BM(B2))

= MB(M(B1) + M(B2))

= M(B1) + M(B2),
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where we have used (2.1). �

In what follows, we will study D-modules A with the property that every M ∈M
is closed with respect to A. This is equivalent to M = im(M). Then the Galois
correspondence (2.5) will become a pair of inclusion-reversing bijections inverse
to each other, and the inclusion (2.2) will become an identity when applied to
B1,B2 ∈ B. Similarly, we will have M(Aq) = 0. This is a good starting point
for algebraic systems theory, because it makes it possible to translate statements
from the system universe B to the algebraic setting M and vice versa. It will turn
out that this works for many relevant choices of D-modules A. A counterexample
is given next.

Example: Let D = K[ d
dt
, σ] and let A = C∞(R,K). Let R = d

dt
and M = DR.

Then B = B(M) consists of all constants functions. However, any constant
function a also satisfies

a(t+ 1) = a(t) for all t ∈ R.

Thus σ − 1 ∈ M(B) = M , although σ − 1 /∈ M . This shows that the inclusion
M ⊂M is strict, in general. ♦

Remark: Note that for M1,M2 ∈M, we have M1∩M2,M1+M2 ∈M. Similarly,
forB1, B2 ∈ A, we haveB1∩B2, B1+B2 ∈ A. This was tacitly used in Lemma 2.3.
However, B1,B2 ∈ B implies that B1∩B2 ∈ B, but B1 +B2 ∈ B is not necessarily
true. It turns out that, assuming M = im(M), equality holds in (2.3) if and only
if B is closed under addition. If we have this additional property, then the Galois
correspondence (2.5) will become a lattice anti-isomorphism. This situation is
the optimal environment for algebraic systems theory. Therefore we will also
investigate the question under which conditions B is closed under addition.

2.2 Property O

Let D be a left Noetherian ring, let q be a positive integer, and let M denote the
set of all left D-submodules of D1×q. If A is a left D-module, we use the notation

BA(M) := {w ∈ Aq | mw = 0 for all m ∈M}

for M ∈M and

M(B) := {m ∈ D1×q | mw = 0 for all w ∈ B}

for B ⊆ Aq. Recall that M
A

:= MBA(M) is the closure of M with respect to A.
We are interested in D-modules A with the property that every M ∈M is closed
with respect to A. Let us call this property O (named after U. Oberst [17]).
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Lemma 2.5 Let A1 ⊆ A2 be two left D-modules. If A1 has property O, then so
has A2.

Proof: Let M ∈ M. Since A1 ⊆ A2, we have BA1(M) ⊆ BA2(M). Applying
the inclusion-reversing map M, we obtain

M
A1

= MBA1(M) ⊇MBA2(M) = M
A2
.

If A1 has property O, then this implies

M = M
A1 ⊇M

A2
.

Since the inclusion M
A2 ⊇M is always true, we obtain M = M

A2
. Thus A2 has

property O. �

Some signal sets with property O

Theorem 2.6 Let D = K[ d
dt

]. Let A be the set of all polynomial-exponential
functions, that is, all a of the form

a(t) =
∑k

i=1 pi(t)e
λit for all t ∈ T = R

where k ∈ N, pi ∈ C[t] and λi ∈ C. Then A has property O.

Remark: If K = R, one has to make the additional assumption that for all i with
pi 6= 0, there exists j such that λj = λi and pj = pi in order to get real-valued
signals. In the following, this will be taken for granted tacitly.

Thus all K[ d
dt

]-modules that contain the polynomial-exponential functions also
have property O. This is true for O(R,K), C∞(R,K), and even D′(R,K) (using
the usual identification between a continuous function and the regular distribution
it generates).

The discrete counterpart of the above theorem is stated next.

Theorem 2.7 Let D = K[σ]. Let A be the set of all polynomial-exponential
functions, that is, all a of the form

a(t) =
∑k

i=1 pi(t)λi
t for all l ≤ t ∈ T = N

where k, l ∈ N, pi ∈ C[t] and λi ∈ C. Then A has property O.
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Remark: Thus the K[σ]-module KN has property O. Note that Theorem 2.7 is
not valid for T = Z. This can be seen from the following example. However, the
problem can easily be repaired, see Theorem 2.8 below.

Example: Let R = σ and M = K[σ]R. Since σ is invertible on KZ, we obtain

BA(M) = 0 for A = K
Z. Thus M

A
= K[σ] 6= M . This shows that no A ⊆ KZ

has property O as a K[σ]-module. ♦

Theorem 2.8 Let D = K[σ, σ−1]. Let A be the set of all polynomial-exponential
functions, that is, all a of the form

a(t) =
∑k

i=1 pi(t)λi
t for all t ∈ T = Z

where k ∈ N, pi ∈ C[t] and λi ∈ C \ {0}. Then A has property O.

Remark: Thus KZ has property O when considered as a module over the ring
D = K[σ, σ−1].

Theorem 2.9 Let n be a positive integer and let D = K[∂1, . . . , ∂n]. Let A be
the set of all polynomial-exponential functions, that is, all a of the form

a(t) =
∑k

i=1 pi(t)e
λit for all t ∈ Rn

where k ∈ N, pi ∈ C[t1, . . . , tn] and λi ∈ C1×n. Then A has property O.

Remark: Therefore, allK[∂1, . . . , ∂n]-modules that contain the polynomial-expo-
nential functions also have property O. This is true, e.g., forO(Rn,K), C∞(Rn,K),
and D′(Rn,K).

Also this theorem has discrete counterparts.

Theorem 2.10 Let D = K[σ1, . . . , σn]. Let A be the set of all polynomial-
exponential functions, that is, all a of the form

a(t) =
∑k

i=1 pi(t)λ
t
i for all l ≤ t ∈ Nn

where k ∈ N, l ∈ Nn (l ≤ t means li ≤ ti for all i) pi ∈ C[t1, . . . , tn] and
λi ∈ C1×n. Here, λti = λt1i1 · · ·λ

tn
in has to be understood as a multi-index notation.

Then A has property O.

Theorem 2.11 Let D = K[σ1, . . . , σn, σ
−1
1 , . . . , σ−1

n ]. Let A be the set of all
polynomial-exponential functions, that is, all a of the form

a(t) =
∑k

i=1 pi(t)λ
t
i for all t ∈ Zn

where k ∈ N, pi ∈ C[t1, . . . , tn] and λi ∈ (C \ {0})1×n. Then A has property O.

Remark: Thus the K[σ1, . . . , σn]-module A = KN
n

has property O, and the same
holds for the K[σ1, . . . , σn, σ

−1
1 , . . . , σ−1

n ]-module A = KZ
n
.
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Consequences of property O

Let A be a D-module with property O. Then the Galois correspondence

B ↔ M

B → M(B)

B(M) ← M

consists of two inclusion-reversing bijections inverse to each other. Concretely,
we have a 1-1 correspondence between B = {w ∈ Aq | Rw = 0} and M = D1×gR
for any R ∈ Dg×q. In particular, we have M(Aq) = 0, that is, there is non-zero
m ∈ D1×q such that m annihilates all signal vectors w ∈ Aq, or equivalently,
there is no 0 6= d ∈ D such that dA = 0.

Moreover, we have for all B1,B2 ∈ B and all M1,M2 ∈M

B(M1 +M2) = B(M1) ∩B(M2)

M(B1 ∩ B2) = M(B1) + M(B2)

M(B1 + B2) = M(B1) ∩M(B2),

but the last equation uses that M is actually defined on all of A, because B1 +B2

in not necessarily in B. This small flaw can be removed if we assume additionally
that B is closed under addition. Then we also have

B(M1 ∩M2) = B(M1) + B(M2)

for all M1,M2 ∈ M, and the Galois correspondence establishes a lattice anti-
isomorphism.

An important consequence of property O is the following characterization of the
inclusion of abstract linear systems.

Theorem 2.12 Let R1, R2 be two D-matrices with q columns. Let B1,B2 be the
corresponding abstract linear systems and let M1,M2 be the resulting modules.
We have

B1 ⊆ B2 ⇔ M1 ⊇M2 ⇔ ∃X ∈ Dg2×g1 : R2 = XR1.

As a consequence, we have B1 = B2 if and only if there exist D-matrices X and Y
such that R2 = XR1 and R1 = Y R2. This determines the non-uniqueness of the
representation R of an abstract linear system B.

Corollary 2.13 Let R, B and M be as above. We have

B = Aq ⇔ M = 0 ⇔ R = 0 and

B = 0 ⇔ M = D1×q ⇔ ∃X ∈ Dq×g : Iq = XR.
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2.3 The Malgrange isomorphism

Let M ∈ M, that is, M = D1×gR for some R ∈ Dg×q, and let B = B(M) =
{w ∈ Aq | Rw = 0} be an abstract linear system. In some cases, it is preferable
to work with M := D1×q/M instead of M itself. The left D-module M will be
called the system module of B. Its relevance is due to the so-called Malgrange
isomorphism [14]. To understand it, we need some preparation from algebra.

Hom functors

If M and A are left D-modules, we define

HomD(M,A) := {φ :M→A | φ is D-linear}.

Remark: This is an Abelian group, but in general, not a left D-module. How-
ever, if D is commutative, then HomD(M,A) is a D-module.

HomD(·,A) is a contravariant functor. This means that it assigns to each
left D-module M the Abelian group HomD(M,A) and to each D-linear map
f :M→N , where N is another left D-module, the group homomorphism

HomD(f,A) : HomD(N ,A)→ HomD(M,A), ψ 7→ ψ ◦ f.

Let M,N ,P be left D-modules and let f :M→N and g : N → P be D-linear
maps. We say that

M f−→ N g−→ P

is exact if im(f) = ker(g). For example, the sequence 0 →M f→ N is exact if

and only if f is injective, and the sequence M f→ N → 0 is exact if and only if
f is surjective.

Lemma 2.14 The functor HomD(·,A) is left exact, that is, if

M f−→ N g−→ P −→ 0

is exact, then

HomD(M,A)
HomD(f,A)←− HomD(N ,A)

HomD(g,A)←− HomD(P ,A)←− 0

is also exact.
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The Malgrange isomorphism

Theorem 2.15 Let R ∈ Dg×q, B = {w ∈ Aq | Rw = 0}, M = D1×gR, and
M = D1×q/M . There is a group isomorphism

B ∼= HomD(M,A), w 7→ φw,

where φw :M→ A, [x] = x+M 7→ φw([x]) := xw, for all x ∈ D1×q. This is the
so-called Malgrange isomorphism.

Proof: Since M = D1×gR =: im(·R) and M = D1×q/M , there is an exact
sequence

D1×g ·R−→ D1×q −→M −→ 0.

This yields an exact sequence

HomD(D1×g,A)
j←− HomD(D1×q,A)

i←− HomD(M,A)←− 0.

The mapping i is injective, and hence its domain HomD(M,A) is isomorphic to
im(i), which equals ker(j). We have

HomD(D1×g,A)
j←− HomD(D1×q,A)

l l
Ag k←− Aq

where the vertical mappings are isomorphisms expressing the fact that a D-linear
map from the free module D1×l to A is uniquely determined by fixing the image
of a basis, which amounts to fixing l elements of A. Using the natural basis,
denoted by e1, . . . , el ∈ D1×l we have the explicit version

Al ∼= HomD(D1×l,A)

(ψ(e1), . . . , ψ(el))
T ← ψ

v → ψv : D1×l → A, x 7→ xv.

So far, we have HomD(M,A) ∼= ker(k). Let us derive an explicit form for k using
the diagram above:

ψw ◦ (·R) : D1×g → A, y 7→ yRw ← ψw : D1×q → A, x 7→ xw
↓ ↑

(e1Rw, . . . , egRw)T = Rw w

It turns out that k(w) = Rw for all w ∈ Aq and thus k ≡ R. Thus

HomD(M,A) ∼= ker(k) = {w ∈ Aq | Rw = 0} = B
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and the explicit form of the isomorphism can be derived along the lines of this
proof. Note φw is well-defined because [x1] = [x2] implies x1−x2 ∈M and hence
x1w = x2w, for w ∈ B. �

Remark: If D is commutative, then the Malgrange isomorphism is an isomor-
phism of D-modules.

The Malgrange isomorphism establishes another correspondence between the an-
alytic object B and the algebraic object M. The next section shows that for
certain choices of D and A, the Malgrange isomorphism has powerful properties
which will fuel the algebraic systems theory machinery.

2.4 Injective cogenerators

A left D-module A is called injective if HomD(·,A) is an exact functor, that is,
if exactness of a sequence

M→N → P (2.6)

where M,N ,P are left D-modules, implies exactness of

HomD(M,A)← HomD(N ,A)← HomD(P ,A). (2.7)

Note that this requirement is much stronger than left exactness of HomD(·,A) as
mentioned in Lemma 2.14.

Let R ∈ Dg×q and v ∈ Ag be given. Consider the inhomogeneous system Rw = v.
We would like to know whether there exists a solution w ∈ Aq. For this, consider
ker(·R) which is finitely generated, being a left submodule of the Noetherian
module D1×g. Therefore we can write ker(·R) = im(·Z) for some D-matrix Z. In
other words, we have an exact sequence

D1×h ·Z−→ D1×g ·R−→ D1×q.

If A is injective, then

HomD(D1×h,A)←−HomD(D1×g,A)←−HomD(D1×q,A)

is also exact, and therefore, so is

Ah Z←− Ag R←− Aq.

This means that imA(R) = kerA(Z), that is,

v ∈ imA(R) ⇔ ∃w ∈ Aq : Rw = v ⇔ v ∈ kerA(Z) ⇔ Zv = 0.

Thus the solvability condition for Rw = v is another linear system: the right hand
side vector v has to satisfy Zv = 0. It is clear that this condition is necessary,
because ZR = 0, but its sufficiency is due to the injectivity of A.
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Theorem 2.16 Let the D-module A be injective. Let R ∈ Dg×q and Z ∈ Dh×g
be such that ker(·R) = im(·Z), and let v ∈ Ag be given. Then

∃w ∈ Aq : Rw = v ⇔ Zv = 0.

This is known as the fundamental principle.

Corollary 2.17 If the D-module A is injective, then B is closed under addition.

Proof: Let Bi = {wi ∈ Aq | Riwi = 0} for i = 1, 2. Then

w ∈ B1 + B2 ⇔ ∃w1, w2 ∈ Aq :

 R1 0
0 R2

I I

[ w1

w2

]
=

 0
0
I

w.
According to the fundamental principle, there exists a D-matrix R such that
B := B1 + B2 = {w ∈ Aq | Rw = 0}, showing that B ∈ B. �

The D-module A is said to be an injective cogenerator if the exactness of (2.6)
is equivalent to the exactness of (2.7), for any M,N ,P .

Lemma 2.18 If the D-module A is an injective cogenerator, then it has prop-
erty O.

Proof: Let M = D1×gR and M1 = MB(M) = D1×g1R1 ⊇ M . Then B =
B(M) = B1 = BMB(M). Let Mi = D1×q/Mi for i = 1, 2. Since

B1
id−→ B −→ 0

is exact, so is
HomD(M1,A) −→ HomD(M,A) −→ 0

because of the Malgrange isomorphism. The injective cogenerator property im-
plies that

M1
i←−M←− 0

is also exact. The map i is defined by i(x + M) = x + M1. Since i is injective,
we have M1 ⊆M , and thus M = M1 = MB(M). �

If the D-module A is an injective cogenerator, then the Galois correspondence
B ↔ M consists of two inclusion-reversing bijections inverse to each other, and
we have a full lattice correspondence

B(M1 +M2) = B(M1) ∩B(M2)

M(B1 ∩ B2) = M(B1) + M(B2)

B(M1 ∩M2) = B(M1) + B(M2)

M(B1 + B2) = M(B1) ∩M(B2)
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with B(0) = Aq, B(D1×q) = 0, M(0) = D1×q, M(Aq) = 0.

The following table lists some D-modules A that are relevant in systems theory
and that are injective cogenerators:

D A
K[ d

dt
] C∞(R,K),D′(R,K)

F[σ] F
N

F[σ, σ−1] F
Z

K[∂1, . . . , ∂n] C∞(Rn,K),D′(Rn,K)
F[σ1, . . . , σn] F

N
n

F[σ1, . . . , σn, σ
−1
1 , . . . , σ−1

n ] F
Z
n

Example: Consider D = R[∂1, ∂2, ∂3] and A = C∞(R3,R). The statements

∃w ∈ A : grad(w) = v ⇔ curl(v) = 0

and
∃w ∈ A3 : curl(w) = v ⇔ div(v) = 0

are two applications of the fundamental principle. Note that gradient, curl, and
divergence correspond to

Rgrad =

 ∂1

∂2

∂3

 Rcurl =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 Rdiv =
[
∂1 ∂2 ∂3

]
.

♦

The following criteria make it easier to test whether a D-module A is an injective
cogenerator.

Theorem 2.19 The D-module A is injective if and only if for every sequence

0→ I ↪→ D,

where I ⊆ D is a left ideal, the sequence

0← HomD(I,A)← HomD(D,A)

is exact. This is known as Baer’s criterion [12, Ch. 1, §3].

Theorem 2.20 Let A be an injective D-module. Then A is a cogenerator if and
only if

HomD(M,A) = 0 ⇒ M = 0

for every finitely generated D-module M.
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Since D is left Noetherian, a finitely generated D-module M has the form M∼=
D1×q/D1×gR for some suitable g, q and R ∈ Dg×q. To see this, suppose that M
has q generators m1, . . . ,mq ∈ M. Then there exists a surjective D-linear map
π from D1×q toM mapping each natural basis element ei to mi. The kernel of π
is a left D-submodule of D1×q, and thus, it is also finitely generated, say it has g
generators r1, . . . , rg ∈ D1×q. Let R be the matrix that contains these elements as
rows. Then we have im(·R) = D1×gR = ker(π) and im(π) =M. The homomor-
phism theorem implies that D1×q/ ker(π) ∼= im(π), that is, D1×q/D1×gR ∼= M.
In other words, we have constructed an exact sequence

. . . −→ D1×g ·R−→ D1×q −→M −→ 0

and this procedure can be iterated, that is, the sequence can be extended to the
left. This is called a free resolution of M.

Therefore, if A is injective, the cogenerator property is equivalent to

B = {w ∈ Aq | Rw = 0} = 0 ⇒ M = D1×q/D1×gR = 0

where we have used the Malgrange isomorphism. Note that M = 0 means
D1×gR = D1×q, i.e., there exists X ∈ Dq×g such that XR = I. However, we
have already seen in Corollary 2.13 that this implication is a consequence of
property O. Combining this with Lemma 2.18, we have the following result.

Theorem 2.21 Let A be an injective D-module. Then property O is equivalent
to the cogenerator property.

Remark: Since D is left Noetherian, Baer’s criterion says in particular that it
is sufficient to check injectivity for finitely generated modules in (2.6).

The proof of Baer’s criterion uses Zorn’s lemma which is equivalent to the axiom
of choice. If this is to be avoided, an alternative formulation can be used. This is
based on the observation that for applications in systems theory, one deals only
with sequences (2.6) of finitely generated modules. Thus, instead of requiring A
to be injective (which is equivalent to saying that HomD(·,A) is an exact functor
on the category of left D-modules) it suffices, for systems theoretic purposes,
to say that HomD(·,A) should be an exact functor on the category of finitely
generated left D-modules.

The situation is simpler for the cogenerator property, because Theorem 2.20 does
not rely on Zorn’s lemma. Its counterpart in the alternative formulation is: Let
HomD(·,A) be an exact functor on the category of finitely generated left D-
modules. Then HomD(·,A) is faithful (i.e., it reflects exactness) if and only if
HomD(M,A) = 0 implies M = 0 for all finitely generated left D-modules.
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Chapter 3

Basic systems theoretic
properties

In this chapter, D is left Noetherian, and the D-module A is an injective cogen-
erator. We consider an abstract linear system

B = {w ∈ Aq | Rw = 0}

and its system module
M = D1×q/D1×gR,

where R ∈ Dg×q.

3.1 Autonomy

For 1 ≤ i ≤ q, consider the projection of B onto the i-th component

πi : B → A, w 7→ wi.

We say that wi is a free variable (or: an input) of B if πi is surjective. The
system B is called autonomous if it admits no free variables.

Interpretation: The surjectivity of πi means that for an arbitrary signal a ∈ A,
we can always find q − 1 signals w1, . . . , wi−1, wi+1, . . . , wq ∈ A such that w :=
(w1, . . . , wi−1, a, wi+1, . . . , wq)

T belongs to the system B. In this sense, the i-th
component of the signal vector w ∈ B is “free”, i.e., it can be chosen arbitrarily.

Compare this with the solvability condition for ẋ = Ax + Bu discussed in the
Introduction: There, we required that for all u, there exists x such that ẋ =
Ax + Bu. Using the language from above, this says that u should be an input

25
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in B = {[xT , uT ]T | ẋ = Ax + Bu}. An autonomous system is a system without
inputs, e.g., B = {x | ẋ = Ax}.

Assumption: From now on, let D be a domain, that is, for all d1, d2 ∈ D, we
have

d1d2 = 0 ⇒ d1 = 0 or d2 = 0.

An element m ∈ M is called torsion (element) if there exists 0 6= d such that
dm = 0. The module M is called torsion (module) if all its elements are
torsion.

Lemma 3.1 If M is torsion, then B is autonomous.

Proof: If B is not autonomous, then there exists an exact sequence

B πi−→ A −→ 0.

Thus

M i←− D ←− 0

is also exact. This means that i is injective. Consider m := i(1) 6= 0. This is not
a torsion element (if dm = 0 then di(1) = i(d) = 0 which implies d = 0 because
i is injective). Hence M is not torsion. �

To obtain the converse direction of the implication of this lemma, we need the
following notion. One says that the domain D has the left Ore property if any
0 6= d1, d2 ∈ D have a left common multiple, that is, there exist 0 6= c1, c2 ∈ D
such that c1d1 = c2d2. Inductively, it follows that every finite number of non-zero
elements of D has a left common multiple. The left Ore condition is equivalent to
saying that for all d1, d2 ∈ D, there exists (0, 0) 6= (c1, c2) ∈ D2 with c1d1 = c2d2.

Remark: If D is commutative, then it has the Ore property, because we may
take c1 = d2 and c2 = d1. However, the following theorem says that the assump-
tions on D made so far (namely, D being a left Noetherian domain) are already
sufficient to deduce the left Ore property [7, 12].

Theorem 3.2 If D is a left Noetherian domain, then it has the left Ore property.

Proof: Let 0 6= d1, d2 ∈ D. Consider the left ideals

In :=
n∑
i=0

Dd1d
i
2.
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Then we have an ascending chain I0 ⊆ I1 ⊆ I2 ⊆ . . ., which has to become
stationary according to the Noetherian property. Let n be the smallest integer
such that In+1 = In. Then

d1d
n+1
2 =

n∑
i=0

aid1d
i
2

for some ai ∈ D. Re-arranging the summands, we obtain

a0d1 = (d1d
n
2 −

n∑
i=1

aid1d
i−1
2 )d2

and hence we have constructed a left common multiple. If the coefficients were
zero, we would have

d1d
n
2 =

n−1∑
i=0

ai+1d1d
i
2

and thus In = In−1, contradicting the minimality of n. �

Lemma 3.3 The following are equivalent:

1. M is torsion.

2. B is autonomous.

Proof: Since “1⇒ 2” follows from the lemma above, it suffices to prove “2⇒ 1”:
Assume thatM is not torsion. We first show that there exists an integer 1 ≤ i ≤ q
such that [ei] is not torsion, where ei denotes the i-th natural basis vector of D1×q.

Suppose that all [ei] were torsion, say di[ei] = 0 for some di 6= 0. Now let m ∈M
be given. Then m = [x] for some x ∈ D1×q, where [x] denotes the residue class
of x modulo D1×gR. Then

m = [x] = [
∑q

i=1 xiei] =
∑q

i=1 xi[ei],

where xi ∈ D. Due to the left Ore property, there exist bi, 0 6= ci ∈ D with
bidi = cixi. Similarly, let a := aici 6= 0 be a left common multiple of all ci. Then

am =
∑
axi[ei] =

∑
aicixi[ei] =

∑
aibidi[ei] = 0.

Thus M is torsion, contradicting the assumption.

Thus there is an exact sequence

0 −→ D i−→M
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where i(1) = [ei]. Therefore,

0← HomD(D,A)← HomD(M,A)

is also exact, and thus, using the Malgrange isomorphism, so is

0←− A p←− B.

Thus p is surjective. However, p ≡ πi. This shows that B is not autonomous. �

Theorem 3.4 The following are equivalent:

1. M is torsion.

2. There exists 0 6= d ∈ D and X ∈ Dq×g such that dI = XR.

3. B is autonomous.

Proof: It suffices to show “1⇒ 2⇒ 3”. IfM is torsion, then all [ei] are torsion,
that is, there exists 0 6= di ∈ D such that di[ei] = 0. This means that diei = yiR
for some yi ∈ D1×g. Using the left Ore property, let d = cidi be a left common
multiple of all di. Then dei = cidiei = ciyiR. Writing these equations in matrix
form, we obtain dI = XR.

If dI = XR, then B ⊆ {w | dw = 0}, that is, every component wi of w ∈ B
satisfies the scalar equation dwi = 0, where 0 6= d. However, it is a consequence
of property O (which holds since A is an injective cogenerator) that there is no
0 6= d ∈ D with dA = 0, that is, no component of w is free. In other words, B is
autonomous. �

Corollary 3.5 Let D be commutative. Then B = {w ∈ Aq | Rw = 0} is au-
tonomous if and only if R has full column rank, i.e., rank(R) = q.

Remark: Over a commutative domain, the rank of a matrix can be defined as
usual, that is, as the size of the largest non-singular submatrix. Note that any
two representations of B have the same rank; this follows from Theorem 2.12.

Proof: Since adj(S)S = det(S)I holds for any square D-matrix S, and since a
full column rank matrix contains a non-singular submatrix of full size, we have:
R has full column rank if and only if there exists a D-matrix X and 0 6= d ∈ D
such that XR = dI. The rest follows from the theorem. �

We would like to have a similar result for the non-commutative case as well.
However, we cannot work with determinants and adjugate matrices any more.
Some preparation is necessary.
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Linear algebra over Ore domains

Let D be a domain. The left Ore property is necessary and sufficient for D to
admit a field of left fractions [3, p. 177]

K = {d−1n | d, n ∈ D, d 6= 0}.

In fact, the composition d−1
1 n1d

−1
2 n2 is explained by using the Ore property, which

yields an1 = bd2 for some a, b ∈ D, a 6= 0, and hence one puts

d−1
1 n1d

−1
2 n2 := (ad1)−1(bn2).

Of course, one has to show that this does not depend on the specific choice of
a, b.

Remark: This is the non-commutative generalization of the fact that every
commutative domain D can be embedded into its quotient field

K = {n
d
| d, n ∈ D, d 6= 0},

for example, D = Z with K = Q, or D = K[t] with K = K(t).

For R ∈ Dg×q, consider V := RKq ⊆ Kg. This is a vector space over the skew
field K, and as such, it has a well-defined dimension

dim(V ) =: rank(R).

In fact, we should call this the column rank of R, but since it holds that

dim(RKq) = dim(K1×gR)

we have equality of row and column rank, just like in the classical case of linear
algebra over commutative fields, and therefore it is justified to simply speak of
the rank of R. If D is a commutative domain, then this notion coincides with
the usual concept of the rank of a matrix.

Remark: The above statement should not be confused with rank(R) = rank(RT )
which holds over commutative domains, but not in the non-commutative case, as
illustrated by the following example.

Example: Let a, b ∈ D be such that ab 6= ba. Then the matrix

R =

[
1 b
a ab

]
has rank 1 (as it would be in the commutative case), but its transpose

RT =

[
1 a
b ab

]
has rank 2. ♦
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Lemma 3.6 R has full column rank if and only if there exists a D-matrix X and
0 6= d ∈ D such that XR = dI.

Proof: If XR = dI then

K1×qdI = K1×qXR ⊆ K1×gR ⊆ K1×q.

Since the leftmost and the rightmost vector space both have dimension q, we have
dim(V ) = dim(K1×gR) = q, that is, R has rank q.

Conversely, assume that R has rank q. Let R1 be R after deletion of the first
column. Since rank(R1) = q − 1 < g, there exists 0 6= x ∈ K1×g such that
xR1 = 0. Let x = [d̃−1

1 ñ1, . . . , d̃
−1
g ñg]. Using the Ore property, we can write this

as x = d̃−1[n1, . . . , ng] =: d̃−1n for some n ∈ D1×g. Then nR1 = 0 and thus
nR = [d, 0, . . . , 0]. There must be at least one choice of x that guarantees that
d 6= 0, otherwise this would be a contradiction to rank(R) = q. Let n be the first
row of a matrix N . Proceeding like this with the remaining columns of R, we
obtain NR = diag(d1, . . . , dq). Exploiting the Ore property once more, we can
find a diagonal matrix C such that CNR = dI, and we put X = CN . �

This lemma is exactly what we need in order to generalize Corollary 3.5 to arbi-
trary left Noetherian domains. Therefore we have proven the following result.

Theorem 3.7 B is autonomous if and only if R has full column rank.

3.2 Input-output structures

We still assume that D is a left Noetherian domain.

Let B = {w ∈ Aq | Rw = 0} and p := rank(R). Since any two representations
of B possess the same rank, this number does not depend on the choice of the
representation R of B, and therefore, it is a property of B, called the output-
dimension of B.

Then there exist p columns of R that form a basis of V = RKq. Without loss
of generality, we may re-arrange the columns of R such that the last p columns
are a basis of V . (This corresponds only to a permutation of the components of
w ∈ B.) Thus

R = [−Q,P ] with P ∈ Dg×p and rank(P ) = rank(R) = p.

This corresponds to a partition of w ∈ B according to

w =

[
u
y

]
.
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A partition constructed this way is called an input-output structure. Since
the columns of Q belong to V , we get

Q = PH for some H ∈ Kp×m

where m := q − p, the input-dimension of B. This H is uniquely determined,
and it called the transfer matrix of B with respect to the chosen input-output
structure (note that in general, there are several input-output structures, corre-
sponding to different choices of the basis of V ).

Theorem 3.8 Let B = {w = [uT , yT ]T ∈ Am+p | Py = Qu} be a system with
input-output structure. Then the transfer matrix H depends only on B and the
chosen input-output structure (and not on the representation R). Moreover, we
have

∀u ∈ Am∃y ∈ Ap : Py = Qu

and this justifies the term “input-output structure”: The vector u consists of free
variables of B, and is therefore called an input. Moreover, the associated zero-
input system Bu=0 = {y ∈ Ap | Py = 0} is autonomous, and therefore, we call y
an output.

Proof: Let R1 = [−Q1, P1] and R2 = [−Q2, P2] be two representations of B, and
let Q1 = P1H1 and Q2 = P2H2. Since R2 = XR1 and R1 = Y R2, this implies
P1(H1 −H2) = 0 and thus H1 = H2, because P1 has full column rank.

Let Z be such that ker(·P ) = im(·Z). According to the fundamental principle,

∃y ∈ Ap : Py = Qu ⇔ ZQu = 0.

However, since Q = PH, we have ZQ = ZPH = 0 and hence ZQu = 0 holds for
any u ∈ Am. �

Example: Let D = K[ d
dt

] and A = C∞(R,K). Consider

B = {[xT , uT ]T | ẋ = Ax+Bu},

where A ∈ Kn×n and B ∈ Kn×m are given. Then R = [ d
dt
I − A,−B] has rank

p = n, and we may take P = d
dt
I−A, Q = B, and H = ( d

dt
I−A)−1B ∈ K( d

dt
)p×m.

♦

3.3 Controllability

We still assume that D is a left Noetherian domain.



32 CHAPTER 3. BASIC SYSTEMS THEORETIC PROPERTIES

An abstract linear system B = {w ∈ Aq | Rw = 0} is called controllable if there
exists L ∈ Dq×l such that

B = {w ∈ Aq | ∃` ∈ Al : w = L`}.

This is called an image representation of B. We will see later on that for
certain choices of D and A, this definition coincides with the intuitive notion of
controllability as discussed in the Introduction.

Lemma 3.9 B is controllable if and only if R is a left syzygy matrix, that is,
there exists a D-matrix L such that im(·R) = ker(·L).

Proof: B is controllable if and only if there exists L such that

Rw = 0 ⇔ ∃` ∈ Al : w = L`,

that is, kerA(R) = imA(L). Due to the injective cogenerator property, this is
equivalent to im(·R) = ker(·L), that is, to R being a left syzygy matrix. �

So far, we have only used the injective cogenerator property. Now we return to
our assumption that D should be domain.

The module M is called torsion-free if it has no torsion elements except zero,
that is, for all d ∈ D, m ∈M, we have

dm = 0 ⇒ d = 0 or m = 0.

For M = D1×q/M , this means that for all d ∈ D, x ∈ D1×q,

dx ∈M ⇒ d = 0 or x ∈M.

Lemma 3.10 If B is controllable, then M is torsion-free.

Proof: Let 0 6= d ∈ D and x ∈ D1×q be such that dx ∈ M = im(·R). Since
M = im(·R) = ker(·L) for some L, we have RL = 0 and hence dxL = 0. Since D
is a domain, this implies xL = 0, that is, x ∈ ker(·L) = M . �

We need an additional assumption to obtain the converse direction of this impli-
cation.

Assumption: From now on, let the domain D be Noetherian (i.e., both left and
right Noetherian).

Theorem 3.11 The following are equivalent:
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1. B is controllable.

2. M is torsion-free.

3. R is a left syzygy matrix.

Proof: Since the equivalence of assertions 1 and 3 and the implication “1⇒ 2”
follow from the above lemmas, it suffices to show “2⇒ 3”: LetM be torsion-free.
Consider W = kerK(R) ⊆ Kq. This is an m-dimensional K-vector space, where
m = q − rank(R), which has a representation W = L̃Km for some L̃ ∈ Kq×m.
Using the right Ore property, we have L̃ = Ld̃−1 for some L ∈ Dq×m. Since
RL̃ = RLd̃−1 = 0, we may conclude that RL = 0. Consider ker(·L) ⊆ D1×q

and let Rc be such that im(·Rc) = ker(·L). We will show that im(·R) = im(·Rc),
which yields the desired result. We have rank(R) = rank(Rc) and R = XRc for
some D-matrix X. Thus im(·R) ⊆ im(·Rc) and

K1×gR = K1×gXRc ⊆ K1×gcRc.

Since these vector spaces have the same dimension, they actually coincide, and
thus we get Rc = GR for some K-matrix G. Using the left Ore property, we can
write G = d−1N and thus dRc = NR. Let x be a row of Rc, then dx ∈ M , and
thus, since M is torsion-free and d 6= 0, we must have x ∈ M . Thus Rc = Y R
for some D-matrix Y . �

Remark: The proof could be shortened considerably if we would use the fact
that every finitely generated torsion-free module over a Noetherian domain can be
embedded into a finitely generated free module, because then the exact sequence

D1×g ·R−→ D1×q π−→M = D1×q/im(·R)

and the embedding i :M→D1×l would yield an exact sequence

D1×g ·R−→ D1×q i◦π−→ D1×l

and the map i ◦ π has to take the form ·L for some matrix L ∈ Dq×l.

However, the elementary proof from above gives a constructive method to find L.
It also shows that without loss of generality, L has m columns, where m is the
input-dimension of the system. Note that alternatively, one could construct L as
a matrix whose l columns generate the right D-module ker(R) ⊆ Dq, which is
finitely generated, because D is right Noetherian; but then we only have l ≥ m.
Anyhow, the matrix Rc from the proof has interesting properties even when B is
not controllable. This is the topic of the next section.

Example: Let D = K[ d
dt

] and A = C∞(R,K). Consider

B = {[xT , uT ]T | ẋ = Ax+Bu},
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where A ∈ Kn×n and B ∈ Kn×m are given. Then R = [ d
dt
I − A,−B] and

M = D1×(n+m)/D1×nR.

One can show that M is torsion-free if and only if rank[B,AB, . . . , An−1B] = n,
thus recovering the controllability condition from the Introduction. ♦

3.4 The controllable part of a system

We still assume that D is a Noetherian domain.

Theorem 3.12 There exists a uniquely determined largest controllable subsystem
Bc of B, that is, Bc ⊆ B, Bc is controllable, and if B1 is another controllable
subsystem of B, then B1 ⊆ Bc. The system Bc is called the controllable part
of B. We have B = Bc if and only if B is controllable.

Proof: Consider the matrix Rc constructed above and set

Bc = {w ∈ Aq | Rcw = 0}.

By construction, R = XRc, that is, Bc ⊆ B, and Rc is a left syzygy matrix, that
is, Bc is controllable.

Let B1 = {w ∈ Aq | R1w = 0} be another controllable subsystem of B, then
R = Z1R1 and im(·R1) = ker(·L1) for some D-matrices Z1, L1. Recall that
by construction, dRc = NR for some 0 6= d ∈ D and a D-matrix N . Thus
dRcL1 = NRL1 = NZ1R1L1 = 0, and since D is a domain, we may conclude
that RcL1 = 0. Therefore we must have Rc = Z2R1, that is, B1 ⊆ Bc. �

The torsion part tM of M is the set of all torsion elements of M, that is,

tM = {m ∈M | ∃0 6= d ∈ D : dm = 0}.

Theorem 3.13 tM is a left submodule ofM, the moduleM/tM is torsion-free,
and we have the Malgrange isomorphism

Bc ∼= HomD(M/tM,A).

In particular, B is autonomous if and only if Bc = 0.

Proof: Let m1,m2 ∈ tM, that is, d1m1 = d2m2 = 0 for some 0 6= d1, d2 ∈ D.
Since d1 and d2 have a left common multiple 0 6= d = c1d1 = c2d2, we obtain
d(m1 +m2) = c1d1m2 + c2d2m2 = 0, showing that m1 +m2 ∈ tM.
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Let m ∈ tM, say dm = 0 for 0 6= d ∈ D, and consider m′ = d′m for some d′ ∈ D.
We need to show that m′ is torsion. Due to the left Ore property, there exist
c, c′ ∈ D, c′ 6= 0, such that cd = c′d′. Thus 0 = cdm = c′d′m = c′m′, showing
that m′ ∈ tM.

Let 0 6= [m] ∈ M/tM. If d[m] = 0, then dm ∈ tM, that is, there exists
0 6= c ∈ D with cdm = 0. Since 0 6= [m], we have m /∈ tM and thus we must
have d = 0.

For the final statement, we need to prove thatM/tM is isomorphic to the system
module of Bc, that is,

D1×q/D1×gcRc
∼=M/tM.

Define φ : D1×q → M/tM via φ(x) = [x] + tM, where [x] denotes the residue
class of x modulo M = D1×gR. This map is clearly surjective. Therefore, it
suffices to show that ker(φ) = Mc := D1×gcRc.

For this, recall that R = XRc and dRc = NR for some D-matrices X and N and
0 6= d ∈ D.

If [x] ∈ tM, there exists 0 6= c ∈ D such that c[x] = 0, that is, cx ∈ M ⊆ Mc.
This implies x ∈Mc, because Mc := D1×q/Mc is torsion-free.

Conversely, if x is a row of Rc, then dx ∈ M and thus d[x] = 0 showing that
[x] ∈ tM. Since tM is a left D-module, this implies that [x] ∈ tM for any
x ∈ im(·Rc) = Mc. �

Remark: We have an exact sequence

0→ tM→M→M/tM→ 0

and thus

0← HomD(tM,A)← HomD(M,A)← HomD(M/tM,A)← 0

is also exact. Using the Malgrange isomorphism, this corresponds to

0← B/Bc ← B ← Bc ← 0.

Since tM is a torsion module, the quotient B/Bc corresponds to an autonomous
system, which is sometimes called the obstruction to controllability. Its signifi-
cance will become clear in Chapter 5, for a specific choice of D and A.

Theorem 3.14 There exists an autonomous system Ba such that B = Bc + Ba.
This is known as controllable-autonomous decomposition.
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Remark: Note that Ba is not uniquely determined, and that it is not possible,
in general, to choose Ba such that the sum Ba + Bc is direct.

Proof: Choose an input-output structure and set B = {[uT , yT ]T | Py = Qu},
that is R = [−Q,P ] = XRc. Partition Rc = [−Qc, Pc] correspondingly, then this
is an input-output structure of Bc = {[uT , yT ]T | Pcy = Qcu}.

Let Ba := {[uT , yT ]T | Py = 0, u = 0}. This is autonomous and contained in B.
Thus Bc + Ba ⊆ B.

For the converse, let [uT , yT ]T ∈ B. There exists a solution y1 to Pcy1 = Qcu.
Write [

u
y

]
=

[
u
y1

]
+

[
0

y − y1

]
.

The first summand is in Bc, and the second is in Ba, because

P (y − y1) = Py −XPcy1 = Qu−XQcu = Qu−Qu = 0

for all u. �

Example: Let A ∈ Kn×n and B ∈ Kn×m. Then there exists a non-singular
T ∈ Kn×n such that

T−1AT =

[
A1 A2

0 A3

]
and T−1B =

[
B1

0

]
where A1 ∈ Kn1×n1 , B1 ∈ Kn1×m, and (A1, B1) is controllable, that is,

rank[B1, A1B1, . . . , A
n1−1
1 B1] = n1.

This is the so-called Kalman controllability decomposition. Therefore we
may assume without loss of generality that

B = {[xT1 , xT2 , uT ]T | ẋ1 = A1x1 + A2x2 +B1u, ẋ2 = A3x2}.

Then

Bc = {[xT1 , xT2 , uT ]T | x2 = 0, ẋ1 = A1x1 +B1u}

and

Ba = {[xT1 , xT2 , uT ]T | u = 0, ẋ1 = A1x1 + A2x2, ẋ2 = A3x2}.

Note that Bc ∩ Ba 6= 0, but in this example, it is possible to find another au-
tonomous system B′a such that B = Bc ⊕ B′a. ♦
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3.5 Observability

Let B be an abstract linear system in which the representation matrix is par-
titioned as R = [R1, R2]. Let the signal vector w be partitioned accordingly.
Then

B = {[wT1 , wT2 ]T ∈ Aq1+q2 | R1w1 +R2w2 = 0}.
One says that w1 is observable from w2 in B if w1 is uniquely determined by w2

and the fact that R1w1 + R2w2 = 0. This means that R1w
′
1 + R2w2 = 0 and

R1w1 +R2w2 = 0 should imply that w1 = w′1. Equivalently,

B1 := {w1 ∈ Aq1 | R1w1 = 0} = 0.

The following theorem is a direct consequence of Corollary 2.13.

Theorem 3.15 The subsignal w1 is observable from w2 if and only if R1 is left
invertible, that is, there exists a D-matrix X such that I = XR1.

A latent variable description of B takes the form

B = {w ∈ Aq | ∃` ∈ Al : Rw = M`}

where R ∈ Dg×q and M ∈ Dg×l. According to the fundamental principle, this is
indeed an abstract linear system, i.e., we can construct a kernel representation.
One is particularly interested in the question whether the latent variables ` are
observable from the manifest variables w in the associated “full” system

Bf = {[`T , wT ]T ∈ Al+q | M` = Rw}.

The theorem above tells us that this is the case if and only if M is left invertible.
Then we have

B = {w ∈ Aq | ∃!` ∈ Al : Rw = M`},
which called an observable latent variable description.

Example: Let D = K[ d
dt

] and A = C∞(R,K). Consider

B = {[uT , yT ]T ∈ Am+p | ∃x ∈ An : ẋ = Ax+Bu, y = Cx+Du}.

This is the input-output system associated to the state space system

ẋ = Ax+Bu

y = Cx+Du,

and the full system consists of all [xT , uT , yT ]T that satisfy these equations. Here,
the latent variables correspond to the state x, and the input u and the output y
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are considered as manifest variables. Since the state space equations can be
rewritten as [

B 0
−D I

] [
u
y

]
=

[
d
dt
I − A
C

]
x,

we see that observability amounts to the left invertibility of

M =

[
d
dt
I − A
C

]
which is equivalent to the classical observability criterion, which says that

K =


C
CA

...
CAn−1


should have rank n. ♦



Chapter 4

One-dimensional systems

4.1 Ordinary differential equations with ratio-

nal coefficients

Let D = K[ d
dt

], where K = K(t) is the field of rational functions. Then D is the
ring of linear ordinary differential operators with rational coefficients.

Let A denote the set of all functions that are smooth except for a finite number
of points, that is, for each a ∈ A there exists a finite set E(a) ⊂ R such that
a ∈ C∞(R \ E(a),K). Then A is a K-vector space and a left D-module. We will
identify functions whose values coincide almost everywhere.

Recall that D is not commutative, because

d

dt
ta = a+ t

d

dt
a for all a ∈ A

and thus d
dt
t = 1 + t d

dt
. More generally, for k ∈ K, we have

d

dt
k = k′ + k

d

dt

and, proceeding inductively,

di

dti
k =

i∑
j=0

(
i
j

)
k(i−j) d

j

dtj
.

The ring D is a domain, and any element 0 6= d ∈ D can be uniquely written in
the form

d = an(t)
dn

dtn
+ . . .+ a1(t)

d

dt
+ a0(t)

39
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where n ∈ N, ai ∈ K, and an 6= 0. The number n is called the degree of d, and
an is called the leading coefficient of d. If the leading coefficient equals one, we
say that d is monic.

Theorem 4.1 [7, Ch. 1] The ring D is simple (that is, the only ideals that are
both right and left ideals are the trivial ones, i.e., 0 and D itself) and it is a left
and right principal ideal domain (that is, every left ideal and every right ideal can
be generated by one single element).

Proof: Let I be a non-zero right and left ideal in D. Let

n := min{deg(f) | 0 6= f ∈ I}.

Then I contains an element d of degree n. If n = 0, we have I = D, and we’re
finished. If n ≥ 1, consider the element kd − dk ∈ I, where k ∈ K. We have
(writing D := d

dt
to simplify the notation)

kd− dk = k
n∑
i=0

aiD
i −

n∑
i=0

aiD
ik

= k

n∑
i=0

aiD
i −

n∑
i=0

ai

i∑
j=0

(
i
j

)
k(i−j)Dj

= k

n∑
i=0

aiD
i −

n∑
i=0

n∑
j=i

aj

(
j
i

)
k(j−i)Di.

The coefficient at Dn equals kan − ank, which is zero (since K is commutative).
Hence the degree of kd − dk is at most n − 1. However, since n was chosen to
be minimal, we must have kd − dk = 0. Then the coefficient at Dn−1 has to
vanish. This coefficient is given by kan−1 − an−1k − annk′ = −annk′. Thus we
have shown that for all k ∈ K, we have k′ = 0. This is clearly absurd, and thus
we have shown that the assumption n ≥ 1 must be false.

Now let I be a non-zero left ideal of D. Define n as above, and let d ∈ I have
degree n. Without loss of generality, let d be monic. We show that I = Dd. Since
Dd ⊆ I is obvious, it suffices to show that I ⊆ Dd. We do this by induction
on the degree of f ∈ I. If deg(f) = n, we consider f − fnd whose degree is less
than n. Thus it must be zero, showing that f = fnd ∈ Dd. Suppose that we have
shown the statement for all f ∈ I of degree n, n+ 1, . . . ,m− 1. Consider f ∈ I
with deg(f) = m. Then f − fmDm−nd has degree less than m. By the inductive
hypothesis, it has to be in Dd, which implies f ∈ Dd.

The statement for right ideals is proven similarly. �
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Remark: In fact, D is even a left and right Euclidean domain, with means that
we have a left and right “division with remainder”: For all 0 6= d ∈ D and
n ∈ D there exist q, r ∈ D such that n = qd + r, where we have either r = 0 or
deg(r) < deg(d). Similarly, we have n = dq1 + r1.

Anyhow, D is left and right Noetherian and thus it has the left and right Ore
property. Thus it admits a skew field of fractions K, and the rank of a D-matrix
is well-defined. A matrix U ∈ Dg×g is called unimodular if there exists a matrix
U−1 ∈ Dg×g with UU−1 = U−1U = I.

Theorem 4.2 (Jacobson form) [8, Ch. 3], [5, Ch. 8.1] Let R ∈ Dg×q. Then
there exist unimodular matrices U and V such that

URV =

[
D 0
0 0

]
where D = diag(1, . . . , 1, d) ∈ Dp×p for some 0 6= d ∈ D, and p := rank(R).

Since D is even a Euclidean domain, the transformation matrices U and V can
be obtained by performing elementary row and column operations.

In the following proof, we use the following standard facts from ODE theory: The
initial value problem ẋ(t) = A(t)x(t) + b(t), x(t0) = x0, where A ∈ C∞(I,Kn×n)
and b ∈ C∞(I,Kn) for some open interval I ⊆ R, has a unique solution for any
choice of t0 ∈ I and x0 ∈ Kn. This solution is defined on all of I and it is smooth,
that is, x ∈ C∞(I,Kn). The solution set of the associated homogeneous equation
ẋ(t) = A(t)x(t) is a K-vector space of dimension n.

Moreover, the tests for the injective cogenerator property given in Chapter 2
can be simplified in the case where D is a left principal ideal domain. A left
D-module A is injective if and only if for all 0 6= d ∈ D and all u ∈ A, there
exists y ∈ A such that dy = u. An injective module is a cogenerator if and only if
HomD(D/Dd,A) = 0 implies D/Dd = 0 for any d ∈ D. In view of the Malgrange
isomorphism, this is equivalent to saying that {w ∈ A | dw = 0} = 0 implies that
d is left invertible. However, since D is a domain, left and right invertibility of
d ∈ D are equivalent. Moreover, in D = K(t)[ d

dt
], an element d ∈ D is a unit if

and only if d ∈ K(t) \ {0}, that is, deg(d) = 0.

Theorem 4.3 The left D-module A is an injective cogenerator.

Proof: For injectivity, we need to prove: For every 0 6= d ∈ D and every u ∈ A,
there exists y ∈ A such that dy = u. Let d = an(t) d

n

dtn
+ . . .+ a0(t) be given, with

an 6= 0. If n = 0, there is nothing to prove, so let us assume that n ≥ 1. Since K
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is a field, one may assume that an = 1. Then dy = u can be rewritten as a first
order system

ẋ(t) = A(t)x(t) +Bu(t),

where x = [y, ẏ, . . . , y(n−1)]T and

A =


0 1
...

. . .

0 1
−a0 · · · · · · −an−1

 ∈ Kn×n and B =


0
...
0
1

 ∈ Kn.

Let E(d) be the finite set of all poles of the rational coefficients ai of d. Let
E(y) := E(u) ∪ E(d) = {t1, . . . , tk} with t1 < . . . < tk. On every interval I ⊆ R
of the form (ti, ti+1) or (−∞, t1) or (tk,∞), it holds that A|I and u|I are smooth.
Therefore, there exists a smooth solution xI : I → K

n to ẋ = Ax + Bu on each
of these intervals. By concatenating them (i.e., by setting x|I := xI), one gets a
solution x ∈ An and thus y = x1 ∈ A.

For the cogenerator property, it has to be shown that if for some d ∈ D, the
equation dy = 0 possesses only the zero solution, then d ∈ K \ {0}. Assume
conversely that deg(d) = n ≥ 1. The one can rewrite dy = 0 as ẋ(t) = A(t)x(t).
On each of the intervals I from above, the solution set of this is an n-dimensional
subspace of C∞(I,Kn), in particular, there exist non-zero solutions. Concatenat-
ing them, we obtain a non-zero solution x ∈ An. If y = x1 were identically zero,
then x = [y, ẏ, . . . , y(n−1)]T would also be identically zero, a contradiction. �

4.2 Rationally time-varying systems

Let R ∈ Dg×q be given. The abstract linear system

B = {w ∈ Aq | Rw = 0}

is the solution space of the linear system of rational-coefficient ordinary differen-
tial equations Rw = 0.

Let

URV =

[
D 0
0 0

]
be the Jacobson form of R, and let W := V −1 ∈ Dq×q. Since Rw = 0 is equivalent
to URw = URVWw = 0, there is an isomorphism of Abelian groups

B ∼= B̃ := {w̃ ∈ Aq | [D, 0]w̃ = 0} (4.1)

w 7→ w̃ := Ww
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where

B̃ = {w̃ ∈ Aq | w̃1 = . . . = w̃p−1 = 0, dw̃p = 0} (4.2)

is fully decoupled, since D = diag(1, . . . , 1, d).

Consider the system module M = D1×q/D1×gR. According to the Jacobson
form, there is an isomorphism of left D-modules

M ∼= M̃ = D1×q/D1×p[D, 0]

[x] 7→ [xV ]

where [·] denotes the residue class of an element of D1×q inM or M̃, respectively.
Thus we have

M∼= D/Dd×D1×m = D/Dd⊕D1×m (4.3)

wherem := q−p and p = rank(R). The moduleD/Dd is isomorphic to the torsion
submodule tM of M. The module M/tM∼= D1×m is not only torsion-free, but
even free.

The decomposition (4.3) induces an isomorphism of Abelian groups

B ∼= {y ∈ A | dy = 0} ⊕ Am, (4.4)

because

HomD(D/Dd,A) ∼= {y ∈ A | dy = 0}

according to the Malgrange isomorphism, and

HomD(D1×m,A) ∼= Am.

Of course, the existence of the isomorphism (4.4) can also be seen directly from
(4.1) and (4.2). The details of this decomposition will be investigated in Theo-
rem 4.11 below.

Existence of full row rank representations

Corollary 4.4 Let B = {w ∈ Aq | Rw = 0} for some R ∈ Dg×q. Then B can be
represented by a matrix with full row rank.

Proof: Without loss of generality, let R 6= 0 (the system B = Aq can be repre-
sented by the empty matrix, which has full row rank by convention). Let

URV =

[
D 0
0 0

]
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be the Jacobson form of R. Partition

W = V −1 =

[
W1

W2

]
(4.5)

according to the partition of the Jacobson form. Since U is unimodular, Rw = 0
is equivalent to URw = 0. Thus R̃ := DW1 also represents B, and it has full row
rank. �

Equivalence of representations

Corollary 4.5 Let R1, R2 be two D-matrices with the same number of columns,
and let B1,B2 be the associated systems. We have B1 ⊆ B2 if and only if R2 =
XR1 for some D-matrix X. If B1 = B2, then R1 and R2 have the same rank. If
R1 and R2 have full row rank, then B1 = B2 if and only if R2 = UR1 for some
unimodular matrix U .

Proof: It suffices to show the final statement. If B1 = B2, then R2 = XR1 and
R1 = Y R2, which shows that R1 and R2 have the same rank. If additionally, R1

and R2 both have full row rank, then they have the same number of rows, which
implies that X and Y are square, and in fact, we must have X = Y −1 showing
that the matrices are unimodular. �

Elimination of latent variables

Corollary 4.6 Consider

B = {w ∈ Aq | ∃` ∈ Al : Rw = M`}

where R ∈ Dg×q and M ∈ Dg×l. Then there exists a kernel representation of B.

Proof: This follows from the fundamental principle. �

Input-output structures and autonomy

Let R ∈ Dp×q be a full row rank representation of B. Then there exists a p × p
submatrix P of R of full rank. Without loss of generality, arrange the columns
of R such that R = [−Q,P ]. Let w = [uT , yT ]T be partitioned accordingly. This
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is called an input-output structure of B, and H = P−1Q ∈ Kp×m is called its
transfer matrix. The term input-output structure is justified by the fact that

∀u ∈ Am∃y ∈ Ap : Py = Qu.

Note that the exactness of

0 −→ D1×p ·P−→ D1×p

implies the exactness of

0←− Ap P←− Ap

which says that P : Ap → Ap is even surjective, i.e., for all v ∈ Ap there exists
y ∈ Ap such that Py = v. In particular, this is true for v = Qu. Then one
says that u is a vector of free variables of B. Recall that a system without free
variables is called autonomous.

Corollary 4.7 The following are equivalent:

1. B is autonomous.

2. B can be represented by a square matrix of full rank.

3. M is torsion.

Proof: The equivalence of assertions 1 and 3 is known from the previous chap-
ter. We also know that these two assertions are equivalent to the fact that any
representation matrix has full column rank. Therefore it suffices to show that
“1 ⇒ 2”: However, since representations with full row rank do always exist, a
representation of an autonomous system can be assumed to have both full row
and full column rank. Then it must be square of full rank. �

Now we can give an analytic interpretation of autonomy.

Theorem 4.8 The following are equivalent:

1. B is autonomous.

2. There exists a finite set E ⊂ R such that for all open intervals I ⊆ R \ E,
and all w ∈ B that are smooth on I, we have

w|J = 0 ⇒ w|I = 0

for all open intervals J ⊆ I.
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Proof: If B is autonomous, then B ∼= {y ∈ A | dy = 0} for some 0 6= d ∈ D.
If d ∈ K, then B = 0 and the result follows. Otherwise, set E := E(d) and
let I ⊆ R \ E. Similarly as above, the equation dy = 0 can be rewritten as
ẋ(t) = A(t)x(t), where x = [y, . . . , y(n−1)]T , and A is smooth on I. If y is smooth
on I, then so is x. If y|J = 0 for some open interval J ⊆ I, then x|J = 0, and thus
the solution x of the homogeneous equation ẋ = Ax must be identically zero on
all of I (due to the uniqueness of the solution of the initial value problem ẋ = Ax,
x(t0) = 0, where t0 ∈ J), and hence this holds also for y = x1.

If B is not autonomous, then it contains free variables. Therefore w|J = 0 does
not imply the vanishing of w on a larger set I, because the free variables can be
chosen arbitrarily, in particular, they can take non-zero values arbitrarily close
to J . �

Examples:

• Consider R = t d
dt

+ 1, which corresponds to the differential equation

ẇ(t) + 1
t
w(t) = 0.

On every open interval I ⊂ R \ {0} on which w is smooth, it holds that
w(t) = c

t
for some c ∈ K. Thus every solution has a singularity at zero,

that is, 0 ∈ E(w) for all w ∈ B.

In spite of its singularity at zero, the function w(t) = 1
t
, defined on R \ {0},

can be interpreted as a distribution on R, that is, there exists W ∈ D′(R,K)
such that W and the regular distribution generated by w on R \ {0} assign
the same value to each test function whose support is in R \ {0}.

• Consider R = t3 d
dt

+ 1, which corresponds to

ẇ(t) + 1
t3
w(t) = 0.

On every open interval I ⊂ R \ {0} on which w is smooth, we have w(t) =

ce
1

2t2 for some c ∈ K. Again, we have 0 ∈ E(w) for all solutions w.

In contrast to the previous example, it is known that there exists no distri-
bution W ∈ D′(R,K) that coincides with the regular distribution generated

by w(t) = e
1

2t2 on R \ {0}. This shows that the set of distributions is not
an injective cogenerator as a K[ d

dt
]-module (however, it is if K is replaced

by the field of constants K).

• Consider R = t d
dt
− 1. Any w of the form w(t) = ct, c ∈ K, solves the

resulting equation Rw = 0. Therefore, there exist solutions that are smooth
on all of R (that is, E(w) = ∅), but also any function of the form

w(t) =

{
c1t for t < 0
c2t for t > 0
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where c1, c2 ∈ K is a solution to Rw = 0 in A (and if c1 6= c2, then
0 ∈ E(w)).

• Consider R = t3 d
dt
−1. Here we have solutions of the form w(t) = ce−

1
2t2 for

c ∈ K. These solutions are smooth on all of R, even if we select different
values of the constant c for t > 0 and t < 0.

• Consider R = (1− t2)2 d
dt

+ 2t. A solution is given by

w(t) =

{
e
− 1

1−t2 for − 1 < t < 1
0 otherwise

which happens to be smooth on all of R. This example shows that the au-
tonomous equation Rw = 0 possesses non-zero solutions of compact support
(which is impossible in the constant coefficient case). ♦

Image representations and controllability

Theorem 4.9 The following are equivalent:

1. B admits an image representation.

2. B admits a right invertible kernel representation matrix.

3. M is torsion-free, or equivalently, free.

Proof: The system B = Aq with its module M = D1×q satisfies all three condi-
tions, if we use that it can be represented by the empty matrix, which we declare
right invertible, as a convention. Therefore, assume that B 6= Aq, that is, R 6= 0.

It follows from the decomposition (4.3) that M is torsion-free if and only if it
is free. Thus the equivalence of the first and third condition is known from the
previous chapter.

Therefore it suffices to prove: Provided that R has full row rank,M is torsion-free
if and only if R is right invertible. For a full row rank matrix R, the Jacobson
form is URV = [D, 0], where D = diag(1, . . . , 1, d), with d 6= 0. It is easy to
see that R is right invertible if and only if its Jacobson form is right invertible,
and for the Jacobson form, right invertibility is equivalent to d ∈ K. On the
other hand, this is precisely the criterion for the vanishing of the torsion part
tM∼= D/Dd of M. �
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Remark: The assertions of the theorem are equivalent to the statement that the
element 0 6= d that appears in the Jacobson form of a kernel representation R
of B has degree zero, that is, d ∈ K. Note that since tM∼= D/Dd, the degree of d
corresponds to the K-dimension of tM, and therefore, it is uniquely determined
by M, or B, equivalently. If 0 6= d ∈ K, we may put d = 1, without loss of
generality, and then the Jacobson form of a full row rank representation R ∈ Dp×q
of B takes the form URV = [I, 0].

Now we can give an interpretation of the controllability notion from the pre-
vious chapter (namely, the existence of an image representation) in terms of a
concatenation property of the system trajectories.

The system B is called concatenable if for all w1, w2 ∈ B and all but finitely
many t0 ∈ R, there exists w ∈ B, an open interval t0 ∈ I ⊆ R such that w1, w2, w
are smooth on I, and τ > 0 with t0 + τ ∈ I such that

w(t) =

{
w1(t) if t < t0
w2(t) if t > t0 + τ

for all t ∈ I.

Theorem 4.10 B is concatenable if and only if it is controllable.

Proof: Let B = {w ∈ Aq | ∃` ∈ Al : w = L`} and let w1 = L`1, w2 = L`2 ∈ B be
given. Let t0 be in R \ (E(`1)∪E(`2)∪E(L)). Then there exists an open interval
t0 ∈ I ⊆ R such that `1, `2 and w1, w2 are smooth on I. Choose τ > 0 and let `
be a smooth function on I with

`(t) =

{
`1(t) if t < t0
`2(t) if t > t0 + τ.

Then w := L` has the desired property. This direction of the proof can also be
seen directly from the fact that if B has an image representation, then B ∼= Am,
and Am has the required concatenability property.

For the converse, it suffices to show that Ba = {w ∈ A | dw = 0}, where
d ∈ D \ K, is not concatenable. Let w1 be the zero solution, and let w2 be a
non-zero solution. Then there exists an open interval J ⊆ R \ E(d) on which w2

is smooth and does not vanish. Let t0 ∈ J . Suppose that w were a connecting
trajectory. Then w is smooth on some open neighborhood I ⊆ J of t0. On the
other hand, since Ba is autonomous, w(t) = w1(t) = 0 for all t ∈ I with t < t0
implies that w(t) = 0 for all t ∈ I. This contradicts w(t) = w2(t) 6= 0 for all t ∈ I
with t > t0 + τ . �
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Theorem 4.11 There exists a largest controllable subsystem Bc of B, and B can
be decomposed into a direct sum

B = Ba ⊕ Bc

where Ba is autonomous.

This decomposition corresponds to (4.3). Note that

Ba ∼= HomD(tM,A) ∼= HomD(D/Dd,A) ∼= {y ∈ A | dy = 0}

and
Bc ∼= HomD(M/tM,A) ∼= HomD(D1×m,A) ∼= Am.

Proof: Let R be a full row rank representation of B, and let URV =
[
D 0

]
be the Jacobson form of R. Let W = V −1 be partitioned as in (4.5). Then

w ∈ B ⇔
[
D 0

]
Ww = DW1w = 0.

Let V = [V1, V2] be partitioned accordingly and set

Bc = {w ∈ Aq | W1w = 0}
= {w ∈ Aq | ∃` ∈ Am : w = V2`}.

The second equality follows from W = V −1, which implies W1V2 = 0 and V1W1 +
V2W2 = I, from which one can conclude that im(·W1) = ker(·V2). Then Bc ⊆ B is
controllable. If B1 is another controllable subsystem of B, then B1 ⊆ Bc. Define

Ba = {w ∈ Aq | DW1w = 0 and W2w = 0}.

Then Ba ⊆ B is autonomous, and B = Ba⊕Bc, where the decomposition is given
by w = V1W1w + V2W2w. �

Observability

Let R = [R1, R2] and let w = [wT1 , w
T
2 ]T be partitioned accordingly. One says

that w1 is observable from w2 in R1w1 + R2w2 = 0 if w1 is uniquely determined
by w2. Due to linearity, this is equivalent to

B1 := {w1 ∈ Aq1 | R1w1 = 0} = 0.

Theorem 4.12 Let B be given by Rw = R1w1+R2w2 = 0. Then w1 is observable
from w2 if and only if R1 is left invertible.
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4.3 Time-invariant case

All the results of Section 4.2 hold also for the constant coefficient case, that
is, D = K[ d

dt
] and A = C∞(R,K), with some slight modifications of the proofs

where necessary. The main difference is that the matrix D from the Jacobson
form (which is then the Smith form) has the form D = diag(d1, . . . , dp). Thus
the torsion submodule tM of M is isomorphic to D/Dd1 ⊕ · · · ⊕ D/Ddp. Still,
the characterizations of Theorem 4.9 are equivalent to D = I. Similarly, Ba is
isomorphic to {y ∈ Ap | diyi = 0 for 1 ≤ i ≤ p}. The quotient field of D is the
field of rational functions K = K( d

dt
), and thus transfer matrices are rational.

The concepts of autonomy and controllability, formulated in terms of the trajec-
tories, become simpler:

• B is autonomous if for all w ∈ B and all open intervals J ⊆ R, we have

w|J = 0 ⇒ w = 0.

• B is controllable if for all w1, w2 ∈ B, and all t0 ∈ R, there exists w ∈ B
and τ > 0 such that

w(t) =

{
w1(t) if t < t0
w2(t) if t > t0 + τ

for all t ∈ R. Here, we can put t0 = 0 without loss of generality.



Chapter 5

Multi-dimensional systems

In this chapter,

D = K[∂1, . . . , ∂n] and A = C∞(Rn,K),

that is, we deal with systems of linear partial differential equations with con-
stant coefficients (note that linear ordinary differential equations with constant
coefficients are included as the special case n = 1) and their smooth solutions.

The ring D is a commutative Noetherian domain, and the D-module A is an
injective cogenerator. Therefore the theory of Chapter 3 is directly applicable.
However, D is not a principal ideal domain (unless n = 1), and therefore, there
exists no analogue of the Smith form for n ≥ 2. Thus the results of the previous
chapter do not translate to this setting, for example, not every system has a full
row rank representation.

5.1 Interpretation of autonomy and controlla-

bility

Let B = {w ∈ Aq | Rw = 0}, where R ∈ Dg×q.

Lemma 5.1 Let B be autonomous. If w ∈ B has compact support, then w = 0.

Proof: Let B = {w ∈ Aq | Rw = 0} be autonomous. This means that R has
full column rank. Let w ∈ B have compact support. Then w has a well-defined
Fourier transform ŵ := Fw, defined by

ŵ(ξ) =

∫
Rn

w(x)e−i〈x,ξ〉dx,

51
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where 〈x, ξ〉 =
∑n

i=1 xiξi, and ŵ is an analytic function of ξ ∈ Rn. The Fourier
transform of Rw = 0 yields R(iξ)ŵ(ξ) = 0. This can be interpreted as a linear
equation over the field of meromorphic functions. Since R(iξ) has full column
rank, we obtain ŵ = 0, and hence, using the inverse Fourier transform, w = 0. �

Theorem 5.2 The following are equivalent [19]:

1. B is controllable, i.e., it possesses an image representation.

2. For all open sets U1, U2 ⊂ Rn, with U1 ∩ U2 = ∅, and for all w1, w2 ∈ B,
there exists w ∈ B such that

w(x) =

{
w1(x) if x ∈ U1

w2(x) if x ∈ U2.

3. For all 0 < r1 < r2 and for all w1, w2 ∈ B, there exists w ∈ B such that

w(x) =

{
w1(x) if x ∈ U1

w2(x) if x ∈ U2,

where

U1 = {x ∈ Rn | ‖x‖ < r1} and U2 = {x ∈ Rn | ‖x‖ > r2},

and ‖ · ‖ denotes the Euclidean norm.

Proof: “1 ⇒ 2”: Suppose that B possesses an image representation

B = {w ∈ Aq | ∃` ∈ Al : w = L`}.

Let Ui and wi = L`i for i = 1, 2 be given. It is a fundamental property of
A = C∞(R,K) that for any open sets U1, U2 whose closures are disjoint, there
exists a smooth function χ with [23, §1, VIII]

χ(x) =

{
1 if x ∈ U1

0 if x ∈ U2.

Set ` := χ`1 + (1− χ)`2 ∈ Al. Then

`(x) =

{
`1(x) if x ∈ U1

`2(x) if x ∈ U2.

Set w := L`, then w ∈ B has the desired properties.

Since assertion 3 is obviously a special case of assertion 2, it suffices to show that
“3 ⇒ 1”: If B is not controllable, then Bc ( B, that is, there exists w0 ∈ B with
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v0 := Rcw0 6= 0, but dv0 = 0 (recall that dRc = NR for some 0 6= d ∈ D and
some D-matrix N). Let x0 be such that v0(x0) 6= 0. Choose r2 > r1 > ‖x0‖ and
let U1, U2 be the corresponding sets from assertion 3. We show that there exists
no w ∈ B such that

w(x) =

{
w0(x) if x ∈ U1

0 if x ∈ U2.

Indeed, if this were the case, then v := Rcw would be a non-zero compact sup-
port element of the autonomous system {v ∈ A | dv = 0}, which is impossible
according to the lemma above. �

Lemma 5.3 If B 6= 0 is controllable, then it contains a non-zero trajectory with
compact support.

Proof: Let 0 6= w0 ∈ B. Let x0 be such that w0(x0) 6= 0. Let r2 > r1 > ‖x0‖ and
let U1, U2 be as defined above. By controllability, there exists w ∈ B such that

w(x) =

{
w0(x) if x ∈ U1

0 if x ∈ U2.

Then w is non-zero and it has compact support. �

Theorem 5.4 The following are equivalent:

1. B is autonomous.

2. If w ∈ B has compact support, then w = 0.

Proof: In view of the previous lemma, it suffices to prove “2⇒ 1”: Assume that
B = {w ∈ Aq | Rw = 0} is not autonomous, that is, Bc 6= 0. By the previous
lemma, Bc contains a non-zero trajectory with compact support, and therefore,
so does B ⊇ Bc. �

Now we can give an interpretation to the obstruction to controllability B/Bc
introduced earlier. We say that w1 and w2 ∈ B are concatenable, written
w1 ∼ w2, if for all U1, U2 as above, there exists w ∈ B such that w = wi on Ui.
This defines an equivalence relation on B.

Theorem 5.5 We have

B/∼ ∼= B/Bc
that is, w1 ∼ w2 if and only if w1 − w2 ∈ Bc.
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This justifies the term “obstruction to controllability”: each residue class [w] in
B/Bc corresponds to an equivalence class with respect to concatenability. The
system B is controllable if and only if all w1, w2 ∈ B are concatenable, i.e., there
is only one equivalence class, or equivalently, B = Bc, that is, the obstruction
to controllability vanishes. On the other hand, an autonomous system is one in
which every trajectory can only be concatenated with itself (because the control-
lable part of an autonomous system is zero).

Proof: It suffices to show that w ∼ 0 if and only if w ∈ Bc. If w ∈ Bc, then the
image representation of Bc can be used in order to concatenate w with zero as
explained above.

Conversely, if w /∈ Bc, then we have dRcw = 0, but Rcw 6= 0, and we have seen
above that w cannot be concatenated with zero. �

Examples:

• Let n = 3 and consider

R =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 .
Then B = {w ∈ A3 | Rw = 0} consists of all vector fields whose curl is
zero. Since R is a left syzygy matrix, this B is controllable. An image
representation B = {w ∈ A3 | ∃` ∈ A : w = L`} is given by

L =

 ∂1

∂2

∂3

 .
Algebraically speaking, this means that ker(·L) = im(·R), and analytically,
it reflects the fact that w is the gradient of some scalar potential ` if and
only if the curl of w vanishes.

• Now consider

R =

[
0 −∂3 ∂2

∂3 0 −∂1

]
.

The resulting system is not controllable, in fact, its controllable part is
precisely the system from above. A trajectory w is concatenable with zero
if and only if ∂1w2 − ∂2w1 = 0.

• The system B = {w ∈ A3 | div(w) = 0} is represented by R = [∂1, ∂2, ∂3]
and it is controllable. An image representation is given by the curl operator,
reflecting the fact that w is the curl of some ` ∈ A3 if and only if the
divergence of w vanishes.
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• Let us consider

B = {w1 ∈ A3 | R1w1 = 0}+ {w2 ∈ A3 | R2w2 = 0}

where R1 is the curl operator from above, and R2 = [∂1, ∂2, ∂3] is the diver-
gence operator. Using the image representation matrices L1, L2 of the two
summands, it is clear that L = [L1, L2] is an image representation matrix
of B. However,

L =

 ∂1 0 −∂3 ∂2

∂2 ∂3 0 −∂1

∂3 −∂2 ∂1 0


has full row rank. From this, we conclude that B = A3. Thus we have
shown that any w in A3 can be written in the form w = w1 + w2, where
the curl of w1 vanishes, and the divergence of w2 vanishes. This is known
as the Helmholtz-Hodge decomposition.

• Let n = 4. The Maxwell equations are given by

div(B) = 0

curl(E) + ∂tB = 0.

Setting w = [B1, B2, B3, E1, E2, E3]T , a kernel representation is given by

R =


∂1 ∂2 ∂3 0 0 0
∂t 0 0 0 −∂3 ∂2

0 ∂t 0 ∂3 0 −∂1

0 0 ∂t −∂2 ∂1 0

 .
The resulting system, consisting of all pairs of magnetic and electric fields
that satisfy the Maxwell equations, is controllable. An image representation
is given by

L =


0 −∂3 ∂2 0
∂3 0 −∂1 0
−∂2 ∂1 0 0
−∂t 0 0 −∂1

0 −∂t 0 −∂2

0 0 −∂t −∂3

 .
This means that any B,E that satisfy the Maxwell equations can be written
as

B = curl(A)

E = −∂tA− grad(φ)

for some ` = [A1, A2, A3, φ]T . These equations are well-known in physics,
where A is called the magnetic vector potential, and φ is the scalar electric
potential. ♦
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5.2 The dimension of a system

Facts from dimension theory

Let D be a commutative ring (with unity). Let M be a D-module. One defines

ann(M) := {d ∈ D | dM = 0},

which is an ideal in D. The dimension of M 6= 0 is defined by

dim(M) := dim(ann(M)).

The dimension of an ideal I 6= D in D is defined as the Krull dimension of
the ring D/I, that is, dim(I) := Krull-dim(D/I) :=

sup{n ∈ N | ∃p0 ( p1 ( . . . ( pn, pi prime ideal in D/I ∀i}.

The surjective ring homomorphism D → D/I induces an inclusion-preserving
bijection between the ideals in D/I and the ideals in D that contain I. Since the
primeness of an ideal is preserved under this correspondence, we have

dim(I) = sup{n ∈ N | ∃p0 ( p1 ( . . . ( pn, pi prime ideal in D, pi ⊇ I ∀i}.

In particular, for a prime ideal p in D, we obtain

dim(p) = sup{n ∈ N | ∃p = p0 ( p1 ( . . . ( pn, pi prime ideal in D ∀i}.

The height of p is defined by

ht(p) := sup{m ∈ N | ∃q0 ( q1 ( . . . ( qm = p, qi prime ideal in D ∀i}.

Therefore, we have
ht(p) + dim(p) ≤ Krull-dim(D)

for any prime ideal p in D. This implies that for any ideal I 6= D, we have

ht(I) + dim(I) ≤ Krull-dim(D),

since
dim(I) = sup{dim(p) | p prime ideal in D and p ⊇ I}.

Similarly,
ht(I) := inf{ht(p) | p prime ideal in D and p ⊇ I}.

Coming back to the module M, suppose that M = D1×q/D1×gR. Then

ann(M) = {d ∈ D | ∃X ∈ Dq×g : dI = XR}.
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This should be compared with Theorem 3.4. Indeed, if D is commutative, then
the condition given there is equivalent to ann(M) 6= 0.

The Fitting invariant F(M) ofM is defined as the ideal generated by the q×q
subdeterminants of R, which is called the q-th determinantal ideal [16, Ch.
1.4] of R, and which is denoted by Jq(R). One can show that F(M) does not
depend on the specific choice of the presentation matrix R ofM with q columns.
We have [6, Ch. 20.2]

ann(M)q ⊆ F(M) ⊆ ann(M),

which implies that ann(M) and F(M) have the same radical, and hence any
prime ideal that contains one of them also contains the other. We conclude that
the two ideals have the same height and the same dimension. Therefore,

dim(D1×q/D1×gR) = dim(Jq(R)).

Now let D = K[∂1, . . . , ∂n]. Then we have

ht(I) + dim(I) = Krull-dim(D) = n

for any ideal I 6= D. As a convention, we set

ht(D) := n+ 1 and dim(D) := −1.

Therefore, the dimension of any ideal I in D is an integer between −1 and n,
where dim(I) = −1 is equivalent to I = D, and dim(I) = n is equivalent to
I = 0. More generally, we have

I ⊆ J ⇒ dim(I) ≥ dim(J ).

This is counter-intuitive at first sight, but the reason is that, when defined this
way, the dimension of I coincides with the dimension of its algebraic variety

V(I) = {v ∈ Cn | f(v) = 0 for all f ∈ I},

and thus, the dimension of an ideal has a neat geometric interpretation.

Examples:

• Let n = 2. The ideal I = 〈∂1〉 has dimension one (its variety is a line),
whereas the ideal J = 〈∂1, ∂2〉 has dimension zero (its variety is a point).

• Let n = 3. The ideal I = 〈∂1〉 has dimension two (its variety is a plane).
Comparing this with the previous example, we see that the dimension of
an ideal depends on the polynomial ring into which we embed it. The
height, however, is independent of this embedding (we have ht(I) = 1 in
any K[∂1, . . . , ∂n]). Similarly, the ideal J = 〈∂1, ∂2〉 has dimension one, and
the ideal L = 〈∂1, ∂2, ∂3〉 has dimension zero. ♦
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For D = K[∂1, . . . , ∂n], we also have the following characterization of the di-
mension of an ideal I 6= D [1, Ch. 6.3]: Let J ⊆ {1, . . . , n} and let DJ be the
polynomial ring (with coefficients in K) in the variables ∂j, j ∈ J . Clearly, DJ is
a subring of D, and we put D∅ = K. Then

dim(I) = max{|J | | I ∩ DJ = 0}.

For example, dim(I) < 1 means that for all 1 ≤ i ≤ n, we have I ∩ K[∂i] 6= 0,
that is, there exists 0 6= di ∈ I which depends only on the i-th variable.

Application to systems

Let B = {w ∈ Aq | Rw = 0} and let M = D1×q/D1×gR. The dimension of B
is defined as the dimension of M. As outlined above, this is both equal to the
dimension of the ideal ann(M) and equal to the dimension of Jq(R), which is the
ideal generated by the q × q minors of R.

Lemma 5.6 The following are equivalent:

1. dim(B) = −1.

2. B = 0.

Proof: We have B = 0 if and only if M = 0. However, M = 0 is equivalent to
ann(M) = D, which is true if and only if dim(B) = dim(ann(M)) = −1. �

Lemma 5.7 The following are equivalent:

1. dim(B) < n.

2. B is autonomous.

Proof: We have dim(B) = n if and only if Jq(R) = 0. This means that all the
q × q minors of R are zero, or equivalently, R does not have full column rank,
which means that B is not autonomous. �

Therefore, the dimension of a system B is always an integer between −1 and n,
where dim(B) = −1 corresponds to B = 0, and dim(B) = n corresponds to B
having free variables. The dimensions between 0 and n− 1 yield a refinement of
the concept of autonomy.
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5.3 Autonomy degrees

We say that B has autonomy degree at least r if

dim(B) < n− r.

Clearly, autonomy degree at least zero corresponds to autonomy itself. In what
follows, we will give analytic interpretations of the autonomy degrees close to the
extreme cases.

Autonomy degree at least n

The system B has autonomy degree at least n if and only if dim(B) < 0, which
means that B = 0, a very strong form of autonomy indeed.

Autonomy degree at least n− 1

Theorem 5.8 The following are equivalent:

1. B has autonomy degree at least n− 1.

2. B is finite-dimensional as a K-vector space.

Proof: We first observe that

ann(B) := {d ∈ D | dB = 0} = ann(M).

To see this, recall that for any d ∈ ann(M), there exists X such that dI = XR,
and thus Rw = 0 implies dw = 0. Conversely, if dw = 0 for all w ∈ B, we must
have dI = XR for some X, since MB(D1×gR) = D1×gR because of the injective
cogenerator property of A.

Now if dim(B) < 1, then ann(M) contains, for each 1 ≤ i ≤ n, an element
0 6= di ∈ K[∂i]. Thus every component of w ∈ B satisfies n scalar ordinary
differential equations (one for each independent variable). Since the solution
spaces of autonomous ordinary differential equations are finite-dimensional overK
according to the lemma below, we obtain that B must be finite-dimensional as a
K-vector space, too.

Conversely, let B be finite-dimensional over K, and let w1, . . . , wr be a K-basis.
For each 1 ≤ i ≤ n and each 1 ≤ j ≤ r, consider the K-vector space spanned by
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∂ki wj ∈ B, where k ∈ N. As a subspace of B, this space must be finite-dimensional,
too. Thus there exists 0 6= dij ∈ K[∂i] such that dijwj = 0. But then we have
diw = 0 for all w ∈ B for di := di1 · · · dir. This way, we can construct elements
0 6= di ∈ ann(M) ∩K[∂i], showing that dim(ann(M)) < 1. �

Lemma 5.9 Let n = 1. Then B is autonomous if and only if it is finite-
dimensional as a K-vector space.

Proof: If B contains free variables, then it is certainly not finite-dimensional
over K, because the K-vector space A = C∞(R,K) has infinite dimension. Con-
versely, if B is autonomous, then B ∼= {y ∈ Ap | diyi = 0 for 1 ≤ i ≤ p} for
some 0 6= di ∈ D, due to the Smith form. Each scalar ordinary differential equa-
tion diyi = 0 has a solution space whose K-dimension equals the degree of di.
Therefore B is also finite-dimensional over K. �

For n ≥ 2 however, autonomy and finite K-dimension are no longer equivalent;
autonomy is a weaker property. For example, B = {w ∈ C∞(R2,K) | ∂1w = 0}
is autonomous, but not finite-dimensional (any smooth function depending only
on the second variable belongs to B).

Examples:

• The system given by B = {w ∈ A | grad(w) = 0} has the kernel represen-
tation

R =

 ∂1
...
∂n

 .
Thus J1(R) = 〈∂1, . . . , ∂n〉 which has dimension zero for all n. Therefore
its solution space is finite-dimensional. Of course, this can also be seen
directly, because B consists of all constant functions in this example, and
therefore B ∼= K, which is a one-dimensional K-vector space.

• Let n = 2 and K = R. Consider B = {w ∈ A | ∂2
1w = ∂2w, ∂

2
2w = w}. Then

J1(R) = 〈∂2
1 − ∂2, ∂

2
2 − 1〉, which has dimension zero, because it contains

the elements ∂4
1 − 1 = (∂2

1 + ∂2)(∂2
1 − ∂2) + (∂2

2 − 1) and ∂2
2 − 1. If we

set x(t) := w(t1, t), considering t1 as a parameter, the equation ∂2
2w = w

becomes

ẍ = x.

The solutions are of the form

x(t) = aet + be−t.
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Thus
w(t1, t2) = a(t1)et2 + b(t1)e−t2 .

Now the equation ∂2
1w = ∂2w implies

ä = a and b̈ = −b,

and thus

a(t1) = c1e
t1 + c2e

−t1 and b(t1) = c3 cos(t1) + c4 sin(t1).

Finally, we have

w(t1, t2) = c1e
t1et2 + c2e

−t1et2 + c3 cos(t1)e−t2 + c4 sin(t1)e−t2 ,

showing that the solution space is four-dimensional over K = R. ♦

Remark: Systems with finiteK-dimension can be solved by iteratively solving or-
dinary differential equations. Therefore, they behave very much like autonomous
one-dimensional (n = 1) systems. For instance, they have only polynomial-
exponential trajectories (with complex exponents admitted, which explains the
appearance of sine and cosine in the previous example).

In fact, the K-vector space isomorphism M ∼= K
N can be used to construct

pairwise commuting matrices Ai ∈ KN×N and a matrix C ∈ Kq×N such that

B = {w ∈ Aq | ∃x ∈ AN : ∂ix = Aix for 1 ≤ i ≤ n and w = Cx}

which can also be written as

B = {w ∈ Aq | ∃x0 ∈ KN : w(t1, . . . , tn) = CeA1t1+...+Antnx0}.

These are generalizations of one-dimensional autonomous systems, which after
reduction to first order, take the form ẋ = Ax, w = Cx, or equivalently, w(t) =
CeAtx0.

Autonomy degree at least 1

A system has autonomy degree at least one if and only if it is over-determined
[18, Ch. 8]. This means that any smooth function v, defined on a neighborhood
of

U = {x ∈ Rn | ‖x‖ ≥ r},
where r > 0, and satisfying the local system law Rv = 0 there, can be uniquely
extended to an element w ∈ B, that is, there exists a unique w ∈ B (i.e., w is
defined on all of Rn and satisfies Rw = 0 everywhere) such that w(x) = v(x) for
all x in a neighborhood of U .

We do not give the full proof, but only an overview of its main ingredients.
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Theorem 5.10 1. If dim(B) < n − 1, then R is a right syzygy matrix, that
is, im(R) = ker(L) for some D-matrix L.

2. If

Dq R−→ Dg L−→ Dl

is exact, then so is

Aq0
R−→ Ag0

L−→ Al0
where A0 := C∞0 (Ω,K), and Ω = {x ∈ Rn | ‖x‖ < r} for some r > 0.

The space A0 consists of all smooth functions defined on Ω and having a compact
support K ⊂ Ω. We identify

A0 = {a ∈ A | supp(a) ⊂ Ω}.

Let B have autonomy degree at least one. We show that B is over-determined.

The lemma above implies that R is a right syzygy matrix, say of L. Then the
sequences of the theorem are both exact. Now let v as above be given. Since v
is smooth on a neighborhood of U , there exists v̄ ∈ Aq such that v̄(x) = v(x) for
all x in a neighborhood of U . Since Rv = 0 on a neighborhood of U , we obtain
that Rv̄ is zero in a neighborhood of U , that is, Rv̄ ∈ Ag0 = C∞0 (Ω,K)g, where

Ω = {x ∈ Rn | ‖x‖ < r} = Rn \ U.

We need to construct w with Rw = 0 and w(x) = v(x) for all x in a neighborhood
of U . The theorem above implies that the inhomogeneous equation Rφ = Rv̄
possesses a solution φ ∈ Aq0 (because the right hand side is annihilated by L due
to LR = 0, and thus Rv̄ ∈ kerA0(L) = imA0(R)). Thus we are finished by putting
w := v̄ − φ. By construction, this w satisfies Rw = 0 and, since φ vanishes on a
neighborhood of U , w coincides with v̄, and thus with v, on a neighborhood of U .
This shows the existence of an extension w of v. Its uniqueness follows from the
autonomy of B: If w1, w2 were two different extensions of v, then their difference
would be a non-zero compact support element of B. Lemma 5.1 shows that this
is impossible.

Examples:

• The system given by grad(w) = 0 is over-determined for all n ≥ 2.

• The Cauchy-Riemann equations for functions of one complex variable (cor-
responding to n = 2 real variables) have the kernel representation

R =

[
∂1 −∂2

∂2 ∂1

]
.
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We have J2(R) = 〈∂2
1 + ∂2

2〉 which has dimension one. Thus the result-
ing system is autonomous, but not over-determined. Indeed, the function
f(z) = 1

z
is analytic on any {z ∈ C | |z| > ρ}, where ρ > 0, and hence its

real and imaginary parts satisfy the Cauchy-Riemann equations. If f were
extendable to an analytic function on all of C, this would be a contradiction
to the uniqueness of analytic continuation.

• The Cauchy-Riemann equation for functions of two complex (corresponding
to n = 4 real) variables have the kernel representation

R =


∂1 −∂2

∂2 ∂1

∂3 −∂4

∂4 ∂3

 .
We have J2(R) = 〈∂2

1 + ∂2
2 , ∂1∂4 − ∂2∂3, ∂1∂3 + ∂2∂4, ∂

2
3 + ∂2

4〉 which has
dimension two. Thus the system is over-determined. ♦

Remark: Similarly as with autonomy, one can introduce controllability degrees
[21, 22], but this is mathematically more involved. The lowest controllability
degree corresponds to controllability itself, and higher controllability degrees will
give various stronger versions of the controllability concept. In the next section,
we study systems whose controllability degree is as large as possible, that is, a
class of systems with the strongest possible controllability properties.

5.4 Free systems

Controllability of B, that is, the existence of an image representation, amounts to
M being torsion-free. A strong form of controllability is obtained whenM is even
free (we will see below that this is equivalent to the existence of an observable
image representation). This property is called “strong controllability” of B by
some authors. However, since the term “strong controllability” is also used with
a different meaning in the literature, it is preferable to speak of “free systems”
(corresponding to the fact that the system module is free).

We say that B has an observable image representation if there exists L such
that

B = {w ∈ Aq | ∃!` ∈ Al : w = L`}

that is, the latent variable ` is uniquely determined by the manifest variable w.
In other words, ` is observable from w in the associated full system

Bf = {[`T , wT ]T ∈ Al+q | L` = w}.
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This means that L must be left invertible. Thus we can conclude: B has an
observable image representation if and only if its kernel representation R is a left
syzygy matrix of a left invertible matrix.

Lemma 5.11 The following are equivalent:

1. B possesses an observable image representation.

2. M is free, that is, M∼= D1×l for some l ∈ N. Equivalently, B ∼= Al.

Proof: If R is a left syzygy matrix of a left invertible matrix L, there is an exact
sequence

D1×g ·R−→ D1×q ·L−→ D1×l −→ 0.

On the other hand, there is the exact sequence

D1×g ·R−→ D1×q−→M −→ 0.

From this, one can construct an isomorphism between M and D1×l as follows:
Define φ : M → D1×l by φ([x]) := xL, where x ∈ D1×q and [x] is its residue
class in M. This is well-defined, because x = yR implies xL = yRL = 0. It is
injective, because conversely xL = 0 implies that x = yR for some y. Finally,
the surjectivity of φ follows from the surjectivity of ·L.

Conversely, ifM is free, one can replaceM by someD1×l without losing exactness
in the sequence above. The resulting map from D1×q to D1×l can be identified
with ·L for some L ∈ Dq×l. Since ·L is surjective, the matrix L is left invertible.
Thus R is a left syzygy matrix of a left invertible matrix. �

Remark: The number l that appears in the second condition coincides with the
input-dimension of B. To see this, note that if

D1×g ·R−→ D1×q ·L−→ D1×l

is exact, then rank(R) + rank(L) = q. Similarly, if L is left invertible (that is,
if ·L is surjective), we must have l = rank(L). Combining these equations, we
obtain l = rank(L) = q − rank(R) = m, which is the input-dimension of B.

In Chapter 4, we have seen that controllability is also equivalent to B admitting a
right invertible kernel representation. This equivalence does not hold in general,
as can be seen from the system

B = {w ∈ A3 | curl(w) = 0}

discussed above: This system is controllable, but it cannot be represented by a
right invertible matrix (or any matrix of full row rank). Still, the existence of
right invertible kernel representations is an interesting property also for multidi-
mensional systems.
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Theorem 5.12 (Quillen-Suslin) Let R ∈ Dg×q. The following are equivalent:

1. R is right invertible.

2. R can be embedded into a unimodular matrix, that is, there exists a D-
matrix N such that [

R
N

]
∈ Dq×q

is unimodular.

Remark: This theorem has quite a remarkable history [11]: In 1955, J.-P. Serre
raised the question whether projective modules over the polynomial ring D were
free. (A module is projective if it is a direct summand of a free module.) Some
years later, Serre himself was able to reduce the problem to the statement of
the theorem above, but he did not succeed in proving it. Thus, the problem
became known as Serre’s conjecture. In 1976, it was solved by D. Quillen and
A. Suslin, independently of each other, thus giving a positive answer to Serre’s
original question.

Let R be a right invertible matrix, and let N be a matrix according to the
Quillen-Suslin theorem. Set [

R
N

]−1

=
[
X L

]
.

Then RX = I and NL = I, showing that L is left invertible. Moreover, RL = 0
and XR + LN = I, implying that ker(·L) = im(·R). This shows that any right
invertible matrix is a left syzygy matrix (and thus, any system represented by
a right invertible matrix will be controllable), and moreover, it is a left syzygy
matrix of a left invertible matrix.

Conversely, the transposed version of the Quillen-Suslin theorem (L is left invert-
ible if and only if it can be embedded into a unimodular matrix [X,L]), shows that
any left invertible matrix possesses a left syzygy matrix that is right invertible.
These considerations prove the following extension of the lemma above.

Theorem 5.13 The following are equivalent:

1. B admits a right invertible kernel representation.

2. B possesses an observable image representation.

3. M is free, that is, M∼= D1×l for some l ∈ N. Equivalently, B ∼= Al.
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Control of free systems

Suppose that B is a free system, and let L, N be as above. Let w ∈ B. Then

w = L` ⇔ ` = Nw.

This can be used in order to compute connecting trajectories: Suppose that
w1, w2 ∈ B and U1, U2 are given. Compute `i = Nwi. Find a smooth function `
that coincides with `1 on U1, and with `2 on U2. Then w = L` is a connecting
trajectory, i.e., it coincides with w1 on U1 and with w2 on U2. This procedure is
known as “flatness-based control”, and ` is called a “flat output” of the system.

Free systems are also very convenient for controller design. Let B be a given
system, and let Bd ⊂ B be a subset containing certain desirable functions. The
task is to design a controller C such that

B ∩ C = Bd and B + C = Aq.

The first requirement says that if the system laws Rw = 0 are additionally
constrained by the controller laws Cw = 0, then the controlled system, which
is represented by [RT , CT ]T will only have desirable solutions. According to the
following lemma, the second statement is equivalent to rank(R) + rank(C) =
rank[RT , CT ]T which means that the controller laws should be independent of
the system laws (otherwise C = Bd would always be a trivial solution).

Lemma 5.14 Let Bi = {w ∈ Aq | Riw = 0} for some Ri ∈ Dgi×q, where i = 1, 2.
The following are equivalent:

1. B1 + B2 = Aq.

2. rank(R1) + rank(R2) = rank[RT
1 , R

T
2 ]T .

Proof: The input-dimension (idim) of Bi equals the dimension of kerK(Ri),
where K is the quotient field of D, that is, the field of rational functions. Thus

idim(Bi) = q − rank(Ri).

If B1 + B2 = Aq, then we have

q = idim(Aq) = idim(B1 + B2) = idim(B1) + idim(B2)− idim(B1 ∩ B2)

= (q − rank(R1)) + (q − rank(R2))− (q − rank[RT
1 , R

T
2 ]T ).

This yields the desired result. Conversely, assume that assertion 2 is true. We
need to show that B1 + B2 = Aq. By the fundamental principle, this is true if in
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any left syzygy matrix [X, Y, Z] of

R :=

 R1 0
0 R2

I I


the matrix Z must be zero. However, if [X, Y, Z] is a left syzygy matrix of R, then
XR1 = Y R2 = −Z. This means that the rows of Z belong to im(·R1)∩ im(·R2).
However, this module is zero, because

rank[RT
1 , R

T
2 ]T = dim imK · [RT

1 , R
T
2 ]T = dim(imK(·R1) + imK(·R2))

= dim imK(·R1) + dim imK(·R2)− dim(imK(·R1) ∩ imK(·R2))

= rank(R1) + rank(R2)− dim(imK(·R1) ∩ imK(·R2))

yields dim(imK(·R1) ∩ imK(·R2)) = 0, which implies imK(·R1) ∩ imK(·R2) = 0,
and thus im(·R1) ∩ im(·R2) = 0, since D ⊂ K. �

Remark: Using the language of Chapter 2, we have B1 + B2 = Aq if and only if

M(B1) ∩M(B2) = M(B1 + B2) = M(Aq) = 0.

However, M(Bi) = im(·Ri), showing that B1 + B2 = Aq is equivalent to

im(·R1) ∩ im(·R2) = 0.

Then any equation of the form X1R1 +X2R2 = 0 implies that the summands are
individually zero, that is, XiRi = 0.

Theorem 5.15 B is a free system if and only if there exists B1 such that

B ⊕ B1 = Aq.

Proof: If B is free, it has a right invertible image representation. Let N be a
matrix according to the Quillen-Suslin theorem, then B1 := {w ∈ Aq | Nw = 0}
has the desired property.

Conversely, if B ⊕ B1 = Aq for some B1 = {w ∈ Aq | Nw = 0}, then the matrix[
R
N

]
has a left inverse, say [X,L] (this follows from B ∩ B1 = 0), and the rank of
[RT , NT ]T equals rank(R) + rank(N) (this follows from B + B1 = Aq). The
equation XR + LN = I yields (RX − I)R + RLN = 0, and hence, by the
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previous remark, we must have RXR = R. Then we have, for the system module
M = D1×q/D1×gR, an isomorphism

D1×q ∼=M⊕D1×gR, x 7→ ([x], xXR).

The surjectivity of this map follows from

D1×gR = D1×gRXR ⊆ D1×qXR ⊆ D1×gR

which implies that these modules are actually equal. For injectivity, suppose that
[x] = 0 and xXR = 0. Then x = yR for some y, and 0 = yRXR = yR, which
yields x = 0. This isomorphism shows that M is a direct summand of a free
D-module, that is, M is projective. As remarked above, it is a consequence of
the Quillen-Suslin theorem that projective D-modules are free. �

Remark: The “only if” direction could also be proved without using the Quillen-
Suslin theorem. Indeed, ifM is free, then it is also projective. This is equivalent
to the existence of X with RXR = R (similarly as in the proof of the “if”
direction). Then

kerA(R)⊕ imA(XR) = Aq

and thus we may put B1 := imA(XR).

Using the complementary system B1, the controller design problem for a free
system B can easily be solved by putting

C = B1 + Bd.

Then
B + C = B + B1 + Bd = Aq

and
B ∩ C = B ∩ (B1 + Bd) = (B ∩ B1) + Bd = Bd

where we have used the modular law

Bd ⊆ B ⇒ B ∩ (B1 + Bd) = (B ∩ B1) + Bd.
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Background material

A.1 Kalman controllability criterion

In this section, we prove Theorem 1.2.

Let A ∈ Rn×n and B ∈ Rn×m. Let U be such that

C0(R,R)m ⊇ U ⊇ O(R,R)m,

where C0 denotes the continuous functions and O denotes the analytic functions.

Then ẋ = Ax+Bu, x(0) = x0 has the unique solution

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ.

Lemma A.1.1 (Identity theorem for analytic functions) Let f :R→R1×m

be an analytic function. Then

f ≡ 0 ⇔ f (i)(0) = 0 for all i ∈ N.

Lemma A.1.2 All powers Ai of A, where i ∈ N, are R-linear combinations of
A0 = I, A1 = A, . . . , An−1.

Proof: This follows from the Hamilton-Cayley theorem: χA(A) = 0, where χA
is the characteristic polynomial of A, a polynomial of degree n. �

Lemma A.1.3 Let t > 0 and

K := [B,AB, . . . , An−1B] and Wt :=

∫ t

0

eAτBBT eA
T τdτ.

Then rank(K) = rank(Wt).

69
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In particular, the following are equivalent:

1. rank(K) = n.

2. Wt is non-singular.

Proof: Let t > 0 and ξ ∈ R1×n. Note that Wt is symmetric and positive semi-
definite. Hence we have ξWt = 0 ⇔ ξWtξ

T = 0 ⇔∫ t

0

‖ξeAτB‖2dτ = 0

⇔ f ≡ 0, where f(t) = ξeAtB ⇔ f (i)(0) = ξAiB = 0 for all i ∈ N ⇔
ξK = 0. Thus ker(·Wt) = ker(·K), and thus dim(ker(·Wt)) = n − rank(Wt) =
dim(ker(·K)) = n− rank(K). �

Theorem A.1.4 The following are equivalent:

1. ∃t1 > 0 ∀x0, x1 ∈ Rn: x0 can be controlled to x1 in time t1, that is, ∃u ∈ U

such that the solution to

ẋ = Ax+Bu, x(0) = x0

satisfies x(t1) = x1.

2. rank(K) = n, where K = [B,AB, . . . , An−1B].

Proof: 1⇒ 2: Assume that rank(K) < n. Then there exists 0 6= ξ ∈ R1×n such
that ξK = 0. This means that ξAiB = 0 for 0 ≤ i ≤ n − 1. According to the
lemma, this implies

ξAiB = 0 for all i ∈ N.

Consider the analytic function f(t) = ξeAtB. We have f (i)(0) = 0 for all i ∈ N
and hence f ≡ 0.

If x0 = 0 can be controlled to x1 in time t1, then

x1 =

∫ t1

0

eA(t1−τ)Bu(τ)dτ

and then ξx1 = 0. Since this does not hold for all x1, assertion 1 is not true.

2⇒ 1: Let rank(K) = n. Let x0, x1 be given. Let t1 > 0 be arbitrary. Set

u(t) = BT eA
T (t1−t)W−1

t1
(x1 − eAt1x0).
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This is an analytic function and hence it belongs to U. The solution of ẋ =
Ax+Bu satisfies

x(t1) = eAt1x0 +

∫ t1

0

eA(t1−τ)BBT eA
T (t1−τ)dτW−1

t1
(x1 − eAt1x0)

= eAt1x0 +Wt1W
−1
t1

(x1 − eAt1x0)

= x1

and hence we have the desired result. �

In fact, the proof shows more than originally claimed: rank(K) = n is equivalent
to the following stronger version of assertion 1:

∀t1 > 0 and ∀x0, x1 there exists u ∈ U such that the solution to ẋ = Ax + Bu,
x(0) = x0 satisfies x(t1) = x1.

In other words, if x0 can be controlled to x1 at all, then this can be done in
an arbitrarily small time t1 > 0. This feature, which has no analogue in discrete
time, is counter-intuitive at first sight: In a “real world” system, it certainly takes
“some time” to change from one state to another. The reason is that we admit
arbitrarily large input values here, i.e., we make the optimistic assumption that
we can put as much “energy” as we like into the system. In a real world system,
there are constraints which limit the size of the admissible inputs, and this has
the consequence that the transition from one state to another cannot be done
arbitrarily fast in practice.

Theorem A.1.5 Let ẋ = Ax+Bu be controllable, and let u be an input function
that controls ẋ = Ax+Bu from x(0) = 0 to x(t1) = x1, where t1 > 0. Then

E(u) :=

∫ t1

0

‖u(t)‖2dt ≥ Emin(t1, x1) := xT1W
−1
t1
x1

and equality is achieved for the input function

u(t) = BT eA
T (t1−t)W−1

t1
x1. (A.1)

In other words, the input function from (A.1) is optimal in the sense that its
energy E(u) is minimal among the energies of all u that steer the system from
x(0) = 0 to x(t1) = x1. This minimal energy is given by Emin(t1, x1) = xT1W

−1
t1 x1.

This shows that the smaller t1 is, the more energy is needed to do the transition
from 0 to x1 in time t1. More precisely, if 0 < s < t, then Wt > Ws (this notation
means that Wt−Ws is positive definite), which implies, using some linear algebra,
W−1
s > W−1

t , and hence

Emin(s, x) = xTW−1
s x > xTW−1

t x = Emin(t, x) for all x 6= 0.
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This explains the trade-off between the speed of control on the one hand and the
energy consumption of control on the other.

Proof: Define
V (t, x) := xTW−1

t x.

Let us look at the change of V (t, x(t)) along a trajectory x of our system. We
have

d
dt
V (t, x(t)) = d

dt
x(t)TW−1

t x(t)

= ẋ(t)TW−1
t x(t) + x(t)T ( d

dt
W−1
t )x(t) + x(t)TW−1

t ẋ(t).

Note that for any matrix-valued function W ,

d
dt
W−1
t = −W−1

t ẆtW
−1
t .

Moreover, we plug in ẋ = Ax + Bu and we obtain (omitting the argument t in
x(t) and u(t) for simplicity)

d
dt
V (t, x) = (Ax+Bu)TW−1

t x− xTW−1
t ẆtW

−1
t x+ xTW−1

t (Ax+Bu)

= xT (ATW−1
t +W−1

t A−W−1
t ẆtW

−1
t )x+ 2uTBTW−1

t x.

Consider the matrix

Xt := ATW−1
t +W−1

t A−W−1
t ẆtW

−1
t .

We have

WtXtWt = WtA
T + AWt − Ẇt (A.2)

=

∫ t

0

(eAτBBT eA
T τAT + AeAτBBT eA

T τ )dτ − Ẇt

= eAτBBT eA
T τ
∣∣∣τ=t

τ=0
− Ẇt

= eAtBBT eA
T t −BBT − Ẇt.

Noting that by the definition of W ,

Ẇt = eAtBBT eA
T t

we obtain
WtXtWt = −BBT (A.3)

and hence Xt = −W−1
t BBTW−1

t . We use this to rewrite our expression for
d
dt
V (t, x) and obtain

d
dt
V (t, x) = −xTW−1

t BBTW−1
t x+ 2uTBTW−1

t x

= −‖BTW−1
t x‖2 + 2〈u,BTW−1

t x〉
= ‖u‖2 − ‖u−BTW−1

t x‖2.
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Let’s integrate this from 0 to t1, exploiting that x(0) = 0 and x(t1) = x1. Then

V (t1, x1)− V (0, 0) =

∫ t1

0

‖u(t)‖2dt−
∫ t1

0

‖u(t)−BTW−1
t x(t)‖2dt

or

xT1W
−1
t1
x1 = E(u)−

∫ t1

0

‖u(t)−BTW−1
t x(t)‖2dt ≤ E(u). (A.4)

This shows that

E(u) ≥ Emin(t1, x1) := xT1W
−1
t1
x1.

Equality is achieved if and only if the integral in (A.4) vanishes, i.e., if

u(t) = BTW−1
t x(t). (A.5)

Plugging that into ẋ = Ax+Bu, we get

ẋ(t) = (A+BBTW−1
t )x(t).

Since we know that x(t1) = x1, the solution of this linear time-varying ODE is
uniquely determined for all t > 0. This solution is given by

ξ(t) = Wte
AT (t1−t)W−1

t1
x1.

This can easily be checked: We have ξ(t1) = x1 and

ξ̇(t) = (Ẇt −WtA
T )eA

T (t1−t)W−1
t1
x1.

Combining (A.2) with (A.3), we see that

Ẇt = WtA
T + AWt +BBT .

This implies

ξ̇(t) = (AWt +BBT )eA
T (t1−t)W−1

t1
x1

= (A+BBTW−1
t )Wte

AT (t1−t)W−1
t1
x1

= (A+BBTW−1
t )ξ(t)

as desired. Thus x = ξ is the optimal state trajectory. Then, according to (A.5),

u(t) = BTW−1
t ξ(t) = BT eA

T (t1−t)W−1
t1
x1

is the minimum energy control function that steers the system from 0 to x1 in
time t1. �
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A.2 Galois correspondences

A partial order on a set X is a relation ≤ with the properties:

• x ≤ x (reflexivity);

• x1 ≤ x2 and x2 ≤ x3 ⇒ x1 ≤ x3 (transitivity);

• x1 ≤ x2 and x2 ≤ x1 ⇒ x1 = x2 (antisymmetry).

The term “partial” refers to the fact that there may be elements x1, x2 ∈ X such
that neither x1 ≤ x2 nor x2 ≤ x1 is true.

Let X and Y be partially ordered sets and let f : X → Y and g : Y → X be two
maps. The mappings f and g are called a Galois correspondence if

1. f and g are order-reversing, that is,

x1 ≤ x2 ⇒ f(x1) ≥ f(x2) and y1 ≤ y2 ⇒ g(y1) ≥ g(y2);

2. x ≤ g(f(x)) for all x ∈ X and y ≤ f(g(y)) for all y ∈ Y .

Lemma A.2.1 We have gfg ≡ g and fgf ≡ f . Thus there are order-reversing
bijections

im(g) ↔ im(f)

x → f(x)

g(y) ← y

that are inverse to each other.

Proof: Due to property 2, we have f(g(y)) ≥ y and g(f(g(y))) ≥ g(y). Applying
the order-reversing mapping g to the first inequality, we obtain g(f(g(y)) ≤ g(y).
Combining these inequalities, we obtain g(f(g(y))) = g(y). Since this holds for
all y ∈ Y , we have gfg ≡ g. The second statement is analogous.

We show that the map f1 : im(g) → im(f), x 7→ f(x) is a bijection. For
injectivity, let f(x1) = f(x2) for some x1, x2 ∈ im(g), that is, xi = g(yi) for some
y1, y2 ∈ Y . Thus

f(g(y1)) = f(g(y2)).

Applying g and using gfg ≡ g, we obtain

x1 = g(y1) = g(f(g(y1))) = g(f(g(y2))) = g(y2) = x2.
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Secondly, we show that f1 is surjective: Let y ∈ im(f) be given, that is, y = f(x)
for some x ∈ X. Using fgf ≡ f , we have y = f(x) = f(g(f(x))) and thus, with
x̃ := g(f(x)) ∈ im(g), we have y = f(x̃).

Similarly, one shows that g1 : im(f)→ im(g), y 7→ g(y) is a bijection.

It remains to be shown that f1 and g1 are inverse to each other: However, we
have, for x = g(y): g(f(x)) = g(f(g(y))) = g(y) = x and similarly, the other way
round. �

Define x := gf(x) for all x ∈ X. Then

• x ≤ x = gf(x);

• x = gfgf(x) = gf(x) = x;

• if x1 ≤ x2, then f(x1) ≥ f(x2), and thus x1 = gf(x1) ≤ gf(x2) = x2.

This shows that gf is a closure operation. We say that x is closed if x = x.
This is true if and only if x ∈ im(g). Analogous statements can be shown if we
set y := fg(y) for all y ∈ Y .

Note that if only the left hand side X of the Galois correspondence is restricted
to im(g) ⊆ X, we have order-reversing maps

im(g) → Y

x → f(x)

g(y) ← y

with

x = g(f(x)) = x for all x ∈ im(g)

and

y = f(g(y)) ≥ y for all y ∈ Y.

This was used in Chapter 2 for X = A, Y = M, f ≡M, g ≡ B. Then im(g) = B.
The partial order is given by inclusion.

Here are two other prominent examples of Galois correspondences, where the
partial order is also given by inclusion:

• Let X be the set of all subsets of Cn and let Y be the set of all ideals in
K[s1, . . . , sn]. Let f ≡ I be defined by

I(V ) = {f ∈ K[s1, . . . , sn] | f(v) = 0 for all v ∈ V }
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and let g ≡ V be defined by

V(I) = {v ∈ Cn | f(v) = 0 for all f ∈ I}.

Then VI(V ) ⊇ V is called the Zariski closure of V , and V is called an
algebraic variety if it is Zariski closed. Thus im(V) is the set of all algebraic
varieties, and IV(I) = Rad(I) := {f ∈ K[s1, . . . , sn] | ∃l ∈ N : f l ∈ I}
by Hilbert’s Nullstellensatz. The ideal Rad(I) ⊇ I is the closure of I with
respect to this correspondence.

• Let X = Y be the set of all subspaces of Rn, and let f = g be defined by
f(V ) = V ⊥, the orthogonal complement of V with respect to the standard
scalar product 〈x, y〉 = xTy. In this case the Galois correspondence consists
already of order-reversing bijections inverse to each other.

A lattice is a partially ordered set X in which any two elements x1, x2 ∈ X
possess an infimum x1 ∧ x2 ∈ X and a supremum x1 ∨ x2 ∈ X, that is

• x1 ∧ x2 ≤ xi for i = 1, 2; and x ≤ xi for i = 1, 2 implies x ≤ x1 ∧ x2;

• x1 ∨ x2 ≥ xi for i = 1, 2; and x ≥ xi for i = 1, 2 implies x ≥ x1 ∨ x2.

For example, let X be the power set of a given set. This is partially ordered by
inclusion, and it becomes a lattice by taking the union as the supremum, and the
intersection as the infimum.

Similarly, the set X of all subspaces of a given vector space is partially ordered
by inclusion, and we take the sum as the supremum, and the intersection as the
infimum.

The set M of all left D-submodules of D1×q becomes a lattice in the same way.

Note that the set B of all abstract linear systems becomes a lattice if we can
show that it is closed under addition.

Let X, Y be two lattices and let f : X → Y be an order-reversing bijection with
order-reversing inverse. Then we call f a lattice anti-isomorphism and we have

f(x1 ∧ x2) = f(x1) ∨ f(x2)

f(x1 ∨ x2) = f(x1) ∧ f(x2)

for all x1, x2 ∈ X.
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A.3 Property O for 1-d time-invariant systems

In this section, we prove Theorem 2.6.

The commutative ring D = K[ d
dt

] is a Euclidean domain, that is, we have a
“division with remainder”: For all 0 6= d ∈ D and all n ∈ D, there exist q, r ∈ D
such that n = qd+ r, where the “remainder” r satisfies either r = 0 or deg(r) <
deg(d). It is known that Euclidean domains are principal ideal domains, that is,
every ideal in D can be generated by one single element. A matrix U ∈ K[s]g×g is
called unimodular if there exists U−1 ∈ K[s]g×g. Equivalently, det(U) ∈ K\{0}.

Lemma A.3.1 (Smith form) For every R ∈ K[s]g×q, there exist unimodular
matrices U ∈ K[s]g×g and V ∈ K[s]q×q such that

URV =

[
D 0
0 0

]
where D = diag(d1, . . . , dp) for some 0 6= di ∈ K[s] and d1|d2| . . . |dp. Here,
p = rank(R).

Moreover, since D is Euclidean, the unimodular transformation matrices U and V
can be obtained by performing elementary row and column operations. By an
elementary operation, we mean one of the following matrix transformations:

• interchanging two rows (columns) of a matrix;

• adding a multiple of one row (column) to another row (column);

• multiplying a row (column) by a unit, that is, an element of K \ {0}.

It is easy to see that these operations correspond to multiplication by unimodular
matrices from the left and right.

Proof: Without loss of generality, let R 6= 0. It is sufficient to show that by
elementary operations, R can be brought into the form

R′ =


a 0 · · · 0
0
... Q
0

 (A.6)

where a divides all entries of Q. Then one applies the same procedure to Q, and
the result follows inductively.



78 APPENDIX A. BACKGROUND MATERIAL

Case 1: There exists i, j such that Rij divides all entries of R. By a suitable
interchange of rows and columns, this element can be brought into the (1,1)
position of the matrix. Therefore without loss of generality, R11 divides all entries
of R. Now perform the following elementary operations: for all i 6= 1, put ith
row minus Ri1/R11 times 1st row; for all j 6= 1, put jth column minus R1j/R11

times 1st column. Then we are finished.

Case 2: There is no i, j such that Rij divides all entries of R. Let

δ(R) := min{deg(Rij) | Rij 6= 0}.

Without loss of generality, deg(R11) = δ(R). We show that by elementary op-
erations, we can transform R into R(1) with δ(R(1)) < δ(R). Then we obtain a
strictly decreasing sequence δ(R) > δ(R(1)) > δ(R(2)) > . . . ≥ 0. After finitely
many steps, we arrive at zero, i.e., we obtain a matrix which has a unit as an
entry, and thus we are in Case 1.

Case 2a: R11 does not divide all R1j, Ri1, say, it does not divide R1k. By the
Euclidean algorithm, we can write

R1k = R11q + r

where r 6= 0 and deg(r) < deg(R11). Perform the elementary operation: kth
column minus q times 1st column. Then the new matrix R(1) has r in the (1, k)
position and thus δ(R(1)) < δ(R) as desired.

Case 2b: R11 divides all R1j, Ri1. Similarly as in Case 1, we can transform,
by elementary operations, R into the form (A.6). If a divides all entries of Q,
then we are finished. If there exists i, j such that a does not divide Qij, then
we perform the elementary operation: 1st row plus (i+ 1)st row. (Note that the
(i+ 1)st row of R′ corresponds to the ith row of Q.) The new matrix has Qij in
the (1, j + 1) position and therefore we are in Case 2a. �

Theorem A.3.2 Let D = K[ d
dt

] and let A consist of all polynomial-exponential
functions. Then A has property O.

Proof: We need to show that M = MB(M) for all M = D1×gR for some
R ∈ Dg×q. Due to the Smith form, it suffices to consider the case where g = q = 1.

Thus let R ∈ D. If R = 0, then M = 0 and B(M) = A. The only linear constant-
coefficient ordinary differential equation which has all a ∈ A as solutions is the
trivial equation. Therefore, MB(M) = 0 = M . If R is a non-zero constant, then
M = D and B(M) = 0 and thus MB(M) = D = M .
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Let us assume that R is not constant, and let M = DR. By the fundamental
theorem of algebra, there exists a representation

R = c
k∏
i=1

( d
dt
− λi)µi (A.7)

where c ∈ K, k and µi are positive integers, and λi ∈ C. From the theory of linear
constant-coefficient ordinary differential equations, it is known that B = B(M)
consists of all functions of the form

w(t) =
k∑
i=1

pi(t)e
λit

where pi ∈ C[t] is an arbitrary polynomial of degree µi − 1. On the other hand,
the only elements of D that annihilate all these w are the multiples of R. Hence
M(B) = MB(M) = DR = M . �

The discrete counterpart given in Theorem 2.7 is proven similarly (using the
Smith form and some basic facts about the solutions of linear constant-coefficient
difference equations). However, the proof of the multivariate versions, that is,
Theorems 2.9 and 2.10, is much harder, because D = K[∂1, . . . , ∂n] is not a
principal ideal domain, and therefore there exists no analogue of the Smith form,
for n ≥ 2.

A.4 Left-exactness of the Hom-functor

In this section, we prove Lemma 2.14, which is restated below.

Let D be a ring, and let A be a left D-module. For a left D-module M, we set

HomD(M,A) = {φ :M→A | φ is D-linear}.

If N is another left D-module, and if f :M→N is a D-linear map, then

HomD(f,A) : HomD(N ,A)→ HomD(M,A), ψ 7→ ψ ◦ f.

Lemma A.4.1 The functor HomD(·,A) is left exact, that is, if

M f−→ N g−→ P −→ 0

is exact, where M,N ,P are left D-modules, and f, g are D-linear maps, then

HomD(M,A)
HomD(f,A)←− HomD(N ,A)

HomD(g,A)←− HomD(P ,A)←− 0

is also exact.
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Proof: We first show that HomD(g,A) is injective. Suppose that HomD(g,A)ϕ =
ϕ ◦ g = 0 for some ϕ ∈ HomD(P ,A). This means that ϕ(g(n)) = 0 for all n ∈ N .
Since g is surjective, this implies ϕ(p) = 0 for all p ∈ P , and thus ϕ = 0.

Secondly, we have that HomD(f,A) ◦ HomD(g,A) = HomD(g ◦ f,A) = 0, since
g ◦ f = 0. Therefore ker(HomD(f,A)) ⊇ im(HomD(g,A)).

Finally, we prove that ker(HomD(f,A)) ⊆ im(HomD(g,A)). For this, let ψ ∈
HomD(N ,A) be such that ψ ◦ f = 0. We need to show that ψ = ϕ ◦ g for
some ϕ ∈ HomD(P ,A). Let p ∈ P be given. Since g is surjective, there exists
n ∈ N such that g(n) = p. We put ϕ(p) := ψ(n). This is well-defined, because
g(n1) = g(n2) = p implies n1 − n2 ∈ ker(g) = im(f) and hence ψ(n1) = ψ(n2).
The map ϕ satisfies ϕ(g(n)) = ψ(n) for all n ∈ N , and thus ψ = ϕ ◦ g as desired.
To see that ϕ is D-linear, let p1, p2 ∈ P and d1, d2 ∈ D. Note that g(ni) = pi for
i = 1, 2 implies g(d1n1 + d2n2) = d1p1 + d2p2 and thus

ϕ(d1p1 + d2p2) = ψ(d1n1 + d2n2) = d1ψ(n1) + d2ψ(n2) = d1ϕ(p1) + d2ϕ(p2),

where we have used the linearity of g and ψ. �

A.5 Baer’s criterion

In this section, we prove the alternative version of Baer’s criterion which does
not rely on the axiom of choice; see e.g. [12, Ch. 1, §3] for the classical version.

T = HomD(·,A) is an exact functor on the category of left D-modules if, for
every exact sequence

M f−→ N g−→ P

of left D-modules, the sequence

TM Tf←− TN Tg←− TP

is also exact. This is equivalent to saying that A is injective.

Lemma A.5.1 T = HomD(·,A) is exact if and only if it turns every exact se-
quence of the form

0→ N ↪→ P

into an exact sequence

0← TN ← TP .
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Proof: The condition is clearly necessary. For sufficiency, let

M f−→ N g−→ P

be a given exact sequence. Consider

M f−→ N g1−→ im(g) −→ 0.

Using the fact that the Hom-functor is left exact, this yields an exact sequence

TM← TN ← T im(g)← 0.

We need to show that

TM Tf←− TN Tg←− TP

is exact, that is, for ϕ ∈ HomD(N ,A), we have to prove that

ϕ ◦ f = 0 ⇔ ∃ψ ∈ HomD(P ,A) : ϕ = ψ ◦ g.

The implication “⇐” is trivial, because g ◦ f = 0. For “⇒”, note that ϕ ◦ f = 0
implies that there exists θ ∈ HomD(im(g),A) such that ϕ = θ ◦ g1. However,

0→ im(g) ↪→ P

is exact, and therefore, using the assumption,

0← HomD(im(g),A)← HomD(P ,A)

is also exact, which means that θ can be extended to a map ψ ∈ HomD(P ,A),
that is, ψ|im(g) = θ. Therefore ϕ = θ ◦ g1 = θ ◦ g = ψ ◦ g. �

Now let D be left Noetherian, and consider T as a functor on the category of
finitely generated left D-modules, that is, T is exact if it turns every exact se-
quence of finitely generated left D-modules into an exact sequence.

Theorem A.5.2 T = HomD(·,A) is exact if and only if for every sequence

0→ I ↪→ D,

where I is a left ideal in D, the sequence

0← HomD(I,A)← HomD(D,A)

is also exact.
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Proof: The condition is clearly necessary. For sufficiency, let

0→ N ↪→ P

be a given exact sequence. We need to show that 0← TN ← TP is exact, that
is, for ϕ ∈ HomD(N ,A), we have to prove that there exists ψ ∈ HomD(P ,A)
such that ϕ = ψ|N . Let ϕ be given.

Consider the set of all submodules N ⊆ Q ⊆ P with the property that there
exists ψ ∈ HomD(Q,A) with ϕ = ψ|N . Since D is left Noetherian, this non-
empty family of left submodules of the finitely generated module P possesses a
maximal element, say Q1. Let ψ1 ∈ HomD(Q1,A) be such that ϕ = ψ1|N . We
are finished if we can show that P ⊆ Q1.

Assume conversely that x ∈ P \ Q1. Set

I := {d ∈ D | dx ∈ Q1}.

This is a left ideal in D. Define φ ∈ HomD(I,A) via

φ(d) := ψ1(dx).

By assumption, there exists θ ∈ HomD(D,A) such that θ|I = φ. The map θ is
uniquely determined be a := θ(1) ∈ A, via θ(d) = dθ(1) = da, and thus

φ(d) = da

for all d ∈ I. Now let Q2 := Q1 +Dx. Since x /∈ Q1, this is a proper supermodule
of Q1. Set

ψ2(q2) := ψ2(q1 + dx) := ψ1(q1) + da.

To see that this is well-defined, let q2 = q1+dx = q′1+d′x. Then q1−q′1 = (d′−d)x,
and thus d′− d ∈ I. Hence φ(d′− d) = (d′− d)a. On the other hand, φ(d′− d) =
ψ1((d′ − d)x) = ψ1(q1 − q′1) = ψ1(q1)− ψ1(q′1). Thus ψ1(q1) + da = ψ1(q′1) + d′a.

Moreover, ψ2 is D-linear, because

ψ2(q2 + q′2) = ψ2(q1 + q′1 + dx+ d′x) = ψ1(q1 + q′1) + (d+ d′)a

= ψ1(q1) + da+ ψ1(q′1) + d′a = ψ2(q2) + ψ2(q′2)

and

ψ2(d′q2) = ψ2(d′q1 + d′dx) = ψ1(d′q1) + d′da = d′ψ1(q1) + d′da = d′ψ2(q2).

Finally, we show that ψ2|N = ϕ: Since N ⊆ Q1, we have

ψ2(n) = ψ1(n) = ϕ(n)

for all n ∈ N . Thus we have a contradiction to the maximality of Q1. �



A.6. CRITERION FOR THE COGENERATOR PROPERTY 83

A.6 Criterion for the cogenerator property

In this section, we prove Theorem 2.20.

First, we recall the definition of a (co-)generator [10, p. 53]. Let D be a ring
(with unity), and let A be a left D-module. One calls A a generator if for all
left D-modules N , one has

N =
∑

ϕ∈HomD(A,N )

im(ϕ)

and A is said to be a cogenerator if for all left D-modules N , we have

0 =
⋂

ϕ∈HomD(N ,A)

ker(ϕ).

Lemma A.6.1 The following are equivalent:

1. A is a cogenerator.

2. If HomD(f,A) = 0, then f = 0.

In the second assertion, f : M → N is an arbitrary D-linear map between two
arbitrary left D-modules M,N .

Proof: “1⇒ 2”: Assume conversely that f :M→N is not identically zero, that
is, f(m0) 6= 0 for some m0 ∈M, but HomD(f,A) = 0, that is, ϕ◦f = 0 for all ϕ ∈
HomD(N ,A). This means that ϕ(f(m0)) = 0 for all ϕ ∈ HomD(N ,A), and hence
f(m0) 6= 0 is contained in the intersection of all kernels of ϕ ∈ HomD(N ,A).

“2 ⇒ 1”: Let N be such that there exists 0 6= n0 ∈ N with n0 ∈ ker(ϕ) for all
ϕ ∈ HomD(N ,A). Consider the map f : D → N defined by f(1) = n0, that
is, f(d) = dn0 for all d ∈ D. Then f is not identically zero, but HomD(f,A) is,
because

ϕ(f(d)) = ϕ(dn0) = dϕ(n0) = 0

for all d ∈ D, and hence ϕ ◦ f = 0 for all ϕ ∈ HomD(N ,A). �

In the following, we will see that if A is injective (which means that the functor
HomD(·,A) is exact, i.e., it preserves exactness), then the cogenerator property
is equivalent to saying that the functor HomD(·,A) is faithful (i.e., it reflects
exactness).

Let T be a contravariant additive functor from the left D-modules to the (ad-
ditive) Abelian groups, that is, T assigns to each left D-module M an Abelian
group TM, and to each D-linear map f : M → N a group homomorphism
Tf : TN → TM with



84 APPENDIX A. BACKGROUND MATERIAL

1. T idM = idTM;

2. T (g ◦ f) = Tf ◦ Tg;

3. T (f + g) = Tf + Tg;

4. If f = 0, then Tf = 0.

Note that conditions 1 and 4 imply: If M = 0, then TM = 0.

A typical example for such a functor is T = HomD(·,A). Additionally, assume
that T is exact, that is, if

M f−→ N g−→ P

is exact, then so is

TM Tf←− TN Tg←− TP .

For T = HomD(·,A), exactness means injectivity of A.

Lemma A.6.2 The following are equivalent:

1. If TM = 0, then M = 0.

2. If Tf = 0, then f = 0.

For T = HomD(·,A), this means that A is a cogenerator.

Proof: “2 ⇒ 1”: Let M 6= 0. Then idM 6= 0. By assertion 2, T idM 6= 0. Since
T idM = idTM, it follows that TM 6= 0.

“1⇒ 2”: Let f :M→ N be given. We have f = i ◦ f1, where f1 :M→ im(f)
and i : im(f) ↪→ N . Then Tf = Tf1 ◦ Ti. Suppose that Tf = 0. Since
f1 is surjective, Tf1 is injective. Thus Ti = 0. On the other hand, since i is
injective, Ti is surjective. Thus im(Ti) = T im(f) = 0. Using assertion 1, we
have im(f) = 0, that is, f = 0. �

Theorem A.6.3 The following are equivalent:

1. If TM = 0, then M = 0.

2. If TM← TN ← TP is exact, then so is M→N → P.

If the second assertion is true, one says that T is faithful, or that T reflects
exactness. Again, for T = HomD(·,A), this means that A is a cogenerator.
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Proof: “2 ⇒ 1”: Let TM = 0. Then 0 ← TM ← 0 is exact. By assertion 2,
0→M→ 0 is exact, which means that M = 0.

“1⇒ 2”: Let

M f−→ N g−→ P

be not exact. We need to show that

TM Tf←− TN Tg←− TP

is not exact.

Case 1: g ◦ f 6= 0. Then, using the lemma, T (g ◦ f) 6= 0, that is, Tf ◦ Tg 6= 0,
and we’re finished.

Case 2: g ◦ f = 0, that is, im(f) ( ker(g). Then T (g ◦ f) = Tf ◦ Tg = 0, that is
im(Tg) ⊆ ker(Tf). We need to show that this inclusion is strict. Define

σ : ker(g) ↪→ N and π : N → N /im(f).

Then

ker(g)
σ−→ N g−→ P and M f−→ N π−→ N /im(f)

are both exact. Therefore

T ker(g)
Tσ←− TN Tg←− TP and TM Tf←− TN Tπ←− T (N /im(f))

are also exact. Thus

ker(Tσ) = im(Tg) ⊆ ker(Tf) = im(Tπ).

The fact that im(f) ( ker(g) means that π ◦σ 6= 0, and hence Tσ ◦Tπ 6= 0. This
shows that the above inclusion must be strict. �

Corollary A.6.4 Let T = HomD(·,A) with A injective. The following are equiv-
alent:

1. If TM = 0, then M = 0.

2. If TM = 0 and M is finitely generated, then M = 0.

3. If TM = 0 and M is generated by one single element, then M = 0.

4. A is a cogenerator.
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Proof: The equivalence of assertions 1 and 4 was shown in a lemma above. Since
“1 ⇒ 2 ⇒ 3” is obvious, it suffices to show “3 ⇒ 1”. Let M 6= 0. We need to
show that HomD(M,A) 6= 0, that is, there exists a non-zero D-linear map from
M to A. Let 0 6= m ∈M. Then 0 6= Dm ⊆M and there is an exact sequence

0→ Dm ↪→M.

Since A is injective, the sequence

0← HomD(Dm,A)← HomD(M,A)

is also exact, and by condition 3, HomD(Dm,A) 6= 0, that is, there exists a non-
zero D-linear map ψ : Dm → A. However, the exactness of the last sequence
says that there exists a D-linear map φ :M→A with φ|Dm = ψ. Thus φ 6= 0. �

If D is left Noetherian, we can proceed analogously with the category of finitely
generated left D-modules. (Note that we need the Noetherian property to guar-
antee that kernels and images of D-linear maps between finitely generated D-
modules are again finitely generated.) Then we obtain the following alternative
version of Theorem 2.20.

Theorem A.6.5 Let T = HomD(·,A) be an exact functor on the category of
finitely generated left D-modules. The following are equivalent:

1. If TM = 0, then M = 0.

2. T is faithful, i.e., it reflects exactness.

3. A is a cogenerator.

A.7 Injective cogenerator property for 1-d time-

invariant systems

Theorem A.7.1 Let D = K[ d
dt

] and A = C∞(R,K). Then A is an injective
cogenerator.

Proof: Using Baer’s criterion, we need to prove that

0← HomD(I,A)← HomD(D,A)

is exact, that is, for every D-linear map ψ : I → A there exists a D-linear map
φ : D → A such that φ|I = ψ. This is trivial if I = 0, so assume otherwise.
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Every ideal in D can be generated by one single element (principal ideal domain).
Thus I = Dd for some 0 6= d ∈ D and ψ : Dd → A is uniquely determined by
fixing an element u := ψ(d) ∈ A. In order to extend ψ to all of D, we need to
find an element y := φ(1) ∈ A such that φ(d) = dφ(1) = dy = ψ(d) = u.

Therefore we need to show: Provided that d 6= 0, we have

∀u ∈ A∃y ∈ A : dy = u.

This property of A is called divisibility. If d ∈ K, this is trivial. Suppose that d
has degree at least one. It is a standard fact from ODE theory that every scalar
linear constant-coefficient ordinary differential equation with a smooth right hand
side possesses a smooth solution.

For the cogenerator property we need to show: If Rw = 0 has only the zero
solution (that is, HomD(M,A) ∼= B = 0), then R must be left invertible (that
is, M = 0). Since D is a principal ideal domain, it suffices to consider the case
where R is a scalar. Therefore, we need to prove: If dy = 0 has only the zero
solution, then d is a non-zero constant, that is, d ∈ K \ {0}.

However, if d is not a non-zero constant, then the fundamental theorem of algebra
implies that there exists λ ∈ C such that d(λ) = 0. Then deλt = d(λ)eλt = 0,
showing that dy = 0 has not only the zero solution. Of course, eλt will be
complex-valued in general. However, if K = R, then Re(eλt) = eRe(λ)t cos(Im(λ)t)
is a non-zero solution to dy = 0. �

A.8 Ore domains and fields of fractions

Let D be a domain. The following theorem can be found in [3, p. 177].

Theorem A.8.1 D admits a field of left fractions

K = {d−1n | d, n ∈ D, d 6= 0}

if and only if D has the left Ore property.

Proof: If D admits a field of left fractions K, then K contains all n = 1−1n and
all d−1 = d−11 for n, d ∈ D, d 6= 0. Therefore it also contains nd−1. This has to
be left fraction again, that is nd−1 = d−1

1 n1 or equivalently,

d1n = n1d
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for some d1, n1 ∈ D, d1 6= 0. Thus we have shown that all n, d ∈ D, d 6= 0 possess
a left common multiple. If we know additionally that n 6= 0 then this implies
n1 6= 0. Thus we have the left Ore property.

Conversely, let D be a left Ore domain, and let D∗ := D \ {0}. We define a
relation on D∗ ×D via

(d1, n1) ∼ (d2, n2) ⇔ c1d1 = c2d2 implies c1n1 = c2n2.

This is an equivalence relation: Reflexivity and symmetry are obvious. For tran-
sitivity, let (d1, n1) ∼ (d2, n2) and (d2, n2) ∼ (d3, n3) and c1d1 = c3d3 6= 0. Due to
the left Ore property, there exist 0 6= c, c2 such that cc1d1 = cc3d3 = c2d2. This
implies both cc1n1 = c2n2 and c2n2 = cc3n3 which yields c(c1n1 − c3n3) = 0 and
hence c1n1 = c3n3.

We set K := (D∗ ×D)/ ∼. The multiplication on K is defined by

[(d1, n1)] · [(d2, n2)] := [(ad1, bn2)]

where an1 = bd2, a 6= 0. To see that this is well-defined, let (d1, n1) ∼ (d′1, n
′
1) and

(d2, n2) ∼ (d′2, n
′
2) and a′n′1 = b′d′2. We need to show that (ad1, bn2) ∼ (a′d′1, b

′n′2).
For this let cad1 = c′a′d′1. Then can1 = c′a′n′1. Equivalently, cbd2 = c′b′d′2. This
implies cbn2 = c′b′n′2.

Let 0K := [(1, 0)] = [(d, 0)] for all d 6= 0, and 1K := [(1, 1)] = [(d, d)] for all
d 6= 0. We have 0K · k = k · 0K = 0K and 1K · k = k · 1K = k for all k ∈ K. All
0K 6= [(d, n)] ∈ K are invertible, because

[(d, n)] · [(n, d)] = [(n, d)] · [(d, n)] = [(1, 1)] = 1K.

To define the addition on K, it suffices to explain k + 1K for all k ∈ K, because
then the sum of arbitrary elements of K can be defined via

k + l =


k if l = 0K

l(l−1k + 1K) if l 6= 0K.

We set
[(d, n)] + [(1, 1)] = [(d, n+ d)].

Thus K becomes a field, and we have an injective ring homomorphism

D → K, d 7→ [(1, d)].

Identifying D with its image under this map, we have for all d 6= 0

d−1n = [(1, d)]−1 · [(1, n)] = [(d, 1)] · [(1, n)] = [(d, n)]
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which shows that an element of K as constructed can be identified with a left
fraction of elements of D. �

Remark: Let D be a left Ore domain and let K be its field of left fractions. Any
H ∈ Kp×m has a representation H = d−1N where 0 6= d ∈ D and N ∈ Dp×m.

For this let Hij = d−1
ij ñij and let d be a left common multiple of all dij, say

d = aijdij for all i, j. Then Hij = d−1aijñij and we set Nij := aijñij.

A.9 Linear algebra over skew fields

Let K be a skew (i.e., non-commutative) field.

Let V be a finitely generated right K-module with generators v1, . . . , vq. Then

V =

q∑
i=1

viK.

Since K is a field, one also says that V is a right K-vector space. Note that we
may assume without loss of generality that vi 6= 0 for all i.

Lemma A.9.1 There exists a set J ⊆ {1, . . . , q} such that

V =
⊕
j∈J

vjK.

The directness of the sum says that vj, j ∈ J are (right) K-linearly independent,
that is, ∑

j∈J

vjkj = 0 ⇒ kj = 0 for all j ∈ J.

If V = ⊕j∈JvjK, then we say that {vj | j ∈ J} is a basis of V . Thus the lemma
says that every finitely generated right K-vector space has a basis.

Proof: Consider the sets I ⊆ {1, . . . , q} for which the sum
∑

i∈I viK is direct.
Among these sets, choose one whose cardinality is maximal, say J . Set VJ :=
⊕j∈JvjK. We need to show that VJ = V . For this, it suffices to show that vi ∈ VJ
for all i /∈ J . Let Wi := VJ ∩ viK for i /∈ J . This is a right K-submodule of viK.

Case 1: Wi = 0. Then VJ + viK = VJ ⊕ viK, contradicting the maximality of J .

Case 2: Wi 6= 0. Let 0 6= wi ∈ Wi. Then wi = vik for some 0 6= k ∈ K, and hence
wik

−1 = vi, showing that viK ⊆ wiK ⊆ Wi ⊆ viK. Thus Wi = viK. This means
that viK ⊆ VJ , hence vi ∈ VJ . �
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Let R ∈ Kg×q and let V = RKq. Then V is generated by the columns of R.
The lemma says that we have (after a suitable permutation of the columns) a
representation R = [−Q,P ] where the columns of P are linearly independent,
and Q = PH for some K-matrix H.

Theorem A.9.2 Let W = ⊕mi=1wiK ⊆ V = ⊕ni=1viK. Then m ≤ n and there
exists a set J ⊆ {1, . . . , n} of cardinality n −m such that W ⊕W ′ = V , where
W ′ = ⊕j∈JvjK. In particular, V = W if and only if n = m.

Proof: The proof is by induction on m. If m = 0, there is nothing to prove.
Assume that we have proven the statement for m− 1. Consider

W = ⊕m−1
i=1 wiK ⊕ wmK ⊆ V.

By the inductive hypothesis, m− 1 ≤ n, and we can choose n−m+ 1 elements
from the basis of V , say vm, . . . , vn, such that B := {w1, . . . , wm−1, vm, . . . , vn} is
a basis of V . Now if m − 1 = n, then we have B = {w1, . . . , wm−1}. But this
cannot be a basis of V , because wm ∈ V cannot be generated by these elements
(by the assumed linear independence of w1, . . . , wm). Therefore, we must have
m ≤ n.

Since B is a basis of V , there exists a representation

wm =
m−1∑
i=1

wiai +
n∑

j=m

vjbj

for some ai, bj ∈ K. If all bj were zero, then this would again contradict the
linear independence of w1, . . . , wm. Therefore at least one of the bj is non-zero.
Without loss of generality, let bm 6= 0. Then vm is a linear combination of
B′ := {w1, . . . , wm, vm+1, . . . , vn}. Since B generates V , so does B ∪ {wm}, and
by the previous argument, B′ = B ∪ {wm} \ {vm} is also a generating set for V .
We are finished if we can show that B′ is a basis of V . For this, we have to show
that the elements of B′ are linearly independent. Assume that

m∑
i=1

wiai +
n∑

j=m+1

vjbj = 0.

Case 1: am 6= 0. Then we can write wm as a linear combination of B′ \ {wm}.
Thus B′ \ {wm} ( B is already a generating system of V . This contradicts the
fact that B is a basis of V .

Case 2: am = 0. Then
m−1∑
i=1

wiai +
n∑

j=m+1

vjbj = 0
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which implies that all ai and all bi must be zero, because B′ \ {wm} ⊆ B and
hence its elements are linearly independent. �

Thus the cardinality of a basis is an invariant of a finitely generated K-module V
and we call it the dimension of V . If V = RKq ⊆ Kg, we set columnrank(R) :=
dim(V ).

Consider the right K-linear map

R : Kq → Kg, x 7→ Rx.

Its image equals im(R) = RKq, and its kernel is a right K-submodule of Kq. Thus
ker(R) is also finitely generated (if it were not, we could construct an infinite
sequence x1, x2, . . . of linearly independent elements of ker(R), and hence of Kq,
in particular, we would have ⊕q+1

i=1xiK ⊆ Kq = ⊕qi=1eiK, a contradiction). There
is an induced isomorphism

Kq/ ker(R) ∼= im(R)

which shows that

dim(Kq/ ker(R)) = dim(im(R)) = columnrank(R).

However, there exists a finitely generated right K-vector space W ′ such that
ker(R) ⊕W ′ = Kq, where dim(W ′) = q − dim(ker(R)). Since Kq/ ker(R) ∼= W ′,
we have

q − dim(ker(R)) = columnrank(R).

Similarly, one considers

·R : K1×g → K1×q, x 7→ xR

which is a left K-linear map, and we obtain im(·R) = K1×gR and ker(·R) which
are left K-modules. Then

g − dim(ker(·R)) = dim(K1×gR) =: rowrank(R).

Theorem A.9.3 For any K-matrix R, we have rowrank(R) = columnrank(R).

For this, we need the concept of the dual vector space: For a finitely generated
right K-module V , we set

V ∗ = HomK(V,K)

which contains all right-linear maps ϕ : V → K, that is, ϕ(vk) = ϕ(v)k. Then V ∗

is a left K-module. Indeed, for l ∈ K, the map lϕ, defined by (lϕ)(v) := lϕ(v),



92 APPENDIX A. BACKGROUND MATERIAL

is again in V ∗. Since a K-linear map is uniquely determined by the image of a
basis, we have

V ∗ ∼= K1×d,

where d = dim(V ). In particular, (Kd)∗ ∼= K1×d. More explicitly, this isomor-
phism is given by

φ : K1×d → (Kd)∗, x 7→ φ(x)

where φ(x) : Kd 7→ K, y 7→ xy. The following proof can be found in [13].

Proof: We have a commutative diagram

K1×g ·R−→ K1×q

↓ ↓
(Kg)∗ R∗−→ (Kq)∗

where the vertical arrows are given by the isomorphism φ. Thus

dim(ker(R∗)) = dim(ker(·R)) = g − rowrank(R).

On the other hand, the exact sequence

Kq R−→ Kg −→ Kg/im(R) −→ 0

implies, due to the left exactness of HomK(·,K), that

(Kq)∗ R∗←− (Kg)∗ ←− (Kg/im(R))∗ ←− 0

is also exact, and thus
ker(R∗) ∼= (Kg/im(R))∗

which implies that

dim(ker(R∗)) = g − dim(im(R)) = g − columnrank(R).

Combining this with the equation above, we have the desired result. �

Remark: HomK(·,K) is an exact and faithful functor from the category of finitely
generated right K-modules to the category of finitely generated left K-modules
(and the same holds, of course, if “left” and “right” are interchanged).

A.10 Controllability and observability for 1-d

time-invariant systems

Controllability

In this section, we show that a classical state space system ẋ = Ax + Bu is
controllable in the sense of the Introduction if and only if its system module is
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torsion-free. This shows that the notion of controllability proposed in Section 3.3
coincides with the classical concept when applied to systems of this form.

Let D = K[ d
dt

], let R ∈ Dg×q and consider M = D1×q/D1×gR. Since D is a
principal ideal domain, we have the following result.

Lemma A.10.1 M is torsion-free if and only if it is free, that is, M∼=D1×l for
some integer l. Indeed, we have l = q − rank(R).

Proof: This can be shown using the Smith form. Let

URV =

[
D 0
0 0

]
where D = diag(d1, . . . , dp) for some 0 6= di ∈ D. Without loss of generality, let
the di be monic polynomials. Then

M∼= D/Dd1 × · · · × D/Ddp ×D1×(q−p).

The module D/Ddi is torsion-free if and only if di = 1. ThusM is torsion-free if
and only if M∼= D1×(q−p), where p = rank(R). �

Note that in general, a torsion-free module is not necessarily free, whereas the
implication “free ⇒ torsion-free” is always true when D is a domain.

Lemma A.10.2 Let R have full row rank, that is, rank(R) = g. ThenM is free
if and only if there exists X ∈ Dq×g such that RX = I.

Proof: Let R have full row rank, that is, p = g. Then the Smith form takes the
form URV = [D, 0]. By the previous lemma, M is free if and only if we have
URV = [I, 0]. Then

URV

[
I
0

]
= I

which implies (multiplying by U−1 from the left, and by U from the right)

RV

[
I
0

]
U = I

that is, we have found X with the desired property. Conversely, if RX = I, then
URV V −1XU−1 = I. Thus there exists a D-matrix Y such that DY = I, and
thus diyii = 1 for all i. This implies that di = 1 for all i, that is, D = I. �

Lemma A.10.3 There exists X such that RX = I if and only if R(λ) has full
row rank for all λ ∈ C.
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Proof: If RX = I, then R(λ)X(λ) = I and hence R(λ) has full row rank.
Conversely, if rank(R(λ)) = g for all λ ∈ C, the g × g minors mi of R have no
common zero, i.e., they are coprime and hence there exists a Bézout identity∑

dimi = 1.

Since there exist Xi with RXi = miI, we obtain with X :=
∑
diXi

RX =
∑
diRXi =

∑
dimiI = I.

�

Let A ∈ Kn×n and B ∈ Kn×m and set

R = [ d
dt
I − A,−B] ∈ Dn×(n+m).

Then g = n, q = n+m and p = n.

Lemma A.10.4 Let 0 6= V ⊆ K
1×n be an A-invariant vector space, that is,

v ∈ V implies vA ∈ V . Then V contains a left eigenvector of A, that is, there
exists 0 6= v ∈ V with vA = λv for some λ ∈ C.

Proof: Let dim(V ) = d, and let v1, . . . , vd be a basis of V . Collecting these basis
vectors into a matrix W ∈ Kd×n, we have V = im(·W ) and rank(W ) = d. The
A-invariance of V means that WA = CW for some C ∈ Kd×d. Let x be a left
eigenvector of C, that is, xC = λx for some λ ∈ C. Then xWA = xCW = λxW .
Set v := xW ∈ V . Since x 6= 0 and since W has full row rank, we have v 6= 0
and thus it has the desired properties. �

Corollary A.10.5 The following are equivalent:

1. There exists 0 6= ξ ∈ K1×n such that ξAiB = 0 for all i ∈ N, or equivalently,
for all 0 ≤ i ≤ n− 1.

2. There exists a left eigenvector v of A with vB = 0, that is, there exists
λ ∈ C and 0 6= v ∈ K1×n such that

vR(λ) = v[λI − A,−B] = 0.

Proof: “1⇒ 2”: Apply the previous lemma to

V =
⋂
i∈N

ker(·AiB) =
n−1⋂
i=0

ker(·AiB).
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“2 ⇒ 1”: If vR(λ) = 0, we obtain inductively vB = 0, vAB = λvB = 0,
vA2B = λvAB = 0 etc. �

Now we obtain the desired result, which shows that the two controllability con-
cepts coincide.

Theorem A.10.6 M is torsion-free if and only if rank(K) = n, where

K = [B,AB, . . . , An−1B].

Proof: By the lemmas from above, M is torsion-free if and only if RX = I for
some D-matrix X, which is in turn equivalent to R(λ) having full row rank for
all λ ∈ C. Still equivalently, there exists no ξ 6= 0 with ξAiB = 0 for all i. In
other words, rank(K) = n. �

The equivalence

rank(K) = n ⇔ rank(R(λ)) = n for all λ ∈ C

is known as the Hautus test.

Observability

In this section we show that in a state space system

ẋ = Ax+Bu

y = Cx+Du,

the latent variables x are observable from the manifest variables u and y if and
only if the system is observable in the classical sense, which means that

K =


C
CA

...
CAn−1


has rank n. Recall that x is observable from u, y if and only if u = 0 and y = 0
imply x = 0, that is,

ẋ = Ax and Cx = 0 ⇒ x = 0.

In other words,

Bunobs = {x ∈ An | ẋ = Ax,Cx = 0} = 0.
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Since Bunobs has the kernel representation

M =

[
d
dt
I − A
C

]
∈ D(n+p)×n,

this amounts to saying that M is left invertible. Therefore it suffices to prove the
following lemma.

Lemma A.10.7 The following are equivalent:

1. The matrix M is left invertible.

2. rank(M(λ)) = n for all λ ∈ C.

3. rank(K) = n.

Proof: The equivalence of the first two conditions is analogous to the state-
ment of Lemma A.10.3, and the equivalence of the second and third assertion is
analogous to Corollary A.10.5. �

A.11 Jacobson form

Let D be a right and left principal ideal domain.

An element a ∈ D is called a right divisor of b ∈ D if there exists x ∈ D such
that xa = b or equivalently, if Db ⊆ Da. Similarly, a is a left divisor of b if
ay = b for some y, which means that bD ⊆ aD. Finally, a is said to be a total
divisor of b if

DbD ⊆ aD ∩Da.

Note that this implies that a is both a right and a left divisor of b, but “total
divisor” is a stronger property than “right and left divisor”: for instance, a is not
necessarily a total divisor of a.

Although the given definition of a total divisor is appealing due to its symmetry,
it is important to note that it is actually redundant, as shown in the following
lemma.

Lemma A.11.1 If DbD ⊆ aD, then a is a total divisor of b. Analogously, the
condition DbD ⊆ Da is also sufficient for a being a total divisor of b.
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Proof: It suffices to show the first statement. Let the non-zero two-sided ideal
DbD be generated, as a left ideal, by c, and, as a right ideal, by c′. We first show
that without loss of generality, we may assume that c = c′. Indeed, if

DbD = Dc = c′D,

then c = c′u and c′ = vc for some u, v ∈ D, which yields c′ = vc′u. Since
vc′ ∈ DbD, we have vc′ = c′u′ for some u′, and hence c′ = c′u′u. Since c′ 6= 0 by
assumption, we obtain u′u = 1, that is, u is a unit. This implies cD = c′D and
hence

DbD = Dc = cD.
Now let 0 6= DbD = cD ⊆ aD. We need to show that DbD = Dc ⊆ Da. For this,
consider the left ideal Da + Dc, which can be generated by one single element,
say by d, that is,

Da+Dc = Dd.
Then d = ka+ lc for some k, l ∈ D. On the other hand, we have c = ay for some
y ∈ D by assumption. Combining this, we get

dy = kay + lcy = kay + ly′c = kay + ly′ay = (k + ly′)ay,

where we have used cD = Dc, that is, cy = y′c for some y′. Since y 6= 0 by
assumption, this implies d = (k + ly′)a, and hence Dd ⊆ Da. From this, we
obtain Dc ⊆ Da as desired. �

From now on, let D = K[D], where D = d
dt

, and K denotes the rational functions.

Theorem A.11.2 D is a left and right Euclidean domain.

Proof: We first observe that for any d, n ∈ D, d 6= 0, with deg(n) ≥ deg(d) there
exists f ∈ D such that

deg(n− fd) < deg(n).

Indeed, if n = aµD
µ + . . .+a0 and d = bνD

ν + . . .+ b0 with aµ, bν 6= 0 and µ ≥ ν,
we may take f = aµD

µ−νb−1
ν .

Now let n, d ∈ D, d 6= 0 be given. If d is a right divisor of n, we have n = qd for
some q ∈ D and we are finished by putting r = 0. Otherwise, define

δ := min{deg(n− fd) | f ∈ D}.

Let q ∈ D be such that deg(n− qd) = δ.

Case 1: deg(n− qd) ≥ deg(d). Then there exists f such that

deg(n− qd− fd) < deg(n− qd) = δ.
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This contradicts the minimality of δ.

Case 2: deg(n − qd) < deg(d). Then we are finished by putting r := n − qd,
that is, we have constructed a representation n = qd+ r with deg(r) < deg(d) as
desired.

The right division with remainder is constructed similarly. �

Theorem A.11.3 (Jacobson form) For every R ∈ Dg×q, there exist unimod-
ular matrices U, V such that

URV =

[
D 0
0 0

]
where D = diag(d1, . . . , dp), 0 6= di ∈ D, p = rank(R), and each di is a total
divisor of di+1 for 1 ≤ i ≤ p− 1.

Recalling that the ring D is simple, the two-sided ideal DbD can only be the zero
ideal or D itself. This means that a is a total divisor of b if and only if either
b = 0 or a is a unit (and then without loss of generality, a = 1). Therefore we
may conclude that d1 = . . . = dp−1 = 1. Note that except for this observation,
the proof given below holds for arbitrary right and left Euclidean domains.

Proof: Without loss of generality, let R 6= 0. It is sufficient to show that by
elementary operations, R can be brought into the form

R′ =


a 0 · · · 0
0
... Q
0

 (A.8)

where a is a total divisor of all entries of Q. Then one applies the same procedure
to Q, and the result follows inductively.

Case 1: There exists i, j such that Rij is a total divisor of all entries of R. By
a suitable interchange of rows and columns, this element can be brought into
the (1,1) position of the matrix. Therefore without loss of generality, R11 is a
total divisor of all entries of R. This means, in particular, that xiR11 = Ri1 and
R11yj = R1j. Now perform the following elementary operations: for all i 6= 1,
put ith row minus xi times 1st row (i.e., the first row is being multiplied by xi
from the left); for all j 6= 1, put jth column minus 1st column times yj (i.e., the
first column is being multiplied by yj from the right). Then we are finished.
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Case 2: There is no i, j such that Rij is a total divisor of all entries of R. Let

δ(R) := min{deg(Rij) | Rij 6= 0}.

Without loss of generality, deg(R11) = δ(R). We show that by elementary op-
erations, we can transform R into R(1) with δ(R(1)) < δ(R). Then we obtain a
strictly decreasing sequence δ(R) > δ(R(1)) > δ(R(2)) > . . . ≥ 0. After finitely
many steps, we arrive at zero, i.e., we obtain a matrix which has a unit as an
entry, and thus we are in Case 1.

Case 2a: R11 is not a left divisor of all R1j, say, it is not a left divisor of R1k.
By the Euclidean algorithm, we can write

R1k = R11q + r

where r 6= 0 and deg(r) < deg(R11). Perform the elementary operation: kth
column minus 1st column times q. Then the new matrix R(1) has r in the (1, k)
position and thus δ(R(1)) < δ(R) as desired.

Case 2a’: R11 is not a right divisor of all Ri1. Proceed analogously as in Case 2a.

Case 2b: R11 is a left divisor of all R1j, and a right divisor of all Ri1. Similarly
as in Case 1, we can transform, by elementary operations, R into the form (A.8).
If a is a total divisor of all entries of Q, then we are finished. If there exists i, j
such that a is not a total divisor of b := Qij, then there exists c such that a is
not a left divisor of cb. (Assume conversely that a is a left divisor of cb for all c,
then aD ⊇ Db, and thus aD ⊇ DbD, which implies that a is a total divisor of b
according to the lemma.) We perform the elementary operation: 1st row plus c
times (i+ 1)st row. (Note that the (i+ 1)st row of R′ corresponds to the ith row
of Q.) The new matrix has cb in the (1, j + 1) position and therefore we are in
Case 2a. �

Example: Let D = d
dt

and

R =

[
D + t −1 1

0 D − 1
t

t

]
∈ D2×3,

where K = R. The Jacobson form is given by

URV =

[
1 0 0
0 D + t− 1

t
0

]
,

where we may take

U =

[
1 0
−t 1

]
and V =

 0 0 1
0 1 t
1 1 −D

 .



100 APPENDIX A. BACKGROUND MATERIAL

Since R has the form R = [DI − A,B] for some K-matrices A,B, we write
w = [x1, x2,−u]T ; then the system Rw = 0 takes the form

ẋ = A(t)x(t) +B(t)u(t), where A(t) =

[
−t 1
0 1

t

]
and B(t) =

[
1
t

]
.

Since d = D + t− 1
t

has degree one, this system is not controllable. Indeed, this
can also be verified directly, because these equations imply

d(x2 − tx1) = 0,

which is an autonomous equation for x2− tx1, in particular, it is fully decoupled
from the input u. (To construct such relations systematically, note that x2−tx1 =
[−t, 1, 0]w, and ξ = [−t, 1, 0] is the second row of W = V −1. Thus ξ /∈ im(·R),
but dξ ∈ im(·R), that is, [ξ] is a torsion element of the system moduleM.) Thus,
on every interval I on which x1, x2 are smooth, we have

x2(t)− tx1(t) = cte−
1
2
t2

for some c ∈ R. This shows that there exists a non-trivial relation between x1

and x2, which makes it intuitively clear that the system cannot be controllable
(because not every configuration of x1 and x2 can be reached).

However, for every fixed t0 ∈ R \ {0}, the matrix pair A = A(t0) ∈ R2×2,
B = B(t0) ∈ R2 is controllable, because its Kalman matrix is

K =

[
1 0
t0 1

]
which has rank 2 for any t0. This corresponds to the fact that the Smith form of

R(t0) =

[
D + t0 −1 1

0 D − 1
t0

t0

]
∈ R[D]2×3

equals [I, 0] for any 0 6= t0 ∈ R. This shows that the “snapshots” of a time-varying
system (i.e., the time-invariant systems that result from “freezing” the system at
some fixed t0) will not provide sufficient information about the underlying time-
varying system, in general. ♦

A.12 The tensor product

Let D be commutative, and let M and A be D-modules. The tensor product is
defined as

M⊗A = {
∑k

i=1 mi ⊗ ai | k ∈ N,mi ∈M, ai ∈ A}
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together with the laws

(m1 +m2)⊗ a = m1 ⊗ a+m2 ⊗ a
m⊗ (a1 + a2) = m⊗ a1 +m⊗ a2

dm⊗ a = d(m⊗ a)

m⊗ da = d(m⊗ a).

Thus M⊗A becomes a D-module. Similarly, if f :M→ N is a D-linear map
between two D-modules, we define

f ⊗A :M⊗A→ N ⊗A,
∑
mi ⊗ ai 7→

∑
f(mi)⊗ ai.

Thus the tensor product becomes a covariant functor; see [3, Ch. II, §3] for more
details.

Theorem A.12.1 The tensor product is right exact, that is, if

M f−→ N g−→ P −→ 0

is an exact sequence of D-modules, then

M⊗A f⊗A−→ N ⊗A g⊗A−→ P ⊗A −→ 0

is also exact.

Proof: It is easy to see that g⊗A is surjective: Let
∑
pi⊗ ai be given, then we

have pi = g(ni) for some ni because of the surjectivity of g, and thus∑
pi ⊗ ai =

∑
g(ni)⊗ ai = (g ⊗A)(

∑
ni ⊗ ai).

Also, the fact that g ◦ f = 0 implies that (g ⊗ A) ◦ (f ⊗ A) = 0, and hence we
have im(f ⊗ A) ⊆ ker(g ⊗ A). It remains to prove the converse inclusion. For
this, consider

G : (N ⊗A)/im(f ⊗A)→ P ⊗A, [x] 7→ (g ⊗A)(x)

where x ∈ N ⊗ A and [x] is its residue class modulo the image of f ⊗ A. The
map G is well-defined and surjective. We are finished if we can show that it is
injective. For this, consider

H : P ⊗A → (N ⊗A)/im(f ⊗A),

which maps an element
∑
pi ⊗ ai to [

∑
ni ⊗ ai], where ni is chosen such that

g(ni) = pi. For well-definedness, we need to show: If g(n
(1)
i ) = g(n

(2)
i ) = pi,
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then [
∑
n

(1)
i ⊗ ai] = [

∑
n

(2)
i ⊗ ai]. It suffices to show that g(n) = 0 implies

n ⊗ a ∈ im(f ⊗ A). However, this follows from the exactness of the original
sequence, which says that g(n) = 0 implies n = f(m) and thus n⊗a = f(m)⊗a =
(f ⊗A)(m⊗ a) ∈ im(f ⊗A). Finally, we have

H(G([
∑
ni ⊗ ai])) = H((g ⊗A)(

∑
ni ⊗ ai)) = H(

∑
g(ni)⊗ ai) = [

∑
ni ⊗ ai]

which shows that H ◦G is the identity map. This yields the desired result. �

Since we have D ⊗A ∼= A, or more generally, Dk ⊗A ∼= Ak, we have just shown
that the exactness of

Dq R−→ Dg L−→ Dl −→ 0

implies the exactness of

Aq R−→ Ag L−→ Al −→ 0.

The module A is called flat [2, Ch. I] if the tensor product −⊗A is exact, that
is, if the exactness of

M→N → P

implies the exactness of

M⊗A→ N ⊗A → P ⊗A.

Theorem A.12.2 A is flat if and only if for any exact sequence

0→ N ↪→ P

the sequence
0→ N ⊗A → P ⊗A

is exact, that is, if the tensor product turns injections into injections.

Proof: The condition is clearly necessary. For sufficiency, let an exact sequence

M f−→ N g−→ P

be given. Then the sequence

M f−→ N g1−→ im(g) −→ 0

is exact. The right exactness of the tensor product implies that

M⊗A f⊗A−→ N ⊗A g1⊗A−→ im(g)⊗A −→ 0
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is exact. On the other hand, we have an exact sequence

0→ im(g) ↪→ P.

By assumption,
0→ im(g)⊗A → P ⊗A

is also exact. Thus
M⊗A f⊗A−→ N ⊗A g⊗A−→ P ⊗A

is also exact. �

It can be shown that the space of smooth functions with compact support

A0 = C∞0 (Rn,K)

is a flat D-module, that is, the tensor product −⊗A0 transforms injections into
injections. The result of Lemma 5.1 is an example for this: If R ∈ Dg×q has full
column rank (that is, the map Dq → Dg, x 7→ Rx is injective), then Rw = 0 has
no non-zero solutions with compact support (that is, the map Aq0 → A

g
0, w 7→ Rw

is injective).

Since A0 is a flat module, the exactness of

Dq R−→ Dg L−→ Dl

implies the exactness of

Aq0
R−→ Ag0

L−→ Al0,
as stated in Theorem 2. In fact, A0 is even faithfully flat, that is, the exactness
of the two sequences is actually equivalent. The same holds for C∞0 (Ω,R), where
Ω = {x ∈ Rn | ‖x‖ < r} for some r > 0. This was needed for the interpretation
of over-determined systems, that is, systems whose autonomy degree is at least
one.

Let us summarize the categorical language used in this course: The contravariant
Hom-functor HomD(·,A) is always left exact. It is exact if and only if A is
injective. This can be reduced to showing that injections are transformed into
surjections. If exactness is not only preserved, but also reflected, then A is an
injective cogenerator.

For the sake of completeness, note that the covariant Hom-functor HomD(M, ·) is
also left exact. It is exact if and only ifM is projective. For this, the crucial point
is to show that surjections become surjections under this functor. If exactness is
not only preserved, but also reflected, then M is a projective generator.

Finally, the tensor product − ⊗ A is a covariant functor which is always right
exact. We call A flat if it is exact, and for this, we need to show that injections
are turned into injections. If exactness is not only preserved, but also reflected,
then A is called faithfully flat.
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