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TI— IIS book is intended for second or
f third-year students who have some
kn.éwlcdgc of the principles of elementary
sinalysis. The central theme is the conver-
gence of real series, but series whose terms
are complex and real infinite products are
also discussed as illustrations of the main
theme,  Infinite integrals have been
omitted, except in connection with the
integral test for convergence,
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PREFACE

Tr1s book is intended for second- or third-year students
who have some knowledgo of the principles of elementary
analysis. Definitions of the terms and summaries of those
results in analysis which are of special importance in the
theory of series are given in Chapter I. Where it has
proved convenient the o, O notation has been used, even
although this is sometimes considered too difficult for the
average student. In the interests of rigidity it has been
necessary to discuss the question of the upper and lower
limits of a function, but I have confined myself to an

'\. outlino of those properties which have direct boaring on

~

L 1

~5
<
9
N

the convergence of series.

The central theme of the book is the convergence of
real series, but series whose terms are complex and real
infinite products are also discussed as illustrations of the
main theme. Infinito integrals have been omitted, except
in connection with the integral test for convergence.

In an olementary book of this kind it is difficult to
state, with any accuracy, to whom I am indebted for the
particular presentation of the subject, but the lecturers of
my student days, Professor T. M. MacRobert, Dr James
Hyslop and Mr A. 8. Besicovitch, must have influenced
me considerably. I am especially indebted to Professor

MacRobert, who, in view of my absence from home, has
vil
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very kindly corrected all the proofs for me. My thanks
are also due to Dr Graham, who has verified the examples,
and to Dr Rutherford, who, along with Professor MacRobert,
has seen the book through the press.
J. M. HYSLOP
R.AF.

Middle East
August 1942

PREFACE TO FIFTH EDITION

In this edition a few errors have been corrected and a
few minor alterations have been made in the text, in the
interests of clarity.

J. M. HYSLOP
April 1954
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OHAPTER I

FUNCTIONS AND LIMITS

4, Introduction. The theory of infinite series is an
important branch of elementary mathematical analysis.
For its proper understanding it is essential for the reader
to have some knowledge of such fundamental ideas as
bounds, limits, continuity, derivatives and integrals of
functions. In this chapter a brief sketch will be given of
those results in analysis which will be used in the book,
and also o moro detailed discussion of the question of
limits. It will bo assumed that the reader is familiar with
the simplo propertics of the logarithmio, exponential,
hyperbolio and circular functions. Certain properties of
theso functions, howover, which are of special importance
in the theory of series will be derived in Art. 18,

2. Punctions. It is sufficient for our purpose to
regard a function of & variable as a mathematical expres-
sion which possesses one caloulable value corresponding
to each of a set of values of the variable. Each caloulated
value of the expression is called the valuo of the function
corresponding to the appropriate value of the variable,
Throughout, the letter = or y will denote a real variable,
that is, a variable which takes only real values and, unless
otherwise stated, the functions with which we deal will
also be assumed to be real, that is, to possess only real
values. Functions of z are usually denoted by symbols
such as F(z), f(z), $(), etc., and their values when z =a
by F(a), f(a), $(a), eto. If values of the function f(z) can
be determined for certain values of the variable x we say

1 A



2 INFINITE SERIES

that f(x) is defined for these values of z. If the function
f(z) is defined for all values of  satisfying the inequality
a<x<b, we sny that f(z) is defined in the open interval
(@, b). If, in addition, f(z) is defined for z =« and for
z = b, then f(z) is defined for a<z<b and we say that
f(x) is defined in the closed interval (a, b).

3. Bounds of a Function. Suppose that the function
f(x) is defined for a certain set of values of @, If there is
o number which is greater than all the values of f(z) then
f(x) is said to be bounded above for these values of w,
If there is a number which is smaller than all the values
of f(z) then f(x) is said to be bounded below for these
values of z. It both conditions are satisfied f(x) is said
to be bounded for these values of x.

If, for a certain set of values of z, there is & number K,
independent of @, such that (i) f(z)<<K, (ii) there is at
least one value of x for which f(x)>K —e, where € is any
positive number,* then K is called the upper bound of
f(z) for this set of values of z. 1f, for a certain set of values
of x, there is a number k, independent of @, such that
(i) f(x)=k, (i) there is at least one value of x for which
fle)<k-te, then [ is called the lower bound of f(z) for
this set of values of a.

It is clear that the lower bound of f(x) is not greater
than its upper bound.

The functions

tan z, (0<<a:<<im),
(—1)"n, (n a positive integer),
sin (1/x), (=>0),

are, respectively, unbounded above and bounded below
with lower bound zero, unbounded above and below,
bounded above and below with upper and lower bounds
+1 and —1.

* Throughout e and 7 will always denote positive numbers
and it is convenient to think of them as small.
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The following theorem is fundamental.®

THEOREM A. If flx) is bounded above for a cerlain
set of values of =, it possesses an upper bound for these
values of z. If f(x) is bounded below it possesses a lower
bound.

4. Limits of Functions. The function f(z) is said to
tend to the limit ! as z tends to a if, given ¢, we can { find
7 = q(¢) such t that | f(z)—I|<e for all values of x except
a for which the function is defined and which also satisfy
the inequality |x—a|<%. In these circumstances we write
Jx)—1 a8 2—a or lim f(z) = 1.

a
The function f(z) is said to tend to the limit I as =
tends to infinity if, given ¢, we can find X = X(¢) such
that |f(z)—l|<e for all values of 2>X for which the
function is defined. In these circumstances we write
f(z)—! a8 z—o0 or lim f(z) = 1.
20

The function f(z) is said to tend to infinity as z tends
to infinity if, given any positive number K, we can find
X = X(K) such that f(z)>K for all values of z>X for
which the function is defined. In these circumstances
we write f(x)—>c0 as z—co0 or lim f(z) = co.

22—+
The reader should also construct definitions corres-
ponding to the expressions
lim f(z) = —o0, limf(z) =1, limf(z) = c0.
z—a -+~ 2> =D
Throughout the remainder of this article we shall
consider only limits as z—oc0 and we shall assume that

* Theorems A, B, C are stated without proof. Their proofs will
bo found in most toxt-books on mathematical analysis.

+ The symbol |z| means the numerical value of z. For example,
13| =3, 1—=2| =2.

The inoqualities [2,+2,| <|z1|+|2sl, |21 57> [21] — [24] are casy
to verify.

$ Tho statement y = 7{¢) means 5 depending only on .
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the functions under discussion are defined for all sufficiently
large values of . There being no possibility of ambiguity
we shall use the contracted notation lim f(z) for a limit
of this kind. The subsequent theorems hold with trivial
medifications for other types of limits and, in particular,
for limits as —co through a certain set of values. It
will be observed that from the definition of a limit it follows
that, if f(z) is defined for all values of x and if lim f(z) =,
. then a fortiori f(z)—>1 as z tends to infinity through any
set of values and, in particular, through sall positive integral
values. We now prove some fundamental theorems on
limits,
TaeoreM 1. If lim f)(z) =1, lim fy(z) = Iy, then

() lim {fy(=)+fo(x)} = L+,
(i) lim f()fs(x) = Ll
(iii) lim fy()/fa(x) = L/,

where, in (iii), I; + 0.

Corresponding to any positive number & we can find

(=) —hl<8, |fiz) L] <6,

whenever > X, > X, respectively. If X = Max (X,, X,),
that is, if X is the larger of X, and X;, then these two
inequalities hold a fortiori whenever 2> X.

(i) Given ¢, lot 8 = }¢ and determine X as above,
Then whenever x>X, which depends only on ¢,
[A@)+fol2)—h =] < [fi(®)—h|+|falx) 1|
< 20
= ¢,

and this proves (i).
(ii) Given ¢, let 8 be the positive root of the equation

z+(|al+ll))z—e =0,
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and determine X as a function of 8, and therefore of ¢,
as before. Then, whenever >X,

|fi@)fal=) —hlk] = [fi(@){falx) =L} +L{fi(x) =4}
< JAE@)] 1fal@) 1|+ o] 1fi(z) =)
< (|L]+0)80+[%|0
= 02+(|h|+I5))0
= €,
which proves (ii).
(ili) Given ¢, let 0 be any positive number satisfying

both the inequalities
O<ilhl, 0< zrro

AR
and determine X as before. Then,* whenever x>X,

Lil®) _ l_l — 'lﬂfl(z)_llfﬂ(z)
filz) L lofa()

- |f1(¢){ls—fa(r)}+fe(==){fn (=)} I

o fo(2)
< |f1(x)||lz—fa(z)'+'fs($)”f1(1')—llj
= AJFAE)
(Jul+0)8+([|+6)0
ANAR)
%] -3 1| 4 |2 43 18]
<o YA }

<6
which proves (iii).

It should be noted that (i) and (ii) hold not merely
for two but for any finite number of functions f,(z), fa(x),
fs(z), . . . The reader should examine how far the theorem
remains true in the case when either I, or I, or both are
infinite.

* It is assumod here that fy(z) 40 for any particular value of iz.

If it is zero we merely omit the corresponding value of 2 from
consideration.



é INFINITE SERIES

Taeorem 2. If, for all sufficiently large values of z,
we have f\(x)< fulx) then L, <l,, where I, = lim fy(x) and
ly = lim fy(z) and il is assumed that these limits exist.

Suppose if possible that §,>l,. Let € be 3(},—1,).
Then, as in the proof of Theorem 1, we can determine
X = X{(e¢) such that, whenever z>X,

h—e<filz)<h+e, L—e<fy(x)<ly+e.
It follows that, for such values of z,
Ni@) —fux) >l —e—ly—e =0,

which contradicts the hypothesis.
The theorem is therefore proved.

CoroLLARY. Under the conditions of Theorem 2 if
lim fy(z) = co, then lim fy(x) = co.

It should be noted in passing that the hypothesis
hH@)<foz) does not imply the conclusion l,<l;. For
example, if f;(x) = 22, fi(x) =z, then f,(x)<f.(xr) when
z>1 but lim f(z) = lim fa(z) = 0.

5. Two Important Limits. Besides being of great
importance in themselves the limits which we shall now
discuss serve to illustrate the preceding definitions and
theorems.

(i) Let f(n) = n%z", where n is a positive integer ®
and a and z are any real numbers.} We shall determine

lim f(n) for all values of a and x.
n—so

Suppose first that |z|<1, a>0. Let} p = [a]+1.
If x =0, f(n) = 0 for all values of # 8o that lim f(n) = 0.

* Throughout the book the letters n, m, p will always ropresent
a positive integor (or zoro).

t The definition of the symbol n® for all real values of a will
be given in Art. 12.

3 The symbol [z] means the integral part of . For example

(5l =2 (3] =3.
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If z # 0 we may write |x| = 1/(1+a), where a>0. Then,
for n>p+1,

n?
OIS = et e
n?
Sa=1). (=)
1.2..(p+1)
_ (1) a>lnt
T (A-D(1-3)..1-2
-0,

a8 n->o, since the numerator tends to zero and the
denominator is a product of p factors each of which tends
to 1. Thus, by Theorem 2, lim f(n) = 0. If |z|<]1, a<<O
the same result is true, since

ndz|"< |z|"—0.

Suppose now that |z|>1 and a<0. Write 8 = —a
and y = 1fz. Then

()] =
o) |J|"

as n—0, since >0 and |y|<1. If [z|>1, a>0 the same
result is truoe, since

nolz|"> |z|"—> co.

Thus, when z>1, f(rn)—>c. When z<—1, f(n)>o as
n tends to infinity through even values and f(n)—>—co as
n tends to infinity through odd values. Tho function
f(n) is therefore unbounded when |z|> 1.

When z =1 we have f(z) = n° and lim f(r) =1, 0, 0
according as a =0, >0, <0.

When x = —1, a0, we have f(n) = (—1)"n9, which
does not tend fo a limit as n tends to infinity. In the
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cass £ = —1, a =0, however, f(n) is bounded and has
upper and lower bounds equal to 41 and —1. When
z = ~—1, a<0 the function clearly tends to zero.

(ii) Let ¢(n) =2"/n! We shall show that, for all
values of z, ¢(n) tends to zero as n tends to infinity.

Let N =[|z]|]. Then, if n>N,

_ []¥|z]n-¥ < M(ﬁl_)" N_)o,

NYN+1)N+2)...n =~ NI\N-1
as n—00, by (i), since 0<|z|<N-+1. The result follows
from Theorem 2.

xll
nl

6. Monotonic Functions. If, as z increases in a
certain interval (a, b), the function f(z) does not decrease,
then f(r) is called a monotonic increasing function of
z in (e, b); if f(x) does not increase, then it is called a
monotonic decreasing function of z in (g, b).

Turorex 3. If f(2) is a monotonic increasing (decreasing)
Junction of x for z>a then, as x—>w, f(x) tends to a finite
limit or to + o(— ) according as f(x) is bounded above
(below) or not.

It will be sufficient to prove the theorem for a monotonic
increasing function only.

Suppose that f(z) is bounded. By Theorem A it has
an upper bound K with the properties, (i) f(z)<K if
z>a; (ii) given ¢, there is a valuo X of z greater than a
such that f(X)> K —e. Since f(z) is monotonic increasing
it follows that, whenever z>X,

K—e<flz)<K<K-+e.
Thus f(x)—>K as z—c0.

Suppose that f(z) is not bounded above. Given any
positive number L we can find a value X’ of z such that
J(X)>L. It follows that f(z)> L for all values of 2>>X’.
Hence f(x)~>o0 as z— 0.

7. Upper and Lower Limits. Suppose that the
function f(z) is bounded for all values of x>z Lot



FUNCTIONS AND LIMITS 9

M(X), m(X) denote respectively the upper and lower
bounds of f(z) for z>X>z,. Then M(X), m(X) are
respectively monotonic decreasing and monotonic in-
creasing bounded functions of X. By Theorem 3 they
therefore tend to finite limits a8 X—o00. These limits
are colled respectively the upper and lower limits of
f(z) as z— 00, and we write

lim f(z) = lim f(z) = lim M(X),
lim f(z) = lim f(z) = lim m(X).

>

It should be observed that every bounded function
possesses finite upper and lower limits and that the
lower limit is not greater than the upper limit.

As an illustrative example consider the following
function of the positive integral variable »,

1
fm) = LH(—1y+ 1
If N iseven, M(N) = 2+ 1l‘v m(N) = 0, while, if N is odd,

M(N) =2 +——, m(N) =0.

N+41
Thus iim f(r) =2, lim f(n) =0,
It is clear that
lim sin z = l,li__r_nsinx= -1

The following theorem gives us an alternative definition
for upper and lower limits.

THEOREM 4, If there 18 a number l such that, (i) given
€ there exisis X, = X(¢) such that f(z)<l+€ whenever x> X,,
(ii) no maiter how large X, may be there i3 a value of 222X,
Jor which f(x)>l—e, then I=1lim f(z). Conversely, if
lim f(z) = I, then I has the properties (i) and (ii).

Similar properties hold in the case of the lower limit.
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Since M(X,) is the upper bound of f(z) for z>X,,
there is & number X', >X,, such that f(X'))>M(X,)—e.
Thus, whenever X >X,,

M(X)<HM(X,)<f(X'))+e<l+2e.

Also, from (ii), we have M(X)>l—e¢. Hence M(X)—!
as X—o0 ; that is, I = lim f().

Conversely, if lim f(z) =, given ¢, there is a number
X, = X,(¢) such that M(X)<l+e whenever X>X,. In
particular, M(X,)<l+e; whence f(r)<l4e whenever
z>X,. Also there is a number X, such that M (X,)>I—1e.
Since M(X,) is the upper bound of f(z) for 2>>X,, there
is & value of 2>X, such that f(z)>M(X,)—23e. For this
value of x we then have f(z)>l—e.

For the case of the lower limit a similar proof may be
constructed.

THEOREM 5. Iflim f(x) = lim f(2) = I, then lim f(z) =1,
and conversely. -

By Theorem 4, given ¢ we can find X; = X,(¢) such
that f(z)<l+e whenever z2>X, and X, = X,(¢) such that
f(@)>l—e whenever z>X,. Let X = Max (X,, X;). Then
|f(x)—!|<e whenever z>>X ; that is, lim f(z) = L.

We leave the proof of the converse to the reader.

8. Continuity. Suppose that the function f(r) is
defined in the interval a <z<b and that x, is some point *
(other than a or b) in this interval. Then f(z) is said to
be continuous at the point z, if hm f(z) =f(z,). It is

said to be continuous at a if f(x)—»f(a) as z tends to @
from the right (that is, through values of z greater
than a), and at b if f(z)—f(b) as  tends to b from the left
(that is, through values of x less than b). The function is
said to be continuous in the interval a<{x<b if it is
continuous at every point of the interval.
* Hore and occasionally elsewhere it is convoniont to use the
language of geometry.
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For example, the function z-! is continuous for >0
or for x<0 but not for z = 0 since it is not defined at
this point. Also the function f(z) ==, (x # 0), f(0) =1 is
not continuous at z = 0 since lim f(z) = 0 3 f(0).

-0

The following theorem summarises those properties of
continuous functions which we require.

TaeoreM B. The sum, difference and product of two
Junctions f(x) and ¢(x) which are continuous at x4 are also
conlinuous at z,. Also f(x)/d(x) i3 continuous at z, provided
that $(z,) # 0.

9. Differentiation. If the function f(z) is defined
in the interval (a, ), and if x is a point in this interval, then
lim f(17+h) _f(r)

A0 '
if it exists, is called the derivative or differential
coefficient of f(z) at the point z, and we denote it by

f'(z) or by ‘% f(z). The function f(z) is then said to be

differentiable at the point z. The derivatives of f(x) at
a and b are defined similarly with the same conventions
in regard to the limit operations as in the case of continuity.
If the above limit exists for all points z in the interval
(a, b) then f(2) is said to be differentiable in the interval,
Its ‘derivative f’(z) is then defined for all points in the
interval (a, b). If f'(z) is differentiable in (e, b) we denoto
its derivative by f"(z). Similarly, we may obtain in
succession further higher derivatives of f(z).

We assume that the reader is familiar with the ordinary
rules of differentiation and with the derivatives of functions
which commonly occur in elementary analysis., We state
the following theorem for the purpose of reference.

THEOREM C. (i) If f'(z,) exists then f(x) is continuous
at the point z4. (ii) If the n-th derivative f1")(x) of the funclion
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f(x) exists tn an interval which sncludes the origin and if =
18 any point in this snterval, then we have

n-1 n
f(x) =£(0) + %f’(0)+...+ (:___T)-lf(n—n(o).*. %l F(62),
or
Z o a:""‘ -
J(z) =f(0)+f|f 0)+... +(n l)!f‘ 1(0)
(1—6)-ftn)(0z),

(n n—1)t

where, in both cases,* 0<0<1.
The expansions in (ii) are called the Taylor (or
Maclaurin) expansions of f(z).

10. Integration. For the purposes of this book it
is not necessary for the reader to be acquainted with
the strictly arithmetical definition of the definite integral.
He should, however, know the * standard ” integrals, the
more important theoretical properties of integrals and the
various methods of simplifying and evaluating them.

Such properties, together with a complete discussion
of the arithmetical definition of the Riemann integral,
will be found in R, P, Gillespie, Integration.t

Here we shall discuss briefly the question of infinite
integrals, as these have important applications to the
theory of series. In passing it is perhaps worth remarking
that almost every theorem for infinite series has an exact
analogue for infinite integrals.

If, for t>>a, the function f(t) is continuous it is known }

z
that | f(t)dt exists for 2>>a and defines & function F(zx)
which i; continuous for z>>a. Iflim F(z) is finite and equal
o T
to L the integral I f(t)dt is said to be convergent to
a

* It should be noted that # depends both on n and on z.
1 This toxt-book will be referred to as G.  Roforences are to
the third edition, % See @., pp. 74, 78.
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the valuo L. Otherwise the integral is said to be divergent.
Divergent integrals are further classified into properly
divergent, finitely oscillating and infinitely oscil.
lating integrals. In the first of these F(z) tends to 4o
or to —e0, in the second F(z) does not tend to a limit
but remains bounded for all large values of z, while, in
the third, F(x) does not tend to a limit and is not bounded.
[

For example, the integral | t-Adi, (¢>0), is convergent
for A>1 and properly diveargent for A<, the integral
o0 »
sint dt oscillates finitely and the integral f teint dt
0 0
oscillates infinitely.
Suppose that, for ¢>a, f(!) and g(f) are positive
continuous functions and that f(¢)<g(¢). Suppose further
®
tha.t.j g(t)dt converges to the value M. Under these

[ ]
conditions it follows that j J(t)dt is convergent, for F(x)

a
is a monotonioc increasing function of z and
z
Fo< o<,
a

Hence, by Theorem 3, F(z) tends to a finite limit.
Suppose now that f(f) is not defined at the point a
and that, elsewhere in the range a<{{<b, f(¢) is continuous.

s b
In these oiroumsta.ncesf f)dtisdefined tobelim |  f(t)de,

a €e—+0J ate
and is said to be convergent if this limit is finite and
divergent otherwise. Such an integral is essentially the
same as that which we have already discussed, for it reduces
to that type by employing a suitable change of variable.
The comparison property which we have obtained above
clearly holds also for this typeb of integral. We may

similarly form definitions for j f(t)dt when f(t) is not
e
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defined at b or when f(f) is not defined at some point
within the interval (a, b).

in
Example. Show that the integral j log (1/sin 0)d8 is
0

convergent.

We use the inequality sind> %9, (0<<0<3n), and some

elementary properties of the logarithmic function (see Art. 12).
The integrand is positive and continuous for 0< < }§n
and is not defined at § = 0. We have

ir . in
I , log (1/sin0)dd < j | log (x/20d0
- [o log (7/20)] i J' ¥ 10,
80 0

which is finite. It therefore follows that the given integral is
convergent.
in
The given integral is equal to —I log sin 6 d# and its value
(]
will be found in Art. 33.

11, The 0, O notation. Let ¢(z) be a positive function
of z, that is, a function of 2 which takes only positive
values, and let f(z) be a second function which is defined
for the same values of x as ¢(x). If, for these values of z,
there is a positive number X, independent of 2, such that

If @) < K(z),
then we write f(z) = O{¢(x)}. For example,
sin 2 = O([z|), (—jw<z<im),
cos z = 0O(1), for all values of =z,
The first relation is of course true for values of = outside
the range (—3m, 3n), but, in such cases, the relation
sinz =0(1) is more precise. By the statement

f(z) = O{¢(x)} as z—c0 we mean that f(z) = O{d(z)}
for all values of 2 concerned which are greater than some
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fixed number. In the same way a meaning may also be
attached to the statement f(z) = O{¢(z)} as z—a.

If, as z—a, f(z)/$(z)—>0, then we write f(z) = of(z)}
as z—a. For example,

tan 2 = o(z?) as x—0,
vz = o(z) 88 >0, z = o(+4/x) as z—0.

It is often convenient to use symbols like O(z), o(1),
O(x?), o(x~Y), ete., without reference to a specific function.
For example, the symbol O(z?) stands for any function
whose numerical or absolute value when divided by z*
is bounded for the values of x under consideration. Again,
the symbol o(1) stands for any function which tends to zero
as the variable under consideration tends to some number
which is rendered unambiguous by the context. Meanings
are thus attached to such statements as

O(1) = ofz) as x>0, o(z) = o(+/x) as 0.

If f(z) and ¢(x) are any two functions such that
J(@)/$(z)—>1 as z—>a then we write f(x)~d(x) as z—»a.
For example, tan x~ as 2—0.

Example. If, as x>, f(z) = 284-0(z), $(z)~az-!, show
that f(z)¢(x) = x+o(x).

Since ¢(r)~=z~! we may writo ¢(xr) = z-14o(z-1). Then

J(@)¢(x) = {#*+O0(x)){z* +o(x-1)}
= z+4+0(1) 4-0(x) +O0(z) . o{x1).
As z-»w, O(1) = o(z) and O(x).o(2~!) =0 (1) = o(x). The
result therefore follows.
Examples

1. Evaluate the following limits :—

i) lim Jo—nt1

R

oy e GnPtan®ity L, ta,
‘"),,lﬂboup-i-bln’“-!- .o +by

3]
(iii) lim o t™
N—sx xﬂ—l+2n

» (b0¢ o)’
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.y qp o E=xint
(iv) nl:: TFanet

. /(1 +x)=4/(1—2)
© I vera—vE—a

2. If lim f(n) = ! prove that
i SO+ oo ) _

L

n
[Write f(n) = l4+¢(n). Then ¢{n)}>0 as n->xo and the
result will be proved if we show that

by = HUHHOIE - el

Given ¢, we can find N = N(c) such that |¢(n)|<}e, when-
ever n>N. Writing

1$(1)+$(2)+... + ${N)| =K,
we then have
Id’(n)l<§ + [$VHD |+ |V +2) | +... +din)|

n

< I_{ + «(n—N)
n 2n

< I-,g + ¢
< detde
= ¢
whenever n> Max. (N, 2K/¢). The result follows.]
3. If
1) L . THpR—

Vin 1)) T i FDn 42} T /{28 —1)2n)
prove that f(n) tends to a limit I which satisfies the inequality
i<i<l.

{Show that f(n) is a monotonic decreasing function of n.]

4, If ¢(z) is continuous for a<<z<ch and if lim {f(x)} =1,
ok

where k¥ may be finite or infinito and a<{l<b, prove that
lim ¢{f(z)} = ¢().
Tk
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6. Evaluate

(@) Tm (cos 3) , (ii) lim ((—1)"+sin }na),
20 . oy
(iif) ilTn‘(l) ;-:'-'i sini , (iv) Ea?-:-—l sin é
8. If, as x>0, f(x) = x+0(z?), ¢(x) = x-2+4-O(x~1), prove
that f(z)é¢(x) = 2-14-0(1).

Axswens. 1. (i) 45 (i) aofb; (iii) §if |2|<C1, & if [2]>1;
(iv) z if [¢|<1,0ifz = £1, —1/zif [z|>1; (v) /2. 6.(i)1;
(ii) —1—g4/2; (i) —1; (iv) L



OHAPTER II

SOME PROPERTIES OF PARTICULAR
FUNCTIONS

12. The Logarithmic and Exponential Functions,
In this chapter we shall consider briefly some of the
simpler functions of analysis. It will be assumed that
the reader is familiar with their well-known properties,
and wo shall therofore confine ourselves to a discussion
of those properties which are required for an adequate
understanding of infinite serics. We begin with the
logarithmic and exponential functions,

The function log z is defined for x>0 by means of

£ 2 T
the integral f t-1dt. The relation y = J. -ldt, >0,
1 1

defines ¥ ns & monotonic increasing continuous function
of z which tends to infinity as = tends to infinity, and it
may be shown that, for all values of y, z is a positive,
continuous, monotonic increasing function of y. This
function we denote by exp y. If the number e is defined

by the equation
¢
= J. i-1de,
1

it may be proved that, when y is a rational number (that is,
& number of the form m/n where m and » are integers),
exp y = e¥. When y is irrational e” is defined to be exp y.
The function a¥ is then defined for all values of y and all
positive values of @ to be eviczs,
We now deduce some properties of these functions.
18
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(i) If = is any real number and n is any posilive inleger,

z 2z zr-l
e*=1+p5+5 +---+(—m+m€0‘.
where 0<<0<1.
v
Let y =e2 Then z=logy = f t-1de.
1
Thus d_x - d_y _
dy ' dx
It follows at once that the derivatives of all orders
of e are e® and that their value when x = 0 is 1. The
result then follows from Theorem C (ii).
An immediate consequence of this result is that,
a8 z—0, e® = 14-24-0(z?).
(ii) If a and x are positive, there iz a positive number K,
independent of z, such that e*>Ka®,
Let p =[a]+1. Since the terms on the right-hand
side of the expansion for e® in (i) are positive, we have
by taking n large enough, for z>>1,

y=e",

z? _a*
e'> - > g}
! 7 pl
and, for 0z <1,
zv-1 z®

“Z - 7 -1
The result follows by taking K to be 1/pl.
(iii) If a #3 any real number then, as z—c0,
>0, z%e~"—0.
Let B bo any positive number greater than a. Then,

by (ii).
2-%*> K28 = KxP<o—so0,

The sccond result follows at once from the first,
(iv) If & is any positive number then,as x—0,log x=o(z3)
and, as x—0, log = = o(z-95).




20 INFINITE SERIES

The second result follows from the first by writing 1/x
for 2. It is only necessary therefore to prove the first.
Let log 2 = y/8. Then wo have to show that ye—v—0 as
y—>00, and this follows at once from (iii).

(v) For x=p>—1 we have *

2
log (1+2) =2~ 5 +% —..+(-1yZ 1R, 2)

where l3|
|B(n, )| <K +1 .

K being positive and independent of n and .
For z>—1 wo have

log (1+42)= f Ma = f T d
1 0

=r{l—sw—._.+(-1)n-lt»—1+(—1)n¢n(1 +o))de
0

28 | 23 "
= g— 7 -+ g T +(—l)"_l % +R(1l, z),
where
R(n, x) = (—-1)"J‘zt"(l+t)'ld¢.
0

Ift 2>0,

R < t"dl z

IR(n, z)| < a1’

while, if —1<p<2<0,
0
|RB(n, x)| = f (=" (14-)-dt
]

0
< (+p)! f (—tyndt

N
= (14p)-! n+l

The result therefore follows,
* In this inequality p is any fixed number greater than -1,
If nocessary it can be regarded as being as close to —1 as we pleage,
t See @., p. 77.
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Tho particular case » =2 is of special importance.

In this case we may write
log (142) = z+4+0(2%), (—l<p<x]),

or log (1 +z)~a=, (x—0).
The first of these is of course true for £>>1, but is obviously
a result of no mathematical significance.

(vi) If a is any real number and x> —1, then
(1 +2)r=1+4az4 S35 “(“ 1’ ...+ 20 T 12)...((;: 1")+2’ an-1

+ (1-6)*? a{a—1).. (a—n+1)
(1+0x)2- (n—1)!

where 0<0<1.
This follows almost at once from the seccond form of
Theorem C (ii) since, when « is any real number and

z>-—1,
d a— 9 algasn e alog(i+7) a-1
L1120 = o {ealos }=m¢ 08 (1+2) = o(14-z)2~1,

which is equal to @ when = 0. The values of the other
derivatives at x = 0 then follow without difficulty.
1t follows from this result that, for —1<z<1,

(142)* = 14az+40(2?),
(1+42)2 = l+a:c+a(oi—21) 22 +0(|x|3), eto.

(vii) If z i3 any real number, then

x v
lim (l +-) = e°,
y-rko y
Write 5 = z/y so that, as y—+400, A-0. Then, since

we may assume that A>—1,
(l +§)' _ Gl
7 =
= eH1+00A)
—>e®,
as h—0, sinco the exponential function is continuous at
the origin.
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(viii) If B is any real number, then

. xP—aP
lim

z-a T—Q

= ﬂurg—l.

Writu:; = 1+h. Then supposing, as we may, that
h>—1,
B—af A= =
lim Z==%C iy )i .08 :

z—+a T—a h—0 (]
_ B-1y eBlesllih_1 Biog (14p)
L e e e
_ ;3—111' eBlog (L+h) _ 7
Ba e B og (1)

= B{jﬁ_l’
by (i) since B log (1+A4)—0 as k—0,

13. The Hyperbolic Functions. The hyperbolio
functions are defined by the relations

sinh z = }(e*—e~?), cosh z = }(e*+e~3),

sinh = 1
tanh 2 = ——, cothz = ———
T = Sosh 2’ oth tanh 2’
1 1
sech x = ——, cosech o = — -
cosh sinh x

These relations define sinh z, cosh #, tanh x, sech z for all
values of z, and coth , cosech z for all values of x except
ZEero.

The following properties of these functions may be
casily verified :—

(i) cosh?z—sinh%x =1,
(ii) sinh (x-}y) = sinh @ cosh y+-cosh z sinh y,
cosh (z+y) = cosh z cosh y-sinh z sinh y,

pri o M e e
(iii) 7 sinh = cosh 2, 5= cosh = sinh z,
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rin-1 ain
(iv) ginh z = :r—]— {, + & —I— e = ”' B @)’ sinh0,z,
an an+l
cosh x = 1+ 3] + 4| +_ s {:n)T ()ﬂv Y sinhf,z,

where 0<8,<1, 0<0,<1.

14. The Circular Functions. It is not necessary to
discuss here logical definitions of the circular functions.
We assume that the reader is familiar with the properties
of these functions, and we confine ourselves to a statement
of the Taylor expansions of sin o and cos 2. 'We have

I’.’.n-l
)i
sin (Glz+nu),

. 23 . ob
BINn & = x— 3——[ +{'Tl .._”_+{_I)n—l

(2? )’
a? at rn
cos x=1— 57 +f1"} —e(—=1)" (2_;;).!
I2"+1 .
-+ m Slll{gzl' +(n -f—l)rx},
where 0< 0, <1, 0<0,<1.

Examples
1. Evaluate the limits
- 1\a i G 1\ n®
(i) lim (1 +-) , (i) lim (1 + -) i
fi—+xm n n—ex n

(iii) lim z sin 1, (iv) lim {842 log - log (R+l]

-+ n—+x log n

2, Evaluate the limits
(i) lim a=, (i) lim 2%,  (iii) lim (sin z)tn
z—+() a—+0 —0
3. Prove that, as x—>-0,

log log = 0 z log log =
’ (log =)"

log =
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4. Prove that, as -0,
(i) 6?*—2e*-} 1~a?,
(ii) 7' sin & = =+0( |z %),
(iii) 6% cos = log (1+x) = x40(x?),
. 2*+log (1—2a%)
(iv) 2*— sinh*z a2

and that, as z>w,

(v) log (1-e*+ o)~z

5. Prove that as a-0, sinh z~s, and that as r>o0,
log sinh x~m.

6. Prove that,
: Sado o 253 285
e?sin x = x-} T + Ty

n—1
tn—1) gi St n—1
2 sin ( 1 '."r)x oingn

(=11 ¢ mloxting),

where 0<<f<1.

Answers. 1. (i) 1; (i) @ ifa>1l,eifa=1,1if a<l;
(iii) 1; (iv) 1. 2. (i) 1; (ii) O; (iii) 1.
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REAL SEQUENCES AND SERIES

15. Deflnition of a Sequence. Supposo that A, is a
function of the positive integral variable n which is defined
for all values of n. Then the ordered set of numbers

A,, Aa, Aa, ey A," aes

obtained from A4, by giving n the values 1, 2, ... in turn
is called an infinite sequence or, more simply, & sequence.
The numbers A,, 4,, ... are called respectively the first,
second, ... terms of the sequence. In this chapter we
shall assume that our sequences are real, that is, have
only real terms.

16. Convergent, Divergent and Oscillating Se-
quences. The sequence 4,, 4,, ... is said to converge
or to be convergent to the sum a if* lim 4, = a. If 4,
does not tend to a finite limit the sequence is said to be
divergent. Divergent sequences are often classified
further into sequences which are properly divergent, or
oscillate finitely or oscillate infinitely. In the first
of these lim A, = 4-00, in the second A4, is a bounded
function of n and in the third 4, is not bounded. For
examplo, the sequences for which 4, is equal to 14-1/n,
log n, sin}nmx, (—1)*n, are respectively convergent,
properly divergent, finitely oscillating and infinitely
oscillating,.

* By lim 4, = a we mean lim 4, == a. We shall adopt this
contracted notation throughontmn dealing with functions of the
positive integral variable n.

25
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17. Infinite Series. Suppose that a, is a function
of the positive integral variablo n. Let

A,=a,+ay+...+a, = i'a,.
r=l

The function 4, is called the sum to » terms or the n-th
partial sum of the series a,4-a;+4-as-+.... This series is

often denoted by Za,, or, more precisely, by z'a,,, and
n=1

a,, 4, ... are called respectively the first, second, ... terms
of the series. The series a,-}-a,-+-a;-}-... is said to converge,
properly diverge, oscillate finitely or oscillate infinitely
according as the sequence 4,, 4, A, ... converges,
properly diverges, oscillates finitely or oscillates infinitely.
If lim A, = a, where a is finite, the series Za,, is said to
w0
converge to the sum a, and we write Za, = a.
=1
It will be observed that, in the :»bove paragraph, the
notation fa,, has been employed in two different senses.
fn=]
It was used firstly as a means of naming a particular
series and secondly as the sum of the series. The reader

will find that no difficulty arises from this ambiguity in
notation.

18. Important Particular Series. We now obtain
the expansions in infinite series of certain well-known
functions.

(i) If —1<z<], we have

2 2 ® o
log (1+z) =z—3F +3 —- ="§£—1) 1 P

Let A, denote the n-th partial sum of the series on the
right, Then, from Arts. 42 and 5, we have, for
—l<p<rL],

- 1
|4,—log (l-}-:c)[<Kn+1 -0
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as n—co. That is, the serics on the right is convergent
and has the sum log (1+2) when —l<z<1.
When z = 1 we obtain the following interesting result :
log 2 =1—}+§—}+....
(ii) For all values of z we have
1 =5z
= +ll+2l+ W Zonl
For the series on the right we have, from Arts. 12 and 8,

n
|[4,—e®] = ef= % -0
as n—co for all values of . The result follows.
(iii) For all values of x we have
. 23
sin x =x—§ +5—! —sey
z2 ot
coa:c=1—-2—-! +4—l—....
(iv) For all values of x we have
. 23 | ab
smhz=x+3—!+-5—! +...,
z2  at
coshx=1+2—! +‘ﬁ+....
The proofs of (iii) and (iv) are similar to the proof of (ii).

(v) If —1<z< and a ts any real number we have

2a(a—1).. (a—n+l)
".,0 1.2..n

(1+4= «1—1+¢m+"‘("l l):|:=*+...

When a 18 a positive inleger the series on the right reduces
to a finite sum and the expansion is then valid for all values
of z.

We may confine our attention to the first part of the
theorem, the second part being mcrely a statement of the
* positive integral index case *’ of the binomial theorem.
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From Art. 12 we have, for the series on the right-hand
side, when 2> —1,

[As= (ko] = (a1 (L) Kol

(n—1—a)(n—2—a)...(—a)
(n—1)(n—2)...2.1 )

Suppose that a is positive. Let p = [a]. Then, for
all sufficiently large values of n,

K - {(n—l-—-a)(n—2—a)...(p+l—-a)
"= w—Dmn—2)..(p+1)
5 {(a—p)(a+l—p)...(a—l)a
p(p—1)...2.1

- (1“":1)(1"”— )(1 +1) o(1)

where
K, =

since each factor lies between 0 and 1.
Suppose now that a is negative. Let 8 = —a, ¢ = [8].
Then, for all sufficiently large values of n,

K= {(n+ﬂ-1)(n+ﬁ—2)---(n+ﬁ—q—l)

12..¢
8 {(n+ﬁ—q—2)---(ﬁ+l)ﬁ}
(n—1)(n—2)...(g+1)

(n+B)"“(l q+l—l3)(l q+l—ﬁ) (1 g+1— p)
q! -1 -2 g+1
(2n)e+?
<..——-
ql

=0(ne+1),

It follows from Art. 6 that, whether a be positive or
negative, |K,|z"—0 when —1<z<].

Moreover, when z>—1,

0<(1-0)/(140s)<(1—0)/(1 —0) = 1.
The result stated then follows at once.
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Two important particular cases of this result are worth

stuting independently. Putting a = —1 and —x for x we
obtain () )1 = J 4z ety (~l<z<]),
Again, putting a = —2 and —x for , we obtain

(1—2)"% = 14224322 +... , (—1<z<]).

19. The General Principle of Convergence. We
now give a very general criterion for the convergence of
an infinite series or sequence.

THEOREM 6. A necessary and sufficient condition for
the sequence A, A, ... lo be convergent is that, given e,
there should exist a positive integer N = N(e) such that
[Apsp—dal<e for all integral values of n>N and for all
positive integral values of p.

If the sequence is convergent there is a finite number a
such that 4,—e. Hence, given ¢, we can find a positive
integer N = N(e) such that |4, —a|<}e whenever n>N.,
Thus, if p is any positive integer and n>N,

[4ntp—4a| < |4ntp—a|+[dp—a|<tetie =e.

Thus the condition is necessary.

On the other hand, if the condition is satisfied, it
follows that |4,—Ay,,|<e for all values of n>N+41;
that is, for n>>N 41,

Ay1—e<4,<Ayiite
so that A, is bounded. It follows that both lim 4, and
lim A4, are finite and that *
T Ayp—e<lim 4,<lm 4,<Ay 4146
whence 0<Tim 4,~lim 4,<2.
But ¢ is arbitrary, so that lim 4, = lim 4,. Hence lim 4,

exists and is finite. The sequence is therefore convergent.

* Of tho throo equality or inequality signs in the succeeding
lino one at least must not be the equality sign.
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The following is the analogue of Theorem 6 for series.

THEOREM 7. A necessary and sufficient condition for
the series Za, to be convergent is that, given e, we can find
N == N(e), such that

n+p
2 a,|<e
Yan 4l
for all integral values of n>N and all posilive integral
values of p.
This follows at once from Theorem 6, for, if
A“ = Z ap,
we have verl e
Apps—A, = apiy a9t F8oqp = Z? as.

ventl

The following deduction from Theorem 7 is very
important.

THEOREM 8. The series Xa, cannol be convergent unless
a,—0.

The theorem will be proved if we show that, if Za, is
convergent, a,—>0. This follows from Theorem 7, with
p=1, or from the definition of convergence since 4,
A,_, both tend to the same limit and e, = 4,—4,-,.

It is important to notice that the condition a,—0
does not necessarily imply the convergence of the series
Za,. TFor example, in the case of tho harmonio series
1+3+3+4+3}+-.., we have a, =n-1'->0 and

1

Asn—4s n+l+n+2+ +2n 2n =%

This inequality holds for all values of #» however large, so
that by Theorem 7 the series i3 not convergent.

Example.—Show that the series Z sin (né+-¢), £ cos (nf+¢),
where ¢ is any real number and 6 is any real number except
zero or a multiple of 2=, oscillate finitely.
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When @ = # the series reduce to
sin ¢ 2(—1)", cos ¢ F(—1)»

which oscillate finitely. Hence we may confine ourselves
to values of § for which 0<6<n and for which n<8<2n.
We shall show first that, for such values of 4, sin (n0+¢)
does not tend to zero as n—co,

Let x, = sin (n6+4-¢) and suppose that «x,>0. Then we
can find N such that, whenever n>N,
|sin §|

IKII < ‘/(4+ sin’ﬂ) H
that is,
2 |sin 6|
Iats |+ |xa] < Vit o0 N ¢
Now
[xnt1l = |x, cO8 8-+cos (nd+ ) sin 8]
= (1=« [sin 0] — |, ||cos 8],
8o that
I"n+1l+|"u|>\/(l_"n') I'Si:)o0| 2] . 0'
sin . sin
>V (1= pam) 1o 0l = by T

which contradicts (1). Hence sin (n04-¢) does not tend to
zero. 8ince cos (nf+¢) = sin (n6+$+4x) it follows that
cos (n6+4) does not tend to zero. By Theorem 8 it follows
that the series Z'sin (nf8-+4), Z cos (nf+¢) are not convergont.
They oscillate finitely, since

i gin sin .
’:‘Jl cos (vo+4¢) | = | cos {#{(n+1)0+ ¢} sin Ind cosec 30

. < | coseo }6{.
The reader will find it an interesting exercise to deduce

from the fact that sin (n8-+¢), cos (n8+¢) do not tend to
zero, that these functions do not tend to a limit at all.

20. Some Preliminary Theorems on Series. We
now show that infinite series possess certain of the well-
known properties of finite sums.

-] e’
TaeoreM 9. If Za, =a then Zca, = ca, where ¢ s

ne=l fie]

any number independeni of n.
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This follows at once from the identity
7 n
2ea, =c2a,

f=l =]

on making n tend to infinity.
TreoreM 10,
If Z.'a,, =a, Zb = B then Z'(a,,+b,,) =a+4f.

o]

This followa from tho identity
Z(a,+b,) = Z'a,+2','b

rel r=l
by making » tend to infinity.

The same proof shows that if one of the given series
Za,, Zb, is divergent and if the other is convergent then
the series X(a,+b,) is also divergent.

THEOREM 11,

© @® o
If Za, = a then Xa, = a+a, and 2a, = a—a,
=l =0 n=2
We shall prove only the first part of the theorem, the
proof of the second part being similar.

n
Let A',=2Za,, Then clearly A’ =ay,+4, The
ye=
result then follows on letting n tend to infinity.

@®
It is clear that, if the series Za, is divergent, each of
n=l

@« o
the series Za,, Zu, is also divergent,

=0 ne=2

The theorem shows that a new term may be inserted

at the beginning of a convergent series without affecting
its convergence, and that the first term may be removed
from a convergent series without affecting its convergence.
A trivial modification of the argument shows that the
term inserted or removed need not necessarily be at the
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beginning of the series. A further slight extension enables
us to conclude that the insertion or removal of any finite
number of terms from a convergent scries does not affect
its convergence, and that the sums of the various series
are related in the expected way.

THEOREM 12. If the series Xa, converges to the sum a
then so does any series oblained from Za, by grouping the
terms in brackets without altering the order of the terms.

Suppose that the series derived from Za, by the inser-
tion of brackets is Zb, and let B, denote the »-th partial
sum of the series 2b,. Suppose that B, contains n, terms
of the given serics. Then, since the order of the terms
is unaltered, B, = 4,,. As v—>o0, n,~ and 4, —a.
It follows that B,—a, and the theorem is proved.

A similar result clearly holds for series which are
properly divergent.

It should be noted that the converse of this theorem is
false. For example, the series (1—1)4-(1—1)+4-... is
convergent, whercas the series obtained by removing
brackets is not. Brackots may thus be inserted without
affecting convergence but may not be removed.

Examples

1. By finding their n-th partial sums examine the con-
vergence of tho series :—

Lo = L ®
@ Zeno @) F @ntblen, () Z ooy
.- w -] l

vy A Rl prwws ey

® n
Z —.
n=1(p+1)
2, Provo that, for —j<z<},

Ox ®
— = D {3n4-24(— 1) 2041y,
=27 +22) "_1{ n+2+(—1) Jz
C

(vi)
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3. Prove that
(i) log {(1+4z)1+2} + log g‘ 1—z)!-2)
8 z3
= x84 33 + 33 + 7 +. (—l<z<]),
(ii) 2 log z—log (z+1)—log (x~1)

1 1
S+ g+ gz e (2]>1),

(iii) (14-z)e—2—(1—2)e® —;“1(2 +l)'

+1 C’%)Z (@>0).

z3n+1

z—1 1 /z-—1
(iv) ilogz—z_'_ 4 - (:c+l)

4. If L'a,, = a, prove that E(a,, +a8,41) = 2a—a,.

Rl
1
6. If Za, is convergoent show that the series X % G, isalso
convorgent.,
6. Prove that the series

@ 1 ®
In-e, (a <1)

n=gnlogn ' goy
are properly divergent.
7. Show that the serios
Elog (l +-) Z.'am nn, Z.'n sin inm,
=l flem] ne=]

are respeotively properly dworgent, finitely oscillating,
infinitely oscillating.

1
8. Prove that the serxcs" f‘l ;'_(27_15 converges to the sum

2n4-1
2 log2, and that the senes"f‘g—l)"-l ; (”i iy converges to
the sum 1
9. If Za“ oscillates finitely and if @, = o ( ) show that
n=1

Z‘ n{a,—a,.,) also oscillates finitely.

131
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10. Using the relation
tan §x = cot § x—2 cob 2,

an
find the sum of the series 2 —1— tan i.
nm12" 20

11. A sequenco of positive terms 4,, 4y, ..., 4, ... satisfles
the relation

3(1+4,)

Awn =7~

Show that A4, is & monotonic decreasing or increasing function
of n according as Alz\/ 3. Deduce the value of lim 4,.
12. If z, =cos 8, y, =1 and
Tatr = HZaF ) Yntr = V(@antah n =1, 2, ...,
show that z, and y, tend to the common limit sin 8/8.

13. If, for all valuos of n, b,>0, if lim (b;+b;+...4+b,)
= ¢0, and if 4,>a, prove that
b4, +b Ay +...+b,4, —a

.
Tt byt ¥ 0a

Deduce that

sin @+sin —0 +...+sin-0
2 n

(0]

>0,
1 1 1
1+ 545+t

1 [/} 0
. . 2 i 0 8 0
(i) ] {l’ sin 8+4-2% sin 3 +...4nlsin n} >10.

Answers. 1. (i) Convergont if |z} <1, properly divergent
if 2>>1, oscillates between —1 and 0 if = —1, oscillates
infinitely if z<—1; (ii) convergent if |z|<1, properly diver-
gent if x3>1, oscillates infinitely if 2<<{—1; (iii) convergont ;
(iv) convergent ; (v) convergent if z#£0, properly divergent
if z = 0, [If z=—1/n, where n is a positive integor, the seriea
is meaningless.]; (vi) convergent. 10. 1/z—cot =, where
z7#0. 11. /3.



CHAPTER IV

SERIES OF NON-NEGATIVE TERMS

21, A Fundamental Theorem. We now consider in
some detail series whose non-zero terms are all of the
same sign. Wo shall assume that we are dealing with a
sories 2ua, where a,>0 for all values of n. There is no
loss of generality in so doing, for a series Za, for which
a,<0 falls into this category when we multiply by —1.
It is almost intuitive to expect that such a serics cannot
oscillate. The theorem below contains a formal statement
and proof of this result.

TueoreM 13. If a,2>0 the series Za,, 18 either convergent
or properly divergent.

Since a,>>0, A, is a monotonic increasing function of n.
The result then follows from Theorem 3.

22, Rearrangement of Terms. We have already
seen in Art. 20 that the terms of any oconvergent series
may be grouped in brackets without destroying its con-
vergence 80 long as the order of the terms is not altered.
For series of non-negative terms we shall show that we
may dispense with the latter condition and we shall also
show that brackets may be removed as well as inserted
without affecting convergence.

ToeoreM 14. Suppese thal a,>0. Let Xb, be any
series whose terms are those of the series Za, in a different
order. If the series Zu, converges lo a then so does Zb,,
and if Za, is properly divergent then so is Zb,,.

Suppose that

b =a,, bj=a,, by=a,,,..
36
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‘Then, if p is the largest of the integers m,, m,, ..., m,
n
and * B, = 2b,, we have
=t n
(i) B, = Z'a,,,vgfa.. =4,
r=1 pol

where p—c0 a8 n—co.
A similar argument shows that there is an integer k
which tends to infinity as n—o0 such that

(ii) 4,<B,.
Suppose now that Za,=a. Then (i) shows that

ne=1
lim B,<a, while (ii) shows that lim B,>a. It therefore
follows that 2b, converges to a.
If, on the other hand, Za, is properly divergent then
(ii) shows that B,—-c0, so that 2b,, is also properly divergent.

TreoreM 16. Suppose that a,>>0 and that Zb, ¢ a
series obtained from Za, by picking terms at random and
grouping in brackets in any way. If the series Zb, converges
to a then so does Za,, and if the series Zb, is properly divergent
then 8o 8 Za,.

Let Xec, be the series Zb, with the brackets removed
and the order of the terms unaltered. Suppose first that
Zb, converges to the sum a. Then Xc, must converge
to the sum a for, if it were to converge to a sum other
than e or were properly divergent it would follow from
Theorem 12 that 2b, could not converge to the sum a
From Theorem 14 it then follows that Za, converges to
the sum a.

If Xb, is properly divergent the same type of argument
shows at once that Za, must also be properly divergent.

These two theorems show in effect that, as regards
the alteration of the order of terms and the insertion of
brackets, series of non-negative terms behave exactly like
finite sums.

¢ The notation B, = L”‘bv will be adhered to throughout the book.

Pml
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23, Tests for Convergence. When A4, can be
caloulated explicitly it is usually easy to determine whether
or not the series Ja,, is convergent. For a very large number
of interesting series, however, it is not possible to calculate
4,. It is therefore of some importance to obtain tests
for the convergence of series which involve only simple
properties of the terms themselves. A test for general
geries has already been obtained in Theorem 6, but this
test is not of the type which we are seeking, for, naturally
enough, to evaluate or obtain inequalities involving the

+
expression"Z':,. is hardly less awkward as a rule than the
vean+tl
evaluation of 4,,.
The tests which follow, although stated for series whose
terms are all non-negative, hold also for series whose terms
are non-negative only from some value of » onwards.

24, The Integral Test. This test is applicable only in
the case of series Za,, for which a,, is & monotonic decreasing
function. We prove first an important auxiliary theorem :

TaroreM 16. If, for 221, f(zx) 8 a non-negalive,
monolonic decreasing inlegrable function such that f(n) = a,
for all positive integral values of n, then

lim {A,,— f :f(z)dx}
exists and satisfies the inequality
o< tim {4, [ feopts} <
1

By hypothesis we have,* for all positive integral values
of r,

r+1 r+1 r+1
f oy f fe)dz f for-+1)de;

* Soo @., p. 17.
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that is,
r41
ar> f(x)d:’?aru-
r

Give r the values 1, 2, ..., n—1 in succession and add.
Then

Ay [ ez Aoy
that is
tn— o<~ [ fladia<o,—4,
or '
tn<dy— [ fiekia<e,
and, a fortiors,

0<A, — f " fe)z<a,.
1

n
Now A4,—{ fi(x)dz is a monotonic decreasing function
1

{A,.— | :f(w)dx} - {Am— :“ﬂz)dx}

n+1
= J. f(x)da:—a,,ﬂ 20.
n

of n, for

n

It follows from Theorem 3 that 4, —»I f(x)dz tends to a
1

limit which satisfies the inequality stated.

TreoreEM 17. If, for 2221, f(x) i3 a non-negative, mono-
tonic decreasing integrable function such that f(n) = a,, for

all positive inlegral values of n, then the series Z'na,, and the

=l

-]
integral f f(x)dx converge or diverge together. In other
1



40 INFINITE SERIES

words, if one of them converges so does the other and if one
of them properly diverges so does the other.
These results follow at once from Theorem 18, since

4= [(terie+ {An— [ :f(x)dz}-

Suppose that f(z) =z If A>0, f(z) satisfies the
conditions of Theorem 17 for 2>0. Also z—Mz is

1
convergent if A>1 and properly divergent if 0<<A<I.
Thus the series

1 1
1+27 + §;\+

is convergent for A>>1 and properly divergent for 0<<A<1.
It is also properly divergent for A<0 since in this case
its n-th term does not tend to zero.

Suppose now that f(z) = x~1(log 2)-*. Then, for A0
and x>1, f(x) satisfies the conditions of Theorem 17.
Moreover,

® du

™ dz _ du
.[2 z(log z) B J.logz ut

which is convergent if A>1 and properly divergent for
0<<ALl.
Similar arguments show that the set of series
2, 1 5 1
n=snlog n (loglogn)’s =16 n log n log log n(logloglogn)?”™"
are convergent for A>>1 and properly divergent for 0<<A<].

26. The Comparison Tests.

TreorEM 18. If 0,20, 5,20, if there is a positive
number K, independent of n, and an integer N such that
a,< Kb, whenever n>N and if Zb, s convergent, then Za,
18 also convergent.
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Since Zb, is convergent, given e, we can find N, = N (¢)
such that, for all values of n>>N, and all positive integral
values of p, nep

2by<€/K.
veon41

Let N, = Max (N, N,). Then, whenever n>>N,, we have

n+p ntp
Za;:(K 2bv<€,
veen+1 peantl

and, since this inequality holds for all positive integral
values of p, it follows that Za,, is convergent.

It follows from this theorem that if a,>0, b,>0, if
lim a,/b, = 1>0 and if Zb, is convergent then Za, is also
convergent.

TrEOREM 19. If a,20, b,20, if there {8 a positive
number k independent of n and an integer N such thai
a,>kb, whenever n>N, and if Zb, is properly divergent
then Za,, is also properly divergent.

If n>N we have

A,—Ay = Sa,>k Zby = ¥{B,—By),
vaN+1l vaN+1

A, >kB,+Ay—kBy.

whence

Let n—~>00. Then A,—00 since B,—c0 and £>0.

The reader should satisfy himself that it is possible
to construct a proof of Theorem 18 along the lines of the
proof of Theorem 19 and a proof of Theorem 19 along
the lines of the proof of Theorem 18. It should be noted
that in Theorem 19 it is essential that & be greater than
zZero.

As in the case of Theorem 18 it follows that if a,>0,
b,>0, if lim a,/b, = I>0 and if Zb, is properly divergent
then Za,, is properly divergent.

In the case when the hypotheses of both theorems are
satisfied wo have the following theorem.
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TrEOREM 20. If a,>0, b,>0, if positive numbers k
and K, independent of n, and a posilive integer N can be
Jound such that, whenever n>N,

k<a,/b,<K,

then Za, is convergeni or properly divergent according as
Zb, is convergent or properly divergent.

In this case we say that Za, and Xb, converge or
properly diverge together or that Za, behaves like Zb,,.

We note that, in particular, the conclusion of the
theorem will be true if lim a,/b, = 1>0.

Ezample 1.

Tho series Z b !
o series J —,

n=2n{log n)A’ n=s n log n(log log n)V’
are properly divergent for A<0.

This follows at once from Theorem 19 by comparing these

series respectively with the following properly divergent
sories :—

©] = 1
-y T —— e
nm2?® peg nlogn

Ezxzample 2. Examine the convergence of the series

o
Zlog (14n-4),
ne1
The series is properly divergent for A<C0 since its n.th
term does not tend to zero. When A>0,
log (1 +n-'\) -

1.
n-A

n—+0
Thus the series behaves like Z'n-"; that is, it is convergent
for A>1 and properly divergent for 0<<A<1.
Ezxample 3. Examine for convergence the series Za, whero
21+(-1)®
Oy = ———,
nitph
We have a,<4/n® and, for n>|p|, a,>1/(2n?). The
series therefore behaves like Z1/n® ; that is, it is convergent.
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26. The Ratio or d’Alembert's Test.
ep y:. O
TreoreM 21. If a,>0 and if lim —313 = p then Za,
o

is convergent if p<1 and properly divergent if p>1.
Suppose first that p<1. Then given e{(<1—p) we can
find N = N(e) such that, whenever a=2N,

a1 <(pt+e)ay.
In particular,
ay1<(ptelax,
aysa<(pteay1<(p+e)ay,

ey sm<(pt+eloym1<(pte)"ay.

Since 0<p+e<l the series Z(p+e)may is convergent.

mel

It follows from Theorem 18 that Ea.. is convergent and
v N 41

@
therefore that Za, is convergent.
p=l

Suppose next that p>1. Given ¢(<p—1) we can find
N = N{e) such that, whenever n>N,

Gpns1>(p—€)n

It follows, as in the first part of the proof, that, for m2>>1,
ay im>(p—€)™ax,

and the result follows from Theorem 19.

We note in passing that when p =1 the test yields
no definite conclusion. For example, in the case of the
geries Zn-A it is easy to see that p =1 no matter what
value A may have. The series is only convergent, however,
when A>1.

It may happen in the case of some series that
lim a,,,/a, does not exist. It is clear from the above
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[Eofs, however, that such series will be convergent if
lim a,;,/a,<1 and properly divergent if lim e,4,/a,>1.

-]
Example. Examine for convergence tho series }.‘n"x",

ne=1
(x>0). For this series *

A
a_"l‘. = (1 + 1) T,
a, n

Thus the series is convergent for 0<z<1 and any value of
A. It is properly divergent for #>1 and any value of A
When x = 1 the series becomes Zn? and the behaviour of this
series has already been discussed.

27. Cauchy's Test.
Tueorem 22. If a,20 and if
fim Ya, = p,
then Za,, is convergent if p<<1 and properly divergend if p>1.

Suppose first that p<1. Given ¢(<1—p) we can find
N = N(¢) such that JJa,<p+e, that is, a,<(p+e)"
whenever n>N. It follows from Theorem 18 that Za,
is convergent since 0< p+e<1.

Suppose now that p>1. Given e¢(<p—1) we can find
an infinity of values of n, say n,, n,, ... such that, for
these values of n, a,>(p—e)". Since p—e>1 it follows
that a, cannot tend to zero so that the series Za, is properly

divergent.

A more common but less general form of the theorem
is obtained by replacing im /a, by lim {/a,. As in the
case of the Ratio test no conclusion can be drawn when
p = 1 for, considering again the series Zn-A, we have

log Va, = — 2 log n—0,

so that, for all values of A, {/a,—1.

* The series is obviously convergent when z = 0.
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28. Connection between the Ratio Test and
Cauchy’'s Test. Wo shall now show that Cauchy’s test
is more general than the Ratio test.

TreorEM 23. If a,>0 and if a,,,/a, lends lo a limit

then /a, tends to the same limit.

Suppose that a,,,/a,~p where p is finite and not zero.
Then log a,4,—log a,—log p. That is, given ¢, we can find
N = N(¢) such that, whenever n>N,

log p—e<log a,4;—log a,<log p+e.

For n write in turn N, N+1, ... N4+m—1, and add.
Then, for m>1,

m(log p—e)<log ay ; m—log ay<m(log p+e),
that is,
log p—e<< (1/m) log ay4m — (1/m) logay<log p-+e.
Let m—>co. Then
log p—e<lim (1/m) log an+m<’}’i?n;(lln1) logay +m<log p+e.

m—rn

Since ¢ is arbitrary it follows that lim !

m—so ;;"
and is equal to log p. Hence writing v = N+m we see

log ay ., exists

that lim ! log a, =log p; that is [fa.—>p.
vy V

The proof only requires trivial alterations in order to
be applicable also to the cases when p is zero or infinite.
Exactly the same method of proof suffices to show
that if
lim a,y,/a, =w, lim @nrfan =2,
then T
w<lim Ya,<lim/a,<Q.

We have therefore shown that, whenever a series can
be proved to be convergent or properly divergent by the
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Ratio test it can also be proved convergent or properly
divergent by Cauchy’s test. We shall now give an example
to show that there are series for which a direct application
of the Ratio test gives no result but whose behaviour may
be determined by Cauchy’s test.

Consider the series 2a,, where
a, = 2-n-t-1n.
Clmly mra" — 2_1_(_1,n[n_>%,

so that, by Cauchy’s test, the series is convergent. Also

Bnt1 _ 9-14(-1"=(-1A+1
Qy
which is 2 if nis even and } if nis odd. Thus lim a,4,/a, =2
and lim an4/a, = 3, so that the Ratio test yields no
definite result.

20. A General Test for Convergence. We have
geen that, in cases when the ratio a,4;/a, tends to unity,
no conclusion can be drawn as regards the behaviour of
the series Za,. The tests which we shall discuss in this
and the subsequent articles are more delicate than the
Ratio test and enable us to arrive at a conclusion in such
cases. These tests are particular cases of a general test
due to Kummer, which we now proceed to obtain.

TreoreM 24. Suppose that a,>0, b,>0 and that Zb,
i3 properly divergent. Let

l a 1
lim (o 2 —— ) =«
(bnawl-l bn-H) *

Then JZa, converges or properly diverges according as
x>0 or k<0.
Suppose first that «>0. Then we can find N such
that, whenever n >N,
1 a, 1 .

— -— _> '3
bﬂaﬂ+l bn+1 & ’




SERIES OF NON-NEGATIVE TERMS 47

that is,
2 Ay Opyy
Ontr < '-‘ (5; bn+1
Thus
a4l
fa,< 2 (32 — )
r=N+1 K N nt+l
2oy
x by

Hence, for the series Zu,, A4, is bounded, so that the
series is convergent.

Next suppose that x<0. Then we can find N such
that, whenever n >N,

1 a, 1

by Gniy bn+l<

that is,
%,
Ap1> F at1°
n
In particular,

ay
aN+1> — blv'+1n

aNia> BN— D byyg> 7o by ¥ barsas

ay
AN 4m > — by 4m-
m bN +m

The result then follows from Theorem 19 since Xb, i
properly divergent.
It is clear that in cases when lim (l % _ L)
' bn Aty bn-H
does not exist the series Za, will be convergent if
1 a, 1
bn [P RY bn+l

(5 22— ) <o

) >0 and will be properly divergent if
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It should also be noted that the Ratio test corresponds
to the particular case b, = 1, (n =1, 2, ...) of Theorem 24.

30. Raabe’s Test. .
THrEOREM 26. Suppose that a,>0 and that, as n—oo,

a c 1
Lo 14 ¢ 2\
oty tato (")
Then Za, is convergent or properly divergent according as
o>1oro<l.

From the hypothesis

i ba —=g—
hm{naﬂ.l (n+l)} o—1,

so that the result follows from Theorem 24 on writing
k=c-1,b,=2",(n=1,2,..).

Ezxample.—Examine for convergence the series

5 136..2n—1) 1
nel 246..2n “n

For this series
% _ (2n+4-2){n-+1) - 2nt+-4n4-2
Oty @En+1)n 2nitn

=13+ (3)

and it follows at once from Raabe’s test that the series is

convergent.
It should be noted that in this case the Ratio test gives
no information.

31. Gauss’s Test. We have seen that Raabe’s test
gives no information when ¢ = 1. Gauss's test is a slight
modification of Raabe’s test which usually enables us to
sottle the case o = 1 without having recourse to a separate
argument. We require first a further deduction from
Theorem 24,
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TucoreM 26. If a,>0 and if
a
+ +

a,,ﬂ n log n

then Za, is convergent or properly divergent according as
lim 1, is greater than or less than unily.

Put b, = 17%1;—71,’ (n =2, 3,...) in Theorem 24. Then

say. The series Za, will bo convergent or properly diver-
gent according as lim w, is greater than or less than unity
The last identity may also be written

a, n+1 log (n+1) —1
Aoty n logn n log n

log (l+ —)
= (I—F-%) I-F »

log n +:'l‘c;1n
=(1+11z){ +nlogn+0(n‘-'- l:)gn)}-*':lll(;;ln
—l+1lz+nlo"n+0(n'~'l:)gn)

and from this the result follows.
TreoreM 27. If a,>0 and if

=14 - +0( b+,) $>0,

an+1

then Za,, converges if a>1 and is properly divergent if a<1.
D
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From the hypothosis

au+l =1+3 +o( )

so that, by Raabe’s test, the series is convergent for >1
and properly divergent foro<l. Wheno =1

O(n"8 log n)
a,,ﬂ l+ + nlogn

145 4 A

nlog n

o that Za, is properly divergent by Theorem 26.

Ezample. Examine for convergence the series

a. ﬂ a(a+1)B(B+1)
1.2.9(y+1)

where a, 8, y are neither zero nor negative integers.

Clearly the terms of this series are ultimately of the same
sign. For convenience we denote the first term of the sories
by a, instead of by a,. We then have

a, (n+1)(y+n) nt4(y+1n+y

Gun  (@+n)(B+n)  Wt(atPintap
_ y+1— ﬁ
S o (),

Thus tho series is convergent if y>a-B and is properly
divergent if y<{a-+8.

When < is replaced by —a and 8 = y, the above series
becomes

1+ 1— + +...,

a(a.

14§ (-D+

(—1)“+-.-.

that is, the binomial series when z = —1. Our argument
shows that it i3 convergent when a>>0 and properly divergent
whon a<0. Whon a = 0 the series becomoes 140--0+...
which is convergent.
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32. Euler’s Constant. We conclude this ochapter
with two very important relations. The first is a direct
deduction from Theorem 16. Iff(x) = -}, (z>>0), Theorem
16 shows that

l-{-%-*—%-l—...-{-'l-;—logn

tends to a limit y which is such that 0<{y<1. This number
y is called Euler’s constant and its value is 0-57721566...
The following rather less precise result is an obvious
corollary :

n
2v-1l~slogn,

p=l
Ezxample.—
1
Evalunte"flm
Since 1 = 1_ 2 we have for this series
n2n+l) n 2n+1
1

=(l+§+"'+5) (+5+ +2n+1)

2 1
=2_2n+1+(+2+"'+5) (l"' +e "'2» 1)

=2"2il (+l+' 1) 2(1+§+§+"'+§7z)

=240 ( )+2{log n+y+o(1)} —2(log 2n+y-+o(1))

= 2—2 log 2+4o0(1).

Hence
hd 1

S ——=2-21l0g 2.
ne) n@n 1) g

33, Stirling’'s Approximation for n! We shall now
prove that, as n—c0,

nl ~ /(2r)nrtlen,
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In the proof of this result we require the value of the

integral
J‘ (sm nt)

and we shall obtain this first.
We have, on putting =t = 6,

= s ()0

=J. logsinﬁdﬁ-—f ﬂlog()dﬂ
0
=T, —[9logd—0)5 =+

=Ty 4+jm—}m log fr.
Now T, is convergent (see Art. 10) and

i i
T, = f log sin0 d@ =f log cosf db,
0 0
whence

i
or, = f "log (3 sin 20)d0
0
]
= —}log 24 f ”log sin 2040
0

= —imlog 2+ | log sing d4, (4 = 20),

= —}m log 24T,
Thus
T, = —3nlog?2,
and
7l = dn—4n log 2—4n log 44w log 2,
8o that
T=3%—%logm.

We now proceed to prove the main result.
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We have
¥ t b ¢
log v =I log v dt =J log (v+l)dl—j ‘log <l+ -)dt
" - -

v

0
—f log ¢t dt— log (1—}--‘-) dt—j log(l.}-.:-’)dt
-~
{2
—f log t dt— Iog (1—-—-)dt,

whence

log (n!) = Z"‘log y= n+ logt dt— {2 log (l— -—)}dt
v=1 1Y

pe=l
The series E—log (l— —) behaves, for 0<t<}, like
p=]
[ -
tho series X+1/v?; that is, it is convergent. Its sum

yel

(see Art. 53) is —log (sm mt

). Hence

log (n!) = f log ¢ di— J. (sm m)
i fo{v—n+1log (1— 52)} dt

= T'y(n) +T'y(n) +T(n),

Tyn) = § log w—14,
5 ton (1 )(1-53)) o

say. Now
nti
T(n) = [t log t—l] = (n+3) log (n+3)—n+4 log 2,
]
and
oot = ['{ 2 g (1](1-5
1 2 1
vénallog( /( _4_)) - (v-nz-i-l Vg)
=o(f —dx) o('. .
n+lz n
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Collecting these results we obtain
log (n!) = (n+ :-l,’) logn+ (n+%) log (l+2-ln)
—n—}+}log2n+0 (’1_1)

= (n+§1,) log n—n-4% log 2740 (}‘),

from which the result follows.

Although the result stated at the beginning of the
article is sufficient for most applications it should be noted
that we have really obtained something more precise. We
have in fact proved that, as n— o0,

nl = \/(21r)n“+*e-"{1+0(i)}.

Examples

1. If Za, converges to the sum a, prove that B,~a log n
where

by = » @+oytoeta).

' anP+1
2. If a,~anf, (p>—1), prove that 4,~ .
pt+1
3. Prove that, if p< 1,
1 21—P—l
- pl-P
e e et @ =, "
4. Prove that, as n->oo,
1
2log2+3loga+ + — log (log n)

tends to a definite limit, Deduce that, if p is a positive
integer,

1
= | .
p—oyan ¥ log v o8P
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6. Examine for convergence the series

(iii) 2 (iv) 2 ——

(i) T ——

1
nv+4a’ 2"+a:
1 . n
vrrvery Y0 E Jeery
n . V(x4n)—1
(viii) EJ(W) ) 2 YNy

(®) 51 (Wt tnt—y/mr—n+1),

bn
a+ nl 1ot +b [

(v) Zen'z, (vi) 2

o1
(xi) I~ (v n+)—vn-1} (xii) .fa {og ns*
Lone e )
(xiii) L',—‘-!. (xiv) E,Tl, (xv) 2 E—)' ,
. n! . a(a+1)...(a+n-—1),
i) & e Tma sy Vi 2 ne

a{a+1)...{a+n—1) (2n)t
(xviii) S«/ {p(p+1)...(p+n—1) ' (xix) Z {2"(7&!)’} J

(xx) £ ——, (xxi) £ {nlog -

nJn

nst

(xxii) 2 (sin ;'—i)? (xxiii) 2 = (l+ Foen )

-

n?
(xxiv) 2 (3n+l) (xxv),._a(log n)»’

. 1
(xxvi) nfa (log n)logn’ Gexvii) nfs (log log n)log ’
: 1 1.356..2n—1 1

(xxvi) 2 G oo (xxix) £ = ngn e’

z {1 -
+ —
(xxx)n-z n (log n)"} i

(xxxi)
5 a{a+D..ola+n—DBB+1).. . (B+n—Dp(y+1)...(y+n—=1)
1.2..0 8(541)... B+n—=1)(L+1)... ({+n—1) ’
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1 1 1
Y f T ovmmmt— ——— — ——
6. If a, $n-2 + 3n—1 3n

prove that
A, = } log n4log 344y +o(1).
7. Show that

o0

s 1
—  =2log2— — \
,,fln(4n’—l) log 2—1 and that 2 e > log 2

r=0

8. If 4, = 14 % +...+'3., prove that

(i) 1+in< A, <n+()7, (i) JA.~>1.
9. Prove that
2 log (o).
rml T

[Use Example 13, p. 35.]
10. Prove that

n+1
(i) lim (n))tm =6,

{(n41)(n42)...(nn)2!n _
n

(ii) lim

4/e.
[Use Thoorem 23.)
11, Prove that

lim i (03 17)(n® 4 20)1...(n3 4-n?)" ]/ == 2/4 /6.

Answens. 5. (i) Convergent; (ii) properly divergont ;
(iii) convergent if p>1, properly divergent if p<{1; (iv) con-
vergent ; (v) convergent if >0, properly divergent if <0 ;
(vi) properly divergont; (vii) properly divergent; (viii)
convergent ; (ix) proporly divergent ; (x) properly divorgent ;
(xi) convergent ; (xii) properly divergent ; (xiii) convergent ;
(xiv) properly divergent ; (xv) convergent if [x|<2, proporly
divergent if |z|>>2; (xvi) convergent if z>2, properly diver-
gent if 22, zero and negative integral values being exoluded ;
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(xvii) convergent; (xviii) convergent if B—a>2, properly
divergent if 8—a<<2, zero and negative integral values of
a and B being excluded ; (xix) convergent if a>>2, properly
divorgent if a<{2; (xx) properly divergent; (xxi) properly
divergent ; (xxii) convergent if a>1, properly divergent when
a<{1, provided that £#0; (xxiii) convergent if a>1, properly
divergent if a<{l; (xxiv) convergont ; (xxv) convergent ;
(xxvi) convorgent; (xxvii) convergent ; (xxviii) properly
divergent ; (xxix) convergent if a>3}, properly divergent if
a<}; (xxx) convorgont if a>1, properly divergent if a<1,
while, if a = 1, convergent for A< —1, properly divergent for
A>-—1; (xxxi) convergent if 8+{—a—B—y>0, otherwise
properly divergent, the constants being such that none of
the factors vanishes.



OHAPTER V

GENERAL SERIES

34. Real Series. We turn now from the special case
of series whose terms are all of the same sign to series
whose terms may be real and of either sign and to series
whoso terms may be complex. We consider first real series.

36. Absolute Convergence. Before defining what
we mean by absolute convergence we prove the following
theorem.

TaroreM 28, If the series Xla,| s convergent, then so
is the series 2a,,.

Let wu,=a,, (an>0) . U= —0y, (a,,<0),

=0, (2,<0) =0, (a,20).
Then clearly u,>0, v,>>0 and
|aa] = o+t , @n = Uy —V,.
From the first of these relations it follows that
U, < [ag] 5 ta<<anl-

Since Zla,| is convergent, both Zu, and Zv, are convergent
by Theorem 18. Hence, by Theorem 10, XZ(z,—v,) is
convergent ; that is, Za, is convergent.

The proper divergence of Z)a,| does not imply the
divergence of Z'a For example, if a, = (—1)"-a"? we

have seen that Z‘la,,l is properly divergent, whereas Z‘a,,
fml

converges to the sum log 2.
If Xa, is a series such that X|a,| is convergent, then
88
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we say that Za, is absolutely convergent. Theorem 28,
therefore, merely states that every absolutely convergent
geries is necessarily convergent. From the definition it is
perhaps reasonable to expect that absolutely convergent
geries should possess many of the properties of series whose
terms are non-negative. We have an instance of this in
the following theorem.

TeeoreM 29. If Za, i3 an absolulely convergent series
and if Zb, is a series whose lerms are those of Za, in a different
order then b, is absolutely convergent and the sums of the
two series are the same.

Define u, and v, as in Theorem 28 and let u,’, v," be
defined in a similar way for the series Zb,. Since Za,
is absolutely convergent the series Zu, and Zv, are con-
vergent series of non-negative terms. It is clear that
Zu,’ and Zv,’ are formed from Zu, and Zv, respectively
simply by an alteration in the order of the terms. Hence,
by Theorem 14, Zu,’ and Zv,’ converge respectively to
the sums of the series Zu, and Zv,. Thus Zb, = Z(u,’ —v,")
is convergent to the sum of the series Z(u,—v,) = Za,.

The absolute convergence of Zb, follows at once from
Theorem 14 since 2|a,| is convergent.

36. Tests for Absolute Convergence. The question
of examining whether or not a series Za, is absolutely
convergent resolves itself into testing for convergence the
geries of non-negative terms Zja,|. This may be done by
making use of the tests given in Chapter IV. It should
be observed, however, that if

. @, T
lim lﬁ-‘ >1 or lim /|a,]|>1,

the series Za, is not merely not absolutely convergent but
is in fact divergent. This follows from the fact that each
of the above conditions implies that a,»0, so that the
necessary condition, a,—0, for the convergence of the
series Xa, is not satisfied.
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The series 1 —§+4—... is convergent but not absolutely
convergent since tho series 1+4+3+... is not convergent.
A series which is convergent but not absolutely convergent
is said to be conditionally convergent.

Ezample. Examino the convergence of the series
@
Z{log(n +41))ezn,
=]

For this series we have

et ] _ {nog (n+z)}a

o] iog nr )| jz]>|z|.

Thus tho series is absolutely convergent for —l<z<1 and
divergent for x>>1 and for z< —1. When 2 = 1 the series
is properly divergent. When 2 = —1 and a>0 the series is
divergent since its nth term does not tend to zero. When
z = —1 and a<0 the series may be shown to be conditionally
convorgent (seo Theorem 32 below).

37. Conditional Convergence. We now consider
real series which are convergent but not absolutely con-
vergent. We shall obtain tests for the convergence of
such series which are of wide application. First we prove
a subsidiary lemma.

Lemma. If b, is a positive, momolonic decreasing
Junclion and if A, is bounded, then the series ZA,(b,—b,,,)
18 absolulely convergent.

Suppose that |4,|<K. Then

N N
2|A"(b,.—b,,+1)| =2|A,,|(b,,— n+1)
Nl fiml

N
< Kz(lbn—bnﬂ)
N

= K(b,—by,,)
< Kb,.
The result follows from Theorem 3.
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THEOREM 30 (Abel's T'est). If b, is a positive, monotonic
decreasing funciion and if Xa, is convergent, then Xa,b, is
also convergent.

n
Write ¢, = a,b,, ,C, = X¢,. Then
pe=l
C, = aby+ab,+...+ab,
= A, +(4;—4,)b3+... + (A —Ap-y)by
= A, (b, —bg)+A5(by—bs) +... +Ap—1 (bp—y —b,) + 4,5y,

so that
n-1
C,—4.b, = Z’lAy(b.,—b,.H) eeees (1)

Since Za, is convergent A, tends to a finite limit.
The conditions of the lemma are therefore satisfied so that
the series on the right of (1) is convergent. Morcover,
by Theorem 3, b, tends to a finite limit. Hence C, tends
to a finite limit ; that is, the series Za,b, is convergent.

TuroREM 31 (Dirichlet's Test). If b, is a positive,
monolonic decreasing function with limit zero, and if, for
the series Za,, A, ts bounded, then the series Xa,b, is
convergent.

Using the notation of Theorem 30 we see from the
lemma and relation (1) that lim (C,—A4,)b,) is again finite.
Now lim 4,5, = 0 since A4, is bounded and b,—0. Thus
lim C,, is finite and the series Za,b, is convergent.

The case a,= (—1)*-1 of Theorem 31 is of considerable
importance. We obtain

TuEOREM 32. If b, i8 posilive and monotonic decreasing
with limit zero, then the series by—by+bg—... is convergent.

In other words, in the case of a series whose terms
alternate in sign and steadily diminish in magnitude, a
necessary and sufficient condition for convergence is that
its nth term should tend to zero. For example, the serics
Z(—1)"a-2, Z(~1)*{log (n+1)}-* are convergent for a>>0,
and divergent for a<<0.
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Exampls. Examine for convergence the series
Zn-2 gin n8, In—2 cos nd.

For the series X sin nd, where 8 is neither zero nor a
multiple of 2x, we have proved (sco Art. 19) that 4, is a
bounded function of n. By Theorem 31, therefore, the series
2n=¢ gin n#and, in a similar way, the series Zn—% cos nf, are
convergent for a>>0 and for all values of § except zero or a
multiple of 27. For such values of # both series diverge for
a<<0 since their nth terms do not tend to zero. When 8 is a
multiple of 2x the first series is a series of zeros and so con-
vorges for every value of a. The second, however, reduces
to Zn-¢ which is only convergent when a>1.

38. Riemann’s Theorem. This theorem, though not
of practical importance, is of considerable theoretical
interest.

TaeOREM 33. By an appropriate rearrangement of the
terms of a conditionally convergent series Za, we can make
# converge lo any given number o,

Write

bn= ) (an>0) ) bu= 0, (a,,<0),
Ch=20y, (a,.<0) v 6a=0, (a,>0).
Then
@n="b,-6y ) |an| = ba—cn.

Let A.* =2":' la,|. Then, with our usual notation,
r=1
Bﬂ = %(An'*'An.) ’ On = i(An—An*)-

Now A, tends to a finite limit and 4,* tends to infinity,
go that X5, is a properly divergent series of non-negative
terms and Zc, is a properly divergent series of non-positive -
terms,

We now form a new series 2, in the following way.

Let n, be the least integer such that 2"7'b,>a and define
r=l
u, to be b, forr =1, 2, ..., n,. Let ny be the least integer
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t ™
such that Z"'b, +2e,<o, and define u, 4, to be ¢, for r =1,

r=1 =1

2, .., n,, Now take ny terms of the serics 2b,,
n+n, M
where ng is just large enough to make Zb,+Zc,>a, and

real Pl

define %, . g4, to be b for r==n+1, m+2, ..,
fl

n,+4ng, and so on. If U, = Zu, we see that
rel
Un, >0, Up4n, <0, Uy 4nn, >0 oo
and that

|Un,'_a|< Iun,l ’ |Un.+n.—'°|< |un.+n,| y oo

When n lies between n, and n,+n,, U,—o lies between
Up,4n,—0 and U, —o so that |Uy—a| i8 not greater than
|otn, |+ |40, 4n, |-

Since the serics Zua, is convergent, given ¢, we can
find N = N(e) such that |z,|]<}e whenever n>N. Let n
be any integer greater than both N and 2,, Then we
can find an integer }{(>>1) such that

ny+ngt ... Fyp<a<ny 0.t . Fuptngy,
and
|Up—0l< |“n.+n.+...+n,| + lum+n.+...+n,+1l
<e.

Hence the series Zu, converges to the sum o. The series
Zu, contains, besides the terms of the series Za,, an infinite
number of zero terms. It is clear, however, that the series
2v,, which is obtained from Zu, by omitting those zeros
which do not ocour in the original series Za,, is also
convergent to the sum a.

The above proof may be modified to show that, by a
suitable rearrangement of the terms, a conditionally
convergent series may be made to be properly divergenu
or to oscillate finitely or infinitely.

39. Complex Limits. Lot U, be a complex function
of the real variable n. Then we say that U, tends to the



64 INFINITE SERIES

limit 4 as n tends to infinity if, given ¢, we can find
N = N(¢) such that * |U,—u|<e whenever n>>N. Suppose
that U, = A4,+1B, and that 4 = a+if.

Then U,—u = A,—a+i(B,—B)

d A,—
wd < ul< ol +B,— A

It follows that, to say that U, = 4,+iB, tends to the
limit a 448 is the same as saying that 4,—~a and B,—8.

It is easy to see that the proofs of the fundamental
limit theorems can be modified so as to apply to the case
of complex functions. Moreover, Theorem 6 remains true,
the proof of the necessity of the condition being as before.
For the sufficiency of the condition we note that, if we
write U, = A,+iB,, then |4,,,—4,| and |B,,,—B,|,
being each less than |U,,,,—U,|, are less than ¢ whenever
n>N and for all values of p. It follows that 4, and B,
each tend to finite limits and hence that U, tends to a
definite limit.

40. Series whose Terms may be Complex. Let
Zu, be a series, some or all of whose terms are complex.

n
If U, = Zu,, then the series is said to converge or diverge
r=l
according as U, tends to a definite limit or not. The scries
is said to be absolutely convergent if Z|u,| is convergent.
Let u, = a,-+ib,. The preceding article shows that
to discuss the convergence of the series Zu, is the same
as discussing the convergence of the two real series Za,
and Xb,. Thus all the theorems which we have proved
for real series have straightforward analogues in the case
of complex series. In particular, an absolutely convergent
complex series may have its terms rearranged without
* Jf 2 =a+iy is a complox number, then |[z] = (::'+y’)'.
If z;, z, aro any two complox numbers, thon [z, 2| <[z |+ |zl
and, whati 8 in reality tho samoe inequality, |z, £z4|> |2l —l2s|- Of.
Phillips, Functions of ¢ Complex Variable, § 2
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affecting its convergence or its sum. 8Since complex
series do not differ materially from a pair of real series,
we shall assume throughout the remainder of the book
that, unless otherwise stated, all the series with which we
deal are real series.

41. Abel’'s Lemma. We conclude this chapter by
proving a theorem of considerable importance.

THEOREM 34. If b, is a posilive monolonic decreas-
ing sequence and if h(m, n), H(m, n) denote respectively

the least and greatest values of the sums Za, for v =m
rem

m-+1, ..., n, then

"
b h(m, n)<a,b, <b, H(m, n).

r=1

Let f(m, v) = }.v?a,. Then

re=an

‘S":arbr = auby, +am+1bm+l +...+anb,
"=f('n) m)bm+{f(m) m+l)—f(m! m)}bm+1+°"
+{f(m’ n) _f(mv ‘n—l)}b,,
== f(m, m)(bm—bpmy) +f(m, m+1) by —bins) +...
+f(m, n—1)ba-y —bn) +f(m, n)h,

Now b,,—b,, 41, bs1 —DOmsar ... are all non-negative. Henc::
h(m, n)(bm _bm+l ’*‘bm+l —bm+2+ oo _bn +bn)

<Zab, <H(m, n)(bp—bms+ oo —by+by)

rem

from which the result follows.

The enunciation of the theorem may be modified in
the following way in order to cover the case when a,
may be complex.

E
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If b, is a positive monotonic decreasing sequence and if
K(m, n) denotes the largest of the sums |2y'a,| Jor v =m,
m+1, ... n, then -
1Za,b,|<boaK(m, n).

F=m

Example. Show that, for each fixed value of 8 which is
not zero or a multiple of 2,

cos nf = cos (n+l)0+ +cos 2n0__ ( 1 )
logn ' log(n+1) 7 log2n ~  \logn/

By Abel's lemma the absolute value of the left-hand side
is not greator than

1
10?1 1{(’1, 2”),

whero K(n, 2n) is the largest of the sums
|cos n8+cos (n+1)0+...4 cos (n+v)d|

for v=20,1,2,..n Clearly K(n, 2n)<1/|sin 48| so that the
result follows.

Examples

1. If a, and b, are real and if the series Za,?, Xb,° are
convergent, show that the series Za,b, is absolutely convergent.

2. Determine for what values of x each of the following
series is (a) absolutely convergent, (b) convergent :—

o n43 o iy 2 OO o
(i) z(—n+l)(n+2) z®,  (ii) 2(2 3 (iii) 2(2'1)! xn,
(v) 2 ‘2’1/ S e P ey
(vii) z% log 221 (wiii) ;:g. (ix) £ (log =)* 103—'*'—l
8. For what values of z are the following series convergent ?
cos nx . sin nx . T
(i) 2 V' (ii) 2 fogn’ (iii) Z cos nx sin o
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4. Prove that the series
14+3—3+3+3—3+i+—3+...

is divergent, while the series
I EX SRS AR R B A

converges to the sum log 3.

5. Discuss the convergence of the series

e _ @ntq)
noo RRF)M+2) °

and find its sum when z = 1.

6. Prove that the serics
1 1 1 1 1 1
l4=—s+5+ 5 ==tk ——
FY Y R B LR (4n =3P
1 1

+ (4,;__])'\ - (2,;)3 +ou

is properly divergent for A<l and convergent for Al
Show that when A = 1 tho sum of the series is log (24/2).

Answers. 2. (i) (8) |z| <1, (B) —1<<z<1; (ii) (a), (b) all
values of x; (iii) (a) |z]<4, (b)) —4<x<4; (iv) (8) O<x<],
(b) 0<<e<1; (v) (@), (b) z#0; (vi) (a), (b) |z|<1; (vii) (@)
lz| <1, () —1<z<]; (viii) (a), (b) |z]<1; (ix) (@) /e <z <e,
(b) le<z<e. 3. (i) z#2km, whero k& =0, +1, +2,....;
(ii) all values of 2; (iii) = #2kn, where k = £1, %2, .....
b. Seories convorges absolutely if J¢|<1, 2}.
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SERIES OF FUNCTIONS

42. Unitorm Corvergence. Suppose that 4,(z) is a
function of the integral variable n and of the continuous
variable x which is defined for all positive integral values
of n and for all values of  in the interval a<{z<Cb. Suppose
further that, for each value of x in the interval (e, 8), the
function A4,(x) tends to a definite limit as n—>00. This
limit will be a function of # which we shall denote by
a(z). From the definition of a limit it follows that, given
e, we can determine a positive integer N such that
la(z)—A4,(z)|<e whenever n>>N. As a rule this integer
N, besides depending on e, will also depend on x. If,
however, it is possible, for any given ¢, to determine
an integer N, which i3 independent of x, such that
|a(x) —An(x)|<e whenever n>N, then we say that, as
n->00, the function 4,(x) tends uniformly or converges
uniformly to a(z) for a<{z<b.

To illustrate these points consider the function

An(x) = ", (ngg'l“)-

Given e(<1) we have |, (2)|<e if z"<e; that is, if
n>(loge/logz). Hence if wo take N to be [logeflogz],
we shall have |A,(x)|<<e whenever n>N. Of all the
values of N corresponding to the various values of z
the largest is [logeflogi]. Thus, for all values of z
in the interval (0, 4) we can write |4,(z)|<e¢ whenever
n>(logeflogl]. We therefore conclude that, as n—co,
A, (x) tends uniformly to zero.
63
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Again, if
An(x) =a", (0<I<1),
=0,{z=1),

then |d,(z)|]<e if n>[loge/logx]. In this case the
function [loge/logz] has no largest value for the various
values of z under consideration and, although A,(z) tends
to zero for each value of z, it does not tend uniformly to
zero.,

In the light of these examples we may therefore rewrite
our definition of uniform convergence as follows. If, for a
certain range of values of z, given ¢, we can find N = N(¢, x)
such that |a(z)—Ad,(z)]<e whenever n>N, then A,(x)
converges uniformly to a(x) if N(e, ) i3 a bounded
function of z.

Although we have defined uniform convergence with
reference to a finite closed interval a<<z<Cb it is clearly
unnecessary for z to be so restricted. The definition remains
essentially unaltered for intervals such as a<<z<b, z>a,
etc. It also applics to cases when z may take any infinite
set of values, TFor example, we may speak of the function
A, (M) converging uniformly for all positive integral
values of A,

43. Series of Functions. Let a,(z) be a function of n
and z defined for all positive integral values of n and for

aze<<b and let 4,(z) =Z"'a,(z). The series Za,(x), if

rel
convergent, will have a sum a(x) = lim A,(z), which will
n—+0
necessarily be a function of x. The series is said to

converge uniformly to the sum afx) for e<z<b if
A,(z) tends uniformly to a(z) for a <<z <Ch.

The fundamental theorem for the uniform convergence
of a series may be stated as follows :

THEOREM 35. A necessary and sufficient condition for
the series Xa,(x) to be uniformly convergent for a<{z<Cb 4s
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n+
that, given <, we can find N = N(¢) such that |Za,(z)|<e
re=n+1

whenever n>N and for any positive inlegral value of p.

The condition is necessary for, if Za,(z) is uniformly
convergent for a<{x<b, there is a function a{x) with the
property that, given ¢, we can find N = N(e) such that,
for n>>N and all values of z in (a, b),

la(x)_An(x)'<§€-
It follows that, for such a value of n and any positive
integral value of p,

la(@) — 4., p(@)| <fe.
Thus, for a<<z<b, »>N and any positive integral value

Of By n+p
I Ear(x)l = |An+n(z)_An(x)|

randl
< |4p4o(2) —a(z)| +|a(z) — 4,(z)]
< e
To show that the condition is sufficient we observe
that, if the condition is satisfied, we have, for a <<z <3,

Aﬂ(z) —e< A,,+,(x)<.4,,(a:) ¢,

where n is any fixed integer greater than N. Now, for
each value of =z, the series Za,(x) is convergent by
Theorem 7 ; that is, 4,.,(z) tends to a definite limit a(z),
say, as p tends to infinity, We then have, for a>N
and a<<z <),

Ap(x)—e<a(z)<4n(x)te;

that is, the series Za,(z) converges uniformly to the sum
a(z).

44, Tests for Uniform Convergence. We now
obtain some simple tests for the uniform convergence of
series.

THEOREM 38. (Weierstrass’s M-test.) If, for a<<zx<b
we have |a,(z)|<M,, where the series ZM, t8 convergent,
then the series Xa,(x) {8 uniformly convergent for a<<a<Ch.
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Since the series JM, is convergent, given ¢, we can
find N = N(¢) such that, for n>N and any positive
integral value of p,

Mﬂ+l+Ml‘l+2+"'+Mn+F<€'

For all such values of n and p, and for a<Cz<Cb,
ntp nsf n+p
IZ a‘r(z)l < lar(x)l < 2 M <e
reantl ren+l ren4l

The uniform convergence of the series Za,(z) for a<<z<h
then follows from Theorem 35.

It is easy to see that the same proof would hold if M,
were & function of = and if the series M, (x) were uniformly
convergent for a a2 <Ch.

For example, the series X ::T is uniformly convergent

for —1 <2< since, for such values of z,
1

xll
Sq

n

and 2'1/n? is convergent.

Other and more delicate tests for uniform convergence
are obtained by making modifications in Theorems 30
and 31.

TaEOREM 37. If b,(2) 48 a positive, monotonic decreas-
tng function of n for each value of x in the interval a <z <h,
tf b,(x) i3 bounded for all values of n and z concerned, and
tf the series Xa,(z) 18 uniformly convergent for a<z<b,
then so also s the series Za,(z)b,(z).

Suppose that b,(z)<K for a<<a<b and all positive
intogral values of n, where K is independent of = and =.
Given ¢, we can find N = N{¢) such that, for n>N and
any positive integral value of »,

n+y
| Za,(z)| < ¢/K.
rn+l
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By Theorem 34 we then obtain

|z‘a (2)br(z)| <bp(z) Max (2. ()|
v=1,2,...p reatl
<K.eK =e.

The theorem therefore follows.

For example, the series 2

—])n-1
( ;) [z|* is uniformly
convergent for —1<Cz<1, since |z|" is positive, monotonic
decreasing and bounded for —1<x<1 and the series
Z(—1)"-1/n is convergent.

TreoREM 38. If b,(x) t3 a positive, monolonic decreasing
Sunction of n for each value of x in the range a<a<b, if
ba(z) tends uniformly to zero for a<<x<b and if there is a
number K, independent of x and n, such that, for all integral
values of n and all values of x in (a, b),

n
|20,(:!:)|<K,
]

then the series Za,(x)b,(z) s uniformly convergent for
a<<z<bh.
Given ¢, we can find N = N{(¢) such that, for a>N
and all values of z in the range a <<},
0<b, ()< /2K,

For such a value of # and any positive integral value of p
we have, by Abel’s Lemma,

|2£,(x)b,(x)|/b,,(z) Mox 13 )|

1,2,..p ren+ld
nt-p
<@ Ea @+ Max (i)
2—I-{(A+K)

= €.

This proves the theorem.
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For example, the series Z{log (n+1)}-*cosnx is
uniformly convergent for 0<8,<x<0,<27. When z
lies in this range {log (n+41)}-* is a positive monotonic
decreasing function of ». Also, since {log (n4-1)}-2<
{log (n+41)}~6 the function {log (n+1)}~* tends uniformly
to zero as n—co. Moreover, in this range,

|Z,:' cos rz|<1/(sin §x),
r=1

which in turn is less than or equal to the larger of
1/(sin 48,), 1/(sin 18,), both of which are independent
of z and n. The series is therefore uniformly convergent
in the range stated. It is of course to be understood
that 0, may be as close to zero and 0, as close to 27 as
we pleaso,

45. Some Properties of Uniformly Convergent
Series. We turn now to a consideration of the more
important properties of uniformly convergent series.

o
TuroreM 39,  If the series Za,(x) is uniformly convergent

ne=1
for a<<z<<b to the sum a(z) and if, for each value of n, a,(x)
tends to a limit s, as x—x,, where z, 8 some point in the
range (a, b), then, as x—x,, a(x) tends to the limit o, where o

[
18 the sum of the series Zs,,.
nel

In the first place, wo observe that the series Xs, is
convergent, for, given ¢,, we can find N = N(¢,) such that,
for n>>N and any positive integral value of p,

— €1 <y (T) F g o(T) Fo 0y p(T) < €.

Lot z—>xy. Then, for a>N and any positive integral value
of p,
—€,<8pty Hnsat oo 8y p 6.

The convergence of Zs, then follows from Theorem 6.



74 INFINITE SERIES

Write 8, = 2"73,. Then, given ¢,;, we can find positive

integers N, = I'V:(le,) and Ny = Ny(e,;) such that
lo—8p| < $eq
whenever n>N,, and
|la(z)—Aa(z)|<de;

whenever n>>N; and for all values of z in (a, b). Let N
be a fixed integer greater than both N, and N,. Then we
can determine 9 = 5(N, €;) = 5(ey) such that, for all
values of z in (a, b) satisfying the inequality |z—z,|<9,

[An(x)—8y|<ie,
Collecting these results we have

la(z)—o| <|a(z) —A y(2)|+ |4 n(x) —Sx|+|Sy—o|
<t tHletle=¢
for all values of z in (@, b)satisfying the inequality |z —z| <.
Hence a(z) tends to o as x—z,. Clearly the same result
is also true if Xa,(z) is uniformly convergent for z>a
and if a,(z) tends to s, as z tends to infinity.
It will be observed that, in effect, this theorem is an
extension to the case of infinite series of Theorem 1 (i).

TueoREM 40. If the series Z?a,,(x) i8 uniformly convergent
nel

for a<<z<b to the sum a(z) and if, al a point =, in the range
(a, b), each of the funclions a,(x) 8 continuous, then a(x)
18 continuous at the point z,,

Since a,(x) is continuous at the point z, we have

lim a,(z) = a,(z,).
)

Hence, by Theorem 39,
lim a(z) = alz,) ;
2+,

that is, a(x) is continuous at the point z,.
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In the case of series whose sum can be readily calculated
this theorem often provides a good negative test for
uniform convergence. For example, when a,(x) = z™(1—=z),
0<z<], we have a(x) =0 for = 1, while a(z) =1 for
0<z<1. For each value of n, a,(x) is continuous for
0<x<1, whereas a(z) is not continuous throughout this
range. It follows that the series cannot be uniformly
convergent for 0<x<1.

TueoreM 41. (Term by term inlegration.) If the series

Za,(x) converges uniformly for a<<z<b to the sum a(x) and
al

;{f, for each value of n, a,(z) is conlinuous #n thia inlerval,

@® T
then the series X | a,(t)dt converges uniformly for a<<x<<b
a

n=l

T
{o the aumJ. a(t)dt
a
In the first place, it should be observed that all the
integrals do in fact exist,* since all the functions concerned
are continuous.
By hypothesis, given ¢, we can find N = N(¢) such that,
whenever n>N,
|a(z) —4n(z)| < e/(b—a).
For such values of » we then have

j:{a(z)-Anu)}dt < f o) Aul

z
€
< —_—
v[ab—
<e

The theorem is therefore proved.

Example. By expanding 1/(1-+cosf cosz) in asconding
powers of cos 0 cos z prove that, for 0<8<m,
L
cosec 8 = l+27 5 (v)')’ cos®v@.

* Seo G., p- 74
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For 0< < # and all values of = we have

] @
—_— = —1)" cos® "y,
1T cos G cos & l-l;f(l 1)® cos"# cos"x

The series on the right is uniformly convergent for all
values of x since

[(—1) cos™8 cos™z|< |cos 6(",

and 2 |cos @|" is convergent. Hence

L Z (=1 cosnd [ cosvadz
J'Zl+0030cosz="t=1(_)cos ucos )

Putting ¢ = tan §x this becomes

o o0dt © i
= 20 27 .
-[o t3(1 —cos 8)+(1+-cos 6) "+3§1 cos™0 0 cosadz ;
that is,* °
o —cos @ ]
gin 0 [tan “\/(l +-cos 0)}

=n{1+Z
L Rl v T T Y

2 (2y—1)(2v—-3)...3.1 s,_,m}.

whence, for 0<8< 7,
cosec § = 1-1;2.‘1 2,(,‘, (V)')' cos®rg.

TaEOREM 42. (Term by term differentiation.) If the
series Xa,(x) converges lo the sum a(x) for a<<z<b, if a,’(x)
18 continuous for a<z<b and if Za,'(x) 18 uniformly con-
vergent for a<<x<b, then the sum of the series Za,'(z) is a'(x).

Suppose that the sum of the series Za,'(z) is o(x).
By Theorem 41, if z is any point of (a, b),

f ot = 2 [ s = Fauta)—anian
a e a Re]
— a(z)—ala).
* See G., p. 19.
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Since o(x) is continuous for a<{z<b it follows * that a(r)
can be differentiated and that its derivative is o(x).

Ezample. Show that, for —l<zx<]1,

l+21:+4:c’+81:" _l
142 ' 1423 ' 142t 1+x8+"‘—1—z'

The n-th partial sum of tho series
log (1 —x)+log (1 +=2)+log (1 +2%) +log (1 +x%) +...

is equal to
log {(1—z)(1 +z)(1 +23)...(1 +2""")}

.....

= log (1 —z*"7})
>0

as n>ow for —l<z<1. Morcover, for |z|<p<]1,
9apaft-t

142"

<2nplﬂ-l’

and the sories 223" is convergent. Henco the series
2z 4x? 827

1422 + 1424 + 14-a8 Feee

is uniformly convergent for |z|<p<1 and, by Theorem 42,
its sum is the derivative of —log (1—=z)—log (1+=z); that is
1 1
i—z 14z

Neither Theorem 41 nor Theorem 42 has been stated
in its most general form, but what we have obtained is
quite general enough to suit most ordinary requirements.

The result required follows at once.

Example. Show that, for 0<0<2n,

@] x 1
X - cosvh = —log (2sin }8); X -sinvld = } (7—0).
yul ¥V vl ¥

* See @, p. 79.
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Lot = = cos #+46in 8. Then

5 xv—lzv = z{l_—.(xz)“}

Yaal l—xz ’

whence we have, for [z|<]1,

o . .
Zzv—1(cos v8+-1 sin vf) = cos 6+1 su.x 0
pel 1—z cos —xi sin @
(cos 0—z)+tsin 8
1—2x cos 8423 '

so that ©

cos 0—x
P-l W = ————
,{f cos v0 1—2z cos 4z
@ sin @
Sxv=1 gi =—
,_f sin v0 1—2x cos §4-2*

These series are uniformly convergent for all values of ¢
and for |r|<p<1. Hence, integrating with respect to =z,
where 0<2< 1, wo have

@ x¥cos vh cos §—1¢
= = - -— 2
vfl > o T2t cos 0+t’d¢ } log (1 —2x cos 84-2%),
©av gin vl . 2 dt
oy =en af' I—2tcos g " 8.[ olt—cos O} +ein® 8
[ t—cos 0 t=z
= sin 6 t=0
= tan- x(’ﬂf_") —tan~}(—cot 6)
sin 6
-1 .. —
tan™ ( sin 0 0)) (0<f<n),
—afZ o8 b ?3_
tan ( = (2 o), (n<<2a).

SBuppose that 8 i3 neither zero nor a multiple of 2r. Then

e
the series 2

=1
positive, monotonio decreasing and bounded. The series

E_z’cos ve is therefore uniformly convergent for 0<z<l.

is convergent, and, for 0<a<1, ¥ is
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Let z>1. Then by Theorem 39 if 0 is neither zero nor a
multiple of 2n,

@D

Z‘-l cos v0 = — § log (2—2 cos 0)
-]
Y = — log (2 sin $6), (0<0< 2).

In the same way we also obtain
5 sinyd _ ftan-! (tan } 0) +§ »—0, (0< o< m),
ye1 ¥ \tan-!(tan 3 8) 4+ § 7—86, (<0< 2n),
= }(mw—0), (0<B8<2m).

46. Power Series. The simplest and most important

o3
case of a series of functions is the series * Za,z". Such a
n=0

geries is called a power series. We shall confine ourselves
here to a short discussion of power series in the real
variable .

Treorem 43. If iim [la,| = 1/R then the series
Za,z" is convergent for |x|<R and divergent for |z|>R.
For
i laallel®) = l=lIR,

whence the series Za,z® is absolutely convergent, and
therefore convergent, for |z|<R and divergent for |z|>R.
The theorem in effect shows that, to every power series
Za,z", there corresponds a unique number R (which may be
zero or infinity), such that the series is absolutely con-
vergent whenever |z|<R and divergent whenever |z| >R.
If z is roplaced by the complex variable z the same
proof shows that the series Za,z" is convergent whenever
the point z lies within the circle |z| = R and is divergent
whenever z is outside this circle. For this reason the
number R (which may be zero or infinity) is called the
radius of convergence of the power series. For example,

* Unless otherwise stated it is to be assumed that the first term
of the power seriea Za z" is ag.
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the series Zn"z", Xz, Jx"/n" have respectively radii of
convergence equal to 0, 1, co.

THEOREM 44. If its radius of convergence is R the
power series Za,x" is uniformly convergent for |z|<p<R.

We have

|ena”| < aq|p®

and Zla,|p" is convergent. Thus, by Theorem 36, the
series Za,z® is uniformly convergent for |z|<p<R.

We at once conclude that a power series may be
integrated term by term so long as the limits of integration
lie strictly within the range (—R, R). The radius of

2] —
convergence of the series Zna,zn! is 1/lim J/(n|a,]),
ne=l
which is equal to R since [/n—1. Thus a power serics
may also be differentiated term by term at any point z

strictly within the range (—R, R).
We now prove an important theorem due to
Abel.

TREOREM 45, If the radius of convergence of the series

(-]
Za,z" i3 R and if Za,R" is convergent, then
n=0 a an
lim (2 a,z") = Za, "
>R n=0 no
The result will follow from Theorem 39 if we show
that the series Za,2" is uniformly convergent for 0<{z<CR,
This in turn follows from Theorem 37, since Za,R" is
convergont and (z/R)" is a positive, monotonic decreasing
bounded function of n for 0z R.
The most important case of the theorem occurs when
R =1. We then obtain

lim (E’a,,a:") = E’a,,
=1 n=0 n=0

if the series 2a,, is convergent.
As an illustration, consider the series 1—t24(4..,,



SERIES OF FUNCTIONS 8l

whose sum for |¢|<1 is (1-+¢2)~). Integrating term by
term we have, for —l<z<]1,

-1 i
tan-l 2z = J it iTe= +
Let 1. Then
1 1
= 1— § + 5 " eee
which gives Gregory’s series for .,
The binomial series

A A(A 1)

1+ + 2.

has unit radius of convergence and its sum, for —1<z<1,
is (14+z)\. We shall now examine this series in the cases
z=-landz =1.

Writing —z for = we obtain, for —l1<z<1,

(-2 =1— Ax+’\()‘ Do .

When x =1 the scries on the right (see Art. 31) converges
for A>:0 and diverges for A<0. Its sum for A>0 is zerc
by Theorem 45 and when A = 0 its sum is obviously unity.
It follows that, when z = —1, the original series is
convergent to the sum zero for A>0, is convergent to the
sum 1 when A = 0 and is divergent when A<0.

When z = 1 the binomial series becomes

A(,\ l)

1+ + + s
Denoting it by Za,, we have
n=0
a, = (—1)" (n—A—1)}n—A—2)...(1— /\)(—4\)

1.2..n

If A< —1. |a,]>>1 so that the series is divergent. If A>—1
F
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the terms of the series ultimately alternate in sign and
|aa| steadily decreases. The convergence of the series
therefore depends on whether or not a,—»0. Writing
p = [A], and remembering that 1 —z<e~?, (x>>0), we have

wmofi-22)(0- ) . - 53

= o{e-(xﬂ)(w; +...+,3,)}
— O{e—u\+l)logn}
=o (1),

when A > —1. The series therefore converges when
A > —1 and its sum, by Theorem 45, is 22,

The example just considered shows that it is not true
to assert that if the series Za,ax" converges for —l<z<l
and if lim (Za,z") is finite then the series converges at the

z—+1
point z = 1. That this converse of Theorem 45 is false
follows from the fact that, for all values of A, (l+z)x—+2"
as z—1, whereas the binomial series at z =1 is only
convergent for A > —1.
We conclude this chapter by proving a theorem of
considerable theoretical interest.

THEOREM 46. Every power series 1s the Maclaurin
series of ila sum funclion.
Let a(z) = Z?a,,z". Then a(x) is defined for all values
0

fis=
of = inside the range (—R, R), where R is the radius of
convergence of the series. For such values of  we have

al?(z) = Zu'bn(n—l)...(n—r+l)a,,x"-'

80 that a!?(0) = 1! @,. Thus a, =a'"(0)/r! for all positive
integral values of r. This proves the theorem.
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Examples

1. Discuss the uniform convergence with respect to z=
of the series

- - -t 1
0w @I OF ermemey
(- ) °° sinh z
(w),.fl sin (l+ ) ,,;.o cosh nz cosh (n+41)z’

2. Discuss the uniform convergence with respect to 6,
wheroe 0 lies in the range (0, 2n), of the series

o -
(i) 2 log n 8in n#d, (ii) Z cos"8 cos n#b,
nag N nel
@
iy » MBm=Osinnd ) B ne0 cos (2n41)8.
nel \Vn nel

3. Find the sums, for |z|<1, of the scries

® 1.3.5...(2n—1) ant!
@ xtfl 2.4.6..2n 2n+41
1.3.5...(2n—=1) a3t

2.4.6..2n 2n+41’

(i) z+Z (1)
n=1

and deduco that

13 1 1357 1
o2z tagesp T —-11+ log(l+\/2)

433 2468 9

-
4. Show that thoe series Zx(1 —z)" is convergent but not
ne0

uniformly convergent for 0<<x<{p<2. Is there an interval
of uniform convergence t Show that the sum of the series is
not continuous at the origin but that term by term integration
over the range (0, 1) leads to a correct result.

w

§. Show that the series Zx"(1 —=z") is not uniformly con-
el

vorgent in the interval 0<{z<{1 and determino for what

€0
values of a the series 2(1—z)%2x"({l—=z") is uniformly con-
fn=1
vergent in that interval.
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6. By comparing it with an integral, show that the series
5 il (a>0 0)

~——zs (a>0, §>0),

ne=114n22*8 A

will not bo uniformly convergent in any interval including the
origin if a<B.

7. If

[} xann z!n{-s @ zin+l xu-i-l
/=) =,,fo {2n+l 2n+2} $(z) —,,.=.o{2n+l - 2n+2}'

show that f(z) is continuous for 0<Cz<C]l and that ¢(x) is
continuous in the same interval except at the point z = 1.
Explain the discrepancy.

8. Prove that
(i) sin 0—4 sin 20+ sin 36—... = }6, (—n<O0<n),
(ii) cos 90—} cos20+-4cos30—... =log(2cos i), (—n<i<n),
(iii) sin 6+§ sin 30+«} sin 58+... = {n, (0<0<n),

.n,ﬁ
(lv) + + y Fe 3’
cos § cos 20 cos 38 n &
M— =+t " ~"p-7 (—7<0<).

[To obtain (iv}), multiply (i} by 8 and integrate from 0 to =,
justifying tho term by term integration over this range.]

9. Prove that, for 0<0< 2xn,
@ cos né
a=1n(nt1)
@ gin nf
nem1n{n+1)
Deduce that

i) —, — —‘; + -5—‘- v = Hm—2 log 2)
+

= 1—2sin}f{sin 36 log (2 sin §8)+ 4(m—0) cos 35},

= 2 8in}8(}(=—6) sin }0—cos 6 log (2 sin §0)}.

12

(ii) —, 2 - vee = }(74+2 log 2—4).
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10. Prove that, if —1<a<d,

1 1—¢ x x8
fo =¥t tate
and deduce that
1 1 1 n
(i) T2+R+'z_.s+""3'_:'l’
1 1

”
+.. = m +13 log 2.
11. By expanding (1 +cos 8 cos x)-! in asconding powers
of cos 0 cos z prove that, for 0<0< 7,
8 n 2 (Z2m) © 2em-3(m— I)}2

—_— - ——— Img —_—
o = 2,2 T S T Emey

ey 1
st +3n

cos 8m-1g,

- w
12. If, for a certain rango of values of z, Za,x" = Zb,z"
n=0 n=0
show that a, = b, for all positive integral values of n.

Answers. 1. (i) For all values of z; (ii) —1<z<1 if
a>1, —1<<e<k<] if 0<a], —1<—k<z<I<] if a<<O;;
(iii) for all values of z ; (iv)forall valucsof z ; (v)forz<<—k<0
and for 0<k<<z. 2. (i) O<h<OI<2y; (ii) O<h<<OKI<n
and 7<p<LO<g<2n; (iii) 0COL2n; (iv) O<k<O. 3. (i)
sin=lz; (ii) log {z+v/(1+2%)}. 4. 0<k<rz<<p<2. 6. a>L
7. f(z) = log (14%), ¢(x} = } log (14-x) when |z|<1, while
f(1) = ¢(1) = log 2. In tho proof of Theorem 45 it is nssumed
that tho series is arranged in ascending powors of z. The
theorem doos not, therefore, apply to the series for ¢(x) with
the brackets removed.



OHAPTER VII

THE MULTIPLICATION OF SERIES

47. Multiplication of Series of Non-Negative
© @
Terms. Suppose that Za,, Xb, are any two series. Then

A0 n=0

the series E‘c,,, where
n=0
n = Goba+abay+ ... +anbo
is called the product series of the two series Za, and Zb,.
The reason for this definition, in the case of series whose
terms are non-negative, is shown by the following theorem.

TazormM 47. If 8,30, b,>0 and if Sa, and 3B,

n=0 neQ
o
converge respeclively lo the sums a and B then Ze, converges
nw=0

to the sum af.
Consider the array

agbol alb,,| aby| asboladb, ...
aobl albl aabl aabl oo
agby aby azhy agh oo
by aby azby aghy

ach

and suppose that d, denotes the sum of all those terms
which belong to the (n-+1)-th square but not to the n-th
square. For example
do = aobo N dl = aobl'*"albl +alb° g ore
8
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Clearly we have *

do = 4,B,,
d, = A,B,—4,B,,
d, = 4,B;—A,B,,

d, = A,B,— Ay 1By,

Adding we obtain D, = 4,B, and, since 4,~a, B,—B,
it follows that Xd, converges to the sum af. From
Theorems 15 and 14 in turn it then follows that the follow-
ing series
Ao +aohy +a,b, +a,by+aoby+6,b; +a0by +aghy +agbe+ . - .
Bobo+aghy 1o +aoha 215 +azby +80b5+a105+asby +ash,

+ .0
agho+(ahy +a1b) +(aghs+810y+-abo) + . - .
are each convergent to the sum af. This proves the
theorem.

48. Multiplication of General Series. Consider
the series Za, and 2b, where
—I\n
8y = 0y = by = by =0, 8, = by = "L (n>2).

logn
We have
1 1

on = (=1)" {log 3log @n—2) | log 3 log =)

Fet log (n—2) log 2}’
so that, when = is even,
> ”—-—3_ —>00
o log gm
and, when n is odd,

€ S — n—3 > —
{log }(n—1) log }(n+1)}

The series Xc, therefore does not converge.

@,

n
* Throughout this chapter 4, denotes L‘gw and B,, C,. D, are
o

defined gimilarly for the series Zb,, Ze, and 2d,.



88 INFINITE SERIES

This example shows that to ensure the convergence
of Zc, to the product of the sums of the series Za, and
2b, wo require, besides the convergence of Xa, and Xb,,
some further limitation on the behaviour of these series
or of X¢,. One sufficient limitation of this kind, namely
a,>0, b,>>0, has slready been obtained. The theorems
of this article provide further illustrations of this principle.

Tueorem 48. If Za,, Xb, converge absolulely io the
sums a and B, then Zc, converges absolutely to the sum af.
Since Za, and Zb, are convergent it follows, as in the
proof of Theorem 47, that the series
aobo+(aoby +a,by+a,b0)
+(agbatabytasby+asb, +abo)+... (1)
converges to the sum af, and, since Zla,| and Z|b,| are
convergent, that the series
[@olibo] +(laqlly| 3-|2yIby |+ |@1lbq|)
+(|@qllbe |+ (@, liba] - |aslibg| - |aoliby | 4- [aslbo]) +-...
is convergent. From Theorem 15 it follows that the series
@obo+aoby +a:1by +aybo+aoby+arbyt+azhs+aby +asby+...(2)

is absolutely convergent. Let the sum of this series be a.
Series (1) is obtained from series (2) merely by the insertion
of certain brackets. Hence, from Theorem 12, o = af.
It now follows from Theorem 29 that the series

aobo+a°bl +albo +a°bn+a‘bl +a2bo+n .

converges to the sum aff and, from Theorem 12, that the
geries Z¢,, converges to the sum af.

The absolute convergence of Ze¢, follows from the
fact that

"E:!cnlglao‘lbo' +|@ollby] +[aslibol -+ o

which is convergent.
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Ezamplse. If z is any complex number and exp z is defined
o
to be Zz"/n!, prove that
nw=0
exp z exp { = exp (z+{).

Tho series for exp z and exp { are absolutely convergent
for all values of z and { respectively. Hence
zu-l; zn—aga

(n—1)111 ° (n-—2)12!

-z {z“+( D=+ (5 )z"—=;=+...+c'-}

oxp z exp { = g (z_” + +...+§-:)

n-o n!
= fo rT! =+
= exp (z+1).
TrHEOREM 49. If Xa,, b, converge respeclively to the
sums a, B and if Ze, converges then Xe, = af.
ne=0

[l © ]
The series Xa,z", Zb,a", Zc,z" are all absolutely con-
n=0 n=0 n=0
vergent for —l<z<1 since, by hypothesis, their radii of
convergence are not less than unity. Let their sums be
a(z), Blz), y(z). The third series is clearly the product
series of the first two, so that, by Theorem 48,

y(x) = a(z)B(z).
Let z—>1. Then it follows from Theorem 45 that
fc,, = aﬁ.
n=0
Ezxample. Prove that

pat n 1 l — : 3
Z=D {( A ). et +1(n+1)} = (log 2%

Write g, = b, = (—l)"/(n+l), (n=0). Then Za, and Zb,
convorge to the sum log 2. Also the product sories of Za,
and Xb, is Zc, where

1 1
= (=1 {(n-H)l+ tet T (n+1)}
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When n is even we have, by Theorem 186,

1 1
°'<2{( a1 e T +<an+l)'}
in+1 d:c
= 2."1 z(n+2—zx) +0( )
}ﬂ+1(

=il i) eof)

= m[m ﬁ}—z]w +0 (}J

+2 log (n+1)+0 ( )

= o(1).

8imilarly, when n is odd, ¢, = o (1).

Moreover, |a,] is & monotonio decreasing function, for
lea-1|— leal

1 1 1 1 1 1
o Ty )2+"‘+ﬁz"(n+l).1’ﬁ_""‘l.(n“)
1/1 1 1 1 1 171 1 1
=263 5563 ++iG-wn) —
11 1 1 1 1 1 1
>;{i—§+§—§"+;—n+1} n¥l
1 1 1
n nn+l) n+l
= 0.

It follows from Theorem 32 that X¢, is convergent
and, from Theorem 49, that its sum is (log 2)2.

Finally, we have the following theorem of Mertens.

TreorEM 50. If Xa, converges absolutely to the sum a
and if Zb, converges to the sum B, then Zc, converges to the
sum af.

Let the sum of the series Z|a,| be 6. From hypothesis
there is a positive number K such that, for all values of n,

[By+-ba+-... +ba| < K.
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Moreover, given ¢, we can find N, = Ny(e) such that,
for n>>N, and any positive integral value of p,

|@ns1|+ [Gasal 4o 4 [0nsp| <€4E,
and we can find N, = N,(¢) such that, for n>>N,, and any
positive integral value of p,
[ba+Bpty +-.. Fbaspl < €/20.
Let N be any fixed positive integer greater than N,
Then, taking 2>N4N,, we have
A,B,—Cy = (@o-+a1++ +)(BoFby+... +b,)
—{8obo+(ach;+81b0) +{(abg+a1b1 +ashe) +...
+(aobn 81001+ +-8n—1by +3abo)}
= albn +a2(bn—l +bn) +aa(bn-2+bn-l+bn) + ..
+-an(by+by+...+by)
= a,b, +ay(ba-y +bp) 4. +ay(bp-p41t+-. +b4)
+aysy(bp-yties+0a) + +an(by +bg+... D)
n +Qﬁ!
say. Now
1Qul 2R {Jagsal+lazssl+.ooHlanl) 20t
Also,

|Py| <{las| +lag|+... +|an[} Max  |bppt... 4Byl
o<m<N -1
<5 =te
Thus, for n>N+4N, we have |4,B,—C,|<e; that is,

lim (4,B,—~C,) =0. In other words, the series Zc,
converges to the sum aB.

K€_§€

Examples

1. Prove that, for certain values of x and # which are to
be stated,

R | 1 ® 1
0 = log 5 = 2, (1+§+}+...+;)zn,
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(ii) 22.‘::" cos nb Ex" sin nf = 2(n+1)z" sin no.
n=0 n=0 n=0

2. Prove that, for certain values of z and # which are to
be stated,

-} ] - 1 W Af)
2 T cosnb 2 Z sinnb = Z.’:-t—(l+§+...+ —-l—) sin né,
n-1n n=1 0 n=2 n—1

and deduce from the example at the foot of page 77 that

@ 1 \sin nf ,
® 2 (1+;+...+;—)5‘“n” = §(6—n) log (2 sin $6),
(0<0<27),

1
i) z (-1) 1(1-}-,!,+...+ 2”) i = V7les 2

3. Fmd partial fractions for
(a+1)(a+3)...(a+2n—1)
a{a+2)...(a+2n)
and hence prove that, if >0 and —1<x<1,
13 a 1.3
(141504 gy g ) {1t g o0+
a+1 (a+1)a+-3)
=t aroere

a¥ ...

Answers. 1. (i) |zj<1; (ii) {z|<1, all values of 4.
|z] <1, all values of 8; or z =1, 0#2kn; or z=-1,
0;!':(2k+1)1r, k being any integer.



CHAPTER VIII
INFINITE PRODUCTS

49, Convergence and Divergence of Infinite Pro-
ducts. Suppose that a, is any real function of =
defined for all positive integral values of » and let

Py = (14a,) = (+a)(i+ag) (1 +3).

If P, tends to a finite non-zero limit P, then we say that
the infinite product IT(1+a,) converges to the limit P
and we write
oL

(1 +a,) = P.

nel
If P, docs not tend to a finite non-zero limit, then we
say that the product I1(1+a,)is divergent. When P,—0
wo say that II(1+4a,) diverges to zero. The phrase
“ diverges to zero ”’ as applied to an infinite product may
at first sight seem curious, but it appears quite natural
when weobserve that the behaviour of the product II(14-a,),
a,>—1, is completely determined by the behaviour of the
serics 2 log (1-a,). This follows since

log P, = log {IH(1+e,)} = £ log (1+3,).
re=1 re=1

Thus, to say that the product IT(1 +a,) diverges to zero
is the samne as saying that the series 2 log (1+a,) divergos
to —oo. It should be noted that, if each of a finite
number of factors has the value zero, the product is
convergent if it converges when these factors are removed.
In such cases the product has the value zero.

o3
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If the product H (1 -+-a,) is convergent, P, and P,_, tend

to the same llmlt ns n—>oo that is,

n/Pn-l = 1+an""1’
whence a,—0. Hence a necessary condition for I7(1+-a,)
to be convergent is that a,—0.

It follows at once that, if the product JI(1+-a,) has an
infinity of negative factors, it cannot be convergent. Such
products, therefore, need not concern us further. If
II(1-+-a,) has a finite number of negative factors there is
an integer % such that, for n2>k+1, 144,220, and wo may
write @® k o

II(14a,) = Il(1+a,) II(1+a,).
fn=l =l nok+l
It is clear, therefore, that, as regards convergence and

divergence, the product ﬁ(l +a,) behaves in exactly the

" = 1
same way as the product H (l +a,,) We shall thus assume
throughout this chnpter that a,,> —1 for all values of n.

50. Some Theorems on Special Types of Pro-
ducts. We first prove two theorems for products in
which the a, are all of the same sign.

TaeoreM 651, If a,>0 the series Za, and the product
IT(1 4-a,) converge or diverge together.

When z>>0 we have 14+-z<Ce® Thus
ay+ag+ag... 3, <(1+a,)(1+a,)...(1 4-a,) Lettoatota,,

that is,
A4,<P,<etn.

Since P, and A4, are monotonic increasing functions of n
the result follows.

THEOREM 52. If —1<a,<0 the series Za, and the
product I1(1+a,) converge or diverge together.
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For convenience, write b, = —a, so that 0<b,<1.
Since 1 —z<e~* for 0Lz <1, we have
0<P"<e-(bl+bn+-..+bn).
Thus if Za, is divergent we must have P,—0; that is,
the product diverges to zero.

Suppose, now, that Za, is convergent. Then, given e,
we can find N = N(¢), such that

-]
0 Ib,<e.
valN

(1=by)(1—by4) 21 —by—by41,
(1=bp)(1 =by41)(1 —by19) (1 —by—bys1)(1 —by4s)
21-by—byr1—byse

Also,

and therefore, for n >N,

(1=b)(1 =by4y)... (1=by)21—by—byysy... —by>1—e.
Clearly, P,/Py_, is monotonic decreasing and we have
shown that it has a positive lower bound. It follows that
P, tends to a finite non-zero limit; that is, JI(1+-a,) is
convergent.

The following theorem provides us with an easily
applied test for the convergence of an infinite product
in which the a, may be of either sign.

THEOREM 53. If the series Za,® is convergent, then
the product IT(14a,) and the series Za, converge or diverge
logether.

Since Za,® is convergent we can find N such that
|aa]<% for n>N. For such values of n

] 3
| log (1-4an)—a| = |72 —%= +|
< a1+ o] +lan?|+...)
a,?
= 2(1—|a,))
< ayt.
It follows that the series Z|log(l +-a,)—a,| is convergent



9 INFINITE SERIES

and therefore that the series X{log (1+a,)—a,} is con-
vergent. That is, log P,—A, tends to a finite limit. The
theorem therefore follows.

As illustrations of Theorems 5!, 52 and 63, we observe
that the products

A - (=1
nIJl(l-l- )nI-Iz(l "’)’n{}l{l-*— n }

are respectively divergent, divergent and convergent.

51. The Absolute Convergence of Inflnite Pro-
ducts. Before defining the term * absolute convergence ”
as applied to an infinite product we prove a theorom of
independent interest.

THEOREM 54. If the series Dla,| ta convergent, then the
series Z\|log (1+-a,)| f& also convergent.

Since Zla,| is convergent we can find N such that
|#a] < } for n > N. When a, >0 and n > N we have, as
in the proof of Theorem 63,

|log (1-+a)] = log (1-Hlan) < T2 <t
while, when a,<0 and n>N,

llog (1+a,)| = log 1—4,1— = log (“ li"a.,)
— log {1+1 |@q| !}
<fes ot

lanl l—lan'

___las
= 12,
< 2|ay|.
Thus, for all values of n>>N, we have
[log (1+a,)|<2|a,],

and the result follows from the comparison test.
We deduce at once the following theorem.
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Tareorem 55. If the product I1(1+|a,|) t8 convergent
8o also is the product I1(1+a,).

By hypothesis and Theorem 51 the series Xla,| is
convergent. Hence, by Theorem 54, the series Z|log (14-a,)|
is convergent. Thus the series X' log (1+-a,) and therefore
the product I7(1+4-a,) are convergent.

The product I7(14-a,) is said to be absolutely con-
vergent if the product J1(1+-|a,|) is convergent. Theorem
55 therefore merely states that every absolutely convergent
product is also convergent.

There is an analogue of Theorem 29 for infinite products.

THEOREM 58. The faclors of an absolulely convergent
product I1(1+a,) may be rearranged in any order without
affecting its convergence or ils sum,

Since the product I7(14-|a,]) is convergent the series
Zla,| is convergent by Theorem 51. It follows from
Theorem 54 that the series 2 log (1+a,) is absolutely
convergent. The order of the terms of this series may
therefore be altered without affecting its convergence or
its sum. The required result follows at once.

62. The Uniformm Convergence of an Inflnite
Product. The infinite preduct IT{1+a,(x)} is said to be
n=1

uniformly convergent for a <z <b if
n
P(z) = Hx {1+a,(2)}

tends uniformly to a limit P(z) for a <z <b.
The following theorem may often be used to test for
the uniform convergence of a product.

TreoREM 57. If the series Zla,(x)| 18 uniformly con-

vergent for a <z <b, then so also is the product II{1 +a,(x)}.

Since the series Xla,(x)| is uniformly convergent for

a<z<b, we can find N, independent of =z, such that
G



98 INFINITE SERIES

|ax(z)|<} whenever n>N. For such values of n and
a<x<b we have

[log {1+a4()}| <|an(®)| +}lan()|*+...
lan(x)l
11— Ian(x)l
<2|an()l,
whence it follows that Z|log {1-+a,(z)}|, and therefore
Zlog {1+a,(x)} is uniformly convergent for a<z<b.
In other words, log P,(z) converges uniformly to a limit
which we may call log P(x); that is, P,(x) converges
uniformly to a limit P(z).
For example, the product I7(1+2") is uniformly con-
vergent for |z|<p<]1.
We now obtain the analogue of Theorem 39.

Trrorem 58. If the product IT{1+a,(z)} is uniformly
ne=l
convergent for a <<z <b and if lim a,(z) = ay,, where a <<z b,
then ® i ©
lim H{l +an(x)} = H(l +a,).
22, ne=l

fim]

The series Zm log {1 4-a,(x)} is uniformly convergent for
n=1

a<x<b so that, by Theorem 39,
lim 2 log {1+a,(z)} = 5 log (1+a,).
Tz, n=1 fiwl

The result at once follows.

53. The Infinite Products for sin x and cos x.
Wae shall show that, for all values of z,

o 2
sin 2 = zIT (l x_)

nel " nigt
) 428
cos T —,E; 1— —(2n—1)”n3}’



INFINITE PRODUCTS 99

We shall obtain the infinite product for sin z and
deduce from it the infinite product for cos z.

It should be noted, firstly, that the result is true if z
is any multiple of =, since each side of the identity is
then zero. We shall therefore suppose that x is not a
multiple of .

Secondly, we observe that, if n is an odd positive
integer, sin nx is a polynomial in sin z of degree =, for,
if true for 1, 3, 5, ..., n—2, this is also true for », since

sin nz = 2 sin (n—2)z cos 2z —sin (n—4)z
= 2 sin (n—2)z{1 —2 sin® z} —sin (n—4)z.

The assertion #3 true when n =1, 3, so that it is true
generally by induction.

Thirdly, sin nz vanishes when z is any multiple of
7/n 8o that, when #» is odd, we may write

Hn—1)
sin nx = K, sin x IT {sin®x—sin®(ra/n})},
re=1

or in—1) sin*z
sinnz = K,ysin z 1 { -\
re=l sin¥(rm/n)

where K,, K, are independent of z but may depend on n
It now follows, on writing z for nz, that

. . fn—1) sin? (x/n)
sin z = K, sin (x/n) 'gl {l— S (rm) (rvr/n)}'
In other words, for all values of z under consideration,
__ | sinz ‘("—‘)j __ sin® (z/n)
K. = {sin (:z:/n)}/ ,{.7, [l sin? (rn/n)}'

In this identity the left-hand side is independent of =z
and thorefore so must also be the right-hand side. To
determine their common value let z—0. Then clearly
. sin z
Ky =l e —



160 INFINITE SERIES

Thus, for all values of = under consideration and for
all odd positive integers n,

sin 2z = n sin (:c/ng(nﬁ”{l— M}

rerl sin® (ro/n)
= n sin (z/n) ﬁ{1+f,(n)}, Ce e (D)

Where £) =0, {r>4a—1),
1) = S ) (r<dtn =11,
From the inequality #>sin >20/7, (0<<O0<}n), we
have, for n>>2|r|/m,
z2? nin? x?
If'( )l = ”ﬁ 4'-2172 4,-3

xs
and the series Z’ ; is convergent. Thus the product on

the right of (1) is umformly convergent for all values of n
and it follows from Theorem 58, on making n tend to
infinity through odd integral values, that

sin z = lim {n sin (z/n)} ﬁl{l—l-lim 7.}

o 2
=z Il (l - _x_)
re rea*
To obtain the infinite product for cos z we observe
that

sin 2z
COS T = ——
2sinz
2n 42
2z lim H(l— f’z)
—_ fl—>0 roes) remw
n 2
2z lim I1 (1— ud 2)
n—o r=] rew

. 4z 4x? 42
=t (1~ %) (- 35) - - i)

-] 43-
=l\l-5= l)"rr}
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From the expression for sin z as an infinite product
we can easily deduce the following expansion for cot z,
valid for all values of z excopt zoro or a multiple of 7 :—

cotx=£—2’( L — 1 )
T g \rm—zx rot2x

We have
log sin z = log 2+ log {1— - 2
ogsmz—ogz-i;“log(—ﬁ;—a). . e o (2
whence

cotz=1—§ 2z
z

el m . . . (3)

for all values of z for which term by term differentiation
can be justified. If z lies in the interval

knte<z<(k+1)m—e,,

where k is zero or a positive integer, we have

> =2 < 2(k+1) s 1
rmbigrimi—23| AP e JE

_2k+1) g 1
T eppe =D

and this serios is convergent. We obtain a similar result
when k is a negative integer. Series (3) is therefore uni-
formly convergent for any range of values of x which does
not include a multiple of #. It follows that term by
term differentiation of (2) is permissible for such values
of z and that (3) holds for all values of 2 which are not
multiples of =.
The stated result at once follows.
S
Exzample. Prove that;l :’:‘l il

From the series x3
8in 2 =z — 3 Foeer




102 INFINITE SERIES

we have, as z->0,

%’ =1-Z 4o,

log T = log {l— E+0(z‘)}

x?
On the other hand, 6’
sin x 1 1
08 z. n{log ) “-:1 n ﬂ’ -I;flo ﬂ)
Let 2->0. Then, from Theorom 39,
_1 g1
a1 n!."l

whioh leads to the required result.

54. The Gamma Function.* Suppose that x is
neither zero nor a negative integer and that

nen!
Pie) = )
We may write

Pyz) = ll{z(1+§) (1+ ‘;) (1+ 5)3_,..,,,.}

1

e+ = logn) 1"7{(1 + ;)ewllr}.
rel

2
The series © {log (1 + ;) - ;-f} behaves like 2 ';—3 and is there.

..

fore convergent. Thus the infinite product I7 (l+ ;)e--/r

is convergent and we have
lim P,(z) = L
11—+

» . .
:ce?"H(l—{- ) ~air

r=]1

@

* 800 G., § 37.
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this limit having been shown to exist. This limit defines
for all values of z except zero or a negative integer the
Gamma function I'(z).

We proceed to obtain some properties of I'(z).

(i) If = is neither zero nor a negative inleger
I'(z+1) = zI'(=).

We have
. netin)
Matl) =lim o S
=2z lim lim neal
= n—s0 T+N +l n=o Z(Z+1)...(x-+n)
= xz[(x).

In the particular case when z is the positive integer n
we obtain, by repeated application,

I'n+1) =nl'(n)
=n(n—1)"(n—1)

= n(n—1)...3.2.1.I'(1)
n.n!
= n! lim

n—a 1.2...(n+1)
= nl,

This shows that I'(n+41) may be taken as a suitable
definition of the symbol n! where n is any real number
except a negative integer.

(ii) If x 18 neither zero nor an inleger

Pl (1—z) =

sin m:



104 INFINITE SERIES

We have
I@)Ird—z)

. nenl . ni-# !
= lim e et I I—2)2—2)...(n+1—2)

. n . 1
=ﬂl_1’m; n+l—z :i?:o ] P

rml r

_ 1

x ﬁ (l— E:)

rel r

_ ™
= sin mz’

When z = } this result becomes

w

Ty = gh= =

Now (2) shows that, when x is positive, I'(z) is also positive.
It therefore follows that I'(}) = +/=.

(iii) (Duplication Formula.) For all values of z for
which the Gamma functions are defined

2821
F(22) = = T@la+).

We have
I(x)(x4-1)
T'(2z)
= lim n* n! lim nz+i n!
o Z(ZT+1)...(240) poso (Z+3)z+3)...(x+0 D)

z+1)...(2242n)
(2n)2=(2n)!

% lim 2x(2
n—>0
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. mi2n-2041 (n))2
_n-»o r+n4i (2_”')!
i M2TEN {/(2mnntien)?
" nmo z+n+} {V(2m)2n)TFie-tn)

. tArt. 83)

— —2r4b i n

—1:/(217)2 + l:mmz_*_n i
T

== rl,

Example. Prove that, if a, b, a4b are not negative
integers,
b1t rir+a+d) _ I'(1+a)l'(1+b)
r=1 (r+a)(r4-b) I'(1+a+b)

We have

"14'71 r(r4-a+b)
rm1 (r+a)(r+b)
- (1+a+b)(2+a+b)...(1 +a+b+n) nitagnl

nl+ath oy ‘(1+a)(2+a)...(1+a+n)
ni+d nt 7il

X .
(1+0)2+b)...(1+b+n)" n
and the result follows on making n tend to infinity.

Examples
1. Prove that

© o n m ni-1 2
D Dolv=y, ) Borap=e iy 7020 o2
@ I o G T+ ity I S5 = 5
2. If a, is positive, monotonic decreasing with limit zero,

show that IT{(14a,)(-D"} is convergent. Do the same
restrictions on a, imply the convergence of the product

H{l +(— l)"an} ?
3. Prove that the product

(+73) (=33) (1+33) (--7a)

diverges to zero.
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4. Discuss the convergence of the products

@) I (1=n sin ;0) aiy I1 {1+ (%)'}

n-l n-=1

i 1 {1420 } vy JTER2ER, (jnco<in),

neg nr-l cos 8-+n
© +:z: 1—g—a/n
w I (Z=, (vi) H —_
6. Prove that

() IT{1422"" cos (2°10) +23") = !
nesl

1—2x cos 642
(—l<a]),

(i) ﬁl{n+e-="¢} = §(14coth ¢), ($>0).
N=
Deduce from (ii) that, when ¢>0,

w
Z27(1—tanh 27¢$) = coth $—1.

ne=0

6. Prove that
A+ -HA+D.. =1
but that when the factors are rearranged in the form
A+PA+HDA DA =11+ 31 +%)...,

where three terms greater than unity are followed by one
term less than unity, the produect is equal to 4/3.

7. Prove that
0 e = {03 ()

(ii) =* cosecinz = 2'.‘ (x+4n)-2
no —

8. Prove that, for all values of =z,

lim 1T (l—‘f)—_—z--.

n—0 rean+l r
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9. Prove that, if y, y-+z, y— aro neither zero nor negative
integers,
ﬁ 1— z? o ren:
n=0 (n+y*)  Ly—=)(y+=)

10. Prove that

= ann—2)  _ {TQ)
(’),,'Z (@n+0)dn—3) _ ay/n '
@ Z (x nl

2
—_ — ) = y=I .
'z . 2 log 2n+l) y—log}=

11. Prove that
T donF = (143 (-0

(13- -

12. Show that, with certain restrictions on the valucs of x,

d ® ;1 1
@) o log I'(x+1) = _,,_;.'zl (—r —;I-—r)'

(i) Me+Hle+Hl+HlE+1)=(2n)R2-9"(4z+1).

13. Prove that

'r(l) = (___2**:'/‘:"’.

rel n

AnsweErs. 2. No; see Example 3. 4. (i) Diverges to
zoro if 0>0, converges if 8 = 0, diverges if 6<0; (ii) con-
verges for |z|<1; (iii) converges for a>}; (iv) converges for
8 = }r; (v) converges for |z|>1 and for z = 1, diverges to
zoro for —l<z<1; (vi) convergent, [ must be >—1].
12. £ must not have any value which makes the argument
of ono of the Gamma functions zero or a negative integer.



OHAPTER IX

DOUBLE SERIES

65. Introduction. Suppuso that wo have the array
of numbers
Gy @ O3 Gy ...
An G dgg Gy
@3 G353 Q33 Ggy .
@ G G4 ay,

We wish to consider the series whose terms are the
members of this array. The series is called a double

series and is denoted by 2’ @np.  In defining what we

=1
mean by the sum of such a :e’;ies we are at once confronted
by a difficulty. For example, the following four definitions
of the sum might be regarded as quite reasonable.

N
im 2 (2 aw). . . . . . (1)
Now® p=2 m+n=y
lim (2 a,+ 2 au,taxy), (2
No®w meN n<N m<N,naN

A" N
lim {2 (lim 2 a,,)} . . . . 3)

M—~rx m=] Noxo nwi

N M
lim {2 (lim Z"a,,.,,)} N )]

No® =l Mo
In the first * we are summing by “triangles,” in the second }
LA am, n= a1, v—1+02,v-2+...+av_1. 1.
m+nev

t 2 Sm,n=0aN,1taN, 2 +...+aN N1
m=N,n<N

108
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by “ squares,” in the third by “ rows ” and in the last by
“ golumns.” Clearly these methods of defining the sum of
the double scries are only four of an infinite number which
could be devised.

Naturally, we wish our definition of the sum of a double
geries to conform as closely as possible to the definition
of the sum of a single series. This analogy may be pre-
served by starting at the top left-hand corner of the array
and taking successive groups of terms, where each group
consists only of a finite number of terms of the series and
contains all the elements of the preceding group, and then
examining the limit of the p-th group as p tends to infinity.
These successive groups correspond in fact to successive
partial sums in the case of single series. Generally speaking,
the limit of the p-th group will depend on the system by
means of which the groups are formed. When, however,
the limit is finite and independent of the system of grouping
we say that the double series is convergent and that the
limit in question is the sum of tho series. In all other
cases the serics is said to be divergent. We use the
term properly divergent in the case of a series where
the p-th group tends to +co or to —co for all possible
systems of grouping.

It will be noted that the third and fourth definitions
above are not included in this general definition since our
groups in these two cases do not consist of a finite number
of terms. If (3) is finite we say that the repeated series

X2 Za,,is convergent to the value of (3), and if (4) is finite

mwl nel

kel o3
we say that the repeated series X Z'an, is convergent to
el me=1

the value of (4).

The following preliminary theorem will serve to illustrate
these definitions.
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THEOREM b59.

(i) If 5 Q,, cOnverges to the sum a and if 5 bomn cON-

m,ne=l mn=1

verges to the sum B, then Z' (a,,,,,+b,,,,,) converges to the
m,n=l
sum (a+pB).
(ii) If .«‘? Gy coOnverges to the sum a and if ¢ is inde-

m, nol

-]
pendent of m and », then X ca,,, converges o the sum ca.

m,n=l

Similar results are true for repeated series.

Write ¢mp = Gmy+bms. Take any system of grouping
G, G, ... G,, ... and let g,, g, g, denote the sums of all
the terms in the group G, for the series Za,,,, Zb,, and
2y, respectively. Clea.rly g, = gp+g,. But g, and g,
tend respectively to a and B as p tends to infinity, Hence
g,—>a-+pB, and this holds no matter what system of
grouping is adopted. Result (i} therefore follows.

Wae leave to the reader the proof of (ii) and the considera-
tion of the case of repeated series.

856. Double Series whose Terms are Non-negative.
TaEOREM 60. If, for all values of m and =, a,,,,, >0 then

the double series 2 a,,, and the repeated series Z Z’ Coans

m,n=1 m=1nel
Z.' Z' Gy either all converge to a finile sum a or else they are
fne=lm=l
all properly divergent.

We prove first that the double series either converges
to a sum a or is properly divergent.

Consider any method of grouping the terms of the
series. Let the successive groups be denoted by G,, G,, ...,
@, ... and let the sums of the terms in these groups be
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denoted by gy, g, ... Gy ... respectively. Then, in accord-
ance with the definition of our system of grouping, and
since a,,,>>0, we have

<P

Suppose that the sums of all selections of terms from
the double series, finite in number, are bounded and have
upper bound a. Then clearly, for all values of p, g,<a.
On the other hand, given ¢, there is one finite sum at
least which is greater than a—e. By choosing a large
enough value of p, say p,, we can include all the terms
of this finite sum in the group @,. Thus g;,>a—¢ and
a fortiors g,>>a—e whenever p>p,. Hence, as p—oco,
g,—>a, and, since this is independent of the system of
grouping, it follows that in this case the double series
converges to the sum «.

Suppose now that there is no upper bound for all the
finite sums of the terms of the series. Then, given any
positive number K, there is at least one finite sum which
is greater than K. As before, we can find a value p, of p
such that @, contains all the terms of this finite sum.
Hence g,>K for p>p, and the double series therefore
diverges to +-co.

We have now to consider the case of the two repeated
geries. It will clearly be sufficient to prove that the two
series ® ® »
z ( z amn)t z 2z Qmn

p=1m+n=p mel nml

converge or diverge together and that, when convergent,
their sums are equal.

Suppose first that the double series converges to the
gum a. Let ¢, = 2 @p, Then, clearly, for any fixed

mtn=p
value of m

Ay FAmat.r KEmypFHCmaat oo

Since the double series is convergent the scries on the
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right is convergent and it therefore follows that, for each

a
fixed value of m, the series Za,,, is convergent.

nal
. [t B o
Write 0“ =p€:p, C';‘ =m f’l (nzzal,,,,,).

Then it is clear that 0, <C,, whence a< lim O, Again,
wo may write e
B 5 v
OI‘ = {zgmn'*'rm.v-i-l}:

Mol ne

-]
where ry, 43 = Z a,, Given ¢, we can determine v,
[ =14
such that, for v>v,,

Ire,p+1l<efp, & =1,2,.. p).

Let v be fixed and greater than Max y,. Then
k=124

0;‘ sfi'am,.+e

Mualnal

S 0“+v+€.
It follows that lim C,,<a+e. But eis arbitrary, so that

Ty
lim O, <a. We have already proved that lim O, >a.
The repeated series therefore converges to the sum a.
Now suppose that the double series is properly divergent.

]
Then either Za,,, diverges to +oo for some value of m,
ne=l

-]
or 2a,,, converges for every value of m. If the former is
n=t1

true the repeated series diverges to +co and no further
proof is required. If the latter is true we prove exactly
as before that 0,,<C$., whence C,"—>+ 0.

The theorem is therefore completely proved.

We now obtain the analogue for double series of the
comparison test.
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ToEORRM 81, If, for all values of m and n, @y 2bpy =0,

- -]
and if the series X a,, 18 convergend, so also 45 the series
m,nml

z ?,,,,,. A similar result also holds for repeated series.
m,ne

Take any system of grouping G,, @, ... for the series
Za,,, and Xb,,, and let g,, g, be the sum of the terms
of Ja,, and Zb,, respectively in @,. Clearly g, <g,.
Now g, tends to a finite limit and g, is monotonio
increasing. It follows that g, tends to a finite limit.
For double series the theorem is therefore proved. The
result is obvious in the case of repeated series.

Ezxampls. Examine for convergence the repeated series
) « 1
m{I el ”m.
This series converges or diverges with the double seriea

.,..:-1 ”—‘&F and, in particular, with the series
@ 1
p-;::l m+f—; m? +ﬂ“}.
If a<l, m+4-n = p, we have
2p% >m° +n" >2(1p)*
p2—l: < minep ma:.na < %p_;ﬂ.

It therefore follows that the double series converges or
diverges with the series Zl/pa-}, Henco the double series,
and therefore the repeated series, is convergent if a>>2 and
properly divergent if a<C2.

whence

B7. The Absolute Convergence of a Double Series.
The definition of the absolute convergence of a double series
is analogous to the corresponding definition for single series.
Wo first prove the following theorem.

H
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Tarorem 62. If the series 2 |a,,,,,|ss convergent, then

m, =l

80 18 the series Z.'a,,,,,. A similar result holds for repeated series.

0, ne=]
Let
bmn =Gy (Gmn=0). Cug = = 8pmpy (Bma<O).
=0, (amn<0) ' =0, (amu>0)
Then
Bmn = Omn—Comm» Iamnl = bmu‘l"cmn-

Each of the series f by 5 Cyin 18 8 convergent doubls
mn=1 mnas=l

series of non-negative terms, by comparison with the
aerios 5 |@aal. It follows from Theorem 69 that z (b,,.,,-c,,,,,)

m,n=1 m,nel

= Z‘a,,,,, is convergent,
m,nel

In the case of repeated series the proof is similar,

w
If the double serics X' |a,,| is convergent, then we say
m,nw}

@«
that the series X a,,, i3 absolutely convergent. If the
m.nnl

repeated series z 2z |a,,,,,|, Z Z' |a,,.,,|areconvergent then
Meln=l

we say that the repeated series 2’ Z’a,,,,,, 27 Z' Q,,, BT
Mol gol fiml Ml
absolutely convergent.
As in the case of single series most properties of double
series of non-negative terms remain true for series whose

terms are not all of the same sign but which are absolutely

convergent In particular, if one of the series Z‘ Z' Qs
Mol neal
Z' Z'a,,,,,, Z'a,,,,, is absolutely convergent, then so are the
=1m=l mnel
:)ther two and the sums of all three series are the same.

Wo leave this general result to the consideration of the
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reader, although it will in part be proved in the next
article.

58. The Interchange of the Order of Summation
for Repeated Series. We now consider in a little more
detail an important special problem relating to repeated
gsorics. We wish to investigate under what conditions we
are entitled to change the order of summation in the series

w0 @

Y a,, We have already discussed this question in
Mel el
certain particular cases. For example, wo have proved that
we are entitled to change the order when a,,,>>0 and have
stated that we can also do so when either of the repeated
geries is absolutely convergent. We shall now prove the
latter result.

-] e [} o
Treorex 63. If either of the series £ Zapp, £ Zapy
Melnesl n=lm=l
ss absolutely convergent, then so i3 the other and their sums
are the same.
Suppose that the first series is absolutely convergent.
This is the same as saying that, for each value of m, the

w
series 2 |a,,| converges to & sum oy, and that the series

nwl
@

Zo,, is convergent. The absolute convergence of the
me1l

second series follows at once from Theorem 60. We
therefore confine ourselves to proving that the sums of the

two series are the same.

We may write
o «© @ N L) @«
2 Zapa=2 Zap,+Z I an,
mwl ne=l mwl n=1 MmolnaN+1
N o® [ @
=3 Zag,+2 ZXa,,
nwmlmel mol naN+1

o
gince N is finite and Za,,, converges for each value of 2.
el
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The theorem will then be proved if we show that

lim Em 5a,,.,.=0.

N—® malnaN+1

Then

Lot po(N) = 2

Bpine
noN41 ©

IPm(N)I < lamnlgam

ne=N41 ®
and therefore, by Theorem 36, the series X p,(N) is

Mmel
uniformly convergent for all values of N. Hence, by
Theorem 39,
o (-3 0
lim 2 2 a,,=lm X p,(N)

No® mml naN+1 N—»0 me=1
@®

= Z {lim p,(N)}
mel N—»o

=V,

@
since the series 2' a,,, converges for each value of m,

=1
A slightly 'x'nora goneral theorem of the same type is
the following,

TaROREM 64. If

Pn(N) = Qmn
neN+1
and if, for all values of N, |p,(N)|<o, where the series
Zoy, i3 convergent then the convergence of the series z 5%,

me=1 - o Mol nel
implies the convergence of the series 2 X a,,, and the sums
of the lwo series are the same. notmet
We observe that, for each fixed value of n,
[8mnl = le(”"‘l)—Pm(n” < 20,

o]
8o that the series Za,,, is convergent for all values of n.
ee]
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Repetition of the proof of Theorem 63 now yields the
desired result.
Ezxample. Prove that
E‘ -+ (_1]n = ﬂ_l
me=1 ne=1 (M4n?)(m4n?—1) 12
Denote the given series by S, and by 8’ the series

s 1

2 (-1

ﬂ__l{ }m_t{n'+m](ra'+m —1)
Now

1 1 1
(n2+m)(n*4+m—1) n4m—1 n*+4m
1

so that the series Z' converges for each

m=1(n*+m)(n?+m—1)
value of n to the sum 1/n®. The series S’ is therefore absolutely

o
convergent to the sum of the series XZ(—1)"/n*. Hence, by
ne=l

@
Theorem 63, the sum of the series § is equal to Z(—1)"/n.

ne=1
Now

o

(—1]",’11' .S ljn'-—i.é.‘ Ind = — —,

=1 n=1 12
Examples

1. Examine the convergence of the series
b 1

= ,,{2 (am® -+-bn®)(log mn)8’

- +]
2. Examine the convergence of the series X and

m,n=1m"nf
prove that

where the dash denotes that those terms for which m = n are
omitted from the summation.
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3. Show that, if a and g are greater than 1, the series
Z' 1
mnal m“+nﬁ
converges if 8>af(a—1) and diverges if f<<af(a—1). What
happens if a or 8 or both are less than 1?

[Consider the corresponding repeated series and use
Theorem 16.]

4. Show that
1 @© sm{2n(n+l)/3} ® (=1)° .
14z+2? =,,.,o 8in(2n/3) 4 E 3t (1+2272

stating the range of validity of each expansion. Deduce the

sum of the series

o (—=1)" (2n)t
,,f,,, 3 (2n—r)in!

for any positive integer r, where m = 4r or §(r--1) according
a8 r is even or odd.
6. Prove that, if |x|<]1,
] xr @®  gapdr-1
rfl (T—a7)p ='fl 1—zir1
For what values of 2 are the two series convergent t Show
that if |21>1 the first series is equal to
® r

'fl girii ]’

Answens. 1. Convergent if ¢ and b have the same sign
and if a>2. 2. Convergent for a>1, 8>1. 3. The series
diverges. 4. Jz]<1 for the first expansion, —(4/3+1)<2zx<
{v/8—1) for the second. 5. The first series converges for all
values of = except 3-1, the second for |x]| <1.
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for, 40, 41, 42
conditional convergence of,
60, 61
continuity of, 74, 80
convergence of, 26, 29
differentiation of, 76, 80
double, 108, 110, 113
Gauss's teat for, 48
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integral test for, 38
integration of, 75, 80
Kummer's test for, 46
multiplication of, 86, 87, 88,
89, 00
of complex terms, 64
of functions, 69
of non-negative terms, 36, 86,
110, 113
power, 79
Raabe's test for, 48
radius of convergence of
power, 79
ratio test for, 43, 45
real, 58
rearrangement of terms of, 36,
69, 62
repeated, 109, 110, 115, 118
uniform convergence of, @9,
73, 80
8ine, infinite product for, 98
Sine series, 27
8tirling’s approximation, 51
Sum, partial, of a series, 26

Taylor’s expansion, 12
Test, Abel’s, 6
Cauchy's, 44, 45
Dirichlet’s, 61
Gauss's, 48
Kummer's, 46
Raabe’s, 48
the integral, 38
the ratio, 43, 45
Tests, comparison, 40, 41, 42
for absolute convergence, 59
for uniform convergence, 70,
71, 72

Uniform convergence, 68
of products, 97
of series, 69, 80
Unifglgnly convergent series, 68,

continuity of, 74, 80
differentiation of, 76, 80
integration of, 76, 80
propertiesa of, 73
tests for, 70, 71, 72
Upper bound, 2
Upper limit, 8, 9, 10

Variable, real, 1
Weierstrass's M. test 70

Zero, divergence to, 83
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