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FOREWORD

The purpose of this little book in the Dover Series is to develop the
theory of infinite sequences and series from its beginnings—the con-
struction of the system of real and of complex numbers—so far, that the
reader will be in a position to penetrate into the more advanced parts
of the theory by himself. The foundations are therefore presented
carefully, but the development has been carried out only to the extent
permitted by this purpose and the narrow compass of the book. Thus,
important topics had to be omitted, which could perhaps be presented
in a second small volume for advanced students. The table of contents
indicates in detail the subjects treated.

Mr. Frederick Bagemihl has carried out the translation from my
German manuscript with the same care and understanding as have
already distinguished his translations of my previous little function-
theoretical volumes. I take this opportunity to thank him heartily for
all his trouble.

Konrap KNoPP






Chapter 1
INTRODUCTION AND PREREQUISITES

1.1, Preliminary remarks concerning sequences and series

In manifold investigations in pure and applied mathematics, it often
happens that a result is not obtained all at once, as in 7-13 = 91, but
that one seeks to approximate the result in a definite way by steps.
This is the case, for example, in calculating the area of a circle of
radius 1, for which we obtain first perhaps 3, then 22/7, say, then
3.1415, etc., as approximate values or approximations. This also occurs in
the elementary method of calculating the square root of 2, where we
get first 1, then 1.4, then 1.41, etc. We thus secure a sequence of values
which lead, in a sense to be described later in more detail, to the value =,
42, respectively. If we compute in such a manner, corresponding to
each natural number 0, 1, 2, ...,! a number s, 5, S,, ..., or if these are
given or defined in some other way, we say that we have before us an
infinite sequence of numbers, or briefly a sequence, with the terms s,, and we
denote it by

(1) {50 515 Sgs +++}s OF {Sg; S ey 5y, --o}, Or merely {s,}.2

Such sequences may be given (generated, defined) in the most varied
ways. Numerous examples will appear in the sequel. The following
method occurs especially often: If a certain term of the sequence is
already known, then the next term is given by means of the amount
by which it differs from the former. E.g., if 55 is already known, then
§¢ is determined by indicating the difference s,—s3 = a,, so that
54 = 8 + 64. Thus, a, represents the amount that has to be added to

! The number 0 is often not counted as a natural number; here, however, it is
more convenient to do so.

* Or by {si}, for it is of course immaterial which letter we choose as index. We
prefer v and n.

1



INFINITE SEQUENCES AND SERIES

s in order to obtain the next term 5.1 If, for the sake of uniformity,
we set the initial term s, equal to 4y, and then, in general, write
s,— 8., = a,, we have, forn =0, 1, 2, ...,

(2) ‘r-=ao+a1+al+"'+an'

The n™ term of the sequence {s,} is obtained by “adding up” the terms

of another (infinite) sequence {a,}. To indicate this continued sum-
~ mation process, the sequence thus obtained is denoted by

(3) a+a+...+a+..

and is called an (infinite) series. The following is a simple example:

If we divide out the fraction T2 la according to the elementary rules,
we get asequence beginning with sy =1, sy =144, 55 =1+4a+4®

and yielding s, , = | + a@ + ... + a*'. The corresponding remainder
a.

l-a

produce s,. Since this continues without end, we obtain the infinite

series

(4) l4+a4+a+...4a8 +....

Whether or not, and in what sense, this infinite series is the same as the

now yields, at the next step, 4", which must be added to s, ; to

fraction l_la which we started with, still requires, naturally, precise

elucidation. :

An (infimte) series is a means, employed particularly often in what
follows, of defining an (infinite) sequence: A certain sequence {a,} is
directly computed, defined —in short: given. It is, however, not itself
the main object of the investigation; a new sequence {s,} is derived
from it, whose terms are formed according to the specification (2), and
this sequence {5} is the one which furnishes the real subject of the
investigation. Thus, in the series

1 1 1
(5) l+?+T+"'+?+""

1 g, (and, later on, a,), of course, need not be positive, but may denote an
arbitrary number.

2



INTRODUGTION AND PREREQUISITES
we are not so much interested in the individual terms, o of this series,

as in what we get if we sum them up without end, i.c., form the sums

1 1 1
(6) I-=l+§'+...+§=2—§', (n=0, 1,2,...),

which approach the number 2 as the ‘“value” of the infinite series.
(For a precise definition, see 2.1.)

Of the two concepts sequence and series, the former is the simpler
and more primitive one. In the first place, a series can only be defined
if one already possesses the notion of a sequence; for to be able to write
down the series (3), one must know the sequence of its terms. Further-
more, to form the series (3) requires the operation of addition, which
does not enter at all into the concept of the sequence (1). In a sequence,
the individual terms are not connected, but are merely ordered in a
definite way by their indices. Historically it was just the opposite.
Infinite series appeared, especially during the 17% century, quite
naturally, as in the example that led to (4), as well as in the computa-
tion of the values of the elementary functions (logarithms, e/.). It was
more than a century later, however, before the meaning and significance
of such expansions were clarified satisfactorily. Even in modern
literature, sufficient distinction between the two concepts is, unfor-
tunately, not always made. In the present exposition we shall, for the
reasons which we have put forth, place the sequences, as the decisive
new concept, in the forefront, and, as is proper, derive the series from
them by annexing the operation of addition.

For sums of the kind appearing in formulas (2) to (6) and in similar
cases, where summands of the same kind are to be added, it is custom-
ary to use an abbrevxatcd notation: For b, + by + b, + b, we write

more briefly 2 b, (read: the sum of b as v runs from 1 to 4), and

analogously for t.he sums in formulas (2)-(6),
Y a,, E a, (or still shorter ¥, a,, orsimply ¥ a,), E a’,
v=0 v ve=0

v=0



INFINITE SEQUENCES AND SERIES

The corresponding expression for the familiar binomial expansion of
(a + b)* (where # = 1 is an integer) is

(-

(7) (a4 8)"= X () a" "™
In all these cases, v is called the index of summation. It runs from 0 to n
or from 0O to co, where the latter means that v runs through all the
natural numbers from O on without end.! The index of summation v
may of course be replaced by any other letter. We shall often use
By thy Ay Py 00 o

We merely mention the fact that we arrive at infinite products, as they .
are called, if we make use of multiplication instead of addition: From
a sequence {a,}, which we suppose to be given directly, we derive the
sequence {p.} of products which are formed in accordance with

(8) Do=0y0,- 4 ... Gy, n=0,1,2,.);
this sequence is then denoted, in analogy with (3), by

(9) 8y-8y-..."Gy... OF ﬁa,,.

v=0

These infinite products will be investigated, but only briefly, in 3.7.

1.2, Real and c.omplex numbers

We must assume that the reader is.-familiar with the construction of
the system of real numbers and the system of complex numbers, and
also, of course, with their use. Because of its fundamental importance,
however, for all that follows, we shall nevertheless explain the most
essential idea which is employed in that construction.

Starting from the natural numbers (see 1.1), one introduces in the
well-known manner first the negative integers, which together with the
natural numbers are called briefly the integers, and then the fractions,
which together with the integers are designated as the rational numbers.

! Whether or not, and under what conditions, a symbol of the form Za, or
$a represents a definite number will be discussed in detail in 2.6.

v=0
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INTRODUCTION AND PREREQUISITES

p

The latter may be written in the form L where pis an arbitrary integer

and ¢ is a natural number different from 0.

In the domain of these rational numbers, the four fundamental opera-
tions of addition, subtraction, multiplication, and division—the latter
with the sole exception of division by 0—can always be carried out and
yield a unique result, which is again a rational number. In this sense
the totality of rational numbers forms a closed domain. Such a
domain is called a field if the operations of addition and multiplication
defined in it obey the associative, commutative, and distributive laws, as is
the case for the rational numbers. The field of rational numbers is,
moreover, ordered, i.c., between two rational numbers a and 4, precisely
one of the three relations

a<b a=b, a>"b
holds.

This order obeys the familiar simple fundamental laws of order. The
numbers > 0 are called positive, those < 0 are called negative. If a =0,
we also say that a vanishes.

We also assume that the reader is familiar with the fact that the
rational numbers can be made to correspond to certain points of a
straight line, the number axis, on which two points, 0 and 1, are fixed
arbitrarily, as well as with how this is accomplished. We usually
imagine this axis to be drawn horizontally, and choose 1 to the right of
0. The image points of the rational numbers are called for brevity the
rational points of the number axis. These rational points are dense on
the line, i.c., if 2 and b are any two such points, then there is at least
another one, ¢.g. the point ¢ = } (a2 4 b), lying between them.

All further rules of operation, some of which we shall list at the end
of this section, can be derived rigorously in a purely formal manner
(.e., without having to consider the meaning of the symbols) from the
foregoing fundamental laws. The fact that it is unnecessary in this
derivation to make use of the meaning of the symbols has the following
important consequence: If a, b, ... are any other entities whatsoever
besides the rational numbers, but which obey the same fundamental
laws, then it is possible to operate with these entities according to

5



INFINITE SEQUENCES AND SERIES

exactly the same rules as with the rational numbers. One is therefore
justified in calling any system of such entities a number system, and the
entities themselves, numbers.

Such other entities, now, which obey all the fundamental laws valid
for the rational numbers, are—and this leads us to the intimated single
essentially new fundamental idea in the construction of the number
systems—the real numbers, which we arrive at through the following
consideration:

The system of rational numbers is incomplete in the sense that it is
incapable of satisfying some very simple demands. Thus, as is well
known, there is no rational number whose square is equal to 2. On.
the contrary, the square of every (positive) rational number is either
<2 or >2, and in both cases there exists such a number whose square
is arbitrarily close to 2 and less than it or greater than it, respectively.
This, as well as the graphical representation on the number axis, leadsus
to divide all rational numbers into two classes: aclass ¥, into which we
put every positive rational number whose square is less than 2, as well
as 0 and the negative rational numbers, and a class %’ containing every
positive rational number whose square is greater than 2. The question
arises, whether this classification, which we shall denote by (%|¥’') and
which is said to be a Dedekind cut in the domain of rational numbers,
can be regarded as a substitute for the (still lacking) number whose
square is equal to 2, and, in particular, whether it can be regarded
as a number with which one can operate as with a rational number.

This question can be answered in no other way than the following:
One considers the totality of all conceivable Dedekind cuts (%|W') in the
domain of rational numbers, i.c., of all imaginable divisions of all
rational numbers into two nonempty classes % and %’ which satisfy
(as above) the sole requirement that every number of the class % be
less than every number of the class %’. Then one shows that these cuts
are such “other entities” which, under suitable agreements regarding
their order (<, =, >) aswell as their addition (4) and multiplication
(+), obey all the fundamental laws valid for the rational numbers.
How these agreements are to be made—the way to proceed is obvious
when the matter is viewed on the number axis—will of course not be

6



INTRODUCTION AND PREREQUISITES

considered here, but will be regarded as familiar to the reader. If,
however, one now denotes such a cut by a small Roman letter, setting,
say, (%4|¥') = 4, and calls these cuts numbers, then, with these stipula-
tions, they obey without exception all the fundamental laws valid for
the rational numbers. The entities obtained in this manner are there-
fore numbers (see above), and in their totality constitute the system or
the field of real numbers. A part of the real numbers turns out to be
equivalent (in the sense of the definition of the symbol =) to the
hitherto existing rational numbers: The system of real numbers is a
(proper) extension of the system of rational numbers. Those real
numbers which are not rational are called irrational.

Thus at the moment—we set this down as the result of the foregoing
discussion—a real number is regarded as defined or given, only if it is
either rational, and hence can be represented in the form p/g (see
above), or ifit is realized by some cut in the domain of rational numbers.

With the construction of the system of real numbers, a certain
closure is attained. It can be shown that no different system (distinct,
in any essential respect, from the acquired system of real numbers) and
no more extensive system of entities exists, which satisfies s/l the fore-
named fundamental laws—no matter how order, addition, and multi-
plication be defined. ( Unigueness theorem and completeness theorem-for the
system of real numbers.)

A renewed classification in the domain of real numbers leads to
nothing new: If all real numbers are divided into two (nonempty)
classes % and ¥’ in such a manner that every number g in ¥ is less than
every number 4’ in ¥, then there is the following theorem of continuity,
also called the fundamental theorem of Dedekind, for the real numbers:

Theorem. A Dedekind cut in the domain of real numbers invariably defines
(determines, strikes, realizes) one, and only one, real number s, the cut-number,
such that every a < s, every a' =s. The cut-number, s, itself may belong to
A or to A’, depending on the classificatory viewpoint. Every number less than s
belongs to A (it “is an a”), every number greater than s belongs to A’ (it “‘is
an al ”).

These real numbers can now be put, in the familiar way, into one-

7



INFINITE SEQUENCES AND SERIES

to-one correspondence with the totality of points of the number axis.
Operating with numbers has a graphical analogue in operating with
the points of the number axis.

The step from the real to the complex numbers is in principle of a
much simpler nature than that from the rational to the real numbers
just considered. In contrast to the fact, which was taken above as point
of departure, that the quadratic equation x*—2 = 0 has no solution
in the domain of rational numbers (but which is now solved by the
cut-number of the cut which was presented as an example) is the new
fact that the equation »* 4 2 = 0, ¢.g., (and many similar ones) has no
solution even in the system of real numbers, and that there is even no
real number which “nearly” satisfies the equation. It was noticed
early, however, that one could operate formally with numbers of the
form a + «'t, where « and «’ denote arbitrary real numbers and ¢ is a
symbol which satisfies the (at the moment unrealizable) condition
i* = —1, in almost the same way as with real numbers, and that
quadratic equations of the kind indicated then possess a solution at least
formally. If we leave aside the symbol i which at first appears to be
meaningless, then in the aforesaid operations we are dealing with
operations with number pairs («, «’), which we immediately think of
as being represented graphically in the usual manner as points ¢ =
(@, a') of a plane provided with a set of rectangular coordinate axes
(a-axis horizontal and directed toward the right, «'-axis vertical and
directed upward, the same unit of length on both). The historical
development alluded to has made it almost compulsory to call two
number pairs ¢ = (a, «’) and & = (B, p’) “equal” (a = b), if, and
only if, the points representing them coincide, i.e., « = and at
the same time «' = B'; otherwise they are said to be unequal (a # b).
It has also led to regarding the number pairs (« + B, «’ + B’) and
(xf - a'B’, af’ + «'B) asthesum & + & and product a- b, respectively.
With these stipulations it is now an easy matter to show (¢f. Elem..,
§ 4-§15) that the very same laws do indeed hold for operating with the
number pairs 4 = («, ') as in the field of rational or of real num-

! This is an abbreviation for the author’s Elements of the Theory of Functions listed in
the Bibliography.

8



INTRODUCTION AND PREREQUISITES

bers,! except for the laws of order: It is not possible to define for the
number pairs an order corresponding to the symbols < and > for which
the customary theorems (“laws of order”) for operating with real num-
bersarevalid.? Whereasinvariably oneofthe threerelationsa = b,4 < b,
a > b holds between two real numbers 4 and b, one has to be satisfied,
in the case of two number pairs, with the alternative 4 = b and its
negation a # b. "

With this exception, operations with the number pairs («, '), if they
are denoted for brevity by a letter 4, proceed formally the same as
operations with real numbers. The number pairs are therefore likewise
regarded as numbers, which are now designated as complex numbers
to distinguish them from the hitherto existing real numbers.

Finally it is easy to verify that operating with the number pairs
(2, 0) according to the rules set down for number pairs proceeds
formally in just the same way as if one were operating with the real
numbers a themselves: Equality, sum, and product of two such pairs,
(2, 0), (B, 0), goes over, if we abbreviate these pairs to « and B, into
equality, sum, and product of « and . We say: The subsystem of all
number pairs (a, 0), relative to their equality and their combination
by means of addition and multiplication, is isomorphic to the system of
real numbers. We may therefore actually set (a, 0) equal to a, i.c.,
regard the pair («, 0) as merely another symbol for the real number a.

But then we may first put (, 0) + (0, ') = « 4 (0, «’) and further
(0, ') = (a’, 0) (0, 1), so that finally the arbitrary number pair («,a')
may be represented in the form

n (xya) =a 4+ a'- (0, 1).

Thus, all number pairs may, with the exclusive use of a single number
pair (0, 1), be written in the form (1). If, with Euler, we now introduce
the letter i as an abbreviation for this number pair, then we may set

(2) (¢, a') = & + 'd,

! The number pair (0, 0) now takes the place of the number 0 which is excluded
from being a denominator in division.
* We cannot enter here into the reasons for this impossibility.
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where
(3) #=(0,1)-(0,1) = (-1,0) -« —

With this the connection with the naive way of using complex numbers
mentioned in the beginning is established: Operations with complex
numbers may be regarded as operations with sums of the form a + a',
in which « and «’ denote arbitrary real numbers and ¢ is a symbol
(number pair) for which & = -1.

All further simple facts and customary agreements concerning the
system of complex numbers will be regarded, as in the case of the real
" numbers, as known. These include, ¢.z., the following: The plane in
which we have represented the number pairs (a,a’) = as points is
called the plane of complex numbers or, briefly, the complex plane, a=R(a)
is dwgnatcd as the real part of a o = 9 (a) as thei zmagmary part of a;
the a-axis is known as the real axis, the a’-axis as the imaginary axis; etc.
If we introduce polar coordinates into this plane (so that « = p cos ¢,
a’ = p sin ¢), then we obtain the trigonometric representation or polar form
of a:

(4) a = p (cos ¢ + ising).

Here the nonnegative number p is called the absolute value or modulus of a
and is denoted by |a|, ¢ is called the (or an) amplitude or argument of a
(am & or arga). The latter is infinitely multiple-valued,! for if ¢ is an
amplitude of 4, then so is ¢ + 2 k= (k an arbitrary integer). For every
a # 0, the uniquely determined amplitude which satisfies the auxiliary
condition —x < ¢ < 4+ is called the principal value of am a.

In conclusion, for the subsequent use of real and complex numbers
we list without detailed comment a number of simple

1.2.1. Conventions and formulas

1. “Numbers”, in the sequel, are always arbitrary complex num-
bers; our investigations take place “in the complex domain”. Only if
it follows unambiguously from the context shall the numbers be real,

1 It is completely indeterminate (may be chosen arbitrarily) for a = 0.

10



INTRODUCTION AND PREREQUISITES

the investigations take place “in the real domain”. All assertions,
however, concerning arbitrary complex numbers are also correct for
real numbers, for these are a subset of the set of complex numbers.!

In particular, we are dealing with real numbers

a) if we speak of natural, positive, or negative numbers;

b) if two numbers are connected by the symbol < or >, or if, in an
assertion involving numbers, either explicit or implicit use is made of
their order (see above);

c) if, to note a special case of b), we speak of an increasing or a
decreasing sequence or function (definition in 2.1).

2, In addition to the fundamental laws, all those rules (the so-called
derived rules) which are familiar to us from operating with rational or
real numnbers are valid for operating with complex numbers, in which,
and in whose proofs, no use is made of (linear) order, i.c., of the
symbols < and >. In short, one may operate formally with complex
numbers in the same way as with real numbers, except that operations
with inequalities have to be altered in the indicated manner.

Of these derived rules, we call particular attention to the rules of
parentheses (formation of the product of two sums of several terms),
the definition of the powers 4" with a positive integral exponent n, as
well as the binomial theorem (see 1.1, (7)).

3. |4| is equal to the distance of the point 4 from the point 0, |a - b] =
|6 — 4] is the distance between the points 2 and . We have

|ad] = |a|-|5], am ab = am a + am b,*
i =m’ am.b—=amb—ama,’
a |a] a
in particular,
1y 1 1 . .
2|~ Tep am — = —am g, ?mwdcdthata;éo.

! In other words, a real number is at the same time also a complex number
(whose imaginary part equals 0). The converse, however, is naturally not true.

3 More precisely: Every amplitude on the left is equal to one of the am-values on
the right, and conversely.

11



INFINITE SEQUENCES AND SERIES
4. Inequalities
Invariably |a| =0, and |a| = O if, and only if, 4 = 0. We have
invariably
la+ 8 = |o| + 15| and = [la|-]b]],
and invariably
|a1 + as + ons + apl é |a1| + |aI| + ene + |ap|’
and likewise invariably
IR (a)| < |al, |8 (a)| = [a]-
5. The totality of numbers (points) z for which
k-al =p, =0, =0 <p, >0p

for fixed, given 4 and given p > 0, fill out easily recognizable circum-
ferences or their interior or exterior regions with or without boundary.

The totality of numbers z for which (¢ arbitrary, ¢ > 0, fixed)
|z—a] < e, is called the (open) e-neighborhood of the point a.

1.3. Sets of numbers

We also regard as known the fundamental concepts concerning sets of
numbers (points), and we merely list briefly several definitions and facts:

If a finite or an infinite number of complex numbers are selected
from the totality of complex numbers according to any rule, they
constitute a set of numbers, and the corresponding points constitute a
set of points. Such a set M is regarded as given or defined, if the rule
of selection is so formulated that for every number it is definite whether
it belongs to the set or not, and if only the one or the other is possible.
A particular number shall belong at most once to the set. (In this
connection, ¢f. 2.2.) The individual numbers z of the set are called its
elements. We write z€ M to express the fact that z is an element of M.
The rule of selection is permitted to be such that no number of the kind
in question exists—we then speak of the empty set—or that all numbers
belong to the set. A set which contains infinitely many (distinct)
elements is designated expressly as an infinite set. Numerous examples
will appear in the sequel.

If every point of ' is also a point of M, then M’ is called a subset of

12
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M, in symbols: M'S M. We say that M’ is a proper subset of M, if a
Z2 € M exists which does not belong to W',

A set is said to be bounded, if there exists a positive number X such
that “for all z of the set” (i.c., for every zeM) the inequality |z| = X
holds. Such a number X is then called a bound for the (absolute values
of the numbers of the) set. In the contrary case, M is said to be un-
bounded. The totality of points (complex numbers) which do not belong
to M is called the complement of M.

If a point { of the plane possesses the property that in every e-
neighborhood of { there are infinitely many points of a given set M,
then { is said to be a limit point of M.

A point belonging to M is called usolated, if some e-neighborhood of
the point contains no other point of . Itis called an interior point of M,
if some e-neighborhood of the point belongs entirely to M.

A point { of the plane ({ may or may not belong to M) is called a
boundary point of M, if every e-neighborhood of § contains at least one
point which belongs to 9 and at least one point which does not belong
to M. A setis said to be closed, if it contains all its limit points; it is said
to be open, if it consists solely of interior points.

The foregoing considerations of sets referred to arbitrary complex
numbers, took place “in the complex domain”. If we restrict ourselves
to real numbers, we arrive at the concept of a set of real numbers. It
must, however, be observed in this connection, that “in the real
domain” the complement of M is usually understood to be only the
set of real numbers which do not belong to M, and that the e-neighbor-
hood of a real number & (£ arbitrary, real; e > 0) likewise consists of
only the real numbers x for which |x - £| < ¢; they constitute the open
interval! { —e < x < £ 4 e. Otherwise all definitions remain the same.
Nevertheless, several new details (refinements) arise, due to the fact
that the real numbers form an ordered set:

! An interval denotes the set of all real numbers which lic between two definite
real numbers, say ¢ and b. It is called closed or open, according as the end points are
regarded as belonging to it or not. If a < b, then the closed interval a Sx < b is
denoted by < 4, b > and the open interval a < x < b, by (a, ). The intervals
a<x <band a <x <) are called semiopen.

13
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A real set is said to be bounded on the left (right), or from below (above),
if there exists a number X (X}) such that for all x of the set, we have
x= K, (£ K,). K, is called a lower bound, Ky an upper bound, of the set.
The former may be replaced by any smaller (but generally not by a
larger) number, the latter by any larger (but generally not by a smaller)
number, It is now a fact of fundamental importance, that of all
lower bounds there is always a greatest, and of all upper bounds there
is always a least. Thus, if the real set  is bounded on the left (but is
not empty), then invariably there exists precisely one real number y
with the following two properties:

(a) To the left of ¥, there is no point of the set; briefly: there is

n x<y.
(b) To the left of every number which is > v, there is at least one
point of the set; in other words: for every e > 0 there is
at least one x < y + e.

This number ¢ which is uniquely determined by M is called the
greatest lower bound (in Latin: finis inferior) of M, and is denoted by

glb. M, fininf M, fin M, or inf MW,
and the analogue holds for every (nonempty) real set bounded on the
right, whose least upper bound ' is then denoted by

Lub. M, finsup M, fin M, or sup M.
We shall prove this important

Theorem 1. Every real set M which is rot empty and is bounded on the
left (right) possesses a well-determined greatest lower (least upper) bound.

The very simple proof is based on the fundamental definition of real
numbers by means of the Dedekind cut. We divide the totality of real
numbers into two classes, %, A’. Into the class % we put all real
numbers 4 for which no x < 4. Into the class %', however, we put
every real number 4’ for which at least one x < a’.! By hypothesis,

1 «No x”, of course, means: no x € M; likewise, “at least one x”’.

14
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neither one of the two classes is empty. We have invariably 2 < 4,
because otherwise there would exist an x < a. If y is the real number
which is realized by this cut, then vy possesses the two properties (a)
and (b), and is therefore the greatest lower bound of M. For if § <,
then £ is also less than every number which lies between § and y. Such
a number, however, being < v, is a number ¢ in %. Since § < g,
E cannot be an element of M. Hence, there is no x < y. On the other
hand, if ¢ > 0, then y 4 ¢ belongs to %', and consequently there is
at leastone x <y + ¢, Q.E.D.

The corresponding proof for the least upper bound is left to the
reader.

Greatest lower and least upper bounds may be regarded as an
extension of the concepts of minimum and maximum from finite to
infinite sets: Among finitely many real numbers, a,, a4, ..., a,, there
is always a least and a greatest value, which is denoted by

min (ala 83y «o0y a'), max (al’ L TIRTE ap)’
respectively. For infinite sets, this need not be the case. The set of
positive numbers, ¢.g., possesses no least element. We do, however,
invariably have Theorem 1 which was just proved. We call explicit
attention to the following: The greatest lower and least upper bounds
of a set need not themselves be points of the set.

If a set is unbounded on the left or on the right, then we also say,
respectively, that its greatest lower bound is equal to — oo, its least
upper bound is equal to + oo.

A proof quite analogcus to that of Theorem 1 yields the equally
fundamental Bolzano-Weiersirass theorem:

Theorem 2. Euvery real, bounded, infinite set possesses at least ome limit
point.!

Proor. We again divide the totality of all real numbers into two
classes, %, %’. Into the class % we put every real number 4, to the
left of which lie no, or at most finitely many, points of the set:

at most finitely many x <a, xe M.

! In 2.5 this theorem will also be proved for sets of complex numbers.
15
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Into the class 91’ we put every real number a’, to the left of which lie
infinitely many points of the set:
infinitely many x <a', xe M.

By virtue of the assumptions, we again have before us a Dedekind cut.
Let it determine the real number A. Then, if ¢ >0 is chosen arbi-
trarily, A—¢ belongsto 9, A4 ¢ to4’. Hence, there are at most finitely
many x <A—e, butinfinitely many <A +e¢. Thus, thereareinfinitely
many x in the e-ncighborhood of A, and consequently A is a limit
point. This already completes the proof of Theorem 2. The proof,
however, shows even more: Since at most a finite number of points
of the set lie to the left of A—e, there is certainly no further limit point
there, i.c., A is the smallest limit point of the set. It is therefore called
the lower limit (in Latin: limes inferior) and denoted by

liminf® or lim M.

The upper limit, 1’, of M (lim sup M, im M) is defined analogously.

If a set is not bounded on the left (right), we designate —co (+o0)
as its lower (upper) limit. Finally, if a set is bounded on the right but
not on the left, and if it has no finite limit point whatsoever (as, say,
the set of negative integers), then it is reasonable to call —oo its lim
sup, and in the “mirror image” of this case, 4-co its lim inf.

Henceforth, in addition to the Dedekind cut, we also have at our
disposal for the realization (definition, determination) of real numbers
the formation of the greatest lower and least upper bound, as well as
the formation of the upper and lower limit, of sets.

1.4. Functions of a real and of a complex variable

In the sequel, familiarity with the concept of a function of a real variable
as well as with that of a function of a complex variable, and with their
fundamental (i.e., simplest) properties, must be assumed (cf. Elem.,
§311L).

If an investigation takes place in the real domain, we shall ordi-
narily denote the variable by x, the functional value by y=f{x). Ifit
takes place in the complex domain, we write z and w =f{z).

16
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In either case, there is an underlying point set M which serves as
the domain of definition, and with every point (x or z) of 9 there is
associated in an arbitrary but well-determined manner a new number,
y or w, as the functional value. The totality of numbers y or w con-
stitutes the domain of values of the function.

In particular, we regard the so-called elementary functions as known.
More precise statements concerning them will be made in chapter 6.

We also assume that the reader is familiar with the concepts of
continuity and differentiability (in the real and complex domains) as well
as their manipulation, in other words, with the rudiments of dif-
ferential calculus and function theory, the former roughly as far as
Taylor’s theorem, of the latter, only a part of that which is contained
in the author’s little volume: Elements of the Theory of Functions, New
York, 1952.

To enter into further details would lead us beyond the limits of the
present volume.

17



Chapter 2

SEQUENCES AND SERIES?

‘2,1. Arbitrary sequences. Null sequences

Definition 1. The natural numbers 0, 1,2, ... ordered according to
magnitude form a sequence, the sequence of natural numbers.® If with every
one of these numbers v there is associated in any manner a single definite’
(complex) number z,, then these numbers z4, Zyy .-y 2,5 ... form an infinite
sequence of numbers, briefly, a sequence. (See 1.1,(1) for notation.)

2.1.1. Remarks

1. Sometimes it is more convenient to let a sequence bhegin with 2,
or with z,, where m may denote a fixed integer =0, instead of
with the term z,. The sequence then is {z,, Zuy1y --v5 &y -2}
Nevertheless, we shall always designate as the v* term that one which
bears the index v. Thus, the initial term need not be the “first”
term, which does not appear at all in case m > 1.

2. Numerous examples will come up in the sequel. Here we men-
tion only the sequence {¢, ¢, ¢, ...}, all of whose terms have the same
value ¢. ,

3. By calling the “sequence” infinite, we mean to indicate merely
that every term is followed by another one.

4. If all numbers of the sequence are real, we speak of a real
sequence, and then usually denote it by {x,}; otherwise, we speak of a
complex sequence or an arbitrary sequence. The points corresponding to

! We remind the reader expressly of the agreement made in 1.2.1,1.
* We usually denote an arbitrary one of them by v or n—any other letter,
however, is admissible.

18
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the terms of the sequence form a real or a complex point set. We use
these point sets to visualize sequences of numbers.

Definition 2. A4 sequence {z,} is said to be bounded, if a number
K >0 exists such that invariably!

(1) 2| = K.

In the real domain we have (¢f. 1.3) also the following finer dis-
tinctions: The real sequence {x} is said to be bounded on the left (right)
if a constant K (K,) exists such that, for all v,

(2) Xy g Kl’ Xy é KI!

respectively. The following definition likewise pertains only to real
sequences:

Definition 3. A real sequence {x)} is said to be monotonically
increasing (or simply increasing, or nondecreasing), if invariably

(3) xv é xv+l'

In syymbols: x, A. If invariably x, = x,,, {*,} is said to be monotoni-
cally decreasing (or simply decreasing, or nonincreasing), in
ymbols: x . If we require the sharper relation x,<x,,, (x,>x,,,) to
hold, then the sequence is said to be strictly increasing (strictly de-
creasing). "

The most important concept for all that follows is that of a null

Sequence:

Definition 4. An arbitrary complex sequence {z,} is called a null se-

quence, if it possesses the following property: If the positive (small) number
¢ is chosen arbitrarily, it is always possible to associate with it a number
w>0 suck that

(4) ) lz,|<e forall v>p.

! Le., for every index v.
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2.1.2. Remarks

1. Since e >0 may be chosen arbitrarily, and, in particular, to be
very small, the essential content of the definition may also be expressed
in the following looser but more intuitive form: For all sufficiently
high indices, the terms are very small in absolute value, namely <e,
assoon as v>p=pu(e).

2. The number p does not have to be an integer. We may, how-
ever, assume it to be an integer, if it is advantageous to do so. For
in (4), p may be replaced by any larger number. We shall designate
this number p as the stage beyond which |z,| <e. Definition 4 then
reads: Having chosen ¢ >0, |z,| <t from a certain stage on. _

3. It is easy to verify that an equivalent definition of a null se-
quence is obtained if <¢ in (4) is replaced by <e, or >u by =g,
or both.

4. The arbitrarily chosen (small) positive number is usually denoted

by e. Sometimes it is convenient to denote it by —;— or &, % (£>0),
elc.

5. The examples of null sequences nearest at hand are the sequences
0,0, ...,0,..}, ll—é— % } and {1, 4,4, ..., @, ..},! the
latter provided that |4|<1. For we have l—i—l <eassoon as v> l
That also |¢"| <e after a certain stage, if |4| <1, is not quite so sclf-
evident. Itis shown as follows: From ja| <1 we get |1/a| >1. We set
|1/a| =1+4p, so that p >0. Then, for v=1, |¢'|= 5 l—,
where the inequality follows from the fact that, accordmg to thc
binomial theorem, (14-p)* >vp. Hence, |4°| <e assoonas v>1/(ep).

6. The examples in 5 show that, in order to prove that {2} is a
null sequence, it is necessary to indicate, for an arbitrarily chosen
¢ >0, how to obtain the stage @ =p(e) beyond which |z,| <e. Con-
versely, if a sequence {z,} is assumed to be a null sequence, this is to

! In the second example the numbering begins, naturally, with 1, in the third,
with 0.
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assume that, for every ¢ >0, the corresponding stage p of the kind
required in the definition may be regarded as known.

7. To assert that {z,} is a null sequence means, if we visualize it
according to 1.2, that an arbitrarily chosen e-neighborhood of the
origin contains all points 2, of the sequence with at most a finite num-
ber of exceptions—namely all points whose index v is greater than a
suitable p.=p(e).

A large part of all the following proofs will amount to showing that
a given sequence, or one appearing in the course of an investigation,
is a null sequence. Very often this will be accomplished, as stressed
in 6, by actually specifying the u =u(e) which corresponds to the
chosen ¢ >0. Very often, however, it will be accomplished by com-
paring the sequence to be investigated with a known null sequence,
or by setting up a suitable relation between the two. The following
simple ‘theorems serve as a basis for this.

2.1.3. Theorems
1. Every null sequence is a bounded sequemce. For—choose e=1—we
have |z,| <1 for v>u, and hence |z,| <K'= max (1, ||, ..., [2,])-
2, Let {2} be a null sequence. Suppose that for a fixed K the terms of a
sequence {7} under investigation satisfy the condition that, for all v after a cer-
tain stage p.',
2] < K.

Then {Z.} is also a null sequence. For we have |Z,| <e assoonas |z,| <e/K.1
3. Let {2} be a null sequence and {b,} be a bounded sequence. Then the
sequence {2} with the terms z, = b,z, is also a null sequence. Proof according
to 2, where we take X to be a bound for the |5,].
4. Let {x} be a null sequence with positive (real) terms, and « be an arbi-
trary positive real number. Then {x5} is also a null sequence. For we have
%% <e as soon as x, <e'/*,

! This form of the proof, which is generally employed in the sequel, reads
in more detail: Let ¢ >0 be chosen. By hypothesis, therc exists a w such that
[} < % for v>p. We may take this ¢ >p’. Then for these v we also have

Iz = K|av| <¢, ie., {£} is a null sequence.
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If vp<y<...<v,<... is an arbitrary sequence of natural
numbers, and if we set 2, =z,, then {z,} is called a subsequence of the
sequence {z,}. Concerning subsequences, we have

5. Let {2} be a null sequence. Then every subsequence {2} of {2} is also
a null sequence. Forif |z,| <e for v>p, then {£}}=|z, | <e for n >y,
because v, =n.

Let {Z} be an (infinite) subsequence of {z,}. Suppose that the z,
which do not appear in {z} likewise form an infinite subsequence
{Z}. Then we say that {z} is decomposed into the two subsequences
{Z} and {Z]}. Concerning such decompositions, we have

6. If the sequence {2} is decomposed into the sequences {z.} and {Z.}, and if
these two sequences are null sequences, then {2} is also a null sequence. For
if we choose ¢ > 0, there exist numbers g’ and ¢* such that |z)| <« for
v>pu' and [Z)| <e for v>p*. If p is the largest index which the
terms z, with v <p’ and the terms Z, with v <p” have in the original
sequence, then |z,| <e for v>p.

Corollary. An analogous result holds for a decomposition of {z.} into a
Jixed number, say p > 2, of sequences.

If {vg, V15 «ov5 Vys -++} IS & sequence of natural numbers in which
every natural number appears exactly once, then {v;} is called a
rearrangement of the sequence of natural numbers, and, more generally,
{2}, with 2, =z, , is called a rearrangement of the sequence {z,}. Con-
cerning rearrangements, we have

7. If {2z} is a null sequence, then every ome of its rearrangements {2} is
also a null sequence. For if we choose e >0, there exists an integer p
such that |z,| <e for v>p. Letp’ be the largest of the indices which
the terms 2, 2, ..., 2, bear in the sequence {z,}. Then |z;| <e for
n>p'.

8. La {z,} and {z)} be two null sequences. Then the sequence {z}, with
2,=2,+Z,, is also a null sequence. (‘““Two null sequences may be added
term by term.”) For if we choose ¢ >0, then |Z,| < £ s for v>p' and
123 <3 < for v>p". Hence,

Iz.l =5 +4| = g+ <e  for  v>p = max (), u").
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In conjunction with 2, this yields

9, Let {2} and {2} be two null sequences, and ¢’ and c* be two arbitrary
fixed numbers. Then the sequence {2}, with z,=c'z,4c'Z, is also a null
sequence.

Corollary. An analogous result holds for any fixed number, say p, of null
sequences. And in particular: If {2} and {Z}} are null sequences, then so
are {Z,—Z} and {Z, Z;}—the latter according to 1 and 3.

No general assertion of a similar nature can be made regarding the
sequence {z;/z,}, but we add the following useful remark:

10. If {z} is an arbitrary sequence, and if there exists a ¥ >0 such that
all |z|=Y,. then the sequence {1z} is bounded. For we have

|1/z| < K =1}y.

Finally, we mention the following theorem for real sequences:

11, Let {x)} and {x)} be two real null sequences. Suppose that for a real
sequence {x, } under investigation we have x, < x, < x, after a certain stage.
Then {x} is also a null Sequence. For if we choose ¢ >0, then, after a
certain stage, —e <x, and %, <e, and hence also |x,| <e.l

2.1.4. Special null sequences
1. {%} and {a"} for |a| <1. Proof above in 2.1.2,5.

2. For |a| <1, {va'} is also a null sequence. For, as in the proof of 1,
we may assume that a 3 0, so that we may again set |1/a| =1+ p with
p>0. Then, for v>2, we have

v < 2 < 4
(I+p) ~ (v-Dp* ~ vp*’

Hence, |va'| <e for

|var| =

where the last inequality follows from v-1 > %
v >p=max (2, zip’) 2

! In somewhat more detail: If ¢ >0 is chosen, then —¢ <x{ forallv >y, x{ <e¢
for all v>u”, hence [r,|<¢ for all v>u=max (u/,u").
* Note that if |a| lies close to 1, say |a] = :2‘: , then the termsva¥ forv=1,2, ...

first grow rapidly and become small agam only for very large v. (For what values
of v in this case is vav <1/1000?)
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3. For arbitrary «>0, {l

v“} is a null sequence. Proof according to
Theorem 4 and Example 1.

4. For |a| <1 and arbitrary « >0, {v*a"} is a null sequence. For if we
set [q|/*=b, then <1, and consequently {v5"} is a null sequence.
Since |v*a’| = (vb")*, the assertion now follows according to Theorem 4.

5. The sequences {log M } R loﬁ M }, {logf v} are null sequences for arbi-
trary positive « and B. The logarithm is supposed to be taken to a certain
base 5 >1.1

Proor. It suffices to show that the second sequence is a null se-
quence. The choice a =1 then shows that the first is a null sequence,

By
and that the third is, follows from Theorem 4 by writing lo 8 in the

log v
form ( /8

k, such that v <v < ¥*! and consequently
logv kt1 _, &+1

) . Now to every v =2 there corresponds a natura.l number

v« bo, By
If we set 1/6*=a and k,+1=n, then
log v

<b*.-na" and hence <e

as soon as na" < e/b“. This, however, is true for all n > m =m(e), be-
log v
v <e

for all v for which k,4+1>m. This is certainly the case for all v > ",
because then log v >m and therefore a fortiori k,+1>m.?

6. Let a>0. Then the numbers x, = v/a—1 form a null sequence.

Proor. Thisistrivialfora=1. Fore>1, x,>0 and (1+x,)°=a,
the binomial expansion shows that vx, <4, i.c.,, x,<afv. Hence, ac-

cause 0 <a<1 and hence {ra"} is a null sequence. Thus,

! In this example as well as in some foregoing and in the following ones, some
simple properties of the elementary functions are regarded as known.

* It is customary to interpret the fact that the last of our three sequences is a null
sequence, as follows: Every (fixed and positive) power, however large, of log v
increases more slowly than any power, however small (but fixed and positive), of
v itself. —Examples 2 and 4 may be interpreted analogously.
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cording to 2.1.3,2, {x,} is a (positive) null sequence. For 0 <a <1 we
have 1/a=b>1. Consequently {y/b-1} is a null sequence. The
sequence {4/a}, now, is bounded. Theorem 2.1.3,3 therefore shows
immediately that {1-y/a} is also a positive null sequence, and hence
{v/a-1} is a negative null sequence.

7. Let {x,} be a null sequence and a>0. Then {a~—1} is also a null
Sequence.

For, according to 6, m can be chosen so that ¢'™ and 47"/ lie be-
tween 1-e and 14¢ On the basis of the elementary properties of
powers, a* lies between ¢' and a™'/ as soon as |x,| <1/m, which is
the case for v>p=p(m)=p(e). Then, for v>p, a lies between
l1-¢ and 14-e. This proves the assertion.

8. The numbers v/v—1 =y, also form a null sequence. For, by methods
analogous to those employed in Examples 6 and 2, we find that, for
v>2, invariably v(‘;l) RN<v, y,< %

9. Let {x,} be a real null sequence whose terms are all >—1. Then
{log (1+x,)} is also a null sequence, no matter to what base b >1 the loga-
rithm is taken.

Proor. Let e >0 be given. We set

F-l=e’, 1-b*=e", sothat e =0e">e">0.
We can therefore determine p so that |x,| <e” for v>p. For these v
we have a fortiori
<'<x,<e' or b<l4x,<b, ie, |log(l+a)|<e,

which proves the assertion. Similarly we find:
10. The sequence {(1+x,)*~1} (a an arbitrary real number) is a null se-
quence, if {x,} satisfies the same assumptions as in 9.

2.2, Sequences and sets of numbers

Sets and sequences of numbers have certain things in common, but
also differences, which we should like to point out explicitly.

The numbers z, of a given sequence {2} do not form a set of numbers
in the sense of 1.3, because we demanded of a set of numbers that every
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number appear in this set at most once, which need not be true in the
case of a sequence of numbers. We may therefore say only: The
distinct numbers appearing in an infinite sequence {z,} form a set.
This set may be infinite, but it may also be finite. For z, may have
the same value for infinitely many v. Consequently, instead of speaking
of an element of the set, one must speak of a term of the sequence, that
is to say, of a number v, for which z, possesses this or that property.
The terms of a sequence, moreover, are ordered in a definite way,
every term 2, is followed by a completely definite term z,,,, whereas
in general no order is specified for the numbers (points) of a set.

On the other hand, a set of numbers may contain very many more
numbers, in a quite definite sense (see 6 below), than a sequence of
numbers. These facts necessitate certain modifications of the defi-
nitions of limit point, greatest lower (least upper) bound, lower
(upper) limit, efe. given in 1.3, which we shall discuss briefly.

1. Let {z,} be an arbitrary sequence of numbers. We say that {isa
limit point or limiting value of this sequence, if, after choosing e >0, the
inequality |z,—%| <e is satisfied for infinitely many indices. Thus,
e.g., the sequence {{, §, §, ...} has the value { (and only this one) as a
limit point, whereas the point set consisting of the single point { has
no limit point at all.

2. If{z}is not bounded, we say that the terms z, cluster at “infinity”,
The totality of complex numbers z for which |z| > K (where K'>0 is
fixed) is said to be a neighborhood of the “point at infinity” or of the
“point co”. Of each individual complex number we often say ex-
pressly that it is “finite”, in order to indicate that it is different from
this so-called point “at infinity”.

3. (Greatest lower bound and least upper bound.) If {x} is a real sequence
which is bounded on the left, then there always exists precisely one
number y possessing the following two properties:

(a) x,<y for no v,

(b) to every e>0 there corresponds at least one v for which

x,<y+e.
We write y=g.lb.x, or y=finx,, and define the least upper
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bound y in an analogous fashion. The proof is the same, except
for minor changes, as that of Theorem 1 in 1.3.

4. (Lower limit and upper limit.) If {x} is a real sequence which is
bounded on the left, then there always exists one number A with the
following two properties: If ¢ >0 is chosen arbitrarily, there are

(a) at most finitely many v for which x,<A-e, but

(b) infinitely many v for which x, <A 4.

We write A=lim x,. The value A’ =Tim #, is defined analogously for
real sequences bounded on the right.

5. We agree to set one of the numbers v, ', A, X, in the definitions
in 3 and 4, equal to —co or +-co in the cases which correspond exact-
ly, in 1.3, to those for arbitrary sets.

6. Whereas to every sequence of numbers there corresponds a set,
the converse does not hold. E.g., there is no sequence which contains
all the real (or indeed all the complex) numbers.! If, however, an
(infinite) set possesses the property that its elements can be designated
(enumerated, numbered, ordered) as z,, 2z, ..., Z,, ... in such a
manner that every point of the set receives a number as its index, then
the set is said to be enumerable, otherwise it is nonenumerable. We say
that a nonenumerable set, e.g., the set of all real or the set of all com-
plex numbers, is of greater power than the set of natural numbers or
any enumerable set. In this well-defined sense, emumerable sets are
poorer in elements than nonenumerable ones.

7. The set of (real) rational numbers also appears at first glance
to be very much richer in elements than the set or sequence of natural
numbers 0, 1, 2, .... Nevertheless, the former too is enumerable.
To see this, first write down successively the distinct positive rational
numbers r in 0 <r <1 in order of increasing denominators: {, },
$,.1. %, %, %,...; then, after every value r, insert the values , -7,
-1, and finally, put 0 and ] at the beginning. The resulting sequence

0’ 1’ %’ 2’_%"_2’ %""-

! Since we shall have no occasion to make use of this result in the sequel, we
omit the proof, which may be found in any work containing the rudiments of the
theory of point sets, ¢.g., E. Kamke, Theory of Sets, New York, 1950,
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then contains every real rational number, and each precisely once:
The set of rational numbers is enumerable.

8. The following very similar consideration is somewhat more
general: For every n=0, 1, 2, ..., suppose that a sequence {a,, 4,
ceey Gy -..} is given. If we write down the elements of these sequences
in rows, one below another, as in a determinant, we call the resulting

configuration
Goos Ggry ves Bpyy =on

Gios @ris +evs Byyy ooo

an infinite matrix or a double sequence, and denote it briefly by (a,,)
or{a,},(n,v=0,1,2,...). The totality ofitselementsis again enumer-
able; it is possible to “reorder” it into a simple sequence. There are
many ways of doing this. We call special attention to the following:

a) Arrangement by diagonals. In this case we write down in succession
for k=0, 1,2, ... the k+1 clements a4, 4, ,, ..., 4y Which occupy
the £ diagonal. The resulting sequence {,}, which begins with

Ggos G105 Go1s> G205 G115 Gogs> B30 -+ = by by, ... bp seey
obviously contains every a4,,, and each precisely once.

b) Arrangement by squares. For k=0, 1,2, ..., we write down in
succession the 2k 1 elements 4,4, a;), ..., ay, 4, 4, ..., 4 Which are
contained in the border of the k* square in the upper left corner of
the matrix. We again obtain a sequence {§,} which contains every
a,,, and each precisely once.

Both methods show that the totality of the 4, is enumerable. Every
rearrangement of one of the sequences accomplishes the same thing,
and, conversely, any two arrangements of all the 4, in a simple se-
quence are merely rearrangements of one another.

2.3. Convergence and divergence
Definition 1. If {2} is a given sequence of numbers, and if it is related
to a certain number z in such a way that {z,—z} ts a null sequence, then we say
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that the sequence {z,} converges fo z, that it is convergent, with the
limit z, or that its terms tend to or approach the limit z as v - oo,
and we write

Z, >z a5 v ->o00, limz, =g, lim z, =z.
v

According to the definition of a null sequence, z, - z if, and only if]
with every e > 0 there can be associated a p =p(e) such that

|2,~2| <e  forevery v>u.

2.3.1. Remarks and examples

1. According to this definition, null sequences are sequences which
converge to 0. Henceforth, therefore, we may express the fact that
{z,} is a null sequence by writing

z, >0 (asv »>00), lim z,=0, lmz,=0.. _

2. Consequently, with suitable interpretation, the remarks made in
connection with null sequences (2.1.2) remain valid for convergent
sequences.

3. Examples 6 and 8 in 2.1.4 assert, respectively, that

va -1 (for fixed a>0), Vv >l

4. The meaning of z, — z for the corresponding sequence of points
is the following : Given e > 0, all points z,, with at most a finite number
of exceptions, lie in the e-neighborhood of z. In the real domain,
x, > x means that the points x,, with at most a finite number of
exceptions, lie between x—e and x+4-e.

5. With respect to the limit z approached by the sequence {z,}, the
term z, is regarded as the v* approximation, and the difference z-z,,
which has to be added to z, in order to obtain the limit itself, as the
v* error.  This value, which is also called the v* remainder, will usually
be denoted by r,, so that z,+r,=2z.

6. If {x}is areal sequence which converges to x, and if the sequence
is monotonic, then we write more expressively x, # x or x,\ x
according as the sequence tends increasingly or decreasingly to x.
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Definition 2. Euvery sequence {2} which does not tend to a definite limit
in the sense of Definition 1, is said to be divergent.

Sometimes it is desirable to make finer distinctions among divergent
sequences:

a) In the complex domain. {z)} is called boundedly or unboundedly
divergent, according as the divergent sequence {2} is bounded or not.

b) In the real domain. We say that x, - + oo, if, given an arbitrary
(large) positive number G, it is possible to determine a p=u(G) such
that x, >G for v>p. ! Similarly: x, >—o0, if, given G>0, we
have invariably x, < -G for v>u. In these two cases, the sequence
in question is called definitely divergent® 1If, at the same time, the
sequence is monotonic, then we write more clearly x, # 4-oco, x,\—00,
respectively. In all other cases, {,} is said to be indefinitely divergent
or oscillating.

Definition 3. Let {z,} and {2} be two sequences of numbers, and suppose
that the terms of the first arve different from 0. If these sequences are related
so that

(1) the sequence {z,|z,} tends to O, then we say that {z} is of lower order
than {2}, and we write

z,=0(z,);
(2) the sequence {2,|2,} is bounded, we say that {2} is (at most) of the same
order as {2}, and we write
z,=0(z,);
(3) the sequence {Z,|2} converges, say
Zlz, > g,
and if g # 0,3 then we say that the sequence {2} is asymptotically proportional

1 «All terms x, with sufficiently large index v are very large”, and indeed, x,
itself, not merely [x|.

* Definite divergence is still closcly related to convergence. E.g., if x, >0 and
xy—> +o0, itfollows that 1/x, =x{,—+0. For wehave x| <¢ as soon as x,>1/e, i.c.,
for all v>u=yu(l/e). We therefore say, in case x,—» oo, that x, tends to the
improper limit +oo, and x, - —oco is described analogously.

* We assume, of course, that g is a finite number, i.c., that g is different from the
point at infinity (see above).
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to the sequence {2}, and we write

In particular, if g=1, we write

™z,

Z, 2z,

and say that the two sequences are asymptotically equal.®
For the purpose of illustration, we mention, without further expla-
nation,? the following

2.3.2, Examples

1) (In the complex domain.) (14i)* =0(2") and = 0 (2'R). (3+4)’' =
= 0(5"). z,=0(1) means that the sequence {z} is bounded, z, =0(1)
means that {z} is a null sequence. Thus, according to 2.1.4,1,
va* =0(1) for every fixed ¢ with |¢| <1. Similarly a+45b2'=0(2")
for every fixed z with |z| = 1.

2) (In the real domain.) V53+8v v, V¥+1 oov, log (5v413)
ologv or =0(logv), Vv+1 4/, V+1 -/ m% and, more

1
2o

2.3.3. The following theorems concerning convergent sequences
can be read off easily and immediately from the corresponding
theorems on null sequences (see 2.1):

1. A convergent sequence determines its limit uniquely. For if z, >z, and
if 2’ # z, then a z, which lies in an e-neighborhood of z cannot al-
ways lie at the same time in the e-neighborhood of z'—certainly not,
¢.g., if we take ¢ to be the positive number § |2'-2|.

2. A convergent sequence is invariably bounded (2.1.3,1); and if z, >z
and |2,| =K, then also |2| < K.

3. z, >z implies |z,| > |2]. For, according to 1.2.1,4, ||z,|-|2l| <

|2,~2]-
4. Let z,—>z. Forafixedinteger p 30, set z,,,=2,v=0,1,2,

precisely,

! In the literature, an express distinction is not always made between asymptoti-

cally proportional and asymptotically equal.
* The proofs follow very casily from the theorems in this and the next section.
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Then we have also z,—> z.* For if |z,—z| <e for v>p, then |Z,—z| =
= |z,4p—2| <e for v4+p>p or v>u' =p-p.

5. If z,— z, then every subsequence {2} of {2,} also converges to z (2.1.3,5).

6. If z,—>2z, and if {2} is a rearrangement of {2}, then also Z,—z
(2.1.3,7).

7. Let z,—>z, and let {k,} be any sequence of positive integers. Denote by
{Z)} the sequence Zyy Zgs -.-5 oy Zus -+ey Zus gy .-+, Where Zy is taken k,
times, z, is taken k, times, ..., z, is taken k, times, ... in succession. Then
also Z,—>z.

8. If the sequence {2} is decomposed into the sequences {2} and {Z]}, and
if both these sequences — z, then also z,—>z. An analogous result holds
for a decomposition into p > 2 sequences.

9, Let {x)} and {x,} be real sequences which converge to the same limit .
Suppose that for a sequence {x,} under investigation we have x,<x, <x,
after a certain stage. Then also x,—>x.

10. Let Z,—2 and Z,—>7'. Then, for arbitrary fixed numbers a and
b, we have

, v , . ' e ' e PN o

az, ‘bz, > az +bz, z2,>2z, Z 7
where the last relation holds provided that all 7,0 and also 7' #0. The
first relation follows immediately from 2.1.3,9. Thesecond followsfrom

427 = (Z-2)4+7 (£-7)
and the remark that on the right-hand side, two null sequences are
multiplied by bounded factors and then added, which yields a null

sequence. Since % =2 l, , the third relation follows from the second

o 1 1
if we can show that, under our assumptmns Z == ra This, however,
.. 1 1
isindeed the case, because — —— = Z = .
v R -z

2.1.3,10, {#} is a bounded sequence and {z'—z,} is a null sequence.
11, Let 2,2z, and set z, = x,+1),, 2 = %+ (%,, ), X,y real).

, and by our hypotheses and

! For p >0, the thecorem may be interpreted as asserting that finitely many
terms may be disregarded in questions of convergence. — The numbers z_,, z_, ...,
z_g which appear for p =-¢ <0 may be set equal to any value, say 0.
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Then x,—>x, y,~>y, and conversely—i.c., the last two relations imply
z,>2z. For we have

| % —x| < -z < - —
va—yl} S |la-zl = =2+l

By means of this theorem, the problem of the convergence of complex
sequences is reduced completely to that of real sequences. Only
seldom, however, is anything gained in practice by this reduction.

12, If the real sequence {x,} converges to the limit x, and if a >0 is fixed,
then av— a* (see 2.1.4.7).

13. If the real sequence {x,} converges to the limit x, and if all x, as well
as x are positive, then log x,—> log x for any choice of the base b >1 of the
“logarithm.

2.4. Cauchy’s limit theorem and its generalizations

The majority of the theorems in the last section not only affirm that
a sequence under investigation is convergent, but also make assertions
concerning its limit. Particularly numerous applications in this
direction may be made of the following theorem, due to Cauchy
(1821), and its generalizations:

Theorem 1. If z,—> z, then also the sequence of arithmetic means

zo+z|”++.1-- + Z -7 >z

Proor. Firstlet z=0. If ¢>0 is given, there exists a yu such that
ot...tal &
n+41 2°
The numerator of the first fraction on the right-hand side is a fixed
number, so that this fraction is <£ for n>m (>p). Butthen |2[|<e
for n>m = m(e), i.., z,—0. 2
For arbitrary z, {z,—z} is a null sequence, and therefore, by what

we just proved, so is the sequence of numbers (20=2) ";_'_l"' (@=2) _ .
= Z,—z, which means that z,—>z.
We state without proof the following supplements and applications:
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24.1. 1. If {x} isreal and x,— 4o, then also

Xo+x14 004 X
n41
‘2. For an arbitrary real sequence {x,},
Xo+x+ ... x
n+1

3. If »,>0 and »,—% >0, then also the sequence of geometric
means

— +-o00.

lim x, < lim < lmax,.?

VA s o D>
4. If {c,} is a sequence with positive terms, then

lm v+l cv+l
1 o < lim v, < im p

in particular, if ﬂ';’—'—>y >0, then /¢, >v.

Cauchy’s limit theorem admits of the following far-reaching and
important

2.4.2. Generalizations

1. If z,—>2, andif {§,} is a sequence of positive numbers such that
bot+pr+...+p, = P,— 400, then also

Doto + 0121+ oo+ Puda
o+ .o+ b

(We obtain Theorem 1 if we take all p, =1.)

If we set p,z,=w,, then 1 may also be formulated as follows:

> z implies Wo+ Wi+ ...+ W >z

pv Po+]’|+---+ﬁ-

If we set the numerator of the last fraction = W, and the denomi-
nator = P,, we may also state the theorem as follows:

> Z.

2. 2

! [im means that one may take either lim or lim.
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3. If P, # +oco, then
W- - W-—I

W, Wi Wi
P. P-_P--I «
4. For example, if £ > 0 is an integer, it follows that
N L 'L F R R . nt
lim s = lim P gy o

provided that the last limit exists. Application of the binomial theo-
rem shows, however, that this limit does exist and is equal to ——— T + T

5. The assertions 1, 2, 3 remain valid for complex p, provided that
they satisfy the following condition: For a fixed K> 0 and every v,

1ol + 104l +- .. +18,| = Klpo+£1+-.- 41|,

and the sum on the left —>oco0 as v—oo.

And this theorem, which contains the preceding ones, is in turn
merely a special case of the following one, which was discovered in-
dependently in 1911 by Silverman and Toeplitz:

Theorem 2. Le (a,,) be a row-finite matrix (see 2.2,8), i.e., for every
n=0,1,2,..., let a,=0 for v>v,, where {v} denotes an arbitrary
sequence of natural numbers.® Suppose that this matrix satisfies the three
conditions

(N) ?lolaﬁvl =M Jor every =0, 1,2, ...,
R) 4, = vz. a,—~>1 a5 n—>oo0,
v=0

(C) a,>0 asn—>oo0, forevery fixedv=0,1,2,....8

1 In this formuhﬁon, the theorem bears a close relation to I’ Hospital’s rule, which
is ordinarily proved in the differential calculus.

3 In applications we have very often v, =n, and the matrix is then called a
triangular matrix. In 3.5 the above theorem will also be proved for matrices which
are not row-finite.

% These three conditions (N), (R), (C) may be remembered as norm-, row-, and
‘column-condition, respectively.
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Then z,— z tnvariably implies that also
> s = 4>z
v=0

The proof differs only slightly from that of Theorem 1. Again let
us first assume that z=0. Then, given >0, there exists a p such
that |z| <e/(2M) for v>p. For n>p we have

’ e LS
|22 S |g020+-- -+ a2, |+ —2—1‘7‘.-§+1|a"'|'

Now because of (C), 4,2, >0 as n—>oco, for fixed v. Hence, ac-
cording to 2.1.3,8, the first absolute value on the right also ->0
as n—>oo. Consequently, there exists an m >y such that this abso-
lute value is <—;— for n>m. For these n, then, we have |z| <e, so

that ,—0. If z#0, then
z; = z:oauv(zv_z)-i-‘{-z'

By what we have just proved, the value of the sum on the right -0
as n—>oo0. Since 4,1, it follows that z,—>z.

Corollary. If (R)A,—>1 is replaced by the condition (R')A,— A, and
tho other conditions remain the same, then 7,—Az. !
Theorem 1 is contained as a special case in Theorem 2 for v, =1,

a,, = T—}-—l’ (0=v=n). Likewise 2.4.2,1 for v,=n and

by =5, (O=vz).

Finally, we prove the following theorem, which, in a certain respect,
is more general than Theorem 2:

Theorem 3. Let 2,2 and w,—>w. Suppose that (a,)) is a trian-
-gular matrix, and set

L 60ty = Botely + 002 W+ B = 5, (1=0,1,2,...).

Y If 2 =0, then the respective conditions (R), (R’) may be omitted altogether.
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If the matrix satisfies, in addition to the three conditions (N), (R), (C) of
Theorem 2 (with v, =n), the following condition:

(C") 4 »0y=>0 as n—>oo, for every fixed v=0, 1,2, ...,

then Z,—>zw. .
Proor. If we set a,w,,=b,,, then ;=3 4,2z, The matrix
y=0

(b,,) satisfies conditions of the form (N) and (C) of Theorem 2, and
condition (R’) of the Corollary. For if X is an upper bound for all

|z,|, then i|b_,,| =K-M for all n; 5,50 as n—>oo because
v=0

a,,—~>0 and w,_, remains bounded (as n— oo, for fixed v). Finally,

i by = i Quy Wey = i Ay un Wy > W
y=0 v=0 v=0

according to Theorem 2 itself, since the matrix a,, =g, ,_, fulfills the
three conditions of that theorem. Hence, by the Corollary of Theo-
rem 2, 7, > wz.

2.5. The main tests for sequences

The two principal problems in the sequel will be to decide whether
or not a given sequence of numbers converges, and, in the first case,
to assert something more precise about the limiting value, or to as-
certain it. Both questions are very often answered as a consequence
of the fact that the sequence under investigation is obtained in a way
which enables one to recognize immediately that the sequence con-
verges and what its limit is, ¢.g. on the basis of the rules of operation
and the theorems in 2.3, or on the basis of Cauchy’s limit theorem and
its generalizations in 2.4, each of which asserts that the new sequence,
which is the one in question, converges, and that it possesses a definite
limit.

The situation, however, is not always so favorable. The questions
of the convergence and of the limiting value of a given sequence must
frequently be decided solely on the basis of the knowledge of its terms.
Whereas there are hardly any general means available for answering
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the second question (¢f. especially ch. 7), extensive aid in deciding the
convergence question is afforded by the so-called convergence tests,
only two of which, to begin with, will be treated here, which are
nsually called, on account of their importance, the main tests. The first
is concerned only with real, monotonic sequences, but is particularly
important because of its simplicity and its extensive applications.
The second is concerned with arbitrary sequences, and has therefore
the greater theoretical significance. Both criteria provide necessary
and sufficient conditions, and, accordingly, cannot be improved.

First main test for real, monotonic sequences

A real, monotonic sequence {x,} is convergent if, and only if, it is bounded.
If it is not bounded, then it — +oo if it is increasing, it — —oo if it is
decreasing. Thus a monotonic sequence always behaves definitely (2.3.1,
Def. 2, b)).

Proor. a) Let {x,} be decreasing and bounded, and denote the
greatest lower bound by y. Then if ¢ >0, there exists a term, say x,,,
of the sequence, such that x, <y-{e. Consequently x, <y+e¢ for all
v>u. Since all terms of the sequence are =y, we have thus as-
‘sociated with the given ¢ >0 a number . such that y < x, <y+e,
in particular |x,—y| <e, for v>u; i.e., x,—>v, andinvariably x,=>v.
If {x,} is increasing and bounded, then it can be shown in an analogous
manner that the sequence tends to its least upper bound v, x, > ¥/,
and invariably x, <vy'. _

b) Let {x,} be decreasing and unbounded. Then, since all x, < x,,
the sequence is unbounded on the left. It is therefore possible to
associate with every G >0 a p such that x, <—G and, due to the fact
that the sequence is monotonically decreasing, a fertion x, <—G for
all v>p. Hence, x> —oco. An analogous argument takes care of
the case in which {x,} is increasing and unbounded.

This important criterion asserts, in-particular, that every monotonic
and bounded sequence determines or defines a definite real number
—namely, it greatest lower or least upper bound. It therefore may
and shall serve, in addition to the Dedekind cut as well as fin and fim,
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as a new means for determining real numbers. It is especially handy
in the following form:

Principle of nested intervals

Let {x,} be a monotonically increasing, and {x,} be a monotonically decreasing,
(real) sequence. Suppose that x, <x, for every v, and that the differences
d, = x,—x,—>0. Then there always exists precisely one real number x which
satisfies the condition x, <x<x, for every v. Expressed graphically: If
{L} is a sequence of closed, nested intervals I, = <x,, x, > whose lengths
decrease to O, then there is always exactly one point x whick belongs to evéry one
of these intervals.

The proof follows immediately from the first main test. For ac-
cording to this test, {x,} is convergent. If x,—x, then also x, =x,+
+d,—x, and according to the preceding proof we have invariably
x,<x<x,. Ifalsoinvariably x, <x'<x, then, for everyv, x,—x, =
=d,=|x'—x|. Since {d,} is a null sequence, we must have x' ==x:
there is only one point which belongs to all the intervals.

In applications, 1,,, will usually be a certain one of the two halves
of I,. In this case we speak of the bisection method of determining a
real number.

The analogue in the complex domain is the principle of nested squares,
which it will suffice to state and prove in graphical form: If {S,}
is a sequence of nested, closed squares, whose sides we shall assume
to be parallel to the coordinate axes in the plane, and if their diagonals
d,—~0 as v—>oo, then there exists precisely one point z which be-
longs to every S,.

Proor. If we project the S, on the real axis, we obtain there a real
nest of intervals which determines the point x, say. Similarly, by pro-
jecting the S, on the imaginary axis, we again obtain a real nest of
intervals—let it determine the point y there. Then the point z = x4 iy,
and only this one, belongs to every one of the squares.

To the bisection method in the real domain corresponds the
quadrisection method in the complex domain. By means of parallels
to its sides, S, is divided into four congruent parts, and S, , is a certain
one of them.
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Examples.
1. By expandmg by the binomial t.hcorcm, it is easy to see (¢f. 6.3,8,
where the expanslon is carried out) that the sequence of numbers

( 14+ )v, v=1,2,..., incrcases monotonically, but that in-
va.nably x, <3, so that lim ( 14 ) exists and is equal to a number

which is >2 but <3. This number is denoted by e. For further
details, see 6.3.

2. The sequence of numbers x, —( 1+ \l')v-“ is monotonically de-
creasing. For x, < x,_, is easily seen to be the same as ( 14 le_-l—)v >
>4 l; and this is true bccausc the value on the left is, by the
bmonual theorem, even >14 —— le Andas {x]} iscvidcntly bounded,

it is convergent. It also —»¢, because x, —( 14— ) .. Hence, in-
variably x, <e<x,.

3. The sequence of numbers x, = (1 + 5—,—+...+ —) is obviously
monotonically i mcrcasmg For v>l however, x, <14 —5 i3 4.
+ (v_})'v l+( )+ +( v) 2—l. Thus thesequence
{x,} is also bounded, and t.hcreforc convcrgcnt Later on we shall

2
find the value of its limit to be 1'6—.

4. The sequence of numbers x,= ( ST + — v+2 Foet 5 ) v =
1,2, ..., isalso increasing and bounded—the latter because x, < —=1

the former because an easy calculation shows that x,,, - x, >0. Thc
sequence is therefore convergent. In 7 its limit will be shown to be
the natural logarithm of 2.

5. The sums (1+%+...+%), v=1,2, ..., will be denoted (¢f.

2.5.1,3) by h,. They obviously form a monotonically increasing se-
quence. An easy calculation, which is carried out in 2.5.1,3, shows
that it is unbounded. It therefore — 4 co.
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6. Iflog denotes—as generally in the sequel—the natural logarithm,
i.e., the logarithm to the base ¢ (see above), then Examples 1 and 2
assert that invariably

1 1 1
or

1 1 1 1
(2) 0<-v——10g(l+';)<——v_'_—l.

If we write this down for v=1, 2, ..., 2—1 and add, it follows that
for n>1 invariably :

3) 0<h -logn<l-1 or 1 <h-logn<l.

From this we see that

L 1 < 1 ,
log n

(n> 1).

Hence, £, [log n—>1, because 1/log n—>0. Consequently,
“4) h, o log n.
The (according to (3), positive) sequence of differences d, = h-logn,

n+1
n

howevcr, is monotonically decreasing, bccausc d,—d,,, = log

+1 » which, by (1), is >0. Therefore

(5) Lim (h,~log n) =

exists, and for the limit C we have 0 < C<1.1 Later on we shall see
that C = 0.577....

! Since the sequence of differences dy =#,_,-log n, as is equally ‘easy to show,
is monotonically increasing and of course also —C, it follows, more precisely, that
actually 0 <C <1.
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7. If we write (5) in the form A, = log n4-C+4-0(1),! we see that
the terms of the sequence considered in 4 are equal to

hy,—h, = log (2n)+C+0(1) —log n—C—0(1) = log 2+ 0(1),
which means that that sequence — log 2.

The principle of nested squares now enabies us to prove the Bolzano-
Weierstrass theorem (cf. 1.3) also for sequences of complex numbers:

Bolzano-Weierstrass Theorem. Euvery bounded sequence {z,} pos-
sesses at least one limit poinit z.

Proor. Since {z,} is bounded, it is possible to assign a square S,
(whose sides are parallel to the coordinate axes) containing all the
points of the sequence, and hence, in any case, infinitely many. ?
Consequently, of the four subsquares resulting from the quadri-
section method, there must be at least one, which we shall call §,,
which in turn contains infinitely many of the z,. If there are several
of the subsquares to choose from, call that one §; which, in the usual
numbering of the four quadrants, is the first one of them (and similarly
in the succeeding steps). Analogously, denote a definite one of the
four subsquares of §; by Sy, etc. Then {S,} is obviously a sequence of
nested squares, and each of the squares contains infinitely many terms
of our sequence. If z is the innermost point of {S,}, then z is a limit
point of {z,}. For let ¢ >0 be chosen arbitrarily, and then determine
p so that §, has a diagonal <e. The entire square S, lies in the
e-neighborhood of 2, and since infinitely many z, lie in §,, the same
is true in the e-neighborhood of 2, i.c., z is a limit point of {z,}, and
the theorem is proved.

The Bolzano-Weierstrass theorem is the mainstay of the proof of
the second main test, which was first formulated by Cauchy in 1821:

! According to 2.3.1, Definition 3, “+0(1)” means that we have to add here
the terms of a null sequence (which is not known more precisely). Similarly, in
the lines that follow, +o(1)-0(1) means the difference of the terms of two null
sequences that are not known more precisely, in any case, however, the term o(1)

of a null sequence.
* Here and in what follows, “infinitely many” means of course that there exist

infinitely many v for which z, lies in that square.
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Second main test (for arbitrary sequences).
A sequence {z,} is convergent if, and only if, with every € > 0 it is possible
to associate a p.=p(e) such that

(6) |z, —2,| <& for all pairs of indices v,v' which are >p. 1

Proor. a) That (6) is necessary for the convergence of the se-
quence can be seen at once. For z,— 2z implies that, having chosen
¢>0, there exists a number p such that |z,—z] <% for all v>p.

Hence, if also v'>p, then also |z,-—2] <%, and consequently
kv -z| S lgy=2l + lo-2 <G +5 =

b) In order to show that (6) is also sufficient for the convergence of
{z,}, we first prove that this sequence is bounded if (6) holds. Ac-
cording to (6), |z,—2,,)|<e and therefore |z,| <|z,,,|+¢ for v>pu.
Hence, for all v,

IZ.l < K = max (llola sesy |Zu|’ |zu+ll+¢)'

As a bounded sequence, however, {z,} possesses at least one limit point
z.® It is now easy to see that our sequence converges to this value.
For to an arbitrary ¢>0 there corresponds a g such that for all v,
v’ >u we have invariably |z,,-z,| < % Since z is limit point, how-
ever, we may choose v' so that also |2,,—z| <5 and hence |,z <
=< |lz,-2+|z,,—-2|<e, and this for all v>pu. Thus z,—>z, so
that condition (6) is sufficient for the convergence of the sequence {z,}.

Corollaries. 1. On the basis of what we have proved, the test
may be formulated also as follows: A sequence {z,} is convergent if,
and only if] it is bounded and possesses precisely one limit point, which
is then the limit of the sequence.—Since, in the real domain, the

! In graphical terms, (6) asserts that all z, whose indices are sufficiently large
lie very close to one another. For, the distance between 2, and 2,/ is <e¢ for all the
pairs of indices mentioned above.

3 In this step we thus appeal to the Bolzano-Weierstrass theorem, and hence to
nested squares or intervals, and thereby to the creation of the system of real numbers.
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extreme limit points of a sequence {x,} are furnished by lim x, and
lim x,, the test in this case can be given the following form: A real
sequence {x,} is convergent if, and only if, lim x, = lim x, (and both
are finite).

2. Condition (6) in the second main test may obviously be ex-
pressed in the following equivalent forms:

(a) Having chosen ¢ >0, there exists a @ such that
|2,42—2,|<e forall v>p andevery A=0,1,2,....
(b) If {3} is any sequence of natural numbers, then invariably

(z,4+2—2) > 0.

Example. Let z, and z; be any two points. For v=2, set z, =
= }(2,.1+2,2), i.e., = the midpoint of the segment extending from
z,3 0 2,_,. Then thesequence {z,} is convergent. For if d = |3,—- )|
is the distance between the initial terms, then it is easy to verify by
induction that the distance |z,,,-2,| = d/2*, and that all z,, with
v>p+1, lie on the segment extending from z, to z,,,. They are
thus separated from one another by less than e, if p is chosen in ac-
cordance with d/2* <e. The limit of the sequence is easily found to
be the value }(z+2z). Additional examples occur frequently in
the sequel.

2.6. Infinite series

As already emphasized introductorily in 1.1, sequences are very
often given in the form 1.1 (3):

(1) o+t tat.. oo Ea.
If there is no possibility of uncertainty, this may be denoted more

briefly by Xa, or Ya,. These expressions are thus merely other

symbols for the sequence {s,} with s, = 4y+a,+...+4,. Every pro-
perty for which we have introduced a special name in the case of
sequences is carried over to series: A series is thus called convergent,
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divergent (definitely or indefinitely), etc., according as the sequence
{s,} of its partial sums possesses this property. If it converges to the
limit s, we call s the value or the sum of the series and write

(2) Fa, =51
v=0

The quite customary designation “sum” for the value s of a series is
nevertheless unfortunate. For s is no sum, but rather the limit of a
sequence of sums, namely, the sequence of partial sums of the series.
It is also especially misleading because it engenders the belief that
one may operate with infinite series exactly as with ordinary sums, ‘.c.,
with sums having a definite finite number of terms, such as a+b+¢
or ¢,+¢;+...4+¢,, (¢ a fixed natural number >1). In 3.6, in con-
nection with “operating with infinite series”, we shall discover in
greater detail that this is not the case; here we shall cite merely a
particularly crude example: Consider the series

(-]

zo(—l)" =l-141-14-....
If we were allowed to ““insert parentheses” as in ordinary sums, then
its sum would = (1-1)4(1-1)+4..., and hence certainly equal 0.
It would, however, also = 1-(1-1) — (1-1) —..., and hence certainly
equal 1! The fallacy here will be explained in 3.6. Every case must
be carefully tested to determine whether or to what extent the rules
valid for operating with “ordinary” sums still hold for infinite series.
For some rules this will be the case, for others not.’

2.6.1. Examples and remarks
= 1 1 1
| ‘EOE;-. Here we have (¢f. 1.1,(6)) s, = 2- T ls,—2| =5

and this, by 2.1.2,5, tends to 0, so that 5,—>2. Thus, ¥ o= 2.
v=0

! The notation (2) accordingly signifies two things: 1) The sequence of partial
sums of (1) is convergent (or lim s, exists), and 2) lim s, =s. In the case of conver-
gence, the symbol on the left in (2) is frequently used actually as a symbol for the
value s.
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2. %oa"s 14+a64a+...4a+.... We haves, =1+4a+...+

—g't! -
+a = l-a provided that a 1. Therefore .r,,—+ =—2.a

According to 2.1.2,5, this tends to O if |a| <1. Hence,
1
(3) Za =

v —-a

for |a|<]I.

We emphasize once more what this means: The sequence of partial
sums {s,} of the series on the left, that is, the well-determined sequence
of numbers s, = (1+4a+...+4%), is convergent in the sense of 2.3,
. provided that |4| <1, and its limit, lim s,, has the value 1/(1-4). It
is thus in this sense (in particular, under the restriction |4|<1) that

the series 1.1,(4) has the same value as the fraction 12 from which it
was obtairned in 1.1.

At the beginning the reader should clarify in the same way the
meaning of every equality similar to (3) (say 4.2,(15)) until he is
quite familiar with such assertions and their significance. If a is
positive and less than 1, our calculation shows further that, for every
v=20,1,2,...,

4 1+a+t.. +av<+a.

3. We express the fact that $ denotes the series 1+—;— +

v=0V +1
+"'+v+_l+ ., in the form

@ 1
1
(3) v§:”+1_l+2+ ++1+
In such a case as this it is convenient to write the series also in the
form E l . Exactly the same series is represented by ZI ;
v-l p=

l+ + Z x Z , too, Likewise, in general,

§oa\. and 4+ §Ia. or ay+a+...+6,+ p> a,.

g=p+1

! The symbol “=" thus means that the expressions on the left and on the right
of it are merely different ways of writing the same thing.
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The series (5) is definitely divergent and —>+-co. For if n> 2%, (k
an integer =0), then

1 1 1 1 1
S, = 1+—;—+...+—”~ > l+?+(%+';) + (3+--o+-8—)+----t-

1 1
atertoorh)

If in every expression in parentheses we replace all the denominators
by the greatest one of them, we see that the value of each of these
expressions is >}. Therefore 5, >4k. Hence, if G> 0 is given, and
if k is an integer > 2G, then s, > G forall n >2%. The series just con-
sidered is usually designated as the karmonic series. We shall therefore
denote its partial sums by &,:

1

(6) 1+—+...+l =h,

o $ o= L oy

ZeF) T T2 2 R s Y
In this case
1 1 1 1 1
= (1'?) + (Ti)““"'““(rm)-
1 ® 1

Hence, s5,-1 = - A and —0. Therefore v§| m: 1.

5. The partial sums of the series f‘, (-1)* have alternately the
v=0

values 1 and 0. The series is therefore indefinitely divergent. The

partial sums of the series f (-1)* (2v+1) have the values 1, -2,
v=0

+3, 4, .... The first sequence oscillates between finite, the second

between infinite, bounds. !
We emphasized above that an infinite series is merely another

! A sequence {s,} oscillates between finite bounds if there exist two bounds, X,
and K, such that invariably K, 5s, < K,; it oscillates between infinite bounds if,
no matter how K < K be chosen, there are infinitely many v for which s, < K; and
infinitely many others for which s, > K.
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symbeol for the sequence of its partial sums; conversely, every sequence
may also be written in the form of an infinite series, namely, the
sequence {s,} as the series

(- (-]
S + v§I (‘rv_‘rv—l)! or v§0 (‘rv_ v-l)
if we stipulate that the undefined term s, shall denote 0: 5, =0.
For, the series written down obviously have as partial sums precisely
the values s, (v=0, 1, 2,...). !
In chapters 3 and 5 we shall treat the convergence questions for
infinite series systematically. To illustrate them, suffice it to say the

following at this point: The series ¥ o 2 proved to be convergent,
the series Z —, however, definitely divergent. Interpreted in school-

boy fashion: If I present someone first a dollar, then a half, then
a quarter dollar, ¢k. with the denominators 8, 16, ..., 2%, ..., then the
recipient will never acquire a full two dollars, no matter how long the
presentation is continued. If, however, we present him first 1 dollar,
then }, then 4 of a dollar, et. with the denominators 4, 5, ..., v, ...,
then the wealth of the recipient increases beyond all bounds if we
merely continue the presentation long enough. What is the inner
reason for this fundamental difference? What is the situation in the

1 . . .
s F""’?""? That s, is the series

p ) ;li- convergent too or not? The purpose of the investigations of the

case, ¢.g., of the presentations 1

following chapters is to put us in a position to decide for as many
series Ya, as possible whether they converge or not. At the same time,
a larger stock of series whose convergence or divergence is known to
us will be made available, and a feeling awakened for being able to

! Similarly, every sequence {s,} may be written as an infinite product, provided
only that all s, £0. For
So * ﬁ i ’ or ﬁ . ’ (-"—|=l))

vl Sv-) vm=0 Sy-1

has as partial proaucu precisely the numbers s,, (v=0, 1, ...).
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tell whether a given series belongs to the one class or the other. In
this direction we shall prove here only the following simple, but
nevertheless important, theorems:

2.6.2. Theorem 1. If Ya, is convergent, then the terms a, of the series
form a null sequence. In other words: For the convergence of a series Xa,,

(1) a,~>0
is a necessary condition.

Proor. By hypothesis, s,—s, and hence, by 2.3.3,4, also s,_,—>s.
Therefore, by 2.3.3,10,

5,—8,_, = s—s, i.e, a,—>0.

We add expressly that this condition a,—>0 for the convergence of Xa, is
by no means sufficient. For, the series X % , ¢.8., proved to be divergent,
although % ->0.1

Theorem 2. The series 3 a, and f:oaw, (P20, integral, fixed),
v=0 ve=

have the same convergence behavior. If the value of the first = s, then that of
the second = s—s, . For if s, are the partial sums of a,+a,+...+
+a,+..., and s, are those of a,+4,,,+... = @,+a,+..., then

.\‘: = SyapIp1 or 5, = .\‘:_’+-\"_|, :
from which, according to 2.3.3,4, the assertion follows as v—>c0.
For p=n+1 this theorem asserts that with ﬁ a, ==y,

v=0

2 a4 =0ttt ot

vegt 1

for every fixed n=0, 1, ..., is also a convergent series, which has the

! As late as the cighteenth century this condition g, —+0 was rather generally
regarded as sufficient for the convergence of Za,.

3 Again the terms ¢, and s; are tobe set =0 if p <0.

% Bear in mind the agreement just made regarding ap and sp for negative p.
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value s—s5,. It is called the n* remainder of Ya,, and its value is de-
noted by r,, so that

S8 =1, Sotr, =951
We shall also call 7, the “error” that accrues to the #® partial sum
s, relative to the value of the whole series. Since s—s,—>s—s = 0, we
have, as a supplement to Theorem 1,

Theorem 3. If Ya, is convergent, then we have in addition to (1),
that even the sequence of remainders (errors)
(2) r.—>0.

The next theorem is almost only a special case of Theorem 2:
Theorem 4. If a is an arbitrary number, then the two series
Gt+a+...+a,+...

a+ay+a+...+a,+... = ggtay+...+a,+...

are either both convergent or both divergent. In the case of convergence, if the
value of the first = s, then that of the second = a+s. For if s,, s, are the
respective partial sums of the series, then 5, = a+s,, and conversely
s, = s, 1—a for v=20. The proof now follows from 2.3.3, theorems
4 and 10.

Repeated application of Theorem 4 yields the following important
“ Theorem on finitely many alterations™:

Theorem 5. If we delete a finite number of terms from the series Xa,
which is assumed to converge to the value s, or if we insert finitely often a finite
number of new terms between two successive terms, or if we place a finite number
of new terms before the initial term, and denote the resulting altered series by
ay+a,+...+8,+..., then this series is also convergent, and its value s’

and

* Thus r, is the value of the subseries commencing after the nth term. To be
congsistent, the whole series §a\, is then denoted by r, .

v=0
Note that one can only speak of a “remainder” in connection with a series whose
convergence is assured. For divergent series, the concept of “remainder” is com-
pletely meaningless.
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is obtained from s exactly as if we were dealing with an ordinary sum (cf. 2.6),
i.e., s' is obtained from s by subtracting from s the sum of all the deleted
terms and adding to s the sum of all the added terms. For, the finitely
many alterations described may be arrived at by deleting an existent
initial term or prefixing a new initial term in accordance with Theo-
rem 4, and carrying out this operation a finite number of times. 1

We emphasize expressly that this theorem does not necessarily re-
main valid if in one place or another the words “finite number” are
replaced by “infinite number”. The following special case, however,
is true:

Theorem 6. If, in a convergent series Ya,, we delete in an arbitrary
manner any terms a, which have the value O, or if we insert finitely or infinitely
often between successive terms in each case a finite number of terms every one
of which has the value 0,2 then the new series Ta, is also convergent and both
series have the same value.

We leave the details of the proof, which is based on 2.3.3, theorems
5 and 7, to the reader.

! We also say: In investigating convergence, finitely many terms do not matter;
or: only the “late’” or “distant” terms play a role.
* Make, e.g., the series ay+a, +a5+... into the series
0+0 +ag+0-+a) +0+0+0+ag+ag+0+... = ay+a)+a3+....

We then speak of a “dilution of the series”.
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Chapter 3

THE MAIN TESTS FOR INFINITE SERIES.
OPERATING WITH CONVERGENT SERIES

3.1. Series of positive terms: The first main test and the
comparison tests of the first and second kind

If the terms g, of a series X4, are nonnegative (= 0), then we speak,
for brevity, of a series of positive terms. Its partial sums s, form a
monotonically increasing sequence. It is therefore convergent if]
and only if, it is bounded (on the right): :

First main test (for series of positive terms).

A series Xa, of positive terms is convergent if, and only if, its partial sums
are bounded. If, say, invariably s, < K and Ya,=s, then also s < K.
If the partial sums are unbounded, then the series is definitely divergent to the
(improper) value +co.

Proor. Apply the first main test in 2.5, whose proof immediately
establishes the validity of also the second part of our assertion.

3.1.1. Theorems. From this simple but especially important
theorem, we obtain very easily the following theorems, in which, for
greater clarity, we shall denote a series whose convergence is assumed,
by X¢,, and likewise a series which is assumed to be divergent, by 34, ,
but, in either instance, only in the case of positive terms. Similarly,
series whose convergence or divergence, respectively, is assumed to
be known will be denoted by X¢,, ¥d,, .... The partial sums of
such series will then be denoted by C,, D,, C,, ..., and the values of
X, X¢,, ... by C, C', ...

1. If X, is convergent, and if the sequence {y,} is positive! and
bounded, then Xy.¢, is also convergent. For if C is a bound of the

! That is to say, of course, that all its terms are = 0.
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partial sums of X¢,, and y a bound of the sequence {y,}, then ob-
viously y-C is a bound for the partial sums of Xy.c,.

2. If Xd, is divergent, and if the sequence {3,} has a positive
lower bound 3: 3, =8 >0, then X3,d, is also divergent. For, its
partial sums are >G as soon as the partial sums of Xd, are greater
- than G/3.1

3. If X, is a “‘subseries” of Y¢,, then X¢, is also convergent. Here
X, is called a subseries of X, , if {c,} is a subsequence of {c,}. The proof
is almost self-evident, because every bound of the C, is also a bound
of the C,.

The following theorem is a bit deeper:

4. If Xc, is a rearrangement of X¢,, then X¢, is also convergent
and has the same value as X¢,. Here X¢, is called a rearrangement of
Xc,, if {c,} is a rearrangement of {c,}.

This theorem is not so plausible as the preceding ones. For although
theseries ¥¢, may still beregardedin a certain sense as “the same series”
as Y, (because the latter has “only” been rearranged), the sequences
{C,} and {C,} of partial sums of these series are completely different
sequences. The theorem asserts, nevertheless, that the second sequence
also converges and has the same limit as the first.

Proor. An arbitrary partial sum C, is certainly <C,., if we set v’
equal to the largest of the indices which the terms c;, ¢;, ..., ¢, pos-
sessed in the series X¢,. Since the C, increase toward their limit C,
we have C; < C, and this holds for every v. Hence, 3¢, is convergent,
and the value C’ of this seriesis at most = C: €' < C. Since, however,
conversely, X, is a rearrangement of Y¢,, we have also C < C’, and
hence finally C’ = C. Analogously, we have

5. If 34, is a rearrangement of X d,, then the first series is also diver-
gent. This is proved either in a manner akin to the proof of 4, or by
immediately recognizing on the basis of 4 that the assumption that
Xd, converges is false.

! This abbreviated mode of expression, which we shall frequently employ in
similar cases in the sequel, means more precisely: Having chosen G >0, there
exists, by hypothesis, a i such that D, > G/8 forall v >r. Then obviously D} >G
for v >, so that Dy - +oo.
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3.1.2. Examples

1. Xa*, 0<a<l. For every v we have (see 2.6.1,2)
1

l4a+...4a" <K = =2’

a

and hence the series is convergent. We already know this, but the
proof here is simpler than that in 2.6.1,2. The convergence question
for this so-called geometric series is now completely settled: For 4| <1

it converges and has the value lTla' For |a| = 1 itdiverges, because,

on account of [a*| = 1, its terms do not decrease to 0 (see 2.6.2,
Theorem 1).

2. % 1_ 1+1+L+l+.... In this case, for v =1, the v&
v=o v! 2t 3t
partial sum
1 1 ] 1
5y = 1+1+§+§?+...+F = 3_F <K=3.
Therefore the series is convergent, and its value, which is customarily
denoted by ¢, is S3 1
3. The series z — is designated as the harmonic series with the
exponent a (cf. 2 6 1 3) For a <1, its partial sums are greater than
those of theseries T 7' Since these are not bounded (see 2.6.1,3), those
~ of the present scries are also unbounded:- For a <1 the series T vl—a is
divergent. Ifa>1 and 2* >n, then the a® partial sum of the series
x 1
=B <t+(gt+g)+
v*

+(%+...+%)+---+ (-(7,,—):++(T+}:‘17:)

 If we replace by 2 the factors of the denominator which are >2, only in the
terms from 3,1‘1 on, then we find actually that ¢ 52+% < 3, and this can easily
be improved (see 7.2,1). The value of the series is the base ¢ of the natural loga-
rithms (scc 6.4).
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If we now replace (¢f. 2.6.1,3) the natural numbers appearing in the
denominators within each pair of parentheses, by the smallest one of
theém, it follows that our expression is

1
= 1+‘2_a2—|+ (2»-1):"' -+ (2@-1) =l+at...+d

where, for brevity, we have set 1/2*!' = 4. For a>1, we have

O<a<l. Ifweput K = Tl—_a , then, according to 2.6.1,(4),

s, =K for every n,
the partial sums of our series are bounded, the series is convergent.
Thus, to sum up: The harmonic series ¥ ‘VIT are divergent for a <1,

convergent for « >1. One can make a satisfactory assertion regarding
the sum of the series in the case of convergence only for integral even
exponents a (see 7.3,3,(4)). For a=2, e.g., the valué of the series

= 16.' (see 7.3,3). For odd integral, and for nonintegral, exponents,

no relation is known between the value of the series and any numbers
arising in a different connection, such as =, ¢, or similar numbers.
Simpler and more convenient criteria can be derived from the first
main test through the mediation of the following twa comparison tests.
In the case of these two tests, just as in the case of many that follow,
the situation is this: A certain series Xa, (invariably of positive terms
in this section) is to be investigated as to its convergence or divergence.
This takes place here by means of a suitable comparison with a series
Y¢, (whose convergence thusis already known) or a series Yd, (which
is already known to be divergent), respectively. In the comparison
test of the first kind, it is assumed very simply that for all v, or at least
for all v which are not less than a certain natural number g, the

inequality 4 <c

holds.* In this case we say for brevity that this inequality is valid
1 ¥y, is then called a majorant of the series Ya,.
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“after a certain stage” or “for all sufficiently large v’’. This imme-
diately implies the convergence of the series Ya,. For, its partial
sums s, if . =0, are not greater than the partial sums C, of ¥¢,, and
are therefore, simultaneously with them, <C. For p =1 we have
correspondingly 5, <K = C+s,,.1

If, however, we have (in the same sense) after a certain stage

e, 24,

then Y, is also divergent, because if this inequality is valid from the
beginning on, the partial sums of our series are at least as large as
those of ¥d,, and hence are unbounded simultaneously with these.
This theorem, which we have now explained in precise terms, will,
for brevity, just as analogous cases in the sequel, be formulated as
follows:

Comparison test of the first kind.

a, <¢, : G
1) a,=d, : D
or, more generally,

(1 a, = 0(c,), t.e., a, < Kc,, (K>0, fixed) : C
a, = 8,, (3>0, fixed) : D.

The first line of (1), to express it in words once more, means: If the
terms a, of a series Ya, under investigation stand in the relation
a, =¢, to the terms ¢, of an already known convergent series, for all v
from a certain index . on, then X4, is also convergent. The other three
lines are to be interpreted analogously.

We have already made de facto use of these very simple criteria in
connection with the foregoing examples.

! Since finitely many alterations (sec 2.6.2, Theorem 5) play no role in the ques-
tion as to the convergence of Zg,, we may also imagine the terms ag to a.) simply
as being replaced by 0, or by ¢, ..., cu-1, respectively. Due to this simple
artifice, we may, without loss of generality, take u =0 in the following proofs.
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Comparison test of the second kind.
ava-:l < €;+| . C
@ v+ dv‘-:-l
= :D.?
o = 4
Proor. We may assume (see footnote, p. 56) that the inequalities
hold from v=0 on. If we write down the first of them for v=0, 1,
«e., 8—1, where n is understood to be a natural number >1, and
multiply them together, we obtain

<& o a2,

a o o
for all n=10,1,2,.... Hence, according to the test of the first
kind, Xa, is convergent. Similarly, if the second inequality is fulfilled

for all v, we find that 4, g%d, forall 2=0,1,2,.... Conse-

quently Ya, is divergent.

From these comparison tests we shall now derive criteria that are
more special, by substituting for X¢, or 2d, one of the series which
we already know to be convergent or divergent, respectively.

3.2, The radical test and the ratio test

If we take the geometric series $¢*, (0 < a <1), as the comparison
series in 3.1,(1), it yields, in the brief formulation discussed above:
=a, (0§a<1) : G
“\=za, (a=1) :D.
The divergence half of this theorem is trivial, because 2 =1 implies
a' =1, and the terms a4, if they are = 4’, therefore do not form a null
sequence. Its first half is equivalent to the following so-called radical
test (Caucky 1821):

(1 va, <a<l:C,

! Without saying it expressly, it must of course be assumed here that none of
the terms a,, ¢,, d, =0 — at least “from a certain stage on”.
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whose more detailed formulation asserts: If, from a certain stage on,
v/a, does not exceed a fixed positive number 2 <1, then Ya, is con-
vergent. We expressly emphasize that it is a fixed number 4, which is
less than 1, that is not to be exceeded, because beginners very often
overlook this. *

Likewise, if we take ¢, = 4", 3.1,(2) yields:

a4 a<l:C
a t=a=1:D.

Here again the divergence half is trivial, for it asserts that the sequence
{a,} of terms of the series incrcases monotonically, and therefore is
certainly no null sequence. The hereby acquired convergence cri-
terion

2) <o 1:C
a,

is commonly designated as the ratio test (Cauchy 1821).

Before applying these tests to given series, we shall make them
handier by means of a couple of remarks:

1. Tt is often not at all easy to decide for a sequence such as y/a, or

S+l whether its terms exceed a fixed proper fraction ? @ from a certain

stage on. It is usually easier, however, to ascertain the limit of such
a sequence, or, if it has no limit, its principal limits. In terms of
these we have: If
(3) im va, <1, in particular if im +/a, exists and is <1,
then Xa, is convergent.

Indeed, if Tm V/a, = a<l, and if we set, say, H‘T“ — a, then

1 The convergence of Za, need not follow from /a, <1 or even <1 (for all v).
'I'hisisa.lreadyahownbya,=%,v=l,2,...(weneednotbetroubledhereby the

fact that v/a, has no meaning for v=:0). _
' A number a for which 0<a <1 is often called a proper fraction—even if it
is not rational.
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0<a<]l, and, from a certain stage on, v/a,<a (¢f. 2.2,4), so that
Ya, is convergent. We call (3) the limit form of the radical test.
Analogously we have: If

Qyy1
a,

4) lim <1, in particular if lim % exists and is <1,
then Xa, is convergent. The matter is less simple for the corresponding
divergence tests. We have:

(5) Tim va,>1, (in particular, lim +/a, exists and is >1) : D.

For this inequality means that infinitely often y/a, >1, and hence also
a,>1, and therefore {a,} is not a null sequence. No decision, however,
is afforded by im v/a, =1, (or even lim y/a, exists and =1). For if
we take a, =1/v*, then, no matter what value « may denote, v/a,—> 1
(see 2.4,4), whereas Ya, converges for a >1, diverges for a <1.

3.2.1. Examples. In the following series, let x be a positive num-
ber. It does not matter whether the summation begins with v =0
or v =1, because we are only interested in investigating the con-
vergence of the series. In each example we denote the terms of the

series under investigation by a,.
1. v**", (a arbitrary, real). % = (v—+—1 cx>x. x<1:C,

x>1:D. x=1: harmonic series (see 3.1.2,3).

2 i Qyy1 — X
T a, v+1
convergent, i.c., for every x (=0).

— 0 for every x. The series is everywhere

' kY . a, +1+4
3.2(\'-1- )x, (k = 0, arbitrary). T+'= vv+l x—>x. For

x<1:C, for x>1:D. For x=1 we have invariably a, =1 :* D.

! The series § ("+k) obtained for x =1 is still a series of positive terms for
v=0 v

k > -1, but its convergence behavior is not so simple to determine (see 5.4, Theo-

rem 1),
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1 1 1
\/V'+l Dbecauscavzm \/2"'
1 1
5. Zm. C, becausea, < T

1
__:1
6. X VAooD) G, because, for v =2, wehavea, <

1 _
_Vv2 o - ) V"("’ - v?)

'/ ]

1y . . »
7. X (logv) » 1 (p>0, arbitrary): D. For, since lm% — 0 (see

2.1.4,5), this value is <1, i.c., a, >—i—, after a certain stage.

:1C. For, since (log v)s" = (fosv)loslosv — Joslogv,

8. Y—
gy
1
we have g, < "l for v>u.
9. Z—l——: C for a >1, D for a <1; because for « >1 we have
(2v+1)

1 1 1 1 1
Q<§;'F, and for a <1 (andvgl) wchavca\,>(2v—+v);—¥-F.

10, In the sequence {¢,}, let ¢, denote any integer and ¢,, for v=1,
a “digit”, i.c., one of the numbers 0, 1, 2, ..., 9. Then the series

L h ly L
i0v =to+1—0 +W+...+W+...

N
2z
v=0
is convergent, because for v=1 we have a4, <10- %, and ¥10” is

convergent. In this sense every ordinary decimal fraction or—in
readily understood notation—every expression of the form

fo+0.485... 8,

is to be regarded as a convergent infinite series. Its value, i.c., the

1 Here we let v run from 2 on.
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value s of this series, lies between {, and ¢ +1. For every integer
p =1, however, we also have

HS5S :,+%,

where s, denotes the decimal fraction 4,+0.4¢, ... ¢, terminated after
p places. The value of a decimal fraction is thus (for every p = 0) not
less than the decimal fraction terminated after p places, but not greater
by more than 107, i.c., by more than “a unit in the last place”. !

3.3. Series of positive, monotonically decreasing terms

The series of positive terms occurring in applications usually have
the additional property that their terms decrease monotonically (in
the wider sense): a,\\. Partly simpler, partly more far-reaching
theorems hold for the narrower class of these series. Thus we have
here the following theorem, which goes beyond Theorem 1 in 2.6.2:

Theorem 1. If Ya, ts a convergent series of positive, monotonically de-
creasing terms, then
(1) va, >0 a5 v-—>oo.
In other words: (1) is @ necessary condition for the convergence of such a
series Xa,.

Proor. Since 4,y 0, we have, if 7 is a natural number,

na, < 4, +... a8, = 5,5,

Thus, as n— oo, na,,—>s—s = 0, and hence also 2na,, > 0. Likewise

(r+1)8g11 S Gt 0 = Spesr— 5,
Thus also (2r+1)ag,,;—>0 as n—>co. Hence, according to theorem
6 in 2:1.3, we have (1). That this condition is not sufficient for con-
vergence is shown by the series (4) considered below, with =1,
which series belongs to our class, diverges, and for which nevertheless
va,—> 0.

! This easy “estimate of error” for decimal fractions is the main reason, next to
the convenient comparison of the magnitudes of two decimal fractions, for their
practical usefulness (¢f. 7.1).
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Especially impressive and capable of many applications is the fol-
lowing theorem, designated as Cauchy’s condensation test, which asserts,
e.g., that the series Xg, and X2%a, have the same convergence be-
havior (i.e., either both converge or else both diverge). We prove,
somewhat more generally,

Theorem 2. Let Ya, be a series with positive, monotonically decreasing
terms. Suppose that {k,} is a sequence of natural numbers which is monotonically
increasing in the narrower sense, and that there exists an M > 0 such that, for
v=1, 2,

2 ka-k, = M(k-k).!
Then the two series
(3) X, and Zvl(km—k\.)a:ev

have the same convergence behavior.

The proof will be preceded by several remarks and examples:

1. If we choose k, = 2%, 3", ... or = [#"],? (k>1, arbitrary), or
= v} 3, ..., then condition (2) is fulfilled for a suitable M.

2. Accordingly, X a, and the series X2"a,y, X(2v+1)a,, ¢te. therefore

have the same convergence behavior, if {a,} is a positive, monotoni-
cally decreasing sequence.

3. Asaveryspecialcasc,z% and ZT;;); = 2(7“1"—)‘" (x> 0), have
the same convergence behavior. ?  Since the last series is a geometric

series, this furnishes a new proof of the convergence of Z — fora>1
and of the divergence of this series for a <1.

4. Likewise the series ¥ #gn possesses the same convergence be-

! This means that the gaps between the k, do not increase too rapidly.

t If x is real, then [x] denotes the greatest integer g < x, i.c., the integer g satis-
fying g<x<g+1.

? In order that this series and likewise those mentioned in the following examples
be meaningful, n or v may run only from 1 or from a higher stage on; in the series (5),
only from a number m on, for which logym exists and is >0.
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. 2v _ 1 e . .
havior as X Tlogd = Zm ; it is therefore divergent. This
holds a fortiori for the series

1
(4) Z n (logn)*
if @ <1. If, however, a >1, then this series has the same convergence
2.3 2 1

behavioras ¥ 3 = and is therefore convergent.

(log3)* ~ = (log 3%
Proceeding in this manner, it is easy to verify that the series

1
() ? nlognlogan ... log, n (log,n)*

also diverge for « <1 and converge for a >1.! Here log,n denotes
the p-fold iterated (natural) logarithm of n (p =0, 1, ...): logyn=n,
logy n =log n, log, n=1log (log,, n).

For fixed a >1, these series form, for p=0, 1, ..., a scale of series
which converge more and more weakly, and similarly, for fixed
a <1, a scale of more and more weakly divergent series. This con-
vergence behavior of the series (5) was discovered by N. H. Abel.

Proor or THEOREM 2. Let us denote the partial sums of the series (3)
by s,, t,, respectively. Then, for 2 <k,, if weset ay4-...4a,_, = 4
(thus 4 =0 for k,=0),

5 S 85 SA+ (gt o)+ (@, o Fag )
_ S A+ (h-k)a,+...+(ka-k,)a,
(6) 5, S A+t¢,.
For n > k,, however, we have

5 2 &%, 2 (@4t ta)+ (4t ta)
2 (hko)ay,+---+ (kh—k,2)a,,
Ms, = (ky—ky)a, +... 4 (K, 1—k))a,,,
(7) Ms, = t,—t,.

! In the proofs, which run exactly as for the series (4), it is only necessary to
apply the fact that 2 <e <3.
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Now (6) shows that if the sequence {z,} is bounded, then so is the
sequence {s,}, and (7) shows conversely that if {5} is bounded then
so is {t,}. This, on the basis of the first main test, completes the
proof of the theorem.

The following theorem, which is commonly designated as the
integral test is particularly useful. It is based on the assumption that
the terms of the series Ya, under investigation are the values of a
function f(x) for x=v: a,=f(v).

Theorem 3. Let f(t) be defined for t =1 as a positive, monotonically
decreasing function, and set

JO) =a,

forv=1,2,.... Then
the series (8) i";laV and the integral (9) [ f(t)dt
v= i

have the same convergence behavior.* Moreover, the partial sums of (8) and
the partial integrals [ f(¢)dt = 1, are such that the sequence of differences
(10) ’ 51,

approaches, in a monotonically decreasing fashion, a limit between O and a,.
Proor. Since f(f)\\, we have, for v=2, 3, ...,

v+ 1, v
(11) [fd < a, < [flt)ae.

v v-1
If we write down these inequalities for v=2, 3, ..., n, (n =2), and
add, it follows that .,

Jr0a s om0 s e,
(12) I-+1_II g S0 g I-'

! Since f(#) 20, the partial integrals [ f(¢)dt =F(x) form a monotenically in-
i
creasing function for x=1. They thercfore have (according to the first main test
for functions) a limit I, if, and only if, F(x) is bounded. In this case the integral (9)
is said to be convergent and to have the value I. Otherwise F(x) - + oo, and (9)
is called divergent.
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The second part of this double inequality shows that the s, are
bounded if the I, are, the first part the converse. Hence, (8) and
(9) have the same convergence behavior. Furthermore,

n+1

s=b=(sun=Ln) = [AOdt-0,4, 20,

the latter according to (11). The differences (10) thus decrease mono-
tonically and are therefore at most equal to the initial term 4, and,
according to the left half of (12), at least equal to a,—I;,—and this
with the exclusion of the stated bounds in case f(f) decreases monoto-
nically in the stricter sense in 1 <f<2.

A few examples will serve to illustrate the effectiveness of the test:

1L f(t) = % shows that the series Z% has the same convergence

. Fdt . cdt 1. ..
behavior as 1‘[ - Hence, since 1‘[ - = log x—> 400, 27 is diver-

gent, as we already know. We now learn further, however, that the
sequence

(13) {1+%+...+%—10g n}\C,

where C is a number in 0 <C<1. This number C is called Euler's
constant. Its value is equal to 0.577....
1

2. f(t)=F" a>1, shows again, sinccf% = aTll(l_x;T') <;1_1,
1

that ¥ ‘VIT converges for « >1. From (11) it follows further, however,

if we set v=n+1, n+2,..., n+p there and add, that
'7*'(1: "

t—ag-"n-l-pﬁ—-"u = ’F
n41 »

If we evaluate the integrals and let p— oo, we obtain

1 1 1 1
(14) a1 GFDE SRS e
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as a very good estimate of the remainder or error for the series
1 . .
Y —, (x>1), under consideration.
v

3. For 0 <a <1 we find, as in 1, that
nl--1
lI-a

1 1
(15) I+ gz +oob 2 =

is a monotonically decreasing sequence which, as 7—> oo, tends to a
limit lying between 0 and 1 (these bounds excluded). In particular,

1 1 1«
(16) 4o oot Fg%_—;, O<a<l),

and provides a measure of the rapidity with which the partial sums

of the now divergent series Z% tend to +oo.
1

tlogt...log,, t (log, £)*’

logp1t fora=1
Jroa=i 11

a—1 (log, t)*!

From this, as in 1, 2, and 3, we again read off the convergence be-

havior of the Abel series already considered in (5), with corresponding

remainder estimates for « >1 and assertions concerning the strength

of divergence for 0 <a <1.

5. Now let f{¢) be a function which, for ¢ > x,, is positive, increases

monotonically to +co, and has a derivative f'(f) which decreases
monotonically to 0 (and hence is also positive). Then, as in 4,

[LO a- {%{() 1
« _—— <
(f®) =1 (Foy= fora<1.

The definite integral taken from x, to x thus remains bounded for
a>1 as x—> oo, but tends to 400 for a <1. Therefore the series
a f()

RO

4. For f(t) = the indefinite integral

fora=1.
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starting at a suitable stage v=p, is also convergent for a >1, di-
vergent for a =1.

3.4. The second main test

In the preceding three sections we have considered only series of
positive terms. We now turn once again to series Xa, of arbitrary
(real or complex) terms a,. The partial sums of such a series form an
arbitrary sequence {s,}, for whose convergence behavior the second
main test (2.5,(6)) is appropriate. If we carry it over to the present
case, it asserts

Theorem 1 (second main test for infinite series). The series Xa, is
convergent if, and only if, having chosen ¢ >0, a u=y(e) can be assigned
such that for all patrs of indices v and v' with v’ >v >, we have

(l) |av+1+av+l+°'°+av'l <e.

We shall leave it to the reader to convince himself that the following
conditions, which are sometimes more convenient to use, are equi-
valent to (1):

(1*) To every e >0 a p can be assigned such that, for all v>p and
arbitrary natural g, we have

gzt | <

(1*) For every sequcnée {k,} of natural numbers, the “partial
segments”’
Tv = (av+l+"°+av+kv)

of the series form a null sequence.—Somewhat more generally:
(1) For every sequence {n,} which tends to + oo, and every arbi-
trary sequence {k,} of natural numbers, the “partial segments”

T\: = (anv+1+' . '+an,,+kv)

of the series form a null sequence.
In connection with sequences we were able to state the second
main test in a form which was unprecise but which emphasized what
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was essential: A sequence is convergent if, and only if, its terms even-
tually all lie very close to one another. Here, in connection with
series, we may say: A series Xa, is convergent if, and only if, from a
certain stage on, the value of the sum obtained can be altered only
very little by a further summing up of the terms of the series. Now,
as then, it is merely necessary to make the “very little” precise by
means of ¢, and the “from a certain stage on” by means of the p
associated with e.

We formulate explicitly the following (self-evident, according to
Theorem 1)

Corollary. Xa, is divergent if a partial-segment sequence T, or
T, can be assigned which does not form a null sequence.
1

. 1 1 . .
For the series 27, T, = ST +ot 5y is such a partial-segment

sequence, since T,,>L =% forall v=1,2,.... The series is

therefore divergent. !
For X %, if 2 is an arbitrary complex number with |z] =1,wehave

! I i (RN SR 1 _
v Tt et Sy Tt e T o T
1 1 _1
Ty v+p<v

(¢f. 2.6.1,4), and hence <e for v>p if we take p = 1fe. The series
is therefore convergent for the z in question.

The next example deals with alternating series, i.c., real series Xa,
whose terms have alternating signs, so that, if the initial term is posi-
tive, we may set a, = (-1)b, with 5, = 0.

Theorem 2. (Labniz’s test.) A (real) alternating series of which the
absolute values of the terms form a monotonic null sequence, is invariably

! The reader should compare the various proofs which we have now given for
the divergence of ¥ %, and determine whether or to what extent they differ from one
another.
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convergent. If 3 (~1)b,, with b\ 0, is such a series, then its value lies
y=(0

between by and by—b, , more generally, between any two successive partial sums.
Proor. For arbitrary natural v and p,

(1) By gt (1) ] = [By—bBygate oot (1) by .
The sum between the absolute-value signs can be written in the form

) _ [(by+oa—by+e)s if p is even,
(bva=busa) + (rra=byrdd to ot 5 ™5 i 0ad.

Since {,} is decreasing, this shows that this sum is =0 and therefore
the absolute-value signs on the right may be removed. If this sum
is then written in the form

by4p, if p is even,
b= (r=buag)= oo = [0 O VIR o,

then this shows further that the sum is <&, ,,. Since 5,0, this is
<e for all v>yu, if we choose u so that 5, <e.

Simple examples of this very useful Theorem 2, which is due to
G. W. Labniz (1705), are the series
(=1)*! e (=)

E x ? (x> 0), and v§2 W’ (x> 0).

y=] v

Theorems 1 to 6 in 2.6.2 already pertain to arbitrary series. In 3.3
we were able to sharpen the first of these theorems for the case of series
with positive, monotonically decreasing terms, to the theorem
“va,—0". For arbitrary convergent series this need not be the case,
as is shown by the last two given series. It is true, however, that the
sequence {va,} tends to 0 “in the mean”; more precisely, that

(2) 41+2a:'|;---+M._)0.

We shall prove at the same time the somewhat more general

Theorem 3. Let Ta, be an arbitrary convergent series, and {p,} be an
arbitrary sequence which tends monotonically to + oo, or (more generally) a
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sequence of complex numbers satisfying the condition: |p,|—> oo and, for a
suitable M>0 and all v=0, 1, ...,

| 2ol +11=t0l + -+ +|py=20al = Mlp,|.
Then also the sequence of quotients

(3) I’oao+1’1alp+-- -'H’-a. 0.1
Proor. If s, are the partial sums of Xa,, and if 5s,—s, then, ac-
cording to 2.4.2,5, also

Dot (Pa—p1)51 + -« -+ (u— Pa-1)5nt
ba

—0 and s,—> s, we have

_ (1’1‘1’0)-"04‘--1-,+(I’-—[’-—|)S.-l 0.

This, however, is precisely the assertion (3), as one can verify by
bringing the term s, over the denominator p, and then collecting the
terms in the numerator involving gy, #,, ... . ?

By means of the following theorem, which is almost self-evident
because of 2.3.2,11, the treatment of complex series is completely
reduced to that of real series,—a reduction which, to be sure, is only
seldom of use in practice.

—>S.

DeSo

Since

Sn

Theorem 4. The series Za, with a, = «,+ix,, (,, o, real), is con-
vergent if, and only if, the two real series X, and Xox,, both converge. If s,
6, &' are the sums of the three series in the case of convergence, then s = 6+-io’.

3.5. Absolute convergence

. —1)>! 1 '
Of the two series Z(—;)—— and 27’ (v=1,2,...), the first proved
to be convergent, the second divergent. The convergent series thus
! The py are # 0 from a certain stage on. It suffices to consider the quotients (3)

from this stage on.
* One thereby performs an “Abel partial summation”; ¢f. below, 5.3.
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becomes a divergent series when in the former the negative terms are
replaced by their absolute values. This is not the case for the series

_1 v-1
z
whether a convergent series Za, remains convergent if all its terms
are replaced by their absolute values, or whether it thereby becomes
divergent. Here we have, first of all, the following simple, but for

applications especially important,

. In the sequel it will usually make an essential difference

Theorem 1. A series Xa, is certainly convergent, if the series Xa,|,
which is a series of positive terms, converges. If, in this case, Xa, = s and
Zla,| = S, then moreover |s| < S.

Proor. Since (see 1.2.1,4)

a1t oty S oyl +- . F oyl

the left side is < e if the right side is, from which the first assertion
follows according to the second main test. * Since

5.l < laol +las| ... +la| =S,

the relation |s| < § now follows according to 2.3.2,2.
Convergent series X, thus fall into two classes, according as “‘even”
the series X|a,| converges or not. We introduce

Definition 1. A convergent series Xa, shall be called absolutely con-
vergent, if the series Xla,| is also convergent. If this is not the case, then
2a, shall be called nonabsolutely convergent.

Convergent series of positive terms are automatically absolutely
convergent.

! In greater detail: Having chosen ¢ >0, a p =u(c) can be determined so that
the right side of the inequality is <¢ for all v >y and all p >0, because condition
(12) of the second main test is a necessary condition for convergence. Therefore
the left side of the inequality is also <¢ for the same v and p; and hence Zg, is
convergent, because the condition in (1%) is sufficient for the convergence of this
series.

* We cxpressly emphasize: The designation “nonabsolutely convergent” shall
be applied only to convergent series.
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The geometric series Xz° is absolutely convergent for |z| <1 (..,

wherever it converges at all).
(-]

Y i, is convergent for every (complex) z; X (vtk) 2, (k=0),

y=0

and 3 v*2", (« arbitrary, real), provided that |¢| <1.
ve=1

For the partial sums s, of a series Xa,, the latter’s absolute con-
vergence means that the series

atE sl o Els-sal (a=0),
converges. We introduce
Definition 2. If a sequence {s,} has the property that (with s, = 0)
(1) E n-sal<+oo,?

then we say that it s of bounded variation.
Such a sequence is invariably convergent, for with (1) the series X(s,—s, ;)
also converges, and therefore, as 72— co,

S = véo (‘rv_‘rv-l)

tends to the value of this series. The value of the series (1) is also
designated as the otal variation of the sequence {s,}.

Definition 3. A sequence {s,} shall be called absolutely convergent with
the limit s, if s,—>s and {s,} is of bounded variation.

There are above all two reasons for the importance of absolute
convergence: First of all, the series X|a,| is a series of positive terms,
for which the numerous, and for the most part very simple, comparison
tests in 3.1 are available. Thus, ¢.g., we have immediately

Theorem 2, If X¢, is a convergent series of positive terms, and if the

! This convenient notation means simply that the series of positive terms written
down converges.
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terms a, of a series under investigation satisfy, from a certain stage on, the
condition

la,| < Ke,, ! (K>0, fixed), or !%
then Xa, converges, and is actually absolutely convergent.

< Cv+1

6

Corollary. If Xa, is absolutely convergent and {b,} is a bounded se-
quence, then Xab, is also absolutely convergent.

For, |a,b,| = Ka,|, if X denotes a bound of the sequence {5,}.
- The second reason for the importance of the concept ‘““absolute con-
vergence” is the fact that one can operate with absolutely convergent
series for the most part—the next section will show this in detail—
as with ordinary sums.

Sometimes—although not often (¢f. 3.4, Theorem 4)—it is convenient
to decide the question of the absolute convergence of a series by separa-
ting the real and imaginary partsof its terms. In thisconnection we have

Theorem 3. A series Xa, of complex terms a, = a,+iw, is absolutely
convergent if, and only if, the two (real) series Xa, and X, both converge
absolutely.

The proof can be read off immediately from the double inequality

| 'l } 4
’ < la| & o,| 4+ |o,]-

Finally, we can now prove the Cauchy- Toeplitz theorem, which we proved
1n 2.4.2for row-finite matrices, also for matrices that are not row-finite.

Theorem 4. Lt (a,,) be an arbitrary matrix (see 2.2,8) satisfying the
three conditions

(N) §o|a_,|§M Sorevery n=0, 1,2, ...,

(R) E a, = A,—>1 as n— oo,
y=0

Q) 4,>0 a n>oo for every fixedv=0,1,2,....

1 Or: ay=0(c).
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Then z,—>z invariably implies that the series

(2) Zot =2
converge, for every n=0, 1,2, ..., and that also their values z.—>z as
n—o00.

Indeed, (N) asserts that the series Y a,, converges absolutely for

every n. Hence, on account of the boundedness of the sequence
{z,}, the series (2) are also absolutely convergent. That z,— z is now
proved word for word as in 2.4, Theorem 2, since in its proof no use
at all was made of the fact that the matrix was supposed to be row-
finite.

Corollary 1. If z=0, so that {z,} is a null sequence, then {z,}
is also a null sequence. It is evident that in the proof of this special
case of Theorem 4, no use is made of the condition (R); the fact
that, on the basis of (N), the sequence {4,} of row-sums is bounded,
is sufficient.

Corollary 2. Theorem 4 yields—as we have formulated it—suf-
ficient conditions that, by means of (2), a convergent sequence {z,}
" be transformed into a sequence {z,} which again converges, and, more-
over, has the same limit. The importance of the theorem demonstrated
goes beyond this fact: The established sufficient conditions are also
necessary that every convergent sequence {z,} be transformed by means
of (2) into a sequence {z,} which is again convergent and has the same
limit. 1 Extension of our considerations in this direction, however,
would lead beyond the limits of the present little volume.

3.6. Operating with convergent series
We have already emphasized repeatedly, and shall immediately see

! The transformation (2) is then called permanent. If we waive the equality of
the limiting values and require merely that the sequence {z:} again converge (say
to '), then the transformation (2) is called convergence-preserving. It possesses this
property if, and only if, (a,,) satisfies, in addition to (N), the two conditions

(R) 4,—a as n— oo, (C') gyy—ay, as n— oo, for every v=0,1,2, ...
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more precisely, that the same rules need not hold for operating with
convergent series as for operating with ordinary sums. Indeed, in
every case we must test to see whether and to what extent these rules
can be carried over to operations with infinite series. Operation with
ordinary sums is based on the following fundamental rules:

1. Associative law: (64+8)+¢ = a4 (b+¢).
2. Commutative law: a+4-b = b+a.
3. Distributive law: a(b+c¢) = ab+tac.

They can be extended in the familiar way to sums with an arbitrary
but fixed (and finite) number p of terms

(1) a+ay+...+a,,
and then assert:

1. The value of the sum (1) does not change if successive terms are
united in an arbitrary way by means of parentheses to form single
terms. Thus, if 1 <p <py<... <p<p, then

(2) (@+...+a,) + (@) u+...+8,)+...+(ay 11 +-..+4,)

has the same value as (1). Conversely, a sum of the form (2) retains
its value if the parentheses are removed, t.e., if (2) is changed back
again into (1). (Insertion and removal of parentheses.) _

2. The value of the sum (1) does not change if the terms are per-
muted in an arbitrary manner.

3. Two sums of the form (1), say (4+...+4,) and (b;+...+5,),
are multiplied together by multiplying every term of the first sum by
every term of the second and adding these p-¢ products in an arbi-
trary order of succession.

If we imagine (1) to be replaced by an infinite series, then only half
of the first of these rulesstill holds, and the other two are not atall valid
any more in general. Specifically, we have the following theorems.

Theorem 1. The insertion of parentheses in convergent series is per-
missible without restriction. More precisely: Let

(3) $a=>s

v=0
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be a convergent series. If {w}, with —1 = vy <, <vy<..., is an arbitrary
sequence of integers, and if we set

aynt...+a,, =4,
then the series X M

(4) AEOAA E;Eo(a"ﬂl ... +avl+1)

is also convergent and has the value s.

Proor. The sequence of partial sums S, of X4, is obviously the
subsequence s, , s,,, ... of the sequence {s,}, and therefore con-
verges, as the latter, to s as its limit. That the removal of parentheses
is not permissible in general is shown already by the crude example
(1-1)4-(1-1)+... in 2.6.

In particular cases, i.c., under suitable restrictive conditions, it is,
nevertheless, permissible. It is important to know such conditons.
The following rule is trivial:

If (4) converges and has the value s, and-if the series (3) obtained
from it by the removal of parentheses also converges, then it too has
the value 5. For, according to what was proved, (4) is convergent
along with (3), and both series have the same value. Consequently,
on removing the parentheses in (4), it i3 merely necessary to secure
the convergence of the resulting series (3). This is accomplished, for
example, by the following

Theorem 2. If (4) converges to the value s, and if the sequence of numbers
v AIA = |avl+1|+"'+|av1+1|

ts a null sequence, then the series (3) resulting from the removal of parentheses
also converges to the same value s.

Proor. To every integer v >0 there corresponds a unique integer
A = 0 such that

(5) nw<v = -

Think of every v as having associated with it this .. Then, with the
notation of the preceding proof, we obviously have

|Sv - Sll = A’A
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and hence
(6) 5—=5s = 8-5+¢, where ¢, >0 as A—oo0.
From §,-s—>0 and e,—>0 it follows that (§,—s) 4-¢,—>0 as A—>oo.
Having chosen ¢>0, one can therefore determine 3, so that in (6)

the absolute value of the right side, and hence also that of the left
side, is <e for A = ,. Thus, if we set v,, = ¢, we have

|s,—s| <e¢  forall v>p,
i.c., Za, is convergent and =s.
An instructive example is afforded by the series

(7) 2 m= (l+%—%) + (%+%—%) T

1 1 1
+ (4x+1 + 4x+3'2x+2) Foee

This series is convergent, because, as is immediately verified, its terms
are positive, but, for A >0,
11 11
<7D TR

so that E—l— is a convergent majorant with positive terms. If we

0
remove the parentheses, we obtain the series

_ 1 1 1 1 1
(8) zav=l+§—5+3'+7-z++—...,

which, according to Theorem 2, also converges, because obviousl};
. 1 1 1
by 2 h=g i+ astors
equal to that of (7), which we shall call §. Since (7) has positive
terms, certainly §> 4,44, >}}. This result is very remarkable.
For, (8) is “only” a rearrangement, in the sense of 3.1.1,4, of the series

— 0 as A>o00. Its value is

) vgo . 2 3 4 b=
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the value of which, since it is an alternating series, lies (see 3.4, Theo-
rem 2) between 1-4 = 4 and 1-4+4 = §, and hence in any case
is <}§. We shall investigate this state of affairs more precisely in
just a moment, but first we shall prove the following two simple rules
of operation:

Theorem 3. If Za, and Tb, are convergent series with the respective values
s and t, then the series

(10) X(a,+b,) and X(a-b,)

are also convergent and have the respective values s+t and s—t. (In short:
Convergent series may be added and subtracted term by term.)
Likewise, the series

(11) ay+bot+a,+b+... and ay—bo+a-by+ ...,
resulting from the removal of the parentheses, are convergent with the respective

values s+t and s—t. Finally, if ¢ is an arbitrary number, then ZLca, is also
convergent and has the value cs. 1

Proor. Let s, and ¢, be the partial sums of the given series. Then

(sv+tv) ’ (sv_tv)

are the respective partial sums of the series (10), and (accordingto
2.3.3,10) they —s+£, s—t, respectively, which proves the first assertion.
By Theorem 2, however, the parentheses in these series may be re-
moved, because {|a,|+|b,|}, according to 2.1.3,2 and 8, is a null
sequence. This implies the truth of the assertions concerning the
series (11). Finally, the partial sums of Zca, form the sequence {cs,},
which, by 2.3.3,10, — ¢s.

We shall illustrate this theorem by determining the relation between
the values of the two series (8) and (9). We denoted the value of
(7) and (8) by §; let that of (9) be s. Then, by Theorem 1, the series

® 1 1 =] 1 1 1 1
Ago (2A+1 - 2A+2) and Eo (4x+1 T 842 + H+3 4x+4)

1 Thus, in this special sense, the distributive law is valid for arbitrary convergent
series.
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also converge to the value s. Multiply the first by 4, getting

2 (g y) - £
im0\ +2 44/ 27
and add this (both by virtue of Theorem 3) to the second series to

obtain | ) . 3

Z, (4x+1 T 553 _2A+2) =7%
This, however, is the series (7). Hence, § = § 5. The series (9) is
transformed by rearrangement into the series (8) which, to be sure,
also converges but has a different sum (for we saw that s> 0):

The commutative law mentioned at the beginning in 2 does not hold any more
in general for arbitrary convergent series. We shall now show—and this
brings out the importance of absolute convergence especially clearly—
that it remains valid for absolutely convergent series, and only for these.

Theorem 4. If Xa, is an absolutely convergent series, and if Xa, is
an arbitrary rearrangement of it (cf. 3.1.1,4), then this series is also convergent,
and both series have the same value.

Proor 1. Because of the convergence of Xjs,| and the necessity
of condition (1*) in the second main test (3.4, Theorem 1), having
chosen ¢ >0 it is possible to determine an index p such that

(12) |au+l| + eee + |allv+9| <e

for every integer p =1. Now if (¢f. 3.1.1,4) a,=a,,, and m is so large
that the numbers 0, 1, ..., p all appear among the numbers n,y, 5,,
..+ 1, then, for n>m, the terms 4, a,, ..., 4, evidently cancel in
5,—s,, since they appear in s, as well as in 5,. The difference s-s,
is thus equal to the sum of finitely many of the terms =+a,,,,
+a,.4, .... According to (12), however, the sum of the absolute
values of arbitrarily many of them remains <e. Hence, for n>m,
invariably |s,-s,| <e, i.e., {s,—s,} is a null sequence. Thus, on ac-
count of s, = s5,4+(s.—s,), s.—s with 5 —>s.

Proor 2. Because of Theorem 3 in 3.5, it suffices to prove the theo-
rem for real series. If {4} is real and X|a,| converges, then, by 3.6,
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Theorem 3, the series
5 Iav|;-av and I lav|2—av

are also convergent (¢f. 3.5, Theorem 1). Both, however, are series
of positive terms, which, by 3.1.1,4, are unaffected by a rearrangement.
The first of these series is obtained from Xa, by replacing all negative
terms by 0, the second by replacing all positive terms by 0 and multi-
plying the new series term by term by —1. If their respective sums
are denoted by s+ and 57, then (by Theorem 3) s = s*—s~. Again
denoting rearrangement by an accent, the series

Z}(d|+d) and E}(d|-)

are thus also convergcnt with the respective values s+ and s~. By
subtraction (once more according to Theorem 3) it follows finally
that Xa, converges too and has the value s’ = st—5~ = s.

Before this Theorem 4, we presented a special series which was
transformed, by a rearrangement, into another convergent series, but
one with a different value. The importance of Theorem 4 is enhanced
by the remark that the same is possible for every nonabsolutely con-
vergent series. First we prove

Theorem 5. If Xa, is a convergent, but not an absolutely convergent,
series, then there are rearrangements, Xa,, of it that diverge.

Proor. Here again it is sufficient, on the basis of Theorem 3 in 3.5,
to prove the assertion for real series. Let us then denote those a,
which are =0, in the order of succession in which they appear ! in
2a,, by po, b1, s> -..; likewise those < 0 by —¢o, —¢;, —¢g5 --- - Then
2p, and Xg, are series of positive terms, both of which contain infinitely
many terms which are positive (> 0) in the narrower sense. If {P.}
and {Q,} are the sequences of their partial sums, then at least one of
these sequences must —>+-co. For if both were bounded, then the
sequence of partial sums of X|s,| would also remain bounded, and

1 That is, skipping the negative terms.
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hence this series would converge, contrary to our hypothesis. ! If,
say, P,—> oo, then we construct a series of the form

(13) IR 2Rt o 20 [ AT DN [ o SRR PP
+pw_ql+pv.+l+ seey

in which a group of positive terms is followed every time by a negative
term. For a suitable choice of the indices 0 < vy <v; <vg <..., this
series, which is obviously a rearrangement, XZa,, of Za,, is definitely
divergent. For this purpose we need only choose v, so large that
pot+1+- ..+ 5, >14¢p, then v; >v, so that po+...+p,,+...4+ 5, >
>2+4¢o+¢:, and in general v, >v, ; so large that

bot+pt...+ b, > Al4+go+a+.. o+,

A=0,1,2,.... Such a choice of v, is always possible, because
P,—>+o00. The series (13) is then obviously definitely divergent. For,
that partial sum of this series whose last term is —g¢, is >2A, and this
holds all the more for the ones that follow. Hence, 5,—>+oc0. We
have thus proved

Theorem 6. A convergent series remains convergent under every rearrange-
ment if, and only if, it converges absolutely. It then also retains its value
under every rearrangement.®

Before Theorem 4, we saw that, in special cases, under a rearrange-
ment, the convergence could be retained, but the value of the series
could be altered. It is not difficult to show that this is possible for
every real, nonabsolutely convergent series. This also holds for series
of complex terms, but the proof is then essentially much more difficult.

It is customary to designate a convergent series which is unaffected
by rearrangement as unconditionally convergent, one which is affected,’

! Actually both sequences— + co. For if we had, say, P,—» + 00, Qy—+Q < oo,
then the partial sums s, of the series Ta, would, as is easily seen, - 4 oo, contrary
to the assumption that this series converges.

* We then say for brevity that it is unaffected by rearrangement. The convergence
of every nonabsolutely convergent series can be destroyed by a suitable rearrangement.

* We also say that for such a series the order of the terms matters.
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however, as (only) conditionally convergent. Theorem 6 then takes
on the following form:

Theorem 6. A series Na, is unconditionally convergent if, and only if,
it converges absolutely, and hence is conditionally convergent if, and only tf,
it is nonabsolutely convergent.

What is essential in this theorem is that the classification of all
convergent series on the one hand into those that converge absolutely
and those that converge nonabsolutely, and on the other hand into
those that converge unconditionally and those that converge conditio-
nally, takes place according to two points of view which are inherently
quite different. Nevertheless, the classes obtained in both cases are
the same.

The considerations which we have carried out concerning rearrange-
ments can be generalized in a very essential way. Let Xa, be an arbi-
trary absolutely convergent series. Denote its value by 5. According
to 2.6.2, Theorem 6, we may dilute this series in an arbitrary manner
with zeros. For the sake of simplicity we shall denote the diluted
series again by Xa,. It is also absolutely convergent and has the
value s. If we now imagine {4,} to be decomposed, in accordance
with 2.1.3,6, into two subsequences {4,} and {4}, then, by 3.1.1,3,
the series Xa, and Za, are also absolutely convergent, and if their
respective values are denoted by s’ and s”, then s =s'+s5* or Xa, =
= Xa,+Xa,, and the corresponding result holds if we decompose
Za, into (r+1) subseries: '

Theorem 7. Let the absolutely convergent series Xa, have the value s,
and let

(14) ZaO+Za" ...+ Zal”
be a decomposition of Xa, into the (r+1) subseries Lal, (p =0, 1, ..., 1;

r>0 an integer and fixed). Then each of these subseries ts absolutely conver-
gent, and if their respective values are denoted by ag, o, ..., a,, then

(15) agtoy+...+a, = s and moreover |ag|+|oy|+... 4 || = ?la,l
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Proor. The absolute convergence of the subseries is guaranteed
by 3.1.1, 3. If we add these subseries term by term (removing the
parentheses) according to 3.6, Theorem 3, we evidently obtain a
rearrangement of Xa,, which thus again has the sum s. This proves
the first of the relations (15). If we start with the series Z|a,| and
carry out the same steps, it follows quite analogously, if we set
vzla\(op)l = Bp, (p= 01..r), that Bo+Bi+...+B = zlavl' Since

|«,] = B, (by 3.5, Theorem 1), this contains the second relation (15).
We shall show that the corresponding result holds actually for decom-

Q0
positions into infinitely many subseries. To this end, let .Azoaﬂ be a

first subseries of 3a,. Let it be chosen so that the remaining subseries
retains infinitely many terms. From this remaining subseries, take a

[+ -]
new subseries AZ:oan, etc. We write down these series in rows,

one under another: .
8+ 8y +...+ a5+
ap+ay+...+ap+..

(16)
an0+axl + +a)d+

By 3.1.1,3, every row is an absolutely convergent series. 1 We denote
their values by ag, o), ..., o, ..02

[« ]

(17 Agoa"" = a,, (x =0, 1, ..., fixed).

For corresponding reasons, the elements of every column are the ele-
ments of an absolutely convergent series. We set

(18) ioaﬂ =, (A=0,1,..., fixed).

! The cffect of the insertion of zeros introduced at the beginning is that for these
row series the case is admitted that onc or another of them contains only a finite
number of terms (or none at all) of the original series, so that a row series may be
only a finite subseries of the original.

83



INFINITE SEQUENCES AND SERIES

We shall show that invariably

-] -]

(19) s=Xa = A_oet'x,

or, in greater detail,

(20) : §m=§(mm)=§(§m);
y=0 x=0\A=0 A=0 \x=0

in other words, that the following extended rearrangement theorem holds:

Theorem 8. Let the absolutely convergent series Xa, have the value s,
and let (16) be a decomposition of this series (which may be diluted beforehand
in an arbitrary way) into a sequence of subseries in the manner described.
Then every “row series” ?aﬂ and every “column series” ?aﬂ in this schema
(16) is absolutely convergent, and the values of all these series are conmected
by the relation (19), or, in greater detail, (20), where all the series that appear
are again absolutely convergent.

~Proor. That the series (17) and (18) converge absolutely follows

once more from 3.1.1, 3. The proof of the first half of (19) is very
similar to that of the preceding theorem; it is merely necessary to note
that we now have infinitely many subseries. To this end, having
chosen ¢ >0, we first determine, according to 2.6.2, Theorem 3, a
vy = vo(e) so that the remainder

(21) |@yyia| + 0| 3+ - - <,

and then choose a %, = x,(e) solarge thatall the terms 4, ay, ..., 4,
appear in the subseries gaﬂ with x=0,1,...,%. Then,if p =

= w(e) = max (x,, vp), and v >y, the series?!

(22) (2+ot...4+2,-5),

after all its terms that occur with a plus and with a minus sign have
been cancelled (by virtue of 2.6.2, Theorems 5 and 6), contains only

! Here again the series with the sums oy, a;, ..., «, are to be added term by
term and the parentheses removed in accordance with Theorem 3, and the finitely
many terms —d,, —a,, ..., —gy inserted, by virtue of 2.6.2, Theorem 5, anywhere in
the resulting series.
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such terms +-4, for which p >v,. Hence, by (21) and 3.5, Theorem 1,

|totoy 4.4, —5,] <e for v>p.

The difference (22) thus -0 as v—> oo, and consequently, since lim s,
exists and is equal to s, lim (ag+o,+...+a,) also exists and equals .
Y=

Therefore Ta, =s. If we carry out exactly the same steps with
Z|a,| and set ZA}|a,‘A| = B,, it follows that XB, converges. Since

|| < B. (by 3.5, Theorem 1), X, is also absolutely convergent. The
corresponding assertions concerning the column series are obtained
in an entirely similar manner.

The converse of this theorem (that is to say, that the absolute con-
vergence of all the series (16) and of the series Xa, implies the con-
vergence of the series Xa, and Xa, as well as the equality (19) or (20))
need not hold. This is shown already by the trivial example obtained
by taking for all row series in (16) the series 1-14040+40+....
Thus, in order to obtain such a converse, we must insert additional
restrictive conditions. We prove

Theorem 9. If we are given a sequence of absolutely convergent series
?aﬁ, (x=0, 1, ...), written down one under another as in (16), and if, with
the notation ?a,d=azu and §|a.‘,‘| =B,, not only X, converges, but also
2B, is convergent and has the value B, then all the series (18), the two series
in (19), as well as the series Xa,, converge absolutely, and their sums are
connected by the relation expressed in (19) and (20).

The proof is extremely simple. According to 2.2,8, the totality
of numbers a,, can be arranged in a simple sequence {a,} in many
ways, and the series Zg, formed with it. This series is absolutely
convergent. For, a partial sum

(23) |ag| +laa| +-- .. +|a)]
of XZja,| is obviously < By+B,+...+B, if we choose x so large that
the terms a4y, 4,, ..., 4, appear in the series «g, &y, ..., a,. Hence,

the partial sums (23) remain bounded, namely <B, so that Xa, is
absolutely convergent. Call its value s. Two different arrangements
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of the a,, in a simple sequence obviously yield two series Xa, which are
merely rearrangements of each other. All these series are therefore
absolutely convergent and possess the same values. If Xa, is acertain
one of them, then (16), or better, the two iterated series in (20), are
extended rearrangements of Za, in the sense of Theorem 8. This theorem
therefore immediately yields the further assertions of Theorem 9.

Corollary 1. The decisive auxiliary condition in Theorem 9 was
that B, also be convergent. It is easy to see that it is equivalent
to the following: There exists a number X" >0 such that the sum of
the absolute values of finitely many terms of the schema (16) is in-
variably <X. For if X8, is convergent and =f, then obviously
K =3 does the trick. If, conversely, a K'>0 of the kind described
exists, then firstof all X|a,| is convergent (because the partial sums are
bounded), and Theorem 8 shows, provided that we apply it to X|a,|,
that all B, as well as 2B, = B exist.—Likewise, the convergence of
283, (Ba=Zlaal), is equivalent to the two conditions just discussed.

Corollary 2. The series appearing in the second and -third places
of (20) are designated as iterated series, because summation is per-
formed twice—first by rows and then over the row values, or first
by columns and then over the column values. The entire schema (16),
if we imagine a plus sign to be placed before each of the terms a,,
@49, ..., i8 called a double series, and is also designated, for brevity,
by Za,, (x, A =0,1,...). Under any one of the equivalent assump-
tions mentioned in Corollary 1, we regard the then well-determined
number s as its value, (We shall consider double series only under
one of these assumptions.)

Corollary 3. The theorems we have proved are frequently applied
in the following way: An arbitrary series Xa, with the value s is given.
Every one of its terms is represented in any manner as the value of
an infinite series
(24) &, = Go+aqt...+aa+..., (x=0,1,..)
these series being written down in rows one under another in the form
of the schema (16). Then if these row series converge absolutely,
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and we set §|aﬂ| = B, and if, finally, 38, converges too, then the

column series are also all absolutely convergent,
* ’
Eo a, = @, rA=0,1,..),

the series Xa, converges absolutely too, and the relations (19) and
(20) hold.* *

The convergence of the series X8, (in addition to the existence of
the numbers B,) proved to be sufficient for the validity of all these
theorems. We conclude these considerations with the presentation
of another condition concerning the interchangeability of the order
of summation in (20), which is not only sufficient but is actually
necessary, and which was given essentially by 4. 4. Markoff. ®

For this purpose we imagine a situation similar to that just described
in Corollary 3: A convergent series Xa, = s is given, and every one
of its terms «, is represented as the value of an infinite series (24).
These series again are written down in rows one under another in the
form of the schema (16). Instead, however, of assuming any absolute
convergence, only the convergence of each individual column series
?aﬂ =, \=0,1,...), is further assumed. Then automatically

the series X(x,—a,,), 2(x,—a,0—ay), and, in general, the series
(25) ?(ax—a,,o—a,d—...—aﬂ), (r=0,1, ..., fixed),

are convergent. The general term of this series is obviously the re-
mainder beginning after the A™ term of the series (24). Let us denote
this remainder by p,,. Consequently Xop,, = p, is convergent. With
this notation we now have *

"Theorem 10. In the situation just described, the series of column sums
?a; is convergent and equal to X, (or, in other words, the transition from the

! The second relation is also expressed by saying that in the itcrated series in (20),
the order of summation may be interchanged.

t ¢f. in this connection: K. Knopp, Einige Bemerkungen zur Kummerschen und
Markoffschen Reihentransformation, Sitzungsberichte der Ber!l. Math. Ges., vol. 19 (1921),
pp. 417, and Infinite Series (sce Bibliography), 2nd edition, p. 242.
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Jirst to the second of the iterated series (20) is permissible) if, and only if,
pa—>0 as A—>oo.

The proof is most simple. For, the value of the series (25) is, on
the one hand, as already remarked, equal to Xp,, = p,, and, on the
other hand, according its very formation, = s—ag—a;—...~aj. Conse-
quently

%o+ o+t ay = s—py
and —>s5 as A—>oco (i.e., equalities (19) and (20) hold) if, and only if,
PA—)O- 1

The transition from the series Xa, to the series ?a; through the
mediation of (24) is designated as a series transformation—in this case,
as Markoffs transformation.

The theorems acquired put us now in a position to make assertions
concerning the further validity of the distributive law. Since
a-ZA}bA = ?abl (iee., if ?bl converges, then, for every a, ?(abl) isalso

convergent, and the equality written down is valid), and in the
corresponding sense, for a fixed number £ of terms a,, the equation

(26) (ar+ag+...+a)  Thy = Tayhy) + B(agh) +--+ T(aby)
holds, the question here is merely whether or in what sense the product
of two convergent series Xa, = 4 and ?bl = B can be formed in an
analogous fashion. For example, is

@) (B ($4) = Tah)+E@b)+...+Fab)+ ..,

i.c., is the series XC, with the terms C, = le(axbk) convergent and is

! Actually, it follows, more precisely, that the series ?a{ of column sums con-
verges if, and only if, the sequence {p,} converges. If its limit is =p, then
ok - Jo .

The reader should construct an example in which all the assumptions used are ful-
filled, but p 0.
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its value C = 4B? This is evidently always the case, for, by what
we said before, C, = a,-Xb, = a,-B, hence

Co+Ci+...4C. = 4B, (4, = sg+ay+...+a),

which ->4B. The answer is less simple if we adhere to the wording
with which we formulated the distributive law at the beginning in
3.6: May one multiply two convergent series Xa, = 4 and Xb, = B
by multiplying every term a, of the first by every term b, of the second
and forming a simple series Xp, from the products a,b, taken in an
arbitrary order of succession—i.¢., is this series convergent and does it
have the value 4B? If, however, the equality

(28) Sa,-Tb, = Sp, = AB

is to be valid for an arbitrary arrangement of the products (¢f. 2.2,8)
ab, = p,, then Xp, must converge unconditionally, and hence abso-
lutely. This must then also be the case for every subseries, e.g., for
the series of all products 4,6, for which x has a certain fixed value.
Thus, for x fixed, the series %axbl or ax-gbx, hence finally 34,,

must converge absolutely. Similarly, the absolute convergence of
2a, is a necessary condition for the validity of the equality (28) for
an arbitrary arrangement of the products p,. We shall show that
this is also sufficient.

Theorem 11. Let 3a, = A and Zb, = B be two convergent series, and
{p,} be the totality of products a,b, arranged in a simple sequence. Then Tp,
converges unconditionally (i.e., for every arrangement of the p,) if, and only if,
Za, and b, are absolutely convergent; Xp, then has the “correct” value
P = 4B.

Proor. It remains for us to show merely that the absolute conver-
gence of Xa, and X5, issufficient for the validity of (28). If we denote
by K the product of the values of X|a,| and X|5,|, then obviously, for
every r,

(29) ol +pal .-+ 18] = K.
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For if . is the greatest of the indices x, A appearing in the products
a b, denoted by gy, py, .., p,, then the sum on the left in (29) is

< (laol +---+1aul) (B0l +---+18u) = Zlag-Zlbs| = K.

Thus, for every arrangement of the products 4,5, in a sequence {p.},
the series Xp, converges and has always the same value, call it P.
If, however, in particular, we arrange the products “by squares”
(¢f- 2.2,8b) ), then, provided that 4,5, occupies the lower right-hand
corner of the square and we set (n+1)*-1 = m,

potpite+p.= (L a) (3:306*)‘

As n—> oo, the right side >4B. On the left is a subsequence of the
sequence of partial sums P, of Xp,; it, therefore, just as {P,} itself,
—P. Hence, P=AB.

In Theorem 11 we required Xp, to converge unconditionally (for
every arrangement of the p,). It is conceivable—and it is in fact
true—that for special arrangements of the products a,b,, the series
2p, is convergent under weaker assumptions concerning the factor
series Xa,, Xb,. For applications, the most important arrangement
is that by diagonals (see 2.2,8a) ), to which one is led by the elementary
process of multiplying out two polynomials

(dg+a2+...+a2") (Bp+bz+...+b2) =
= Ggbo+ (aybr+bo)z+. ..+ (aob, +tyby s+ + 2,80+ . !

The series
(30) agbo+ (b1 +arbo) +. . .+ (aob, +a1b, 1. . +a,b0) +...

is to be regarded accordingly as the product series. It is designated
as the Cauchy product of Xa, and Xb,.?

According to Theorem 11, we immediately have the theorem of
Cauchy:

! If we set a, =0 for x >k and b =0 for A >, then the terms on the right,

from a certain stage on, = 0: the series “terminates”.
* We emphasize expressly that the parentheses are to be left in.
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Theorem 12. If Ya, = A and Xb, = B are two absolutely conver-
gent series, then their Cauchy product

(31) f:oc_ with ¢, = agb,+a,b,_,+...+ab

is absolutely convergent and its value C is equal to AB. !
That the Cauchy product of two arbitrary convergent series Xa, = 4
and Xb, = B need not converge at all is shown by the following

example, where the series Eo (—l)"l
ve= v

is chosen for both factor series.

Then we have

. 1 1 _
"o [mﬁ) Tvam ot v<+—1>1]

If we replace all the natural numbers (factors) under the radical sign
by the largest of them, viz., (r41), we see that

led| = __n+l
V(n+1) (n+1)
for all n; X, is not convergent.
For |z| <1, X" is absolutely convergent and = ﬁ The Cauchy
product of this series by itself yields the representation
Eothe =g (zl<D).

The series Zf—; is (see 3.2.1,2) absolutely convergent for every z.

We shall call the function furnished by it f(z). If we choose any two
numbers z; and z,, then the Cauchy product

1 Later on (5.7) we shall show that the absolute convergence of only one of the
two factor series is already sufficient for the convergence of the Cauchy product (to
the correct value).
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fla) fie) =S 28 = § (o + 2 44 )

=_§o$[(o)z;+()rz.+ +(7)a ]
_E‘o(zﬁz.) =fla+z).

The function represented by our series is designated as the exponential
Junction and denoted by exp z or & It thus satisfies the important
JSunctional equation or the addition theorem

exp (z1+2s) = €xp z;-€xp 2z, Or s = g
[

and more generally, of course, for p numbers z,, ..., z,,
exp (3, +2+-.-+2) =e€Xpz;-€Xp - ... €Xpg,.

This function will be considered in greater detail in 6.3. At the mo-
ment we note merely that for z = x = 0, exp x = 14x, and hence,
for any nonnegative numbers 4, a,, ..., 4,, we have the inequality

(32)  (1+44) (14a) ... (148,) S cxp (ao-+ar+...+4,).

3.7. Infinite products

Although infinite products (see 1.1, (9)) will not be treated in detail
in this little volume, it is nevertheless useful to know a few simple
facts about them, because they often serve as a good expedient for
handling series.

If {u,} is an arbitrary sequence of numbers, then the symbol

(1) o, =uu-

v=0
shall denote the sequence of partial products
(2) D=ty ty- ... U,

Every convergence property of the sequence (2) is then ascribed, under
restrictions to be stated immediately, to the infinite product (1) itself.
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These restrictions are called for by the exceptional role played by 0
in multiplication. If] ¢.g., for a single factor, say u,, of the product,
we had u, = 0, then we should have all p, = 0 as soon as v>n.
The sequence p, would thus be convergent with the limiting value 0,
regardless of the nature of the factors u,. Likewise, every product (1)
for which, for a fixed 0 in 0 <6 <1, |u,| < 6 from a certain index on,
would obviously be convergent and again have the value 0. To
exclude these meaningless cases, it is customary to make the following
definition:

Definition 1. The infinite product (1) shall be called convergent (in the
narrower sense) if, and only if, from a certain stage on, say for all v >p., 1
the factors u, * 0, and the partial products

P;=“u+1'"u+2'---'“v, (v>u),
beginning after the p* factor tend to a limit P’ different from 0.  The number

_ . . . ’
P=uy-uy...-u,-P

ts then regarded as the value of the product (1). 2

According to this definition, we have first of all, as in the case of
“ordinary products’, t.e., products with finitely many factors, the
following

Theorem 1. A convergent infinite product has the value O if, and only
if, one of the factors = 0.
Furthermore, in analogy with 2.6.2, Theorem 1, we have

Theorem 2. In a convergent product (1), the sequence of factors u,—1.
For according to Definition 1, for v>p+1 we have

u, = P{,::'l and thus >3 = 1.

! For 1 we may thus take the index of the last factor u, having the value 0, or
any larger number. If no such factor exists, set p =-1.
* P is independent of the choice of u. For if p is replaced by p’ >p, then

the partial products py=wuyy1 ... 4y, (v>y’), obviously tend to the value
P" = (uy 4y ... uy)-!. P, and we have once more
Ug -ty ooty P =uy-ty-... uy -P=P.
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Because of this theorem, it is customary to write the factors u, in the
form

(3) u, = l+a,
and hence the infinite product (1) itself in the form

- -]

(4) I1 (1+a,),

ve=0

for whose convergence 4,—>0 is now a necessary (but by no means
sufficient) condition. Whereas we called the u, the factors of the
product (1), we shall call the g, in (4) its terms. On account of
the prefatory remark, we only consider such products if there exists
a p such that a, -1 for v>p.

The products with positive terms arc again especially simple to
treat because for them the sequence of partial products p, = (1+a,)
... (14a,) increases monotonically. The product is therefore con-
vergent if, and only if, these p, form a bounded sequence. This
leads to

Theorem 3. A product I1(1+a,) with positive terms a, is convergent if,
and only if, Za, converges.

Proor. I. If the product is convergent, that is, if the partial
products are bounded, then, because of

tt+a+...+a, S (14+4) (1+4) ... (1+4,),

the partial sums of Xa, are obviously also bounded, so that Xa, is
convergent.
II. If Xa, is convergent, then, by 3.6,(32),

(1+a) (1+4y) ... (14+4,) < exp (4+a,+...+4,),

and the boundedness of the partial sums of Xa, implies that of the
partial products of [1(1+44,). Herewith everything is already proved
—and beyond that, the inequality

(5) P=<expys,
if P denotes the value of the product and s the value of the series.
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For products (4) with arbitrary (real or complex) terms a,, the
second main test for sequences is available. It furnishes, if we again set

(14+8u4) - (1+a) =4,
for v>u, a necessary and sufficient condition that p, tend to a finite
limit different from 0 as v—>oc0. We can give it the following form:

Theorem 4. The infinite product (4) is convergent (in the narrower sense)
if, and only if, having chosen an arbitrary number € >0, one can assign an
index vq such that, for all v >vy and all p =1, the inequality

(6) |(1+8y4) ... (14a,,.)-1] <e
is satisfied. 1

Proor. I. If [I1(1+a,) is convergent in the narrower sense, then
there exists a u such that 144, % 0 for v>p. The partial products
£, begun after this stage are thus #0 and tend to a limit different
from 0. Hence, there exists (¢f 2.3.1,4) a number y >0 such that
|#i] = y>0 for all v>p. According to the second main test for
sequences, if e >0 is given, we can now determine a v, such that,
forall v>v, and all p=1,

p"—*," -1 | <e.

|p\’o+p_p:'| <ey or b
v

The last, however, is precisely the relation (6) to be proved.

I1. If, conversely, (6) is satisfiable to the extent stated in the theo-
rem, then, by choosing, first of all, ¢ = §, (6) asserts that it is possible
to determine 1 so that, forv>yp,

|(14a,4q) -.. (14a,)-1] <3
Therefore, in particular, (14a,) % 0 for v>u, and, moreover,
|,-1| <} or }<|p;| <}, if the p, again denote the partial products
begun after the p® factor (v>p). Thus the sequence {,}, if it con-
verges at all, has a limit different from 0. And that it does converge

! In thesense of the first paragraph on p. 68, this may be expressed as follows: The
product is convergent if, and only if, the partial products (of arbitrary length) be-
ginning after the index v, lic close to 1 and hence do not noticeably alter the product
of the preceding factors any more.
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is shown once more by (6). For, (6) asserts that for arbitrary ¢ >0 a
vy can be determined so that

I’v+p

-1 ) <e or |[’;+p—ﬂ:,| <‘lp:| <2

for all v>v, and all p=1. Hence, by the second main test, {p,} is
convergent.

From Theorem 4 we now obtain—¢f. the corresponding Theorem 1
in 3.5 for series—

‘Theorem 5. A4 product H(l+av) is certainly convergmtgf II(1+|a,))
or (because of Theorem 3) X|a,| is convergent.
For,

|(14+a,,1) - (14a,,0) = 1 = (1+]ay ) - (T+]ayol) - 1,
as is immediately seen by imagining the products on the left and on
the right to be multiplied out, and cancelling +1 and -1 on both
sides. Thus, if the right side is < e, then so is the left.!

Products [1(1+a,) for which “even” II(1+-|a,|)—which is a product
with positive terms—converges shall be called absolutely convergent, in
analogy with 3.5, Definition 1. According to Theorem 3, then, we
have

Theorem 6. A product I1(1+a,) is absolutely convergent if, and only
if, Xa, converges absolutely.

In analogy with Theorem 3, we can now easily prove

Theorem 7. A product of the form II1(1-a), with 0<a,<l, is
convergent if, and only if, Xa, converges.

For if Xa, is convergent, then, since |a,| = |-4,| = a,, [I(1-a)) is
actually absolutely convergent. If, conversely, the product is con-

vergent and its value =P, then, since 144 < li for 0 < a<l,
we have

(14a0) (1+8) ... (14+4) < [(1-a0) (1-ay) ... (1-a)]' S 5
so that [I(1+4a4,), and hence Xa,, converges.

1 ¢f. in this connection footnote 1, p. 71.
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For the purpose of illustration, we list the following examples! with
brief explanations:

1. The products ﬁ: ( l+vl—¢) are convergent for a >1. For a=1
. 2 3

1 T'? see

— n+1 and thus — +oco. Likewise, H(l—;;) is absolutely

convergent for « >1. For a =1, the partial products p, = ; §
n—1 1

= —>0 and we say that the product diverges to 0. For a <1

it dwcrges a fortiori, because then the partial products are positive

it is divergent, because then the »™ partial product is p, =
atl
n

but <% .

2. fi(1-—-2
1 (1- 555
diately verified by forming the partial products.

) is convergent and has the value 4, as is imme-

vl

partial product

3. 1 (l— (_vﬁ) is convergent (but nonabsolutely). For, the

~2l45 (e,
which obviously — 1.

4. 11 ( 1 +—i—) diverges to 4 oo for every real x >0, diverges to 0 for
every real x <0. For, the factors are, from a certain stage on, of the

form considered in Theorems 3 and 7,and X i is divergent for x=0.

I
5. H ( 1- —) is convergent ? for every (complex) z.

ve=1
6. II (l—%) is (absolutely) convergent and =4. (Form the partial
products.)

! In order that the following products be meaningful, v in several of them must
start from 1 or 2. g o)
? Its value is = ——, as isshown, ¢.g., in § 3 of the author’s Theory of Functions,
24

vol. I1, listed in IV of the Bibliography.
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7. TI (14 2") is absolutely convergent for every z with |z] <1.
8. If Xa, is absolutely convergent, then I1(1+a,2) isalso absolutely
convergent for every z.

9. II (144,2") converges absolutely for every z for which Xa,2" is
absolutely convergent. (Concerning the convergence of such a
““power series”, see 4.1, Theorem 1.)

The convergence of nonabsolutely convergent products is somewhat
more difficult to recognize, and will not be treated here.
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Chapter 4
POWER SERIES

4.1. The circle of convergence

We have already encountered several times, series of the form
2a,2%, where z has been permitted to be arbitrary to a certain extent.
Such series, and, somewhat more generally, series of the form
2a,(z—2)", where z, is a fixed number, are called power series. In
what follows, there is usually no loss of generality in considering only
power series of the first form. For if we set z—z, = 2’ for abbreviation,
and then drop the accent, the second form goes over into the first.

Examples of such series were

Tz, I(tHe z4, .

The first converges if, and .only if, |z| <1, i.e., in the interior of the
unit circle. The third converges for every z, i.e., “in the entire plane”.
Finally, E v*2" is an example of a power series that converges only
v=1
for z=0, because, for z#0, v'z* = (vz)* obviously does not tend to 0.
We shall show, first of all, that every power series possesses an ana-
logous convergence behavior, i.c., that it converges either in the entire
plane, or in a certain circle about 0 as center, or only for z=0.
Indeed, we have

Theorem 1. Let Xa,2" beanarbitrary power series, and set lim v/]a,] = a.
Then,

a) for a =0, the series is everywhere convergent,

b) for a =+ co, the series is divergent for every z # 0.

c) If, finally, 0 <a <+oco, then the series is absolutely convergent for

every zwith |z <r = %, divergent for every z with |z| >r. (The behavior
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of the series on the circumference |z|=r can then be quite varied;
see below.) Thus we have in all three cases, with suitable interpretation,
1
im V][’

ProoFs. a) « =0 means that /[a,[—> 0, because /[4,] =0. Hence,
if z is an arbitrary number, then also v/[a,2"] = |2|-v/|a,[>0. The
assertion now follows from the radical test.

b) Let a =+4oc0 and z5#0, so that || >0. Then, according to
2.2,5, v/[a,] >ﬁ or v/[a,z’] >1 infinitely often, and consequently

a2’ is divergent.
c) In this case, let z be an arbitrary, but henceforth fixed, number,

1
= — =
«

(Cauchy-Hadamard formula.)

with |2l <r = %—. Choose a positive number p for which |z} <p <%,
and hence — >a. Then, in accordance with the meaning of a, we

have, for allpv from a certain stage on,

m<—:7 and therefore {/L_a,z*']<J1:—|=0<l.
Thus, by the radical test, Ya,2" is convcrgcht. If 2’ is a number with
|| >r = %, so that %<a, then v/[a,| > T:T or V|az" > 1 in-

finitely often, and consequently Xa,z" is divergent.

In this (main) case c), then, Xa,2” is absolutely convergent at every
interior point of the circle |z| <r, divergent at every point in the
exterior of that circle. We therefore call this circle the circle of con-
vergence of the power series, the number r the radius of convergence, and
the points of the circumference |z| = r the boundary of the circle of con-
vergence. In case a) we set r = 400, in case b) r=0. In this last
case the circle of convergence thus degenerates to the origin and pos-
sesses no interior points.

Naturally, for the power series Xa,(z—2)", the circle |z—z| < r is
the circle of convergence. The behavior of power series on the boun-
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dary of the circle of convergence can be quite varied, as the following
three examples show.

22 has r=1; the series is divergent at every boundary point (i.c.,
for every z with |z] = 1).

Z% also has r=1 (why?); the series, however, is absolutely con-
vergent at every boundary point.
z % likewise hasr =1. Theseriesis divergentat z= +1, convergent

at 7 =-1.

We shall sketch a second proof of the fundamental theorem con-
cerning the existence of a definite circle of convergence for every
power series, which, however, does not yield simultaneously a formula
for the radius itself.

To this end we first prove: 1) If a2’ converges at z = z, #0,
then the series is absolutely convergent for every z for which |z| < |z|
(in other words, for every z lying in the interior of the circle that
passes through z; and has 0 as center). For if z is a fixed point of

thiskind, then a2’ = (a,2}) ( )v. If we denote by X" an upper bound
of the null sequence {|a,z}|}, and denote the proper fraction l—l by 6,

then |a,2"| < K'¢", and consequently Za,,z, is absolutely convergent,
as asserted.

Equivalent to this is: 2) If Ta,z* diverges at z= z;, then the series
is divergent for every z for which |z| > |z]|, in other words, for every z
whose distance from the origin is greater than that of z;.

If, now, Za,2" converges neither everywhere nor nowhere (except
at 0), then there exists a point of convergence z; #0 and a point of
divergence z;. According to the two preliminary remarks, it is there-
fore possible to assign a positive number r, (<|z,|) such that the series
converges for z=r,, and a positive number r, (> |z|) such that the
series diverges for z=r,. We now apply the bisection method to the
positive real interval F, = (r,, 7). We designate its left or its right
half as 7, according as Xa,2* diverges or converges at the midpoint
z =4} (ro+ry) of J,. According to the same rule, we designate the
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left or the right half of 7, as F,, etc. The intervals 7, then all have
the property that our power series converges at the left endpoint 7,
of 7,, but diverges at the right endpoint r,. The (positive) number r
determined by this nest of intervals is the radius of convergence of
the series. Forif |z| <r, then there exists an r, for which |z| <7, (7).
Hence, by the first preliminary remark, Za,2" is convergent, because
z lies closer to the origin than r, does. If |z’| >r, then there exists an
v, with |z’| >r, >r, and since our series diverges at r,, it also diverges
at 2'.

4.2. The fanctions represented by power series

Henceforth we shall consider only power series Xa,(z-2,)* whose
radius is not equal to 0. It is then absolutely convergent for every z
in the interior of its circle of convergence—i.c., for every z with
|z—2| <r; in particular, for every z, if r = +oco0.!' Its value is thus
a function of z, which we shall denote by f(z). We say that the power
series represents the function f{(z) (in the interior of the circle of con-
vergence), or conversely, the function f(z) is expanded or developed
in a power series there:

M £ = Eale-a), (r>0).

It will be shown that such functions possess many desirable properties
and are very important. They are called regular or analytic functions.
These properties are established by means of the following theorems.

Theorem 1. The function represented by a power series is continuous at the
cenler Zy of its circle of convergence.
Proor. Let 0 <p<r. Then X|a,|p® is convergent, and, by 2.62,
Theorem 2 and 3.1.1, Theorem 1, so is )y |a,|e*". Call the value
y=]

of the last series XK. Then, for every z with |z-2| < ¢,

A -f)l < Elae-2)| < o=zl B lal Izl < K-le-l.

! We leave aside, for the time being, the points on the boundary of the circle of
convergence.

102



POWER SERIES

Having chosen ¢ >0, a 3 >0 can therefore be assigned (it suffices to
take a 3 which is <p and <%) so that

|A2) - flz)| <e  forall |z-—z| <3.
Thus f(z) is continuous at z,.

Corollary. Letf(z) = ay+az+...+a,2"+... be convergent for |z| <r.
Then, for every fixed p =0, 1, ..., as 20,

o )= otazttad) |,
hence, in particular,
(3) S(2)—(ag+a2+...+a2°) = 0(z*"), (2—>0).

Proor. For z#0, we have on the left in (2) the power series
S5(2) = a1 +a,,32+... . If we apply Theorem 1 to this series, we
obtain the assertion.

From Theorem 1 we get the following especially important

Theorem 2. (ldentity theorem for power series.) If eack of the two
power series Xa 2’ and Tbz* ! has a radius = p >0, and if they have the
same values in a neighborhood (no matter how small) of the origin, or if their
values coincide only at the points z, of a certain sequence {z;, zy, ...} with
|a] <p> 225#0, 2> 0, then they are completely identical, i.c., a,=b, for
v=0,1,2,....

Proor. Letusdenote by f{z) and g(z) thefunctions represented by
the power series in |z| <p, so that f(z,) =g(z) for A=0,1, 2, ....
The functions are continuous at the origin. Therefore, according
to Theorem 1, as A— oo the limit of the left side = f(0) = 4, and that
of the right side = g(0) = 4,. Hence gy=25,. We now consider
the power series

(4) 4+az+...  and  bHbg+...,

! To simplify the notation we make use here of the fact that there is no loss of
generality in assuming that zo=0.
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which, for z #0, represent, according to the rules for operating with
convergent series, the respective functions

(%) Lt _ oy, b L g,

Exactly the same assumptions hold for the series (4) and their values (5)
as for the original power series and the functions f{z) and g(z) repre-
sented by them. The same reasoning shows that ¢, =¥5,. Suppose
that the equality 4, =¥5, has already been provedfor v=0, 1,2,...,n.
Then consideration of the series

4) I Y & and bt pa2+-..
which, for z 5% 0, represent the respective functions
(5) Sz) - (ao+:"lfl'|‘-+a-z') =fin(2),
= (bo+byz+...+5,
g) - ( o+;fl+ +82") _ £ui(2)

shows that, for v = n4-1, likewise a,=¥5,. This equality thus holds
forallv=0,1,2,....

Remarks. We shall explain the meaning of this important theorem
by means of several corollaries.

1. The theorem asserts that if f(z) can be represented in a neigh-
borhood of the origin by a power series, then it is already completely
determined by its values at the points z, of a null sequence {z,}
whose terms z, are £ 0 and belong to the neighborhood in question.!

2, The corresponding theorem holds of course for power series of
the more general form Xa,(z—2)". It can also be stated as follows:
If it is at all possible to expand a function f{z) in a power seried for
a neighborhood of a point z,, then this can be done in only one way.

3. Thus, if we have arrived at power-series expansions

2a,(2-2)" and Xb,(z-z)"

! This is analogous to the fact that a quadratic polynomial a +bz +cz* is already
fully determined by the knowledge of three functional values.
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for one and the same function, in two different ways, then the theorem
yields the infinitely many equations ¢,=4,, (v=0, 1, ...). This way
of applying our theorem is called the method of comparison of coefficients.
If, e.g., a function f{z) has the property that, for every z in |z| <p,
invariably f{-z) = f(z)—such a function is called an even function—
and if it is developable in a power series a2 there, then the method
in question shows that

Gy—ay2+a2t —+... = Gy taz 6,2t +...,
and hence that ¢, =g3=4;=... = 0: The power-series expansion
of an even function contains only the even powers of z (more precisely,
the coefficients of the odd powers are equal to 0). Analogously, for
the odd functions, for which f(—z) —f(z), the coefficients of the even
powers are all equal to 0.

Theorem 3. Let Xa,2* be a power series with the positive radius r.t If
2z, ts an interior point of its circle of convergence, then the function f(z) repre-
sented by this series can also be expanded in a power series

(6) f(2) =§ob. (z-21)"

in a neighborhood of z,. Every cocfficient b, is represented by the absolutely
convergent series
™ b= & ("o i (r=0,1,..),
which, regarded as a power series (drop the index 1 in z,), again has the exact
radius r. Furthermore, the radius r, of (6) is at least = r—|z,|, i.c., at least
equal to the distance of the point z, from the boundary of the circle of convergence
of Zaz'. (Theorem on the transformation to a new center.)

Proor. If |z| <7, then f{z) = Xa,2". In the sense of Theorem 9,
Corollary 3 in 3.6, we now expand every term 42" = a,(5;+(z-2))"
in the (only formally) infinite series

8 ar= a»(z7+(‘l')z7"(z—z1)+---+ (:,)z‘.'*(z—zl)'+---)-

! It may also be +oco.—We leave to the reader the formulation of the theorem
for the case in which we start more generally with Ta, (z2-z,)>.
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It is trivially convergent, because for n>v its terms are =0. It
therefore remains convergent if we replace each of its terms by its
absolute value. Its sum is then

= |4y 1 —4l) = %.
|3, (22| + |2=2])® = «,

After writing down the series (8) for v=0, 1, ... in rows one under
another, we may therefore apply Theorem 9 in 3.6, provided that
Xa, converges. That is certainly the case, however, if |z|+|z-2| =
= Z <r, or what is the same, |z—2| <r—|z,|. For, the series %2 2"
is absolutely convergent, because { then lies in the interior of the
circle of convergence. The theorem cited now asserts, first of all,
that the series appearing in the columns also converge absolutely.
These, however, are the series

(-]
(E_ (;’,)avz‘.'*) (EA
But the series in parentheses is just another form of the series in (7),
and the latter is therefore absolutely convergent. Since z; was arbi-
trary in |z| <r, this means that each of the power series (7)—we ima-
gine the index 1 in z to be removed for a moment—has at least the
radius r. Norcanitbegreater. Forif ¥ n-l-v) a,,,2’ were convergent

for a certain zwith |z| > r, thisseries would also be absolutely convergent
for a certain z with |z| >r. Then, by the first comparison test,
Xa,,,2", and consequently 2a.2*, would converge absolutely. That

is, however, not the case for |z| >r. Hence, the power series (7)
—with z instead of z;—have the exact radius r. If (now once more
with z;) we denoteitsvalue by 4, , then the 2™ column-sum = &,(z—2,)".
The theorem asserts further that the series whose terms are these
column sums, i.c., the series

_%b. (z-a)"

converges absolutely, and that its value is equal to X4,z = f(2).
Herewith all assertions of the theorem are proved.
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The following two theorems now follow easily from this particularly
important theorem.

Theorem 4. A function represented by a power series La z* is continuous
at every interior point 2, of its circle of convergence.

Proor. Since f{z) can also be represented by the power series (6),
S(2), according to Theorem 1, is continuous at z;.

Theorem 5. A function represented by a power series, say

(9) fR) = Za 2,

is differentiable arbitranily ofien at every interior point of its circle of convergence

|z| <r, and its derivatives may be obtained by term-by-term differentiation.
Proor. It suffices to show that f(z) can be differentiated once at

every interior point z of the circle of convergence, and that the deri-

vative f'(z), as a function of the variable z, is represented by that

power series which is obtained by a single term-by-term differentiation
of Xa,2", i.c., by the series

(10) zva,z"" z(v+l)a\.+|l ’

which, by Theorem 3, again has the radius r. For if its value is
S (z) for every zwith |z| <r, then the same result can be applied once
more to this representation of f’(z), and we obtain the representation

7@ = E+ a2,

which is valid again in |z| <r. This can be written more briefly in
the following form:

—Ql!—f'(z) = 20(";2)@”8, (Il <r).

By applying this step & times in all, we arrive at the fact that the &®
derivative, too, exists at every point z with |z|<r, and that it is
represented by the powcr series

(11) 7@ =E( THaues G=0,1,2,..),
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resulting from k-fold term-by-term differentiation of the series Xa,2".
It again has the radius r, and is thus absolutely convergent for |z| <.
In order to prove this now for £ =1, we represent the function f{z),
according to Theorem 3, in the form (6) for an arbitrary, but then
fixed, z, with |z| <r, with the meaning (7) of b,. If g7z, is anarbi-
trary interior point of the circle |z-z| <r—|z|, then
%)‘ = by+by(2 - 7)+-..»

and the series on the right is absolutely convergent for the z in question.
According to Theorem 1,

im0 _ ey~ = § ot ).

Since z; was arbitrary in |z| <r, we see (just drop the index 1) that
S'(z) exists in |z| <r and is represented by the absolutely convergent
series (10). This proves the assertions pertaining to (11) for k=1,
and hence, according to the preliminary remarks, all the assertions
of Theorem 5.

Corollary. From (11) we get, in particular,
1
(12) 7 FO0) = a.

If we substitute this in (9), this representation of f{z) acquires the
form

(13) f=§L0

If we had started, in these investigations, with the more general power
series f(z) = Xa,(z—2)", we should have arrived at the represen-
tation

(14 fl&) = $L0) (o oy

The series (14) is called the- Taylor series or Taylor expansion of f{z),
and (13) the Maclaurin form of the same.
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Examples and simple remarks
1. By differentiating the familiar representation 1—1— = Xz valid
in |z| <1, we obtain immediately <

__l = v l — V+2
=20+ =31
and in general, for k=0, 1, 2, ..

1 _ v+k
(15) T —vz_:o( k ) . (] <1).
This is to be regarded as an extcnsion, to negative integral exponents,

of the binomial theorem (1-2)t = z 1) ( )z which is valid for

k=0,1,.... In6.5 we shall see that (15) is also correct for arbitrary
nonintegral k.

2. The power series
$ vl % v
R2Svny AR ) oy yr o) AMERID

also have the same radius as Xa,z’, because the latter is obtained from
the former by a single or repeated term-by-term differentiation. Thus,

z vil 2'*! is the definite integral

(16) F(z) = [ fitydt.

Whereas the foregoing theorems have dealt only with properties
of functions represented by power series, which they possess in the
interior of the circle of convergence, the following theorem is concerned
with the behavior of the series on the boundary of that circle:

Theorem 6. (Abel’s limit theorem.) Let the power series Xa,2’ have
the finite radius r >0, and suppose that it converges at a point z, on the boun-
dary of the circle of convergence: Xazy = 5. Then the function f(z) repre-
sented by the series for |z| <r tends to the limit s as z tends radially from O
to the point z,: lirz Sf(z) = s for radial approach.

f
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Proor. First of all, we see, as we often have before, that there is no
loss of generality in assuming that r=1 and even z,=1. For if we
set =242 and then g2} =a,, the series goes over into Xa 2",
which now converges at z’=1 and has the value 5. It suffices, there-
fore, to prove the theorem in the following form: Let Za,2* be con-
vergent in |2]<1, and represent the function f(z) there. If Xa, is
convergent and equal to s, then f{x)—>s as real x—»>1-0:!

lim Yax = lim f(x) = s = Za,.

Now the proof is very simple and is closely related to Cauchy’s limit
theorem (2.4). For 0<x<l we have —1—17 Zay = Zx"-Tax" =
= X(ay+a,+...+a,)x" = Zs,x" (¢f. the beginning of the next section,
4.3). Hence,ifweset s =s,+1,, f(x) = (1-2)Tsx" = s—(1-x) ZTr.2x",
> A5) o] < (1-9) E [nJe"

Having chosen ¢ >0, we can find, since r,—0, a p such that |r,| < —;—
for v>u. Hence,

f)-sl < (1-3) E Inle"+ 5.

Since p is a fixed number, the first term on the right tends trivially
to 0 as x> 1-0. We can therefore determine such a small 3§ in
0<3 <] that this term is <£ forall xin 1-8 <x<1. For these x,
then, 2

|f (x) =4 | <s
which proves the assertion. Applications of this important theorem
are given in 7.3,2.

4.3. Operating with power series. Expansion of composite
fanctions
All rules for operating with (absolutely) convergent series hold of
course for operating with power series, so long as we remain in the
1 ILe., for left-sided tending of x to +1.
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interior of the circle of convergence. Thus we have, ¢.g.,

(1) a2’ + Lbe* = X(a, £ b,)2"
and
2) 242" - Tb2" = X(agh,+arb, +...+a,b)2",

so long as z lies inside the circles of convergence of both series, in
other words, for |z| <min (r, '), if r and 7’ are their two radii.* E.g.,
if Za,2* again has the radius r, then, for |z| <min (1, r),

(3) 1+z 2oz = X7 a2 = L(ap+a+...+4,)2
= z‘vzv’

or

4 Zag" = (1-2) Zs 2"

Here, as always, the s, denote the partial sums of Xa,. It is just as

easy to see that, if Xaz* = f(z) for |z| <r, then, for these z, the

(positive integral) powers of f{(z) can be represented by power series.

For we have, first of all, by (2):

5) (fl2))r= ﬁ (aga,+...+8,ay)2", which we shall write as § a,,2"
v y=0

=0

Again by (2) we then obtain

(6) (F(2)® = £ (aoyy+0185 0 1+ +8,820) 2",

v=0

and, in general, for £ =0, 1, 2, ... and every |¢|<r,

* »
() (fla)=Za,e  with® a4, =g, +...468.1,
Whereas these facts are very simple, and therefore we do not for-
mulate them as special theorems, the following problem is somewhat

! We emphasize expressly that min (r, 7') does not have to be the true radius of
convergence of the series (1) or (2). Thus, e.g., X(ay—ay)z¥ obviously has the radius
+oo; likewise, (1 +z+28+...) (1-2404+0+...).

* For k=1 we then have to set a4y =a, (for v=0, 1, 2,...), and, for k=0,
aw=1 and ay, =0 (v=1,2,...).
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deeper: Let Xbu” be a power series in the variable w, with the
radius r;, and call the function that it represents g(w), so that

(8) g(w) = §ob,w° for |w]|<n.
pm

Likewise let '

9) ?(2) = Xa2 . for |zl <r.

Letusset ¢(2) = w. Itisthen also possible to represent the composite
function g(¢(z)) = f(z) by a power series, at least for all z in a certain
neighborhood of 0, and this series is obtained, in particular,—as
might appear most natural—by representing the powers w® = (9(2))°
as power series ?a,,,z" according to (7), substituting these in (8), and
finally collecting all terms involving the same power 2", (n =0, 1, ...),
thus obtaining for the composite function f(z) = g(¢(z)) the power-
series representation

(10) f:oc_z- with (11)¢, = f:ob,a,,, (n=0,1,..).
n- o=

If this is to be correct for a neighborhood of 0, it must hold, in parti-
cular, for z=0itself. We thusfind |a5| <r ! asa necessary condition
for our problem to admit of the indicated answer. We shall prove that
this condition is also sufficient:

Theorem 1. Let (8) and (9) be two given power series with the respective
radii 1, r; let the functions represented by these series be g(w), w = ¢(2),
respectively; furthermore, in accordance with (7), set

(12) = (0@ =Zae, (=010

Then, under the sole assumption that |ag| <r1,, each of the series (11) is abso-
lutely convergent. Moreover, for a suitable R, the power series (10) is con-
vergent in |z| <R and represents the composite function f(z) = g(p(Z)) there.

! We have agreed (footnote, p. 102) to leave the boundary points out of conside-
ration for the time being.
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This holds at ledst for all those |2| <r for which f:ola,zvl remains <r,. !

Proor. Theorem 9 in 3.6 is available for the proof. For, according
to (12),

(13) b = boytbgnzt...+b,8pd+..., (p=0,1,2,..).

If the hypotheses of the theorem cited were satisfied, then all column
series would be (absolutely) convergent, and the #™ one of them would
have the value ¢,z* with the meaning (11) of the ¢, (n = 0,1,2,...).
Furthermore, the series X¢,z* constructed with the column sums
would also be absolutely convergent, and its value would be equal
to the value of the series built with the row sums, i.c., equal to Zb w® =
= g(9(2)), and everything would be proved.

The hypotheses of the theorem cited are certainly fulfilled, however,
if also those series converge which arise from (13) on replacing each
of the terms by its absolute value, and if, finally, the series whose
terms are the values of the series thus altered converges too;—in short,
if we can associate with the schema (13) another one, each of whose
elements is =0 and = the absolute value of the corresponding ele-
ment in (13), and which fulfills the conditions just mentioned. Such
a schema can be obtained immediately in the following manner. If
we set |a,| = «,, |b,| = B,, then the power series & = Xa,2* and
28,0 also have the respective radii 7, r,.* Denote the value of the
first by $(z). Let us now form the following schema corresponding
to (13), substituting a positive number { <r for z:

(14) B = By(3(X))° = Boctoot+Bytal+- ..+ B+
(p=0,1,2,..)).
Then
|6,8002"| < Bo|aaalC" = Boxl”-

' And, because of the continuity of f(z) at 0 and the fact that jg,| <r,, this is
certainly satisfied for all z in a certain circular neighborhood |z| <R of the origin.
For R wemay take,e¢.g., the certainly still positive least upper bound of the absolute
values of those z with |z] <r for which Zl|aw¥| <r,.

* For the magnitude of the radius of a power series depends—as the Cauchy-Hada-
mard formula shows—only on the absolute values of the coefficients.
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For certainly
|8p| = @,, for p=0andl and2=0,1,2,...;

but then we conclude inductively from (5), (6), and (7), that this
inequality is correct for all further p = 2,3,.... If, finally, the
positive { issosmall that o = $({) < r,—and this was supposed to be
the case for all { < R—then the series constructed with the row sums
of (14), i.c., the series ZB,($({))* = Tp,w®, is also convergent, since
XB,w° as emphasized, has the radius r,. Thus, the hypotheses of
Theorem 9 in 3.6 are satisfied. This therefore holds a fortiori for the
schema (13), which, according to the remarks at the beginning, com-
pletes the proof of the theorem.

Remarks. 1. We find without difficulty that

6o = bo+byay+... = g(a) = g(9(0))
and
¢y = ay(by+2bgay+ 3bsa3+-...)
= £'(a0)" &, = £'(9(0))-¢'(0).

If we had started with power series in (z—2,) and (w-w,), we should
have found analogously that

7 8(2(2)) = £(52))-#'(2)

for 7= zy,—hence, forevery z at which the hypotheses of our theorem
are satisfied, i.c., for which |p(2)| is smaller than the radius of the
outer power series.

2. The actual (numerical) derivation of the series (10) from the
series (8) and (9) is possible only in simple cases. The theorem has
more the character of an existence theorem: If its hypotheses are
satisfied, then there exists a power series (10) with a positive radius,
which represents the composite function f(z) = g(¢(z)). Since the
series (10), according to the Identity Theorem 2 in 4.2, is uniquely
determined, any other way may be used to find it. We shall encounter
examples of such alternative ways in the sequel.
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3. Nevertheless it is possible of course to determine several of the
beginning coefficients ¢,. If, e.g., the composite function exp —— l 1s
to be expanded for a certain neighborhood of 0, then the scnes

(of- 4.2,(15))

w = (lfz)v Eo ("+;' l)z’*' =2+ (i’)z‘+'+(v'|2'l)z"+’+...
have to be substituted in the series exp w = 1+w+Luf+..., which
yields

L (e 24 28+...) + o (B+24384..) + gy(+324+..) +
3 13
= 14z+ ?Za_i_an_i_.“,

where it is not immediately possible, however, to perceive the for-
mation of the later coefficients.

4. If the “outer” power series is everywhere convergent, as in the
preceding example, then the hypotheses of the theorem are satisfied
for all |z| <r. If the “inner” series is also everywhere convergent,
then the hypotheses are satisfiedforall z inthe plane. Thus we find,
e.g., the expansion

exp () = ¢ = -V =

1
=¢ [1+(Z+§§Z8+...) + %(Z+§1§Z8+...)’+...]=

= e-(l+z+z"+%—z“+...).

5. The foregoing examples show that it is advantageous if ¢(0) = 0,
so that the inner series begins with a,2+... .
6. The examples in 3 and 4 may also be obtained by means of the

respective transformations exp (z+22+...) = ¢+ ...,
PLE T o R

7. Further examples will be given in chapter 6.
As an example of a more general character, we consider the ex-
pansion in a power series, of the reciprocal value of a power series.
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Theorem. 2, Let
(15) Za2" = g(z)

be a power series with a positive radius. Then, under the sole assumption that
ay#0, 1/g(2) can also be represented by a power series with a positive radius:

(16) l/g(2) = fie) = Eauc

Proor. If gy#0, then we may write the series for g(z) in the
form ag(14a;z+...). Thus we see that it suffices to prove the theo-
rem for the special case 4, = 1. The assertion then reads, if we make
a change of sign: If

(17) w = ¢(2) = z+a+...

has a radius r>0, then there exists a power series Xc,2" = 1 +-6,2+¢323+. ..
with a radius v’ >0 such that, in |z| <7',

(18) T}(l) = l4cz+c2+-... .

Proor. For |w| <1,
1/(1-w) = 1+w+ut+....
In this expansion we may substitute for w, according to Theorem 1,

the expansion (17), and we immediately obtain, in the sense of that
theorem, the expansion (18). It is certainly valid for all those z for

hich
wie |ax2| + a2 +...<1,

which is certainly the case for all sufficiently small |z] because of the
continuity of the power series on the left side of the inequality sign. The
expansion (18) therefore has a positive radius 7, and this already
completes the proof of the theorem.

If we wish, more generally, to derive the expansion (16) from (15)
with 4,5%0, then we have to expand

1 1 1 ®
19 —_— —
19 &z) 4 1—(—a—1z—ﬁz"—...) '§°m"
G Gy

in the sense of the proof just carried out.
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In order to obtain this expansion, as already stressed in Remark 1
we shall not use the general method presented in the proof of Theo-
rem 1. On the contrary, once the existence of the expansion (19)
has been guaranteed, it suffices to set down the relation

(Bg+ @z +as3+...) (Go+ez+cd+...) =1

with “undetermined coefficients” (¢f. Remark 3 after Theorem 2 in
4.2). This yields, aceording to the identity theorem, the linear
equations

L2

1
@160 +oty 0

(20)
aco+ta, 6,+...4+a¢, =0

The coefficients ¢, ¢;, ¢, ... can be calculated! from these equations
successively and unambiguously, since, after the solution of the 0% to
the (n—1)" of these equations, the n™ equation contains only the single
unknown ¢, with the nonzero coefficient 4,. Whereas no synoptic
formulas for the ¢, are obtained in this way, the solution of the 0*

to the n® equations by Cramer’s rule immediately yields, after a slight
1

transformation, in addition to ¢, = w’
: 4 a0. . 0
-1)* ... 0
@) e (8% O
a- a--l a],

forn=1,2,....
The following is a particularly important example of such a division:
The problem is to develop
Z 1
es—1

(22)

- z | 2
1+ 57 +57 +oo-

1 We also call (20) recursion formulas, since they base the calculation of ¢, on the
previous calculation of ¢, ¢, +..y Oy
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in a power series. For historical reasons it is customary to denote it by

B B, « B,
(23) Bo+—1—;z+ 2—;z“+... =3 e

The recursion formulas (20) read in this case: B, = 1, and, for » =1,

1 B, , 1 B 1 B,
wr ot Tttt
or, if we multiply by (n+1)!, '
1 1 1
24) ("g‘)Bo+("T)Bl+...+("':)B.=O.

These equations are casier to remember if we replace the B, in them
by B*. Then they assume the very short form

(25) (1+By+! - B+ = 0.

These equations, however, are to be taken only symbolically, i.e., they
go over into the true equations (24) only on the basis of the agreement
that, after the binomial theorem has been applied to (1+B)"*!, we
again replace B® everywhere by B,. From these equations we find,
by simple calculation, for the first few B,, the values

B,=1, By=-}, By=3}, By=0, B,=-4%, By=0,....

They are, as the calculation shows, well-determined rational numbers.
They are called the Bemoullian numbers. Their calculation offers no
difficulties in principle. They may therefore be regarded as “known”,
even though their values cannot be specified by means of a simple
formula—except, say, by means of a determinant such as in (21)—

and they do not exhibit any simple regularity at all. Since ﬁ + %

is, as is easily verified, an even function, we have By = By = ... = 0.
For the next few B, with even v, we find

By=25, By=—o, By=+v%, Bu=-2%%. Bu=%-.-.
The problem of expanding 1/cos z ina power series can be handled
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quite similarly. Since the function is even, we may set down the
relation with undetermined coefficients in the form

1 $ v El\' v
(26) = B

cos 2 =0

which will converge for sufficiently small |z|. The numbers E,, ob-
tained are called Eulerian numbers. From

(1-% + & ) (E.,—%z* + A+ ) =1,

weget Ey =1 and, for v 2 1, recursion formulas, which, after multi-
plication by (2v)!, may be written in the form

@7) E,,+(22")E,,_,+...+E., — o0,

or symbolically (see above) in the form
(E+1yY+(E-1 =0

whichis validforall p =1, 2, 3,.... Thuswehave E, =F; =E;=
=...=0 and
E,=1, E,=-1, E,=5, E;=-61, ....

According to (27), these Eulerian numbers are rational and integral,
and may easily be calculated and, accordingly, regarded as “known”.
Like the Bermoullian numbers, however, they obey no simple law.

4.4. The inversion of a power series

As the last investigation concerning power series, we shall discuss
the formation of the inverse power series of a given one. Once more let
() w =f(2) = wo+a(2-20) +aa(2-20) +. -

be an arbitrarily given power series with the positive radius 7.1 To
what extent then is z determined when w is given, that is to say, the

1 Tt is useful, for what follows, to denote the constant term by w,. It is the value
of w = f(z) for z=2z,.
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equation w = f(z) (uniquely) solvable for z, given w? We shall show
that under the sole assumption that g, %0, to every value w lying
sufficiently close to w, there corresponds precisely one value z lying
close to Z, such that f(z) = w. This value z is then, under the indi-
cated restriction of position of w and z, a single-valued function
z = g(w), so that for all these z and w,

(2) flgw)=w or g(fl)) =z

The function z = g(w), often also—interchanging the letters 7 and w
—the function w = g(z), is then called the inverse function or simply
the inverse of f(z). Thus, e.g., the functions

_2z-1 _ w-l
w——z:l— and z—;_—2, (Z;él, w5é2),
or 2:__11 and %, are inverses of each other. The elementary functions

¢ and log z, 2 and 4/Z, sin z and arc sin 2,

discussed in chapter 6, are likewise pairs of inverse functions. If the
one is denoted by fand the other by g, then, with proper definition of
these functions, equation (2) invariably holds for every z, w in certain
regions of the z-, w-plane, respectively.—Following these preliminary
remarks, we prove

Theorem 3. Let (1) be an arbitrary power series with the radius r>0.
Then, under the sole assumption that a, 50, there exists precisely one power
series
3) 2 = Zo+by(w—wy) +by(w—wp)*+...
with a positive radius r', such that the functions represented by (1) and (3),
with z and w restricted to sufficiently small neighborhoods of zy, w,, respec-
tively, are tnverses of eack other. We have, moreover,

by = 1/ay, ice., g'(wy) = 1/f"(20)-
Proor. Here again it is no restriction to assume that z, = w, = 0.

Similarly, the assumption 4,=1 also involves no restriction.
For if a, # 0, then a,z+44a,2*4... can be written in the form
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(a2)+ % (42)*+.... Ifwenowsetaz =2/, %- = a,, then the power
1 1
series goes over into z'+a2'*+..., which acquires the desired form
if we drop the accent. Hence, let there be given the power series

(4) 2+aylt a2 ...

with the radiusr > 0. Then we have to show that there exists precisely
one power series

(5) 2 = wtbgP+but+...

with a positive radius 7/, such that the functions represented by them
are inverses of each other, so that, in other words,

(6) (gt +...) + (b .. ...

goes over into the power series w+-0+0+4-... = w if (6) is ordered, by
virtue of Theorem 1 in 4.3, according to increasing powers of w and,
naturally, the hypotheses of that theorem are satisfied.! To prove
this, we show first that if there exists at all a power series (5) with the
required properties, then this power series is uniquely determined.
Now the substitution of (5) in (4) in the sense of Theorem 1 is cer-
tainly permissible for all sufficiently small |w|. If we set, somewhat
as in 4.3,(7),

@) (wHbgup+...)* = w'+b, , @t 4. +b 0" +...

(so that, in particular, b, =1, b,=0 for p<v, aswellas §,,=5,,
by =1), then, if we collect the terms in (6) involving #”, =2, 0 must
appear as coefficient. This yields the equation

ab,+...+ab,+...4+ab, =0, (n=2),
or,since b, =1, b, =0,, 4, =1,
(8) 8,8y byt Fab, ... Fagbg, b, = 0.

These equations are again recursion formulas for calculating the 5,.

t Since we introduced z as an abbreviation of a,z, (5) has to be divided by
4, to obtain the inverse of the series 4,z +a,*+... considered before. Finally, z
and w have to be replaced by (z-2z,), (w-w,), respectively, in order to get the pair
(1) and (3) of mutually inverse power series, for which, then, b, =1/a,.
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For we read off from the formulas 4.3,(7) for calculating the b, —we
have only to replace a there by )—that, to determine

by, = by 1 +bebyst...+b, gbs+b,, (n=23,4,...1,

it is only necessary to know by, ..., b, ;, and also, that to calculate the
b,., (v>2, n=v), it is only necessary to know b, ..., b, ;. Hence,
if these are already known, then (8) immediately and unambiguously
yields the value of 5,. We obtain

b’=_a’, ba=2a§_as’ cee .’

These calculations, however, can be carried out in every case (i.c.,
without regard to the convergence behavior of (5)). We say: There
exists precisely one power series (5) formally satisfying the conditions
of the problem. The proof will be complete as soon as we have shown
that this formally acquired series possesses a positive radius.

This can be done as follows: We choose any numbers «, = |a,|,
(v=2,3,..), e.g., the numbers m/p", where p > 0 lies in the interior
of the circle of convergence of (4), and m denotes the absolute value of
the largest term of the null sequence {a,¢*}. We then carry out exactly
the same calculations as we made just now, starting merely with the
series

(4) z-ad ...
instead of (4); let the series
(5" w+ B+ Byr®+-...

be the series thus obtained instead of (5). The recursion formulas for
calculating the B, read in this case: B, = a4, and, for n =3, correspon-
ding to (8),

(8') Bu =au+a'n—l B--l,-+"'+aiﬂh’

where the B,,, in analogy with the b ,, are defined as the coefficients

! We have by = b, =1, — as can be read off immediately from (7).

* For small values of n, this calculation presents no difficulty and is recommended
to the reader as an exercise. For larger n, it very soon becomes obscure. Satis-
factory formulas expressing the b, in terms of the a, are not known.
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of the v* power of the series (5), whose convergence for small |w| will
be shown in a moment. This shows (inductively) that the B,,, and
hence also the B,, are >0, and the |5,| are <B,, (n=2,3,...).
With the choice a, = m/fp® that we made, (4’) has the positive radius
¢, and the function represented by this series in || <p is the function

2 Z
w=z—m-§(l+?+...) =z-m

ple-2)°

The inverse of this function w = f{(z), however, can be obtained—
here we anticipate several simple matters which will not be discussed
until chapter 6—directly by solving the quadratic equation

(m+p)®—plptw) z + Pw =0
and we find that

o [ w V’ 9(2m+p) w’]
z= |1+ B_Y1-22TR) L 2
Tmte) | b ¢ i
where, for small ||, that value of the square root is to be taken which
lies close to 4-1. If we set the zeros of the radicand, i.e., the values

(2m+p) £2vm(m+p),

where the last root is understood to be the positive real value, = u,,
ws, respectively, the radicand may be written in the form

(-2)0-2)

The values w, and w, are both positive and real. Thus we have

_ " | e (1 __‘i)*(l __‘i)*
¢ 2(m+p) [ + P w wy/ |
Now in 6.5 it will be shown that the function (1-w)}, taken to mean

the square root of (1-w) lying close to 41 for small |»|, can be
expanded, for |w| <1, in a power series beginning with
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which, moreover, (except for the initial term 1) has only negative
coefficients. Hence, as a little calculation shows, z can be expanded,
in accordance with

<= Tare) [l+%'(l'2lwl"“) (1'2%_)]

in a power series of the form

2 = w4Bt B ..,

which, as already noted above, has exclusively positive (reai) coeffi-
cients. Since it converges for [w| < min (w, w,), and hence in any
case has a positive radius, this completes the proof of Theorem 3.
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Chapter 5
DEVELOPMENT OF THE THEORY OF CONVERGENCE

5.1. The theorems of Abel, Dini, and Pringsheim

In this section and the next, we again deal with series of positive
terms (¢f. 3.1-3. 3) In 3.3 we were able to deduce the convergence

behavior of Zm from the convergence behavior of Z%. Some-

thing similar holds if we start with an arbitrary divergent series Xd,.
In 1867, U.Dint proved the following theorem:

Theorem 1. If 2d, is an arbitrary divergent series of positive terms, and
if D, are its partial sums, then

d, .
(1) %
Proor. In case a =1,
d, o o Gttt dy D
v v v =1- v,
Dv+1 + + v+p _ Dv-w Dv+9

For every fixed v, thisis > } for all sufficiently large p (because D, —oco).
Hence, according to the second main test, our series (1) is not con-
vergent. For a<1 it is a foritiori divergent.

The convergence assertion of the theorem is a little more laborious
to prove. It is contained in the following somewhat more general
theorem which is due to A.Pringsheim (1890):

Theorem 2. If d, and D, have the same meaning as in Theorem 1,
then the series d,

(2) ED D

vl

is convergent for every 3 >0.

d
! Abel had proved in 1828 that EFL diverges with 3d,. — We assume that
dy>0, so that also all D, > 0. vl
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Proor. Choose a natural number p for which % =y<3. Thenit
suffices to prove the theorem for the case in which the 3 in the theorem
is replaced by y. Since, however, the series X (DY, — D;Y), which
again has positive terms, converges trivially—for, its 2" partial sum
is DY — DY, which, since D,—>oc0, tends to Dg¥—, it would, according
to the comparison test of the first kind, suffice to show that

d, 1

3 =< — (DY, - Dy
®) D, by, =y A=)
or (since d, = D, - D,_,) that

Dv-l l DI—I
(- 5).

If, for abbreviation, we set (D, /D,)Y = x, so that D_,/D, = x*, then
(4) is the same as
1-x* < p(1-2).

This, however, is certainly correct, because 0 <x <1 and 1-x* =
= (1-x) (14x+...+x*'). Therefore (2) is convergent for 3 >0.

The case a =1 in Theorem 1 admits of the following more precise
assertion:

Theorem 3. (Cesdro) If Xd,, (d, =0), is divergent, but if d,|D,—0,
then, for the partial sums of Xd,|D,, we have the asymptotic estimate

d,
(5) bi;+bil+ ...+Eglogbv-

v

Proor. Since g = d,—>0, we have, as is shown by formula (2)

in 6.4 (whose proofr is independent of the present investigations)
d, d,|D,

1~ Tog (D.JD.3)
1-d,

—>1.1

log

! These quotients may be set =1, if d, =0. Likewise, set D_, =1.
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Hence, according to 2.4.2,2, we have also

do+di+... +4d,
log D, 1

which proves the theorem.
Dins (1867) also proved a theorem corresponding to Theorem 1,
starting from a convergent series:

Theorem 4. If ¢, is a convergent series of positive terms, and if
oy = €+6 1+ .. are its remainders, then

G ¢, converges for & < 1,
) TE- =% (6ateusrt-..)* | diverges for @ = 1.

n-1
Proor. Asin the proof of Theorem 1, we have, first of all, for « =1,

n

Cn 4k A e TV Tugk
> =1 = Tar
Te-1 + + Trg k-l - Te-1 Te-1

Since, for every (fixed) #, £ can be chosensolargethat 1—(r, /r, ) >1,
our series is divergent for a =1. This holds a_fortiori for « >1, because
r, <1 from a certain stage on.

If @ <1, then we choose the natural number p so that, with y = —l-,

4

we have a <1-y. Since r, <1 from a certain stage on, it suffices,
then, to prove the convergence of the series

2( cv)l—'r =zfv_|—fv -1 (Y =‘1")

'wl'-l Ty p
On account of r,\\0, X(r7,—7?) is trivially a convergent series of
v 17y Y g
positive terms. It therefore suffices to show that, from a certain stage
on,

Tva— 71y . rI-l Sl
T o Y

or, if we set (r,/r, ;)Y =, that
(1-5) < p(1-9)-

This is certainly the case, however, because 0 <y < 1.

(rI-I - ,3) ’
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5.2. Scales of convergence tests

The theorems in the preceding section are of importance in various
directions. We base our explanation of this on the following definition:

Definition 1. A4 convergent series Xc, of positive terms is said to converge
faster or better than another convergent series Xc, of positive terms (or the
latter is said to converge slower or worse than the former), if—uwhere, as
usual, r, and 1, are understood to be the respective remainders of these series—
rjr.—>0.1 ~

Likewise, of two divergent series X.d, and Xd, of positive terms, the first
ts said to diverge slower or more weakly than the second (the latter to diverge
Sfaster or more strongly than the former), if s,[s.—O—uwhere s, and s, are
understood to be the respective partial sums of the series.

In this connection we have the following simple

Theorem 1. If ¢ [c,—>0, then ¢, converges faster than Xc,. If
d,|d,—0, then Xd, diverges slower than Xd,.
Forif ¢, <ec, for v>u, then, for every n>p,
Te _ Cop1FCopat---
T ot upat. <
and hence r,/r,—>0. On the other hand, d,/d,—0 immediately im-
. plies, according to 2.4.2,2, that also

dotdytootdy _ s,
do+d\+...+d, s,

According to this, Theorem 1 in 5.1 asserts, in particular: For every
divergent series Xd,, there exists a more weakly divergent series
Xd,, namely, the series with d, = 4,/D, .

Likewise, Theorem 4 asserts: For every convergent series 2¢,, one
can find a more weakly convergent series Xc,; ¢.g., the series X¢, of
the Theorem 4 just cited with an a in 0 <a <1, for then ¢jc, =
= (¢,+ 6, a+-...)* > 0.

1 This limit need not exist; therefore, of two convergent (divergent) series, the
one need not always converge (diverge) faster than the other.
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With the aid of these theorems one can start with an arbitrary con-
vergent or divergent series and form scales of series that are more and
more weakly convergent or divergent, respectively. If we begin with
21 = 141+..., say, then we obtain, as in 3.3,(5), successively the
divergent series

1 1 1
27’ zvlogv’ zvlogv logyv’
and, for « >1, the convergent series

1 1 1
v’ zv(log-v)" zvlogv(log,W‘""'

(Here the D, were replaced by asymptotically equal values, which has
no effect on the convergence behavior.) Each of these series is more
weakly divergent or convergent, respectively, than the preceding one.
If we choose them as comparison series in the convergence. tests of
the first and second kind (3.1), we obtain increasingly finer divergence
or convergence tests. Since, however, these series from the third on
diverge or converge extraordinarily weakly, they have, on the whole,
more of a theoretical than a practical value. We shall therefore not
enter more closely into this, but shall only mention the form into which
one can bring these criteria after an easy transformation. They then
constitute an immediate generalization of the ratio test in 3.2: If, for a
series Xa, of positive terms and for a fixed integer k = 0, we have, from a
certain stage on,

a:+1 -1
[a_ +— +

pX

1

et nlogn ... logn

nlogn ] nlogn ... logn

< —a <0, then Xa, is convergent,
f
| =0, then Xa, is divergent.

Of this scale, only the test for £ = 0 and at most that for £ =1
have any practical importance. We shall derive these as well as
several finer criteria pertaining to series of arbitrary complex terms,
independently of the foregoing one, in the next section but one. These
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investigations will be preceded in 5.3 by some auxiliary considerations
which will also be of importance later on.

5.3. Abel’s partial summation. Lemmas

1. Let {a,} and {§,} be any two sequences (now once more with
arbitrary complex terms). Let ¢ be any number, and set

a+ay+a6,+...+a, =:\'n (V=0: ,2,..; -r.l.l =a)'
Then, for every integral p=-1 and p =1,

wtp wte , ,
(l) ) z avpv = z ‘rv(pv_pv-pl) _‘ul’u+l+-'u+ppu+p+l'
. Vel vl

In particular (up=-1, p+p==2, ¢=0, and,asusual, s, =4+
+a +...44a),

(2) vgoavpv = vgo‘rv(pv_pv+l)+sup-+l'

It is customary to call the formulas (1) and (2) the formulas for Abel’s
partial summation. They correspond exactly to the formulas for inte-
gration by parts.

The proof is obtained immediately by setting a, = (s,—5,,),
(v=0, 1, ...), in the sum on the left, and then collecting the terms
containing the same factor s,.

Formula (2) yields at once

Theorem 1. A series of the form Xa,p, is convergent, if, with s, =
= ay+a+...+4,,
(3) the series s, (p,—P, . .) converges and if at the same time

4) the sequence {s,p,, ,} converges.
For then the right side of (2), and with it the left side, tends to a limit
as n—>oco.

Lemma 1. Let X2, and Xb, be any two series whose terms are

different from 0. If the sequences {p,} = {a,/b,} and {§;'} = {b,/a,}
are both of bounded variation (see 3.5, Definition 2 and the subsequent
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remark) and if they both have a limit different from 0, then either
each one of the two series, or neither one of them, is (a) convergent,
(b) absolutely convergent, (c) divergent with bounded partial sums,
(d) divergent with unbounded partial sums.

Proor. We denote the respective partial sums of Xa, and X5, by
5,5 £,. Because of the symmetry in the assumptions and the conclusions,
it suffices to argue from the series Xb, to theseries Xa,. Suppose, then,
that (¢) Xb, is convergent. Then the sequence {t,} is also convergent,
and therefore bounded. From the absolute convergence of the series
2(p,—p,,1) and the resulting convergence of the sequence {,}, it now
follows immediately that the right side of (2), and with it, also the
left side, tends to a limit as n—>oco. (b) Since {|p,|} is of bounded
variation if {p,} is?, the correctness of (b) follows in the same way.
If the sequence {¢,} is divergent but bounded, than the first term in
(2) tends, as before, to a limit as n— oo, the second, however, does not,
but remains bounded. This proves (c). Finally, (d) is merely the
negation of (a), (b), and (c).

Lemma 2. Let X, and ¢, betwo absolutely convergent series
(of complex terms) whose terms are all <1 in absolute value, and let
¢ and ¢’ be two arbitrary numbers different from 0. Then the sequences
of numbers

p- =¢ 'vl;-[o(1+cv)’ q- = (.'" Ho(l-l-(.';)—l, and p-qu’ (" = 0’ l, "')’
are of bounded variation and their limits are different from 0.

Proor. According to 3.7, Theorem 5, the sequences {,} and {g,}
are at any rate convergent. They are therefore also bounded. By 3.7,
Theorem 1, their limits are different from 0. From

";+l
v~ Py = =P, v =4y = g
p I’ +1 I’ +1> q 9v+1 qv 1 |‘v+1’

and the fact that ¢,—>0, we can now read off, that the first two se-

! We have only to replace a, by b, and correspondingly s, by & in (2).
* For we have |Ipyi=|pv41ll = [pv=bv+1l-
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quences of the lemma are of bounded variation. That the third is-
then follows from

by _pv+l Qv = (pv_pv-l-l)qv + pv-l-l(qv_qw—l) .

Lemma 3. Let Xa, and Xb, be two arbitrary series whose terms

are.different from 0. From a certain stage on, let
Gar 2% b 2

(5) a, =1 v +‘v’ bv =1 v + €y
where Z¢, and XZ¢, are absolutely convergent series. Then the series
2a, and Xb, satisfy the hypotheses of Lemmal, i.c., the sequences
{a,/b,} and {b,/a,} are of bounded variation and their limits are
different from 0.

Proor. Choose m solargethatfor v>m (5) invariably holds, that

cv

<1, and &

<1, and that the corresponding relations

-4
al<1, |2

hold for the ¢,. Then, for n =m,

bs = au- I (1_%4.;,) —a.- I (1—1)_1'1 (1++%)
v

and correspondingly
b-+1 = bm' f[ (1—%) I!I (1+" & )

]
v, vam lT

Since the series X, | (l -2} and X,/ (l -2} converge absolutely, the

correctness of the present assertion follows immediately from Lemma 2.

. 5.4. Special comparison tests of the second kind
" We prove at once a very far-reaching test of the second kind which
goes back essentially to XK. Weierstrass: 1

! Journ. f. d. reinc u. angew. Math., vol. 51 (1856), p. 29; Werke, vol. I, p. 185.
Weierstrass assumed instead of (1) that a,,/a, could be developed ma power series
l—% + %+... of ascending powers of 1/v. The above form of the theorem and its
quite considerably simplified proof compared to Weierstrass's is due to H. Jehle,
Math. Zeitschr., vol. 52 (1950). Cf., in this connection, also R. P. Agnew, Pacific J.
Math., vol. 1 (1951), pp. 1-3.
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Theorem 1. If the terms a, of a given series La, of complex terms possess,
Jor v =m, a representation of the form

(1) -“;—+'= 1-:} +¢, with  ZTlg|<+oo,
then Ta, is convergent if, and only if, R(a) = B >1. If this is the case,
then Xa, is actually absolutely convergent. If R(a) =1 but « # +1, then
2a, is divergent but has bounded partial sums. If a =1 or R(a) <1, then
Xa, is divergent and the partial sums are unbounded.

Proor. We consider first the casea = +1. Ford, = 1jv, (v = 1),
we may set

bv+| _ v _
2 b, — v4+1

1—%+c‘, with X |¢| <oo.!

Thus, for « = +1, Xa, has, according to Lemma 3 and in the sense
of Lemma 1 in 5.3, the same convergence behavior as X1/v, i.e., Xa,
is divergent and the partial sums are unbounded.

If, now, a # 41, so that 8 = 1-a % 0, then we associate with
the series Xa, the series X5, for which

(3) b, = M—ePhat, (v=1,2,...;h,=l+%+...+—:—).

An easy calculation shows that we may set

(4) b‘;“ =1 —%+ ¢, with X|¢|<oco.?
Therefore Za, has the same convergence behavior (in the sense of
Lemma 1 in 5.3) as theseries Xb,. The latter’s partial sums, however,

are "
= 3 b= -k,
vl

! We have ¢, =1/v(v+1).
* For we have

1 3 1
by .1 _ 1-e8/(v+2) Ty +2(v+2)'-+o(—vT) =1 £+O(—I—) 1%
b, _SMoID_]- 1 __38 Ty =5 w) =1-7 t+a.
v val —2(v+l)'+o(v')
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Thus, since #,,,—> + oo, Xb,, and hencealso Xa,, isconvergentif,
and only if, R(1-a) <0 or R(a)>1. If R(a) =1 (but a % +1),
then l-a = #y is a pure imaginary and {¢”"*+1} tends to no limit as
n—> oo, but remains bounded. If, finally, R(a) = <1, then

e 1| = (B bt 4 oo,

the partial sums are unbounded. Consequently the same also holds
for Xa,.

In order to prove, in conclusion, the absolute convergence of Xa,
in the case R(a) = p>1, we associate with it the series X, with
b, = e, It, too, as in (4), satisfies

) ”;:1 —e = 1-%4d,  with  Z|g| <oo,
so that, by Lemma 3 in 5.3, either both Xa, and Xj, are, or both are
not, absolutely convergent.

For the second series, however, |5,| = ¢®, and hence

L -84, with Zif <o
Since > 1, X |5,| is therefore convergent by the part of Theorem 1
already proved, and consequently X |a,| is also convergent.

This completes the proof of Theorem 1. We shall supplement this
theorem by means of several remarks and corollaries.

1. Under the assumption of Lemma 1 in 5.3, cither both the series
X(a,~a,,,) and X(b,—b,,,) are or both are not absolutely convergent.

Proor. It suffices again to infer the absolute convergence of the
first series from that of the second. That of the first, however, can be
read off immediately from

a,—4,y, = vpv_bv+l.pv+l = pv(bv_bv+1) + bv+1(pv_pv+l)’

since both terms on the right are terms of series which are absolutely
convergent by the assumptions.!

! Since Z|b,—by4)| <oo, lim b, exists, therefore {b,} is bounded.
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2. Under the assumptions of Theorem 1, X(a,—a,,,) is absolutely
convergent if, and only if, R(x) = >0.

Proor. We again associate with the a, the b, = ¢* as in (5).
Then, on account of (1) and (5), the assumptions of Lemma 1 in 5.3
are again (see Lemma 3 in 5.3) satisfied, so that, by the preceding
corollary, X(a,—a,,,) is absolutely convergent if, and only if, this holds
for X(b,~b,,,). Now we have, however,

bv_bv+l = b; = _e""‘v+l’

and the calculation in connection with (3)—3 there has to be replaced
by —« and we have to write b, instead of b,—has shown that X, con-
verges, and then actually absolutely, if, and only if, R(—a) <0, i.c.,
R(x)>0. The same therefore holds for X(a,-a,,,).

3. Under the assumptions of Theorem 1, lim g, = 0 if, and only if,
R(x) >0.

Proor. Once again we associate with the g, the b, = ¢, Then,
on account of (1) and (5) and Lemma 3 in 5.3, a, = b,4,, and
lim p, £ 0. Hence, lim 4, = 0 if, and only if, im b, = 0. This,
however, is obviously the case if, and only if, R(x)>0.

4. Under the assumptions of Theorem 1, X(-1)"a, isconvergent if,
and only if, R(a) >0. (Cf., in this connection, 5.5, Example 5.)

Proor. According to Corollary 3, R(«) >0 isatany rate necessary
for the convergence of X(-1)'a,. If, however, R(x) >0, then, by

(-

Corollary 2, X(a,-a,,,), and therefore also Zo(a,,—a,,+ 1), is absolutely
¢ o

convergent. Since 4,0, we have also |ay|+|ay,,,|—>0. By 3.6,
Theorem 2, we may therefore remove the parentheses in the last
series. This proves the assertion.

5. If, for all v from a certain stage on, we have

Gyt
av

gl—%+c,,, with a >1 and 2 e,| < o0,

then Xa, is absolutely convergent. If, however, from a certain stage
on, we have

| l ’ . ’
\a"a':'\gl——v—+c,,, with || < oo,
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then X|a,| is divergent. These are merely special cases of Theorem 1.
A special case, in turn, of 5 is
6. J. L. Raabe’s test (1832). If, from a certain stage on, we have

(lav+l _
a,

For the assumptions assert that, from a certain stage on,

l) .y| & -a<-l, then X|a,| is convergent,
=-1, then ZX|a,| is divergent.?

Qv+1

v

<1-%

- v

with a >1, >l——\l'—, respectively. ?

7. Another special case of Theorem 1 is the test formulated by C. F.
Gauss (although he gave it only for real series): If the quotient a,,,/a,
can be written in the form '

Gy _ Vbt b
a, Vo4 5

then Xa, is absolutely convergent for R(b;,-5,) >1, divergent for
R(b;-b,) <1. For we have

&=1_M+o(_l-)
vi/®

a, v

(k = 1, integral),

5.5. Abel’s and Dirichlet’s tests and their generalizations

In 5.4 we associated with a series Xa, the series Xa p, and derived
assertions about Xa,p, from assumptions concerning Xa, and {p,}.
Since Xa,p,, for a given Xa,, can be identical with any other series

! Basically, 3 and 6 arc only tests for series of positive terms,

3 A direct proof of Raabe’s test can be given as follows: Weset |a,| =a,. Thecon-
vergence assumption thensays that va, .| < (v-1)a,—(z-1)a, for v>p and a>1.
According to this, the sequence {va, |} is monotonically decreasing and therefore
tendstoalimit Y2 0. Hence, Zy,, with y, = (v-1)a,—va, ., is trivially convergent,
and, since a,,gL"l, 30 is Za,. In a similar manner, the divergence assumption

P
implies that (v—1)a,-va, . <0, sothat {wa, |} increases monotonically, and there-
fore eventually remains greater than a fixed number vy >0. Thedivergence of Za,

now follows from a, >—I—.
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Zb, (we have merely to set p, = b,/a,), we may designate assertions
of the kind just mentioned, as comparison lests in the extended sense. We
shall derive a few such tests and give several applications of them.

Theorem 1. (Abel, 1826.) Xa,p, is convergent if Xa, converges and
{#,} is monotonic and bounded.—We prove at once the somewhat more
general.

Theorem 2, (Dedekind, 1863.) Xa, p, is convergent if Xa, converges and
{p,} is of bounded variation.

The proof follows 1mmcd1atcly from 5.3, Theorem 1 (¢f. also the
proof of Lemma 1, (a) in 5.3). For, the assumptions imply the
(absolute) convergence of Xs,(p,—$,4+,) and the convergence of the
sequence {5,f,41)-

An easy but quite essential modification is furnished by the following
tests:

Theorem 3. (Dirichlet, 1863.) Xa,p, is convergent if Xa, has bounded
partial sums and {p,} is a monotonic null sequence.—And somewhat more
generally:

Theorem 4. (Dedekind, 1863.) Xa,p, is convergent if Xa, has bounded
partial sums and {p,} is a null sequence of bounded variation.

The proof again follows directly from 5.3, Theorem 1. For, the

assumptionsonce more imply the (absolute) convergence of s, (p, £, . 1)
and the convergence of the sequence {s,5,,,}.2

Applications and examples
1. According to Theorem 1, the following series, e¢.g., converge
with Xa,:
v 1y a, a,
Zayx, (0<x=1), Xv/v-a, Z(l+—v—) a,, ET’ zlogv,etc.
2. B2, |z| =1, z+#]1, has (see 2.6.1,2) bounded partial sums.
Hence, for these z (i.c., for all z5% 41 on the boundary of the unit

! And assume that the terms a, # 0.
* Note that in Theorems 3 and 4, less is assumed about Xa,, and therefore more
is assumed about {p}, than in Theorems 1 and 2.
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circle), Xa,2® is convergent if {a,} is a null sequence of bounded
variation, in particular, a monotonic null sequence.

According to this, the series X %v, ¢.g., which has the radius 1 and,
as will be shown in 6.4, represents log ﬁ, is still convergent for all

z# | on the boundary of the circle of convergence. The same holds,
2’ > 2’

logv’ “ loglogv
this application furnishes a new proof of Leibniz’s test (3.4, Theorem 2).
It shows also that a series of the form X(-1)a, is already convergent
if the 4, (real or complex) form a null sequence of bounded variation.

say, for the series X

, etc. For z=-1 and a\\0,

Since X (-1)"2* ( = 1—+l?) has bounded partial sums for every

|2| <1 except for z = =+ i, it follows analogously that the arc-tan
1
series (see6.6) X(-1)" ;:' j_

and hence, in particular, at all boundary points of the unit circle dif-
ferent from =+ i.

converges exactly for the z just mentioned,

3. Ifin 2 we set z = cos x+1i sin x and separate real and imaginary
parts, it follows that, for every null sequence {a,} of bounded variation,
the series Xa, cos vx and Xa, sin vx are convergent for every real x—
the first possibly with the exception of the values x = 2k, (k =
=0,4+1,+42,..).

4. A series of the form ﬁ% is called an (ordinary) Dirichlet series.

vm=1l
For such a series, the following holds: If the series converges for
Z = 2, or if it has merely bounded partial sums for this value of z,
then it is convergent for every z for which R(z) > R(z,).* Since
L i
p)] = z il c;n the basis of Theorem 4 we have merely to show
_ that the sequence {v‘—_‘.} is a null sequence of bounded variation if

z—29 = d has a positive real part R(d) = 3. On account of'%‘ =

! Visualize this condition in the z-plane.
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=v_18_)0 for 3>0 as v—>oco, only the absolute convergence of
1 1 .
z (F—W) remains to bc. proved. We have
1 1 1 1\~<
=5 [1-(1+3)

4
v

’

)
and since, by 6.3 and 6.4,(1), 1-(1+%) —240 (%) it fol-

lows further that
1 1 d| 1
| = +0 (), (8>0).
The infinite series with these terms, however, is convergent.

5. In connection with the theorems in 5.4, we obtain the following
far-reaching

Theorem. If the coefficients of the power series Xa,z" have the property
that it is possible to set

Gvir _ «
o = 1- T-H"’
with an absolutely convergent series Xc,, then the power series Xa,2* has the
radius | and, at the boundary points |z| = 1, it is

a) absolutely convergent for R(«x) >1,

b) conditionally convergent for 0 <R(a) < 1 exceptat z = +1,

c) divergent for R(a) < 0.
a4 zv+l

a

Proor. Since 7 | |2|, ourseries has the radius 1. There-

maining assertions, however, follow easily from 5.4, Theorem 1 and
its corollaries: a) If R(«) >1, then according to those theorems Xa,
is absolutely convergent. If |z| = 1, then the same holds for Xa,2".
b) If 0 < R(x) < 1, then, by Corollaries 2 and 3, {4,} is a null se-
quence of bounded variation. Since Xz' has bounded partial sums
for every z# 41 with |z| =1, Xa,2’ converges for these 2 according
to Theorem 4. For z = 41, however, we are dealing with the series
2a,, which, under the present assumption, diverges, according to 5.4,
Theorem 1. c) If, finally, R(x) <0, then, by Corollary 3 of that
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theorem, {a,} is not a null sequence. The same holds, then, for
{a,2"}, if |z] =1, sothat Xa,z® does not converge.

6. By means of the preceding theorem, the behavior of the series
2(%)2', which we shall meet as the binomial series in 6.5, is clarified
on the boundary of its circle of convergence |z| <1. Here we set
1)) = a,44, sothat,for v=1,

a Srt g at1
a, v

The preceding theorem therefore immediately yields: a) If R(«x) >0,
then the series is absolutely convergent at all boundary points |z| = 1.
b) If -1 <R(x) <0, then it is conditionally convergent at all these
boundary points exccpt at z = —1, where it diverges (with bounded
partial sums). c) If, finally, R(«x) < -1, then it is divergent at all
boundary points.

5.6. Series transformations

In 3.6, Theorem 9 (Corollary 3) and Theorem 10, we represented
each term of a series Xa, as the sum of a convergent series (cf. the
series (24) there), wrote down these representations «, = Xa,, in rows

one under another, and then derived a new series by means of colum-
nar summation. We shall now pursue this idea further in a somewhat
different form.

To this end, we begin with an arbitrary series Xa,, introduce a
matrix B = (b,,), and set, somewhat as in 3.5, (2) and under the
assumption of the convergence of the series that appear,

(B) vi::ob_,,a,, = a, (n=0,1,2,..)

In such a case we shall say, for brevity, that Xa, has been transformed
into the series X«, by means of the transformation (B).!
We seek conditions under which such a transformation is permanent,

1 We have precisely the situation presented in 3.6, Theorem 9, Corollary 3, if
we choose the by, so that b..a, is equal to the ayy there. This is always possible,
provided that a, 0.
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i.c., changes a convergent series Xa, into a series X, that is again
convergent and that also has the same value. In this connection,
we have, in analogy with Theorem 4 in 3.5, the following

Theorem 1. Let B = (b,,) be a matrix which, if we set

(1) 35, = B,, (n,v=0,1,2,..),

p=0

satisfies the two conditions that for a suitable M > 0

@) §o|B_v-B_,v+,| <M fr 2=0,1,2,..2
and that
(3) lim B,, = i":ol;_v =1 foreweyv=0,1,2,...3

R—>00

If Xa,, with the partial sums s,, is an arbitrary convergent series, then,
Joreweryn=0,1, ...,
(4) aﬂ = zblvav

exists, and X, is again a convergent series. Moreover, T, = Xa,.
Proor. We show, first, that (2) and (3) imply that, for a suitable X

and all n, v=0,1,2,...,

(5) |B-v| g K'

Now, according to (2), Z(B,, - B, ,,) = lim (B,,— B,,) exists and
(6) |Bo-B,| =M foral a,v=0,1,2,....

By (3), however, lim B,y = | exists, and hence {B,;} is bounded.

Therefore, by (6), |B,,|, for all n,v =0, 1, ..., also lies below a fixed
bound, i.c., (5) holds.

! In words: For every fixed n=0, 1, ..., {B,.,,} is a sequence of bounded varia-
tion, and the total variations of all these sequences lic below a bound M independent
of n.

* In words: The column series of the matrix are all convergent, and all have the
value 1.
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Now

6, = oyt +...+a, = ?(bm+blv+"°+b-v)av = ?B-vav
or

(7) o, = zB-v('v—l_'v)’
if we denote by r, the remainders
7, = 8,41+, F... for v=-1,0,1,...,

so that, in particular, r, = s = Xa,. By the formula for Abel’s partial
summation (5.3,(2) ),

0w 0w
vgoB-v('v—l_rv) = _vgo(Blv_B-,v+l)rv+B-0' §- B-. wt+1 Ty

As p—> oo, this yields, on account of (5) and r,—0, in accordance
with (7),

(8) G, — B-O' §= _vgo(B-v_B-,v-l-l) Ty

The sequence {6,—B,y-s5} on the left thus arises from the null se-
quence {r,} by means of a transformation of the form discussed in
3.5, Theorem 4, with a,, = B,,-B, ,,;. This transformation satisfies
the conditions (N) and (C) there, because the first is identical with (2),
and the second follows from (3), since li:n (Boy=By y41) = 1-1=0.

According to (6), the row sums 4, = Xa,, = lim (B,,—-B,,) are not
V=0

greater than M in absolute value. Hence, by Corollary 1 of Theorem 4

in 3.5, we have (6,—B,y-5)—>0, i.e., o,—>s, since B,,—>l.

Corollary 1. This theorem, just as Theorem 4 in 3.5, is a “best
possible” theorem in the sense that conditions (2) and (3) are not only
sufficient for its validity, but are also necessary. The proof of this, how-
ever, which follows easily from the corresponding fact regarding
Theorem 4 in 3.5, will have to be omitted.

Corollary 2, Since, in the proof of Theorem 1, the quantities 5,,
did not appear at all any more, but only the quantities B,, were used,
we have proved at the same time the following theorem:
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Theorem 2. Lot (B,,) be a matrix satisfying conditions (2) and (3).
If Xa,, with the partial sums s, and the value s, is an arbitrary convergent
series, then, for every n =0, 1, 2, ...,

(9) o= EB.a

exists and the sequence {c,}, in turn, is convergent and has the limit s.

Finally, one can convince oneself without difficulty that no use was
made of the fact that n ranges precisely over the numbers 0, 1, 2, ...,
and it is seen that the following theorem therefore also holds:

Theorem 3. Let {B,(x)} be a sequence of functions defined tn a left-sided
neighborhood, U, of x, (that is, in an interval of the form xo— & <x <x,)*
and satisfying the two conditions

(10) Z1B,(x) - Bualx)| < M forall xinU,
(11) lim B(x)=1 foremyv=0,1,....

If Xa,, with the partial sums s, and the value s, is an arbitrary convergent
series, then, for every x,
(12) o(x) = ZB,(9a,

exists, and the function o(x) converges to s as x—> x4—0.2
Applications
1. If Xa, =5, thenalso Xa, = s, ifweset ag =4, and

_ &+283+...+na,
&= n(n+1)

for n = 1. Here
by, =1 for v=0 and =0 for v>0, andfor n=1 we have

or =0

b = v
™ n(n41)
! Here we may havealso x, = +oco. By a left-sided neighborhood of x, we then
mean an interval of the form x; <x <+oo, where x, may denote an arbitrary
number.
* Le., for left-sided approach of x to x,, +oco, respectively.
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according as 0 <v <nor v>n. Consequently B,, =v(%——”—_|l_—l) =
v

n+1
ditions (2) and (3) of Theorem ! are obviously satisfied, and the trans-

formation is therefore permanent. It corresponds exactly to Caucky’s
limit theorem in 2.4.
2, If Xa, = s, then also Za, = s, if, for n =0, 1, 2, ..., we set

=gl ) (o ()]

(Euler's transformation of series). Here

for v<n, and =0 for v>n. According to this, con-

=1-

b ! (") for 0<v=n, and =0 for v>n.

= a3l |v

Consequently, B,, = 2;291—'*1 (s) for 0<v=n, and =0 for v>n.
An elementary transformation shows that, for 0 <v <n, also

1 n+1 n+1 n+1
B-V_W[(v+l)+(v+2) +o-o+ (”+l) .

This representation shows that B,,, for fixed n, decreases monotoni-
1
cally and tends to zero as v— oo, so that ZV|B_,,—B__,,+,| = 2—2+;+1—l <L

Hence, (2) in Theorem 1 is satisfied. Further, for n>v,

pom el () (1]

and thus tends, for fixed v, to 1 as n— oo, so that (3) in Theorem 1
is also satisfied: Euler’s transformation is permanent.

3. It is remarkable that even some divergent series are changed
into convergent ones by means of the transformations 1 and 2. 1If]
e.g., Xa, = X(-1)", then the transformation 1 yields the convergent
series

1 1 1 1 1 1
gtz 23 tas st 72
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and the second yields the series
3+0+0+... = }.

These remarks are the starting point of the extensive theory of methods
for the summation of divergent series.

4. Abel’s limit theorem (see 4.2, Theorem 6) also follows immediately
as an application of Theorem 3. We have only to set B, (x) = &’
0=x<l, v=0,1,2,...) as well as xy= +1. For then con-
ditions (10) and (11) of the latter theorem are obviously satisfied.
Hence, if Za, = sisconvergent, then o(x) = Za,+" existsin 0 <x<1

—which is self-evident here—and o(x)—>s= Xa, as x—>1-0. This,
however, is Abel’s limit theorem.

5.7. Multiplication of series

In 3.6 we considered the Caucky product of two convergent series
Xa,= A and Xb, = B, and saw in Theorem 12 that this product
2Zc,, (¢, = aoh,+...+ab,), again converges and has the expected
value C = 4B if the two factor series converge absolutely. An
example showed that without this assumption the series X¢, need not
converge at all. We now investigate the question as to whether the
convergence of ¢, can be guaranteed under weaker assumptions
than are made in Caucky’s theorem, and we first prove the following
theorem, which is due to F. Mertens (1875):

Theorem 1. If at least one of the two convergent series Xa, = A and
2b, = B is absolutely convergent, then the Cauchy product series Xic, is also
convergent, and has the value C = AB.

Proor. Let us assume that X5, converges absolutely. We denote
the partial sums of our three series by 4,, B,, C,, respectively. Then
C, = cp+ei+... 46 = aybog+ (aoby+arby) + ...+ (agh+. ..+ 4,b,)
= Aob- +Alb-_1+ vee +A-bo
= 4-B, - (agby+oub, 1+ .. +2bo),
if weset 4, = A—a,, sothat «,—>0. Since 4.B,—> AB, there remains
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to be shown merely that agb,+ab, 1 +...+ 0,0y = v,—>0 if Z|b)|
converges and {a,} is a null sequence. The sequence {y,}, however,
is obtained from {«,} by means of a linear transformation in the sense
of 2.4, Theorem 2 (and Corollary) with the matrix a,, = §,, for
n=0,1,..., 0=v<=n, and =0 for v>n. The two conditions
of that theorem read here

(-] [--] (-]
z |b--| =M, i'e-’ pX lbvl = M’ and p bv = B’
R=my v=0 v=0

both of which are satisfied because of the absolute convergence of
Xb,. Hence y,—>B-0 =0, and consequently C—~4B. This proves
the theorem.

Corollary. As in the case of Theorem 4 in 3.5 and Theorem 1 in
5.6, the present theorem is also a best possible one in a certain sense.
It can be shown (but the proof must be omitted here) that the absolute
convergence of Xb, is also necessary in order that its Cauchy product
with every convergent series Xa, turnout to be convergent. Its value
is then automatically the correct one, i.c., equal to 4B. For we have

Theorem 2. Let Yo, = A and Xb, = B be two convergent series. If
their Cauchy product e, is also convergent, then it has the correct value C= AB.

Proor. We consider the three power series f(x) = Xax", fi(x)=
Xb%, and f,(x) = Xea", for 0 <x<l. They are absolutely con-
vergent in the interval 0 <x <1. Therefore, by Caucky’s multipli-
cation theorem (3.6, Theorem 12), f.(x) fi(x) = f.(x). According to
Abel’s limit theorem (Theorem 6 in 4.2), these functions tend to the
respective limits 4, B, C as x—>1-0. Therefore 4B =C.

There remains the (up to this day not satisfactorily settled) question,
under what assumptions concerning the factor series Xa, and Xb, the
product series X¢, turns out to be convergent. Of the numerous
theorems which provide sufficient conditions for this to occur, we
shall present only the following one, discovered by G. H. Hardy! in
1908:

! The proof that follows was given by E. Landau in 1920.
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Theorem 3. Let Xa, = A and Tb, = B be two convergent series. If
a, = O(&), b, = O(-l;), then Xc,, (¢, = agh,+...+a,by), is con-

vergent and = AB.
Proor. We have
(1 o6+t = u+zvs.aub,,.

If we arrange the products p,, = 4,5, as the elements of a matrix
(fu)» then (1) is the sum of all these elements as far as the a™ diagonal,
which joins the elements p,, and p,,. Setting 7/2 = m, we decompose
the triangle determined by these elements and py, into a square and
two smaller triangles, in accordance with

(2) Zﬁuv = Z puv + Z puv + Z Puv,
HSm, vEm vom u>m

where all the sums are to be extended only over those p and v satis-
fying the additional condition p+4v < n.

The first term on the right in (2) is equal to ‘Em a,- v§..b"’ and there-
fore >AB. It suffices to show that the second and third -0. For
reasons of symmetry, only one of these two sums, say the last, has
to be treated.

To this end, we divide the triangle corresponding to this sum into
two parts by means of the vertical line at v=y=y,, sum in the left
part by columns, in the right by rows, and thus, having chosen a
y=y, in 0= y <n,! set
(3) Ttv=2Xb T aut+ T o X b,

u>m vsy

mREN-Y mcusn-y IS

Here we now choose y =y, as follows: Let
n=G4u+ohst... and p, = Ellfvl’

so that p, >0 (except if, from a certain stage on, all a, = 0, and then
there is nothing to prove) and 0 as n—>co. Then choose y=),

so that 1

_ o%:s,l”‘l = Vo’

1 This representation can be made clear conveniently by means of a little sketch.
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¥, remains invariably <n, but y,— oo, which is obviously possible.
Then the first term on the right in (3) is

s 2 |&l-2. =2v0,

T 0SASy

and thus —0. The second term in (3) is, on the basis of the O-
assumption, and because its second factor —0 on account of the con-

vergenceof Xb,, =0 ( -<§s- l) = o(1), because the sumin parentheses

tends to log 2 (see 2.5, Example 4). Hence, the partial sum in (1)
tends to AB, Q.E.D.
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Chapter 6
EXPANSION OF THE ELEMENTARY FUNCTIONS

6.1. List of the elementary functions

Knowledge of the elementary functions and their power-series ex-
pansions, in the real as well as in the complex domain, will be pre-
supposed here in the main. It is acquired in the real domain as an
application of Taylor’s theorem in the differential calculus; in the
complex domain it belongs to the rudiments of the theory of functions
(¢f. Elem.,! section V). This knowledge will not be deepened here;
rather, only several fundamental definitions and the most important
properties of these functions, in so far as they are of series-theoretical
interest, will be listed, but proofs will only be indicated briefly.

Firstof all, only the two functions z and ¢* need to be regarded as
clementayy functions. All functions, however, that can be obtained
from these two functions and arbitrary complex numbers a, b, ...
by performing the following operations a finite number of times, are
also designated as elementary:

I. Linear combination 4-f(z)+5-g(z) as well as multiplication
f(z)-g(z) and division f(z)/g(z) of two already existing functions
S and g.

II. Formation of the composite function f(g(z)) of two already
existing functions.

ITI. Formation of the inverse of an already existing function.
Here z, of course, must be restricted to those points (regions) of the
z-plane at which the operations mentioned are meaningful (can be
carried out). Several of the functions thus obtained are given special
names:

1 This is an abbreviation of the title of the book referred to above at the end
of chapter 1.
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1. All functions that can be obtained from z by means of the
rational operations I are designated as rational functions (¢f. 6.2).
2. The function defined for all z by the series (see 3.2.1,2)

(1) %—!El+z+§-!-+...

is denoted by exp z or ¢* (¢f. 6.3).
3. The functions

ei¢+e-¢'£ z’ zl

(2) 2 =l—-2—!+ﬁ—+...,
ig _ p-it 3 [

(3) Bl b

. . sin
are denoted by cos 2, sin z, respectively. Further, we set W: =tan gz,
coszZ

= cot z. These four functions are called #rigonometric or circular

sinz

JSunctions (¢f. 6.3). The functions

®) A R S

(5) e‘;r‘=z+%+§—:+”.

are denoted by cosh z and sinh z, and weset %‘;;‘: = tanh 2, ghll‘-‘: =

= coth z. These four functions are designated as hyperbolic functions.
The hyperbolic functions differ only a little (in the complex domain)
from the circular functions, for we have cosh z = cos (i2), sinh z =
= —isin (iz). We shall therefore not treat these functions and their
inverses any further.

4. The inverses of the functions ¢, sin z, cos z, tan z, and cotz
are denoted respectively by log z, arcsinz, arccosz, arctangz,
and arc cotz (¢f. 6.4 and 6.6).

5. The composite function exp (2 log z), (a fixed, arbitrary, com-
plex), is denoted by z* and designated as the general power, and the
composite function exp (z log 4), (4 # 0, arbitrary, complex) is de-
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noted by a4* and designated as the general exponential function; for further
details, see 6.5 and 6.3.

6.2. The rational functions
For an integral £ =0 and |z] <! we found the expansion (see
4.2,(15))
1 _ & (v+Ek),,
o = = &)

v=0
Ifweset (k+1) =—p and replace z by -z, then (1) shows, since
("'i'a) = (-1) (— av—l) (for arbitrary a), that

(-]
for fixed p=-1,-2, ... and |z| <l. Thus, (1) or (2) may be re-
garded as an extension of the binomial theorem to negative integral
exponents p. For positive integral p the series (2) is only formally
infinite; it is thenvalidforall z. For p=0 ityields, likewise forall z
(including z = -1), the value 1.! For further details concerning the
expansion (2), see 6.5.
More generally, for arbitrary 4 and z, 7 @ we have

1 1 1
®) (@@~ (- o) (1 - z—lo)“” ’

a—2
and hence

[} k - v
& o~ a5 (1) (£2) Gemal <le-ab.

An arbitrary rational function, however, may be represented as
the sum of an entire rational and a proper fractional rational function. ®
Since every proper fractional rational function may be represented as
the sum of finitely many partial fractions, i.c., fractions of the form (4),

1 This is in agreement with the definition in footnote 1, p. 159.
* Either onc of the two parts here may =0.
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this points the way to the representation of a given rational function
by means of a power series.

6.3. The exponential function and the circular functions

All further elementary functions can be derived from the rational
functions and the exponential function. We shall list here briefly the
properties of expz, cosz, and sin z that are the most important
from a series-theoretical standpoint.

1. The series 6.1,(1), (2), (3) defining these functions are everywhere
convergent. Since these functions, accordingly, are defined for all £z
of the entire z-plane, they are called entire functions.

2. Itiscustomary tosupplement the definition of ¢* by the following:

Let a be fixed and positive. By a° we mean the entire function
uniquely defined by
1)) a* = exp (zlog a) = %Mz"

3
veo V!

where log & denotes the (real) natural logarithm of a.
3. Forexp z we have (see 3.6, following Theorem 12) the addition
theorem
exp (21+2s) = €Xp 2,-€Xp 25,
and an analogue for p summands. Similarly,
a¢|+h = a*- g,

4. Since the functions mentioned in 1 are represented by every-
where convergent power series, they are continuous, and differentiable
arbitrarily often, for every z, and

(¢5)' = e¢5, (a°)' = a*-loga, (cos z)’ = —sin z, (sin z)’ = cos z.
5. It follows from 6.1,(2) and (3), that
¢% = cos z+i sin 2
for every z. Hence, in particular, for a real y,
¢¥ = cos y+i sin y,
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so that ¢”, and for z = x+iy also
¢* = ¢*-¢¥ = ¢* (cos y+i sin ),

can easily be calculated with the help of ordinary logarithmic and
trigonometric tables.

6. From the second formula in 5 we get—the values of cosy and
siny for y =2r, =, and =/2 will be regarded as known—, in par-
ticular, the important fact that

¢®™ =1 and hencealso ¢*™ =1 for k=0, +1, +2, ....
Therefore

24+ 2 2/ Lz
e = £ = ¢*,

so that the function ¢* has the period 2ni. We have the more precise
result, however, that ¢ = 1 if, and only if, z = 2k=i, with £ = 0,
+1, £2,.... Forif we set z = x+iy, then, by 5 (and by 1.2,(4)),
we must have ¢* = 1 and at the same time cos y+4i sin y = 1. This
is the case forreal x,y onlyfor x =0 and y = 2x.

7. The addition theorem for ¢* leads, without difficulty, with the aid
of 6.1,(2) and (3), to the corresponding theoremsfor cos z and sin z:

€08 (2;+23) = €08 2; €OS Z3 —sin 2, sin 2,
sin (2,+25) = co8 2, sin z,+sin 2, cos Zy.

From these theorems follow, as is well known, all formulas of goniom-
etry, as it is called ; in other words, the formulas for

cos 2z, sin 2z, cos (z+%), cos (z+x), cos (z+2x), ete.

The formulas of real goniometry, therefore, also hold unchanged in the
complex domain.

8. For every (fixed) z, (1+.f_)’ — 2> e

Proor. Expanding z,, for v>2, Dby the binomial theorem, we
may write:

2= l+z+§l-!-(l—%)z’+...+% [(l—%)(i——f—)...(l—k—:l-)]z*+....
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The series is only formally infinite, because, for £ >v, its terms are =0.
The coefficient of 2 is =0 but < % The same is then true of the
coefficient of 2* in the difference

o 1 1 k-1
f—zv =‘§2 k—! [l—(l—v)...(l-T)]Z‘.
For fixed z and a given ¢>0, we now choose a p so large, that
the remainder

2kl _ e
RS

Then, for v>p,
2 1 1 k-1 £, ¢
-2l < T [1 - (1-7) (1 ‘T)]"" + 5.
Now the sum on the right has a fixed number, p-1, of terms, each of
which -0 as v—>o0. Hence, for a suitable y, this sum is <e/2 for

v>p, and therefore
le*-2,| <e for v>p,

which proves the assertion.

9. The important question as to the domain of values of the func-
tion w=¢* is completely answered by the following theorem: For an
arbitrarily given w0, there exists precisely one z whose imaginary
part lies between —x (excl.) and += (incl.), forwhich ¢* = w. The
value w = 0, however, is assumed for no z.

Thelatter assertion follows already from the equation ¢%-¢™* = ¢0=1,
according to which no factor on the left can have the value 0. The first
assertion is verified as follows: If we set z = x+iy, w = R(cos ¢+
+isin ¢), then we are supposed to have

e*=R, ¥ =¢"Y.
The first of these equations is satisfied for precisely one real x, because
" increases monotonically from 0 to co (both excl.) as x rangesover the
real numbers from —co to + oo (both excl.). The second implies that
¢"Y = 1, and hence, according to 6, y = ¢+2kx, (k =0, +1,...).
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If ¢ =am w is fixed, then there exists precisely one integer & such that
y = $+2kn liesbetween —x (excl.) and +x (incl.). Hence, x =log R,
y = am w, provided that the principal value of this amplitude is
taken.

10. The question as to the domain of values of the function sin z
can be answered analogously. In the period-strip —® <R(z) < +=,
sin z assumes every value » differentfrom 11 atprecisely two distinct
points, whereas each of the values £1 is assumed at exactly one point
(namely at =/2 and —x/2). Precisely one solutionofsin z = w liesinthe
region —w/2 < R(z) < +=n/2, provided that the part of the boundary
lying below the axis of reals (thatis to say, the set of points z = x+4iy
with x = +=%/2, y<<0) is deleted from this strip (¢f. Elem., § 46).

11. We arrive at the power-series expansions of tanz and cotz
with the aid of the expansion (23) in 4.3. According to 6,1,(2) and
(3), we have, for every zs#kx, (k=0, +1, +2,...),

. el . 2iz
zeotz =1z g = tz+ 2=
Hence, according to (23) in 4.3, if we bear in mind that B, = -}
and that B, = B, = ... = 0, we have
— < v 22'B2v v
zcotz _»Eo(_l) @)! .

This representation is certainly valid for all sufficiently small |z|.! The
precise determination of the radius of convergence (it is = =) of the
power series obtained requires somewhat heavier application of the
theory of functions (¢f. the partial-fractions decomposition of =nz-
-cot =z below; further, 7.3,3, as well as Elem., § 43,and Th. F. 1.2 § 31).

With the help of the formula tan z = cot z—2 cot 2z, we now
casily obtain the representation

] 22> - 1)B,
tanz = Y (1)~ —= %
=2 (1) @v)!
1 For z=0 too, if one then defines the left side as lgl-?o z-cotz=1.

* This refers to volume I of the author’s Theory of Functions, listed in the Bibliog-
raphy at the end of this book.

),
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which again is certainly valid for all small |z|. (Its exact radius is
= w[2.)

Somewhat deeper methods are required for the derivation of the
so-called partial-fractions decomposition of the function cot z. It will,
nevertheless, be quoted here, although without proof (for a proof, ¢f.
Th. F. 11, § 6), and several applications will also be made of it in the
next chapter: For all z ¢ 41, 42, ... we have the representation

o 2,8
(2) nzcotmz—l+v§1ﬂ.

This expansion leads, by means of simple calculations, to further

* important representations of a similar kind: Since

7 tan nz = ® cot =g — 2% cot 2%z,

we obtain, first of all,

. _ = 8z
(3) Ntanﬂz—vgom)—’—:@, (2{# j:l, j:3, ...).
From 1/sin z = cot z+mn§ we find, further, that

) sinnz_?_zz—li-i-zz_‘p_""'" (z#0, £1, £2,...),

and finally, replacing z here by -2,

T 1 3 5
(5) 4 cos ®z = 1T —(22)F - 3 _(2)! + 5 - (22) -4 ..

(22 # +1, £3, ...).

6.4. The logarithmic function

The inverse of the function ¢* = w iscalled the natural logarithm.
If we interchange the letters: w is called a natural logarithm of z,
if ¢” = z. According to 6.3,6 and 9, we can immediately assert more
precisely: Every number z different from 0 (and only such a z) pos-
sesses precisely one natural logarithm w whose imaginary part satis-
fies the condition —n < 8(w) < +x. With this so-called principal value
w of thenatural logarithmof z, allnumbers w+2kni, (k =0, +1,
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42, ...), and only these, are also natural logarithms of the number z.
From now on, we shall denote only this principal value of t.hc loga-
rithm of z by log Z.

Since z = ¢” can be expanded in a power series for any center
w, (we set ™ = g):

=% = %(w—wo) + 57 21 (w-wo)* + ...,

it is also possible, inversely, to expand w = log z in a power series
about any center 2, % 0:

w—wy = % (z-20) + aa(z-20)*+

which converges for all sufficiently small |z—zy|.! We infer from this,
first of all, that, for every z#0,

& _ oy 1)
&vlogz_(l)l 2 *

4 log z = % and consequently

dz
- 1(d
If wechoose z, =1, thatisifwe take w, =0, then ¢, = Tl logz

_ (_l)v-l z=1

and we obtain
w = (1) - fe 1P+ . = £ LU ety

as the expansion of log z in a power series with the center 2, = 1,
which converges for all sufficiently small |z-1| and represents the prin-
cipal value of log z. The series obviously converges, however, for all
|z-1] <1,® and since, according to the origin of the series, its sum
w satisfies ¢” = z, its sum is always some logarithm of z. It is easy
toshow thatitisinvariably the principal value: For every z in |2-1| <1,
am z has exactly one value ¢ for which —=x/2<{<4=/2. With
this ¢, then,

B(w) = B(log 2) = ¢+2kni witha k=0, +1, 42,....
1 At the moment it is open to question whether it invariably furnishes the prin-

cipal value w=1log z.
* We shall consider the boundary points in just a moment.
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Now w, and hence also 8(w), is a continuous function in |z-1]| <1.
Therefore £ must always have the same valuein this equation. Hence,
since for z = | we have log z = 0 and therefore k£ = 0, we musttake
k=0 forall z in |z-1|<], i.., our series represents the prin-
cipal value log z for all these 2.

If we replace z by 14z, we obtain the expansion

(1) log (14+2) = ¢- 5 +-.. =$ 822 <),

from which we get, by replacing z by -z and changing sign, the
expansion

1 2 __?
(?) 1°gm=l+T+ —El—v-, (2| <1),
and, by addition, the expansion

142 2 2
(3) ‘}IOSE—Z+?+?+---, (lz]<1).

The series obtained are called for brevity the logarithmic series.

It was shown already in 5.5,2 that the series (2) also converges for
all z of the boundary |z| =1 thataredifferentfrom z = +1. Itdoes
not yet follow from this, however, that it also represents the principal
value of the logarithm for these z. This will not be proved until
we come to 7.3,2.

6.5. The general power and the binomial series

If a is a fixed complex number, then the general power 2* in the
function-theoretical sense is by its very nature a multiple-valued
function. Only artificially, by means of restrictive supplementary
conditions, can it be made into a single-valued function. It is custom-
ary to regard as the principal value of z* the value uniquely defined
by exp (a-log z), where, as in 6.4, log z denotes the principal value of
the natural logarithm.! In what follows, 2* always stands for this prin-
cipal value. It is defined only for z50.

1 E.g.,according to this, the principal value of if = ¢ilogi = ¢/2 —a real number!
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It will be more convenient to replace z by 1+z. Then (1+42)* =
= exp (a-log(1+2)) is uniquely defined for all zs£-I1, in particular,
for |z| <1. As a composite function, it possesses a power-series ex-
pansion

(142)* = 1+ a2 +a2+-...,

which converges for all |z| <1, since the “outer” power series is every-
where convergent (see 4.3,4). It also represents, as it ought to, the
principal value (14-z) if, for the inner function, the expansion (1)
in 6.4 representing the principal value is taken. According to 4.2,(12),
the coefficients are determined by

a\,=vi!% (14-2)° evaluated at z = 0.

By 4.3,1, however,

d d
2 (14+2)" = 2 exp (a log (1+2)) = exp (alog (l+z))'l_:‘:-_z

= a(l +z)._la
and consequently
&
T (142" = a(a=1)(a+1) (1+2)

Therefore

1 . 2 ser y h)
Thus first of all for all |z| <1, the principal value of

(142) =14 (f)z-l- e + (f) F AR =§o(3)z',
(a fixed, arbitrary, complex; |z| <1).

4 = a(a-1) - (a-v+1) _ (a).1

The power series thus obtained is called the binomial series. The con-
vergence behavior of this series on the boundary of its circle of con-
vergence |z| <l was ascertained in 5.5,6.

! For v=0, set (:) = (8) =1 for every a, mcluding a =0
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6.6. The cyclometric functions

Theinverses of the functions sinz and tan z are denoted by arcsinz
and arc tan z and are designated as ¢yclometric (or inverse trigonometric)
JSunctions. An analogous statement holds for the inverses of the functions
cos z and cot z, which, however, hardly requireseparate consideration.
Thuswe have w = arc sin z if sin w = z. If z isgivenarbitrarily,
then, by 6.3,10, there always exists precisely one number w lying in
the strip —x/2 < R(w) < +=/2, provided that the part of the bound-
ary of this strip lying below the axis of reals is omitted. The thereby
uniquely determined number w is called the principal value of arc sin z.1
Only this principal value will be taken into consideration in what
follows. P

As the inverse of z=w—§'_+5_'—+ ..., arcsin z possesses

a power-series expansion of the form

w = arc sin z = z+a,20 a2 +...,

which certainly converges for all sufficiently small |z|. The procedure
for finding the coefficients 4, is analogous to that used in the preceding
cases: Astheinverseof z = sin w, thefunction w = arcsin z has (ac-

. L 1 1
cording to 4.4, Theorem 3) the derivative o= Vg where the -

principal value of the square root, i.c., the value lying close to 41 for
small |z|, is to be taken. Hence, by 6.5,

darcsing 1 1, 1.3
dz _VQ—I-F 2Zz+ 2_4Z‘+---:
and consequently, by 4.2,(16), since arc sin 0 = 0, we have
. 1 1.
)] arcsmz=z+—2--§+ri-%+....

Both expansions converge absolutely for || <1. The second series is

! All the remaining values w for which sin w =z, are then given by w+2kn
and w-w + 2krx, (k=0, +1, +2,...).
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also still absolutely convcrgcnt for |z| =1. For,
1.3
4+ 5473 2% 5+
is still convergent, as is proved here most quickly as follows: For
0 < x <1, the v* partial sum is

(2v—l) A

‘+2 3+ +24 ) Cgg <acsinx < g,

because all the coefficients are positive. Therefore the v* partial
sum of the preceding series is also <=x/2 for all v=20, 1,...; the
partial sums are bounded, and hence the series is convergent.

Since, according to this, we have, moreover, for || <1, |arcsinz| <
arc sin | = =2, and hence, g fortiori, R (arc sin z) < =2, it follows,
further, that our series actually represents the principal value for
|z| = 1. The arc-tan series is found quite analogously. We have
w=arc tanz if tanw = z. Foragiven z#41{, there exists (see
Elem., § 43) precisely one w with—=/2 < R(w) <+=/2 for which tan
w = z. This number w is the principal value of arc tan z, which alone
will be considered from now on.! As the inverse of z = tan w, the

function arc tan z possesses (again by 4.4, Theorem 3) the derivative
1

cos'w = e — 118" Therefore

% arc tan z = ﬁl-—z? =1-242 4 ...,
and consequently, since arc tan 0 = 0,
(2) arctanz=z—§+%—+....

Both expansions converge absolutely for |z| <1. That (2) is also still
convergent on the boundary |z| = ] except at the two points z = +¢
was shown already in 5.5,2,

1 All the remaining values w for which tan w=z, are given in terms of the
principal value by w+kr, k=0, +1, £2,....
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Finally, that (2) also represents the principal value of arc tan z for
12| <1 can be proved as follows: Since tan w = z, we have

_.i"—e"" _ N T
t e"—+e_""’ =2 or e = T——iz.
Hence,
1 . 1 1
(3) w=5 log (1+ll)+2—il°gl—_—iz,

and therefore the series (2) is also obtained by expanding the loga-
rithms in (3) according to 6.4,(1) and (2). Since for these series the
imaginary part of their sum lies between —=x/2 and +n/2, the same
holds for the real part of w in (3), and hence also for the real part of
the sum of the series in (2). This series thus represents the principal
value of arc tan z.
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Chapter 7 -

NUMERICAL AND CLOSED EVALUATION OF SERIES

7.1. Statement of the problem

If we are given an arbitrary series Xa, or an arbitrary sequence {s,},
then we are always concerned chiefly, first of all, with the question,
whether the series (sequence) is convergent or not, and, if it does
converge, with the further question, what value it possesses. We shall
regard the first question as having been settled by the preceding
chapters. The second question, however, requires some explanation:

- -]
If we establish, say, that vgl m
of the series is final, and leaves open no further question regarding the

= 1, then this assertion of the value

value. If, however, wesay that % % = ¢, then—depending on the way

v=0 Ve
in which the number ¢ was originally introduced—this is either (as
in our development, in 3.1.2,2) merely an abbreviation for the value
of the series, which is not yet known any more closely, or else, if ¢ is
defined as the limit of (1+%)' (sec 6.3,8 for z=1), the assertion
that a certain limiting value coincides with a certain other limiting
value.

In the first case, we have an evaluation of the series in the strict sense.
This case occurs only if the value, s, of theseriesis a definitely assign-
able rational number. In the other case, which is by far the more
common one, the problem is to express the value of the series or of
the sequence in terms of numbers which are already known or familiar
to us through other connections—in particular, in terms of numbers
which, like, say, the values of the elementary and of many nonelemen-
tary functions, can be found in easily accessible books of tables—or
to calculate the value of the series numerically. Thus doés it come
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about that the significance of an equation of the form Xa, = s, say
the binomial series

VIT =32 (1-ohg) = (-} hy -} dm ),
is greater when read from left to right or when read from right to left,
depending on the circumstances of the case. If we read it from right
to left, and if we regard 4/11 as “known” (this value is easy to find
in many tables), then it gives the value of the series in closed form, and
at the same time the numerical character of this value is extensively
revealed. If we read the equation from left to right, it furnishes a way
(which is actually quite favorable for calculation) to calculate the
value 4/11 numerically. Itiscustomary,in this connection, to regard
invariably as a numerical calculation, the representation of the number
in question in the form of a decimal fraction. Note, however, that
this number is thereby represented merely by means of another limiting
process. For, decimal fractions are nothing but (convergent) infinite
series or sequences (¢f. the remark in 3.2.1,10). This representation
is also by no means always the better one, because in most cases the
succession of digits obeys no recognizable law (as, say, in 4/2 =
= 1.4142...). The advantage of decimal fractions lies solely in the
fact that they can be compared easily with respect to magnitude,
and give one directly, on the basis of long practice, a feeling for the
(approximate) position on the number axis, where the number to be
calculated lies, and further, that one knows that, in breaking the
decimal fraction off after n digits, the error is nonnegative and smaller
than a unit in the last decimal place. For, this telis one how far to
carry out a calculation in order to attain, with certainty, a certain
accuracy.

One usually undertakes such a numerical calculation of the value
of a series by calculating a partialsum s, by meansof direct addition
of the initial terms up to 4,, and estimating the “error”, i.c., the re-
mainder r, that has to be added to s, to yield the value of the series
itself. This estimation of the remainder (for examples, see below) is
carried out first, and then the index n, up to which the terms are
summed, is determined so that the error corresponds to the desired
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accuracy. Those series are regarded as favorable for this purpose,
for which the remainder is already very small for small or moderately
large n. Thecalculation of the partial sums s,, finally, must be carried
out by simple addition—a task which is no longer terrifying in this
age of giant calculating machines, but which, at one time, could only
be accomplished by assiduous labor.

Following these general remarks, we shall now list a number of
numerical and closed calculations of the values of infinite series. In
the case of the former, we shall confine ourselves to sketching the
method of calculation. The calculation itself must be left to the reader,
who is earnestly advised to carry it out. We shall invariably regard the
series in question as being denoted by Xa,, its sum by s, the partial
sums by s5,, and the remainders by r,, so that s,+7, = .

7.2. Numerical evaluations and estimations of remainders

1. The calculation of the number ¢ is based on the very rapidly conver-
-
gent series Eo e

Here we have

1 1
Ol vy sy Bl oo )y Bl

1 ! 1
< oFD! (‘+ it et ) =
so that the error is already very small for moderately large values of v.
We find for v = 12, say, that
12.718281826 < ¢ < 2.718281832.
With the aid of the modern calculating machine, ¢ has been calculated
in this way to more than 2500 decimal places.!

2, The calculation of the number = is best based on the arc-tan series
in 6.6,(2). That the representation

T

1 1
(l) I=l—'§+'§——7—+—...

1 Gf. G. W. Reitwiesner, Math, Tables and other Aids to Computation 4 (1950),
p- 11-15; N. C. Metropolis, G. Reitwiesner, and . von Neumann, ibid., pp. 109-111.
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obtained for z =1 is correct will be shownin 7.3,(2). This series, which
from a theoretical standpoint is especially beautiful because it represents
x in a particularly simple form, converges too slowly to be useful for
the numerical calculation of ®. Various artifices lead more quickly to
the goal. The following (7. Mackin, 1706) is especially favorable:
The number '

1 1 1 1

a=actny =5 3m T T

can casily be calculated from the series. For if, as in the present case,
the remainder is an alternating series, then, by 3.4, Theorem 2, we
have the rule that the remainder has the same sign as, but is smaller
in absolute value than, the first neglected term.! From tana = 4 we
obtain, further, tan 2a = %, tan 4a = }§§. According to this, 4«
is only a little larger than =/4. Weset 4a—n/4 = (3, and find that
R 111 4 -
239" 239 ~ 239 3.2398
From the series for « and B, we calculate © = 4(4a—p). If we use
five terms to calculate a and two terms to calculate B from their
respective series, we obtain

n = 3.1415926...,

which is already correct 0 seven decimal places. With the aid of the
modern calculating machine, = has been calculated in this way to
more than 2000 decimal places (see footnote, p. 165).

3. The calculation of natural logarithms is based on the series (3) in
6.4. For z = 1/3, it immediately yields

1 1 1
10g2=2[-3—+w+5.—35+...:|,

a representation which is quite useful for numerical purposes, and
furnishes the value 0.6931471... correct w0 seven decimal places if
the terms of the series up to 1/(15-3!%) are used. The remainder then
does not affect the seventh decimal place any more.

an f = B = arc tan

! Thus, the remainder corresponding to the partial sum written down is negative
and <315 in absolute vahs
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Suppose that we have already calculated log £ for aninteger £ =2.

1 .. .
BT the series just employed yields

] 1 *
log (k+1) = log k+2 [2k+l + SEEFI) +...],

Then, for z =

which converges very rapidly for ¥ = 2, and even more so for the
values of k that follow. At most for the logarithms of 2, 3, 5, and 7
(only the logarithms of the prime numbers have to be calculated)
would even more rapidly convergent series be desirable. They can be
obtained by means of special devices; ¢f. J. C. Adams, Proc. Royal Soc.
London, 27 (1878), pp. 88-94.

With log2 and log 5, we also have log 10, and therewith the
modulus 1

log 10

of the system of Briggsian or common logarithms, by which number
one has to multiply the natural logarithms in order to obtain the loga-
rithms to the base 10.

4. The calculation of roots by the direct method is hardly of any prac-
tical importance any more if one is already in possession of logarithms.
It is based on the binomial series (¢f. 6.5). The smaller |z| is, the better
this series converges. Therefore, in order to calculate, say, the root
w = /k = K (k, p=2; integers), this value is brought into the form
a(l1+x)"*, with a simple rational & and a small |x|. To this end,

ke
choose any rational number 2 and set w = a(a—,) . If a ischosenas

= 0.43429448...

a (rough) approximation to w, then k/a* lies closeto 1, i.e., =1+4x
with a small |x|. Then, if, for brevity, we set 1/p = «, we have

w=a[l+ (%) x+ (%) 2*+...],
and the series converges rapidly. Thus, the representations
v2 = 15 (1 -8t V2 =§(1+ )",
V8 =13 (1-5ddea)s V3 =22 (1+ 1389,
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say, are very rapidly convergent and numerically convenient series
for the values of the respective roots.

5. The calculation of the trigonometric functions cos x and sin x is based
naturally on the series (2) and (3) in 6.1, which converge very rapidly
‘for moderately large |z|. We must bear in mind, however, that x
denotes the radian measure of the angle. Thus, if we wish to calculate
cos 1°, say, we have to calculate cosx for x = {§5 = 0.017.... We
therefore need precise values for = and its powers. For small |4, it
is more convenient to calculate first sin x, and then cos x as (1-sin®x)!.

The functions tan x and cot x are then obtained from cos x and
sin x by division, or else directly from the power series in 6.3,11, which
likewise converge rapidly for small |x|. The logarithms of the func-
tions are more important, in many respects, than the functions them-
selves. From the expansion of zcotz in 6.3,11, we obtain, first of

. 1
all,—we confine ourselves to real z = x—a representation of cot x -

which shows that this function is also still continuous at x = 0 if we

define it to have the value 0 there. By integration we than obtain,

furthcr, x 1

log sin x = log x+f(cot t—T)dt,
[}

which leads to the series representation

. o 2¥B,,
log sin x = log x+§l(—l)" 2—v-(2—2v)' Pl

A corresponding representation of log cos x can easily be obtained
by integrating the tan-series.

7.3. Closed evaluations

The foregoing considerations, which have referred exclusively to
numerical practice, will now be followed by some theoretically im-
portant matters:
* 1. Direct formation of partial sums.

a) If a0, -1, -2, ..., then & 1
1

= l For we
a

veo (8+v) (a+v+1)

have a, =
168
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o 1
b) If 650, -1, -2, ..., then ¥ o T I N s =

= P, fasin a
—ml),proo as in ).

(- -]

c) Ezﬁ = % For we have a, = _;'(;l_l —;%)
In these examples, 4, was brought into the form z,-2,,, or z,-z,,,
(g =1, integral), where {z,} was a null sequence. The reader will
easily be able to generalize this principle. Numerous further examples
are to be found in the works of Fabry, Bromwich and Knopp, mentioned
in III of the Bibliography.

2. Application of Abel’s limit theorem. In 6.4 we found that, for |z| <1,
the principal value of log (14z) has the representation

(1) log (142) =z-§+-...+(-1)»~"—yv 4o

and it can be shown as in 5.5,2 that the series also converges for all 2
on the boundary of the unit circle except at z = —1. Does it also fol-
low from these facts that, for these z on the boundary, the value of this
series is equal to the principal value log (142)? We do not see that
this is the case if we go through the proof of (1), because it is only valid
for |z| <1. For, in applying Theorem 1 of 4.3, use is made of the
absolute convergence of the “inner” power series, which in this case
is the series (1). The representation (1) is, nevertheless, still valid for
the z in question on the boundary of the circle of convergence. This,
however, requires proof. It is rendered possible here and in similar
cases by Abel’s limit theorem (4.2, Theorem 6). Forif z, # -1 is a
specific point on |z| =1, then this theorem asserts that the right side

of (1) tends to the value of the series X(-1)*" % as z approaches gz,
radially. At the same time, however, the left side tends to log (1+2),

because of the continuity of log (14-2) at z,. Therefore, (1) is also
valid for z = z,. In particular,

SR M R S S
> =1 2+3 +...=log 2.

y=] v
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The corresponding considerations applied to the arc-tan series 6.6,(2)
show that the representation

@ N 2+l

(2) mml—vgo(—l) T’
valid in the interior of the unit circle, also holds on the boundary
|z} =1 of the unmit circle for all z# +:¢. Thus, in particular, we
obtain the especially beautiful representation of n/4 resulting from (2)
for z =1, which was already mentioned in 7.2,(1). It follows, like-
wise, that the binomial series X(5)z" represents the (principal) value
(14-z)* wherever the series converges. The totality of points z at
which the series converges was determined in 5.5,6.

Another example of this kind is the following, where we leave the
details to the reader: We have

(1)
Sv4-1

11
"=1_?+_7—_+'"+ +eee = lim fx),

ifweset X (- l)" 3v+l = f(x). Since f(x) =ﬁ’

_f1+:s 3 2*‘3\/3

A similar argument would appear to lead to the value of the series
Z—, which we havc not yet determined. For, if weset Z— = f(x),
thcn S(x) = Z ~— and 5= hm f (x). Now for f(x) we have the

representation f(x) = l log —L dt, but this integral, which is im-
r %1 gt

proper for x =1 (at { = O the integrand is still continuous if it is set
=1 there), is not immediately evaluable. In 3 below we shall find
the value of the series in an altogether different way.

3. Series transformations. An especially effective means for evaluating
series in closed form is afforded by series transformations. In 5.6,2,
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we saw that a convergent series Xa, leads to another convergent series
Xa,, with the same sum, if we set

O =g ) e (}) kot (3) 4]

If this Eulerian transformation is applied, say, to the series Z S' _|1_)1v
v v=0
= log 2 and Z 2( -l|-)1 = n/4, weobtain the (considerably better con-

vergent) representatxons

1 1 1
log 2 = ot + 798 + 398 +...

and

12 | 1.2.3
Z=ltgtgs tEsy o

The transformation based on the following simple idea is called
Kummer’s transformation: If Xa, = s isto be evaluated, choose a series
2¢, = ¢ which is already known to converge and whose terms ¢, are
asymptotically proportional to the a,, so that a,fc,> y#0. Then
evidently - ¢
s=Xa6,=Yv+ X (l —Y—")a,,

v=0 a,

and the new series converges more rapidly, because (1-vye,/a,)—> 0.

Thus, e.g., if we associate with the series X L the series Z1jv(v+1) =1,

$= 1+v§|v’(v+l)

If we associate with the new series the series X1/v(v+1) (v+2) = 1/4,
we find further that

1
s=1+7 + 22. ) 6+

! The value of the expression in brackets can easily be calculated: Underneath
each term of the sequence a,, a,, 4,, ..., write down first the sum of this term and
the succeeding one, in other words, ay+a,, a; +ay, a3+4;, ..., and keep on re-
peating this step. Then the initial term in the nth cow (taking the original sequence
as the 0% row) is precisely the sum (§)aq +(a; +... +(P)a,.
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and we can thus obtain better and better convergent series for the
value s of the original series, which will be found in a moment in a
different way. '

The most effective series transformation is Markoffs transformation or,
what comes essentially to the same thing, the transformation acquired-
through Theorem 10 in 3.6. Under the stronger assumptions that
all the series that appear are absolutely convergent, it amounts to
Cauchy’s double-series theorem (see 3.6, Theorem 9, Corollary 3). A par-
ticularly beautiful application of it is afforded by the determination
of the values of the series X1/, which up to now we have not yet
found.

For this purpose, we start with the representation

(2) 7z cot TZ = 1+§I(_1)‘. (2?2) )? z“"

derived in 6.3,11 and valid for all sufficiently small |z|, and compare
it with the expansion

o 2.2
3) ®Z Cot ®Z = l+"§I pe
mentioned in 6.3,(2) and valid for all 73 X1, 2, ... and hence like-
wise for all sufficiently small |z|. We now expand, in the sense of
3.6, Theorem 9, Corollary 3 just cited, each term of the series in (3),
with the exception of the term 1, in an infinite series:

222 2 1 _ 8 o2 &
I L -t B SRR
n?

We imagine these series for n = 1, 2, ... to be written down in rows,
one under another. Summing first by columns, and then forming the
series of column sums, we get

-2 (£ G)e-2(8 w)e--2 (5 )

According to the theorem referred to, this expansion must coincide
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with the one in (2) if we also drop the 1 there, and if the hypotheses
of this theorem are satisfied. The latter, however, is certainly the case.
For if, in the expansion on the right in (4), we replace all terms by

2
their absolute values, the value of the series becomes %, and
the series with these expressions as terms is convcrgcnt for small |z|,
just as (3) was. Consequcntly, forv=1, 2,

-9 z = (-1)* (22'2):;31\- i

We have thus evaluated the interesting series on the left in closed form,
for we have, forv=1,2,...,

(%) £ o = (0™ s B

and, in particular,
ol = 21 nt 2 1 w8
Z27"% IZm-w ZETes
From these beautiful results we may derive various others:
a) If n ranges from 1 on, we have, for every a >1,

1 1 1
L =ZGnne T Xy

and hence | |
1
20Ty ~ (‘ ‘%) T

Thus, in particular, for v=1, 2,

g | _ oy @R

(6) --l (2” ) = 1+ 3Iv + 53\. + ( l) ! 2_(2v)! an

and, by subtraction, we find that,for v=1, 2, ...,
1,1 — (o (2D

(7) E;l =1 2,v+ —4 o= (- @ B,,.

b) From (5) we see that (=1)*' By, >0, so that, in particular, the
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B,, alternate in sign. Since the value of the series on the left in (5)
obviously lies between 1 and 2, we now obtain, as a supplement to
the results following (23) in 4.3, an assertion concerning the magnitude
2(2(2)",{ 6,, with 1 <6, <2. Thus,
the coefficients of the power series (2) are <4 in absolute value, and
therefore the power series has at least the radius 1; it cannot have a
larger radius, because the function represented by the series is dis-
continuous at 41.

of the Bernoulli numbers: |B,,| =

c) In (5), (6), and (7), » has an even, integral exponent. We
remark expressly that for the corresponding series with odd, integral
exponents >1, one can make no satisfactory assertions concerning
their values.

We arrive at similar beautiful results if we compare, in a correspond-
ing manner, the two representations

1l = v Es,
(8) iz = Eo (-1) @) (m2)®, (see 4.3, (26))
and
I 42 . 2n4-1
() cmmz w2 @mypo@e @630
The nt term of the last series yields the power series

g (e
g mrtE

If we now sum over n for fixed v, and compare the result with (8), we
obtain, for v=1,2, ...,

s v,

(=1)" v
(10) X 0(2”+1)8v+1_ 1_38v+1+ S+l T =(-1) o+ (24)1 (2,,)!

Whereas only those series (5), (6), and (7) with even, integral expo-
nents >0 have been mastered, the values of the series (10) are only
known if the exponent 2v+{-1 is an odd integer.
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proportional, asymptotically 30

quadratic equation 8
— polynomial 104
quadrisection method 39

Raabe’s test 136

radial approach 109 *

radian 168

radical test 57

— —, limit form of 59

radius of convergence 100

ratio test 57, 58, 129

rational function 150, 151

— number 4
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removal of parentheses 75
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roots, calculation of 167

row series 84

row-condition 35
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