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PREFACE

This book is an outgrowth of a one-quarter, first-
year graduate course that I taught at Northeastern University
in 1866 and 1967, The lectures were based in turn on an
algebra course given by Dock Sang Rim at Brandeis
University in 1961-62, The book is a gelf-contained,
general, and modern treatment of some classical theorems
of commutative and noncommutative ring theory,
Principally these theorems are the primary decomposition
of ideals in commutative Noetherian rings and the Artin-
Wedderburn structure theory for semisimple ringa. By
"general" and "modern' I mean that, as much as possible,
theorems are proved for modules over the rings being
considered and then specialized to obtain classical state-
ments. Furthermore the techniques employed are among

those which have proved fruitful in modern ring theory, for
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example, localization. In some sense, localization is the
unifying idea in the commutative ring theory covered here,
The book begins with material usually treated in an
undergraduate modern algebra course, namely, various
kinds of ideals and operations on ideals, isomorphism
theorems and the Ch.l:.nese Remainder Theorem (Chapter 2),
and Euclidean, principal ideal, and unigue factorization
domains {Chapter 4). However, proofs of standard
theorems on unigue factorization domains are not those
generally given in such courses since 1{1eg.r rely heavily on
the notion of rings of quotients developed in Chapter 3.
Chapter 5, an introduction to homological notions, is
devoted to modules and exact sequences including the
gplitting of exact sequences and characterization of free
and projective modules. Noetherian rip.gﬂ and modules are
treated in Chapter 8, Since the motivation for this study is
the search for a clase of rings in which every ideal ia a
unique product of prime ideals, we are naturally led to
Dedekind domains in Chapter 7. Chaptera 8 and 9 are
devoted to noncommutative Artin rings, including the
connection between the two chain conditions by way of the
idea of Jordan-Htilder series, and the structure of
semisimple rings. Thus Chapters 7 and 9 can be viewed

ag desper investigations of special classes of those rings
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studied in Chapters 6 and 8, respectively. Each chapter
concludes with a set of exercises of varying degrees of
difficulty.

Since the book has been expanded from the original
one-guarter course of lectures, it now appears to be the
appropriate amount of material for a one-semester course,
Although primarily designed for beginning graduate students,
it should be aceessible to undergraduates who have taken
the modern algebra and linear alpebra courses usnally
offered to sophomores or juniors. For the graduate
student it should provide a convenient place to learn the
ring theory often expected on qualifying examinations, For
the undergraduate, particularly one who is interested in
algebra, the book should offer some insight into one
direction his future studies might take him.

I would like to thank Professor Rim and the various
authors from whom I have borrowed ideas. Their works
are included in the bibliography. I would further like to
acknowledge the helpful suggestions of Mark Bridger,
Burton Fein, Marvin Freedman, and Kenneth Ireland.
Finally, I am grateful to Delphine Radecliffe and
Cindy Feldman for typing the manuscript.

JACOE BARSHAY
Cambridge, Massachusetts
July 1988
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CHAPTER Ly

FPRELIMINARY TERMINOLOGY AND EXAMPLES

We begin with a briel discussion of just two notions
from set theory, The first is that of an equivalence
relation on a set and its assoclated decomposition; the
second is Zorn's lemmma, The notatlon used here for set
membership, set inclusion, union and intersection of sets,

and so forth, is standard.

DEFINITION 1-1, A binary relation ~ on a set A is called

an eguivalence relation if for any elements a, b, ce A

(1} a ~a({~ 18 reflexive);
(2} if a ~ b, then b ~ a [~ is symmetric);

(3) ifa ~band b ~ ¢, then a ~ ¢ (~ is transitive).

. DEFINITION 1-2. If A is a set, ~ an equivalence relation

on A, and a¢ A, then the equivalence clasa of a is equal to

1
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{x ¢ A|a ~ x} and is denoted by a.

In particular, observe that the equivalence class of
an element of A is a subset of A, To say that two eguiva-
lence classes are distinct is to say that they are not equal

as sets,

THEOREM 1-1. The distinct equivalence classes of an
equivalence relation ~ on a set A provide a decomposition

of A as a union of mutually disjoint subsets.

Proof, Since a ~a, we have a¢a for any a¢ A. Thus
AC Upe & @. On the other hand, each 3 is a subset of A

50U a4 % € A, whence A = Uae A a. To complete the
proof it suffices to show that distinct equivalence classes
are mutually disjoint, that is, if a, b ¢ A'then either a=h
oran B=®. Supposethenthata nb ¥ & and let

x¢ea N b, Thusa~xandb~x. Butby Definition 1-1{2),
x ~bandby (3) a~b. Nowifyeb, then b ~y so again by
(3) a ~ y whence y¢ 2. We conclude that© € 2. By a

similar argument, we could show a © B. Therefore a = b.

DEFINITION 1-3. A binary relation £ on a set A is called

a partial ordering if for any a, b, c ¢ A
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{1) a = a;
(2) fasbandb = ¢, thena £ ¢;
(3) ifasbandb <a, thena = b,
A together with the partial ordering = is called a

partially ordered set.

DEFINITION 1-4. A subset B of a partially orderead set A
iz said to be totally ordered if for any a, be Beithera £ b

orb = a. A totally ordered subset will also be referred to

as a chain,

DEFINITION 1-5. An element a in & partially ordered set
A ig called an upper bound for & subset B of A if for any

o™

be B, b=a,

DEFINITION 1-6. A partially ordered set A is called

inductive if any chain in A has an upper bound in A.

DEFINITION 1-7. An element m in a partially ordered set

A is called a maximal element if for anyag¢ A, m £ a

L

implies a = m.

ZORN'S LEMMA, Every nonempty, inductive sst has a

maximal element,



4 TOPICS IN RING THEQORY

Some applications of Zorn's lemma are in the
exercises at the end of this chapter and its uwsefulness

becomes even more apparent in later chapters,

DEFINITION 1-8. Letf: A+ B be a mapping (map,
umnctiﬂm from a set Ato a set B. Thenfis said to be

(1) surjective (onto) if for any element b ¢ B there
exists an element a ¢ A such that f{a) = b,

(2} injective (one-to-one) if for any elements
a,, 85 ¢ A, fial} = f{azll implies 8 = a,.
[Equivalently, a, # a, implies ﬂ’al} # ﬂazi.]

(3) bijective (a one-to-one correspondence) if it

is both surjective and injective.

VDEFIHIT[GH 1-9, A group isa nonempty set G on which
ig defined a binary operation = satiafying the following
conditions;

(1) Ka beG, thena+*be G. (Closure Law);

(2) Ka, beG then(aablse =a«(b=%ec)
(Associative Law);

{3) There exists an element e ¢ G such that for
any a¢ G, e*a=axe =3, eiscalledthe

identity element of G.
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{4) For any a ¢ G, there exists an element a ¢ G
such that a =2 =a +a = e. a is calledthe

inverse of a,

The identity element of & group is unique a8 is the

inverse of a given element,

DEFINITION 1-10, A group is said to be Abelian if it
satisfies the additional condition: e

(3) Foranya, beG, asb=b=a,

DEFINITION 1-11, I (G, %) and {H, *) are groups and

f: G=H, thenf is called a group homomorphism if for any

a, be G, fiz =b) = fla) - f{b), L

Lo DEFINITION 1-12, A ring is a set A on which are defined
two binary operations + and . satisfying the following
conditions:

{1} A iz an Abelian group under +;

{(2)ifa, beg A, thema - bgA (Closure Law);

(3)ifa, b, ce A, thenfa+« b))« c =a- (b. c)
(Associative Law);
(4)if s, b, ce A, thena- (b+e)=a.b+a.c

and{(a+ b). e =a.e+b-c (Distributive Laws).
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There are other properties that a ring may or may
not possess, among which are the fn]iawing:
(5} there exists an element 1 ¢ A such that for any
elementae A, 1 »a=a-1=a. 1 is called
the unit element of A;
(6} for any element 0 # a ¢ A, there exists an

elerment a-l € A such that a -+ a'I = a'l - a=1,

a"l is called the multiplicative inverse of a;

(7) for anya, bgh, a- b=b. a.
In a ring, the identity element for the operation + is
denoted by 0 and the inverse of a 1s denoted by -a. The

multiplication symbol - is generally omitted.

DEFIFITION 1-13. A ring A satisfying
- {a) (7) is called a commutative ring;
{b) (5) is called a ring with unit;
{c} (5) and (6) is called a division ring;
(d) (5} and (7) is called a commutative ring with unit;

(e} (3), {B8), and (7) is called a field.

DEFINITION 1-14, If (A,+,+) and (A, =, ¢) are rings and
o

f:A=+N, thenf iz called a ring homomerphisam if for any

a, be A, fla+b)=fla)sf{b) and f{a - b) = f{a) « I(b).
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@FWITIDN 1-15, K A and A' have unita 1 and 1' and

f: A-N, then{ is said to be unitary if (1) = 1',

DEFINITION 1-16. A group or ring homomorphism is
called an
(1} epimorphiam if it is surjective;

{2} monomorphism if it is injective;

(3} isomorphism if it is bijective.

EXAMPLES. 1. Z = {0, 41, £2,...}, the set of integers
with + and - having the usual meaning {s a commutative
ring with unit element.

2. @, the set of rational numbers, 1K, the set of
real numbers, and €, the set of complex numbers, under
the usual rules of addition and multiplication are all
examples of fields,

3. Let k be any field. Then k{X], the set of
polynomials in one variable with coefficients in k, under
the usual rules for addition and multiplication of polynomials
forms a commutative ring with unit, Similarly for
I:Llf{l, }:2, - }{n], the set of polynomials in n variables with
coefficients in k.

4, Em, the set of integers modulo m where + and -

mean addition and multiplication modulo m, forms a
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commutative ring with unit element. Furthermore, Em
is a field if and only if m is 8 prime number.

& J‘-'Inl[l:c.'l, the set of all n x n matrices with entries
in a field k, under the usual rules for addition and multi-
plication of matrices, forms a ring with unit element,
which is not commutative if n = 2,

6. 222 = {0, +2, +4,... }. the set of even integers,

forms a commutative ring but has no unit element,

T. &, the real quaternions.

A= x txu+xli+>;2;+x3k|x ) %yy Ko, Xg € R}

Hxs= Xy * :cli+x2j+ .‘-:SIL and ¥ = :,rﬂ+:.rli+5'2j +33k are in
A, thenx +y = (x5 +¥p) + {x; + ¥ M + (x5 + ¥l + (xg+¥5)k
The product xy is found by using the distributive laws and
the rules i = jjskk = -1, ij=-ji=k, jk = -kj = 1, and

ki = -1k = j, Then A forms a division ring under these
operations., In particular, the multiplicative inverse of

X=X +x11+xzj+x kis

] 3

-1 % “1."2.:‘31,;

TR

il 2 F 2
where [x| = xj + %7 + x5, + x5.
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EXERCISES

1-1.  Show that each of the following is an equivalence
relation.
{a) In the set of integers, m ~ n if and only if m - n is even,
{b) In the set of polynomials with real coefficients,
fiX) ~ g(X) if and only if @, a fixed real number, is a
root of f(X) - g{X).

1-2, Prove that for any two sets A and B, either there
exists an injection from A to B or an injectlon from B to A,
(Hint: Consider the set ¥ of triples (X, Y, f) where X S A,
¥ E B f:X~2Yis a bijection. Partially order ¥ by
1 1 g0 ¥y =Y
fE restricted to }El equals fl. Apply Zorn's lemma and

(X, ¥ } £ (X5, Yy, f5) if and only li‘K1 = X o
show that a maximal element of ¥ must either have A as its

first entry or B as its second entry. )

1-3. Let ¥V be & vector space over a field k. Recall that
a subset X of V iz called linearly independent if for any
finite sum Eaixi = 0 with 2, € k, X, € X, all a, must be zero,
Use Zorn's lemma to prove that there exists a maximal
linearly independent subset of V, Then prove that if X is

such a subset and v g V, then v = E.aixi {finite sum) for some
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unigue a, ek - {0}, X € X.

1-4. ZZ[] ={a + bi|a, be Z]). Define binary operations
in the set ZE[i] by {a + bi} + {c + di) = {& + ¢} + (b + d}i and
{a + bi} « {e+ dl) = {ac - bd) + {ad + be}i. Thus i2 = =1,
Prove that ZZ{ 1] is a commutative ring with unit. 2ZZ[i]is

called the ring of Gaussian integers,

1-35. Let & be a ring. Prove that for each element
k¢ A, the set C(\) = {ue A| Mg = pr} is a subring of A,  Also
prove that C = [h e A| Ay = ph for all ye A} is a commutative

subring of A. C is called the center of A.

1-6. Let & be a ring and let I' denote the set Z& x A.
Define operations in T by {m, x) + {n, ¥) = {m + n, x + y) and
{m, x) - (n,¥) = {mn, my + nx + xy). Note that my should be
interpreted as y+ y + *+- + y (m times) in A. Similarly
for nx. Show that I' i{s a ring with unit element (1, 0).
Furthermore, I’ is commutative if and only if A is
commutative., Finally consider the map ¢: A + T given by
@lx} = (0,x). Prove that ¢ is 2 monomorphism and that if

A possesses a unit element, ¢ is not unitary.

1-7. Let f: A+ A be a homomorphism of rings with unit.
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Suppose that 1' = f()) for some A ¢ A. Prove that f is

unftary.

1-H, Prove that the mapg : Z5 =+ Em which sends each
integer to its remainder upon division by m is a ring

epimorphism,

1-9, Suppose that m and n are relatively prime integers.
Prove that the only ring homomorphism from EE.’.m to .EE:n is

the zero map.

1-10, Suppose thatf : @ =+ @ is a ring homomorphism, not

fdentically zero, Prove that f is the identity map.
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IDEALS AND RESIDUE RINGS

For the remainder of the book, "ring"” will be under-
stood to mean 'ring with unit element,” All ring homo-

morphisms will be assumed to be unitary.

DEFINITION 2-1. A left ideal A in a ring A is a nonempty
subset of A such that
{1) a, be A, thema - be 4;
(2) ifagAandxe A, then harg A,
A right ideal A in A is defined by replacing condition (Z) with
(2a) fae¢ Aand he A, then ak ¢ A,

If A satisfies (1), {2), and (2a), it is called a two-sided ideal

or simply an ideal. MNote that in a commutative ring (2) is

eguivalent to (2Za) and so all ideals are two-sided,

EXAMPLES, 1. Inaring R, 0 and R are ideals., An
12
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ideal A # R is called proper.

2, Inthe ring of integers ZZ, all multiples of a
given integer n form an ideal.

3. In the ring of polynomials in one variable with
real coefficients IRTX], all polynomials that have a given
real number o as a root form an ideal.

4., In a field Kk, the only ideals are 0 and k., For if

1

A#Oisanideal of kandae A, a#0, thena "« a=1¢A

whence if ce k, o+ 1 =ce¢ A, Thatis, A =k,

Addition of ideals. If A and B are left 1deals in A then

A+ B={a+h|ai A, b¢ B} is again a left ideal of A called

the sum of A and B.

Multiplication of ideals, I A and B are left ideals in A,

then AR = {Efinite- Elbi |m1 £ 5, hi. ¢ B} 1= again a left ideal

in A called the product of A and B.

Intersection of ideals, If A]._ {ie I, finite or infinite) iz a -

collection of left ideals in A, then Niel A; is again a left

fdeal in A called the intersection of the A‘i'

Guotient of ideals. If A and B are left ideals in A, then

(A:B) =[n¢ A | \bg A for all bg B) s again a left ideal in
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A called the gquotient of A by B.

At the end of the chapter, there are exercises

exhibiting certain relationships among these operations.

DEFINITION 2-2. A left 1deal A In a ring A Is said to be

finitely generated if there exist elements Byslgyaead € A

such that every element of A can be written as E}Ll hiﬂ'i
for some Ay € A. We then write A = !al, Basases an} and

call By, 8, 000,88 set of generators (basis, base) for A,

n
On the other hand, given any subset B of A, the set
of elements that can be written as L .. h.b. where
finite 1 1
7".{ € A, i:rl ¢ B forms an ideal in A, denoted by (B), I is
in fact the smallest ideal of A that containe the set H,

DEFINITION 2-3., In a commutative ring R and ideal
A = {a) = Ra generated by a single element is called a

principal ideal. A commutative ring R in which every

ideal is principal is called a principal ideal ring.

EXAMPLES. ZZ and k[X] where k is a fleld are each

principal ideal rings.
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THEOREM 2-1. Let P be a proper idezl of & commutative
ring R. The following conditions are equivalent:

(1) e, be Randab ¢ P, thena ¢ Porb ¢ P.

{2) If A and B are ideals of Rand AB S P, thenA € P

or BE P.

Proof. (1) implies (2). Suppose AB S Pbut A £ P and
B 2 P. Then there are elements a £ A, af Pand
be B, B P. By (l), ab ¢ P. However, abe AB S P.
Contradiction,

(2) Implies (1}). I ab ¢ P, then {a}{ib} = P. Thus
by (2), either {a) € Por (b) S P. In particular either

ag Porbe P.

DEFINITION 2-4., An ideal P satisfying either (hence both)

of the above conditions Is called a prime ideal.

COROLLARY. Let P be a prime ideal of R. If
LI B ) i L C
a,a, a € P then some a; € P. K AIAE ﬂn = P,

then some Ai S P

Proof. Induction on n.

THEOREM 2-2., Let M be a proper left ideal of a ring A,

The following conditions are equivalent:



i6 TOPICS IN RING THEO

(1) ¥ A is a left ideal such that M S A S A, then A = 5%
or 4 = A,
(2) Hae A, a ¢ M then (WM, a) = A.

Proof, (1) implies (2}, Sincea g M, A =(Ma) oM.
Thus A = A,

{2) implies (1), Suppose | S A S A. HAFT
then there exists a ¢ A, a ¢ M. Thus (M, a)=A. But
(Mm.a) S Aso A =A. T4 a)

DEFINITION 2-5, A left ideal M satisfying either (hence

both) of the above conditions is called a maximal left idea

THEOREM 2-3. In a commutative ring R, every maxima

ideal is prime.

Proof, Suppose % is a maximal ideal andab e . I
ad M then (9,a) = B. In particular 1 = ra + m for some

reR megM. Thenb=rab+ mb g .

DEFINITION 2-6, Iff: A + T is a ring homomorphism,
then the image of f, denoted im £, is equal to
{¥ ¢ T|y = f(3) for some % ¢ A}; the kernel of f, denoted

ker f, is equal to [ ¢ A | £(}) = 0.
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THEOREM 2-4. Letf: A~ ' with kernel K. Then K is

and ideal of A.

Proof. Suppose a, b ¢ K. Then f{la-b) = fila)-fib) = 0 s0
a-b ¢ K. Also f(ka) = f{x}(a) = f(x)0 = 0 so va ¢ K for any
€ A. Similarly flak) = 0 soax ¢ K. Thus K is a two-

sided ideal of A.

Conversely, any (two-sided) ideal A of A is the
kernel of homomorphism with domain A. To see this we
define a relationon A by 2 = b mod A, read "'a congruent to

b modulo A" if and only if a-b ¢ A.

THEOREM 2-5. £ mod A is an eguivalence relation on A.

Proof. The proof ia immediate from the definitions of an
equivalence relation and an ideal. It is thus left as an

exercise,

Let A/A be the set of distinct equivalence classes.

FX, YeA/A, say X =8, Y=b, then we define X+ Y = Z

where Z = a+ b and XY = W where W = ah.

STHEQOREM 2-5. Under the operations defined above,

AJA is a ring.
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Proof, It must be checked that the operations in A /A are

well defined, In particular, ifa = 3' and b = B', we must

show thata + b =a + b andab = ab'. Puta-a' = xand

b-b'=yforsomex, vye¢ A. Thua(a+ b} - (a" +b'}

=x+ye¢Asca+b = a"'+b'., Alsoab-a'b+a'b-a'd
=ab-a'b' = xb+ta'y ¢ Asoab = a'b'. Hence the operations
are well-defined.

Checking that the ring axioms are satisfied is left as

an exercise.

There is a natural epimorphismea: A =+ A/A given by
ald) = X, A/A is called the residue ring of A with respect
to A,

THEOREM 2-7, (First Isomorphism Theorem) Suppose

f: A~ Tis aring homomorphism. Then im f= A/ker 1.

Proof. Conslder the following diagram:

A 3 Im

[
11

Afker 1
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We define & map 7 : Afker f + im f and show that it
is an isomorphism. I X =3 ¢ A/ker f, define {X) = fia).
To see that this is well-defined, suppose & = 8'. Then
a-a'¢ ker fsofla-a')=fla)- f(a')=0or fla) = fla').
Henee t{a) =v(a'), Furthermore, if ¥ = b, ¢{X+7¥)
=r{a + b) =7(a + b) = fla + b} = fla) + f(b) = 7(a) + v{b)
= 7(X) + r{¥) and 7(XY} = rlab) = r(ab) = flab) = f{a)f(b)
= r(aky(b) = r(X)7(Y) so T is a homomorphism., Ky ¢ im I,
then y = f(a) = v(2) for some 2 ¢ A sor is surjective,
Finally, ify(a) = f{a) = 0, thena ¢ ker fsoa = 0. Hence

T is Injective and so an isemorphism.

THEOREM 2-8, (Second Isomorphism Theorem} If

f: A=A i=an epimorphism with kernel K, then there is

a bijection between the set of ideals A 2 K of A and the set
of ideals of A'. Furthermore, If A and A' are corresponding
ideals under this bijection, then A/A= A'/A'= A/K/AJK.®

Proof. Let 8 equal the set of ideals of A which contain K
and J equal the set of ideals of A'. Defineg: 28 + J by
glA) = [fla) | 2 ¢ A}, which is clearly an ideal of A', hence
ind, Defineh: 3 +8 byh{A') ={a ¢ R | f(a) ¢ A']
which is an ideal of A containing K, hence in 8. It is easy

to check that g « h = IE andh « g = I_, the respective

Ei



20 TOPICS IN RING THEORY

identity maps on the seta J and 2. Hence each is a
bijection.

To verify the second assertion of the theorem, let
o: AN + ANJA be the natural epimorphism, Then
T=gef: A*ANSA is an epimorphism and & ¢ ker T if and
only if 7{A) = 0 if and only if off(x)) = 0 if and only if
fiv) ¢ A' if and only if L ¢ A. Hence kerT = A and by the
previous theorem AfA = A'JA',

DEFINITION 2-7. An element a in & commutative ring R
iz called a zero divisor if there exista b £ 0 in R such that

ab =0, IKa#0, it i3 called a nontrivial 2era divisor,

DEFINITION 2-8. A commutative ring is called an

integral domain {or simply a domain) if it has no nontrivial

zero divisors.

EXAMPLES. Z%, k, and kLKI* WS Kn] where k iz any
field are all integral domains. On the other hand Mn{k],
n=32a, and zam where m is a nonprime are not integral

domains,

THEOREM 2-9, Let A be an ideal of a commutative ring R,

\aé{:?} A is prime if and only if R/A is an integral domain.
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o A is maximal if and only if R/A is a field.

Proof. (1) Suppose A is prime andrs = 0. Thenrs = 0
or rs ¢ A, whence either r ¢ Aors e A, thatis, r = 0 or
s = 0, If R/A is an integral domain and rs ¢ A, then
rg =0sor =0ors =0, that is, r¢ A or s ¢ A, whence
A is prime,

{2) Suppose A is maximalandT # 0; that is, r § A,
Then (r, A) = H; in particular 1 = sr + a for some 8 ¢ R,
ag A, Then1 =8r+a = sr sothat 5 is the inverse of T.
Suppose R/A is a field and r § A. Then r has an inverse

5; thatis, re =1. Thusrs -1 = afor some a ¢ A.

Therefore 1 € {r, A); that is, (r, A} = R s0 A iz maximal.

COROLLARY. Ina commutative ring, every maximal
ideal is prime.

]

THEOREM 2-10, A [inite integral domain is a field,

Proof, Let R = {x ,xn] be the finite Integral domain.

preee
In fact we need not assume that R has a unit element, only
that it is commutative without zero divisors. Suppose

a ¥ 0in R. Then p,: R+ R given b_}'p:alf:-:i] = ax; is a
hijection. For if i £ j, i o xj, whence a.{xi ﬂxj_': £ 0 or

ax, # a.:-r.j* that is, pa{xi} # pa{xj }. Since By is injective and
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R is finite, M is bijective, Thus for some k, 1 sk =n,
a=ax,. Claim: X, is a unit element for H. For if

¥ye R ye= ax, for some i, Thus yx, = a.xixk = axkxi = ¥
Thus X = l. TMNowl = a:-;j for some value of j 50 a has an

inverge, Therefore R is a fleld,

COROLLARY. I pisa prime number, EZP is a field.

Proof. It suffices to show EEP is an integral domain., If
ab = 0, then p divides ab whence p divides a or p divides b.

Thatis, = = Dorbh =0,

MWote, It is also true that a finite division ring is a field

{(Wedderburn's Theorem) but we will not prove this here.

DEFINITION 2-3. Let .e"Li. i ¢ I {finite or infinite), be
rings. Then the direct sum, denoted gﬁiclhi is

| S W | A; € A, provided that x, = 0, for all but a
finite number of i ¢ I}. Elements of E‘_’iﬂ“"i are added
and multiplied coordinatewise making $itl'ﬂ'i into a ring
(with unit if I is finfte, without unit if  is infinite). Note

that If I is finite, the direct sum is the same as the direct

{Cartesian) product.
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1""'An

Ina ring A is called comaximal if &i+ "ﬂ"j = § fori# j.

DEFINITION 2-10. A set of (two-sided) ideals A

LEMMA. If A is comaximal with R]. ...,An {that is,

A+ P:.i s Afori=1,....n), then A i3 comaximal with
n

I'I1=1 Ai.
Proof. A=A"=(A+ANA+A--(A+A)
i c ] =

S AP AAga, T ANy Ay S A

Thus A=A +n;_; A..

THEOREM 2-11. (Chinese Remalnder Theorem) Let

Al, TR ﬂn be two-sided jideals in A and

n
¢ A+BAMA = AJA ® AfA; © -0 8 AL

be given by @(n) = (p, (0, eg(hh..., ¢ (L)) where

(- PR A= ,n.fAi iz the natural epimorphism. Then

(1) ¢ is surjective If and only if A,,..., -ﬁ.n are comaximal;
(2) ¢ is injective If and only if Ny, A, = 0;

{3) ¢ iz bijective if and only irng A;=0and A, ... AL

are comaximal.

Proof. (1) Suppose g is surjective and 11 ¢ jsn., We
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must show Ai + ﬂj = A. Consider ®yj A "J'L;"Ai ® .*'!l..l"'a"’L:i
which is surjective, Hence we can find % € Ai and

xj £ Aj such that ;pij{xi_! = {0, 1) and qgij{xj}l ={1,0), Then

""1_1“ —{xi+le-]| =({1,1)-(0,1)-(1,0) = (0,0) so
e

1 -{xi+ xj} € ker 5 AN A A+ Aj. But

]

X +x%, £ A +Aj as well s0 1 ¢ Ai+ﬂj. That is, A = A

iy s i

Mow suppose Al‘ e ﬁ"n is a comaximal set, We
must show g is surjective, that is, given Ll, cenah € A,
there exists an element x ¢ A such that r,pil[x:l- = '.'-:_1 for
f=1,,..,n This iz clear for n = 1. Suppose n = 2.
Sinee A1+A2 = A, there exists ey € A’.‘l' €y € A2 such that

1=ge +e,. Set x = e, L +e,L Thenqplfx} = E]h2+e2}.1

172 2°1°
= eyh, = {1- e,y =X -e X =) and similarly, pgix) =X
Assume now that we have established the result for

n=1,2...,k-1. By the lemma Ak is comaximal with

k=1 k-1
.y &y Thus we canfind y € N, A andz ¢ A such

that 1 = y + 2. By the induction hypothesis, there exists
an element a ¢ A such that npi{a} = Ii’ f=2lea, -1
Set x = za + lk_v. Then wk{x} = hl-: since z ¢ Ak and

y=1-g, ﬁlan::i[x] =mi{a} ='}fifﬂr1= l,..., k-1 since

¥ ﬂi::;‘ Ai = Ai and® = 1-y. Thus x is the desired

element, completing the induction, (2) and (3) are trivial

i

gince ker ¢ = r"|1=.1 i

+ A,
J

g
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COROLLARY., A system of linear congruences

X!ci{mﬂdmi}l i 55 R IR

is solvable for all values of ¢|,..., e, if and only if the

moduli are relatively prime in paira.

Proof. To state that the system is solvable for all values

of ClavensCy iz to state that the natural map from

7L Ezml 5] E'E.'.m2 B oeee @ EEml iz surjective. By the
previous theorem, that means the ideals {mlj. l[mz.'l, SR {mt}
rnust be comaximal, Butl g {mi} + {mj}l if and only if

Lrni, :mj] =1, that is, the modull must be relatively prime in

pairs,

EXERCISES

2-1. Let A, B, C be left Ideals In a ring A. Prove each
of the following:

(a) A(B+C) = AB + AC

(b) (A:B)B € A

(e} (A:(B+C)) = (A:B) n (A:C)

(d) ((A:C):B) = (A:BC)

2-2. Let A, B, C be two-sided ideals in a ring A. Prove
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each of the following:
fa) ABS An B
(b) A S (A:B)

2-3, Let Abe the ring of continuous real-valued functions
on [0, 1] where the operations in A are given by

(f+gt) = £t} + glt) and {fg)(t) = f{t)g{t), For anyt,
D=st=sl, definet: A+ R by t{f) = f{t). Prove that ker't

iz & maximal two-gsided ideal of A.

2-4, Complete the proof of Theorem 2-8. That is, show

that g » h and h = g are the appropriate identity maps.
2-5. Let A be the principal ideal generated by X2 +1in
the ring R = ZZ[X]. Prove that RJA ~ ZZ[i], the Gaussian

integers.

2-8. Show by example that ]'l.-'lnle.*,} is not an integral

domalin for nz 2.

2-7., Prove that in a finite commutative ring, every prime

ideal is maximal,

2-8, Buppose that A and B are comaximal ldeals In a
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commutative ring R. Prove that AB=A N B. Generalize

to sets of n comaximal ideals.

2.0, Let Al,. s A be comaximal two-sided ideals in A.

Prove that A7'1, ..., AT'n are comaximal for any positive

integers Mlypees, M.
2-10, Letn=py1 pglﬂ »++ p, k be the prime factorization

of the integer n.  Prowve that

Z I m, ® - @ Z m
n 5 o

1 Py &



CHAPTER 3

RINGS OF QUOTIENTS AND LOCALIEATION

In this chapter we discuss another construction
¥ielding a new ring from a given ring. The reader should
keep in mind the method by which the rationals @ are
constructed from the integers Z£ for it is just this process
which is being generalized. In this chapter and the next,

all rings are assumed commutative,

DEFINITION 3-1, A subset 5 of a ring R is called a
multiplicative set if

(1) 1e5;

(2) ifa, b, ¢ 8, thenab ¢ 5.

Let 5 be a multiplicative set in R. Consider the set
{r/s | re R, s¢ 8] thought of simply as formal symbols.
We say two such symbols rlf"sl and ro /sy are equivalent,

28
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denoted r, fsl -~ rzfaz, if there exists s ¢ S such that
s{r152 = rzsl} = 0. The reader should check that ~ iz in
fact an equivalence relation. Denote by [r/s] the class of
rfa and by HS the set of distinct equivalence classes, We

define addition and multiplication in H'S by

Lr] JIIE]I]"'[I‘EJFEE] = [r152+r251||||a] 52:1
and

(ry /5,1 [rg/s,] = I'_rlrﬂ,n"s]sg] .

Under thease operations l:L5 is a ring called the ring of

quotients of R with respect to §. Furthermore there is a

natural homomorphism ¢ : R + Rg given by wir) =[rf1l

THEOREM 3-1. (1} KO ¢ 5, then R‘S =10,

{(2) @ is injective if and only if 5 contains no zero divisors,

Proof, (1) Note that [0/1] is the zero element of 1:-|‘,5 since
r/s]+[0/1]=[rl + 0afsl]=[r/s]. IO ¢ Sand[r/sleRg
then [r/s8] = [0/1] since O0{rl + 0s) = 0. Thus RS reduces to
just the zero element.

(2) r ¢ ker ¢ if and only if @{r) = [(r/1]1 =0 in Rg
if and only if there existe 5 ¢ S such that sr = 0, Thus

ker @ = 0 if and only if 5 contains no gero divisors.
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EXAMPLES, 1. Let S be the set of all non-zero divisors
of R. Suppose 8, be 8 and ¢ ¢ R satisfy {ablc = 0. Then
a{be) = 0 which implies bc = 0 since a ¢ 5. But this implies
c=0sincebg8 Thusabe¢ i Clearlyle¢S8soS5isa

multiplicative set, RS is called the total ring of quotients

of R.
2., Let Pbe aprime ideal of Rand 5 = R - P. This
is a multiplicative set. The ring of guotients RE is usually

denoted by HP and Is called the localization of R at P.

3. As a speclal case of either example 1 or 2, let
R be an integral domaln. Then (0} is a prime ldeal and
5= R - (0) iz the set of all non-zero divisors of . The

localization at (0) is called the guotient field of R. As the

name suggests, it is in fact a field,

THEOREM 3-3. Let 5 be a multiplicative set in a ring R.
Then there exists a bijection between the set of prime
ideals of R whose intersection with 5 iz empty and the set

of prime ideals of RE'.'

Proof, If0g¢ 5, then both sets are empty.,  Thus we can
assume 0 ¢ 8. We begin by describing a methed of
agsgociating an ideal in RE with one in R and vice versa.

F A is an idezl in R, define
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ARg = {t[a/1] laeA te Rgl

This is called the extension of A to RE' On the other hand,

if B is an ldeal In HE' define
.- |
BEnNnR=¢ (B

where ¢ 1 K =+ RE ig the natural homomorphism. This is

called the contraction of B to R, Note that when 5 contains

zero divisors, ¢ is not injective so that R cannot be thought
of as embedded in HS‘ In this case the contraction is not
a gemnulne intersection. However, the intersection notation
is a widely accepted one.

The "E\I;ﬂ-ﬂf can now be broken down into a sequence
of atepa.

{a) ﬁ;RS is an ideal of Rg. For if tl[al f1] and

tolay /1] are in AR where t, = Lrll.lrsl] and t, = erl.-"szl, then

t,la; f1)-t5la, /1] = [rya, /8,]-[rya,5/8,]

=[r,a,s, —r?azslfslszj = t'[a'f1]

where t' = ilfslsE]t RS and &' = P38, - Fadn8, € A,

(b) If Pis prime in Rand PN 3 =¢ , then PREI. is

First of all PRS ig a proper ldeal of REI-'

then{1/1] = [rpfe]for some r¢ R, p¢ P,

prime in HS*

For if 1 ¢ PRE'
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s8¢ 5 in which case there exists 8' ¢ 5 such that s'is - rp) = 0.
That is 8's = 3'rp. But 5's ¢ Sand s'rp ¢ P B0

PN 3#d, Contradiction. Thus PRE is proper.
Furthermore if[r11"|311r2|"'52] § '[.It*_1 rzj'slsﬂ] € PHS, say
[_r]rzfsiszj =[rp/s]for somer ¢ R, s ¢ 5, p ¢ P, then
there exists s' ¢ 5 such thats'(r ros-rps;s,) = 0. Thus
s'r rp8 = 8'rps; 8, ¢ P. But s § P, 8' § P so either

r, € P ar Iy € P. Hence either I:rl,-"sl'_l' £ P‘RS or

‘[rEI.I’sE} ¢ PRg.

(c) B N R is an ideal of K. ]Ihl, bE ¢t En R,
then (b, ) = !.',blj'lj and g(by) = (by/1] ¢ B. Thus
(b, /1] - [by/1] = [by - by/1] = @ib; - by} € B, Hence
b,-b, ¢ B N R,

id} I Bis prime In HS' thenm B N R is prime in B
and (B N R) N S=¢, Forabg B N R implies [ab/1] =
[a/1](b/1] ¢ Bwhence[af1] ¢ Bor [b/1] ¢ B, that is,
ae BN Rorbe BN R Furthermore, ifs ¢ (BE N RINS,
then [8/1] ¢ B ao [1/8][s/1] = [1/1] ¢ B which implies
B = Rg. Contradiction. Thus(B N R} N 5= &, In
particular, 1| ¢ E N R so B N R is proper, hence prime,

{e) B remains only to show that this palring ls
actually a bijection between the two sets in question, This

ig left ag an exercise for the reader,
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DEFINITION 3-2, An element r in a ring A {not necessarily
commutative) is called a unit if there exists 5 ¢ A such that

rag= ] = gr.

THEOREM 3-3. The following statements are equivalent:
(1) The set of nonunits of R form an ideal.

(2) R has a unigque maximal ideal.

Proof, (1) implies (2). Let M be the ideal of nonunits,
Ifxg¢ M, thenxisaunitsoR=(x) £ (x,M) & R. Thus
(x, M) =)H. which implies M is maximal. Now suppose I is
any maximal ideal of K. Then M consists solely of nonunits.
Thus M S M c R which implies , = M.

(2} implies (1). We first show that any proper ideal
of R is contained in at least one maximal ideal, To do this
we will use Zorn's lemma, Let A be a proper ideal of R

and consider
={B | B is an ideal of R satisfying A S B = R}

& iz not empty since A i5 in 8. Furthermore, if Ei‘ ig L

iz a chain in 3, then B = uiEI

certainly A S Bandif B= R, thenl ¢ B, in which case

Bi is again in 5. For

1 ¢ B; for some 1. Thus B, = R contradicting the assump-

tion that B, is in 2. B is an upper bound for the chain so
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8 is an inductive set. By Zorn's lemma, let M be a
maximal element of 8. Hx ¢ R, x ¢ M, then
M c (x, M) S R. By the choice of M, it must be that
{x, M} is not in 3, that is, {(x, M) = K. Thus M is a
maximal ideal of R which contains A.

Now let % denote the unigue maximal ideal of R and
M the set of nonunits of R. Clearly t & M since W
conaists solely of nonunits. ©On the other hand, if x ¢ M,
then (x) S m since W is the only maximal ideal, In
particular, x ¢ Mso M = M. Therefore M = % and so M

is an ideal.

DEFINITION 3-3, A ring satisfying either {(hence both) of

the above conditions is called a local ring.

THEOREM 3-4. Let P be a prime ideal of K. Then RP is

a local ring with unique maximal ideal PHP‘

Proof. By Theorem 3-2, the only prime ideals of Ry, are
of the form QRP where @ is & prime ideal of R and

QN (R-P) =@, that is, Q © P. Thus QR, S PRp.
Since maximal ideals are prime, PRP must be the only

maximal ideal of RP.
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THEOREM 3-5. Let P be a prime ideal of K. Then

HPI.I‘FR_F is isomorphie to the quotient field of R/P,

FProof, Recall that the quotient field of an integral domain
is just the localization at the prime ideal 0. Define a map

p: (R/P), + Rp/PRp, by

p(L¥ /5] = [¥]s]

whit;{! @:R+R/Psendsr T, §: Rp + Rp/PRy sends
t = 1, and[ ] has the usual meaning of the class of an
element in & ring of quotients. We must show that g is
well-defined and an Isomorphism.

{a) pis well-defined. Suppose L'flfé'.l} = [?2;""52].
Then there exists T # 0 in R/P such that F{¥,5, -F,8,) = 0.
That iz, there exists r ¢ H - P such that r{rls-E - rzsl} § P.
Thus F18g~Ty8, € P which implies [rl 85~ Fg8, I.’sf_Il -52] 3 PHP.
Therefore [r, s, - rzsl?_slszj = 0; that is [_rl I."sl] = [rgj'sg],

{b) pis a ring homomorphism, This verification is
left as an exercise for the reader.

{c) Suppose L'Ellu"?:l] € kerp. Then[r,/s;] ¢ PRy
Thus there exist elements p g P, r¢ R, 28 ¢ R-P such that
[rl ,I’alj = [rp/s], whence there exists 8' ¢ R - P such that
s'sr; = s'rps; ¢ P. But sf P, g §Pso ry € P. There-

fore ?] = 0 and so [?I ,'VE]] = 0. Hence pis injective. It is
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immediate from the definition that p is surjective, hence an
isomorphiam.
EXERCISES
3-1. Prove that the complement of a union of prime
ideals in a ring H is a multiplicative set.
3-2. Let k be a field, a ¢ k, and set

M_ = {f(X) ¢ k[X] | () # 0}.

Show that M_ is a multiplicative set in the ring k[X]. More
generally, let V be any collection of n-tuples (a} = l[al, N El.n.ll

in kn and set

Mv=Ef{};1,...,Kn}I:k[xl....,!{nﬂf{a};i{! for all {a) ¢ V].

Show that M., is a multiplicative set in I-:[}.'I.l, R i

vV 1

3-3. Prove that the quotient fleld of ZZ[{], the Gaussian

integers, is isomorphic to @il ={a+bi|a, be¢ @1.
-4, Describe the total ring of quotients of E‘n'

3-5. Complete the proofs of Theorem 3-2{e) and



RINGS OF QUOTIENTS AND LOCALIZATION 37

Theorem 3-5{h).

3-6. Prove that the set of units of a ring form a group

under multiplication.

3-7. Find all units in the following rings:

(a) Z[1]
(b} K[X]
o)z

(d) My(R)

3-8. Let K be an integral domain with guotient field K,
S a multiplicative set in R, 0 ¢ 8. Prove that Rg is an

integral domain and that the quotient field of R3 ig K.

3-9. Let S be a multiplicative subset of a ring R, 0 ¢ 5.
Let P be a maximal element in the set of ideals whose
intersection with 3 is empty. (Show by Zorn's lemma
that there exists such an ideal.}) Prove that P is a prime

ideal,

3=10, Let R be a ring In which every nonzero prime ideal
is maximal, Prowve that PR, is the only nonzero prime

ideal of R, where P £0 is a prime ideal of R.

P



CHAPTER 4

UNIQUE FACTORIZATION DOMAINS

In this chapter we will employ the technigue of
localization developed in the previous chapter to capture
some well known results about unigue factorization domains,
namely Theorems 4-§, 4-7, and 4-8. We begin the
chapter with a special class of these rings called Euclidean

domains. Once again, all rings are commutative.

DEFINITION 4-1. An intepral domazain R is called &

Euclidean domain if there exists & function d ; R + Z

satisfying
(1) di{a) > d(0) for all0 # a ¢ R;
(2) Foranya, bg¢ R, b # 0, there exist elements

L)

gq. ¢ ¢ R such that a = gb + r with d(r) < d{b),

EXAMPLES. 1. Let R = ZZ and d{a) = |a|, ordinary
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absolute value, The elements q and r are what are usually
called the quotient and remainder upon division of a by b,

2. Let R = k[X] for & field k and set d{f{X})} = the
degree of the polynomial f{X) if f{X) # 0 and d(0) = -1,

THEDREM 4-1. Ewvery Euclidean domain is a principal
ideal domain,

Proof, Let (R, d) be a Euclidean domain and B an ideal in
R, If Bis the zero ideal, then B = (0) and so0 iz principal,
Otherwise consider the non-empty subset X of Z given by
X={dla) |a ¢ B, a ¥ 0}, By property (1) of the function d,
x> Jd{{l} for all x ¢ X, Thus X iz a nonempty subset of Z
which is bounded from below., Hence X has a minimal
element, Let0 # b ¢ B be such that dib) is a minimal
element of X, We want to show that B = {b).

Suppose & ¢ B, Then there exist elements q and r
in R such that a = gb + r with d{r) < d{b). Since a ¢ B,
gbe¢ B, we haver = a - gb ¢ B. But dir) < d(b) contra-
dicts the choice of b unless r = 0. Hence a = qb and

E = (b}, Therefore every ldeal of R is principal.

DEFINITION 4-2. A ring R is said to satisfy the

ascending chain condition if every strictly ascending chaln
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of ideals of R, A‘l c AE = ﬁ".i = -+« I finite, Egquiva-
lently if for every infinite chain of ideals A, € A, € ---,

there exists an integer k such that Al = A.k for § = k.

DEFINITION 4-3. A ring R is said to satisfy the maximum
condition if every nonempty collection of ideals of H has a
maximal element, that is, an ideal which i3 properly

contained in no ideal of the collection,

THEOREM 4-2, A ring R satisfies the ascending chain

condition if and only if R satisfies the maximum condition,

Proof. If R does not satisfy the ascending chain condition,
there exists an infinite strictly ascending chain of ideals
{Aij. The collection of these ideals has no maximal
element,

If R doeg satisfy the ascending chain condition, let
¥ be a nonempty collection of ideals., Let "5‘1 ek, If Al
is maximal, we are done, Otherwise, there exists
AE € K such that &1 = AE' If AE iz maximal, we are
done. Otherwise, continue the process. Since R

satisfies the ascending chain condition, this process must

atop. When it doea, we have a maximal element in X.
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To say that a ring satisfies the ascending chain
condition for principal ideals has the obvious meaning, that

is, replace "ideal' by "principal ideal” in Definition 4-2.

DEFINITION 4-4, Let R be a domain, A nonunit p ¢ R is
called irreducible if p = ab Implies either a or b is a unit in
R.

DEFINITION 4-5. An integral domain R is called a

unigue factorization domain if every nonzero nonunit of R

can be written uniquely as a finite product of frreducibles.
More precisely,
(1) IHa#0is anonunit, then a = PPy " " P, Where
each Py iz irreducible,

2) If By=- P, = G-+t {all By and qj irreducible)}

r
then r = 5 and there exists a permutation g of

{1,2,...,r} such that p; = u ) for some

iTmli
units ui.

DEFINITION 4-6. A nonzero element p ¢ R is called a
prime if (p) is a prime ideal of R.

Note, 1, Every prime is irreducible. For if p is prime

and p = ab, then ab ¢ {p) so eithera ¢ (p)orbe (p). K
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a ¢ (p), thena = rp for some r ¢ R. Thus p = ab = rph,
that is, 1 = rb 50 b is a unit in R.

2. Not every irreducible is prime, Consider the
ring Z[/-5] = {a + b/-5 | a, b ¢ Z] where the operations
are the usual ones for complex numbers. In this ring,
2-8:=(1+/-5){1 -/-5}. All of these elements are

irreducible, but none is prime.

THEOREM 4-3, A domain R 15 a unique factorization
domain if and only if every nonZero nonunit of R can be

written as a finite product of prime slements.

Proof. Assume R is a unique factorization domain., I
suffices to show that every irreducible element of R is
prime. Let p be irreducible and suppose ab ¢ (p), that is,
ab = rp for some r ¢ R. Write a, b, r as products of
irreducibles, say a = p,pyr++Fy. B =095 -- g
FEPIRy Py TREN P Pycer Bl rodg TR PEro PP By
uniquenea? p = up; forsome i, 1 =i gorp-= vqj for some
7. 1 £j =8, uwand vunita. Inone case a ¢ {p), in the
ather b ¢ (p). Therefore (p) is 2 prime ideal sop is a
prime element,

Now assume every nonunit can be written as a

finite product of primes. Since primes are irreducible, it
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suffices to show the expression is unigue. Suppose
Py***Pp = 9y " *qg where all p,, q; are primes. Thenp,
divides a; for some j, say j = 1 (relabel if necessary).
Hence g, = u,p, where u, is a unit. After cancellation
PE" . pr = ulqz. i qa_ P'rl’.‘n:EEding h}l’ inductinn, the

uniqueness follows,

THEOREM 4-4. [Let S be the multiplicative set generated
by 1 and all primes in the domain K. Then R i3 a unigque

factorization domain if and only if RS i5 a field.

Proof, Assume R is a unique factorization domain. Then
every nonzero nonunit of R is in 3, But in Rg elements of
8 become units. Hence every nonZero element of 1=!S isa
unit, that is, Rgis a field.

Suppose R is not a unigue factorization domain and
a ¢ R is a nonzero nonunit which cannot be written as a
finite product of primes, that is, a ¢ 8. Clearly then
{a) N 8=4%&. For if ba is a finite product of primes, a
must be alas, Thus 0 # fa}HE ¥ Rg, that is, the ideal
generated by [a/1] in RE‘. is nonzero and proper. Therefore

Rg is not a field since it has a nonZero proper ideal,

THEOREM 4-5. Let R be a domain with the ascending
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chain condition on principal ideals. Let M be a multipli-
cative set penerated by 1 and prime elements (not
necessarily all prime elements), I RM iz a unique
factorization domaln, then R is a unigque factorization

domain.,

Proof. Let S be the multiplicative set generated by 1 and
all primes in R and let T be the multiplicative set
generated by [1/1] and all primes in Ry We will
peccomplish the proof by a series of reductions.

(a) Since Ry, is by hypothesis a unique factorization
domain, Theorem 4-4 states that (R, ). is a field. Again
by Theorem 4-4, H iz a unigue factorization domain if and
only if RS iz a field. ‘Thus it suffices to prove RS = {RM}T.

(b} Rg S {RM}T. For let x = [r/s] ¢ Rg. Write
3 = ma' where m i8 & product of generators of M and &'
involves no generators of M. Then x = [r/m]{l /'] where
clearly [r/m] ¢ (Ry, ). Thus it suffices to show that
[1/s8']¢ {RM]T. Furthermore it suffices to show that
[1/pl e ERM}T where p is a prime of R and not one of the
generators of M, since [1/8"] is just a product of such
elements. WNow (p) is a prime ideal of R. K p) N M £ &
thenrp ¢ M for some r ¢ B. Thus [1/rp] ¢ Ry, 50
[1/p]=[r/1]7(1/rp]) ¢ Ry © (Ry )y and we are done,

TRIBHUYAN UMIVERST™ - lial "IPMARY
2{Naq9
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Otherwise {(p) N M = ¢ in which case [p/1] generates a
prime ldeal in HM' That 1s, [pf1] is a prime element in

R,y hence in T. Thus (01/13/lpf11] =(1/p] ¢ (Rygdepe
=
This shows that I:L3 = {RM}T.
{c) The next claim is that in ordeér to show
{RM}T = RS' it suffices to prove the following statement;

if x ¢ R and [x/1] is a prime in R thenx e 5. Tor a

Ml
typleal element of {RM}T can be written as [z /t] where

¢ R, t¢ Tandt = [xlfl]szjl}u[xkfl] where

MJ’
Xraeeen X € R and[xl,l"lj_. ..,,I:xkl.l’l] are prime In R,

Our statement would then say that x TR 3, Thus

10"

[1/t] ¢ Rg. Butz ¢ R Rg (since M £ S) so we can

M =
conclude [z /t] ¢ PI'.S This verifies the claim,

{d) If x ¢ R and [x/1] is a prime in Ry then x e 5.
Aszsume the contrary, that is, there exists an element
x £ R - 8 such that [x/1] is prime in Rppe Lot
8 ={(x) = R|x¢ R-Sand(x/1]is prime in R,;}. By
hypothesis & is nonempty and by the ascending chain
condition on principal idezls, there exists a maximal
element in 5. Call it {y).

The next claim is that L}*I.FI]RM M R ={y). Suppose
that [¥/1][r/m) ¢ R for somer ¢ R, m ¢ M. Thatis, m
deides yr, We want to show that m divides r. I pisa

prime {in R} factor of m and p divides y, then y = pz for
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some £ § R, Clearlyz § Sfor z ¢ S would imply y ¢ 5.

Furthermore [z,."i]RM = [y/p] Ry = [y,“l]HM so[z/1] is

prime in R Hence (2) is in 8 and by the choice of (¥),

AT
(z} = {y). Thusz = ay for some a in R from which
¥ = p2 = pay. Therefore pa = 1 making p a unit and contra-
dicting p a prime, Thus no prime factor of m divides v,
whence m divides r. This gives the Inclusion
Lyfl]RM M B < {¥). The reverse Inclusion is immediate
and the claim is established,

Finally we conclude from the claim and Theorem 3-2

that y is a prime in R. This immediately contradicts

¥ i 5 and completes the proof of the theorem.

THEOREM 4-6. Ewvery principal ideal domain is a unigue

factorization domain.

Proof. Let R be a principal ideal domain and 5 the multi-
plicative set generated by 1 and all primes in R, If RS is

not a field, let 0 # A = R_ be a maximal ideal in HE'.'

3
Then A is a prime ideal of RS s0 A N Risaprime ideal of
R. ButA N R =(r)for some r ¢ R, whence r is prime in
R. Thusr e 5  But this implies A = {A N 1:1',]'}&5

= [r/l1] RS u RS' comtradicting the cholce of A, Thuas HS is
a field and by Theorem 4-4, R is a unique factorization
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domain.

COROLLARY. Every Euclidean domain is & unigue

factorization domain.

LEMMA. (1) If R is a domain, then R[X] is a domain,
(2) If R satisfies the ascending chain condition for principal

ideals, so does R[X].

Proof. (1) Obvious. (2} Conmsider (f (X)) = (L(X) = -+
Then deg f,{X) = deg f,(X) 2--+. This must end at some
nonnegative integer. Suppose deg fii}{] = deg fkf?ﬂ for all
%)

izk. Then lfk{X}] c (f, . (X)) implies Ik{K]' = af

k+1 k+1 (

for some a ¢ H.

Let a; be the leading coefficient of fif}ﬂ. Then
Iak} .= (24! S +«+. Thus there exists N such that
I'ajl = ha.t} for j, t=z™. Suppose j=t>N. Then fj{’x}l
divides ft{}{}. that is, ft{X’.‘r = a.Ijl_'K}. Therefore a, = aa..

But (=} = {ajll so & is a unit in R.  Therefore (f,(X)} - l.'fj{}ﬂL
THEOREM 4-7. If R is a unigue factorization domain,
then R[X] is a unique factorization domain.

Proof, WNote that for any ideal A or R, (R/A)[X]= R{X]/AR[X].

Therefore if P is & prime ideal in R, then PR[X] is & prime
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ideal in R{X]. So if p is a prime element in K, it is also
a prime element In R[X]. Let 3 be the multiplicative et
generated by prime elements in R,

Then (R[X])g = Rg[X]. But HS Is a field so Rg[X]
is a principal ideal domain, Then by Theorem 4-86, HS[}{]
{5 & unique factorization domain, whence by Theorem 4-35

and the above lemma, R[X] is a unique factorization domain.

Note, We have used here the fact that a8 unigue factorization
domain satisfies the ascending chain condition on principal
ideals, This follows immediately by considering the

factorization of the generators of the ideals in a chain,

COROLLARY. If R is a unique factorization domain, then

H'LH,I, e Hn] is a unigue factorization domain,

COROLLARY. Ifk is a field, k[}{], il }{n] is & unigue

factorization domain.

Note. Not every unigque factorization domain is a principal

ideal domain. For example, k{}{l, iy Hn}, nzg2.

DEFINITION 4-7. Ifa=p%1 -+ p®tandb = pPi... phtare
prime factorizations of a and b in the unigue factorization

domain R where &, 20, _Bj =0, then d= ﬂ:zlpi“f“ lerj. IEi:l' i
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called a greatest common divisor (g.c.d) of a and b. It is

unique up to multiplication by a unit.

DEFINITION 4-8. Let R be a unique factorization domain

and f(X) = a, + a, X+ .-0 + aan € R[X]. Then the content

0
of f = c(f) = g.c.d. (ao, cees an). If c(f) =1, fis called a

primitive polynomial.

\PﬂlEOREM 4-8. (Gauss lemma) Let R be a unique
-
factorization domain with quotient field K. If f(X) ¢ R{X]

is irreducible over R[X], then it is irreducible over K[X].

Proof. Suppose f(X) = G(X)H(X) where G(X), H(X) ¢ K[X].
Set G(X) = g(X)/d and H(X) = h(X)/e where d and e are the
least common denominators of the coefficients of G and H,
respectively, and g(X), h(X) ¢ R[X]. Set p(X) = g(X)/c(g)
so that p(X) is a primitive polynomial in R{X]. Then
de f(X) = c(g)h(X) p(X). But R[X] is a unique factorization
r domain, primes in R are primes in R[X], and p(X) is
primitive. Therefore de divides c(g)h(X) so f(X) factors

over R[X].

EXERCISES

4-1, Let R be a Euclidean domain, a ¢ R. Prove that a
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is a unit in R if and only if d{a} = df1),

4-2, Prove that every prime ideal in 2 Euclidean domain
is maximal, Show by example, that this is false for unique
factorization domains,

2 2

4-3. Defined: ZZ[i] + Z by dia+bi) = 8 + b~, Prove
that this function gives ZZ[i] the structure of a Euclidean

domain.

4-4, (Factor Theorem) Let k be a field, a ¢ k a root of

(X} = 0 where f{3) ¢ kK[X]. Prove that X - a divides f{X).
4-5. Prove that ZE{X] is not a principal ideal domain,

4-6. Prove that in a principal ideal domain, every ideal

is a unique product of prime ideals.

4-7. Prove the remark following Theorem 4-7, that is,
every unigue factorization domain satisfies the ascending

chaln condition on principal ideals.

4-8, (Eisenstein's Criterion) Let f{¥)= &0”1:{ Foen +an}{ﬂ

¢ ZZ[X] and suppose p is & prime number such that p divides
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a fori=0, 1,...,n-1, p does not divide a_, and p? does

not divide au, Prove that f{X) is irreducible in @{X].

4-9. Let p be a prime number. Prove that

fHX) = 1+X+X% + ++» + XP7} = xP_1 /X1 is irreducible in
@[X]. (Hint: If f{X) factors, so does f{X+1). Substitute
X+1 for X and apply Eisenstein's Criterion. )

4-10, A ring A is called regular if for any a ¢ A, there
exists b ¢ A such that aba = a, Suppose that A is regular,
Frove each of the following:

{a} Every non-zero divisor of A is a unit.

(b} Ewvery prime ideal of A is maximal.

{c} Every prinecipal left ideal of A is generated by an

element e satislying ez = g,



CHAPTER 5

MODULES AND EXACT SEQUENCES

DEFINITION 5-1, Let A be a ring (not necessarily
gommutative), An Abellan group (M, +) is called a

left A-module if there 18 a map A x M =+ M given by

{x, m) = xm satisfying
(1) Mx+y)=rx+ryforanyh e A, %, ¥ ¢ M;
(2) Ovtplx =dx +uxforany A, pe A, x € M;
(3) Mux) = Oplxforany h, pe A, x e M;

{(4) 1x=xTforall x ¢ M.

A right A-module is similarly defined.

Note. If A is commutative, then every left A-module is a
right A-module and vice versa, For if M is a left A-module,
we make it a right A-module by defining %)\ = Ax for all

e A xe M, Then (x\u = wlxh) = ulix) = (uhdx = x{uh)

oy
= x{u) where in the last step we use the commutativity of A.

2
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In this situation we will just refer to M as a A-module,

DEFINITION 5-2, If M is a left A-module, then a
nonempty subset N of M is called a left A-submodule if

(1) x, y¢ Nimples x-y ¢ N;

{(2) x¢ N, ¢ kimplies \x ¢ N.

If N is & left A-submodule of M, we define an eguiva-
lence relation on M by x ~ y if and only if x-y ¢ N. Denote
by M/N the set of distinct equivalence classes. Then M/N
is a left A-module undey the operations x + v = x + y and

Ax « kx. It is called the factor module of M by N and is

read "M mod N,

DEFIMNITION 5-3. Let Mi' i ¢ Ii{finite or infinite), be left
A-modules. Then the direct sum, denoted Eﬁi“ M,, is

equal to

1 R S, 3| m, ¢ M, provided m,; = Di for

all but a finite number of i ¢ I}.

Elements of Eiﬂmi are added coordinatewise and
= i '
Moooomg o) =, hmy, o0 ). This makes :BitIM:[ into

g left A-module, Each ]'l.-'[i iz called a direct summand.
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DEFINITION 5-4. If (M, +) and M', +'} are left A-modules

and f : M + M', fis called a A-homomorphism if for any

x, Y& M, e A, flx+y) = flx) +' £y} and f0x) = Mix).

The terms A-monomorphism, A-epimorphism,

A-isomorphism have the obvious meaning, Also

imf={ye M |y = f{x) for some x ¢ M] and
ker f ={x ¢ M| f{x) = 0}). Observe that ker { iz a left

A-submodule of M and im f is & left A-submodule of M'.

THEOREM 5-1. TLetf: M =+ Al' be a A-homomorphism
with im f = N and ker f = K, Then Na& M/K. Furthermore
there iz a bijection between left A-submodules of M which

contain K and left A-submodules of ™,

Proof. The proof 18 virtually identical with those of the
First and Second Isomorphism Theorems for rings and is

left as an exercise,
DEFINITION 5-5, A set of elements X in M is said to
generate M if for any element m ¢ M,

R R o

for some Ll....ht e A, Hpsvnns ¥y € #. M is saidto be

finitely generated if there exists a finite subset X of M
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which generates M. The elements of such a set are called

generators of M.

DEFINITION 5-6. A set of elements X in M is called a
bhasis for MM if
{1} X generates M;
t = = = & s = =
(2) r Ei.=1 AR, = 0, then k; =1, = L 0 for

he A X € X. In other words, X is a linearly

independent set of elements.

THEOREM 5-2. Let M be a left A-module, The following
statements are equivalent:

(1) M ‘“r‘:bi;lﬁi‘ where A; = A, L any index set;

(2} M admits a basis,

Proof, (1) implies (2). We havethat (1,0,...,0,...),
(0,1.0,...,0,...), and so forth form a basis for '&Tﬁiﬂ.hf
Since isomorphisme carry bases to bases M has a basis,
{2) implies (1). Let {mi}icl be a basis for M.
Then M = %iﬂnmi. The sum is direct by condition (2} on
a bagis, It sulfices to show that .ﬁ.mf = M for each i,
Conslder the map A -+ }Lmi given by » -+ lmi. This is a
A-homomorphism and is clearly surjective, I hm, = 0,

A = 0 by condition (2) of a basis. Hence the map iz injective,
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hence a A-isomorphism, Therefore M & $ii:l"ﬂ'i where

A= A

DEFINITION 5-7, A left A-module M satisfying one (hence

both) of the conditions of the above theorem is called a free

left A-module,

EXAMPLES. 1. Any vector space V over a field k, is a
free k-module,

2. Any Abelian group is a ZZ-module, ZE.E ig not
free over ZZ.

3. Any ring A is a free A-module.

4. Any left fdeal A of a ring A is a left A-module.

DEFINITION 5-8. A sequence of left A-modules and
A-homomorphisms M, + M, 5 M, is called exact if
ker g = im f. A sequence 0 - M, : M, 5 M., + 0 is
exact if

(1) ker f = 0, that iz, [ iz injective;

{2} ker g = im f;

(3) im g = ME‘ that is, g i3 surjective,

Such a confisuration is called a short exact sequence of left

A-modules and A-homomorphismas,
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EXAMFLE. 3Suppose N is a left A-submodule of M. Then
0+ N 3 M -'L M/N -+ 0 is a short exact sequence where i
is the inclusion map and j is the canonical map x + x.
i Iy

THEOREM 5-3. LetQO =+ M -+ M =+ M =+ 0 be exact.
The following statements are eguivalent:
(1) M= M @& M.
(2} There exists a A-homomorphism g, ¢ M- M such that

B, 1'1 = IM" the identity map oo M'.
(3) There exists a A-homomorphism g, : M" =+ M such that

f

gy = Iy, the identity map on M,

Proof. (1) implies (2). Since MmM' @ M" £, (M') & M"
there is a projection map ¢, : M = fll[['n'I']'. Define
g :M-+Mbyg =1 -@,. Thengt, =T,

(2) implies (3). Givenx" ¢ M" choose x ¢ M such
that l‘z[x} =x", Define gz{x"] = :r.lf] glfx} ¢ M, Thus
Ey ¢ K" =+ M. To see that 2y is well-defined, suppose also
¥ € M such that f,(y} = x". Then fy{x-y)= x'-x" =080
x-¥ ¢ ker fE = im l'], BAY X-F = f]'['r:'}fnr some x' € M'.
Then x - £, g, (x) =y + £, (x') - £, g, (y+ £, (') = y+18, (x')- £, g, (y)
- f] {x') = ¥- fl E; {v}). Therefore Eqg is well-defined, Finall
fEEE{}:"} : fg-l.’:r.] —fgflgl{:{]l = fE{:-:]' = " since f’EII = 0,

(3) implies {(1}. K x ¢ M, then we can write
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x = gofylx) + (x- gof,lx)).  Since fy(x - gyfylxl) = f4(x) - f,(x) = 0,
x-ggfgix} € ker fz = im fl. Since fzf}:}l ¢ M', we can say
that M = gE{M"} + f1{M‘]. We must show this sum is direct,
that is, g,zf.l‘uI“} M fll']".-l‘]' = 1, Suppose £ ¢ EE{M"]I M [1{M'].
Then g = fj f{z!) = gEIZ“} for some £'e M', 2" ¢ M". TNow

0= f2f1[='} = fEIZI- = E‘Egzif'} =z" goz'" =0, Therefore

2 = gglz") = gol0) = 0. So M =g, (M"}) & f (M'). But

M' e fjf]"-'l‘} and M = gEIM“L Thus M e M' @ M".

DEFINITION 5-9, An exact sequence satisfying one (hence
all} of the above conditions is called split (or is sald to split).
The maps g, and g, are called a retraction and a

cross-section (section), respectively,

THEOREM 5-4, Let P be a left A-module, The following
statements are egquivalent:
(1) P iz a direct summand of a free left A-module,

(2} Given any diagram
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there exists a A-homomorphism g : P + A such that
fg = h.

(3} Every exact sequence 0 =+ M' =+ M =+ P =+ 0 splits,
Proof, (1) implies (2}). First consider the diagram

F

where F iz a free A-module, I x is a basis element of F,
define pg{x) = a for some a ¢ A satisfying f{z) = hix). Extend
by linearity to all of F giving g : F » A such that fg = h.
Thus we can always "fill in" diagrams when F is free.

Now consider the diagram

F=P& Y
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where F ig free, Pa direct summand of F, 1 : P =» F is

glven byx=+ (x,0)and g : F + P is glven by (x,¥) » x. By
the above there exists v : F + A such that fy = hg, Define
g:P+Abyg=wi. Thenfg ={fwvi=hwi=h since 7i = IP'

(2} implies (3). Consider the diagram

P
I
i
r
f: lIP
e T
1] 3 M ¥ M 3 MY ——

By (2), there exists g : P + M such that {g = IF By
Theorem 5-3, the sequence splits,
(3) implies (1}). Consider the exact sequence
v
0 + ker v + F,(P) + P + 0 where F;(P) = $mpna, Ay= &

for all o and .. '*1"'“5:' aeal ® E&‘Phua in P Since thia
sequence splits, Fﬂ{P} = FP & ker v so P is a direct

summand of a Iree module,

DEFINITION 5-10, A left A-module P satisfying one
(henee all) of the above conditions is called a Erf_‘r]’ectiv& left

A-module.

Mote. Although every free module is projective, not every

projective module is free, For example, Exercise 2-10
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states that EZE and EE £ 233 are ring isomorphic, hence

isomorphic as Z&_-modules, Thus EE iz a projective but

3]
nt a free ZL_-modale,

f
Suppose now R is a commutative ring with unit, S is
& multiplicative set in R, and M is an R-module. Then we

Can define a module of guotients MS which is a module over

the ring of gquotients RS as follows:

In the set {m/s | m ¢ M, s ¢ 8], we define an
equivalence relation by m, [s, ~ m, /s, if there exists
5 € 5 such that s(s; m, - s,m, ) = 0. Mg is the set of equiva-

lence classes, We define + in MS by

Lmy fo;1+ lmyfey] = Lsym) +5,m,/8,8,]
and if [r/5] ¢ RS

[r/s]- [ml,f'sl] = erlfss]].

In this way ME is an Rs—mﬂdula. Ifs5=EHK-P for some
prime ideal P of R, we denote MS by MF' Finally there is
an R-hemomorphism M -+ Mg given by m =+ [m/1].

We conclude this chapter with a palr of isomorphism
theorems for modules which will be particularly useful in

Chapter &,
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THEOREM 5-5., Let M be a left A-module with M] and ME
left A-submodules of M. Then M, ,."Ml N M, is isomorphic

to M, + My /M,.

Froof. Consider the A-homomorphismao - M, = M] + ME"IIME

1
given by composing the inclusion map of M, into M, + M,

with the canonical surjection from !'l.-l] 1 ]'l.-12 onto M1+ ME"'IME'
Then g is surjective and kerg = J'l.'|] M J'l.'[2 g0 by Theorem 5-1,

the result follows.

LEMMA. Let Ml, ME' ]"--'I3 be left A-submodules of a left
A-module M., Suppose MEI- = Ml' Then

M, N [M2+M3}'{MI M M2]|+I'-'I

1 3

Proof, Fxz« Ml g ME" then x ¢ M, and x ¢ J!lu.-'l;2+_l'|.-13 80

1
x Ml i {M2+M3]. Algo if x « J'I.-'[3 = Ml‘ then

= -
x€ M N {M2+M3]. Thus M, N {ME+M3} =i '[F-'Il I"IMEHME

Suppose then that x g Ml ] I.’M2+M3}. that is,
X=¥y+ 2z wherey ¢ ME* A 3 MH = Ml' Then y=x-2Z ¢ Ml

goy € M, N ME' Thus x € {Ml 3] M2}+ M Therefore

1 3"
M] i {ME+M3} = {]!l.-'ll f ME}I + My, completing the proof.

THEOREM 5-6. Let Mi e Ml‘ I'n.'I'2

A-submodules of a left A-module M., Then

= ME" be left

My + (M, N My)/M; + (M, N M}) is isomorphic to
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My + (M, 1M, ) /MG + (M) 0 M)

Proof, LetN =M 0N M, W, =M + [M] n M:.-_:.'r. and

NEIM'2+{M5 n ME.'!. 'I']'II.J.EI'["-‘J-I"\!'1 IM:'l+I_'M1 n MEI'

and N + N, = M, + {M] n MEL We wish to prove N+ N, I.l’I‘-i!]
iz isomorphic to N+ NE"'INE' But according to Theorem 5-5,

this is equivalent to showing N/N N N, is isomorphic to

N/Mn NE‘ Finally by the previous lemma, we have
WNon N1 ={M; N MEJ " {Ml M M‘g} =N N N,, completing

the proof,

EXERCISES

G-1. Let A and B be left A-modules and denote by
Hn::mh{ﬁ, B) the set of all A-homomorphisms from A to B,
If, ge HnmA{A, B, x ¢ A, M ¢ A, define f + g and if by
(f+gMx) = 8{x)+ glx) and (A fMx) = 2(x). Show that these

operations make Hﬂmh{A. B) a left A-module,
5-2., Prove Theorem 5-1,

5-3. Suppose that a left A-module M has no left
A-submodule other than 0 and M. Prove that M = A/® for

some maximal left ideal ® of A.
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-4, Let R be a commutative ring and M an R-module,
Suppose that MP = 0 for every maximal ideal P of R, Prove
that M = 0,

5-8. Let R be a commutative ring, 5 a multiplicative set
in R, and 0 + A i B E C =+ 0 an exact sequence of
R-modules. DefineT : As -+ ES by'-i'{[al.l's]} = [ f{a)/s] and
E: Bg + Cg by Z([b/s) = [gbl/s]. Show that f and § are
well-defined Rs—humﬂmnrphlsms and that

0 = ﬂE :\* EI-S ‘E CS =+ 0 is an exact sequence of Rg-mudules.

5-6. (Five lemma) Consider the following diagram of left

A-modules and A-homomorphisms;

f

E
¥ B — & — 1

A
J B
£ E
ﬁl-

0 3

0 3 ¥ B! ——3 of— §

where each row is an exact sequence, f'a = Af and g'g = yg.
Prove each of the following:

(1} If gis a monomorphism, then & {s a monomorphism,
{(2) ¥ Bis an epimorphism, then ¥ is an epimorphism.

(3) If & and 9 are monomorphisms (epimorphisms), then g

is a monomorphism (epimorphism).
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(4) It gis an isomorphism, then ker y= A'fim ¢,

5-7. (Snake diagram} Hf: A -+B is a homomorphism of
left A-modiules, then the cokernel of £, denoted coker f, is
equal to the factor module B/im f, Given the diagram in
Exercise 4-7, prove that there exists an exact sequence

ker a + ker 8 + ker y + coker o - coker § +coker y.

3-8, Let C be the set of all real-valued functions of two
real variables which are infinitely differentiable. Then C
can be viewed a5 an R-module under the operations
(f+ghx, ¥) = f{x, ¥} + gix, y) and (af)(x, y) = af(x, y) for any
¢ LetCy={f¢C | £(0,0) = 0}. Define maps
p:Cy*C@Candy:C &C +Chyq:{f}={fx,f}_,‘rand
wg, h) = gy—hx. Prove:

(a} @ and ) are H-homomorphisms.
(b} The sequence 0 - Cn ?r C & C '-Pr C =+ 0 1s exact.
(Hint: Recall the notion of an exact differential from

calculus, }

5-8. Let H be a principal ideal domain, Prove that every

fdeal of R is & free H-module,
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5-10. Prove that a ring A is regular if and only if every
principal left ideal of A is & projective A-module. (See

Exercige 4-10. }



CHAPTER &

NOETHERIAN RINGS AND MODULES

In a unique factorifation domain, one can write any
= & u . n I'
nonunit a = pll pEE . ptt where Pys Pgsvs., Py are distinct
primes and oy = 1fori=1,...,t Furthermore this
factorization is anique up to order and units, Viewing this

result in terms of ideals we see that
oy Boy. .. (o [a [y 1o ¥,
{a)= (P11 )pg2)- -+ (p t) = (p 1) N {py2) N Nipgt).

In this chapter we study a class of commutative rings for
which a similar factorization exists for all ideals, In the
course of the discussion, we will see that the factorization
will be as an intersection rather than a product of ideals.
Also the factors will not be simply powers of prime ideals
but things called primary ideals. Finally there will be the

guestion of the unigueness of the factorization, We will

67
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find that the uniqueness is only partial, in a sense to be

explained later,

THEOREM 6-1. TLet A be a ring ( not necessarily

commutative) and M a left A-module, The following

conditions are equivalent;

{1} Every strictly ascending chain of left A-submodules of
M, ]'l.-'lI c My = ]'l.-'I3 e +:+ i= finite.

{2) Every nonempty collection of left A-submodules of M
has a maximal element,

{3) Every left A-submodule of M is finftely generated.

MNote. Since M is a submodule of itself, {3) implies M is

finitely generated.

Proof. The equivalence of (1) and (2) is proven the same
way it was done earlier for rings and ideals. Let us
introduce the notation {x;, ..., x_ ) ={A % +--- +2 X | hy € A
to denote the left A-module generated by Hyvvons X € M.
We will show that (1) and (3) are equivalent.

{3) implies (1). Suppose M, E M, S Mg S s
iz a chain of left A-submodules of M., Let N = U Mi' Then
M iz a left A-submodule of M and so is finitely generated,

say, M ={.1tl. ,}:n}. Then each x; ¢ M_] for some

j=)i).  Let k =max,_,

.0 jif). 'Then Xy € My for all i,
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‘: - -
Thus -’.11, '”1n} = Mk = N {xl..,,,xn} a0 N Mk‘ I
[ » a .5 5
r =k, M, = Mr = N implies Mr = Ml—.' Thus the chain
iz stable, that is, all the incluslons are equalities beyond
gome point,

(1} implies {3), Let M be a left A-submodule of M
andx, € N. I N-= {31 ¥, we are done, Otherwlse there
exists x, € N, x5 ¢ {xl}, whenee {31} = {xl,xzh i g
N = {.1-:1, Xg pwe are done, Otherwise choose Ao and so
forth, Since {x]} = {xl,xz} = {:-11,:-:2.:{3} = «-+ is
finite, we get for some integer n, N = 'ixl,xz. iR Xy P

Thus N is linitely generated.

DEFINITION 6-1. A left A-module M satisfying any (hence

all) of the above conditions is called left Noetherian, A

ring A is called left Noetherian if it is a left Noetherian
A-module. A commutative ring R is called Noetherian if it

is Noetherian as an B-module.

THEOREM 6-2, Let0 =+ M -+ M . M" =+ 0 be an exact
seguence of left A-modules. Then M is left Noetherian if

and only if M' and M" are left Noetherian.

Proof. (a) Suppose M is left Noetherian. Since every

submodule of M' iz a submodule of M, M' is left Noetherian.
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5 € ... be a chain of submodules of M".

Then setting M, = £l (M'i'), we have a chain M, c M, =

Let M'l' S M

of submodules of M. Thus there exists an integer k such
that Mi =M, for i = k. Therefore M'i' = M'l; for alli = k so
M'" is Noetherian.

(b) Suppose M, = M, € ... is a chain of sub-
modules of M. Set M = M; N M'and M} = M,+ M'/M'.
Then M} S M, S ... is a chain of submodules of M' and
M'l' c M, € ... is a chain of submodules of M''. Since
M' and M'" are Noetherian, there exist integers r and s such
that M‘i =M, for alli =z r and M:].' = M'S' for all j 2 s. Let
t =max (r, s). The claim is that Mk = Mt for all k = t.
Suppose x € M. Since My +M'/M' = M, + M'/M', there
existy € Mt and a € M' such that x-y = a. rI.‘herefore
Xx-y € M N M = My =M c M,. Since y ¢ M,, we

= M

conclude x € Mt' Therefore M, < Mt whence Mk ¢

k_

COROLLARY 1. If M is a left Noetherian module, every

submodule and factor module of M is left Noetherian.

COROLLARY 2. A finite direct sum of left Noetherian

modules is left Noetherian.

THEOREM 6-3. Suppose A is a left Noetherian ring.
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Then a left A-module M is finitely generated if and only if

M is left Noetherian.

n

Proof. Suppose M = <X1’ e xn>. Set F = i=1

Ai’
/\.i = A for all i, the free left A-module of rank n. By the
previous Corollary 2, F is left Noetherian. Alsof: F-+ M

1 n.x, is an epimorphism. Thus

givenby f(\ , ..., A ) = Z N\ ;

M is a factor module of F and so is left Noetherian by

Corollary 1. The other implication is true by definition.

THEOREM 6-4. If R is a commutative Noetherian ring and

S a multiplicative subset of R, then RS is Noetherian.

Proof. Let A be an ideal of RS' Then A N R is an ideal
of R which is finitely generated. A basis for A N R over

R is in turn a basis for A over Ry, whence A is finitely

S:

generated.

THEOREM 6-5. (Hilbert Basis Theorem) If R is a

commutative Noetherian ring, then R{X] is Noetherian,

Before proving this important theorem, we will need

some preliminary lemmas.

DEFINITION 6-2. If A is any ideal in R[X], set
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A ={ae¢R | a is the coefficient of X" in some

f(X) ¢ A with deg f(X) < n}.

An is called the nth associated ideal of A.

LEMMA 6-1. If A is an ideal of R[X], then An is an ideal

of R. Furthermore A < A for all n.
n n+1

Proof. Ifa, be An’ sayf(X)=a0+a1X+'-- +aXn,
g(Xx) =b0+b1X+--- +bX" € A, then

f(X) - g(X)=(ag-bg) + -+ + (a-b)X" ¢ Asoa-be A
Also if r ¢ R, rf(X) =ra0+ra1X+ cer 4 raX’ € A so
ra ¢ An' Thus An is an ideal. Finally

Xf(X) = aOX+alX2 +ooen +aXr1+l € Asoace An+1'

Therefore A € A .
n n+1

LEMMA 6-2. Let A & B be ideals of R{X]. Then
A S B_for alln. Furthermore if A_ = B_ for all n, then
n n n n

A = B.

Proof. The first statement is immediate from Definition 6-2.
Suppose now that Arl = Brl for all n, and that

f(X) = by + b X+ -+ + an“ ¢ B. We wish to show f(X) ¢ A.

0
The proof will be by induction on n.

If n = 0, then f(X) = bO € B0 = AO € A. Thus assume
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that the statement is true for polynomials of degree < n - 1.

Since f(X) ¢ B, we have bn € Bn = An‘ Thus there exists

+a1X+--- +a Xn_1+anne ACS B,

a polynomial g(X) = a n-1

0
Thus f(X) - g(X) € B. But deg (f(X) - g(X)) < n - 1 so by the
induction hypothesis f(X) - g(X) € A. Since g(X) ¢ A, we

conclude f(X) ¢ A, completing the induction,

Proof { Theorem 6-5), Suppose A, < A C A, S ---isa

0 2~
chain of ideals of R[X]. Let Ai j denote the jth associated

ideal of Ai‘ We then have the following pattern of inclusions:

Ag g S Bpq1 € By <
ul ul ul
Al oS A=A ,C
ul ul ul
By 0 S A1 = Ag 2 S
Since AO,O = Al,l < A2,2 € ... is an ascending chain of

ideals of R, there exists an integer k such that Ai i " Ak Kk

for i = k. Now consider the k vertical chains
c c c ... - -
AO,j_Al,j_AZ,j_ , J=0,1,...,k-1. There

exists an integer n, such that for allt 2 n,, A, . =A_ ..
J J t,] l'lj,.]

Let n = max{no, n., k}. The claim is that if

3 ...,t‘lk_l,

izn, Ai = An' By the lemma, it suffices to show



74 TOPICS IN RING THEORY

Aij=Anjforallj. If0 s j <Kk, theniznznjimplies
Ai,j:An.,jzAn,j' Ifj=zkandiz2n 2 kthen
A whenever r, s 2 k.

A | since A = A
r

1,7 Ak kT An, s - Bk k

This completes the proof.

For the remainder of this chapter, R is a

commutative Noetherian ring with unit element.

DEFINITION 6-3. Let M be an R-module., Then the

annihilator of M, denoted (0:M), is equal to

{r e R| rx=0forallx ¢ M}.

Certain facts are immediate from this definition.
In particular (0:M) is an ideal in R and if N ‘E_ M, then

(0:N) 2 (0:M).

THEOREM 6-6. Let M be an R-module. The following
statements are equivalent:

(1) (0:M') = (0:M) for all 0 # M' & M.

(2) AM'= 0 implies AM =0 for all0 # M' S M and all

ideals A of R.

Proof. (1) implies (2). AM' = 0 implies AS (0:M')= (0:M)

which implies AM = 0.
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(2) implies (1). Take A = (0:M'). Then
(0:M'")M' = 0 so (0:M')M =0 so (0:M') S (0:M) S (0:M'),
the latter inclusion following from the above remark. Thus

(0:M') = (0:M).

DEFINITION 6-4. An R-module M # 0 satisfying one

(hence both) of the above conditions is called.a prime module.

THEOREM 6-7. (1) R/P is a prime module if and only if
P is a prime ideal.

(2) If M is a prime module, then (0:M) is a prime ideal.

Proof. (1) Suppose R/P is a prime module, AB € P and
A2 P. Then0# A/P S R/P. ThenB S (0:A/P)
= (0:R/P) = P so P is a prime ideal. Conversely, suppose
P is a prime ideal, A/P a nonzero submodule of R/P, and
B any ideal of R. Then B(A/P) = 0 implies BA € P which
implies B € P which implies B(R/P) = 0. Thus R/P isa
prime module,

(2) Suppose M is a prime module and AB S (0:M)
and B € (0:M). ThenO # BM S M. Also
A(BM) € (0:M)M =0so A S (0:BM) = (0:M). Thus (0:M)

is a prime ideal.

Note. The converse of (2) is false. For let R = k[X, Y],
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9
(X,Y) o (X).

M, = k[X, Y)/(X), M, = k[X, YJ/(X,Y) and M = M, ® M

Then (0:M) = (X) is a prime ideal but (O:Mz)

DEFINITION 6-5. Let M be an R-module, The

associated primes of M, denoted A(M), is the set

{P| P =(0:M) for some nonzero prime submodule M' of M}.
This set is also called the assassinator of M but we will

avoid this term.

DEFINITION 6-6. An R-module M is called a

P-primary module if A(M) = {P}, that is, if P is its only

associated prime. An ideal Q of R is called a

P-primary ideal if A(R/Q) = {P}.

THEOREM 6-8, Let M be an R-module. Then
(1) A(M) = @ if and only if M = 0.

f
(2) 0> M - M = M' =0 is exact, then

AM') © AM) € A(M') U A(M").

Proof. (1) Clearly A(0) = &. On the other hand, let
M # 0 and consider § = {(0:M') | 0 # M' € M}. Since R
is Noetherian § has a maximal element; call it (O:Ml).
Then if 0 # M' S M,, we have (0:M') 2 (O:Ml) which

implies (0:M') = (O:Ml) by the maximality of (O:Ml). Thus
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M, is a prime submodule of M. Hence A(M) # &.
(2) Clearly A(M') & A(M). Let M, be a prime

submodule of M and let P = (O:Ml). If M, N M' # 0, then

1
it is a prime submodule of M'. Thus P ¢ A(M, nM') S A(M').
Otherwise M1 N M' = 0 which means f restricted to M1 is
injective. Thus M, ~ £(M, ) S M". Thus

Pe¢ A(f(Ml)) S A(M"). Hence A(M) € A(M') U A(M").

THEOREM 6-9. Let M be a Noetherian R-module and
A(M) = X U Y (union of disjoint sets). Then there exists
an exact sequence 0 » M' - M » M" -+ 0 with A(M') = X and

A(M") = Y.

Proof. Let§ ={M;, & M | A(M;) € X}. Thens§ is
nonempty since 0 is in §. By the maximal condition for
Noetherian modules, there exists a maximal element M' in
8. Consider the exact sequence 0 » M' - M l—)' M' -0
where M'' = M/M'. Then XU Y=A(M)S A(M') U A(M")
€ X U A(M") which implies A(M") 2 Y since X N Y = &.
We next claim that A(M") = Y. Suppose P ¢ A(M")
but P ¢ Y. LetO # M'2' S M" be a P-prime submodule of
M". Set M, = v_l(ME) S M. We have an exact sequence

2

0 - M -+ M, » M,

But A(M2) S A(M") U A(M;) so we then obtain

+ 0. Since M; # 0, we know M2 # M'.
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A(M,) € [AMM) U AMMPDINIX U YIS X U{PIINIXy Y)=X
regardless of whether P ¢ X or P ¢ X. This contradicts
the maximality of M', verifying the claim.

It now follows that A(M') = X. For X U Y = A(M)
S AM') U A(M") = A(M') U Yso A(M') 2 X. But by

definition of §, A(M') € X so A(M') = X.

THEOREM 6-10. If M is a Noetherian R-module, A(M) is

finite.

Proof. Suppose A(M) is infinite containing Pl’ P2, P3, cee
Then we can find M1 c M2 c M3 c --:- contradicting the
ascending chain condition on M as follows: Clearly we can

find M; < M with A(M;) = P Then 0 » M, -»M-»M/M1 -0

.-
gives Py, € A(M) = A(M,) U A(M/M,) = {P}U A(M/M,) so
Py € A(M/Ml). Thus there exists a submodule M, such
that 0 # M2/M1 c M/M1 with A(M2/M1) ={Py}. Now

0+ M »M, - M,/M -0 gives A(M,) = A(M;) U A(My/M,)

2
= {Pl, P2} .  Now considering the exact sequence

0-»M —'M*M/Mz—'o, we get that

2

P, ¢ A(M) = A(M,) U A(M/Mz) < {P, Py} U A(M/M,) so

P, € A(M/Mz). Thus there exists a submodule M, such

3 3
that 0 # M3/M2 c M/M, such that A(M3/M2) = {Pg}. The

construction and hence the contradiction should now be
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evident.

DEFINITION 6-7. ©Let M be a Noetherian R-module. Then

0 = r‘ltizl M,, M; S M, is called a primary decomposition of
0in M if
(1) M/Mi is a Pi—primary module for i=1,...,t;
(2) P, # PJ. for i # j;
(3) My N ---n l/\>li n .-+ N M # 0 for any
i=1,...,t, where the symbol A means ""omit

the term below''.

THEOREM 6-11. (1) Every Noetherian R-module M
possesses a primary decomposition of 0 in M.
(2) If 0 = nti=1 Mi is a primary decomposition of 0 in M,

then A(M) = ul_| A(M/M,).

Proof. Let A(M) = {Pl’ Po,oves Pt) . Choose M; ¢ M such
that A(Mi) = A(M) - {Pi} and A(M/Mi) = {Pi} .  Then

t c At - t -

SupposeIVI1 N oee. ﬂlOIin--- ﬂMt=0forsomei.
Then M » M/M; @ --+ & M//\Mi ® -+ ® M/M, is injective
so A(M) S A(M/M;) U --- U A(M//\Mi) U U AM/M)
= {Pl, cees lgi, cees Pt} , contradiction. So we have exhibited

a primary decomposition of 0 in M.
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Now suppose 0 = ﬂti=1 Mi is a primary decomposition

of 0 in M. Then M » M/M, ® --- & M/Mt is injective so
A(M) € Uti=1 A(M/Mi). Furthermore for any i,

0#M; N -+ N 1(/\1i e n oM 2 M/Miisinjective.
Therefore @ # A(M; N --- N 1(/\1i N--s NM) = A(M/Mi)={Pi]
so A(M; N -+ N 1/\>Ii N---nN Mt) = {Pi]. Therefore

Ugog AMM/M) = L A neee 1(/\1i n...n M) S A

t
L AM/M.

Therefore A(M) = U
THEOREM 6-12. Let A be an ideal in a Noetherian ring R.
The following ideals are equal:

(1) T, = {x ¢ R|x" ¢ A for some integer n = 1}.

(2) T,, the intersection of all prime ideals of R which

9
contain A,

Proof. Ifxe Ty, then x" ¢ A for somen = 1 so x ¢ P for

every prime ideal P 2 A so x ¢ P for every prime P2 A

SO X € T2.
If x ¢ T,, thenS = {1, x, x2, ...} is a multiplicative

set in R which does not meet A. We will show that there is

a prime ideal of R which contains A and does not meet S,

This will give x ¢ Ty.

Set 8 ={B|B 2 A, Bisanidealof R, BN S = &}.

Since A is in §, 8 is nonempty and so has a maximal
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element P. Supposeab e P, a ¢ P, b ¢ P. Then by the
maximality (a, P) and (b, P) meet S, that is, there exists
€S, c

Sy, S Cy € R, Pys Py € P such that s, =¢ja+p;

2’ 1’

and Sy = c2b + py. Then $,8g = clczab +c apg + c2bpl
+ PPy € PN S=¢&  Contradiction. So P is prime,

x ¢ P and so x § Ty.

DEFINITION 6-8. T1 (or T2) in the above lemma is called

the nil radical of A and is denoted VA.

THEOREM 6-13. For some integer N, (\/A)N c A

Proof. Since R is Neotherian, let VA = (..., Xt)'
n, _ <t
Suppose x; 1€ A, SetN-= Zi=1 n,.

THEOREM 6-14. Let M be a Noetherian R-module. Then

J(0:M) = nPeA(M) P.

Proof. P ¢ A(M) implies P = (0:M') for some prime sub-
module M' of M which implies P 2 (0:M) which implies
o) - > A0-M)
P 2 J{0:M). Therefore nPeA(M)P 2 A0:M).
For any element a ¢ R, define an R-homomorphism
a: M=+ M by x » ax. SetKa=kerZ:{xe M | ax = 0}.

k

We have (g)k =a andK S K2 € ..., an ascending

chain of R-submodules of M.
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Now suppose r ¢ nPeA(M)P‘ Then there exists an
integer n such that Krn = Krn+1 =.... SetN=r"Mand
consider T : N N. Ix= rny € N is in ker 'f:, then
rn+1y =0soye Krn+1 = Krn SO X = rny = 0. Thus
T : N -+ N is injective. In fact, the module N = 0. For

. . C
N # 0 if and only if @ # A(N) & A(M) whence r ¢ nPeA(N) P.
Thus N # 0 implies r ¢ (0:N') for some 0 # N' & N. Then
T : N + N cannot be injective. Contradiction. Therefore

N =0sor”e (0:M) and r ¢ /(0:M). Finally we have
nPEA(M)P = \/ZOZM).

THEOREM 6-15. The following properties of an ideal Q
are equivalent:
(1) Q is a P-primary ideal, that is, A(R/Q) = {P}.

(2) fabe Qandb ¢ Q, thena ¢ /Q for any a, b € R.

Proof. (1) implies (2). Suppose ab e Q, b § Q. Then
0 # bR/Q © R/Qand a ¢ (0:bR/Q) S P since annihilators
of all nonzero submodules of R/Q are contained in P. But
P-= n(peA(R/Q)‘p = J(0:R/Q) = /Q by Theorem 6-14.

(2) implies (1). Set P = /Q. Then P is an ideal of
Rand P 2 Q. Furthermore P is a prime ideal of R. For
ifab ¢ P, a ¢ P, then (ab)? = a™p" € Q for some n = 1.

nm

However a" ¢ Q sincea ¢ P. Thus ®H™ = b € Q for
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somem 21 sob e P. Finally P is contained in every
prime ideal ¢ which contains Q. For by Theorem 6-13
P’ S QC ¢ for somen soP S .

It remains only to show that A(R/Q) = {P}. Suppose
¢ € A(R/Q). Then ¢ 2 P by the above. We must show
¢ © P. Letx e ¢ = (0:A/Q) for some prime submodule
A/Qof R/Qanda € A, a ¢ Q. Then xa ¢ Q implies

x € /Q=Pby(2). Thus ¢ S P, thatis, A(R/Q) ={P}.

This shows that the ''classical" definition (2) of a
primary ideal agrees with our definition. We next

1"

recapture the 'classical" decomposition theorem.
THEOREM 6-16. (Lasker-Noether Decomposition). Let

A be an ideal in a Noetherian ring R. Then A = ﬁti:l Qi
where Qi is a Pi—primary ideal with Pi # Pj for i # j and

A
Ql N+« n Qi N...nN Qt;éAforanyi=1,...,t.

Proof, Consider a decomposition of 0 in the module R/A.
We have 0 = ﬂ‘;:l Qi/A with R/A /Qi/A ~ R/Qi a P -primary
module, that is, Qi is a Pi—primary ideal, Pi # Pj for
i#j. Thus A = ﬂ‘f 1 Qi and no subintersection will do.

1:

We next want to investigate the question of whether
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the submodules Mi appearing in a decomposition of 0 in M
are unique. The answer we will get is that some are and
some are not. The technique to be used once again will be
localization. We will use the following fact which can be
proved in a similar fashion as the corresponding statement
for prime ideals: If S is a multiplicative set in R, then
there is a one-to-one correspondence between primary

ideals in RS and primary ideals in R which do not meet S.

THEOREM 6-17. Let M be an R-module. Then A(M) is
equal to the set of prime ideals P for which there exists an

injective R-homomorphism from R/P into M.

Proof. Suppose there exists 0 + R/P ] M. Then R/P is
a prime submodule of M and (0:R/P) = P so P ¢ A(M).

Now suppose P ¢ A(M). Then P = (0:M') for some
prime submodule M' € M. LetO # x ¢ M'. Then
P = (0:Rx) = ker X where X : R # M is given by X(r) = rx.
Thus we get an injective R-homomorphism from R/P into

M.

THEOREM 6-18. Let M be an R-module, S a multiplicative
set in R, MS the resulting RS—module. Then

A(Mg) = {PRS | P e AM)and P N S = &}.
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Proof. Let P ¢ A(M) satisfy P N S = . We want to show

PR. € A(M By Theorem 6-17, it suffices to exhibit an

S g)-
g-monomorphism g : RS/PRS @ Mg. We know there is an
R-monomorphism f - R/P » M. Denote by r the image of

R

r in R/P. Define g : Rg/PRg » Mg by g([r/s)) =[f(r)/s].

It is easily checked that g is well-defined and an
Rg-homomorphism. Finally if g({r/s]) = [f(r)/s] = 0, then
there exists s' € S such that 0 = s'f(r) = f(s'r), so s'r ¢ P
since ker f = 0. Buts' ¢ Psor € P. Thus(r/s]e PRg
S0 [—r—/—s—] = 0. Therefore g is injective. We conclude that
A(Mg) 2 {PRg | P e AM)and P N S = &}.

Set A(M) = X U Ywhere X ={Pe¢ A(M)|P NS = &)
and Y={P ¢ AMM)|P N S #®}. Then we can find an exact
sequence of R-modules 0 » M' 5 M 4 M'" - 0 where
A(M') = X and A(M") = Y. We now break up the rest of the
proof into a series 9}‘ steps:

i
(1) 0 - Mg * M 5 M'S' -+ 0 is an exact sequence

S
of Rs—modules. DefineI : My - Mg byh:f([m'/s]) =[i(m")/s]
andﬂJT : MS - Mg byhj([m/s]) = [j(m)/s]). It is easy to
check that A; and’:]T are RS—homomorphisms and that kerﬁi =0,
imﬁ.]T = Mg, and kerﬂJT = un: (See Exercise 5-5.)

"= . = =
(2) Mg = 0. For /{0:M™) nPeA(M")P nPeY P
so since for each P ¢ Y, P N S # & and S is a multiplicative

set, we get /{0:M") N S # &. Since for some integer N,
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(JTO-M™M)YN S (0:M") we have that (0:M") N S # &.

Therefore M'S' = 0. We conclude from this that Mg ~ Mg.
3) p : M' = M‘S given by ¢(m') = [m'/1] is injective.

For suppose m' ¢ ker y, that is, there exists s ¢ S such

that sm' = 0. Then s ¢ (0:m') = (0:Rm'). Let

P ¢ A(Rm') & A(M') = X since Rm' is a submodule of M'.

Then s ¢ P contradicting P N S = &.

(4) Let ¢ & R, be in A(MS) = A(M‘S). Then

S
¢ = (0:[x/s)) for some x € M', s € S. Clearly ¢ = (0:[x/1])
and by (3), ¢ N R = (0:x) which is a prime ideal in R not
meeting S, Callit P. Then P ¢ A(M') € A(M). So

¢ = PRg € {PRg | P e A(M)and P n S = @}. Therefore
A(Mg) € {PRg |P ¢ A(M)and P N S = &}, completing the

proof.

COROLLARY 1. Let M be an R-module and S a multi-

plicative set in R. Then Mg = 0 if and only if (0:M) N S # &.

Proof. My = 0 if and only if A(MS) = ¢ if and only if

S

PNS#®forall Pe A(M) if and only if S N mPeA(M)P)#(D

if and only if S n /{0:M) # & if and only if S N (0:M) # &.

COROLLARY 2. Every minimal prime containing (0:M)

belongs to A(M). In particular, every minimal prime
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containing an ideal A of R belongs to A(R/A).

Proof. Let P be a minimal prime containing (0:M). Then

MP # 0 and so A(MP) # ®. But the only prime ideal in RP
. . . ) . ‘o

which contains (O,MP) > (O.M)RP is PRP. Thus

A(MP) = {PRP} so P ¢ A(M).

DEFINITION 6-9. A prime P ¢ A(M) is called an

embedded prime if there is a prime ¢ € A(M) such that

P D ¢. Primes in A(M) which are not embedded are

called isolated primes.

THEOREM 6-19. (Uniqueness of decomposition of 0 in M)
Let 0 = nti=1 Mi be a primary decomposition of 0 in M.
Then the Mi corresponding to isolated primes Pi are unique.

In fact Mi = ker ¢; where ¢; : M = MPi.

Proof. Consider the diagram

OHMi >

|l

0 ——)(Mi)P_ >MPi >(M/M1)Pi——9 0

1

where each of the rows is an exact sequence and all the

maps involved are the obvious ones. Pi is assumed to be
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an isolated prime.

(a) (Mi)Pi = 0. It suffices to show A((Mi)Pi) = @,
that is, {PRp |P € A(M) and P N (R-P;) = &} =¢. But
Pe¢ A(Mi) im}lalies P ¢ A(M) which implies P N (R - Pi) #&
since Pi is isolated and P # Pi by the nature of Mi'

(b) The map M/M; = (M/M,)p, is injective. This
is proved in exactly the same fashion ;.s step (3) in the

previous theorem.

(c) Rewriting the above diagram, we now have

0

|

YM/M, — 0

T

) Mp, ) (/M) ——

o «— g

Therefore

Mi = ker f = ker (gf) since ker g = 0

ker (hg,) since hp; = gf

ker ¢; since ker h = 0.

COROLLARY. Let A be an ideal in a Noetherian ring R
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and suppose A = nti:=1 Qi is a Lasker-Noether decomposition
of A where each Qi is a Pi—primary ideal. Then the Qi
corresponding to isolated primes Pi are unique. In fact

Q; = ker (R = (R/A)P.).
1

Proof. By Theorem 6-19, Qi/A = ker (R/A —*(R/A)P ).
i
Also the preimage of Qi/A under the canonical map

R - R/A is Q.

We conclude this chapter with two more important

theorems regarding Noetherian modules.

THEOREM 6-20. (Artin-Rees Theorem) Let R be a
commutative Noetherian ring, M a finitely generated
R-module, and N an R-submodule of M. Then for any
ideal B of R and any positive integer n, there exists a

k(n)

positive integer k(n) such that B M n NS BN

Proof. Since N/B"N S M/B"N, we can find an exact
sequence 0 + M'/B"N » M/B"N »+ M/M' - 0 where

A(M/M') = A(N/B"N) and A(M'/B"N) = A(M/B"N) - A(N/B"N).
Thus A(NN M'/B™N) = A(N/B"N n M'/B"N)

S A(N/B"N) n A(M'/B"N) = . Hence NAM'/B"N =0 or
NN M S B'N. ButB'NES NN M soNnN M = B'N.

Now
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n - . n c
B" € (0:N/B"N) € Npeam/B" N P

* Npeaqu/m) P = /O:M/).

By Theorem 6-13, there exists an integer t such that
(JZO:M?M'))t S (0:M/M'). Setting k(n) = nt, we see that
g™ < (0.M/M'). Thus B

™y nne M on N = B

Note. For the reader familiar with the notion of a

topological space, the Artin-Rees Theorem has a topological
interpretation. Given an R-module M and an ideal B of R,
one can supply M with a topology, called the B-adic

topology, by taking {BnM | n = 0} as a system of open sets
about 0 in M. If N is a submodule of M, it can be topologized
either by {BnN | n = 0} or by the induced topology from M,
that is, {B°M N N | n = 0}. The Artin-Rees Theorem states
that these topologies are equivalent when R is Noetherian and

M finitely generated.

THEOREM 6-21. (Krull Intersection Theorem) Let R be
a commutative Noetherian ring and M a finitely generated

R-module. Then for any ideal B of R, we have

©

nlenM={xe M | (1 -b)x = 0 for some b ¢ B}.

n
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Proof, Let N = ﬂ‘;= B™M. By the previous theorem

k

BN 2 B'M N N =N 2 BN for some k. That is, BN = N.

Let x € M such that (1 -b)x = 0 for some b ¢ B. Then
X = bx = b2x = .-+ SOXE€ ﬂc;Fl B™M = N. On the other

hand, M is a Noetherian module so N is finitely generated,

say N = (xl, eees Xr> . Since N = BN, there exist elements
.= ‘: - r
bij € B, i=1,...,randj=1,...,r such that X5 Zj=1 bijxj'

Thus T _ (b..-6.)x. = 0. If we denote by Ather x r

=1 771 1 Y
matrix (bij) and by PA(t) the characteristic polynomial of A,
we have PA(l)xj =0forj=1,...,r. But

_.,r r-1
PA(t)—t +at +---+arwherea1,...,ars B. Thus
PA(l) = 1-b for some b ¢ B. Finally if x ¢ N,
X = Z c.x.s0 P,(1)x =

i=1 %% A( ) z
for some b ¢ B.

§:1 CJPA(]-)XJ = 0 so (1 - b)X =0

COROLLARY. Let R be a commutative Noetherian local

ring with maximal ideal 1. Then ﬂ -1 77{

Proof. Let M = R in Theorem 6-21. Then
N M ={xe¢ R|(1-bx=0for someb e Mm}. Butif
bem 1-b ¢ M and so is a unit. Thus (1 - b)x = 0 implies

x = 0.

Note. Following up on the remark after Theorem 6-20, the

import of the above corollary is that a Noetherian local ring
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R is a Hausdorff space under the 7-adic topology.

EXERCISES

6-1. Let M be a finitely generated left A-module where A
is a left Noetherian ring. Suppose ¢ : M » M is a surjective

A-homomorphism. Prove that ¢ is injective.

6-2. Let M be a finitely generated module over a
Noetherian ring R with A(M) the set of associated primes of
M. Prove:

(a) P e A(M), then P = (0:x) for some 0 # x ¢ M.

(b) If P=(0:x), 0 # x ¢ M, is a prime ideal, then P ¢ A(M).

6-3. Prove the statement immediately preceding

Theorem 6-17 regarding primary ideals in R and RS.

6-4. Let k be a field and R = k[X, Y, Z]/ (22 - XY). Denote

by x, ¥, z the canonical images of X, Y, Z in R. Prove:

(a) B = (x,y,z)is a maximal ideal of R and B2 is a B-primary
ideal.

(b) P =(x,2z)is a prime ideal of R and A = (x) is a P-primary
ideal.

(c) P2 =AnNn B2 is a primary decomposition of P2 in R.
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Thus we have an example of a power of a prime ideal

which is not primary.

6-5. Let R be a Noetherian ring and P a maximal ideal of

R. Prove that for any n 21, Pis a P-primary ideal,

6-6. Let R be a Noetherian ring and A the intersection of
all minimal prime ideals of R. Prove that A" = 0 for some
positive integer n and that every element of 1- A={1-a|a¢ A}

is a unit in R.

6-7. Let R be a Noetherian ring and (0) = Q1 Neee N Qn

a primary decomposition of the zero ideal in R where each
Qi is Pi—primary. Prove that the set of zero divisors of R
equals the set-theoretic union of Pl’ e Pn'
6-8. Let R be a Noetherian ring, P a nonmaximal prime
ideal of R, Q # P a P-primary ideal. Prove that there
exists an ideal A with P > A > Q which is not a primary

ideal.

6-9. Let R be a Noetherian domain and P a nonzero prime

of R. Prove that P2 # P.
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6-10. Let A be a regular left Noetherian ring. Prove
that every left ideal of A is principal. (Hint: It suffices to
show that every left ideal generated by two elements is

principal. Use Exercise 4-10,)




CHAPTER 7

DEDEKIND DOMAINS

In view of the introductory remarks to Chapter 6
and the results obtained in that chapter, we are still left
with the question of describing a class of rings in which
every ideal can be written (preferably uniquely) as a product
of prime ideals. Since Noetherian rings yield a partial
result in this direction, by replacing ''product' with
"intersection' and "prime' with "primary', we might
expect a subclass of Noetherian rings to be the sought after
type. In this chapter we characterize these rings called

Dedekind domains.

DEFINITION 7-1. Let R be an integral domain with
quotient field K. An R-module 0 # B & K is called a
fractionary ideal if there exists d # 0 in R such that

B < 4! R,

95
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Note. 1. If Bis a fractionary ideal, then B = d_lA where
A is an ordinary ideal of R. Namely A = {x ¢ R | dlx ¢ B}.

2. Every ordinary ideal 0 # A S R is a fractionary
ideal by taking d = 1. These will now be called integral

3. The addition, multiplication, intersection, and
quotient of fractionary ideals can be defined as they were
for integral ideals in Chapter 2. The relationships among
these operations carry over to fractionary ideals.

4. The ideal R acts as a unit in the multiplication
of fractionary ideals.

5. If M is an R-module and B is a fractionary

ideal of R, then BM = Ib ¢ B, m; € M}.

{melte 1 i

Since B € K = RO each summand bimi is an element of M0
and the addition should be interpreted as taking place in MO'
Thus BM is a certain R-submodule of MO'
DEFINITION 7-2. A fractionary ideal A is called

invertible if there exists a fractionary ideal A—1 such that

aa"l - R,

THEOREM 7-1. If a fractionary ideal A is invertible, then
1. (R:A) = {x ¢ K| xA S R}. Inparticular, Al

unique,.
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Proof. Suppose AA' = R. Then A' S (R:A). On the
other hand, (R:A) = (R:A)R = (R:A)AA' S RA' = A' so
A' = (R:A).

THEOREM 7-2. If every integral ideal of R is invertible,

then every fractionary ideal is invertible.

Proof. Let B be a fractionary ideal. Then B = d—lA,
where A is an integral ideal, If A‘1 is the inverse of A,

then dA_1 is the inverse of B so B is invertible.

THEOREM 7-3. Let R be an integral domain in which
every ideal is a unique product of prime ideals and P an

invertible integral prime ideal of R. Then P is maximal.

Proof. Leta e R-P andset B=(P,a), C = (P,a%) and

D = (P2, a). We want to show B = R. Since P is invertible,
this is equivalent to showing PB = P. Let B = nis=1 Pi and
C = l'l;:l Qj be the prime factorizations of B and C, Set

R=R/Pandl

I/P for any ideal I of R. Then

S t

n p2-82-¢C- 1 Q.

i=1 1 j=1 ]

By unique factorization in R, t = 2s and by relabeling, we

can assume that QZi = 6_22i—1 = IT’1 fori=1,...,s. Thus
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- - . . 2 _
in = Q21—1 = Pi fori=1,...,s8s so B = C. Therefore
PEC=B2‘ED. IfxeP,x=y+raforsomeyeP2,

re R Thenra=x-ye Panda ﬁ P sor ¢ P. Therefore
P c (P2, Pa) = PB. The inclusion PB £ P is obvious and

so PB = P.

THEOREM 7-4. Let R be a local principal ideal domain
with maximal ideal 7 = (7). Then every nonzero ideal in

R is a power of 7 and so 7 is the only prime ideal of R.

Proof. Let 0 # A = (¢) be anideal of R. Then A € 7
which implies 7 divides . Since R is a unique factorization
domain, there exists an integer n =2 1 such that 7" divides o

butrrn+1

does not divide . Thus a = un" where u ¢ (w).
Thus u ¢ M and so u is a unit in R, Thus A = (&) = (unn)
=(m™ =m". Acanbea prime ideal only if n = 1, that is,

A =7,

COROLLARY. Let R be a commutative ring such that Rp
is a principal ideal domain for every prime ideal P of R.

Then every nonzero prime in R is maximal,

Proof. Let 0 # P be prime in R and M 2 P, maximal.
Then RM is a local principal ideal domain with nonzero

prime ideals PRM and MRM. By Theorem 7-4, PRM = MRM
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so P = M. Therefore P is maximal,

THEOREM 7-5. Let R be a Noetherian local ring and P a
finitely generated projective R-module. Then P is a free

R-module.

Proof. Let {xl, ..., x_} be a minimal generating set for P
F a free R-module of rank n. Thus we have an exact
sequence 0 # X + F » P » 0 where F = P ® X and X is also
a finitely generated projective R-module since R is
Noetherian. Then F/MF = P/MP ® X/MX where 7 is the
maximal ideal of R. Since R/7 is a field, each of these
modules is a free R/M-module and we know that the rank of
F/MF is n. We will show that the rank of P/?MP is also n

from which it follows that X/%X = 0. This is done by

showing that {il, el in] is an R/M-basis for P/mP.
Certainly )—c s eees >—< span P/MP over R/M. Suppose
Z‘,? ] f‘li 0 for some r € R/77z If not all f‘i = 0, say

rl # 0 (relabel if necessary). That is, ry ¢ m. Then

n
i=1
But r

p) r.x,; = =2 m, %5 for some m; € m or Zl 1(r mi)xi = 0,

i=1

1My ¢ m since ry ¢ M and so is a unit in R.

Multiplying by the inverse of r,-m, we see that

X, € (x2, e, xn> , contradicting the minimality of the

generating set {xl, cees xn} .
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The final step of the proof is to show that X/mX = 0
implies X = 0. Let {yl, cees yt] be a minimal generating set
t
of X, Then =Y. ,m.y. for some m, . So
ytl i=1 737 jEm
(1 —ml)y1 = zj=2mjyj where 1 -m, is a unit in R. Thus
¥y € (y2, vees yt) , contradiction. Thus a minimal

generating set for X is empty, that is, X = 0. Therefore

F = P is a free R-module,

Note. The final step of this proof follows immediately from
Nakayama's lemma which is proven in the next chapter.
The proof given there is virtually identical to the argument

here.

THEOREM 7-6. Let R be an integral domain, The
following statements are equivalent:

(1) Every ideal in R is a unique product of prime ideals.
(2) Every fractionary ideal of R is invertible.

(3) R is Noetherian and every ideal of R is R-projective.
(4) R is Noetherian and RP is a principal ideal domain for

every prime ideal P of R.

Proof. (1) implies (2). By Theorem 7-2, it suffices to
show that every integral ideal is invertible. Since, by
hypothesis, every integral ideal is a product of prime

ideals, it is enough to show that every integral prime ideal
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is invertible. Let P be an integral prime ideal and x ¢ P.
Then Rx = H;lzl Pi for prime ideals Pi' For each
j=1,...,n, we have R = (Rx—l)Rx = Pj(Rx_l) ninzlpi so Pj
is invertible. By Theorem 7-3, each Pj is i#j
maximal, But P 2 H?=1 P, so P 2 Pj for some j, whence
P= Pj' Thus P is invertible.

(2) implies (3). Let A be an ideal of R with Al s
inverse. Then AA—1 = R implies that there exist elements
Xyseeos X € A, Yis ooy € A"l such that 1= Z?zl XY
Thenifx e A, x=x- 1 =Z?=1(xyi)xi € (Xl""’xn) so A
is finitely generated. Therefore R is Noetherian.

We wish to show A is a projective R-module.

Consider the R-homomorphism y : R+ A given by

_ <D
w(rl, ...,rn) = Zi.q Ty

Define an R-homomorphism
©: A~ Rr" by ¢(x) = (ylx, cess ynx). Then
W o o)x) = w(ylx, .. .,ynx) = Z}?:lyixxi = x SOy o ¢ is the
identity map on A. Hence ¢ is a cross-section for the
exact sequence 0 - ker y - rR" l—p* A +0. By Theorem 5-3,
A is a direct summand of R™ and so by Theorem 5-4 is
projective,

(3) implies (4). Suppose R is Noetherian and every
ideal is projective. Let P be a prime ideal of R. I P = 0,
then RP is the quotient field of R which is a principal ideal

domain, If P # 0, let A' be an ideal of RP. Then
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A= ARP where A = A' N R. Since A is a projective
R-module and localization preserves exact sequences, A'
is a projective RP—module. But a projective module over
a local ring is free so A! is a free RP-module, say
A = Rle @ RPXZ @ --- ® Rth. Then
X1Xg = XgX; € Rle n RPXZ =0 so X = 0 or Xg = 0. That
is, A' is a principal ideal.

(4) implies (1). Let A be an ideal of R with
A = Q1 n---nN Qt where Qi is Pi—primary. Since each
Pi is maximal, they are all isolated primes so the Qi are
unique. We wish to show that Qi = Pivi for some y; 2 1.
Dropping the subscript, let Q be one of the Qi' Then QRP
is a PRP—primary ideal in RP' By Theorem 7-4,
QRp = (PRp) = PYRy,.  Since PYis a P-primary ideal in

R (see Exercise 6-5), we have Q= QRP N R= PVRP n R=PY

Thus A = P{jl n-...n PtVt . However since the Pi are
distinct maximal ideals, they are comaximal. Hence so
are P{’l, cees Ptvt . Thus products and intersections
coincide, that is, A = Pijl s P,:Jt.

DEFINITION 7-3. A ring satisfying one (hence all) of the

above is called a Dedekind domain.

COROLLARY. Every nonzero prime ideal in a Dedekind



DEDEKIND DOMAINS 103

domain is maximal.

EXERCISES

7-1. Let R be a Dedekind domain, M an R-module, and

(0:M) a prime ideal of R. Prove that M is a prime module,

7-2. Let S be a multiplicative set in a Dedekind domain R.
Prove that RS is a Dedekind domain.

7-3. Let R be a Dedekind domain and a unique factorization
domain. Prove that R is a principal ideal domain. (Hint:

It suffices to show that each prime ideal is principal.)

7-4. Let R be a Dedekind domain with a finite number of
prime ideals. Prove that R is a principal ideal domain.

(Hint: Use Exercise 6-9 tofinda ¢ P, a ¢ P2. Then use

the Chinese Remainder Theorem to find x ¢ P, x f P2,

x ¢ Q for any prime Q # P. Finally show that P = (x).)

7-5. Let A be a nonzero ideal of a Dedekind domain R.

Prove that R/A is a principal ideal domain.

7-6. Prove that ZZ{/-5] is a Dedekind domain.
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7-7. Let R be an integral domain with quotient field K.

An element a € K is called integral over R if there exists
a monic polynomial f(X) ¢ R[X] such that f(a) = 0. Prove
that ¢ ¢ K is integral over R if and only if R[«] is a finitely

generated R-module,

7-8. An integral domain R is called integrally closed if

every & ¢ K which is integral over R is in R. Prove that

every Dedekind domain is integrally closed.

7-9. Let K be a field and K* = K - {0}. A map

v:K -+ Z U {»} is called a discrete valuation if

(1) v(0) = =;
(2) v:K"» Zisa group epimorphism;
(3) v(x+y) =z min (v(x), v(y)).
If vis a discrete valuation of K, then R ={x ¢ K|v(x) = 0}

is called the discrete valuation ring of v. Suppose R is a

Dedekind domain with quotient field K and P a nonzero prime
ideal of R. Prove that there exists a discrete valuation

of K with Rv = R

v .
P P P

7-10. Using the notation of the previous exercise, prove

that PR, = {x ¢ RVP | VP(X) > 0}.



CHAPTER 8

ARTIN RINGS AND MODULES

In this chapter and the following chapter A will

denote an arbitrary ring with unit element, not necessarily

commutative.

LEMMA. ©Let A be a left ideal of a ring A such that every
element of the set 1+A = {1+a | a ¢ A} has a left inverse in

A. Then every element of 1+ A is a unit in A.

Proof. Letae¢ Aandb ¢ A aleft inverse of 1+a, that is,
b(l+a)=1. Thus b=1-ba ¢ 1+ A so there exists b' ¢ A
such that b'b =1, Thenl+a =Db'b(l+a) =b' so

(1+a)b = b'b = 1. Thus b is also a right inverse for 1+a
so 1+a is a unit.

~

DEFINITION 8-1. A nonzero left A-module E is called

105
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simple if the only left A-submodules of E are 0 and E.

THEOREM 8-1. The following ideals in a ring A are

identical:

(1) R, = ﬂE(O:E) where E ranges over all simple left
A-modules.

(2) R2 = N,_Mm where N ranges over all maximal left ideals

m
of A.

(3) R3 = UAA where A ranges over all left ideals A such
that 1+ A consists solely of units.

(4) R {xeA|1+)\xyisaunitinAforall)\,pe A).

4

(5) Rg = NG(0:E) where E ranges over all simple right

5

A-modules.

(6) R, = N, M where M ranges over all maximal right

6 n
ideals of A.

(7) R, = UAA where A ranges over all right ideals A such

that 1 + A consists solely of units.

Proof. We will show R1 = Ry = R, = R4 which by symmetry

3

is sufficient.

(1) R, =R First observe that E is a simple left

9-
A-module if and only if E ~ A/7 for some maximal left
ideal . Forlet 0 # o ¢ E. Then 0 # Aa & E implies

E = Aa. Consider the A—epimorphism'a: A -+ E given
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a(\) = \a. Then E~ A/kera. Since E is simple, ker a
must be a maximal left ideal of A, The converse is

immediate. Thus

R, =N (0:E) = n

1 * "E.simple M:maximal (0:A/7)

c -
- n??z:maxirnalwZ - R2'

To prove the opposite inclusion note that (0:E) =N (0:c)

acE
and that each (0:) is a maximal left ideal of A. For
suppose x § (0:a). ThenO # (Ax)a S E so (Ax)a = E since
E is simple, In particular a = \xa for some \ ¢ A, that is,

(1 -xx)ax = 0. Thus1l-xx¢€ (0:a) so (0:&) + Ax = A. That

is, (0:¢) is a maximal left ideal. Hence we have

R, =N (0:E)=n (0:0)

1 E:simple E:simple nozeE

) =
- ﬁm;maximal”2 R2'

(2) Ry = Rg. Let x € R,y and consider the left
ideal A(1+x) = A. If A is a proper left ideal of A, then
A € 7 for some maximal left ideal of A by Zorn's lemma.
Butthenl+x ¢ A S 7 and x ¢ R, € <M implies 1 € M

vwhich is a contradiction. Thus A(1+x) = A. That is,
every element of 1+ R, has a left inverse in A, hence by
the lemma is a unit in A. Thus R, < Rg. Onthe other
hand, suppose x ¢ R3 and 7 is a maximal left ideal of A
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such that x ¢ M. Then (M, x) = A, that is, 1 =\x + m for
some X € A, me M. Thenm =1-2xx1is a unit in A, that

is, M = A. Contradiction. Hence x € M so x ¢ R2.

c
Therefore R3 = R2.

(3) R, =R Clearly R, < Rg by setting p = 1 in

3 4°

the definition of R4. To show R3 € R,, observe that

4:
since R3 = R1 and R1 is a two-sided ideal, R3 is also two-
sided. Hence if x € R3, \XM € R3 s0 1 +\xu is a unit, that
is, x € R4.
DEFINITION 8-2, The ideal described by any of the

equivalent formulations in Theorem 8-1 is called the

radical of A and is denoted by R(A).

THEOREM 8-2, (Nakayama's lemma) Let M be a finitely
generated left A-module. Then M = 0 if and only if

M/R(A)M = 0.

Proof. Certainly M = 0 implies M/RA)M = 0. On the

other hand, let x ces X be a minimal generating set of M

1
where M # 0 implies n = 1. Then M/R(A)M = 0 says we
_<n
can express x; = Zi=1rixi where r; € R(A). Thus
_<n . . _ .
(1-r)x; =Z; orx;.. Butr; ¢ R(A)implies1-r, isa

unit in A. Multiplying the equation on the left by the
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inverse of 1 - ry gives X € (x x_y, contradicting the

9s e Xy

choice of {xl, .. .,xn] . Thus n =0, thatis, M = 0.

DEFINITION 8-3. A left ideal A in a ring A is said to be
nilpotent if A" = 0 for some integer n 2 1. A left ideal A

is called a nil ideal if for each x ¢ A, there exists an

n(x)

integer n(x) = 1 such that x = 0.

Note. Clearly every nilpotent ideal is nil. For if A" = 0,
one can choose n(x) = n for every x ¢ A. The converse

however is false. Consider the ring k[Xl, X5, X ..jof

3
polynomials in an infinite number of variables. Let B be

i+1 ll_

the ideal generated by {X 1,2,3,...} and set

R = k[X,, Xy, ...] /B. Denote by x; the image of X, in R

and consider the ideal A = (x )in R. A is nil

2, o o o
since for each i, xli+1 = 0, However A is not nilpotent.

For given any n>0, 0 # xg ¢ A",

THEOREM 8-3. If A is a nil left ideal of A, then A € R(A).

Proof. It suffices to show that every element of 1 + A has a

left inverse in A. Suppose a ¢ A and a" = 0. Then

2

(1-a+a —a3+-..+(—1) n-1,n

21 1 v a) =14 (-1) =1

and so 1+ a has a left inverse.
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COROLLARY. If A is a nilpotent left ideal of A, then
A S R(A).

THEOREM 8-4. Let A be a ring and M a left A-module.
The following conditions are equivalent:
(1) Every strictly descending chain of A-submodules of

M, M1 > M, > M, D --- is finite (the descending

2 3

chain condition).

(2) Every nonempty collection of left A-submodules of M

has a minimal element (the minimum condition).

Proof, The proof is the same as that of Theorem 4-2,

except that all inclusions are reversed.

DEFINITION 8-4. A left A-module M satisfying one
(hence both) of the above conditions is called left Artin,
A ring A is called left Artin if it is left Artin as a left
A-module. Right Artin is defined in a similar way for

modules and rings.
THEOREM 8-5. Let A be a left Artin ring. Then R(A) is
a nilpotent ideal,

Proof., Let R = R(A) and consider the descending chain

R =2 R2 ey R32..., Then for some n, Ri=Rnf0r all
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i 2 n. Suppose that Rr" # 0 and let

g ={0# AS R"|A is a left ideal of A and R"A # 0}. We
know 8 is nonempty since R" € S. Let A be a minimal
element of 8. Then there exists a € A such that
B=R%#0. Then R*B-R°a=R% # 0and B S A so by
the choice of A, we know B= A, Thus Aa < A=R"a C Aa
so A = Aa, that is, A is a principal ideal. In particular A
is a finitely generated left A-module and A = R"a = Rn+1a = RA.
So by Nakayama's lemma, A = 0. Contradiction. Thus

R™ = 0, thatis, R(A) is nilpotent.

DEFINITION 8-5, A nonzero left ideal I in a ring A is
called simple if it is simple as a left A-module. A simple
left ideal is sometimes called a minimal left ideal since it

contains no subideals other than 0 and itself.

THEOREM 8-6. Let I be a simple left ideal of A. Then I

is a direct summand of A if and only if 12 # 0.

Proof. (1) Suppose A =1 ® P where P is some left
A-module., Let 7 : A #* IDbe the projection, Then
0#a(1) = a(w@) =a(n(1) - 1) = s()w() = (r(1N? ¢ I so

2 # 0.

(2) Suppose I2 # 0. Then there exists x ¢ I such
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that Ix # 0, whence Ix = I. Thus yx = x for some element
y € I. Then y2 =y. For y2x = y(yx) = yx implies
(y2 -y)x = 0. Then if y2 -y #0, 0# A(y2 -y) € Igives

A(y2 -y) = I, But this implies 0 =A(y2 -y)x = Ix, contra-

dicting the choice of x. Furthermore 0 # Ay & Iimplies
Ay = L
Now consider the exact sequence 0 =1 3 A= A/I=0

where i is the inclusion map and define a A-homomorphism

y: A= Igiven by y(\) = \y. Theny . iis the identity map

onI, Forifxe I x =\yfor some X ¢ A. Then
(7 - iMx) = F(\y) = )\y2 = \y = x. Thus the sequence splits

andA~1® A/L

THEOREM 8-7. Let A be a left Artin ring and suppose
R(A) = 0. Then A is a finite direct sum of simple left

ideals.

Note. An Artin ring whose radical is zero is called
semisimple. We will have a great deal more to say about

such rings in the next chapter.

Proof. Let $ be the collection of nonzero left ideals A of
A which cannot be written as a finite direct sum of simple
left ideals of A. If 8 is empty, we are done. For then

the left ideal A is a finite direct sum of simple left ideals.
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If 8 is nonempty, then we can choose a minimal element A
of 8 since A is left Artin. Now let 3 be the collection of
nonzero left ideals of A contained in A, Then 3 is nonempty
so again we can choose a minimal element Iof §. Iis a
simple left ideal of A and I # 0. For if IZ = 0, then I is
nilpotent so by the corollary to Theorem 8-3, I & R(A) = O,
that is, I = 0, which is a contradiction, Thus by

Theorem 8-6, Iis a direct summandof A, say A =1 & X.
Let #: A # Ibe the natural projection and consider the
exact sequence of left A-modules 0 + I —1* A -+ A/I + 0 where
i is the inclusion map. Define f: A + I by f(a) = w(a).

Then if x € I, (f < i)x) = f(x) = w(x) = x so f is a retraction.
Thus the sequence splits so A~ I ® A/I. We can find a
left A-submodule A' of A, that is, a left ideal of A,
isomorphic to A/I such that A =1 ® A'. Note that A' # 0.
Otherwise A = I, a finite direct sum of simple left ideals.
Also A' ¢ A since I # 0. By the minimality of A, A' is a
finite direct sum of simple left ideals. Hence so is
A=1® A'. Contradiction. Thus § must have been

empty.

THEOREM 8-8. Let M be a left A-module where Ais a
finite direct sum of simple left ideals, Then

(1) Every left A-submodule of M is a direct summand of M.
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(2) M is a direct sum of simple left A-submodules.
(3) If M is left Artin, then M is a finite direct sum of

simple left A-submodules.

Proof. (1) Suppose A =EB?=1 Ij where each Ij is a simple
left ideal. Let M' be a left A-submodule of M. Let
8 ={N S M| N is a left A-submodule of M and N N M' = 0}.
8 is nonempty since 0 ¢ § and is inductive. Let M'" be a
maximal element of § by Zorn's lemma and consider
M'® M" S M. Ixe M, x¢§ M' ® M, then there
exists j, 1 < j < n, such that Ijx ¢ M' ® M'". Otherwise
x € Ax & M' ® M'" contrary to the choice of x. Consider
the exact sequence 0 - ker X - Ij 3 Ijx -+ 0 where X (a) = ax.
Since Ijx # 0 and Ij is simple, ker X = 0. Thus IJ.X s Ij and
so is also a simple left A-module. Therefore
Ijx N (M' @ M") = 0 which implies that (Ijx ®M") N M =0,
contradicting the choice of M'. We conclude that M=M'® M"
so M' is a direct summand of M.

(2) We begin by showing that M contains a simple
left A-submodule., Let 0 # x ¢ M and set
8 ={M'|M' is a left A-submodule of M and x ¢ M'}. Then
§ is nonempty since 0 ¢ § and is inductive. So by Zorn's
lemma, let M, be a maximal element of §. By (1), we

have M = M1 ) M2 and the claim is that M2 is a simple left
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A-module. For suppose 0 # M‘2 c M2' Then again by

® My.
1 @My 1 1 ® My oMy,

contradicting the choice of M, . Therefore M, is a simple

(1), M2 = M! Then x §# M1 =(M1 @ M'z) n (I\/I1 @ M5

2

so either x ¢ M DM, orx § M

left A-submodule of M.
Now let 3 be the collection of all index sets A such
that for each o ¢ A we have a simple left A-submodule Moz

of M such that @aeA M, S M. We know that J is nonempty,

that is, it contains the index set {1}. Also J is inductive.
By Zorn's lemma, let A be a maximal element of 3 and set

vz < ' = ! 1
M @QEAMQ_M. If M' # M, thenby (1) M= M' & M

where M'"'# 0. Then let MB be a simple left A-submodule of

M' (hence also of M) and set A' = A U {8}. Then
@‘YEA' M‘y S M where all M'y are simple, contradicting the
choice of A. Therefore M' = M.

(3) Suppose M = ®aeA M, where the M are simple
and A is infinite. Then M 2 | M; > F_ ,M; > --- isan
infinite strictly descending chain of left A-submodules of M

where the Mi are a countable subset of the Ma. This is a

contradiction if M is left Artin.

DEFINITION 8-8. Let M be a left A-module. A finite
descending chain of left A-submodules

M=M02M 2 M, 2 -+ 2 Mr=Oisca11eda

1 2
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normal series for M of length r. The factor modules

Mi/M i=0,...,r-1 are called the factors of the normal

i+1°

series,

DEFINITION 8-7. Two normal series for a left A-module
M are called equivalent if there is a bijection between the
sets of factors in such a way that corresponding factors are

A-isomorphic.

DEFINITION 8-8. A Jordan-HbBlder series for M is a

normalserlesM=M0 o M1 - M2 D e D Mr=01n

which each factor is a simple A-module, In other words,

each Mi is a maximal A-submodule of M i=1,...,r.

i-1°
DEFINITION 8-9. A normal series M = MO 2 e 2 Mr=0
is said to be a refinement of a normal series

M =N, 2 .. 2 N, = 0 if every submodule appearing in

the second series appears in the first as well.

THEOREM 8-9. (Schreier Refinement Theorem) Any two
normal series for a left A-module M have equivalent

refinements.

Proof, Let M=M, =2 .« 2 M_=0and M=N,2-:--2 N_=0
—_— 0 r 0 S
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be two normal series for M. Set M, .=M.,, +(M. N N.)
i, j i+l i i

fori=0,...,r-1, J=0,...,sande i=NJ.+1+(Miﬂ Nj)

2

fori=0,...,r, j=0,...,s~-1. Thus we have

Mi,s = Mi+ =M and N. = N,

17 M1, 0 i, v~ Njpp = Ny, o yielding the

following two normal series for M:

M=Mg g2 My 3 20 2 My o
=M1,02M1,12 DMl,s
. My g2 2 My 20
M=N0’03 NO,IE- -ENO’r
=Ny g2 N 2 2N,
"Ny g=-- 2Ny 120

However by Theorem 5-6, M, ./M /N for

5] j, i+l

alli=0,...,r-1andj=0,...,s-1, Thus the two normal

i3+~ Ny,
series are equivalent and since each is a refinement of one
of the original normal series for M, the theorem is proved.
THEOREM 8-10. (Jordan-HBlder Theorem) Any two

Jordan-HBlder series for a left A-module M are equivalent.

Proof. By Theorem 8-9, the two series have equivalent

refinements. Each refinement has the same nonzero
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factors as the Jordan-HbBlder series from which it is
obtained, Since the zero factors in the two refinements
must correspond, so must the nonzero factors. Hence the
nonzero factors, which are in fact all the factors, from the

two original series correspond. Thus they are equivalent.

THEOREM 8-11. Let N be a left A-submodule of a left

A-module M. Then

(1) M is left Noetherian if and only if N and M/N are left
Noetherian.

(2) M is left Artin if and only if N and M/N are left Artin,

Proof. (1) is just Theorem 6-2 with M' = N and M'" = M/N.
(2) can be proved by an identical argument, simply

reversing all the inclusions.

THEOREM 8-12. Let M be a left A-module. The
following statements are equivalent:
(1) There exists a Jordan-HBlder series for M.

(2) M is left Artin and left Noetherian,

Proof. (1) implies (2). Suppose M has a Jordan-HUBlder
series of length 0. Then M =0 and so (2) holds. Assume
then that the result holds for modules having Jordan-HbBlder

series of length s n. LetM=My>:-- >M >M_ ., =0
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be a Jordan-HbBlder series for M. Then

M/Mn=M0/Mn >:-+>M /M >M /M =0isa
Jordan-HbBlder series for M/Mn of length n. Thus M/Mn
is left Artin and left Noetherian. On the other hand

M, = M, /My,

n 1 is simple and so is left Artin and left

Noetherian. By Theorem 8-11, (2) holds for M.

(2) implies (1). Suppose 0 # M is left Artin and
left Noetherian. Let § be the collection of all nonzero
submodules of M. Since M is left Artin, $ has a minimal
element Mg which of necessity is a simple submodule of M.
Now let 3 be the collection of all nonzero submodules of M

which possess Jordan-HBlder series. Then M, € 3 so J

0
is nonempty and since M is Noetherian, J possesses a
maximal element M', Suppose M' # M, that is, M/M' # 0.
Since M/M' is left Artin, it too contains simple submodules,
that is, there exists a left A-module M'" in M such that

M' ¢ M" © M and M"/M' is a simple left A-module. But
then M" must have a Jordan-Hblder series and so is in S

contradicting the maximality of M'. Thus M' = M has a

Jordan-HBlder series.

THEOREM 8-13, (Hopkins' Theorem) Let A be a left

Artin ring. Then A is left Noetherian,
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Proof. Let R=R(A). Then by Theorem 8-5 for some
n =0, R™ = 0. Consider the normal series
A2 R2R22 ... 2 R"=0. We will refine this series
into a Jordan-HbBlder series for A, thereby showing that A
is left Noetherian.

First consider A/R which is again a left Artin ring.
Furthermore R(A/R) = 0 so by Theorem 8-7,
A/R=1,/R® ... ® I [Rwherel /R,...,I /R are simple

left ideals of A/R. Then

A=Il+...+InDI2+...+InD... DInDR

is the initial segment of a normal (in fact, Jordan-HbYlder)
series for A. For by Theorem 5-5,

Ij+"'+I /1.

W/ Tar o L~ L/L 0 (L e+ 1) = L/R

which is a simple A-module,
It clearly suffices to find for eachi=1,...,n-1, a

sequence of left ideals of A such that

R! - Bi, D-++ DB, = ™! where each B; J./B.

0 i, my i, j+1°

i=0,..., m; - 1 is a simple A-module. Fitting all these
pieces together, we would then have a Jordan-HUBlder series
for A, completing the proof. For simplicity of notation we
will perform this construction for i =1, that is, we will find
2

left ideals BO""’Bm of A such that R=B0:>-.- > Bm=R
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with Bj/Bj+1 a simple left A-module for j=0,...,m-1.

Now R/R2 is a left A/R-module where the left
A/R-submodules are of the form A/R2 where A is a left
ideal of A with R2 S A © R. Since A is a left Artin ring,
R/R2 is a left Artin A/R-module. Hence by Theorem 8-8(3)
R/R2 = @;20 AJ./RZ where each Aj/R2 is a simple left
A /R-submodule of R/R2. We can therefore construct the

next segment of the Jordan-HbBlder series, namely,

_ 2
R=Ag+---+A DA/ +---+A D...DA OR".

Again Theorem 5-5 can be used to check that the factors
are indeed simple A-modules,

EXERCISES

8-1. An element x ¢ A is called an idempotent if x2 = X,

Prove that R(A) contains no nonzero idempotents.

8-2. Let A be the ring of continuous real-valued functions

on[0,1]. Prove that R(A) = 0. (See Exercise 2-3.)

8-3. Let A be the ring of all 3 x 3 upper triangular
matrices with entries in a field k under the usual addition

and multiplication of matrices. Compute R(A) and show
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that A/R(A) is a commutative ring,

8-4. Prove that a finite sum of nilpotent left ideals in a
ring A is nilpotent. Show by example that a sum of

nilpotent elements need not, however, be nilpotent.

8-5. Prove that in a commutative ring R, the sum of a

unit and a nilpotent element is a unit.

8-6. Let A be a left Artin ring. Prove that every nil left

ideal is nilpotent.

8-7. Let R = k[X]/(f(X)) where f(X) # 0. Prove that R
is an Artin ring. (Hint: Show that R is a finite

dimensional vector space over Kk.)

8-8. Suppose \ ¢ A is not nilpotent but x = )\2 -\is

nilpotent. Set A S Atx- 2xx. Prove

(a) x, \, and A\, commute with one another.

1
(b) N is not nilpotent.
(c) Xy = )\? =N is nilpotent.
(d) If x? = 0, then xtll—1 = 0,

(e) This process can be iterated (that is, set

>\2 = )\1 + Xy - 2)\1x1 and proceed as before) to produce
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an idempotent.

8-9. Suppose A is a non-nilpotent left ideal in A such that
every proper subideal of A is nilpotent. Suppose further
that there exist \, y € A suchthat Ay # 0, \y = u. Prove

that )\ is not nilpotent but )\2 - \ is nilpotent.

8-10. Suppose that A is left Artin. Using Exercises 8-8
and 8-9, prove that every non-nilpotent left ideal of A

contains an idempotent.



CHAPTER 9

SEMISIMPLE RINGS

In this chapter we will study a special class of left
Artin rings, namely those whose radical is zero. As we
will see, this is equivalent to studying those rings A such

that every left A~module is projective,

DEFINITION 9-1, If M and N are left A-modules, we
denote by HomA(M, N) the set of all A-homomorphisms
from M into N. Under the operations (f+ g)(x) = f(x)+ g(x)
and (M)(x) = \f(x) for allx ¢ M, \ € A, HomA(M, N) is
endowed with the structure of a left A-module., In the case
where M =N, HomA(lVl, M) becomes a ring with unit element

under the product (f - g)(x) = f(g(x)) for all x ¢ M.

THEOREM 9-1. (Schur's lemma) Let E be a simple left
A-module. Then HomA(E, E) is a division ring.

124
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Proof. LetO #f ¢ Hom,(E,E). Then0 # f(E) € E
implies f(E) = E so f is surjective. Also 0 € kerf # E
implies ker f = 0 so f is injective. Thus f is a A-isomor-
phism and there exists g ¢ HomA( E, E) such that

feg=gof=I,. Theng=1"

THEOREM 9-2. Suppose M is a left A-module and
EB? 1 =M = @ M' are two direct sum decompositions
of M with Mi’ Mi all 51mp1e left A-submodules.of M. Then
n =m and there is a bijection between the Mi and the M;'j in

which corresponding modules are isomorphic.

Proof. Suppose with no loss of generality thatn s m. If
n =1, Mis simple and som =1, Suppose now that the
result holds for 1,2,...,n-1. Denote by 115 the projection
from M onto Mi for eachj =1,...,m. Then for some

k, 1 £ k £ m, "i{(Ml) # 0. Otherwise we would have

M, = 0. Since M, and Mi{ are both simple A-modules, it
follows that M, ~ M, and that (ker ni{) n M, =0.
It suffices then to show that N = @?22 M ;21 Mj =N
k

for then the induction hypothesis could be applied to i7

complete the proof. But N' = ker 'ni{ so N' N M, =0.

1
Thus the sum of M1 and N' is direct and, since M1 # 0, this

sum properly contains N'. That is, N' c M1 ® N'. But
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N' is certainly a maximal submodule of M since M/N' ~ My
which is simple, Thus M1 ® N' = M from which it follows
that N' ~ M/M;. On the other hand, it is immediate that

N l\/l/I\/I1 so N a~ N'.

THEOREM 9-3. Suppose A = @?zlli is a finite direct sum
of simple left ideals and A is a left ideal of A. Then A is

a finite direct sum of simple left ideals,

Proof, By Theorem 8-8(1), we know A = A ® B and by

keK 7k

and Bk are simple left ideals. Then by Theorem 9-2,

| 7] + | K| = n so in particular J is a finite set.

Theorem 8-8(2), A = @J.(JAJ. and B = &b B, where AJ.

THEOREM 9-4. Suppose A is a finite direct sum of simple

left ideals. Then A is left Artin.

Proof. Let {Aj | j € J} be a nonempty collection of left
ideals of A. By Theorems 9-3 and 9-2, each Aj is a finite
direct sum of simple left ideals, the number of summands
being an invariant of Aj' Choose an ideal A from the
collection which has the fewest number of summands when
written as a direct sum of simple left ideals. If B ¢ Ais
any left ideal, then by Theorem 8-8(1), A = B ® C where

C # 0. Expressing B and C respectively as direct sums of
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simple left ideals yields a similar expression for A, Thus
the number of summands required for B is less than the
number for A, Hence B § {Aj | je J} and A is a minimal

element of the collection, Therefore A is left Artin.

DEFINITION 9-2. A ring A is called left simple if A is left
Artin and the only two-sided ideals of A are 0 and A.
Similarly we have the notion of a right simple ring. A ring

is called simple if it is both left simple and right simple.

THEOREM 9-5. Let A be a division ring and M_(A) the set
of all n x n matrices with entries in A, Then Mn(A) is a

simple ring.

Proof. We begin by showing that Mn(A) has no two-sided
ideals other than 0 and itself, Let A be any nonzero matrix
in M_(A) and let (A) be the two-sided ideal {BAC |B, Ce M, (a)}.
We will show that (A) = M_(A).

Let Er, be the matrix with entry 1 in position (r, s)
and 0 everywhere else. Suppose d # 0 is the (i, j) entry of
A. ThenX = ZII?:I EkiAEjk is in (A) and has d in each
position along the diagonal and 0 elsewhere. But the matrix

with d_1 down the diagonal and 0 elsewhere is the inverse of

X. Hence I, the identity matrix, is also in (A), that is,
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(A) = M_(a).
In order to prove that Mn(A) is left (right) Artin, it
suffices by Theorem 9-4 to show Mn(A) is a finite direct
sum of simple left (right) ideals. Set Mn(A) = A and
Ij =1\.EJ.j for j=1,...,n. Ij is the left ideal of matrices
which are zero off the jth column. Clearly A = @?zllj and
it remains only to show each Ij is a simple left ideal.
Suppose 0 # A = (aik) € Ij' Then for some i, aij # 0. Let
B be the matrix with ai_jl in position (j, i) and 0 elsewhere,
Then BA = Ejj' Thus Ij = AEjj =ABA € AA C Ij SO
AA = Ij' Therefore Ij is a simple left ideal and Mn(A) is a
left simple ring. On the other hand, by taking Ij = EjjA’
the right ideal of matrices which are zero off the jth row,
we get that Mn(A) is right Artin, hence right simple, hence

simple.

Thus we have exhibited a whole class of simple
rings. One is justified in asking whether there exist any
other simple rings and whether there are any rings which
are left simple but not right simple or conversely. The
answer to all of these questions is no and it is toward these
results that we now head.

DEFINITION 9-3., A set of elements e -.ey in a ring A

100"
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is called a set of orthogonal idempotents if eiej =0 ifi#]

and ei2 = e Each e is called, naturally, an idempotent.

THEOREM 9-6. The following conditions on a ring A are

equivalent:

(1) Every short exact sequence of left A-modules splits.

(2) Every left A-module is A-projective.

(3) Every nonzero left A-module is the direct sum of simple
left A-submodules.

(4) A is a finite direct sum of simple left ideals.
A= @illi’ where I = Ae; and {ei, ...e,} is a set of
orthogonal idempotents whose sum is 1,

(5) Ais left Artin and R(A) = 0.

(6) A is left Artin and has no nonzero nilpotent left ideals.

(7) A is left Artin and I2 # 0 for all simple left ideals 1.

(8) A is left Artin and Iis a direct summand of A for every
simple left ideal 1.

(9) A is a finite direct sum of rings, A = @;;1 Aj’ where
each Aj is a two-sided ideal of A and is ring isomorphic
to Mn.(Aj)’ the ring of all nJ. X nJ. matrices over a
division ring Aj.

(10) A is a finite direct sum of simple rings,

(11) - (18) Replace 'left'" by ''right" in (1) - (8).
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Note. Since conditions (9) and (10) make no mention of left
or right, it is sufficient by symmetry to prove the equiva-
lence of (1) - (10). A schematic outline of the proof would

look like

(7)

(2) &——— (1) (8) (6)

\

@B) —— (@) —— ()

/N

(9) ————— (10)

Proof. (4) implies (1). Let0 =+ A f’ B § C »0bea
short exact sequence of left A-modules. By Theorem 8-8(1),
we know that f(A) is a direct summand of B, say B=f(A) ® X,
Then X ~ B/f(A) ~ C and f(A) ~ A gives Ba~ A ® C. So the
sequence splits.

(1) implies (2). Suppose P is a left A-module and
we have a A-epimorphism f: B + C and a A-homomorphism
g: P 2 C. Then the sequence 0 + ker f » B —f' C = 0 splits

so there exists h: C » B such that £ h = IC. Then
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heg:P+*Bandf . (h.g)=gsoPis A-projective.

(2) implies (3). K N is a left A-submodule of M,
then since M/N is A-projective, the sequence
0+ N -+ M » M/N = 0 splits and N is a direct summand of
M. The proof of (3) is now identical with that of
Theorem 8-8(2).

(3) implies (4). By (3), A = @aeAIawhere I,isa

simple left ideal of A. In particular, 1= et e

where e, € Ia.' So for any A\ e A, - 1 = e t .- +>\en.
2T

n
(o = =
i1 o, € aeAIa A soA= B, 1

i
Therefore A € D i=15

where I, =1 . Kx.e I., thenx.=x.1=x.e.,+ ... + x.€ .
i oy i i i i ii i'n

Alsox. =0+ .-+ +0+x,+0+ ... +0, Thus x.e, = x.,
i i i’i i

Xiej =0fori# j., Hence Ii = Aei. Also setting X; = e,
we get that {el, ...,e_ }is a set of orthogonal idempotents.

(4) implies (5). By Theorem 9-4, we have that A
is left Artin. Also m, = @?ﬂlj is a maximal left ideal of
A since A/?)zi = Ii is a simplg#lieft A-module. Thus
R(A) S NJ_; 7. =0 so R(A) = 0.

(5) implies (6). This follows from the Corollary to
Theorem 8-3.

(6) implies (7). I I2 = 0, then I is nilpotent so

I=0. Thus Iis not simple.

(7) implies (8). This is simply Theorem 8-86.
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(8) implies (4). If one looks at the proof of
Theorem 8-7, the hypothesis that R(A) = 0 was used only to
prove that a certain simple left ideal I was a direct summand
of A which is a hypothesis here. Thus by Theorem 8-7, we
have A = @?:lIi for simple left ideals L. Expressing
1= e F e e with e € Ii’ we get immediately that
Ii = /\.ei and {el, eees en}is a set of orthogonal idempotents.

(9) implies (10). This is immediate from

"Theorem 9-5.

(10) implies (4). Suppose A = @;1 Aj where each
Aj is a simple ring. Then Aj is left Artin and since R(Aj)
is a two-sided ideal of Aj either R(Aj) = AJ or R(Aj) = 0,

The first possibility is ruled out by the existence of a
maximal left ideal in Aj’ an easy consequence of Zorn's
lemma. Thus A. satisfies (5) or equivalently (4). Suppose

EDn I.. where I = A e j is a simple left ideal of Aj,

i=171j
2'31 eij = lj’ and {e..}, =1,..., nj, is a set of orthogonal
idle—mpotents. Then A = EB I i where I Ae
simple left ideal of A, {e..], =1,..., nj, j= 1,...,r, is a
set of orthogonal idempotents, and X . L=zt 1. =1

i, 31 =17]
Thus A satisfies (4).

(4) implies (9). We have saved the most intricate
and the only really new part of the proof to last. Suppose

then that A = @ I, where I = Ae, is a simple left ideal
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and [el, e em} is a set of orthogonal idempotents whose
sum is 1. We regroup these simple left ideals as follows:
Let Al be the direct sum of all Ii which are isomorphic to

I1 as left A-modules. If Ii2 is the first ideal not
isomorphic to Il’ let A2 be the direct sum of all those Ii
which are isomorphic to Ii as left A-modules. Continue
in this way to get A = @;zl Aj where each Aj is a direct sum
of isomorphic simple left ideals and if i #j, no summand of
Ai is isomorphic to a summand of Aj.

Our first claim is that each Aj is a two-sided ideal
of A. We know that Aj is a left ideal since it is a direct
sum of left ideals. We must show AjA =AJ.(A1 ®---@®A NS Aj'
It is clearly sufficient to show that AjAk =0 for j #k. And
to show this it is sufficient to show that IJ = 0 for any two
nonisomorphic simple left ideals I and J of A, Suppose then
that IJ # 0. Then there exists y € J such that Iy # 0.
Define a A-homomorphismy : I + J by y(x) = xy for all
x ¢ I. Theny # 0 and so must be an isomorphism between
I and J. Thus the claim is verified.

We wish to show now that each Aj is isomorphic as
a ring to Mn.(Aj) for some appropriately chosen division
ring Aj. In order to simplify the notation, suppose that

A= @il I, where the I, are simple left ideals and

I ~ 12 A A In as left A-modules. Thus we are looking
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at one of the summands Aj. Set A = HomA(Il, Il) which by
Schur's lemma is a division ring. We will prove A ~ M _(&).
We begin by investigating the structure of HomAIi, Ij)’
asking whether there is some easy way of viewing any
A-homomorphism f ; Ii - Ij‘ Now f(ei) = )\ej for some
N € A. Thus f(ei) = f(ei2) = eif(ei) = ei)\ej. But for any
x ¢ I., x = xe., so f(x) = f(xe.) = xf(e.) = xe.\e.. Therefore
i i i i 7]
~~~7 . ~
f= ei)\ej in our usual notation where z denotes the map
given by right multiplication by z.
Let us pursue this fact to determine how these maps
are added and composed. Supposef, g € HomA(Ii’ Ij) where
~ P d
f= ei)\ej and g = e;u e;- Then (f+ g)(x) = f(x) + g(x)
= xei)\ej+xeipej =xei(x+ ‘,.;)ej so f+g = e/i()\\+y¢j. Now
suppose f ¢ HomA(Ii, Ij) and g € HomAIj, Ik) where = ei)‘ej
dg= Then g o £ ¢ Hom(I ) and
and g=epe,. g € (L, I
(g » H)(x) = g(f(x)) = g(xeiXeJ.) = xei)\ejejy.ek = xei)\ejpek.
N
Thus g o f = ei)\ejpek. Note that the "multipliers' appear
in the reverse order to the usual composition of functions.
For convenience let us drop the ~ notation, that is,
ei)\ej is now to be thought of as an element of HomA(Ii, Ij)
given by right multiplication by ei)\ej. Similarly, compose
functions from left to right rather than in our usual way to

agree with the way these homomorphisms are multiplied,

Let g; be a nonzero element of HomA(Il, Ii) and
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gi—1 € HomA(Ii’ I ) be its inverse. Choose such homo-

) . -1 .
morphisms for i=1,...,n. Then giei)\ejgj € HomA(Il, Il) =A
for each A € A. We thus define amapp : A~ Mn(A) by
p(\) = | giei)\ejgj_l |, the matrix whose (i, j) entry is
giei)\ejgj—l. We will prove that p is a ring isomorphism,

(1) p is a homomorphism.
_ ) -1
ph  +2rg)= Igiei()\l + )‘2)ejgj I

-1 -1
=lgiei)\lejgj I + ‘giei)‘Zejgj I

= pih)) + p(hg);
_ -1
PO rg) = lgge 00 hg)ese; |
_ n -1
= Igieixl(zkzl ek)x2ejgj |
=zl gen e e.g !
k=181 €k 2385
R o -1 -1
=|Z . (880 8y Nege a8, )|

=p(A)phy).

(2) pis injective. For suppose X # 0. Then for

some values of i and j, ei)\ej # 0. Otherwise

n

_ «n _ «n n _
0=3% e\e.= X% l(zi=1 ei)\)eJ.—ZJJ.=1

i,j=1 7177 7=
Thus ei)\e. is a A-isomorphism from Ii to Ij and so

)\ej =)\, contradiction.

giei)\ejg‘]fl is the composition of three isomorphisms, hence
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is an isomorphism from I1 to Il’ that is, is a nonzero
element of A. Thus p(\) # 0.

(3) p is surjective. It is clearly enough to show
that for each element 6 ¢ A and pair of indices (i, j) the
matrix with é in position (i, j) and 0 elsewhere is p(\) for

-1 -1,
some X ¢ A. Now g, 6gj € HomA(Ii’ Ij) so g; 6gj = eixej for
some X\ ¢ A. Thus é = gieiXejgj—l. Therefore the (k, £)
. -1 . . .
entry of p(ei)‘ej) is gy e e;ne.e g, which is equal to ¢ if

1]
k =1iand £ = j and 0 otherwise.

DEFINITION 9-4. A ring satisfying any (hence all) of the
above conditions is called semisimple. Note that we need
not distinguish between left and right semisimple since a

ring having one property necessarily has both.

COROLLARY 1. (1) Every simple ring is semisimple,

(2) A ring is left simple if and only if it is right simple,

COROLLARY 2. (Wedderburn's Theorem) Every simple
ring A is isomorphic to Mn(A), the ring of all n x n

matrices over a division ring A.

Proof. By Corollary 1(1), A is semisimple so by

condition (9) of Theorem 9-6, A = @;‘:1 Aj where Aj is a
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two-sided ideal of A isomorphic to Mn (Aj). But the only
J
two-sided ideals of A are 0 and A. Thus r =1 and
A~ Mn(A) = Mnl(Al).
Finally we have the question of the uniqueness of
the decompositions of conditions (9) and (10) of the theorem,

We conclude with the following uniqueness theorem.

THEOREM 9-7. Suppose @?=1 A= A= @;21 A"}. , are two
ring direct sum decompositions of A with Ai and Aj. simple

rings. Then n = m and each A, equals some A!.
; €4

Proof. Since A has a unit element, we have

Ai = AiA = Z;rzll AiAj' Exactly one of these summands is
nonzero. For clearly they cannot all be 0 since Ai # 0.
On the other hand, since each AiAj is a two-sided ideal of
Ai’ if it is not 0, it must be Ai' But if AiAj =Ai =AiA' ,
then A3 n A1'< 2 Ai # 0, contradicting the direct sum
property. Thus for exactly one value of j, Ai = AiAj'

But AiAi. is also a two-sided ideal of Ai and since it is

nonzero must be Aj. Therefore Ai = Aj..

EXERCISES

9-1. Prove that every left Artin ring with no nontrivial
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zero divisors is a field.

9-2. Prove that if e is an idempotent in a ring A, then Ae

is a projective A-module.

9-3. Let A be the ring of quaternions over ZZ_, that is,

3)
1 or ¥1» Xg» Xg € Zs} where the

operations in A are described in Chapter 1, Example 7.

A= {x0+x i+x2j+x3k | x

Prove that A is a simple ring. (Hint: Exhibit an

isomorphism between A and M2(Z3).)

9-4. Let A be a semisimple ring. Prove that every

simple A-module is isomorphic to a simple left ideal of A.

9-5. Let A be a simple ring. Prove that all simple

A-modules are isomorphic.

9-6. Let A be a semisimple ring and A and B simple left

A-modules. Prove that A ~ B if and only if (0:A) = (0:B).

9-7. Prove that any two-sided ideal in a semisimple ring

is itself a semisimple ring.

9-8. Show that a commutative semisimple ring is a finite
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direct sum of fields.

9-9. Let C(A) denote the center of the ring A (see

Exercise 1-5). Prove that if R(A) = 0, then R(C(A)) = O.

9-10. Suppose A is a semisimple ring. Describe C(A) in

terms of matrices.
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